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Preface

This volume of Light Scattering Reviews is aimed at the presentation of recent
advances in radiative transfer, light scattering, and polarimetry and consists of nine
chapters prepared by leading experts in respective research areas. A state-of-the-art
discrete-ordinate algorithm for the transfer of monochromatic unpolarized radiation
in non-isothermal, vertically inhomogeneous media, as implemented in the com-
puter code discrete-ordinate-method radiative transfer, DISORT, is reviewed by
Laszlo et al. in chapter “The Discrete Ordinate Algorithm, DISORT for Radiative
Transfer”. Both the theoretical background and its algorithmic implementation are
covered in detail. These include features common to solutions of many radiative
transfer methods, including the discrete-ordinate method, and those specific to
DISORT. The common features include expansions of the phase function and the
intensity into a series of Legendre polynomials and Fourier series, respectively,
which transform the radiative transfer equation into a set of equations that depend
only on the optical depth and the zenith angle, and the transformation of the
integro-differential equations into a set of ordinary differential equations by
approximating the integral in the source function by a quadrature sum. The features
specific to DISORT include the reduction of the order of the standard algebraic
eigenvalue problem to increase efficiency in both homogenous and particular
solutions of the system of coupled ordinary differential equations, application of the
scaling transformation to make the solution unconditionally stable for arbitrary
large values of optical depth, application of the δ-M method to handle highly
anisotropic scattering, the correction of intensities by the Nakajima–Tanaka
method, and the implementation of a realistic bidirectional bottom boundary con-
dition as realized in version 3 of DISORT. Numerical considerations that make the
implementation robust and efficient are also discussed. Examples of setting up
DISORT runs are shown by using test cases with increasing complexity. Brief
summaries of the versions released to date are provided as well. Chapter
“Community Radiative Transfer Model for Air Quality Studies” prepared by Liu
and Lu presents the latest community radiative transfer model (CRTM), which is
applicable for passive optical, microwave, and infrared sensors. The CRTM has
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been used in operational radiance assimilations in supporting of weather forecasting
and in the generation of satellite products. In this chapter, CRTM applications to
assimilate aerosol optical depths derived from satellite measurements are discussed.
In particular, the assimilation improves the analysis of aerosol mass concentrations.
A retrieval algorithm and a retrieval product of carbon monoxide by using satellite
measurements are introduced. Wei and Xu has presented the analytical solution
of the time-dependent scalar and vector RTE in an infinite uniform medium with an
arbitrary light scattering phase function using cumulant expansion in chapter
“Analytical Solution of Radiative Transfer Using Cumulant Expansion”. Analytical
expressions for the exact distribution in angle and the spatial cumulants at any
angle, exact up to an arbitrary high order, n, of photons are derived. By a cutoff at
the second cumulant order, a Gaussian analytical approximate expressions of the
scalar and vector photon spatial distribution is obtained as a function of the
direction of light propagation and time, whose center position and half-width are
always exact at arbitrary time. The center of this distribution advances and the
half-width grows in time, depicting the evolution of the particle migration from near
ballistic, through snake-like, and into the final diffusive regime. Contrary to what
occurs in other approximation techniques, truncation of the cumulant expansion at
order n is exact at that order and cumulants up to and including order n remain
unchanged when contributions from higher orders are added. Various strategies to
incorporate the boundary conditions in the cumulant solution are presented. The
performance of the cumulant solution in an infinite and a semi-infinite medium is
verified by exact numerical solutions with Monte Carlo simulations. At the end, the
particular applications of the cumulant solution to RTE in biophotonics for optical
imaging and in remote sensing for cloud ranging are discussed. Kolesov and
Korpacheva have reviewed the radiative transfer theory in turbid media of different
shapes in chapter “Radiative Transfer in Spherically and Cylindrically Symmetric
Media”. In particular, the authors have presented the research of radiative transfer in
spherically and cylindrically symmetric media with anisotropic scattering of light.
The problems of radiation transfer in an infinite homogeneous absorbing and
anisotropically scattering media illuminated by a planar or point sources are con-
sidered. The relationship between the characteristics of the radiation fields in these
two problems is obtained. Also an overview of the problems of radiation transfer in
an infinite medium with arbitrary spherically symmetric distribution of sources is
presented. The authors also discuss the structure of the radiation field in a sphere of
a finite optical thickness and a spherical shell. The asymptotic expressions in the
theory of radiation transfer in atmospheres with spherical symmetry are presented
as well. The authors discuss the applications of the methods developed in the theory
of radiative transfer in spherically symmetric media to the case of media with a
cylindrical symmetry. They provide an overview of studies on the nonstationary
radiative transfer in plane-parallel, spherical, and cylindrical media. Lock and
Laven describe the Debye series for scattering by a sphere, a coated sphere, a
multi-layer sphere, a tilted cylinder, and a prolate spheroid in chapter “The Debye
Series and Its Use in Time-Domain Scattering”. In electromagnetic scattering of an
incident beam by a single particle possessing a reasonably high degree of
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symmetry, the Debye series decomposes the partial wave scattering and interior
amplitudes into the contributions of a number of intuitive physical processes. The
authors comment on the meaning of the various Debye series terms, and briefly
recount the method by which the formulas of ray scattering can be derived from
them. They also consider time-domain scattering of a short pulse by a spherical
particle and describe the way in which the time-domain scattering signature natu-
rally separates out the various Debye series terms. Lastly, the authors show how
time-domain scattering further separates a number of cooperating sub-processes
present in the individual Debye series terms. Kahnert et al. discuss the models of
inhomogeneous particles used in light scattering computations in chapter
“Morphological Models Forinhomogeneous Particles: Light Scattering by Aerosols,
Cometary Dust, and Livingcells”. Light scattering by chemically heterogeneous
particles with inhomogeneous internal structure is an important field of study in
such diverse disciplines as atmospheric science, astronomy, and biomedical optics.
Accordingly, there is a large variety of particle morphologies, chemical composi-
tions, and dielectric contrasts that have been considered in computational light
scattering studies. Depending on the intended applications, physical particle
properties, and computational constraints, one can find inhomogeneous particle
models ranging from simple core-shell geometries to realistic quasi-replicas of
natural particles. The authors review various approaches for representing the
geometry of encapsulated light-absorbing carbon aerosols, mineral dust, volcanic
ash, cometary dust, and biological particles. The effects of particle inhomogeneity
on radiometric properties are discussed. The authors also consider effective medium
approximations, i.e., approaches that aim at avoiding the computational difficulties
related to particle inhomogeneity altogether by representing such particles by a
homogeneous material with an effective refractive index. Chapter “Some Wave-
Theoretic Problems in Radially in Homogeneous Media” prepared by Noontaplook
et al. is aimed at consideration of wave-theoretic problems in radially inhomoge-
neous media. The wave-theoretic aspects are based on the solution of Maxwell’s
equations for scattering of plane electromagnetic waves from a dielectric (or
“transparent”) sphere in terms of the related Helmholtz equation. There is a con-
nection with the time-independent Schrödinger equation in the following sense: the
time-independent Schrödinger equation is identical in form to the wave equation for
the scalar radiation potential for TE-polarized electromagnetic waves. In regions
where the refractive index is constant, it is also identical to the scalar radiation
potential for TM-polarized electromagnetic waves, but with different boundary
conditions than for the TE case. The authors examine scattering of the TE mode
from a piecewise-uniform radial inhomogeneity embedded in an external medium
(as opposed to an off-axis inclusion). The corresponding theory for the TM mode is
also developed, and the well-known connection with morphology-dependent res-
onances (MDRs) in these contexts is noted. Kimura et al. focus on numerical
approaches to deducing the light scattering and thermal emission properties of
primitive dust particles in planetary systems from astronomical observations in
chapter “Light Scattering and Thermal Emission by Primitive Dust Particles in
Planetary systems”. The particles are agglomerates of small grains with sizes
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comparable to visible wavelength and compositions being mainly magnesium-rich
silicates, iron-bearing metals, and organic refractory materials in pristine phases.
These unique characteristics of primitive dust particles reflect their formation and
evolution around main-sequence stars of essentially solar composition. The
development of light scattering theories has been offering powerful tools to make a
thorough investigation of light scattering and thermal emission by primitive dust
agglomerates in such a circumstellar environment. In particular, the discrete dipole
approximation, the T-matrix method, and effective medium approximations are the
most popular techniques for practical use in astronomy. Numerical simulations of
light scattering and thermal emission by dust agglomerates of submicrometer-sized
constituent grains have a great potential to provide new state-of-the-art knowledge
of primitive dust particles in planetary systems. What is essential to this end is to
combine the simulations with comprehensive collections of relevant results from
not only astronomical observations, but also in situ data analyses, laboratory sample
analyses, laboratory analogue experiments, and theoretical studies on the origin and
evolution of the particles. The concluding chapter “Polarimetry of Man-Made
Objects” prepared by S. Savenkov is aimed at applications of environmental
polarimetry. Polarimetry has already been an active area of research for about fifty
years. A primary motivation for research in scatter polarimetry is to understand the
interaction of polarized radiation with natural scenes and to search for useful dis-
criminants to classify targets at a distance. In order to study the polarization
response of various targets, the matrix models (i.e., 2 x 2 coherent Jones and
Sinclair and 4 x 4 average power density Mueller (Stokes) and Kennaugh matrices
etc.) and coherent and incoherent target decomposition techniques has been used.
This comes to be the standard tools for targets characterization. Polarimetric
decomposition methods allow a physical interpretation of the different scattering
mechanisms inside a resolution cell. Thanks to such decompositions, it is possible
to extract information related to the intrinsic physical and geometrical properties
of the studied targets. This type of information is inestimable if intensity is mea-
sured only. The goal of this chapter is to explain the basics of polarimetric theory,
outline its current state of the art, and review some of important applications to
study the scattering behavior of various man-made and urban targets like buildings
(tall and short), ships, oil rigs and spills, mines, bridges, etc. The author considers
both optical range and radar polarimetry.

Darmstadt, Germany Alexander Kokhanovsky
October 2015
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The Discrete Ordinate Algorithm,
DISORT for Radiative Transfer

Istvan Laszlo, Knut Stamnes, Warren J. Wiscombe and Si-Chee Tsay

Abstract The discrete ordinate method for the transfer of monochromatic unpo-
larized radiation in non-isothermal, vertically inhomogeneous media, as imple-
mented in the computer code Discrete-Ordinate-Method Radiative Transfer,
DISORT, is reviewed. Both the theoretical background and its algorithmic imple-
mentation are covered. Among others, described are the reduction of the order of
the standard algebraic eigenvalue problem to increase efficiency in both the
homogenous and particular solutions of the system of coupled ordinary differential
equations, application of the scaling transformation to make the solution uncon-
ditionally stable for arbitrary large values of optical depth, application of the δ-M
method to handle highly anisotropic scattering, the correction of intensities by the
Nakajima-Tanaka method, and the implementation of a realistic bidirectional bot-
tom boundary. Numerical considerations that make the implementation robust and
efficient are also discussed. Examples of setting up DISORT runs are shown by
using test cases with increasing complexity. Brief summaries of the versions
released to date are provided, as well.
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1 Introduction

Studies of propagation of electromagnetic radiation in a medium (e.g., stellar and
planetary atmospheres) require the solution of an equation, the radiative transfer
equation, which mathematically describes the interaction between emission,
absorption, and scattering by which the medium affects the transfer of radiation.
One such solution is the discrete ordinate approximation; a systematic development
of which is presented by Chandrasekhar (1960). The strength of the approximation
is in the transformation of an integro-differential equation describing radiative
transfer to a system of ordinary differential equations for which solutions in terms of
eigenvectors and eigenvalues can be found. Computer implementation of the dis-
crete ordinate solutions proposed by investigators (e.g., Chandrasekhar 1960; Liou
1973; Asano 1975), however, had numerical difficulties as discussed by Stamnes
and Swanson (1981), who also showed a way to overcome these difficulties. The
discrete ordinate method has gained considerable popularity after the publication of
the paper by Stamnes et al. (1988a) that presented a detailed summary of treating
numerical ill-conditioning, computation of the eigenvalues and eigenvectors, effi-
cient inversion of the matrix needed for determining the constants of integration,
and especially after its implementation in the computer code Discrete Ordinate
Method Radiative Transfer, or DISORT, in 1988 was made readily available to the
public.

DISORT is a discrete ordinate algorithm for monochromatic unpolarized
radiative transfer in non-isothermal, vertically inhomogeneous, but horizontally
homogeneous media. It can treat thermal emission, absorption, and scattering with
an arbitrary phase function covering the electromagnetic spectrum from the ultra-
violet to radio. The medium may be driven by parallel or isotropic diffuse radiation
incident at the top boundary, by internal thermal sources and thermal emission from
the boundaries, as well as by bidirectional reflection at the surface. It calculates
intensities (radiances), fluxes (irradiances), and mean intensities at user-specified
angles and levels.

Our goal is to review the discrete ordinate approximation as it is implemented in
DISORT. The primary source used in this review is the DISORT Report v1.1
(Stamnes et al. 2000). Most of the material is taken from that report with little or no
modification. However, some parts, e.g., the treatment of the bidirectionally
reflecting lower boundary, are expanded on. We also include recent advances that
appeared in Lin et al. (2015), and which were not present in the v1.1 Report. We
first describe the theoretical basis for DISORT, and then discuss numerical con-
siderations that must be dealt with in order to make the implementation robust and
efficient. Next, taking from the many test cases provided with the code, we show
examples of how to correctly set up a DISORT run, and finally, we provide brief
summaries of the versions released to date.
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2 Equation of Transfer in DISORT

We consider a plane-parallel horizontally homogeneous medium (a slab), the optical
properties of which are characterized by its optical thickness (defined as the dif-
ference between the optical depth at the bottom and that at the top), the
single-scattering albedo ω, and the scattering phase function P. As defined, ω gives
the fraction of an incident beam which is scattered by an infinitesimal volume inside
the medium, while P describes how much of the radiation incident from a given
direction is scattered by that volume into another direction, that is, the angular
scattering pattern.

Location in the medium is specified by one vertical coordinate, measured in
optical depth units (τ) from the top down. Directions are described by two angular
coordinates, zenith and azimuth angles (Fig. 1). Polar (zenith) angles (θ) are
measured from the upward direction: straight up is 0° and straight down is 180°. In
the rest of the discussion we use the cosine of the polar angle (µ) instead of θ to
denote the polar direction. According to the above convention all upward directions
have positive polar angle cosines (+μ), while downward-directed intensities have
negative polar angle cosines (−μ). The exception is the cosine of the incident beam
angle (μ0) which, for historical reasons, is taken positive. Azimuth angles (ϕ) are
measured in an absolute frame of reference between 0° and 360°. They can be
measured either clockwise or counterclockwise from the zero azimuth when viewed
downward from zenith. However, when a choice has been made it must be applied
consistently for all directions (upward, downward, incident, reflection). We note
that according to this definition the relative azimuth angle of sunglint is 0°.

The transfer of monochromatic radiation through the medium, subject to internal
thermal emission in local thermodynamic equilibrium and illuminated at the top
boundary by a parallel beam in the direction µ0, ϕ0, is described by the following
pair of equations:

IdirectðsÞ ¼ F0e�s=l0d l� l0ð Þd /� /0ð Þ; ð1Þ

Fig. 1 Definition of upward,
ē(+µ, ϕ) and downward, ē(−µ,
ϕ) directions in DISORT.
Polar (zenith) angles θ are
measured from the upward
normal pointing to
Z. Azimuth angles ϕ are
measured in a plane
perpendicular to the upward
normal, and in relative to the
reference direction ϕ = 0°
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l
dI s; l;/ð Þ

ds
¼ I s; l;/ð Þ � S s; l;/ð Þ: ð2Þ

Here Idirect is the intensity of the direct beam at vertical optical depth τ, F0 is the flux
(irradiance) of the parallel beam normal to the direction of incidence at the top
boundary, and δ is the delta function in units of per steradian. I is the diffuse specific
intensity at τ in a cone of unit solid angle along direction µ, ϕ, and S is the “source
function.” S is the sum of the radiation scattered into the direction μ, ϕ from all
other directions μ′, ϕ′, the “pseudobeam” source term Q(beam), and the internal
thermal source Q(thermal) characterized by the Planck function B(T) at temperature
T at optical depth τ (cf. Stamnes et al. 2000):

Sðs; l;/Þ ¼ xðsÞ
4p

Z2p
0

d/0
Z1

�1

Pðs; l;/; l0;/0ÞIðs; l0;/0Þdl0

þQ beamð Þðs; l;/ÞþQðthermalÞðsÞ;
ð3Þ

where

Q beamð Þðs; l;/Þ ¼ xðsÞ
4p

Pðs; l;/; �l0;/0ÞF0 e�s=l0 ;

QðthermalÞðsÞ ¼ 1� xðsÞf gB TðsÞ½ �:
ð4Þ

Apart from the polar angles defining the direction all other quantities in (1)–(4)
depend on the wavelength of radiation. The wavelength dependence is assumed to
be understood and is omitted from the equations.

Equation (1) gives the solution for the transfer of the direct beam radiation. It
says that Idirect decreases exponentially with the pathlength τ/µ0, and it is nonzero
only in the direction µ0, ϕ0. The solution of (2) provides the diffuse radiation
propagating in the direction µ, ϕ at the optical depth τ. In the remainder of the
document we describe the solution of (2) using the discrete ordinate method as
implemented in DISORT. The solution, as we show below, is comprised of
essentially three steps: (1) transforming (2) into a set of radiative transfer equations
which are functions of the vertical coordinate τ and the angular coordinate µ only
(separation of azimuth dependence); (2) transforming the integro-differential
equations into a system of ordinary differential equations; and (3) solving the
system of ordinary differential equations using robust linear algebra solvers.

2.1 Radiative Transfer Equation Uncoupled in Azimuth

The scatterers within the medium are assumed to have random orientations; thus, ω
does not explicitly depend on the direction of the incident beam, and P depends
only on the angle between the incident and scattered beam (the scattering angle, Θ),
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that is, Pðs; l;/; l0;/0Þ ¼ Pðs; cosHÞ where, from the cosine law of spherical
trigonometry, cosH ¼ ll0 þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� l2Þð1� l02Þp

cosð/� /0Þ. With this restriction
on the form of P, we expand the phase function P into a series of Legendre
polynomials P‘ with 2M terms (‘ = 0, …, 2M − 1) (Chandrasekhar 1960, Chap. 1,
Eq. 33; Thomas and Stamnes 1999, Eq. 6.28).

P s; cosHð Þ ¼
X2M�1

‘¼0

2‘þ 1ð Þ g‘ðsÞP‘ cosHð Þ; ð5Þ

where the expansion coefficients g‘ are given by

g‘ðsÞ ¼ 1
2

Zþ 1

�1

P‘ cosHð ÞP s; cosHð Þd cosHð Þ: ð6Þ

In DISORT we require the phase function to be normalized to unity, so g0 = 1. The
g’s generally decrease monotonically, so we can expect that a finite number of
terms 2M in the expansion is sufficient. However, for highly asymmetric phase
functions (e.g., for clouds) the g’s often decrease very slowly, and several hundred
terms may be necessary in (5) to adequately represent the phase function (in
Sect. 6.1 we show how DISORT mitigates this problem).

Applying the addition theorem for spherical harmonics (Chandrasekhar 1960,
Chap. 6, Eq. 86; Thomas and Stamnes 1999, Eq. 6.30) to (5) we obtain

P s;l;/; l0;/0ð Þ ¼
X2M�1

m¼0

2� d0mð Þ
X2M�1

‘¼m

ð2‘þ 1Þg‘ðsÞKm
‘ ðlÞKm

‘ l0ð Þ
( )

cosm /� /0ð Þ:

ð7Þ

Here Km
‘ are the normalized associated Legendre polynomials related to the asso-

ciated Legendre polynomials Pm
‘ by

Km
‘ ðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð‘� mÞ!
ð‘þmÞ!

s
Pm
‘ ðlÞ:

Since (7) is essentially a Fourier expansion of P in azimuth, we may similarly
expand the intensity in a Fourier cosine series (Chandrasekhar 1960, Chap. 6,
Eq. 91; Thomas and Stamnes 1999, Eq. 6.34):

Iðs; l;/Þ ¼
X2M�1

m¼0

Imðs; lÞ cosm /0 � /ð Þ: ð8Þ

Substitution of this equation, as well as (3) and (7) into the radiative transfer
equation (2) splits it into 2M independent integro-differential equations, one for
each azimuthal intensity component Im:
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l
dImðs; lÞ

ds
¼ Imðs; lÞ � Smðs; lÞ; ðm ¼ 0; 1; . . .; 2M � 1Þ; ð9Þ

where the source function S is given by

Smðs; lÞ ¼
Z1

�1

Dm s; l; l0ð ÞIm s; l0ð Þdl0 þQmðs; lÞ: ð10Þ

The symbols Dm and Qm are defined by

Dm s; l; l0ð Þ ¼ xðsÞ
2

X2M�1

‘¼m

ð2‘þ 1Þg‘ðsÞKm
‘ ðlÞKm

‘ l0ð Þ; ð11Þ

Qmðs; lÞ ¼ Xm
0 ðs; lÞe�s=l0 þ dm0 Q

ðthermalÞðsÞ; ð12Þ

where

Xm
0 ðs; lÞ ¼

xðsÞF0

4p
2� dm0ð Þ

X2M�1

‘¼m

ð�1Þ‘þmð2‘þ 1Þg‘ðsÞKm
‘ ðlÞKm

‘ l0ð Þ; ð13Þ

and dm0 is the Kronecker delta

dm0 ¼ 1 if m ¼ 0;
0 otherwise:

�

The above procedure transforms (2) into a set of equations (9) which do not depend
on the azimuth angle (ϕ). It also uncouples the various Fourier components Im in
(9); that is, Im does not depend on any Im+k for k ≠ 0.

Using the same number of terms (2M) in the Fourier expansion of intensity (8) as
in the Legendre polynomial expansion of the phase function (7) is not accidental.
To explain why, let us consider the case when the number of terms is different:
2M in the expansion of P and 2K in the expansion of I, and assume that
K > M. Substitution of the series expansions into (2) results in an equation con-
taining terms that are proportional to integrals of the type

Z2p
0

X2M�1

m¼0

X2M�1

k¼0

cosmx cos kx dxþ
Z2p
0

X2M�1

m¼0

X2K�1

k¼2M

cosmx cos kx dx:

In this expression the second term is zero because m runs from 0 to 2M − 1 and
k runs from 2M to 2K − 1; that is, for each term k ≠ m, and in this case the integral
is zero. The same argument holds for the case M > K, in which case the remaining
(nonzero) integral has both k and m running from 0 to 2K − 1. As a consequence the
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expansion of the phase function and that of the intensity will have the same number
of terms; and that number is determined by the smaller ofM and K. We note that the
integrals with k ≠ m ≠ 0 in the first term are also zero, which leads to the
uncoupling of the various Fourier components mentioned above.

We note that when the lower boundary of the medium is characterized by
specular reflection, for example, at the bottom of atmosphere in the atmosphere–
ocean system, specular reflection can be included by adding a reflected beam source
term to (12)

Xm
0 ðs; lÞ qs �l0;/0ð Þ e� 2sL�sð Þ=l0 ;

where ρs is the specular reflection function. This term is, however, not included in
the versions of DISORT reviewed here.

3 Discrete Ordinate Approximation—Matrix Formulation

The steps presented so far are common to many approaches used to solve (2). What
sets the discrete ordinate method apart from these, and gives its name, is the next
step. In this step, we approximate the integral in (10) by a quadrature sum. For later
convenience, we choose even-order quadrature angles 2N in the sum so that we
have the same number of polar angle cosines for +μ as for −μ. Substitution of the
integral with a quadrature sum transforms the integro-differential equation (9) into
the following system of ordinary differential equations (cf. Stamnes and Dale 1981;
Stamnes and Swanson 1981)

li
dIm s; lið Þ

ds
¼ Im s; lið Þ � Sm s; lið Þ; ði ¼ �1; . . .;�NÞ: ð14Þ

Each µi is called a “stream”, and (14) represents a “2N—stream approximation”.
Writing (10) in quadratured form, Sm becomes a linear combination of Im values

at all quadrature angles µj (j = ±1, …, ±N),

Sm s; lið Þ ¼
XN
j¼�N
j 6¼0

wjD
m s; li; lj
� �

Im s; lj
� �þQm s; lið Þ: ð15Þ

This approach makes the system coupled in i, but not in m.
In DISORT we draw the µi from a Gaussian quadrature rule for [0, 1] and have

them mirror symmetric (µ−i = −µi, where µi > 0) with weights w−i = wi. This
scheme is the so-called “Double-Gauss” quadrature rule suggested by Sykes (1951)
in which Gaussian quadrature is applied separately to the half-ranges −1 < µ < 0
and 0 < µ < 1. The main advantage is that even-order quadrature points are dis-
tributed symmetrically around |µ| = 0.5 and clustered both toward |µ| = 1 and µ = 0,

The Discrete Ordinate Algorithm, DISORT for Radiative Transfer 9



whereas in the Gaussian scheme for the complete range −1 < µ < 1, they are
clustered only toward µ = −1 and µ = +1. The Double-Gauss clustering toward
µ = 0 will give superior results anywhere the intensity varies rapidly across µ = 0,
especially at the boundaries where the intensity is often discontinuous at µ = 0.
Another advantage is that upward and downward fluxes, as we show later, are
obtained immediately without any further approximation. The use of Gaussian
quadrature also guarantees that the phase function is normalized, i.e.,

XN
j¼�N
j 6¼0

wjD
0 s; li; lj
� � ¼ XN

i¼�N
i 6¼0

wiD
0 s; li; lj
� � ¼ xðsÞ; ð16Þ

implying that energy is conserved in the computation (cf. Wiscombe 1977). The
reason is that the Gaussian rule is based on the zeros of the Legendre polynomials
which are also used for expanding the phase function.

Before showing the matrix form of the discrete ordinate equations we must
comment on the important consequence the number of streams (number of
quadrature angles) 2N chosen has for the number of terms 2M in the Legendre
polynomial expansion of the phase function, and thus for the number of azimuthal
intensity components Im (which is also 2M as discussed above). In (10) Dm is a
polynomial of degree 2M − 1. The maximum degree of a polynomial representing
the intensity Im is also 2M − 1. The reason is that in the single-scattering
approximation, when the intensity is expected to have the largest variability with
polar angle, the intensity is proportional to the phase function (see Eqs. (94) and
(95) later), which in the Legendre expansion is a polynomial of degree 2M − 1. So,
the product of Dm and Im under the integral in (10) is a polynomial with a maximum
degree 2(2M − 1). A 2N-point Gauss quadrature is accurate for polynomials of up
to degree 4N − 1, so for an accurate evaluation of the integral in (10) we must
choose the number of quadrature angles 2N such that 4N − 1 ≥ 4M − 2, from which
it follows that 2N must at least equal 2M. Because of this coupling between the
number of streams and the number of Legendre coefficients in the phase function
expansion in DISORT we set 2M = 2N.

We now return to the discrete ordinate equations, and apply them to a vertically
inhomogeneous atmosphere. In a vertically inhomogeneous medium, the coeffi-
cients Dm in (15) are functions of τ. The τ-dependence makes (14) a system of
2N coupled differential equations with nonconstant coefficients, for which there is
no closed-form analytic solution. To obtain analytic solutions, DISORT assumes
that the medium consists of L adjacent homogeneous layers. The single-scattering
albedo and phase function are assumed to be constant within each layer, but
allowed to vary from layer to layer (Fig. 2). Thus vertical variation of these is
approximated by a step-function variation. The thermal source term is approxi-
mated by a polynomial variation in τ within each layer.
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For illustration, we consider a single homogeneous layer τp−1 ≤ τ ≤ τp but omit
the p subscripts, which are implicit on all quantities. We also omit the τ arguments
of D and S since they are, by assumption, independent of τ in a given layer.

To make the multi-stream case easier to understand, first we write (14) out for
four streams (N = 2). (For two streams (N = 1) the equations are simpler, but the real
structure is better seen in the four-stream case. For the two-stream case see Stamnes
et al. 2000.) For N = 2 we obtain four coupled differential equations, one for each
stream. Recalling that µ−i = −µi, and w−i = wi in the Gaussian quadrature rule
applied, dividing both sides by µ’s, and rearranging terms so they are ordered
according to the directions µ1, µ2, −µ1, −µ2, and omitting the dependence of Im and
Qm on τ, the corresponding equations are written as

dIm l1ð Þ
ds

¼ 1
l1

� w1Dm l1; l1ð Þ � 1½ �Im l1ð Þ � w2Dm l1; l2ð ÞIm l2ð Þ
�w1Dm l1;�l1ð ÞIm �l1ð Þ � w2Dm l1;�l2ð ÞIm �l2ð Þ

� �
� Qm l1ð Þ

l1
;

dIm l2ð Þ
ds

¼ 1
l2

�w1Dm l2; l1ð ÞIm l1ð Þ � w2Dm l2; l2ð Þ � 1½ �Im l2ð Þ
�w1Dm l2;�l1ð ÞIm �l1ð Þ � w2Dm l2;�l2ð ÞIm �l2ð Þ

� �
� Qm l2ð Þ

l2
;

dIm �l1ð Þ
ds

¼ 1
l1

w1Dm �l1; l1ð ÞIm l1ð Þ þw2Dm �l1; l2ð ÞIm l2ð Þþ
w1Dm �l1;�l1ð Þ � 1½ �Im �l1ð Þþw2Dm �l1;�l2ð ÞIm �l2ð Þ

� �
��Qm �l1ð Þ

l1
;

dIm �l2ð Þ
ds

¼ 1
l2

w1Dm �l2; l1ð ÞIm l1ð Þþw2Dm �l2; l2ð ÞIm l2ð Þþ
w1Dm �l2;�l1ð ÞIm �l1ð Þþ w2Dm �l2;�l2ð Þ � 1½ �Im �l2ð Þ

� �
��Qm �l2ð Þ

l2
:

By defining the quantities

Q0m �lið Þ ¼ �l�1
i Qm �lið Þ; ði ¼ 1; 2Þ; ð17Þ

Fig. 2 Schematic illustration
of a multilayered atmosphere
(optical medium). Cumulative
optical depth τp and
temperature Tp (p = 0, …,
L) are defined at layer
interfaces. Each layer is
characterized by its
layer-averaged single-scatter
albedo ω, phase function
P and optical thickness
Δτp = τp − τp-1

The Discrete Ordinate Algorithm, DISORT for Radiative Transfer 11



a11 ¼ l�1
1 w1D

m l1; l1ð Þ � 1½ � ¼ l�1
1 w1D

m �l1;�l1ð Þ � 1½ �;
a22 ¼ l�1

2 w2D
m l2; l2ð Þ � 1½ � ¼ l�1

2 w2D
m �l2;�l2ð Þ � 1½ �;

a12 ¼ l�1
1 w2D

m l1; l2ð Þ ¼ l�1
1 w2D

m �l1;�l2ð Þ;
a21 ¼ l�1

2 w1D
m l2; l1ð Þ ¼ l�1

2 w1D
m �l2;�l1ð Þ;

ð18Þ

b11 ¼ l�1
1 w1D

m l1;�l1ð Þ ¼ l�1
1 w1D

m �l1; l1ð Þ;
b22 ¼ l�1

2 w2D
m l2;�l2ð Þ ¼ l�1

2 w2D
m �l2; l2ð Þ;

b12 ¼ l�1
1 w2D

m l1;�l2ð Þ ¼ l�1
1 w2D

m �l1; l2ð Þ;
b21 ¼ l�1

2 w1D
m l2;�l1ð Þ ¼ l�1

2 w1D
m �l2; l1ð Þ;

ð19Þ

the four equations are written in matrix form as follows:

d
ds

Im s; l1ð Þ
Im s; l2ð Þ
Im s;�l1ð Þ
Im s;�l2ð Þ

2
664

3
775 ¼

�a11 �a12 �b11 �b12
�a21 �a22 �b21 �b22
b11 b12 a11 a12
b21 b22 a21 a22

2
664

3
775

Im s; l1ð Þ
Im s; l2ð Þ
Im s;�l1ð Þ
Im s;�l2ð Þ

2
664

3
775

�
Q0m s; l1ð Þ
Q0m s; l2ð Þ
Q0m s;�l1ð Þ
Q0m s;�l2ð Þ

2
664

3
775; ð20Þ

where we now include the τ dependence to emphasize that Im and Qʹm generally
vary within the homogeneous layer.

In (18) and (19) we took advantage of two symmetry properties of Dm:
Dm l; l0ð Þ ¼ Dm �l;�l0ð Þ and Dm l;�l0ð Þ ¼ Dm �l; l0ð Þ, which follow from (11)
and from the fact that Km

‘ �lð Þ ¼ �1ð Þ‘þmKm
‘ ðlÞ.

By introducing the vectors

I� ¼ Im s;�lið Þf g; Q0� ¼ Q0 s;�lið Þf g; ði ¼ 1; 2Þ; ð21Þ

and the matrices

a ¼ a11 a12
a21 a22

� �
and b ¼ b11 b12

b21 b22

� �
;

Equation (20) can be written in a more compact form as

d
ds

Iþ

I�

� �
¼ �a �b

b a

� �
Iþ

I�

� �
� Q0 þ

Q0�

� �
: ð22Þ

12 I. Laszlo et al.



From (18) and (19) it is clear that the matrices α and β can be written as

a ¼ l�1
1 0

0 l�1
2

" #
D l1; l1ð Þ D l1; l2ð Þ
D l2; l1ð Þ D l2; l2ð Þ

� �
w1 0

0 w2

� �
� 1 0

0 1

� �� �

¼ l�1
1 0

0 l�1
2

" #
D �l1;�l1ð Þ D �l1;�l2ð Þ
D �l2;�l1ð Þ D �l2;�l2ð Þ

� �
w1 0

0 w2

� �
� 1 0

0 1

� �� �

¼ M�1 Dþ W� 1f g;

b ¼ l�1
1 0

0 l�1
2

" #
D l1;�l1ð Þ D l1;�l2ð Þ
D l2;�l1ð Þ D l2;�l2ð Þ

� �
w1 0

0 w2

� �� �

¼ l�1
1 0

0 l�1
2

" #
D �l1; l1ð Þ D �l1; l2ð Þ
D �l2; l1ð Þ D �l2; l2ð Þ

� �
w1 0

0 w2

� �� �

¼ M�1 D�Wf g;

where; M ¼ lidij
	 


; W ¼ widij
	 


; 1 ¼ dij
	 


; Dþ ¼ Dm li; lj
� �	 
 ¼

Dm �li;�lj
� �	 


and D� ¼ Dm �li; lj
� �	 
 ¼ Dm li;�lj

� �	 

i; j ¼ 1; 2:

It should now be relatively straightforward to generalize to 2N streams, so that
(14) may be written in matrix form identically to (22):

d
ds

Iþ

I�

� �
¼ �a �b

b a

� �
Iþ

I�

� �
� Q0 þ

Q0�

� �
; ð23Þ

where

I� ¼ Im s;�lið Þf g; i ¼ 1; . . .;N;

Q0� ¼ M�1Q�;

Q� ¼ Qm s;�lið Þf g; i ¼ 1; . . .;N;

M ¼ lidij
	 


; i; j ¼ 1; . . .;N;

ð24Þ

a ¼ M�1 DþW� 1f g;
b ¼ M�1 D� Wf g;

W ¼ widij
	 


; i; j ¼ 1; . . .;N;

1 ¼ dij
	 


; i; j ¼ 1; . . .;N;

Dþ ¼ Dm li; lj
� �	 
 ¼ Dm �li;�lj

� �	 

; i; j ¼ 1; . . .;N;

D� ¼ Dm �li; lj
� �	 
 ¼ Dm li;�lj

� �	 

; i; j ¼ 1; . . .;N;

ð25Þ

and where 1 is the identity matrix.
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The special structure of the (2N × 2N) matrix

�a �b
b a

� �

can be traced to the reciprocity principle, which for single scattering is due to the
fact that the phase function depends only on the scattering angle Θ (Chandrasekhar
1960, Chap. 4, Eq. 29). This special structure is also a consequence of having
chosen a quadrature rule satisfying µ−i = −µi and w−i = wi. As we shall see later,
this special structure leads to eigensolutions with eigenvalues occurring in
positive/negative pairs, which allows a reduction in the order of the resulting
algebraic eigenvalue problem by a factor of two. Since computation time for
eigensolution algorithms grows roughly as the cube of the matrix dimension this
reduction of order decreases the computational burden by a factor eight.

Stamnes (1986) notes that matrices α and β may be interpreted as layer trans-
mission and reflection operators, respectively. This interpretation can be seen, for
example, by noticing that α denotes quantities in which the D’s are for the same
directions (same sign of µ’s), while β represents D’s for opposite (upward and
downward) directions (opposite sign of µ’s).

4 Discrete Ordinate Approximation—Solution

Equation (14) is linear in the intensity, so traditionally, it is solved by combining two
separate solutions: the “homogeneous” and “particular” solutions. The homogeneous
solution must satisfy (14) with no source term, but it does not have to satisfy the
boundary conditions; it typically contains arbitrary constants. The particular solution
is a solution with the source terms included and no arbitrary constants, but again not
required to satisfy the boundary conditions. The general solution is the sum of the
homogeneous and particular solutions, which is additionally required to satisfy the
boundary conditions. The boundary conditions are satisfied by solving linear alge-
braic equations for the arbitrary constants in the homogeneous solution.

Thus the whole process breaks up into three distinct parts: finding the homoge-
neous solution,finding the particular solution, and satisfying the boundary conditions.

4.1 Homogeneous Solution

Equation (23) is a system of 2N coupled, ordinary differential equations with
constant coefficients. These coupled equations are linear and they can be uncoupled.

It is traditional to seek solutions to the homogeneous version (Qʹ = 0) of (23) in
the form
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I� ¼ G�e�ks; G� ¼ G �lið Þf g ði ¼ 1; . . .;NÞ: ð26Þ

Inserting this form into (23) we find

a b
�b �a

� �
Gþ

G�

� �
¼ k

Gþ

G�

� �
: ð27Þ

Equation (27) is a standard algebraic eigenvalue problem of order 2N × 2N; its
solution determines the eigenvalues k and the eigenvectors G±. Because of the
special structure of the matrix in (27), the eigenvalues occur in positive/negative
pairs and the order of this algebraic eigenvalue problem may be reduced by a factor
of two as follows (Stamnes and Swanson 1981). Expanding (27) we have

aGþ þ bG� ¼ kGþ ;
�bGþ � aG� ¼ kG�:

ð28Þ

Adding and subtracting these two equations, we find

ða� bÞ Gþ �G�ð Þ ¼ k Gþ þG�ð Þ; ð29Þ

ðaþ bÞ Gþ þG�ð Þ ¼ k Gþ �G�ð Þ: ð30Þ

Expressing (G+ + G−) from (29) and substituting the result into (30) yields

aþ bð Þ a� bð Þ Gþ �G�ð Þ ¼ k2 Gþ �G�ð Þ: ð31Þ

Equation (31) is now an eigenvalue problem of order N × N. A solution of (31)
yields eigenvectors Gþ �G� and the corresponding eigenvalues k2. Since (α + β)
and (α − β) are N × N matrixes there are two sets of eigenvalues, thus a total of
2N eigenvalues occurring in positive/negative pairs (k ¼ �

ffiffiffiffiffi
k2

p
).

Substituting the solution Gþ �G� into (29) we findGþ þG� (assuming k ≠ 0)

Gþ þG� ¼ 1
k

a� bð Þ Gþ �G�ð Þ: ð32Þ

To recover the eigenvectors Gþ and G� corresponding to the positive (k) and
negative (k = −k) eigenvalues from their sum and difference we add and subtract the
above solutions:

Gþ ¼ 1
2

Gþ þG�ð Þþ Gþ �G�ð Þ½ �;

G� ¼ 1
2

Gþ þG�ð Þ � Gþ �G�ð Þ½ �:
ð33Þ
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We now have a complete set of eigenvectors and we may write down the homo-
geneous solution as a linear combination of the solutions for different eigenvalues
as follows:

I s; lið Þ ¼
XN
j¼�N
j 6¼0

Cj Gj lið Þe�kj s; i ¼ �N; . . .;�1; 1; . . .;Nð Þ; ð34Þ

where the Cj are 2N constants of integration.

4.2 Particular Solution

To obtain the particular solution we consider the inhomogeneous term separately
for the beam and the thermal sources, and then combine the solutions. For beam
sources Q beamð Þ s; lð Þ ¼ X0ðlÞe�s=l0 and it is easily verified that a particular solution
of (14) is (omitting m-superscript)

I s; lið Þ ¼ Z0 lið Þ e�s=l0 ; ð35Þ

where the Z0 are determined by the following system of linear algebraic equations

XN
j¼�N
j6¼0

1þ lj
l0

� �
dij � wjD li; lj

� �� �
Z0 lj
� � ¼ X0 lið Þ; ði ¼ �1; . . .;�NÞ: ð36Þ

Equation (36) is a system of equations for the 2N unknowns, Z0, which can
readily be solved using standard linear equation solvers. Godsalve (1996) suggested
that the order of the matrix inversion required to get Z0 can be reduced, and this
should improve computational efficiency. In DISORT, the reduction of order of the
system is accomplished in a process similar to that used in the homogeneous
solution (Lin et al. 2015). For this purpose, we rewrite (36) separately for the
upward and downward directions in vector form

1þ 1
l0

M� DþW
� �

Zþ
0 � D�WZ�

0 ¼ Xþ
0 ; i ¼ þ 1; . . .; þNð Þ; ð37Þ

1� 1
l0

M� DþW
� �

Z�
0 � D�WZþ

0 ¼ X�
0 ; i ¼ �1; . . .;�Nð Þ; ð38Þ

where Z�
0 ¼ Z0 �l1ð Þ; Z0 �l2ð Þ; . . .Z0 �lNð Þ½ �T ;X�

0 ¼ X0 �l1ð Þ;X0 �l2ð Þ; . . .X0 �lNð Þ½ �T
and the other quantities have already been defined. Adding and subtracting (37) and
(38) and rearranging terms we find
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Zþ
0 � Z�

0 ¼ l0 M�1 DþW� 1f gþM�1D�W
 �

Zþ
0 þZ�

0

� �þ l0M
�1 Xþ

0 þX�
0

� �
;

Zþ
0 þZ�

0 ¼ l0 M�1 DþW� 1f g �M�1D�W
 �

Zþ
0 � Z�

0

� �þ l0M
�1 Xþ

0 � X�
0

� �
:

The first and the second terms in the square brackets are the matrices α and β
introduced earlier, so we write the above equations as

Zþ
0 � Z�

0 ¼ l0 aþ b½ � Zþ
0 þZ�

0

� �þ l0M
�1 Xþ

0 þX�
0

� �
; ð39Þ

Zþ
0 þZ�

0 ¼ l0 a� b½ � Zþ
0 � Z�

0

� �þ l0M
�1 Xþ

0 � X�
0

� �
: ð40Þ

Substituting (40) into (39) we find

1� l20 aþ bð Þ a� bð Þ �
Zþ
0 � Z�

0

� � ¼ l20 aþ bð ÞM�1 Xþ
0 � X�

0

� �þ 1
l0

M�1 Xþ
0 þX�

0

� �� �
;

ð41Þ

which we solve for Zþ
0 � Z�

0 . DISORT solves (41) using robust linear equation
solving software, which protects against ill-conditioning automatically. With Zþ

0 �
Z�
0 known we find Zþ

0 þZ�
0 from (40).

We recover Zþ
0 and Z�

0 by adding and subtracting the vectors Zþ
0 þZ�

0 and
Zþ
0 � Z�

0 as

Zþ
0 ¼ 1

2
Zþ
0 þZ�

0

� �þ Zþ
0 � Z�

0

� � �
;

Z�
0 ¼ 1

2
Zþ
0 þZ�

0

� �� Zþ
0 � Z�

0

� � �
:

ð42Þ

For thermal sources the emitted radiation is isotropic, so that

Q0ðsÞ ¼ 1� xð ÞB TðsÞ½ �;
QmðsÞ ¼ 0; m[ 0ð Þ:

DISORT assumes that the Planck function B varies linearly in optical depth across
each layer, B TðsÞ½ � ¼ b0 þ b1s (Wiscombe 1976). The two coefficients b0, b1 are
chosen to match B at the top and bottom layer boundaries τt and τb, where the
temperatures are known

Bt � B T stð Þ½ � ¼ b0 þ b1st;

Bb � B T sbð Þ½ � ¼ b0 þ b1sb:

Since the thermal source term assumes the form
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Q thermalð ÞðsÞ ¼ 1� xð Þ b0 þ b1sð Þ; ð43Þ

it suggests trying a particular solution of the form

I s; lið Þ ¼ Y0 lið Þþ Y1 lið Þ s: ð44Þ

Substituting (44) into (14) and equating coefficients of like powers in τ, we find

PN
j¼�N
j6¼0

dij � wjD0 li; lj
� � �

Y1 lj
� � ¼ 1� xð Þb1;

PN
j¼�N
j6¼0

dij � wjD0 li; lj
� � �

Y0 lj
� � ¼ 1� xð Þb0 þ li Y1 lið Þ:

ð45Þ

Equations (45) are a system of linear algebraic equations determining Y0(µi) and
Y1(µi).

4.3 General Solution

The general solution to (14) consists of a linear combination of all the homogeneous
solutions, plus the particular solutions for beam and thermal emission sources
(omitting m-superscript):

I s; lið Þ ¼
XN
j¼�N
j6¼0

CjGj lið Þ e�kjs þ Z0 lið Þ e�s=l0 þ dm0 Y0 lið Þþ Y1 lið Þ s½ �: ð46Þ

The kj and Gj(µi) for j ≠ 0 are the eigenvalues and eigenvectors, the µi the cosines of
the quadrature angles, and the Cj the constants of integration to be determined by
the boundary and layer continuity conditions.

4.4 Intensities at Arbitrary Angles

Equation (46) yields intensities at the 2N quadrature points. However, we may want
intensities at directions that do not coincide with the quadrature points. For these
directions the intensities are calculated from the formal solution of (9). For a slab of
optical thickness τL, this solution is
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I s; þ lð Þ ¼ I sL; þ lð Þ e� sL�sð Þ=l þ
ZsL
s

S t; þ lð Þ e� t�sð Þ=l dt
l
;

I s;�lð Þ ¼ I 0;�lð Þ e�s=l þ
Zs

0

S t;�lð Þ e� s�tð Þ=l dt
l
;

ð47Þ

where µ > 0, and we have again omitted the m-superscript. From these equations it
is clear that if we know the source function S(τ, ±µ), we can find the intensity at
arbitrary angles by integrating S. We now use the discrete ordinate solutions to
derive explicit expressions for the source function. As we will see these expressions
can be integrated analytically.

Using (12) with (43) for Q(thermal) the source function (10) can be written as

S s; lð Þ ¼
XN
i¼�N
i6¼0

wi D l; lið Þ I s; lið ÞþX0ðlÞ e�s=l0 þ dm0 1� xð Þ b0 þ b1sð Þ: ð48Þ

Substituting the general solution of (46) into (48), we find

S s; lð Þ ¼
XN
j¼�N

Cj GjðlÞ e�kjs þ dm0 V0ðlÞþV1ðlÞ s½ �; ð49Þ

where

C0 G0ðlÞ ¼ Z0ðlÞ ¼
XN
i¼�N
i6¼0

wi D l; lið Þ Z0 lið ÞþX0ðlÞ; k0 ¼ 1=l0; ð50Þ

GjðlÞ ¼
XN
i¼�N
i6¼0

wi D l;lið ÞGj lið Þ for j 6¼ 0; and ð51Þ

VlðlÞ ¼
XN
i¼�N
i 6¼0

wi D0 l; lið Þ Yl lið Þþ 1� xð Þ bl; l ¼ 1; 0ð Þ: ð52Þ

In the equations above we have omitted the m-superscript, however, in (45) and
(52) we have explicitly written D0 as a reminder that thermal emission contributes
only to the azimuth-independent component of the intensity.

We now present the discrete ordinate equations for computing the intensity at an
arbitrary angle µ. However, before treating the general multilayer case, we first
show the simpler, single-layer case (L = 1).
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Substituting the source function (49) into the equations for the interpolated
intensity (47) and calculating the simple integrals of exponentials analytically, we
find that the downward and upward intensities become (µ > 0):

I s; þ lð Þ ¼ I s1; þ lð Þ e� s1�sð Þ=l þ
XN
j¼�N

Cj
Gj þlð Þ
1þ kjl

e�kjs � e� kjs1 þ s1�sð Þ=l½ �n o

þ dm0 V0 þ lð Þ 1� e� s1�sð Þ=l
h i

þV1 þ lð Þ sþ lð Þ � s1 þlð Þ e� s1�sð Þ=l
h in o

;

I s;�lð Þ ¼ I 0;�lð Þ e�s=l þ
XN
j¼�N

Cj
Gj �lð Þ
1� kjl

e�kjs � e�s=l
n o

þ dm0 V0 �lð Þ 1� e�s=l
h i

þV1 �lð Þ s� lð Þþl e�s=l
h in o

:

ð53Þ

In a multilayered medium the integral in (47) is evaluated by integrating layer by
layer (cf. Stamnes 1982a) as follows (τp−1 ≤ τ ≤ τp and µ > 0):

ZsL
s

S t; þ lð Þ e� t�sð Þ=l dt
l
¼

Zsp
s

Sp t; þ lð Þ e� t�sð Þ=l dt
l

þ
XL

n¼pþ 1

Zsn
sn�1

Sn t; þ lð Þ e� t�sð Þ=l dt
l

8<
:

9=
;;

Zs

0

S t;�lð Þ e� s�tð Þ=l dt
l
¼

Xp�1

n¼1

Zsn
sn�1

Sn t;�lð Þ e� s�tð Þ=l dt
l

8<
:

9=
;þ

Zs

sp�1

Sp t;�lð Þ e� s�tð Þ=l dt
l
:

ð54Þ

Using (49) for Sn(t, µ) in (54), we find the intensities at τ in layer p

Ip s; þ lð Þ ¼ I sL; þ lð Þ e� sL�sð Þ=l

þ
XL
n¼p

XN
j¼�N

Cjn
Gjn þ lð Þ
1þ kjn l

Ejn s; þ lð Þ

þ dm0 V0n þ lð ÞF0n s; þ lð ÞþV1n þ lð ÞF1n s; þ lð Þ½ �

8>><
>>:

9>>=
>>;;

ð55Þ

Ip s;�lð Þ ¼ I 0;�lð Þ e�s=l

þ
Xp
n¼1

XN
j¼�N

Cjn
Gjn �lð Þ
1� kjn l

Ejn s;�lð Þ

þ dm0 V0n �lð Þ F0n s;�lð Þ þV1n �lð Þ F1n s;�lð Þ½ �

8>><
>>:

9>>=
>>;;

ð56Þ
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where

Ejn s; þ lð Þ ¼ exp �kjnsn�1 � sn�1 � sð Þ=l	 
� exp �kjnsn � sn � sð Þ=l	 

;

F0n s; þ lð Þ ¼ exp � sn�1 � sð Þ=lf g � exp � sn � sð Þ=lf g;
F1n s; þ lð Þ ¼ sn�1 þ lð Þ exp � sn�1 � sð Þ=lf g � sn þ lð Þ exp � sn � sð Þ=lf g;

ð57Þ

with τn−1 replaced by τ for n = p, and

Ejn s;�lð Þ ¼ exp �kjnsn � s� snð Þ=l	 
� exp �kjnsn�1 � s� sn�1ð Þ=l	 

;

F0n s;�lð Þ ¼ exp � s� snð Þ=lf g � exp � s� sn�1ð Þ=lf g;
F1n s;�lð Þ ¼ sn � lð Þ exp � s� snð Þ=lf g � sn�1 � lð Þ exp � s� sn�1ð Þ=lf g;

ð58Þ

with τn replaced by τ for n = p.
One can verify that substituting τn–1 = τ, τn = τL = τ1 in (55), and τn−1 = 0, τn = τ in

(56) for a single layer, (55) and (56) reduce to the single-layer solutions (53). Also,
when evaluated at the quadrature points for beam sources, (55) and (56) yield
results identical to (46). In addition, (55) and (56) satisfy the boundary and con-
tinuity conditions for all values of µ, even though such conditions have been
imposed only at the quadrature angles (Stamnes 1982a).

4.5 Boundary and Interface Conditions

The radiative transfer equation (2) must be solved subject to boundary conditions. In
principle, the discrete ordinate method can handle quite general boundary conditions.
However, the current implementation of the method in DISORT assumes that the
medium is illuminated at the top boundary by a combination of known isotropic
diffuse radiation and parallel beam treated as pseudosource. The bottom boundary is
specified by a known bidirectional reflectance distribution function (BRDF)
ρd(μ,ϕ;−μ′,ϕ′) and thermal emission specified in terms of the Planck function B and
directional emissivity ε(μ). Thus the boundary conditions in DISORT are specified as

I s ¼ 0;�l;/ð Þ ¼ Itop l;/ð Þ ¼ Idiffuse þF0 d l� l0ð Þ d /� /0ð Þ;
I s ¼ sL; þ l;/ð Þ ¼ Ig l;/ð Þ ¼ eðlÞB Tg

� �þ 1
p
l0 F0 e�sL=l0 qd l;/; �l0;/0ð Þ

þ 1
p

Z2p
0

d/0
Z1

0

qd l;/; �l0;/0ð Þ I sL;�l0;/0ð Þ l0dl0:

ð59Þ
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where Itop and Ig are the intensities incident at the top and bottom boundaries,
respectively; and τL is the total optical depth of the entire medium. F0 is the flux of
the incident beam normal to the direction of incidence at the top boundary.

In DISORT we assume that the lower boundary is totally opaque and calculate
the emissivity from the bidirectional reflectivity using Kirchhoff’s law

eðlÞþ 1
p

R 2p
0 d/0 R 1

0 qd l;/; �l0;/0ð Þ l0 dl0 ¼ 1. We also assume that the surface
has no preferred direction. This means that qd depends only on the difference
/� /0 between the azimuthal angles of the incident and reflected radiation, and
that the surface BRDF is symmetric about the principal plane. This symmetry
allows us to expand the surface bidirectional reflectivity in a Fourier series of
2M terms just like we did for the intensity (8). Because of the assumed symmetry
about the principal plane the Fourier expansion only contains cosine terms:

qd l;/; �l0;/0ð Þ ¼ qd l;�l0;/� /0ð Þ ¼
X2M�1

m¼0

qmd l;�l0ð Þ cosm /� /0ð Þ; ð60Þ

where the expansion coefficients qmd l;�l0ð Þ are computed from

qmd l;�l0ð Þ ¼ 2� dm0ð Þ 1
p

Zp

0

qd l;�l0;/� /0ð Þ cosm /� /0ð Þ d /� /0ð Þ:

We discuss how these coefficients are computed in DISORT in Sect. 7.4.
Substituting (60) into the second equation of (59) and using the Fourier

expansion of the intensity (8) together with the quadratured form of the integral
over μ′, we find that each Fourier component must satisfy the bottom boundary
condition

Im sL; þ lð Þ ¼ Img ðlÞ � dm0 eðlÞB Tg
� �þ 1

p
l0 F0 e�sL=l0 qmd l;�loð Þ

þ 1þ dm0ð Þ
XN
j¼1

wjlj q
m
d l;�lj
� �

Im sL;�lj
� �

:
ð61Þ

In a multilayered medium we must also require the intensity to be continuous
across layer interfaces (Stamnes and Conklin 1984). Thus, (14) must satisfy
boundary and continuity conditions as follows:

Im1 0;�lið Þ ¼ Imtop lið Þ; i ¼ 1; . . .;Nð Þ;
Imp sp; li
� � ¼ Impþ 1 sp; li

� �
; p ¼ 1; . . .; L; i ¼ �1; . . .;Nð Þ;

ImL sL; þ lið Þ ¼ Img lið Þ; i ¼ 1; . . .;Nð Þ;
ð62Þ

where the last equation is the same as (61) with μ replaced by μi.
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We note that the first and the last equations of (62) introduce a fundamental
distinction between downward (–μ) and upward (+μ) directions over which inte-
grations should be done separately. The Double-Gauss rule adopted in DISORT
readily satisfies this requirement.

For the discussion of boundary conditions, we write the discrete ordinate solu-
tion for the pth layer in the following form (omitting m-superscript)

Ip s; lið Þ ¼
XN
j¼1

CjpGjp lið Þe�kjps þC�jpG�jp lið Þeþ kjps
	 
þUp s; lið Þ; ð63Þ

where kjp > 0 and k−jp = −kjp, and the sum contains the homogeneous solution
involving the unknown coefficients Cjp to be determined, and Up is the particular
solution given by (46):

Up s; lið Þ ¼ Z0 lið Þ e�s=l0 þ dm0 Y0 lið Þþ Y1 lið Þ s½ �: ð64Þ

Inserting (63) into (62) leads to

XN
j¼1

Cj1Gj1 �lið ÞþC�j1G�j1 �lið Þ	 
 ¼ Itop �lið Þ � U1 0;�lið Þ; i ¼ 1; . . .;Nf g;

ð65Þ

XN
j¼1

CjpGjp lið Þ e�kjp sp þC�jpG�jp lið Þ ekjp sp�
Cj;pþ 1Gj;pþ 1 lið Þ e�kj;pþ 1 sp þC�j;pþ 1G�j;pþ 1 lið Þ ekj;pþ 1 sp
 �

( )

¼ Upþ 1 sp; li
� �� Up sp; li

� �
; p ¼ 1; . . .; L� 1; i ¼ �1; . . .;�Nf g;

ð66Þ

XN
j¼1

CjL rjL lið ÞGjL lið Þ e�kjL sL

þC�jL r�jL lið ÞG�jL lið Þ ekjL sL

( )
¼ C sL; lið Þ; i ¼ 1; . . .;Nf g; ð67Þ

where

rjL lið Þ ¼ 1� 1þ dm0ð Þ
XN
n¼1

qd li;�lnð Þwn ln GjL �lnð Þ�GjL lið Þ; ð68Þ

C sL; lið Þ ¼ dm0 e lið ÞB Tg
� �� UL sL; þ lið Þþ 1

p
l0 F0 e�sL=l0qd li;�l0ð Þ

þ 1þ dm0ð Þ
XN
j¼1

qd li;�lj
� �

wj lj UL sL;�lj
� �

:
ð69Þ

Equations (65)–(67) constitute a (2N × L) × (2N × L) system of linear algebraic
equations from which the 2N × L unknown coefficients Cjp (j = ±1, …, ±N;
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p = 1, …, L) must be determined. The numerical solution of this set of equations is
discussed in Sect. 7.2.

It is important to note that while the equations presented so far provide a
mathematically correct, complete solution of the radiative transfer within the dis-
crete ordinate approximation, Eqs. (65)–(67) are intrinsically ill-conditioned.
Dealing with this ill-conditioning is absolutely crucial for the solutions to work.
DISORT eliminates the ill-conditioning by a simple scaling transformation dis-
cussed in Sect. 4.6 below.

4.6 Scaling Transformation

Determination of the coefficients Cjp requires the solution of the system of linear
algebraic Eqs. (65)–(67). These equations contain exponentials of the product kjpτp
that, because kj > 0 by convention, is positive and becomes large for large τp. This
situation leads to a matrix of coefficients having very small and very large values at
the same time, and results in numerical ill-conditioning. To avoid the numerical
ill-conditioning, it is necessary to remove the positive exponentials in (65)–(67).
DISORT avoids the ill-conditioning by the scaling transformation developed by
Stamnes and Conklin (1984).

If we write C+jp and C−jp as

Cþ jp ¼ Ĉþ jpekjp sp�1 and C�jp ¼ Ĉ�jpe�kjp sp ; ð70Þ

insert them into (65)–(67) and solve for the Ĉ’s instead of the C’s, we find that all
the exponential terms in the coefficient matrix have the form

exp �kjpðsp � sp�1Þ
� �

;

and because kjp > 0 and τp > τp−1 all terms have negative arguments. This avoids
numerical ill-conditioning and makes the solution for finding the Ĉ’s uncondi-
tionally stable for arbitrary layer thicknesses. Since the particular solutions (64) do
not have positive exponentials, the scaling transformation is only applied to the
homogeneous solutions.

As an example, we demonstrate how the scaling works for the simplest case, the
two-stream case (N = 1) for a one-layer medium (L = 1). In this simple case, (65)–
(67) reduce to

C1;1 G1;1 �l1ð ÞþC�1;1 G�1;1 �l1ð Þ ¼ RHSð Þ1;
r1;1 C1;1 G1;1 þ l1ð Þ e�k1 s1 þ r�1;1 C�1;1 G�1;1 þ l1ð Þ ek1 s1 ¼ RHSð Þ2;

where “RHS” stands for “right-hand side”. (Since for the two-stream case the only
value j takes is 1, we have dropped the subscript j from k but left p because we shall
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look at the two-layer case later.) Writing the left-hand sides in matrix form (and
using the shorthand notation G− for –μ and G+ for +μ) we have

G�
1;1 G�

�1;1

r1;1Gþ
1;1e

�k1 s1 r�1;1Gþ
�1;1e

k1 s1

� �
C1;1

C�1;1

� �
:

This matrix is ill-conditioned when k1τ1 becomes large due to the positive expo-
nential term exp(k1τ1). Replacing the C’s with their scaled values C1;1 ¼ Ĉ1;1 ek1 s0

and C�1;1 ¼ Ĉ�1;1 e�k1 s1 and carrying out the multiplications by the exponentials
(keeping in mind that τ0 = 0) we find:

G�
1;1 G�

�1;1e
�k1 s1

r1;1Gþ
1;1e

�k1 s1 r�1;1Gþ
�1;1

" #
Ĉ1;1

Ĉ�1;1

� �
;

where the positive exponential has now been removed. In the limit of large values
of k1τ1 this matrix becomes

G�
1;1 0
0 r�1;1Gþ

�1;1

� �
;

which shows that the ill-conditioning problem has been entirely eliminated.
For the two-stream (N = 1), two-layer medium (L = 2) case (65)–(67) reduce to:

C1;1G1;1 �l1ð ÞþC�1;1G�1;1 �l1ð Þ ¼ RHSð Þ1;
C1;1G1;1 �l1ð Þ e�k1s1 þC�1;1G�1;1 �l1ð Þ ek1s1

� C1;2G1;2 �l1ð Þ e�k2s1 � C�1;2G�1;2 �l1ð Þ ek2s1 ¼ RHSð Þ2;
C1;1G1;1 þ l1ð Þ e�k1s1 þC�1;1G�1;1 þ l1ð Þ ek1s1

� C1;2G1;2 þ l1ð Þ e�k2s1 � C�1;2G�1;2 þ l1ð Þ ek2s1 ¼ RHSð Þ3;
r1;2C1;2G1;2 þ l1ð Þ e�k2s2 þ r�1;2C�1;2G�1;2 þ l1ð Þ ek2s2 ¼ RHSð Þ4:

Writing the left-hand sides of the above equations in matrix form we get:

G�
1;1 G�

�1;1 0 0
G�

1;1e
�k1 s1 G�

�1;1e
k1 s1 �G�

1;2e
�k2 s1 �G�

�1;2e
k2 s1

Gþ
1;1e

�k1 s1 Gþ
�1;1e

k1 s1 �Gþ
1;2e

�k2 s1 �Gþ
�1;2e

k2 s1

0 0 r1;2 Gþ
1;2e

�k2 s2 r�1;2 Gþ
�1:2e

k2 s2

2
6664

3
7775

C1;1

C�1;1

C1;2

C�1;2

2
664

3
775:

Introducing the scaling transformation; that is, replacing the vector C with its scaled
version ½Ĉ1;1ek1 s0 ; Ĉ�1;1e�k1 s1 ; Ĉ1;2ek2 s1 ; Ĉ�1;2e�k2 s2 �T and carrying out the multi-
plications, we obtain
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G�
1;1 G�

�1;1e
�k1s1 0 0

G�
1;1e

�k1s1 G�
�1;1 �G�

1;2 �G�
�1;2e

�k2 s2�s1ð Þ

Gþ
1;1e

�k1s1 Gþ
�1;1 �Gþ

1;2 �Gþ
�1;2e

�k2 s2�s1ð Þ

0 0 r1;2Gþ
1;2e

�k2 s2�s1ð Þ r�1;2Gþ
�1;2

2
6664

3
7775

Ĉ1;1

Ĉ�1;1

Ĉ1;2

Ĉ�1;2

2
664

3
775:

Again, the transformation removes all positive exponentials as expected. The
resulting matrix is well-conditioned for arbitrary layer optical thicknesses, and in
the limit of large values of k1τ1 and k2(τ2 − τ1) it reduces to

G�
1;1 0 0 0
0 G�

�1;1 �G�
1;2 0

0 Gþ
�1;1 �Gþ

1;2 0
0 0 0 r�1;2Gþ

�1;2

2
664

3
775;

which again shows that the ill-conditioning problem has been entirely eliminated.
We now deal with the solutions for the general 2N-stream, L-layer case. Since, as

noted above, the scaling does not affect the particular solution below we write the
solutions only for the homogeneous part.

Introducing the scaling into the homogeneous solution for the intensity at the
quadrature (computational) angles in layer p (63) the transformed solution iswritten as

Ip s; lið Þ ¼
XN
j¼1

ĈjpGjp lið Þ e�kjp s�sp�1ð Þ þ Ĉ�jpG�jp lið Þ e�kjp sp�sð Þn o
: ð71Þ

Since kjp > 0 and τp−1 ≤ τ ≤ τp, all exponentials in (71) have negative arguments.
Writing the summation over j separately for the downward and upward direc-

tions (using k−jp = −kjp) in the homogeneous part of the solution for arbitrary
upward directions (55) we have

Ip s; þ lð Þ ¼
XL
n¼p

XN
j¼1

C�jn
G�jn þ lð Þ
1� kjnl

E�jn s; þ lð ÞþCþ jn
Gþ jn þ lð Þ
1þ kjnl

Eþ jn s; þ lð Þ
� �

:

ð72Þ

The scaling transformation (70) changes Eq. (72) to

Ip s; þ lð Þ ¼
XL
n¼p

XN
j¼1

Ĉ�jn
G�jn þ lð Þ
1� kjnl

Ê�jn s; þ lð Þþ Ĉþ jn
Gþ jn þ lð Þ
1þ kjnl

Êþ jn s; þ lð Þ
� �

;

ð73Þ
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where

Ê�jn s; þ lð Þ � E�jn s; þ lð Þ e�kjnsn

¼ exp � kjnDsn þ ds=l
� � �� exp � sn � sð Þ=l½ �; ð74Þ

with

Dsn ¼ sn � sn�1; ds ¼ sn�1 � s; for n[ p;
Dsp ¼ sp � s; ds ¼ 0; for n ¼ p;

�

Êþ jn s; þ lð Þ � Eþ jn s; þ lð Þ ekjn sn�1

¼ exp � sn�1 � s
l

� �
� exp �kjn sn � sn�1ð Þ � sn � s

l

� �
;

ð75Þ

for n > p and

Êþ jp s; þ lð Þ ¼ exp �kjp s� sp�1
� � �� exp �kjp sp � sp�1

� �� sp � s
l

� �
: ð76Þ

Since kjn > 0 for n = p + 1, p + 2, …, L and τL > ··· > τn=p+1 > τn−1=p > τ and also
kjp > 0 and τp−1 < τ < τp, all the exponentials in (74)–(76) have negative arguments.

Repeating the above for the homogeneous part of the solution for arbitrary
downward directions (56), we find

Ip s;�lð Þ ¼
Xp
n¼1

XN
j¼1

Ĉ�jn
G�jn �lð Þ
1þ kjnl

Ê�jn s;�lð Þþ Ĉþ jn
Gþ jn �lð Þ
1� kjnl

Êþ jn s;�lð Þ
� �

;

ð77Þ

where

Êþ jn s;�lð Þ � Eþ jn s;�lð Þ ekjnsn�1 ¼ exp �kjnDsn � ds
l

� �
� exp � s� sn�1

l

� �
;

ð78Þ

with

Dsn ¼ sn � sn�1; ds ¼ s� sn; for n\p;
Dsp ¼ s� sp�1; ds ¼ 0; for n ¼ p;

�
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Ê�jn s;�lð Þ � E�jn s;�lð Þe�kjnsn

¼ exp � s� sn
l

� �
� exp �kjn sn � sn�1ð Þ � s� sn�1

l

� �
;

ð79Þ

for n < p and

Ê�jp s;�lð Þ ¼ exp �kjp sp � s
� � �� exp �kjp sp � sp�1

� �� s� sp�1

l

� �
: ð80Þ

Again, we see that all exponentials involved have negative arguments since kjn > 0
and τ > τn > τn–1 for n = 1, 2, …, p − 1, and also kjp > 0 and τp−1 < τ < τp. The
negative arguments ensure that fatal overflow errors are avoided in the
computations.

5 Flux, Flux Divergence, and Mean Intensity

Now that we have the intensities we can calculate some commonly used radiation
quantities. Radiative fluxes that measure the total energy crossing a horizontal area
per unit time in the upward (F+) and downward (F−) directions are defined as
(Thomas and Stamnes 1999, Eq. 6.25):

F þ ðsÞ �
Z2p
0

d/
Z1

0

l I s; þ l;/ð Þ dl ¼ 2p
Z1

0

l I0 s; þ lð Þ dl;

F�ðsÞ � l0 F0 e�s=l0 þ
Z2p
0

d/
Z1

0

l I s;�l;/ð Þ dl

¼ l0 F0 e�s=l0 þ 2p
Z1

0

l I0 s;�lð Þ dl:

ð81Þ

In these equations the second equalities are obtained by substituting the Fourier
expansion of the intensity (8) for I and carrying out the integration over azimuth,
which eliminates all but the m = 0 term of Im.

Mean intensities measure the total intensity entering a volume from all sides.
The only difference between them and the fluxes is that fluxes are cosine-weighted
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averages of the intensity while mean intensities are unweighted averages. The
hemispherical mean intensities are defined correspondingly as

�I þ ðsÞ � 1
2p

Z2p
0

d/
Z1

0

I s; þ l;/ð Þ dl ¼
Z1

0

I0 s; þ lð Þ dl;

�I�ðsÞ � 1
2p

F0 e�s=l0 þ
Z2p
0

d/
Z1

0

I s;�l;/ð Þ dl
2
4

3
5

¼ 1
2p

F0 e�s=l0 þ
Z1

0

I0 s;�lð Þ dl:

ð82Þ

It can be seen from (81) and (82) that

I0 s;�lð Þ � 1
2p

Z2p
0

I s;�l;/ð Þ d/; ð83Þ

which is the azimuthally averaged intensity. Note that in (81) and (82) we have also
included the direct beam contribution in the downward flux F− and in the down-
ward mean intensity �I�.

The net flux and mean intensity are then (Thomas and Stamnes 1999, Eq. 6.26)

FðsÞ � F�ðsÞ � F þ ðsÞ;
�IðsÞ � 1

2
�I�ðsÞþ�I þ ðsÞ½ �:

ð84Þ

From the mean intensity the flux divergence, which is related to the radiative
heating rate, can now be calculated as (Thomas and Stamnes 1999, Eq. 6.27):

dF
ds

¼ 4p 1� xð Þ �I � B TðsÞ½ �f g: ð85Þ

DISORT uses Gaussian quadrature for the interval [0, 1] with abscissae µi and
weights wi, i = 1 to N. Thus, the DISORT approximations for flux and mean
intensity are:
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F þ ðsÞ ¼ 2p
Z1

0

l I0 s; þ lð Þ dl ffi 2p
XN
i¼1

wiliI
0 s; þ lið Þ;

F�ðsÞ ¼ l0 F0 e�s=l0 þ 2p
Z1

0

l I0 s;�lð Þ dl

ffi l0 F0 e�s=l0 þ 2p
XN
i¼1

wiliI
0 s;�lið Þ;

ð86Þ

�IðsÞ ¼ 1
4p

F0 e�s=l0 þ 1
2

Z1

0

I0 s; þ lð Þ dlþ
Z1

0

I0 s;�lð Þ dl
2
4

3
5

ffi 1
4p

F0 e�s=l0 þ 1
2

XN
i¼1

wi I0 s; þ lið Þþ I0 s;�lið Þ �
:

ð87Þ

These equations show that if we are only interested in fluxes and/or mean inten-
sities, we need only the Fourier term (m = 0) I0.

6 Optimizing Efficiency and Accuracy for Intensities

We have shown that the number of streams (2N) in the discrete ordinate approxi-
mation is tied to the number of moments in the Legendre expansion of the phase
function P, which in turn determines the number of terms in the azimuthal series of
the intensity (8).

There are four situations where the sum in (8) collapses to the m = 0 term:
(1) only fluxes and/or mean intensities are needed (as we have already seen above);
(2) there are no beam sources; (3) the beam source is at the zenith (μ0 = 1); (4) only
zenith and/or nadir intensities are needed. We can understand these special cases in
terms of their complete azimuthal symmetry about the vertical direction.

In all other cases (14) must be solved repeatedly for every m in the azimuthal
series (8). Strongly forward-peaked, highly asymmetric phase functions require a
very large number of terms (sometimes more than several hundred) in the expan-
sion of P, and thus many terms in the intensity expansion. At the same time, for
accurate intensities a similarly large number of streams (2N) is needed. These
circumstances together can make the computation of intensities expensive.
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6.1 δ–M Transformation

To achieve optimum computational efficiency and accuracy DISORT uses the δ–M
transformation (Wiscombe 1977). The goal of the transformation is to reduce the
length of the phase function expansion (5) from 2M, which can be very large, 100s
to 1000s, to 2N, which might be as little as 4–8. The δ–M method achieves this
reduction by separating the phase function P into the sum of a highly anisotropic
phase function Pʺ, approximated as a delta function in the forward direction, and a
less anisotropic phase function Pʹ which is expanded in a series of Legendre
polynomials:

P s; cosHð Þ ¼ f P00 s; cosHð Þþ 1� fð ÞP0 s; cosHð Þ

� 2f d 1� cosHð Þþ 1� fð Þ
X2N�1

‘¼0

2‘þ 1ð Þ g0‘ðsÞP‘ cosHð Þ: ð88Þ

The δ–M Legendre expansion coefficients g0‘ are obtained from the Legendre
coefficients g‘ of the phase function P by

g0‘ðsÞ ¼
g‘ðsÞ � f
1� f

; ‘ ¼ 0; . . .; 2N � 1ð Þ; ð89Þ

and the separated fraction f is chosen by setting

f ¼ g2NðsÞ: ð90Þ

To see why δ–M is an improvement let us consider the expansion coefficients in
P and Pʹ. In the ordinary phase function (P) expansion g‘ = 0 for ‘ ≥ 2N. In Pʹ, g0‘
is also zero for ‘ ≥ 2N, but by (89, 90) this is equivalent to g‘ = g2N for ‘ ≥ 2N, and
this latter approximation should be better than g‘ = 0 since typically the g‘ decrease
only slowly with ‘.

Substituting (88) into the radiative transfer equation (2), an identical form of the
transfer equation is obtained, but with Pʹ, τʹ, ωʹ replacing P, τ, ω, respectively,
where

ds0 ¼ 1� x fð Þ ds;
x0 ¼ 1� f

1� x f
x:

ð91Þ

Application of the δ–M method artificially enhances the direct beam component
of flux at the expense of the diffuse component, but the sum of the two is computed
accurately. The true direct beam component is also accurately calculated as an
exponential attenuation of the incident direct beam using the unscaled optical depth.
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DISORT then recovers the accurate diffuse component by subtracting the true direct
beam component from the δ–M scaled sum.

By reducing the length of the phase function expansion, and thus the number of
streams and azimuthal intensity components required, the δ–M transformation
decreases the computational burden. It has proven to be very useful for flux
computations, but produces unacceptable error in intensity computations of prac-
tical size of streams (2N < 10–20), especially in the bright region close to the direct
beam, called the aureole. The next section describes the method DISORT uses to
alleviate this problem.

6.2 Correction of the Intensity Field

As discussed in the previous section, the δ–M transformation leads to errors for
intensities. We illustrate the problem in Fig. 3, which shows the phase function
P and its δ–M versions Pʹ with 2N = 32 and 2N = 8. We use the Henyey–Greenstein
(H–G) phase function with g = 0.75 in this illustration because it is analytical, and
because its Legendre expansion coefficients can be readily obtained. The δ–M
phase function Pʹ(2N = 32) reconstructed from 2N = 32 Legendre moments
reproduces the analytical P(H–G) quite well. Also, because f in this case is very
small (g32 = 10−4), the δ–M scaling has little impact. So we use Pʹ(2N = 32) and
associated intensities calculated by DISORT as a reference for comparison below.
We see that Pʹ with 2N = 8, Pʹ(2N = 8), is substantially less peaked than P in the
forward direction (Θ = 0o), thus making Pʹ(2N = 8) less anisotropic as desired.
However, this truncation makes representation of forward scattering less accurate.
We also see that Pʹ(2N = 8) oscillates around the correct phase function.

The solid and dashed lines in Fig. 4 (top panels) show the intensities Iʹ(2N = 32)
and Iʹ(2N = 8) corresponding to phase functions Pʹ(2N = 32) and Pʹ(2N = 8),

Fig. 3 Accurate phase
function and its δ–
M approximations with
2N = 8 and with 2N = 32
Legendre moments. Henyey–
Greenstein phase function
with asymmetry parameter
g = 0.75 is used for
illustration
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respectively, for a slab of optical depth 1.0 and ω = 0.9 bounded from below by a
Lambertian reflecting surface with an albedo 0.3. We see that, similar to Pʹ(2N = 8),
the δ–M transformed intensity Iʹ(2N = 8) also oscillates around the reference
(approximating the non-transformed) intensity. The oscillation is especially large
for the downward intensity (right panel), but it is also significant for the upward
intensities (left panel) as demonstrated by the relative difference plots (bottom
panels).

Nakajima and Tanaka (1988) noticed that the oscillation in intensity resembles
that in the phase function Pʹ. They suggested that low-order of scattering, which is
proportional to the phase function, contributed most to the oscillations, and pro-
posed a correction, the so-called TMS and IMS methods, that would mitigate it. The
idea is to subtract the less accurate, δ–M transformed, low-order scattering con-
tributions from the δ–M transformed intensity Iʹ and add back the “accurate”,
non-transformed, low-order scattered intensity. DISORT implements both the TMS
and IMS methods.

Fig. 4 δ–M scaled upward (top-left) and downward (top-right) intensities calculated with 32 [Iʹ
(2N = 32)] and 8 [Iʹ(2N = 8)] streams corresponding to phase functions Pʹ(2N = 32) and Pʹ(2N = 8),
respectively, for a slab of optical depth 1.0 and ω = 0.9 bounded from below by a Lambertian
reflecting surface with an albedo 0.3. Errors in 8-stream intensities relative to the accurate
32-stream intensities are plotted in the bottom panels. The 8-stream, 32-moment
TMS/IMS-corrected intensities (ITMS/IMS) and their error, again, relative to the 32-stream
intensities are also shown
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The TMS method corrects the single-scattered intensity for using the δ–M phase
function and the δ–M scaling of optical depth and single-scattering albedo, such
that the TMS-corrected intensity ITMS is

ITMS ¼ I 0 � I 0ss þ Iss; ð92Þ

where I 0ss and Iss are the δ–M transformed and accurate (no δ–M) single-scattered
intensities, respectively. They are the solutions of the radiative transfer for single
scattering shown below.

The single-scattering special case of the radiative transfer equation (2) is
obtained by neglecting the multiple scattering source term in (3), which leads to:

�l
dIss s;�l;/ð Þ

ds
¼ Iss s;�l;/ð Þ � xðsÞ

4p
P s; þ l;/; �l0;/0ð ÞF0 e�s=l0 ; ð93Þ

where the subscript “ss” refers to single scattering. Here the notation +μ indicates
upward, while ̶−μ indicates downward directions with μ > 0 (note that (93) also
ignores the thermal source term Qthermal). Equation (93) can be readily solved by
multiplying both sides by an integrating factor, exp(−τ/μ) for upward intensity and
exp(+τ/μ) for downward intensity, and then by integrating layer by layer from τL to
τ for upward intensity and from τ0 to τ for downward intensity subject to lower and
upper boundary conditions, respectively.

The solution for the upward intensity is

Iss s; þ l;/ð Þ ¼ F0

4p 1þ l=l0ð Þ
XL
n¼p

xnPn þ l;/; �l0;/0ð Þ

	 exp � sn�1 � s
l

� sn�1

l0

� �
� exp � sn � s

l
� sn
l0

� �� �
;

ð94Þ

with τn−1 replaced by τ for n = p. The downward intensity for μ ≠ μ0 is

Iss s;�l;/ð Þ ¼ F0

4p 1� l=l0ð Þ
Xp
n¼1

xn Pn �l;/; �l0;/0ð Þ

	 exp � s� sn
l

� sn
l0

� �
� exp � s� sn�1

l
� sn�1

l0

� �� �
;

ð95Þ

with τn replaced by τ for n = p. In the special case μ = μ0 the solution of (93) leads to

Iss s;�l;/ð Þ ¼ F0

4pl0
e�s=l0

Xp
n¼1

xn Pn �l;/; � l0;/0ð Þ sn � sn�1ð Þ; ð96Þ

with τn replaced by τ for n = p. Since τL > ⋯ > τn > τn–1 ≥ τ in (94) and
τ > ⋯ > τn > τn–1 ≥ 0 in (95), all exponentials have negative arguments.
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We note that the derivation of (94)–(96) assumes I(τ0) = 0 and I(τL) = 0. This
assumption is technically correct since both are diffuse intensities and as such they
have already been scattered at least once; thus they are not part of the
single-scattering solutions.

Equations (94) and (95/96) are solved twice: once with the δ–M scaled
single-scattering albedo and optical depth (91) and phase function Pʹ calculated
from the 2M δ–M Legendre expansion coefficients (89), and once with the unscaled
single-scattering albedo, scaled optical depth, and the exact phase function P using
all available Legendre moments, but scaled by 1/(1 − ωf) because of the δ–M τ
scaling. The first solution gives I 0ss, while the second provides Iss in (92). Writing
the statements above in functional forms using the schematic notation

Intensity ¼ F single-scattering albedo	 phase function, optical depth½ �

we have

I 0ss ¼ F x0P0ð2MÞ; s0½ � and Iss ¼ F
xPðNmaxÞ
1� x f

; s0
� �

; ð97Þ

where the “primed” variables denote δ–M scaled quantities, and the argument of
P indicates the number of Legendre moments in the expansion.

We emphasize again that for the TMS correction to be effective, P must be
calculated from all Legendre moments Nmax needed to adequately represent the
exact phase function, not only from the 2M (=2N) moments used by DISORT with
a given number of streams (2N).

The TMS method substantially reduces the errors in intensity except in the solar
aureole near zero degree scattering angle. Further reduction of the error in the
aureole can be achieved by using the IMS method (Nakajima and Tanaka 1988).

The error remaining in the intensity after the TMS correction is the difference
between the “true” intensity and the TMS-corrected intensity. In DISORT, the IMS
intensity correction term ΔIIMS is defined as the negative of this difference

DIIMS � �ðItrue � ITMSÞ; ð98Þ

so it will be subtracted from the TMS-corrected DISORT intensity when applied.
Note that by its definition ΔIIMS includes intensities scattered more than once.

Differentiating both sides of (98) and using the δ–M scaling relations (91) and
the definition of ITMS (92) in the result, we get

�l
d DIIMSf g

ds
¼ �l

dIIMS

ds
� dItrue

ds

� �

¼ l
dItrue
ds

� l 1� xðsÞf ðsÞ½ � d
ds0

I 0 � I 0ss þ Iss
	 


:

ð99Þ
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Substituting (2)–(4) into (99), and using the δ–M approximation for the phase
function (88) and the equation for the single-scattering solution (93), and rear-
ranging the terms we find

�l
d DIIMSf g

ds
¼ DIIMS � Q1 þQ2 þQ3½ � � xðsÞ P 
 DIIMS½ �; ð100Þ

where the Q’s are

Q1 ¼ xðsÞ f ðsÞ I 0mult � P00 
 I 0mult

 �	 

;

Q2 ¼ xðsÞ f ðsÞ Iss � P00 
 Iss½ �f g;

Q3 ¼ F0 xðsÞ
4p

P s;�l;/; �l0;/0

� �
e�s0=l0 � e�s=l0

h i
� xðsÞ 1� f ðsÞ½ � P0 
 Iss � I 0ss

� � �
:

ð101Þ

Here I 0mult ¼ I 0 � I 0ss is the δ–M intensity due to multiple scattering, and Pʺ is the δ–
M residual phase function derived from (88):

P00 s; cosHð Þ ¼ 1
f

P s; cosHð Þ � 1� fð ÞP0 s; cosHð Þf g: ð102Þ

The notation [P * I] is used to write, in a short form, the integral of the product of
the indicated phase function and intensity

P 
 I½ � � 1
4p

Z2p
0

d/0
Z1

�1

P s; l;/; l0;/0ð ÞI s; l0;/0ð Þ dl0: ð103Þ

In these equations the Q and [P * I] all have arguments (τ, −µ, ϕ).Equation (101) is
solved by making a series of approximations. The most important of these comes
from the intent to apply the IMS correction only around the solar aureole region
(μ = μ0), as the method has originally been designed to improve the retrieval of
atmospheric aerosol properties from the analysis of solar aureole data obtained by
sun photometers (Nakajima 2010). In this region, the source function Q1 and the
angular integral term in (100) can be neglected due to their small contribution,
leading to:

�l
d DIIMSf g

ds
¼ DIIMS � Q2 þQ3½ �: ð104Þ

The intensities in Q2 and Q3 are all single-scattered intensities, and so [P * I] leads
to intensities scattered twice. Therefore, the solution of (104) shall provide cor-
rection for second-order scattering.

Because Pʺ is a delta function in the δ–M method,
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1
4p

Z2p
0

d/0
Z1

�1

P00 s;�l;/; l0;/0ð ÞP0 s;l0;/0;�l0;/0ð Þ dl0

¼ P0 s;�l;/; �l0;/0ð Þ: ð105Þ

By substituting the solutions for the two single-scattered intensities the source term
Q2 becomes,

Q2 s;�l;/ð Þ � F0

4p
xðsÞ f ðsÞ½ �2

1� xðsÞ f ðsÞ P00 s;�l;/; �l0;/0ð Þ½

� 1
4p

Z2p
0

d/0
Z1

�1

P00 s;�l;/; l0;/0ð ÞP00 s; l0;/0;�l0;/0ð Þ dl0
3
5

	 u s0;�l0;�l0ð Þ:
ð106Þ

Here, the approximation is that the geometrical factor φ

u s;�l;�l0ð Þ � e�s=l

l

Zs

0

e 1=l�1=l0ð Þ tdt; ð107Þ

is nearly independent of µ near µ = µ0 and can be brought outside the angular
integrals by setting µ = µ0. By using (91), and considering only the first term (n = 1)
of the Taylor series expansion, the exponential term in Q3 can be approximated as

e�s0=l0 � e�s=l0 ¼ e�s0=l0 1� e�x f s=l0
 �

¼ �e�s0=l0
X1
n¼1

1
n!

�xðsÞ f ðsÞ s
l0

� �n
� xðsÞ f ðsÞ

1� xðsÞ f ðsÞu s0;�l0;�l0ð Þ:

ð108Þ

Using (108) and following the pattern of (106), the source term Q3 becomes

Q3 s;�l;/ð Þ � F0

4p
x2ðsÞ f ðsÞ

1� xðsÞ f ðsÞ P s;�l;/; �l0;/0ð Þ � 1� f ðsÞ
4p

�

	
Z2p
0

d/0
Z1

�1

P0 s;�l;/; l0;/0ð ÞP00 s;l0;/0; �l0;/0ð Þ dl0
3
5u s0;�l0;�l0ð Þ

¼ F0

4p
xðsÞ f ðsÞ½ � 2

1� xðsÞ f ðsÞP
00 s;�l;/; �l0;/0ð Þu s0;�l0;�l0ð Þ:

ð109Þ
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Since the IMS correction is applied only to the transmitted intensity around the
solar aureole, the contribution to secondary scattered intensity from backward
scattering is relatively small. Thus, for a vertically inhomogeneous, layered atmo-
sphere layer-averaged optical properties of the medium should be sufficient. (104)
then has an analytical solution of

DIIMS � F0

4p
ð�x�f Þ2
1� �x�f

2P00 �l;/; �l0;/0ð Þ � P002 �l;/; �l0;/0ð Þ �
	 v s;�l;�l00;�l00

� �
;

ð110Þ

where the square of Pʺ is defined as an operator:

P002 s;�l;/; �l0;/0ð Þ � 1
4p

Z2p
0

d/0
Z1

�1

P00 s;�l;/; l0;/0ð ÞP00 s; l0;/0;�l0;/0ð Þ dl0;

ð111Þ

and the mean optical properties of the atmosphere are

�x ¼
Xp
n¼1

xnsn=
Xp
n¼1

sn;

�f ¼
Xp
n¼1

fnxnsn=
Xp
n¼1

xnsn;

P00 cosHð Þ ¼
XNmax

‘¼0

2‘þ 1ð Þ �g‘ P‘ cosHð Þ;

�g‘ ¼
Xp
n¼1

g0‘;nxnsn=
Xp
n¼1

fnxnsn;

g0‘;n �
fn ‘� 2N � 1

g‘;n ‘[ 2N � 1:

�

ð112Þ

In (112) Pʺ is the residual phase function; it is not a delta function, it is only
approximated as a delta function in the δ–M method. Nmax is the number of terms
necessary to converge the Legendre expansion of the exact phase function P.

The function χ in (110) is

vðs;�l;�l0;�l00Þ ¼ e�s=l

l l0

Zs

0

etð1=l�1=l0Þdt
Z t

0

et
0ð1=l�1=l00Þdt0; ð113Þ
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which is obtained by using the transformation of geometrical factor

uðs0;�l0;�l0Þ ¼ uðs;�l00;�l00Þ; l00 �
l0

1� �x�f
:

Carrying out the integration in (113) requires distinguishing five different cases for
different combinations of µ, µʹ, µʺ > 0:

v ¼ 1
ll0

s2e�s=l

2 l0 ¼ l00; l ¼ l0

1
x1

s� 1
x1

� �
e�s=l0 þ e�s=l

x1

h i
l0 ¼ l00; l 6¼ l0

1
x2

e�t=l00�e�s=l

x2
� s e�s=l

h i
l0 6¼ l00; l ¼ l0

1
x1

e�s=l0�e�s=l

x1
� s e�s=l

h i
l0 6¼ l00; l ¼ l00

1
x2

e�s=l00�e�s=l

x2
� e�s=l0�e�s=l

x1

h i
l 6¼ l0 6¼ l00;

8>>>>>>>>><
>>>>>>>>>:

ð114Þ

where

x1 ¼ 1
l
� 1
l0

and x2 ¼ 1
l
� 1
l00

:

Substituting the definition (112) of the residual phase function P″ into (111), and
expressing the phase functions in terms of the directions (−μ, φ) and (−μ0, φ0) by
using the addition theorem for spherical harmonics (7), and then carrying out the
integration leads to

P002 s;�l;/; �l0;/0ð Þ ¼
XNmax

‘¼0

2‘þ 1ð Þ �g2‘ P‘ cosHð Þ: ð115Þ

Substituting (112) and (115) into (110), the IMS intensity correction term ΔIIMS

becomes

DIIMS � F0

4p
�x�fð Þ2

1� �x�f

XNmax

‘¼0

2‘þ 1ð Þ 2�g‘ � �g2‘
� �

P‘ cosHð Þ
" #

v s;�l;�l00;�l00
� �

:

ð116Þ

DISORT applies the IMS correction for downward intensities within ±10° of the
solar beam direction.

Figure 4 shows the corrected intensities ITMS/IMS (top panels) and the differences
relative to the reference intensity (bottom panels). The oscillations seen in the δ–M
transformed intensity Iʹ(2N = 8) are greatly reduced by the intensity correction for
the entire range of polar angles. The corrected downward intensity (top-right panel),
for example, is virtually indistinguishable from the reference intensity. The relative
difference (bottom-right panel) hovers within ±2 % of the zero line; maximum
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values are at 110° and 130° where the IMS correction is turned on and off,
respectively.

We noted that the single-scattering solutions used in the TMS correction neglect
the reflection from the lower boundary. Similarly, the IMS correction does not
account for radiation reflected by the surface either. Lin et al. (2015) show, how-
ever, that adding a correction term, ΔIBRDF to (92) due to reflection of the direct
beam at the lower boundary

DIBRDF ¼ qdðþ l;�l0; /� /0Þ � qd;apprðþ l;�l0; /� /0Þ
 �
	 1
p
l0F0 e

�s0L=l0e�ðs0L�s0Þ=l;
ð117Þ

improves accuracy of I(+µ, ϕ), especially around the “hot spot.”Here ρd is the accurate
bidirectional reflectance distribution function (known for example, from an analytical
function) and ρd,appr is the approximate BRDF calculated from the finite 2M Fourier
expansion terms in (60). Note that (117) corrects for the error caused by using a series
expansion of ρd that is shorter than necessary for an accurate representation of the
BRDF; this correction has nothing to dowith using the δ–Mmethod. Also note that for
a Lambertian surface ΔIBRDF vanishes since in this case ρd,appr = ρd.

Combining all three corrections the final, corrected intensity in DISORT is

Icorrected ¼ ITMS � DIIMS þDIBRDF
¼ I 0 � I 0ss þ Iss � DIIMS þDIBRDF:

ð118Þ

DISORT applies the intensity corrections after all azimuthal components of the δ–
M scaled intensity are computed and summed up in (8) to give Iʹ. As such, the
intensity correction is a post-processing step.

Because the Nakajima–Tanaka intensity corrections are not applied to Im, the
azimuthally averaged intensity I0 is uncorrected; therefore DISORT does not return
it in the output. We note, however, that in principle the intensity corrections could
also be applied to the Fourier components of the intensity. The necessary formulas,
for example, for the TMS and IMS corrections, can be derived as follows. Denoting
the TMS and IMS-corrected intensity by ITMS/IMS and the TMS component of the
correction by DITMS � Iss � I 0ss

ITMS=IMS ¼ I 0 þDITMS � DIIMS:

Expanding the Is and ΔIs into an Nmax-term Fourier cosine series in azimuth, we have

XNmax

m¼0

Imðs;�lÞ cosmð/� /0Þ ¼
XNmax

m¼0

½I
mðs;�lÞþDImTMSðs;�lÞþDImIMSðs;�lÞ� cosmð/� /0Þ;

XNmax

m¼0

Imðs; þlÞ cosmð/� /0Þ ¼
XNmax

m¼0

½I
mðs; þlÞþDImTMSðs; þ lÞ� cosmð/� /0Þ;
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where

I
m ¼ I 0m 0�m� 2N � 1
0 2N�m�Nmax

�
:

From these equations the mth Fourier components of the downward and upward
intensity, respectively, are

Imðs;�lÞ ¼ I 0mðs;�lÞþDImTMSðs;�lÞþDImIMSðs;�lÞ; 0�m� 2N � 1;

DImTMSðs;�lÞþDImIMSðs;�lÞ; 2N�m�Nmax;

�

Imðs; þ lÞ ¼ I 0mðs; þ lÞþDImTMSðs; þ lÞ; 0�m� 2N � 1;

DImTMSðs; þ lÞ; 2N �m�Nmax:

�

These equations simply state that the δ–M scaled intensities vanish for m ≥ 2N, and
that the IMS correction is only applied for the downward directions.

The mth Fourier component of the TMS correction term, DImTMS ¼ Imss � I 0mss ,
requires the mth Fourier components of the single-scattering solutions obtained
from the unscaled and the δ–M scaled phase functions. These are obtained from
Eqs. (94)–(96) by expanding the intensity in a Fourier cosine series and the phase
function in a series of 2N normalized associated Legendre polynomials:

I 0mss ðs0;�lÞ ¼ F0

4p ð1� l=l0Þ
ð2� dm0Þ

Xp
n¼1

X2N�1

‘¼m

g0‘;n K
m
‘ ð�lÞKð�l0Þ

( )

	 exp � s0 � s0n
l

� s0n
l0

� �
� exp � s0 � s0n�1

l
� s0n�1

l0

� �� �
;

I 0mss ðs0;�l ¼ �l0Þ ¼
F0

4p ð1� l=l0Þ
e�s=l0 ð2� dm0Þ

	
Xp
n¼1

X2N�1

‘¼m

g0‘;n K
m
‘ ð�lÞKð�l0Þ

( )
s0n � s0n�1

� �
;

I 0mss ðs0; þ lÞ ¼ F0

4p ð1þ l=l0Þ
ð2� dm0Þ

XL
n¼p

X2N�1

‘¼m

g0‘;n K
m
‘ ðþ lÞKð�l0Þ

( )

	 exp � s0n�1 � s0

l
� s0n�1

l0

� �
� exp � s0n � s0

l
� s0n
l0

� �� �
:

Imss is calculated similarly, except the summation over ‘ runs up to Nmax instead of
2N − 1, and g0‘;n is replaced by g‘;n

�
1� xnfnð Þ.

The Fourier components of the IMS correction term ΔIIMS is obtained from
(116). Here the intensity is expanded into an Nmax-term Fourier cosine series and
the Legendre polynomial P‘ðcosHÞ is rewritten in terms of the normalized asso-
ciated Legendre polynomials Km

‘ ðlÞ leading to
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DIIMS � F0

4p
�x�fð Þ 2

1� �x�f
ð2� d0mÞ

	
XNmax

‘¼0

2‘þ 1ð Þ ð2�g‘ � �g2‘ ÞKm
‘ ð�lÞKm

‘ ð�l0Þ
" #

v s;�l;�l00;�l00
� �

;

where �x;�f and �g‘ are given in (112).
We also note here that Buras et al. (2011) have developed an alternative method

to calculate secondary scattering. Instead of expanding the phase function in terms
of Legendre polynomials, they use the scattering phase function directly as a
function of scattering angle. They numerically integrate (111) in a way that
enhances sampling of the phase function in the forward peak. The method can
provide more accurate intensities, particularly for strongly forward-scattering phase
functions, because it is not compromised by the finite expansion. It is also more
efficient because for DISORT to match accuracy it must use a very large number of
Legendre moments Nmax.

7 Numerical Considerations

7.1 Computation of Eigenvalues and Eigenfunctions

To find the eigenvalues and eigenvectors needed for the intensity in (34) we must
solve (31). Since the matrix A = (α − β) (α + β) in (31) is real but asymmetric, one
may adopt subroutines like those in EISPACK (cf. Cowell 1980) which utilize the
double QR algorithm to find eigenvalues and eigenvectors (Stamnes and Swanson
1981).

We note that because all eigenvalues are real, as it was shown by Stamnes and
Swanson (1981), it is possible to transform this algebraic eigenvalue problem into
one involving symmetric matrices. Such attempts were made by Nakajima and
Tanaka (1986) and by Stamnes et al. (1988b). Stamnes et al. (1988b) also evaluated
the merits of the transformation to symmetric matrices, and concluded that the
transformation and subsequent solution procedures involved matrix operations in
which the effect of rounding error became significant, and there was no significant
increase in speed from symmetrizing the eigenproblem, because of the overhead of
extra matrix multiplications. The advantage of solving the algebraic eigenvalue
problem involving the asymmetric matrix A is that only one matrix multiplication is
necessary.

The double QR algorithm applies to a general real matrix (which typically has
complex eigenvalues/eigenvectors) and thus uses complex arithmetic. Use of
complex arithmetic wastes a large amount of computation since only real arithmetic
is needed for the discrete ordinates application. Therefore, one of the coauthors
(Tsay) developed a customized version of the eigenvalue problem solver. This

42 I. Laszlo et al.



customized version, ASYMTX, is an adaptation of subroutine EIGRF in the IMSL
(International Mathematics and Statistics Library) to use real instead of complex
arithmetic. EIGRF is based primarily on EISPACK routines. The matrix is first
balanced using the Parlett–Reinsch algorithm (Parlett and Reinsch 1969). Then the
Martin–Wilkinson algorithm (Wilkinson 1965) is applied. Stamnes et al. (2000)
show the details of how ASYMTX works. These are not repeated here.

The eigen-computation in DISORT is handled entirely by ASYMTX. It is vital
that this subroutine be run in the highest possible precision—at least IEEE double
precision, or 14 significant digits. The reason is that the eigenproblem becomes
degenerate as the single-scatter albedo approaches unity (see Sect. 7.5), and in
general because it is a sensitive computation requiring high precision.

7.2 Numerical Solution for the Constants of Integration

We have shown that application of the boundary conditions and continuity con-
ditions at layer interfaces leads to (65)–(67). These equations constitute a
(2N × L) × (2N × L) system of linear algebraic equations for the 2N × L unknown
coefficients Cjp (j = ±1,…, ±N; p = 1,…, L). This set of equations is ill-conditioned
for large total optical thickness or large individual layer thickness, so a scaling
transformation (70) was introduced that led to (73) and (77) for the homogeneous
part of the solution with Ĉjp replacing Cjp.

The coefficient matrix for this system of algebraic equations for determining Ĉjp

is a banded matrix with (6N − 1) diagonals (Stamnes and Conklin 1984). Numerical
packages like LINPACK (Dongarra et al. 1979) and LAPACK (Anderson et al.
1999) include solvers specifically designed for banded matrices. A banded matrix
of order I and band width J can be solved in a time proportional to IJ2. In our case,
I = 2NL and J = N implying that the run time will increase as LN3, that is linearly
with the number of layers and cubically with the number of streams. Versions of
DISORT use either LINPACK or LAPACK (see Sect. 9).

7.3 Removable Singularities in the Intensities

Certain combinations of the directions and eigenvalues may lead to 0/0-type sin-
gularities in the intensities and in (55) and (56). These singularities are removed by
applying L’Hospital’s Rule. The discrete ordinate solutions for the pth layer (55),
(56) contain the following expressions:
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Ip s; þ lð Þ / Ejn s; þ lð Þ
1þ kjnl

exp kjnsn
� � � f1 s; kjnl

� �
;

Ip s;�lð Þ / Ejn s;�lð Þ
1� kjnl

exp kjnsn�1
� � � f2 s; kjnl

� �
:

The Ejn are given in (57) and (58). The exponential factors on the right-hand sides
come from applying the scaling transformation (70). Whenever |kjnμ| = 1, the
upward and downward intensities have a 0/0-type singularity for the eigenvalues
kjn < 0 and kjn > 0, respectively. Applying L’Hospital’s Rule leads to

f1 s; kjnl ¼ �1
� � ¼ sn � sn�1

l
exp � sn � sð Þ=lð Þ;

f2 s; kjnl ¼ þ 1
� � ¼ sn � sn�1

l
exp � s� sn�1ð Þ=lð Þ:

The particular solution of the downward intensity for the beam source Ip(τ,–μ) is
proportional to

f s;�l; l0ð Þ � Ejn s;�lð Þ
1� l=l0

:

The singularity at μ = μ0 is again avoided by applying L’Hospital’s Rule leading to

f s;�l ¼ l0; l0ð Þ ¼ sn � sn�1

l0
exp �s=l0ð Þ:

Another potential singularity in the particular solution occurs when the square of
the cosine of the solar zenith angle is too close to the reciprocal of an eigenvalue,
and so the first factor on the left-hand side of (41) becomes very close to zero,
which may prevent us from obtaining a solution for Zþ

0 � Z�
0 (Siewert 2000).

DISORT removes this singularity by slightly changing the value of μ0 when the
above condition is present as discussed by Lin et al. (2015).

7.4 Fourier Expansion of the Surface BRDF

The coefficients qmd l;�l0ð Þ in the Fourier expansion of the surface bidirectional
reflectivity in (60) are computed from the defining equation

qmd l;�l0ð Þ ¼ 2� dm0ð Þ 1
p

Zp

0

qd l;�l0;/� /0ð Þ cosm /� /0ð Þ d /� /0ð Þ;

ð119Þ
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where we exploited the assumption that qd is an even function of the azimuth
difference D/ ¼ /� /0 so the integral in (119) is evaluated on the interval 0; p½ �
instead of �p; p½ �. In DISORT, this integral is evaluated by an Ng-point Gaussian
quadrature with weights wk

qmd l;�l0ð Þ � 2� dm0ð Þ 1
p

XNg

k¼1

wkqd l;�l0;D/kð Þ cosðmD/kÞ: ð120Þ

qmd must be obtained for all combinations of incident and reflection angles [(μi, μj),
(μi, μ0), (μ, μj), (μ, μ0)], that is, (120) must be evaluated Ntotal = 2NNg

(N2 + NNp + N + Np) times, where N is the number of streams per hemisphere, Np is
the number of user-defined upward directions, and Ng is the number of Gaussian
quadrature points in (120). The number Ntotal can be very large. For example, when
N = 64, Ng = 256, Np = 9, Ntotal is 155,484,160! Hence, computation of the Fourier
expansion coefficients can become very expensive, especially when DISORT is
called many times, for example, to calculate intensities at many different wave-
lengths as would be the case in a line-by-line code.

The integrand in (119) contains the product of a slowly varying function, ρd and
a highly oscillating cosine function, cos(mΔϕk) whose frequency increases with
m (and thus the numbers of streams). In order to adequately sample the integrand
and to maintain high accuracy, great care should be taken in choosing Ng. On one
hand, the quadrature points must be chosen such that ρd is sampled adequately
when m is small, since the presumed variability of the integrand in (119) is
determined by ρd. On the other hand, when m is large the variability of the integrand
will be due to the highly oscillating component, cos(mΔϕk). This situation is
illustrated in Fig. 5. The top panel shows ρd(µ, −µ, Δϕ) as a function of Δϕ for three
values of the direction of reflection µ (0, 0.5, and 0.9) for incoming beam direction
−µ = 0.5, as calculated from Hapke’s bidirectional reflectance model (Hapke 1993,
Eq. 8.89, with parameters h = 0.06, B0 = 1 and w = 0.19). These functions are not
too complex and could be integrated with a low-order quadrature. The bottom panel
of Fig. 5 shows the product ρd(µ, −µ, Δϕ) cos(mΔϕ) for three values of m (2, 4, and
16) for the pair of incident/reflection directions (µ = −µ = 0.5) that exhibits the
largest variability with Δϕ because it includes the “hot spot”. It is clearly seen that
the frequency of oscillations increases with increasing m, and therefore the order of
quadrature required should also be increasing.

According to the sampling theorem, a cosine function should be sampled at its
Nyquist critical frequency; because such sampling guaranties that it will be sampled
at its positive peaks and negative troughs (Press et al. 1992). So, Ng should be at
least twice as large as the number of streams (2N). Although the sampling theory
stated in this form applies to evenly spaced samples, and thus the quadrature points
satisfying the above requirement strictly apply only to Newton–Cotes quadrature
formulas, we may try adopting them for the Gaussian quadrature as well.
Combining requirements for small and large m we have Ng ≥ max (Nmin, 4N),
where Nmin is the minimum number of quadrature points needed to adequately
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represent the integrand for small m. In Fig. 6 we show, as an example, the Fourier
expansion coefficients qmd l;�l0ð Þ for m = 0, …, 127 (corresponding to 128
streams) obtained using different number of Gaussian quadrature points Ng = 50,
100, 200, and 256 in (120). (Hapke’s BRDF model with the same parameters as in
Fig. 5 is used, except w = 0.6.) qmd l;�l0ð Þ decreases rapidly with increasing m in
all cases, however, with Ng = 50 it starts widely oscillating after about m = 25,
indicating that the number of quadrature points used in (120) is not sufficient to
approximate the integral in (119). The erroneous oscillation kicks in at larger
m value for Ng = 100 and 200, but it is only absent when Ng = 256, that is when Ng

equals twice the number of streams.
We note that the use of Gaussian quadrature in (119) may not be the best choice

for evaluating the integral because, as discussed above, the integrand oscillates too
much for large m. For such integrands, any conventional quadrature is likely to
choose an unrepresentative sample set of values. One obvious method to evaluate
the integral is to break up the integrand for intervals where it has the same sign and
then apply the Gaussian quadrature separately for each interval. This procedure is,
however, likely to be inefficient due to the large number of integrals that should be
evaluated and then summed up. A better way to evaluate the integral in (119) may
be to use a Filon-type method, which is an extension of the Filon quadrature (Filon
1928). The Filon quadrature approximates the slowly varying component by a
polynomial on separate intervals, called panels, then knowing the exact formulas
for integrating xn cos(m x) and summing over all panels obtains a better value for
the integral than the standard Gaussian quadrature could give. Unfortunately, the

Fig. 5 Illustration of the
integrand evaluated for
computing the Fourier
expansion coefficients of the
surface bidirectional
distribution function ρd.
Hapke’s BRDF model (Hapke
1993) is used. Top panel ρd as
function of the relative
azimuth angle Δϕ for three
values of reflection directions
µ = 0.0, 0.5, 0.9 with incident
direction −µ = 0.5. Bottom
panel product of ρd and cos
(m Δϕ) as a function of Δϕ for
m = 2, 4, 16 and for equal
incident and reflection
directions (µ = −µ = 0.5).
Note the increase of
oscillations with increasing m
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quadrature points selected in the Filon-type method are not a good choice for small
m, but they can be chosen such that they approach the Legendre points as the
frequency of oscillations approaches zero (Iserles and Nørsett 2004). Asheim et al.
(2014) discusses how to select the quadrature points in an optimal way. Another
choice for evaluating the integral in (119) would be to use Levin-type methods that
are further developments of the Filon method, and is based on solving an associated
differential equation (Levin 1996). Both of these methods are asymptotic methods.
An added benefit of these methods is that, unlike classical Gaussian quadratures,
whose error increases with m → ∞, the accuracy of both methods increases with
growing oscillation. A unified description of these and other asymptotic methods is
presented in Iserles et al. (2006).

7.5 ω = 1 Special Case

The solution (32) presented for the sum of eigenvectors Gþ þG� is only valid
when k ≠ 0. Indeed, k = 0 causes apparent infinities in (32). Such a situation
happens for m = 0 when the single-scattering albedo ω = 1, as we show below for
the two-stream case. (For 2N > 2, cf. the discussion in Chandrasekhar 1960,
Chap. 6, p. 212.)

Fig. 6 Fourier expansion
coefficients qmd l;�l0ð Þ of
Hapke’s BRDF for m values
corresponding to 128 streams,
that is for m = 0-127, obtained
using different number of
Gaussian quadrature points
Ng = 50, 100, 200, and 256 in
Eq. (120). Note the wild,
erroneous oscillation at large
m value only disappears when
Ng equals twice the number of
streams (Ng = 256)
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The two-stream approximation is obtained by setting N = 1 in (14) and (15),
which yields two coupled differential equations (µ−1 = −µ1, w−1 = w1 = 1), which in
matrix form is written for the m = 0 Fourier component as

d
ds

I þ

I�

� �
¼ �a �b

b a

� �
I þ

I�

� �
� Q0 þ

Q0�

� �
; ð121Þ

where the m = 0 superscript has been dropped, and where the following definitions
are used

I� � I s;�l1ð Þ;
Q� � Q s;�l1ð Þ;
Q0� ¼ �Q�=l1;

a ¼ D l1; l1ð Þ � 1½ �=l1 ¼
x
2

1þ 3g1l21
� �� 1

h i
=l1;

b ¼ D l1;�l1ð Þ=l1 ¼
x
2
ð1� 3g1l21Þ=l1:

Seeking the solution to the homogeneous version of (121) (Qʹ±=0) in the form

I� ¼ G�e�ks; where G� � G �l1ð Þ;

leads to the following algebraic eigenvalue problem:

a b
�b �a

� �
Gþ

G�

� �
¼ k

Gþ

G�

� �
:

Here k is an eigenvalue and G is an eigenvector. Expanding this into two scalar
equations,

aGþ þ bG� ¼ k Gþ ;
�bGþ � aG� ¼ k G�;

and adding and subtracting these two equations, we find

a� bð Þ Gþ � G�ð Þ ¼ k Gþ þG�ð Þ;
aþ bð Þ Gþ þG�ð Þ ¼ k Gþ � G�ð Þ:

Substitution of the second of these equations into the first one yields

a� bð Þ aþ bð Þ Gþ þG�ð Þ ¼ k2 Gþ þG�ð Þ:
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Canceling the scalar factor (G+ + G−) from both sides, and taking the square root
yields the two eigenvalues:

k1 ¼ k; k�1 ¼ �k;

k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

q
¼ 1

l1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 1Þ ð3x g1 l21 � 1Þ

q
:

Note that in the equation above ω = 1 leads to k = 0, which in turn prevents us from
obtaining a solution for the eigenvectors from (32). Mathematically, there is no
special significance of a zero eigenvalue, and any eigenvalue can be shifted away
from zero (Press et al. 1992). The physical equivalence of this would be the
existence of radiative transfer equations for the special case of ω = 1. However,
even though such transfer equations exist, no solutions specific to this case have
been implemented in DISORT. Instead, the zero eigenvalue resulting from ω = 1 is
avoided by slightly changing ω, as discussed below.

Conservative scattering (ω = 1) cannot be realized in practice because all
materials are absorbing (Bohren and Huffman 1983). Thus, ω = 1 can only be
realized as an idealized limit from below (ω → 1–) as absorption approaches zero.
But this limit involves 0/0 singularities which must be treated by L’Hospital’s Rule.
This limit leads to entirely different functions than the exponentials found in the
general-case formula. Having different functions greatly complicates the interface
conditions between layers with ω = 1 and those with ω < 1. DISORT deals with the
ω = 1 case by “dithering”. Dithering simply means replacing ω = 1 by ω = 1 − ε
wherever it occurs. (ε is taken to be 10 times machine precision or, in the recom-
mended IEEE double precision mode of operation, about 10−13.) This choice
basically gets the computer to do the L’Hospital’s Rule computation, but digitally
instead of analytically. It allows the ω < 1 solution to be used in every layer, vastly
simplifying the interface conditions.

7.6 Simplified Albedo and Transmissivity Computations

Frequently one wants to know the flux albedo a(μ) and transmission t(μ) of the
whole medium for many incident beam angles. The conventional procedure to
compute a(μ) and t(μ) for a particular angle of incidence μ requires computing the
angular distribution of the azimuthally averaged intensity, and then the quadrature
of this intensity over angle. This procedure requires the computation of the par-
ticular solution (Sect. 4.2) for each layer and every direction of incidence consid-
ered. This approach can be quite costly in an inhomogeneous (multilayered)
medium. DISORT has a special case, which allows one to get a(μ) and transmission
t(μ) of the whole medium for many incident beam angles at once. Note that this
special case excludes thermal sources and non-Lambertian lower boundary
reflectivities!
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Using the reciprocity principle, Stamnes (1982b) derived simple expressions for
the albedo and transmissivity of a vertically inhomogeneous, plane parallel medium
lacking thermal sources:

aðlÞ ¼ I0 0; lð Þ; tðlÞ ¼ I0
 0; lð Þ;
a
ðlÞ ¼ I0
 sL;�lð Þ; t
ðlÞ ¼ I0 sL;�lð Þ; ð122Þ

where the asterisk refers to illumination from below and τL is the total optical
thickness of the inhomogeneous medium. These equations show that (a) the albedo
for a given angle μ of parallel beam incidence equals the azimuthally averaged
reflected intensity for isotropic unit intensity incident at the top boundary; and
(b) the transmissivity equals the azimuthally averaged transmitted intensity for
isotropic unit intensity incident at the bottom boundary.

Equation (122) offers substantial computational advantages. By applying an iso-
tropic boundary condition and using (122), one may solve for all desired angles of
incidence simultaneously and entirely avoid the computation of the particular solution.

The numerical implementation of this special case involves two steps (Stamnes
1982b). In step (1), the albedo and transmissivity for the so-called “standard
problem” (no reflecting lower boundary) for isotropic illumination of unit intensity
from above and below are computed using (122). For illumination from above, the
following explicit expressions [cf. (73) and (77)] are used to calculate two of the
right-hand sides in (122):

I0 0; þ lð Þ
I0 sL;�lð Þ

� �
¼

XL
n¼1

XN
j¼1

Ĉ0
�jn

G0
�jn �lð Þ
1� k0jnl

Ê0
�jn �lð Þþ Ĉ0

þ jn

G0
þ jn �lð Þ
1� k0jnl

Ê0
þ jn �lð Þ

( )
;

ð123Þ

where the 0-superscript on Ĉ, Ê, k refers to the azimuth-independent case (m = 0)
and Ê is defined in (74)–76) and (78)–(80). Two equations have been collapsed into
one here, because the right-hand sides in (123) are identical except for some sign
flips; the two left-hand sides are stacked inside the curly brackets. Equation (123)
gives us a(μ) and t*(μ). The same formulas also give us a*(μ) and t(μ). Only the
constants of integration Ĉ are different. Thus, only the final step in the solving
procedure, which determines these constants, needs to be repeated for illumination
from below. In step (2), the solution from step (1) is modified to account for a
Lambert (isotropic) reflecting lower boundary.

8 DISORT Test Cases

DISORT has been distributed together with a set of test cases. The purpose of the
test cases is to demonstrate the basic capabilities of the code, exercise all features of
DISORT thereby testing all subroutines (logical paths), and provide comparisons
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with numerical results obtained by other investigators. They also serve as examples
(templates) for appropriately setting up DISORT runs.

There are two groups of test problems: accuracy and consistency groups. The
accuracy problems compare the results with answers obtained running DISORT
entirely in double precision. The latter results are saved in the DISORT test-case file
and read in when the test cases are run. The accuracy problems are not chosen to be
comprehensive but rather to test extreme values of the input parameters. Some of
the test cases were also chosen to be compared to published results (cf. Van de
Hulst 1980; Sweigart 1970; Garcia and Siewert 1985). A complete description of all
test cases is beyond the scope of this review. Below we only highlight a few of
them.

Test problems 1–5 involve single purely scattering layers with successively more
difficult phase functions (isotropic, Rayleigh, Henyey-Greenstein, Haze L, and
Cloud C.1 phase functions; the last two are from Garcia and Siewert (1985).
Subcases are for varying optical depths and single-scattering albedos.

For example, Case 1a, the simplest case of all, deals with a single isotropically
scattering layer over a nonreflecting Lambertian surface, illuminated at the top
boundary from the direction μ0 = 0.1 and ϕ0 = 0o by a parallel beam with F0 = π.
The optical thickness of the layer is τL = 0.03125, and the single-scattering albedo is
ω = 0.2. Computations are to be carried out with 2N = 16 streams. Both intensities
and fluxes are requested; they are to be computed at the top and bottom boundaries.
Intensities are requested at six user-specified directions with polar angle cosines
μ = −1.0, −0.5, −0.1, 0.1, 0.5, and 1.0, and with azimuth ϕ = 0°. Writing these with
the corresponding DISORT variables (in upper case) for input one has:

NSTR = 16 (number of streams, 2N)
NTAU = 2 (number of optical depths where results are requested)
UTAU(1) = 0.0 (first user-specified optical depth where results are requested;
because we want results at the top and bottom of the layer, and because τ must be in
increasing order, we set this to zero for the top boundary)
UTAU(2) = 0.03125 (second user-specified optical depth; since we also want
results at the bottom of the layer we set UTAU(2) to the total optical depth of the
layer τL)
NLYR = 1 (we are dealing with a single layer, so we set the number of compu-
tational layers to 1)
DTAUC(1) = UTAU(2) (optical thickness of computational layer; it is set this way
because in Case 1a UTAU(2) represents the bottom boundary; alternatively, one
could write DTAUC(1) = 0.03125)
SSALB(1) = 0.2 (single-scatter albedo of computational layer; index denotes layer
number)
NMOM = NSTR (number of phase function moments not including the zeroth
moment. It should be greater than or equal to NSTR in problems with scattering.)
PMOM (0, 1) = 1.0; PMOM(1 to NMOM, 1) = 0.0 (array containing the coeffi-
cients in Legendre polynomial expansions of phase functions for computational
layers. First index is for moments, second index is for layers.
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Subroutine GETMOM supplied with the DISORT test cases is used to set the
moments.)
USRTAU = .TRUE. (tells DISORT that radiant quantities are to be returned at
user-specified optical depths)
USRANG = .TRUE. (tells DISORT that radiant quantities are to be returned at
user-specified polar angles)
NUMU = 6 (number of user-defined polar angles)
UMU(1-6) = [−1.0, −0.5, −0.1, 0.1, 0.5, 1.0] (cosines of output polar angles in
increasing order)
NPHI = 1 (number of azimuthal angles at which to return intensities)
PHI(1) = 0.0 (azimuthal output angles in degrees)
IBCND = 0 (tells DISORT that request is for the general case not for the special
case in which only albedo and transmissivity of the entire medium versus incident
beam angle is requested)
UMU0 = 0.1 (polar angle cosine of incident beam)
PHI0 = 0.0 (azimuth angle of incident beam)
FBEAM = π/UMU0 (incident parallel beam at top boundary; the flux is set to π so
that DISORT intensities are equal to Van de Hulst’s (1980) reflectivities and
transmissivities. DISORT reflected and transmitted fluxes must be divided by the
incident flux (π) to compare to the “FLUX” column in Van de Hulst.)
FISOT = 0.0 (intensity of top boundary isotropic illumination)
LAMBER = .TRUE. (instructs DISORT the bottom boundary is an isotropically
reflecting surface)
ALBEDO = 0.0 (albedo of isotropically reflecting bottom boundary)
PLANK = .FALSE. (instructs DISORT the problem does not include thermal
emission)
ONLYFL = .FALSE. (instructs DISORT to compute intensities in addition to
fluxes)

For illustration, Fig. 7 plots the intensities I(μ,ϕ) as a function of polar angle
cosines μ with azimuth ϕ = 0° in the upward direction at the top and in the
downward direction at the bottom. The conditions are those in Case 1 and 1b,
except the user polar angles range from 0° to 180° in one-degree increments. The
intensities are calculated for single-scattering albedos ω = 0.2 (Case 1a) and ω = 1.0
(Case 1b). The strong “limb brightening” of intensities is evident in both cases.

Test case 5a treats a single cloud layer with the highly anisotropic Cloud C.1
phase functions (Garcia and Siewert 1985). Intensities are calculated using 48
streams. This case is an example of using more moments than number of streams.
This is achieved by setting the appropriate DISORT input variables as

NSTR ¼ 48

NMOM ¼ 299

The test case calls the supplied subroutine GETMOM with option 5 to select the
Cloud C.1 phase function and to supply the Legendre moments.
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The DISORT results for intensities and fluxes from Case 1 can be compared to
those in Table 12 of Van de Hulst (1980). Those from Cases 2–5 can be compared
to results in Table 1 of Sweigart (1970), Table 37 of Van de Hulst (1980), and
Tables 12–20 of Garcia and Siewert (1985).

As another illustration, Fig. 8 plots the intensities from Case 4c, but for every
one degree in polar angle. This case calls for computing intensities at three optical
depths τ = 0, 0.5 and 1.0 of a single layer of total optical thickness τL = 1.0. The
layer scatters radiation according to the Haze-L phase function (Garcia and Siewert
1985) with a single-scattering albedo ω = 0.9, and it is bounded from the bottom by
a surface that does not reflect radiation (ALBEDO = 0). The layer is illuminated at
the top from the direction μ0 = 0.5 and ϕ0 = 0o by a parallel beam with flux F0 = π
normal to the beam direction. Figure 8 plots the upward and downward intensities
in a polar plot at the top, middle, and bottom of the layer in four azimuth directions
ϕ = 0°, 90°, 180°, and 270°. The plots on the left show the intensity in the principal
plane. The maximum downward intensity in the forward-scattering direction
(µ = −0.5, ϕ = 0°) is clearly seen on these plots. The plots on the right show the
intensity in the plane perpendicular to the principal plane, and illustrate the sym-
metry of intensities to the principal plane.

Figure 9 replots the intensity at the middle of the layer as a function of the polar
angle starting from the direction straight up, moving to the horizon, and then
looking straight down. This plot is to demonstrate the continuity in intensity as
direction changes from upward to downward. Figure 9 also plots the intensities at
the 32 Gaussian quadrature points (computational polar angle cosines) that resulted

Fig. 7 Intensities I(μ, ϕ) in the upward direction at the top (left) and in the downward direction at
the bottom (right) of a single isotropically scattering layer with total optical thickness τL = 0.03125
as a function of polar angle cosines μ with azimuth ϕ = 0°. Intensities are calculated for
single-scattering albedos ω = 0.2 (dashed line) and ω = 1.0 (solid line). The layer is illuminated at
the top by a parallel beam of intensity π from the direction μ0 = 0.1 and ϕ0 = 0°. These results are
from Case 1a and 1b of the DISORT test cases, but for every one degree in polar angle (the
intensities are given in arbitrary units)
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from using 32 streams. The plot demonstrates that the intensities at user-defined
polar angles (lines) “fit” well those computed at the quadrature points (symbols);
that is, the technique described in Sect. 4.4 for interpolating on the phase function to
get intensities at arbitrary directions is implemented correctly (see also Test Case 10
below).

Fig. 8 Intensities computed at three optical depths τ = 0.0, 0.5 and 1.0 of a single layer of total
optical thickness τL = 1.0. The layer scatters radiation according to the Haze-L phase function with
a single-scattering albedo ω = 0.9, and it is bounded from the bottom by a nonreflecting surface.
The layer is illuminated at the top from the direction μ0 = 0.5 and ϕ0 = 0° by a parallel beam with
intensity F0 = π. Results are from DISORT Test Case 4c, but for every one degree in polar angle
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Test problem 6 checks purely absorbing cases with an increasingly complex mix
of boundary and internal sources. Subcases include transparent medium over a
nonreflecting surface, illuminated with a parallel beam source; the same with less
transparent medium; adding Lambertian bottom boundary; replacing the
Lambertian bottom boundary with a non-isotropic reflection; adding bottom-
boundary emission from a surface; adding diffuse radiation incident at the top
boundary; adding internal emission with different temperatures at layer top and at
layer bottom; and finally increasing the optical thickness of the layer. The solutions
from this test can be compared with exact analytic results. Note that because in
accounting for temperature variation across a layer DISORT assumes the Planck
function varies linearly in optical depth the temperature gradient should not be
large. The current threshold for the gradient is 10 K; when this is exceeded
DISORT prints a warning message.

Test problem 7 checks a general emitting/absorbing/scattering medium with one
computational layer and an increasingly complex bottom reflectivity condition.
Subcases a and b can be compared to results in Tables I and II of Kylling and
Stamnes (1992).

Test problems 6 and 7 can be used to set up problems with thermal emissions.
For example, test Case 7b shows how to set up calculations of intensities in a
narrow spectral interval (2502.99–2703.01 cm−1) from a scattering–absorbing layer
with internal thermal emission. The temperature at the top of the layer is 200 K and
that at the bottom is 300 K. The layer is assumed to be isolated and have no

Fig. 9 Intensity as a function of polar angle from the case shown in Fig. 8, but only for the middle
of the layer. Lines represent intensities at user-defined polar angles (specified at every one degree
between 0 and 180°). Symbols denote intensities at the 32 Gaussian quadrature points
corresponding to the 32 streams used in the calculation. Note the lines “fit” the symbols well
indicating correct calculation of intensity at an arbitrary angle. Also note the continuity in intensity
as direction changes from upward to downward
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radiation incident on it from either boundary. The DISORT input variables corre-
sponding to this situation are:

PLANK = .TRUE. (indicates thermal emission should be included)
BTEMP = 0.0 (temperature of bottom boundary [K])
TTEMP = 0.0 (Temperature of top boundary [K])
TEMPER(0) = 200.0 (temperature at the top of layer)
TEMPER(1) = 300.0 (temperature at the bottom of layer)
WVNMLO = 2702.99 (lower wavenumber of spectral interval [cm−1])
WVNMHI = 2703.01 (upper wavenumber of spectral interval [cm−1])
FBEAM = 0.0 (no parallel beam)
FISOT = 0.0 (no isotropic incident radiation at the top)

Test problem 8 checks an absorbing/isotropic-scattering medium with two
computational layers and isotropic incidence at the top boundary. These solutions
can also be compared to published results (Table 1 of Ozisik and Shouman 1980).

Test problem 9 checks a general emitting/absorbing/scattering medium with
every computational layer different. This case is the most complex test case.
Subcases a and b can be compared to results in Tables VI-VII of Devaux et al.
(1979). This and test problem 8 can be used as templates to set up multilayer
problems. For example, Case 8c does calculations for two layers. The upper layer
has optical thickness 1.0 and single single-scatter albedo 0.8. These for the bottom
layer are 2.0 and 0.95, respectively. The layers are assumed to scatter isotropically.
The corresponding DISORT input variables are:

DTAUC(1) = 1.0
DTAUC(2) = 2.0
SSALB(1) = 0.8
SSALB(2) = 0.95
PMOM (0, 1) = 1.0; PMOM(1 to NMOM, 1) = 0.0
PMOM (0, 2) = 1.0; PMOM(1 to NMOM, 2) = 0.0

Some of the test cases also consider lower boundaries with different complexity,
including bidirectional reflection (e.g., cases 6d, 14, and 15). It should be noted that
while in DISORT incident (downward) directions have polar angles larger than 90
degrees many BRDFmodels used in remote sensing define the incident direction less
than 90 degrees, that is, the BRDF incident polar angle cosine is positive. The
situation is illustrated in Fig. 10. The BRDF and DISORT unit vectors ē along the
incident directions point in opposite directions, and so the relationship between the
incident BRDF polar angle θʹBRDF and that of DISORT θʹDISORT is θʹBRDF = π −
θʹDISORT, that is the BRDF incident polar angle is the supplementary of the DISORT
polar angle. Similarly, the relationship between the azimuths are
ϕʹBRDF = ϕʹDISORT + π.

Figure 11 shows an example from Case 15a with a bidirectional bottom
boundary described by Hapke’s model (Hapke 1993). The functional form of this
BRDF model is written as (Lin et al. 2015):
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qdðl; l0;D/Þ ¼
w
4p

ð1þ bÞpðcos aÞþ h0h� 1
lþ l0

� �
;

where w is the BRDF single-scattering albedo, Δϕ is the relative azimuth; α is the
phase angle (cos a ¼ ll0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l02

p
cosðD/Þ); p(cosα) is the BRDF

phase function (p = 1+0.5 cos(α)); parameters h and h0 are determined by the
so-called albedo factor γ = (1 − w)½, and the angles of incidence µʹ and reflection µ:

h0 ¼ 1þ 2l0

1þ 2l0c
and h ¼ 1þ 2l

1þ 2lc
:

The parameter b accounts for the opposition effect (also called retroreflectance, or
“hot spot”); it depends on the angular width parameter hh of the opposition effect
and an empirical factor b0 that accounts for the finite size of particles:

Fig. 10 Polar and azimuth
coordinates of incident
direction in many popular
BRDF models versus those
defined in DISORT. BRDF
and DISORT unit vectors ē
along the incident directions
point opposite directions.
θʹBRDF = π − θʹDISORT and
ϕʹBRDF = ϕʹDISORT + π

Fig. 11 Upward intensities in
the principal plane emerging
from a two-layer (aerosol and
molecular) atmosphere
bounded by a bidirectionally
reflecting surface. The
molecular layer is on top of
the aerosol layer. Intensities
are shown at the surface
(dotted line), just below the
top of the aerosol layer (solid
line), and at the top of the
atmosphere (dashed line).
Results are from DISORT test
Case 15a (see text for details)
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b ¼ b0hh
hh þ tan a

2

� � :
In Case 15a, these parameters are defined as w = 0.6, b0 = 1.0, hh = 0.06. In this test
case the above bidirectionally reflecting surface bounds from below an atmosphere
composed of an aerosol layer and a molecular layer on top of the aerosol layer. Both
layers have the same optical thicknesses DTAU(1) = DTAU(2) = 0.32, and both
conservative scatterers ω = SSALB(1) = SSALB(2) = 1.0. The Legendre moments
PMOM again are from the supplied subroutine GETMOM, and they correspond to
the Rayleigh phase function for the top layer and an aerosol phase function for the
bottom layer. The microphysical properties of aerosol are those described in
Kokhanovsky et al. (2010). The layers are illuminated at the top by a parallel beam
of unit flux F0 = FBEAM = 1.0 normal to the beam from the direction
µ0 = UMU0 = cos(π/6) and azimuth ϕ0 = PHI0 = 0.0. As an example, Fig. 11 plots
the upward intensities in the principal plane at the surface, just below the top of the
aerosol layer and at the top of the Rayleigh layer. At all three levels the intensity
rapidly decreases in the back-scatter plane (ϕ = 180°) as the polar angle cosine
increases until the hot spot is reached at µ = µ0, where it increases and then starts
falling again. The intensity is the smallest around the direction µ = 1, and it sharply
increases in the forward-scatter plane (ϕ = 0°) all the way to the horizon (µ = 0).
Note how the intensity at the horizon changes at the different levels. At the surface
the horizon in the back-scatter direction is “brighter” than in the forward-scatter
direction. The aerosol layer changes this behavior by significantly increasing the
intensity in the forward-scatter plane above that in the backward-scattering direc-
tion. The Rayleigh-scattering layer on top, however, decreases this asymmetry.

The aim of the problems in the consistency group is to compare the results
obtained on two successive calls to DISORT, for identical problem structures but
taking differing paths through the program. For example, one test problem (Problem
10) checks whether computational polar angles (defined by the Gaussian quadrature
for given number of streams) and user-specified polar angles give identical results
for the same set of angles. This is done by running DISORT once with the option
USRANG = FALSE for a given number of streams, which instructs the code to
return intensities at computational polar angles, and once with option
USRANG = TRUE, and specifying user angles UMU that correspond to the
Gaussian quadrature values for the same number of streams as in the first run.
Another problem (Problem 11) checks that identical answers are obtained when
user levels in a single layer are replaced by computational levels. In this test,
DISORT is first run for a single computational layer of optical thickness 1, and
returns intensities and fluxes at four user-specified optical depths (0.00, 0.05, 0.50,
1.00). In the second run, the medium is composed of three layers with
single-scattering albedos and phase functions identical in each layer to those in the
first run, and optical thicknesses 0.05, 0.45, and 0.5. With this choice of optical
thicknesses the cumulative optical depths at the layer boundaries are the same as the
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user-specified optical depths in the first run. Answers are then requested at the layer
boundaries and compared to those obtained in the first run.

9 A Brief History of DISORT

The first version of DISORT, v1.0, was released in the fall of 1988. It built upon the
code developed by Si-Chee Tsay in his thesis (Tsay 1986) under Knut Stamnes. It
computed intensity (at either user-specified or computational polar angles and
optical depths), mean and azimuthally averaged intensity, direct beam flux, diffuse
down- and up-flux, flux divergence, and albedo and transmissivity as a function of
incident beam angle. The surface BRDF, similar to the phase function, depended
only on the angle between incident and reflected beams, and was expanded into a
series of Legendre polynomials. The coefficients were inputs, and as such they were
expected to be supplied by the user.

DISORT v1.1, which was considered a finalized version of v1.0, appeared in
January 1993. Relative to v1.0 this version included small bug fixes, mostly in
ASYMTX; better handling of zero optical depth layers; and other mostly cosmetic
changes (printing formats, etc.). Skipping computations for highly absorbing layers
was also eliminated when thermal emission was present.

Version 1.2 was released in February 1997 and contained many small cosmetic
changes; reorganization of some key subroutines; and improved printing in test
problems in order to reduce trivial differences when comparing two outputs. To
improve efficiency, calculation of square roots needed in computing the associated
Legendre polynomials was moved up to the main DISORT code. Internal code
documentation of the subroutine that handles the special case to get only albedo and
transmissivity of the entire medium as a function of incident beam angle, and the
subroutine that calculates the coefficient matrix was improved.

Version 1.3 was made available to the public in March 2000. In this release,
LAPACK replaced LINPACK to do linear algebra, except for the eigenvalue
problem. Calculation of machine constants was also changed by calling Fortran-90
intrinsic functions.

While version 1.3 was being developed, independent work was taking place that
resulted in version 2.0beta. This version was also released in March 2000, around
the same time as v1.3. Version 2.0beta was based on the earlier v1.2, and as such,
instead of LAPACK, it still used LINPACK to do linear algebra. Version 2.0beta
introduced the Nakajima–Tanaka TMS/IMS intensity corrections (Sect. 6.2) to
improve the calculation of intensities. No such corrections had been developed for
the azimuthally averaged intensity, so v2.0beta dropped this quantity from the
output (we note that although versions prior to V2.0beta did not include the
Nakajima-Tanaka intensity correction accurate intensities could still be calculated
by turning off the δ–M transformation, provided the increase in computational
burden could be tolerated). Version 2.0beta also implemented a more realistic
surface BRDF (Sect. 4.5). The latter was necessary because, as pointed out, e.g., by
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Godsalve (1995), even in the absence of preferred directions the surface BRDF
cannot be assumed to be a function of phase angle only. The distribution of
v2.0beta included, as an example, the BRDF developed by Hapke (1993) to model
the reflectance of planetary or lunar surfaces.

Calculations of the Fourier expansion coefficients of the surface BRDF were
implemented in v2.0beta somewhat inefficiently in that ρd was unnecessarily eval-
uated for each Fourier term. This inefficiency was addressed in version 2.1. In that
version, qd l;�l0;D/kð Þ in (120) is only evaluated once for m = 0, and kept in
memory for use with m > 0. This change led to an almost fivefold increase in
computational speed relative to version 2.0beta. The execution time was further
reduced by not calculating the BRDF Fourier coefficients when the surface was the
same in repeated runs; it was only evaluated when m = 0 or when the number of
streams or the surface BRDF was changed.

The number of Gaussian quadrature points Ng used in the computation of Fourier
expansion coefficients of the surface BRDF was set to 50 in v2.0beta. Fifty points
were sufficient for moderately anisotropic BRDF with low number of streams
(2N ≈ 24), but led to large errors for large 2N, as discussed in Sect. 7.4. In v2.1 Ng

was made a function of the number of streams, and was set to Ng ≥ max (Nmin,
4N) with Nmin = 50.

Version 2.1 also implemented LAPACK to do linear algebra (except for the
eigenvalue problem), just like it was done in v1.3. Version 2.1 was provided only to
a handful of users for testing; it was not released publicly.

The shortcomings related to the BRDF implementation in v2.0beta mentioned
above had been documented in some forms by Laszlo et al., (2010), Stamnes (2011)
and Lin et al. (2015), but code with fixes were not publicly released until Version
3.0 in 2015. In v3.0 the Fourier coefficients of the surface BRDF are prepared
“offline”, thus avoiding the repeated internal computations done in v2.0beta. The
“penalty” for the user is that they must compute them. Fortunately, the v3.0
package contains routines to do this for Hapke’s model (Hapke 1993) and for three
more commonly used BRDFs: Ross–Li (Roujean et al. 1992), Rahman–Pinty–
Verstraete (RPV) (Rahman et al. 1993), and Cox–Munk (Cox and Munk 1954).
A large enough number of terms in the Fourier expansion of the BRDF is employed
to guarantee accurate values of the expansion coefficients; default is 200, but it can
be easily changed since it is now an input controllable by the user. These
improvements in the treatment of the BRDF have led to a several-fold increase in
speed. The intensity correction now also includes the reflection of the direct
attenuated beam from the lower boundary (117), which gives a more accurate
single-scattering correction. The efficiency for beam sources has been further
improved by reducing by a factor of two the dimension of the linear system of
equations for the particular solutions (Sect. 4.2), and by replacing the LINPAK
routines by LAPACK. In addition, the stability of beam sources has been improved
by removing a singularity occurring when the square of the cosine of the incident
beam angle is too close to the reciprocal of any of the eigenvalues. These upgrades
in v3.0 improved the accuracy, efficiency, and stability of the algorithm.
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10 Summary

DISORT implements the discrete ordinate method for solving the transfer of
monochromatic unpolarized radiation in non-isothermal, vertically inhomogeneous,
but horizontally homogeneous media. The physical processes included are thermal
emission, scattering with an arbitrary phase function, absorption, and surface
bidirectional reflection. The system may be driven by parallel or isotropic diffuse
radiation incident at the top boundary, as well as by internal thermal sources and
thermal emission from the boundaries.

The discrete ordinate method implemented in DISORT follows the classical
approach of transforming the radiative transfer equation, which is an
integro-differential equation, into a system of ordinary differential equations by
expanding the phase function into a series of Legendre polynomials and the
intensity into a Fourier cosine series. The resulting system of equations is then
written in matrix form and the solution of the homogeneous equations is formulated
as a standard algebraic eigenvalue problem, which is solved by using a robust linear
algebra solver (Stamnes and Dale 1981; Stamnes and Swanson 1981). To make the
solution unconditionally stable for arbitrarily large optical depths a scaling trans-
formation is applied (Stamnes and Conklin 1984). Highly anisotropic phase func-
tions are treated by the δ–M method (Wiscombe 1977). Because the δ–M method
“truncates” the forward peak of the phase function and alters (scales) the optical
depth and Legendre moments, the intensities are less accurate. DISORT corrects the
intensities by implementing the Nakajima–Tanaka corrections (Nakajima and
Tanaka 1988).

DISORT returns radiances, fluxes, and mean intensities at arbitrary,
user-specified angles and levels. The levels need not be subsets of the computa-
tional levels necessary to resolve the medium, nor need the angles to be subsets of
the quadrature angles necessary to do the integrals over angle. For example, it may
require 10 levels to resolve the medium and 16 quadrature angles to do the integrals
over angle accurately, but the user can ask for intensities at just two arbitrary levels
and one arbitrary angle.

Because the DISORT solutions are closed-form analytic functions of optical
thickness computation time is basically independent of optical thickness; but it does
depend linearly on the number of computational layers needed to resolve the ver-
tical structure. Since the DISORT solutions are analytic, the number of computa-
tional layers can be determined by the actual structure of the problem rather than, as
in some other methods, by mere numerical constraints. The only exception to this is
that temperature changes across layers should be less than about 10 K to avoid
significant errors in the thermal emission computation. In general the number of
computational layers will be determined by how accurately one wants to resolve the
optical properties (absorption/scattering characteristics) of the medium, which are
taken to be constant across any layer.

DISORT has become popular in the atmospheric science and other communities
since its introduction in 1988. It has been implemented as the radiative transfer
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solver in larger models, e.g., MODTRAN (Berk et al. 1998), SBDART (Ricchiazzi
et al. 1998), Streamer (Key and Schweiger 1998). It has been applied to terrestrial
(e.g., Tsay et al. 1989, 1990; Tsay and Stamnes 1992) and other planetary (Lindner,
1988) atmospheric radiative transfer problems. It has also been used with other
techniques, like the perturbation theory to solve cloud related independent-pixel
solar radiative transfer computations which have been embedded in and built
around DISORT (Jerg and Trautmann 2007). It has also become a kind of standard
against which to compare other models. For example, DISORT has been combined
with the Line-by-Line Radiative Transfer Model (LBLRTM) (Clough et al. 2005) to
evaluate the Community Radiative Transfer Model (CRTM) developed by the U.S.
Joint Center for Satellite Data Assimilation (Ding et al. 2011). DISORT, which is
written in Fortran, has also been converted into the C programming language with
dynamic memory allocation and consistent use of double precision throughout the
code (Buras et al. 2011).

DISORT has been designed to be an example of good scientific software with
clear in-code documentation, as well as to be a scientific tool. A substantial effort
has been made to make it numerically well-conditioned, error-resistant,
user-friendly, and to take advantage of robust software tools. The DISORT distri-
bution includes an extensive test suite designed to verify the program against
published results, and for internal consistency. The careful attention to software
design has been just as important in DISORT’s popularity as its algorithmic
content.

Early versions (up to v2.0beta) of the DISORT Fortran source code are available
at ftp://climate1.gsfc.nasa.gov/pub/wiscombe/Multiple_Scatt/. The more recent
version, v3.0, can be downloaded from http://lllab.phy.stevens.edu/disort/. DISORT
v3.0 (Lin et al. 2015) provides important upgrades that improve the accuracy,
efficiency, and stability of the algorithm. Compared with v2.0beta (released in
2000) these upgrades include (i) a redesigned BRDF computation that improves
both speed and accuracy, (ii) an improved treatment of the single-scattering cor-
rection that takes boundary reflection into account, and (iii) additional efficiency
and stability upgrades for beam sources. Finally, a correction for Earth curvature
effects has been included in DISORT3 by implementing a pseudospherical
treatment.
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Community Radiative Transfer Model
for Air Quality Studies

Quanhua Liu and Cheng-Hsuan Lu

1 Introduction

Community Radiative Transfer Model (CRTM) (Han et al. 2006), developed at the
Joint Center for Satellite Data Assimilation, has being operationally supporting
satellite radiance assimilation for weather forecasting and Earth observation space
programs. The CRTM has been supporting the Geostationary satellite (GOES)—R
and Joint Polar Satellite System (JPSS) Suomi NPP missions for instrument cali-
bration, validation, monitoring long-term trending, and satellite products using a
retrieval approach (Liu and Boukabara 2014). At the both National Oceanic and
Atmospheric Administration (NOAA) National Centers for Environmental
Prediction (NCEP) and the NOAA National Environmental Satellite, Data, and
Information Service (NESDIS) satellite radiance monitoring systems, the CRTM
model is applied to simulate satellite observations. The CRTM has been used to
assimilate Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol op-
tical depth for air quality forecasting (Liu et al. 2011). Similar to weather fore-
casting, the air quality forecasting is governed by air fluid dynamic equations based
on aerosol sources and the emission of ozone, carbon monoxide, ammonia, and
other gases as well as their chemical reactions. Suspended particulate matter
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(PM) and ozone at ground level near surface are the critical parameters to issue
warning or alert to the public. Ground level or “bad” ozone is not emitted directly
into the air, but is created by chemical reactions between oxides of nitrogen (NOx)
and volatile organic compounds (VOC) in the presence of sunlight (Seinfeld and
Pandis 2006). The ozone can also be formed during biomass burning (Alvarado
et al. 2009). Emissions from industrial facilities and electric utilities, motor vehicle
exhaust, gasoline vapors, and chemical solvents are some of the major sources of
NOx and VOC. Breathing ozone can trigger a variety of health problems, partic-
ularly for children, the elderly, and people of all ages who have lung diseases such
as asthma. Ground-level ozone can also have harmful effects on sensitive vegetation
and ecosystems.

Aerosol sources and gaseous emission are the most important information to the
air transport model. The NOAA National Air Quality Forecasting Capability
(NAQFC), developed by the NOAA Air Resources Laboratory (ARL) and operated
by the National Weather Service (NWS), disseminates NOAA’s real-time model
forecasts and satellite observations of air quality to state and local air quality and
public health agencies, as well as the general public. The NWS uses the NAQFS to
provide air quality warnings and alerts for large cities in the United States. Air quality
and public health managers use these forecasts to inform short-term management
decisions and longer term policies to reduce the adverse effects of air pollution on
human health and their associated economic costs. The NAQFC operational O3 and
developmental PM2.5 forecasts consist of three model components: the ARL
Emission Forecasting System (EFS), the NWS North American Mesoscale
(NAM) regional nonhydrostatic meteorological model, and the modified CMAQ
model. They all use 12 km horizontal grid spacing and are coupled in a sequential
and offline manner with hourly data fed from NAM to Community Multi-scale Air
Quality (CMAQ) hourly. While the “operational” O3 forecasts are guaranteed to be
available and be disseminated on time to the general public both graphically and in
formatted files following World Meteorological Organization (WMO) standards, the
dissemination of the “developmental” PM2.5 forecasts are currently restricted to a
selected group of local and state air quality forecasters, the so-called Focus Group
Forecasters (FGF) of the NAQFC. The NAQFC is one of the major gateways to
disseminate NOAA model prediction and satellite observations of air quality to the
public (http://airquality.weather.gov). The accuracy of NAQFC forecasts depend on
EFS, NAM, and CMAQ in about the same magnitude of forcing. NAM is quite
advanced in utilizing satellite data to nudge weather forecast through its data
assimilation schemes (Lee and Liu 2014). However, until recently NAQFC has not
assimilated the atmospheric composition data from satellite retrievals to improve its
emission, transport, and chemical transformation estimates.

Aerosols can affect the energy balance of Earth’s atmosphere through the
absorption and scattering of solar and thermal radiation. Aerosols also affect Earth’s
climate through their effects on cloud microphysics, reflectance, and precipitation. In
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addition, aerosols can be viewed as air pollutants because of their adverse health
effects. In NOAA NCEP global forecast system (GFS), the representations of aerosols
need to better account for these effects. The aerosol distributions in the forecast model
are currently prescribed based on a global climatological aerosol database (Hess et al.
1998) and only the aerosol direct effect is considered. The current data assimilation
system assumes climatological aerosol conditions. For atmospheric conditions with
anomalous high aerosol loading, bias correction and quality control procedures can
be compromised due to the unaccounted effects of aerosol attenuation.

An online aerosol modeling capability in Goddard Chemistry Aerosol Radiation
and Transport (GOCART) has been developed and implemented within GMAO’s
GEOS-5 Earth system model (Colarco et al. 2010) and was later coupled with NCEP’s
NEMS version of GFS to establish the first interactive atmospheric aerosol forecasting
system at NCEP, NGAC (Lu et al. 2013). While the ultimate goal at NCEP is a full-up
Earth system with the inclusion of aerosol-radiation feedback and aerosol–cloud
interaction, the current operational configuration (as in September 2014) is to maintain
a dual-resolution configuration with low-resolution (T126 L64) forecast-only system
for aerosol prediction (using NGAC) and a high-resolution (T574 L64) forecasting and
analysis system for medium-range weather prediction (using GFS). Aerosol fields in
NGAC initial conditions are taken from prior NGAC forecast and the corresponding
meteorological fields are downscaled from GFS analysis.

The current dual-resolution system mentioned above feeds meteorological fields
from GFS to NGAC. In our study, we will upgrade the infrastructure in the
dual-resolution system, allowing NGAC aerosol fields fed into GFS. The linkage
between NGAC and GFS to be considered include: using NGAC aerosols fields instead
of the climatology (Hess et al. 1998) to determine aerosol optical properties in GFS
radiation, enabling the GFS data assimilation system to consider NGAC aerosol fields
instead of background aerosol loading for satellite radiances calculations, and incor-
porating NGAC aerosols fields in sea surface temperature (SST) analysis. Standard
forecast verification system will be used to determine whether the improved treatment of
aerosols will lead to improvement in weather forecasts. Data rejection will be examined
to assess whether improved aerosol treatment will lead to better use of satellite data.
Diagnosis of energy budget will be conducted to evaluate whether more realistic
temporal and spatial representation of aerosols will result in improved energy balance.

Global ammonia (NH3) emissions have been increasing due to the dramatically
increased agricultural livestock numbers together with the increasing use of nitro-
gen fertilization (Sutton et al. 2014). Atmospheric ammonia has impacts on local
scales, acidification and hypertrophication of the ecosystems, and international
scales through formation of fine ammonium-containing aerosols. These ammonium
aerosols affect Earth’s radiative balance and public health. Measurements with daily
and large global coverage are challenging and have been lacking partly because the
lifetime of NH3 is relatively short (hours to a day) and partly because it requires
high sensitivity for the retrievals. The Cross-Track Infrared Sounder (CrIS) and
Infrared Atmospheric Sounding Interferometer (IASI) hyperspectral measurements
are good for monitoring NH3 emissions due to their large daily global coverage and
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afternoon overpasses that provide higher thermal contrasts, and hence, higher
measurement sensitivities.

NH3 contributes to the formation of PM2.5 by reaction with nitric and sulfuric
acids (HNO3 and H2SO4), which are in turn formed by the photochemical oxidation
of nitrogen oxides (NOx = NO + NO2) and sulfur dioxide (SO2), respectively. In the
United States, it is estimated that livestock accounts for about 74 % of total
anthropogenic NH3 emissions, with an additional 16 % due to the manufacturing and
use of fertilizer (Potter et al. 2010), although these estimates are uncertain. Reductions
of NH3 emissions have been proposed as a cost effective way to improve air quality.

As emphasized above, aerosol sources and gaseous emission are very critical
information affecting air quality analysis and prediction. Observations from satel-
lites provide information about global aerosol sources and gaseous emission.
However, the sensors onboard satellites measure radiation rather than aerosols or
trace gases. To derive aerosol and trace gas from the satellite measurements,
inversion technique in retrieval algorithm or radiance assimilation are needed where
radiative transfer models play an important role to interpret the meaning of the
radiation to geophysical parameters. The CRTM is such an operational radiative
transfer model for passive microwave, infrared, and visible sensors.

2 What Are the Common Air Pollutants?

Pollutants are harmful to public health and the environment. The US Environment
Protection Agency (EPA) identified six common air pollutants (http://www.epa.
gov/air/criteria.html). They are particle (aerosol) pollution (often referred to as
particulate matter in the atmosphere), ground-level ozone, carbon monoxide, sulfur
oxides, nitrogen oxides, and lead. These pollutants can harm public health and the
environment, and cause property damage. Of the six pollutants, particle pollution
and ground-level ozone are the most widespread health threats. The first real-time
product of NAQFC is ozone. Recently, NAQFC starts to provide PM2.5 (i.e.,
particulate matter size less than 2.5 μm in diameter) forecasts to early adapter users
(“the focus group”), predominantly state environmental agencies that use NAQFC
daily products for numeric air quality guidance. EPA calls these pollutants “criteria”
air pollutants because it regulates them by developing human health-based and/or
environmentally based criteria (science-based guidelines) for setting permissible
levels. The set of limits based on human health is called primary standards. Another
set of limits intended to prevent environmental and property damage is called
secondary standards.

EPA has set National Ambient Air Quality Standards for six principal pollutants
(http://www.epa.gov/air/criteria.html), which are called “criteria” pollutants. They
are listed below. Units of measure for the standards are parts per million (ppm) by
volume, parts per billion (ppb) by volume, and micrograms per cubic meter of air
(µg m−3) (see Table 1).
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2.1 Air Pollutants

2.1.1 Ozone

Ozone in the stratosphere is good to protect human from harmful ultraviolet radi-
ation. Oxygen, nitrogen, and ozone block more than 95 % UV radiation from Sun
to the Earth’s surface. UV light may be divided into three bands: UVC [100–
280 nm], UVB (280–315 nm), and UVA (315–400 nm). UVC is the most dan-
gerous, but it is mostly absorbed by oxygen and ozone molecules in the stratosphere
and does not reach the Earth’s surface. The sun’s UV radiation is both a major
cause of skin cancer and the best natural source of vitamin D. Therefore, we need a
proper UV exposure. Clouds are often opaque that blocks sun’s radiation. But,
broken clouds may scatter more sun’s radiation including UV component due to the
three-dimensional radiative transfer. Ozone in the stratosphere is good. The
ground-level ozone is bad for public health. Ground-level ozone is not emitted
directly into the air, but is created by chemical reactions between oxides of nitrogen
(NOx) and volatile organic compounds (VOC) in the presence of sunlight.
Emissions from industrial facilities and electric utilities, motor vehicle exhaust,
gasoline vapors, and chemical solvents are some of the major sources of NOx and
VOC. Breathing ozone can trigger a variety of health problems, particularly for
children, the elderly, and people of all ages who have lung diseases such as asthma.
Ground-level ozone can also have harmful effects on sensitive vegetation and
ecosystems.

2.1.2 Particulate Matter

Particulate matter or suspended matter in the atmosphere also known as particle
pollution or PM, is a complex mixture of small particles and liquid droplets. Particle
pollution is made up of a number of components, including nitrates, sulfates,
ammonium, organic chemicals, metals, and soil or dust particles (http://www.epa.
gov/airquality/particlepollution/). In the cities, fine particles primarily come from
car, truck, bus, and off-road vehicle exhausts, other operations involve biomass
burning, heating oil or coal and natural sources. Fine particles also form from the
reaction of gases or droplets in the atmosphere from sources such as power plants.
The size of particles is directly linked to their potential for causing health problems.
EPA is concerned about particles that are 10 μm in diameter or smaller because
those are the particles that generally pass through the throat and nose and enter the
lungs. Once inhaled, these particles can affect the heart and lungs and cause serious
health effects. EPA groups particle pollution into two categories:

• “Inhalable coarse particles,” such as those found near roadways and dusty
industries, are larger than 2.5 μm and smaller than 10 μm in diameter. Particles
less than 10 μm in diameter (PM10) pose a health concern because they can be
inhaled into and accumulate in the respiratory system.

72 Q. Liu and C.-H. Lu

http://www.epa.gov/airquality/particlepollution/
http://www.epa.gov/airquality/particlepollution/


• “Fine particles,” such as those found in smoke and haze, are 2.5 μm in diameter
and smaller. These particles can be directly emitted from sources such as forest
fires, or they can form when gases emitted from power plants, industries, and
automobiles react in the air. Particles less than 2.5 μm in diameter (PM2.5) are
referred to as “fine” particles and are believed to pose the greatest health risks.

The EPA categorized air quality to six classes based on PM concentrations
http://airnow.gov/index.cfm?action=aqibasics.aqi): 0–50 μg m−3 (excellent), 50–
100 μg m−3 (good), 100–150 μg m−3 (lightly polluted), 150–200 μg m−3 (mod-
erately polluted), 200–300 μg m−3 (heavily polluted), 300–500 (severely polluted),
and >500 μg m−3 (hazardous). Weather conditions and topography can play an
important role in local air quality. Outdoor PM2.5 levels are most likely to be
elevated on days with little or no wind or air mixing. PM2.5 can also be produced by
common indoor activities. Some indoor sources of fine particles are tobacco smoke,
cooking (e.g., frying, sautéing, and broiling), burning candles or oil lamps, and
operating fireplaces and fuel-burning space heaters (e.g., kerosene heaters). One
may acquire PM2.5 at nearly real-time online, for example, the air quality in Beijing
may be obtained from the website http://aqicn.org/city/beijing/.

2.1.3 Carbon Monoxide

Carbon monoxide (CO) is a colorless, odorless gas emitted from incomplete
combustion processes. In urban areas, the majority of CO emissions to ambient air
come from mobile sources. In rural areas, biomass burning and forest fires release
tremendous CO. CO can cause harmful health effects by reducing oxygen delivery
to the body’s organs (like the heart and brain) and tissues. At extremely high levels,
CO can cause death.

2.1.4 Nitrogen Oxides

Nitrogen dioxide (NO2) is one of a group of highly reactive gases known as “oxides
of nitrogen,” or “nitrogen oxides (NOx).” Other nitrogen oxides include nitrous acid
and nitric acid. EPA’s National Ambient Air Quality Standard uses NO2 as the
indicator for the larger group of nitrogen oxides. NO2 forms quickly from emissions
from cars, trucks and buses, power plants, and off-road equipment. In addition to
contributing to the formation of ground-level ozone, and fine particle pollution,
NO2 is linked with a number of adverse effects on the respiratory system.

EPA first set standards for NO2 in 1971, setting both a primary standard (to
protect health) and a secondary standard (to protect the public welfare) at 53 parts
per billion (ppb), averaged annually. The Agency has reviewed the standards twice
since that time, but chose not to revise the annual standards at the conclusion of
each review. In January 2010, EPA established an additional primary standard at
100 ppb, averaged over one hour. Together the primary standards protect public
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health, including the health of sensitive populations—people with asthma, children,
and the elderly. No area of the country has been found to be out of compliance with
the current NO2 standards.

2.1.5 Sulfur Dioxide

Sulfur dioxide (SO2) is one of a group of highly reactive gases known as “oxides of
sulfur.” The largest sources of SO2 emissions are from fossil fuel combustion at
power plants (73 %) and other industrial facilities (20 %) as well as Volcanic
emissions. Smaller sources of SO2 emissions include industrial processes such as
extracting metal from ore, and the burning of high sulfur-containing fuels by
locomotives, large ships, and non-road equipments. SO2 is linked with a number of
adverse effects on the respiratory system.

EPA first set standards for SO2 in 1971. EPA set a 24-h primary standard at
140 ppb and an annual average standard at 30 ppb (to protect health). EPA also set
a 3-h average secondary standard at 500 ppb (to protect the public welfare). In
1996, EPA reviewed the SO2 NAAQS and chose not to revise the standards.

2.1.6 Lead

Lead is a metal found naturally in the environment as well as in manufactured
products. The major sources of lead emissions have historically been from fuels in
on-road motor vehicles (such as cars and trucks) and industrial sources. Old
painting before 1978 can contain harmful lead. As a result of EPA’s regulatory
efforts to remove lead from on-road motor vehicle gasoline, emissions of lead from
the transportation sector dramatically declined by 95 % between 1980 and 1999,
and levels of lead in the air decreased by 94 % between 1980 and 1999. Today, the
highest levels of lead in air are usually found near lead smelters. The major sources
of lead emissions to the air today are ore and metals processing and piston engine
aircraft operating on leaded aviation gasoline.

3 Satellite Data for Studying Air Quality

Satellite remote sensing of air quality has been evolved over last decades. Although
the space-borne sensor cannot directly measure the particulate matters or aerosols
and trace gases such as CO, NO2, O3, and SO2, we are able to analyze scattered and
emitted radiation to accurately derive aerosols and trace gases. The space-borne
instruments can be divided into active and passive sensors. The active-sensed
instruments, for example, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) launched on April 28, 2006, sent out signals and received
the backscattered signals. Using the backscattered signals, one may be able to
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determine aerosol type and mass concentrations (Liu et al. 2009). Most of
space-borne remote sensing sensors are passive, which receive from
atmosphere/surface scattered and emitted radiation. The visible channels of
POLDER, MODIS (Liang et al. 2006), and VIIRS (Cao et al. 2013) have been
successfully used to derive aerosol optical depths over dark surfaces. SeaWiFS was
for ocean color products. The data are found very valuable to obtain aerosol optical
depth over oceans. The ultraviolet sensors like Global Ozone Monitoring
Experiment-2 (GOME-2), ozone monitoring instrument (OMI), and ozone mapping
profiler suite (OMPS) (Wu et al. 2014) are sensitive to aerosols in particular to
absorbing aerosols, although the primary application of those UV sensors is for
ozone retrievals. Many passive sensors have been used to derive the products of
chemical compositions in the atmosphere. The Earth Observing System
(EOS) Microwave Limb Sounder (MLS) on the NASA’s EOS Aura satellite,
launched on July 15, 2004, has demonstrated great success in retrieving ozone and
other atmospheric compositions. MLS observes thermal microwave emission from
Earth’s “limb” (the edge of the atmosphere) viewing forward along the Aura
spacecraft flight direction, scanning its view from the ground to *90 km every
*25 s. The instrument for the Measurements of Pollution in the Troposphere
(MOPITT) is a payload scientific instrument launched into Earth orbit by NASA on
board the Terra satellite on December 18, 1999. MOPITT’s near-infrared
radiometer at 2.3 and 4.7 µm specific focus is on the distribution, transport, sour-
ces, and sinks of carbon monoxide in the troposphere. Carbon monoxide, which is
expelled from factories, cars, and forest fires, hinders the atmosphere’s natural
ability to rid itself of harmful pollutants.

The Global Ozone Monitoring Experiment-2 (GOME-2), a European instrument
flying on the MetOp-A series of satellites (Launched on October 19, 2006) was
designed by the European Space Agency to measure atmospheric ozone trace gases and
ultraviolet radiation http://www.eumetsat.int/website/home/Satellites/CurrentSatellites/
Metop/MetopDesign/GOME2/index.html). It is a scanning instrument (scan width
1920 km) with near global coverage daily. The field of view on the ground is 80 km by
40 km. It also provides accurate information on the total column amount of nitrogen
dioxide, sulfur dioxide, water vapor, oxygen/oxygen dimmer, bromine oxide, and other
trace gases, as well as aerosols.

The Multi-angle Imaging SpectroRadiometer (MISR) is a scientific instrument
on the Terra satellite launched by NASA on December 18, 1999. This device is
designed to measure the intensity of solar radiation reflected by the Earth system
(planetary surface and atmosphere) in various directions and spectral bands; it
became operational in February 2000. Data generated by this sensor have been
proven useful in a variety of applications including atmospheric sciences, clima-
tology, and monitoring terrestrial processes.

The MISR instrument consists of an innovative configuration of nine separate
digital cameras that gather data in four different spectral bands of the solar spec-
trum. One camera points toward the nadir, while the others provide forward and
afterward view angles at 26.1°, 45.6°, 60.0°, and 70.5°. As the instrument flies
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overhead, each region of the Earth’s surface is successively imaged by all nine
cameras in each of four wavelengths (blue, green, red, and near-infrared).

The data gathered by MISR are useful in climatological studies concerning the
disposition of the solar radiation flux in the Earth’s system. MISR is specifically
designed to monitor the monthly, seasonal, and long-term trends of atmospheric
aerosol particle concentrations including those formed by natural sources and by
human activities, upper air winds and cloud cover, type, height, as well as the
characterization of land surface properties, including the structure of vegetation
canopies, the distribution of land cover types, or the properties of snow and ice
fields, amongst many other biogeophysical variables.

NESDIS GOME 2 (MetOp-A) total ozone products, based on the SBUV/2
version 8 algorithms are produced in binary and BUFR formats. The algorithm also
produces aerosol index and reflectivity values, which are included in the total ozone
binary product.

Infrared hyperspectral sensors such as AIRS, IASI, and CrIS are useful to
retrieve trace gases. IASI samples radiance in a spectral resolution of 0.25 cm−1,
providing a high sensitivity to trace gases. CrIS data of a full spectral resolution of
0.625 cm−1 can be used to derive CO (Liu and Xiao 2014).

4 Community Radiative Model

CRTM is a sensor-based radiative transfer model. It supports more than 100 sensors
including sensors on most meteorological satellites and some from other remote
sensing satellites. The CRTM is composed of four important modules for gaseous
transmittance, surface emission and reflection, cloud and aerosol absorption and
scatterings, and a solver for a radiative transfer. The CRTM was designed to meet
users’ needs. Many options are available for users to choose: input surface emis-
sivity; select a subset of channels for a given sensor; turn off scattering calculations;
compute radiance at aircraft altitudes; compute aerosol optical depth only; and
threading of the CRTM. Figure 1 shows the interface diagram for users (public
interface) and internal modules for developers contained in the lower dashed box.
The CRTM forward model is used to simulate from satellite-measured radiance,
which can be used to verify measurement accuracy, uncertainty, and long-term
stability. The k-matrix module is used to compute jacobian values (i.e., radiance
derivative to geophysical parameters), which is used for the inversion processing in
retrieval and radiance assimilations. Using tangent linear and adjoint modules is
equivalent to using k-matrix module and is also applied to some application in
radiance assimilation. In the following subsessions, we will describe the CRTM
modules in detail.

The CRTM is a library for users to link, instead of a graphic user interface. By the
CRTM initialization, user selects the sensor/sensors and surface emissivity/reflectance
lookup tables. Developers may incorporate their own expertise into the CRTM for any
desired applications. The gaseous transmittance describes atmospheric gaseous
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absorption, so that one can utilize remote sensing information in data
assimilation/retrieval systems for atmospheric temperature, moisture, and trace gases
such as CO2, O3, N2O, CO, and CH4 (Chen et al. 2012). The aerosol module is
fundamental to acquire aerosol type and concentration for studying air quality. The
cloud module contains optical properties of six cloud types, providing radiative
forcing information for weather forecasting and climate studies. The CRTM surface
model includes surface static and atlas-based emissivity/reflectivity for various surface
types. Two radiative solutions have been implemented into the CRTM. The advanced
doubling-adding (ADA) method (Liu and Weng 2013, 2006) is chosen as a baseline.
The successive order of interaction (SOI) radiative transfer model (Heidinger et al.
2006) developed at the University of Wisconsin, has also been implemented in the
CRTM.

For a new sensor, the CRTM team can generate spectral and transmittance
coefficient files as long as the spectral response data of the new sensor is available.
Once the spectral and transmittance coefficient files are created, the CRTM is ready
for the new sensor. The new surface emissivity model may be supplied if the user
wants to derive surface emissivity for the new sensor. The CRTM user interface
provides forward, tangent linear, adjoint, and k-matrix functions to compute radi-
ance (also microwave and infrared brightness temperature) and sensitivities of
radiance to atmospheric/surface parameters. The NOAA Microwave Integrated
Retrieval System (MiRS) (Boukabara et al. 2007) and NCEP data assimilation
system use the k-matrix. The Weather and Research Forecasting (WRF) model uses
the tangent linear and adjoint models. The NOAA Integrated Calibration/Validation

Fig. 1 An interface diagram of the community radiative transfer model. The modules in the
public interfaces (upper dashed box) are accessed by users. The modules below the upper dashed
box are for developers
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System Long-term monitoring system (http://www.star.nesdis.noaa.gov/icvs/) uses
the forward model to compare the CRTM simulation with satellite measurements.

The validation of radiative transfer calculations is very challenging because it
depends on the model assumptions (e.g., spherical or nonspherical scatterers),
measurement errors, uncertainities in inputs, and others. Many evaluations of the
CRTM model simulations versus observations have been performed. Saunder et al.
(Saunders et al. 2007) summarized the brightness temperature differences between
the line-by-line (LBL) model and fast radiative transfer models including the
CRTM where the Optical Path Transmittance (OPTRAN) algorithm is used. The
difference in the standard deviation under clear-sky conditions is generally less than
0.1 K for the Atmospheric Infrared Sounder (AIRS). Under cloudy conditions, the
difference for the AIRS is about 0.2 K (Ding et al. 2011). Due to the approximation
in cloud scattering calculations, the difference between the LBL model and the
CRTM for the High-Resolution Infrared Radiation Sounder/3 (HIRS/3) under
cloudy conditions can reach 0.4 K (Liu et al. 2013). It is more difficult to estimate
the errors between the CRTM model calculations and measurements. We can only
give the estimate from limited applications. Liang et al. (2009) implemented the
CRTM into the NOAA Monitoring System of IR Clear-sky Radiances over Oceans.
The difference between the CRTM simulations and NOAA Advanced Very High
Resolution Radiometer (AVHRR) observations is about 0.5 K. For the Stratosphere
Sounding Unit (SSU), the difference is about 1 K (Liu and Weng 2009). Han et al.
(2007) compared the CRTM simulations with the Special Sensor Microwave
Imager/Sounder (SSMIS) measurements and found both agreed within about 2 K.
NOAA NCEP (http://www.emc.ncep.noaa.gov/gmb/gdas/radiance/esafford/wopr/
index.html) monitors the difference under clear-sky conditions for more than 20
sensors and found that the difference is generally less than 1 K. Under cloudy
conditions, uncertainties in inputs are the main source, resulting in a large differ-
ence. The difference is about 2 K for microwave sounding channels and 4 K for
microwave window channels (Chen et al. 2008).

4.1 Radiative Transfer Equation and Solver

The CRTM is one-dimensional radiative transfer model. This implies that atmo-
sphere is assumed homogeneous in the horizontal direction, so-called a
plane-parallel atmosphere. For the plane-parallel atmosphere, a vector radiative
transfer model can be written as

l
dIðs;XÞ

ds
¼ �Iðs;XÞþ -

4p

Z2p
0

Z1

�1

Mðs;X;X0ÞIðs;X0ÞdX0 þ Sðs;X;X0Þ; ð1aÞ
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where Ω represents a beam for a pair ðl;/Þ in an incoming or an outgoing
directionor

l
dIðs; l;/Þ

ds
¼ �Iðs; l;/Þþ -

4p

Z2p
0

Z1

�1

Mðs; l;/; l0;/0ÞIðs; l0;/0Þdl0d/0 þSðs; l;/; l0;/0Þ

ð1bÞ

and

S ¼ ð1� -ÞB½TðsÞ�
1
0
0
0

2
664

3
775þ -F0

4p
expð�s=l0Þ

M11ðl;/; l0;/0Þ
M12ðl;/; l0;/0Þ
M13ðl;/; l0;/0Þ
M14ðl;u; l0;u0Þ

2
664

3
775; ð1cÞ

where M is the phase matrix; I ¼ ½I;Q;U;V �T; B(T) the Planck function at a
temperature T; F0 the solar spectral constant; l0 the cosine of sun zenith angle; -
the single-scattering albedo; and s the optical thickness.

Equation (1a) can be solved by a standard discrete method for beams rather than
separate zenith angles from azimuthal angles. The advantage of this approach is that
one can directly use the phase function without doing any truncation. The disad-
vantage is that it demands more memory for a large number of beams that can slow
the computation. The approach can be useful for more accurate simulations in the
future when computational capacity increases.

Equation (1b) is commonly used in radiative transfer models including the
CRTM. The equation can be solved by some standard routines such as the multi-
layer discrete ordinate method (Stamnes et al. 1988), the Doubling-adding method
(Evans and Stephens 1991), and the matrix operator method (Liu and Ruprecht
1996). Essentially, the azimuthal dependence of Stokes vector is expanded into a
series of Fourier harmonics. The amplitude of each Fourier component is a function
of zenith angles. Furthermore, the amplitude is discretized at a series of zenith
angles (or streams) so that the combined Stokes cosine and sine harmonics can be
simplified as

li
d
ds

Imðs; liÞ
�Imðs; l�iÞ

� �
¼ Imðs; liÞ

Imðs; l�iÞ

� �

� -
XN
j¼1

Mmðli; ljÞ Mmðli; l�jÞ
Mmðl�i; ljÞ Mmðl�i; l�jÞ

" #
Imðs; ljÞ
Imðs; l�jÞ

" #
wj

� Smðs; li; l0Þ
Smðs; l�i; l0Þ

� �
:

ð2Þ
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where li and wi are Gaussian quadrature points and weights, respectively. Note that
l�i ¼ �li and w�i ¼ wi. According to the properties of the phase matrix, the
radiance components at sinusoidal and cosinusoidal modes can be decoupled,
recombined, and solved independently (Weng and Liu 2003).

The summation in Eq. (2) is over discrete zenith angles or steams. For N = 1 in
Eq. (2), it is called two-stream radiative transfer to represent one upward and one
downward directions. It is called eight-stream radiative transfer when N = 4. The
computational time is proportional to N3.

In most radiative transfer schemes, the phase function can be expanded in terms
of Legendre polynomials as follows:

PðcosHÞ ¼
XM
l¼0

xlPlðcosHÞ ð3Þ

where H is the scattering angle, PlðcosHÞ are Legendre polynomials, xl are the
expansion coefficients, and the value of the upper summation limit M should be
equal or smaller than N used in Eq. (2).

Thousands of terms may be required for accurate phase function of an ice cloud
in the visible spectrum, but the computation burden makes this an unattractive
approach. One way of reducing the necessary Legendre terms is by truncating the
forward scattering peak and renormalizing the phase function. Wiscombe (1957)
proposed a δ–M method to truncate Legendre polynomials. The δ–M method can
effectively remove the forward peak in a rigorous mathematical way, but it may
cause large spikes in the phase function for small scattering angles (<20°). The δ-fit
method (Hu et al. 2000) truncates the forward scattering peak in the phase function
and more optimally fits the remaining phase function by selecting a set of optimized
expansion coefficients in Eq. (3). We applied the δ-fit method in this study.

To achieve the same accuracy in multiple scattering calculations with the
truncated phase functions as with the nontruncated phase functions, an adjustment
must be made to the optical thickness and single-scattering albedo via the following
relations (Liou 2002):

s0 ¼ ð1� fxÞs; ð4Þ

x0 ¼ ð1� f Þx
1� fx

; ð5Þ

where f indicates the portion of the scattered energy associated with the truncated
forward peak. In Eqs. (4) and (5), s and x are the original optical thickness and
single-scattering albedo, respectively, whereas s0 and x0 are the optical thickness
and single-scattering albedo associated with the truncated phase function.

After we have the phase matrix, Eq. (2) for each harmonic component can be
expressed as
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dI
ds

¼ AI� S; ð6Þ

where

I ¼ ½Iðs; l1Þ; Iðs; l2Þ; . . .; Iðs; lNÞ; Iðs; l�1Þ; Iðs; l�2Þ; . . .; Iðs; l�NÞ�T; ð7Þ

S ¼ ð1� -ÞBðTÞdm0 u�1 0
0 �u�1

� �
Nþ -F0

p
expð�s=l0ÞW; ð8Þ

where u is a 4N by 4N matrix that has nonzero elements at its diagonal direction
such as

u ¼ ½l1; l1; l1; l1; l2; . . .; lN ; lN ; lN ; lN �diagnonal; ð9aÞ

Ξ and Ψ are vectors that have 8N elements as

N ¼ 1; 0; 0; 0; 1; 0; 0; 0; . . .; 1; 0; 0; 0½ �T; ð9bÞ

and

W ¼ ½M11ðl1; l0Þ=l1;M12ðl1; l0Þ=l1;M13ðl1; l0Þ=l1;M14ðl1; l0Þ=l1;
M11ðl2; l0Þ=l2;M12ðl2; l0Þ=l2;M13ðl2; l0Þ=l2;M14ðl2; l0Þ=l2; . . .;
M11ðl�N ; l0Þ=l�N ;M12ðl�N ; l0Þ=l�N ;M13ðl�N ; l0Þ=l�N ;M14ðl�N ; l0Þ=l�N �;

ð9cÞ

and the composite phase matrix

A ¼ u�1 0
0 �u�1

� �
E� -Mðu; uÞ -Mðu;�uÞ
-Mð�u; uÞ E� -Mð�u;�uÞ

� �
¼ a1 b1

�b2 �a2

� �
ð9dÞ

where E is a unit matrix. For a pair of zenith angles (li; lj), both α and β are 4N by
4N matrices and are related to the elements of the phase matrices as

a1ðli; ljÞ ¼ ½E� - Mmðli; ljÞ�=li ð10aÞ

b1ðli; l�jÞ ¼ -Mmðli; l�jÞ=li ð10bÞ

a2ðl�i; l�jÞ ¼ ½E� - Mmðl�i; l�jÞ�=li ð10cÞ

b2ðl�i; ljÞ ¼ -Mmðl�i; ljÞ=li ð10dÞ
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Equations (1b) to (10a–10d) are a common approach needed by radiative solvers. The
equations can be solved using double-adding (Evans and Stephens 1991), matrix
operator method (MOM) (Liu and Weng 2013; Liu and Ruprecht 1996), VDISORT
(Weng and Liu 2003), Successive Order of Interaction (SOI) Radiative Transfer Model
(Heidinger et al. 2006), and advanced double-adding (ADA) method. In the following,
we discuss the ADA for radiative intensity only, a scalar radiative transfer model.
The ADA is a default solver in the CRTM. SOI can be selected by users. Both thermal
emission source and solar reflection parts are used operationally in supporting of radiance
assimilation and satellite products generations. The thermal emission part was docu-
mented in the paper (Liu andWeng 2006). The description of the solar reflection part will
be added here. Equation (6) for intensity only can be rewritten in amatrix–vector form as

d
ds

Iu
Id

� �
¼ � a b

�b �a

� �
Iu
Id

� �
� ð1� -ÞBðTÞ u�1N

�u�1N

� �

þ -F0

p
expð�s=l0Þ

u�1Uu

�u�1Ud

� � ð11Þ

where a and b are N by N matrices (All bold letters and symbols indicate either
matrix or vector.) and

aðli; ljÞ ¼ ½-Pðli; ljÞwj � dij�=li; ð12aÞ

bðli; l�jÞ ¼ - Pðli; l�jÞwj=li; ð12bÞ

dij is the Kronecker delta. The subscripts u and d indicate upward and downward
directions, respectively. u is an N by N matrix that has nonzero elements in its
diagonal such as

u ¼ ½l1; l2; . . .; lN �diagnonal; ð12cÞ

Ξ is a vector of N elements as

N ¼ 1; 1; . . .; 1½ �T: ð12dÞ

For an infinitesimal optical depth d0, multiple scattering can be neglected and the
reflection matrix can be expressed as (Plass et al. 1973)

rðd0Þ ¼ d0 b; ð12eÞ

and the transmission matrix can be written as

tðd0Þ ¼ Eþ ad0; ð12fÞ

E is an N by N unit matrix.
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Using the doubling procedure from Van de Hulst (1963), the reflection and
transmission matrices for a finite optical depth (d ¼ dn ¼ 2nd0) can be computed by
doubling the optical depth (i.e., diþ 1=di ¼ 2) recursively:

rðdiþ 1Þ ¼ tðdiÞ½E� rðdiÞrðdiÞ��1rðdiÞtðdiÞþ rðdiÞ ð13aÞ

and

tðdiþ 1Þ ¼ tðdiÞ½E� rðdiÞrðdiÞ��1tðdiÞ ð13bÞ

for i = 0, n − 1. We denote rðkÞ ¼ rðdnÞ and tðkÞ ¼ tðdnÞ for the reflection and
transmission matrices of kth layer.

There exist formulas for building the layer source functions (Heidinger et al. 2006)
depending on the Planck function of the temperature at the top of the layer and the
gradient of Planck function over the layer optical depth. However, the formulas are
complicated and computationally expensive. In this study, we found a very simple and
strict expression for the layer source function using the existing layer reflection and
transmission matrices. For an atmospheric layer of an optical depth δ and having the
top temperature of T1 and the bottom temperature of T2, the upward layer source
function can be derived as (see Appendix A of (Liu and Weng 2006)

Su ¼ ½ðE� t� rÞBðT1Þ � ðBðT2Þ � BðT1ÞÞtþ BðT2Þ � BðT1Þ
ð1� -gÞd ðEþ r� tÞu�N

þ xF0

p
exp � s

l0

� �
½ðE� t exp exp � d

l0

� �� �
Wu � rWd�

ð14aÞ

and the downward source of the layer can be written as

Sd ¼ ½ðE� t� rÞBðT1Þþ ðBðT2Þ � BðT1ÞÞðE� rÞþ BðT2Þ � BðT1Þ
ð1� -gÞd ðt� E� rÞu�N

þ xF0

p
exp � s

l0

� �
exp � d

l0

� �
E� t

� �
Wd � r exp � d

l0

� �
Wu

� �
;

ð14bÞ

where - and g are single-scattering albedo and asymmetry factor of the layer,
respectively. s is the optical depth from the top of the atmosphere to the top of this
current layer.

Wu

Wd

� �
¼ � xF0

ð1þ d0mÞ
aþE=l0 b

�b a� E=l0

� �
Uu

Ud

� �
ð15Þ

The new expressions for the layer source functions take a very little extra
computation time. The expression can also be applied for other radiative transfer
models such as matrix operator method (Fischer and Grassl 1984).
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Equations (13a, 13b)–(14a, 14b) give the layer reflection and transmission matrices
as well as the source vectors at the upward and downward directions. For planetary
atmosphere, the atmosphere may be divided into n optically homogeneous layers. The
optical properties (e.g., extinction coefficient, single-scattering albedo, and phase matrix)
are the same within each layer although the temperature may vary within the layer. The
adding method is for integrating the surface and multiple atmospheric layers. The
method was applied to flux calculation using a two-stream approximation. The method
was also used in radiance calculations with multiple scatterings using a two-stream
approximation (Schmetz and Raschke 1981). In the following, we briefly describe the
methodology. We denote RuðkÞ for reflection matrix and IuðkÞ for radiance vector at
the level k in the upward direction and k = n and k = 0 represent the surface level
and the top of the atmosphere, respectively. The adding method starts from surface
without atmosphere. At the surface, RuðnÞ is the surface reflection matrix and IuðnÞ
equals the surface emissivity vector multiplied by the Planck function at the surface
temperature. The upward reflection matrix and radiance at the new level can be
obtained by adding one layer from the present level:

Rðk � 1Þ ¼ rðkÞþ tðkÞ ½E� RðkÞ rðkÞ ��1 RðkÞ tðkÞ; ð16aÞ

Iuðk � 1Þ ¼ SuðkÞþ tðkÞ ½E� RðkÞ rðkÞ��1RðkÞSdðkÞþ tðkÞ½E� RðkÞrðkÞ��1IuðkÞ
¼ SuðkÞþ tðkÞ½E� RðkÞ rðkÞ ��1 ½RðkÞSdðkÞþ IuðkÞ�:

ð16bÞ

The physical meaning of Eq. (16a, 16b) is obvious. The first term on the right
side of Eq. (16a) is the reflectance of the layer to be added. The second term on the
right side of Eq. (16a) is the reflectance due to the radiation from the new level
transmitted to and multiple reflected by the present level and then transmitted back
to the new level. The three terms on the right side of Eq. (16b) represent the upward
layer source, from the present level reflected layer downward source, and from the
present level transmitted upward radiance, respectively. The upward radiance Iu at
the top of the atmosphere can be obtained by looping the index from k = n to k = 1
and adding the contribution from cosmic background radiance (Planck function at
the temperature of 2.7 K) vector Isky, that is,

Iu ¼ Iuð0ÞþRuð0Þ Isky ð17Þ

Equations (12a–12f)–(17) give the necessary and sufficient formulas for
advanced doubling-adding method. It needs to be mentioned that the above pro-
cedure is for the upward radiance at the top of the atmosphere. It is sufficient for the
satellite data assimilation. However, an additional loop from the top to the surface is
necessary in order to obtain the vertical profiles of radiances at both upward and
downward directions.

For the viewing angle departure from the angles at Gaussian quadrature points,
an additional stream as extra Gaussian quadrature point associated with an inte-
gration weight of zero may be inserted to have N quadrature points in total in either
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upward or downward direction. For this case, the upward intensity vector will
contain the upward solutions at N − 1 quadrature points and at a specified viewing
angle. The result by inserting the additional stream is exactly the same as inserting
the multiple scattering solutions at N − 1 quadrature points back to the integration
equation for the specified viewing angle [see Eqs. (24) and (25) of Stamnes et al.
(Chen et al. 2008)]. However, the present procedure avoids using extra codes for
the specified viewing angle so that it much simplifies all forward, tangent linear,
and adjoint codings.

All rigorous discrete radiative transfer solvers should be very accurate. The
model intercomparisons in the paper (Liu and Weng 2006) are adopted here
between the doubling-adding model (Evans and Stephens 1991), VDISORT (Weng
and Liu 2003), and the advanced doubling-adding method. We use the CRTM
platform which allows us to insert various solvers for radiative transfer calculations.
Three solvers mentioned above share the same atmospheric optic data, the same
surface emissivity and reflectivity, and the same Planck function for atmosphere,
surface, and the cosmic background. The differences of results from the three
solvers are purely from the differences in the solvers. For 24,000 simulations with
various clear and cloudy cases, computation times on our personal computer are
1041, 29, and 17 s for DA, VDISORT, and ADA models, respectively. ADA is
about 1.7 times faster than VDISORT and 61 times faster than DA. The huge gain
of ADA to DA is partly contributed by the efficiency of matrix and vector
manipulation in FORTRAN 95 because DA code is still in FORTRAN 77. The
maximum difference of the simulated brightness temperatures between using the
three solvers for AMSU-A channels and 281 selected Atmospheric InfraRed
Sounder (AIRS) channels is less than 0.01 K. The subset of AIRS data used in
NCEP data assimilation contains necessary information on atmospheric temperature
and water vapor (Goldberg et al. 2003). Tables 2 and 3 list the comparison of the
brightness temperatures for AMSU-A water vapor channel at 23.8 GHz and the
infrared window channel of AIRS at 10.88 μm computed from ADA, VDISORT,
DA methods, respectively. A profile containing temperature and water vapor as
well as ozone from our test dataset for OPTRAN is selected. For the microwave
calculation, a rain cloud having an effective particle size of 200 μm and 0.5 mm
rain water content was put at 850 hPa. One layer ice cloud having the same
effective particle size and 0.1 mm ice water path is located at 300 hPa. A wind
speed of 5 ms−1 over ocean is used. The maximum difference of the brightness
temperature computed from the three models is less than 0.01 K (see Table 2). For
the infrared calculation, an ice cloud having an effective particle size of 20 μm and
0.1 mm ice water path was located at 300 hPa and a liquid water cloud at 850 hPa
having an effective particle size of 10 μm and 0.5 mm are chosen. The results
computed from the three models agree very well (see Table 3).
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4.2 Atmospheric Transmittance Models

Line-by-line transmittance model performs for each absorption line. The line width
is typically about 10−4 cm−1 in stratosphere and 10−2 cm−1 in low troposphere. The
line-by-line calculation demands tremendous computations that are not feasible in
daily operations. The model often serves as a reference for fast radiative transfer
models. LBLrtm (Clough et al. 2005) is one of the best rigorous radiative transfer
models for us to generate regression coefficients in the CRTM fast transmittance
models. There are two fast transmittance algorithms available in the CRTM: Optical
Depth in Absorber Space (ODAS) and Optical Depth in Pressure Space (ODPS);
both algorithms are regression-based and differ primarily in vertical coordinates and
the application of constraints to smooth vertical structures of the regression coef-
ficients (Chen et al. 2012). The CRTM transmittance coefficients are derived by
applying regression algorithms (McMillin et al. 1995) using the line-by-line (LBL)
transmittances convolved with the instrument spectral response functions (SRFs) as
predictands, and atmospheric state variables as predictors. The CRTM transmit-
tance has two parts: variable gases and fixed gases. For ODAS, H2O and O3 are

Table 2 Comparison of
brightness temperatures at
23.8 GHz (AMSU-A channel
1) computed from advanced
doubling-adding method
(ADA), VDISORT, and
doubling-adding method
(DA)

Zenith angle ADA VDISORT DA

0 272.9645 272.9656 272.9655

10 272.9358 272.9369 272.9369

20 272.8342 272.8354 272.8354

30 272.6054 272.6065 272.6064

40 272.0529 272.0542 272.0541

50 271.1577 271.1594 271.1593

65 269.0612 269.0637 269.0635

A rain cloud having an effective radius of 200 μm and 0.5 mm
water content was put at 850 hPa. One layer ice cloud having the
same effective particle size and 0.1 mm ice water path is located
at 300 hPa

Table 3 Comparison of
brightness temperatures at
10.88 μm (AIRS channel
256) computed from
advanced doubling-adding
method (ADA), VDISORT,
and doubling-adding method
(DA)

Zenith angle ADA VDISORT DA

0 240.7513 240.7514 240.7514

10 240.5512 240.5513 240.5512

20 239.9758 239.9757 239.9757

30 239.1067 239.1065 239.1065

40 238.0799 238.0798 238.0798

50 237.0585 237.0585 237.0585

65 235.6128 235.6129 235.6129

An ice cloud having an effective particle size of 20 μm and
0.1 mm ice water path was located at 300 hPa and a liquid water
cloud at 850 hPa having an effective particle size of 10 μm and
0.5 mm are chosen
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variable gases and all other gases are treated as fixed gases. For ODPS, six gases
(H2O, CO2, O3, N2O, CO, and CH4) are variable gases and rest gases are treated as
fixed gases. H2O and O3 are mandate inputs for both ODAS and ODPS algorithms.
CO2, N2O, CO, and CH4 are optional and default values from the ODPS reference
profile will be used when inputs are absent. There are two specific transmittance
models in the CRTM. The stratospheric sounder unit (SSU) transmittance model
(Liu and Weng 2009) was developed to take the CO2 cell pressure into account.
Zeeman effect is considered for microwave sounding channels that are sensitive to
upper stratosphere (Han et al. 2007). Figure 2 is the measured (forest green color)

Fig. 2 Measured (red line) and the CRTM simulated (forest green line) CrIS brightness
temperatures. The upward arrows indicate the spectral absorption of gases
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and the CRTM simulated (red) CrIS brightness temperature of a full spectral res-
olution over ocean under a clear-sky condition. In the CRTM calculation, radio-
sonde data and ozonesonde data from the surface to 10 hPa, and from ship
measured skin temperatures are used. Above 10 hPa, the ECMWF analysis data are
used. Because there was a dry bias in radiosonde water vapor in the upper tropo-
sphere during the daytime, we use the ECMWF data for water vapor above
300 hPa. We use the mean value of the ECMWF and ship measured skin tem-
peratures as the surface temperature. Other trace gases such as CO2, N2O, CH4, and
CO are taken from a standard tropic atmosphere. The CrIS brightness temperatures
are calculated from Hamming apodized radiances at 2211 channels. In general, both
measured and simulated CrIS brightness temperatures agree very well. Figure 1
shows main absorption of gases. CrIS observations can be used to retrieve H2O, O3,
CO2, N2O, CO, CH4, NH3, SO2, and HNO3.

There is a spectral gap between long-wave band and middle-wave band, as well
as a gap between mid-wave band and shortwave band. The spectral information
there can help the retrieval of SO2 and volcanic ash.

4.3 Scattering Properties

The scattering of electromagnetic wave by atmospheric particles depends on
dielectric constant of particles, particle size distributions, and particle shapes and
orientations. In the CRTM, we deal with spherical particles and nonspherical par-
ticles with a random orientation. The assumption is common and can simplify the
optical properties to a scalar extinction and scattering coefficients and to four phase
function elements for spheres and six phase function elements for nonspherical
particles with a random orientation. Dielectric constant depends on electromagnetic
wavelength and may also depend on temperature. Electromagnetic spectrum of
sensors onboard satellites covers ultraviolet (0.20–0.38 µm), visible (violet (0.38–
0.45 µm), blue (0.45–0.495 µm), green (0.495–0.570 µm), yellow (0.57–0.59 µm),
orange (0.59–0.62 µm), red (0.62–0.75 µm), near-infrared (0.75–3.0 µm), infrared
(3.0–50.0 µm), and microwave (1000–30,000 µm) ranges. This partition of the
spectrum is approximate since different communities may have own definition
(https://en.wikipedia.org/wiki/Infrared).

The ratio of particle diameter to electromagnetic wavelength is one of the key
parameters determining scattering. The diameter of a molecule is about 10–4 µm.
The diameter of aerosols may change from 0.1 to 10 µm. The diameter of clouds
varies from 10 to 10,000 µm. Once the dielectric constant and particle size dis-
tribution are known, we can use Mie code to compute optical properties such as
extinction coefficient, single-scattering albedo, and phase function for spherical
particles.
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4.4 Molecules

The diameter of molecules in the atmosphere is much smaller than the electro-
magnetic wavelength in our studies. The scattering by molecules is referred as the
Rayleigh scattering. The optical properties of molecular scattering are referred to
the literature (Mishchenko et al. 2006).

4.5 Aerosols

Aerosols are small solid or liquid particles in the atmosphere, which can be clas-
sified into primary and secondary groups. Primary aerosols, including elemental
carbon, organic carbon, sea salt, and mineral dust, are emitted directly from
anthropogenic and natural sources, while secondary aerosols, such as sulfate,
nitrate, ammonia, and secondary organic carbon, are formed through photochemi-
cal, gaseous, aqueous, and heterogeneous chemical reactions in the atmosphere.
Aerosols can influence climate directly by scattering and absorbing solar or infrared
radiation. They also have impact on climate indirectly by serving as cloud con-
densation nuclei and ice nuclei and consequently changing albedo and lifetime of
clouds.

There exist complex interactions between chemistry, aerosols, and climate.
Aerosols are formed through different chemical reactions, and in turn they have
impact on photochemical reactions and involve in heterogeneous chemical reac-
tions. Aerosols can modify the global energy balance and lead to climate change,
while climate change can affect concentrations of gas phase species and aerosols by
changing oxidation capacity of the atmosphere as well as processes of transport,
diffusion, deposition, scavenging, and mixing. The chemistry–aerosol–climate
interactions play important roles in air pollution, climate change, and water cycle.
There are big challenges in understanding the mechanisms of such interactions and
in representing aerosols in global and regional climate models. Satellite measure-
ments, in particular multisensor and multichannel measurements, provide useful
information about aerosol types and concentrations, which may determine aerosol
sources/plumes for regional and weather air quality forecasting. Current satellite
aerosol optical depth (AOD) product is helpful, but not accurate to predict aerosol
in boundary layer, which is the most important layer to air quality where human
breath.

Due to different requirements and heritage from various communities, the cal-
culations of optical properties are not unique, which leads to nonunique results in
retrievals and assimilation. We may roughly divide the community as model groups
and remote sensing groups. The Goddard Chemistry Aerosol Radiation and
Transport (GOCART) model (Chin et al. 2002) is mainly used in a global model.
CMAQ focus more on regional area. MODIS-like aerosol is often used in remote
sensing group. The CRTM has the optical table for GOCART model for the
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spectrum from ultraviolet to infrared. The effect of aerosols on microwave sensors
is not considered yet since aerosol size is generally much smaller than microwave
length. The optical table for CMAQ is not finalized yet. In this paper, we discuss
mainly on the GOCART model.

The GOCART model simulates major tropospheric aerosol components,
including sulfate, dust, black carbon (BC), organic carbon (OC), and sea salt
aerosols. The sea salt has four sub-types from small particle to large particle.
Anthropogenic emission of sulfate (SO2) from fossil fuel and biofuel combustions
and transportations is taken from the Emission Data Base for Global Atmospheric
Research (EDGAR) (Olivier et al. 1994). Biomass burning emission of SO2 is
scaled to the seasonal variations of burned biomass data (Duncan et al. 2003).
Volcanic emission of SO2 is from continuously erupting volcanoes and sporatically
erupting volcanoes (when data available). Oceanic emission of dimethyl sulfide
(DMS) is calculated based on the surface seawater concentrations of DMS and
10-m winds over the ocean using an empirical formula (Liss and Merlivat 1986).
Dust particles ranging from 0.1 to 10 μm in radius are considered in the model with
eight size groups (0.1–0.18, 0.18–0.3, 0.3–0.6, 0.6–1, 1–1.8, 1.8–3, 3–6, and 6–
10 μm). The biomass burning emissions of OC and BC are estimated from the
database of seasonal and interannual variations in the burned biomass (Duncan
et al. 2003), developed from long-term satellite observations of global fire counts
and aerosol index and an annual mean burned biomass inventory. Anthropogenic
emissions of OC and BC are taken from a global dataset (Cooke et al. 1999). In
addition to direct emissions, the production of OC from terrestrial source is esti-
mated from the emission of volatile organic compounds (Guenther et al. 1995). Sea
salt emission from the ocean is highly dependent on the surface wind speed.

Aerosol particle size distribution plays an important role in calculating the
optical properties of aerosols. In this study, we assumed a spherical aerosol particle.
The aerosol size distribution may have multiple modes. For each mode, a typical
aerosol size function is assumed to be the lognormal distribution (d’Almeida 1991;
Han et al. 2007) for N particles within the mode,

nðln rÞ ¼ Nffiffiffiffiffiffi
2p

p
lnðrgÞ

exp � 1
2

ln r � ln rg
lnðrgÞ

� �2
" #

; ð18Þ

where r is a radium, rg the geometric median radius, and rg the geometric mean
standard deviation. The kth moment of the distribution can be expressed as
(Binkowski and Roselle 2003)

Mk ¼
Z1
�1

rknðln rÞd lnðrÞ ¼ rkg exp
k2

2
ln2ðrgÞ

� �
: ð19Þ
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M0 is the number N of aerosol particles. M2 and M3 are proportional to the total
particulate surface area and volume, respectively. Thus, the effective radius (reff)
can be defined as

reff ¼ M3

M2
¼ rg exp

5
2
ln2ðrgÞ

� �
: ð20Þ

Table 4 lists the size parameters and computed mass extinction coefficients used
in the CRTM. For sulfate, sea salt, hydrophilic OC and BC, water uptake effect
needs to be included. The particle size increases as the relative humidity (RH) of
ambient atmosphere increases. The reflective index needs to be calculated by
considering water content in aerosols. The effective radius growth factor for
hygroscopic aerosols may be theoretically calculated or obtained from a precal-
culated lookup table (Chin et al. 2002). Once the growth factor ag is evaluated, the
refractive index n for the hygroscopic aerosol can be calculated using a volume
mixing method as

nr ¼ nw þðno � nwÞ � a3g; ð21Þ

where no and nw are the refractive indices for dry aerosols and water, respectively.
We adopt refractive index no from the software package of Optical Properties of
Aerosols and Clouds (OPAC) (Hess et al. 1998). The water refractive index is given
by Hale and Querry (1973).

Table 4 Goddard Chemistry Aerosol Radiation and Transport (GOCART) aerosol optical
properties at 550 nm for dry air

Aerosol type Density
[g cm−3]

Effective radius
[µm]

Standard deviation σ
[µm]

Sulfate 1.7 0.242 2.03

OC1 (hydrophobic) 1.8 0.087 2.20

OC2 (hydrophilic) 1.8 0.087 2.20

BC1 (hydrophobic) 1 0.036 2.0

BC2 (hydrophilic) 1 0.036 2.0

SeaSalt1 (size
range)

2.2 0.3 2.03

SeaSalt2 2.2 1.0 2.03

SeaSalt3 2.2 3.25 2.03

SeaSalt4 2.2 7.5 2.03

Dust1 (size range) 2.6 0.65 2.0

Dust2 2.6 1.4 2.0

Dust3 2.6 2.4 2.0

Dust4 2.6 4.5 2.0

Dust5 2.6 8.0 2.0

Hydrophilic aerosol particle size increases as the ambient humidity increases
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After the size distribution and refractive index are computed, we apply Mie code
to compute mass extinction coefficient (m2 g−1), single-scattering albedo, and phase
function. Finally, AOD for each aerosol type i at the jth atmospheric layer for a
wavelength λ can be calculated as

sijðkÞ ¼ extðk; i; reffÞ � cij; ð22Þ

where cij is aerosol column mass in g/m2 for an aerosol type i and an atmospheric
layer j. It can be seen from Eq. (22) that the AOD depends linearly on the layer
column aerosol mass. The column total AOD is a sum of Eq. (22) over all aerosol
types and atmospheric layers.

4.6 Clouds

Cloud particle size changes from micrometer to centimeter. The particle size affects
emission and scattering of electromagnetic waves from ultraviolet to microwave. In
the CRTM, we deal with six cloud types: liquid, ice, hail, graupel, and snow
corresponding to the densities in g cm−3 of 1.0, 0.9, 0.9, 0.4, and 0.1, respectively.
Liquid clouds (water and rain) are assumed to be spherical water droplet and follow
the size distribution given by Hansen and Travis (1974):

nðrÞ ¼ rð1�3bÞ=be�r=ab; ð23Þ

where r is the radius of the water cloud particle, a is the effective radii, and b is the
effective variance. The single-scattering properties of water droplets, including the
asymmetry factor, single-scattering albedo, extinction efficiency, and scattering
phase function, are computed from the Lorenz–Mie program developed by
Wiscombe (Wiscombe 1980). Nonspherical particles are used for solid clouds: ice,
snow, graupel, and hail. The CRTM adopted the lookup table of optical properties
at the microwave range from Liu (2008) and the lookup table given by Yang et al.
(2005) for ultraviolet, visible, and infrared spectrum. Table 5 lists cloud size
parameters that are used for calculation size distributions of spherical particles.

4.7 Surface Reflectivity and Emissivity Models

The surface emissivity/reflectance models are divided into water, land, ice, and
snow gross types for visible, infrared, and microwave sensors. Each gross type is
further divided into subtypes, for example, new and old snows. For infrared and
visible spectrum, the ASTER spectral library (Baldridge et al. 2009) data is applied
for land infrared emissivity and the surface is assumed as Lambertian and the
emissivity equals one minus reflectivity (Vogel et al. 2011). We also developed
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utility codes for users to use emissivity atlas that depends on month and latitude and
longitude. The infrared water emissivity is based on Wu–Smith model (Van Delst
and Wu 2000). The infrared water bidirectional reflectance distribution function
(BRDF) model is used for the CRTM direct reflectance to compute reflected solar
radiation. The solar radiation over sunglint area may contribute 30 K to infrared
channel at 3.7 µm. Microwave water emissivity can be calculated from surface
temperature, wind vector, and salinity (Liu et al. 2011). For a calm water surface,
surface emissivity is well described by Fresnel equations, as a function of tem-
perature and salinity for a given frequency and a zenith angle. Surface wind gen-
erates surface roughness and foam that affect surface emissivity. Both a physical
land surface emissivity (Weng et al. 2001) and atlas technique are available in the
CRTM. In addition to the physical and atlas emissivity models, surface emissivity
over snow and ice surface can be estimated from satellite measured brightness
temperature inside the CRTM. The purpose of this model is to use satellite mea-
surements at a few window channels to estimate snow or ice emissivity at those
frequencies first, then predict emissivity of sounding channels for those that are also
affected by surface emission (Yan et al. 2008).

5 Aerosol Models

A chemical transport model (CTM) is a numerical model that simulates the entire
cycle for the species of interest, considering emissions, chemical production and
loss, transport and mixing, as well as wet and dry removal. CTMs can be classified
accordingly to their species of interest (e.g., aerosol models and dust models), their
methodology (e.g., Eulerian models and Lagrangian models), their model charac-
teristics (global models and regional models), as well as their integration strategy

Table 5 Cloud size parameters used for calculating cloud size distributions

Type Density
g cm−3

MW
rmin = 0.1 μm, rmin = 8000 μm

IR/VIS/UV
rmin = 0.1 μm, rmin = 500 μm

Variance of size Sphere Nonsphere Variance of
size

Sphere Nonsphere

Liquid 1.0 0.12
(stratocumulus)

Yes 0.12
(stratocumulus)

Yes

Rain 1.0 1/3 (Marshall–
Palmer) (Liu and
Boukabara 2014)

Yes 1/3 (Marshall–
Palmer)

Yes

Ice 0.916 0.18 Nov. 1 cirrus Yes 0.18 Nov.
1 cirrus

Yes

Snow 0.1 1/3 (Marshall–
Palmer)

Yes 1/3 (Marshall–
Palmer)

Yes

Graupel 0.4 1/3 (Marshall–
Palmer)

Yes 1/3 (Marshall–
Palmer)

Yes

Hail 0.916 1/3 (Marshall–
Palmer)

Yes 0.1 Yes
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(e.g., offline models whose chemistry is run after the meteorological simulation is
done and online models that allow interactive coupling of chemistry and meteo-
rological processes).

This section summarizes the characteristics of two aerosol prediction models that
are run in an operational or pseudo-operational manner at NOAA National Centers
for Environmental Prediction (NCEP). This chapter is not intended to provide a
comprehensive summary of aerosol prediction models running at operational,
quasi-operational, or research mode at various operational centers and research
institutes around the world. The descriptions of the two aerosol models aim to put
CRTM’s air quality applications into the contexts.

5.1 Goddard Chemistry Aerosol Radiation and Transport
Model (GOCART)

Funded mainly by NASA Earth Science programs, the Goddard Chemistry Aerosol
Radiation and Transport model (GOCART) was developed to simulate atmospheric
aerosols (including sulfate, black carbon (BC), organic carbon (OC), dust, and sea
salt), and sulfur gases (Colarco et al. 2010; Chin et al. 2000, 2003, 2004, 2007,
2009; Ginoux et al. 2001, 2004; Janjic 2003; Bian et al. 2010; Kim et al. 2013).

Aerosol species are assumed to be external mixtures. Total mass of sulfate and
hydrophobic and hydrophilic modes of carbonaceous aerosols are tracked, while for
dust and sea salt the particle size distribution is explicitly resolved across five
noninteracting size bins for each. Both dust and sea salt have dynamic (wind speed
dependent) emission functions, while sulfate and carbonaceous species use emis-
sion inventory from fossil fuel combustion, biomass burning, and biofuel con-
sumption, with additional biogenic sources of organic carbon. Sulfate has additional
chemical production from oxidation of SO2 and DMS, and a database of volcanic
SO2 emissions and injection heights is used. Aerosol sinks include wet removal
(scavenging and rainout) and dry deposition (gravitational sedimentation and sur-
face uptake).

Originally, GOCART was developed as an offline CTM, driven by assimilated
meteorological fields from the Goddard Earth Observing System Data Assimilation
System [GEOS DAS, e.g., Chin et al. (2002)]. As part of the GEOS Version 4
(GEOS-4) atmospheric model development at NASA Global Modeling and
Assimilation Office (GMAO), an online version of GOCART has been developed
(Colarco et al. 2010) and was later implemented into NCEP’s global model (Lu
et al. 2013). When running within versions 4 and 5 of GEOS (GEOS-4/5), the
GOCART module provides aerosol processes such as emissions, sedimentation, dry
and wet depositions (Fig. 3). Advection, turbulent, and convective transport is
outside the GOCART module, being instead provided by the host atmospheric
model. Unlike offline CTM, this online aerosol module accurately utilizes winds,
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convective mass flux, and eddy diffusivity valid at each time step, without the need
for temporal or spatial interpolation of any kind.

Recent research and development efforts have further enhanced GOCART
modeling capabilities. The transition to online modeling mentioned above is an
example. In addition, the GOCART module now has the option to ingest daily
biomass burning emissions from the Quick Fire Emission Dataset (Darmenov and
da Silva 2013). QFED emissions are based on fire radiative power retrievals from

Fig. 3 Schematic summary of the GOCART aerosol modules as adapted and being implemented
in GEOS-4/5 at GMAO and NEMS GFS at NCEP
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MODIS (Moderate Resolution Imaging Spectroradiometer, on board Aqua and
Terra satellites). The inclusion of such observation-based, time-dependent emis-
sions is important for model to capture the large temporal–spatial variation of
biomass burning emissions.

The GOCART module is currently used in the GEOS-5 Near-Real-Time
(NRT) aerosol forecasting system as well as the Modern Era Retrospective analysis
for Research and Applications Aerosol Reanalysis (Buchard et al. 2014). At NCEP,
the GOCART module is coupled with NCEP’s meteorological model for global
dust forecasts (described in Sect. 5.3) and an upgrade for multispecies forecast
(including dust, sea salt, sulfate, and carbonaceous aerosols) is planned in 2015.

5.2 The Community Multi-scale Air Quality (CMAQ)
Modeling System

The U.S. Environmental Protection Agency (EPA) has established National
Ambient Air Quality Standards (NAAQS), requiring the development of effective
emissions control strategies for pollutants such as ozone, particulate matter (PM),
and nitrogen species. To meet the emission regulation needs, EPA developed the
Community Multi-scale Air Quality (CMAQ) system to develop emission control
strategies.

CMAQ is a state-of-the-science “one-atmosphere” system that treats major
atmospheric and land processes (e.g., advection, diffusion, nucleation, coagulation,
wet and dry deposition, gas phase chemistry, gas–particle mass transfer, and
aqueous phase chemistry) for a range of species (e.g., anthropogenic and biogenic,
primary and secondary, gaseous and particulate) in a comprehensive framework.
The science, model engineering concepts, and infrastructure design have been well
documented (Byun et al. 1995a, b, 1996, 1998; Ching et al. 1995; Coats et al. 1995;
Byun and Schere 2006).

The CMAQ system framework is comprised of three major modeling systems:
emission projection and processing system, the meteorological modeling system,
and the CTM. The CMAQ CTM is used to simulate multiple pollutants with
emissions and meteorological input data. The science options for CMAQ include
the gas phase mechanism, PM module, a set of chemical solvers, various options for
vertical and horizontal advection, and photolysis rate calculations.

In response to congressional mandate, NOAA and EPA formed a partnership to
transfer scientific advances in air quality modeling at EPA into NCEP’s operational
model suite. The real-time air quality forecasting system based on CMAQ will be
discussed in Sect. 5.4.
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5.3 Global Modeling: GOCART in NEMS GFS Aerosol
Component (NGAC)

The online version of GOCART module developed for GEOS-4/5 is fairly inde-
pendent of the host meteorological model, encapsulating the basic aerosol pro-
duction and loss functionality. It has been incorporated into NOAA Environmental
Modeling System (NEMS) to establish the first interactive global aerosol fore-
casting system, NEMS GFS Aerosol Component (NGAC), at NCEP (Lu et al.
2010, 2013).

The rationale for developing the global aerosol forecasting capabilities at NOAA
includes: (1) to improve weather forecasts and climate predictions by taking into
account of aerosol effects on radiation and clouds; (2) to improve assimilation of
satellite observations by properly accounting for aerosol effects; (3) to provide
aerosol (lateral and upper) boundary conditions for regional air quality predictions;
(4) to provide a first step toward aerosol data assimilation and reanalysis; and (5) to
produce quality aerosol information that address societal needs and stakeholder
requirements, e.g., UV index, air quality, ocean productivity, visibility, and sea
surface temperature retrievals.

Effective on September 11, 2012, starting with the 0000 Coordinated Universal
Time (UTC) cycle, NCEP begins to run and disseminate data from the NGAC
version 1 (NGAC V1) at T126 L64 resolution (*100 km). It provides 5-day dust
forecasts, once per day for the 0000 UTC cycle. Dust initial conditions are taken
from the 24-h NGAC forecast from previous day while meteorological initial
conditions are downscaled from high-resolution Global Data Assimilation System
(GDAS) analysis.

The NGAC V1 output is available in GRIdded Binary edition 2 (GRIB2) format
on 1 × 1° output grid, with 3-hourly output from 00 to 120 h. Primary output fields
are global three-dimensional dust mixing ratios for five particle sizes with effective
radius at 1, 1.8, 3, 6, and 10 μm. Two-dimensional aerosol diagnosis products, such
as aerosol optical depth (AOD) and surface mass concentration, are also available.
The NGAC digital products can be accessed from NOMADS at http://nomads.ncep.
noaa.gov/ and NCEP’s ftp server at ftp://ncep.noaa.gov/pub/data/nccf/com/ngac.

Figure 4 presents the evaluation of NGAC dust distributions. NGAC dust AOD
has been compared to dust AOD from GEOS-5 and total AOD from MODIS
onboard Terra. The source regions over the Sahara and Sahel are clearly shown as
well as the patterns of long-range dust transport. Trade winds steer African dust
westward across the Atlantic ocean, covering vast areas of the North Atlantic and
sometimes reaching the Americas (e.g., the Caribbean, southeastern USA, Central
America, and Amazon basin). This has implications for air quality, public health,
climate, and biogeochemical cycle. For instance, about half of the annual dust
supply to the Amazon basin is emitted from a single source in the Sahara, the
Bodele depression (Koren et al. 2006).

The International Cooperative for Aerosol Prediction (ICAP), consisting of
forecasting center model developers and remote sensing data providers, began
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meeting in April 2010 to discuss issues relevant to the operational aerosol fore-
casting (Benedetti et al. 2011; Reid et al. 2011). Consensus ICAP multi-model
ensembles [ICAP-MME, (Sessions et al. 2015)] become pseudo-operational since
2014, using four complete aerosol forecast models from GMAO, European Centre
for Medium-Range Weather Forecasts (ECMWF), Naval Research Laboratory
(NRL), and Japan Meteorological Agency (JMA) as well as three dust-only models
from NCEP (i.e., NGAC), U.K. Met Office (UKMO), and Barcelona
Supercomputing Center (BSC). Figure 5 shows the dust AOD from ICAP-MME
and NGAC, valid at 12 UTC onAugust 1, 2013. Spatial pattern of dust loading from
NGAC is consistent with the ICAP-MME, with elevated dust located in the Sahara,
the Arabian Peninsula, and Asia.

While NGAC has the capability to predict dust, sulfate, sea salt, and carbona-
ceous aerosols, the initial operation implementation only provides global dust
forecasts. Multispecies aerosol predictions by NGAC require real-time estimates of
aerosol precursor emissions. NOAA-NASA has developed global near-real-time
(NRT) smoke emissions, blended from NOAA’s Global Biomass Burning Emission
Product from a constellation of geostationary satellites [GBBEP, (Zhang et al.
2011)] and NASA’s Quick Fire Emissions Data from polar orbiting sensor MODIS
(QFED). The NRT smoke emissions dataset is targeted to be operational in May
2015, and will be used in the planned NGAC upgrade (multispecies forecasts)
slated for operation implementation in late 2015.

Fig. 4 Comparisons of monthly mean MODIS total AOD (left), NGAC dust AOD (middle), and
GEOS5 dust AOD (right) at 550 nm for 2012/10, 2013/01, 2013/04, and 2013/07 periods
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Fig. 5 Dust AOD valid at 12UTC on August 1, 2013 for ICAP multi-model ensemble (top) and
NGAC (bottom). The ensemble is based on six members, including NCEP NGAC, GMAO
GEOS-5, ECMWF MACC (Monitoring Atmospheric Composition and Climate), NRL NAAPS
(Navy Aerosol Analysis and Prediction System), JMA MASINGAR (Model of Aerosol Species in
the Global Atmosphere), and BSC NMMB-CTM. These figures are produced by the Naval
Research Laboratory
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5.4 Regional Modeling: CMAQ in National Air Quality
Forecasting Capability (NAQFC)

As directed by U.S. Congress, NOAA developed a National Air Quality
Forecasting (AQF) System (Davidson et al. 2004) through a partnership with the
U.S. EPA. The AQF system is an offline coupled atmospheric chemical forecasting
system using EPA CMAQ modeling system (Ching et al. 1995), driven by mete-
orological forecasts from NCEP North American Mesoscale (NAM) system. The
real-time U.S. National Air Quality Forecast Capability (NAQFC), based on the
NAM-CMAQ system (Otte et al. 2005; Eder et al. 2010; Chai et al. 2013), run at
12 km horizontal resolution out to 48 h twice per day. The initial deployment of
NAQFC covered the northeastern U.S. domain since September 2004. It was
expanded to cover the eastern U.S. in August 2005 and is now extended to cover
the entire continental U.S., Alaska, and Hawaii.

The NAQFC provides operational predictions of ozone from anthropogenic and
natural sources since 2004. It will be upgraded to provide PM predictions in 2015.
An alternative quick response model for predicting wildfire smoke and dust storms,
both of which have highly variable intermittent sources, are based on the Hybrid
Single Particle Lagrangian Integrated Trajectory model [HYSPLIT, (Draxler et al.
2010)] and are beyond the scope of this chapter. Descriptions of HYSPLIT smoke
and dust forecast systems can be found in Eder et al. (2010) and Rolph et al. (2009),
respectively.

The Carbon Bond (CB05) with 51 species and 156 reaction gas phase chemical
mechanism is used operationally at NCEP (Sarwar et al. 2008). The modeling of
aerosols in CMAQ is based on the PM module (AERO-IV) described in Binkowski
and Roselle (2003). Secondary Organic Aerosol formation is included and descri-
bed in Colarco et al. (2010). The fine PM with size is equal to or less than 2.5 μm in
diameter (PM2.5) can be predicted, speciated to nitrate, sulfate, ammonium,
organics, and elemental carbon.

The Aerosol Version 4 (AERO-IV) particle model is included in the NAQFC
operational configuration for aerosol chemistry. Aerosol size distributions are
represented by lognormal distributions of φ, geometric diameter of the particles:
Aitken (φ < 0.1 μm), accumulation (0.1 < φ < 2.5 μm), and coarse
(2.5 < φ < 10 μm). New particle formation from gas conversion and nucleation are
included as well as heterogeneous hydrolysis reaction of N2O5 (key linkage
between gas and aerosol phase reactions). Predictions of organic nitrate were
overpredicted in earlier configurations and influenced ozone production. As of
2015, organic nitrate is photolyzed and removed quicker by shortening lifetime by a
factor of 10 based on the findings of Anderson et al. (2014) and Yang et al. (2014).
Fugitive dust emissions are included and are now modulated whenever there is
ice/snow to suppress emissions. Real-time wildfire smoke emissions are incorpo-
rated using the NESIDS Hazard Mapping System “observed” wildfire
near-real-time smoke emissions and the U.S. Forest Service BlueSky smoke
emissions system.
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The emission dataset is built on top of the 2011 National Air Quality Forecasting
Capability (NAQFC) baseline data, but with four major updates: (a) new point
source emissions with updated emission measurements and energy projections;
(b) new mobile source emissions updated to 2012 based on trends from the U.S.
EPA surface monitoring network corroborated with satellite trends for the same
constituents (Pan et al. 2014); (c) new off-road emissions projected to 2012; and
(d) updated Canadian emission sectors from Environment Canada (EC) 2012
emission inventories and the Mexican 2010 National Inventory for Mexico.
The NOAA Hazard Mapping System (HMS) is used to detect wildfires over the
nation. The HMS product is then used to drive the U.S. Forest Service BlueSky
wildfire emissions system. Finally, a Kalman filter-based bias correction scheme
(Djalalova et al. 2015) has provided improved PM prediction skill that should result
in improved guidance for State environmental agencies responsible for air quality
alerts.

The NWS Air Quality Forecast Guidance, updated twice daily, is available at the
NWS National Digital Graphical Database (NDGD) decision support system
website (http://airquality.weather.gov). U.S. State and local environmental agencies
use this product to issue air quality forecasts and AQI predictions in their juris-
dictions. To provide the public with easy access to national air quality information,
the EPA’s AIRNow site (http://www.airnow.gov) was developed. This site provides
official AQ point forecasts, issued by state and local AQ forecasters, and real-time
AQI conditions.

GEOS-Chem monthly climatological gas and particle species are used at the
NAM-CMAQ boundaries. The efforts to use aerosol dynamic lateral boundary
conditions (LBCs) from NGAC are under way. An example on using NGAC dust
information to improve air quality forecasts is presented here. Two CMAQ runs are
conducted for the July 2010 period. The baseline run uses static LBCs and the
experimental run uses dynamic LBCs from NGAC. Figure 6 shows the observed
and modeled surface PM2.5 at two AIRNOW stations in the southeast region. It is
found that the incorporation of LBCs from NGAC reduces model biases and
improves correlation. Clearly, the inclusion of long-range dust transport via
dynamic LBCs leads to significant improvements in CMAQ forecasts during dust
intrusion episodes.

6 Satellite Data Assmilation and Air Quality Forecasting

Aerosols play an important role in weather forecasting and climate change. Except
for absorbing aerosols, aerosols reflect part of sunlight back to space. Aerosols
directly affect forming clouds. The modeling and prediction of aerosols is associ-
ated with a large degree of uncertainty due to uncertainties in the emissions,
transport, and its interaction with nonlinear physical processes (e.g., radiative
effects, cloud and precipitation formation). Ground-based observing networks have
been crucial in validating and improving our understanding of aerosol component
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of the entire Earth system, but the data cover a very small portion of the Earth.
Complemented with ground-based networks, observations from satellite platforms
offer a more global view of aerosol distribution. AVHRR (Ignatov et al. 2004),
MODIS (Remer et al. 2005), VIIRS (Liu et al. 2014) provide global distribution of
aerosol optical depths, which are different from aerosol mass concentration needed

Fig. 6 Time series of PM2.5 from EPA AIRNOW observations (black dot), CMAQ baseline run
using static LBCs (green dot) and CMAQ experimental run using NGAC LBCs (blue square) at
Miami, FL (top panel) and Kenner, LA (bottom panel)
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by numerical forecasting model. Data assimilation system can assimilate the aerosol
optical depths for aerosol mass concentrations using the CRTM. Data assimilation,
an approach combining observations and information from numerical model in a
statistically optimal fashion, offers a means to reduce the uncertainties in the esti-
mates of aerosol distribution.

The Grid Statistical Interpolation (GSI) System developed at NCEP (Wu et al.
2002) is used in this study. The core of GSI is to minimize the cost function, which
utilizes observations and a priori or forecast information through a 3DVAR method.
The data assimilation system by minimizing the cost function finds optimal analysis
fields from forecast fields, conventional observations, some retrieval products as
observations, and satellite radiances under dynamic constraints following a set of
physical laws. The cost function describes the departure of the solution of
atmospheric/surface state parameters from background or priori information and the
departure of simulations from observations. It may be written as

JðxÞ ¼ 1
2
ðx� xbÞTB�1ðx� xbÞþ 1

2
½HðxÞ � y�TR�1½HðxÞ � y� ð24Þ

where B and R are the background and observation error covariance matrices of
dimension n × n and p × p, respectively. They determine the relative weight of the
background and observation term contributed to the final analysis. The superscripts
“T” and “−1” represent, respectively, the transpose and inverse of the matrix. Here
x and y are already assumed to be column vectors and hence J(x) is simply a scalar
value.

Most operational NWP centers adopt an incremental implementation (Courtier
et al. 1994) of Eq. (24), namely

JðdxÞ ¼ 1
2
dxTB�1dxþ 1

2
ðHdx� dÞTR�1ðHdx� dÞ ð25Þ

where the analysis is based upon “increment” dx ¼ x� xb, and the departure of
observation minus background (also referred to as “innovation vector”)
d ¼ y� HðxbÞ. H is the linearized version (or Jacobian, a p × n matrix) of the
nonlinear observation operator H in the vicinity of xb. The cost function in Eq. (25)
is quadratic with respect to dx and thus leads to a faster convergence of a mini-
mization algorithm. More importantly, it allows multiple “outer loops” at lower
model resolution for each loop, which is crucial to reduce computational expense in
its 4DVAR implementation. At minimum of JðdxÞ, the gradient (the first-order
partial derivative) of

JðdxÞ with respect to dx needs to be vanished, i.e.,

rJdx ¼ B�1dxþHTR�1ðHdx� dÞ ¼ 0: ð26Þ

In Eq. (5), the background and observation error covariance matrices B and
R are determined offline. In addition to the AOD forward model, the Jacobian of
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AOD with respect to aerosol mass concentration is also derived, which is required
to calculate the gradient of the cost function (see Eq. 26) in the 3DVAR analysis. In
addition to AOD output for those MODIS wavelengths, the CRTM-AOD operator
can also calculate AOD for certain wavelengths to validate forecasts with
AERONET (500, 675, 870, 1020, and 1640 nm) and CALIOP (532 nm).

The AOD observation operator is based upon the community radiative transfer
model (Liu and Weng 2006) developed at the United States Joint Center for
Satellite Data Assimilation (JCSDA). CRTM was primarily designed for computing
satellite radiances and is used in GSI for directly assimilating radiances from
infrared and microwave sensors. However, we extended CRTM to compute
MODIS AOD using only aerosol profiles as input. This newly developed
CRTM-AOD module was incorporated into the GSI system. Some implementations
are ongoing to include WRF-Chem and CMAQ aerosol types.

In CRTM, a lookup table is necessary to store the precalculated aerosol optical
parameters such as mass extinction coefficient, single-scattering albedo, and
asymmetry factor.

Aerosol data assimilation using AVHRR AOD product into a three-dimensional
chemical transport model was introduced by Collins et al. (2001) for studying the
INDOEX (Indian Ocean Experiment) aerosols. Liu et al. (2011) used the CRTM in
the GSI to assimilate MODIS aerosol optical depths to improve initial fields of
aerosol mass concentration.

They adopt the total aerosol mixing ratio as control variable and some
assumptions are made in order to partition the total mass into individual species
(Benedetti et al. 2009). Its application to a 2-year (2003, 2004) reanalysis using
MODIS AOD data showed that the analysis is very skillful in drawing to the
observations and in improving the forecasts of AOD.

Experiments with and without the AOD DA have been conducted to evaluate the
impact of AOD observations on the aerosol analyses and forecasts of a dust storm
period (0000 UTC, 17*0000 UTC on March 24, 2010) over East Asia. Prior to
running the AOD DA experiment, the corresponding background error covariance
(BEC) statistics of 14 aerosol species were obtained using traditional “NMC”
method, in which the difference of 24-h and 12-h WRF/Chem aerosol forecasts
valid at the same time are used for BEC statistics. For the experiment without the
AOD DA, aerosol fields are produced by continuous WRF/Chem forecasts driven
by GFS meteorological fields and surface emission. AOD DA experiment updates
aerosol fields at 0000 and 0600 UTC (day time) when the MODIS has coverage
over East Asia. In Fig. 7, the hourly WRF/Chem model output is compared to the
independent AOD (1020 nm) observations at two AErosol RObotic NETwork
(AERONET) sites (Nanjing of China and Kathmandu of Nepal) for the experi-
mental period. The noDA (green line) experiment severely underestimated AOD.
The AOD values from the DA experiment (blue line) agree much more closely with
AERONET observations (red line). Maximum dust intensity on March 21, 2010 in
Nanjing was well captured by the AOD DA experiment. For Kathmandu site, which
was unaffected by the dust storm, the diurnal variation of AOD in the AERONET
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observations, and replicated by the DA experiment, likely reflects diurnal changes
in air quality caused by traffic from morning to evening.

The developed AOD assimilation method can be expanded to assimilate addi-
tional aerosol-related observations (e.g., surface measurements of particle matter,
multispectral and multi-angle AOD retrievals from different satellite instruments,
vertical extinction profiles from ground-based and space-borne Lidar, etc.).
Moreover, 3DVAR approach adopted here permits simultaneous assimilation of
new aerosol-related data and existing meteorological observations, which are
already used in the GSI operation.

Air quality depends on the concentration of trace gases, for example, carbon
monoxide is one of the main pollutants. Carbon monoxide is a “combustion pol-
lutant” that comes from incomplete burning carbon materials such as vehicles
running, wildfires, and biomass burning emission. Trace gases retrieved from
satellite measurements are useful to determine gaseous emission sources. As shown
in Fig. 1, CO absorption lines locate between 1150 and 2210 cm−1 and observed
radiance there can be used to derive CO concentration. Hyperspectral infrared
sounding IASI data have been used to derive CO (Pommier et al. 2010). IASI, a
Fourier Transform Spectrometer (FTS) records radiance measurements from the
Earth’s surface and the atmosphere with a high spectral sampling of 0.25 cm−1 over
a spectral range from 645 to 2760 cm−1, and with a low radiometric noise (0.2–
0.35 K at 280 K reference). AIRS data are also used to derive trace gases (Susskind
et al. 2003). Based on the AIRS team algorithm (Susskind et al. 2003), the NOAA
developed the NOAA Unique CrIS/ATMS Processing System (NUCAPS).
The NUCAPS was initially for Suomi NPP CrIS/ATMS sensors and late extends
for AIRS and IASI. The description of the AIRS science team algorithm is referred
to the paper (Susskind et al. 2003). It needs to be pointed out that the NUCAPS uses
the microwave radiative transfer of Rosenkranz (2001) and the Stand-alone AIRS
Radiative Transfer Algorithm (SARTA) (Susskind et al. 2003) is used for infrared
radiance calculations. Both CRTM and SARTA are channel-based fast radiative
transfer models. The NUCAPS algorithm contains two retrieval parts: microwave

Fig. 7 Hourly time series of AOD at 1020 nm from 0000 UTC 17 to 0600 UTC on March 24,
2010, at Nanjing and Kathmandu AERONET sites. Red line denotes the AERONET observations,
and blue (green) curves represent the DA (noDA) experiment, respectively
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(MW) data only, and infrared data with microwave data (IR + MW). The micro-
wave only retrieval (Rosenkranz 2001) can be carried out for all-sky except for
strong precipitation cases (Boukabara et al. 2007). The NUCAPS microwave
retrieval convergent rate is typically higher than 96 %. Infrared retrieval of atmo-
spheric states is a high nonlinear problem (Larrabee Strow et al. 2003). For retrieval
using infrared with microwave data, the first guess plays an important role because
of strong nonlinearity of the retrieval problem. We developed two regression
algorithms to derive profiles of temperature, water vapor, ozone, surface tempera-
ture (Goldberg et al. 2003), and surface infrared emissivity (Zhou et al. 2008). The
infrared land surface emissivity may have a large variability (Zhou et al. 2011). The
first algorithm is applied for original satellite measurements for all-sky conditions.
The regression coefficients are obtained by mapping ECMWF atmospheric state
vectors with satellite radiances directly. The second regression algorithm is applied
for clear-sky conditions. The NUCAPS algorithm is applied to each field of regard
(FOR) of CrIS data where each FOR contains nine (3 × 3) field of view (FOV) in
order to collocate with the ATMS measurements. At nadir looking, each CrIS FOV
has a footprint of about 14 km in diameter and each CrIS FOR has a spatial
resolution of about 45 km. It can be found from Table 6 that the percentage for
clear-sky and overcast within FOV is much higher that within FOR. The smaller the
footprint, the larger the percentage for clear and overcast scenes. The high per-
centage is good for clear-sky radiance and cloudy radiance assimilations.
The NUCAPS IR + MW retrievals are basically called “clear-sky” retrieval where
clear-sky radiances are used. In order to estimate the percentage of clear-sky condi-
tions we collocate the CrIS FOV and FOR with the VIIRS cloud masks (Kopp et al.
2014). The VIIRS data have a good spatial resolution better than 1 knm at nadir (Cao
et al. 2013). For one-day global data on May 12, 2014, only 3.3 % is found clear for
FORs and 8.6 % is found clear for FOVs. The low percentage of clear-sky radiances
caused incomplete information content over some meteorologically very important
areas and biasing the model (representative of a clear-sky only issue). To enhance the
percentage of IR + MW retrieval, the NUCAPS removes cloud effects from partial
cloudy scene, so-called cloud cleared radiance. Cloud cleared radiance technique has
been developing and is being used in research communities and satellite retrieval
products for decades. The method is applied to remove the cloud effect on radiances
for partially cloudy FOV or FOR (Liu et al. 2009). The “clear-sky” radiances avail-
ability can be increased from originally 3 % to nearly 70 % for the FOR approach.
The NUCAPS algorithm uses stepwise approach to retrieve geophysical parameters
sequentially: temperature, water vapor, and ozone. Then the NUCAPS calculates the

Table 6 The data percentage within CrIS field of view (FOV) and field of regard (FOR)

Clear 1–10 10–
20

20–
30

30–
40

40–
50

50–
60

60–
70

70–
80

80–
90

90–
99

100 %
cloud

FOV 8.61 13.92 6.16 5.67 4.52 3.94 3.68 3.80 4.32 8.66 18.28 18.44

FOR 3.30 13.78 7.16 6.78 5.86 5.47 5.33 5.53 6.14 8.52 21.99 10.24

The spatial resolution for FOV and FOR at a nadir looking are about 14 and 45 km, respectively
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residual between measured and simulated radiances for trace gas sensitive channels
(Gambacorta et al. 2014). The residual is used to estimate the concentration of trace
gases without changing surface temperature and atmospheric profiles of temperature,
water vapor, and ozone.

Figure 8 displayed the global concentration distribution of carbon monoxide
from NUCAPS retrieval using the IASI data at ascending and descending orbits,
respectively. The IASI data have a good spectral resolution that is particular
interesting for retrieving trace gases. One can see high CO concentration located in
Southeast Asia and central Africa. The high concentration over Northwest Pacific
indicated that CO may transport to northern America.

7 Discussion

This chapter described the Community Radiative Transfer Model (CRTM).
The CRTM and Radiative Transfer for TOVS [RTTOV] (Saunders et al. 1999) are
the two operational models used for radiance assimilation in supporting of weather
forecasting. The CRTM aerosol module has been used in assimilating aerosol
optical depth from satellite products and improved air quality forecasting skill (Liu
et al. 2011). In this study, we assimilate column aerosol optical depth at the
wavelength of 0.55 μm. The vertical distribution of aerosol concentration and

Fig. 8 A global daily carbon monoxide EDR generated by NUCAPS for the IASI measurements
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particle size is essential to the aerosol transport. Aerosols of small sizes at high
altitude have a large chance to transport a long distance. Since backscattered
radiances depend on wavelengths, aerosol optical depths at multiple wavelengths
may provide information about the vertical distribution of aerosol concentrations
and sizes. It needs to point out that the aerosol definition between the model groups
and remote sensing teams may be different. The model group uses aerosol con-
centrations and particle sizes what dynamic models deal with. The remote sensing
team uses optical properties what sensors measure. Even within model community
aerosol definition can be different, for example, the size bin of dust is different in
the GOCART and the CMAQ models. It is also true within remote sensing com-
munity since the retrieval of the aerosol optical depth depends on the assumptions
of aerosol type, size, and concentration. Certainly, there is a good correlation
between the retrieved aerosol optical depth and the aerosol concentration. To
enhance the correlation, the model groups and the remote sensing teams may work
together on the common aerosol definition.

The NUCAPS system retrieved trace gases using the IASI data and will generate
the trace gaseous EDRs using the CrIS data of a full spectral resolution. The CrIS
radiance of a full-spectral resolution is analytically scalable and derivable using fast
Fourier transform. The scalable and derivable spectra may provide an additional
way to the applications of remote sensing. The spectral resolution is critical to
obtain necessary sensitivity of radiances on trace gaseous concentrations. The
satellite products provide global distributions of aerosol optical depths and trace
gases such as CO and O3. The data are useful to determine the initial field needed
by prediction models. But, the aerosol optical depth represents the column value
instead of a vertical distribution. The NUCAPS does provide the vertical distri-
bution of trace gases, but the sensitivity of radiances on trace gases near surface
boundary layer is low. From the spectral weighting functions of the IASI and the
CrIS, we can see that the most satellite information about trace gases come from the
atmospheric layers between 300 and 700 hPa. To improve the retrieval product,
good priori information about trace gases is important. Within the data assimilation
system, one can integrate broad information from model estimate, ground measures,
and satellite radiances. The aerosol vertical distribution may be obtained from
aerosol optical depths at multiple wavelengths and at multiple view angles instead
of using the optical depth at a single wavelength only. The sensitivity of satellite
radiance or reflectance depends on the wavelength. More studies are definitely
needed to how to utilize satellite products and how to know the uncertainty of the
products for each measurement. The errors estimate will allow users to determine
the usage of the products for various applications.

Today’s computation capability is large, but it is still not large enough to deal
with each gaseous absorption line and strong scatterings of aerosols and clouds.
Polarization from clouds and aerosols are not considered because of the shortage of
computation capability in an operational system. The errors induced by neglect of
the polarization in radiance calculations can be significant [several percents,
(Mishchenko et al. 1994)] at UV and visible bands and at microwave frequencies
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for some applications. The effect is relatively small at infrared wavelengths. The
errors can be as a large of 2 K in microwave brightness temperatures (Liu and
Simmer 1996). Surface emissivity models are important in radiative transfer cal-
culations. The uncertainties of the surface emissivity model can be large and
degrade the usefulness of image channels that observe surfaces. Multiple scattering
calculations can be expansive. With scatterings, radiance calculations may demand
several to hundred times more computations than that without scatterings. For
operational radiative transfer models, optimizing code and algorithm may not have
a big room. We probably need to use advanced technology. GPU may be one of the
options that can do designed calculations. It is a known fact that solving linear
equations and matrix manipulations including eigenvalue problems are most
time-consuming. Therefore, one can focus on those codes for GPU without
changing other codes.
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Analytical Solution of Radiative Transfer
Using Cumulant Expansion

Wei Cai and Min Xu

1 Introduction

Radiative transfer describes light propagation in a turbid medium, where photons
suffer multiple scattering by randomly distributed scatterers in the medium. The
kinetic equation governing photon propagation is the classic Boltzmann transport
equation. The search for an analytical solution of the time-dependent elastic
Boltzmann transport equation has lasted for many years. Besides being considered
as a classic problem in fundamental research in statistical dynamics, the study of
analytical solution of this equation has applications in a broad variety of fields from
astrophysics, to geophysics, remote sensing, and medicine. One classic approach to
solve this equation is to transform the Boltzmann transport equation into a series of
moment equations based on the angular moment expansion and to retain the leading
orders (Chandrasekhar 1960; Peraiah 2002; Wehrse and Kalkofen 2006). To the
second order, a diffusion equation is derived. One of the main advantages of the
moment equations (and related methods such as the diffusion approximation) is that
they are manifestly energy conservative. The diffusion approximation admits an
analytical solution in a uniform medium of infinite, semi-infinite, slab, and other
geometries and has been widely used (Aronson 1995; Cuccia et al. 2009; Xu et al.
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2001). The diffusion approximation, however, fails at early times when the particle
distribution is still highly anisotropic. Numerical approaches, including the Monte
Carlo simulation (Patwardhan et al. 2005; Xu 2004; Sawicki et al. 2008), remain the
main tools in solving the elastic Boltzmann equation, which are cumbersome tasks.

We present here an analytical solution of the classic elastic Boltzmann transport
equation in an infinite uniform medium, with the photon’s velocity cs, where s is a unit
vector of direction, and c is the (constant) speed in the medium (Cai et al. 2000a, b,
2002, 2003, 2005, 2006; Xu et al. 2001, 2002, 2004; Liemert and Kienle 2012; Cai
and Gayen 2010). We assume that the phase function depends only on the scattering
angle. Under this assumption, we can handle an arbitrary phase function for obtaining
the photon distribution (specific intensity), I(r, s, t), as a function of time t, position r,
and direction s, and the particle density distribution N(r, t).

Our approach is outlined as follows. First, the exact expression of the total
angular distribution, F(s, s0, t), as a function of time in an infinite uniform medium
is derived where s0 is the incident direction of the beam at time t = 0. Based on this
angular distribution, we then derive exact spatial cumulants of I(r, s, t) up to an
arbitrary order at any angle and time (Cai et al. 2000a, 2005; Xu et al. 2002).
A cutoff at the second order of cumulants, I(r, s, t) and N(r, t), can be expressed by
Gaussian distributions (Baum et al. 2000; Cai et al. 2000a, 2003), which have exact
first cumulant (the position of the center of the distribution) and exact second
cumulant (the half-width of the spread of the distribution). The solution has been
extended to the case of polarized photon distribution (Cai et al. 2000b, 2006). By
use of a perturbative method, the distribution in a weak heterogeneous scattering
medium can be computed (Cai et al. 2003; Xu et al. 2001, 2002).

This chapter is organized as follows: In Sect. 2, expressions of spatial cumulants
of the distribution up to an arbitrary order are derived. In Sect. 3, the explicit
Gaussian forms of the distribution (up to the second-order cumulant) are presented,
and numerical results of the solutions are shown. In Sect. 4, the cumulant solution
for polarized light transfer is presented. Numerical solutions for backscattering of
circular polarized light are presented, comparing with experimental results. In
Sect. 5, applications of the cumulant solution of radiative transfer in areas of
biology tomography using early time gates technology (Niedre et al. 2008), and of
remote sensing for determining size and density of water drop in cloud (Cai and
Gayen 2010) are presented. This chapter is finally summarized in Sect. 6.

2 Derivation of Cumulants to an Arbitrary Order

The elastic Boltzmann kinetic equation of light for the distribution function I(r, s,
t) as a function of time t, position r, and direction s, in an infinite uniform medium,
from a point pulse light source δ(r − r0)δ(s − s0)δ(t − 0) is given by
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@Iðr; s; tÞ=@tþ cs � rrIðr; s; tÞþ laIðr; s; tÞ ¼ ls

Z
Pðs; s0Þ½Iðr; s0; tÞ � Iðr; s; tÞ�ds0

þ d r�r0ð Þd s�s0ð Þdðt � 0Þ;
ð2:1Þ

where c is the speed of light, μs is the scattering rate, μa is the absorption rate, and
P(s, s′) is the phase function, normalized to

R
Pðs; s0Þds0 ¼ 1.

When the phase function depends only on the scattering angle in an isotropic
medium, we can expand the phase function in Legendre polynomials:

Pðs; s0Þ ¼ 1
4p

X
l

alPl½cosðs � s0Þ�: ð2:2Þ

where al are coefficients determined by the phase function. A difficulty in solving
Eq. (2.1) originates from the term

cs � rrIðr; s; tÞ;

which couples components of I(r, s, t)—spherical harmonics of different orders with
each other. We first study the dynamics of the distribution in the direction space,
F s; s0; tð Þ ¼ R Iðr; s; tÞdr; on a spherical surface of unit radius. The kinetic equation
for F(s, s0, t) can be obtained by integrating Eq. (2.1) over the whole spatial space,
r. The spatial independence of μS, μa, and P(s, s′) ensures translation invariance.
Thus the integral of Eq. (2.1) obeys

@F s; s0; tð Þ=@tþ laF s; s0; tð Þþ ls F s; s0; tð Þ �
Z

P s; s0ð ÞF s0; s0; tð Þds0
� �

¼ d s�s0ð Þdðt � 0Þ
ð2:3Þ

since the integral of the gradient term over all space vanishes. In contrast to
Eq. (2.1), upon expanding F(s, s′, t) in spherical harmonics, its components do not
couple with each other. Therefore, it is easy to obtain the exact solution of
Eq. (2.3):

F s; s0; tð Þ ¼ exp �latð Þ
X
l

2lþ 1
4p

exp �gltð ÞPl cos s � s0ð Þ½ �; ð2:4Þ

where

gl ¼ ls½1� al=ð2lþ 1Þ�: ð2:5Þ
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Two special values of gl are g0 = 0, which follows from the normalization of
P(s, s′) and g1 = c/ltr where ltr is the transport mean free path, defined by
ltr = c/[μs(1 − 〈cosθ〉)], where 〈cosθ〉 is the average of the cosine of the scattering
angle θ. Equation (2.4) serves as the exact Green’s function of light propagation in
the velocity space. Since in an infinite uniform medium this function is independent
of the source position, r0, the requirements for a Green’s function are satisfied.
Indeed, in an infinite uniform medium, this propagator determines the particle
migration behavior, including its spatial distribution, because displacement is an
integration of velocity over time. The distribution function I(r, s, t) (the source is
located at r0 = 0) is given by

Iðr; s; tÞ ¼ d r�c
Z t

0

sðt0Þdt0
0
@

1
AdðsðtÞ � sÞ

* +
ð2:6Þ

where 〈…〉 means the ensemble average in the velocity space. The first delta
function imposes that the displacement is given by the path integral. The second
delta function ensures the correct final value of direction. Equation (2.6) is an exact
formal solution of Eq. (2.1), but cannot be evaluated directly. We make a Fourier
transform for the first delta function in Eq. (2.6), and then make a cumulant
expansion, defined by Ma (1985)

hexpðikxÞi ¼ exp
X1
n¼1

hxnicðikÞn=n!
 !

ð2:7Þ

where the first cumulant 〈x〉c = 〈x〉 is the central position of x, and 〈x2〉c =
〈x2〉 − 〈x〉 〈x〉 is the half-width of the distribution. 〈x3〉c describes the skewness or
asymmetry of the distribution, and 〈x4〉c describes the kurtosis or the difference
from the Gaussian-shaped bell form, and so on. We obtain

Iðr; s; tÞ ¼ F s; s0; tð Þ 1

ð2pÞ3
Z

dk exp ik � rþ
X1
n¼1

ð�icÞn
n!

X
jn

. . .
X
j1

kjn . . .kj1

(
Z t

0
dtn. . .

Z t

0
dt1T sjn tnð Þ. . .sj1 t1ð Þ� �� �

c

� ð2:8Þ

where T denotes time-ordered multiplication. In Eq. (2.8), the subscript “c” denotes
the cumulant. As shown above, cumulants are just centered moments. Hence, if
moments 〈Am〉 (m = 1, 2, …, n) have been calculated, 〈Am〉c can be recursively
obtained, and vice versa.
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In the following, we derive the analytical expression for the moment ensemble
average. Using a standard time-dependent Green’s function approach, it is given by

Z t

0

dtn. . .
Z t

0

dt1T sjnðtnÞ. . . sj1ðt1Þ
� �* +

¼ 1
F s; s0; tð Þ

Z t

0

dtn

Ztn
0

dtn�1. . .

Zt2
0

dt1

Z
dsðnÞ

8<
:

. . .

Z
dsð1ÞF s; sðnÞ; t � tn

	 

sðnÞjn F sðnÞ; sðn�1Þ; tn � tn�1

	 

. . . sð1Þj1 F sð1Þ; s0; t1 � 0

	 

þ permut:

�

ð2:9Þ

where the word “permut.” means all n! − 1 terms obtained by permutation of {ji},
i = 1, …, n, from the first term. An intuitive way to understand Eq. (2.9) is to use a
basic concept in quantum mechanics that the left side of the equation is written in
the Heisenberg representation while the right side of the equation is written in the
Schrodinger representation. Equation (2.9) can also be understood as a Feynman
path integral.

In Eq. (2.9), F(s(i), s(i − 1), ti − ti−1) is given by Eq. (2.4). Since Eq. (2.4) is
exact, Eq. (2.9) provides the exact nth order moments of the distribution.

In Cartesian coordinates three components of s are sx, sy, and sz. For convenience
in calculation, however, we will use the components of s on the base of spherical
harmonics:

s ¼ ½s1; s0; s�1� ¼ Y11ðs),Y10ðsÞ; Y1�1ðsÞ½ �
¼ � 1

21=2
sin heþ i/; cosh;

1
21=2

sin he�i/

� �
ð2:10Þ

The recurrence relation of the spherical harmonics is given by

YlmðsÞY1jðsÞ ¼
X
i

Ylþ i;mþ jðsÞ l; 1;m; jjlþ i;mþ jh i l; 1; 0; 0jlþ i; 0h i ð2:11Þ

where i = ± 1. l; 1;m; jjlþ i;mþ jh i is the Clebsch–Gordan coefficients of angular
momentum theory (Brink and Satchler 1962). The orthogonality relation of
spherical harmonics is given byZ

dsY�
l0m0 ðsÞYlmðsÞ ¼ 4p

2lþ 1
dl;l0dm;m0 ð2:12Þ

Using Eqs. (2.11) and (2.12), the integrals over ds(n) … ds(1) in Eq. (2.9) can be
analytically performed. We obtain, when s0 is set to along z, that
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Z t

0

dtn. . .
Z t

0

dt1T sjnðtnÞ. . . sj1ðt1Þ
� �* +

¼ 1
F s; s0; tð Þ

X
l

Y l;
Pn

m¼1
jm½ �ðsÞ

(

X
in

. . .
X
i1

2 l�Pn
m¼1 im

� �þ 1
4p

Yn
k¼1

l�
Xn�kþ 1

m¼1

in�mþ 1;1;
Xk�1

m¼1

jm; jkjl�
Xn�k

m¼1

in�mþ 1;
Xk
m¼1

jm

* +

l�
Xn�kþ 1

m¼1

in�mþ 1;1; 0; 0jl�
Xn�k

m¼1

in�mþ 1;0

* +
Dl

in::...i1
ðtÞþ permut:

)

ð2:13Þ

with if = ± 1, f = 1, 2, …, n, and

Dl
in...:i1

ðtÞ ¼ expð�latÞ
Z t

0

dtn

Ztn
0

dtn�1. . .

Zt2
0

dt1

8<
:

exp½�glðt � tnÞ� exp �gl�inðtn � tn�1Þ½ �

. . . exp �gl�
Pn

k¼1
in�kþ 1

ðt1 � 0Þ
h i9=

;
ð2:14Þ

Note that all ensemble averages have been performed. Equation (2.14) involves
integrals of exponential functions, which can be analytically performed.
Equation (2.14) includes all related scattering and absorption parameters, gl, l = 0,
1, …, and μa, that determines the time evolution dynamics. The final particle
direction, s, appears as the argument of the spherical harmonics Ylm(s) in Eq. (2.13).
Substituting Eq. (2.14) into Eq. (2.13), and using a standard cumulant procedure,
the cumulants as functions of angle s and time t up to an arbitrary nth order can be
analytically computed. The final position, r, appears in Eq. (2.8), and its component
can be expressed as |r| and Y1j, j = 1, 0, −1. Then, performing a numerical
three-dimensional inverse Fourier transform over k, an approximate distribution
function, I(r, s, t), accurate up to the nth order cumulant, is obtained.

3 Gaussian Approximation of the Distribution Function

By a cutoff at the second-order cumulant, the integral over k in Eq. (2.8) can be
analytically performed, which directly leads to a Gaussian spatial distribution,
which will be displayed in Eq. (3.2). The exact first cumulant provides the correct
center position of the distribution. The exact second cumulant provides the correct
half-width of spread of the distribution. The expressions below are given in
Cartesian coordinates with subscripts α, β = [x, y, z]. These expressions are
obtained by use of the following unitary transform sα = ∑Uαjsj, j = 1, 0, −1, from
Eq. (2.13) (up to the second-order cumulant) which is based on sj = Y1j (s), with
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U ¼
�2�1=2 0 2�1=2

2�1=2i 0 2�1=2i
0 1 0

2
4

3
5 ð3:1Þ

We set s0 along the z direction and denote s as (θ, ϕ). Our cumulant approxi-
mation to the distribution function reduces to

Iðr; s; tÞ ¼ Fðs; s0; tÞ
ð4pÞ3=2

1

ðdetBÞ1=2
exp � 1

4
B�1
� �

abðr � rcÞaðr � rcÞb
� �

; ð3:2Þ

with the center of the packet (the first cumulant), denoted by rc, located at

rcz ¼ G
X
l

AlPlðcos hÞ½ðlþ 1Þf ðgl � glþ 1Þþ lf ðgl � gl�1Þ� ð3:3Þ

rcx ¼ G
X
l

AlP
ð1Þ
l ðcos hÞ cos/½f ðgl � gl�1Þ � f ðgl � glþ 1Þ�; ð3:4Þ

where G = cexp(− μat)/F(s, s0, t), Al = (1/4π)exp(−glt), and

f ðxÞ ¼ ½expðxtÞ � 1�=x ð3:5Þ

ry
c is obtained by replacing cosϕ in Eq. (3.4) by sinϕ. In Eqs. (3.3) and (3.4),
Pl
(m)(cosθ) is the associated Legendre function.
The square of the average spread width (the second-order cumulant) is given by

Bab ¼ cGDab � rcar
c
b=2; ð3:6Þ

where all the coefficients are functions of angle and time:

Dzz ¼
X
l

AlPlðcos hÞ lðl� 1Þ
2l� 1

Eð1Þ
l þ ðlþ 1Þðlþ 2Þ

2lþ 3
Eð2Þ
l þ l2

2l� 1
Eð3Þ
l þ ðlþ 1Þ2

2lþ 3
Eð4Þ
l

" #

ð3:7Þ

Dxx;yy ¼
X
l

1
2
AlPlðcos hÞ � lðl� 1Þ

2l� 1
Eð1Þ
l � ðlþ 1Þðlþ 2Þ

2lþ 3
Eð2Þ
l

�

þ lðl� 1Þ
2l� 1

Eð3Þ
l þ ðlþ 1Þðlþ 2Þ

2lþ 3
Eð4Þ
l

�
�
X
l

1
2
AlP

ð2Þ
l ðcos hÞ cosð2/Þ

1
2l� 1

Eð1Þ
l þ 1

2lþ 3
Eð2Þ
l � 1

2l� 1
Eð3Þ
l � 1

2lþ 3
Eð4Þ
l

� �
ð3:8Þ
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where (+) corresponds to Δxx and (−) corresponds to Δyy,

Dxy ¼
X
l

1
2
AlP

ð2Þ
l ðcos hÞ sinð2/Þ 1

2l� 1
Eð1Þ
l þ 1

2lþ 3
Eð2Þ
l � 1

2l� 1
Eð3Þ
l � 1

2lþ 3
Eð4Þ
l

� �

ð3:9Þ

Dxz ¼
X
l

1
2
AlP

ð1Þ
l ðcos hÞ cosð/Þ 2ðl� 1Þ

2l� 1
Eð1Þ
l þ 2ðlþ 2Þ

2lþ 3
Eð2Þ
l þ 1

2l� 1
Eð3Þ
l þ 1

2lþ 3
Eð4Þ
l

� �

ð3:10Þ

Δyz is obtained by replacing cos (ϕ) in Eq. (3.10) by sin (ϕ). In Eqs. (3.7)–(3.10)

Eð1Þ
l ¼ ½f ðgl � gl�2Þ � f ðgl � gl�1Þ�=ðgl�1 � gl�2Þ ð3:11Þ

Eð2Þ
l ¼ ½f ðgl � glþ 2Þ � f ðgl � glþ 1Þ�=ðglþ 1 � glþ 2Þ ð3:12Þ

Eð3Þ
l ¼ ½f ðgl � gl�1Þ � tÞ�=ðgl � gl�1Þ ð3:13Þ

Eð4Þ
l ¼ ½f ðgl � glþ 1Þ � tÞ�=ðgl � glþ 1Þ ð3:14Þ

The photon density N(r, t) of the second cumulant solution is given by

Nðr; tÞ ¼ 1

ð4pDzzctÞ1=2
1

4pDxxct
exp �ðz� RzÞ2

4Dzzct

" #
exp �ðx2 þ y2Þ

4Dxxct

� �
expð�latÞ

ð3:15Þ

with the mean position

Rz ¼ c½1� expð�g1tÞ�=g1: ð3:16Þ

The corresponding time-dependent diffusion coefficients are

Dzz ¼ c
3t

t
g1

þ 3g1 � g2
g21ðg1 � g2Þ ½1� expð�g1tÞ� þ 2

g2ðg1 � g2Þ


½1� expð�g2tÞ� � 3
2g21

½1� expð�g1tÞ�2
� ð3:17Þ

Dxx ¼ Dyy

¼ c
3t

t
g1

þ g2
g21ðg1 � g2Þ ½1� expð�g1tÞ� � 1

g2ðg1 � g2Þ ½1� expð�g2tÞ�
 �

ð3:18Þ
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We see that, at very early time, the diffusion coefficient is near zero, and the
center of motion moves with speed c. This stage is ballistic-like mode. With
increase of time, the motion of center slows down and the diffusion coefficients
increase from zero. This stage of photon migration is often called a “snack-like
mode.” At large times, the center of motion tends toward ltr and diffusion coeffi-
cients to ltr/3, which is the result of diffusion mode (Figs. 1, 2 , 3, and 4).

The above analytical solution, although it has exact center and half-width, is not
satisfactory in two aspects. First, at very early times, exp(−glt) → 1, for all l;
hence, one cannot ensure summation over l to be convergent. Second, particles at
front edge of the Gaussian distribution travel faster than speed c, thus violating
causality.

In order to make the summation over l convergent, we separate the ballistic
component from the total distribution and the compute the cumulants for the
scattered component. By use of the Legendre expansion of delta function δ(s − s0),
the first and second cumulant expressions of the scattered component can be easily
obtained.

For practical applications, we use a semi-phenomenological model. The
Gaussian distribution is replaced by a new shaped distribution, which is given by a
Gaussian distribution, multiplied by a factor in order to ensure causality. By fitting
the exact center position and half-width of distribution computed by the cumulant
solution, the related parameters of the new shaped distribution can be determined.
The formulation for the above improvement of cumulant solution is given in Lax
et al. (2006), Cai et al. (2005).

Fig. 1 The moving center of photons, Rz
c, and the diffusion coefficients, Dzz and Dxx, as function

of time, where gl are calculated by Mie theory, assuming water drops with a/λ = 1, with a the
radius of droplet and λ the wavelength of light, and the index of refraction m = 1.33
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Fig. 2 The time-resolved profile of light at different angles measured on a detector 10 mm from
the source in the incident direction. The parameters are ltr = 2 mm, la = 300 mm, the phase
function is computed using Mie theory for polystyrene spheres in water, with diameter
d = 1.11 μm, and the wavelength of laser source λ = 625 nm, which gives the g-factor g = 0.926

t   [ltr /υ]

Fig. 3 Time-resolved profile of the backscattered (180°) photon intensity inside a disk with center
at r = 0, radius R = 1ltr, thickness dz = 0.1ltr and the received angle dcosθ = 0.001, normalized to
inject 1 photon. The Heyney–Greenstein phase function with g = 0.9 is used, and 1/la = 0. The
solid curve is for the second cumulant solution (Gaussian distribution), and dots are for Monte
Carlo simulation. The inset diagram is same result drawn using a log scale for intensity
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4 Cumulant Solution for Polarized Radiative Transport
Equation

Understanding polarization phenomenon in a multiple scattering medium is
important because of its possible applications in biomedical media, cloud moni-
toring, and communications. This subject has been investigated for many years
since the polarized photon transport equation was derived (Ishimaru 1978; Rybicki
1996).

In Stokes representation (SP), the polarized light is described by vector ISP = [I,
Q, U, V]. We will use an circular representation (CP): the parallel-polarized com-
ponent I|| = (I + Q)/2, the perpendicular-polarized component I┴ = (I − Q)/2, the
right-handed circular polarized component IR = (I + V)/2, and the left-handed cir-
cular polarized component IL = (I − V)/2.

The transport equation for the polarized photon distribution function I(r,s,t) in
an infinite uniform medium, from a point pulse light source,
I(0)δ(r − r0)δ(s − s0)δ(t − 0) is given by

@ISP r; s; tð Þ�@tþ cs � rrI
SP r; s; tð Þþ laI

SP r; s; tð Þ ¼ ls

Z
P s; s0ð Þ

ISP r; s0; tð Þ � ISP r; s; tð Þ� �
ds0 þ ISP

ð0Þ
d r � r0ð Þd s� s0ð Þd t � 0ð Þ

ð4:1Þ

where vector I(r, s, t) has four polarization components, c is the light speed in the
medium, μs is the scattering rate, μa is the absorption rate, and P(s, s′) is the 4 × 4
phase matrix. A meridian plane parallel to the z-axis and the light direction s is used
as plane of reference for the description of the polarization state. With a rotation of

Fig. 4 Time-resolved profile
of transmission light in an
infinite uniform medium,
computed using the tenth
order of cumulants solution
(solid curve), the second
cumulant solution (dotted
curve), and the diffusion
approximation (thick dotted
curve), comparing with that of
Monte Carlo simulation
(discrete dots). The detector is
located at z = 6ltr from source
along the incident direction,
and received direction is
θ = 0. The Heyney–
Greenstein phase function
with g = 0.9 is used, and the
absorption coefficient 1/la = 0
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reference plane through an angle α ≥ 0 (in the counterclockwise direction, when
looking in the direction of propagation) ISP varies as

ISP
� �0¼ LSP að ÞISP ð4:2aÞ

This relation is given by

I 0

Q0

U0

V 0

2
664

3
775 ¼

1 0 0 0
0 cos 2a sin 2a 0
0 � sin 2a cos 2a 0
0 0 0 1

2
664

3
775

I
Q
U
V

2
664

3
775 ð4:2bÞ

One has to be careful that all the Stokes parameters are referred to the same
reference plane of the propagation direction. Therefore, a double multiplication by
the transformation matrix L is necessary, first before scattering to refer the incident
light to the scattering plane, then after scattering to change from the scattering plane
to the meridian plane of the scattering direction. With fixed coordinates, zenith
angle θ and azimuth /, the phase matrix for scattering from a direction (θ′, /0) to a
direction (θ, /) is given by

Pðs; s0Þ ¼ Lðp� vÞPðcosHÞLð�v0Þ ð4:3Þ

where χ′ and χ are the two rotation angles. ϴ is the scattering angle between light
rays before [s(θ,/)] and after scattering [s′(θ′, /0)]. The matrices L(−χ′) and L
(π − χ) are those required to rotate meridian planes before and after scattering onto
or from a local scattering plane, as shown in Fig. 5. The intrinsic property of
scattering is described by the 4 × 4 scattering matrix P(cosΘ), which is assumed to
be only dependent on cosΘ = s � s′.

In the CP, ICP = [I2, I0, I−0, I−2]. The relation between ICP and ISP is given by

ICP ¼ TISP ð4:4aÞ

Fig. 5 Geometry of the
scattering plane and the
reference planes related to the
incident ray, s′(θ′, ф′), and the
scattered ray, s(θ, ф). The
dark plane is the scattering
plane. χ is the angle between
the meridian plan (s, z) and
the scattering plane. χ′ is the
angle between the meridian
plane (s′, z) and the scattering
plan
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T ¼ 1
2

0 1 i 0
1 0 0 1
1 0 0 �1
0 1 �i 0

2
664

3
775 and T�1 ¼

0 1 1 0
1 0 0 1
�i 0 0 i
0 1 �1 0

2
664

3
775 ð4:4bÞ

In CP a rotation of the reference plane through an angle α around the light
direction can now be written as

I 0CP ¼ LCP að ÞICP ¼ TI 0SP ¼ TLSP að ÞISP ¼ TLSP að ÞT�1ICP ð4:5aÞ

where

LCP að Þ ¼ TLSP að ÞT�1 ¼
e�i2a 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei2a

2
664

3
775 ð4:5bÞ

For the phase matrix, transform between two representations is PCP = TPSPT−1.
The elements of the scattering matrix for polarized light can be expanded in

generalized spherical functions (GSF) (Brink and Satchler 1962):

Pmn l;/; l0;/0ð Þ ¼ 1
4p

X
l

plmn
Xl
s¼�l

ð�1ÞsPl
m;sðlÞPl

s;nðl0Þ exp½�isð/� /0Þ� ð4:6Þ

with m, n = 2, 0, −0, −2, and l ≥ max(|m|, |n|). The functions Pl
m;n cosHð Þ are

connected to Wigner d-function in angular momentum as

d j
m;n cosHð Þ ¼ im�nP j

m;n cosHð Þ; 0�H\p ð4:7Þ

The coefficients plmn in Eq. (4.6) provide an intrinsic description of the scattering
mechanism, with properties plmm ¼ plm�m are real; plmn ¼ plnm ¼ pl�m�n;
pl20 ¼ pl2�0

� ��. Therefore, for each l ≥ 2, there are six independent real elements:
pl00; p

l
22; p

l
0�0; p

l
2�2;Re½pl20�, and Im[pl20]. For l = 0, 1, only pl00 and pl0�0 are

nonzero.
Similar to the cumulant solution in Sect. 3, the analytical solution of

time-dependent polarized photon transport equation (4.1) can be solved (Cai et al.
2000b, 2006). Dynamics of the photon distribution in the light direction space on
a spherical surface of radius 1, F(s, s0, t), is first studied. The mth component of the
F(s, s0, t) in CP, with the initial polarization in unit n0 state, has the following exact
form:
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Fmn0ðs; s0; tÞ ¼
1
4p

X
l

Fl
mn0ðtÞ

Xl
s¼�l

ð�1ÞsPl
m;sðlÞPl

s;n l0ð Þ exp½�is /� /0ð Þ exp �lat½ �:

ð4:8Þ

In Eq. (4.8), Fl
mn0ðtÞ obeys an analytically solvable equation:

dFl
mn0ðtÞ=dt ¼ �

X
n

Pl
mnF

l
nn0ðtÞ; with Pl

mn ¼ ls dm;n � plmn=ð2lþ 1Þ� �
:

The solution has the following form: Fl
mn0ðtÞ ¼

P
i
½Bl

mn0
�i expð�kitÞ, where the

eigenvalues, ki, and the constant coefficients, ½Bl
mn0 �i, can be analytically determined

using standard linear algebra from the initial condition: Fl
mn0ð0Þ ¼ dm;n0ð2lþ 1Þ=4p.

Equation (4.8) provides an exact CP propagator in the light direction space.
By a cutoff at the second cumulant order, a Gaussian analytical approximation

expression of the polarized photon spatial distribution is given by

Im r; s; tð Þ ¼ Fm s; tð Þ
4pð Þ3=2

1

detDm½ �1=2
exp � 1

4
Dmð Þ�1

h i
ab

ra � Rc
m;a

	 

rb � Rc

m;b

	 
 �

ð4:9Þ

where m ¼ jj;?;R; L, representing parallel, perpendicular, right-handed circularly
(RH), and left-handed circularly (LH) polarized light, respectively. The factor of the
exponential function is summation with α, β = x, y, z. In Eq. (4.9), rα = x, y, z is the
coordinate of the detector. s is the direction of the detected scattered light. Fυ(s, t) in
Eq. (4.8) is the angular distribution of scattered light, and Rc

m;a represents the
position of the average center of the distribution, which is given by 〈R〉 in
Eq. (4.10); Dυ = 〈RR〉 − 〈R〉 〈R〉 is related to the half-width of the spread of the
distribution, with 〈RR〉 given by Eq. (4.11). The subindex is, separately, related to
the parallel (m ¼ jj), perpendicular (m ¼ ?), right-handed circularly (m ¼ R), and
left-handed circularly (m ¼ L) polarized scattered light. Using a standard Green’s
function approach and a recurrence relation of GSF, Rj

� �
and Rj1Rj2

� �
in CP are

obtained as

Rj
� �

mn0
¼ c

X
l

4p
2lþ 1

Pl
m;n0�jðcos hÞe�iðn0�jÞ/cj

X
n

X
k

Dl;k
m;n;n0ðtÞCl;n

l�k;1;n;0C
l;n0�j
l�k;1;n0;�j

ð4:10Þ

where n = 2, 0, −0, −2, k = +1, 0, −1; γ0 = 1, γ+1 = − 21/2i, γ−1 = 21/2i, Cl;m
l1;l2;m1;m2

is the Clebsch–Gordan coefficient in the angular momentum theory, and
Dl;k

m;n;n0ðtÞ ¼
R t
0 dt

0Fl
mnðt � t0ÞFl�k

nn0 ðt0Þ expð�latÞ, which can be integrated
analytically.
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with El;k1;k2
m;n1;n2;n0ðtÞ ¼

R t
0 dt

0 R t0
0 dt00Fl

mn1ðt � t0ÞFl�k1
n1n2 ðt0 � t00ÞFl�k1�k2

n2n0 ðt00Þ expð�latÞ.
As an example, the depolarization of circularly polarized light in a turbid

medium is studied (Cai et al. 2006). The incident wavelength in calculations is set
as 610 nm. The sample is prepared with polystyrene particles (refraction index is
1.59) suspended in water. The results in the following paragraphs have been scaled
to use the transport mean free path ltr as the unit of length and the flight time for one
transport mean free path in the medium ltr/c as the unit of time (for example, if
ltr = 1 cm, ltr/c corresponds to 33.3 ps).

Figure 6a–d shows the particle size evolution of the temporal profile of the
backscattered right-handed (solid curve) and left-handed (dotted curve) circularly
polarized light calculated using the polarized cumulant solution. For small size of
particles (0.1 μm), the backscattered light is dominated with left-handed circularly
polarized light, and the helicity is flipped in the backscattered light (Fig. 6a). With
the increase of particle size (0.213 μm), the intensity difference between right- and
left-handed circularly backscattered light reduced (Fig. 6b). For large size of par-
ticle (0.855, 8.0 μm), however, the helicity is maintained and the backscattered
light is dominated with right-handed circularly polarized light.

Figure 7 shows the particle size dependence of right-handed (solid line) and
left-handed (dotted line) backscattered (180°) photon intensity for a right-handed
circularly polarized incident light. The intensity is obtained from the peak value of
time-resolved profiles.

The analytical cumulant solution of polarized light shows the helicity flipped in
the scattering of circularly polarized light from a suspension of small particles and
helicity preserved from a suspension of large particles. The depolarization of a
well-defined incident polarization state from a medium depends on the sizes of the
scatterers. For small particles in a medium (particle diameter a < wavelength λ), the
transport mean free path (ltr) approximately equals to the scattering mean free path
(ls) and the scattering is isotropic. Photons in the backscattering light are those
suffering one or few scattering events, thus their circular electric field remains when
photons bounce back, leading to the flip of helicity. While for large particles
(a ≥ λ), ltr > ls the scattering is highly forward and anisotropic; the depolarization
length for a circularly polarized light is larger than corresponding length for an
incident linearly polarized light (Xu and Alfano 2005a, b). With the increase of
particle size, backscattering results from the accumulated effect of many
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small-angle near-forward scattering events, each of which changes the direction
only slightly. These small-angle scattering events do not change the helicity of
circularly polarized light. Hence, the backscattered light is dominated by the
component that maintains the original helicity. This is known as the “memory
effect” in scattering of polarized light (Xu and Alfano 2005a).

In Fig. 8 we compared experimental results of backscattering from large particle
suspensions performed by our experimental group with theoretical calculation
based on the cumulant solution (Cai et al. 2006).
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Fig. 6 Particle size dependence of time-resolved profile of the right-handed (solid) and
left-handed (dotted) backscattered (180°) photon intensities at position (x, y, z) = (0.5ltr, 0, 0)
inside an infinite medium containing particles of different diameters: 0.1 μm (a), 0.213 μm (b),
0.855 μm (c), 8.0 μm (d). The source is incident along the positive z-axis at the origin of
coordinate (x, y, z) = (0, 0, 0) and at time zero. The initial Stokes parameter I = [1 0 0 1] represents
input right-handed circularly polarized light. The time is normalized to a unit ltr/c
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5 Applications of the Cumulant Solution of Radiative
Transfer

5.1 Early Photon Tomography (EPT)

Niedre et al. (2008) have developed early photon technology for performing
high-fidelity fluorescence tomography in living tissues. The theoretical model of the
analytical cumulant solution (Eqs. 3.15–3.18) is applied in this subject, which
allowed accurate modeling of light propagation in tissue at early time.

EPT uses early arriving photons, that is, photons emitted from an ultrafast laser
source (i.e., pulse width <1 ps) which propagate through tissue and are the first to
arrive at time-gated detector placed at a distance away from source. The scattering
of these early photons is strongly biased in the forward direction and correspond-
ingly they experience a lower number of total scattering events. As a result, they
preferentially propagate along significantly less-diffusive paths connecting the
source and the detector versus ungated photons and can therefore be used to sig-
nificantly improve image resolution (Figs. 9 and 10).

5.2 Retrieving Parameters of Water Cloud from CALIPSO
Data

The balance of the earth’s radiation budget depends on various factors, including
microphysical properties of cloud, such as density and size distribution of droplets
in cloud, and the thickness of the cloud layer. The active measurement, pursued by
the NASA CALIPSO mission, uses laser light pulses from lidars aboard a satellite
to probe the atmosphere, and collects the time-resolved backscattered signal from
each single measurement. Since being launched in 2006, CALIPSO has generated
huge amounts of data, which are temporal profiles of 532- and 1064-nm pulses of
light backscattered from earth atmosphere. The size and density of scattering
entities in earth atmosphere determine the shape and intensity of the temporal
profile of backscattered pulses, especially, for early arriving photons.

Difficulty in developing approaches to retrieve dense water cloud parameters
from optical data stems from the paucity of adequate theoretical formalism to
account for multiple scattering of photons that is prevalent given the high con-
centration of randomly distributed water droplets inside dense cloud. The approa-
ches (Kokhanovsky 2005; Baum et al. 2000; Nakajima and King 1990;
Kokhanovsky et al. 2013) to address the problem of multiple scattering may include
numerical solutions of the radiative transfer equation or Monte Carlo simulation of
photon migration in cloud. However, these are cumbersome, computation time
intensive, and are not suitable as forward models for retrieving the cloud parameters
from measured data.
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Fig. 9 The early photon tomography (EPT) approach. a Experimental setup. Early arriving
photons are detected using the gated-intensified CCD system. The animal is placed in the custom
built cylindrical carbon fiber tube (b) for scanning. As photons propagate through the diffusive
medium, they disperse temporally (c). The experimentally measured Green’s function describing
the path of photons propagating between a source (S) and detector (D) pair, measured at early time
gate (d) and the early photon forward model used in the reconstructions (e). This model was
calculated using a normalized cumulant approximation to the Boltzmann transport equation and
agreed well with measured weight function. The weight function for diffuse (CW) photons for the
same geometry is also shown for comparison (f). The radial spread of early arriving photons is
drastically reduced, thereby allowing the excellent resolution possible with the EPT [Adapted from
Fig. 1 of Niedre et al. (2008)]
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The analytical solution of radiative transfer equation based on the cumulant
expansion provides a tool, which can compute the photon density distribution
function rapidly and accurately taking full account of multiple scattering events. For
the backscattering case, our results are shown to be in good agreement with Monte
Carlo simulation results.

The phase function of single scattering of light from a water drop, determined by
Mie formula, is related to a/λ, where a is the radius of the drop and λ is the wave
length of light. The cumulant solution can be used as a forward model for retrieving
the density and the average size of water drops in cloud from CALIPSO data (Cai
and Gayen 2010).

Fig. 10 Fluorescence reconstructions obtained using early arriving photons compared with
ungated (continuous wave) photons in mouse with an LLC tumor, 10 days after injection. Forward
model for early arriving photons and ungated photons are shown (a and b), as well as the
fluorescence reconstructions for the axial slice (c and d), and the corresponding X-ray CT axial
slice (e). The use of early photons enables fluorescence reconstructions with superior resolution
and localization of the activated fluorophore in the right lobe of the lung, as well as on the
contralateral side compared with the ungated reconstruction [Adapted from Fig. 5 in Niedre et al.
(2008)]
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In a finite medium with boundaries, photons that pass through the boundary may
not go back into medium again, while in an infinite medium photons can be
scattered back into the region. Only those photons that leak out scatter back into the
finite medium from outside, and are scattered out again, account for the difference
between the solution in an infinite medium and that in a finite medium. The
boundary condition, hence, mainly affects the photon distribution at late times, not
at early time period.

An approximate method, similar to extending the solution of the diffusion
equation from an infinite medium to semi-infinite and slab geometries, is used (Lax
et al. 1987). The technique involves adding image sources to satisfy the “extrap-
olated” boundary condition. For semi-infinite geometry, it requires the distribution
of photons to be zero at an extrapolated plane, z = −zc with zc = αltr, and α * 0.7
for the vacuum boundary. The physical interface is at z = 0. A virtual negative
source is added to the original source at z = −2αltr. At early times, the contribution
from the virtual source is negligible. The boundary effect becomes essential at later
times. Comparison with Monte Carlo simulation shows that this approach of
extension to the semi-infinite geometry is quantitatively sound (Xu et al. 2001).

In the CALIPSO mission, light backscattering data is collected in the following
manner. The satellite flies in an orbit at a height of *700 km above the earth. The
lidars on CALIPSO use linearly polarized laser beams to probe the atmosphere.
Nanosecond-duration laser light pulses of wavelength 532 and 1064 nm are
injected when satellite flies through different positions of earth. The field of view
(FOV) of 130 μrad corresponds to an area of radius Rb ≈ 0.05 km on the surface of
cloud, from which backscattering signal is collected, and will be referred to as
“footprint” area in subsequent discussion. For each laser pulse, a group of L1B data,
which is the total calibrated attenuated backscattering rate βi (in unit of km−1 SR−1)
versus altitude hi (in unit of km), is collected. Data represent the backscattered
intensity of light collected through the footprint area of cloud surface as a function
of time (in unit of μsec). Time scale is obtained by mapping the change of altitudes
to the round-trip time Δt = 2Δh/c, with c the speed of light.

Figure 11 shows image of CALIPSO data when satellite passed through North
America on August 7, 2007. Each of 56,295 horizontal positions represents a
location on the earth by its longitudinal and latitudinal coordinates, while each of
the 583 vertical positions represents the altitude measured from the earth surface.
Strength of the attenuated backscattering (in unit of km−1 SR−1) is represented by
pseudo color according to the scaled color bar shown in the figure. Each of these
vertical positions corresponds to a point on the temporal profile data based on the
Δt = 2Δh/c mapping. The white-colored points represent the strongest signals
backscattered from dense water cloud, while the white-gray-colored points repre-
sent the weaker signals from rarer cloud. These signals are several orders of
magnitude stronger than the ambient background and signals from other particles in
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the earth atmosphere. The dark blue color under cloud indicates the strong decay of
the tail part of time-resolved signals. The numerical values of measured temporal
profiles may be derived from the corresponding hdf data file.

A piece of cloud shown inside the square frame in Fig. 11 is chosen for fitting
data to obtain the parameters of cloud. Figure 12 shows some examples of fitting. In
Fig. 12a–c the points represent CALIPSO data for the wavelength λ = 532 nm, and
the solid curves are theoretical fits using the analytical model. Table 1 lists the
parameters corresponding to Fig. 12a–c at different positions on earth, including
satellite’s flying UTC time, the longitudinal and latitudinal positions, and the fitted
parameters of cloud: the transport mean free path ltr, the effective radius of water
drops rd, the anisotropy factor g, the scattering cross section σs, the scattering length
ls, the density of drops ρ, and the altitude of top level of major cloud htop,
respectively. We would like to emphasize that the fitting here is against the
time-resolved light reflectance, whereas most existing cloud remote sensing algo-
rithms use the continuous wave (CW) measurements. The retrieved effective par-
ticle size in the given examples appears to be smaller than the values reported in the
literature based on CW measurements (Lin et al. 1998; Wang et al. 2009). This
difference may possibly originate from the fact that the particle size recovered from
the time-resolved reflectance represents most closely the value at the top of the
cloud and the other regions of the cloud have little effects on its value. Remote
sensing with time-resolved measurements in principle can yield more accurate
characterization of the cloud. Further investigation is needed to resolve the above
discrepancy.

Fig. 11 Image of CALIPSO L1B data is shown when satellite passed through North America on
August 7, 2007. The horizontal points represent positions on the earth by longitudinal and
latitudinal coordinates. The vertical levels represent altitude counted from the earth surface.
Strength of the attenuated backscattering rate (in unit of km−1 SR−1) is represented by pseudo
color on the image map, according to the scale shown in the color bar
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Fig. 12 a–c Fitting of
CALIPSO data recorded
using 532-nm light
(represented by black
squares) to the theoretical
formalism (shown by solid
line) at three different
positions on earth for
extraction of cloud
parameters. The parameters
are listed in Table 1, and
indicated on respective figures
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6 Summary

In this chapter, we have reviewed the analytical solution of the time-dependent
scalar and vector RTE in an infinite uniform medium with an arbitrary light scat-
tering phase function using cumulant expansion. Analytical expressions have been
derived for the exact distribution in angle and the spatial cumulants at any angle,
exact up to an arbitrary high order. Simple Gaussian analytical approximate
expressions of the scalar and vector photon spatial distribution have also been
obtained, whose center position and half-width are always exact at arbitrary time.
This provides a clear analytical picture that the center of photon distribution
advances and the half-width grows in time, showing the evolution of the particle
migration from near ballistic, through snake-like, and into the final diffusive regime.
The cumulant solution has one unique advantage comparing with other approxi-
mation techniques of solving RTE that truncation of the cumulant expansion at
order n is exact at that order and cumulants up to and including order n remain
unchanged when contributions from higher orders are added. The cumulant solution
to RTE is particularly suited to understand and model the temporal migration of
scalar and vector photons inside a turbid medium. Two applications of the cumulant
solution in Early Photon Tomography (EPT) and cloud sensing from lidar data have
been discussed as examples. We expect the cumulant solution will find more
applications in biophotonics for optical imaging and remote sensing with
time-resolved data in general.

Table 1 Parametre list using a fitting of CALIPSO data recorded using 532-nm light

Fig. 12(a) 12(b) 12(c)

UTC time 70807.327223 70807.327323 70807.327017

Latitude (°) 48.139153 47.623989 49.192322

Longitude (°) −82.636620 −82.838814 −82.212204

ltr (km) 0.1516 0.118 0.334

rd (μm) 3.0 1.7 0.5

g-factor 0.8397 0.7923 0.8508

σs (μm
2) 67.628 18.79 3.0716

ls (km) 0.02428 0.0245 0.04983

ρ (109/m3) 0.609 2.171 6.532

htop (km) 6.721 6.826 5.260
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Radiative Transfer in Spherically
and Cylindrically Symmetric Media

Alexander Kolesov and Nataliya Kropacheva

The theory of light scattering and radiative transfer in various media is successfully
used to solve scientific and practical problems of astrophysics, geophysics,
oceanology, and other fields of science that study the interaction of the electro-
magnetic radiation with the matter. Methods of this theory are also used to study the
propagation of particles in a substance, in particular, in the study of the diffusion of
neutrons. These methods are also applied in studying heat transfer processes.

The theoretical basis for radiation transfer in the plane-parallel media was set
forth, for example, by Kourganoff (1952), Davison (1957b), Ambartsumyan (1960,
1998, Chandrasekhar (1960), Busbridge (1960), Sobolev (1963, 1975), Case and
Zweifel (1967), Ivanov (1973), van de Hulst (1980), Minin (1988)). In their
numerous works, Germogenova, Maslennikov, Marchuk, Bellman, Kalaba, Ueno,
Rogovtsov, and other authors presented important results obtained in this theory.
Ivanov (1991, 1994) provided a brief history of the theory of radiative transfer.

In many cases, objects with spherical symmetry can be modeled using a
plane-parallel media, neglecting by their curvature. In the case of isotropic scat-
tering, this model can be also used to study the light regime in the spherical object
when the curvature of the layers cannot be neglected. As a result, the problem of
multiple isotropic scattering in a homogeneous sphere and a spherical shell is
reduced to the corresponding problem for plane-parallel media.

However, the neglect of the anisotropy of the scattering is not justified to study
such astrophysical objects as dust nebulae, planetary atmospheres, and extended
shells of stars. The theory of radiative transfer in the spherical shell media should be
used in these cases.
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Some astrophysical objects (sunspots, accretion disks, coronal rays and others)
have axial symmetry. The model of a medium with cylindrical symmetry can be
used to study them. This model is also applied in the theory of neutron transport.

In the present review article, the authors focus on studying the radiative transfer
in spherically symmetric media. Nevertheless, when it is necessary, we provide an
information from the theory of radiative transfer in plane-parallel media. In addi-
tion, we will provide a brief overview of the theory of radiative transfer in media
with axial (cylindrical) symmetry.

1 Radiation Fields in Infinite Media Illuminated
by a Point Source

The problem of a point light source in an infinite homogeneous absorbing and
scattering medium plays an important role in the theory of radiative transfer in
media with spherical symmetry. The solution of this problem gives the Green’s
function which allows to determine the radiation field for any spherically symmetric
distribution of sources. Knowledge of the light regime in an infinite medium gives
an opportunity to calculate radiation fields in other media with spherical symmetry:
in a sphere, in an infinite medium with a spherical cavity, and in a spherical
envelope. First, the light regime in such media at great distances from the boundary
surfaces asymptotically approaches to the light regime in an infinite medium.
Second, relations between radiation intensities in these media and in an infinite
medium can be used for finding the radiation fields in such media.

The solution of the problem of a point light source in an infinite medium is also
used for calculations of thermal neutron fields in spherical nuclear reactors (see Bell
and Glasstone 1970).

1.1 Infinite Homogeneous Media with a Planar Source

Let us examine the solution of the problem of the light regime in an infinite
homogeneous absorbing and anisotropically scattering medium illuminated by a
planar source. This problem is of interest in the sense that its solution is related by
some integral equation (see Case et al. 1953; Case and Zweifel 1967) with the
problem of the radiative transfer in an infinite medium illuminated by a point
source. This circumstance allows finding the exact analytical solution of the
problem of a point source, if you know the proper solution of the problem of a
planar source.

Case (1960) and Mika (1961) in the cases of isotropic and anisotropic scattering
solved the problem of a planar source in an infinite medium by the eigenfunction

144 A. Kolesov and N. Kropacheva



method. Case and Zweifel (1967) described the solution of this problem and its
results in the book.

The optical properties of the considered homogeneous medium are characterized
by the absorption coefficient α, the single scattering albedo λ, and the phase
function x(cos γ), where γ is the scattering angle. Let us assume that the phase
function is represented as a sum

xðcos cÞ ¼
XN
n¼0

xnPnðcos cÞ; ð1Þ

where Pn(cos γ) are Legendre polynomials. The xn coefficients are the parameters
that satisfy the condition x0 ¼ 1 and xnj j\2nþ 1 for any n� 1:

In the works of Rogovtsov and Borovik (2009), Rogovtsov (2015a, b) the theory
was developed for the cases of the phase function square integrable on close
interval [−1,1] and satisfying the Hölder condition on this interval.

The functions describing the light regime in an infinite medium with an isotropic
point source do not depend on the azimuth. Therefore, considering the problem of a
planar source, we limit ourselves to build the Green’s function averaged over the
azimuth.

Instead of geometric distances z of points of the medium from some arbitrary
initial plane, which is coplanar to the planar source, we introduce appropriate
optical distances t ¼ azð�1\t\þ1Þ. The location of the source and the
direction of its radiation will be characterized by the coordinate t1ð�1\t1\þ1Þ
and the polar angle arccos g1, respectively. The direction of propagation of the
radiation on the optical distance t from the initial plane is determined by the polar
angle arccos g. We denote that the Green’s function averaged over the azimuth by
G1 t; g; t1; g1ð Þ.

This function is determined by the equation

g
@ �G1 t; g; t1; g1ð Þ

@t
þ �G1 t; g; t1; g1ð Þ

� k
2

Z1
�1

p g; g0ð Þ�G1 t; g0; t1; g1ð Þdg0 ¼ 1
2p

dðt � t1Þdðg� g1Þ ð2Þ

as well as by the condition of reciprocity (see Case 1960)

�G1ðt; g; t1; g1Þ ¼ �G1ðt1;�g1; t;�gÞ ð3Þ

and by the condition at infinity

lim tj j!1 �G1 t; g; t1; g1ð Þ ¼ 0 ð4Þ
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In Eq. (2) the quantity p(η, η′) is the phase function averaged over the azimuth and
δ(x) is the delta-function.

The Green’s function has a jump on the emitting surface. The value of this jump
is given by the expression

�G1 t1 þ 0; g; t1; g1ð Þ � �G1 t1 � 0; g; t1; g1ð Þ ¼ dðg� g1Þ
2pg

ð5Þ

The solution of boundary-value problems (2) and (4) is sought in space of linear
functionals (see Vladimirov 1976). The mathematical theory of radiative transfer is
discussed, for example, by Ershov and Shikhov (1985), Germogenova (1986),
Shikhov and Troyanovski (1983), and Vladimirov (1963).

Case (1960) proposed to represent the Green’s function at t < t1 and at t > t1 as a
superposition of the eigenfunctions (the elementary solutions) ψ(t, η, ν) of the
homogeneous radiative transfer equation, i.e., in the form

�G1 t; g; t1; g1ð Þ ¼ Sm[ 0c t1; g1; mð Þw t; g; mð Þ for t[ t1;
�G1 t; g; t1; g1ð Þ ¼ �Sm[ 0c t1; g1;�mð Þw t; g;�mð Þ for t\t1:

ð6Þ

Here the symbol Sm[ 0 denotes summation over all M positive eigenfunctions of the
discrete spectrum and integration over the positive eigenfunctions of the continuous
spectrum, i.e.,

Sm[ 0 f ðmÞ ¼
XM
j¼1

f mj
� �þ Z1

0

f ðmÞ dm: ð7Þ

The coefficients c t1; g1;�mð Þ are found from conditions (3), (4), and (5).
The eigenfunctions ψ(t, η, ν) are nontrivial solutions of the equation (see Case

and Zweifel 1967)

g
@wðt; g; mÞ

@t
þwðt; g; mÞ � k

2

Z1
�1

p g; g0ð Þw t; g0; mð Þdg0 ¼ 0: ð8Þ

The solution of this equation has the form

wðt; g; mÞ ¼ Rðg; mÞe�t
m: ð9Þ

The function R(η, ν) is represented in the form of an expansion in Legendre
polynomials PnðgÞ
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Rðg; mÞ ¼ 1
2

X1
n¼0

ð2nþ 1ÞRnðmÞPnðgÞ: ð10Þ

Here quantities RnðmÞ may be determined from a recursion relation

ðnþ 1ÞRnþ 1ðmÞþ nRn�1ðmÞ ¼ ð2nþ 1� kxnÞmRnðmÞ;
R0ðmÞ ¼ 1; R1ðmÞ ¼ ð1� kÞm: ð11Þ

Series (10) diverges if |ν| ≤ 1, i.e., the value of R(η, ν) is a distribution. Therefore,
series (10) cannot be used for numerical calculations, but it can be used to find the
angular momenta of this function.

The spectrum of eigenvalues ν of Eq. (2) is mixed. The interval [−1,1] is a
continuous range of these values. Discrete values m ¼ mj ðj ¼ 1; 2; . . .;MÞ are
obtained by solving the characteristic equation

TðmÞ ¼ 1� m
Z 1

�1

WðgÞ
m� g

dg ¼ 0; ð12Þ

where

WðgÞ ¼ k
2

XN
n¼0

xnRnðgÞPnðgÞ: ð13Þ

The spectrum of discrete values of ν was researched by Case (1960), Mika (1961),
Maslennikov (1969), Germogenova (1972, 1974, 1978), and Inönü (1970). In the
case of isotropic scattering, Eq. (12) has two roots �m1. When λ = 1, these roots are
infinite. In the case of anisotropic scattering, the number 2M of the roots of this
equation increases with increasing of the phase function elongation and corre-
sponding increasing of a number N + 1 of terms in expression (1). A rigorous
presentation of the qualitative and constructive theory of the radiative transfer
characteristic equation is given by Rogovtsov and Borovik (2009) and Rogovtsov
(2015a, b).

Along with eigenfunctions wðt; g; mÞ, we must introduce corresponding conju-
gate eigenfunctions

w�ðt; g; mÞ ¼ wðt;�g;�mÞ ¼ Rðg; mÞet
m: ð14Þ

The system of eigenfunctions has the property of orthogonality

Z1
�1

gwðt; g; mÞw�ðt; g; fÞdg ¼ NðmÞdðg; fÞ; ð15Þ
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where dðg; fÞ ¼ dðg� fÞ is the delta-function when m 2 ½�1;1� and f 2 ½�1;1�;
dðg; fÞ ¼ djk is the Kronecker symbol when m ¼ mj; f ¼ fk. Here mj and fk are
discrete roots of the characteristic equation (12). In the bounds of the Case method,
normalization integrals are given by expressions

NðmÞ ¼ TðmÞ½ �2 þ pmWðmÞ½ �2
n o

m for mj j � 1;

NðmÞ ¼ 2mWðmÞ 2m4
Z 1

0

WðgÞ
ðm2 � g2Þ2 dg� 1

" #
for mj j[ 1:

ð16Þ

Using conditions (4), (5), and (15), Case (1960) and Mika (1961) obtained the
following expressions for the Green’s function:

�G1 t; g; t1; g1ð Þ ¼ 1
2p

Sm[ 0
R g1; mð ÞRðg; mÞ

NðmÞ e�
t�t1
m for t[ t1; ð17Þ

�G1 t; g; t1; g1ð Þ ¼ 1
2p

Sm[ 0
R �g1; mð ÞR �g; mð Þ

NðmÞ e�
t1�t
m for t\t1: ð18Þ

It is usually assumed that t1 = 0.
In the case of a planar isotropic source, the Green’s function is given by the

expression

�G1ðt; g; 0Þ ¼ 1
2

Z1
�1

�G1 t; g; 0; g1ð Þdg1: ð19Þ

Then, expressions (17) and (18) take the following form

�G1ðt; g; 0Þ ¼ 1
4p

Sm[ 0
Rðg; mÞ
NðmÞ e�

t
m for t[ 0; ð20Þ

�G1ðt; g; 0Þ ¼ 1
4p

Sm[ 0
Rð�g; mÞ
NðmÞ e

t
m for t\0: ð21Þ

A planar isotropic source can be represented as a set of point isotropic sources of
luminosity L, uniformly distributed with a surface density l. Thus, the quantity
l � L � �G1ðt; g; 0Þ is the full intensity of the radiation, i.e., the sum of intensities of
the diffuse radiation and the radiation coming to this point of the medium directly
from the source. Therefore, in this case the source function can be represented in the
form
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B1ðt; gÞ ¼ klL
2

Z1
�1

�G1 t; g0; 0ð Þp g; g0ð Þdg0; ð22Þ

From Eqs. (1), (10), (20), (21), and (22), we obtain the following expressions for
this function

B1ðt; gÞ ¼
XN
n¼0

xnB
1
n ðtÞPnðgÞ for t[ 0;

B1ðt; gÞ ¼
XN
n¼0

�1ð ÞnxnB1
n ðtÞPnðgÞ for t\0;

ð23Þ

where

B1
n ðtÞ ¼ klL

8p
Sm[ 0

R g; mð Þ
N mð Þ e�

tj j
m : ð24Þ

These expressions take place for the case of polynomial phase functions.

1.2 The Relationship Between Radiation Field
Characteristics in an Infinite Medium with Point
or Plane Sources

We consider the problem of light scattering in an infinite homogeneous medium
illuminated by an isotropic point sources of luminosity L. We denote the intensity
of the diffuse radiation travelling in a direction characterized by a polar angle
arccos μ at an optical distance τ from the point source by I1ðs; lÞ and the corre-
sponding source function by S1ðs; lÞ. These functions are defined by the radiative
transfer equation

l
@I1 s; lð Þ

@s
þ 1� l2

s
@I1 s; lð Þ

@l
þ I1 s; lð Þ ¼ S1 s; lð Þ ð25Þ

and the radiative equilibrium equation

S1ðs; lÞ ¼ k
2

Z1
�1

p l; l0ð ÞI1 s; l0ð Þdl0 þ kLa2

16p2
xðlÞ e

�s

s2
: ð26Þ

The function I1ðs; lÞ must satisfy the condition of its attenuation at large distances
from the source, i.e.,
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lims!1 I1 s; lð Þ ¼ 0: ð27Þ

Solving boundary-value problem (25), (26) is reduced to finding the source
function S1 s; lð Þ. Knowing this function, one can determine the radiation intensity
I1 s; lð Þ. From Eq. (25) with boundary condition (27), we find

I1ðs; lÞ ¼
Z1
0

S1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2slsþ s2

p
;

lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2slsþ s2

p
 !

e�sds: ð28Þ

This expression is suitable for calculations.
We shall write the integral relationship between source functions B1ðt; gÞ and

S1 s; lð Þ. The function S1 s;lð Þ can be represented as a sum

S1ðs; lÞ ¼
XN
n¼0

xnS
1
n ðsÞPnðlÞ; ð29Þ

similar to representation (23) of the function B1ðt; gÞ. In Case et al. (1953) it was
shown that

B1
n ðtÞ ¼ 2pl

a2

Z1
tj j

S1n ðsÞPn
t
s

� �
s ds: ð30Þ

Using the Mellin integral transform from Eq. (30), we obtain the following
expressions for the quantities S1n sð Þ (see Kolesov 1983):

S1n ðsÞ ¼ � a2

2pls2
s
dB1

n ðsÞ
ds

� n nþ 1ð Þ
2

B1
n ðsÞ

�

�
Xmn

m¼0

ð�1Þm
2mð Þ!!

2n� 2m� 1ð Þ!!
n� 2m� 2ð Þ! s

�nþ 2mþ 1
Z1
s

tn�m�2B1
n ðtÞdt

3
5;
ð31Þ

where mn ¼ 1
2 n� 2� bnð Þ;

b0 ¼ 1; bn ¼
Xn
m¼0

1� xm
2mþ 1

� 	
for n� 1: ð32Þ

The sum in formula (31) is equal to zero if mn\0:
Dolin and Luchinin (1971) obtained expression (31) by another way.
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Thus, the solution of the problem of a point source in an anisotropically scat-
tering and absorbing infinite medium is expressed through the solution of the
corresponding problem of a planar source in the same medium.

1.3 Exact Expressions for the Source Function
and the Radiation Intensity in an Infinite Medium
Illuminated by an Isotropic Point Source

Substitution of expression (24) into Eq. (31) leads to the following exact formula
for the quantities S1n ðsÞ:

S1n ðsÞ ¼ kLa2

16p2
Sm[ 0

fnðs; mÞ
NðmÞ ; ð33Þ

where

fnðs; mÞ ¼ RnðmÞ
sm

ffiffiffiffiffi
2s
pm

r
Knþ 1

2

s
m

� �
: ð34Þ

Here Knþ 1
2
ðzÞ is the modified Bessel function of the 3rd kind with a half integer

index (see Abramowitz and Stegun 1964).
Thus, the source function is given by the following exact expression

S1 s; lð Þ ¼ kLa2

16p2
XN
n¼0

xnPn lð ÞSm[ 0
fn s; mð Þ
N mð Þ : ð35Þ

Expression (35) for the source function takes into account both the diffuse radiation
and the direct radiation received at a given point of the medium without scattering.

Representing the intensity of the diffuse radiation I1 s; lð Þ in the form of the
expansion in Legendre polynomials and using Eq. (33), we find the expression for
the function I1 s; lð Þ:

I1 s; lð Þ ¼ La2

16p2
X1
n¼0

ð2nþ 1ÞPn lð Þ Sm[ 0
fn s; mð Þ
N mð Þ � e�s

s2

� 

: ð36Þ

It must be emphasized that expression (36) contains a series but not a sum of a
finite number of Legendre polynomials. This expression gives the representation of
the diffuse radiation intensity in the form of a distribution described by a divergent
series. For numerical calculations, expression (36) is unusable. However, the
angular momenta of the quantity I1 s; lð Þ obtained through this expression are
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usual functions. For example, in the same way, we may find expressions for the
mean intensity J1 sð Þ and the radiation flux H1 sð Þ:

J1ðsÞ ¼ 1
2

Z1
�1

I1 s; lð Þdl

¼ La2

16p2s
Sv[ 0

e�
s
v

vNðvÞ �
e�s

s

� 

; ð37Þ

H1ðsÞ ¼ 2p
Z1
�1

I1 s; lð Þldl

¼ La2

4ps2
ð1� kÞSm[ 0

sþ m
N mð Þ � e�s

� 

: ð38Þ

These expressions are suitable for numerical calculations in the cases of suffi-
ciently simple phase functions.

The exact expression for I1 s; lð Þ, which can be used for the calculations of the
radiation field in an infinite medium, is obtained by substituting expression (35) into
(28).

This expression has the following form:

I1 s; lð Þ ¼ kLa2

16p2
XN
n¼0

xn

Z1
0

Sm[ 0

fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2slsþ s2

p
; m

� �
N mð Þ Pn

sl� sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2slsþ s2

p
 !

e�s ds:

ð39Þ

Kolesov and Perov (1987) used this expression for calculations of the radiation field
in an infinite dust nebula illuminated by a star (see Appendix A).

2 The Radiation Field in an Infinite Medium
with a Spherical Symmetric Distribution of Sources

The Case method of the solution of the radiative transfer equation, designed for
media of planar geometry, was generalized for the case of media with spherical
symmetry.

The theory of multiple scattering of light in an anisotropically scattering and
absorbing infinite medium with an arbitrary spherically symmetric distribution of
radiation sources was developed by Kolesov (1984a, 1994) using this method. Let
us consider this theory.
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2.1 The System of Eigenfunctions of the Homogeneous
Equation of Radiative Transfer in a Spherically
Symmetric Medium

In Sect. 1 of the present paper, we considered the problem of the light regime in an
infinite medium illuminated by a point source. Here we consider an infinite
homogeneous medium with an arbitrary spherically symmetric source distribution.

The eigenfunctions of the radiative transfer equation in this medium are nonzero
solutions of the homogeneous equation

l
@f s; l; mð Þ

@s
þ 1� l2

s
@f s; l; mð Þ

@l
þ f s; l; mð Þ

� k
2

Z1
�1

p l; l0ð Þ f s; l0; mð Þdl0 ¼ 0: ð40Þ

Partial solutions ~f s; l; mð Þ of this equation may be reprinted in the form of the
expansion in Legendre polynomials, i.e.,

~f s; l; mð Þ ¼ 1

m
ffiffiffiffiffiffiffiffiffiffi
2psm

p
X1
n¼0

ð2nþ 1ÞPnðlÞRnðmÞKnþ 1
2

s
m

� �
: ð41Þ

The coefficients of such expansion are given by expression (34).
We note that the existence of these partial solutions of the homogeneous

transport equation was already known in the 1940s (see Davison 1957b). In par-
ticular, they were obtained by solving the homogeneous transport equation in a
spherically symmetric medium under the assumption of the isotropy of scattering
by Laletin (1966, 1974a) and Nonnenmacher (1967).

When solving radiative transfer problems in an infinite medium, we are usually
interested in solutions that are regular at the origin s ¼ 0 and tends to zero at
infinity s ! 1ð Þ. We have to use the eigenfunctions of the homogeneous transport
equation, which provide the possibility of constructing such solutions.

When m[ 0, functions (41) satisfy the specified condition at infinity, but they
are not regular at the origin. The eigenfunctions f s; l; mð Þ ¼ ~f s; l; mð Þþ~f s; l;�mð Þ
are regular at s ¼ 0. These functions have the form

f s; l; mð Þ ¼
ffiffiffi
p

p

m
ffiffiffiffiffiffiffi
2sm

p
X1
n¼0

ð�1Þnþ 1ð2nþ 1ÞPn lð ÞRn mð ÞInþ 1
2

s
m

� �
; m\0ð Þ; ð42Þ

where Inþ 1
2
zð Þ is the modified Bessel function of the 1st kind.

Thus, when solving radiative transfer problems, it is more convenient to use the
following eigenfunctions
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f s; l; mð Þ ¼ ~f s; l; mð Þ m[ 0ð Þ;
f s; l; mð Þ ¼ ~f s; l; mð Þþ~f s; l;�mð Þ m\0ð Þ ð43Þ

instead of the eigenfunctions ~f s; l; mð Þ. The eigenfunctions

f � s; l; mð Þ ¼ f s;�l;�mð Þ ¼ ~f s;�l; mð Þþ~f s;�l;�mð Þ m[ 0ð Þ;
f � s; l; mð Þ ¼ f s;�l;�mð Þ ¼ ~f s;�l;�mð Þ m\0ð Þ

ð44Þ

are used as the conjugate eigenfunctions.
The eigenfunctions f s; l; mð Þ and f � s; l; mð Þ have the property of orthogonality:

Z1
�1

f s; l; mð Þ f � s; l; fð Þl dl ¼ �N sð Þ
s2m2

dðm; fÞ: ð45Þ

Let us consider the calculation of the eigenfunctions. The function f s;l; mð Þ with
m\0 and f � s; l; mð Þ with m[ 0 are represented by expansions in a convergent series
in Legendre polynomials. Therefore, these expansions can be used in calculations.

The functions f s;l; mð Þ with m[ 0 and f �ðs; l; mÞ with m\0 are distributions
described by divergent series. The angular momenta of these quantities are usual
functions and can be used in the calculations. To calculate these eigenfunctions it is
necessary to find a formal solution of Eqs. (40), analogous to the solution (28) of
Eq. (25), i.e.

f s; l; mð Þ ¼ k
2

XN
n¼0

xn

Z1
0

fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2slsþ s2

p
; m

� �

	Pn
sl� sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 2slsþ s2
p

 !
e�sds m[ 0ð Þ; ð46Þ

f � s; l; mð Þ

¼ k
2

XN
n¼0

ð�1Þnþ 1xn

Z 1

0
fn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 2slsþ s2

p
; m

� �

	Pn
slþ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ 2slsþ s2
p

 !
e�sds m\0ð Þ: ð47Þ

In the case of pure scattering when λ = 1, the characteristic equation (12) has
infinite roots �m1 ¼ �1 (k = 0). Then the corresponding eigenfunctions take the
following form:
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f s; l; þ1ð Þ ¼ 1
2

X1
n¼0

n!
bn

� Pn lð Þ
snþ 1 ; ð48Þ

f s; l;�1ð Þ ¼ 1; ð49Þ

f � s; l; þ1ð Þ ¼ �1; ð50Þ

f � s; l;�1ð Þ ¼ 1
2

X1
n¼0

ð�1Þnþ 1 n!
bn

� Pn lð Þ
snþ 1 : ð51Þ

In formulae (48) and (51), quantities bn are given by expression (32).

2.2 Green’s Function for the Radiative Transfer Equation
in an Infinite Medium with a Spherically Symmetric
Distribution of the Sources

Let G1 s; l; s1; l1ð Þ be the Green’s function for an infinite medium with a conical
sources located on a spherical surface s ¼ s1 and emitting at angle
arccos l1ð�1� l1 � 1Þ to the radius vector. This function satisfies the equation

l
@G1 s; l; s1; l1ð Þ

@s
þ 1� l2

s
@G1 s; l; s1; l1ð Þ

@l
þG1 s; l; s1; l1ð Þ

� k
2

Z1
�1

p l; l0ð ÞG1 s; l0; s1; l1ð Þdl0

¼ 1
2ps2

dðs� s1Þdðl� l1Þ; ð52Þ

as well as the condition of reciprocity

G1 s; l; s1; l1ð Þ ¼ G1 s1;�l1; s;�lð Þ; ð53Þ

and conditions of the regularity at the center of symmetry (when s ¼ 0) and of the
trending to zero at infinity (s ! 1).

Equation (52) for the Green’s function becomes homogeneous when s 6¼ s1.
Therefore, this function is represented as a linear combination of the eigenfunctions
f s; l; mð Þ. When s ¼ s1, it has a gap, which is determined by expression

G1 s1 þ 0; l; s1; l1ð Þ � G1 s1 � 0;l; s1; l1ð Þ ¼ dðl� l1Þ
2ps21l

: ð54Þ
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Using the expansion of this function in the eigenfunctions, as well conditions
(45) and (54), we obtain the following expressions:

G1 s; l; s1; l1ð Þ ¼ � 1
2p

Sm[ 0
m2

N mð Þ f
� s1; l1; mð Þf s; l; mð Þ s[ s1ð Þ; ð55Þ

G1 s; l; s1; l1ð Þ ¼ � 1
2p

Sm[ 0
m2

N mð Þ f
� s1; l1;�mð Þf s; l; mð Þ ðs\s1Þ: ð56Þ

When the radiation source is isotropic, the integration of expressions (55) and (56)
over l1 from −1 to 1 leads to the expressions

G1 s; l; s1ð Þ ¼ 1
2ps1

Sm[ 0
m

N mð Þ f s; l; mð Þsh s1
m

ðs[ s1Þ; ð57Þ

G1 s; l; s1ð Þ ¼ � 1
4ps1

Sm[ 0
m

N mð Þ f s; l;�mð Þe�s1
m ðs\s1Þ: ð58Þ

Trending s1 to zero in formula (57), we obtain the expression of the Green’s
function for an infinite medium illuminated by an isotropic point source located at
the origin

G1 s; l; 0ð Þ ¼ 1
2p

Sm[ 0
f s; l; mð Þ
N mð Þ ð59Þ

Meyer and Jacobs (1970) also obtained this expression using another method.
The intensity of the diffuse radiation I1 s; l; s1; l1ð Þ is expressed through the

Green’s function G1 s; l; s1; l1ð Þ by the relationship

I1 s; l; s1; l1ð Þ ¼ La2

4p
G1 s; l; s1; l1ð Þ l1j j: ð60Þ

We note that the eigenfunctions used for calculations of the Green’s function are
not divergent expansions in Legendre polynomials but the formal solutions of
Eq. (40). Therefore, the following formulae take the place for I1 s; l; s1; l1ð Þ when
s[ s1 or when s\s1:

I1 s; l; s1; l1ð Þ ¼ � kLa2 l1j j
16p2

XN
n¼0

xnSm[ 0
m2

N mð Þf
� s1; l1; mð Þ

	
Z1
0

fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2slsþ s2

p
; m

� �
Pn

sl� sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2slsþ s2

p
 !

e�sds ðs[ s1Þ;

ð61Þ
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I1 s; l; s1; l1ð Þ ¼ kLa2 l1j j
16p2

XN
n¼0

ð�1Þnþ 1xnSm[ 0
m2

N mð Þ f s; l;�mð Þ

	
Z1
0

fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ 2s1l1sþ s2

q
; m

� 	
Pn

sl1 þ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21 þ 2s1l1s2 þ s2

p
 !

e�sds ðs\s1Þ:

ð62Þ

3 Radiation Fields in a Sphere and in a Spherical
Envelope

3.1 Main Methods for Solving Equation of Radiative
Transfer in Spherically Symmetric Media

The earliest works, in which the spherical radiative transfer equation has been used
for solution of astrophysical problems, were written in 1920s and 1930s. They were
concerned with the problem of the radiative equilibrium in solar and stellar
atmospheres. In these papers, the temperature distribution in extended photospheres
was determined, the energy distribution in their continuous spectra was found, and
the problem of absorption lines formation was discussed. Subsequently, the theory
of radiative transfer in spherically symmetric media was used for the planetary
atmospheres and the dust nebulae.

Exact, approximate, and numerical methods of solving the problems of the
neuron diffusion in media of different geometric shapes began to develop inten-
sively in 1940s in connection with the problem of calculation of nuclear reactors.
The neuron diffusion and radiative transfer problems are mathematical equivalent.
Therefore, these methods are also applied in calculations of radiation fields in
astrophysical objects.

It should be noted that analytical methods based on exact or approximate theory
are rather rarely used in astrophysics and physics. It happens, because analytical
methods are too cumbersome in practically interesting cases of heterogeneous
media, nonmonochromatic light scattering, and complicated spatial and temporal
distributions of energy sources. Therefore, various numerical methods of solving
the transport equation were developed for practical applications. Both methods of
the direct numerical solution of the transport equation and methods based on the
results of exact or approximate theory are widely used.

You can find reviews of various methods of solving the transport equation in a
number of articles and monographs, for example, in Bell and Glasstone (1970),
Greenspan et al. (1968), Davison (1957b), Germogenova (1971, 1986), Marchuk
(1961), Marchuk and Lebedev (1981). Crosbie and Khalil (1972) adduced the
extensive bibliography of works on the theory of radiative transfer in media with
spherical symmetry.
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Here, we give a brief overview of the most used methods for solving radiative
transfer problems in media with spherical symmetry.

Taylor (1927) and McCrea (1928) studied for the first time the radiation field in
spherical shells in the case of isotropic scattering. In the first of these works, the
radiative transfer equation was solved in the Schwarzschild–Schuster approxima-
tion (see Schwarzschild 1914). In the second work, the two-stream approximation
was proposed. In these approximations, the intensity of radiation is averaged in two
intervals of variation of the angular variable μ, i.e., 1 ≤ μ ≤ μr and μr < μ ≤ 1. In
contrast to the Schwarzschild–Schuster approximation, where μr = 0, in the
two-beam approximation it is postulated that arccos μr is the visible angle size of
the inner radius r� of the shell, if the point of the observation is located at distance r

from the center of symmetry, i.e., l2r ¼ 1� r�=r
� �2

:

Later, Unno and Kondo (1976) proposed a generalized two-stream approxima-
tion used in the case of shells of large optical thickness. In this approximation, the
value μr is determined by solving an auxiliary differential equation. In Unno and
Kondo (1977) it was considered an absorbing and anisotropically scattering
spherical shell. In Takenti (1979), this method was used to study the radiation field
in an infinitely long shell with the volume absorption coefficient, decreasing with
distance from the center of symmetry by a power law.

Wilson et al. (1980) developed a three-stream approximation based on the
averaging of the radiation intensity in three intervals of variation of the angular
variable μ, i.e., −1 ≤ μ < 0, 0 ≤ μ ≤ μr, and μr < μ ≤ 1.

The Eddington approximation (see Eddington, 1926) as well as its numerous
modifications are frequently used for solving the transport equation in various
problems of astrophysics and physics. This method was first used by Kosirev
(1934) and Chandrasekhar (1934a, b, 1935) in the case of isotropically scattering
media with spherical symmetry.

The method of spherical harmonics, which is the generalization of the Eddington
method, is one of the most effective methods for solving the transport problems
(see, for example, Greenspan et al. 1968; Davison 1957b; Marchuk 1961;
Vladimirov 1963). This method is based on the expression of the sought radiation
intensity (or phase density of neutrons) in spherical harmonics. The approximate
expression for the intensity of radiation, called PN-approximation, is sought in the
form of a partial sum of this expansion, consisting of N + 1 members. Substitution
of this expression in the integro-differential transfer equation leads to a system of
differential equations for the expansion coefficients. This system is solved with
boundary conditions corresponding to conditions of the considered physical or
astrophysical problems. Thus, P1-approximation coincides with the Eddington
approximation.

In the case of media with spherical symmetry, Marshak (1947) first used the
method of spherical harmonics. He applied this method to the problem of the
distribution of neutrons in an infinite homogeneous medium with a completely
black spherical cavity in the case of pure isotropic monochromatic scattering. As
applied to a spherical symmetric media, this method is described, in particular, by
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Davison (1957a), Bell and Glesston (1970), Marchuk and Lebedev (1981). In the
last two books, the case of anisotropic scattering is also reviewed. DeBar (1967)
applied this method to the solution of the nonstationary radiative transfer equation.

When using the spherical harmonics method, angular momenta of the radiation
intensity are sometimes applied instead of the expansion coefficients of the radiation
intensity in Legendre polynomials. Simonneau (1976, 1978, 1980) developed the
numerical method for solving the radiative transfer problem in inhomogeneous
media of spherical geometry based on the usage of these momenta.

Yvon (1957) proposed the method of dual PN-approximation, which is a mod-
ification of the method of spherical harmonics. In this approximation, the radiation
intensity (or the phase density of neutrons) is sought in the form of separate
expansions in Legendre polynomials in each of two intervals of the variation of the
angular variable, i.e., −1 ≤ μ ≤ 0 and 0 ≤ μ ≤ 1. This method was used for solving
radiative transfer problems in a homogeneous sphere by Drawbaugh and Noderer
(1959), Wilson and Sen (1964).

Yvon method is close to the method of the angular momenta on the hemisphere,
which was proposed by Özisik et al. (1975). The numerical method for solving the
transport equation in media of spherical geometry in the cases of monochromatic
scattering and scattering with radiation frequency redistribution was developed on
the base of this method.

Sobolev (1943) proposed an approximate method for studying the light regime
in a planar medium. This method consists of the following. Light scattering of the
first order is taken into account exactly. Nevertheless, the Eddington approximation
is used and the exact phase function is replaced by a two-term one in the case of
scattering of higher order. Later, Sobolev (1972) used this method for investigating
the radiation field in a homogeneous spherical dust nebula. Dorschner (1971), who
proposed to describe scattering of higher order in PN-approximation, generalized
this method.

Chou and Tien (1968) developed the numerical method of solving the radiative
transfer equation in a spherical shell with anisotropic scattering. This method is
based on the usage of the Eddington approximation and the presentation of the
radiation intensity in the form of a linear function of the angular variable in each of
the three intervals of its variation, i.e., −1 ≤ μ < 0, 0 ≤ μ ≤ μr and μr < μ ≤ 1. This
technique was improved by Viik (1974a, b, c).

Pustylnick (1964, 1965) changed the Eddington method supposing the existence
of a relationship between the Eddington multipliers dependent on the radial coor-
dinate r, i.e., the relations of K-integral K(r) and flux H(r) to the mean intensity J(r).
Hummer and Rybicki (1971) developed the modified Eddington method based on

finding the variable multiplier KðrÞ=JðrÞ with the help of iterations. It was used in

the case of an absorbing and anisotropically scattered medium by Cassinelli and
Hummer (1971). As shown in Hummer and Rybicki (1971) and in Rybicki and
Hummer (1975), this method allows to take into account the effect of the peak
emission intensity in problems of light scattering in the lengthy shells with the
density decreasing with the distance r from the center of symmetry. Chapman
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(1966) identified this effect. The radiation intensity I(τ, μ) has the pronounced
maximum at μ = 1, the value of which increases with r. The numerical algorithm
description for solving the radiative transfer equation by this method in the case of
pure isotropic scattering, is shown by Hummer et al. (1973). The Eddington mul-

tiplier KðrÞ=JðrÞ was computed in Wilson et al. (1972) for the case when the volume

scattering coefficient is inversely proportional to r2.
Leung (1975) extended this method to the case of an absorbing and scattering

spherically symmetric medium with internal energy sources. It is known as the
quasidiffusion method.

Kunasz and Hummer (1974) proposed the numerical method of the radiative
transfer equation solution in a medium with spherical symmetry, suitable for the
calculation of spectral line profiles. Using this method, both Eddington multipliers,

i.e., KðrÞ=JðrÞ and HðrÞ=JðrÞ were calculated by iteration. Yorke (1986) developed

the method for the solution of stationary and non-stationary problems of radiative
transfer in continuous spectrum with anisotropic scattering based on the use of these
multipliers.

The discrete ordinates method is also widely used for solving radiative transfer
problems. For case of plane-parallel media, Wick (1943) suggested the original
version of this method developed then by Chandrasekhar (1960). This method
consists of the replacement of the integral term in the radiative transfer equation by
the Gaussian sum. Chandrasekhar (1945) applied this method to the investigation of
the radiation field in an inhomogeneous spherical envelope in the case of the pure
isotropic monochromatic scattering under the assumption that the volume coeffi-
cient of emission decreases with increasing of the distance from the center of
symmetry. By this method, Barkov (1960, 1963) investigated the light regime in a
homogeneous sphere with a central point source.

Another variant of the method of discrete ordinates is Sn-method developed by
Carlson (see Greenspan et al. 1968). In this method, the integral term in the radiative
transfer equation is calculated approximately. The interval of variation of the angular
variable (−1 ≤ μ ≤ 1) is divided into N sections. In every section, the function is
replaced by a linear function of this variable. Davydov and Shikhov (1973, 1975)
described the application of this method to media of spherical geometry.

Different methods for the numerical solution of the integro-differential radiative
transfer equation are used for computing the light regime in inhomogeneous
spherically symmetric media. These methods are based on discretization not only
the angle but also the radial variable (see, for example, Grant and Hunt Grant and
Hunt 1969a, b; Gruschinske and Ueno 1971; Peraiahand Varghese 1984, 1985a, b).
While studying the light scattering with the radiation frequency redistribution, the
frequency is also exposed to the discretization.

The radiative and neutron transport boundary-value problems are often solved
by numerical methods, in particular, by the Monte Carlo method (see, for example,
Marchuk and Mikhailov 1967; Marchuk and Lebedev 1981; Ermakov and
Mikhailov 1982; Mikhailov 1987). Kurchakov (1970) and Sanford (1973) applied
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the Monte Carlo method to the calculation of radiative fields in spherically sym-
metric media, for example.

When solving problems of the radiative transfer theory, it is often more con-
venient to use the integral equation for the source function instead of the
integro-differential equation for the radiation intensity. Peierls (1939) derived the
integral equation for media of arbitrary geometry in the case of isotropic scattering.
This equation for planar and spherically symmetric media will be presented below,
in the next section of the present article.

The Peierls equation was solved by various numerical methods. The iteration
method was used to solve this equation by Kuznetsov (1951) and Viik (1974a, b, c).
Kuznetsov (1951) calculated the source function for an inhomogeneous infinitely
long shell surrounding a black sphere, assuming a pure scattering. Viik (1974a, b, c)
considered the case of a homogeneous spherical layer under various assumptions
about the distribution of internal and external sources. In Kho and Sen (1971), the
source function was sought in the form of Neumann series. In Dubi and Horowitz
(1978), the difference of the source functions for the sphere and for the infinite
medium was expanded in the same series. Gruschinske and Ueno (1971) solved the
integral radiative transfer equation by means of the method proposed by Bellman
(1968) for solving Fredholm equations. Leong and Sen (1971a) solved this equa-
tion, representing its kernel as a sum of degenerate and small kernels. In these
works, the phase function was considered to be spherical.

Rogovtsov (1981a, b) and Ganapol (2008) obtained various important invariance
relations and integral equations generalizing the Peierls equation.

Calculating the source function for inhomogeneous media of spherical geometry,
Schmid-Burgk (1973, 1975), Schmid-Burgk and Scholz (1975), broke these media
on several spherical layers. In each of these layers, the product of the square of the
distance from the center of symmetry on the source function was described by a
polynomial depending on the optical depth of the layer.

Let us now consider methods for solving the radiative transfer equation in media
with spherical symmetry, based on the results of the exact theory.

A number of authors solved the problems of the light (or neutrons) propagation
in a sphere of finite radius and in a spherical shell in the case of isotropic scattering,
by reducing them to the appropriate problems for planar media.

Heaslet and Warming (1965) considered the case of the uniform distribution of
energy sources in a sphere and expressed the source function through the funda-
mental function Φ(τ) for a planar layer. Sobolev (1958) introduced this function in
the theory. The function Φ(τ) is associated with resolvent of the integral radiative
transfer equation in a planar layer. These authors expressed the luminosity of a
sphere through the angular momenta of X- and Y-functions of Chandrasekhar.
Gritton and Leonard (1970) deduced an expression for the amount of heat leaving
the surface of a sphere. This expression contains the X- and Y-functions. Van de
Hulst (1987, 1988, 1994) expressed the double angular momenta of the light
reflection coefficient from a sphere through the momenta of these functions.

Sobolev (1972) determined the average number of scattering of a light quantum,
radiated at a certain optical depth in a sphere, in the diffusion process until its exit
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through the boundary surface or until its true absorption. This value is expressed
through the fundamental function Φ(τ). Sabashvili (1973) made numerical calcu-
lations of the average number of quantum scattering in a sphere. Knowledge of this
value allows us to determine the luminosity of a sphere for an arbitrary (not nec-
essarily spherically symmetric) distribution of sources. Sobolev (1972) considered
the cases when the sources in a sphere were evenly distributed and when a sphere
was illuminated by a point source located at an arbitrary distance from the center.
Loskutov (1974) calculated the luminosity of a sphere illuminated by parallel rays.

Case et al. (1970), solving the problem of the neutron distribution in spherically
symmetric media with isotropic scattering by the method of Green’s function,
received an expansion of the neutrons phase density in the eigenfunctions for this
problem. For the expansion coefficients, they brought the same linear singular
equations, which were obtained in the case of planar media. However, as shown by
Sahni (1975) in that way we get the correct solution only for the “internal” problem
of the neutron transport. This method does not resolve the “external” problem, i.e.,
the problem of neutron transport in an infinite medium with a spherical absolutely
black cavity.

Leonard and Mullikin (1964) found in the case of isotropic scattering the relation
between the resolvents of the integral transport equation for a sphere of optical
radius s0 and a planar layer of optical thickness 2s0. Using this relation, Erdman
and Siewert (1968) expressed the source function for a sphere through the Case
eigenfunctions for a planar layer.

Wilson and Sen (1973a) obtained the expression for the resolvent of the integral
radiative transfer equation for a sphere through two auxiliary functions defined by
Fredholm integral equations. Ueno (1974) expressed this quantity through a single
auxiliary function similar to the fundamental function Φ(τ) for a planar layer. Poon
and Ueno (1974) investigated analytic properties of this auxiliary function.

Shkurpelov and Ershov (1967), Shkurpelov et al. (1970) transformed the integral
radiative transfer equation for a sphere and got integro-differential equation for the
auxiliary quantity, which has the meaning of the radiation intensity (or phase
density of neutrons) in a planar layer. This integro-differential equation was solved
using the Case method. Gorelov and Yuferev (1971), Gorelov et al. (1972), Sheaks
(1972), and Sahni (1975) solved this equation in the same way for a sphere con-
sisting of homogeneous layers, for a homogeneous infinite medium with a com-
pletely black spherical cavity, and for a homogeneous spherical envelope. When
solving transport problems in this way, explicit analytical expressions for the
expansion coefficients of the radiation intensity (or phase density neutron) in the
Case eigenfunctions does not found. These coefficients are found by numerical
solution of linear singular equations.

In Siewert and Grandjean (1979), Siewert and Maiorino (1979), Siewert and
Thomas (1984), the auxiliary integro-differential equation has been solved by FN-
method proposed by Siewert and Benoist (1979) for the case of planar media. This
method is based on the expansion of the phase density of neutrons (or the radiation
intensity) on the boundary surface of a medium in a series in powers of the angular
variable and the replacement of this series by the partial sum with N + 1 terms.
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Laletin (1969b) developed the method of surface pseudosources (GN-approxi-
mation) for solving boundary-value problems of the transfer theory. In this method,
the phase density of neutrons (or radiation intensity) is expressed through Green’s
function for the infinite homogeneous medium, the function of the source distri-
bution in the medium and the distribution function of the so-called pseudosources.
These expressions are sought in the form of the expansion in the series of spherical
functions. This series is approximately replaced by a partial sum.

Ershov and Shikhov (1977) described methods for solving boundary-value
problems of the transfer theory, based on the usage of integral transformations.
Solutions of the radiative transfer equations were obtained by means of the trans-
formations of Radon and Fourier (see, for example, Ershov and Shikhov 1972,
1973).

To solve the problems of the reflection and transmission of light by
plane-parallel media, Ambartsumyan (1943) proposed the method of layers com-
bination. He used the invariance principle consisting in the following: the intensity
of the radiation emerging from a semi-infinite medium does not change when an
additional layer with the same optical properties is added to this medium. This
principle is performed only in the case of plane-parallel media. However, the
method of invariant embedding (see monograph by Casti and Kalaba 1973), which
is a generalization of the method of combination of layers, is applicable to the
media of nonplanar geometries.

When this method is used, it is taken into account all changes of the intensity of
reflected radiation brought about by this layer. The processes of absorption and
re-emission of light in an additional thin layer added to the medium cause these
changes. The resulting equations contain derivatives with respect to coordinates
characterizing the geometric position of the boundary surface of the medium.

Bellman and other authors (Bailey 1964; Bailey and Wing 1964; Bellman and
Kalaba 1957; Bellman et al. 1959, 1960, 1964) used the method of invariant
embedding for media with a spherical symmetry with isotropic light scattering.
Ueno et al. (1971) derived integro-differential equations for the function of the
reflection of light from a sphere, as well as for the functions of the reflection and
transmission of light by a spherical shell for the case of inhomogeneous anisotropic
scattering spherical shells under various conditions on the inner boundary surface.
These authors also obtained the integro-differential equation for radiation intensity
inside a spherical shell.

Bellman and Kalaba (1965), Bellman et al. (1966) calculated the functions of
diffuse reflection of light from a spherical shell. Rybicki (1970) proved that the
results of these calculations are wrong. These authors used a system of equations,
which is not related to the function of diffuse light reflection. This system is related
to the fully light reflection function containing distributions of the delta-function
type. This function describes a direct flight of quanta of light through the boundary
surface of a shell. As a result, the collateral regular solution of the system of
equations has no physical meaning. This solution was mistakenly identified with the
function of the diffuse reflection of light.
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Rogovtsov (1981a, b, 1983, 1985, 1999) generalized the invariance principle
and stated the general invariance principle. Based on this principle, a new variant of
the invariance embedding method and the general invariance relation method were
developed. This method was used to solve the boundary-value problems of radia-
tive transfer theory for turbid media of various configurations (see Rogovtsov
2010). In particular, Rogovtsov (1986a, b, 1990, 1992a, b) considered radiative
fields in spherically and cylindrically symmetric media.

Rogovtsov and Borovik (2009), Rogovtsov et al. (2010) developed and used
effective algorithms of reflection function for the case of greatly elongated phase
functions.

Sobolev (1975) proposed a probabilistic method for solving radiative transfer
problems in plane-parallel media. This method is based on finding the probability
that a light quantum originating at a given optical depth in a medium will emerge
from the medium in the particular direction. Minin (1961, 1966) generalized this
method to the case of anisotropic scattering.

This method was used by Leong and Sen (1968, 1969, 1970, 1972, 1973a, b) in
the case of media with spherical symmetry. Leong and Sen (1968) introduced in
theory the concept of the probability of light quantum emerging from a spherical
shell; they obtained integro-differential equations for functions of the reflection and
transmission of light by inhomogeneous spherical shell with anisotropic
monochromatic scattering. Wilson and Sen (1973b) introduced function analogues
to X and Y functions of Chandrasekhar for inhomogeneous isotropically scattering
spherical shell and expressed through these functions the probability of the emer-
gence of a light quantum through external and internal boundary surface of the
shell. Nonstationary radiation field in an inhomogeneous spherical shell with iso-
tropic scattering was investigated by the probabilistic method by Leong and Sen
(1972) and Leong (1972). The intensity of the radiation emerging from a medium is
expressed through auxiliary functions which are defined by integro-differential
equations. Using this method, Leong and Sen (1973a) obtained equations for the
coefficients of the reflection and transmission of light by a spherical shell in the
frequencies of the spectral lines with the complete redistribution of the radiation
frequency. Wilson and Sen (1973c) generalized this result to the case of an arbitrary
law of the radiation frequency redistribution. Yengibarian (1972) solved the
problem of light scattering in a sphere with an arbitrary distribution of sources.

The analytic theory of radiative transfer in moving media is developed in a
number of articles. For example, Grachov (1978, 1994) considered the radiative
transfer in linearly expanding homogeneous spherical envelope surrounding an
opaque sphere. Sen and Wilson (1993) used the generalized Eddington approxi-
mation for determining radiation fields in spherically symmetric moving media.

The radiative transfer problem in a planetary atmosphere illuminated by parallel
solar radiation was set out by Sobolev (1975), van de Hulst (1980), Minin (1988),
Smoktii (1986), Smoktii and Anikonov (2008). This problem is practically
important for astrophysics and geophysics.
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In Sect. 4 of the present article, we consider in more detail the problem of
determining radiation fields in envelopes of limited size on the basis of integral
relations between the Green’s functions for such media and for an infinite medium.

3.2 The Integral Equation for the Source Function
in the Case of a Sphere

Let us examine the Peierls equation in the case of a homogeneous sphere of optical
radius τ0. As in the previous sections of the present article, the optical properties of
a medium will be characterized by the volume absorption α, the single scattering
albedo λ, and the phase function x(cos γ). The intensity of the diffuse radiation
Iðs; l; s0Þ and the source function Sðs; l; s0Þ are determined by the equation of
radiative transfer

l
@Iðs; l; s0Þ

@s
þ 1� l2

s
� @I s; l; s0ð Þ

@l
þ I s;l; s0ð Þ ¼ S s; l; s0ð Þ ð63Þ

and the equation of radiative equilibrium
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p l; l0ð ÞI s; l0; s0ð Þdl0 þ S0 s; l; s0ð Þ; ð64Þ

with the boundary condition

I s0; l; s0ð Þ ¼ 0 �1� l\0ð Þ: ð65Þ

In Eq. (64), the source term S0ðs; l; s0Þ results from scattering of the direct radiation
from the source. Condition (65) corresponds to the absence of an external diffuse
radiation.

From Eqs. (63) and (64), it is possible to obtain one integral equation that
determine the source function. Integrating linear differential Eq. (63) with boundary
condition (65), we find
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p t dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2 1� l2ð Þp

þ
Zs0

s
ffiffiffiffiffiffiffiffi
1�l2

p
S t;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2

t2
1� l2ð Þ

r
; s0

" #
� e�sl�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�s2 1�l2ð Þ

p t dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � s2 1� l2ð Þp for l[ 0:

ð67Þ

By substituting expressions (66) and (67) into Eq. (64), we obtain after trans-
formations the following integral equation for the source function:

sS s; l; s0ð Þ ¼ k
2

Zs0
0

t dt
Ztþ s

t�sj j

S t;� y2 � s2 þ t2

2yt
; s0

� 	

	 p l;
y2 � t2 þ s2

2ys

� 	
e�y dy

y
þ sS0 s; l; s0ð Þ: ð68Þ

By setting S �s; l; s0ð Þ ¼ S s; l; s0ð Þ, the Eq. (68) may be rewritten as

sS s; l; s0ð Þ ¼ k
2

Zs0
�s0

t dt
Z1
t�sj j

S t;� y2 � s2 þ t2

2y tj j ; s0

� 	

	 p l;
y2 � t2 þ s2

2y sj j
� 	

e�y dy
y

þ sS0 s; l; s0ð Þ:
ð69Þ

In the case of isotropic scattering, when p l; l0ð Þ ¼ 1, the source function S s; s0ð Þ
does not depend on the angular variable μ. Then the Eq. (69) has the form

sS s; s0ð Þ ¼ k
2

Zs0
�s0

tS t; s0ð ÞE1ð s� tj jÞdtþ sS0 s; s0ð Þ; ð70Þ

where EkðzÞ is the exponential integral, defined by

Ek zð Þ ¼
Z1
1

e�zu du
uk
: ð71Þ

Equation (70) for the quantity sS s; s0ð Þ in the case of a sphere of optical radius
s0 has the same form as the Peierls equation in the case of a plane-parallel medium
of optical thickness 2 s0 (see, for example, Leonard and Mullikin 1964).
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Let us examine the case of anisotropic scattering of light, when the phase
function pðl; l0Þ is represented by a sum of a finite number of Legendre polyno-
mials. If the value S0 s; l; s0ð Þ is also represented by Legendre polynomials, i.e.,

S0 s; l; s0ð Þ ¼
XN
n¼0

xnS
0
n s; s0ð ÞPnðlÞ; ð72Þ

then the function S s; l; s0ð Þ has a similar view, i.e.,

S s; l; s0ð Þ ¼
XN
n¼0

xnSn s; s0ð ÞPnðlÞ: ð73Þ

The coefficients Sn s; s0ð Þ and the intensity of radiation are related by the
equation

Sn s; s0ð Þ ¼ k
2

Z1
�1

PnðlÞ I s; l; s0ð Þdtþ S0n s; s0ð Þ: ð74Þ

The substitution of expression (73) into Eq. (69) leads us to the following system
of linear integral equations for the quantities Snðs; s0Þ:

sSn s; s0ð Þ ¼ k
2

XN
m¼0

ð�1Þmxn
Z s0

�s0

tSm t; s0ð ÞQmnðs; tÞdt

þ sS0n s; s0ð Þ;
ð75Þ

where

Qmnðs; tÞ ¼
Z1
t�sj j

Pm
y2 � s2 þ t2

2y tj j
� 	

Pn
y2 � t2 þ s2

2y sj j
� 	

e�y dy
y
: ð76Þ

We note that the kernel functions Qmn s; tð Þ are symmetric with respect to arguments
and indices, e.g., Qmn s; tð Þ ¼ Qnmðt; sÞ. They can be expressed through the expo-
nential functions and the exponential integrals.

In the case of isotropic scattering, the source function is determined by Eq. (70),
the kernel of which depends on the modulus of the difference of the arguments.
Such situation is typical for problems of light scattering in plane-parallel media. In
contrast, in the case of anisotropic scattering, the functions Qmn s; tð Þ depend not
only on |τ − t|, but also directly from the values of τ and t. Therefore, the system of
integral Eqs. (75) is not reduced to the corresponding system of equations for
plane-parallel media. Therefore, it is impossible to reduce the problem of radiative
transfer in a sphere to the appropriate problem for a planar medium.
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We note that the quantities Sn s; s0ð Þ are determined by the well-known (see, for
example, Bell and Glasstone 1970) recursion relation

nsn�1 d
ds

Sn�1 s; s0ð Þ
sn�1

� 

þ nþ 1

snþ 2

d
ds

snþ 2Snþ 1 s; s0ð Þ� �
¼ �ð2nþ 1� kxnÞSn s; s0ð Þ n ¼ 0; 1; . . .ð Þ: ð77Þ

Equations (73), (66), and (67) allow us to find the functions S s; l; s0ð Þ and
I s; l; s0ð Þ if we know the quantities Sn s; s0ð Þ.

3.3 The Structure of Green’s Function for Media
with Spherical Symmetry

Following Kolesov (1985b), we will determine the structure of Green’s function for
an arbitrary spherically symmetric media.

We assume that the optical properties of these media are the same as the optical
properties of an infinite homogeneous medium, as discussed in Sects. 1 and 2. The
point positions will be characterized by optical distances τ from the center of the
symmetry. As special cases of media with spherical symmetry, we consider a
sphere of optical radius s0 0� s� s0ð Þ, a spherical shell with infinite optical
thickness, i.e., an infinite medium s� � s\1ð Þ with a spherical cavity of optical
radius s�, as well as a shell of finite optical thickness s0 � s� s� � s� s0ð Þ bounded
by spherical surfaces s ¼ s� and s ¼ s0.

The radiation fields in such media with arbitrary spherically symmetric distri-
butions of the sources are fully determined by the primary source function D s1; l1ð Þ
and the Green’s function G s; l; s1; l1ð Þ.

As the Green’s function G1 s; l; s1; l1ð Þ discussed in Sect. 2, the function
G s; l; s1; l1ð Þ is also the solution of the homogeneous radiative transfer equation

l
@G s; l; s1; l1ð Þ

@s
þ 1� l2

s
� @G s; l; s1; l1ð Þ

@l
þG s; l; s1; l1ð Þ

� k
2

Z1
�1

p l; l0ð ÞG s; l0; s1; l1ð Þdl0 ¼ 0 s 6¼ s1ð Þ: ð78Þ

This function satisfies the condition of the jump at the radiating surface

G s1 þ 0; l; s1; l1ð Þ � G s1 � 0; l; s1; l1ð Þ ¼ dðl� l1Þ
2ps21l

ð79Þ
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and the condition of reciprocity

G s; l; s1; l1ð Þ ¼ G s1;�l1; s;�lð Þ: ð80Þ

These properties of the Green’s function are common to all media of the spherical
geometry and do not depend on the location of the boundary surfaces.

Jump condition (79) is valid for the Green’s function G1 s; l; s1; l1ð Þ as well as
for the function G s; l; s1; l1ð Þ in the cases of any media with spherical symmetry.
Therefore, G s; l; s1; l1ð Þ can be represented as the sum G1 s; l; s1; l1ð Þ and some
continuous on the radiating surface s ¼ s1 function. Since G s; l; s1; l1ð Þ and
G1 s; l; s1; l1ð Þ are particular solutions of Eq. (78), then their difference
G s; l; s1; l1ð Þ − G s; l; s1; l1ð Þ is also a particular solution of this equation, i.e., the
analytical expression of this difference must contain the eigenfunctions f(τ, μ, ν).
From the condition of reciprocity (80), it follows that this expression must also
contain the eigenfunctions f s1;�l1; fð Þ ¼ f � s1; l1;�fð Þ. Hence, this difference is a
linear combination of the products of f s; l; mð Þf � s1; l1;�fð Þ. Therefore, the
structure of the Green’s function for spherically symmetric media has the form

G s; l; s1; l1ð Þ ¼ G1 s; l; s1; l1ð Þ � 1
2p

SmSfc m; fð Þf s; l; mð Þf � s1; l1;�fð Þ: ð81Þ

In accordance with condition (80), the quantity c(ν, ζ) is a symmetric function of
v and ζ, i.e., c(ν, ζ) = c(ζ, ν).

Expression (81) gives a general form of the Green’s functions for any spherically
symmetric media. When you build this function for a particular medium, it is
necessary to find the coefficients c(ν, ζ), using the boundary conditions on the
surfaces, in the center of symmetry, and at infinity. The expression for c(ν, ζ)
contains as parameters the optical distances of the boundaries of this media from the
center of symmetry. For example, in the case of a sphere, quantities of c(ν, ζ)
depend on its optical radius s0, and in the case of a spherical shell they depend on
the inner s� and external s0 optical radii. If we are interested in solving the radiative
transfer equation, regular at the origin, we should put c(ν, ζ) = 0 if ν > 0 or ζ > 0. If
we build solutions tending to zero at infinity, it is necessary to assume that c
(ν, ζ) = 0 if ν < 0 or ζ < 0.

3.4 Integral Relations Between the Green’s Functions

In the study of radiation fields in various media with spherical symmetry, it is
advisable to use relations between the Green’s functions for these media and for an
infinite medium with a spherically symmetric distribution of the sources. The use of
these relations allows using the results of the exact analytical theory developed for
infinite media with spherical symmetry for studying the radiation fields in these
media.
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Before considering such relations for the media of spherical geometry, we give
similar relations between the averaged over the azimuth Green’s functions for a
planar layer and for an infinite medium with planar symmetry. These relations are
used for studying an asymptotic light regime in the outer layers of a sphere of large
optical radius and of optically thick spherical shells.

The relations between the Green’s functions for planar media were investigated
by Domke and Ivanov (1975), Mnatsakanian (1976), Ivanov and Volkov (1979).

First of all, let us consider a planar homogeneous layer of optical thickness
s0 � s�. The position of the points of the medium will be characterized by optical
distances t from some arbitrary primary plane. The direction of propagation of
radiation will be described by an angle arccos η between this direction and the
normal to the primary plane. The boundary surface of the media will be considered
parallel to this plane and to the planar radiation source.

Such planar layer can be represented as a part of an infinite medium bounded by
the planes t ¼ s0 and t ¼ s�ðs0 [ s�Þ. We denote the averaged over the azimuth
Green’s function for this layer by �G t; g; t1; g1; s0; s�ð Þ. Here s� � t� s0, s� � t1 � s0;
�1� g� 1, �1� g1 � 1. When s� ¼ �1; t� s0 and when s0 ¼ þ1; t� s�, we
have planar semi-infinite media. The Green’s function �G1 t; g; t1; g1ð Þ for an infinite
medium with planar symmetry was introduced in Sect. 1.

Let us write the relations between the functions �G1 t; g; t1; g1ð Þ and
�G t; g; t1; g1; s0; s�ð Þ. Thus, we shall proceed from the probabilistic meaning of the
Green’s function. This function represents the probability density of the following
events. Let the quantum of light propagate on the optical distance t1 from the
primary plane at an angle arccos η1 to the normal; then as a result of diffusion, it
will be on an optical distance t from this plane and will be propagate at an angle
arccos η to the normal. Let the quantum of light radiate on the optical distance t1
from the primary plane and propagate in an infinite medium. It may reach to some
point on optical distance t from this plane propagating in various directions. First of
all, it may be in the process of diffusion only within the layer s� � t� s0(if the point
of its radiation is inside the layer). Second, it may enter into this layer from the
half-spaces t[ s0 or t\s� through the surfaces t ¼ s0 or t ¼ s�, respectively,
moving in various directions. Taking into account this fact, we obtain the following
integral relation between the Green’s functions:

�G1 t; g; t1; g1ð Þ ¼ �G t; g; t1; g1ð ÞH s0 � tð ÞH t � s�ð Þ

þ 2p
Z1
0

�G s0;�g0; t1; g1; s0; s�ð Þ �G1 t; g; s0;�g0ð Þg0dg0

þ 2p
Z1
0

�G s�; g0; t1; g1; s0; s�ð Þ �G1 t; g; s�; g0ð Þg0dg0 s� � t� s0ð Þ;

ð82Þ
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where HðxÞ is theta-function, i.e., HðxÞ ¼ 1 for x[ 0, HðxÞ ¼ 0 for x\0.
Let s� � t1 � s0. A quantum of light, diffusing in an infinite medium, can leave

the layer through the surfaces t ¼ s� or t ¼ s0, moving at various angles to the
normals, and then appear at a point located on an optical distance t from the primary
plane. Hence, we have another integral relation between the Green’s functions:

�G1 t; g; t1; g1ð Þ ¼ �G t; g; t1; g1; s0; s�ð ÞH s0 � tð ÞH t � s�ð Þ

þ 2p
Z1
0

�G t; g; s0;�g0; s0; s�ð Þ �G1 s0;�g0; t1; g1ð Þg0dg0

þ 2p
Z1
0

�G t; g; s�; g0; s0; s�ð Þ �G1 s�; g0; t1; g1ð Þg0dg0 s� � t1 � s0ð Þ:

ð83Þ

Taking into account the condition of reciprocity (80) for the function
�G1 t; g; t1; g1ð Þ and a similar condition for �G t; g; t1; g1; s0; s�ð Þ, we see that Eqs. (82)
and (83) are equivalent, if inequalities s� � t� s0 and s� � t1 � s0 are performed
simultaneously.

Particular cases of Eqs. (82) and (83) are the same relations between the Green’s
functions for a semi-infinite medium and for an infinite medium. These relations are
obtained if the second or the third terms in the right parts of Eqs. (82) and (83) are
equal to zero in the cases of s0 ¼ þ1 or s� ¼ �1, respectively.

Relations (82), (83), and more general invariance relations were also obtained;
for example, in works of Pikidjian (1978), Rogovtsov (1980), Rogovtsov and
Samson (1985).

Consider now the integral relation between the Green’s functions in the case of a
sphere.

We denote by Gi s; l; s1; l1ð Þ and Ge s; l; s1; l1ð Þ the Green’s functions for
“internal” and “external” problems of the theory of radiation transfer in a sphere,
respectively. The first of these functions describes the light regime in the sphere of
optical radius s0. The second of these functions attribute to the case of an infinite
medium with a spherically absolutely black cavity of optical radius s0. We assume
that the external radiation illuminating the boundary surface of these media is
missing. Then the boundary conditions are written in the form

Gi s0; l; s1; l1ð Þ ¼ 0 �1� l� 0ð Þ; ð84Þ

Ge s0; l; s1; l1ð Þ ¼ 0 ð0\l� 1Þ: ð85Þ

Let imagine a spherical section in an infinite medium at a distance s0 from the
center of symmetry. This section divides the infinite medium into two media. The
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radiation fields in these media are described by the Green’s functions
Gi s; l; s1; l1ð Þ and Ge s; l; s1; l1ð Þ. Taking into account the probabilistic meaning
of the Green’s functions and analyzing the possible trajectories of a quantum of
light in the infinite medium, we find the integral relations between the Green’s
functions Gi s; l; s1; l1ð Þ, Ge s; l; s1; l1ð Þ and G1 s; l; s1; l1ð Þ. These relations have
the form:

G1 s; l; s1; l1ð Þ ¼ Gi s; l; s1; l1ð ÞH s0 � sð Þ

þ 2ps20

Z1
0

Gi s0; l
0; s1; l1ð ÞG1 s; l; s0; l

0ð Þl0dl0 0� s1 � s0ð Þ;

ð86Þ

G1 s; l; s1; l1ð Þ ¼ Ge s; l; s1; l1ð ÞH s� s0ð Þ

þ 2ps20

Z1
0

Ge s0;�l0; s1; l1ð ÞG1 s; l; s0;�l0ð Þl0 dl0 s1 � s0ð Þ;

ð87Þ

G1 s; l; s1; l1ð Þ ¼ Gi s; l; s1; l1ð ÞH s0 � s1ð Þ

þ 2ps20

Z1
0

G1 s0;�l0; s1; l1ð ÞGi s; l; s0;�l0ð Þl0 dl0 0� s� s0ð Þ;

ð88Þ

G1 s; l; s1; l1ð Þ ¼ Ge s; l; s1; l1ð ÞH s1 � s0ð Þþ

þ 2ps20

Z1
0

G1 s0; l
0; s1; l1ð ÞGe s; l; s0; l

0ð Þl0 dl0 s� s0ð Þ:

ð89Þ

Taking into account the condition of reciprocity for the Green’s functions, we
see that formulae (87) and (89) are equivalent if inequalities s� s0 and s1 � s0 are
performed simultaneously, and the formulae (86) and (88) are also equivalent if
inequalities 0� s� s0 and 0� s1 � s0 are also performed simultaneously.

In the same way, we may obtain the integral relation between the Green’s
functions for spherical shells and the infinite medium. These relations are similar to
relations (82) and (83) for a planar layer.
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3.5 Eigenfunctions Biorthogonal at the Half Interval
of the Variation of the Angular Variable

When analyzing the radiative transfer problems in planar media using the Case
method, the coefficients of the expansions of the Green’s functions are found by
solving the linear singular equations. The theory of such equations is described, in
particular, in Muskhelishvili (1962), Gakhov (1966), Gakhov and Cherskij (1978).
These equations result from the use of the property of biorthogonality for the
eigenfunctions with respect to the conjugate eigenfunctions with the weight ηH(η)
in the half intervals of the variation of an angular variable g
(0� g� 1 or � 1� g� 0Þ: Here H(η) is H-function, introduced in the theory by
Chandrasekhar (1960).

As it was noted in the literature (see, for example, Laletin 1974b), the drawback
of this method is that it cannot be extended to the cases of more complicated
geometries, in particular, to the practically important cases of media with spherical
or cylindrical symmetry. The reason for this is that the type of singularity of
eigenfunctions for nonplanar media other than for planar ones. The validity of the
invariance principle for planar media leads to eigenfunctions containing the
delta-function. The presence of this delta-function allows to obtain the linear sin-
gular integral equations. In the cases of spherical and cylindrical geometries, the
eigenfunctions have a singularity of a different type. They are expressed in the form
of divergent series in the spherical functions. As a result, it is not possible to reduce
the problem of the radiation transfer in these media to the solution of the linear
singular integral equations.

Domke (1983) formulated in another form the condition of biorthogonality for
eigenfunctions i(η, ν) on the half of the interval [−1,1]. He showed that these
functions are biorthogonal on the interval 0� g� 1 with weight η with respect to
the eigenfunctions u(η, ν) of a generalized Milne problem (see, Case and Zweifel
1967), i.e.,

2
Z1
0

uðg; mÞiðg; fÞg dg ¼ dðm; fÞ: ð90Þ

This condition allows the generalization for the case of media of nonplanar
geometry.

In Kolesov (1985b) it were derived the eigenfunctions Uðs0; l; mÞ, which are an
analogue of the function u(η, ν), and conjugate function
U s0; l; mð Þ ¼ Uðs0;�l;�mÞ. The surface Green’s functions Gi s; l; s0;�l1ð Þ and
Ge s; l; s0; l1ð Þ are expressed through these eigenfunctions:

Gi s; l; s0;�l1ð Þ ¼ � 1
2p

Sm[ 0
m2

N mð ÞU s0; l1; mð Þf � s;�l; mð Þ; ð91Þ
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Ge s; l; s0;l1ð Þ ¼ � 1
2p

Sm[ 0
m2

N mð ÞU
� s0; l1; mð Þf s; l; mð Þ: ð92Þ

The functions Uðs0; l; mÞ and U� s0; l; mð Þ are associated with the Case eigen-
functions f s0; l; mð Þ and the coefficients qi l; l1; s0ð Þ and qe l; l1; s0ð Þ of the
reflection of light from a sphere and an infinite medium with a cavity:

U s0; l1; mð Þ ¼ f s0; l1; mð Þ � f s0;�l1; mð Þe�2s0l1

� 2
Z1
0

f s0;�l; mð Þqi l; l1; s0ð Þl dl; ð93Þ

U� s0; l1; mð Þ ¼ f � s0; l1; mð Þ

� 2
Z1
0

f � s0;�l; mð Þqe l; l1; s0ð Þl dl; ð94Þ

where

qi l; l1; s0ð Þ ¼ ps20Gi s0; l; s0;�l1ð Þ � 1
2l

dðl� l1Þe�2s0l; ð95Þ

qe l; l1; s0ð Þ ¼ ps20Ge s0;�l; s0; l1ð Þ: ð96Þ

Conditions of biorthogonality for the system of functions U s0; l1; mð Þ and
U� s0; l1; mð Þ can be written as

Z1
0

U s0; l; mð Þf � s0; l; fð Þl dl ¼ �N mð Þ
s20m

2
dðm; fÞ; ð97Þ

Z1
0

U� s0; l; mð Þf s0; l; fð Þl dl ¼ �N mð Þ
s20m

2
d m; fð Þ: ð98Þ

We note that if the functions U s0; l1; mð Þ and U� s0; l1; mð Þ are used for solving
the problems of radiative transfer in a media with spherical symmetry, you should
preliminarily find the quantities qi l;l1; s0ð Þ and qe l; l1; s0ð Þ.
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3.6 Coefficients of Reflection and Transmission of Light

Coefficients of the diffuse reflection and transmission of light by various media are
of special interest for the radiative transfer theory. The observed intensity of
radiation is expressed through these quantities in many cases. For plane-parallel
media, these quantities are investigated quite thoroughly (see, for example, Sobolev
1975). The coefficients of the reflection of light by a sphere and a spherical shell
and coefficient of the light transmission by a spherical shell were studied by
Bellman et al. (1959, 1960, 1966, 1968), Bellman and Kalaba (1965) and by Ueno
et al. (1971) using the invariant embedding method. For these quantities,
integro-differential equations were derived that contain derivatives with respect to
the optical radius of a sphere or optical distances of the inner and outer boundaries
of a spherical shell from the center of symmetry. However, analytical solutions of
these equations have not been obtained.

The integral equations for these quantities were derived in Kolesov (1985b).
These equations allow to find those quantities in condition of known light regime in
an infinite medium with a spherical distribution of radiation sources.

Suggesting that in formula (86) s ¼ s1 ¼ s0 � 0, 0� l� 1, �1� l� 0, and in
formula (87) s ¼ s1 ¼ s0 þ 0, �1� l� 0, 0� l1 � 1 and using relations (95), (96),
and (101), we obtain the following linear integral equations for the reflection
coefficients qi l; l1; s0ð Þ ¼ qi l1; l; s0ð Þ and qe l; l1; s0ð Þ ¼ qe l1; l; s0ð Þ:

qi l; l1; s0ð Þ ¼ q1 l; l1; s0ð Þ � q1 �l; l1; s0ð Þe�2s0l

� 2
Z1
0

q1 �l0; l1; s0ð Þqi l; l0; s0ð Þl0 dl0; ð99Þ

qe l; l1; s0ð Þ ¼ q1 �l;�l1; s0ð Þ

� 2
Z1
0

q1 l0;�l1; s0ð Þqe l; l0; s0ð Þl0 dl0: ð100Þ

The reflection coefficient q1 l; l1; s0ð Þ for an infinite medium is associated with
the corresponding Green’s function by the relationships

q1 l; l1; s0ð Þ ¼ ps20G1 s0 � 0; l; s1;�l1ð Þ

�Hðl1Þ
2 lj j d l� l1ð Þe�2s0l þ d lþ l1ð Þ� �

¼ ps20G1 s0 þ 0; l; s0;�l1ð Þ �Hðl1Þ
2 lj j d l� l1ð Þe�2s0l:

ð101Þ
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Using the solution of the linear inhomogeneous equation describing the Green’s
function, we obtain the following expression for the quantity q1 l; l1; s0ð Þ:

q1 l; l1; s0ð Þ ¼ � k
4
s20
XN
n¼0

xnSm[ 0
m2

N mð Þ f s0; l1;�mð Þ

	
Z1
0

fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 þ 2s0l1sþ s2

q
;�m

� 	
Pn

s0lþ sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 þ 2s0l1sþ s2

p
 !

e�sds:

ð102Þ

Side by side with the diffuse reflection coefficient q1 l; l1; s0ð Þ the diffuse
transmission coefficient r1 l; l1; s0; s�ð Þ is introduced, which is associated with the
Green’s function by the relationship

r1 l; l1; s0; s�ð Þ ¼ ps0s�G1 s0; l; s�; l1ð Þ

� s�
2s0l

d l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2�

s20
1� l21
� �s !

e�s0lþ s1l1 :
ð103Þ

We find the following expression for this quantity:

r1 l; l1; s0; s�ð Þ ¼ � k
4
s0s�

XN
n¼0

xnSm[ 0
m2

NðmÞ f
� s�; l1; mð Þ

	
Z1
0

fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � 2s0lsþ s2

q
; m

� 	
Pn

s0l� sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � 2s0lsþ s2

p
 !

e�s ds:

ð104Þ

Calculating the quantities q1 l; l1; s0ð Þ, q1 �l; l1; s0ð Þ, q1 l;�l1; s0ð Þ, and
q1 �l;�l1; s0ð Þ by expression (102) under conditions 0� l� 1 and 0� l1 � 1,
you can find the reflection coefficients qi l; l1; s0ð Þ and qe l; l1; s0ð Þ by numerical
integration of Eqs. (99) and (100).

Ivanov (1976a, b) obtained an integral equation for the coefficient of the light
reflection from a semi-infinite medium. This equation is similar to the Eqs. (99) and
(100).

Integral equations describing the coefficients of the reflection and transmission
of light by spherical shells of finite or infinite optical thickness with a completely
black or a completely transparent spherical cavity were derived by Kolesov
(1985c). These equations may be solved by numerical methods if the quantities
q1 l; l1; s0ð Þ and r1 l; l1; s�; s0ð Þ are known.

A simple efficient numerical algorithm for computing bidirectional reflectance of
a semi-infinite homogeneous medium is described by Mishchenko et al. (1999).
This algorithm was generalized on the case of polarized radiation by Mishchenko
et al. (2015).
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4 Asymptotic Formulae of the Theory of Radiative
Transfer in an Infinite Medium, a Sphere,
and a Spherical Shell

In the radiation transfer theory it is comfortable to use simple asymptotic expres-
sions for various characteristics of the radiation field to simplify calculations.
Asymptotic expressions for these quantities are most commonly used in two
practically important cases. First, it is the case of media of large optical sizes, when
points of the media are located at large optical distances from sources of radiation.
Second, it is the case of radiation fields with almost conservative scattering, when
the albedo of single scattering is close to unity.

Let us at the beginning consider the first case (see Kolesov 1984b, 1985a).

4.1 The Asymptotic Light Regime in an Infinite Medium
Far from a Point Source

In the derivation of asymptotic expressions for functions S1ðs; lÞ and I1ðs; lÞ
when s 
 1, we use the fact that the behavior of the functions S1n ðsÞ is defined by
reintegrating term in the right part of expression (33), containing the largest root
m1 ¼ 1

k of characteristic equation (12). You can neglect radiation received at a given
point of the medium directly from the source. This results in the following
asymptotic expression:

S1n ðsÞ ¼ kLa2

16p2
� fn s; 1k
� �
N 1

k

� �
� kLa2

16p2
� Rn

1
k

� �
N 1

k

� � � k
s

ffiffiffiffiffiffiffi
2ks
p

r
Knþ 1

2
ksð Þ; s 
 1:

ð105Þ

When ks 
 1, this formula is simplified and takes the form

S1n ðsÞ � kLa2

16p2
� kRn

1
k

� �
N 1

k

� � � e
�ks

s
; ks 
 1: ð106Þ

Substitution (106) in (29) leads to the asymptotic expression for the source
function:

S1ðs; lÞ � kLa2

16p2
� k

N 1
k

� � �XN
n¼0

xnRn
1
k

� 	
PnðlÞ � e

�ks

s
; ks 
 1: ð107Þ

Radiative Transfer in Spherically and Cylindrically … 177



In the case of isotropic scattering, this formula was obtained by Ambartsumyan
(1945).

When s 
 1; the simple asymptotic expression for I1 s; lð Þ takes place (see
Dolin 1981)

I1 s; lð Þ � La2k
2p2kM

� iðlÞ � e
�ks

s
: ð108Þ

Here, the function iðlÞ associated with the quantity R l; 1
k

� �
by the relation

R l;
1
k

� 	
¼ k

2
� iðlÞ; ð109Þ

and the constant quantity M is related with the normalization integral N 1
k

� �
by the

relationship

N
1
k

� 	
¼ k2

8
�M: ð110Þ

Substituting expressions (105) and (106) into Eq. (28), we obtain the following
asymptotic expressions for the intensity of radiation:

I1 s; lð Þ

� kLa2

16p2N 1
k

� �XN
n¼0

xn

Z1
0

fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2slsþ s2

p
;
1
k

� 	
Pn

sl� sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � 2slsþ s2

p
 !

e�s ds s 
 1ð Þ;

ð111Þ

I1 s;lð Þ � kLa2

16p2N 1
k

� �
	
XN
n¼0

xnRn
1
k

� 	Z1
0

Pn
sl� sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 2slsþ s2
p

 !
e�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2�2slsþ s2

p
�s dsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � 2slsþ s2
p ks 
 1ð Þ:

ð112Þ

4.2 The Asymptotic Expression of Green’s Function
for an Infinite Medium with a Spherically Symmetric
Distribution of Sources

The asymptotic formulae connecting the Green’s functions G1 s; l; s1; l1ð Þ and
�G1 s; l; s1; l1ð Þ when s 
 1 and s1 
 1 were derived by Kolesov (1984b). The
function G1 s; l; s1; l1ð Þ describes the light regime in an infinite homogeneous
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medium with a spherical symmetric distribution of radiation sources. The Green’s
function �G1 s; l; s1; l1ð Þ corresponds to the case of an infinite medium illuminated
by a planar source located in the plane s ¼ s1 and radiating in the direction forming
an angle arccos l1 with the normal to the planar source. We note that for easy
comparison of these Green’s functions, optical distances τ in an infinite medium are
counted from some arbitrary plane surface parallel to the planar source but not from
this source. It is obvious that the values of the function �G1 s; l; s1; l1ð Þ depend on
the difference s� s1 but not separately from τ and from s1. The use of the same
notations for function arguments of �G1 s; l; s1; l1ð Þ and G1 s; l; s1; l1ð Þ is justified
by the fact that spherical layers have a little difference from corresponding planar
layers when s 
 1 and s1 
 1:

Keeping in formulae (55) and (56) only the terms containing the discrete
eigenvalue m1 ¼ 1

k, substituting the expressions for the eigenfunctions into these
equations and comparing the resulting formulae with expressions (17) and (18), we
obtain the following asymptotic relation:

G1 s; l; s1; l1ð Þ �
�G1 s; l; s1; l1ð Þ

ss1
� ið�l1ÞiðlÞ

pss1M
e�kðsþ s1Þ s 
 1; s1 
 1ð Þ:

ð113Þ

The asymptotic expression for the Green’s function G1 s;l; 0; 1ð Þ corresponding
to the case of an isotropic central point source has the form:

G1 s; l; 0; 1ð Þ � 2k
pkM

i lð Þ e
�ks

s
s 
 1ð Þ: ð114Þ

Kolesov (1990) studied the asymptotical light regime in a homogeneous infinite
medium at large optical distances s from an isotropic point source. An asymptotic
expression for the radiation intensity was found in terms of inverse powers of s. In
the case of small true absorption, this quantity was expressed as a double power
series of 1=s and the diffusion coefficient k.

4.3 Asymptotic Radiation Fields in Outer Layers of a Sphere
of Large Optical Radius Far from Sources

Let us examine some works that have studied the asymptotic light regime in media
with spherical symmetry.

Solving the problem of a point source in a homogeneous sphere with isotopic
monochromatic scattering, Smith (1965) presented the source function in the form
of infinite series that converge for sufficiently large values of the optical radius of
the sphere.
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Sobolev (1965) and Nagirner (1965) found asymptotic expressions for the
source functions for outer layers of sphere of large optical radius and optically thick
spherical shell. Germogenova (1966) investigated the asymptotic behavior of the
radiation intensity in aspherical anisotropically scattering envelope surrounding a
point source. Sobolev (1983) obtained asymptotic expressions for the radiation
intensities emerging from a sphere or a spherical shell as well as for the light
reflection coefficient of a sphere in the case of anisotropic scattering.

Ivanov (1969) and Nagirner (1972) studied the scattering of the resonance
radiation in a homogeneous sphere of large optical radius.

Kolesov (1984b, 1985a) studied by the Case method the asymptotic regime in
the outer layers of a sphere of large optical radius and of a spherical shell of large
optical thickness in the case of anisotropic monochromatic scattering. In particular,
he found asymptotic expressions for some characteristics of the radiation field.

Studying the asymptotic behavior of the Green’s function Gi s; l; s1; l1ð Þ for a
sphere of optical radius s0 
 1, it is convenient to use integral relations (86) and
(88) between functions Gi s; l; s1; l1ð Þ and G1 s; l; s1; l1ð Þ, and the asymptotic
expressions (115) and (116) for G1 s; l; s1; l1ð Þ. In the case of a central point
source (s1 ¼ 0; l1 ¼ 1), we have the following asymptotic expressions for the
Green’s function:

Gi s; l; 0; 1ð Þ � 2k
pk

� IMðs0 � s; lÞ
1� Ne�2ks0

� e
�ks0

s
s 
 1; s0 
 1; k\1ð Þ; ð115Þ

Gi s; l; 0; 1ð Þ � IMðs0 � s; lÞ
pss0

s 
 1; s0 
 1; k ¼ 1ð Þ: ð116Þ

In these expressions, IMðs0 � s1lÞ is the relative intensity of radiation propa-
gating at an angle arccos l to the external normal to the boundary surface on an
optical depth s0 � s in a semi-infinite planar medium in the Milne problem(see
Milne 1921), i.e., when radiation sources are sufficiently far away from the
boundary surface of this medium. This function is given by the expression

IMðs0 � s; lÞ ¼ iðlÞ
M

ek s0�sð Þ � 2p
Z1
0

u l0ð Þ�G1 s; l0; s0; lð Þl0 dl0; ð117Þ

where uðlÞ is the relative intensity of the radiation emerging from the semi-infinite
medium in the Milne problem. In particular,

IMð0; lÞ ¼ uðlÞ: ð118Þ
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In formula (115)

N ¼ 2
Z1
0

u lð Þi �lð Þl dl: ð119Þ

Let the radiation sources be located on the optical distance s1 from the center of
a sphere and radiate in the direction forming an angle arccos l1 with the
radius-vector. In this case, the expression for the Green functions has the following
form:

Gi s;l; s1; l1ð Þ �
�G s; l; s1; l1ð Þ

ss1
� M
pss1

� IMðs0 � s1;�l1ÞIMðs0 � s; lÞ
1� Ne�2ks0

e�2ks0

s 
 1; s1 
 1; k\1ð Þ:
ð120Þ

Gi s; l; s1; l1ð Þ �
�G s; l; s1; l1ð Þ

ss1
s 
 1; s1 
 1; k ¼ 1ð Þ: ð121Þ

Expressions (120) and (121) describe the asymptotic behavior of the Green’s
function of the so-called “internal” problems of the radiative transfer theory for a
sphere.

Setting s1 ¼ 0; l1 ¼ 1, we obtain the following asymptotic expressions for the
radiation intensity Iiðs; lÞ in the surface layers of a sphere of optical radius s0 
 1
with a central point source:

Ii s; lð Þ � La2k
2p2k

� IMðs0 � s1; lÞIMðs0 � s; lÞ
1� Ne�2ks0

� e
�ks0

s
s 
 1; s1 
 1; k\1ð Þ;

ð122Þ

Ii s; lð Þ � La2

4p2
� IMðs0 � s; lÞ

ss0
s 
 1; s1 
 1; k ¼ 1ð Þ: ð123Þ

In particular, when s ¼ s0, the asymptotic expressions for the intensity of the
radiation emerging from a sphere may be represented as

Ii s0; lð Þ � La2k
2p2k

� uðlÞ
1� Ne�2ks0

� e
�ks0

s0
s0 
 1; k\1ð Þ;

ð124Þ

Ii s0; lð Þ � La2

4p2s20
� uðlÞ s0 
 1; k ¼ 1ð Þ: ð125Þ
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When sources of radiation are distributed in a sphere evenly with density D0, the
radiation intensity in the outer layers of this sphere is given by the asymptotic
expression

I s; lð Þ � IUðs0 � s;lÞ � 4
kk2s

eks � e�ks
� ��

� aM
1� k

e�ks0



D0IMðs0 � s; lÞ
1� Ne�2ks0

e�ks0 ; ð126Þ

where IUðs; lÞ is the radiation intensity in a semi-infinite plane-parallel medium
with uniformly distributed radiation sources. Here

a ¼ 2
Z1
0

uðlÞl dl: ð127Þ

The coefficient qiðl; l1; s0Þ of the light reflection from a sphere of large optical
radius s0 satisfies the following asymptotic expressions:

qi l; l1; s0ð Þ � �q l; l1ð Þ � e�ks0

1� Ne�2ks0
uðlÞuðl1Þ s0 
 1; k\1ð Þ; ð128Þ

qiðl; l1; s0Þ � �q l; l1ð Þ s0 
 1; k ¼ 1ð Þ: ð129Þ

Here �qðl; l1Þ is the coefficient of the light reflection from a semi-infinite planar
medium. This quantity is investigated in detail, for example, in the books (Minin
1988; Sobolev 1975).

We also show the asymptotics of the radiation field in an infinite homogeneous
medium with a spherical cavity bounded by absolutely black surface s ¼ s0. Such
asymptotics corresponds to the Green’s function Ge s; l; s1; l1ð Þ for the “external”
problems of the radiative transfer theory in a sphere. The corresponding asymptotic
expression is:

Ge s; l; s1; l1ð Þ �
�G s; l; s1; l1ð Þ

ss1
;

s0 
 1; s� s0; s1 � s0; 0� k� 1; ð130Þ

where �G s; l; s1; l1ð Þ is the Green’s function for a planar semi-infinite medium
s� s0.

182 A. Kolesov and N. Kropacheva



4.4 The Asymptotic Behavior of the Radiation Field
in an Optically Thick Spherical Envelope

Sobolev (1984) proposed an effective method of finding asymptotic formulae for
the intensity of radiation emerging from the plane-parallel layers of large optical
thickness for varions distributions of radiation sources. This method is based on the
application of integral relations for the radiation intensity. It uses the fact that in
simple cases the structure of asymptotic expressions are sometimes known from
physical considerations. The problem is to determine factors included in these
expressions. These factors are found by means of integral relations.

This method was applied in Kolesov (1984b, 1985a) to spheres with spherically
symmetric source distributions. Let us consider this method.

The radiation intensity in a sphere or a spherical shell is determined by the
integral-differential equation

l
@I s; lð Þ

@s
þ 1� l2

s
@I s; lð Þ

@l
þ I s; lð Þ

� k
2

Z1
�1

p l; l0ð ÞI s; l0ð Þdl0 ¼ D s;lð Þ; ð131Þ

where Dðs; lÞ is the primary source function that describes the distribution of
radiation sources in the medium. In Eq. (130), the quantity Iðs; lÞ is the full
intensity of radiation, i.e., the sum of the intensities of radiation entered at a given
point of the medium directly from a source and of diffuse radiation. However, as it
was noted earlier, the full radiation intensity far from the radiation sources can be
considered equal to the intensity of the diffuse radiation.

Let us consider the cases of a sphere of optical radius s0 and a shell bounded by
spherical surfaces s ¼ s� and s ¼ s0, where s�\s0. The central cavity will be
considered fully transparent. As one of the boundary conditions imposed on the
function Iðs; lÞ, we may take the condition of the absence of external radiation
falling on the surface s ¼ s0, i.e.,

I s0; lð Þ ¼ 0 for � 1� l� 0: ð132Þ

In the case of a spherical shell as the second boundary condition, we have the
condition

I s�; lð Þ ¼ I s�;�lð Þ for � 1� l\1: ð133Þ

This equality describes the transparency of the inner boundary surface of the shell
and the absence of radiation sources within it. We note that the presence of external
sources (for example, the central point source) can be taken into account by a
suitable choice of the function Dðs; lÞ.
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To obtain the desired integral relations, we use the conjugate eigenfunctions
fþ ðs; lÞ ¼ f � s; l; 1k

� �
and f�ðs; lÞ ¼ f � s; l;� 1

k

� �
of the homogeneous radiative

transfer equation in spherically symmetric media.
After multiplying both parts of Eq. (131) by f�ðs; lÞ, and both parts of equation

for functions f�ðs; lÞ by Iðs; lÞ, integrating the produced expressions over l
between −1 and 1 and also summarizing them, we obtain the equation

d
ds

s2
Z1
�1

I s; lð Þf� s; lð Þl dl
2
4

3
5 ¼ s2

Z1
�1

D s; lð Þf� s; lð Þdl: ð134Þ

This equation is valid for any spherically symmetric media with an arbitrary
spherically symmetric source distribution.

We note that the integrals in the left part of Eq. (134) are proportional to the
coefficients c s;� 1

k

� �
of the radiation intensity expansion in the eigenfunctions.

These coefficients correspond to the discrete eigenvalues �m1 ¼ � 1
k.

Taking into account the orthogonality of the eigenfunctions, we obtain

s2
Z1
�1

I s; lð Þf� s; lð Þl dl ¼ k2N � 1
k

� 	
c s;� 1

k

� 	
: ð135Þ

In the case of a sphere, we restrict ourselves using only the eigenfunction
fþ s; lð Þ. Integrating Eq. (134), we use the condition that the left part of equality
(135) tends to zero when s ! 0. Then we arrive at the integral relation

s2
Z1
�1

I s; lð Þfþ s; lð Þl dl ¼
Zs
0

t2 dt
Z1
�1

D t; lð Þfþ t; lð Þdl: ð136Þ

In the case of a spherical shell, the integration of Eq. (134) with boundary
condition (133) gives the following integral relation:

s2
Z1
�1

I s; lð Þf� s; lð Þl dl� s2�

Z1
0

I s; lð Þ f� s�; lð Þ � f� s�;�lð Þ�½ l dl

¼
Zs
s�

t2dt
Z1
�1

D t; lð Þf� t; lð Þdl: ð137Þ

Relations (136) and (137) are valid also when s ¼ s0. In this case, it is necessary
to take into account the boundary condition (132).
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Using the asymptotic expressions for the eigenfunctions, we obtain the following
asymptotic integral relations:

Z1
�1

I s; lð Þi lð Þl dl� e�2ks
Z1
�1

I s; lð Þi �lð Þl dl

¼ � 2
kk

e�ks

s

Zs
0

t2 dt
Z1
�1

D t; lð Þfþ t; lð Þdl s 
 1ð Þ
ð138Þ

in the case of a sphere of large radius, and

sekðs�s�Þ
Z1
�1

I s; lð Þi lð Þl dlþ se�kðs�s�Þ
Z1
�1

I s; lð Þi �lð Þl dl

¼
Zs
s�

t2 dt
Z1
�1

D t; lð Þ i lð Þek s�s�ð Þ þ i �lð Þe�k s�s�ð Þ
h i

dl s 
 1; s� 
 1ð Þ:

ð139Þ

in the case of an optically thick spherical shell.
For a sphere by means of Eq. (138), we get the same asymptotic relations which

have been obtained in the previous section of present article by another method.
Let consider the case of a spherical shell. If an isotropic point source of lumi-

nosity L is located in the center of the shell, then we have

D s; lð Þ ¼ La2

8p2s2
dðs� s�Þdðl� 1Þ ð140Þ

Substituting this function into integral relation (138), we obtain the asymptotic
expression for the radiation intensity in outer layers of a spherical shell:

I s; lð Þ � La2

4p2
i 1ð Þþ i �1ð Þ½ � � IMðs0 � s; lÞ

1þNe�2ks0
� e

�ks0

s0s�
s 
 s0 
 1ð Þ: ð141Þ

If the light sources are uniformly distributed in a spherical shell, then
D s; lð Þ ¼ D0 ¼ const. In this case we have

I s; lð Þ � IUðs0 � s; lÞ � 4
kk2s

eks � e�ks � 2
� ��

þ aM
1� k

e�ks0



D0IMðs0 � s;lÞ
1þNe�2ks0

e�ks0 s0 
 s 
 1ð Þ; ð142Þ
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where IUðs0 � s; lÞ is the radiation intensity in a plane-parallel medium with
uniformly distributed sources.

Assuming that the external surface s ¼ s0 of a spherical shell is illuminated by
the conical source of luminosity L uniformly distributed over this surface with the
unit density and emitting at an angle p� arccos l0ð0� l0 � 1Þ to radius vector, we
obtain the asymptotic expression for the coefficient of reflection of light from a
spherical shell

qs l; l0ð Þ � �q l; l0ð Þ � Me�ks0

1þNe�2ks0
uðlÞuðl0Þ s0 
 s� 
 1ð Þ: ð143Þ

Developing asymptotic expressions in more complicated cases, one must take
into account an influence of the whole spectrum of the characteristic equation on a
solution of boundary value problems.

4.5 The Asymptotic Behavior of the Radiation Field Far
Away from a Source in a Medium with a Low True
Absorption

Simple asymptotic expressions for the characteristics of the radiation field may be
obtained in the case of small true absorption of light (1� k � 1) in a media far
away from sources of energy. We illustrate this with examples of an infinite
homogeneous medium illuminated by a planar or a point source.

Such expressions may be derived using the known expressions of the quantities
k and N 1

k

� �
in powers of

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
(see, for example, Minin 1988). With neglect of

small terms of higher order than
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
, we get

k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� x1Þð1� kÞ

p
1� k � 1ð Þ; ð144Þ

N
1
k

� 	
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k
3� x1

s
1� k � 1ð Þ: ð145Þ

Let us find asymptotic expressions for the mean intensity and for the radiation
flux using the expansion of the intensity in the divergent series in Legendre
polynomials.

Let an infinite medium be illuminated by an isotropic planar source. The Green’s
function far away from the source (at t 
 1) is given by expression (20) (for t1 = 0),
in which we take into account only the term corresponding the discrete eigenvalue
m1 ¼ 1

k, i.e.,
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�G1 t; g; 0ð Þ � 1
4p

� R g; 1k
� �
N 1

k

� � e�kt ðt 
 1Þ: ð146Þ

The radiation intensity �I1ðt; gÞ may be written in the form

�I1 t; gð Þ ¼ lL �G1 ðt; g; 0Þ: ð147Þ

Using expression (10) for the function R g; 1k
� �

, we obtain

�I1ðt; gÞ ¼ lL
8p

X1
n¼0

ð2nþ 1ÞRn
1
k

� �
N 1

k

� � PnðgÞe�kt: ð148Þ

Then, using asymptotic expressions (144) and (145) for the quantities k and N 1
k

� �
,

we find the following expressions for the mean intensity �J1ðtÞ and the radiation
flux �H1ðtÞ:

�J1ðtÞ � 1
2

Z1
�1

�I1ðt; gÞ dg ¼ lL
8p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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ð149Þ

�H1ðtÞ � 2p
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�1

�I1ðt; gÞgdg ¼ lL
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e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�x1Þð1�kÞ

p
t t 
 1; 1� k � 1ð Þ: ð150Þ

In the case of the central point source, assuming that s 
 1, 1� k � 1 and
using (37) and (38), we obtain the following asymptotic expressions for the
functions J1ðsÞ and H1ðsÞ:

J1ðsÞ � La2

16p2s
3� x1ð Þe�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�x1Þð1�kÞ
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s s 
 1; 1� k � 1ð Þ; ð151Þ

H1ðsÞ � La2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� x1Þð1� kÞ

p
s

h i
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3�x1Þð1�kÞ

p
s s 
 1; 1� k � 1ð Þ:

ð152Þ

It should be noted that the asymptotic expressions for the Green’s function and
the radiation intensity derived by the Case method does not describe the effect of
peak intensity at l ¼ 1. Therefore the errors of these expressions increase when
values of l approach to unity.

The real turbid media phase functions are sharply anisotropic and the corre-
sponding characteristic equation can have numerous positive discrete roots. In this
case to derive asymptotic expressions for radiation field parameters it is not
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sufficient to use only the eigenfunction corresponding to the largest root m1 ¼ 1
k.

Konovalov (1974) pointed out that it is possible to obtain polyadic asymptotics for
brightness coefficients taking into account contributions of some finite part of
discrete roots. Rogovtsov (1986b, 2010), for example, suggested rigorous method
of obtaining polyadic asymptotics.

5 Radiation Fields in Media with Cylindrical Symmetry

Most of the objects studied in astrophysics can be represented by models of
plane-parallel or spherical media. However, some objects (sun spots, accretion
disks and others) have an axial symmetry. If their length is considerably greater
than the thickness, then these objects can be described by the model of an infinitely
long cylinder. Such a model can be used, for example, for studying solar promi-
nences, coronal rays, and so on. So the problem of light propagation in media with
cylindrical symmetry is of particular astrophysical interest. A similar problem
arising in the theory of neutron diffusion (see, for example, Laletin 1974a;
Weinberg and Wigner 1958) is of interest for physics of nuclear reactors.

5.1 Basic Methods for Solving the Problems of the Radiative
Transfer in Media with Cylindrical Symmetry

One-dimensional transfer problems with cylindrical symmetry is mathematically
similar to those with spherical symmetry. Methods of solving spherical problems, a
brief overview of which is given in Sect. 3 of the present article, are usually quite
easily applied to cylindrical problems. We list the most frequently used methods.

Various approximate methods are often used for the solution of the radiative
transfer and neutron diffusion problems in media with axial symmetry. The
spherical harmonics method (PN-approximation) has been described, for example,
in the work by Davison (1957a), in books by Weinberg and Wigner (1958),
Davison (1957b), Marchuk and Lebedev (1981), Davydov and Shikhov (1973). The
Eddington method was used by Brand (1979), Heaslet and Warming (1966). The
SN-method, the double PN-approximation, FN-method and method of pseudo
sources (GN-approximation) have been applied by Shikhov and Troyanovski
(1983), Drawbaugh and Noderer (1959), Siewert and Thomas (1985), and Laletin
(1974b), respectively.

The integro-differential equations for the functions of light reflection and
transmission for a homogeneous cylindrical shell were derived by the invariant
imbedding method by Bellman and Kalaba (1957), Kalaba and Ruspini (1971), and
Tsujita (1967, 1969).
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Similar equations in an inhomogeneous cylindrical shell with anisotropic scat-
tering were obtained by the probabilistic method in the article by Leong and Sen
(1970). The non-stationary radiation field in the same shell with isotropic scattering
was investigated using the same method by Leong (1972). In Apruzese (1981),
Leong and Sen (1970, 1973b) this method was used for the study of the resonance
radiative transfer with the frequency redistribution in media with cylindrical
symmetry.

The integral equation of radiative transfer in a medium with cylindrical sym-
metry was solved by Leong and Sen (1971b) using the method of presenting its
kernel as a sum of degenerate and small components, and by Kho and Sen (1972)
using the expansion of the source function in a Neumann series.

Kuznetsov (1962) examined the radiative transfer in an inhomogeneous cylinder
with a spherical phase function under the assumption of the nonmonochromatic
radiation equilibrium. He got an integral equation describing the radial temperature
distribution.

The numerical method, in particular, the MonteCarlo method is often used for
calculation of the radiation fields in media of cylindrical geometry (see, for
example, Avery et al. 1969; Peraiah 1973, 1975, 1978; Peraiah and Grant 1973).

A number of works devoted to the development of analytical methods which
may be applied in the theory of radiative transfer problems in media with cylindrical
symmetry. Hund (1968) obtained the exact solution of the problem of the line
source in an infinite medium. Laletin (1966) found the cylindrically symmetric
elementary solutions of the radiative transfer equation possessing cylindrical
symmetry. He constructed the Green’s function for an absorbing and isotropically
scattering infinite medium with a cylindrically symmetric distribution of sources
(see Laletin 1969a, 1974a).

Germogenova and Pavelyeva (1989), Pavelyeva (1990) considered the charac-
teristics of radiation fields in extended cylindrical areas but without exact values of
normalization factors. The values of these factors were founded by Rogovtsov
(1990, 1992a).

Nagirner (1986, 1994a, b, 1995) investigated the process of the radiation transfer
in spectral lines with isotropic scattering in the cases of complete radiation redis-
tribution in frequency and without frequency change. He received asymptotic
expressions for some characteristics of radiation fields. These expressions are valid
at large optical distances from the symmetry axis.

Kolesov (1986) used the method of eigenfunctions to develop the radiative
transfer theory in cylindrical absorbing and anisotropically scattering media. In the
case of the infinite medium with cylindrically symmetric distribution of sources, the
exact analytical expression for characteristics of the radiation field was derived. In
the case of homogeneous media bounded by a cylindrical surface, the integral
relations were derived. These relations connect the characteristics of radiation field
in such media with the corresponding quantities for the infinite medium.
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5.2 The Radiative Transfer Equation in Media
with Cylindrical Symmetry

Let us consider an infinite medium with the same optical properties as properties of
previously reviewed plane-parallel media and media with spherical symmetry. Let
us assume that the distribution of sources depends on optical distances ρ from the
axis of symmetry.

The direction of the radiation propagation at some point of the medium will be
described by coordinates in a spherical system. The polar axis can be oriented either
parallel or perpendicular to the symmetry axis. The polar and azimuthal angles we
denote in the first case by arccos n and w while in the second case we denote them
by arccos l and u, respectively. The radiation intensity in these cases we denote by
~I q; n;wð Þ and ~I q; l;uð Þ.

The radiative transfer equation in the first case is written as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
cosw

@~I q; n;wð Þ
@q

�
� sinw

q
� @

~I q; n;wð Þ
@w



þ~I q; n;wð Þ

� k
4p

Z2p
0

dw0
Z1
�1

xðcos c0Þ~I q; n0;w0ð Þdn0 ¼ D q; n;wð Þ; ð153Þ

In the second case it has the form

l
@~I q; l;uð Þ

@q
þ 1� l2

q
cos2 u � @

~I q; l;uð Þ
@l

þ l
2q

sin 2u
@~I q; l;uð Þ

@u

þ~I q; l;uð Þ � k
4p

Z2p
0

du0
Z1
�1

xðcos c0Þ~I q; l0;u0ð Þdl0 ¼ D q; l;uð Þ:

ð154Þ

In these equations Dðq; n;wÞ or Dðq; l;uÞ are the primary source functions. The
cosine of the scattering angle γ′ is given by the relations

cos c0 ¼ nn0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2
� �

1� n02
� �q

cos w� w0ð Þ
¼ gg0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2ð Þ 1� g02ð Þ

p
cos u� u0ð Þ: ð155Þ
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5.3 Eigenfunctions and Eigenvalues of the Homogeneous
Radiative Transfer Equation in a Media
with Cylindrical Symmetry

We denote solutions of homogeneous radiative transfer equations corresponding to
Eqs. (153) and (154) by F q; n;w; mð Þ and f q; l;u; mð Þ, respectively. Here v is the
eigenvalue. Equations (153) and (154) are equivalent, since they are the same
equation, but written in different coordinates. From their equivalence, it follows that

f q; l;u; mð Þ ¼ F q;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
sinu; arctg

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
cosu

l
; m

 !
; ð156Þ

F q; n;w; mð Þ ¼ f q;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
cosw; arctg

nffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
sinw

; m

 !
: ð157Þ

The equation for F q; n;w; mð Þ is simpler. Thus, using it, it is easier to find
expressions for the eigenfunctions. The equation for f q; l;u; mð Þ asymptotically
goes to the appropriate equation for the case of planar media when q 
 1:
Therefore, it is useful to find the asymptotics of the eigenfunctions.

The structure of the function F q; n;w; mð Þ is the following:

F q; n;w; mð Þ

¼ 1
4p

X1
m¼0

2� dm0ð Þ cosmw
X1
n¼m

ð2nþ 1Þ n� mð Þ!
nþmð Þ! F

m
n ðq; mÞPm

n ðnÞ;
ð158Þ

where

Fm
n q; mð Þ ¼ rmn mð ÞKm

q
m

� �
ð159Þ

or

Fm
n q; mð Þ ¼ prmn mð ÞIm � q

m

� �
: ð160Þ

Here KmðzÞ and ImðzÞ are the modified Bessel functions of the 1st kind and 3rd kind,
with the integer index m.

The values of the Bessel functions KmðzÞ tend to zero as z ! þ1. The func-
tions ImðzÞ are regular at the origin. Consequently, the eigenfunctions Km

q
m

� �
can be

used when m[ 0 to construct solutions decreasing as q ! þ1, and the eigen-
functions Im � q

m

� �
are used when m\0 to build solutions that are regular at z = 0.

The coefficients rmn ðmÞ may be found by means of the relations between them and
the eigenfunctions Rðl;u; mÞ for plane media:
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rmn ðmÞ ¼
Z2p
0

du
Z1
�1

Rðl;u; mÞPm
n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
sinu

� �
cos m arctg

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2

p
cosu
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 !
dl;

ð161Þ

where Pm
n ðzÞ are the associated Legendre functions.

The series (158) converges when m\0, e.g., when the coefficients Fm
n ðq; mÞ are

determined by expression (160), and diverges when m[ 0, e.g., when these coef-
ficients are given by expression (159). Thus, to compute the functions Fðq; n;w; mÞ
when m\0, you may directly use expression (158), and if m[ 0, you should use the
formal solution of the corresponding radiative transfer equation.

Along with the eigenfunctions Fðq; n;w; mÞ, we have to use the conjugate
functions F�ðq; n;w; mÞ that

F�ðq; n;w; mÞ ¼ F q;�n; pþw;�mð Þ ð0�w� pÞ; ð162Þ

F�ðq; n;w; mÞ ¼ F q;�n; p� w;�mð Þ ðp�w� 2pÞ: ð163Þ

The eigenfunctions have the property of orthogonality:

Z2p
0

cosw dw
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�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
F q; n;w; mð ÞF� q; n;w; fð Þdn ¼ p mj j

2q
�NðmÞdðm; fÞ; ð164Þ
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lf q; l;u; mð Þf � q; l;u; fð Þdl ¼ p mj j
2q

�NðmÞd m; fð Þ; ð165Þ

where f �ðq; l;u; nÞ ¼ f q;�l;u� p;�nð Þ.
We note that asymptotic expressions for functions f ðq; l;u; mÞ and Fm

n ðq; mÞ

f q; l;u; mð Þ ¼
ffiffiffiffiffiffiffiffi
p mj j
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s
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Fm
n q; mð Þ ¼

ffiffiffiffiffiffiffiffi
p mj j
2q

s
rmn ðmÞe�

q
m

q
mj j 
 1

� 	
: ð167Þ

are valid at large optical distances from the axis of symmetry.
Because systems of eigenfunctions f ðq; l;u; mÞ and Fðq; n;w; mÞ have the

properties of orthogonality and completeness, the radiative transfer problem solu-
tion with cylindrical symmetry may be found in the form of expansions on the
system of functions f ðq; l;u; mÞ or on the system of functions Fðq; n;w; mÞ. In
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particular, for the Green’s function G1 q; n;w; q1; n1;w1ð Þ, we obtain the following
expressions:

G1 q; n;w;q1; n1;w1ð Þ ¼ 2
p
Sm[ 0

F� q1; n1;w1; mð ÞF q; n;w; mð Þ
m�NðmÞ q[ q1ð Þ; ð168Þ

G1 q; n;w; q1; n1;w1ð Þ ¼ 2
p
Sm[ 0

F� q1; n1;w1;�mð ÞF q; n;w;�mð Þ
m�NðmÞ q\q1ð Þ:

ð169Þ

In the same way as in the case of an infinite medium with a planar or a point
source of radiation (see Sect. 4.5), the expressions for the mean radiation intensityeJ1ðsÞ and for the radiation flux eH1ðsÞ are obtained for the case of the small true
absorption of light in an infinite homogeneous medium far away from an axial
source:

eJ1ðsÞ � lL
16p3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
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K0 s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� x1ð Þ 1� kð Þ
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ks 
 1; 1� k � 1ð Þ; ð170Þ

eH1ðsÞ � lL
4p2

K0 ðs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3� x1Þð1� kÞ

p� �
ks 
 1; 1� k � 1ð Þ: ð171Þ

6 Nonstationary Radiation Fields

Fundamentals of the theory of the nonstationary radiative transfer are described in
works by Sobolev (1952, 1963), Case and Zweifel (1967), and Minin (1988).
Detailed overviews of the results obtained in this theory were published by
Nagirner (1974) and Grinin (1994). The asymptotic expressions for the mean
intensity and the radiation flux are obtained by Kolesov and Kropacheva (2013,
2014) in the case of the nonstationary radiation field in an infinite medium with a
small true absorption. In these works it is considered the cases of planar, point, and
axial radiation sources.

6.1 Basic Equations of the Theory of Nonstationary
Radiative Transfer

Let us consider an infinite homogeneous medium characterized by the absorption
coefficient α, the single scattering albedo λ and the phase function x ðcos cÞ, where γ
is the scattering angle. Nonstationary radiation fields are also characterized by the
finite speed of light and definite durations of the light scattering process.
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It is usually assumed that the probability of emission of a photon being in the
absorbed state in the time interval from t to t + dt depends on t by the exponential

law, i.e., it is proportional to e�
t
t1 dt

t1
. Here, t1 is the mean time of the stay of a photon

in the absorbed state.
The probability of the photon absorption while travelling after his radiation

during an interval of time from t to t + dt depends on t also exponentially, i.e., it is

proportional to e�
t
t2 dt

t2
. Here t2 ¼ 1

ac is the mean time of stay of a photon on the path
between two consecutive scatterings, c is the speed of light.

In the simplest case, the quantities a; k; x cos cð Þ; t1; and t2 are considered to be
independent of time and spatial coordinates.

Instead of the geometric distances r, the physical time t, and values t1 and t2, we
use the corresponding dimensionless quantities

s ¼ ar; u ¼ t
t1 þ t2

; b1 ¼
t1

t1 þ t2
; b2 ¼

t2
t1 þ t2

: ð172Þ

If the medium has a plane-parallel geometry, then the equation of nonstationary
radiative transfer is written in the form (see Sobolev 1963):

g
@�I s; g; uð Þ

@s
þ b2

@�I s; g; uð Þ
@u

þ�I s; g; uð Þ ¼ �B s; g; uð Þ; ð173Þ

where

�B s; g; uð Þ ¼ k
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Z1
�1

p g; g0ð Þdg0
Zu
0

�I s; g0; u0ð Þe�u�u0
b1

du0

b1
þ g s; uð Þ: ð174Þ

In Eqs. (173) and (174), the function �Iðs; g; uÞ is the intensity of radiation at the
dimensionless time u on the optical depth τ, the radiation is propagating in the
direction which is forming an angle arccos g with the normal to the boundary
surface. �Bðs; g; uÞ is the source function. gðg; uÞ is the function describing the
distribution of primary sources in the medium at time u and pðg; g0Þ is the phase
function averaged over the azimuth.

In the case of a medium with spherical symmetry, this equation is written in the
form:

l
@I s; l; uð Þ
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where

B s; l; uð Þ ¼ k
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Zu
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I s; l0; u0ð Þe
�
u� u0
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b1
þ g s; uð Þ: ð176Þ

Here s is the optical distance from the center of symmetry and arccos l is the angle
between the direction of light propagation and the radius vector.

When the medium has axial symmetry, the corresponding equation is written as:
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if the polar axis is directed parallel to the axis of symmetry. Here arccos n and w are
polar and azimuthal angles. The quantity s is the optical distance from the axis of
symmetry.

If the polar axis is perpendicular to the symmetry axis, then the equation has the
form:
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where arccos l and u are appropriate polar and azimuthal angles.
Let us consider the case of the momentary radiation source when

gðs; uÞ ¼ gðsÞdðuÞ: ð179Þ

It is the case of the particular interest. If nonstationary characteristics of the radi-
ation field are found in the case of the momentary source, it is easy to obtain also
the corresponding expression for any dependencies of function gðs; uÞ from u. To
do this, the expressions for characteristics of the radiation field derived for the case
of the momentary source are multiplied by the function gðs; uÞ and integrated over
the entire interval of time during which the source is valid.
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Subsequently, we supply characteristics of the radiation field created by the
momentary source with index δ.

An effective way of solving problems of the non-stationary radiative transfer
theory is the use of the Laplace transform in time (see, for example, Case and
Zweifel 1967; Minin 1988). As a result of this conversion, we have the stationary
radiative transfer equation, but the values of the absorption coefficient α and of the
optical distance s are multiplied by 1þ b2s, and the value of λ is divided by
(1þ b1s) (1þ b2s), where s is the parameter of the Laplace transform. The solution
of the problem of nonstationary radiative transfer is obtained by using the inverse
Laplace transform applied to the founded stationary characteristics of the radiation
field.

Applications of the Laplace transform to the solution of nonstationary radiative
transfer problems was used in works by Minin (1959, 1961, 1962, 1964, 1971,
1988). Some mathematical problems of the theory of nonstationary multiple scat-
tering of monochromatic radiation is studied in the monograph by Wing (1962).
Methods of the numerical treatment of the Laplace transform for the solution of
problems of this theory are analyzed by Bellman et al. (1964).

Kolesov and Sobolev (1990) investigated the nonstationary radiative transfer in a
one-dimensional homogeneous medium using the probabilistic method. The
probability was determined that a photon originating at a given optical depth will
emerge from the medium after multiple scattering at a given time. Knowledge this
probability makes it possible to find the intensity of emergent radiation as a function
of the time for arbitrary energy distribution. The result was applied to the inter-
pretation of the flare stars luminosity variability.

6.2 Asymptotic of the Nonstationary Radiation Field in
Infinite Media

Simple asymptotic expressions for characteristics of the non-stationary radiation
field are obtained in the case when points of the medium are located at large optical
distances from energy sources and scattering of light is close to conservative
ð1� k � 1Þ. In this case, Minin (1988) proposed to use a simple technique for
inverting of the Laplace transform.

As it is known from the theory of the Laplace transform, the value of the original
at large values of the argument ðu 
 1Þ is determined by using the expansion of the
image in powers of the small parameter s. This expansion corresponds to the
expansion of solutions of the stationary radiative transfer equation in powers of the
small values of 1� k. Indeed, by rearranging the stationary radiative transfer
equation to the corresponding nonstationary one, the value of λ is replaced by the
value k

ð1þ b1sÞð1þ b2sÞ. Therefore, taking into account the fact that b1 þ b2 ¼ 1, we

obtain 1� k ¼ s with accuracy to members of the higher degrees of the parameter
s. Hence, when receiving the asymptotic image, it is necessary to replace the small
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values of 1� k by s in the equation solution for the stationary case, and then to
apply the inverse Laplace transform.

Let us illustrate this method in the case when values of the mean intensity and
the radiation flux are defined in an infinite medium illuminated by a momentary
source. Let us consider three types of such sources, e.g., planar, point, and axial (see
Kolesov and Kropacheva 2013, 2014). The mean intensity is defined in these cases,
respectively, by expressions (149), (151), (170), and the radiation flux is given by
(150), (152), and (171). Substituting s for 1� k in these expressions, we obtain the
following expressions for the Laplace transforms of these quantities:
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
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in the case of a planar source,

L Jd s; uð Þ½ � ¼ La2

16p2s
3� x1ð Þe�s

ffiffiffiffiffiffiffiffiffiffi
3�x1Þs

p
; ð182Þ
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in the case of a point source,
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in the case of an axial source. These expressions are valid for τ ≫ 1 and 1 − λ ≪ 1.
The inverse Laplace transforms of these expressions lead to the following

asymptotic expressions for the quantities Jdðs; uÞ and Hdðs; uÞ:

�Jd s; uð Þ � lL
8p

ffiffiffi
p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� x1

u

r
exp �ð3� x1Þs2

4u

� 	
; ð186Þ

�Hdðs; uÞ � lL
4
ffiffiffi
p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� x1

p
u
ffiffiffi
u

p � s � exp �ð3� x1Þs2
4u

� 	
ð187Þ
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for a planar source,

Jdðs; uÞ � La2

32p2
ffiffiffi
p

p � ð3� x1Þ3=2
u
ffiffiffi
u

p exp �ð3� x1Þs2
4u

� 	
; ð188Þ

Hdðs; uÞ � La2

16p
ffiffiffi
p

p � ð3� x1Þ3=2
u2

ffiffiffi
u

p � s � exp �ð3� x1Þs2
4u

� 	
ð189Þ

for a point source

eJd s; uð Þ � lL
16p3s

� exp �ð3� x1Þs2
4u

� 	
; ð190Þ

eHdðs; uÞ � lL
8p2u

� exp �ð3� x1Þs2
4u

� 	
ð191Þ

for an axial source.
Expressions (186)–(189) give the asymptotic behavior of the mean intensity and

the radiative flux under the conditions 1� k � 1; s 
 1; u[
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� x1

p
b2s:

Expressions (190) and (191) are valid if 1� k � 1; ks 
 1; u[ b2s.
Here we shall also give some results of studies of non-stationary radiation fields

in a semi-infinite medium(see Minin 1988).
Let the surface of a semi-infinite medium be illuminated by parallel rays falling

at time u = 0 at an angle arccos n to the external normal, creating the illumination of
a plane perpendicular to the source equal pSdðuÞ. Let us denote by �Idðg; f; uÞ the
intensity of radiation reflected from the medium at time u in a direction forming an
angle arccos g to the normal. Then

�Id g; f; uð Þ � 2Sffiffiffiffiffiffiffiffiffiffiffiffiffi
3� x1

p fu0ðgÞu0ðfÞ
u
ffiffiffiffiffiffi
pu

p 1� k � 1ð Þ ð192Þ

The radiation intensity in the deeper layers of this medium is given by the
asymptotic expression

�Id s; g; f; uð Þ � Sfu0ðfÞ s
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� x1

p
2u

ffiffiffiffiffiffi
pu

p � exp �ð3� x1Þs2
4u

� 	
s 
 1; 1� k � 1ð Þ

ð193Þ

In these expressions, u0ðfÞ is the function uðfÞ for the case k ¼ 1:
Let a semi-infinite medium be illuminated by momentary evenly distributed in

the medium radiation sources, i.e., g s; uð Þ ¼ g0d uð Þ. In this case, the asymptotic
expression for the intensity of radiation emerging from the medium has the form:
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�Idðs; uÞ � 4g0ffiffiffiffiffiffiffiffiffiffiffiffiffi
3� x1

p � u0ðgÞffiffiffiffiffiffi
pu

p : ð194Þ

We note that the asymptotics of the coefficients of light reflection and trans-
mission for a planar homogeneous optically thick layer is investigated in detail in
Minin (1988).

Kolesov and Sobolev (1991) considered the non-stationary radiative transfer in a
one-dimensional homogeneous infinite medium with a momentary point energy
source located in the origin s ¼ 0ð Þ. The asymptotic expressions for the mean
radiation intensity Jd s; uð Þ and the radiation flux Hd s; uð Þ were found in two lim-
iting cases: for t1 
 t2 (case A) and for t2 
 t1 (case B). It was shown that

Jd s; uð Þ � L

4
ffiffiffiffiffiffiffiffi
pku

p exp � 1� kð Þu� s2

4ku

� 	
; ð195Þ

Hdðs; uÞ � L

4
ffiffiffiffiffiffiffiffi
pku

p � s
ku

exp �ð1� kÞu� s2

4ku

� 	
ð196Þ

in the case A under the condition ku 
 1, and

Jd s; uð Þ � L
4

ffiffiffiffiffiffi
k
pu

r
exp � 1� kð Þu� ks2

4u

� 	
; ð197Þ

Hdðs; uÞ � Ls
4u

ffiffiffiffiffiffi
k
pu

r
exp � 1� kð Þu� ks2

4u

� 	
ð198Þ

in the case B under the condition u 
 sj j:
Setting k ¼ 1 in (195)–(198), we have

Jdðs; uÞ � L
4
ffiffiffiffiffiffi
pu

p exp � s2

4u

� 	
; ð199Þ

Hdðs; uÞ � L
4
ffiffiffiffiffiffi
pu

p � s
u
exp � s2

4u

� 	
: ð200Þ

In this article, the conditions are studied under which one may use the diffusion
approximation. It is shown that the replacement of the radiative transfer equation to
the heat conductivity equation should give satisfactory result when k � 1 but may
lead to significant errors when k\1 (see Appendix B).
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7 Concluding Remarks

Let us mention a number of other important problems of the radiative transport
theory.

One of them is the polarized radiative transport problem. A brief review of this
problem in the case of Rayleigh scattering was presented by Loskutov (1994).
Loskutov also discussed application of this theory to astrophysical objects.

The theoretical basis for polarized light scattering was set forth, for example, by
Minin (1988), Dolginov et al. (1995), Kokhanovsky (2003), Hovenier et al. (2004).
The system of eigenfunctions of the polarized radiative transfer equation was
investigated by Domke (1978a, b), Germogenova and Konovalov (1978),
Germogenova et al. (1989), Freimanis (1990). The equation of the transfer of
polarized radiation in spherically symmetric media was solved, for example, by
Freimanis (1986, 2005), Bosma (1993) and Silant’ev (2006). The case of an infinite
medium with cylindrically symmetric distribution of sources was considered by
Freimanis (2009).

The other problem is studying the radiative transfer in inhomogeneous media.
A simple model of an inhomogeneous medium is a medium consisting of an arbitrary
number of homogeneous layers (see Ivanov, 1976c). If thicknesses of these layers
tend to zero, we have a medium with optical characteristics depending on a spatial
position of medium points. The theory of the radiative transfer in inhomogeneous
plane-parallel media was set forth by Yanovitski (1997). Asymptotic characteristics
of inhomogeneous radiation fields are found by Germogenova and Konovalov
(1974). Wilson and Sen (1965a, b) used the method of dual PN-approximation to
study the light regime in inhomogeneous spherically symmetric media with pure
isotropic monochromatic scattering. In the papers by Wilson and Sen (1965a, b), the
sphere of finite radius and a spherical shell are considered under the assumption that
the volume scattering coefficient is inversely proportional to the square of the distance
from the center of symmetry. Radiation fields in theplane parallel to inhomogeneous
media are studied by Rogovtsov and Samson (1985).

Ganapol (2008) discussed the problem of how exact, asymptotic, or numerical
solutions of the radiative transfer correspond to the physical reality. Ganapol has
analyzed and developed numerical techniques to control the convergence and
accuracy of all the steps involved in the numerical calculations needed to achieve a
benchmark-quality solution.

Appendix A: The Results of Calculation by Formula (33)

The radiation intensity I(τ, μ) in an infinite homogeneous dusty nebula surrounding
a star, was calculated according to the formula (39) with values of λ = 0.9 and λ = 1
for three phase functions: A − x(γ) = 1, B − x(γ) = 3/4(1 + cos2γ), and C—x
(γ) = 1 + cosγ + P2(cosγ). The calculations have been based that La2

8p2 ¼ 1. The
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calculation results are shown in Table 1 (the case λ = 0.9) and in Table 2 (the case
λ = 1) for different values of the arguments τ and μ. The values of I(τ, µ) if τ > 10 in
case B (the Rayleigh phase function) in Table 2 is not shown as within the accepted
accuracy they coincide with the corresponding values for isotropic scattering.

When λ < 1, the radiation intensity decreases rapidly with increasing τ. This is
because when τ ≫1 the values of I(τ, μ) is proportional to e�ks

s . Differences in the
rate of reduction of I(τ, μ) with increasing τ for different scattering phase functions
caused mainly by the difference in the values of k (if λ = 0.9 for phase functions A,
B, C the values of k are, respectively, 0.5254; 0.5232; 0.4361). When λ = 1, k = 0,
the decrease of the values of I(τ, μ) with increasing τ is much slower.

Table 1 Values of I(τ, μ) for λ = 0.9

x(γ) τ μ

−1.0 −0.5 0.0 0.5 0.9

A 1.0 3.345 − 1 4.012 − 1 5.118 − 1 7.526 − 1 1.656 + 0

2.5 6.710 − 2 8.071 − 2 1.028 − 1 1.486 − 1 2.935 − I

5.0 9.650 − 3 1.164 − 2 1.428 − 2 2.110 − 2 3.765 − 2

7.5 1.784 − 3 2.154 − 3 2.740 − 3 3.867 − 3 6.500 − 3

10 3.662 − 4 4.422 − 4 5.621 − 4 7.883 − 4 1.275 − 3

25 5.727 − 8 6.919 − 8 8.770 − 8 1.210 − 7 1.795 − 7

50 5.721 − 14 6.912 − 14 8.747 − 14 1.197 − 13 1.723 − 15

75 7.558 − 20 9.132 − 20 1.155 − 19 1.576 − 19 2.247 − 19

100 1.121 − 25 1.354 − 25 1.712 − 25 2.333 − 25 3.310 − 25

B 1.0 3.858 − 1 4.174 − 1 4.975 − 1 7.218 − 1 1.692 + 0

2.5 7.243 − 2 8.091 − 2 9.879 − 2 1.427 − 1 2.977 − 1

5.0 1.014 − 2 1.158 − 2 1.435 − 2 2.055 − 2 3.824 − 2

7.5 1.864 − 3 2.150 − 3 2.677 − 3 3.806 − 3 6.627 − 3

10 3.825 − 4 4.435 − 4 5.535 − 4 7.823 − 4 1.305 − 3

25 6.129 − 8 7.169 − 8 8.968 − 8 1.247 − 7 1.893 − 7

50 6.455 − 14 7.570 − 14 9.469 − 14 1.306 − 13 1.919 − 13

75 9.008 − 20 1.057 − 19 1.322 − 19 1.818 − 19 2.643 − 19

100 1.412 − 25 1.658 − 25 2.073 − 25 2.847 − 25 4.116 − 25

C 1.0 2.402 − 1 2.384 − 1 2.941 − 1 5.187 − 1 1.605 + 0

2.5 5.037 − 2 5.541 − 2 7.278 − 2 1.234 − 1 3.090 − 1

5.0 8.833 − 3 1.040 − 2 1.404 − 2 2.283 − 2 4.728 − 2

7.5 2.037 − 3 2.461 − 3 3.346 − 3 5.310 − 3 9.927 − 3

10 5.229 − 4 6.399 − 4 8.715 − 4 1.361 − 3 2.393 − 3

25 3.141 − 7 3.919 − 7 5.326 − 7 8.007 − 7 1.247 − 6

50 2.936 − 12 3.682 − 12 4.990 − 12 7.386 − 12 1.106 − 11

75 3.622 − 17 4.549 − 17 6.158 − 17 9.064 − 17 1.340 − 16

100 5.013 − 22 6.300 − 22 8.523 − 22 1.251 − 21 1.839 − 21
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The values I(τ, μ) increase which increasing μ. It is especially noticeable when
λ ≈ 1. The radiation intensity becomes infinite in the direction of radiation entered a
given point of medium directly from the star (when μ = 1).

Appendix B: The Exactness of Approximate Expressions
for the Mean Radiation Intensity and the Radiation Flux

The nonstationary radiation field in a one-dimensional homogeneous infinite
medium with a point energy source is calculated in the cases A (t1 ≫ t2) and B
(t2 ≫ t1). Obtained exact values for the mean radiation intensity JAðs; uÞ, JBðs; uÞ
and the radiation flux HAðs; uÞ, HBðs; uÞ are compared with corresponding values
JDðs; uÞ and HDðs; uÞ founded in the diffusion approximation. Results of the
comparison are shown in Tables 3, 4, and 5.

Table 2 Values of I(τ, μ) for λ = 1

x(γ) τ μ

−1.0 −0.5 0.0 0.5 0.9

A 1.0 9.316 − 1 1.038 + 0 1.204 + 0 1.541 + 0 2.680 + 0

2.5 4.367 − 1 4.945 − 1 5.493 − 1 6.460 − 1 8.839 − 1

5.0 2.557 − 1 2.706 − 1 2.906 − 1 3.210 − 1 3.724 − 1

7.5 1.785 − 1 1.866 − 1 1.969 − 1 2.111 − 1 2.301 − 1

10 1.373 − 1 1.424 − 1 1.486 − 1 1.567 − 1 1.661 − 1

25 5.777 − 2 5.878 − 2 5.990 − 2 6.116 − 2 6.231 − 2

50 2.942 − 2 2.970 − 2 2.999 − 2 3.030 − 2 3.056 − 2

75 1.974 − 2 1.987 − 2 2.000 − 2 2.013 − 2 2.024 − 2

100 1.485 − 2 1.492 − 2 1.500 − 2 1.507 − 2 1.514 − 2

B 1.0 1.002 + 0 1.065 + 0 1.194 + 0 1.514 + 0 2.743 + 0

2.5 4.668 − 1 4.963 − 1 5.448 − 1 6.399 − 1 8.947 − 1

5.0 2.574 − 1 2.707 − 1 2.896 − 1 3.201 − 1 3.745 − 1

7.5 1.791 − 1 1.866 − 1 1.965 − 1 2.108 − 1 2.308 − 1

10 1.376 − 1 1.424 − 1 1.486 − 1 1.566 − 1 1.663 − 1

C 1.0 5.835 − 1 5.966 − 1 6.352 − 1 9.872 − 1 2.318 + 0

2.5 2.791 − 1 2.986 − 1 3.395 − 1 4.328 − 1 7.084 − 1

5.0 1.596 − 1 1.708 − 1 1.883 − 1 2.189 − 1 2.772 − 1

7.5 1.132 − 1 1.199 − 1 1.294 − 1 1.439 − 1 1.649 − 1

10 8.793 − 2 9.240 − 2 9.826 − 2 1.065 − 1 1.167 − 1

25 3.781 − 2 3.878 − 2 3.988 − 2 4.116 − 2 4.235 − 2

50 1 943 − 2 1.970 − 2 1.998 − 2 2.030 − 2 2.056 − 2

75 1.308 − 2 1.320 − 2 1.333 − 2 1.347 − 2 1.358 − 2

100 9.853 − 3 9.924 − 3 9.998 − 3 1.007 − 2 1.014 − 2
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Consider first the case A. In the case of pure scattering (i.e., λ = 1), asymptotic
expression (197) and (198) when и ≫ 1 just coincide with formulas (199) and (200)
for JDðs; uÞ and HDðs; uÞ. Exact and approximate values of J and H are quite close
to each other (see Table 3). So we can assume that in the case A when λ = 1, the
application of diffusion approximation will not lead to large errors.

Another situation that occurs is in the presence of true absorption, i.e., when
λ < 1. The exact values of JAðs; uÞ and HAðs; uÞ may differ significantly from their
asymptotic values. Asymptotic expressions (197) and (198) also differ from
expressions (199) and (200). The radio JA/JD may differ significantly from unity.

Addressing the case B, we first of all note that in this case always и ≫ τ, e.g.
JBðs; uÞ ¼ 0 and HBðs; uÞ ¼ 0 when и < τ. But the diffusion equation does not take
into account the finite speed of light. Taking into account only и > τ, approximately
the same results, as in case A, can be obtained by exact and approximate expres-
sions. When λ = 1, an asymptotic expressions for JBðs; uÞ and HBðs; uÞ coincides
with expressions (199) and (200) for JDðs; uÞ and HDðs; uÞ.

The ratio JB/JD and HB/HD greatly depends on λ (see Tables 4 and 5).
From the above it is concluded that the replacement of the radiation transfer

equation to the diffusion equation should give satisfactory results when λ ≈ 1 but
may lead to significant errors when λ < 1.

Table 3 Ratios of JA/JD and HA/HD for λ = 1

τ 1 5 10

и JA/JD HA/HD JA/JD HA/HD JA/JD HA/HD

I 0.801 0.98 19.3 5.80 5.30 × 107 8.57 × 106

2 0.916 1.57 2.01 1.017 7.78 × 102 2.24 × 102

3 0.977 1.76 1.18 0.779 2.92 × 10 1.15 × 10

4 0.995 1.77 0.997 0.768 6.92 3.33

5 1.018 1.69 0.939 0.802 3.27 1.82

6 1.022 1.59 0.922 0.845 2.12 1.32

7 1.024 1.50 0.921 0.887 1.63 1.104

8 1.023 1.43 0.926 0.923 1.38 0.997

9 1.022 1.36 0.934 0.953 1.23 0.942

10 1.021 1.32 0.941 0.976 1.14 0.914

15 1.015 1.19 0.970 1.038 0.993 0.906

20 1.012 1.13 0.984 1.052 0.971 0.939

30 1.008 1.083 0.995 1.050 0.977 0.983

40 1.006 1.060 0.999 1.043 0.985 1.001

50 1.005 1.047 1.000 1.037 0.990 1.009

60 1.004 1.039 1.001 1.032 0.993 1.012

80 1.003 1.029 1.001 1.025 0.996 1.014

100 1.002 1.023 1.001 1.021 0.998 1.014
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Part II
Single Light Scattering



The Debye Series and Its Use
in Time-Domain Scattering

James A. Lock and Philip Laven

Abstract In electromagnetic scattering of an incident beam by a single particle pos-
sessing a reasonably high degree of symmetry, the Debye series decomposes the partial
wave scattering and interior amplitudes into the contributions of a number of intuitive
physical processes. We describe the Debye series for scattering by a sphere, a coated
sphere, a multi-layer sphere, a tilted cylinder, and a prolate spheroid. We also comment
on the meaning of the various Debye series terms, and briefly recount the method by
which the formulas of ray scattering can be derived from them. We also consider
time-domain scattering of a short pulse by a single particle and describe the way in
which the time-domain scattering signature naturally separates out the various Debye
series terms. Lastly, we show how time-domain scattering further separates a number of
cooperating sub-processes present in individual Debye series terms.

1 Introduction

This monograph is concerned with the physical interpretation of scattering of an
incident electromagnetic beam by a single particle of relatively high symmetry,
such as a sphere, a circular cylinder, or a spheroid. If one is to successfully interpret
the results of experiments that use light scattering as a nonintrusive technique for
particle characterization, one must first understand the physical meaning of the
many complicated features present in the scattering signature. As an example, for
scattering of a plane wave of wavelength λ by a spherical particle of radius a in air,
the scattered intensity has approximately 2πa/λ oscillations between forward scat-
tering and back-scattering. Each oscillation has a specific meaning, and results from
the action of one or more scattering mechanisms. However, the mathematical
complexity of the equations of Lorenz–Mie scattering of an electromagnetic plane
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wave gives no clue as to what those mechanisms might be [see Sects. 9.2, 9.3 of
van de Hulst (1981), Sect. 3.3 of Kerker (1969), and Chap. 4 of Bohren and
Huffman (1983)]. It will be shown in this monograph that almost all of these
physical mechanisms can be readily understood by re-expressing the Lorenz–Mie
partial wave scattering amplitudes an and bn as an infinite series, known as the
Debye series. In the remainder of this section, we recount both the history and the
current state-of-the-art of the Debye series.

When summarizing the development of the Debye series over the last century,
one must differentiate between scalar waves and electromagnetic waves, the type of
incident beam considered, and the geometry of the scattering particle. The Debye
series was first developed for scattering of a normally incident scalar plane wave by
an infinitely long circular cylinder by Debye in 1908 in order to provide a rigorous
derivation, starting from an exact wave equation, of the formulas of geometrical ray
scattering. The derivation consisted of two basic steps: (i) expanding a mathe-
matical expression as a geometric series and (ii) making the small wavelength
approximation to get to the ray limit. Debye applied the small wavelength
approximation to the partial wave scattering amplitudes first, and then expanded the
result as a geometric series. In 1946 van de Hulst [as recounted on p. 226 of van de
Hulst (1981)] considered an electromagnetic plane wave incident on a sphere, and
again applied the small wavelength approximation before expanding the geometric
series. Thus, the “Debye series” they derived is only an approximate decomposition
of the partial wave scattering amplitudes, rather than being exact.

In 1937, van der Pol and Bremmer took the complementary point of view and
expanded the partial wave scattering amplitudes for a scalar plane wave incident on a
sphere as a geometric seriesfirst, before applying the small wavelength approximation
to each of the terms individually, thus obtaining the exact Debye series familiar to
researchers today. In 1954, Franz obtained an analogous exact Debye series for
scattering of a scalar plane wave by an infinitely long circular cylinder at normal
incidence. During the 1960sRubinow (1961), Chen (1964), andNussenzveig (1969a)
applied theWatson transform to each of the exact Debye series terms individually for
scattering of a scalar planewave by a sphere in order to uncover a number of subtle and
remarkably interesting wave corrections to the dominant ray theory results. This same
process was repeated by Khare in 1976 and Nussenzveig in 1979 for an electro-
magnetic plane wave incident on a sphere. The form of the Debye series these authors
used was well suited for the analytical calculation of the various wave scattering
corrections. But it was not optimally suited for numerical computations.

Beginning in the late 1980s, the exact Debye series was derived for electromagnetic
plane wave incidence for a number of different scattering geometries in a convenient
form that is easily programmable for numerical computations (Lock 1988; Hovenac
and Lock 1992). These include the Debye series of the interior partial wave amplitudes
(Hovenac and Lock 1992; Lock and Hovenac 1991), a sphere with an embedded
electric dipole source (Lock 2001), coated and multi-layer spheres (Lock et al. 1994;
Lock 2005, 2008; Li et al. 2006a; Lock and Laven 2012), diagonal plane wave
incidence on an infinitely long circular cylinder (Lock and Adler 1997), and normal (Li
et al. 2006b) and diagonal (Li et al. 2009) plane wave incidence on a multi-layer
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cylinder. For an incident electromagnetic Gaussian beam, the Debye series has been
applied to scattering by a sphere (Lock 1993; Gouesbet 2003), a multi-layer sphere (Li
et al. 2007), and for normal incidence on a multi-layer circular cylinder (Wu and Li
2008). The exact Debye series has also been derived for other beam and particle types,
including an electromagnetic Neumann beam incident on a sphere (Lock 2011), and an
electromagnetic plane wave incident on a spheroid (Xu et al. 2010a), a general
non-spherical particle (Xu et al. 2010b), a coated non-spherical particle (Xu and Lock
2010), and a highly absorbing sphere (Shen and Wang 2010).

In each of these situations, the Debye series is not a short-wavelength approximation
to the partial wave scattering amplitudes. Rather, it is an alternate form of the exact
amplitudes themselves, which is valid for particles of all sizes. In the language of
frequency-domain multiple scattering, the Lorenz–Mie formulas can be thought of as
the compact form of the partial wave scattering amplitudes, whereas the Debye series is
the expanded form (Twersky 1964). A separate question is the following: although the
Debye series is always exact, is it also always useful for deriving physical intuition
concerning the scattering processes? The answer is that the ray-like physical mecha-
nisms suggested by the Debye series are at least qualitatively valid when 2πa/λ > 50
(Glantschnig and Chen 1981; Ungut et al. 1981).

The body of this monograph is organized as follows. In Sect. 2, we summarize
the equations of Lorenz–Mie scattering for an electromagnetic plane wave incident
on a spherical particle. The derivation of the Debye series for the partial wave
scattering and interior amplitudes for a sphere proceeds in two steps, which are
described in Sects. 3 and 4. These results are then used in Sect. 5 to rigorously
derive the ray theory approximation to scattering by a sphere in the k � a limit.
The Debye series for scattering by a sphere is expressed in terms of four funda-
mental partial wave amplitudes. But only two of them appear in the compact form
of the partial wave scattering amplitudes. Section 6 describes another incident beam
type that makes use of the other two fundamental amplitudes for the compact form.
The Debye series for an electromagnetic plane wave incident on coated sphere and
a multi-layer sphere is described in Sect. 7. We find that the results are formally
identical to those of a homogeneous sphere when they are expressed in terms of
multiple-scattering amplitudes rather than in terms of single-scattering amplitudes.
This gives rise to an expanded and compact form of the Debye series itself.
Scattering of a diagonally incident electromagnetic plane wave by an infinitely long
circular cylinder is treated in Sect. 8. As opposed to scattering by a sphere, the
Debye series here contains both polarization-preserving and polarization-changing
components. The Debye series for scattering of a scalar plane wave and an elec-
tromagnetic plane wave by a prolate spheroid is described in Sect. 9. The new
feature for this geometry is that the terms of the Debye series exhibit coupling of
each partial wave of the incident beam to all the partial waves of the scattered and
interior waves. In Sect. 10, we describe time-domain scattering of a temporally
short electromagnetic plane wave pulse by a sphere, and show how it separates the
many different scattered signals that occur at the same scattering angle in
frequency-domain scattering as in Sects. 2–9. In Sect. 11, we find that each term of
the Debye series carries a different and easily identifiable temporal signature in

The Debye Series and Its Use in Time-Domain Scattering 221



time-domain scattering. In Sect. 12, we examine the time-domain signature of a
number of subtle and delicate wave scattering corrections to the dominant ray
theory results for a � k that are implicit in the various terms of the Debye series.
Finally, in Sect. 13 we give a few concluding thoughts concerning the significance
of the Debye series. In each of these sections, with the exception of Sects. 4 and 5,
the results are only quoted rather than derived in detail. The derivation in Sect. 4 is
important for extending the Debye series from a spherical particle to more general
situations. A straightforward derivation of ray theory from the Debye series as is
given in Sect. 5, to the best of our knowledge, has not appeared in the recent
literature, and is crucial for the understanding of the results of Sect. 12.

2 Scattering by a Homogeneous Sphere in Lorenz–Mie
Theory

The standard Lorenz–Mie scattering problem considers an electromagnetic plane wave
of vacuum wavelength λ, wave number k = 2π/λ, electric field amplitude E0 in an
external medium of refractive index m2, propagating in the +z direction, and linearly
polarized in the x direction. It is scattered by a homogeneous dielectric spherical particle
of radius a, refractive indexm1, whose center is located at the origin of coordinates. The
external medium will hereafter be denoted as region 2 and the particle interior will be
region 1, except in Sect. 7 which is concerned with scattering by a coated sphere and a
multi-layer sphere for which there are a number of concentric regions. The time
dependence exp(−iωt) of the incident, scattered, and interior fields will be left implicit,
where ω = ck and c is the speed of light in vacuum.

The transverse electric polarized (TE) and transverse magnetic polarized (TM)
scalar radiation potential of the incident, scattered, and interior electromagnetic
waves is denoted by wX mjkr; h;u

� �
in spherical coordinates (r, θ, φ) with respect to

the origin, where mj is the refractive index of region j and X = TE, TM. It satisfies
the scalar wave equation, also known as the scalar Helmholtz equation,

r2wX þ mjk
� �2

wX ¼ 0: ð2:1Þ

The solution of Eq. (2.1) is written as a sum over the partial wave number
1� n\1 and integer azimuthal mode number m with �n�m� n of the function
wX
n;m multiplied by an arbitrary complex constant which gives the magnitude and

phase of the partial wave contribution. The function wX
n;m contains a spherical

Bessel, Neumann, or Hankel function of mjkr multiplied by an associated Legendre
function Pm

n ½cosðhÞ�, and the complex exponential exp(imφ). The TE-polarized
electric and magnetic fields associated with wTE

n;m are [see p. 120 of van de Hulst
(1981) and Sect. 7.11 of Stratton et al. (1941)]
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ETE ¼ �r�rwTE
n;m ð2:2aÞ

cBTE ¼ �i=mjk
� �r� ETE; ð2:2bÞ

and the TM-polarized electric and magnetic fields are

c=mj
� �

BTM ¼ r�rwTM
n;m ð2:3aÞ

ETM ¼ ic= m2
j k

� �h i
r� BTM: ð2:3bÞ

As an alternative notation, Eqs. (2.2a, 2.3a) are frequently associated with the
vector spherical wave function Mm,n(kr), and Eqs. (2.2b, 2.3b) are associated with
Nm,n(kr). As an aside, we note that the usual convention for the vector spherical
wave functions uses the azimuthal mode as the first subscript and the partial wave
number as the second subscript.

The vector derivatives in Eqs. (2.2a, 2.2b, 2.3a, 2.3b), when expressed in
spherical coordinates, make it convenient to use scalar radiation potentials in the
Riccati–Bessel form

WX
n;m mjkr; h;u
� � ¼ mjkr w

X
n;m mjkr; h;u
� �

: ð2:4Þ

For an x-polarized electromagnetic plane wave of field strength E0 traveling in
the positive z direction and incident on a spherical particle, only the azimuthal
modes m = ±1 contribute. In the notation of Eq. (2.4), the scalar radiation potential
of the TE portion of the incident plane wave is taken to be

Winc;TE r; h;uð Þ ¼ m2E0

X1
n¼1

Cnwn m2krð ÞPn
1 cos hð Þ½ �sin uð Þ; ð2:5Þ

where

Cn ¼ in 2nþ 1ð Þ= n nþ 1ð Þ½ �; ð2:6Þ

and wn m2krð Þ is a Riccati–Bessel function [not to be confused with the scalar
radiation potential wX

n;m mjkr; h;u
� �

of Eq. (2.4)]

wnðzÞ ¼ zjnðzÞ; ð2:7Þ

with jn being a spherical Bessel function. The TE portion of the scattered and
interior scalar radiation potential is taken to be

Wscatt;TE r; h;uð Þ ¼ �m2 E0

X1
n¼1

Cn bn f
ð1Þ
n m2krð ÞP1

n cos hð Þ½ �sin uð Þ ð2:8aÞ
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Winside;TE r; h;uð Þ ¼ m1 E0

X1
n¼1

Cn dn wn m1krð ÞP1
n cos hð Þ½ � sin uð Þ; ð2:8bÞ

where bn and dn are the TE partial wave scattering and interior amplitudes, and ζn
(1)

is a Riccati–Hankel function of the first kind

fð1Þn zð Þ ¼ zhð1Þn zð Þ; ð2:9Þ

with hn
(1) being a spherical Hankel function of the first kind which describes a

radially outgoing traveling wave when the time dependence exp(−iωt) is appended.
The expressions for the TM scalar radiation potentials are similar, but contain the
TM partial wave scattering and interior amplitudes an and cn, and cos(φ) rather than
sin(φ). The boundary conditions on the tangential and normal components of the
total electric and magnetic field in each region that must be satisfied at the surface
of the sphere are equivalent to the continuity of WTE/(mjka) and WTE0

for the TE
waves, and the continuity of WTM and WTM0

/(mjka) for the TM waves, where the
derivative of W with respect to its radial argument is denoted as W0.

The resulting Lorenz–Mie scattered fields in the far-zone r � a are found to be
(van de Hulst 1981; Kerker 1969; Bohren and Huffman 1983)

Escatt r; h;uð Þ ¼ iE0 exp im2krð Þ= m2krð Þ½ � S2 hð Þ cos uð Þuh�S1 hð Þ sin uð Þuu
� �

ð2:10aÞ

c=m2ð ÞBscatt r; h;uð Þ ¼ iE0 exp im2krð Þ= m2krð Þ½ � S1 hð Þ sin uð Þuh þ S2 hð Þ cos uð Þuu
� �

:

ð2:10bÞ

The scattering amplitudes S1(θ) and S2(θ) are the partial wave sums

S1 hð Þ ¼
Xnmax

n¼1

2nþ 1ð Þ= n nþ 1ð Þ½ �f g anpn hð Þþ bnsn hð Þ½ � ð2:11aÞ

S2 hð Þ ¼
Xnmax

n¼1

2nþ 1ð Þ= n nþ 1ð Þ½ �f g ansn hð Þþ bnpn hð Þ½ �; ð2:11bÞ

where the Lorenz–Mie angular functions are:

pn hð Þ ¼ 1=sin hð Þ½ �P1
n cos hð Þ½ � ð2:12aÞ

sn hð Þ ¼ d=dhð ÞP1
n cos hð Þ½ �: ð2:12bÞ

The partial wave sum in Eqs. (2.11a, 2.11b) has been found to be numerically
convergent to single precision accuracy when (Wiscombe 1980)
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nmax ¼ xþ 4:2x1=3 þ 1; ð2:13Þ

where the size parameter of the sphere is defined as

x ¼ 2pm2a=k: ð2:14Þ

Since we will show in Sect. 5 that τn(θ) is usually much larger than πn(θ) when
a � k, S1(θ) will hereafter be called the TE scattering amplitude and S2(θ) will be
called the TM scattering amplitude. Equations (2.10a, 2.10b) then indicate that only
TE scattering occurs in the yz plane and only TM scattering occurs in the xz plane.

The partial wave scattering and interior amplitudes and the terms in their Debye
series expansion are conveniently written in terms of four fundamental partial wave
amplitudes (Lock 1988)

Nn ¼ awn m2kað Þw0
n m1kað Þ�bw0

n m2kað Þwn m1kað Þ ð2:15aÞ

Dn ¼ a vn m2kað Þw0
n m1kað Þ�b v0n m2kað Þwn m1kað Þ ð2:15bÞ

Pn ¼ awn m2kað Þ v0n m1kað Þ�bw0
n m2kað Þ vn m1kað Þ ð2:15cÞ

Qn ¼ a vn m2kað Þ v0n m1kað Þ�b v0n m2kað Þ vn m1kað Þ; ð2:15dÞ

where χn is a Riccati–Neumann function

vn zð Þ ¼ z nn zð Þ; ð2:16Þ

with nn being a spherical Neumann function. In addition, α = m1 and β = m2 for the
TE polarization and α = m2 and β = m1 for the TM polarization. The four funda-
mental partial wave amplitudes satisfy the Wronskian relation [see p. 631 of Arfken
(1985)]

NnQn�DnPn ¼ m1m2: ð2:17Þ

The Lorenz–Mie partial wave scattering amplitudes may be written in terms of
Nn and Dn as

an; bn ¼ Nn= Nn þ iDnð Þ ¼ U�1
n Nn; ð2:18Þ

where

Un ¼ Nn þ iDn: ð2:19Þ

In Eq. (2.18) the reciprocal of Un is written as U�1
n in order to be consistent in

notation with the matrix version of the equation that will be obtained in Sect. 9.
Lastly, the fields inside the spherical particle are
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Einside r; h;uð Þ ¼ �i m1=m2ð ÞE0

Xnmax

n¼1

in 2nþ 1ð Þcn jn m1krð Þ= m1krð Þ½ �P1
n cos hð Þ½ � cos uð Þur

þ m1=m2ð ÞE0

Xnmax

n¼1

in 2nþ 1ð Þ= n nþ 1ð Þ½ �f g fdnjn m1krð Þpn hð Þ

�icn w0
n m1krð Þ= m1krð Þ� �

sn hð Þgcos uð Þuh

� m1=m2ð ÞE0

Xnmax

n¼1

in 2nþ 1ð Þ= n nþ 1ð Þ½ �f gfdnjn m1krð Þsn hð Þ

�icn w0
n m1krð Þ= m1krð Þ� �

pn hð Þg sin uð Þuu
ð2:20aÞ

c=m1ð ÞBinside r; h;uð Þ ¼ �i m1=m2ð ÞE0

Xnmax

n¼1

in 2nþ 1ð Þdn jn m1krð Þ= m1krð Þ½ �P1
n cos hð Þ½ �sin uð Þur

þ m1=m2ð ÞE0

Xnmax

n¼1

in 2nþ 1ð Þ= n nþ 1ð Þ½ �f gfcnjn m1krð Þpn hð Þ

�idn w0
n m1krð Þ= m1krð Þ� �

sn hð Þgsin uð Þuh

þ m1=m2ð ÞE0

Xnmax

n¼1

in 2nþ 1ð Þ= n nþ 1ð Þ½ �f gfcnjn m1krð Þsn hð Þ

�idn w0
n m1krð Þ= m1krð Þ� �

pn hð Þgcos uð Þuu;
ð2:20bÞ

where the interior partial wave scattering amplitudes may be written as

cn; dn ¼ �im2= Nn þ iDnð Þ ¼ �im2 U
�1
n : ð2:21Þ

As an example illustrating the complicated structure of the TE and TM scattered
intensity, Fig. 1 shows the TE intensity |S1(θ)|

2 and the TM intensity |S2(θ)|
2 for

λ = 0.65 μm, a = 10 μm, m1 = 1.33257, and m2 = 1, corresponding to a spherical
water droplet of size parameter x = 96.66 in air illuminated by monochromatic
visible light. This structure will be explained in terms of the Debye series in Sect. 4.

Fig. 1 TE and TM intensity
as a function of angle for
scattering of an x-polarized
plane wave by a sphere with
λ = 0.65 μm, a = 10 μm,
m1 = 1.33257, and m2 = 1
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3 Partial Wave Fresnel Coefficients for Scattering by a
Homogeneous Sphere

The first step in the derivation of the Debye series is to determine the magnitude and
phase of the transmitted and reflected waves when a single radially incoming or
outgoing partial wave is incident on the sphere surface from either region 2 or 1,
respectively. Consider first the scattering problem where the beam is a single
radially incoming spherical multipole wave of unit amplitude and partial wave
number n in region 2 incident on the sphere surface from the outside. The scalar
radiation potential for the TE version of the incoming wave is

Winc;TE
n r; h;uð Þ ¼ Cnf

ð2Þ
n m2krð ÞP1

n cos hð Þ½ �sin uð Þ ð3:1Þ

where fð2Þn is a Riccati–Hankel function of the second kind

fð2Þn ðzÞ ¼ z hð2Þn ðzÞ; ð3:2Þ

with hð2Þn being a spherical Hankel function of the second kind which describes a
radially incoming traveling wave when the time dependence exp(−iωt) is appended.
Part of the incident wave, having the complex amplitude T21

n , is transmitted into the
sphere as a radially incoming partial wave in region 1 (reading the superscripts from
left to right, i.e., incident from region 2 into region 1), and part of it, having the
complex amplitude R212

n , is reflected back into region 2 as a radially outgoing partial
wave (again reading the superscripts from left to right, i.e., incident from 2, and
reflecting at 1 back into 2),

Wref;TE
n r; h;uð Þ ¼ CnR

212
n fð1Þn m2krð ÞP1

n cos hð Þ½ �sin uð Þ ð3:3aÞ

Wtrans;TE
n r; h;uð Þ ¼ CnT

21
n fð2Þn m1krð ÞP1

n cos hð Þ½ �sin uð Þ: ð3:3bÞ

For either polarization, matching the boundary conditions of the tangential and
normal components of the electric and magnetic fields at the sphere surface gives

T21
n ¼ �2im1= Nn þQnð Þþ i Dn�Pnð Þ½ � ¼ �2im1M

�1
n ð3:4aÞ

R212
n ¼ �Nn þQnð Þþ i Dn þPnð Þ½ �= Nn þQnð Þþ i Dn�Pnð Þ½ � ¼ M�1

n Jn; ð3:4bÞ

where

Mn ¼ Nn þQnð Þþ i Dn�Pnð Þ
¼ a fð1Þn m2kað Þfð2Þ0n m1kað Þ�b fð1Þ0n m2kað Þfð2Þn m1kað Þ ð3:5aÞ
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Jn ¼ �Nn þQnð Þþ i Dn þPnð Þ
¼ � a fð2Þn m2kað Þfð2Þ0n m1kað Þ�b fð2Þ0n m2kað Þfð2Þn m1kað Þ

h i
: ð3:5bÞ

The derivation of the TM case is exactly the same, except that cos(φ) replaces sin(φ)
in Eqs. (3.1, 3.3a, 3.3b).

We now apply this method to another scattering problem where the beam is a
radially outgoing spherical multipole wave of unit amplitude and partial wave
number n in region 1 incident on the sphere surface from the inside. Part of the
incident wave, having the complex amplitude T12

n , is transmitted out of the sphere
as a radially outgoing partial wave in region 2 (reading the superscripts from left to
right, i.e., incident from 1 into 2), and part of it, having the complex amplitude R121

n ,
is reflected back into region 1 as a radially incoming partial wave (again reading the
superscripts from left to right, i.e., incident from 1, and reflecting at 2 back into 1).
The scalar radiation potential of the TE version for the incident, reflected, and
transmitted waves is

Winc;TE
n r; h;uð Þ ¼ Cnf

ð1Þ
n m1krð ÞP1

n cos hð Þ½ �sin uð Þ ð3:6aÞ

Wref;TE
n r; h;uð Þ ¼ CnR

121
n fð2Þn m1krð ÞP1

n cos hð Þ½ �sin uð Þ ð3:6bÞ

Wtrans;TE
n r; h;uð Þ ¼ CnT

12
n fð1Þn m2krð ÞP1

n cos hð Þ½ �sin uð Þ: ð3:6cÞ

For either polarization, matching the boundary conditions of the tangential and
normal components of electric and magnetic fields at the sphere surface gives

T12
n ¼ �2im2= Nn þQnð Þþ i Dn�Pnð Þ½ � ¼ �2im2M

�1
n ¼ m2=m1ð ÞT21

n ð3:7aÞ

R121
n ¼ �Nn þQnð Þ�i Dn þPnð Þ½ �= Nn þQnð Þþ i Dn�Pnð Þ½ � ¼ M�1

n Ln; ð3:7bÞ

where

Ln ¼ �Nn þQnð Þ�i Dn þPnð Þ
¼ � a fð1Þn m2kað Þfð1Þ0n m1kað Þ�b fð1Þ0n m2kað Þfð1Þn m1kað Þ

h i
: ð3:8Þ

Again the derivation of the TM case is exactly the same, except that cos(φ) replaces
sin(φ) in Eqs. (3.6a–3.6c). These fractions of the incident amplitude can be thought
of as the spherical multipole wave version of the Fresnel transmission and reflection
coefficients for a plane wave incident on a flat interface [see Sect. 4.3.2 of Hecht
(1987)]. This association will be developed further in Sect. 5. The partial wave
reflection amplitudes have the same magnitude but differing phases (Lock 1988)
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R212
n

�� �� ¼ R121
n

�� ��; ð3:9aÞ

and the reflection and transmission amplitudes together satisfy the energy conser-
vation relation

R212
n

�� �� R121
n

�� ��þ T21
n

�� �� T12
n

�� �� ¼ 1: ð3:9bÞ

4 Derivation of the Debye Series for Scattering by a
Homogeneous Sphere

A Debye series expansion of the partial wave scattering and interior amplitudes can
be developed whenever the scattering particle has a sufficiently high degree of
symmetry so that a partial wave expansion can be used to calculate the scattered
fields. As a side note, a Debye series expansion can still be carried out for
arbitrary-shaped particles using a partial wave expansion in the context of T-matrix
methods (Xu et al. 2010b; Xu and Lock 2010). The derivation in this section is
carried out in two steps. First, all the partial wave transmission and reflection
coefficients must be determined. This was accomplished in Sect. 3 for the case of
scattering by a homogeneous sphere. The results are Eqs. (3.4a, 3.4b, 3.7a, 3.7b).
For the second step, one must show that an, bn, cn, and dn of Eqs. (2.18, 2.21) can
be written solely in terms of these transmission and reflection coefficients, with
nothing missing and nothing left over. For relatively simple geometries, such as a
sphere, this can be accomplished by direct substitution (Lock 1988). But for more
complicated geometries the polarization state of the light can either be maintained
or change at the particle surface, as occurs for a plane wave diagonally incident on a
circular cylinder (Lock and Adler 1997). A partial wave of the incident fields can
also be coupled to all the partial waves of the scattered and interior fields, as occurs
for scattering by a spheroid (Xu et al. 2010a). Thus, a more systematic version of
the second step in the derivation is required in order to be applicable to these more
complicated possibilities. The approach outlined here (Xu et al. 2010a) has the
advantage that it can be straightforwardly generalized to the more complicated
possibilities mentioned above.

In generalized Lorenz–Mie theory (GLMT) for scattering of an arbitrary-shaped
beam, the scalar radiation potential for the TE version of the arbitrary incident beam is

Winc;TE r; h;uð Þ ¼ m2

X1
n¼1

Xn
m¼�n

CnG
TE
n;mwn m2krð ÞPm

n cos hð Þ½ � exp imuð Þ; ð4:1Þ

where GTE
n;m is the TE shape coefficient of the incident beam. The normalization

coefficient Cn of Eq. (2.6) insures that scalar radiation potential of an x-polarized
plane wave has the beam shape coefficients GTE

n;m ¼ �i for m = 1, GTE
n;m ¼ i for
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m = −1, and GTE
n;m ¼ 0 for all other m. The central result of GLMT is that the partial

wave scattering and interior amplitudes have the product form (Tam and Corriveau
1978; Gouesbet et al. 1988)

Wscatt;TE r; h;uð Þ ¼ �m2

X1
n¼1

X1
m¼�n

CnBn;mf
ð1Þ
n m2krð ÞPm

n cos hð Þ½ �exp imuð Þ ð4:2aÞ

Winside;TE r; h;uð Þ ¼ m1

X1
n¼1

Xn
m¼�n

CnDn;mwn m1krð ÞPm
n cos hð Þ½ �exp imuð Þ ð4:2bÞ

where

Bn;m ¼ bnG
TE
n;m; ð4:3aÞ

Dn;m ¼ dnG
TE
n;m: ð4:3bÞ

The expressions for the TM scalar radiation potentials are similar, but use the beam
shape coefficients GTM

n;m multiplied by an and cn.
We now apply this approach to the scattering problem where a single incoming

spherical multipole wave in region 2 has partial wavenumber n, azimuthal mode m,
and beam shape coefficient (1/2)GTM

n;m. The scalar radiation potential of the incident
wave and the reflected and transmitted waves is

Winc;TE
n;m r; h;uð Þ ¼ 1=2ð ÞCnG

TE
n;mf

ð2Þ
n m2krð ÞPm

n cos hð Þ½ � exp imuð Þ ð4:4aÞ

Wref;TE
n;m r; h;uð Þ ¼ CnR

212
n:mf

ð1Þ
n m2krð ÞPm

n cos hð Þ½ �exp imuð Þ ð4:4bÞ

Wtrans;TE
n;m r; h;uð Þ ¼ CnT

21
n;mf

ð2Þ
n m1krð ÞPm

n cos hð Þ½ � exp imuð Þ ð4:4cÞ

where

R
212
n:m ¼ 1=2ð ÞR212

n GTE
n;m ð4:5aÞ

T
21
n;m ¼ 1=2ð ÞT21

n GTE
n;m: ð4:5bÞ

We also apply this approach to another scattering problem where a single out-
going partial wave in region 1 has the partial wave number n, azimuthal mode
number m, and beam shape coefficient (1/2) ITEn;m. The scalar radiation potential of
the incident wave and the reflected and transmitted waves is
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Winc;TE
n;m r; h;uð Þ ¼ Cn 1=2ð ÞITEn;mfð1Þn m1krð ÞPm

n cos hð Þ½ �exp imuð Þ ð4:6aÞ

Wref;TE
n;m r; h;uð Þ ¼ CnR

121
n;mf

ð2Þ
n m1krð ÞPm

n cos hð Þ½ �exp imuð Þ ð4:6bÞ

Wtrans;TE
n;m r; h;uð Þ ¼ CnT

12
n;mf

ð1Þ
n m2krð ÞPm

n cos hð Þ½ �exp imuð Þ; ð4:6cÞ

where

R
121
n;m ¼ 1=2ð ÞR121

n ITEn;m ð4:7aÞ

T
12
n;m ¼ 1=2ð ÞT12

n ITEn;m: ð4:7bÞ

Adding Eqs. (4.4c, 4.6a, 4.6b) to obtain the total scalar radiation potential in region
1 we have

Wregion 1;TE
n;m r; h;uð Þ ¼ Cn T

21
n;m þ 1=2ð ÞITEn þR

121
n;m

h i
wn m1krð ÞPm

n ½cos hð Þ� exp imuð Þ

þ iCn �T
21
n;m þ 1=2ð ÞITEn � R

121
n;m

h i
vn m1krð ÞPm

n ½cos hð Þ� exp imuð Þ:
ð4:8Þ

In order to have Eq. (4.8) be proportional to wn m1krð Þ alone with no component
proportional to χn(m1kr), as is the case for the interior field of the original Lorenz–
Mie scattering problem of Eq. (4.2b), one requires

1=2ð ÞITEn ¼ T
21
n;m þR

121
n;m; ð4:9Þ

which, after inserting Eqs. (4.5b, 4.7a) gives

ITEn ¼ T21
n 1� R121

n

� ��1
GTE

n;m: ð4:10Þ

Substituting Eq. (4.9) into Eq. (4.8) for the total interior field and equating the
result to Eq. (4.2b) for the Lorenz–Mie interior field, we find that

m1=m2ð ÞDn;m ¼ 2ðT21
n;m þR

121
n;mÞ: ð4:11Þ

Next, substituting Eqs. (4.3b, 4.5b, 4.7a) into Eq. (4.11), and then using Eq. (4.10)
to eliminate the dependence on ITEn;m, one obtains

m1=m2ð ÞdnGTE
n;m ¼ T21

n þR121
n 1�R121

n

� ��1
T21
n

h i
GTE

n;m

¼ 1�R121
n

� ��1
T21
n GTE

n;m: ð4:12Þ
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Since this is true for every set of beam shape coefficients, the Debye series decom-
position of the partial wave interior amplitude of Lorenz–Mie theory is (Lock 1988)

dn ¼ m2=m1ð ÞT21
n 1�R121

n

� ��1
: ð4:13Þ

In order to obtain the Debye series for bn, we add Eqs. (4.4a, 4.4b, 4.6c) to
obtain the total scalar radiation potential in region 2. Then doing a little bit of
rearranging we obtain

Wregion 2;TE
n;m r; h;uð Þ ¼ CnG

TE
n;mwn m2krð ÞPm

n cos hð Þ½ � exp imuð Þ
�Cn 1=2ð ÞGTE

n;m � R
212
n;m�T

12
n;m

h i
fð1Þn m2krð ÞPm

n ½cos hð Þ�exp imuð Þ:
ð4:14Þ

This is identical in form to the total exterior scalar radiation potential of Eqs. (4.1,
4.2a) for the original generalized Lorenz–Mie scattering problem. Equating (4.14)
to Eqs. (4.1, 4.2a), we find that

Bn;m ¼ 1=2ð ÞGTE
n;m � R

212
n;m�T

12
n;m: ð4:15Þ

Lastly, substituting Eqs. (4.3a, 4.5a, 4.7b) into Eq. (4.15), and then substituting
Eq. (4.10) into the result in order to eliminate the dependence on ITEn;m, one obtains

bnG
TE
n;m ¼ 1=2ð Þ 1�R212

n �T21
n 1� R121

n

� ��1
T12
n

h i
GTE

n;m: ð4:16Þ

Since this is again true for every set of beam shape coefficients, the Debye series
decomposition of the Lorenz–Mie partial wave scattering amplitude is (van der Pol
and Bremmer 1937; Franz 1954; Rubinow 1961; Chen 1964; Nussenzveig 1969a)

bn ¼ 1=2ð Þ 1�R212
n �T21

n 1� R121
n

� ��1
T12
n

h i
: ð4:17Þ

The derivation for the TM polarization proceeds exactly the same way.
In order to make the physical interpretation of each term of the Debye series

more evident, we note that the partial wave reflection amplitude R121
n satisfies

R121
n

�� ��\1, so that the reciprocal term in Eqs. (4.13, 4.17) may be expanded as a
geometric series, giving

an; bn ¼ 1=2ð Þ 1�R212
n �

X1
p¼1

T21
n R121

n

� �p�1
T12
n

" #

¼ 1=2ð Þ 1�R212
n � m1=m2ð Þ cn; dnð ÞT12

n

� � ð4:18aÞ

232 J.A. Lock and P. Laven



cn; dn ¼
X1
p¼1

m2=m1ð ÞT21
n R121

n

� �p�1
: ð4:18bÞ

These expressions are not an approximation to the partial wave scattering and
interior amplitudes; they are exact. As to notation, just as the superscripts of the
R and T factors read from left to right, the ordering of the factors also reads from left
to right as one follows the progression of the partial wave through the sphere. The
first term of Eq. (4.18a), when substituted into Eqs. (2.11a, 2.11b) for an and bn and
then summed over partial waves, will be seen in Sect. 5 to be interpreted as the
far-zone fields resulting from diffraction of the incident plane wave by the sphere.
The second term is interpreted as the externally reflected partial waves, and the
terms in the sum over p are interpreted as transmission of the partial waves into the
sphere followed by p − 1 internal reflections, and then transmission back out.
These terms are pictorially illustrated in Fig. 2. There is a technical caveat that
needs to be mentioned concerning this interpretation. Neither the partial wave sum
of diffraction nor of external reflection alone is convergent in the n → ∞ limit.
However, the sum of the two terms taken together is convergent (Nussenzveig
1969a). Thus diffraction-plus-external reflection is standardly taken to be the p = 0
term of the Debye series.

In order to illustrate how the Debye series provides a physical interpretation of
the complicated structure observed in the Lorenz–Mie scattered intensity in the
a � k limit, Fig. 3 plots the individual Debye contributions to the scattered
intensity for 0 ≤ p ≤ 3 and λ = 0.65 μm, a = 10 μm, m1 = 1.33257, and m2 = 1,
which were the parameters used in Fig. 1. The diffraction portion of the p = 0 term
is seen to dominate for 0° ≤ θ ≤ 2°. Thereafter, interference between p = 1
transmission and the external reflection portion of p = 0 dominates for
2° ≤ θ ≤ 80°, except in the vicinity of the TM external reflection Brewster angle at
θB = 73.77° [see Sect. 4.3.2 of Hecht (1987)]. The p = 3 second order rainbow at
θR = 129.22° along with its supernumeraries interfere with external reflection and
dominate TE scattering for 110° ≤ θ ≤ 130°, while the brighter p = 2 first-order
rainbow at θR = 137.86° along with its supernumeraries dominate TE scattering for
135° ≤ θ ≤ 170°. Strong rainbow enhancements in the scattered intensity do not
occur for TM scattering since the internal reflections involved at θ1

R = 40.25° for
p = 2 and θ1

R = 45.49° for p = 3 occur near the Brewster angle of θ1
B = 36.89°.

Figure 4 compares the Lorenz–Mie scattered intensity of Fig. 1 with the intensity
corresponding to the 0 ≤ p ≤ 7 terms of the Debye series. The results are virtually
identical, as is expected since the entire Debye series is an exact representation of
the Lorenz–Mie partial wave scattering amplitudes.

Lastly, for comparison with the results of Sects. 8 and 9 it should be noted that
for a scalar plane wave incident on a homogeneous sphere, as occurs for scattering
of sound waves or quantum mechanical waves, the incident, scattered, and interior
wave functions are
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Fig. 3 Debye series terms for
0 ≤ p ≤ 3 of the TE and TM
intensity as a function of
angle for scattering of an x-
polarized plane wave by a
sphere with λ = 0.65 μm,
a = 10 μm, m1 = 1.33257,
and m2 = 1

Fig. 2 Terms of the Debye
series expansion of the partial
wave scattering amplitudes
an, bn, and the partial wave
interior amplitudes cn, dn
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winc r; h;uð Þ ¼ m2E0

X1
n¼0

jn m2krð ÞPm
n ½cos hð Þ�exp imuð Þ ð4:19aÞ

wscatt r; h;uð Þ ¼ �m2E0

X1
n¼0

bnh
ð1Þ
n m2krð ÞPm

n ½cos hð Þ�exp imuð Þ ð4:19bÞ

winside r; h;uð Þ ¼ m1E0

X1
n¼0

dnjn m1krð ÞPm
n ½cos hð Þ� exp imuð Þ; ð4:19cÞ

and the boundary conditions at the surface of the sphere are the continuity of w and
@w=@r. The resulting partial wave scattering and interior amplitudes are identical to
the TE version of Eqs. (2.18, 2.21), and the four fundamental scattering amplitudes
Nn, Dn, Pn, and Qn are identical to the TE version of Eqs. (2.15a–2.15d) divided by
m1m2(ka)

2. The Debye series expansion of bn and dn is identical to Eqs. (4.18a,
4.18b).

5 Derivation of the Ray Model of Light Scattering Using
the Debye Series

The geometrical ray model of light scattering provides a simple and intuitive
description of the interaction of an incident beam with a target particle in the short
wavelength limit. As was mentioned in Sect. 1, the Debye series form of the partial
wave scattering amplitudes can be used to provide a rigorous derivation of ray
theory since Lorenz–Mie theory is the exact solution to the electromagnetic
boundary value problem of a plane wave scattered by a homogeneous spherical
particle, and the Debye series is an exact representation of the partial wave scat-
tering amplitudes of Lorenz–Mie theory (van de Hulst 1981; Debye 1908). The
derivation is outlined as follows. The first thing one must do is motivate van de
Hulst’s localization principle which associates a geometrical ray with a partial wave
of the incident beam [see pp. 208–209 of van de Hulst (1981)]. Consider the
semiclassical regime a � k where many partial waves are required for convergence

Fig. 4 Sum of the Debye
series terms for 0 ≤ p ≤ 7 of
the TE and TM intensity as a
function of angle for
scattering of an x-polarized
plane wave by a sphere with
λ = 0.65 μm, a = 10 μm,
m1 = 1.33257, and m2 = 1
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of the partial wave sums. In quantum mechanics the orbital angular momentum of a
physical system, here to taken to be the partial wave n incident on the scattering
particle whose center is at the origin of coordinates, is

L ¼ n nþ 1ð Þ½ �1=2�h � nþ 1=2ð Þ�h ð5:1Þ

where ℏ is Planck’s constant [see Sect. 4.3 of Griffiths (2005)]. In classical
mechanics, the orbital angular momentum of a projectile incident on a target par-
ticle of radius a whose center is at the origin is

L ¼ pa sin h2ð Þ ð5:2Þ

where p is the projectile momentum (not to be confused with the integer index p of
the Debye series) and θ2 is the angle of incidence of the projectile on the target as
shown in Fig. 5.

According to the de Broglie relations for a photon in a material of refractive
index m2, one has the association [see p. 19 of Griffiths (2005)]

p ¼ m2�hk: ð5:3Þ

Mixing together these different classical and quantum mechanical expressions for
orbital angular momentum suggests that in the semiclassical regime the partial wave
n can be associated with the impact parameter

b ¼ a sin h2ð Þ ð5:4Þ

of a light ray via

nþ 1=2 � m2kb ð5:5Þ

with b ≤ a. Since the incident plane wave has infinite lateral extent, the sum over
partial waves 1� n\1 can be qualitatively associated with an infinite collection of

Fig. 5 Geometry of an
incident ray with impact
parameter b interacting with a
spherical particle of radius a
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parallel incident light rays, all having different impact parameters with respect to the
z axis. Light rays with b ≤ a (or partial waves with n ≤ x) directly interact with the
sphere, while those with b > a (or partial waves with n > x) pass the sphere by
without striking it and do not directly interact with it. This interpretation validates
the first term of Eq. (2.13) for the highest partial wave contribution nmax to the
scattering amplitudes in the sum over partial waves. The term in Eq. (2.13) pro-
portional to x1/3 is a wave theory correction describing partial waves that tunnel
through the centrifugal barrier surrounding the sphere before interacting with it [see
Sect. 8.1 of Nussenzveig (1992)].

We next use this association to show that the first term of the Debye series of
Eq. (4.18a) describes diffraction of the incident plane wave [see pp. 209–210 of van
de Hulst (1981)]. Substituting the first term of Eq. (4.18a) for an and bn into
Eqs. (2.11a, 2.11b), one obtains

Sdiff1 hð Þ ¼ Sdiff2 hð Þ ¼
Xnmax

n¼1

2nþ 1ð Þ= 2n nþ 1ð Þ½ �f g pn hð Þþ sn hð Þ½ �

�
Xnmax

n¼1

1= nþ 1=2ð Þ½ � pn hð Þ þ sn hð Þ½ �: ð5:6Þ

Since diffraction is expected to be most important in the near-forward direction
where azimuthal focusing of the scattered light is important, we must evaluate the
Lorenz–Mie angular functions πn(θ) and τn(θ) for small angles where sin(θ) ≈ θ and
cos(θ) ≈ 1. In this limit, the associated Legendre differential equation becomes
approximately equal to Bessel’s differential equation [see Eq. (9.1.1) of
Abramowitz and Stegun (1964)]. This results in Pm

n ½cosðhÞ� being proportional to
the Bessel function Jm[(n + ½)θ]. Using the known value of πn(0) and τn(0) to
evaluate the constant of proportionality, one obtains [see p. 209 of van de Hulst
(1981)]

pn hð Þ � ½ nþ 1=2ð Þ2=2� J0½ðnþ 1=2Þh� þ J2½ nþ 1=2ð Þh�f g ð5:7aÞ

sn hð Þ � ½ nþ 1=2ð Þ2=2� J0½ðnþ 1=2Þh� � J2½ðnþ 1=2Þh�f g: ð5:7bÞ

Then approximating the sum over partial waves by an integral over the associated
impact parameter of Eq. (5.5) (Ford and Wheeler 1959; Berry and Mount 1972),
Eq. (5.6) simplifies to

Sdiff1 hð Þ ¼ Sdiff2 hð Þ ¼
Xm2ka

n¼1

nþ 1=2ð ÞJ0 nþ 1=2ð Þh½ �

�
Zm2ka

0

m2kð Þ2b dbJ0 m2kbhð Þ ¼ m2kað Þ2 J1 m2kahð Þ= m2kahð Þ½ �: ð5:8Þ
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The far-zone diffracted portion of the electric and magnetic fields of Eqs. (2.10a,
2.10b) are then

Ediff � i m2kað Þ2E0exp im2krð Þ= m2krð Þ
h i

J1 m2kahð Þ= m2kahð Þ½ �ux ð5:9aÞ

c=m2ð ÞBdiff � i m2kað Þ2E0exp im2krð Þ= m2krð Þ
h i

½J1ðm2kahÞ=ðm2kahÞ�uy; ð5:9bÞ

and are exactly what one would expect for Fraunhofer diffraction of a plane wave in
medium 2 past a circular obstacle of radius a.

Since the derivation of the ray theory scattered fields is similar for all values of
p ≥ 1, we describe only the derivation for the p = 2 term for scattering by a particle
with m1 > m2, where

an; bn ¼ � 1=2ð ÞT21
n R121

n T12
n : ð5:10Þ

The derivation proceeds in four steps. The first step consists of approximating the
partial wave transmission and reflection amplitudes in the a � k limit. The Riccati–
Hankel functions and their derivatives appearing in Eqs. (3.5a, 3.5b, 3.8) can be
approximated using Debye’s asymptotic form for n < mjka [i.e., on the oscillatory
side of the transition region centered on n = mjka, see Sect. 9.3 of Abramowitz and
Stegun (1964)]. One has

fð1Þn ðzÞ � Cðn; zÞ�1=2 exp iUnðzÞ½ � ð5:11aÞ

fð1Þ0n ðzÞ � iCðn; zÞ1=2 exp iUnðzÞ½ � ð5:11bÞ

fð2Þn ðzÞ � Cðn; zÞ�1=2 exp � iUnðzÞ½ � ð5:11cÞ

fð2Þ0n ðzÞ � �iCðn; zÞ1=2 exp �iUnðzÞ½ �; ð5:11dÞ

where

Cðn; zÞ ¼ 1� nþ 1=2ð Þ=z½ �2
n o1=2

ð5:12Þ

and

UnðzÞ � z Cðn; zÞ� nþ 1=2ð Þ arcsin Cðn; zÞ½ ��p=4: ð5:13Þ

This result can be derived by applying the WKB approximation to the spherical
Bessel function differential equation in the vicinity of the classical turning point and
making use of n(n + 1) ≈ (n + 1/2)2 for n � 1. Using the heuristic association of
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partial waves with impact parameters of Eq. (5.5) and the geometry of Fig. 5, one
obtains

C n;m2kað Þ ¼ cosðh2Þ; ð5:14Þ

and using Snell’s law of refraction

m2 sinðh2Þ ¼ m1 sinðh1Þ ð5:15Þ

at the surface of the sphere, one has

C n;m1kað Þ ¼ cos h1ð Þ: ð5:16Þ

Substituting Eqs. (5.10–5.16) into Eqs. (3.5a, 3.5b, 3.8), the partial wave trans-
mission and reflection amplitudes become approximately

T21
n � 2m1 exp iUn m1kað Þ�iUn m2kað Þ½ � cos h1ð Þ cos h2ð Þ½ �1=2= a cos h1ð Þþ b cos h2ð Þ½ �

ð5:17aÞ

T12
n � 2m2 exp iUn m1kað Þ�iUn m2kað Þ½ � cos h1ð Þ cos h2ð Þ½ �1=2= a cos h1ð Þþ b cos h2ð Þ½ �

ð5:17bÞ

R212
n � � exp �2iUn m2kað Þ½ � a cos h1ð Þ�b cos h2ð Þ½ �= a cos h1ð Þþ b cos h2ð Þ½ �

ð5:17cÞ

R121
n � exp 2iUn m1kað Þ½ � a cos h1ð Þ�b cos h2ð Þ½ �= a cos h1ð Þþ b cos h2ð Þ½ �: ð5:17dÞ

The magnitude of these expressions bears a great similarity to the TE and TM
Fresnel coefficients for the transmitted and reflected amplitude of a plane wave
diagonally incident on a flat interface separating regions 1 and 2 [see Sect. 4.3.2 of
Hecht (1987)],

t21 h2ð Þ ¼ 2m2 cos h2ð Þ= a cos h1ð Þþ b cos h2ð Þ½ � ð5:18aÞ

t12 h2ð Þ ¼ 2m1 cos h1ð Þ= a cos h1ð Þþ b cos h2ð Þ½ � ð5:18bÞ

r212 h2ð Þ ¼ � a cos h1ð Þ�b cos h2ð Þ½ �= a cos h1ð Þþ b cos h2ð Þ½ � ð5:18cÞ

r121 h2ð Þ ¼ a cos h1ð Þ�b cos h2ð Þ½ �= a cos h1ð Þþ b cos h2ð Þ½ �: ð5:18dÞ

The magnitude of R212
n and R121

n exactly matches that of r212 and r121. Although the
magnitude of T21

n and T12
n does not exactly match that of t21 and t12, the magnitude

of the product T21
n T12

n , which appears in Eq. (5.10), does exactly match. The reason
for this similarity is that an incoming light ray with 1 � n � m2ka interacts with a
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sufficiently small portion of the surface of the scattering particle that it cannot detect
its local curvature. Rather, the surface of the particle looks tilted and locally flat to
the incident ray.

The second step of the derivation is the simplification of the partial wave angular
functions πn(θ) and τn(θ) for n � 1 in the angular interval sufficiently far from
forward scattering and back-scattering focusing, 0	 � h � 180	. This approxi-
mation is obtained by: (i) solving Legendre’s differential equation for Pn[cos(θ)] at
θ = 90° and using n(n + 1) ≈ (n + 1/2)2, (ii) using the known value of Pn(0) [see
Eqs. (12.34–12.35) of Arfken (1985)] to determine the amplitude of the resulting
sinusoidal function, (iii) using Sterling’s approximation to eliminate the factorials
obtained in step (ii), and then (iv) substituting the result back into Legendre’s
equation to determine the residual θ dependence. This procedure gives [see
Eq. (8.10.7) of Abramowitz and Stegun (1964)]

Pn cos hð Þ½ � � 2= nþ 1=2ð Þp sin hð Þ½ �f g1=2cos nþ 1=2ð Þh�p=4½ �: ð5:19Þ

Then using Eqs. (2.12a, 2.12b), one obtains [see p. 212 of van de Hulst (1981)]

pn hð Þ � 2 nþ 1=2ð Þ½ �= p sin3 hð Þ� �	 
1=2
sin nþ 1=2ð Þh�p=4½ � ð5:20aÞ

sn hð Þ � 2 nþ 1=2ð Þ3
h i

= p sin hð Þ½ �
n o1=2

cos nþ 1=2ð Þh�p=4½ �: ð5:20bÞ

Since τn(θ) with its factor of (n + 1/2)3/2 sin−1/2(θ) is generally much larger for
n � 1 than πn(θ) with its factor of (n + 1/2)1/2 sin−3/2(θ), the scattering amplitudes
of Eqs. (2.11a, 2.11b) become approximately

S1 hð Þ �
X1
n¼1

2nþ 1ð Þ= n nþ 1ð Þ½ �f gbnsn hð Þ ð5:21aÞ

S2 hð Þ �
X1
n¼1

2nþ 1ð Þ= n nþ 1ð Þ½ �f gansn hð Þ: ð5:21bÞ

As was mentioned in Sect. 1, the function S1(θ) is associated with the TE
scattering amplitude of geometrical light rays, and S2(θ) is associated with the TM
scattering amplitude. Substituting Eqs. (5.10, 5.17a, 5.17b, 5.17d, 5.20a, 5.20b)
into Eq. (5.21a) for the TE amplitude, one obtains

Sp¼2
1 hð Þ � � 1= 2p sin hð Þ½ �f g1=2

X1
n¼1

nþ 1=2ð Þ1=2An exp i Xþ
n �p=4

� �� �þ exp i X�
n þ p=4

� �� �	 

ð5:22Þ
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where

An ¼ 4m1m2 cos h1ð Þ cos h2ð Þ=½m1 cos h1ð Þþm2 cos h2ð Þ�3 ð5:23Þ

with θ1 and θ2 being functions of n as in Eqs. (5.14, 5.16), and

X

n ¼ 4Un m1kað Þ � 2Un m2kað Þ 
 nþ 1=2ð Þh: ð5:24Þ

The third step in the derivation is approximately converting the sum over partial
waves into an integral over an associated impact parameter. Letting the continuous
variable u be associated with the partial wave number n via

u ¼ nþ 1=2 ¼ m2ka sin h2ð Þ; ð5:25Þ

the sum over partial waves can be approximated by (Ford and Wheeler 1959; Berry
and Mount 1972)

Sp¼2
1 hð Þ � � 1= 2p sin hð Þ½ �f g1=2

Z1
0

du u1=2AðuÞ exp iCþ ðuÞ�3ip=4½ � þ exp iC�ðuÞ � ip=4½ �f g

ð5:26Þ

with

C
 uð Þ ¼ 4m1ka 1� u=m1kað Þ2
h i1=2

�4u arcsin 1� u=m1kað Þ2
h i1=2

� 2m2ka 1� u=m2kað Þ2
h i1=2

þ 2u arcsin 1� u=m2kað Þ2
h i1=2


uh:
ð5:27Þ

The final step in the derivation is evaluating the integral using the stationary
phase approximation [see Sect. 4.2a of Felsen and Marcuvitz (1973)]. The functions
u1/2 and A(u) of Eq. (5.26) are slowly varying in u, while the phase functions
Γ ±(u) are rapidly varying. If either phase function possesses a relative maximum or
minimum, it corresponds to a region of constructive interference of the phase when
the impact parameter u is integrated, resulting in a large contribution to the integral.
If there is no relative maximum or minimum of the phase, only destructive inter-
ference will occur when u is integrated over, contributing negligibly to the value of
the integral.

Let a positive angle θ correspond to a light ray incident on the sphere above the
z axis and deflected below the z axis as in Fig. 5. Then for p = 2 one has

dC
=du ¼ � pþ 2h2 � 4h1ð Þ 
 h: ð5:28Þ
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The phase function Γ +(u) has a stationary point at

h ¼ pþ 2h2 � 4h1; ð5:29Þ

while Γ −(u) has no stationary point. Equation (5.26) for TE scattering then
becomes approximately

Sp¼2
1 hð Þ � � exp �3ip=4ð Þ 1= 2p sin hð Þ½ �f g1=2u1=2sp A usp

� � Z1
0

du exp iCþ uð Þ½ �;

ð5:30Þ

where usp = m2ka sin(θ2) is the stationary point of u consistent with Eq. (5.29), and
the slowly varying functions A(u) and u1/2 are to be evaluated at that stationary
point. As θ2 increases from 0° for head-on incidence to 90° for grazing incidence
when u is integrated over, the minimum value of θ of Eq. (5.29) occurs when dθ/
dθ2 = 0, or

cos hR2
� � ¼ m1=m2ð Þ2�1

h i
=3

n o1=2
: ð5:31Þ

The angle hR2 substituted into Eqs. (5.15, 5.29) gives the Descartes scattering angle
θR of the first-order rainbow in ray theory (Walker 1976). The derivative dθ/dθ2
turns out to be negative for 0° ≤ θ < θ2

R, and it is positive for hR2\h� 90	. In
addition

d2Cþ =du2 ¼ � 1= m2ka cos h2ð Þ½ �f gdh=dh2: ð5:32Þ

The sign of d2Γ+/du2 determines an additional phase factor in Eq. (5.34) below
when the stationary phase method is applied. The stationary phase evaluation of the
integral in Eq. (5.30) for h2 6¼ hR2 gives

Sp¼2
1 hð Þ � m2ka sin h2ð Þ cos h2ð Þ= 2 sin hð Þ½ �f g1=2 2m2 cos h2ð Þ½ �= m1 cos h1ð Þ½ �f g�1j j�1=2

� t21 h2ð Þr121 h2ð Þt12 h2ð Þ exp i 4m1ka cos h1ð Þ�2m2ka cos h2ð Þ½ �f g exp iUnpl
� �

;

ð5:33Þ

where the non-path-length phase is given by

Unpl ¼ p=2 for 0	 � h2\hR2
¼ 0 for hR2\h2 � 90	:

ð5:34Þ

The first complex exponential in Eq. (5.33) is the accumulated phase of a ray’s path
through the sphere. The second complex exponential is van de Hulst’s non-path
length phase, which decreases by 90° as the Descartes angle of the rainbow caustic
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is crossed [see p. 207 of van de Hulst (1981)]. The p = 2 ray theory scattered
electric and magnetic fields are obtained by substituting Eq. (5.33) into Eqs. (2.10a-
b). The factor to the −1/2 power in Eq. (5.33) diverges at the Descartes scattering
angle θ = θ2

R, giving an infinite intensity at the first-order rainbow in ray theory.
However, this value of θ lies outside the region of validity of the stationary phase
approximation that was used to obtain Eq. (5.33). Since d2Γ+/du2 = 0 there, one
must consider the third order term in the Taylor series expansion of Γ +(u). This
leads to the integral of Eq. (5.30) becoming an Airy integral [see Sect. 10.4 of
Abramowitz and Stegun (1964)], which results in the scattered fields being large
but finite in the vicinity of the Descartes angle (i.e., the Airy shift). The fields
decreases faster than exponentially on one side of the rainbow peak (i.e., the
complex ray regime), and are oscillatory on the other side of the peak (i.e., the
supernumerary ray interference pattern).

6 Scattering of a Neumann Beam by a Homogeneous
Sphere

It was seen in Eqs. (2.18, 2.21) that the compact form of the partial wave scattering
and interior amplitudes an, bn, cn, and dn for plane wave incidence depended only
on two of the four fundamental partial wave amplitudes of Eqs. (2.15a–2.15d), Nn

and Dn. This is also the case for a large class of beams in GLMT such as focused
Gaussian beams, Bessel beams, top-hat beams, etc. Since there are four funda-
mental partial wave amplitudes, Nn, Dn, Pn, and Qn, it could be asked if there is a
type of incident beam for which the compact form of the partial wave scattering and
interior amplitudes depends only on the other two fundamental partial wave
amplitudes Pn and Qn? This section considers this question.

Consider a TE-polarized beam whose scalar radiation potential in region 2 is

Winc;TE r; h;uð Þ ¼ �im2E0

X1
n¼1

Cnvn m2krð ÞP1
n cos hð Þ½ �sin uð Þ: ð6:1Þ

This has been called a Neumann beam (Lock 2011) since the radial dependence
is a Riccati–Neumann function rather than a Riccati–Bessel function. In the absence
of a scattering particle this beam has an essential singularity at the origin. Just as
fð1Þn and fð2Þn with the time dependence exp(−iωt) are radially outgoing and
incoming traveling waves, wn and χn can be thought of as two orthogonal radial
standing waves, with wn being regular at the origin and χn diverging there. The
Neumann beam of Eq. (6.1) can be interpreted as the standing wave formed by a
radially outgoing wave from a point source located at the center of a large perfectly
reflecting spherical shell and the radially incoming wave that has been totally
reflected back toward the origin by the shell.
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It was shown in Lock (2011) that this standing wave leads to scattered and
interior fields whose compact form depends only on Pn and Qn. The scattered and
interior scalar radiation potentials for this scattering problem are

Wscatt;TE r; h;uð Þ ¼ �m2E0

X1
n¼1

Cnbnf
ð1Þ
n m2krð ÞP1

n cos hð Þ½ � sin uð Þ ð6:2aÞ

Winside;TE r; h;uð Þ ¼ �im1E0

X1
n¼1

Cndnvn m1krð ÞP1
n cos hð Þ½ � sin uð Þ: ð6:2bÞ

Matching boundary conditions for the continuity of the tangential components of
the electric and magnetic fields at the surface of the sphere gives

an; bn ¼ �Qn= Qn�iPnð Þ ð6:3aÞ

cn; dn ¼ �im2= Qn�iPnð Þ ð6:3bÞ

as desired. Using the procedure of Sects. 3 and 4 to carry out the Debye series
derivation gives

an; bn ¼ 1=2ð Þ �1�R212
n þ

X1
p¼1

T21
n �R121

n

� �p�1
T12
n

" #
ð6:4aÞ

cn; dn ¼ m2=m1ð Þ
X1
p¼1

T21
n �R121

n

� �p�1
: ð6:4bÞ

in analogy to Eqs. (4.18a, 4.18b) as the expanded form of the partial wave scat-
tering and interior amplitudes.

7 Debye Series for a Scattering by a Coated Sphere
and a Multi-layer Sphere

7.1 Scattering by a Coated Sphere

Consider now a spherical particle of refractive index m1 and radius a12 (region 1)
concentrically surrounded by a material of refractive index m2 (region 2) in an
exterior medium of refractive index m3 (region 3). The overall radius of the coated
sphere is a23. An incident linearly polarized electromagnetic plane wave is scattered
by the coated sphere [see Aden and Kerker (1951) and Sect. 8.1 of Bohren and
Huffman (1983)]. The partial wave scattering amplitudes an and bn, as well as the
partial wave amplitudes cn and dn in the core and K


n and L
n in the coating, where
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± indicates radially outgoing and incoming waves, can be written in a number of
different but equivalent ways. Perhaps the simplest way, which turns out to
anticipate the Debye series expansion of these amplitudes, is as follows (Lock
2005). In analogy to Eqs. (2.15a–2.15d) for a homogeneous sphere, the four fun-
damental partial wave amplitudes for the 12 interface separating regions 1 and 2 are

N12
n ¼ awn m2ka12ð Þw0

n m1ka12ð Þ�bw0
n m2ka12ð Þwn m1ka12ð Þ ð7:1aÞ

D12
n ¼ a vn m2ka12ð Þw0

n m1ka12ð Þ�b v0n m2ka12ð Þwn m1ka12ð Þ ð7:1bÞ

P12
n ¼ awn m2ka12ð Þv0n m1ka12ð Þ�bw0

n m2ka12ð Þvn m1ka12ð Þ ð7:1cÞ

Q12
n ¼ a vn m2ka12ð Þv0n m1ka12ð Þ�b v0n m2ka12ð Þvn m1ka12ð Þ; ð7:1dÞ

and their counterparts for the 23 interface separating regions 2 and 3 are

N23
n ¼ c wn m3ka23ð Þw0

n m2ka23ð Þ�dw0
n m3ka23ð Þwn m2ka23ð Þ ð7:2aÞ

D23
n ¼ c vn m3ka23ð Þw0

n m2ka23ð Þ�d v0n m3ka23ð Þwn m2ka23ð Þ ð7:2bÞ

P23
n ¼ c wn m3ka23ð Þv0n m2ka23ð Þ�dw0

n m3ka23ð Þvn m2ka23ð Þ ð7:2cÞ

Q23
n ¼ c vn m3ka23ð Þv0n m2ka23ð Þ�d v0n m3ka23ð Þvn m2ka23ð Þ; ð7:2dÞ

where γ = m2 and δ = m3 for TE scattering, while γ = m3 and δ = m2 for TM
scattering. The four fundamental amplitudes for each interface satisfy the
Wronskian relations

N12
n Q12

n �D12
n P12

n ¼ m1m2 ð7:3aÞ

N23
n Q23

n �D23
n P23

n ¼ m2m3: ð7:3bÞ

One can also define four fundamental partial wave amplitudes for the composite
particle with the 12 and 23 interfaces lumped together as a single unit

N123
n ¼ D12

n N23
n �N12

n P23
n ð7:4aÞ

D123
n ¼ D12

n D23
n �N12

n Q23
n ð7:4bÞ

P123
n ¼ Q12

n N23
n �P12

n P23
n ð7:4cÞ

Q123
n ¼ Q12

n D23
n �P12

n Q23
n : ð7:4dÞ
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These composite amplitudes satisfy the Wronskian relation

N123
n Q123

n �D123
n P123

n ¼ m1m
2
2m3; ð7:5Þ

and will be called multiple-interface amplitudes. The compact form of the partial
wave scattering amplitudes for the coated sphere may then be written as

an; bn ¼ N123
n = N123

n þ iD123
n

� �
: ð7:6Þ

The expressions for the partial wave amplitudes in the core and coating are similar.
It should be noted that Eq. (7.6) has the same formal structure as Eq. (2.18) for a
homogeneous sphere.

In order to set the stage for the Debye series expansion, one must first determine
the partial wave reflection and transmission amplitudes at each of the interfaces. In
analogy to Eqs. (3.4a, 3.4b, 3.7a, 3.7b) the derivation gives

T21
n ¼ m1=m2ð ÞT12

n ¼ �2im1= N12
n þQ12

n

� �þ i D12
n �P12

n

� �� � ð7:7aÞ

R212
n ¼ �N12

n þQ12
n

� �þ i D12
n þP12

n

� �� �
= N12

n þQ12
n

� �þ i D12
n �P12

n

� �� � ð7:7bÞ

R121
n ¼ �N12

n þQ12
n

� �� i D12
n þP12

n

� �� �
= N12

n þQ12
n

� �þ i D12
n �P12

n

� �� � ð7:7cÞ

for the 12 interface and

T32
n ¼ m2=m3ð ÞT23

n ¼ �2im2= N23
n þQ23

n

� �þ i D23
n �P23

n

� �� � ð7:8aÞ

R323
n ¼ �N23

n þQ23
n

� �þ i D23
n þP23

n

� �� �
= N23

n þQ23
n

� �þ i D23
n �P23

n

� �� � ð7:8bÞ

R232
n ¼ �N23

n þQ23
n

� �� i D23
n þP23

n

� �� �
= N23

n þQ23
n

� �þ i D23
n �P23

n

� �� � ð7:8cÞ

for the 23 interface. These partial wave transmission and reflection amplitudes will
hereafter be called the single-interface amplitudes.

There are at least three different but equivalent ways to express the Debye series
expansion of the partial wave scattering amplitudes of Eq. (7.6). First, the Debye
series can be written in expanded form entirely in terms of single-interface
amplitudes. Using the derivation outlined in Sect. 4 and again reading the ordering
of the R and T factors from left to right as the partial wave progresses through the
coated sphere, one obtains

an; bn ¼ 1=2ð Þ 1�R323
n �T32

n W212
n 1�R232

n W212
n

� ��1
T23
n

h i

¼ 1=2ð Þ 1�R323
n �

X1
q¼1

T32
n W212

n R232
n W212

n

� �q�1
T23
n

" #
; ð7:9Þ
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where

W212
n ¼ R212

n þ T21
n 1�R121

n

� ��1
T12
n

¼ R212
n þ

X1
p¼1

T21
n R121

n

� �p�1
T12
n :

ð7:10Þ

The interpretation of the terms in Eq. (7.9) is that an incident partial wave can be
diffracted by the coated sphere or externally reflected from its outer surface
(1�R232

n ). It can also be transmitted through the outer surface (T32
n ), interact with the

core (W212
n ) and then be transmitted back out (T23

n ). Alternatively, after it has
interacted at the 12 interface it can propagate in region 2 alternately outward and
inward q − 1 times, reflecting from the 23 interface (R232

n ) and then interacting with
the core (W212

n ), before being transmitted back out (T23
n ). When the partial wave in

region 2 interacts with the core (W212
n ) in Eq. (7.10), it is directly reflected from the

interface (R212
n ), or it is transmitted into region 1 (T21

n ), makes p − 1 internal
reflections within the core (R121

n ), and is then transmitted back into region 2 (T12
n ).

These interactions are pictorially illustrated in Fig. 6.
Second, the Debye series can be expressed in compact form in terms of

multiple-scattering amplitudes as

an; bn ¼ 1=2ð Þ½1�R3c3
n �T 31

n ð1�R1c1
n Þ�1T 13

n �

¼ 1=2ð Þ½1�R3c3
n �

X1
p¼1

T 31
n ðR1c1

n Þp�1T 13
n �; ð7:11Þ

where the multiple-scattering partial wave transmission and reflection amplitudes in
Eq. (7.11) are defined in analogy to Eqs. (7.7a–7.7c, 7.8a–7.8c) as

T 31
n ¼ 2im1m2= N123

n þQ123
n

� �þ i D123
n �P123

n

� �� �
¼ T32

n 1�R212
n R232

n

� ��1
T21
n

ð7:12aÞ

T 13
n ¼ 2im2m3= N123

n þQ123
n

� �þ i D123
n �P123

n

� �� �
¼ T12

n 1�R232
n R212

n

� ��1
T23
n

ð7:12bÞ

R3c3
n ¼ �N123

n þQ123
n

� �þ i D123
n þP123

n

� �� �
= N123

n þQ123
n

� �þ i D123
n �P123

n

� �� �
¼ R323

n þ T32
n R212

n 1�R232
n R212

n

� ��1
T23
n

ð7:12cÞ

R1c1
n ¼ �N123

n þQ123
n

� �� i D123
n þP123

n

� ��=½ N123
n þQ123

n

� �þ i D123
n �P123

n

� �� �
¼ R121

n þ T12
n R232

n 1�R212
n R232

n

� ��1
T21
n : ð7:12dÞ
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The multiple-scattering transmission amplitudes T 31
n and T 13

n correspond to a
partial wave being transmitted from either region 3 or region 1 into region 2 (T32

n or
T12
n ), then reflecting back and forth in region 2 any number of times (R212

n R232
n or

R232
n R212

n ), and finally being transmitted into region 1 or region 3 (T21
n or T23

n ).
Similarly, the multiple-scattering reflection amplitudesR3c3

n andR1c1
n correspond to

a partial wave in either region 3 or region 1 being directly reflected back (R323
n or

R121
n ) or transmitted into region 2 and reflecting from the 12 or 23 interface (T32

n R121
n

or T12
n R232

n ), then reflecting back and forth in region 2 any number of times
(R232

n R212
n or R212

n R232
n ), and finally transmitted back into region 3 or region 1 (T23

n or
T21
n ). The compact form Debye series of Eq. (7.11) has the same formal structure as

for a homogeneous sphere in Eq. (2.18), except that it is written in terms of
multiple-scattering amplitudes rather than single-interface amplitudes.

As an example of the use of the coated sphere Debye series, the first-order
rainbow becomes a closely spaced pair of twin first-order rainbows. The α
component

an; bn ¼ �1=2ð ÞT32
n T21

n R121
n T12

n T23
n ð7:13Þ

has its internal reflection at the 12 interface, and the β component

an; bn ¼ �1=2ð ÞT32
n T21

n T12
n R232

n T21
n T12

n T23
n ð7:14Þ

has its internal reflection at the 23 interface. The evolution of these twin first-order
rainbows was examined in detail as a function of coating thickness in Lock et al.
(1994). Similarly, there are three closely spaced components of the second-order

Fig. 6 Terms of the Debye series expansion of the partial wave scattering amplitudes an, bn for a
coated sphere, and of the core interaction amplitude W212

n
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rainbow (Laven and Lock 2012), where (i) both internal reflections occur at the 12
interface, αα, (ii) both at the 23 interface, ββ, and (iii) one each at the 12 and 23
interfaces. For this last possibility, the first of the internal reflections is either at the
12 interface and the second is at the 23 interface, αβ, or the first is at the 23 interface
and the second is at the 12 interface, βα. Each of these two orderings gives an
identical contribution to an and bn.

This multiplicity leads to the third way of expressing the Debye series that
avoids having to evaluate a large number of terms that give exactly the same
contribution to an and bn. Let N be the total number of internal reflections for a
given term of the Debye series, N212 the number of internal reflections at the 12
interface incident from region 2, N121 the number at the 12 interface incident from
region 1, and N232 the number at the 23 interface incident from region 2, with

N ¼ N212 þN121 þN232: ð7:15Þ

We now reorganize the expanded form of the Debye series from specifying the
values of p and q of Eqs. (7.9, 7.10) to specifying the total number of internal
reflections N. For 0 ≤ N ≤ 7, there are 2, 3, 6, 14, 31, 70, 157, 353 different Debye
series terms. For example, for N = 0 there is

an; bn ¼ 1=2ð Þ 1�R323
n

� ��T32
n T21

n T12
n T23

n

� � ð7:16Þ

i.e., diffraction-plus-external reflection, and direct transmission in and out. For N = 1
there are the two twin first-order rainbow terms of Eqs. (7.13,7.14), as well as reflection
at the 12 interface without the partial wave having ever entered the core,

an; bn ¼ �1=2ð ÞT32
n R212

n T23
n : ð7:17Þ

The 25 terms for 0 ≤ N ≤ 3 are pictorially illustrated in Fig. 7. Having to calculate
all these terms for even a moderate value of N quickly becomes extremely
inefficient.

In addition to categorizing the individual terms of the Debye series terms by their
value of N, they are also categorized by the number of chords A the corresponding
ray path has in the coating, and the number of chords B the ray path has in the core.
One finds that

N232 ¼ A� 2ð Þ=2 ð7:18aÞ

N121 ¼ Nþ 1�AþBð Þ=2 ð7:18bÞ

N212 ¼ N þ 1�Bð Þ=2: ð7:18cÞ

Each Debye series term with the same value of N, A, B is merely a different
reordering of all the partial wave transmission and reflection amplitudes involved,
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and gives the same contribution to an and bn. Counting in this way and taking into
account the degeneracy factor D(N, N232, N212) of the different but equivalent
contributions to an and bn, the number of distinct terms for 0 ≤ N ≤ 7 now is
reduced to 2, 3, 4, 7, 9, 13, 16, 21, which is a much more manageable computa-
tional task. The reorganized expanded form of the Debye series then becomes

an; bn ¼ 1=2ð Þ 1�R323
n �

X1
N¼0

T32
n FN

n T
23
n �

 !
; ð7:19Þ

Fig. 7 0 ≤ N ≤ 3 terms of the Debye series expansion of the partial wave scattering amplitudes
an, bn for a coated sphere, showing their (N, A, B) values where A is the number of chords in the
coating and B is the number of chords in the core
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where

FN
n ¼

XN
N232¼0

XNmax

N212¼0

D N;N232;N212
� �

T21
n T12

n

� �N232þ 1�N212
R232
n

� �N232
R212
n

� �N212
R121
n

� �N121 þGn;

ð7:20Þ

Nmax is the smaller of N232 and N − N232,

Gn ¼ R232
n

� � N�1ð Þ=2
R212
n

� � Nþ 1ð Þ=2
for odd N

¼ 0 for even N;
ð7:21Þ

and the ray path degeneracy factor is

D ¼ N232 þ 1
� �

! N � 2N212� �
!= N212� �

! N232 þ 1� N212� �
! N � N232 � N212� �

! N232 � N212� �
!

� �
:

ð7:22Þ

In Lock and Laven (2012), the scattered intensity corresponding to Eqs. (7.19–
7.22) was computed for 0 ≤ N ≤ 3 and compared with that of the exact solution of
Eq. (7.6). The agreement was found to be nearly perfect.

7.2 Scattering by a Multi-layer Sphere

We now turn our attention to scattering of an electromagnetic plane wave by a
stratified sphere containing M ≥ 3 concentric layers, where region M + 1 is the
exterior medium. The partial wave scattering amplitudes again are found to take the
form

an; bn ¼ N12...Mþ 1
n = N12...Mþ 1

n þ iD12...Mþ 1
n

� �
; ð7:23Þ

in analogy to Eq. (2.18) for a homogeneous sphere and Eq. (7.6) for a singly coated
sphere. The four fundamental multiple-interface amplitudes N12...Mþ 1

n , D12...Mþ 1
n ,

P12...Mþ 1
n , Q12...Mþ 1

n in Eq. (7.23) can be obtained by progressive iteration, starting
from the innermost layer and working outward, adding one interface at a time. This
is done by using the multiple-interface amplitudes for the combination starting from
interface 12 to interface J − 1, J, called 12…J for short, along with single-interface
amplitudes for the J, J + 1 interface,

N12...Jþ 1
n ¼ D12...J

n NJ;Jþ 1
n �N12...J

n PJ;Jþ 1
n ð7:24aÞ

D12...Jþ 1
n ¼ D12...J

n DJ;Jþ 1
n �N12...J

n QJ;Jþ 1
n ð7:24bÞ
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P12...Jþ 1
n ¼ Q12...J

n NJ;Jþ 1
n �P12...J

n PJ;Jþ 1
n ð7:24cÞ

Q12...Jþ 1
n ¼ Q12...J

n DJ;Jþ 1
n �P12...J

n QJ;Jþ 1
n ; ð7:24dÞ

in analogy to Eqs. (7.4a–7.4d) for a singly coated sphere. This is a variant of the
progressive iteration scheme for a multi-layer sphere or a stack of many plane
parallel layers [see pp. 51–70 of Born and Wolf (1980), pp. 45–53 of Chew (1990),
Bhandari (1985), Mackowski et al. (1990), Wu and Wang (1991), Kai and Massoli
(1994), Johnson (1996), and Wu et al. (1997)].

The Debye series of Eq. (7.23) for a multi-layer sphere can be made to resemble
either the expanded form of Eqs. (7.9, 7.10) or the compact form of Eq. (7.11) for a
singly coated sphere. For the expanded form, one uses multiple-scattering transmis-
sion and reflection amplitudes for thefirstM interfaces T M;1

n ,T 1;M
n ,R1;c;1

n , andRM;c;M
n ,

and the single-interface transmission and reflection amplitudes at the outer surface of
the sphere, i.e., the M, M + 1 interface. The multiple-scattering transmission and
reflection amplitudes are identical to Eqs. (3.4a, 3.4b, 3.7a, 3.7b) for a homogeneous
sphere and Eqs. (7.12a–7.12d) for a singly coated sphere, except they use N12...M

n ,

D12...M
n ,P12...M

n ,Q12...M
n rather thanNn, Dn, Pn, Qn orN123

n ,D123
n ,P123

n ,Q123
n . The symbol γ

denotes multiple-scattering within the first M − 1 layers, consisting of all the com-
binations of the interactions at all the intervening interfaces. Alternatively, the
multiple-scattering amplitudes can be obtained by progressive iteration

T M;1
n ¼ TM;M�1

n 1�RM�1;d;M�1
n RM�1;M;M�1

n

� ��1T M�1;1
n ð7:25aÞ

T 1;M
n ¼ T 1;M�1

n 1 �RM�1;d;M�1
n RM�1;M;M�1

n

� ��1
TM�1;M
n ð7:25bÞ

RM;c;M
n ¼ RM;M�1;M

n þ TM;M�1
n RM�1;d;M�1

n 1�RM�1;d;M�1
n RM�1;M;M�1

n

� ��1
TM�1;M
n

ð7:25cÞ

R1;c;1
n ¼ R1;d;1

n þT 1;M�1
n RM�1;M;M�1

n 1�RM�1;d;M�1
n RM�1;M;M�1

n

� ��1T M�1;1
n ;

ð7:25dÞ

in generalization of the second part of Eqs. (7.12a–7.12d) for a singly coated
sphere, where δ denotes multiple-scattering within the first M − 2 layers. The
Debye series then becomes

an; bn ¼ 1=2ð Þ 1�RMþ 1;M;Mþ 1
n � TMþ 1;M

n WM
n 1�RM;Mþ 1;M

n WM
n

� ��1
TM;Mþ 1
n

h i

¼ 1=2ð Þ 1�RMþ 1;M;Mþ 1
n �

X1
q¼1

TMþ 1;M
n WM

n RM;Mþ 1;M
n WM

n

� �q�1
TM;Mþ 1
n

" #

ð7:26Þ
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where the multiple scattering amplitude WM
n is given by

WM
n ¼ RM;c;M

n þT M;1
n 1�R1;c;1

n

� ��1T 1;M
n

¼ RM;c;M
n þ

X1
p¼1

T M;1
n R1;c;1

n

� �p�1T 1;M
n :

ð7:27Þ

Equation (7.27) for WM
n can be interpreted as the partial wave interacting with the

first M − 1 layers of the stratified sphere in analogy to (7.10) for a singly coated
sphere, with the diffraction term subtracted out. Equation (7.26) describes the effect
of adding on the final layer, with TMþ 1;M

n , TM;Mþ 1
n , RMþ 1;M;Mþ 1

n , and RM;Mþ 1;M
n

being single-interface partial wave transmission and reflection amplitudes. In this
way, individual layers can be added on one by one in order to form the multi-layer
sphere.

For the compact form of the Debye series one uses multiple-scattering trans-
mission and reflection amplitudes for all M interfaces from the core out to the
surface of the sphere, here denoted by Γ. Using an analysis similar to that for the
situation discussed in the previous paragraph, the result turns out to be

an; bn ¼ 1=2ð Þ 1�RMþ 1;C;Mþ 1
n �T Mþ 1;1

n 1�R1;C;1
n

� ��1T 1;Mþ 1
n

h i

¼ 1=2ð Þ 1�RMþ 1;C;Mþ 1
n �

X1
p¼1

T Mþ 1;1
n R1;C;1

n

� �p�1T 1;Mþ 1
n

" # ð7:28Þ

It is both physically and mathematically pleasing that the patterns observed in the
formulas for the partial wave scattering amplitudes for a homogeneous sphere and a
singly coated sphere continue in exactly the same way for scattering by a
multi-layer sphere when single-interface amplitudes are replaced by the corre-
sponding multiple-scattering amplitudes. The same patterns will be seen to continue
when polarization-preserving and polarization-changing amplitudes are included
for the geometry of Sect. 8, and when partial wave coupling is included for the
geometry of Sect. 9.

8 Debye Series for a Plane Wave Diagonally Incident
on a Cylinder

Consider a plane wave in the external medium 2 incident on an infinitely long
circular cylinder of radius a and refractive index m1 whose symmetry axis coincides
with the z axis of a rectangular coordinate system. The scattering angle θ lies in the
xy plane and is measured with respect to the +x axis. If the plane wave is normally
incident on the cylinder with its propagation direction along the x axis, the scattered
fields are relatively simple. The partial wave scattering amplitudes an and bn have
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exactly the same form as for scattering by a sphere, but with the Bessel, Neumann,

and Hankel functions Jn, Nn, Hð1Þ
n , and Hð2Þ

n replacing the spherical Bessel,

Neumann, and Hankel functions jn, nn, h
ð1Þ
n , and hð2Þn [see Sect. 15.12 of van de

Hulst (1981), and Sect. 6.1.3 of Kerker (1969)]. But if the plane wave propagates in
the xz plane with the wave vector

k ¼ k cos fð Þux�sin fð Þuz½ �; ð8:1Þ

and is diagonally incident on the cylinder, the situation becomes much more compli-
cated because polarization-preserving and polarization-changing scattering now occur.
To describe this situation, we first need to specify a pair of convenient polarization states
of the incident beam and the scattered radiation [see pp. 298–299 of van de Hulst (1981)
and pp. 256–257 of Kerker (1969)]. The ε polarization has the electric field vector in the
xy plane, while the μ polarization has the magnetic field vector in the xy plane. For the
incident beam described in terms of rectangular coordinates this means that

Einc;e ¼ E0 uy exp ikx cos fð Þ�ikz sin fð Þ½ � ð8:2aÞ

c=m2ð ÞBinc;e ¼ E0 sin fð Þux þ cos fð Þuz½ �exp ikx cos fð Þ�ikz sin fð Þ½ � ð8:2bÞ

and

Einc;l ¼ E0 sin fð Þux þ cos fð Þuz½ �exp ikx cos fð Þ�ikz sin fð Þ½ � ð8:3aÞ

c=m2ð ÞBinc;l ¼ �E0uyexp ikx cos fð Þ�ikz sin fð Þ½ �: ð8:3bÞ

It is more convenient, however, to express the far-zone scattered fields in cylindrical
coordinates ρ, θ, z. The polarization-preserving ε → ε scattered fields are

Escatt;ee ¼ See q; h; zð Þuh ð8:4aÞ

c=m2ð ÞBscatt;ee ¼ See q; h; zð Þ sin fð Þuq þ cos fð Þuz
� �

; ð8:4bÞ

where Sεε is the ε → ε scattering amplitude to be obtained below. The polarization
subscripts here, as well as the polarization superscripts in Eqs. (8.17a–8.17c to
8.23a–8.23c, 8.23d), read from left to right, i.e., ε-incoming goes to ε-outgoing. The
polarization-preserving μ → μ scattered fields are

Escatt;ll ¼ Sll q; h; zð Þ sin fð Þuq þ cos fð Þuz
� � ð8:5aÞ

c=m2ð ÞBscatt;ll ¼ Sll q; h; zð Þ �uhð Þ ð8:5bÞ

where Sμμ is the μ → μ scattering amplitude. It will turn out that the
polarization-changing ε → μ and μ → ε scattering amplitudes Sq are opposite in
sign, so that
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Escatt;el ¼ Sq q; h; zð Þ sin fð Þuq þ cos fð Þuz
� � ð8:6aÞ

c=m2ð ÞBscatt;el ¼ Sq q; h; zð Þ �uhð Þ ð8:6bÞ

and

Escatt;le ¼ �Sq q; h; zð Þuh ð8:7aÞ

c=m2ð ÞBscatt;le ¼ �Sq q; h; zð Þ sin fð Þuq þ cos fð Þuz
� �

: ð8:7bÞ

Next we decompose the incident and scattered fields expressed in cylindrical
coordinates as a sum over partial waves. The ε-polarized and μ-polarized scalar

radiation potential is written as wX
n h;mjk 1� h2ð Þ1=2q; h; z
h i

in cylindrical coordi-

nates, where n is the integer partial wave number with −∞ < n < ∞, h is the
continuous separation variable with −∞ < h < ∞ and X = ε, μ. Since the function
wX satisfies the scalar wave equation, it can be written as a Bessel, Neumann, or
Hankel function of mjk(1 − h2)1/2ρ multiplied by the complex exponentials exp
(inθ) and exp(imjkhz), and an arbitrary complex constant giving the magnitude and
phase of the partial wave contribution. The result is then summed over n and
integrated over h for a general incident beam. However, only a single value of
h corresponding to the tilt angle ζ occurs for an incident plane wave. The ε-
polarized electric and magnetic fields associated with we are given by

Ee ¼ �uz �rwe ð8:8aÞ

c=mj
� �

Be ¼ �i=mjk
� �r� Ee; ð8:8bÞ

and the μ-polarized electric and magnetic fields associated with wl are

c=mj
� �

Bl ¼ uz �rwl ð8:9aÞ

El ¼ ic= m2
j k

� �h i
r� Bl: ð8:9bÞ

Again Eqs. (8.8a, 8.9a) are frequently associated with the vector cylindrical wave
function Mn(h; kr), and Eqs. (8.8b, 8.9b) are associated with Nn(h; kr).

In the far-zone, the polarization-preserving and crossed-polarized scattering
amplitudes in Eqs. (8.4a, 8.4b–8.7a, 8.7b) separate into the product form

See q; h; zð Þ ¼ SPW q; zð Þ a0 þ 2
X1
n¼1

an cos nhð Þ
" #

ð8:10aÞ
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Sll q; h; zð Þ ¼ SPW q; zð Þ b0 þ 2
X1
n¼1

bn cos nhð Þ
" #

ð8:10bÞ

Sq q; h; zð Þ ¼ SPW q; zð Þ 2i
X1
n¼1

qn sin nhð Þ
" #

ð8:10cÞ

where an, bn, qn, are the partial wave scattering amplitudes and

SPW q; zð Þ ¼ �E0 2=½p k q cos fð Þ�f g1=2exp �ip=4ð Þexp ik q cos fð Þ�ikz sin fð Þ½ �:
ð8:11Þ

The calculation of the partial wave scattering amplitudes for a plane wave diago-
nally incident on an infinitely long circular cylinder is complicated by the fact that
the symmetry that occurred for normal beam incidence is now broken (Wait 1955).
Both the partial wave scattering amplitudes and the Debye series terms can be
conveniently written in terms of the fundamental amplitudes,

Eði:jÞ
n ¼ m2ka cos fð Þcos vð Þ m2 cos fð ÞHðiÞ

n xð ÞHðjÞ0
n yð Þ�m1cos vð ÞHðiÞ0

n xð ÞHðjÞ
n yð Þ

h i
ð8:12aÞ

Mði;jÞ
n ¼ m1ka cos fð Þcos vð Þ m1cos fð ÞHðiÞ

n xð ÞHðjÞ0
n yð Þ�m2cos vð ÞHðiÞ0

n xð ÞHðjÞ
n yð Þ

h i
ð8:12bÞ

Qði:jÞ
n ¼ n m1sin fð Þcos2 vð Þ�m2sin vð Þcos2 fð Þ� �

HðiÞ
n xð ÞHðjÞ

n yð Þ ð8:12cÞ

and

Dði;jÞ
n ¼ Eði;jÞ

n Mði;jÞ
n � Qði;jÞ

n

� �2
: ð8:12dÞ

In Eqs. (8.12a–8.12d) one has i = 0, 1, 2 and j = 0, 1, 2 with the notational

shorthand Hð0Þ
n xð Þ ¼ Jn xð Þ and Hð0Þ

n yð Þ ¼ Jn yð Þ. The cylinder size parameters are

x ¼ m2ka cosðfÞ: ð8:13aÞ

y ¼ m1ka cos vð Þ; ð8:13bÞ

and the angles ζ and χ are related by Snell’s law

m2 sin fð Þ ¼ m1 sin vð Þ: ð8:14Þ
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The partial wave polarization-preserving and cross-polarized scattering amplitudes
are then found to be

an ¼ Eð0;0Þ
n Mð1;0Þ

n �Qð0;0Þ
n Qð1;0Þ

n

� �
=Dð1;0Þ

n ð8:15aÞ

bn ¼ Mð0;0Þ
n Eð1;0Þ

n � Qð0;0Þ
n Qð1;0Þ

n

� �
=Dð1;0Þ

n ð8:15bÞ

qn ¼ 2m1cos2 vð Þ=p� �
Qð0;0Þ

n Jn yð Þ= Dð1;0Þ
n Jn xð Þ

h i
; ð8:15cÞ

As an aside, for normal plane wave incidence one has sin(ζ) = sin(χ) = 0 and cos

(ζ) = cos(χ) = 1. Then an ¼ Eð0;0Þ
n =Eð1;0Þ

n for ε → ε polarization-preserving scattering

and bn ¼ Mð0;0Þ
n =Mð1;0Þ

n for μ → μ polarization-preserving scattering. In addition

Qð0;0Þ
n ¼ Qð1;0Þ

n ¼ Qði;jÞ
n ¼ 0, which gives qn = 0 and forbids cross-polarized ε → μ

and μ → ε scattering at normal incidence. It should also be noted that for scattering
of a scalar plane wave by a sphere, the partial wave scattering amplitudes were
equal to the TE version for scattering by an electromagnetic plane wave. Similarly,
for scattering of a normally incident scalar plane wave by a cylinder, the partial
wave scattering amplitudes were equal to the μ-polarized version for scattering of a
normally incident electromagnetic wave. This pattern, however, does not extend to
diagonal incidence on a cylinder where the scalar wave scattering amplitudes are

bn ¼ m1cos vð ÞJn xð ÞJ 0n yð Þ�m2cos fð ÞJ 0n xð ÞJn yð Þ� �
= m1cos vð ÞHð1Þ

n xð ÞJ 0n yð Þ�m2cos fð ÞHð1Þ0
n xð ÞJn yð Þ

h i
:

ð8:16Þ

This quantity is not equal to Mð0;0Þ
n =Mð1;0Þ

n . The difference is attributable to the
different boundary conditions that scalar waves and electromagnetic waves are
subject to.

As was the case in Sect. 3, the first step in the derivation of the Debye series of
an, bn, qn is to determine the polarization-preserving and polarization-changing
transmission and reflection amplitudes when a single cylindrically incoming or
outgoing ε-polarized or μ-polarized partial wave is incident on the cylinder. For the
212 exterior reflection, one obtains

R212;ee
n ¼ � Eð2;2Þ

n Mð1;2Þ
n �Qð1;2Þ

n Qð2;2Þ
n

� �
=Dð1;2Þ

n ð8:17aÞ

R212;ll
n ¼ � Eð1;2Þ

n Mð2;2Þ
n �Qð1;2Þ

n Qð2;2Þ
n

� �
=Dð1;2Þ

n ð8:17bÞ

R212;el
n ¼ �R212;le

n ¼ 4m1cos2 vð Þ=p� �
Qð1;2Þ

n Hð2Þ
n yð Þ= Dð1;2Þ

n Hð1Þ
n xð Þ

h i
: ð8:17cÞ
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For the 121 interior reflection, one has

R121;ee
n ¼ � Eð1;1Þ

n Mð1;2Þ
n �Qð1;1Þ

n Qð1;2Þ
n

� �
=Dð1;2Þ

n ð8:18aÞ

R121;ll
n ¼ � Eð1;2Þ

n Mð1;1Þ
n �Qð1;1Þ

n Qð1;2Þ
n

� �
=Dð1;2Þ

n ð8:18bÞ

R121;el
n ¼ �R121;le

n ¼ 4m2cos2 fð Þ=p� �
Qð1;2Þ

n Hð1Þ
n xð Þ= Dð1;2Þ

n Hð2Þ
n yð Þ

h i
: ð8:18cÞ

For the 21 transmission from the exterior medium to the cylinder interior one has

m1=m2ð ÞT21;ee
n ¼ ½�4im2 cos2 fð Þ=p�Mð1;2Þ

n =Dð1;2Þ
n ð8:19aÞ

T21;ll
n ¼ ½�4im2 cos2 fð Þ=p�Eð1;2Þ

n =Dð1;2Þ
n ð8:19bÞ

T21;el
n ¼ �m1=m2ð ÞT21;le

n ¼ ½4m2 cos2 fð Þ=p�Qð1;2Þ
n =Dð1;2Þ

n : ð8:19cÞ

Lastly, for the 12 transmission from the cylinder interior to the exterior medium one
has

T12;ee
n ¼ �4im1 cos2 vð Þ=p� �

Mð1;2Þ
n =Dð1;2Þ

n ð8:20aÞ

m2=m1ð ÞT12;ll
n ¼ ½�4im1 cos2 vð Þ=p�Eð1;2Þ

n =Dð1;2Þ
n ð8:20bÞ

T12;el
n ¼ �m2=m1ð ÞT12;le

n ¼ ½4m1 cos2 vð Þ=p�Qð1;2Þ
n =Dð1;2Þ

n : ð8:20cÞ

For a sphere or a cylinder at normal incidence there were eight partial wave
transmission and reflection amplitudes that coupled together in two groups of four.
The four TE amplitudes coupled together separately and the four TM amplitudes
coupled together separately. For a coated sphere there were 16 partial wave
transmission and reflection amplitudes which again coupled together in two groups
of eight, the TE amplitudes separately and the TM amplitudes separately. For
diagonal incidence on a cylinder there are also 16 partial wave transmission and
reflection amplitudes. Since the symmetry of the previous geometries has now been
broken, all 16 polarization-preserving and polarization-changing amplitudes couple
together in the Debye series. But we will see in the next paragraph that their
organization in the decomposition of an, bn, qn remains faithful to the patterns
already observed for the higher symmetry geometries.

We let ∑ν and ∑τ denote a sum over the polarization states ν = ε, μ, and τ = ε, μ,
and define the multiple-scattering internal reflection amplitude R121;dr

n as

R121;dr
n ¼ R121;dr

n þ
X
m

R121;dm
n R121;mr

n þ
X
m

X
s

R121;dm
n R121;ms

n R121;sr
n þ � � � ; ð8:21Þ
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reading both the polarization superscripts and the successive factors of R from left
to right. This multiple scattering-amplitude includes all numbers of successive
internal reflections of the partial wave inside the cylinder. Both
polarization-preserving interactions ε → ε and μ → μ and polarization-changing
interactions ε → μ and μ → ε occur at every interaction, with the constraint that
the polarization is δ at the beginning and σ at the end. This is pictorially illustrated
in Fig. 8.The series of Eq. (8.21) can be analytically summed to give

R121;ee
n ¼ R121;ee

n 1� R121;ll
n

� �þR121;el
n R121;le

n

� �
= 1� R121;ee

n

� �
1� R121;ll

n

� �� R121;el
n R121;le

n

� � ð8:22aÞ

R121;el
n ¼ R121;el

n = 1� R121;ee
n

� �
1� R121;ll

n

� �� R121;el
n R121;le

n

� �
: ð8:22bÞ

Fig. 8 Terms of the multiple
scattering internal reflection
amplitude R121;dr

n with the
polarization state δ at the
beginning and σ at the end

The Debye Series and Its Use in Time-Domain Scattering 259



The other multiple-scattering internal reflection amplitudes R121;ll
n and R121;le

n are
given by the same expressions with ε↔μ.

Using the derivation of Sect. 4, the Debye series decomposition of the partial
wave scattering amplitudes an, bn, qn is found to be

an ¼ 1=2ð Þ 1�R212;ee
n þ

X
m

T21;em
n T12;me

n þ
X
m

X
s

T21;em
n R121;ms

n T12;se
n

" #
ð8:23aÞ

bn ¼ 1=2ð Þ 1�R212;ll
n þ

X
m

T21;lm
n T12;ml

n þ
X
m

X
s

T21;lm
n R121;ms

n T12;sl
n

" #
ð8:23bÞ

qn ¼ �1=2ð Þ �R212;le
n þ

X
m

T21;lm
n T12;me

n þ
X
m

X
s

T21;lm
n R121;ms

n T12;se
n

" #
ð8:23cÞ

¼ 1=2ð Þ �R212;el
n þ

X
m

T21;em
n T12;ml

n þ
X
m

X
s

T21;em
n R121;ms

n T12;sl
n

" #
: ð8:23dÞ

The individual Debye series terms for an and bn either keep the partial wave in the
same polarization state from the time it enters the cylinder to the time it finally exits
it, or the terms can switch the polarization state of the partial wave at any one of the
interactions with the surface, as long as the polarization eventually switches back
before the partial wave leaves the cylinder. The individual Debye series terms for
the cross-polarized partial wave scattering amplitude qn switch the polarization state
of the partial wave at any of its interactions with the surface. The terms of
Eqs. (8.23a–8.23d) are pictorially illustrated in Fig. 9.

As an application of the Debye series for the diagonal incidence geometry, we
consider the evolution and extinguishing of the first-order rainbow as the tilt angle ζ
of the incident plane wave progressively increases from normal incidence, with the
external medium being air having m2 = 1. In ray theory, the path of a ray through
the cylinder can either be viewed from the side where one sees the projection of the
path in the ρz plane, or from the top where one sees the projection of the path in the
xy plane as in Fig. 2a, b of Adler et al. (1997). As seen from the top, changing the
tilt angle of the incident plane wave is equivalent to changing the effective
refractive index m0 of the cylinder according to

m0 ¼ m1cos vð Þ=cos fð Þ: ð8:24Þ

Let φi be the angle of incidence of the projection of the incoming ray as seen in the
horizontal xy plane, where φi is positive when the y coordinate of the incident ray is
positive and φi is negative when y is negative [see Fig. 2a of Wait (1955)]. The
transmitted angle φt is given by Snell’s law
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sin uið Þ ¼ m0 sin utð Þ; ð8:25Þ

and the positive or negative deflection angle of the ray after one internal reflection is

h ¼ pþ 2ui � 4ut: ð8:26Þ

The Descartes angle of the first-order rainbow θR is given by Eq. (8.26) with

cos uR
i

� � ¼ m02�1
� �

=3
� �1=2

: ð8:27Þ

The first-order rainbow for scattering of a plane wave by a sphere is a
2-ray-to-0-ray transition as a function of the deflection angle θ. For positive
deflection angles, two supernumerary rays interfere for θ > θR, and no rays occur in
the evanescent complex-ray region θ < θR. However, for scattering of a plane wave
at normal incidence by a cylinder, two branches of the first-order rainbow occur to
either side of back-scattering, one for incident rays with uR

i [ 0 and the other for
uR
i \0. As is illustrated in Fig. 10, when m0 ¼ 1:333 at normal incidence, the

Descartes rays with uR
i = ±59.41° give a pair of rainbows at θR = ± 137.92°. Each

of the rainbows is a 2-ray-to-0-ray transition. It is also useful to keep track of the
deflection angle θg of the grazing incidence rays with φi = ± 90°. When m0 ¼
1:333 at normal incidence, φi = ±90° gives θg = ± 165.64° for the grazing rays.
Figure 10 shows that for this value of refractive index there are no p = 2 rays at any
deflection angle in the interval 0	 � hj j\ hR

�� �� ¼ 137:92	, there are two supernu-

merary rays at each angle in the interval |hRj\ hj j\ hgj j ¼ 165:64	 illustrating the
2-ray-to-0-ray transition, and there is one ray at each angle in the interval
hgj j\ hj j � 180	.
Since varying the tilt angle ζ of the incident plane wave varies the effective

refractive index m0 of the cylinder for the projection of the rays in the xy plane, the
deflection angle of the rainbow will evolve as a function of tilt. When the tilt of the
incident plane wave is such that m0 has increased to 1.414, the grazing incidence
rays are back-scattered with θg = ± 180°. So the angular interval
0° ≤ |θ| < |θR| = 148.39° contains no rays, and the interval θR < |θ| ≤ 180° con-
tains two supernumerary rays at each deflection angle. For a larger value of the tilt
such that m0 [ 1:414, the deflection angle of the φi = +90° and −90° grazing
incident rays becomes greater than 180° and less than −180°, respectively; this is
also indicated in Fig. 10. As a result, the deflection angle interval 0° ≤ |θ| < |θR|

b Fig. 9 Terms of the polarization-preserving partial wave scattering amplitude an with polarization
state ε at the beginning and ε at the end, bn with the polarization state μ at the beginning and μ at
the end, and the polarization-changing scattering amplitude qn with the polarization state ε (or μ) at
the beginning and μ (or ε) at the end. D denotes diffraction
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contains no rays, the interval |θR| < |θ| < |θg| contains two supernumerary rays at
each angle with the rainbow again being a 2-ray-to-0-ray transition, and the interval
|θg| < |θ | ≤ 180° now contains three rays at each deflection angle.

As the plane wave tilt and m0 increase further, the 3-ray interval grows while the
2-ray interval |θR| < |θ| < |θg| shrinks, until at m0 ≈ 1.5467 the deflection angle of
the positive and negative grazing incident rays coincides with that of the φi

R < 0 and
φi
R > 0 Descartes rainbow ray at θ = ± 161.12°. The angular interval

0° ≤ |θ| < |θR| = |θg| now contains no rays, and the angular interval between the
two rainbow branches contains three rays. As is also indicated in Fig. 10, when m0

increases yet further, there are no rays in the angular interval 0° ≤ |θ| < |θg|, there is
one ray at each deflection angle in the interval |θg| < |θ| < |θR|, and there are three
rays at each angle in the interval |θR| < |θ | ≤ 180°. The pair of p = 2 rainbows for
positive and negative φi

R have evolved into a pair of 3-ray-to-1-ray transitions
associated with the cusp caustic, as is shown in Fig. 13 of Berry et al. (1979) and
Fig. 2.8 of Berry and Upstill (1980). Finally, when m0 ¼ 2 both branches of the
rainbow occur at θR = ± 180°. If m0 is increased yet further, there ceases to be a
one internal reflection rainbow; it has been extinguished. No rays occur in the
angular interval 0° ≤ |θ | < |θg|, and there is one ray at each deflection angle in the
interval |θg| < |θ| ≤ 180°.

For a glass rod with refractive index m1 = 1.484, the effective refractive index
becomes m0 ¼ 1:5467 when the tilt angle is ζ = 21.68° and the rainbow extinction
transition (e) at m0 ¼ 2 occurs when ζe = 50.72°. This transition for a high-quality
glass rod has been photographed in the laboratory, and the results are shown in
Fig. 8 of Lock and Adler (1997). The Debye series amplitudes

Fig. 10 Number of p = 2
scattered rays at each
deflection angle in various
regions for scattering of a
tilted plane wave by a
cylinder, as a function of the
cylinder’s effective refractive
index m0. The solid lines
indicate the scattering
trajectory of the pair of
grazing incident rays, and the
dashed lines indicate the
scattering trajectory of the
two branches of the p = 2
rainbow
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an ¼ ð�1=2Þ T21;ee
n R121;ee

n T12;ee
n þ T21;ee

n R121;el
n T12;le

n

�
þ T21;el

n R121;le
n T12;ee

n þ T21;el
n R121;ll

n T12;le
n

� ð8:28aÞ

bn ¼ ð�1=2Þ T21;ll
n R121;ll

n T12;ll
n þ T21;ll

n R121;le
n T12;el

n

�
þ T21;le

n R121;el
n T12;ll

n þ T21;le
n R121;ee

n T12;el
n

� ð8:28bÞ

qn ¼ ð�1=2Þ T21;el
n R121;ll

n T12;ll
n þ T21;el

n R121;le
n T12;el

n

�
þ T21;ee

n R121;el
n T12;ll

n þ T21;ee
n R121;ee

n T12;el
n

� ð8:28cÞ

were also computed for m1 = 1.484, m2 = 1, x = 2πa/λ = 1000, and ζ = 39°, 45°,
50.72°, and 56°. The resulting scattered intensity is shown in Fig. 4 of Lock and
Adler (1997). The rainbow’s 3-ray-to-1-ray transition for ζ = 39°, 45° and the
extinguishing of the rainbow at ζ ≈ 50.72° are clearly evident.

9 Debye Series for a Scattering by a Spheroid

In this section, we consider scattering of a plane wave by a homogeneous prolate
spheroid of refractive index m1, semi-major axis a, semi-minor axis b with b < a,
which is in an exterior medium of refractive index m2. The z axis coincides with the
major axis of the spheroid, and the propagation direction of the incident plane wave
lies in the xz plane making an angle ζ with respect to the positive z axis. The case of
ζ = 0°where the planewave is incident along the -z axis is known as end-on incidence,
and ζ = 90° where the plane wave is incident along the -x axis is known as side-on
incidence (Asano andYamamoto 1975). As in Sect. 8, the plane wave is ε-polarized if
its electric field lies in the xy plane, and it is μ-polarized if its magnetic field lies in the
xy plane. Because of the spheroid geometry’s inherent breaking of spherical sym-
metry, wewillfind that every interaction of an electromagneticwavewith the spheroid
surface again contains both polarization-preserving and polarization-changing com-
ponents (Lock 1996). In addition, each partial wave approaching the surface for both
the scalarwave and electromagneticwave caseswill be coupled to all the partial waves
leaving the surface.Wefirst address the scattering problem for scalar waves in order to
focus on the partial wave coupling. We then briefly summarize the electromagnetic
problem to include the polarization-changing behavior.

9.1 Scattering of Scalar Waves

This scattering problem is traditionally solved using spheroidal wave functions
(Flammer 1957). A point in space (x, y, z) is expressed in terms of prolate spher-
oidal coordinates by

264 J.A. Lock and P. Laven



x ¼ f sinh uð Þ sin vð Þ cos uð Þ ð9:1aÞ

y ¼ f sinh uð Þ sin vð Þ sin uð Þ ð9:1bÞ

z ¼ f cosh uð Þ cos vð Þ ð9:1cÞ

where

f ¼ a2�b2
� �1=2 ð9:2Þ

and 0 ≤ u < ∞, 0 ≤ v ≤ π, and 0 ≤ φ ≤ 2π. The usual convention for prolate
spheroidal coordinates is to use (ξ, η, φ) where ξ = cosh(u) is the radial-like
coordinate with 1 ≤ ξ < ∞, and η = cos(v) is the polar-like coordinate with
−1 ≤ η ≤ 1 (Flammer 1957). Surfaces of constant ξ are confocal spheroids, and
surfaces of constant η are confocal hyperboloids. The particle surface is ξ0 = a/f for
all η and φ.

The solution to the scalar wave equation in terms of prolate spheroidal wave
functions is

w Kð Þ mjkf ; n; g;u
� � ¼X1

n¼0

Xn
m¼�n

Fm;nRðKÞ
m;n mjkf ; n
� �

Sm;n mjkf ; g
� �

exp imuð Þ ð9:3Þ

where Fm,n are complex constants. The spheroidal angular functions Sm,n(mjkf; η)
depend on both the spheroidal angular variable η and mjkf, and reduce in the f → 0
limit to associated Legendre functions Pn

m[cos(θ)]. The angular functions Sm,n(mjkf;
η) and Sm,nʹ (mjkf; η) for the same refractive index mj are orthogonal to each other
when integrated over the complete range of η. The spheroidal radial functions of the

K-type, RðKÞ
m;n mjkf ; n
� �

for K = 1,2,3,4, depend on both the spheroidal radial variable

ξ and mjkf, and reduce for ξ = r/f in the limit f → 0 to jn(mjkr), nn(mjkr) h
ð1Þ
n mjkr
� �

,

hð2Þn mjkr
� �

, respectively. The radial functions satisfy the Wronskian relation

Rð1Þ
m;n mjkf ; n
� �

Rð2Þ0
m;n mjkf ; n
� ��Rð1Þ0

m;n mjkf ; n
� �

Rð2Þ
m;n mjkf ; n
� � ¼ 1= mjkf n2�1

� �� �
;

ð9:4Þ

independent of m and n, where R0 is the derivative of R with respect to ξ. As a side
note, the convention of writing the spheroidal wave-functions with the subscripts in
the order m, n rather than n, m dates back to at least the time of Stratton [see
pp. 420–421 of Stratton et al. (1941)].
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The scalar wave scattering problem is posed and solved in the usual way. The
fields of the incident, scattered, and interior waves are written in terms of spheroidal
wave functions with the incident beam, scattered wave, and interior wave coeffi-
cients m2 Zm,n, − m2 bm,n and m1 dm,n, respectively. The angle of incidence of the
plane wave is encoded in the beam shape coefficients Zm,n [see p. 48 of Flammer
(1957)]. The incident and scattered wave functions depend on m2kf and ξ,η,φ, while
the interior wave function depends on m1kf and ξ,η,φ. The boundary conditions for
the continuity of the wave function and its derivative with respect to ξ are applied at
the surface of the spheroid. The properties of the azimuthal functions exp(imφ)
insure that the m-dependence is identical for the incident, scattered, and interior
waves. But since the angular functions depend on m2kf and m1kf, the functions Sm,
n(m2kf; η) and Sm,nʹ (m1kf; η) for different refractive indices m1 and m2 are not
orthogonal to each other when integrated over the complete range of η. This lack of
orthogonality causes each partial wave n0 of the incident beam to be coupled to all
the partial waves n of the scattered and interior waves. The strength of the coupling
is given by the matrix elements

Cm;N1;N2 M1kf ;M2kfð Þ ¼
Z1
�1

dg Sm;N1 M1kf ; gð ÞSm;N2 M2kf ; gð Þ=
Z1
�1

dg Sm;N1 M1kf ; gð Þ� �2
;

ð9:5Þ

where N1 and N2 are partial waves and M1 and M2 are refractive indices. If the
largest partial wave considered is L, boundary condition matching produces
2L coupled algebraic equations in the 2L partial wave scattering and interior
amplitudes that can be solved numerically as long as L is not too large.

The quantities being considered can be expressed in terms of eight fundamental
amplitude matrices in the partial wave number indices N1 and N2 in analogy to
Eqs. (2.15a–2.15d) for a homogeneous sphere

Nm;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ Cm;N1;N2 M1kf ;M2kfð Þ Rð1Þ
m;N1 M1kf ; n0ð ÞRð1Þ0

m;N2 M2kf ; n0ð Þ
h

�Rð1Þ0
m;N1 M1kf ; n0ð ÞRð1Þ

m;N2 M2kf ; n0ð Þ
i

ð9:6aÞ

Dm;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ Cm;N1;N2 M1kf ;M2kfð Þ Rð2Þ
m;N1 M1kf ; n0ð ÞRð1Þ0

m;N2 M2kf ; n0ð Þ
h

�Rð2Þ0
m;N1 M1kf ; n0ð ÞRð1Þ

m;N2 M2kf ; n0ð Þ
i

ð9:6bÞ
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Pm;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ Cm;N1;N2 M1kf ;M2kfð Þ Rð1Þ
m;N1 M1kf ; n0ð ÞRð2Þ0

m;N2 M2kf ; n0ð Þ
h

�Rð1Þ0
m;N1 M1kf ; n0ð ÞRð2Þ

m;N2 M2kf ; n0ð Þ
i

ð9:6cÞ

Qm;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ Cm;N1;N2 M1kf ;M2kfð Þ Rð2Þ
m;N1 M1kf ; n0ð ÞRð2Þ0

m;N2 M2kf ; n0ð Þ
h

�Rð2Þ0
m;N1 M1kf ; n0ð ÞRð2Þ

m;N2 M2kf ; n0ð Þ
i

ð9:6dÞ

and

Nm;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ Cm;N1;N2 M1kf ;M2kfð Þ Rð1Þ
m;N2 M2kf ; n0ð ÞRð1Þ0

m;N1 M1kf ; n0ð Þ
h

�Rð1Þ0
m;N2 M2kf ; n0ð ÞRð1Þ

m;N1 M1kf ; n0ð Þ
i ð9:7aÞ

Dm;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ Cm;N1;N2 M1kf ;M2kfð Þ Rð2Þ
m;N2 M2kf ; n0ð ÞRð1Þ0

m;N1 M1kf ; n0ð Þ
h

�Rð2Þ0
m;N2 M2kf ; n0ð ÞRð1Þ

m;N1 M1kf ; n0ð Þ
i

ð9:7bÞ

Pm;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ Cm;N1;N2 M1kf ;M2kfð Þ Rð1Þ
m;N2 M2kf ; n0ð ÞRð2Þ0

m;N1 M1kf ; n0ð Þ
h

�Rð1Þ0
m;N2 M2kf ; n0ð ÞRð2Þ

m;N1 M1kf ; n0ð Þ
i ð9:7cÞ

Q
m;N1;N2

M1kf ;M2kf ; n0ð Þ ¼ Cm;N1;N2 M1kf ;M2kfð Þ Rð2Þ
m;N2 M2kf ; n0ð ÞRð2Þ0

m;N1 M1kf ; n0ð Þ
h

�Rð2Þ0
m;N2 M2kf ; n0ð ÞRð2Þ

m;N1 M1kf ; n0ð Þ
i
:

ð9:7dÞ

It should be noted that the difference between the underlined matrices of
Eqs. (9.7a–9.7d) and the non-underlined matrices of Eqs. (9.6a–9.6d) is the inter-
change of the partial wave subscripts N1 ↔ N2 and refractive indices M1 ↔ M2
in the radial functions. Further, it will prove useful to also make use of the fol-
lowing combinations of the partial wave amplitude matrices in analogy to
Eqs. (2.19, 3.5a, 3.5b, 3.8) for a homogeneous sphere,

Um;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ Nm;N1;N2 M1kf ;M2kf ; n0ð Þþ iDm;N1;N2 M1kf ;M2kf ; n0ð Þ
ð9:8aÞ

Mm;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ Nm;N1;N2 M1kf ;M2kf ; n0ð Þ þQm;N1;N2 M1kf ;M2kf ; n0ð Þ� �
þ i Dm;N1;N2 M1kf ;M2kf ; n0ð Þ�Pm;N1;N2 M1kf ;M2kf ; n0ð Þ� �

ð9:8bÞ
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Lm;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ � Nm;N1;N2 M1kf ;M2kf ; n0ð Þ�Qm;N1;N2 M1kf ;M2kf ; n0ð Þ� �
� i Dm;N1;N2 M1kf ;M2kf ; n0ð ÞþPm;N1;N2 M1kf ;M2kf ; n0ð Þ� �

ð9:8cÞ

and

Um;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ Nm;N1;N2 M1kf ;M2kf ; n0ð Þþ iDm;N1;N2 M1kf ;M2kf ; n0ð Þ
ð9:9aÞ

Mm;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ Nm;N1;N2 M1kf ;M2kf ; n0ð ÞþQ
m;N1;N2

M1kf ;M2kf ; n0ð Þ
h i
þ i Dm;N1;N2 M1kf ;M2kf ; n0ð Þ�Pm;N1;N2 M1kf ;M2kf ; n0ð Þ� �

ð9:9bÞ

Jm;N1;N2 M1kf ;M2kf ; n0ð Þ ¼ � Nm;N1;N2 M1kf ;M2kf ; n0ð Þ�Q
m;N1;N2

M1kf ;M2kf ; n0ð Þ
h i

þ i Dm;N1;N2 M1kf ;M2kf ; n0ð ÞþPm;N1;N2 M1kf ;M2kf ; n0ð Þ� �
:

ð9:9cÞ

In analogy to Eqs. (2.18, 2.21) for a homogeneous sphere, the partial wave scat-
tering and interior amplitudes are found to be

bm;n ¼
X
n00

X
n0

U�1 m1kf ;m2kf ; n0ð Þ� �
m;n;n00Nm;n00;n0 m1kf ;m2kf ; n0ð ÞZm;n0 ð9:10aÞ

dm;n ¼ � i=m1kf n20 � 1
� �� �X

n0
U�1 m2kf ;m1kf ; n0ð Þ� �

m;n;n0Zm;n0 : ð9:10bÞ

where U−1 and U−1 are the inverse of the matrices U and U. The order of the
matrices reads from right to left. In Eq. (9.10a) the partial wave number of the
incident beam shape coefficient Z is n0, then the N matrix couples n0 to the inter-
mediate partial wave n00, and finally the U−1 matrix couples n00 to the scattered
partial wave n.

Similarly, the partial wave transmission and reflection amplitude matrices can be
determined for the output partial wave n when a single partial wave n0 is incident on
the spheroid surface from either the external medium or the particle interior. In
analogy to Eqs. (3.4a, 3.7a, 3.4b, 3.7b) for a homogeneous sphere one obtains

T21
m;n;n0 ¼ � 2i/m2kf ðn20 � 1Þ� �

M�1 m2kf ;m1kf ; n0ð Þ� �
m;n;n0 ð9:11aÞ

T12
m;n;n0 ¼ � 2i/m1kf ðn20 � 1Þ� �

M�1 m1kf ;m2kf ; n0ð Þ� �
m;n;n0 ð9:11bÞ
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R212
m;n;n0 ¼

X
n00

M�1 m1kf ;m2kf ; n0ð Þ� �
m;n;n00Jm;n00;n0 m1kf ;m2kf ; n0ð Þ ð9:11cÞ

R121
m;n;n0 ¼

X
n00

M�1 m2kf ;m1kf ; n0ð Þ� �
m;n;n00Lm;n00;n0 m2kf ;m1kf ; n0ð Þ ð9:11dÞ

The superscripts in Eqs. (9.11a–9.11d) describing medium 1 or 2 read from left to
right as usual. But since the transmission and reflection amplitudes are now
matrices rather than scalars, the partial wave number subscripts read from right to
left. In addition, the difference in the physical meaning of the underlined and
non-underlined matrices now becomes apparent. The partial wave in question ends
up inside the spheroid for non-underlined amplitude matrices, and it ends up outside
the spheroid for the underlined matrices. Finally, extending the derivation outlined
in Sect. 4 to matrices, we find in analogy to Eqs. (4.17, 4.13) for a homogeneous
sphere that Debye series of the scattering and interior amplitudes for scalar waves is

bm;n ¼ 1=2ð Þ
X
n0

dn;n0�R212
m;n;n0 �

X
n00

X
n000

T12
m;n;n00 ðI � R121Þ�1

h i
m;n00;n000

T21
m;n000;n0

( )
Zm;n0

ð9:12aÞ

dm;n ¼
X
n00

X
n0

ðI � R121Þ�1
h i

m;n;n00
T21
m;n00;n0Zm;n0 ; ð9:12bÞ

where I is the identity matrix whose elements are given by the Kronecker delta, δn,
nʹ. It should again be noted for emphasis that since Eqs. (9.12a, 9.12b) involve
matrix multiplications, the ordering of the R and T factors reads from right to left,
rather than left to right as was the case in all the previous sections. Also, the
progression of the partial wave number in the last term of Eq. (9.12a) is
n0 ! n000 ! n00 ! n. As an example, the partial wave coupling of all the incident
partial waves n0 to a single partial wave n via the intermediate partial wave n00 for
the T12 T21 term is pictorially illustrated in Fig. 11.

Fig. 11 For transmission
through a spheroid all incident
partial waves n0, reading from
left to right in the figure, are
coupled to each partial wave n
″ inside, and all partial waves
n″ are coupled to each partial
wave n that is transmitted
back out
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9.2 Scattering of Electromagnetic Waves

Turning now to scattering of electromagnetic waves, the solution to the vector wave
equation is written in terms of spheroidal coordinates ξ, η, φ, vector spheroidal
functions, and spheroidal coordinate unit vectors uξ, uη, and uφ as [see p. 70 of
Flammer (1957)]

MðKÞ
m;n mjkf ; n; g;u
� � ¼ rwðKÞ

m;n mjkf ; n; g;u
� �� r ð9:13aÞ

NðKÞ
m;n mjkf ; n; g;u
� � ¼ 1=mjk

� �r�MðKÞ
m;n mjkf ; n; g;u
� �

: ð9:13bÞ

An ε-polarized or μ-polarized incident plane wave can be written as a sum over
these functions with the beam shape coefficients m2 Ge

m;n0 and m2 G
l
m;n0 [see p. 71 of

Flammer (1957) and Eqs. (40, 41) of Asano and Yamamoto (1975)]. Similarly, the
scattered wave has the partial wave scattering amplitudes −m2 am,n for the μ
polarization and −m2 bm,n for the ε polarization, which possess
polarization-preserving and polarization changing components given by

am;n ¼ i
X
n0

Ale
m;n;n0G

e
m;n0 þ

X
n0

All
m;n;n0G

l
m;n0 ð9:14aÞ

bm;n ¼ i
X
n0

Bee
m;n;n0G

e
m;n0 þ

X
n0

Bel
m;n;n0G

l
m;n0 : ð9:14bÞ

Since these quantities are matrices, their order reads from right to left, as do the
partial wave subscripts n0 ! n and the polarization state superscripts. The same is
true of the interior field coefficients m1 cm,n and m1 dm,n,

cm;n ¼ i
X
n0

Cle
m;n;n0G

e
m;n0 þ

X
n0

Cll
m;n;n0G

l
m;n0 ð9:15aÞ

dm;n ¼ i
X
n0

Dee
m;n;n0G

e
m;n0 þ

X
n0

Del
m;n;n0G

l
m;n0 : ð9:15bÞ

As was the case in Sect. 8, if a single ε-polarized or μ-polarized partial wave were
incident on the spheroid, it is coupled to the transmission and reflection amplitudes
of all other partial waves with both polarization-preserving and
polarization-changing components. The detailed expressions for these amplitudes
are given in Xu et al. (2010a). Using the matrix version of the procedure of Sect. 4,
the Debye series for the interior fields turns out to be
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Cle
m;n;n0 ¼ T21;le

m;n;n0 þ
X
d

X
n00

R121;ld
m;n;n00 T

21;de
m;n00;n0

þ
X
d

X
r

X
n00

X
n000

R121;ld
m;n;n00R

121;dr
m;n00;n000T

21;re
m;n000;n0 þ � � �

ð9:16aÞ

Cll
m;n;n0 ¼ T21;ll

m;n;n0 þ
X
d

X
n00

R121;ld
m;n;n00 T

21;dl
m;n00;n0

þ
X
d

X
r

X
n00

X
n000

R121;ld
m;n;n00R

121;dr
m;n00;n000T

21;rl
m;n000;n0 þ � � �

ð9:16bÞ

Dee
m;n;n0 ¼ T21;ee

m;n;n0 þ
X
d

X
n0

R12;ed
m;n;n00T

21;de
m;n00;n0

þ
X
d

X
r

X
n00

X
n000

R121;ed
m;n;n00R

121;dr
m;n00;n000T

21;re
m;n000;n0 þ � � �

ð9:16cÞ

Del
m;n;n0 ¼ T21;el

m;n;n0 þ
X
d

X
n00

R121;ed
m;n;n00T

21;dl
m;n00;n0

þ
X
d

X
r

X
n00

X
n000

R121;ed
m;n;n00R

121;dr
m;n00;n000T

21;rl
m;n000;n0 þ � � � ;

ð9:16dÞ

where all partial waves and all polarization states are summed over at every
interaction with the surface. Using these results, the Debye series for the scattering
amplitudes is then found to be

All
m;n;n0 ¼ 1=2ð Þ dn;n0 � R212;ll

m;n;n0 �
X
n00

T12;le
m;n;n00D

el
m;n00;n0 þ T12;ll

m;n;n00C
ll
m;n00;n0

� �" #
ð9:17aÞ

Ale
m;n;n0 ¼ 1=2ð Þ �R212;le

m;n;n0 �
X
n00

T12;le
m;n;n00D

ee
m;n00;n0 þ T12;ll

m;n;n00C
le
m;n00;n0

� �" #
ð9:17bÞ

Bee
m;n;n0 ¼ 1=2ð Þ dn;n0 � R212;ee

m;n;n0 �
X
n00

T12;ee
m;n;n00D

ee
m;n00;n0 þ T12;el

m;n;n00C
le
m;n00;n0

� �" #
ð9:17cÞ

Bel
m;n;n0 ¼ 1=2ð Þ �R212;el

m;n;n0 �
X
n00

T12;ee
m;n;n00D

el
m;n00;n0 þ T12;el

m;n;n00C
ll
m;n00;n0

� �" #
: ð9:17dÞ

These expressions exhibit the same patterns that were found for scattering by a
homogeneous sphere in Eqs. (4.18a), for a coated sphere in Eq. (7.11), for a
multi-layer sphere in Eq. (7.28), for diagonal incidence on a cylinder in
Eqs. (8.23a–8.23d), and for scalar wave scattering by a spheroid in Eq. (9.12a),
now including both polarization coupling and partial wave coupling.
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10 General Description of Time-Domain Scattering

The previous sections have implicitly assumed “steady-state” scattering of light
with an intensity that is constant in time. But much more can be learned by con-
sidering scattering of a temporally short light pulse. For a given scattering angle θ,
small-p Debye series terms such as diffraction-plus-reflection or transmission have a
relatively short optical path length between the sphere’s entrance and exit planes,
while large-p terms such as transmission after three or four internal reflections have
a relatively long optical path length between the entrance and exit planes. When a
temporally short pulse is incident on a spherical particle, the small-p scattered
pulses exit the sphere before the large-p scattered pulses do. In this way, scattering
of a short pulse effects a separation of the various Debye series terms in the Lorenz–
Mie scattered field (Méès et al. 2001a, b, 2009; Han et al. 2004; Bech and Leder
2004, 2006; Bakić et al. 2008; Laven 2010, 2011) without having to explicitly
calculate them as was done in Sects. 4–9.

Consider an x-polarized incident plane wave pulse traveling in the +z direction
whose electric field is of the form Epulse(Z) exp(ik0Z) with the dominant wavelength
λ0, dominant wave number k0 = 2π/λ0, and Z ≡ z − ct. This pulse has the
frequency-domain spectrum

A k; k0ð Þ ¼
Z1
�1

dZ Epulse Zð Þexp ik0Zð Þexp �ikZð Þ: ð10:1Þ

If the Lorenz–Mie scattering response of the sphere to an x-polarized incident plane
wave of wave number k and unit amplitude that is traveling in the +z direction is
ELM(k,θ) as in Eq. (2.10a), then the composite frequency-domain spectrum of the
scattered signal is A(k, k0) E

LM(k,θ). The time-domain scattered field is then

Escatt h; tð Þ ¼
Z1
�1

dk= 2pð ÞA k; k0ð ÞELM k; hð Þexp �icktð Þ: ð10:2Þ

For the time-domain computations reported here and in Sects. 11, 12, we used the
Gaussian incident plane wave pulse

EpulseðZÞ ¼ E0 exp �Z2=r2
� �

ux ð10:3Þ

for which

A k; k0ð Þ ¼ E0r pð Þ1=2exp � k � k0ð Þ2r2=4
h i

: ð10:4Þ

Figure 12a shows the waveform of a Gaussian pulse of dominant wavelength
λ0 = 0.65 μm whose amplitude full-width at half-maximum is 5 fs. In this case
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σ = 0.90 μm in Eq. (10.3), and the pulse consists of only a few cycles at the
nominal wavelength. Using a 215 = 32,768 point Fast Fourier Transform, the
time-domain waveform in Fig. 12a was converted into the frequency-domain
spectrum, the square of the magnitude of this spectrum is shown in Fig. 12b as a
function of wavelength. It has the bandwidth 0.573 μm < λ < 0.751 μm measured
at the −3 dB points, and 0.405 μm < λ < 1.64 μm measured at the −60 dB points.
As a preliminary example demonstrating the separation of the Lorenz–Mie scattered
field in the time-domain, consider scattering at the angle θ = 150°. The
frequency-domain spectrum was truncated at the −60 dB points and Lorenz–Mie
calculations were made at the remaining *10,000 evenly spaced wave numbers for
which A(k, k0) ≠ 0. The Lorenz–Mie response at θ = 150° for each wave number
was then multiplied by the frequency-domain spectrum function of Fig. 12b The
magnitude-squared of the resulting composite spectrum is shown in Fig. 12c. Note
that the composite spectrum of the scattered signals is significantly different for the
TE and TM polarizations and, furthermore, neither polarization has its maximum
exactly at λ = 0.65 μm, as might have been expected from the spectrum of the
incident light as shown in Fig. 12b. More importantly, the very complicated ripples
on the TE and TM composite spectra demonstrate the complexity of the scattering
processes. Applying an inverse fast Fourier transform to the composite spectrum

b Fig. 12 Scattering of a Gaussian electromagnetic pulse of nominal wavelength λ0 = 0.65 μm and
temporal duration 5 fs. The pulse waveform is shown in a and the magnitude-squared of its
frequency-domain spectrum is shown in b. Lorenz–Mie calculations for scattering at θ = 150° of
an x-polarized plane wave by a sphere with a = 10 μm, m1 = 1.33257, and m2 = 1 multiply the
spectrum, producing the composite frequency-domain spectrum whose magnitude-squared is
shown in c. Performing an inverse fast Fourier transform of the composite spectrum with a grid
spacing of Δt = 0.54 fs generates the time-domain results shown in d

Fig. 13 Geometric rays
contributing to scattering at
θ = 150° for a sphere with
a = 10 μm, m1 = 1.33257,
and m2 = 1. The specified
values of t refer to the
propagation times between
the entrance and exit planes
indicated by the dashed lines
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and taking the square of the magnitude of the result, the scattered intensity as a
function of time at θ = 150° is obtained, and is shown in Fig. 12d.

Some understanding of Fig. 12d can be obtained by considering the geometric
rays shown in Fig. 13 which result in scattering at θ = 150°. The pulse in Fig. 12d
at t ≈ 2 fs corresponds to the externally reflected p = 0 ray A in Fig. 13 with a
calculated time delay of t = 2.3 fs. The slightly misshapen pulse at t ≈ 174 fs in
Fig. 12d is due to the partial overlap of the two geometrical p = 2 rays B and C in
Fig. 13 which have time delays of t = 173.1 fs and t = 175.1 fs. The remaining
pulses in Fig. 12d are not due to geometrical rays. The pulse at t ≈ 211 fs, for
which the TM polarization is dominant, is caused by p = 2 surface waves, whereas
the pulse at t ≈ 221 fs is caused by the p = 3 complex ray associated with the
second-order rainbow.

11 Time-Domain Scattering and the Ray Limit
of the Debye Series

The time-domain results in Fig. 12 are useful, but they are limited to a single value
of scattering angle θ. Much more information can be revealed by examining how
the time-domain results vary as a function of θ. For example, the false-color map in
Fig. 14 plots the scattered intensity as a function of t and θ (Laven 2010, 2011).
Although this diagram has been calculated using Lorenz–Mie theory, the scattering
contributions due to the individual terms of the Debye series are easily identifiable,
as was mentioned at the beginning of Sect. 10. The time-domain Fourier transform
of Eq. (10.2) essentially reads the interference structure of two or more p-processes
in the scattered field occurring at the same scattering angle and separates them,
without having to explicitly calculate the various Debye terms. In addition, when a
given p-term of the Debye series contains a number of distinct contributions at the
same scattering angle, the time-domain Fourier transform separates these as well
(Fig. 14).

Figure 15 shows the results of time-domain calculations for the p = 2 term of the
Debye series. The simultaneous relative minimum of the scattering angle at
θ ≈ 142° and the delay time at t ≈ 169 fs correspond to the primary rainbow.
Figure 15 also includes parametric curves showing the values of θ and t corre-
sponding to p = 2 geometric rays with the impact parameter b obtained from

Dt ¼ Upl= kcð Þ; ð11:1Þ

where Φpl is the path-length-related phase in Eq. (5.33). Similarly, the
path-length-related phase for p = 0 and p = 1 are given in Eqs. (12.31, 12.3).

Note the close agreement in Fig. 15 between the results for geometric rays with
0 ≤ b ≤ 1 and the p = 2 Debye term. When 138° < θ < 165.2°, two supernumerary
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geometrical p = 2 rays are scattered at each value of θ (this was also illustrated in
Fig. 13 for the specific case of θ = 150°) and consequently generate distinct two
pulses in the time-domain. Figure 15 shows that these pulses converge at the
geometric rainbow angle of θ = 138° when b = 0.8611, and their separation
increases for increasing θ. In the frequency-domain, interference between these two
p = 2 geometrical rays produces a series of maxima and minima which are the
supernumerary arcs of the primary rainbow, as can be seen from the p = 2 curves in

Fig. 14 Lorenz–Mie theory time-domain calculations for a spherical particle of radius a = 10 μm
with m1 = 1.33257 and m2 = 1 for a 5 fs Gaussian pulse of red light (nominal wavelength
λ0 = 0.65 μm) as a function of scattering angle θ and the delay time t. The delay time is calculated
with respect to that of the externally reflected pulse at θ = 180°. The intensity of the scattered
pulses is coded according to the false-color scale shown above the diagram. The delay time grid
spacing is Δt = 0.54 fs and the scattering angle grid spacing is Δθ = 1°
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Fig. 3. When 165.2° < θ < 180°, only one p = 2 geometrical ray contributes to
scattering at a given value of θ. Nevertheless, Fig. 15 shows two additional pulses
with longer time delays in this angular interval. These are caused by two p = 2
surface waves, which will be discussed in greater detail in Sect. 12. These surface
waves are also responsible for the atmospheric glory.

Figure 16 shows the time-domain results for the Debye series p = 3 term, which
causes the second-order rainbow with its maximum intensity at θ ≈ 125° and
t ≈ 235 fs. Again, the distinctive pattern in the time-domain is determined by two

Fig. 15 As Fig. 14 but showing only the p = 2 Debye series term. The solid parametric curves
plot the values of t and θ corresponding to p = 2 geometric rays for the specified values of impact
parameter b where 0 ≤ b ≤ 1. The dashed line extrapolating from the end of the geometrical ray
curve shows the time delays corresponding to p = 2 surface waves. The delay time grid spacing is
Δt = 0.54 fs and the scattering angle grid spacing is Δθ = 0.2°
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geometrical p = 3 rays which converge at θ ≈ 131° when b = 0.9503, supple-
mented by p = 3 surface waves that cross θ = 0° at t = 266.5 fs. In this case, the
surface waves produce a forward scattering glory, unlike the p = 2 glory which is
centered on θ = 180°.

Figure 17 shows a set of time-domain results for scattering from coated
spheres, illustrating how the various scattering mechanisms change in importance
as the size of the core is increased. In this case, it is obvious that our under-
standing of scattering from coated spheres is dramatically enhanced by the
time-domain approach.

Fig. 16 As Fig. 15, but showing only the p = 3 Debye series term
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12 The Signature of Subtle Scattering Effects
in Time-Domain Scattering

12.1 Electromagnetic Surface Waves

For each term of the Debye series, certain angular intervals contain the contribution
of geometrical rays while other angular intervals contain no ray contributions.
Whenever there is a transition between two such intervals, electromagnetic surface
waves shed radiation into the zero-ray interval in order to smooth the transition. As
a specific example, we discuss p = 1 scattering, i.e., transmission through the
sphere of refractive index m when the external medium has unit refractive index.

Fig. 17 Scattered intensity as a function of θ and t for a coated sphere of overall radius
a23 = 10 μm where the core radius a12 is a 0, b 2, c 4, d 6, e 8, and f 10 μm. The refractive index
of the core m1 = 1.5, the refractive index of the coating m2 = 1.3333, and the refractive index of
the medium m3 = 1. Diagrams a and f represent homogeneous spheres of refractive index
m = 1.3333 and m = 1.5, respectively. The scattering angle grid spacing is Δθ = 1°, and the three
integers labeling each feature were described in Sect. 7
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For ka � x � 1 when ray theory is valid, the transition between the one-ray
scattering angle interval and the zero-ray interval occurs at the far-zone scattering
angle

hC ¼ 2 arccos 1=mð Þ: ð12:1Þ

In the angular interval 0° < θ < θC, an approximation to the p = 1 far-zone scat-
tered electric field for an x-polarized monochromatic plane wave of field strength E0

incident on the sphere is derived from the sum over partial waves using the pro-
cedure of Sect. 5. In particular, the asymptotic approximation of Eqs. (5.20a, 5.20b)
is used for the Lorenz–Mie angular functions πn(θ) and τn(θ). The geometrical ray
contribution corresponding to incident rays striking the sphere surface (but not with
grazing incidence) sums the partial waves contributions below the edge region
1 ≤ n ≤ x − εmaxx

1/3 with εmax ≈ 4.3. The result is

Eray
p¼1 r; h;uð Þ ¼ iE0 exp ikrð Þ= krð Þ½ � S2 hð Þcos uð Þuh�S1 hð Þsin uð Þuu

� �
; ð12:2Þ

where

Sj hð Þ ¼ 2ixm2Kj= m2 � 1
� �2h i

exp 2ixþ 2ix m2 � 2m cos h=2ð Þþ 1
� �1=2n o

� ½m cos h=2ð Þ�1�3=2½m� cos h=2ð Þ�3=2= ½cos h=2ð Þ�1=2½m2�2m cos h=2ð Þþ 1�
n o

:

ð12:3Þ

The TE polarization is denoted by j = 1, the TM polarization is j = 2, and

Kj ¼ 1 for j ¼ 1
¼ cos2 h=2ð Þ for j ¼ 2:

ð12:4Þ

The ray theory scattering amplitude scales as the sphere size parameter x, and the
ray scattered electric field vanishes for θ > θC.

For p = 1 scattering in the interval θC ≤ θ ≤ 180°, the principal contribution to
the electric field comes from partial waves in the lower half of the edge region
x − εmax x

1/3 ≤ n ≤ x corresponding to rays striking the sphere surface with grazing
incidence, plus partial waves in the upper half of the edge region x < n ≤ x + εmax

x1/3 corresponding to rays that classically just miss striking the sphere surface but
interact with the centrifugal barrier surrounding it. In the edge region the
large-argument, large-order approximation to the Riccati–Bessel, and Riccati–
Neumann functions used in the derivation is proportional to the first and second Airy
functions, Ai(z) and Bi(z), respectively [see Eq. (9.3.4) of Abramowitz and Stegun
(1964)]. The simplest approximation to the partial wave sum in the edge region
consists of converting it to an integral over ε, extending the limits of integration from
±εmax to ±∞, and recognizing the result as the modified Fock function
(Nussenzveig 1965, 1969a, b)
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f ðsÞ ¼ 1=2pð Þexp ip=6ð Þ
Z1
�1

dw exp iswð Þ= Ai w exp 2pi=3ð Þ½ �f g2: ð12:5Þ

This procedure gives

Sj hð Þ � 2x= m2 � 1
� �

p sin hð Þ� �	 
1=2
iLj exp i 2xþ 2x m2 � 1

� �1=2h in o
� exp i p=4þ xnð Þ½ �f x=2ð Þ1=3n

h i
þ exp i �p=4þ xfð Þ½ �f x=2ð Þ1=3f

h in o
ð12:6Þ

where

Lj ¼ 1 for j ¼ 1
¼ m2 for j ¼ 2:

ð12:7Þ

The angle the two surface wave paths of Eq. (12.6) travel on the sphere surface is

n ¼ h�hC ð12:8Þ

f ¼ 2p�h�hC: ð12:9Þ

The modified Fock function representation of Sj(θ) is a wave scattering phe-
nomenon that smoothly interpolates between the far-zone geometrical optics
angular region 0° ≤ θ < θC and the far-zone surface wave-dominated angular
region θC < θ < 180°. It is roughly analogous to the Fresnel region for light dif-
fracted through an aperture that smoothly interpolates between the near-zone
shadow-casting region and the far-zone Fraunhofer diffraction region.

The modified Fock function of Eq. (12.5) may be thought of mathematically as
the Fourier transform of the integrand’s denominator. For s < −2 in the geometrical
optics limit of Eq. (12.5), the integral is most easily approximated using the method
of stationary phase. For s > 1 in the surface wave-dominated limit, it is most easily
evaluated by converting it to a contour integral and evaluating it by the residue
method, including all the poles within the contour, which for convenience are
numbered here by the integer q ≥ 1. For −2 < s < 1 in the transition between the
geometrical optics and surface wave-dominated limits, the integral is most easily
evaluated numerically by rotating the −∞ < w ≤ 0 portion of the contour to the
more rapidly converging path z = r exp(2πi/3) for 0 ≤ r < ∞.

In the surface wave-dominated angular region and considering only the residue
of the strongest pole of the contour integral, q = 1, one has
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Sj hð Þ � 21=6x5=6= m2 � 1
� �

p sin hð Þ� �1=2n o
Ai0 �X1ð Þ½ ��2Lj

� n exp iUA hð Þ½ �exp �31=2x1=3X1n=24=3�Lj= m2 � 1
� �1=2h in

þ f exp iUB hð Þ½ �exp �31=2x1=3X1f=24=3�Lj= m2 � 1
� �1=2h io

;

ð12:10Þ

where

UA hð Þ ¼ exp i 2xþ 2x m2 � 1
� �1=2 þ xnþ x1=3X1n=24=3 þ 7p=12

h in o
ð12:11aÞ

UB hð Þ ¼ exp i 2xþ 2x m2 � 1
� �1=2 þ xfþ x1=3X1f=24=3 þ 7p=12

h in o
: ð12:11bÞ

In addition, Xq are the zeros of the Airy function, Ai(−Xq) = 0, with X1 = 2.3381
[see Table 10.13 of Abramowitz and Stegun (1964)]. Equation (12.10) requires a
number of comments. Surface waves are not quite as strong as geometric ray
contributions, scaling as x5/6 rather than as x.

The second line of Eq. (12.10) describes the q = 1 clockwise-propagating sur-
face wave of Fig. 18a where the length of its path along the sphere surface is
aξ = a (θ − θC). As it propagates along the sphere surface, it continually tangen-
tially sheds electromagnetic waves that propagate to the far zone. As these waves
are shed, the strength of the remaining surface wave is exponentially damped. The
amplitude factor of the TM surface wave is somewhat larger than that of the TE
surface wave due to the Lj factor. But its damping rate is slightly faster, again due to
the Lj factor. The third line of Eq. (12.10) describes the q = 1
counter-clockwise-propagating surface wave of Fig. 18b, where its path along the
sphere surface is aζ = a (360° − θ − θC). These waves are angularly damped at the
same rate as those in Fig. 18a. For hC\h � 180

	
they correspond to a longer path

on the sphere surface and thus yield a smaller scattered field. As a result, this second
surface wave is occasionally neglected with respect to the surface wave of Fig. 18a.
If the residues of the q ≥ 2 poles of the integrand of the modified Fock function are
included in the residue evaluation of the contour integral, the value of Xq for these
poles progressively increases, and these surface waves damp out at a progressively
faster rate. The contributions of these additional poles are also occasionally
neglected. Exact treatments of the scattering amplitude (Nussenzveig and
Wiscombe 1987, 1991; Nussenzveig 1988) also lead to surface waves that cir-
cumnavigate the sphere surface any number of times before tangentially shedding
their radiation. These are also occasionally neglected as well.

The frequency-domain plot of Fig. 19 for x = 96.66 and m = 1.33257 shows |
S1(θ)|

2 and |S2(θ)|
2 for the p = 1 Debye series term. Also shown are the ray theory

version of |S1(θ)|
2 and |S2(θ)|

2 and the surface wave version of Eq. (12.10)
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considering only the residue of the q = 1 pole. One can easily check the accuracy of
the magnitude of the surface wave contribution in this figure. However, the figure is
not able to verify the accuracy of the phase of Eqs. (12.11a, 12.11b). This can be

Fig. 18 Pictorial
representation of the p = 1
surface waves A and B with
θ < 180°, and C and D with
θ > 180°. A and D are the
short path length surface
waves, and B and C are the
long path length surface
waves

The Debye Series and Its Use in Time-Domain Scattering 283



accomplished in the time-domain, however, since the velocity of a monochromatic
surface wave along the curved path of the sphere surface is the slope of the
time-domain trajectory in the surface wave region,

v=c ¼ x= dU=dhð Þ ¼ 1þX1= 24=3x2=3
� �h i�1

: ð12:12Þ

Thus a scattered pulse should reach the detector slightly later than would be the case
if v = c. As the size of the sphere increases, the approximations leading to
Eq. (12.12) become more accurate while the predicted deviation of the wave
velocity from c decreases. Conversely, as the size of the sphere becomes smaller,
the analysis leading to Eq. (12.12) becomes less accurate while the predicted
deviation of the wave speed from c increases. For λ = 0.65 μm and a = 10 μm,
Eq. (12.12) predicts v/c = 0.958. When a pulse containing many different wave-
lengths is incident on the sphere, some component surface waves should travel
slower, while others should travel faster. These two tendencies, however, do not
completely cancel each other when the pulse spectrum is integrated. Rather, if the
central wavelength in the pulse spectrum is λ0, the effective surface wave speed of
the pulse becomes

v=c � 1þ 1=3ð ÞX1= 24=3x2=3
� �h i�1

: ð12:13Þ

For λ0 = 0.65 μm and a = 10 μm, Eq. (12.13) predicts that v/c = 0.9855, which
was found to be in good agreement with an analysis of Fig. 20 (Lock and Laven
2011a) that yielded v/c = 0.9840. A similar analysis of the p = 2 time-domain
trajectory for the same pulse and sphere yielded v/c = 0.9850. These results illus-
trate that time-domain scattering is sensitive to both the amplitude and the phase of
the scattered surface wave electric field.

Equation (12.12) assumed that surface waves propagate exactly along the sphere
surface. van de Hulst has suggested an alternative interpretation in which surface

Fig. 19 TE and TM intensity of the p = 1 Debye series term as a function of angle for scattering
of an x-polarized plane wave by a sphere with size parameter x = 96.66 and m = 1.33257. The ray
contribution of Eqs. (12.13, 12.14) and the dominant surface wave contribution of Eqs. (12.10,
12.11a, 12.11b) are also shown
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waves for monochromatic plane wave incidence propagate with v = c, but do so
slightly above the sphere surface [see p. 368 of van de Hulst (1981)], at

r � a 1þX1= 24=3x2=3
� �h i

¼ a 1þ 0:9279=x2=3
h i

: ð12:14Þ

This interpretation is motivated as follows. For the partial wave n + 1/2 = x at the
center of the edge region, the scattered field contains, among other things, the
Riccati–Bessel function

wn krð Þ ¼ p kr=2ð Þ1=2Jnþ 1=2 krð Þ ¼ p kr=2ð Þ1=2Jx krð Þ: ð12:15Þ

We parameterize the radial distance r outside the sphere in the vicinity of a by

r ¼ xþ zx1=3; ð12:16Þ

Fig. 20 p = 1 component of
the scattered intensity in the
time-domain as a function of
the delay time t and scattering
angle θ for the pulse and
particle parameters of Fig. 14.
The false-color intensity in
Fig. 14 has been reset in
Fig. 20 to emphasize the
low-intensity components.
The results of ray theory have
been overlaid on the figure.
The grid ticks on the ray
theory line correspond to the
ray impact parameter b in
intervals of Δb = 0.1
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so that

Jx krð Þ � 2=xð Þ1=3Ai �21=3z
� �

: ð12:17Þ

The relative maximum of the principal peak of the Airy function occurs at
21/3 z ≈ 1.0188 [see Table 10.13 of Abramowitz and Stegun (1964)], which gives

r � a 1þ 0:8086=x2=3
� �

: ð12:18Þ

The value of r given by Eq. (12.14) occurs on the principal peak of the Airy
function just past the relative maximum, consistent with the van de Hulst
conjecture.

The situation becomes somewhat more complicated in the glory region

h ¼ 180	�d ð12:19Þ

for small δ where the clockwise-propagating and counter-clockwise-propagating
surface waves, as shown in Fig. 18a, b, for δ > 0 (i.e., θ < 180°), and in Fig. 18c, d
for δ < 0 (i.e., θ > 180°), are of comparable strength. In this angular regime, the
Lorenz–Mie angular functions πn(θ) and τn(θ) are now approximated by the first
term in their large-order asymptotic expansion for θ ≈ 180° [see p. 253 of van de
Hulst (1981)]. The p = 1 far-zone scattered electric field in the glory region is then
found to be

Ep¼1 r; h;uð Þ � E0 exp ikrð Þ= krð Þ½ �G hC
� �

� m2 � 1
� �

J0 xdð Þux� m2 þ 1
� �

J2 xdð Þ cos 2uð Þux þ sin 2uð Þuy
� �	 


;

ð12:20Þ

where

G hC
� � � x= m2 � 1

� �1=2h i
f x=2ð Þ1=3 p� hC

� �h i
exp i 2xþ 2x m2 � 1

� �1=2 þ x p� hC
� �h in o

:

ð12:21Þ

In Eq. (12.21) both the modified Fock function and the phase have been approxi-
mated by their values at θ = 180°. The Bessel functions J0 and J2 in Eq. (12.20)
describe the interference produced by axial focusing of the surface waves in all
azimuthal planes in the near-backward direction. The θ-dependence of this focusing
effect has been retained in Eq. (12.20). Evaluating the modified Fock function using
the residue method, keeping only the contribution of the q = 1 pole, and using an
average damping rate of the TE and TM surface waves, one obtains
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G hC
� � � x4=3 p� hC

� �
= 21=3 m2 � 1

� �1=2h in o
Ai0 �X1ð Þ½ ��2

� exp � p� hC
� �

31=2x1=3X1=24=3� m2 þ 1
� �

=2 m2 � 1
� �1=2h in o

� exp i 2xþ 2x m2 � 1
� �1=2 þ x p� hC

� �þ x1=3X1 p� hC
� �

=24=3�ip=6
h in o

:

ð12:22Þ

This glory focusing effect is stronger than geometrical optics, scaling as x4/3 rather
than as x. It should also be parenthetically noted that the atmospheric glory
observed in scattering from water droplets in clouds is dominated by the analogous
p = 2 surface wave glory (Nussenzveig 1969b; van de Hulst 1947; Bryant and Cox
1966; Bryant and Jarmie 1974; Laven 2005), also scaling as x4/3.

The near-back-scattering enhancement evident in Fig. 19 is the p = 1 surface
wave glory of an x-polarized monochromatic plane wave incident on a sphere, and
is due to the interference of the four surface waves of Fig. 18a–d. The p = 1
time-domain trajectory in the glory region for a 5 fs plane wave pulse incident on
the same sphere shown in Fig. 21a partially separates the contributions of the four
surface waves. This figure contains more information about the individual surface
waves than Fig. 19. For example, there is a set of intensity minima along the
centerline of the X-shape structure in Fig. 21b at δ = ±1.0°, ±3.0°, ±5.0°, ±6.8°,
±8.7°, ±10.5°, and ±12.3°. These closely correspond to the interference minima of
the shorter path surface waves of Fig. 18a or d with the longer path surface waves
of Fig. 18b or c, respectively, which are −90° out of phase with respect to the
shorter path contributions. The pulse version of Eq. (12.22) predicts that these
minima should occur at δ = ±1.40°, ±3.26°, ±5.12°, ±6.98°, ±8.85°, ±10.71°, and
±12.57° (Lock and Laven 2011a). In ray theory, the −90° phase shift is caused by
the longer path surface waves crossing the back-scattering focal line [see p. 207 of
van de Hulst (1981)]. In wave theory this shift does not occur discontinuously, but
takes place over the angular width of the principal glory peak centered at θ = 180°.

12.2 The Time-Domain Signature of Diffraction

The analysis of the p = 0 term of the Debye series, diffraction-plus-external reflec-
tion, is more complicated than p = 1 because it consists of a number of different
sub-processes that evolve and change from the far-zone near-forward scattering
angle interval θ < (2/x)1/3, through the so-called transition region (2/
x)1/3 < θ < M (2/x)1/3, to the large-angle intervalM (2/x)1/3 < θ, whereM � 1, (e.g.,
M = 6 is often sufficient). In the first part of the near-forward interval, 0 ≤ θ < 1/x,
the Lorenz–Mie angular functions πn(θ) and τn(θ) are proportional to combinations of
the Bessel functions J0[(n + 1/2)θ] and J2[(n + 1/2)θ] (see Eqs. 5.7a, 5.7b) which is
characteristic of the focusing of light scattered in the forward direction in all azi-
muthal planes. In the second part of the near-forward interval, 1/x < θ < (2/x)1/3, the
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Bessel functions J0 and J2 may be replaced by the first term of their asymptotic
expansion (see Eqs. 5.20a, 5.20b). The three p = 0 sub-processes in
the-near-forward angular interval are: (i) external reflection (denoted here by er)
which consists of the (1/2)(�R212

n ) term summed over the partial waves
1 ≤ n ≤ x − εmax x

1/3, (ii) diffraction (denoted by d) which consists of the (1/2) term
summed over 1 ≤ n ≤ x, and (iii) grazing-plus-tunneling reflection (denoted by
gr + tr) which consists of the (1/2)(�R212

n ) term summed over the partial waves
x − εmax x

1/3 < n ≤ x + εmax x
1/3 plus the (1/2) term summed over x < n ≤ x + εmax

x1/3. These sub-processes are shown in the partial wave/amplitude diagram of
Fig. 22. In the near-forward angular region the p = 0 Debye series amplitude may
then be written as

Fig. 21 a Similar to Fig. 20, but also showing scattering for θ > 180°. The surface waves
A + C and D + B of Fig. 18 intersect at θ = 180° to form the p = 1 surface wave glory.
b Fine-resolution view of a in the vicinity of the p = 1 surface wave glory
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Sp¼0
j hð Þ ¼ Sdj hð Þþ Sgrþ tr

j hð Þþ Serj hð Þ: ð12:23Þ

For 0 ≤ θ < 4/x the diffraction amplitude Sdj hð Þ is closely approximated by the
usual Fraunhofer result

Sdj hð Þ ¼ x2 J1 xhð Þ= xhð Þ½ �; ð12:24Þ

that scales as x2 due to forward focusing, and whose first zero occurs at

h � 1:22pð Þ=x: ð12:25Þ

Farther out in the near-forward interval 4/x < θ < (2/x)1/3, the asymptotic expansion
of J1(xθ) gives

Sdj hð Þ � x= 2p sin hð Þ½ �f g1=2 1=hð Þ exp ix h� 3pi=4ð Þþ exp � ix hþ 3pi=4ð Þ½ �;
ð12:26Þ

which scales as x1/2, thus being weaker than ray scattering. The first few minima of
the classical diffraction amplitude of Eq. (12.24) fall within the near-forward
angular interval.

Fig. 22 p = 0 sub-processes
of diffraction (d),
grazing-plus-tunneling
reflection (gr + tr), and
geometrical ray external
reflection (er) in the
near-forward scattering angle
interval. The stationary point
of the gr + tr amplitude is
shown as the red dot
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The leading term of the grazing-plus-tunneling reflection amplitude Sgrþ tr
j hð Þ in

the near-forward angular interval is proportional to x4/3 J0(xθ) which scales as a
forward glory due to focusing of light in all azimuthal planes. The next largest term
has contributions proportional to x J0(xθ) and x J2(xθ) which scale as ray scattering
terms (Nussenzveig 1969a; Lock and Laven 2011b). This is because the stationary
point of the external reflection portion of the partial wave sum occurs in the lower
portion of the edge region of Fig. 22. The start and end of the transition region
mentioned above are defined with respect to the location of the external reflection
stationary point. The region corresponds to the partial wave number of the sta-
tionary point moving from somewhat above n = x − εmax x

1/3 in the lower portion
of the edge region as shown in Fig. 22, to somewhat below it in the upper portion of
the region of smaller partial waves as shown in Fig. 23. When the stationary point
occurs at the partial wave n = x − εmax x

1/3 in the middle of the transition region,
ray optics gives the scattering angle as

h ¼ 27=6e1=2max 2=xð Þ1=3¼ 4:6 2=xð Þ1=3: ð12:27Þ

Lastly, in the near-forward angular region Serj hð Þ of Eq. (12.23) is small and may be
ignored because the terms of the external reflection partial wave sum in the region
of smaller partial waves in Fig. 22 are slowly varying in amplitude but rapidly
varying in phase. The surviving combination of diffraction and grazing-plus-
tunneling reflection for near-forward scattering is pictorially illustrated in Fig. 24.

Fig. 23 p = 0 sub-processes
of surface waves (sw+),
geometrical ray external
reflection (er−), and the
processes α− and β− which
cancel each other in the large
scattering angle interval. The
stationary point of the er−

amplitude is shown as the red
dot
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Turning now to the large scattering angle interval θ > M (2/x)1/3, the dominant
Lorenz–Mie angular function τn(θ) of Eq. (5.20b) is proportional to

cos nþ 1=2ð Þh�p=4½ � ¼ 1=2ð Þexp i nþ 1=2ð Þh� ip=4½ � þ 1=2ð Þexp � i nþ 1=2ð Þhþ ip=4½ �:
ð12:28Þ

This leads to sub-processes whose scattering amplitudes Sþ
j hð Þ and S�j hð Þ include

either the first or second term of the right-hand side of Eq. (12.28), respectively.
These new sub-processes are shown in the partial wave /amplitude diagram of
Fig. 23. The p = 0 scattering amplitude in the large-angle interval then consists of
four sub-processes, external reflection (denoted here by er−), p = 0 surface waves
(denoted by sw+), as well as the contributions of the partial wave intervals α− and
β−. These last two contributions turn out to be equal and opposite due to Babinet’s
principle, and cancel each other. The p = 0 scattering amplitude in the large-angle
interval may then be written as

Sp¼0
j hð Þ ¼ Ser�j hð Þþ Sswþ

j hð Þ: ð12:29Þ

The external reflection sum over partial waves Ser�j hð Þ is dominated by the con-
tribution of the stationary point at

nþ 1=2ð Þsp¼ x cos h=2ð Þ; ð12:30Þ

which migrates deeper into the region of smaller partial waves, er−, as the scattering
angle increases. This is noted in Fig. 23. In this regime one obtains the geometrical
ray scattering result,

Fig. 24 Pictorial illustration
of the p = 0 sub-processes of
diffraction and
grazing-plus-tunneling
reflection in the near-forward
scattering angle interval
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Ser�j hð Þ ¼ i x=2ð Þrj hð Þexp �2ix sin h=2ð Þ½ �; ð12:31Þ

where the Fresnel external reflection coefficient is

rj hð Þ ¼ m2 � cos2 h=2ð Þ� �1=2�Lj sin h=2ð Þ
n o

= m2 � cos2 h=2ð Þ� �1=2 þ Lj sin h=2ð Þ
n o

:

ð12:32Þ

The ray theory scattering amplitude of Eq. (12.31) scales as x. The surface wave
amplitude Sswþ

j hð Þ again scales as x5/6 and has the same exponential falloff as was
the case for p = 1 surface waves (Nussenzveig 1969a). The external reflection and
surface wave contributions to the p = 0 scattering amplitude are pictorially illus-
trated in Fig. 25.

The angular interval (2/x)1/3 < θ < M (2/x)1/3 marks the gradual transition via
Fock functions and modified Fock functions from the diffraction and
grazing-plus-tunneling reflection amplitudes for smaller angles to the geometrical
ray and surface wave amplitudes for large angles (Nussenzveig and Wiscombe
1987, 1991; Nussenzveig 1988). Said in a more pictorial way, it corresponds to the
gradual splitting of the (1/2) and (1/2) (�R212

n ) amplitudes of Fig. 22 into (1/2)± and
(1/2) ð�R212

n Þ
 amplitudes of Fig. 23, accompanied by a gradual joining together of
the partial waves in the edge region with those in the region of smaller partial
waves, and the gradual joining together of the amplitudes (1/2)+ and (1/2)ð�R212

n Þþ
into a single amplitude which gives rise to electromagnetic surface waves.

The rearrangement of the partial wave sums in the transition region is not evident
in the frequency-domain in Fig. 26 for λ = 0.65 μm, a = 10 μm, and m = 1.33257.
It is difficult to distinguish the different p = 0 sub-processes and to see where the
transition region begins and ends. On the other hand, much of this structure
becomes separated in the time-domain. The p = 0 time-domain trajectory for a 5 fs

Fig. 25 Pictorial illustration
of the p = 0 sub-processes of
geometrical ray external
reflection and surface waves
in the large scattering angle
interval
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Gaussian plane wave pulse with λ0 = 0.65 μm incident on a sphere with a = 10 μm
and m = 1.33257 is shown in Fig. 27a, and the near-forward angular interval is
shown in greater detail in Fig. 27b. For these parameters, the transition region is
predicted to begin at θ ≈ 15.73° and its midpoint, according to Eq. (12.27), should
be at θ ≈ 72.36°. Diffraction which scales as x2 and grazing-plus-tunneling
reflection which scales as a combination of x4/3 and x should completely overlap in
the first part of the near-forward angular interval. According to Eq. (12.26), they
should then split at θ ≈ 2.37° into an inverted-V structure whose straight diagonal
arms in the second part of the near-forward interval have the slope

dh=dt ¼ 
c=a: ð12:33Þ

Fig. 27 a Intensity of the p = 0 Mie-Debye term as a function of the scattering angle and delay
time for the pulse and particle parameters of Fig. 14. b Fine-resolution view of a in the
near-forward direction. The fundamental sampling interval is Δt = 0.135 fs

Fig. 26 p = 0 Debye series term of the TE and TM intensity as a function of angle for scattering
of an x-polarized plane wave by a sphere with λ = 0.65 μm, a = 10 μm and m = 1.33257
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These predictions agree well with Fig. 27b. In the transition region, the smaller
time-delay arm of diffraction is gradually replaced by external reflection, and the
longer time-delay arm is gradually replaced by p = 0 surface waves. The details of
this gradual replacement are evident in Fig. 6 of Lock and Laven (2011b).

13 Summary

It is often said that everything that happens, happens for a reason. In the context of
light scattering by a single homogeneous sphere, “everything that happens” is
implicit in the formulas of Lorenz–Mie theory since they are, after all, the exact
solution to the posed electromagnetic boundary value problem. It is one thing to
know the exact solution, but it is quite another to understand all the implications
hiding within it. The Debye series with its decomposition of the partial wave
scattering amplitudes into diffraction of the partial waves, external reflection, and
transmission following any number of internal reflections goes a long way toward
explaining “the reason” why the scattered intensity has the structure it does, when
considered in the short wavelength limit.

But even within a single Debye series term, it often happens that a number of
physical sub-processes angularly overlap and interfere. When this happens,
time-domain scattering takes up where the Debye series left off and successfully
separates these overlapping and interfering sub-processes. In doing do, it opens up a
new level of meaning concerning the details of electromagnetic scattering in par-
ticular, and of the nature of the interaction of micron-sized matter with radiation in
general. One can best and most cleverly use various light scattering effects as a tool
for technological advancement only when one firmly understands the physical
nature and implications of the phenomenon. The exposition given in this chapter
makes the claim that the Debye series and time-domain scattering are our two most
fruitful tools for achieving this understanding.
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Morphological Models for Inhomogeneous
Particles: Light Scattering by Aerosols,
Cometary Dust, and Living Cells

Michael Kahnert, Timo Nousiainen and Johannes Markkanen

1 Introduction

Particle populations in nature can often be composed of different chemical com-
ponents that are either externally or internally mixed. By “external mixture”, we
refer to an ensemble of particles in which different chemical species are contained
in physically separated particles; an “internal mixture” refers to the case in which
different chemical components are contained in the same particles. Examples of
internal mixtures are liquid-phase aerosols containing water and dissolved sodium
chloride. In that case, the two chemical species are homogeneously mixed on the
molecular level. Other examples are solid-phase light-absorbing carbon
(LAC) aggregates onto which a coating of liquid-phase material has condensed. In
the latter case, we are dealing with an inhomogeneous mixture of different chemical
species. It is such inhomogeneous particles that will be the focus of this chapter.

Inhomogeneous particles are ubiquitous in the terrestrial atmosphere, in the solar
system, and in the interstellar medium. For instance, mineral dust aerosols are often
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composed of different mineral components, such as carbonates of calcium or
magnesium, or oxides containing silicon, aluminium, iron, sodium, potassium, or
calcium (e.g. Lindqvist et al. 2014). Anthropogenic aerosols can consist of inho-
mogeneous mixtures of LAC, organic compounds, sulphate, nitrate, ammonium,
and water (e.g. McFiggans et al. 2006). Also, materials of anthropogenic origin,
such as sulphates or nitrates, can be inhomogeneously mixed with natural aerosols,
such as mineral dust or sea salt.

Desert dust aerosols result from wind re-suspension of soil dust which, in turn,
originates from eolic erosion processes of rocks. Thus, the inhomogeneous min-
eralogical composition of mineral dust particles reflects that of the parent rock. By
contrast, the main causes of internal mixing in anthropogenic terrestrial aerosols are
dynamic processes, such as condensation and coagulation. For instance, as LAC
aggregates age in the atmosphere they are oxidised and, as a result, become more
hydrophilic and more compact (e.g. Coz and Leck 2011). Subsequent condensation
processes produce LAC aerosols that can be covered with liquid phase materials
(e.g. Bond et al. 2006).

Cosmic dust particles are often the result of dynamic growth processes quite
similar to those of terrestrial aerosols, although operating on different time scales.
For instance, in the outflow of red-giant stars refractory elements, such as silicon,
oxygen, and carbon, nucleate to form solid particles of silicon oxide or silicon
carbide. Such particles may later coagulate to form aggregates. Farther away from
the star, more volatile elements, such as carbon monoxide, water, carbon dioxide,
molecular oxygen and nitrogen, ammonia, or organic compounds can condense
onto the particles and form icy outer layers (e.g. Whittet 2003).

Volcanic ash particles are generated during explosive volcanic eruptions. They
are composed of crustal material with glassy or crystalline structure and different
degrees of vesicularity. The vesicles often form in high-viscosity magmas from
expanding gas contained in the magma. The resulting particles have irregular
shapes and inhomogeneous composition characterised by gas vesicles entrained
inside the solidified crustal particles.

Modelling the optical properties of particles with irregular shapes, complex
morphology and heterogeneous chemical composition is a formidable task.
Different approaches ranging from effective-medium approximations (EMAs) and
simplified regular-shape models to morphologically realistic quasi-replicas of
real-world particles have been applied in the past. The level of sophistication in the
choice of a model particle is often determined by the intended use of the model, and
it is constrained by the availability of computational resources, numerical limita-
tions of electromagnetic scattering software and the incomplete knowledge of the
morphology and composition of real particles. In environmental modelling appli-
cations, such as in climate models or in remote sensing retrieval systems, a priori
information on morphological properties is often difficult to obtain. This lack of
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information in conjunction with computational constraints often motivates the use
of drastically simplified particle models. By contrast, more fundamental studies that
aim at understanding the impact of particle morphology on radiometric properties
must make use of more elaborate and more realistic particle models.
Light-scattering studies based on realistic model particles can also be useful for
assessing the errors in climate models or remote-sensing retrieval algorithms that
are introduced by simplified particle-shape models.

In general, the very concept of a model implies certain simplifications, based on
making a discrimination between important and less relevant factors that contribute
to a certain phenomenon (e.g. Eddington 1926). The use of exact replicas of real
particles does not follow such an approach. Replica particles are most useful for
producing results that are as realistic as possible. Following Kahnert et al. (2014),
one may therefore refer to such particles as “numerical laboratories” rather than
“model particles”. Gaining insight into the physics of the electromagnetic scattering
process is often easier when using model particles with a degree of complexity that
lies in between the two extremes of over-simplified geometries and real-world
replicas. In particular, it can be advantageous to use model particles that selectively
focus on one specific morphological aspect, while neglecting other complicating
factors. Such general aspects of the choice of model particles are discussed in more
detail in Kahnert et al. (2014). In the following sections, we will discuss several
examples that illustrate the use of model particles and numerical laboratories and
explain the advantages of different approaches with regard to the intended use of the
models. We start with a short discussion of the merits and limitations of
effective-medium approximations in Sect. 2. In Sect. 3, we cover LAC aerosols that
are inhomogeneously mixed with sulphate, organic material, salt, or water.
Section 4 is devoted to mineral dust aerosols. This is a field of extensive research;
however, the discussion in this section will focus only on those issues that pertain to
the inhomogeneity of mineral particles. Section 5 deals with volcanic ash particles
with entrained gas vesicles. Section 6 deals with cometary dust particles. Finally,
Sect. 7 gives a brief introduction to modelling optical properties of living cells.

Readers whowant to obtainmore information are referred to the recent monograph
by Babenko (2010). An introduction to light scattering media optics in general, which
contains several pedagogical examples of inhomogeneous particles, solution meth-
ods, and approximations, can be found in the book by Kokhanovsky (2004).

2 Effective-Medium Approximations

The main part of this review will deal with the construction of model particles that
explicitly account for inhomogeneities in the dielectric properties of particles. But
before we enter this subject, we discuss an alternative and, arguably, simpler
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approach that is based on determining some average dielectric properties of
heterogeneous materials. The goal is to specify an effective refractive index, meff, in
such a way that the heterogeneous particle has the same optical properties as the
corresponding homogeneous particle with a refractive index meff. The specification
of meff is based on the refractive indices of each of the components in the hetero-
geneous mixture. These methods are known as EMAs. Such an approach can be
motivated by a desire to reduce numerical complexities, or by our lack of knowl-
edge of the detailed morphology of inhomogeneous particles, which can make any
attempts to explicitly account for inhomogeneities rather unpromising. Here, we
will not attempt to review the various EMA approaches; we refer to Chýek et al.
(2000), Sihvola (1999). Rather, we will discuss some aspects regarding the validity
and limitations of EMAs.

In the literature, several examples can be found for cases in which EMA
approaches yield valid results. For instance, it is often taken for granted that LAC is
a homogeneous material that can be described by a single refractive index. In
reality, LAC contains a variable amount of void fraction, where the “void inclu-
sions” are on the nanometre scale. By use of EMA, one can model meff as a function
of the void fraction. A plot of the imaginary versus the real part of meff yields a
so-called void-fraction curve. It has been shown in Bond and Bergstrom (2006) that
many measurements of the refractive index of LAC reported in the literature lie
along that void-fraction curve. This indicates that EMA is, indeed, a valid approach
for describing the dielectric properties of LAC, and that a variation in the void
fraction can often explain discrepancies among measurements of the refractive
index of LAC.

One can also find modelling studies which support the validity of
effective-medium approximations, at least under certain circumstances. For
instance, Videen and Chýek (1998) compared optical efficiencies and differential
scattering optical properties of inhomogeneous spheres to those of homogeneous
spheres, where different approaches were tested for modelling meff. The spherical
host particle was assumed to be water with m1 = 1.335, and the spherical inclusion
was LAC with m2 = 1.94 + 0.66i. The radius of the composite particle was assumed
to be equal to the wavelength of the incident radiation. It was found that the integral
optical properties were reproduced to within 1 %, as long as the size parameter xinc
of the LAC inclusion was sufficiently small, i.e., xinc\0:5. In another study by
Mishchenko et al. (2014), spherical hosts with multiple spherical inclusions were
considered. The host and the inclusions had generic refractive indices of 1.33 and
1.55, respectively. The size parameter of the particle was fixed at 2pR=k = 10.
The number of inclusions was varied up to N = 8000. It was found that the elements
of the Stokes scattering matrix are well reproduced by EMA over the entire range of
scattering angles, provided that the size parameter of the inclusions is less than
about 0.5, and the number of inclusions is sufficiently large.
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However, there are also counter-examples that call into question the validity of
EMAs. For instance, in Kocifaj and Videen (2008) the optical properties of inho-
mogeneous particles composed of LAC, ammonium sulphate and organic matter
were modelled. It was found that EMAs tend to underestimate the scattering effi-
ciency and overestimate the asymmetry parameter and absorption efficiency.
Similar observations were made in Kahnert et al. (2013), in which a model of LAC
fractal aggregates encapsulated in a spherical shell of sulphate was considered.

These examples illustrate that one can find examples in the literature on both
sides of the argument. When considering the evidence reported thus far one should
be aware that most studies consider only a limited range of inhomogeneous mor-
phologies, sizes or dielectric materials. This raises the question how such findings
can be generalised. A related question is if it is valid to interpret measurements on
inhomogeneous particles by assuming a homogeneous material. In doing so, one
may even “retrieve” an effective refractive index meff. This question has been
brought up in Bohren and Huffman (1983), Bohren (1986). However, it is not clear
if such an approach would yield a useful optical constant that allows us to predict
optical properties even for other experimental situations, such as for particles of
different sizes or morphologies, or for measurements of other optical properties.
One would like to find a way to specify an effective refractive index that correctly
predicts the optical properties of inhomogeneous materials over the entire range of
relevant parameters.

Thus, to test the validity of effective dielectric constants, it is essential to perform
such tests over a large range of particle parameters. This is hampered by the high
computational demands of such efforts. As a first step in this direction, a recent
study by Kahnert (2015) has considered spheres with m1 = 1.6 (representing a
generic mineral material) with spherical hematite inclusions, m2 = 3.102 + 0.0925i,
sizes in the range of 80 nm–2.8 μm, hematite volume fractions of 1 and 4 %
(representing low and high hematite contents in terrestrial desert dust aerosols), and
three different morphologies, namely with 1, 10, and 100 randomly placed inclu-
sions. Figure 1 shows an example for a sphere with 30 inclusions and a hematite

Fig. 1 Inhomogeneous
mineral sphere with 30
randomly placed hematite
inclusions. This model was
employed in Kahnert (2015)
to assess the validity of
effective-medium
approximations
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volume fraction of 4 %. To assess the variability in the radiometric properties, ten
stochastic realisations of the random geometry have been considered for each
particle size, volume fraction and number of inclusions. The results have been
compared to various EMAs. Also, it has been attempted to find a best-fit of the
radiometric properties by freely varying the real and imaginary parts of meff.
Although the best-fit approach did achieve some limited improvements over con-
ventional EMAs, it turned out not to be possible to reproduce all radiometric
properties with a homogeneous particle model over the entire range of parameters
considered in that study. Also, it was found that the elements of the Stokes scat-
tering matrix as well as the single-scattering albedo vary considerably among the
particles of the same size and volume fraction, but with 1, 10, and 100 inclusions.
As an example, Fig. 2 shows the elements of the scattering matrix of a
mineral/hematite particle with a radius of 2 μm at a wavelength of 550 nm. The two
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Fig. 2 Elements of the scattering matrix of a sphere with radius RV = 2 μm and a hematite volume
fraction of 4 % at a wavelength of 550 nm. An inhomogeneous sphere model with 100 spherical
hematite inclusions (black) and a homogeneous sphere model based on EMA (red) are compared
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model particles that are being compared are an inhomogeneous sphere containing
100 spherical hematite inclusions with a volume fraction of 4 % (black line), and a
corresponding homogeneous sphere with an effective refractive index obtained with
the Maxwell Garnett EMA (red line). The scattering matrix of the inhomogeneous
particles has been averaged over orientations and over 10 stochastic realisation of
the inhomogeneous morphology. The limitations of the homogeneous sphere model
are obvious. It underestimates the phase function at side-scattering angles, and it
overestimates the phase function in the backscattering direction. Also, it severely
overestimates the oscillations with scattering angle of the elements
P33;P44;P12; and P34. Most strikingly, the element P22, which enters into the def-
inition of the depolarisation ratio, is as low as 0.6 for inhomogeneous particles,
while it is identically equal to 1 for spherically symmetric particles. A closer
analysis (not shown) revealed that the scattering matrix elements obtained with the
two models agreed well only for small particles; they start to diverge already at a
particle radius of about 300 nm. This corresponds to an inclusion size parameter of
0.25. Note that this is only half as large as the critical size parameter of 0.5 reported
in Mishchenko et al. (2014). However, the optical contrast between the inclusions
and the host medium was much smaller in Mishchenko et al. (2014) than it was in
Kahnert (2015). This could indicate that the critical inclusion size parameter below
which the inhomogeneous material is well described by a suitable EMA becomes
smaller the higher the optical contrast between the mixed materials is.

The studies discussed above indicate that particle inhomogeneity may be a very
significant morphological property, and that simple homogeneous particle models
can be insufficiently accurate to reproduce the radiometric properties, unless the
inclusion size parameter is sufficiently small. If it is not, then even if one should be
able to find an meff that yields good agreement between the optical properties of
inhomogeneous particles with corresponding EMA computations at some selected
particle sizes, volume fractions or inhomogeneous morphologies, one cannot be
confident that such agreements will extend outside the limited range of parameters
for which the EMA approach has been validated. The studies by Mishchenko et al.
(2014), Kahnert (2015) used simplified spherical hosts with spherical inclusions.
The idea was to isolate the effect of particle inhomogeneity from other effects, such
as overall nonsphericity, surface roughness or aggregation, which are often
simultaneously present in natural particles. When working with more realistic
numerical laboratories, it is often difficult to disentangle the impact of different
morphological properties on radiometric quantities. On the other hand, homoge-
neous spheres have rather unique optical properties. A comparison of optical
properties of homogeneous and inhomogeneous spheres, such as in Mishchenko
et al. (2014), Kahnert (2015), may, therefore, overstate the significance of inho-
mogeneity. A recent study by Videen et al. (2015) on irregular agglomerated debris
particles showed little differences among the orientation-averaged phase functions
computed for particles with inhomogeneous and homogeneous compositions. Both
an EMA and an external mixture approach had been tested for the homogeneous
particles. Replacing the irregular by spherical particles caused errors that far
exceeded those related to the homogeneous particle approximation. However, it
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was also found that the degree of linear polarisation is more sensitive to inhomo-
geneous composition than the phase function. The study was limited to a single size
parameter of 10.

It thus seems that particle shape and surface roughness may partially mask, or
even dominate over the impact of inhomogeneity. However, more dedicated studies
are required to test this hypothesis. Performing such tests for a sufficiently large
parameter space of particle sizes and volume fractions will require formidable
computational resources.

3 Encapsulated Light-Absorbing Carbon Aggregates

Light-absorbing carbon (LAC) aerosols are formed during incomplete combustion
of fossil fuel, biofuel and biomass. Common emission sources are biomass burning,
diesel vehicles, industrial processes and power generation. LAC consists of
incompletely graphetised amorphous carbon that can be partially oxidised. As a
result of condensation processes in the atmosphere, LAC aerosols become coated
by chemical compounds such as sulphate (Adachi and Buseck 2008; Worringen
et al. 2008), organic materials (Adachi and Buseck 2008), sea salt (Scarnato et al.
2013) or water. While the real and imaginary parts of the refractive index of LAC
are both relatively high throughout the short-wave part of the spectrum (e.g. Chang
and Charalampopoulos 1990; Bond and Bergstrom 2006), the coating material is
typically weakly absorbing and optically much softer than LAC at UV and visible
wavelengths (e.g. Hess et al. 1998; see also Fig. 4 in Kahnert 2010a). Thus, the
dielectric properties of such particles are characterised by a high optical contrast
between the LAC core and the liquid-phase shell.

Model geometries in light-scattering computations range from highly simplified
shapes to morphologically realistic numerical laboratories, of which several are
shown in Fig. 3. The simplest internal mixture model is the homogeneous sphere
model in which the mixture of LAC and the coating material is described by EMA
(Fig. 3d). Here, we will concentrate on model particles that explicitly account for
the dielectric inhomogeneity of the particles.

Among the simplest inhomogeneous model particles are the concentric core-shell
model (Ackerman and Toon 1981) (Fig. 3e), the non-concentric core-shell model
(Fuller 1995) and dimers of concentric core-shell particles (Fuller et al. 1999).
Studies based on non-concentric core shell models revealed that the optical prop-
erties of encapsulated geometries are mostly sensitive to the LAC volume fraction
(Fuller et al. 1999); the positioning of the LAC core inside the spherical shell has
little effect on the absorption cross section. This is, at least, true for particle sizes and
LAC volume fractions that are typical for atmospheric aerosols (Bond et al. 2006).
For particles with large coatings and correspondingly low LAC volume fractions,
such as those encountered in LAC-containing cloud droplets, particles with con-
centrically positioned LAC cores can have significantly enhanced absorption cross
sections compared to off-centre geometries (Fuller et al. 1999).
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Fig. 3 Examples of LAC model particles. a Bare aggregate; b encapsulated aggregate;
c externally mixed homogeneous spheres; d internally mixed homogeneous sphere/EMA;
e core-shell; f core-grey-shell
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Models with multiple spherical LAC inclusions inside a sulphate shell have been
considered (Worringen et al. 2008), where each LAC particle was modelled by a
size-equivalent homogeneous sphere. The computed optical cross sections,
single-scattering albedo, and asymmetry parameter were compared to those of
simpler model particles, such as core-shell geometries with an LAC core and a
sulphate shell, core-shell particles with a sulphate core and an LAC shell, as well as
hemispheric LAC/sulphate and sandwich sulphate/LAC/sulphate geometries. The
differences among the various model particles were mostly dependent on the LAC
volume fraction, and they varied among different optical parameters.

Laboratory and field observations by use of transmission electron microscopy
(Adachi and Buseck 2008; Worringen et al. 2008) and electron tomography (van
Poppel et al. 2005; Adachi et al. 2010) have provided detailed information on the
morphology of encapsulated LAC particles. This has paved the way for going
beyond simple coated sphere models. Most importantly, the observational data
yield information on the complex fractal aggregate structure of the LAC cores.
Before discussing inhomogeneous mixtures of LAC and liquid-phase aerosol
components, a few remarks on the morphology of bare aggregates and their optical
properties are in order (see Fig. 3a).

A fractal aggregate composed of Ns spherical monomers of radius a can be
described by the statistical scaling relation (Jones 2006)

Ns ¼ k0
Rg

a

� �Df

: ð1Þ

Here Df and k0 denote, respectively, the fractal dimension and structural pref-
actor of the aggregate, and

Rg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ns

XNs

i¼1

r2i

vuut ð2Þ

Rg denotes the radius of gyration, which is defined in terms of the distances ri of
the ith monomer from the aggregates’s centre of mass. A low-fractal dimension
corresponds to a more lacy aggregate; whereas, a high-fractal dimension corre-
sponds to a more compact arrangement of the monomers.

The set of parameters fa;Ns;Df ; k0g describes a class of fractal aggregates that
contains an infinite number of individual geometries. Thus, this approach allows us
to classify a myriad of fractal geometries by a limited set of parameters. We may
view these classes as “geometric equivalence classes”. However, this classification
would be useless for the purpose of optical modelling unless the optical properties
show a very low variance among the members of each class. In other words, these
geometric equivalence classes should, within a tolerable variance, also constitute
“optical equivalence classes”. In recent studies, optical properties were computed for
several stochastic realisations of bare (Kahnert 2010b) and encapsulated LAC
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aggregates (Kahnert et al. 2012) belonging to the same class of fractal aggregates,
and the variation in the optical properties within a fractal aggregate class was
investigated. It was found that the extinction, scattering and absorption cross section,
and, related to that, the single-scattering albedo showed almost no variation among
particles of the same geometry class. The variation in the backscattering cross
sections and asymmetry parameter was slightly larger, but still within just a few
percent. The linear and circular backscattering depolarisation ratio of the encapsu-
lated geometries varied by up to a factor of 2–3 for particles larger than about
400 nm; (the study was performed at one UV, one visible, and one NIR wavelength).
Thus for the integral optical properties, the geometric equivalence classes can, for all
practical purposes, be considered optical equivalence classes. However, for differ-
ential optical properties as sensitive to morphology as depolarisation, the description
of particle properties in terms of fractal parameters does not seem to provide a useful
classification that constrains depolarisation within tolerable limits.

While many of the optical properties of fractal aggregates, bare or coated, do not
vary significantly within each class of fractal aggregates, they can vary significantly
among particles belonging to different classes. For instance, in Liu et al. (2008) a
large range of the parameter space of bare aggregates was covered; Df was varied
between 1.25 and 3, Ns was varied between 200 and 800, and two values of the
monomer radius, a = 15 nm and a = 25 nm, were considered. Also, two values were
used for the refractive index of soot, m = 1.75 + 0.5i and m = 2 + i. These ranges of
Df and m are quite large in comparison to those encountered in real atmospheric
soot particles; however, these large ranges were chosen in order to brace the range
of parameters relevant for realistic applications. In general, the optical cross sec-
tions, single-scattering albedo and asymmetry parameter were quite sensitive to a
variation in Df and Ns. Interestingly enough, the scattering cross section and the
single-scattering albedo increased with Df , which indicates the increasing impor-
tance of electromagnetic interaction among the monomers as the aggregate becomes
more compact.

In Kahnert (2010c), the sensitivity of the mass absorption cross section, MAC,
and the single-scattering albedo of bare aggregates to a variation in m, Ns, and
a was investigated. The fractal dimension was fixed at Df = 1.8. The refractive
index was varied within a range that was based on different measurements of
m (Bond and Bergstrom 2006). This range was much more constrained than that in
Liu et al. (2008). The monomer radius a was varied between 10 and 25 nm, which,
again, was based on measurements (Bond and Bergstrom 2006). It was found that
MAC was mainly sensitive to a variation in m, and rather insensitive to changes in
a. On the other hand, a variation in a mainly impacted the single-scattering albedo.
The largest values of jmj gave the best agreement of computed MAC with obser-
vations, and a value of a around 25 nm yielded the best agreement of modelled
single-scattering albedos with observations, where the experimental reference val-
ues were taken from the review in Bond and Bergstrom (2006). This agrees well
with field observations (Adachi et al. 2010), where an average monomer radius of
a = 22 nm was reported, with a standard deviation of 6 nm.
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Frequently used values of the fractal parameters are Df = 1.82, k0 = 1.27 (Bond
and Bergstrom 2006), which corresponds to relatively lacy aggregates—see Fig. 4
(left). However, this value has been called into question by modern 3D electron
tomography measurements (Adachi et al. 2007), which suggest that bare LAC
aggregates in the atmosphere are often more compact with fractal parameters
around Df = 2.4, k0 = 0.7—see Fig. 4 (right). It is quite possible that a value of
Df = 1.82, which is often observed in laboratory experiments, is typical for freshly
produced LAC, while the value observed in the field of Df = 2.4 is more repre-
sentative of moderately aged atmospheric LAC aggregates. Based on this obser-
vational evidence, a recent study of the sensitivity of optical properties of bare LAC
aggregates to a variation in Df concentrated on the range from 1.8 to 2.4 (Kahnert
and Devasthale 2011). The computed optical properties were coupled to a chemical
transport model to generate several realistic scenarios of vertical aerosol profiles
representing clean marine and polluted continental air masses over land or ocean
surfaces. The vertical profiles of aerosol optical properties for these different sce-
narios were coupled to a radiative-transfer model to quantify the radiative-forcing
effect of LAC. Corresponding computations were performed based on
size-equivalent homogeneous LAC spheres. The results showed that the
radiative-forcing effect computed with an aggregate model can be more than twice
as high as that obtained with a homogeneous sphere model. Also, lacy aggregates
give forcing estimates that are 10–60 % higher than those obtained with compact
aggregates.

As LAC ages in the atmosphere, the aggregates oxidise and become more
hydrophilic. Subsequent condensation of liquid-phase material can significantly
alter the optical properties. For instance, experimental studies have shown that
coating of LAC with secondary organic aerosols can increase the specific absorp-
tion cross section (Schnaiter et al. 2003). This increase can be as large as a factor of
two relative to bare LAC aggregates (Schnaiter et al. 2005), which agrees with

Fig. 4 Examples of fractal aggregates with fractal parameters Df = 1.82, k0 = 1.27 (left), and
Df = 2.4, k0 = 0.7 (right)
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model simulations (Scarnato et al. 2013). Condensation and evaporation of water
vapour onto the particles contributes to a progressive restructuring (Colbeck et al.
1990; Ramachandran and Reist 1995), resulting in an increase in the fractal
dimension, i.e. in a compactification of the aggregate structure. In field observations
of LAC aggregates internally mixed with sulphate and organic matter, fractal
parameters as high as Df = 2.6 and k0 = 1.2 were reported (Adachi and Buseck
2008), while a recent electron-tomography analysis of field samples reported a
somewhat lower value of Df = 2.2 with a standard deviation of 0.2 (Adachi et al.
2010). The same field observations yielded an LAC volume fraction of 0.07 ± 0.08,
and a relative LAC position of 0.54 ± 0.35. The relative position is defined as d=R,
where d is the distance between the centres of mass of the LAC aggregate and the
encapsulating host particle, and R is the volume-equivalent radius of the entire
particle (LAC + host).

Largely based on these observational data, recent modelling studies (Kahnert
et al. 2012, 2013) have employed model geometries consisting of LAC aggregates
with Df = 2.6, k0 = 1.2, a = 25 nm, and Ns in the range of 4–1600 (as an example,
see Fig. 3b). The aggregates were encapsulated by a spherical shell of sulphate,
where the total particle size was in the range R = 100–500 nm, and the position of
the aggregate was d/R = 0.5. Two volume fractions were considered, f = 0.07 (as a
typical case) and f ¼ 0:20 (as a more extreme case). The optical properties were
computed for three selected wavelengths in Kahnert et al. (2012), and for the full
spectral range from 200 nm to 12.2 μm in Kahnert et al. (2013). The computations
were repeated for several simplified particle geometries; a comparison of results
provided interesting insight into how morphological properties of inhomogeneous
particles determine their radiometric properties. The main findings were as follows:

• An external mixture model (Fig. 3c), in which LAC and sulphate are modelled
as physically separated homogeneous spheres, can underestimate the absorption
cross section by more than 100 %. This can be understood as follows. By adding
a sulphate coating, the geometric cross section of a bare aggregate is increased,
thus increasing the rate of electromagnetic energy that intercepts the particle and
that is focused onto the LAC core, where part of the energy becomes absorbed.
This effect is neglected in an external mixture model.

• A concentric core-shell model (Fig. 3e) with an LAC core and a sulphate shell
underestimates absorption by up to 100 %, but only for the largest size
parameters considered. For any given size parameter, the external mixture model
underestimates the absorption cross section more strongly than the core-shell
model. To understand this result, consider an electromagnetic wave interacting
with an LAC sphere. If the size parameter of the sphere is sufficiently large,
then, owing to the strong absorption, the electromagnetic wave will not fully
penetrate to the centre of the sphere. Thus part of the LAC mass residing inside
the sphere will not contribute to the absorption cross section. By contrast, in an
LAC aggregate the carbon mass is distributed in such a way that a larger fraction
of the mass comes in contact with the incident wave and absorbs electromag-
netic energy. This explains why the encapsulated aggregate model predicts a
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larger absorption cross section than the core-shell model and the externally
mixed sphere model. Since the core-shell model does take the focusing effect
into account, the underprediction of absorption is less pronounced in that model
than in the external mixture model.

• A homogeneous “grey sphere” model (Fig. 3d) with an effective refractive index
determined from EMA can overpredict the absorption cross section by almost
100 %. This model assumes sulphate and LAC to form a homogeneous mixture.
As a result, essentially all of the LAC mass is in contact with the external field
and contributes to absorption. By contrast, in an aggregate at least some of the
LAC mass is shielded from interacting with the external field, although not as
much as in a compact homogeneous sphere.

These results suggest that the most important morphological characteristic is the
way in which the LAC mass is distributed inside the sulphate host particle. More
precisely, it is important that a model particle correctly mimics the amount of LAC
mass that interacts with the incident field, which determines the energy-absorption
rate. This morphological feature makes the dominant contribution to the absorption
properties of encapsulated LAC aggregates.

Having attained a more profound comprehension of the physics, one can devise
improved model particles that incorporate our understanding of the relation between
particle geometry and the light scattering process in these types of particles. Most
importantly, a simple yet accurate model particle should yield an absorption cross
section that lies between the extreme cases of the core-shell model (which under-
estimates absorption) and the homogeneous grey sphere model (which overesti-
mates absorption). Thus in Kahnert et al. (2013) a “core-grey-shell” particle has
been proposed (Fig. 3f). This particle is based on the simple core-shell geometry;
however, only part of the LAC mass is concentrated in the core, while the
remaining mass is homogeneously mixed with the sulphate shell. The “grey shell”
composed of an LAC–sulphate mixture has an effective refractive index that is
modelled with an EMA. Compared to the conventional core-shell model, the
smaller core results in a smaller amount of the LAC mass being shielded from the
external field, thus giving a larger absorption cross section. Compared to the
homogeneous grey sphere model, a larger amount of the LAC mass is shielded from
the external field, thus giving a lower absorption cross section. The amount of LAC
mass that is concentrated in the core is a free parameter in this model. Note that the
homogeneous grey sphere model and the conventional core-shell model are
included in this model as limiting cases. It was found that this model reproduces not
just the absorption cross section but also the single-scattering albedo and the
asymmetry parameter over the entire range of particle sizes and wavelengths
considered in that study (Kahnert et al. 2013). Even differential and spectral
properties relevant to remote sensing, such as the backscattering cross section and
the absorption Ångström exponent, were substantially improved in comparison to
the other simple model particles. A qualitative summary of the performance of these
models for different integral optical properties is given in Table 1. More quantitative
details can be found in Kahnert et al. (2013).
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This example illustrates how the use of numerical laboratories can provide us
with a more thorough understanding of the light-scattering process in particles with
complex geometries, and how we can make use of such knowledge in developing
simplified model particles that perform better than those that are merely based on ad
hoc assumptions.

On the other hand, simple, spherically symmetric model particles rarely provide
a faithful representation of the Mueller matrix of encapsulated LAC aggregates. As
an example, Fig. 5 displays the phase function P11 and the degree of linear
polarisation �P12=P11 for the model particles we just discussed. The particle size is
2 μm and the wavelength is 533.2 nm. The reference model of encapsulated
aggregates is represented by the thick solid line. All models yield oscillations that
agree qualitatively well with the reference case. This is because the number of
oscillations is mainly dependent on the size parameter. The bottom row shows that
the core-grey shell model (blue) gives the best overall representation of the phase
function. Also, it reproduces the negative branch of the linear polarisation near the
backscattering direction reasonably well. However, over the whole range of scat-
tering angles, none of the models provides a good fit of the exact position and
amplitude of the peaks and troughs of the linear polarisation.

Another recent study has considered encapsulated aggregates and bare aggre-
gates to assess the impact of coating, volume fraction and fractal dimension on
coated and bare aggregates (Cheng et al. 2014). The authors also considered a
model of aggregates composed of thinly coated LAC spherules to represent LAC
aerosols with a thin coating of weakly absorbing material. The results showed that
the coating can enhance the absorption cross section of bare aggregates by up to a
factor of 2, and the single-scattering albedo by almost a factor of 4, where the
enhancement increases with the volume fraction of the weakly absorbing coating.

Apart from encapsulated geometries, model particles in which the LAC particle is
attached to the surface of a weakly absorbing aerosol have been investigated. For
instance, in Fuller et al. (1999),Mishchenko et al. (2004) a simplemodel consisting of
an LAC sphere attached to a sphere of weakly or nonabsorbing material has been
considered. More elaborate models consisting of a fractal LAC aggregate attached to
a spherical sulphate or dust particle have been studied in Liu andMishchenko (2007).
Such geometries would result from coagulation processes. Note, however, that LAC

Table 1 Qualitative
performance of different
homogeneous and
inhomogeneous, but
spherically symmetric model
particles in reproducing the
absorption cross section
ðCabsÞ, single-scattering
albedo (SSA) and asymmetry
parameter (g) of encapsulated
LAC aggregates

Model Cabs SSA g

Homogeneous sphere/external mixture −− ++ −

Homogeneous sphere/internal mixture + − +

Core-shell − + −

Core-grey-shell 0 0 0

Plus and minus signs signify an over- and underestimation,
respectively, of the reference results. Doubled plus or minus signs
indicate a strong deviation over an extensive range of sizes and
wavelengths. Zero indicates a generally good agreement
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and sulphate particles are mostly found in the Aitken and accumulation mode, while
dust particles are mostly found in the accumulation and coarse mode. For particles in
those size ranges, the coagulation coefficient is quite small; condensation is the
dominant internal mixing process. Thus coagulated geometries with LAC particles
attached to the surface of other aerosol particles are not very common; most aged
LAC particles are partially or completely encapsulated by a shell of liquid material.

The aggregate models discussed thus far all neglect certain morphological
subtleties. For instance, in real aggregates the monomer radius a may vary over a
size distribution (Wu et al. 2015b), the monomers may be nonspherical (Wu et al.
2015a), or the average monomer radius in an aggregate may increase with the total
aggregate size Ns. However, as noted in Bond and Bergstrom (2006), a variation in
a has little effect on the absorption cross section, as long as a\40 nm, which is
usually the case for atmospheric LAC particles. Changes in a can, however, affect
the single-scattering albedo (Kahnert 2010c). A potentially more severe approxi-
mation is the assumption that neighbouring monomers in the aggregate are touching
in a single point only. In reality, the geometry is more likely to be sintered;
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i.e., there are bridges between neighbouring spheres. It is known from model cal-
culations on titanium dioxide aggregates that sintering can significantly enhance the
extinction cross section, especially at UV wavelengths (Wriedt et al. 2010).
Modelling studies on sintered and non-sintered soot aggregates have also been
reported (Skorupski et al. 2013), but not for soot aggregates that would be repre-
sentative for atmospheric LAC.

Finally, we shall briefly discuss computational methods used for modelling light
scattering by LAC particles. Some modelling studies of LAC aggregates are based
on non-rigorous solutions to Maxwell’s equations, such as the
Rayleigh-Debye-Gans (RDG) approximation (Bohren and Huffman 1983; Zhao and
Ma 2009). This approach neglects electromagnetic interaction among the mono-
mers in the aggregate. In Xu and Gustafson (2001), a generalisation of Mie theory
to aggregates of multiple spheres was developed. The method can be used as a
numerically exact solution to Maxwell’s equations, but it also allows for approxi-
mate solutions. To this end, an interaction index f ¼ ðai þ ajÞ=jri � rjj is intro-
duced, where ai and aj are the radii of monomers i and j and jri � rjj represents their
separation. Electromagnetic interaction among monomers with a value of f lower
than a prescribed value is neglected. A prescribed value of f ¼ 0 corresponds to the
exact solution, while f ¼ 1 completely neglects interaction among all monomers.
This method has been applied to LAC aggregates in Kahnert (2010c), where it was
shown that neglecting electromagnetic interaction among the monomers can result
in large errors in modelled absorption cross sections. Thus it is not generally
guaranteed that RDG-type approximations are sufficiently reliable for modelling
light scattering in LAC aggregates.

The most commonly used numerically exact methods for performing
light-scattering computations on LAC aggregates are the superposition T-matrix
method (STMM) (Mackowski and Mishchenko 1996) and the discrete dipole
approximation (DDA) (Purcell and Pennypacker 1973). The accuracy of the DDA
has been confirmed by performing comparisons of results for bare aggregates
computed with the DDA and the STMM (Kahnert et al. 2012), and by testing the
reciprocity condition (Schmidt et al. 2012) for bare and encapsulated aggregates
(Kahnert et al. 2012). There exist well-tested open-source implementations of the
DDA, such as DDSCAT (Draine and Flatau 1994; Draine 2000) and ADDA
(Yurkin and Hoekstra 2011). The DDA can be applied to arbitrary shapes. Until
recently, the STMM could only be applied to configurations of spheres that are
external to other spheres. Thus applications of the method to LAC particles were
limited to bare aggregates. Recently, a new implementation of the multiple-sphere
T-matrix (MSTM) code has been released (Mackowski and Mishchenko 2011),
which has been generalised to arbitrary configurations of spheres located internally
or externally to other spheres, with the only restriction that the surfaces of the
spheres must not overlap. This allows us to apply the MSTM code to LAC
aggregates internally mixed with weakly absorbing aerosol components. Note that
in encapsulated geometries part of the aggregate can be sticking out of the
liquid-phase host particle. In the DDA method, it is possible to treat geometries in
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which individual monomers only partially stick out of the surface of the host, such
as in the model particle shown in Fig. 3b. The non-overlap restriction in MSTM
requires that each LAC monomer is either completely inside or completely outside
the encapsulating host sphere, i.e. a monomer must touch the surface of any other
sphere, including the host, in not more than a single point. However, it has been
shown that the extinction cross section, single-scattering albedo and asymmetry
parameter of semi-embedded LAC-containing mixtures with non-overlapped and
overlapped morphologies differ by less than 1 % (Wu et al. 2015c).

4 Mineral Dust

Mineral dust is one of the most prominent aerosol types in the Earth’s atmosphere.
It consists of soil-constituting mineral particles originating mainly from arid and
semi-arid regions through weathering and erosion processes. Deserts, in particular,
are important sources of mineral dust. Dust particles exhibit a wide variety of
shapes and may be inhomogeneous aggregates or agglomerates of different min-
erals; just as snow flakes, each dust particle is unique.

There are a wide variety of ways to attain information about the shape and
structure of dust grains. For example, scanning (SEM) and transmission (TEM)
electron microscopes can be used to image dust particles in the nanometre scale.
Electron microscopy also yields data on the spatial distribution of particle com-
position, such as with the energy-dispersive X-ray spectroscopy (EDS) mapping in
SEM and TEM. The latter provides data also on the atomic lattice structures, but
requires the analysed target to be electron transparent, which super-micron dust
particles generally are not. Recently, focused ion-beam (FIB) milling has been
adapted for preparing cross-sectional slices from dust particles too thick to be
electron transparent, to allow the analysis of the dust particle interior and its
three-dimensional structure in more detail (Jeong and Nousiainen 2014). For dust
particles with diameters in tens or hundreds of micrometres, optical microscopes
can also be used. Figures 6 and 7 illustrate data attained on dust particle inhomo-
geneity with some of these techniques.

Thousands of different minerals have been identified from the Earth’s soil. Most
of them are, however, exceedingly rare, and the dust–aerosol mass is dominated by
a few mineral families, namely quartz, phyllosilicates (mainly micas, clay minerals
and chlorites, for example biotite, illite, kaolinite, montmorillonite or palygorskite),
feldspars, carbonates (mainly calcite and dolomite), sulphates (gypsum/anhydrite,
but also other evaporites), and oxide minerals (mainly goethite, hematite, rutile or
ilmenite). On an individual particle level, these different components are anything
but evenly distributed.

The dust particle shapes can be roughly divided into mono grains, main grain
with minor adhesions, agglomerates, and aggregates (Nousiainen and Kandler
2015). Mono grains may show explicit crystal structure, but more often are rather
irregular. Typically, their shapes are roundish and roughly equidimensional,
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angular, or thin flakes or needles whose aspect ratios may even exceed 10,
depending on their composition. Main grains with adhesions are mono grains on
which some small, usually thin clay flakes have adhered. The agglomerates and
aggregates are both formed from multiple grains without a dominating one. Their
difference is in the strength of cohesion and compactness: agglomerates are looser
and easier to break up due to mechanical stress.

As different minerals have varying hardness and breaking habits, particle sizes,
shapes and compositions are linked: different minerals exhibit different size ranges
and characteristic shapes. From an optical modelling point of view, this is an
additional complication, because it means that, in principle, sizes, shapes and

Fig. 6 Examples of dust particle inhomogeneity. The leftmost panel shows light microscope
images of large dust grains, where iron(oxi)hydroxides are seen as yellow or reddish hue (Kandler
et al. 2009). The middle panel shows a SEM image of a dust particle, whose compositional
inhomogeneity is visualised in the four sub-panels at right (Scheuvens et al. 2011). The spatial
distribution of different elements is visualised by the corresponding colour intensity. The Si/Al
ratio in the lower right subpanel allows identifying changes in the silicate matrix (e.g., identifying
quartz grains)

Fig. 7 Internal structures of two Asian dust grains observed with transmission electron
microscopy from cross-sectional dust particle slices prepared with focused ion-beam milling
(Jeong and Nousiainen 2014). The images show substantial degrees of inhomogeneities and
internal structures, including pores
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compositions cannot be treated independently. So, for example, when solving
ensemble-averaged optical properties of dust for remote-sensing or
climate-modelling purposes, one should solve the optical properties separately for
each combination of particle size, shape and composition. This is exceedingly
laborious, and has never been done. Rather, the common practice is to assume a
specific size distribution, choose a shape model and assign a bulk composition.
These parameters are then applied throughout the particle ensemble. Errors thus
introduced are, as of now, unassessed.

Modelling approaches for dust are many. In most climate models, they are still
modelled as homogeneous spheres, with two recent exceptions (Wang et al. 2013;
Räisänen et al. 2013). Other models for dust include, for example, spheroids
(Mishchenko et al. 1995; Nousiainen and Vermeulen 2003; Dubovik et al. 2006),
ellipsoids (Bi et al. 2009), polyhedral prisms (Nousiainen et al. 2006),
non-symmetric hexahedra (Bi et al. 2010), convex polyhedra (Gasteiger et al.
2011), Gaussian random spheres (GRSs) (Nousiainen et al. 2003; Veihelmann et al.
2006), random blocks of cubes (Kalashnikova et al. 2005; Vilaplana et al. 2006),
deformed spheroids and their aggregates (Gasteiger et al. 2011), concave fractal
polyhedra (Liu et al. 2012), spatial Poisson–Voronoi tessellation (Ishimoto et al.
2010), agglomerated debris particles (Zubko et al. 2013), irregular flakes
(Nousiainen et al. 2009), irregular rhombohedra (Dabrowska et al. 2012) and
inhomogeneous stereogrammetric shapes (Lindqvist et al. 2014). In a stark contrast
with the diverse set of model shapes considered, very little attention has been paid
to the dust particle inhomogeneity. Indeed, almost all of the models used are
homogeneous. Further, even when the inhomogeneity is accounted for, it is usually
done either by using external mixtures (e.g., Gasteiger et al. 2011), or by applying
an EMA (see Sect. 2) to replace the inhomogeneity by an effective homogeneous
composition. Even when this approach is not explicitly applied, it is often implicitly
used, as few studies actually use refractive indices of specific mineral species, but
rather adapt a typical value for mineral dust at the wavelength of interest.

Almost all studies that explicitly account for the inhomogeneity of dust particles
are sensitivity-type modelling studies that aim at investigating impacts of inhomo-
geneity on scattering by using dust-like parameter values, rather than attempting to
model actual, observed inhomogeneity characteristics of real dust particles. For
example, Vilaplana et al. (2006) studied the impact of porosity by randomly removing
half of the volume elements describing the model particle. Mixtures of different
minerals were not considered. Indeed, their motivation was rather in understanding
astronomical observations of possibly quite fluffy cometary dust. They assumed the
dust particles to be composed of rather absorbing mineral, and for such particles the
introduction of internal porosity turned out to greatly alter the size dependence of
scattering, in particular for the degree of linear polarisation and (linear) depolarisation.

In another similar study, Lindqvist et al. (2009) considered inhomogeneous
mixtures of silicate-type materials and water ice. In their model, the inhomogeneity
was modelled using a ballistic cluster of spheres, which was then wrapped in a
coating modelled as a so-called concave hull. Additionally, they also considered
silicate GRSs coated with ice. Their DDA simulations revealed similar, albeit
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weaker effects to those obtained by Vilaplana et al., most likely because the
dielectric contrast between silicate and ice is much weaker than between silicate and
free space.

As a third example, Kahnert (2015) investigated the optical impact of the spatial
distribution of hematite in a quartz particle. He used a spherical quartz grain with a
varying volume fraction and number of spherical hematite inclusions within. For
scattering computations, he used the STMM. These simulations revealed quite
substantial impacts on scattering by as small as one vol% of hematite in the par-
ticles. The effect was larger for many small hematite inclusions than for one big
inclusion. Interestingly, while Lindqvist et al. (2009) report good performance for
EMAs in mimicking the impact of inhomogeneity in scattering computations, in
Kahnert’s study the opposite is true. This different performance may be attributable
to the larger dielectric contrast between the components in the latter study, or to the
fact that in the latter study one component was strongly absorbing and one was not,
while in the former study neither component absorbed much. Finally, it is possible
that some contribution comes from the use of spherical model particle in the latter
study, while the former employed irregularly shaped particles.

The only investigations the authors are aware of that attempt to explicitly model
the observed spatial distribution of mineralogical composition of real dust particles
are those by Lindqvist et al. (2014) and Kemppinen et al. (2015). In the former
study, stereogrammetric analysis of SEM images was used to derive the real
three-dimensional shape for four individual dust grains, while the SEM-EDS
analysis was used to map the distribution of component minerals in the particles’
exterior. As the interiors of the particles could not be analysed explicitly,
assumptions were used to extend the mineralogical features derived by the observed
surface morphological features and corresponding elemental compositions into the
particles’ interiors. In the latter study, the three-dimensional Voronoi tessellation
algorithm was applied to generate irregular, inhomogeneous model particles. The
parameters for the model were chosen to generate similar internal structures as seen
in real dust particle interiors (Jeong and Nousiainen 2014). Thus, Kemppinen et al.
used a mathematical model to mimic the real, observed internal structure and
inhomogeneity of dust particles and give the particles some kind of irregular overall
shape; whereas, Lindqvist et al. derived directly the shape and surface composition
of real dust particles, but had to assume their internal characteristics. In both
studies, the single-scattering properties were solved using the DDA for a range of
size parameters without making any simplifications to the derived microphysical
characteristics of the target particles. The model shapes used in these studies are
illustrated in Fig. 8.

Lindqvist et al. found that, for their model particles, the inhomogeneity did not
induce substantial effects on scattering when the dielectric properties of the com-
ponent minerals were similar. However, even two vol% of strongly absorbing
hematite introduced considerable effects. They also found that the tested EMAs did
not perform well in accounting for the impact on scattering and absorption from the
hematite. Likewise, Kemppinen et al. found that EMAs generally failed to account
for the impact of inhomogeneity on scattering, except when all components had
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very similar refractive indices. They also found that different types of inhomo-
geneity studied, e.g. internal pores, hematite nodes and coatings, had clear but
different impacts on scattering. To account for their impacts on scattering accu-
rately, it appears necessary to explicitly model them.

Some effects of inhomogeneity on scattering by model dust particles are
illustrated in Fig. 9. The top panel illustrates the effect of hematite inclusions on
three scattering matrix elements of a spherical, nonabsorbing silicate particle with
size parameter x ¼ 8:1. The black line presents a case where the impact of 100
hematite inclusions with the total volume of 4 vol% of the particle has been
explicitly accounted for in the simulations. The green line shows the corresponding
case, where the impact of the inclusions have been accounted for by using an
effective refractive index derived by computing the linear average of
volume-weighted refractive indices of the components. In this case, the explicit
accounting for the inhomogeneity has a drastic effect on the P22=P11 scattering
matrix element; the inclusions give rise to anisotropy, seen as a deviation from unity
for this quantity, which cannot be mimicked by any kind of isotropic, homogeneous
composition. Other scattering matrix elements also show considerable differences,
with the inhomogeneous case showing generally much weaker interference struc-
tures in the angular dependence of scattering. The lower panel shows results from a
similar investigation with an irregular and inhomogeneous base shape. The baseline
case, shown with blue dashed line, shows the angular dependence of the scattering
matrix elements for an ensemble of particles such as that shown in the left panel of
Fig. 8, with size parameter x ¼ 8 and mineral composition consisting of different
clay minerals with similar, nonabsorbing refractive indices. The black line presents
simulation results for corresponding particles with 17 vol% of spherical hematite

Fig. 8 Examples of inhomogeneous model dust particles. A cross section of a three-dimensional
Voronoi-tessellation particle from Kemppinen et al. (2015) (left), and stereogrammetrically derived
3D shape with SEM-EDS analysis-based inhomogeneity from Lindqvist et al. (2014) (right). Note
that the latter has a segment removed to reveal the internal structure
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inclusions randomly located within the particles, while the dashed red line presents
a case where both all the clay minerals and the added hematite inclusions have been
averaged into a homogeneous, effective composition using, again, the linear aver-
age of volume-weighted refractive indices of the components. The figure shows that
the impact of hematite inclusions on scattering cannot be mimicked accurately with
an effective, homogeneous medium in this case either, but the differences are not as
drastic as for the spherical particles in the top row, even though these particles
contain much more hematite.

It thus appears that the impact of inhomogeneity on scattering depends on the
type of host particle, as illustrated in Fig. 9: inhomogeneity adds to the complexity
of the target particle, and is therefore likely to have more substantial impact on
scattering when occurring in otherwise simple model particles such as spheres. That
is to say, the single-scattering properties are likely to differ more between homo-
geneous and inhomogeneous spherical particles, than between homogeneous and

Fig. 9 Illustration of the impact of inhomogeneity on the angular dependence of scattering by
model dust particles. The top row presents results for a spherical silicate particle with added
spherical hematite inclusions with data taken from Kahnert (2015). The black line presents the
inhomogeneous case and the green line a homogeneous case with the effective refractive index
derived with an EMA. The bottom row shows the corresponding results for irregular,
inhomogeneous particles generated with three-dimensional Voronoi tessellation (e.g., Fig. 8, left
panel), with the data taken from Kemppinen et al. (2015). The dashed blue line shows a baseline
case composed only of nonabsorbing clay minerals. The black line shows the results after the
particles have been ingrained with spherical hematite inclusions, while the dashed red line shows
the corresponding homogeneous case with the effective refractive index derived with an EMA.
Note that the top and bottom rows use differently normalised scattering matrices, so the y axis
values in the leftmost panels are not comparable
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inhomogeneous complex-shaped particles. In general, inhomogeneity tends to give
rise to scattering characteristics such as flat phase function and weak, positive linear
polarisation at side-scattering angles, which are also associated with scattering by
complex, homogeneous particles, while spherical particles generally scatter light
considerably differently. Naturally, in each case the effects will weaken as the
dielectric contrast diminishes.

5 Volcanic Ash

Volcanic ash originates mainly from volcanic eruptions where magma cools rapidly
either by explosive decompression (magmatic/phreatic eruption) or due to contact
with water or ice (phreatomagmatic eruptions). Most ash particles are formed
through bubble fragmentation, when magma rises rapidly to the surface, and the
decreasing pressure releases gases dissolved in the magma (Durant et al. 2010). In
the process, bubbles or vesicles are often formed within the ash particles, making
them porous. Micrometre scale and smaller ash particles are often shards from the
bubble walls. Similarly to mineral dust, ash particles present widely varying shapes.
In the absence of erosive morphing, however, they often exhibit sharp edges.
Example ash particles are shown in Fig. 10. The high level of porosity of these
particles is particularly clear.

Besides porosity, ash particles can be inhomogeneous in mineral composition.
As the particles in a single ash cloud originate from the same magma source, ash
clouds are typically less heterogeneous than desert dust plumes (Nousiainen and
Kandler 2015; Schumann et al. 2011). This does not necessarily mean, however,
that single ash particles would be less inhomogeneous than individual dust grains.
For example, analyses of ash particles from the 2011 Grímsvötn eruption by Lieke
et al. (2013) show individual ash particles composed of multiple minerals; distinct
enrichments of Ti, Fe and Mg were found in different parts of the particles. In
particular, crystals with high melting point, such as iron and titanium oxides, may

Fig. 10 Example SEM images of ash particles from the 2011 eruption of the
Puyehue-Cordón-Caulle complex, Argentina
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remain in crystalline form in the melt and thus form inhomogeneities in the reso-
lidified particles.

Volcanic ash particles have been modelled, e.g. as homogeneous spheres
(Niemeier et al. 2009), spheroids (Krotkov et al. 1999), ellipsoids (Merikallio et al.
2015) and nonsymmetric hexahedra (Bi et al. 2010). Again, few models have been
developed to explicitly account for the inhomogeneity, and even they consider only
inhomogeneity due to porosity. The most detailed, albeit still descriptive rather than
directly retrieved shape model is that by Lindqvist et al. (2011), where the ash
particle porosity and irregular shape are accounted for. Visual illustration of the
generation process, for a two-dimensional cross section, is shown in Fig. 11.
Generation of their model particles begins by creating a dense ballistic cluster of
spheres with a given total number and size distribution. Then, the cluster is
enveloped in a concave surface by the concave-hull transformation (Lindqvist et al.
2009), where the radius of the so-called generating sphere presents another free
parameter for the shape model (leftmost panel). Then, each sphere in the cluster is
replaced by non-spherical GRSs with user-defined shape parameters r and m, which
has the same origin as the spheres in the cluster, to describe non-spherical porous
cavities or vesicles in the particle (second panel). The volume between the concave
hull and the vesicles is then filled (third panel). Finally, a surface layer of a given
depth is peeled from the particle to expose some of the cavities, creating a cratered
surface (rightmost panel). The generation is a random process, so different model
ash particles can be generated with each set of parameters simply by changing the
seed for the random number generator. The single-scattering simulations carried out
with the DDA at 633 nm wavelength showed that the porosity of ash particles
promote positive linear polarisation at side-scattering angles, which is consistent
with laboratory-measured scattering by ash particles (e.g., Muñoz et al. 2004). The
impact was larger with many small vesicles in the particle, compared to fewer larger
vesicles. Both types of vesicles tended to reduce the strong depolarisation caused by
the host particle without vesicles, but for small vesicles the effect was much
stronger. Example results shown in the lower panel of Fig. 12 illustrate these
general effects, except that for the chosen size parameter the large-vesicle case did
not show markedly different depolarisation ðP22=P11Þ to that by the solid ash
particle.

Fig. 11 Two-dimensional cross sections illustrating the steps in the generation of model ash
particles by Lindqvist et al. (2011)
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Another porous model is that of porous spheroids (Fig. 13) introduced in
Nousiainen et al. (2011). For that model, too, the porous cavities are created using a
ballistic cluster of spheres, only in this case a spheroidal shape is cut out of the
porous medium, and the spherical cavities are not replaced by non-spherical shapes.
Even though this shape model was not generated with volcanic ash in mind orig-
inally, it was later used to model ash infrared single-scattering properties by Kylling
et al. (2014), together with the shapes by Lindqvist et al. (2011). Kylling et al.
(2014) found that, when compared against spherical ash particles, the use of
non-spherical model particles resulted in detectable ash signature in the brightness
temperature (different brightness temperature at 10.8 and 12 μm wavelengths) for
larger ash particles. The use of spherical, homogeneous ash particles in satellite
retrievals might thus explain why satellite measurements never show as large ash
particle sizes as those found in distant ash sediments (Stevenson et al. 2015). In
addition, spherical model particles were found to underestimate the mass loading,
compared to the use of irregular model particles, in thermal infrared retrievals. The
effects of porosity on light scattering by these spheroids at the visible wavelength of

Fig. 12 Impact of inhomogeneity on scattering for modelled ash particles at size parameter x ¼ 8.
The top row shows scattering matrix elements �P12=P11 and P22=P11 for oblate spheroids. The
black solid line corresponds to an aspect-ratio 2.0 spheroid with small cavities (Fig. 12, right
panel). The dashed lines show results for the corresponding solid spheroids; red with the matching
refractive index, and blue with a Maxwell Garnett effective refractive index to account for the
cavities. Data are taken from Nousiainen et al. (2011). The bottom row shows results for irregular
vesicular ash particles by Lindqvist et al. (2011) (e.g., Fig. 11). The magenta dashed line
corresponds to an ash particle with small vesicles (porous cavities), the green one with large
vesicles, and the black solid line a case where the internal vesicles have been filled, but the exterior
of the particle remains cratered
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k ¼ 628 nm are illustrated in the top row of Fig. 13. It can be seen from the plots
that the presence of internal pores dampens the oscillations caused by the sym-
metric, spheroidal base shape. The pores also tend to make the �P12=P11 more
positive. Finally, it is obvious that the EMA is unable to account for the impact of
porosity of the particles.

6 Cometary Dust

Cometary dust is believed to be an unequilibrated heterogeneous mixture of various
components which possibly do not share a common origin. Dust particles may
contain presolar particulates as well as solar nebula condensates formed in the hot
inner and the cold outer regions of the protosolar disk (Hanner and Bradley 2004;
Zolensky et al. 2006). Subsequently, these constituents may have aggregated to
form larger highly porous particles and incorporated into comets.

Infrared spectroscopy, in situ measurements and analyses of interplanetary dust
particles (IDPs) suggest that cometary dust particles are porous heterogeneous
mixtures of rock-forming elements such as Mg, Si, Ca, Fe and carbonaceous
materials so-called CHON-component consisting of light elements: carbon,
hydrogen, oxygen, and nitrogen lawler. These two major constituents are thought to
be mixed at sub-micrometre scale, possibly containing micrometre-sized mineral
grains coated or attached together by carbonaceous material. The rock-forming
elements and the CHON-materials have been found by in situ sampling of comets
1P/Halley and 81P/Wild 2 carried out by the two Vega spacecrafts, ESA’s Giotto
probe and NASA’s Stardust sample return mission (Zolensky et al. 2006; Lawler
and Brownlee 1992; Jessberger et al. 1988; Brownlee et al. 2006; Sandford et al.
2006). In addition, these materials are known to be the major constituents of IDPs
captured in the Earth’s stratosphere; consequently, IDPs are suggested to be of
cometary origin (Bradley 2004; Ishii et al. 2008). Laboratory measurements of IDPs

Fig. 13 Example images of porous spheroids with large (left) and small (right) cavities developed
by Nousiainen et al. (2011) and used for modelling ash particle infrared signatures by Kylling et al.
(2014)
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have exposed a composite structure with inhomogeneity on the sub-micrometre
scale (Bradley 2004; Bradley et al. 1992; Keller et al. 2000). These findings are also
consistent with the model of cometary dust formation by Greenberg (1982),
Greenberg and Hage (1990). The model suggests that the dust consists of aggre-
gated core-mantle particles with a silicate core, an organic refractory mantle and
possibly an outer coating of ice. Despite the above-mentioned in situ observations,
there are no direct measurements of the internal structure of cometary dust available
at the moment. The Stardust mission samples were affected by a rapid deceleration
in the capturing process, and thus, the internal structure of particles were mostly
destroyed. The Rosetta spacecraft by ESA has successfully rendezvoused with the
comet 67P/Churyumov-Gerasimenko in August 2014 and is now in orbit per-
forming detailed analysis of the dust environment of the coma.

Despite the heterogeneity of cometary dust particles, they are often modelled as
homogeneous shapes with a constant refractive index (see e.g. Kolokolova et al.
2004; Mukai et al. 1991; Xing and Hanner 1997; Petrova et al. 2000; Kimura et al.
2006 and references therein). The refractive index is usually obtained by some
mixing formula, e.g., Maxwell Garnett or Bruggeman or left as a free parameter.
Particle shapes are most often constructed by packing identical spheres using the
ballistic cluster-cluster BCCA or ballistic particle-cluster BPCA aggregation pro-
cesses. However, the dust grains can vary in size and probably are not spherical.
Hence, models containing aggregated spheroids or GRSs have been used to decrease
morphological regularity (Lumme and Penttilä 2011). In addition, highly irregular
shapes, so-called “agglomerated debris particles” have been applied (e.g. Zubko et al.
2011). The use of a constant refractive index, however, may not be sufficient at the
visible wavelengths since the microscopic images of IDPs suggest that size of the
constituent grains are comparable to the visible wavelengths. Moreover, the refrac-
tive indices of silicate-type minerals and carbonaceous materials differ significantly.
Silicates are almost transparent whereas CHON-materials are highly absorbing at
visible wavelengths, indicating that the light-scattering properties can be sensitive to
the internal composition of the particles. This suggests that inhomogeneities should
be taken into account in the analysis of light scattering by cometary dust.

Only a few models explicitly account for inhomogeneous composition of the
particles. In Yanamandra-Fisher and Hanner (1999), light scattering by small
heterogeneous (two-component) aggregates were studied with the DDA.
Inhomogeneity was introduced by randomly choosing dipoles in the DDA grid and
changing the refractive index of the particular cell, thus leading to a small-scale
mixture since the DDA cells are always small compared to the wavelength. It was
concluded that the small-scale mixture of silicate and carbon is not suitable for
cometary dust models since even a small amount of carbon embedded in the silicate
matrix weakens the negative polarisation and the enhancement of the intensity near
the backscattering direction, which are typical light-scattering characteristics
observed for cometary dust. Figure 14 shows the degree of linear polarisation in the
narrow-band blue filtre versus phase-angle for various comets. Larger spheroidal
graphite inclusions in silicate host spheroids were studied in Gupta et al. (2006);
however, the authors could not reproduce the negative polarisation at small phase
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angles either. In Greenberg’s grain-formation model (Greenberg 1982; Greenberg
and Hage 1990), the dust grains are submicrometre-sized silicate cores covered by
organic refractory mantles. These grains were used as compact constituents of
porous BCCA or BPCA aggregates in Lasue and Levasseur-Regourd (2006),
Levasseur-Regourd et al. (2007), but the scattering properties of these grains were
found to be very similar to those of the pure organic grains assuming that the organic
mantles are sufficiently thick. In combination with larger compact spherical grains,
the authors were able to reproduce the polarimetric observations of the comets
1P/Halley and C/1995 O1 Hale-Bopp for the positive-polarisation part, but they did
not obtain a good fit for the negative polarisation branch (Lasue et al. 2009).

Mixtures of agglomerated debris particles were used to fit the polarimetric data
of comet C/1975 V1 West in Zubko et al. (2014). However, only external mixtures
of pure silicate and pure amorphous carbon particles were considered.
Inhomogeneous irregular particles with the agglomerated structure were introduced
in Markkanen et al. (2015) and their scattering properties were compared with
external mixtures of homogeneous particles as well as particles whose refractive
indices were obtained by the Maxwell Garnett mixing formula. Figure 15
demonstrates the difference between the scattering properties of the inhomogeneous
model and the Maxwell Garnett EMA. The generation process of the inhomoge-
neous irregular particle is illustrated in Fig. 16. First, a sphere is meshed with e.g.
tetrahedral/cubical elements (depending on the numerical solver). Then seed points
are randomly chosen inside the sphere, and the corresponding Voronoi cells are
found, i.e., each Voronoi cell contains all tetrahedral elements whose centres are
closer to that seed point than any other seed. Each Voronoi cell can be associated
with a chosen refractive index or a subdomain. If the refractive index of a particular
Voronoi cell is the same as in background, it can be removed. Moreover, the
resulting particle can be used as a starting point for the finer level Voronoi parti-
tioning allowing hierarchical control of inhomogeneity, porosity and irregularity in
a statistical sense.
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Fig. 14 Polarimetric
observations for different
comets at k ¼ 484:5 nm
(Kiselev et al. 2006). The
observations show a shallow
branch of negative
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7 Biological Particles

In biomedical optics, the incentive for considering inhomogeneous morphologies is
rather different from that in atmospheric optics. In the atmosphere the physical and
chemical processes of interest influence mainly the size and chemical composition
of aerosols. On the other hand, morphology is not a property that is accounted for in
aerosol dynamic and atmospheric chemical transport models (apart from a simple
description of the mixing state of different chemical compounds). Therefore, to
account for morphological complexity in aerosol optics models is often an
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Fig. 15 Comparison between the inhomogeneous model and the Maxwell Garnett EMA. The
phase function and the degree of linear polarisation are computed for an ensample of irregular
particles. The average volume-equivalent size parameter of the particles is 8 and the average size
of grains constituting the particles is 1.6. The particles consist of 30 % amorphous carbon
(m ¼ 2:45þ 0:45i) and 70 % silicates (m ¼ 1:7þ 0:003i) in volume

Fig. 16 Illustration of the generation of level-two inhomogeneous Voronoi particle on tetrahedral
mesh. A sphere is meshed with tetrahedral elements and the mesh is partitioned into Voronoi cells
(left). Randomly chosen cells are removed and the level-one irregular shape is obtained (middle).
Level-two Voronoi partitioning is executed and material parameters (two different materials) are
randomly chosen for each level-two Voronoi cell (right)
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inconvenience that one tries to avoid whenever possible. (This may, however,
change as soon as retrieval methods of quantities, such as lidar backscattering
depolarisation, become sufficiently mature to obtain information on aerosol com-
position from the aerosol morphology.) By contrast, in biomedical optics tissue
morphology is often the main property of interest that one wants to derive from
light-scattering measurements. The aim is to develop non-invasive methods for
evaluation of tissue pathology by using experimental techniques, such as diffuse
optical spectroscopy, elastic scattering spectroscopy, or diffraction imaging flow
cytometry. Since carcinogenic cells differ from healthy cells mainly in the internal
structure, one needs to attain a thorough understanding of the relationship between
cell morphology and light-scattering characteristics.

The cell wall contains the cytoplasm and various cell organelles. The cytoplasm
accounts for some 40–80 % of the cell volume, the nucleus for 5–10 %, the
mitochondria for 5–15 %, and other organelles for 1–10 % (Alberts et al. 1989).
Typical cells have sizes in the range 10–30 μm, but they can be as small as some
nanometres. The nucleus ranges between 3 and 10 μm and is, therefore, the largest
organelle. Mitochondria range between 0.5 and 1.5 μm, endoplasmatic reticulum
between 0.2 and 1 μm, lysomes between 0.2 and 0.5 μm, and peroxisomes between
0.2 and 0.5 μm. Refractive indices for various cell constituents have been compiled
from different literature sources by Dunn (2007). In comparison to aerosols or
cosmic dust particles, biological particles are optically rather soft. Both the
dielectric contrast between the cytoplasm and empty space, and the dielectric
contrast between the cell organelles and the cytoplasm are quite small. Under
certain circumstances this may allow for the use of approximate theories, such as
the RDG approximation. However, it has been shown in Orlova et al. (2008) that
RDG theory as well as the second order Born approximation have their limitations
even when applied to biological particles. For this reason, several authors have
relied on the use of numerically exact methods for solving the electromagnetic
scattering problem, such as the DDA (Orlova et al. 2008) or the finite-difference
time-domain method (Dunn 2007).

The usefulness of drastically simplified model geometries, such as homogeneous
and coated spheres, is fairly limited in biomedical modelling (Starosta and Dunn
2010). To understand the impact of cell morphology on optical properties one needs
to account for the inhomogeneous cell structure. However, the cell membrane
seems to have only a small effect on scattering properties, so it can usually be
ignored in the construction of model particles (Liu and Capjak 2006). Different
approaches have been tested in the literature. In Dunn (2007) a model has been
devised that represents cells by spheres, and the organnelles by ellipsoids. The
organelles are randomly placed (but non-overlapping) inside the cell; their size
distribution is generated by varying each of the three ellipsoid-axes within ±3 μm
about a mean value of 5 μm. It was found that a variation in the organelle volume
fraction impacts the phase function at side-scattering angles and the scattering cross
section Csca, but not the asymmetry parameter. A variation in the size of the nucleus
shows little effect on the phase function when using a simplified homogeneous
nucleus model. However, a more realistic inhomogeneous nucleus model yields a
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distinct increase in side-scattering intensity when increasing the nucleus size.
A model that describes the entire cell by a simple homogeneous sphere model
underestimates the phase function at side- and backscattering directions, and it
overestimates Csca.

In Zhang et al. (2013) the differences between healthy and carcinogenic cells in
diffraction imaging flow cytometry was investigated. The authors considered four
different object categories; an inhomogeneous GRS model with nucleus and
mitochondria for describing cells with a diameter of 10 μm; a model for irregulary
shaped cellular shells; clustered particles consisting of a stack of ellipsoids; and a
homogeneous GRS. It was found that the global pattern variation of the diffraction
image mainly depends on the object category, and to a lesser extent on the object’s
inhomogeneous structure. This finding allows one to develop an automated object
classification to discriminate among cell debris, intact cells, and different cell
morphologies.

In Orlova et al. (2008) the dependence of total and depolarised side-scattering
signals on the size and refractive index of cells and cell granules was investigated,
as well as on the granule volume fraction. The focus was on granulocytes, which
are a subtype of leukocytes. The cells were represented by spheres with multiple,
randomly placed spherical inclusions of identical sizes; the model cells had no
nucleus. The reference cells had a diameter of D = 8 μm, a granule volume fraction
f = 0.1, and relative refractive indices of 1.015 for the cytoplasm and 1.2 for the
granules. The parameters where then varied one at a time, namely, the granule size
in the range d = 0.075–2 μm, the volume fraction in the range f = 0.02–0.3, the cell
size in the range D = 4–14 μm, and the granules’ relative refractive index in the
range 1.1–1.2. It was found that the granule size has the strongest impact on total
and depolarised side-scattering intensity.

We mentioned that cells are optically soft, which is quite different from many of
the particles we encounter in the atmosphere and in solar-system objects. Another
distinguishing characteristic in biomedical optics is that cells are often closely
spaced, while aerosols and cometary particles are often at distances from each other
that are much larger than the wavelength of light. The latter is one of the main
prerequisites for the applicability of radiative-transfer theory. As this prerequisite is
violated in tissue the use of radiative-transfer theory in biomedical applications is
often not well justified. Thus it is important to study the interaction of light with
tissue by use of numerically exact methods. However, this task would require
enormous computational resources. So far, numerically exact light-scattering
computations by dense media of closely-packed cells have only been performed for
clusters consisting of a limited number of inhomogeneous cells. In Starosta and
Dunn (2010) each cell was represented by a spheroid with axes diameters of 15 and
13 μm. The cells contained a spheroidal nucleus of axes 6 and 5 μm, and two
different groups of organelles. The first group consisted of spheroids with axes 1.5
and 0.5 μm, and the second group of spheres with diameter 0.5 μm. The organelles
were randomly placed and oriented inside the cell. The cells were then arranged into
different cubical grids, the largest of which contained 3� 3� 4 = 36 cells, where
the incident light propagated in the z direction. Various substructures were
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investigated and compared to the full cubical structure. It was found that those
substructures that have the complete number of cells in the z direction agreed best
with the reference structure. The authors concluded that multiple interaction among
cells in the direction of propagation has the dominant impact on the optical prop-
erties of the cell cluster.
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Some Wave-Theoretic Problems
in Radially Inhomogeneous Media

Umaporn Nuntaplook, John A. Adam and Michael A. Pohrivchak

1 Introduction

With recent renewed interest in the classical topics of both acoustic and electro-
magnetism as applied to nanotechnology, transformation optics, fiber optics,
metamaterials with negative refractive indices, cloaking and invisibility, the topic of
time-independent scattering theory in quantum mechanics is becoming a useful
field to reexamine in the above contexts. One of the key areas of electromagnetic
theory—scattering of plane electromagnetic waves—is highly dependent on the
properties of the refractive indices in the various media. Furthermore, the refractive
index of a medium and the potential in quantum scattering theory are intimately
related. In many cases, understanding scattering in radially symmetric media is
necessary to gain insight into scattering in more complex media. Meeting the
challenge of variable refractive indices and possibly complicated boundary condi-
tions, therefore ,not only requires accurate and efficient numerical methods, but
where possible, analytic solutions to the governing radial wave equations. Despite
common emphasis on constant refractive indices, the most interesting (and
increasingly useful) cases are those with radially inhomogeneous refractive index
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profiles. Valuable insights can be gained by treating an inhomogeneous medium as
a piecewise constant one, and that is the primary focus of this chapter.

The question may be asked as to why, with all the powerful computational
facilities at our disposal, analytic solutions for radially inhomogeneous media [even
ray-theoretic solutions; see Pohrivchak (2014)] should be of more than historical
interest today. Furthermore, what are some of the potential applications for such
solutions? There are several different contexts to be considered in answering these
questions. Idealized planetary atmospheres (for example) may be treated as spheres
surrounded by a large spherical shell with a radially inhomogeneous dielectric
constant. In addition, the plasma sheath surrounding a satellite reentering the
Earth’s atmosphere may possess something close to radial inhomogeneity
(Brockman 1974). In the biological realm, the scattering patterns produced from
bacteria may in some cases be modeled by radially inhomogeneous density dis-
tributions (Fenn and Oser 1965; Brunsting and Mullaney 1972; Kitchen and
Zaneveld 1992). Dielectric lens design in radar and optical scattering (Cornbleet
1984), nonuniform optical fibers (Adams 1981), etc. In all the above examples,
exact solutions (and their limiting cases) can be of use, especially since expressions
for the amplitude and phase of the associated electromagnetic field can be directly
compared with the corresponding behavior as predicted by geometrical optics. As a
result, corrections to the latter can be formulated; such corrections are well-known,
for example, when rays pass through focal points or caustic curves (Alexopoulos
1971, 1972, 1974).

More recently, with the advent of research in nanotechnology and metamaterials,
transformation optics and cloaking (Pendry et al. 2006; Leonhardt 2006), analytic
solutions are as valuable as they ever were (despite advances in numerical studies of
such solutions), if not more so. Indeed, as Leonhardt and Philbin (2010) point out,
“In a metamaterial, structures smaller than the wavelength of light control the
optical properties of the material. Their shapes and sizes matter more than their
chemistry…Thanks to advances in modern nanotechnology and the science behind
it, engineers can now make carefully controlled subwavelength structures with
designs based on accurate theoretical predictions…”

The wave-theoretic aspects of this chapter are based on the solution of
Maxwell’s equations for scattering of plane electromagnetic waves from a dielectric
(or “transparent”) sphere in terms of the related Helmholtz equation. There is a
connection with the time-independent Schrödinger equation in the following sense:
the time-dependent Schrödinger equation is identical to the wave equation for the
scalar radiation potential for TE-polarized electromagnetic waves. In regions where
the refractive index is constant, it is also identical to the scalar radiation potential for
TM-polarized electromagnetic waves, but with different boundary conditions than
for the TE case. We examine scattering of the TE mode from a piecewise-uniform
radial inhomogeneity embedded in an external medium (as opposed to an off-axis
inclusion), and are a natural generalization of previously known results. The cor-
responding theory for the TM mode is also developed, and the well-known con-
nection with morphology-dependent resonances (MDRs) in these contexts is noted.
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2 Wave Theory for Piecewise-Homogeneous Spheres

In (Adam 2014) many of the existing analytical solutions for the radial wave
equations were reviewed in the context of plane wave electromagnetic scattering
(see also Adam 2013). As might be expected, the mathematics is rather complicated
(involving several special functions such as Bessel, Whittaker, and hypergeometric
functions). Valuable though this approach can be, a somewhat different approach to
such scattering problems is to use piecewise inhomogeneous spheres. Nuntaplook
(2013) used the technique developed by Johnson (1993) based on solving the
differential equations for the radial Debye potential, but for a two-layer inhomo-
geneous sphere. embedded in a uniform medium (see also Nuntaplook and Adam
2014). In this section, we summarize Johnson’s method and results for a uniform
sphere embedded in the same external medium. The radius of the particle is denoted
by a (which of course can be scaled to unity), the center is at the origin of the
coordinate system, and the refractive index profile is defined as n(r), i.e., it is
considered a function of the radial coordinate r. For the external region outside the
sphere, r[ a, the refractive index, n(r) is equal to one. The wavenumber is
k ¼ 2p=k, where k is the wavelength outside the sphere. We assume that the
particle is nonmagnetic. The complex time-dependence of the electric field is
assumed to be harmonic, i.e., / expð�ixtÞ:

We consider the following vector Helmholtz equation for the electric field vector E:

r�r�E� k2n2ðrÞE ¼ 0: ð1Þ

It can be verified that the following vector wave functions are solutions of this
equation:

Mðr; h;/Þ ¼ r � ½Wðr; h;/Þr�; ð2Þ

and

Nðr; h;/Þ ¼ 1
kn2ðrÞr �r� ½Uðr; h;/Þr�; ð3Þ

where r, h, and / are spherical coordinates, r is the radius vector, and W and U are
scalar functions that satisfy the following differential equations: (Wyatt 1962)

r2 Wþ k2n2ðrÞW ¼ 0; ð4Þ

and

r2U� 1
n2ðrÞ

dn2ðrÞ
dr

dU
dr

þ k2n2ðrÞU ¼ 0: ð5Þ
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By applying the method of separation of variables to these equations in spherical
coordinates, we can generate the following sets of solutions:

Wl;mðr; h;/Þ ¼ 1
kr

SlðrÞPm
l ðcos hÞ expðim/Þ; ð6Þ

Ul;mðr; h;/Þ ¼ 1
kr

TlðrÞPm
l ðcos hÞ expðim/Þ; ð7Þ

where the Pm
l ðcos hÞ are associated Legendre polynomials. The functions SlðrÞ and

TlðrÞ are the radial Debye potentials, which satisfy the following second-order
differential equations:

d2SlðrÞ
dr2

þ k2n2ðrÞ � lðlþ 1Þ
r2

� �
SlðrÞ ¼ 0; ð8Þ

d2TlðrÞ
dr2

� 2
nðrÞ

dnðrÞ
dr

� �
dTlðrÞ
dr

þ k2n2ðrÞ � lðlþ 1Þ
r2

� �
TlðrÞ ¼ 0: ð9Þ

In regions where the refractive index is a constant value n, the Eqs. (8) and (9)
have the same form. Substituting the functions Wl;mðr; h;/Þ and Ul;mðr; h;/Þ into
(8) and (9), respectively, provides the set of vector wave functions Ml;m and Nl;m

that are solutions to Eq. (1). The M fields are called transverse electric (TE) modes,
and the N fields are transverse magnetic (TM) modes. Therefore, the SlðrÞ functions
are associated with TE fields, and the TlðrÞ are associated with TM fields. In the
internal region for a constant refractive index n, 0� r� a:

SlðrÞ ¼ TlðrÞ ¼ wlðnkrÞ; ð10Þ

where wlðnkrÞ is a Riccati–Bessel function (defined below) and the boundary
conditions are Slð0Þ ¼ 0 and Tlð0Þ ¼ 0, which guarantee that the electric fields and
magnetic fields are finite at the origin.

In the region outside the particle the general solutions to (8) and (9) are linear
combinations of the Riccati–Bessel functions. The electric field in this region
consists of the incident wave and an outgoing scattered wave. The Riccati–Bessel
functions are defined as

wlðxÞ ¼ xjlðxÞ; ð11Þ

vlðxÞ ¼ xylðxÞ; ð12Þ

where jlðxÞ and ylðxÞ are spherical Bessel function of the first and second kinds,
respectively. In the external region: r[ a:
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SlðrÞ ¼ Bl½vlðkrÞþ blwlðkrÞ�; ð13Þ

TlðrÞ ¼ Al½vlðkrÞþ alwlðkrÞ�; ð14Þ

where nðrÞ ¼ 1, al, bl, Al, and Bl are constants. We use the log-derivative for-
malism for matching the internal and external solutions where the refractive index is
discontinuous, such as at the surface of the sphere and at the boundaries between
the layers of the two-layer sphere case in the next section. The modified
log-derivative functions of SlðrÞ and TlðrÞ are defined as

UlðrÞ ¼ 1
k

S
0
lðrÞ

SlðrÞ
� �

; ð15Þ

VlðrÞ ¼ 1
kn2ðrÞ

T
0
l ðrÞ

TlðrÞ
� �

; ð16Þ

where a prime denotes the derivative with respect to the argument of the function.
Both of these functions are continuous at all points. We first consider the continuity
at the surface r ¼ a by matching the internal solution from (10) with the external
solution from (13) and (14) to obtain

wlðnkaÞ ¼ Bl½vlðkaÞþ blwlðkaÞ�; ð17Þ

wlðnkaÞ ¼ Al½vlðkaÞþ alwlðkaÞ�: ð18Þ

Hence,

Bl ¼ wlðnkaÞ
vlðkaÞþ blwlðkaÞ

; ð19Þ

Al ¼ wlðnkaÞ
vlðkaÞþ alwlnðkaÞ

: ð20Þ

As noted by Johnson (1993), were the barrier to extend to infinity, the wave
function would decay to zero and the ‘quasi-bound state’ would become a true
bound state. In this limit only the decreasing function vlðkrÞ is permitted in the
barrier region. This requires the coefficient of wlðkrÞ be zero at the location of a TE
resonance (i.e., bl ¼ 0; for the TM mode al ¼ 0). While these conditions (on the
basis of the limiting case of an infinite barrier) appear to be only sufficient for a
finite barrier, from Hill and Benner (1988) they are seen to be equivalent to those
defining the existence of a MDR, e.g., from Eq. (24) below, Im bl ¼ 0 (or Im al ¼ 0
for the TM mode). For bl ¼ 0 and al ¼ 0 at resonance it follows that
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Al ¼ Bl ¼ wlðnkaÞ
vlðkaÞ

: ð21Þ

Now, we substitute the external solutions defined by (13) and (14) into the
modified logarithmic derivatives given by (15) and (16) and evaluate them at the
surface of the sphere r ¼ a. The standard approach in the literature is to use the
continuity of the functions UlðrÞ and VlðrÞ across the boundary to solve for al and
bl. The results are

bl ¼ � wlðnxÞv0lðxÞ � nw0
lðnxÞvlðxÞ

wlðnxÞw0
lðxÞ � nw0

lðnxÞwlðxÞ
; ð22Þ

al ¼ � w0
lðnxÞvlðxÞ � nwlðnxÞv0lðxÞ

w0
lðnxÞwlðxÞ � nwlðnxÞw0

lðxÞ
; ð23Þ

where x ¼ ka is the size parameter. The coefficients al and bl are related to the al
and bl coefficients of Mie theory by the following formulas:

bl ¼ 1
1� ibl

; ð24Þ

al ¼ 1
1� ial

: ð25Þ

The al and bl coefficients defined here are the same as the coefficients defined by
Bohren and Huffman (1983) and are the complex conjugate of the coefficients
defined by van de Hulst (1981) and by Kerker (1969).

3 The Tunneling Analogy

If the standard time-independent radial Schrödinger equation is written in units such
that �h2=2l ¼ 1, where h ¼ 2p�h is Planck’s constant and l is the reduced mass, it
then takes the form

� d2wðrÞ
dr2

þ ½VðrÞþ lðlþ 1Þ
r2

�wðrÞ ¼ EwðrÞ; ð26Þ

where VðrÞ is the potential energy function and E is the total energy. In particular,
Eqs. (8) and (26) will be identical if we define the potential to be
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VðrÞ ¼ k2½1� n2ðrÞ�; ð27Þ

and define E ¼ k2: The total (or effective) potential is the sum of the potential
function V(r) and the centrifugal potential, written as

VlðrÞ ¼ k2½1� n2ðrÞ�þ lðlþ 1Þ
r2

: ð28Þ

(see Fig. 1).
Note that in distinction to the quantum mechanical situation, the effective

potential is also a function of k. We consider (as an introduction to the method-
ology) the special case of a spherical particle with a constant refractive index
n throughout (Johnson 1993). The potential in this case is given by

VlðrÞ ¼ k2ð1� n2Þþ lðlþ 1Þ=r2; r� a
lðlþ 1Þ=r2; r[ a

� �
ð29Þ

where the values of n2 and k2 will define whether this potential is attractive or
repulsive. We are interested in the case of a dielectric particle with n[ 1.

For the specific example presented in Johnson (1993), we consider first the
potential function V40ðrÞ for a particle of radius a, the refractive index n ¼ 1:47,
and wavenumber k ¼ 33=a. For convenience, the unit of length and the particle
radius are chosen to be equal. Therefore, a ¼ 1 and k ¼ 33. As another example,
we apply this technique to the case that n ¼ 4=3 and k ¼ 33. The effective potential
for the partial wave l ¼ 40 is designated V40ðrÞ; and details of these cases are
shown in Fig. 2a–c (for n ¼ 1:47; l ¼ 40, with additional details later). The well in
the region r1\r\a for a given k is surrounded by the two classically ‘forbidden’
regions 0� r\r1 and a\r\r2. The points r1 and r2 are called the classical turning

k2

V(a+)

V(a−)

ar
1 r

2

r

Fig. 1 Effective potential
associated with a spherical
dielectric particle
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points. They can be found by evaluating the local wavenumber plðrÞ, which is
defined by p2l ðrÞ ¼ E � VlðrÞ. This can be written in the form

p2l ðrÞ ¼ k2n2ðrÞ � lðlþ 1Þ
r2

: ð30Þ

In the corresponding quantum-mechanical problem, the particle can tunnel
through the classically forbidden region a\r\r2 into the classically allowed
potential well. For specific values of the energy level, the wave will become
temporally trapped in the well, oscillating back and forth many times, with part of
the wave tunneling back each time it encounters the discontinuity at r ¼ a: These
phenomena are often referred to as quasi-bound states or resonances. The resonance
described here can be called a shape resonance because the resonance behavior
arises from the shape of the potential, i.e., the well and the barrier. Such resonances
correspond to the usual interpretation of morphology-dependent resonances

x=31.0589

x=34.6112

x=37.6531

(a)

(b)

(c)

Fig. 2 Radial wave functions
for three TE resonances
(n = 1.47, l = 40)

346 U. Nuntaplook et al.



(MDRs) in terms of electromagnetic ‘rays’ propagating around the inside surface of
the sphere. Electromagnetic energy can tunnel through the classically forbidden
region and become temporarily trapped in resonance states. In the following dis-
cussion, we assume that the refractive index is a real quantity (though this is not
strictly necessary).

In Fig. 1, the shape of the potential well depends on the energy k2 as noted
previously. However, in the quantum-mechanical problem the potential is inde-
pendent of the energy; this is clearly not the case here. Figure 1 shows the case
when the energy k2 lies between the top, Vðaþ Þ, and bottom, Vða�Þ, of the well.
As noted in Johnson (1993), when k increases, the bottom of the potential well will
drop. The energy level k2 will finally coincide with the top of the well. In quantum
mechanics, only certain levels of energy will satisfy the boundary conditions and
are allowed in a potential well. The problem of shape resonances is similar in this
regard. The boundary conditions at r ¼ 0 are given by Slð0Þ ¼ Tlð0Þ ¼ 0. These
conditions are necessary to make sure that all scattering solutions are finite at the
origin. The solution for the external region r[ a is given in terms of a linear
combination of the Riccati–Bessel functions wlðkrÞ and vlðkrÞ. In the classically
forbidden region, a\r\r2, these two functions have opposite behaviors. When the
function wlðkrÞ is monotonically increasing rapidly in this region, the function
vlðkrÞ is monotonically decreasing. At r ¼ r2, these functions stop their monotonic
behavior and begin an oscillatory behavior in the outside region r[ r2.

To find a resonance, we impose the condition that the wave function mono-
tonically decays in the barrier region, so it will tend to zero as the barrier is
extended to r ! 1. The quasi-bound state will then become a real bound state.
Therefore, only the decreasing function vlðkrÞ is permitted in the barrier region.
This implies that the coefficient that multiplies the increasing function wlðkrÞ in the
wave function defined by (13) and (14) must be zero; i.e., bl ¼ 0 ðal ¼ 0Þ at the
location of a TE (TM) resonance, respectively. These conditions that are used to
determine a shape resonance and to find the location of a MDR are the same. By
substituting bl ¼ 0 and al ¼ 0 into (22) and (23) gives the equations that can be
used to determine the locations of TE and TM resonances, respectively (though we
only present the TE resonances in this chapter):

wlðnxÞv0lðxÞ ¼ nw0
lðnxÞvlðxÞ; ð31Þ

w0
lðnxÞvlðxÞ ¼ nwlðnxÞv0lðxÞ: ð32Þ

These equations have infinitely many discrete values of the size parameter x0 ¼ ka.
However, only the finite number of values of x0 that are in the range between the
bottom and top of the potential well are considered to be resonant states. There are
no solutions below the bottom of the well. The solutions above the top of the well
are not classified as resonances, because they are too wide to have the properties
discussed above. In Fig. 2a, the bottom and the top of the potential well (for the
case considered by Johnson (1993), namely n ¼ 1:47 and l ¼ 40) are 27.5 and 40.5,
respectively. This potential has three TE resonances between 27.5 and 40.5. The TE
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resonances are located at 31.0589, 34.6112, and 37.6531. For the case n ¼ 4=3 and
l ¼ 40 (Fig. 3a, b) the bottom and the top of the potential well are 30.365 and 40.5,
respectively. This potential has two TE resonances, located at 34.0668 and 37.8985.
In these Figures the wave functions are the Debye potential functions S40ðrÞ,
obtained by solving Eq. (8). At the proper level, they are shown superimposed upon
the potential function V40ðrÞ. (Note that solving (9) for T40ðrÞ would give the TM
resonances.) The wave functions show bound state within the region of potential
well. The lowest-level wave function has a single peak, the next level has two peaks
(positive and negative), and the third level has three peaks. Electromagnetic energy
is temporarily trapped in the potential well. It can enter and leave the potential well
by tunneling through the outer centrifugal barrier. The deeper well has a larger
barrier than the upper levels. In Fig. 3a, b the wave functions for the two TE
resonances for the case n ¼ 4=3 and l ¼ 40 are shown. They are the Debye
potential functions S40ðrÞ again obtained by solving Eq. (8). At the same proper
level in the case n ¼ 1:47 and l ¼ 40, they are shown superimposed upon the
potential function V40ðrÞ. The wave functions have only two resonances inside the
region of potential well for this case. The lowest-level wave function has a single
peak, and the next level has two peaks (positive and negative).

Figure 4a–c shows the change in resonance pattern that the wave function
exhibits for the TE l ¼ 40 mode located at x0 ¼ 34:6112. The top picture shows the
wave function for the case x[ 34:6112, which is above the resonance. The wave
function S40ðrÞ shows a monotone increase in the tunneling region. The amplitude
of the wave function outside the particle r[ r2 is much larger than the amplitude
inside the particle. The center picture shows the case x ¼ 34:6112, for which the
wave function decreases monotonically in the tunneling region. The amplitude of

x=34.0668

x=37.8985

(a)

(b)

Fig. 3 Radial wave functions
for two TE resonances
(n = 4/3, l = 40)
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the wave function inside the particle is much larger than the amplitude outside
because the field strength increases rapidly in the layer just outside the surface,
a\r\r2, and then continues to a maximum inside the particle near the surface
(both inside and outside). This is sufficient to define a resonance. The bottom
picture shows the case x\34:6112, which is below the resonance. The wave
function increases monotonically in the tunneling region. Thus, the amplitude
inside a particle is smaller than the amplitude outside. This case is similar to the
case x[ 34:6112 (top picture) except that the wave amplitude decreases in this
region before increasing.

4 The Two-Layer Inhomogeneous Sphere

We return to the radial Debye potentials SlðrÞ and TlðrÞ [which satisfy respectively
the second-order differential Eqs. (8) and (9)]. In this case, we consider a piecewise
constant refractive index associated with a two-layer dielectric sphere. In regions

x>x
0

x=x
0

x<x
0

(a)

(b)

(c)

Fig. 4 Behavior of the TE
wave function in the vicinity
of a resonance: behavior for a
size parameter value slightly
above resonance (a); on
resonance (b); below
resonance (c)
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where the indices of refraction have the constant value n1 and n2, the two radial
Schrödinger equations have the same form and the linearly independent solutions
are again the Riccati–Bessel functions

wlðnkrÞ ¼ nkrjlðnkrÞ; ð33Þ

vlðnkrÞ ¼ nkrylðnkrÞ: ð34Þ

Here jlðnkrÞ and ylðnkrÞ are spherical Bessel functions of the first and second kinds,
respectively. Since we need the conditions defining the locations of the resonances
of TE and TM modes in this two-layer case, we again examine the solutions of
Eqs. (8) and (9). Since the sphere is embedded in an external medium, we have
three piecewise-uniform regions to consider.

4.1 TE Mode

For the TE mode of this model the solutions are as follows:

Region 1ð0\r\R1Þ: S1lðrÞ ¼ wlðn1krÞ; ð35Þ

Region 2 ðR1\r\R2Þ: S2lðrÞ ¼ Al½vlðn2krÞþ alwlðn2krÞ�; ð36Þ

Region 3 ðr[R2Þ: S3lðrÞ ¼ Bl½vlðkrÞþ blwlðkrÞ�: ð37Þ

Matching solutions at r ¼ R1 and r ¼ R2 using the log-derivative formalism in
Eqs. (15) and (16) for the continuity of the solution, where the refractive index is
discontinuous we obtain

Al ¼ wlðn1kR1Þ
vlðn2kR1Þþ alðn2kR1Þ ; ð38Þ

Bl ¼ Al½vlðn2kR2Þþ alwlðn2kR2Þ�
vlðkR2Þþ blwlðkR2Þ ; ð39Þ

where

al ¼ � n2wlðn1kR1Þv0lðn2kR1Þ � n1w
0
lðn1kR1Þvlðn2kR1Þ

n2wlðn1kR1Þw0
lðn2kR1Þ � n1w

0
lðn1kR1Þwlðn2kR1Þ ; ð40Þ

bl ¼ � v0lðkR2Þ½vlðn2kR2Þþ alwlðn2kR2Þ� � n2vlðkR2Þ½v0lðn2kR2Þþ alw
0
lðn2kR2Þ�

w0
lðkR2Þ½vlðn2kR2Þþ alwlðn2kR2Þ� � n2wlðkR2Þ½v0lðn2kR2Þþ alw

0
lðn2kR2Þ�

:

ð41Þ
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4.2 TM Mode

For completeness, we state the corresponding solutions for the TM mode.

Region 1 ð0\r\R1Þ : T1lðrÞ ¼ wlðn1krÞ; ð42Þ

Region 2 ðR1\r\R2Þ : T2lðrÞ ¼ �Al½vlðn2krÞþ �alwlðn2krÞ�; ð43Þ

Region 3 ðr[R2Þ : T3lðrÞ ¼ �Bl½vlðkrÞþ �blwlðkrÞ�: ð44Þ

Again matching the solutions in each region at the boundaries r ¼ R1 and
r ¼ R2, we obtain

�Al ¼ wlðn1kR1Þ
vlðn2kR1Þþ �alðn2kR1Þ ; ð45Þ

�Bl ¼
�Al½vlðn2kR2Þþ �alwlðn2kR2Þ�

vlðkR2Þþ �blwlðkR2Þ
; ð46Þ

where

�al ¼ � n2w
0
lðn1kR1Þvlðn2kR1Þ � n1wlðn1kR1Þv0lðn2kR1Þ

n2w
0
lðn1kR1Þwlðn2kR1Þ � n1wlðn1kR1Þw0

lðn2kR1Þ
; ð47Þ

�bl ¼ � n2v0lðkR2Þ½vlðn2kR2Þþ �alwlðn2kR2Þ� � vlðkR2Þ½v0lðn2kR2Þþ �alw
0
lðn2kR2Þ�

n2w
0
lðkR2Þ½vlðn2kR2Þþ �alwlðn2kR2Þ� � wlðkR2Þ½v0lðn2kR2Þþ �alw

0
lðn2kR2Þ�

:

ð48Þ

4.3 The Potential Function

The potential Vl rð Þ is now defined as

VlðrÞ ¼
k2ð1� n21Þþ lðlþ 1Þ=r2; 0� r�R1;
k2ð1� n22Þþ lðlþ 1Þ=r2; R1 � r�R2;
lðlþ 1Þ=r2; r[R2:

8<
:

9=
; ð49Þ

This corresponds to the refractive index profile:

nðrÞ ¼
n1; 0� r�R1;
n2; R1 � r�R2;
1; r[R2:

8<
: ð50Þ
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The relative values of n1 and n2 define the nature of the potential, i.e., whether it is
attractive or repulsive. We focus here on a dielectric particle with n1 [ 1, n2 [ 1.
Using a similar technique to that in Sect. 2, we consider the potential function VlðrÞ
for the two-layer sphere with radii R1 and R2 (and corresponding refractive indices
n1 and n2Þ. Now the size parameters are x ¼ kR1 and y ¼ kR2, respectively (note
that y as defined here should not be confused with that is Eq. (12) defining the
second Riccati–Bessel function). For convenience, the unit of length and the par-
ticle radius are again chosen to be equal. We now separate the refractive index
profile into two obvious and distinct cases.

4.3.1 Case 1 and Case 2

Case 1: Increasing refractive index profile

nðrÞ ¼
n1; 0� r�R1;
n2ð[ n1Þ; R1 � r�R2;
1; r[R2:

8<
: ð51Þ

Case 2: Decreasing refractive index profile

nðrÞ ¼
n1; 0� r�R1;
n2ð\n1Þ; R1 � r�R2;
1; r[R2:

8<
: ð52Þ

Figures 7 and 8 show the generic form of potential function V40ðrÞ given by
Eq. (49) corresponding to the profiles (51) and (52). Figures 9a–c and 10a–b show
the wave function S40ðrÞ for a particle with radii R1 ¼ x0=k and R2 ¼ 1, and
refractive indices n1 ¼ 1:2 and n2 ¼ 1:5 (representing an increasing refractive
index profile as shown in Fig. 5) with wavenumbers k ¼ x0=R1 ¼ y0=R2.
Figures 11a, b and 12 show similar results for a particle of radius R1 ¼ x0=k and
R2 ¼ 1, refractive index n1 ¼ 1:52, and n2 ¼ 1:25 (representing a decreasing re-
fractive index profile as shown in Fig. 6) with wavenumbers k ¼ x0=R1 ¼ y0=R2.

For specific values of the energy level, as noted earlier, the wave will become
temporally trapped in the well, oscillating back and forth many times, with part of
the wave tunneling back each time it encounters the discontinuity at r ¼ a. This is
where the shape resonances of the two-layer model were found. Note that in all
cases the potential well depends on the energy k2 and the refractive index in each
region. The figures show the case when the energy k2 lies between the top and the
bottom of the well. Obviously, the shape of the well depends on the values of
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refractive indices n1 and n2 in each region. When n1\n2 (as in Fig. 5), we have a
single well (see Fig. 7); however, when n1 [ n2 we have double wells (as in
Fig. 8). Similar to the case of the uniform model, the boundary conditions at r ¼ 0
are given by S1lð0Þ ¼ T1lð0Þ ¼ 0 to guarantee that all scattering solutions are finite
at the origin. The solutions are linear combinations of the Riccati–Bessel functions
wlðn2krÞ and vlðn2krÞ in Region 2 and wlðkrÞ and vlðkrÞ in Region 3. For the case
that n1\n2, when n2 is much larger than n1, the well will be deeper and wider. The
most striking feature of this case with the potential function V40ðrÞ (for increasing
refractive index) is the presence of a potential well in the region a1\r\R2: This is

0
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  r
 R

1
  R

2

  1

 n
1

  n
2

Fig. 5 Case 1: Refractive index profile for n1\n2

0
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  r
 R

1
  R

2

  1

 n
1

  n
2

Fig. 6 Case 2: Refractive index profile for n1 [ n2
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a classically allowed region. The well is surrounded by the two classically for-
bidden regions 0� r\a1 and R2\r\b1. The points a1 and b1 are called the
classical turning points. In the equivalent quantum-mechanical problem a particle
can tunnel through the classically forbidden region R2\r\b1, into the classically
allowed potential well. In the case that n1 [ n2, the most interesting feature of this
case is the presence of the potential wells in the regions a2\r\R1 and b2\r\R2:
These are the classically allowed regions. They are surrounded by the three clas-
sically forbidden regions 0� r\a2; R1\r\b2, and R2\r\c2: The points a2, b2,
and c2 are the classical turning points for this case. In the forbidden regions r\b1 in
Fig. 7 and r\c2 in Fig. 8, the two functions wlðkrÞ and vlðkrÞ have opposite
behaviors. When the function wlðkrÞ increases rapidly (again monotonically) in this
region, the function vlðkrÞ has monotone decreasing behavior. The classical turning
points for the exhibited value of k2 (dotted line) are denoted by a1,b1 and a2, b2, c2,
respectively, in these figures. Of course, both R1 and R2 are classical turning points
also.

  a
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Fig. 8 Case 2: VðrÞ potential
for n1 [ n2
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Fig. 7 Case 1: VðrÞ potential
for n1\n2
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To find the resonance, as before we use the (sufficient) condition that the wave
function decays monotonically in the barrier region to ensure that it goes to zero as
the barrier radius r ! 1. Therefore, we need only the monotonically decreasing
function vlðkrÞ in the barrier region. By substituting al ¼ 0 and bl ¼ 0, �al ¼ 0 and
�bl ¼ 0 into Eqs. (40), (41), (47), and (48), we have the equations determining
locations of TE and TM resonances, respectively:

TE:

n2wlðn1kR1Þv0lðn2kR1Þ ¼ n1w
0
lðn1kR1Þvlðn2kR1Þ; ð53Þ

v0lðkR2Þvlðn2kR2Þ ¼ n2vlðkR2Þv0lðn2kR2Þ: ð54Þ

TM:

n2w
0
lðn1kR1Þvlðn2kR1Þ ¼ n1wlðn1kR1Þv0lðn2kR1Þ; ð55Þ

n2v
0
lðkR2Þvlðn2kR2Þ ¼ vlðkR2Þv0lðn2kR2Þ: ð56Þ

These equations have infinitely many discrete values of the size parameters x0
and y0. However, only the finite number of values of x0 and y0 that are in the range
between the top and the bottom of the potential well are considered to be resonant
states. Similar to the two-layer model, there are no solutions below the bottom of
the well and above the top of the well. Figure 9a–c shows the potential function
V40ðrÞ and the wave function S40ðrÞ for n1 ¼ 1:2, n2 ¼ 1:5; and l ¼ 40. This
potential supports three TE resonances for specific value of x0. They are located at
x0 ¼ 30:3828 with y0 ¼ 32:2993 (Fig. 9a); y0 ¼ 35:4868 (Fig. 9b) and y0 ¼
38:3548 (Fig. 9c). Figure 10a, b shows the potential function V40ðrÞ and the wave
function S40ðrÞ for n1 ¼ 1:2, n2 ¼ 1:5, and l ¼ 40. The TE resonances for this
example are located at x0 ¼ 34:7905 with y0 ¼ 35:4868 (Fig. 10a), and y0 ¼
38:3548 (Fig. 10b). Figure 11a, b shows the potential function V40ðrÞ and the wave
function S40ðrÞ for n1 ¼ 1:52, n2 ¼ 1:25; and l ¼ 40. The two TE resonances are
located at x0 ¼ 29:5815 with y0 ¼ 33:5645 (Fig. 11a), and y0 ¼ 38:2446
(Fig. 11b). Figure 12 shows the potential function V40ðrÞ and the wave function
S40ðrÞ for n1 ¼ 1:52, n2 ¼ 1:25; and l ¼ 40. The location for the TE resonance is at
x0 ¼ 33:4975 with y0 ¼ 38:2446. Figures 13a–c and 14a–c show the change in
form that the wave function experiences as the system transverses the TE for both
cases of n1\n2 and n1 [ n2 with l ¼ 40, respectively. In Fig. 13b, the TE reso-
nance is located at x0 ¼ 30:3828 and y0 ¼ 32:2993. Figure 13a shows the case for
x ¼ x0 and y ¼ 32:0993\y0 which is below the resonance. Figure 13c shows the
wave function for the case x ¼ x0 and y ¼ 32:4993[ y0 which is above the res-
onance. In Fig. 14b, the TE resonance is located at x0 ¼ 29:5815 and
y0 ¼ 33:5645. Figure 14a shows the case for x ¼ x0 and y ¼ 33:0645\y0, which is
below the resonance. Figure 14c shows the wave function for the case x ¼ x0 and
y ¼ 33:9645[ y0, which is above the resonance.
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 x=30.3828
 y=32.2993

 x=30.3828
 y=35.4868

 x=30.3828
 y=38.3548

(a)

(b)

(c)

Fig. 9 Radial wave functions
for three TE resonances with
x ¼ 30:3828; y ¼ 32:2993
(a); x ¼ 30:3828; y ¼
35:4868 (b); x ¼ 30:3828;
y ¼ 38:3548 (c),
corresponding to the
refractive index profile in
Case 1 (n1 ¼ 1:2; n2 ¼ 1:5;
l ¼ 40)
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 x=29.5815
 y=33.5645

 x=29.5815
 y=38.2446

(a)

(b)

Fig. 11 Radial wave
functions for two TE
resonances with x ¼ 29:5815;
y ¼ 33:5645 (a); x ¼
29:5815; y ¼ 38:2446 (b),
corresponding to the
refractive index profile in
Case 2 (n1 ¼ 1:52;
n2 ¼ 1:25; l ¼ 40)

 x=34.7905
 y=35.4868

 x=34.7905
 y=38.3548

(a)

(b)

Fig. 10 Radial wave
functions for two TE
resonances with x ¼ 34:7905;
y ¼ 35:4868 (a); x ¼
34:7905; y ¼ 38:3548 (b),
corresponding to the
refractive index profile in
Case 1 (n1 ¼ 1:2; n2 ¼ 1:5;
l ¼ 40)
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 x=33.4975
 y=38.2446

Fig. 12 Radial wave
function for a TE resonance
with x ¼ 33:4975;
y ¼ 38:2446, corresponding
to the refractive index profile
in Case 2 (n1 ¼ 1:52;
n2 ¼ 1:25; l ¼ 40)

(a)

 x=30.3828

 y=32.2993

(b)

(c)

 x=30.3828
 y=32.0993

 x=30.3828
 y=32.4993

Fig. 13 Behavior of the TE
wave function in the vicinity
of a resonance for the case
n1\n2; for x ¼ 30:3828; the
behavior for a size parameter
value slightly below
resonance a y ¼ 32:0993; on
resonance b y ¼ 32:2993;
above resonance
c y ¼ 32:4993
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5 Conclusion

In this chapter, we have examined the interaction of plane electromagnetic waves in
piecewise continuous radially inhomogeneous media. We have summarized a major
part of the seminal work of Johnson (1993), who discussed in detail so-called
MDRs for a uniform sphere embedded in a different uniform medium. In a strict
sense, his work can be interpreted as a study of plane wave electromagnetic scat-
tering in piecewise constant media in ½0;1Þ: Complementary material (also based
on Johnson’s 1993 paper) was presented in Sect. 3, where the relationship between
the radial electromagnetic wave equations and the corresponding time-independent
radial Schrödinger equation is made. Essentially the former problem can be
regarded as the latter with a wavenumber-dependent potential. In Sect. 4, the TE

 x=29.5815

 y=33.5645

(a)

(b)

(c)

x=29.5815
y=33.0645

x=29.5815
y=33.9645

Fig. 14 Behavior of the TE
wave function in the vicinity
of a resonance for the case
n1 [ n2; for x ¼ 29:5815; the
behavior for a size parameter
value slightly below
resonance a y ¼ 33:0645; on
resonance b y ¼ 33:5645;
above resonance
c y ¼ 33:9645

Some Wave-Theoretic Problems in Radially Inhomogeneous Media 359



analysis of Johnson was extended to piecewise constant two-layer spheres (with
refractive indices n1 and n2Þ in a basic approach to modeling inhomogeneity, for
both n1 [ n2 and n1\n2. The corresponding theory for the TM modes was also
developed.
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Light Scattering and Thermal Emission
by Primitive Dust Particles in Planetary
Systems

Hiroshi Kimura, Ludmilla Kolokolova, Aigen Li
and Jérémy Lebreton

1 Introduction

Stardust grains are tiny solid samples of stars, newly condensed in an expanding
atmosphere of a dying star and injected into interstellar space by stellar wind and
radiation pressure. Such a dust grain in the interstellar medium goes back and forth
between diffuse clouds and dense clouds before it experiences star formation at the
core of a dense cloud (Greenberg 1984). The majority of prestellar interstellar
grains evaporate during star formation, but circumstellar gas condenses as pristine
dust grains when a gaseous envelope of a newly born star cools down to the melting
temperatures of solids (Keller and Messenger 2011). In consequence, it is no
wonder that interstellar grains are chemically similar to primitive dust particles in
planetary systems, if the particles are least processed (Kimura 2013). Pristine dust
grains coagulate together and form fluffy agglomerates of the grains in a proto-
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planetary disk around a young star (Weidenschilling et al. 1989). In 1970s, a
collection of interplanetary dust particles (IDPs), which originate from comets
and/or asteroids, revealed that the particles are indeed fluffy agglomerates of sub-
micron constituent grains (Brownlee et al. 1976). Collisional growth of fluffy
agglomerates ends up with planetesimals, which are at present observed as comets
and asteroids in planetary systems around main-sequence stars (Weidenschilling
1997). Therefore, planetesimals (i.e., comets and asteroids) are time capsules of
primitive dust particles, which are reservoirs of information on the time of planetary
system formation. At the present time, primitive dust particles released from comets
and asteroids have been observed in the Solar System and debris disks1 around
other main-sequence stars through stellar radiation scattered or reradiated by the
particles. The interpretation of observational data is, however, often not straight-
forward, unless light-scattering and thermal-emission properties of the particles are
well known a priori.

Numerical simulation is a flexible and powerful approach to deducing
light-scattering and thermal-emission properties of primitive dust particles in plan-
etary systems from astronomical observations. In this review, we focus on numerical
approaches to light scattering and thermal emission of fluffy agglomerates that
simulate primitive dust particles in the Solar System and debris disks. In conse-
quence, it must be emphasized that dust particles in protoplanetary disks around
pre-main-sequence stars go beyond the scope of this review. This paper is organized
as follows: we review and comment on popular models of dust agglomerates in
Sect. 2, light-scattering techniques applicable to agglomerates in Sect. 3, light
scattering by agglomerates in Sect. 4, thermal emission from agglomerates in
Sect. 5, and integral optical quantities of agglomerates such as bolometric albedo,
radiation pressure, and equilibrium temperature in Sect. 6. Furthermore, we pass our
concluding remarks in Sect. 7 and finally provide a summary in Sect. 8.

2 Models of Dust Agglomerates in Planetary Systems

2.1 Artificial Configuration of Constituent Grains

There are a variety of ways to numerically configure constituent grains in an
agglomerate, if the formation process of the agglomerate is not taken into account.
The most simple algorithm for creating a fluffy agglomerate in control of its
porosity would be to first form a cubic or a sphere with subvolumes and then

1A debris disk is defined as a dust disk that surrounds a main-sequence star with its age exceeding
the lifetime of the disk. Therefore, the disk is not primordial, but must be replenished with dust
particles released from their parent bodies such as asteroids and comets.
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remove a portion of the subvolumes according to the desired porosity (e.g., Hage
and Greenberg 1990; Zubko et al. 2009; Petrova and Tishkovets 2011;
Kirchschlager and Wolf 2013). This algorithm has the advantage of easily pro-
ducing irregularly shaped constituent grains, but the disadvantage is in producing
equi-dimensional agglomerates. Moreover, there is a risk that an algorithm of this
kind separates some of the constituent grains from the agglomerate, even in the case
that the porosity of the agglomerate is not extremely high (see Fig. 1).

Alternatively, one could first create constituent grains in preferable sizes and
shapes and then assemble a cluster of them in an arbitrary configuration. In this
way, numerical calculations of electromagnetic waves scattered not only by a
cluster of spheres, but also by a cluster of tetrahedrons, have been implemented to
simulate light scattering by dust agglomerates in planetary systems (Xing and
Hanner 1997; Yanamandra-Fisher and Hanner 1999). It is certainly of great interest
from a mathematical point of view to consider arbitrary configuration and shape of
constituent grains in dust agglomerates. However, one should keep in mind that the
application of such an agglomerate to dust particles in planetary systems is not
necessarily justified.

Fig. 1 Six realizations of dust agglomerates that formed by the removal of subvolumes
consecutively from an initially spherical volume. The same algorithm was applied to generate the
agglomerates, while different random numbers were used for their respective operations. From
Zubko et al. (2009)
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2.2 Coagulation Growth of Pristine Constituent Grains

Agglomerates of submicron constituent grains make up the anhydrous chondritic
porous (CP) subset of IDPs collected in the stratosphere as well as Antarctic ice and
snow (Brownlee 1985; Noguchi et al. 2015). CP IDPs are found to consist of
chondritic grains embedded in organic-rich carbonaceous material and most likely
originate from short-period comets. As a result, their chemical composition bears
strong resemblance to the composition of cometary dust measured in situ for comet
1P/Halley as shown in Fig. 2 (Jessberger 1999; Kimura et al. 2003a). A dust
agglomerate consisting of submicron grains is a natural consequence of dust growth
due to collisions of submicron pristine condensates in a protoplanetary disk. If the
collision takes place at a low relative velocity (v� 1ms�1), an agglomerate grows
without restructuring of constituent grains and possess a fractal geometry (Wurm
and Blum 1998). The structure of such an agglomerate is characterized by a fractal
dimension D, which is defined as
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Fig. 2 The chemical compositions of cometary dust, interplanetary dust, interstellar dust as well
as the solar photosphere, normalized to their Mg abundances. The data for cometary dust (H),
interplanetary dust (I), and interstellar dust (L) correspond to those of dust in comet 1P/Halley, the
chondritic porous subset of interplanetary dust particles, and dust in the Local Interstellar Cloud,
respectively. The two dotted lines for the photosphere of the Sun reflect uncertainties in the solar
photospheric composition, which also affect the composition of interstellar dust. From Kimura
et al. (2003a)
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where m and ag are the mass and gyration radius of the agglomerate, respectively.
The radius of gyration ag is given by

ag ¼ 1
2N2

XN
i

XN
j

ðri � rjÞ2
" #1=2

; ð2Þ

where ri and rj are the position vectors of the i-th and j-th constituent grains,
respectively, and N is the total number of the grains. At a higher velocity, a collision
results in restructuring constituent grains and highly compressed agglomerates, or
even destructing agglomerates (Dominik and Tielens 1997). Even at the maximum
compression of agglomerates due to high-velocity collisions, possession of a fractal
structure has been manifested by highly sophisticated numerical simulations (Wada
et al. 2008). Therefore, it is reasonable as a first step to assume fractal agglomerates
consisting of submicron grains when simulating light scattering and thermal
emission of primitive dust particles in planetary systems.

If constituent grains in an agglomerate are identical, the number N of the grains
and the characteristic radius ac of the agglomerate fulfill the following relation:

N ¼ k0
ac
a0

� �D

; ð3Þ

where a0 is the radius of the constituent grains and k0 is a proportionality constant
of order unity, which depends on the coagulation process (see Fig. 3). The char-
acteristic radius ac of an agglomerate is defined by
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Fig. 3 The number N of constituent grains in fractal agglomerates formed under coagulation
growth of the BPCA and the BCCA processes as a function of its characteristic radius normalized
to the radius of constituent grains. Solid line log k0 ¼ �0:576Dþ 0:915 (Kimura et al. 1997);
dashed line log k0 ¼ �0:5Dþ 0:7 (Mukai et al. 1992). From Kimura et al. (1997)
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ffiffiffi
5
3

r
ag; ð4Þ

which is known to well describe an apparent radius of agglomerates. In reality,
constituent grains are not identical, but a nucleation theory of pristine condensates
in a protoplanetary disk predicts a size distribution of pristine grains with a single
peak in an extremely narrow size range (Yamamoto and Hasegawa 1977). In
addition, the major constituents of CP IDPs called GEMS (glass with embedded
metal and sulfides) grains are typically limited to a0 ¼ 0:05�0:25 lm (Keller and
Messenger 2011). Therefore, the radius of constituent grains in an agglomerate does
not seem to vary considerably as far as primitive dust particles in planetary systems
are concerned. Consequently, it is popular practice to use agglomerates of identical
constituent grains in an approximation of primitive dust particles in planetary
systems. One should, however, keep in mind that the size distribution of constituent
grains influences light-scattering and thermal-emission properties of agglomerates
to a certain extent.

In popular open-source light-scattering codes available to date, the size param-
eter of an agglomerate is defined as xv ¼ 2pav=k where av is the radius of volume
equivalent sphere and k is the wavelength of interest. Note that both av and xv are
quantities that are independent of the coagulation process, because av ¼ N1=3a0. As
a result, an apparent radius of agglomerates cannot be described by av at all, but av
is a useful quantity if the mass or volume of the agglomerates is of interest.

Figure 4 illustrates an example of fractal agglomerates consisting of 213 spher-
ical grains formed under hit-and-stick coagulation processes along ballistic

Ballistic Particle-
Cluster Aggregate

Ballistic Cluster-
Cluster Aggregate

Fig. 4 Two realizations of dust agglomerates that formed by the BPCA and the BCCA processes.
The coagulation growth was conducted to hit and stick on their respective contacts, while 213

constituent grains were assumed to be identical spheres. From Kimura (2001)
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trajectories. The agglomerates were grown by either the ballistic cluster–cluster
agglomeration (BCCA) or the ballistic particle–cluster agglomeration (BPCA) of
constituent grains. The fractal dimensions of BCCA and BPCA particles have been
determined numerically to be approximately D ≈ 2 and 3, respectively (Meakin
1984). Agglomerates grown by the diffusion limited agglomeration (DLA) process
are also fractals with D ≈ 2.5 if their constituent grains are assumed to hit and stick
on contact (Meakin 1984). Although the DLA process is not relevant to coagulation
growth in a protoplanetary disk, high-velocity collisions of BCCA particles result in
a fractal dimension D ≈ 2.5 at their maximum compression as shown in Fig. 5
(Wada et al. 2008). DLA particles could, therefore, be used to represent highly
compressed BCCA particles if the fractal dimension plays a vital role in the
determination of their light-scattering and thermal-emission properties.

It is worth noting that the configuration of constituent grains in an agglomerate is far
from well known for primitive dust particles in planetary systems, although the mor-
phology of CP IDPs is sometimes considered typical of the particles. We argue that CP
IDPs represent the most compact structure of primitive dust particles in planetary
systems, since there is natural selection with respect to the morphology. If CP IDPs are
primitive dust particles released from comets or asteroids, then they must have been
injected into a bound orbit around the Sun. It is well known that dust particles in orbit
around a star could spiral to the central star by a relativistic effect, called the Poynting–
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Fig. 5 The number of constituent grains within a distance r from the center of an agglomerate as a
function of the distance. Here the number is normalized by the distance to the power of 2.5 and the
distance is normalized by the radius of constituent grains so that the fractal dimension D = 2.0,
2.5, and 3.0 gives a slope of −0.5, 0, and 0.5, respectively. The agglomerates were produced by
numerical simulations on mutual collisions of identical BCCA particles consisting of 213 grains at
various collision velocities based on contact mechanics. From Wada et al. (2008)
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Robertson effect (Robertson 1937; Wyatt and Whipple 1950; Kimura et al. 2002a).
However, the fluffier the morphology of dust agglomerates is, the more efficiently the
stellar radiation pressure blows out the agglomerates into the interstellar medium. As a
result, it is dynamically infeasible that dust agglomerates with a more fluffy structure
stay in a bound orbit around the Sun. Therefore, CP IDPs must be so compact that they
could stay in a bound orbit after their release from their parent bodies and reached the
Earth by the Poynting–Robertson effect.

In 1990s, the radius of constituent grains in primitive dust agglomerates was often
assumed to be a0 � 0:01 lm, simply to alleviate computational limitations (e.g.,
Mukai et al. 1992; Kozasa et al. 1993; Kimura et al. 1997). However, laboratory
studies on the morphology of CP IDPs as well as theoretical studies on the optical
properties of cometary dust and dust in debris disks indicate that the radius of
constituent grains is on the order of submicrometers (Brownlee 1985; Kimura et al.
2003c; Graham et al. 2007). In addition, ameboid olivine aggregates in the Allende
meteorite and aggregate-type particles in the samples of asteroid 25143 Itokawa are
characterized by constituent grains whose radii are on the order of micrometers
(Grossman and Steele 1976; Yada et al. 2014). Therefore, we regard a0 � 0:1�1 lm
as a stringent constraint on a plausible model of dust agglomerates in planetary
systems.

3 Light-Scattering Techniques for Dust Agglomerates

3.1 T-Matrix Method and Generalized Multiparticle Mie
Solution

The superposition T-matrix method (TMM) is robust when numerical simulation of
light scattering is performed for a cluster of spheres particularly in random orien-
tations (Mackowski and Mishchenko 1996). Although the advantage of the TMM is
its efficiency in analytical averaging of scattering characteristic over particle orien-
tations, huge random-access memory (RAM) is a requisite for the publicly available
code scsmtm1 developed by Mackowski and Mishchenko (1996) when used for
large agglomerates. Therefore, Okada (2008) proposed to use another code sc-
smfo1b developed by Mackowski and Mishchenko (1996), which gives a solution
in a fixed orientation, and to numerically perform orientation averaging with a
quasi-Monte Carlo (QMC) method. Because the requisite RAM is smaller in sc-
smfo1b than scsmtm1, the QMC method provides an opportunity of dealing with
large agglomerates of submicron constituent grains. Penttilä and Lumme (2011)
recommend the optimal cubature on the sphere (OCoS) method to perform fast
numerical orientation averaging along with the scsmfo1b code. The new publicly
available MSTM (Multi Sphere T-Matrix) code in Fortran-90 is intended to replace
the scsmtm1 and scsmfo1b codes in Fortran-77, so that the MSTM code optimally
uses the memory and processor resources (Mackowski and Mishchenko 2011).
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Similar to the superposition TMM, the GMM is an exact method for computing
light-scattering properties of dust agglomerates consisting of spherical grains (Xu
1995; Xu and Gustafson 2001). A T-matrix formulation of the GMM provides fast
computing of light scattering by an agglomerate of spherical constituent grains in
random orientation (Xu 2003). In 2000s, a prominent feature of GMM was the
ability of providing a solution to light-scattering problems for an agglomerate
consisting of spherical core–mantle grains with the use of the publicly available
code gmm02TrA (Xu and Khlebtsov 2003). Another code gmm02f for a fixed
orientation is expected to deal with larger agglomerates of core–mantle spheres than
gmm02TrA for random orientation, but we are aware that the gmm02f code
contains a bug, which has not been resolved to date. In 2010s, all the features of the
gmm02TrA code can be provided by the MSTM code of the TMM along with the
ability of parallel computing.

3.2 Discrete Dipole Approximation

The discrete dipole approximation (DDA) is a flexible and powerful method for
computing light-scattering properties of arbitrary shaped dust particles (Purcell and
Pennypacker 1973; Draine and Flatau 1994). In the DDA, dust particles are rep-
resented by an array of point electric dipoles and thus the determination of dipole
polarizability plays a key role in determining the responses of the dipoles to
electromagnetic waves (Draine and Goodman 1993; Collinge and Draine 2004).
Hage and Greenberg (1990) demonstrated that the dipole polarizability determined
by the digitized Green function/volume integral equation formulation (DGF/VIEF)
gives more accurate results than the Clausius–Mossotti relation with the radiative
reaction correction employed by Draine (1988). The lattice dispersion relation
(LDR) has been implemented as a default prescription for the dipole polarizabilities
in the publicly available code DDSCAT developed by Draine and Flatau (1994).
Okamoto (1995) demonstrated that the a1-term method is superior to the LDR
method for agglomerates of spherical constituent grains, since the former takes into
account the boundary condition of spheres (see also Okamoto and Xu 1998).
Therefore, one should keep in mind that the choice of polarizability prescription is
not a minor issue for the accuracy of numerical results computed by the DDA.
Another open-source code for the DDA is ADDA that has been intended to run on a
multiprocessor memory-distributed system (Yurkin and Hoekstra 2011). The
advantage of the DDA over the TMM is the ability to deal with not only arbitrary
shapes of constituent grains in an agglomerate but also a contact spot formed by
adhesion between elastic constituent grains.

The DDA has been formulated in a way that it provides a solution to a fixed
orientation of a particle with respect to the direction of incident electromagnetic
wave. As a result, it is common practice to numerically perform orientation aver-
aging of scattering properties by solving the equations for each orientation
sequentially. However, for highly fluffy agglomerates, the solution is very sensitive

Light Scattering and Thermal Emission … 371



to their orientations and thus orientation averaging in the DDA is time consuming.
Singham et al. (1986) provide an exact analytic expression for the orientational
average of scattering matrix elements in the DDA, but the implementation of the
analytic averaging in modern DDA formulations is not straightforward (Yurkin and
Hoekstra 2007). Mackowski (2002) proposed to use the DDA for computing the
T-matrix of arbitrary shaped particles and then apply analytic formulas to the
T-matrix for orientation averaging. This is most likely the best method for orien-
tation averaging of scattering properties in the framework of the DDA, but this
method has not been applied to dust agglomerates in planetary systems.

3.3 Effective Medium Approximations

An effective medium approximation (EMA) is computer friendly and thus has been
a popular method to estimate light-scattering and thermal-emission properties of
dust agglomerates in combination with Mie theory. Among EMAs, the Maxwell
Garnett mixing rule and the Bruggeman mixing rule are the two most popular
methods in astronomy. In the Maxwell Garnett mixing rule, dust agglomerates of
small constituent grains are represented by a hypothetical inhomogeneous sphere
with inclusions of constituent grains in the matrix of vacuum. In the Bruggeman
mixing rule, agglomerates of small constituent grains are assumed to be a hypo-
thetical inhomogeneous sphere consisting of constituent grains and “vacuum”
grains.

It is important for EMAs to properly define the radius of a hypothetical porous
sphere and its porosity, since the definitions of these quantities are not unique.
Mukai et al. (1992) proposed to use the characteristic radius ac of an agglomerate
and the porosity defined by

p ¼ 1� V
Vc

; ð5Þ

where V and Vc are the total volume of constituent grains and the volume of a
hypothetical sphere with a radius ac. It turned out that these definitions enable
EMAs to well reproduce the radiation pressure on agglomerates computed by the
DDA, as far as agglomerates with a0 ¼ 0:01 lm are concerned (Mukai et al. 1992;
Kimura et al. 2002a). Note that Eq. (5) can be written as

p ¼ 1� k0
ac
a0

� �D�3

; ð6Þ

in case of fractal agglomerates. This clarifies that the porosity for agglomerates with
D = 3 is independent of ac and the porosity for agglomerates with D < 3 increases
with ac (see Fig. 6). Therefore, as illustrated in Fig. 4, fractal agglomerates with
D ≈ 3 are relatively compact compared to those with D ≈ 2.
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4 Light Scattering by Dust Agglomerates

4.1 Single Scattering

Most of light-scattering phenomena associated with primitive dust particles in
planetary systems are well described by scattering of stellar radiation on single
particles. The geometric albedo of dust particles is one of the quantities that can be
derived from both numerical simulations and astronomical observations of light
scattering by the particles. It is defined by the ratio of stellar radiation scattered by
the particles at zero phase angle (exact backscattering) to that scattered by a white
Lambertian flat disk of the same geometric cross section. The geometric albedos of
micrometeoroids, dust particles in the zodiacal cloud, and the coma of comet
1P/Halley have been determined to be \0:1; 0:06; 0:04, respectively (Hanner
1980; Ishiguro et al. 2013; Lamy et al. 1989). These values reveal visibly very dark
appearances of primitive dust particles at least in the Solar System, implying that
the particles are dominated by carbonaceous materials. Hanner et al. (1981)
extended the definition of geometric albedo so that the brightness of fluffy
agglomerates at any scattering angle is normalized to the geometric albedo at
backscattering. In this way, the geometric albedo Ap of a particle at a wavelength of
k is proportional to the ð1; 1Þ element of the Mueller matrix, S11, as Ap ¼
S11k

2=ð4pGÞ where G is the geometric cross section of the particle. The degree of
linear polarization is another quantity that gives a direct comparison between
numerical simulations and observations.
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With the help of the DDA, West (1991) has pioneered numerical simulation of
light scattering by DLA (D ≈ 2.5) particles consisting of submicrometer-sized
grains. It is most likely that he employed the Clausius–Mossotti relation with the
radiative reaction correction given by Draine (1988) to determine the polarizability
of each dipole, since he used the early version of the DDSCAT code. The number of
the constituent grains was set to either N ¼ 170 or 8 and the size parameter x0 of the
grains, which is defined as x0 ¼ 2pa0=k, ranged from x0 ¼ 0:19 to 0.57 for N ¼
170 and x0 ¼ 0:6�1:8 for N ¼ 8. The intensity of light scattered by agglomerates
shows an enhancement toward forward scattering that is characteristic of large
particles, but agglomerates do not display undulations in its angular dependence as
opposed to spheres of similar geometrical cross sections. Interestingly, the angular
dependence of linear polarization is well characterized by the size of constituent
grains in agglomerates, rather than the overall size of the agglomerates.

Kozasa et al. (1992), (1993) intensively studied light-scattering properties of
BPCA (D ≈ 3) and BCCA (D ≈ 2) particles consisting of tiny constituent grains
with a0 ¼ 0:01 lm. They implemented DDA computations using the DDSCAT code
(ver. 4a) along with the DGF/VIEF method for the determination of dipole polar-
izability. Kozasa et al. (1992) presented the dependences of absorption and scat-
tering cross sections and asymmetry parameter on wavelength, while Kozasa et al.
(1993) considered the dependences of intensity and linear polarization on scattering
angle for silicate and magnetite agglomerates at various numbers of the constituent
grains up to N ¼ 4096. They also investigated the validities of empirical formulas
as well as the Maxwell Garnett mixing rule for the light-scattering properties of the
agglomerates. Although the size of their constituent grains at a wavelength k ¼
0:6 lm lies in the Rayleigh scattering regime (x0 ¼ 0:1), their results for BPCA
(D ≈ 3) particles revealed that the maximum degree of linear polarization decreases
with the number of constituent grains. Consequently, we may expect that the degree
of linear polarization strongly depends on the size of constituent grains, but to a
lesser degree the apparent size of agglomerates.

Lumme et al. (1997) provided a survey of light-scattering properties with
agglomerates of submicron spherical constituent grains relevant to primitive dust
particles in planetary systems. They accomplished the survey using their own DDA
code with icy and silicate agglomerates consisting of N ¼ 200 spherical grains. The
size parameter x0 of constituent grains was assumed to be x0 ¼ 1:2 or 1.9, which
corresponds to submicron constituent grains in the visible wavelength range. The
arrangement of the spheres in an agglomerate follows either the DLA process or a
removal of spheres from a maximum packed cluster of spheres. The a1-term method
was applied to determine the dipole polarizability, although the polarizability was
truncated to the first three terms in the expansion of the a1-term with respect to the
size parameter of the dipoles. Their results show no clear difference in the intensity
between ice and silicate agglomerates, but otherwise they provide a supplement to
the results by West (1991). They suggested that the DDA and the TMM should be
combined with ray-tracing techniques if one considers a broad range of agglomerate
sizes.
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Xing and Hanner (1997) considered agglomerates of tetrahedral constituent
grains as well as those of spherical constituent grains in order to study the effect of
grain’s shapes on the angular dependences of intensity and polarization at
k ¼ 0:6 lm. Their numerical simulations were performed using the DDSCAT code
(ver. 4b) with the LDR method for the determination of dipole polarizabilities.
Agglomerates of glassy carbon were assumed to consist of N = 4 or 10 grains with
a radius of a0 ¼ 0:25 or 0:5 lm, which are either touching, overlapping, or sepa-
rated, while silicate agglomerates were assumed to consist of 10 touching tetra-
hedral grains with a0 ¼ 0:25 lm. In comparison to the degree of linear polarization,
the angular dependence of intensity showed less variations with the size and shape
of the agglomerates and the shape of the grains. Although they concluded that a
mixture of carbon and silicate agglomerates represents cometary dust, the presence
of ripples in the angular dependences of intensity and polarization has not been
detected by observations to date.

Levasseur-Regourd et al. (1997) computed the angular dependences of intensity
and linear polarization for BPCA (D ≈ 3) and BCCA (D ≈ 2) particles of spherical
constituent grains at k ¼ 0:62 lm. They employed the DDSCAT code (ver. 4b) with
presumably the LDR method to compute the light-scattering properties of the
agglomerates. The number of constituent grains was fixed to N ¼ 512, but the size
of the agglomerates lay in the range from xv ¼ 0:90 to 6.02, in other words,
x0 ¼ 0:11�0:75. Because the angular dependences of intensity and polarization for
BPCA particles exhibit ripples at xv > 2 regardless of the refractive index, they
concluded that primitive dust particles in the Solar System are agglomerates with
D * 2. On the one hand, we are unable to agree with their conclusion, since their
results have not been reproduced by any of the later studies with BPCA particles at
xv [ 2 (cf. Kimura 2001; Kimura et al. 2003c, 2006; Bertini et al. 2007;
Kolokolova and Mackowski 2012). On the other hand, we notice that compact
agglomerates at xv [ 2 may exhibit ripples in their angular dependences of intensity
and polarization if their constituent grains are located on a periodic lattice or
distributed in a more symmetric manner (cf. Petrova et al. 2000, 2001a; Kolokolova
and Mackowski 2012). It is most likely that their computations were performed
with fast Fourier transform methods that require dipoles to be located on a periodic
lattice (see Draine and Flatau 1994). Because constituent grains were replaced by
single dipoles in their computations, we cannot help wondering whether the ripples
resulted from the displacement of constituent grains on a periodic lattice.

To better understand optical observations of zodiacal light at small phase angles,
Nakamura and Okamoto (1999) studied the angular dependences of intensity and
polarization for BPCA (D ≈ 3) particles consisting of spherical silicate grains. They used
the DDSCAT code (ver. 4a) with the a1-term method by assuming a0 ¼ 0:03 lm at
k ¼ 0:5 lmso that x0\1. Their results revealed that the gegenschein and the negative
branch of linear polarization are insensitive to the number of constituent grains, which
lay in the range from N ¼ 8000 ðav ¼ 0:6 lmÞ to N ¼ 27; 000ðav ¼ 0:9 lmÞ. They
attributed quantitative disagreements between their numerical results and zodiacal
light observations to the size and shape of the constituent grains. However, for a
quantitative discussion on a model of zodiacal light, one should integrate light
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scattered by agglomerates along the line of sight. Furthermore, it is clear that large
agglomerates (av � 9 lm) are required to model the strong forward scattering of
zodiacal light.

Kimura (2001) investigated intensively how the angular dependences of inten-
sity and linear polarization for fractal agglomerates of spherical constituent grains
depend on the grain size at a wavelength k ¼ 0:6 lm. The radius of constituent
grains lay in the range of a0 ¼ 0:01�0:15 lm (x0 ¼ 0:10�1:57) and the configu-
ration of the grains was determined by either the BPCA (D ≈ 3) or the BCCA
(D ≈ 2) process. The DDSCAT code (ver. 4a) with the a1-term method and the
scsmtm1 code were applied to agglomerates of up to 8192 grains with
a0 ¼ 0:01 lm, 512, grains with a0 ¼ 0:07 lm, and 256 grains with a0 ¼ 0:15 lm. It
turned out that the morphology of agglomerates is of importance for the smallest
grains with a0 ¼ 0:01 lm, but otherwise the angular dependences of intensity and
linear polarization are independent of coagulation process. A comparison of the
results between silicate and carbon agglomerates indicates that the composition of
the constituent grains strongly affects the optical properties of agglomerates with
a0 ¼ 0:15 lm (x0 ¼ 1:57) as opposed to the comparison between ice and silicate
agglomerates studied by Lumme et al. (1997). Interestingly, the degree of linear
polarization becomes negative at backscattering not only for silicate agglomerates
but also for carbon agglomerates if x0 � 1 and xv�1 (see Fig. 7). This result shed
new light on the presence of the negative polarization branch at small phase angles
for primitive dust particles whose geometric albedo is very small.

Petrova et al. (2000), (2001a) used the scsmtm1 code to study the optical
properties of silicate agglomerates consisting of spherical grains that were arranged
in a tetrahedral or cubic lattice. The size parameter of the constituent grains lies in
the range of x0 ¼ 0:7�2:5, which corresponds to a0 ¼ 0:07�0:25 lm at a wave-
length of k ¼ 0:63 lm and a0 ¼ 0:06�0:21 lm at k ¼ 0:54 lm. A special feature
of their work is that a size distribution of the agglomerates was taken into con-
sideration, although their agglomerates were composed of only 1–43 grains. They
claim that the intensity and the polarization of their agglomerates and cometary dust
are similar with respect to their angular dependences, if the grain radius lies in the
range of x0 ¼ 1:3�1:65. As the authors noticed, however, their results on the
intensity and the polarization do not provide conclusive evidence for their wave-
length dependences, owing to a lack of large agglomerates in their models.

Petrova et al. (2004) extended their study on angular dependences of intensity
and polarization to larger silicate agglomerates of 12–150 constituent grains. They
used BPCA and DLA particles consisting of spherical grains with a0 � 0:1 lm and
considered a power-law size distribution of the particles with the power of −3. The
agglomerates were constructed on the assumption that the constituent grains hit and
stick on contact only if the grains have two or more contacts. Although the
agglomerates were still small, they were characterized by a fractal dimension
D ≈ 2–3 and a porosity p � 0:95�0:63. Their results show that the degree of the
maximum polarization is higher and the scattering angle of the maximum polar-
ization is larger than observed for comets. They attributed the discrepancies
between their model results and observations to insufficiency of the number of
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Fig. 7 The dependences of intensity S11 and linear polarization �S12=S11 on scattering angle at a
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grains (upper panels) and carbon grains (lower panels) with a0 ¼ 0:07 lm. Also plotted as
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constituent grains, but part of the discrepancies most likely resulted from low
refractive indices assumed in their paper.

It is worth noting that the dependences of geometric albedo and linear polar-
ization on scattering angle and wavelength for cometary dust show common
characteristics among a variety of comets (Gustafson and Kolokolova 1999).
Kimura et al. (2003c) succeeded for the first time in qualitatively reproducing all the
common characteristics of cometary dust simultaneously using BPCA (D ≈ 3) and
BCCA (D ≈ 2) particles of optically dark submicron constituent grains (see Fig. 8).
The authors first determined the average refractive indices of the constituent grains
by applying the Maxwell Garnett mixing rule to a mixture of silicate, iron, organic
refractory, and amorphous carbon. The volume fractions of these substances were
derived from the elemental abundances of dust in comet 1P/Halley that were
measured in situ by PUMA-1 onboard VeGa 1 (see Jessberger et al. 1988, for the
elemental abundances). The average refractive indices were then used for their
numerical computations with the scsmtm1 code for agglomerates of identical
spherical constituent grains with a0 ¼ 0:1 lm. Their results did not show a clear
dependence on the structure of agglomerates between the BPCA and BCCA pro-
cesses nor the number of constituent grains. Therefore, their success in reproducing
the common characteristics can be attributed to the use of optically dark material,
which is expected from the composition of cometary dust (see also Mann et al.
2004; Kolokolova et al. 2005). In conclusion, the presence of common

0.01

0.1

1

10

100

A
p

180120600

α (deg)

1.0

0.8

0.6

0.4

0.2

0.0

P

10-14

10-13

10-12

10-11

10-10

S
11 /k

2 (m
2)

0.01

0.00

P

100
α

BCCA
N=64

0.01

0.1

1

10

100

A
p

180120600

α (deg)

1.0

0.8

0.6

0.4

0.2

0.0

P

10-14

10-13

10-12

10-11

10-10

S
11 /k

2 (m
2)

0.010

0.000

P

100
α

BCCA
N=128

0.01

0.1

1

10

100

A
p

180120600

α (deg)

1.0

0.8

0.6

0.4

0.2

0.0

P

10-14

10-13

10-12

10-11

10-10

S
11 /k

2 (m
2)

0.01

0.00

P

100
α

BCCA
N=256

Fig. 8 The geometric albedo Ap and linear polarization P of BCCA (D ≈ 2) particles consisting
of monodisperse spherical grains as a function of phase angle α. The constituent grains have a
radius a0 ¼ 0:1 lm and a composition inferred from the elemental abundances measured for comet
1P/Halley. Solid lines and dotted ones are the corresponding values at a wavelength k ¼ 0:45 lm
and k ¼ 0:60lm, respectively. From Kimura et al. (2003c)

378 H. Kimura et al.



light-scattering characteristics in cometary dust reflects the fact that comets formed
out of the same protoplanetary disk materials with the solar composition.

Kimura et al. (2006) have thoroughly explored which size, number, composition,
and configuration of constituent grains reproduce the common light-scattering
characteristics of cometary dust. The authors applied the scsmtm1 code to
numerical simulation of light scattering by BPCA (D ≈ 3) and BCCA (D ≈ 2)
particles of up to 256 spherical constituent grains. Their numerical results were used
to place constraints on the size and composition of constituent grains, confirming
the successful model of Kimura et al. (2003c) based on the properties of CP IDPs
and dust in comet 1P/Halley. The contribution of amorphous carbon to the results is
so significant that the common light-scattering characteristics of cometary dust
could be reproduced even by agglomerates without organic materials, in particular,
agglomerates of amorphous carbon. It turned out that the size and composition of
constituent grains play a crucial role in the determination of optical properties.
Although the size and composition of constituent grains are well constrained in the
framework of the model, quantitative fits to the observed angular dependence of
polarization seem to require a larger number and non-spherical shape of constituent
grains (cf. Kimura and Mann 2004).

A similar numerical approach to constraining the morphology and composition
of cometary dust was taken by Bertini et al. (2007). They used the DDSCAT code
(ver. 5a10) presumably with the LDR method to study light scattering by BPCA
particles of up to 100 spherical particles with a0 ¼ 0:13�0:16 lm at
k ¼ 0:535; 0:6274, and 1:5 lm. They assumed the agglomerates to be composed of
silicates, organic materials, or a mixture of silicates and organic materials with
equal mass. Unfortunately, they failed to find a solution for the morphology and
composition of agglomerates that simultaneously reproduces all the common
characteristics of cometary dust. Nevertheless, they suggest that two distinct types
of linear polarization among different comets suggested by Levasseur-Regourd
et al. (1996) arise from the difference in the radius of constituent grains. However,
as discussed in Kolokolova et al. (2007), the presence of two polarimetric classes
might be artifact due to a contribution of gas emission to the continuum measured
with broadband filters.

Using the scsmtm1 code, Kolokolova and Kimura (2010) modeled cometary
dust with two types of BCCA particles consisting of 256 identical spherical grains
with a0 ¼ 0:1 lm, along with a multi-shaped, polydisperse mixture of spheroids.
The authors considered not only the elemental abundances of dust in comet
1P/Halley, but also the mineralogical classification of the dust (see Fomenkova
1999, for the classification). In the model, the agglomerates are composed of either
organic refractory material alone or a mixture of silicate, metal, organic refractory,
and amorphous carbon, and the spheroids are composed of silicate alone. The three
types of particles were intended to model organic-rich, silicate-poor particles,
organic-poor, silicate-rich particles, and compositionally intermediate particles. The
results have shown that the model is successful in reproducing all the common
characteristics of cometary dust not only qualitatively, but also quantitatively (see
Fig. 9). This might indicate that a mixture of compositionally different particles is a

Light Scattering and Thermal Emission … 379



key to the common characteristics of cometary dust, instead of large agglomerates
suggested by Kimura et al. (2006).

Moreno et al. (2007) applied the DDSCAT code (ver. 6.0) with the LDR method
to simulate light scattering by cometary dust with DLA particles (D ≈ 2.5) of up to
256 constituent grains. They assumed that either constituent grains are cubes with
the side length of 0:15 lm or they are spheres with a0 ¼ 0:075 lm. Using the same
refractive indices as Kimura et al. (2003c), their results show that the maximum
degree of linear polarization for agglomerates of cubes is lower than that for
agglomerates of spheres, while the maximum takes place at a smaller scattering
angle for cubic constituent grains than spherical ones. However, it should be noted
that the diameter of spherical constituent grains equals the side length of cubic
constituent grains, implying that the volume of the spheres is smaller than that of
the cubes. Therefore, it is not clear whether the difference in the results between
cubic constituent grains and spherical ones arises from the shape or the size of the
grains.

Lumme and Penttilä (2011) employed not only agglomerates of spherical con-
stituent grains but also those of Gaussian random constituent grains with the same
volume as the spherical grains. They used the scsmfo1b code with the OCoS
method to the agglomerates of spherical grains and the ADDA code presumably with
the LDRmethod to the agglomerates of Gaussian random grains. The morphology of
agglomerates was determined either by the BPCA process with controls on the
ballistic trajectories or by the BCCA process with an assemblage of 16 BPCA
particles at a single point. The radius, number, and composition of constituent grains

Fig. 9 The dependences of geometric albedo Ap and linear polarization P on phase angle α for a
mixture of BCCA (D ≈ 2) particles consisting of N ¼ 256 spherical grains with a0 ¼ 0:1lm and
compact spheroidal particles with a power-law size distribution. Dotted lines and solid ones are the
corresponding values at wavelengths k ¼ 0:45lm and k ¼ 0:60lm, respectively. The agglom-
erates are either an admixture of silicates, metals, and carbonaceous materials, or pure organic
refractory material, while the spheroids are pure silicates. From Kolokolova and Kimura (2010)
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lay in the range of 0:05� a0 � 0:25 lm (0:5� x0 � 2:5), 128�N� 512, and ice to
silicate, respectively. Both the constituent grains and the agglomerates were assumed
to either be monodisperse or have a size distribution. A comparison of the results
between agglomerates of spherical constituent grains and those of Gaussian random
constituent grains shows similar angular dependences of intensity and polarization,
although there are noticeable differences in their magnitudes. They claim the pres-
ence of a strong correlation between the real part and the imaginary part of refractive
index that results in almost the same angular dependences of intensity and polar-
ization. If this correlation is universal, then any attempts to fit observational data
without the geometric albedo will not provide a unique solution.

Zubko et al. (2011), (2012), (2013), (2014) consider cometary dust as
agglomerates of irregularly shaped polydisperse constituent grains, along with a
power-law size distribution of the agglomerates (see also Zubko 2012, 2013). They
apply the DDA with the LDR method to solve light-scattering problems using their
own code ZDD, instead of the publicly available DDSCAT and ADDA codes (Penttilä
et al. 2007; Zubko et al. 2010). The main problem of their approach is how the size
distribution of the agglomerates was achieved, since they used the same agglom-
erates to scale larger and smaller sizes of agglomerates. Namely, the larger is the
agglomerate, the larger are its “constituent grains,” but in all other respects all the
agglomerates are identical to one another. In reality, larger agglomerates have
beyond a shadow of doubt a larger number of constituent grains, not the larger size
of the grains.

Lasue and Levasseur-Regourd (2006) presented their numerical simulations on
light scattering by BPCA (D ≈ 3) and BCCA (D ≈ 2) particles of up to 128 spheres
or prolate spheroids with the axis ratio of two. The constituent grains have a radius
of a0 ¼ 0:1 lm and consist of pure silicate, pure organics, or a mixture of silicate in
the core and organics in the mantle. Their computational results with the DDSCAT
code (ver. 5a10) presumably with the LDR method showed a great similarity in the
optical properties of agglomerates between the organic-coated silicate constituent
grains and the pure organic ones. The paper also provides a model of fractal
agglomerates with a size distribution that fits the observational data on the angular
dependence of linear polarization for comet C/1995 O1 (Hale–Bopp). Despite the
best fit to the observed polarization in the range of phase angles from 0° to 50°, the
geometric albedo of the agglomerates seems to be higher than observed.

Lasue et al. (2009) extended their light-scattering modeling of cometary dust
using agglomerates of up to N ¼ 256 constituent grains of a0 ¼ 0:1 lm and fitting
to the polarimetric data for both comets C/1995 O1 (Hale–Bopp) and 1P/Halley.
They used the DDSCAT code (ver. 6.1) presumably with the LDR method for their
numerical simulations with agglomerates of spherical or spheroidal constituent
grains. Although they obtained a good fit to the angular dependence of linear
polarization for comet Hale–Bopp using a mixture of agglomerates and compact
spheroids, they failed to reach the observed values of negative polarization for
comet 1P/Halley. It is unfortunate that this study provides no clue about the geo-
metric albedo nor the color of their agglomerates and that the size of the constituent
grains is scaled to represent the size distribution of the agglomerates.
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Golimowski et al. (2006) presented multiband coronagraphic images of the
debris disk around the A-type star b Pictoris. They modeled the observed red colors
of the disk using light-scattering properties of porous agglomerates computed by
Wolff et al. (1998) and Voshchinnikov et al. (2005). On the one hand, Wolff et al.
(1998) used the DDSCAT code (ver. 4c) with the LDR method for agglomerates
consisting of pure silicate grains encased in a spherical volume with 60 % of
vacuum. On the other hand, Voshchinnikov et al. (2005) used the DDSCAT code
(ver. 6.0) with the LDR method for agglomerates consisting of silicate grains and
graphite grains half and half encased in a spherical volume with 33 or 90 % of
vacuum. Golimowski et al. (2006) reconciled model results with the observed color
of the disk except for highly porous agglomerates consisting of silicate grains and
graphite grains. It should be, however, noted that the observed red color does not
refute a predominance of highly porous agglomerates in the disk, because fractal
agglomerates of submicron constituent grains with a rocky core and a carbonaceous
mantle exhibit red colors (cf. Kimura et al. 2003c, 2006).

Graham et al. (2007) derived the phase function and polarization of dust particles
in the debris disk of the young (12 Myr) nearby M-type star AU Microscopii as a
function of scattering angle from optical measurements by the Hubble Space
Telescope. The scattering-angle dependences of phase function and polarization
were compared to light-scattering properties of porous spheres and those of
agglomerates computed by Petrova et al. (2000) and Kimura et al. (2006). It turned
out that the phase function and the polarization are better reproduced by the optical
properties of BPCA particles consisting of 128 silicate grains with x0 ¼ 0:9. The
color of silicate BPCA particles is blue in the visible wavelength range, which
agrees with the observed color of the AU Mic debris disk (cf. Krist et al. 2005).
These results are entirely consistent with a picture that dust particles in the AU Mic
disk originate from planetesimals, similar to asteroids in the Solar System.

The debris disk of the nearby young (8 Myr) A-type star HR 4796A appears
to be a circumstellar dust ring around 70 au from the central star (Schneider et al.
1999). The ring with a red color in the visible and a gray color in the
near-infrared wavelength range led Debes et al. (2008) to argue for the presence
of complex organic materials like Titan’s tholins. In contrast, Köhler et al.
(2008) modeled the visible to near-infrared spectrum of the ring with porous
agglomerates of amorphous silicate, amorphous carbon, and water ice. They
considered that spherical constituent grains of a0 ¼ 0:1 lm coagulated into
agglomerates with a porosity p ¼ 0:73. They used the so-called Henyey–Greenstein
phase function, which is an analytic function specified by the single-scattering
albedo and the asymmetry parameter (Henyey and Greenstein 1941). The
single-scattering albedo and the asymmetry parameter of the porous agglomerates
were computed by the Bruggeman mixing rule. It should be noted that the
Bruggeman mixing rule does not properly describe the light-scattering properties of
agglomerates, because it ignores the interaction between constituent grains which
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plays a vital role in light scattering (cf. Kimura and Mann 2004; Kolokolova and
Kimura 2010b).

Shen et al. (2009) studied light-scattering properties of BPCA particles with
different degrees of restructuring and applied their results to the AU Mic debris disk
and cometary comae. The agglomerates were composed either of silicate alone or a
mixture of silicate and graphite in equal volumes, although both the compositions
are inconsistent with our current understandings of cometary dust. The number and
radius of spherical constituent grains were considered to lie in the range of N ¼
32�1024 and a0 ¼ 0:0143�0:16 lm. The DDSCAT code (ver. 7.0) was used along
with the “modefied” LDR method, in which Gutkowicz-Krusin and Draine (2004)
corrected a subtle error in the LDR determined by Draine and Goodman (1993).
Contrary to previous studies, the computational results at k ¼ 0:1�3:981 lm have
shown that the size of constituent grains does not play a vital role in the
light-scattering properties of agglomerates, if the mass and porosity of agglomerates
are fixed. However, the results in Kimura (2001) reveal that light-scattering prop-
erties of agglomerates vary with the size of constituent grains, even if the mass and
porosity of agglomerates are fixed. Therefore, the agglomerates used in Shen et al.
(2009) might be so dense that their light-scattering properties represent those of
porous spheres than those of fluffy agglomerates.

Kolokolova and Mackowski (2012) used the MSTM code (ver. 3.0) to intensively
study linear polarization of light scattered by agglomerates of N ¼ 1024 spherical
constituent grains with a0 ¼ 0:1 lm. They have shown how the porosity and the
overall size of agglomerates can be constrained by spectroscopic observations of
linear polarization from the visible to the near-infrared wavelength range.
Regardless of the wavelength, the refractive index was fixed at the value that was
suggested for cometary dust at k ¼ 0:45 lm by Kimura et al. (2003c). As
demonstrated in Fig. 10, misleading numerical results on the degree of linear
polarization might arise from an artificial configuration of constituent grains.
Consequently, it is essential for a correct understanding of light scattering by
primitive dust particles in planetary system to properly model dust agglomerates
based on their formation mechanisms.

Videen and Muinonen (2015) applied a radiative transfer technique with
coherent backscattering to compute light scattering by sparse agglomerates of
identical spherical constituent grains whose positions were chosen randomly and
uniformly within a spherical volume. They considered two porosities of 0.94 and
0.97, and assumed the constituent grains to have a size parameter x0 ¼ 1:76 and be
nonabsorbing. To our knowledge, this is the first study that was successful in
computing light scattering by large agglomerates of N� 3� 108 despite the fact
that the assumption of nonabsorbing material is inappropriate for primitive dust
particles in planetary systems. However, their computations show highly unrealistic
phase functions where the forward-scattering peak does not appear for large
agglomerates of N[ 105. It is unfortunate that the effects of diffraction, which
dominate the forward-scattering region, have not been incorporated in their model.
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4.2 Multiple Scattering

Multiple scattering may be of crucial importance in the vicinity of a source region
(e.g., a comet nucleus) where dust particles are released from their parent bodies as
well as on the surface (e.g., a regolith layer) of their parent bodies. Impacts of
micrometeoroids onto the surfaces of asteroids are common phenomena that pro-
duce not only regolith particles but also impact craters and ejecta curtains. Dusty
ejecta clouds in Saturn’s rings produced by impacts of meteoroids onto the rings
have been imaged by Cassini’s Imaging Science Subsystem (Tiscareno et al. 2013).
NASA’s Deep Impact mission excavated the surface of comet 9P/Tempel 1 by an
artificial impactor to produce an impact crater on the comet as well as an ejecta
curtain (A’Hearn et al. 2005). A similar impact experiment and a subsequent
imaging observation of an ejecta curtain are planed on asteroid 1999JU3 by the
Japanese Hayabusa-2 mission (Arakawa et al. 2013). Recently, radiative transfer
computations to model such an ejecta curtain have been performed with assump-
tions about the phase function, single-scattering albedo, and asymmetry parameter
of the ejecta particles (cf. Nagdimunov et al. 2014; Shalima et al. 2015).

Nagdimunov et al. (2014) have succeeded in modeling both an optically thick
ejecta plume and its shadow on the surface of comet 9P/Tempel 1 produced and
imaged by the Deep Impact mission (see Fig. 11). They considered the ejecta

Fig. 10 The degree of linear polarization P as a function of phase angle α for BPCA (D ≈ 3)
particles consisting of N ¼ 1024 spherical grains with a0 ¼ 0:1 lm (upper panel) and
equi-dimensional agglomerates consisting of N ¼ 1024 spherical grains with a0 ¼ 0:1lm
randomly distributed in a spherical volume with equal porosity (lower panel) at wavelengths
k ¼ 0:6 lm, 1:1 lm, 2:2 lm, 4:4 lm, and 6:0 lm (from left to right). From Kolokolova and
Mackowski (2012)
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particles to be porous spheres composed of ice, silicate, amorphous carbon, organic
refractory, and “vacuum” materials. The porous spheres were used to simulate
light-scattering properties of fluffy agglomerates with a wide size range in the
framework of EMAs. They used the Maxwell Garnet mixing rule to compute the
single-scattering albedo, asymmetry parameter, and extinction cross section of the
agglomerates at a wavelength k ¼ 0:65 lm. However, they adopted the Henyey–
Greenstein phase function to determine the scattering angles of photons proba-
bilistically along the path of the photons in their radiative transfer computations.
Because the single-scattering albedo and the asymmetry parameter are associated
with the phase function of porous agglomerates based on the Maxwell Garnett
mixing rule, the use of the Henyey–Greenstein phase function is self-contradictory.
It is, therefore, unfortunate that the optical properties of dust agglomerates have not
yet been incorporated into available radiative transfer modelings for ejecta curtains
in a self-consistent way.

To simulate light scattering by a regolith layer on the surface of asteroids,
Petrova et al. (2001b) solved the radiative transfer equation along with the optical
properties of agglomerates that were computed by Petrova et al. (2001a). The
agglomerates were assumed to have a power-law size distribution and consist of
N ¼ 8�43 spherical grains with x0 ¼ 1:50 or 1.65. The optical depth s of a
plane-parallel regolith layer, in which agglomerates were embedded, lay in the
range of s ¼ 0:2�50. Their results have shown that the absolute value of the degree
of linear polarization tends to decrease with s in all scattering angles, although the
results at s[ 10 merge into a single curve. It turned out that the negative and
positive branches of linear polarization become shallower and higher as the

Fig. 11 The real image of the ejecta plume from the surface of comet 9P/Tempel 1 and its shadow
on the surface taken by the Deep Impact High-Resolution Instrument (left) and the simulated
image of the ejecta plume and its shadow computed by radiative transfer computations (right).
From Nagdimunov et al. (2014)
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imaginary part of refractive index decreases. Their results may serve as an expla-
nation for polarimetric observations of asteroids, in which S-type asteroids show a
shallower negative branch and a higher positive branch, compared to C-type
asteroids.

5 Thermal Emission from Dust Agglomerates

5.1 Spectral Energy Distribution

One of the primary observational data available to constrain the physics of primitive
dust particles in planetary systems is its spectral energy distribution (SED) con-
structed using broadband photometric measurements from mid-infrared to mil-
limeter wavelengths. The SED is dominated by silicate features in the mid-infrared
wavelength range from 10 up to 70 μm and provides basic constraints on the dust
temperature and optical properties. There is generally no unique solution to SED
fitting problems owing in particular to the degeneracies between the optical prop-
erties of dust particles and the disk geometry. For example, dust particles in the
vicinity of the central star are hotter than the particles of the same size and com-
position located far from the star, while small opaque particles are hotter than larger
ones at the same distance from the star and large transparent particles are hotter than
smaller ones at the same distance.

Li and Greenberg (1998) reproduced the 10 lm silicate emission and the SED of
the dust disk around b Pic using a model of very porous agglomerates, similar to
cometary dust. They applied the Maxwell Garnett mixing rule to the computations
of the SED from agglomerates of crystalline silicate constituent grains as well as
agglomerates of constituent grains with an amorphous silicate core and an organic
refractory mantle. Furthermore, H2O ice was considered to encase the silicate core,
organic mantle grains in the outer cold region of the disk (r� 100 au). They were
able to place a tight constraint on the porosity of the agglomerates being approx-
imately p ¼ 0:95 or as high as p ¼ 0:975. Such highly porous agglomerates have
also been successful in fitting the SEDs of dust rings around the A-type star HR
4796A, which is depicted in Fig. 12 and the K-type star � Eridani (Köhler et al.
2008; Li and Lunine 2003; Li et al. 2003). Therefore, it seems plausible that fluffy
agglomerates may well represent primitive dust particles not only in the Solar
System but also in debris disks.

In a similar approach, Augereau et al. (1999) modeled the HR 4796A debris disk
with two distinct populations of dust agglomerates consisting of small grains with a
silicate core and an organic mantle. More precisely, agglomerates with a porosity of
p� 0:6 in a cold annulus around 70 au from the star contain amorphous silicate
grains and have sizes of ac [ 10 lm, while agglomerates with a higher porosity of
p� 0:97 in a warm annulus at about 9 au contain crystalline silicate grains. They
used the Maxwell Garnett mixing rule to compute scattering and absorption cross
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sections and the asymmetry parameter of the agglomerates, but the Henyey–
Greenstein phase function to simulate the scattered light images. Although the phase
function determined by the Maxwell Garnett mixing rule was dismissed, the
simultaneous use of the Henyey–Greenstein phase function with the other quantities
determined by the Maxwell Garnett mixing rule makes the model not
self-consistent.

The young (20 Myr) F-type star HD 181327 was observed by the Herschel Space
Observatory in the far-infrared to submillimeter domain providing a detailed coverage
of the SED from its cold dust belt (Lebreton et al. 2012, 2014). A simulation of the
SED using the Bruggeman mixing rule demonstrated that agglomerates in the dust belt
contain 67	 7% of ice and are characterized by the porosity p ¼ 0:63	 0:21, if the
ice is mixed with 2/3 of silicate and 1/3 of amorphous carbon (see Fig. 13).
However, Lebreton et al. (2012) recognized that the resulting asymmetry parameter
of the agglomerates from the Bruggeman mixing rule is significantly different from
the asymmetry parameter determined by a model of scattered light images with the
Henyey–Greenstein phase function. While the Henyey–Greenstein phase function
does not describe well the phase function of fluffy agglomerates, an estimate of the
asymmetry parameter for fluffy agglomerates of submicron constituent grains goes
beyond the applicability of the Bruggeman mixing rule.

The same approach was applied to the 30-Myr-old A-type star HD 32297 by
Donaldson et al. (2013) who have shown that this system contains fluffy agglom-
erates with p ¼ 0:9. The agglomerates were modeled as a mixture of ices, silicate,
and carbon with the volume fraction of 1/2, 1/6, and 1/3, respectively, which

Fig. 12 Comparison of the
observed infrared emission of
the HR 4796A debris disk to
the model spectra calculated
from the so-called porous dust
model of Li and Greenberg
(1998), in which the
constituent grains of an
agglomerate are composed of
amorphous silicate,
carbonaceous material, and
ice. From Köhler et al. (2008)
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resembles dust in comet 1P/Halley. However, Rodigas et al. (2014) have shown that
this cometary dust model fails to reproduce the surface brightness of the disk in the
near-infrared wavelength range. The cometary dust model predicts a blue color of
the disk in the near-infrared, but the observed brightness of the disk is gray in this
wavelength range. It turned out that the near-infrared spectrum of the HD 32297
debris disk is better reproduced by compact (p ¼ 0) pure water ice particles, as far
as the near-infrared wavelength range is concerned. This is a typical example of
how SED fitting models encounter difficulties in providing a warranty for the
uniqueness of solutions to the SED fitting problems.

To model the SED of the debris disk around AU Mic from near-infrared to
millimeter wavelengths, Fitzgerald et al. (2007) used a Monte Carlo radiative
transfer code, which relies on the optical properties of spheres calculated by the
Mie theory. Unfortunately, we cannot figure out the reason that such an optically
thin debris disk was modeled with the radiative transfer code developed by Pinte
et al. (2006) for optically thick protoplanetary disks. According to a model of
interstellar dust by Mathis and Whiffen (1989), they assumed porous agglomer-
ates whose constituent grains are composed of silicate, carbon, ices, or “vacuum”
and used the refractive indices of the mixture derived from the Bruggeman mixing
rule. They also modeled the dependences of intensity and polarization on pro-
jected distance from the central star and rejected a model of compact particles.
Furthermore, they emphasized the importance of polarimetric data to constrain the
composition and distribution of dust particles, but we do not expect that the
application of an EMA to agglomerates provides correct understandings for the
degree of linear polarization.

Fig. 13 The spectral energy distribution (SED) of the debris disk around HD 181327 constructed
by photometric data (red crosses with error bars) as well as model SEDs. The best SED fit is
achieved by a model of dust agglomerates that are composed of amorphous silicate, carbonaceous
material, and ice, while a model without ice or porosity fails to reproduce the observed SED. From
Lebreton et al. (2014)
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5.2 Characteristic Features of Minerals

When high-resolution spectra are obtained in the infrared wavelength range, con-
spicuous emission feature characteristic of a certain mineral may appear in the
spectra. The central wavelength of emission features in the infrared spectra of dust
particles is diagnostic of mineral species that are contained in the particles. The
most common mineral in primitive dust particles in planetary systems is
magnesium-rich olivine, in particular, forsterite, which shows a prominent peak
around k ¼ 11:2 lm (e.g., Campins and Ryan 1989; Knacke et al. 1993). Prominent
spectral features of forsterite in primitive dust particles appear not only in the 10 lm
wavelength range, but also in the 20–30 μm range (see Fig. 14). A direct link
between infrared spectral features and minerals has been confirmed by miner-
alogical analyses and infrared spectra of CP IDPs (Brunetto et al. 2011).

Hage and Greenberg (1990) used the Maxwell Garnett mixing rule to compute
mid-infrared spectra of fluffy agglomerates consisting of cubical-shaped grains,
which are randomly distributed in the agglomerates. They considered agglomerates

Fig. 14 The spectral energy distribution of the β Pic debris disk and its Spitzer/IRS spectrum (red
line). In addition to the 10lm amorphous silicate feature and the 11:2lm crystalline silicate
feature, the 28 and 33:5 lm crystalline silicate features are also prominent in the Spitzer/IRS
spectrum. Also shown is the dust infrared emission calculated from the porous dust model of Li
and Greenberg (1998). From Chen et al. (2007)
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of 1000–8000 cubical identical homogeneous grains in terms of their size, com-
position, and orientation. In comparison with the DGF/VIEF method of the DDA,
they examined the validity of the Maxwell Garnett mixing rule, in which the
porosity was defined by the fractional volume of vacuum within the smallest
convex volume encasing the agglomerates. They concluded that the porosity of
agglomerates in the coma of comet 1P/Halley exceeds 0.97 if agglomerates of
av ¼ 10 lm contribute to the mid-infrared silicate feature. However, they modeled
the 10 lm feature with amorphous silicate, while the silicate emission band
observed for comet 1P/Halley indicates that the silicates are crystalline (Bregman
et al. 1987). Therefore, their study cannot be used to provide conclusive constraints
on the porosity of dust agglomerates in the coma of comet 1P/Halley.

Okamoto et al. (1994) studied the dependences of infrared spectra for fractal
agglomerates on the porosity of the agglomerates and the number of their con-
stituent grains. They applied the Maxwell Garnett mixing rule to calculations of
absorption cross sections for agglomerates consisting of spherical grains with
a0 ¼ 0:01 lm. On the one hand, the infrared spectral features of olivine become
weak for large agglomerates with ac [ 10 lm if the agglomerates are relatively
compact (D * 3). On the other hand, the olivine features remain noticeable even
for large agglomerates with ac [ 10 lm, if the agglomerates are fluffy (D * 2).
This indicates that the size distribution of agglomerates does not influence their
infrared spectra, if the agglomerates underwent the growth by the BCCA process
because of D ≈ 2. Therefore, if comets do not exhibit any silicate emission features
in their infrared spectra, we may expect that their comae are dominated by large
agglomerates of ac [ 10 lm with a relatively compact structure.

Nakamura (1998) attempted to model the characteristic features of olivine in the
mid-infrared spectra of the b Pic debris disk using BPCA (D * 3) particles of
N = 27,000 spherical constituent grains. He assumed the agglomerates to consist of
olivine grains and graphite grains half and half with either a0 ¼ 0:2 lm or
a0 ¼ 0:5 lm. The DDSCAT code (ver. 4a) with the a1-term method was used to
compute the wavelength dependence of absorption cross section for the agglom-
erates. The olivine features appear around k ¼ 10 and 11 lm for agglomerates with
a0 ¼ 0:2 lm (av ¼ 6 lm), while the features are weak for those with a0 ¼ 0:5 lm
(av ¼ 15 lm). However, Golimowski et al. (2006) claim that agglomerates con-
sisting of silicate grains and graphite grains present neutral colors, contrary to red
colors observed for the b Pic debris disk. Therefore, there is a room for improve-
ment in modeling of dust particles in the debris disk around b Pic by viewing the
observational evidence from various angles.

Kolokolova et al. (2007) considered the evolution of dust mantles on the surface
of comets based on the infrared spectra for BPCA (D ≈ 3) and BCCA (D ≈ 2)
particles consisting of spherical grains with a0 ¼ 0:1 lm computed by the Maxwell
Garnett mixing rule. The validity of the Maxwell Garnett mixing rule has been
confirmed with the scsmtm1 code at N ¼ 1024 and the DDSCAT code (ver. 4a)
with the a1-term method at N = 32,768. Their results have also shown that olivine
features in the infrared spectra of fractal agglomerates disappear at N[ 220
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(ac [ 19 lm) for BPCA particles of submicron constituent grains (see Fig. 15). The
mid-infrared spectral features of olivine are less pronounced for short-period comets
with small semi-major axes than those with large semi-major axes (Kolokolova
et al. 2007). This implies that short-period comets with small semi-major axes have
more compact agglomerates on their surfaces than those with large semi-major
axes. This is consistent with the picture of dust mantle formation on the surface of
comets, which is characterized by a deficit of highly porous agglomerates on the
surface of cometary nuclei due to longer or stronger solar irradiation.

Yamamoto et al. (2008) used fractal agglomerates to interpret the strength of a
silicate emission feature as well as the color temperature observed for the ejecta of
comet 9P/Tempel 1 during the Deep Impact mission. By taking into account the
formation and evolution of dust mantles on comets, they assumed that the dust
mantle of the comet consists of agglomerates with D = 2.5 and the interior of the
comet consists of agglomerates with D = 1.9. They used the Maxwell Garnett
mixing rule to compute the infrared spectra for the agglomerates whose spherical
constituent grains of a0 ¼ 0:1 lm have a structure of a forsterite and amorphous
silicate core and an organic refractory mantle. Their success in modeling the
infrared spectroscopic observation of the ejecta from comet 9P/Tempel 1 confirmed
that the surface layer of periodic comets has been processed and does not maintain
their primordial structures and compositions (cf. Kolokolova et al. 2007).

It is well known that the position of any emission feature characteristic of a
certain mineral in general depends on the shape of the mineral grains (e.g., Bohren
and Huffman 1983, § 12.2.7). Yanamandra-Fisher and Hanner (1999) employed the

Fig. 15 The dependences of olivine features in the infrared spectra of fractal agglomerates on the
number N of constituent grains in an agglomerate and on its structure. The solid curves, dotted
ones, and dash-dotted ones are the infrared spectral of BCCA (D ≈ 2) particles, BPCA (D ≈ 3)
particles, and compact spherical particles, respectively. From Kolokolova et al. (2007)
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DDSCAT code (ver. 4a) with the LDR method to study the effect of grain shapes on
the positions of silicate features in the infrared spectra. They considered small
agglomerates of 2–5 submicron silicate constituent grains whose shapes are either
spherical or tetrahedral. Their results show strong shape effects on the positions of
forsterite features as expected, but the shape effects are weak for infrared spectral
features of amorphous silicate. Since absorption bands take place at wavelengths
where the real part of complex dielectric function is negative, shape effects are not
important if the negative value is confined in a very narrow wavelength range.
Infrared spectral observations of comets and debris disks have shown that the
positions of forsterite features appear at similar wavelengths, irrespective of their
different circumstances (e.g., Knacke et al. 1993). Therefore, the complex dielectric
function of primitive dust particles in planetary systems most likely does not have a
deep negative value compared to pure forsterite, indicating that the particles in
planetary systems are not composed of bare mineral grains.

The presence of organic refractory material encasing mineral grains plays a vital
role in the positions of the peaks that appear in the infrared spectra (Kimura 2013).
This is known as the matrix effect, which has been experimentally proven to shift
the positions of olivine features to longer wavelengths (Day 1975; Dorschner et al.
1978). Kimura (2013) computed the infrared spectra of BCCA (D ≈ 2) particles
consisting of silicate core, organic mantle spherical grains with a0 ¼ 0:1 lm using
the Maxwell Garnett mixing rule. It turned out that the positions of olivine features
are consistent with the infrared spectra of dust in cometary comae, debris disks, and
protoplanetary disks, if the organic volume fraction fulfills the cosmic abundance
constraints (see Fig. 16). This indicates that the composition of agglomerates is not

Fig. 16 The central
wavelengths of forsterite
features in simulated infrared
spectra of BCCA (D ≈ 2)
particles versus the volume
fraction of an organic
refractory mantle that encases
a forsterite core in spherical
constituent grains.
The horizontally long shaded
area indicates the central
wavelengths of forsterite
features in observed infrared
spectra of primitive dust
particles in planetary systems.
The vertically long shaded
bar is the plausible range of
volumetric organic fraction
inferred from the cosmic
abundance constraints. From
Kimura (2013)
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completely a free parameter in modeling primitive dust particles in planetary
systems.

It is worth noting that organic refractory material could be carbonized due to the
preferential loss of hydrogen, nitrogen, and oxygen by ultraviolet irradiation and
ion bombardments (Jenniskens 1993; Jenniskens et al. 1993). Since the car-
bonization of organic refractory material changes its chemical composition, the
refractive indices of organic-rich carbonaceous material depend on the degree of
carbonization. Therefore, the degree of carbonization affects the positions of min-
eral features in the infrared spectra, if the mineral is encased in organic-rich car-
bonaceous material. Using the Maxwell Garnett mixing rule, Kimura (2014) has
studied the effect of carbonization on the infrared spectral features of olivine for
BCCA (D ≈ 2) particles of a0 ¼ 0:1 lm spherical constituent grains with a for-
sterite core and an organic-rich carbonaceous mantle (see Fig. 17). The forsterite
feature at k ¼ 11:1 lm observed in the debris disk of b Pic indicates that dust
particles in the b Pic disk did not suffer from severe carbonization, compared to
cometary dust in the Solar System. Therefore, infrared spectra of dust particles with
high spectral resolution are highly useful to diagnose the carbonization degree of
organic materials in the particles.

Infrared spectroscopic observations of comets reported on the discovery of a
9:3 lm feature in the coma of comets C/1995 O1 (Hale–Bopp), C/2001 Q4
(NEAT), and 9P/Tempel 1 (e.g., Wooden et al. 1999, 2004; Harker et al. 2007).
Although the 9:3 lm feature is not always present in the spectra, the feature has
been attributed to magnesium-rich pyroxene. Kimura et al. (2008) demonstrated
that the 9:3 lm feature could also be produced by forsterite, if amorphous silicate
constituent grains are covered by a forsterite layer encased in organic refractory
mantle (see Fig. 18). While the presence of pyroxene in primitive dust particles
could be supported by mineralogical investigation of CP IDPs, one should keep in
mind that the mineralogical identification with an infrared feature alone is not
always unique.

6 Integral Optical Quantities of Dust Agglomerates

6.1 Bolometric Albedo

The bolometric albedo of dust particles is an integrated quantity over wavelengths,
defined as the fraction of stellar luminosity scattered by the particles (Gehrz and
Ney 1992). Therefore, the SED could be used to estimate the bolometric albedo of
dust particles, when observational data on scattered light are available. The bolo-
metric albedos of dust particles in comet 1P/Halley and the debris disks of b
Pictoris, HD 207129, and HD 92945 have been determined to be 0.32, 0.35, 0.051,
and 0.10, respectively (Gehrz and Ney 1992; Backman et al. 1992; Krist et al. 2010;
Golimowski et al. 2011).
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It is sometimes claimed that numerical simulation of the SED with an EMA
predicts a much higher albedo than the bolometric albedo from the SED (Krist et al.
2010; Lebreton et al. 2012). This discrepancy has been attributed to the inappli-
cability of the EMA to properly describe the light-scattering properties of
agglomerates in planetary systems. We have no objection to the note of caution that
EMAs are not applicable to agglomerates of submicrometer-sized constituent grains
in the visible wavelength range. However, we notice that the simulated albedo is not
the bolometric albedo, but the single-scattering albedo, which is defined by the ratio
of the scattering cross section to the extinction cross section. Therefore, to the best

Fig. 17 Infrared spectra of dust agglomerates consisting of 230 submicron grains with a forsterite
core and an organic refractory mantle. The carbonization of organic refractory mantle is
characterized by 1� for where for denotes the volume fraction of organic refractory material within
the carbonaceous mantle. The shaded bars indicate the central wavelengths that have been
observed to exhibit noticeable emission features from dust particles in comets, debris disks, and
protoplanetary disks. From Kimura (2014)
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of our knowledge, there has not yet been a direct comparison of the bolometric
albedo of primitive dust particles in planetary systems between numerical simula-
tions and astronomical observations.

6.2 Radiation Pressure

Stellar radiation inevitably exerts a force on a dust particle in planetary systems and
thus an estimate of radiation pressure has been of great importance to understand
the dynamics of dust particles in planetary systems. An estimate of radiation
pressure requires integration of radiation pressure cross sections weighted by stellar
radiation spectrum over wavelengths from ultraviolet to far-infrared. Stellar radia-
tion pressure also retards the motion of dust particles and, in consequence, the
particles spiral to the central star, referred to as the Poynting–Robertson effect
(Robertson 1937). In particular, stellar radiation pressure controls the dynamics of
dust particles and their spatial distribution, unless the stellar mass loss rate is more
than a few times larger than the solar mass loss rate or the total mass of a cir-
cumstellar dust disk is heavier than one millionth of the Earth (Minato et al. 2006).

It is a common practice to discuss the importance of radiation pressure in terms
of b defined by the ratio of stellar radiation pressure to gravitational attraction.
A pioneering work on numerically evaluating the b values for fluffy agglomerates

Fig. 18 Infrared spectra of
dust agglomerates consisting
of 220 submicron grains with
an amorphous silicate core
and an organic refractory
mantle after processing by
exothermic chemical
reactions. The processing of
such a core–mantle grain
forms a thin forsterite layer on
the surface of amorphous
silicate cores. The shaded
bars indicate the central
wavelengths that have been
observed to exhibit noticeable
emission features from dust
particles in cometary comae.
From Kimura et al. (2008)
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was performed by Mukai et al. (1992). They applied the Maxwell Garnett mixing
rule to estimate effective refractive indices for fractal agglomerates and then
computed radiation pressure cross sections in the framework of Mie theory. Mukai
et al. (1992) assumed a0 ¼ 0:01 lm, because the Maxwell Garnett mixing rule is
applicable under the condition that the radius of inclusions is much smaller than the
wavelength of light. It turned out that the b values computed by the EMA are in
good agreement with those computed by the DDSCAT code (ver. 4a) with the
DGF/VIEF method for N� 1024, except for highly porous (D ≈ 2) agglomerates
composed of silicate constituent grains (Mukai et al. 1992). Kimura et al. (1997)
applied the Bruggeman mixing rule to compute the b values for BPCA (D ≈ 3) and
BCCA (D ≈ 2) particles of 0:01 lm-radius constituent grains. Their results are also
shown to agree with the results computed by the DDSCAT code (ver. 4a) with the
a1-term method, except for silicate BCCA particles (Kimura et al. 2002a).
Therefore, EMAs provide reasonably accurate results for b values of agglomerates
as far as a relatively compact agglomerate or any agglomerate composed of
absorbing material is concerned.

In general, the dependence of b values on the size of agglomerates becomes
weaker as the fractal dimension of the agglomerates decreases (Mukai et al. 1992;
Kimura et al. 1997, 2002a). Therefore, b values of agglomerates approach those of
their constituent grains with increase in the porosity of the agglomerates, even if the
agglomerates are not fractals. This statement agrees with the results of Saija et al.
(2003) who applied the TMM to compute the b values for non-fractal agglomerates.
They considered 200 constituent grains of silicate or amorphous carbon with a0 ¼
0:005 lm and the cluster of the grains with p ¼ 0:842�0:995 in circumstellar
environments with stellar temperatures of 2700, 5800, and 10,000 K. As a result,
the b values of agglomerates are smaller than those of volume equivalent compact
spheres in the submicron-size range and larger in the sizes above tens of microns.

Wilck and Mann (1996) used the Maxwell Garnett mixing rule for their com-
putations of the b values for porous spheres that mimic fluffy agglomerates in the
Solar System. A similar approach to the computation of b values using the Maxwell
Garnett mixing rule has been adopted for porous spheres around A-type stars
(Artymowicz and Clampin 1997; Grigorieva et al. 2007). Kirchschlager and Wolf
(2013) used the DDSCAT code (ver. 7.1) with the LDR method to compute the b
values for porous silicate spheres with a fixed porosity in the environments of the
Sun and other main-sequence stars. Kimura andMann (1999a) have shown that the b
values for small (N � 2048) BPCA (D ≈ 3) and BCCA (D ≈ 2) particles of amor-
phous carbon and silicate computed by the DDSCAT code (ver. 4a) with the a1-term
method could be well represented by those of porous spheres with a fixed porosity
computed by the Bruggeman mixing rule as far as small constituent grains of a0 ¼
0:01 lm are concerned. It is worth noting that the b values of porous spheres with a
fixed porosity are inversely proportional to the radius of the spheres in the sizes
above tens of microns, independent of the porosity. Such a size dependence of
porous spheres differs from that of fractal agglomerates, in particular, highly porous
ones (D ≈ 2) whose b values tend to be nearly independent of their sizes.
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The major drawback of the above-mentioned studies is the assumption that the
radius of constituent grains is smaller than the wavelength of ultraviolet light,
owing to the limitation for the EMAs, the DDA a1-term method, or computational
resources such as RAM and CPU time. However, the constituent grains of
agglomerates in planetary systems are one order of magnitude larger than
a0 ¼ 0:01 lm, as pointed out in Sect. 2. A deficit of small dust particles in planetary
systems takes place around sizes near the maximum b values due to mutual col-
lisions of the particles and subsequent blowouts by stellar radiation pressure
(Ishimoto and Mann 1999; Krivov et al. 2000). In conclusion, correct estimates of
the b values for agglomerates of submicron constituent grains are essential to better
understand not only the dynamical behavior but also the spatial distribution of dust
particles in a planetary system.

Kimura et al. (2002b) computed the b values for agglomerates of submicron
silicate constituent grains using the scsmtm1 code in order to simulate dust par-
ticles released from sungrazing comets. Although the number of constituent grains
was limited to N� 32 by computing resources for the scsmtm1 code, their results
show that agglomerates of a0 � 0:1 lm are consistent with the dynamical constraint
of b� 0:6 for dust particles in the tails of mini (a� 1�10m) sungrazers (cf.
Sekanina 2000). However, this does not mean that dust particles in sungrazing
comets are too peculiar to lack organic refractory materials. The assumption of bare
silicate grains is easily justified, since the organic refractory component sublimates
almost instantly in the vicinity of the Sun. In the tail of the larger (a� 100m)
sungrazing comet C/2011 W3 (Lovejoy), the values of 2:5[ b� 0:6 were iden-
tified before perihelion, although only b � 0:6 appeared after perihelion (Sekanina
and Chodas 2012). Therefore, the high b values can be associated with organic-rich
carbonaceous materials that are less refractory than silicates with b � 0:6. We
cannot help wondering whether sublimation of organic materials is also responsible
for unusual degrees of linear polarization observed for sungrazing comets (cf.
Weinberg and Beesonn 1976; Thompson 2015).

Mukai and Okada (2007) studied the size dependence of the b values for BPCA
(D ≈ 3) particles of silicate constituent grains with N ¼ 2048 and 16,384, by
varying the radius of constituent grains. They used the Maxwell Garnett mixing rule
to compute the radiation pressure cross sections of the agglomerates, although the
radius of constituent grains ranged from nanometer to millimeter. Because the size
dependence of the b values in their results originates from the variation in the radius
of constituent grains, the b values were independent of N. By extending the study of
Mukai and Okada (2007) to agglomerates of amorphous carbon constituent grains,
Levasseur-Regourd et al. (2007) concluded that the b values depend on the com-
position of the grains even for millimeter-sized agglomerates. Although their results
would have important implications for the dynamics of millimeter-sized dust par-
ticles in cometary trails, we should point out that the size dependence of the b
values with a fixed number of constituent grains differs from that with a fixed radius
of constituent grains.

Köhler et al. (2007) extended b values of agglomerates with a0 ¼ 0:1 lm up to
N ¼ 512 for BPCA (D ≈ 3) and BCCA (D ≈ 2) particles of silicate constituent
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grains or carbon constituent grains. They used both the DDSCAT code (ver. 6.1)
with the LDR method and the scsmtm1 code for the computations of radiation
pressure cross sections. The radiation pressure cross sections were computed in the
range of wavelengths from ultraviolet to far-infrared for small agglomerates of
N� 32, but only at a wavelength k ¼ 0:6 lm for larger agglomerates of
32\N � 512. The approximation to the b values at a single wavelength of 0:6 lm
was shown to reproduce those computed with a full wavelength range within the
accuracy of 30 %. Furthermore, Köhler et al. (2007) extrapolated the results to
much larger (N � 1017) agglomerates on the assumption that the radiation pressure
cross sections for large agglomerates are proportional to N2=D in the geometrical
optics regime. The overall size dependence of the b values for agglomerates of
submicron grains has significant implications for a better understanding of their
dynamical behaviors in planetary systems.

It has been known that the geometric cross sections of fractal agglomerates show
a deviation from the ideal proportionality to N2=D (Meakin and Donn 1988;
Ossenkopf 1993). Therefore, Minato et al. (2006) took into account the geometric
cross sections of the agglomerates to improve the results of Köhler et al. (2007) for
N[ 512. In Fig. 19, we reproduce their results2 on the overall size dependence of b
values for agglomerates of submicron silicate constituent grains (left) and those of
submicron carbon constituent grains (right). Their results were also applied to
estimate the ratio of solar radiation pressure to the local gravity of sub-km sized

(a) (b)

Fig. 19 The ratios of radiation pressure to gravitational attraction, β, of the Sun acting on
a silicate particles and b carbon particles as a function of av, the radius of volume equivalent
spheres. Solid line: fractal agglomerates consisting of 0:1 lm-radius particles grown by BPCA
(D ≈ 3); dashed line: fractal agglomerates consisting of 0:1 lm-radius particles grown by BCCA
(D ≈ 2); dotted line: compact spheres. Reproduced from Fig. 5 of Minato et al. (2006)

2The size dependence of the b values for agglomerates of submicron constituent grains has not
explicitly been shown in Minato et al. (2006), but could be deduced from their figures.
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asteroids acting on BPCA and BCCA particles and their b values in the debris disk
of the A-type star Fomalhaut (Kimura et al. 2014). Stellar radiation pressure could
replenish BPCA particles of av ¼ 10�370 lm into the exo-zodiacal cloud of
Fomalhaut, if their parent bodies orbit the star at 2 au. Accordingly, the size
dependence of b values for agglomerates of submicrometer-sized constituent grains
play a vital role in better understanding of dust dynamics in planetary systems.

Tazaki and Nomura (2015) applied the scsmfo1b code with the QMC method
to compute the b values for agglomerates of spherical constituent grains in orbit
around a star with a blackbody radiation of 5778K. Note that the solar radiation
spectrum is close to a spectrum of a 5778K blackbody and thus their results can be
applied to dust particles in the Solar System. The agglomerates were assumed to
consist of amorphous silicate spheres with a radius of a0 ¼ 0:01 or 0:1 lm and have
grown under the BCCA (D ≈ 2) process in the range of N � 1024. Their results
coincide with those in Kimura and Mann (1999a) and Minato et al. (2006), which
were obtained by the DDSCAT code (ver. 4a) with the a1-term method and the
DDSCAT code (ver. 6.1) with the LDR methods, respectively. This coincidence is a
natural consequence, because the computational techniques are not critical to the
integrated optical quantities such as b.

Kimura et al. (2003b) applied the gmm02TrA code to compute the b values for
BCCA (D ≈ 2) particles consisting of submicron silicate core, organic mantle grains
in the Solar System. They have shown that the b values for the agglomerates of
submicron silicate core, organic mantle grains fulfill the dynamical constraint on the
b values for interstellar dust streaming into the Solar System (see Fig. 20). However,
it turned out that the agreement happened by coincidence, since interstellar dust in
the Solar System does not contain organic material (Westphal et al. 2014; Altobelli
et al. 2016). Nevertheless, the results of Kimura et al. (2003b) are applicable to
cometary dust and dust in debris disks, although their results are available only up to
N ¼ 16. Indeed, the b values for the agglomerates of submicron silicate core,
organic mantle grains are consistent with b\2:5 derived from coronagraphic images
of comet C/2011 W3 (Lovejoy) by Sekanina and Chodas (2012).

Silsbee and Draine (2016) computed the b values for silicate agglomerates with
N ¼ 32 and 256 using a blackbody radiation of 5780K.Although they aimed to study
the dynamics of interstellar dust streaming into the Solar System, their computed b
values can be applied to dust particles in planetary systems. They used the MSTM code
(ver. 3.0) and the DDSCAT code (ver. 7.3) with the “modefied” LDR method for
BPCA particles with and without restructuring. The radius of the agglomerates was
assumed to lie in the range of av ¼ 0:01�1 lmfor N ¼ 32 and av ¼ 0:1�0:8 lm for
N ¼ 256, implying a0 ¼ 0:0032�0:32 lm and a0 ¼ 0:016�0:126 lm, respectively.
Their results show that b values for silicate agglomerates do not exceed unity, in
concord with previous studies. They have also shown that the substitution of iron
constituent grains for some of silicate constituent grains in an agglomerate enhances b
values. According to their results, the condition of b[ 1 requires more than 35 % of
the volume be iron, but this condition conflicts with the cosmic abundances of iron,
silicon, and magnesium.
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Stellar radiation exerts a force on a sphere in the direction antiparallel to the
stellar gravity, but dust agglomerates are also subjected to a component of force
perpendicular to the propagation of stellar radiation (e.g., van de Hulst 1957, § 2.3).
Kimura and Mann (1998) applied the DDSCAT code (ver. 4a) with the a1-term
method to compute the radiation pressure cross sections for BPCA (D ≈ 3) and
BCCA (D ≈ 2) particles of 0:01 lm-radius constituent grains in the directions
parallel and perpendicular to the propagation of stellar radiation. Kimura et al.
(2002a) determined the parallel and perpendicular components of the b values for
BPCA (D ≈ 3) and BCCA (D ≈ 2) particles of 0:01 lm-radius constituent grains in
the Solar System using the DDSCAT code (ver. 4a) with the a1-term method (see
Fig. 21). The DDSCAT code (ver. 4a) with the a1-term method was also used to
compute the parallel and perpendicular components of radiation pressure on BPCA
(D ≈ 3) and BCCA (D ≈ 2) particles of 0:01 lm-radius constituent grains in orbit
around b Pic (Kimura and Mann 1999b). The perpendicular components of radi-
ation pressure are negligible for carbon agglomerates in comparison to the parallel
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Fig. 20 The ratios of radiation pressure to gravitational attraction, β, of the Sun acting on BCCA
(D ≈ 2) particles consisting of submicron core–mantle particles. The core and the mantle of the
constituent spherical grains are composed of amorphous silicate and organic refractory material,
respectively, in equal mass. Also plotted are the β ratios for bare amorphous silicate spheres, bare
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Kimura et al. (2003b)

400 H. Kimura et al.



Fig. 21 The ratios of radiation pressure to gravitational attraction of the Sun acting on fractal
agglomerates consisting of 0:01lm-radius grains. The filled triangles and squares are the ratios in
the direction antiparallel to the solar gravity and the direction perpendicular to the orbital plane of
the agglomerates. The open circles indicate the transverse component divided by the radial
component of solar radiation pressure. The dashed curves are numerical results on the radial
component of solar radiation pressure relative to the solar gravity estimated by the Bruggeman
mixing rule. The solid curves are the radial components of solar radiation pressure relative to the
solar gravity acting on compact spherical particles. From Kimura et al. (2002a)
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component, but could be significant for silicate agglomerates. However, we are not
very confident that this conclusion holds for agglomerates consisting of submicron
grains prior to a future study with submicron constituent grains.

Silsbee and Draine (2016) applied the DDSCAT code (ver. 7.3) with the
“modefied” LDR method to compute the transverse component of radiation pres-
sure on silicate BPCA particles with restructuring in the Solar System. They
assumed that the agglomerates with N ¼ 32 have a radius av ¼ 0:15 and 0:6 lm,
implying a0 ¼ 0:047 and 0:19 lm, respectively. Their results would suggest that
the transverse component gives a more effective consequence for the dynamics of
smaller agglomerates. However, we cannot assert at this stage that this is a general
trend, because it is not clear whether the difference originates from smaller av or
smaller a0.

6.3 Equilibrium Temperature

Dust particles in planetary systems attain equilibrium temperatures depending on
their composition, structure, and distance from the central star. Equilibrium tem-
perature is a key parameter to determine the SEDs as well as the sublimation zone
of dust particles in the vicinity of a star. In equilibrium, the temperature of dust
particles in planetary systems is determined by the balance of energies between
absorption of stellar radiation and thermal emission and sublimation of the particles.
An estimate of equilibrium temperature requires integration of absorption cross
sections weighted by stellar radiation spectrum and the Planck function over
wavelengths from ultraviolet to far-infrared. It is, therefore, not an easy task to
estimate the equilibrium temperature of agglomerates consisting of
submicrometer-sized grains in particular.

Kozasa et al. (1992) used an empirical formula to calculate the equilibrium
temperature of BPCA (D ≈ 3) and BCCA (D ≈ 2) particles consisting of magnetite
grains with a radius a0 ¼ 0:01 lm at 1 au from the Sun. They proposed a formula to
approximate the absorption cross sections for agglomerates using the optical
characteristics of a spherical cloud that encloses the constituent grains. This formula
reproduces the results from the DDSCAT code (ver. 4a) with the DGF/VIEF method
within about 10 %, if the agglomerates are assumed to have the same radius as a
sphere of equal geometric cross section. It should be, however, noted that the
empirical formula is limited to agglomerates of tiny constituent grains with
a0 � 0:01 lm.

Mann et al. (1994) estimated the equilibrium temperature of BPCA (D ≈ 3)
particles consisting of silicate grains and graphite grains with a radius a0 ¼ 0:01 lm
near the Sun using the Maxwell Garnett mixing rule. A higher temperature was
found for composite agglomerates of silicate grains and graphite grains in com-
parison to pure silicate agglomerates or pure graphite agglomerates. The high
temperature of an agglomerate consisting of silicate grains and carbon grains was
confirmed by Kimura et al. (1997) who applied the Bruggeman mixing rule,
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although the formula for energy of sublimation in Kimura et al. (1997) is different
from that in Mann et al. (1994). Whereas Mann et al. (1994) assumed that the
contribution of each constituent grain to sublimation is given by its volume fraction
to the power of 2/3, Kimura et al. (1997) describe that the contribution of each
constituent grain to sublimation is proportional to its volume fraction. We should
point out that the incorrectness of the formula in Mann et al. (1994) is obvious, as it
fails to work if two materials have an even volume fraction.

Kimura et al. (1997) found that the equilibrium temperatures of fractal
agglomerates with a0 ¼ 0:01 lm become less dependent on their sizes as the fractal
dimension decreases or the porosity increases. As a result, the temperatures of
fractal agglomerates asymptotically approach that of constituent grains in the limit
of D ! 2. This trend is associated with the fact that both the absorption cross
section and surface area of fractal agglomerates are proportional to the number of
constituent grains if D = 2. Therefore, we expect for fractal agglomerates that the
size dependence of their temperatures is weak and close to that for the constituent
grains, despite the radius of the grains, as long as agglomerates of D ≈ 2 are
concerned.

Again, the assumption of a0 ¼ 0:01 lm for the radius of constituent grains is the
major drawback of the above-mentioned studies as a simulation for primitive dust
particles in planetary systems. To our knowledge, Greenberg and Hage (1990)
performed the earliest study on the equilibrium temperature of fluffy agglomerates
consisting of submicron grains in an application to dust particles in comet
1P/Halley at 0:9 au from the Sun. They assumed that the constituent grains of
a0 ¼ 0:1 lm have a structure of a silicate core and an organic mantle and used the
Maxwell Garnett mixing rule for wavelengths of k� 1 lm and, for shorter wave-
lengths, the optical characteristics of a spherical cloud that encloses the constituent
grains. They claimed the assumption of the cloud to be a good approximation as
long as the size parameter of the cloud radius exceeds 10, but did not show any
evidence for their claim. The dependences of temperature on porosity and
agglomerate size are qualitatively the same as, but quantitatively different from the
case for a0 ¼ 0:01 lm. Therefore, the use of submicrometer-sized constituent grains
in an agglomerate for computation of equilibrium temperature is of crucial
importance.

Greenberg and Li (1998) calculated the equilibrium temperature of fluffy
agglomerates consisting of spherical silicate core, organic refractory mantle grains
with a0 ¼ 0:1 lm at 1 au from the Sun. They presented how the temperature
depends on the mass and porosity of the agglomerates and on the mass ratio of the
silicate core and the organic refractory mantle. Their calculations were performed
with the Maxwell Garnett mixing rule, but we notice that the Maxwell Garnett
mixing rule alone is not applicable to calculations of temperatures for a0 ¼ 0:1 lm,
because the calculations require the absorption cross sections at wavelengths of
k\1 lm where x0 � 1.

Li and Greenberg (1998) estimated the radial distribution of equilibrium tem-
peratures for agglomerates of submicron constituent grains in b Pic (see Fig. 22).
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They assumed that the constituent grains with a0 ¼ 0:1 lm are composed of either
an amorphous silicate core and an organic mantle or bare crystalline silicate. The
presence of ice mantles is also considered if the agglomerates are located at a
distance exceeding 100 au from the star, implying ice sublimation at 100 au.
According to the method described in Greenberg and Hage (1990), they used the
Maxwell Garnett mixing rule for k� 1 lm and considered a cloud of the constituent
grains for k\1 lm. Their results indicate that sublimation of ices in the inner disk
enhances the temperatures of the agglomerates as a result of the increase in
absorptivity.

Kimura et al. (2002b) computed the equilibrium temperatures of BCCA (D ≈ 2)
particles consisting of submicron silicate grains in the vicinity of the Sun using the
scsmtm1 code. Although their computations with a0 ¼ 0:1 lm were limited to
N� 32, their results confirmed that the temperatures of agglomerates show a
weaker size dependence, compared to those of compact spheres (see Fig. 23). They
have shown that the temperatures of pyroxene agglomerates are 0.5–0.6 times lower
than those of olivine agglomerates in the comae and tails of sungrazing comets.
Accordingly, their results predict that crystalline and amorphous pyroxene grains
sublimate inside five solar radii (R
) from the Sun, while crystalline and amorphous

1

1

(a)

(b)

Fig. 22 The equilibrium
temperature of porous
agglomerates with masses of
m ¼ 10�17, 10�15, 10�13,
10�10, 10�7 kg (from top to
bottom) as a function of
distance from the central star
in the debris disk of β Pic.
Spherical constituent grains of
an agglomerate have a radius
a0 ¼ 0:1 lm and comprise
either a amorphous silicate
encased in an organic
refractory material (upper
panel) or b crystalline silicate
(lower panel). In the outer
region of the disk at distances
r[ 100au, the agglomerates
are assumed to have an
external layer of H2O ice.
From Li and Greenberg
(1998)
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olivine grains sublimate inside 10� 11R
 and 12� 13R
, respectively. It turned
out that sublimation of pyroxene agglomerates and olivine ones near the Sun well
accounts for not only light curves of sungrazing comets observed by
SOHO/LASCO but also neutral hydrogen Lyman a emission from sungrazers
observed by SOHO/UVCS (cf. Biesecker et al. 2002; Bemporad et al. 2006, 2007).

Xing and Hanner (1996), (1997) estimated the dependence of equilibrium
temperatures on heliocentric distance for agglomerates consisting of 10 submicron
spherical carbon grains or tetrahedral ones with various separations of the grains.
They used the DDSCAT code (ver. 4b) with the LDR method for computing
absorption cross sections of the agglomerates in the wavelength range from visible
to far-infrared. The absorption cross sections for ultraviolet and visible wavelengths
were extrapolated from the cross section at k ¼ 1 lm on the assumption that the
absorption cross section at k ¼ 0 equals to the geometric cross section of the
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Fig. 23 The equilibrium temperature of fractal agglomerates consisting of spherical olivine and
pyroxene grains at a heliocentric distance of 12R
. The smallest, the medium, and the largest filled
circles are the numerical values of the temperature with a0 ¼ 0:07, 0:10, and 0:15lm,
respectively. The solid curves and dotted ones are the equilibrium temperature of compact
spherical particles and the blackbody temperature. From Kimura et al. (2002b)
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agglomerates. Their results indicate that the temperature of agglomerates approa-
ches that of constituent grains once the grains get separated, while the results for
touching grains are similar to those for overlapping grains. Agglomerates consisting
of tetrahedral grains show a weaker dependence of temperature on the separation
than agglomerates consisting of spherical grains. In addition, the dependence of the
temperature on heliocentric distance is weaker for agglomerates than for blackbody,
irrespective of the separation between the grains. The authors concluded that the
agglomerates attain the blackbody temperature at small heliocentric distances, but
this does not seem to be the case (cf. Kimura et al. 1997, 2002b). Their misleading
conclusion could be attributed to simply their crude method for estimates of
absorption cross sections at short wavelengths.

Mukai and Okada (2007) estimated equilibrium temperatures of BPCA (D ≈ 3)
particles consisting of silicate grains with N ¼ 2048 and 16,384. They used the
DDSCAT code (ver. 6.1) with the LDR method for computing the absorption cross
sections of the agglomerates consisting of small constituent grains with a0\0:1 lm
and the geometric optics for large constituent grains with a0 � 10 lm. They have
shown that the results between the DDA and the geometric optics could be
smoothly interpolated in the range of 0:1� a0\10 lm, if they apply the Maxwell
Garnett mixing rule to computations of absorption cross sections. Therefore, they
applied the Maxwell Garnett mixing rule to calculate the temperatures of the
agglomerates, irrespective of the radius of constituent grains. Levasseur-Regourd
et al. (2007) took the same procedures to compute equilibrium temperatures of
BPCA (D ≈ 3) particles consisting of carbon grains with N ¼ 2048 and 16,384.
Because they consider agglomerates up to av ¼ 104 lm, the radius of constituent
grains reached a0 � 40�80 lm. Because their agglomerates do not have constituent
grains of a0 � 0:1 lm except for av � 1� 3 lm, it does not seem plausible that their
results on the size dependence of temperatures are applicable to primitive dust
particles in a planetary system.

Lasue et al. (2007) used the DDSCAT code (ver. 5a10) presumably with the LDR
method for computing the temperatures of BPCA (D ≈ 3) and BCCA (D ≈ 2)
particles as a function of heliocentric distance to simulate the radial dependence of
temperature inferred from zodiacal light observations. They considered agglomer-
ates of 64 spheroidal constituent grains with a0 ¼ 0:19 lm composed of silicate or
organic material, as well as compact spheres and spheroids of silicates, organic
material, or amorphous carbon. Their results indicate that absorbing materials such
as organics and amorphous carbon play an important role in the radial gradient of
the temperature in the zodiacal light. They concluded that the radial dependence of
the temperature does not strongly depend on the shape and structure of the particle,
but the size and material of the particle. Their conclusion on the size dependence of
equilibrium temperature was, however, not confirmed for agglomerates, as they
studied the size dependence of equilibrium temperature only with compact spheres
and spheroids.
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7 Concluding Remarks

In situ measurements in the Solar System have revealed that the total cross sections
of primitive dust particles are dominated by large agglomerates of submicron
constituent grains. The mass distribution of interplanetary dust measured in situ at
1 au from the Sun shows that the cross-sectional distribution has a peak at
m � 3� 10�10 kg, which is equivalent to av � 30 lm and N � 3� 107 (Grün et al.
(1985). The predominance of large agglomerates with m� 10�13 kg (av � 2 lm) is
supported by the mass distribution of dust particles in the inner coma of comet
1P/Halley measured in situ by the Dust Impact Detection System (DIDSY) onboard
Giotto (McDonnell et al. 1987; Kolokolova et al. 2007). This is in harmony with the
characteristic radius of ac � 20 lm (N � 2� 106) for agglomerates of submicron
constituent grains with D = 2.5 derived from β ≈ 0.4 for dust particles in the ejecta
plume of comet 9P/Tempel 1 (Kobayashi et al. 2013). Because meteoritic impact is
the major process of releasing dust particles from asteroids, we expect that typical
dust particles ejected from asteroids are also characterized by agglomerates of
N� 106 constituent grains. More recently, the Grain Impact Analyser and Dust
Accumulator (GIADA) and the Optical, Spectroscopic, and Infrared Remote
Imaging System (OSIRIS) onboard Rosetta have revealed that dust particles in the
10�8 to 10�7 kg mass bin (i.e., av � 100�200 lm; N� 109�1010) dominate the
coma of comet 67P/Churyumov–Gerasimenko (Rotundi et al. 2015). The
COmetary Secondary Ion Mass Analyser (COSIMA) onboard Rosetta has collected
fluffy agglomerates with ac � 25 lm and p[ 0:5 from the comet (Schulz et al.
2015). The predominance of large agglomerates in the total cross sections is also
true of debris disks around early-type stars such as b Pic and Fomalhaut, because
small particles of av\10 lm are quickly blew out by stellar radiation pressure (e.g.,
Kimura and Mann 1999b; Acke et al. 2012). In conclusion, it is of great importance
to estimate light-scattering properties of large agglomerates consisting of million or
more grains of submicrometer size.

It is worth emphasizing that available numerical techniques allow us to compute
thermal emission from large (N� 106) agglomerates of submicron constituent
grains. However, currently available numerical techniques do not allow us to
properly simulate light scattering by such a large agglomerate consisting of sub-
micron grains. As a result, radiative transfer computations and SED fittings often
rely on the Henyey–Greenstein phase function without proof of its applicability to
light scattering by dust agglomerates. Nevertheless, computing powers are, without
doubt, increasing as the time goes by and numerical codes for calculation of light
scattering by agglomerates are making steady progress. In the end, we expect that
our understanding of primitive dust particles in planetary systems will make great
advances once light scattering by large agglomerates of more than 106 submicron
constituent grains becomes available.
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As we have noted in Sect. 1, the current review has focused on light-scattering
and thermal-emission properties of primitive dust particles that were released from
planetesimals in orbit around main-sequence stars. Accordingly, we have not dealt
with any subject of dust particles in protoplanetary disks, because the majority of
the particles might be prestellar interstellar grains and thus not necessarily be
incorporated into planetesimals. We are, however, aware of the most recent findings
that the majority of protoplanetary disks around weak-line T Tauri stars (WTTS)
could be regarded as young debris disks (Hardy et al. 2015). If this identification is
confirmed by future studies, then we have to admit that the current review is far
from complete and any coming review on this subject cannot avoid additionally
discussing light-scattering and thermal-emission properties of dust particles in
young debris disks around WTTSs. At the moment, we are confident that we have
presented a new state-of-the-art review on light-scattering and thermal-emission
properties of primitive dust particles in planetary systems.

8 Summary

We have reviewed numerical approaches to deducing light-scattering and
thermal-emission properties of primitive dust particles in planetary systems from
astronomical observations. Currently available information on the particles indi-
cates that they are often agglomerates of small constituent grains whose sizes are
comparable to visible wavelength. If the particles are pristine, they are composed
mainly of magnesium-rich silicates, ferrous metals and sulfides, and organic
refractory materials. If dust particles were subjected to metamorphism, they could
be composed of hydrous minerals, metals, and to a lesser extent organic refractory
materials. These unique characteristics of primitive dust particles are associated
with their formation and evolution around a star whose chemical composition is
essentially solar. We have demonstrated that the development of light-scattering
techniques has been offering powerful tools to make a thorough investigation of
dust particles in various astrophysical environments. Among numerical techniques
to solve light-scattering problems, the DDA, the TMM, the GMM, and EMAs are
the most common ones for practical use in astronomy. The Monte Carlo method for
radiative transfer could be applied to light scattering by an ensemble of dust par-
ticles in the environment where the optical depth is on the order of unity or larger.
We have shown that numerical simulations of light scattering by and thermal
emission from dust agglomerates provide new state-of-the-art knowledge of
primitive dust particles in planetary systems, if combined with comprehensive
collections of relevant results from not only astronomical observations, but also
in situ data analyses, laboratory sample analyses, laboratory analog experiments,
and theoretical studies on the formation and evolution of the particles.
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Part III
Polarimetry



Polarimetry of Man-Made Objects

Sergey N. Savenkov

Abstract Polarimetry has already been an active area of research for about fifty
years. A primary motivation for research in scatter polarimetry is to understand the
interaction of polarized radiation with natural scenes and to search for useful dis-
criminants to classify targets at a distance. In order to study the polarization
response of various targets, the matrix models (i.e., 2 × 2 coherent Jones and
Sinclair and 4 × 4 average power density Mueller (Stokes) and Kennaugh matrices
etc.) and coherent and incoherent target decomposition techniques has been used.
This come to be the standard tools for targets characterization. Polarimetric
decomposition methods allow a physical interpretation of the different scattering
mechanisms inside a resolution cell. Thanks to such decompositions, it is possible
to extract information related to the intrinsic physical and geometrical properties of
the studied targets. This type of information is inestimable if intensity is measured
only. The goal of the chapter is to explain the basics of polarimetric theory, outline
its current state of the art, and review some of important applications to study the
scattering behaviour of various man-made and urban targets like buildings (tall &
short), ships, oil rigs and spills, mines, bridges etc. both in optical range and in radar
polarimetry.

1 Introduction

To develop polarimetric methods for object identification and classification, one
needs to understand the relation between polarimetric and physical properties of the
objects. As electromagnetic radiation interacts with an object under study, its
polarization state and intensity are changed. Polarization properties of the scattered
radiation contain an ample of information on morphological and functional prop-
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erties of the object. For example, since depolarization of scattered radiation depends
on the morphological and physical parameters of scatterers (i.e., density, size,
distribution, shape, refractive index, etc.) present in the studied object (Elachi 1987;
Boerner 1992; Bohren and Huffman 1983; Lee and Pottier 2009; Cloude 2010), this
information can be utilized for making objects identification techniques. Many
constituents of an object also exhibit polarization properties such as birefringence,
dichroism, depolarization, etc., which might serve to discriminate between surface
and volume scattering as well.

The enormous importance of the matrix optical and radar polarimetry is that it
contains all the information that one can obtain from scattering scene (Bohren and
Huffman 1983; Brosseau 1998; Azzam and Bashara 1987; Collett 1993; Shurcliff
1962). The matrix polarimetry has many useful applications in such diverse fields
as interaction with various optical systems (Shurcliff 1962; Azzam and Bashara
1987; Collett 1993; Brosseau 1998), cloud diagnostics (van de Hulst 1957; Bohren
and Huffman 1983; Mishchenko et al. 2000, 2002; Kokhanovsky 2003b), remote
sensing of the ocean, atmosphere, and planetary surfaces (Boerner 1992;
Kokhanovsky 2001, 2003a, b; Muttiah 2002; Mishchenko et al. 2010), biological
tissue optics (Priezzhev et al. 1989; Tuchin 2002; Tuchin et al. 2006), and others.

The methods of interpretation of the Jones and Mueller matrices in optical
polarimetry and target decompositions in radar polarimetry have been developed by
many authors (Hurwitz and Jones 1941; Huynen 1970; Whitney 1971; Cloude
1986; Gil and Bernabeu 1986, 1987; Krogager 1990; Lu and Chipman 1994, 1996;
Mar’enko and Savenkov 1994; Freeman and Durden 1998; Yamaguchi et al. 2005;
Savenkov et al. 2005, 2006, 2007b).

In this chapter, we intend to illustrate the fact that polarization contributes
reliably in wide scope of important applications to study the scattering behavior of
various man-made and urban targets like buildings, oil contaminations, mines,
bridges, etc., both in optical range and in radar polarimetry.

Many important polarimetric applications, which do not involve the matrix or
full polarization measurement, are beyond the scope of our present discussion. In
any case, our reference list should by no means be considered exhaustive and is
merely intended to provide initial reference points for the interested reader.

2 Mueller Matrices of Deterministic and Depolarizing
Objects

In the Mueller matrix calculus, the polarization state of light can be completely
characterized by a Stokes vector, while the polarization transforming properties of a
medium can be completely characterized by a Mueller matrix:

Sout ¼ MSinp; ð1Þ
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where the four-component Stokes column vector (with “out” and “inp” denoting the
Stokes vectors of the output and input light, respectively) consists of the following
parameters:

S ¼
I
Q
U
V

0
BB@

1
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with i = (–1)1/2. Among the pioneering contributions to this field of research, we
note those by Soleillet (1929), Perrin (1942), Mueller (1948), and Parke (1948,
1949).

The Stokes parameter I is proportional to the total energy flux of the light beam.
The Stokes parameters Q and U represent the differences between two components
of the flux in which the electric vectors oscillate in mutually orthogonal directions.
The Stokes parameter V is the difference between two oppositely circularly
polarized components of the flux. As indicated by the angular brackets, the Stokes
parameters si are ensemble averages (or time averages in the case of ergodic,
stationary processes). This implies that no coherence effects are considered.

The Stokes vectors and Mueller matrices represent operations on intensities and
their differences, i.e., incoherent superpositions of light beams; they are not ade-
quate to describe either interference or diffraction effects. However, they are well
suited to describe partially polarized and unpolarized light. Extensive lists of var-
ious Mueller matrices have been presented by several authors (e.g., Shurcliff 1962;
Kliger et al. 1990; Gerrard and Burch 1975).

The Stokes parameters obey the inequality

s21 � s22 þ s23 þ s24: ð3Þ

This inequality is called the Stokes–Verdet criterion and is a consequence of the
Schwarz (or Cauchy-Bunyakovsky) theorem (Barakat 1963). The degree of
polarization p is defined by

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22 þ s23 þ s24

q �
s1: ð4Þ

In Eq. (3), the equality holds for a completely polarized (pure) beam of light. In
this case, p ¼ 1: Another limiting case, p ¼ 0; occurs when s22 þ s23 þ s24 ¼ 0; i.e.,
when the electric vector vibrates in all directions randomly and with no preferential
orientation. An intermediate case, 0\p\1; implies that light contains both
polarized and depolarized components and is, therefore, called partially polarized.
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The inequality (3) plays an important role in polarimetry because it allows one to
classify the character of the light–medium interaction. Assume first that the input
light is completely polarized. In this case, the equality in Eq. (3) implies that the
medium is nondepolarizing. Note that the terms “nondepolarizing” and “deter-
ministic” or “pure” are not, in general, identical. The term “deterministic” means
that the Mueller matrix describing such a medium can be derived from the corre-
sponding Jones matrix (Simon 1982; Gil and Bernabeu 1985; Anderson and
Barakat 1994; Gopala Rao et al. 1998b). Hereinafter, we call this class of matrices
pure Mueller matrices (Hovenier 1994). If the output light results in an inequality in
Eq. (3) then the scattering medium is not deterministic. If, in addition, the trans-
formation matrix in Eq. (1) can be represented as a convex sum of deterministic
Mueller matrices (Cloude 1986; Gil 2000, 2007), then the result is a depolarizing
Mueller matrix (hereinafter Mueller matrix); otherwise, the result is a Stokes
transformation matrix, i.e., the transformation matrix ensures the fulfillment of the
Stokes–Verdet criterion only. The properties of matrices transforming Stokes
vectors into Stokes vectors, i.e., those satisfying the Stokes–Verdet criterion, have
been studied by many authors (Xing 1992; van der Mee 1993; van der Mee and
Hovenier 1992; Sridhar and Simon 1994; Nagirner 1993; Givens and Kostinski
1993; Gopala Rao et al. 1998a).

Any pure Mueller matrix M can be transformed into the corresponding Jones
matrix T using the following relation (Parke 1949; Azzam and Bashara 1977;
Dubois and Norikane 1987):

M ¼ A T� T�ð ÞA�1; ð5Þ

where the asterisk denotes the complex conjugate value,

T ¼ t1 t4
t3 t2

� �
; ð6Þ

A ¼
1 0 0 1
1 0 0 �1
0 1 1 0
0 i �i 0

0
BB@

1
CCA; ð7Þ

the ti are, in general complex, and ⊗ is the tensorial (Kronecker) product.
Since the element m11 is a gain for unpolarized incident light, it must satisfy the

following inequality:

m11 [ 0: ð8Þ

Furthermore, the elements of the Mueller matrix must obey the following
conditions:
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m11 � mij

�� ��; ð9Þ

TrðMÞ� 0; ð10Þ

lT ¼ jlj2M; ð11Þ

where Tr denotes the trace operation and μ is an arbitrary real or complex constant.
Note that the last relation defines the ability of the Jones and Mueller matrices to

represent a “physically realizable” medium (Lu and Chipman 1994; Anderson and
Barakat 1994; Gil 2007) and implies the physical restriction according to which the
ratio g of the intensities of the emerging and incident light beams (the gain or
intensity transmittance) must always be in the interval 0� g� 1: This condition is
called the gain or transmittance condition and can be written in terms of the ele-
ments of the Mueller matrix as follows (Barakat 1987):

m11 þ m2
12 þm2

13 þm2
14

� �1=2 � 1;

m11 þ m2
21 þm2

31 þm2
41

� �1=2 � 1:
ð12Þ

While a Jones matrix has generally eight independent parameters, the absolute
phase is lost in Eq. (5), yielding only seven independent elements for a pure Mueller
matrix. Evidently, this results in the existence of interrelations for the elements of a
general pure Mueller matrix. This fact was pointed out for the first time, although
without a derivation of their explicit form, by van de Hulst (1957). Since then this
subject has been studied by many authors (e.g., Abhyankar and Fymat 1969; Fry and
Kattawar 1981; Hovenier et al. 1986). In the most complete and refined form these
interrelations are presented in Hovenier (1994). In particular one can derive the
following important equation for the elements of a pure Mueller matrix:

X4
i¼1

X4
j¼1

m2
ij ¼ 4m2

11: ð13Þ

This equality was obtained for the first time by Fry and Kattawar (1981).
However, the question of whether this is a sufficient condition for M to be a pure
Mueller matrix has been the subject of extensive discussions (see, e.g., Simon 1982,
1987; Hovenier 1994; Kim et al. 1987; Kostinski 1992; Kostinski et al. 1993; Gil
and Bernabeu 1985; Anderson and Barakat 1994; Brosseau 1990; Brosseau et al.
1993). Under the premise that the Mueller matrix in question can be represented as
a convex sum of pure Mueller matrices, Eq. (13) is both a necessary and a sufficient
condition for M to be a pure Mueller matrix (Gil 2007).

In addition to the equalities presented above, a set of inequalities can be derived
to characterize the structure of the pure Mueller matrix, as follows (Hovenier et al.
1986):
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m11 þm22 þm12 þm21 � 0;

m11 � m22 � m12 þm21 � 0;

m11 þm22 � m12 � m21 � 0;

m11 � m22 þm12 � m21 � 0;

m11 þm22 þm33 þm44 � 0;

m11 þm22 � m33 � m44 � 0;

m11 � m22 þm33 � m44 � 0;

m11 � m22 � m33 þm44 � 0:

ð14Þ

Equation (5) can be used to derive interrelations between the structures of a
Jones matrix and the corresponding pure Mueller matrix. For example, the suc-
cessive application of transposition and sign reversal for the off-diagonal elements
of the Jones matrix in Eq. (6) yields

t1 �t3
�t4 t2

� �
$

m11 m21 �m31 m41

m12 m22 �m32 m42

�m13 �m23 m33 �m43

m14 m24 �m34 m44

0
BB@

1
CCA: ð15Þ

Physical reasons for the above relations are quite clear. Indeed, Eq. (15) origi-
nates from the operation of interchanging the incident and emerging light beams,
the principle of reciprocity (Saxon 1955; Sekera 1966; Vansteenkiste et al. 1993;
Potton 2004), and mirror symmetry (Hovenier 1969, 1970).

The effect of the symmetry of the individual scatterers and collections of scat-
terers on the structure (number of independent parameters) of the Mueller matrix
has been considered by van de Hulst (1957). In particular, he demonstrated that the
collection of scatterers containing equal number of particles and their mirror par-
ticles possesses the following Mueller matrix:

m11 m12 0 0
m21 m22 0 0
0 0 m33 m34

0 0 m43 m44

0
BB@

1
CCA: ð16Þ

If in Eq. (6) t3 ¼ t4, then m2
11 � m2

12 � m2
33 � m2

34 ¼ 0; m22 ¼ m11; m33 ¼ m44;
and m34 ¼ �m43, see Eq. (5).

If, in addition, the collection of scatterers contains equal number of particles in
positions described by Eqs. (6) and (15) and those corresponding to the transpo-
sition and sign reversal of the off-diagonal elements of the Jones matrix (6), then
m12 ¼ m21.

The Mueller matrix of Eq. (16) plays a key role in many light-scattering
applications. Some of them will be discussed later in this section. The structure of
the matrix Eq. (16) can be caused by a symmetry of individual particles and
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a collection of particles in single and multiple scattering (van de Hulst 1957;
Mishchenko and Travis 2000) as well as by “illumination-observation” geometries
for backward and forward scattering (Zubko et al. 2004; Savenkov et al. 2007a).

The model of a medium described by the Mueller matrix of Eq. (16) has been
used in studies of optical characteristics of oceanic water (Voss and Fry 1984;
Kokhanovsky 2003a); ensembles of identical, but randomly oriented fractal parti-
cles (Kokhanovsky 2003c); dense spherical particle suspensions in the
multiple-scattering regime (Kaplan et al. 2001); ice clouds consisting of non-
spherical ice crystals in the multiple-scattering regime (Lawless et al. 2006);
polydisperse, randomly oriented ice crystals modeled by finite circular cylinders
with different size distributions (Xu et al. 2002); cylindrically shaped radially
inhomogeneous particles (Manickavasagam and Menguc 1998). Other applications
included measurements of the complex refractive index of isotropic materials as
matrices of isotropic and ideal metal mirror reflections (Deibler and Smith 2001);
the development of a symmetric three-term product decomposition of a Mueller–
Jones matrix (Ossikovski 2008); and the description of very general and practically
important cases of (i) randomly oriented particles with a plane of symmetry
(Hovenier and van der Mee 2000) and/or (ii) equal number of particles and their
mirror particles (Mishchenko et al. 2002). This list of applications can be extended
significantly.

An example of the situation in which the Mueller matrix has the structure of
Eq. (16) and contains information on the strong dependence of polarization and
depolarization of output light on the polarization state of the input light is the exact
forward scattering of polarized light by a slab of inhomogeneous linear birefringent
medium (Savenkov et al. 2007a).

The scattering angles 0° (exact forward direction) and 180° (exact backward
direction) deserve special attention owing to their importance in numerous practical
applications, including the scattering by biological tissues. For the first time, the
general form of Mueller matrices for these scattering angles was derived by van de
Hulst (1957). Hu et al. (1987) presented a comprehensive study of forward and
backward scattering by an individual particle in a fixed orientation. For forward
scattering, they distinguished sixteen different symmetry shapes which were clas-
sified into five symmetry classes; for backward scattering, four different symmetry
shapes were identified and classified into two symmetry classes. A large number of
relations were derived in this way. The structures of Mueller matrices for various
collections of particles in the cases of forward and backward scattering can be found
elsewhere (van de Hulst 1957; Hovenier and Mackowski 1998).

It is important to note that although analyses of the internal structure of a general
pure Mueller matrix, the symmetry relations between matrix elements caused by
interchanging the incident and emerging light beams, and the principle of
reciprocity have historically been carried out in the framework of light scattering by
discrete particles; these results are also relevant to pure Mueller matrices in the
continuous medium approximation.

In this section, we consider the problem of Mueller matrix interpretation in the
framework of the approach wherein the medium studied is modeled as a medium
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with a continuous (and possibly random) distribution of optical parameters. The
polarization of light changes if the amplitudes and phases of the components of the
electric vector E change separately or simultaneously (Shurcliff 1962; Azzam and
Bashara 1987; Brosseau 1998). It is, therefore, customary to distinguish between
the corresponding classes of anisotropic media: dichroic (or possessing amplitude
anisotropy), influencing only the amplitudes; birefringent (or possessing phase
anisotropy), influencing only the phases; and “all other” (possessing both amplitude
and phase anisotropy) affecting both the amplitudes and the phases of the com-
ponents of the electric field vector. Among these classes, four types of anisotropic
mechanisms are recognized as basic or, after Jones, elementary (Jones 1941, 1942,
1947, 1956; Hurwitz and Jones 1941): linear and circular phase and linear and
circular amplitude anisotropies.

Linear birefringence is described by the following pure Mueller matrix:

MLP ¼
1 0 0 0
0 cos2 2aþ sin2 2a cosD cos 2a sin 2að1� cosDÞ � sin 2a sinD
0 cos 2a sin 2að1� cosDÞ sin2 2aþ cos2 2a cosD cos 2a sinD
0 sin 2a sinD � cos 2a sinD cosD

0
BB@

1
CCA

ð17Þ

where Δ is the phase shift between two orthogonal linear components of the electric
field vector and α is the azimuth of the anisotropy.

The Mueller matrix describing linear dichroism is

MLA ¼
1þP ð1� PÞ cos 2c

ð1� PÞ cos 2c cos2 2cð1þPÞþ 2 sin2 2c
ffiffiffi
P

p
ð1� PÞ sin 2c cos 2c sin 2cð1� ffiffiffi

P
p Þ2

0 0

0
BB@

ð1� PÞ sin 2c 0
cos 2c sin 2cð1� ffiffiffi

P
p Þ2 0

sin2 2cð1þPÞþ 2 cos2 2c
ffiffiffi
P

p
0

0 2
ffiffiffi
P

p

1
CCA;

ð18Þ

where P is the relative absorption of two linear orthogonal components of the
electric vector and γis the azimuth of the anisotropy.

The Mueller matrix describing circular birefringence is

MCP ¼
1 0 0 0
0 cos 2u sin 2u 0
0 � sin 2u cos 2u 0
0 0 0 1

0
BB@

1
CCA; ð19Þ

where φ is the induced phase shift between two orthogonal circular components of
the electric vector.

At last, in terms of the Mueller matrix calculus, circular amplitude anisotropy is
described by the following matrix:
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MCA ¼
1þR2 0 0 2R

0 1� R2 0 0
0 0 1� R2 0
2R 0 0 1þR2

0
BB@

1
CCA; ð20Þ

where R is the magnitude of anisotropy, i.e., the relative absorption of two
orthogonal circular components of the electric vector. The six quantities α, Δ, P, γ,
φ, and R are called anisotropy parameters.

It can be seen that the matrices describing linear and circular birefringence
belong to the class of unitary matrices (in the case of matrices with real-valued
elements—orthogonal matrices). The matrices of linear, Eq. (18), and circular,
Eq. (20), dichroism belong to the class of Hermitian matrices (in the case of
matrices with real-valued elements—symmetric matrices).

The Mueller matrices of Eqs. (17)–(20) represent media exhibiting individual
types of anisotropy. Experimental measurements of these matrices or of the cor-
responding informative matrix elements allow one to interpret and characterize
anisotropy properties of media. However, more often two or more types of ani-
sotropy are exhibited by a medium simultaneously. Evidently, such cases require
the development of more sophisticated polarimetric matrix models (Hurwitz and
Jones 1941; Cloude 1986; Gil and Bernabeu 1987; Lu and Chipman 1996;
Savenkov et al. 2006; Ossikovski 2008, 2009).

The matrix model that is extensively used in polarimetry for decoupling con-
stituent polarization properties of optical medium is the polar decomposition pro-
posed by Lu and Chipman (1996). This model is based on the so-called polar
decomposition theorem (Lancaster and Tismenetsky 1985), according to which an
arbitrary matrix M can be represented by a product

M ¼ MPMR or M ¼ MRM0
P; ð21Þ

where MP and M0
P are Hermitian matrices and MR is a unitary one. The Hermitian

matrix is associated with amplitude anisotropy, while the unitary matrix describes
phase anisotropy (Whitney 1971). The matrices MP and MR are called the dichroic
and the phase polar forms (Whitney 1971; Gil and Bernabeu 1987; Lu and
Chipman 1996).

The polar decomposition was first employed by Whitney (1971) without finding
explicit expressions for MP and MR: They were proposed later, independently by
Gil and Bernabeu (1987) and Lu and Chipman (1996). Alternatively, the dichroic
and phase polar forms can be derived using spectral methods of linear algebra
(Azzam and Bashara 1977).

The phase polar formMR (using notation from Lu and Chipman 1996) is given by
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MR ¼ 1 ~0T

~0 mR

 !
;

ðmRÞij ¼ dij cosRþ aiajð1� cosRÞþ
X3
k¼1

eijk ak sinR;

ð22Þ

where~0 is the 3� 1 zero vector; ½ 1 a1 a2 a3 �T ¼ ½ 1 bRT �T is the normalized
Stokes vector for the fast axis of MR; dij is the Kronecker delta; eijk is the Levi–
Civita permutation symbol; mR is the 3� 3 submatrix of MR obtained by striking
out the first row and the first column of MR; and R is the birefringence given by

R ¼ arccos
1
2
TrMR � 1

� �
: ð23Þ

The dichroic polar form MP is as follows:

MP ¼ Tu 1 ~D
T

~D mP

� �
; ð24Þ

mP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p
Iþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D2

p	 

D
_

D
_

; ð25Þ

where I is the 3� 3 identity matrix; D
_ ¼ ~D= ~D

�� �� is the unit vector in the direction of
the diattenuation vector ~D; Tu is the transmittance for unpolarized light; and the
value of diattenuation can be obtained as

D ¼ 1� 4j detðTÞj2
.
½TrðT�TÞ�2

	 
1=2
: ð26Þ

The model of anisotropic media based on the polar decomposition contains in
general six independent parameters, three for the phase polar form MR and three for
the dichroic polar form MP: It can be seen that the phase polar form is a unitary
(orthogonal) matrix and the dichroic polar form is a Hermitian (symmetric) matrix.
Note that unitarity (orthogonality) of the phase polar form, Eq. (22), is in complete
agreement with the first Jones’ equivalence theorem (Hurwitz and Jones 1941), and
is a general model of elliptically birefringent media. The situation with the dichroic
polar form is more complex (Savenkov et al. 2005, 2007b). Mathematically, the
complexity originates from the fact that, in contrast to unitary matrices, the product
of Hermitian matrices is generally not a Hermitian matrix (Lancaster and
Tismenetsky 1985).

If the incident light is fully polarized and the output light is characterized by an
inequality in Eq. (3) then the equalities for matrix elements obtained in Hovenier
(1994) and Eq. (13), which determine the structure of the Mueller matrix as a
deterministic matrix, are lost. In this case the output light is composed of several
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incoherent contributions, and the medium as a whole cannot be represented by a
Jones matrix. However, the medium can be considered as a parallel set of deter-
ministic media, each one being described by a well-defined Jones matrix, in such a
way that the light beam is shared among these different media. It is important to
point out that the same result could be obtained by considering the medium as an
ensemble (Kim et al. 1987) so that each realization i, characterized by a
well-defined Jones matrix Ti; occurs with a probability pi:

If a Mueller matrix can be represented by a convex sum of pure Mueller matrices
(Cloude 1986; Simon 1987; Cloude and Pottier 1995; Gil 2007), then it is called a
depolarizing Mueller matrix. It is important to note that this class of matrices does
not coincide with the class of matrices, called Stokes matrices, satisfying the
Stokes–Verdet criterion, i.e., matrices transforming Stokes vectors into Stokes
vectors, see Eq. (3). Any physical Mueller matrix is a Stokes matrix, but the
converse is not, in general, true (Gil 2007). On the other hand, no method has been
quoted to physically realize a Stokes matrix that cannot be represented as a convex
sum of deterministic Mueller matrices.

In this case the following quadratic inequalities are also valid (Fry and Kattawar
1981):

ðm11 þm12Þ2 � ðm21 þm22Þ2 �ðm31 þm32Þ2 þðm41 þm42Þ2;
ðm11 � m12Þ2 � ðm21 � m22Þ2 �ðm31 � m32Þ2 þðm41 � m42Þ2;
ðm11 þm21Þ2 � ðm12 þm22Þ2 �ðm13 þm23Þ2 þðm14 þm24Þ2;
ðm11 � m21Þ2 � ðm12 � m22Þ2 �ðm13 � m23Þ2 þðm14 � m24Þ2;
ðm11 þm22Þ2 � ðm12 þm21Þ2 �ðm33 þm44Þ2 þðm34 � m43Þ2;
ðm11 � m22Þ2 � ðm12 � m21Þ2 �ðm33 � m44Þ2 þðm34 þm43Þ2;

ð27Þ

and Eq. (13) becomes an inequality as well:

X4
i¼1

X4
j¼1

m2
ij � 4m2

11: ð28Þ

The study and characterization of depolarization is of considerable importance
owing to the fact that depolarization phenomena are encountered in many theo-
retical and experimental applications of polarimetry to discrete random media and
media with bulk and surface inhomogeneities. Note that the light–medium inter-
action with depolarization is heretofore studied in considerably less detail than the
problem described by Mueller–Jones matrices discussed above.

Depolarization is the result of decorrelation of the phases and the amplitudes of
the electric field vectors and/or selective absorption of polarization states (Brosseau
1998). Depolarization can be observed in both single and multiple light scattering
and depends on geometrical and physical characteristics of the scatterers: shape,
morphology, refractive index, size parameter (ratio of the particle circumference to
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the wavelength of the incident light), and orientation with respect to the reference
frame (Mishchenko and Travis 2000). Furthermore, multiple scattering results in
depolarization of the output light even in the case of a collection of spherically
symmetric particles and often reinforces depolarization caused by particle non-
sphericity Mishchenko and Travis 2000; Mishchenko et al. 2006). Our purpose here
is to characterize the depolarization phenomenon using the Mueller matrix for-
malism. In particular, we intend to discuss single-number depolarization metrics
and Mueller matrices of depolarization.

Depolarization metric is a single scalar number that varies from zero, thereby
corresponding to a totally depolarized output light, to a certain positive number
corresponding to a totally polarized output light. All intermediate values are
associated with partial polarization.

The depolarization index was introduced by Gil and Bernabeu (1985, 1986)

DIðMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i;j¼1

m2
ij � m2

11

vuut , ffiffiffi
3

p
m11

	 

: ð29Þ

The depolarization index is bounded according to 0�DIðMÞ� 1. The extreme
values of DIðMÞ correspond to the case of unpolarized and totally polarized output
light, respectively.

An “analog” to the degree of polarization, Eq. (4), for linearly polarized input
light in terms of Mueller matrix elements, the so-called index of linear polarization,
was introduced by Bueno (2001):

GL ¼
ffiffiffi
3

p

2m11
m2

21 þm2
31 þ

1
3

X4
i¼1

m2
2i þm2

3i

� � !1=2

: ð30Þ

It can be seen that GL is the ratio of the mean of the sum of the squares of matrix
elements corresponding to linear polarization of the output light and the value of the
corresponding averaged intensity normalized by the maximum value of this ratio

which occurs for a linear polarizer: ðGLÞmax ¼ 2=31=2: The former implies the
following range of variation: 0�GL � 1:

The average degree of polarization was defined by Chipman (2005) as follows:

Average DoPðMÞ ¼ 1
4p

Zp
0

Zp=2
�p=2

p½MSðe; fÞ�cos e de df: ð31Þ

The term cos e de df scans the incident polarization state over the Poincaré sphere,
with the latitude ε and longitude ζ. The Stokes vector Sðe; fÞ is a function of
ellipticity and orientation azimuth of the polarization ellipse of light:
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S e; fð Þ ¼ ½ 1 cos 2e cos 2f cos 2e sin 2f sin 2e �T; ð32Þ

where T stands for “transposed.”
The so-called QðMÞ metric is defined as follows (Espinosa-Luna and Bernabeu

2007):

QðMÞ ¼ 3½DIðMÞ�2 � ½DðMÞ�2
	 
.

1þ ½DðMÞ�2
	 


; ð33Þ

where DðMÞ ¼ m2
12 þm2

13 þm2
14

� �1=2 is the diattenuation parameter and
0�DðMÞ� 1: The metric QðMÞ is bounded according to 0�QðMÞ� 3.
Specifically, QðMÞ ¼ 0 corresponds to a totally depolarizing medium;
0\QðMÞ\1 describes a partially depolarizing medium; 1�QðMÞ\3 represents a
partially depolarizing medium if, in addition, 0\DIðMÞ\1; otherwise, it repre-
sents a nondepolarizing diattenuating medium; finally, QðMÞ ¼ 3 for a nondepo-
larizing, nondiattenuating medium.

Thus, the depolarization metrics provide a summary of the depolarizing property
of a medium via a single number. The depolarization index DIðMÞ and the QðMÞ
metrics are directly related to the Mueller matrix elements only and, in contrast to
the average degree of polarization (Average DoP), require no scan of the whole
Poincaré sphere of the input polarizations. Potentially, QðMÞ provides more
detailed information about depolarization properties of a medium.

Quantities referring to the intrinsic depolarization properties of light have had
wide applications in polarimetry as well. Examples are the linear, dL; and circular,
dC; depolarization ratios are defined according to (Mishchenko and Hovenier 1995;
Mishchenko and Travis 2000)

dL ¼ ðs1 � s2Þ=ðs1 þ s2Þ; ð34Þ

dC ¼ ðs1 þ s4Þ=ðs1 � s4Þ: ð35Þ

The interest in these parameters is explained by the fact that they are susceptible
to particle nonsphericity. Indeed, for spherical particles both ratios are equal to zero
identically, whereas for nonspherical scatterers both dL and dC can substantially
deviate from zero (Mishchenko and Hovenier 1995). The former means that if the
incident light is linearly polarized then the backscattered light is completely linearly
polarized in the same plane, whereas if the incident light is circularly polarized then
the backscattered light is completely circularly polarized in the opposite sense. For
nonspherical particles this is generally not the case.

Chipman (1995) introduced somewhat different versions of the degrees of linear
and circular polarizations:
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DoLP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s22 þ s23

q �
s1; ð36Þ

DoCP ¼ s4=s1: ð37Þ

These parameters turn out to be very useful for applications in meteorology,
astronomy, ophthalmology, optical fibers, etc. (e.g., Bueno 2001 and references
therein).

Some media depolarize all polarization states equally. Other depolarizing media
partially depolarize most polarization states but may not depolarize one or some
incident states. Depolarization depends significantly on the polarization state of the
input light in the multiple-scattering regime (Bicout et al. 1994; Rojas-Ochoa et al.
2004; Kim et al. 2006, and references therein). In particular, Bicout et al. (1994)
studied numerically and experimentally how depolarization evolves for linear and
circular input polarizations as the size of the particles increases from very small
(Rayleigh regime) to large (Mie regime) in the case of a forward scattering
geometry.

A single-number metric providing a summary of depolarization by a medium
cannot apparently give detailed information about all features of depolarization.
Such information can only be obtained from Mueller matrix models of depolar-
ization. The case when for all polarizations of the input light the degree of polar-
ization p of the output light is the same which is called isotropic depolarization.
When the degree of polarization of the output light is a function of parameters of the
input polarization, one speaks of anisotropic depolarization.

There seems to be a consensus regarding the form of the Mueller matrix model
describing isotropic depolarization (Brosseau 1998; Chipman 1999):

diag½ 1 p p p �: ð38Þ

It can be seen that the properties of this type of depolarization are the following:

(i) the transmittance is the same for all polarizations of the incident light;
(ii) p of the output light is the same for all input polarizations.

On the other hand, there is no consensus in the literature concerning the Mueller
matrix for the case of anisotropic depolarization. Apparently, one of the most
accepted forms of the Mueller matrix describing the dependence of p of the output
light on the incident polarization is the following (Shindo 1995; Brosseau 1998;
Chipman 1999; Ossikovski 2009):

diag½ 1 a b c �: ð39Þ

The elements a, b, and c are interpreted physically in the following manner: a and
b are the degrees of linear depolarization, while c is the degree of circular depo-
larization. If a ¼ b ¼ c ¼ 0 then the Mueller matrix represents an ideal depolarizer.
Bicout et al. (1994) discussed the depolarization arising in multiple scattering
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of light by spherical scatterers in the Rayleigh regime and is given by Eq. (39) with
a ¼ b:

The most general expression for the Mueller matrix describing depolarization
was suggested by Lu and Chipman (1996):

1 ~O
T

~PD mD

 !
; mT

D ¼ mD; ð40Þ

where~PD denotes the so-called polarizance vector. The polarizance vector describes
the state of polarization generated by this Mueller matrix from unpolarized incident
light. The Mueller matrix of Eq. (40) has nine degrees of freedom, and this is of
interest because this matrix along with a generalized deterministic Mueller matrix is
jointly characterized by 16 degrees of freedom. This means that in this way one
obtains the generalized Mueller matrix of an arbitrary medium that has 16 degrees
of freedom and linearly interacts with polarized light.

The product of Mueller matrices of the unitary and Hermitian polar forms
Eqs. (22) and (24) and the depolarizing Mueller matrix Eq. (40)

M ¼ MD MR MP; ð41Þ

is the generalized polar decomposition and a multiplicative matrix model of an
arbitrary Mueller matrix (Lu and Chipman 1996; Gil 2000, 2007).

The product of the phase polar form and the depolarizing matrices can then be
obtained as

MDMR ¼ M0 ¼ MM�1
P : ð42Þ

Then

~PD ¼ ð~P�m~DÞ
.
ð1� D2Þ; ð43Þ

where ~P ¼ 1=m11

� �½m21 m31 m41 �T and m is the submatrix of the initial matrix
M. The m0 is the submatrix of M0 and can be written as

m0 ¼ mDmR: ð44Þ

The submatrix mD can be calculated as follows:

mD ¼ 	 m0 m0ð ÞT þ
ffiffiffiffiffiffiffiffiffi
k1k2

p
þ

ffiffiffiffiffiffiffiffiffi
k2k3

p
þ

ffiffiffiffiffiffiffiffiffi
k1k3

p	 

I

h i�1

�
ffiffiffiffiffi
k1

p
þ

ffiffiffiffiffi
k2

p
þ

ffiffiffiffiffi
k3

p	 

m0 m0ð ÞT þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3

p
I

h i
;

ð45Þ
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where ki are the eigenvalues of m0ðm0ÞT: The sign “+” or “−” is determined by the
sign of the determinant of m0: The net depolarization coefficient Δ can be calculated
according to

D ¼ 1� 1
3
jTrðMDÞ � 1j: ð46Þ

In conclusion of this section, we consider the additive Mueller matrix model of
depolarizing object suggested by Cloude (1986) and extensively employed in
optical and radar polarimetry (see, e.g., Savenkov et al. 2003; Savenkov and
Muttiah 2004; Munoz et al. 2001, 2002, 2004; Volten et al. 2001; Cloude and
Pottier 1996, 1997). The Cloude coherence matrix J is derived from the corre-
sponding arbitrary Mueller matrix as follows:

J11 ¼ 1=4ð Þ m11 þm22 þm33 þm44ð Þ J12 ¼ 1=4ð Þ m12 þm21 � im34 þ im43ð Þ
J13 ¼ 1=4ð Þ m13 þm31 þ im24 � im42ð Þ J14 ¼ 1=4ð Þ m14 � im23 þ im32 þm41ð Þ
J21 ¼ 1=4ð Þ m12 þm21 þ im34 � im43ð Þ J22 ¼ 1=4ð Þ m11 þm22 � m33 � m44ð Þ
J23 ¼ 1=4ð Þ im14 þm23 þm32 � im41ð Þ J24 ¼ 1=4ð Þ �im13 þ im31 þm24 þm42ð Þ
J31 ¼ 1=4ð Þ m13 þm31 � im24 þ im42ð Þ J32 ¼ 1=4ð Þ �im14 þm23 þm32 þ im41ð Þ
J33 ¼ 1=4ð Þ m11 � m22 þm33 � m44ð Þ J34 ¼ 1=4ð Þ im12 � im21 þm34 þm43ð Þ
J41 ¼ 1=4ð Þ m14 þ im23 � im32 þm41ð Þ J42 ¼ 1=4ð Þ im13 � im31 þm24 þm42ð Þ
J43 ¼ 1=4ð Þ �im12 þ im21 þm34 þm43ð Þ J44 ¼ 1=4ð Þ m11 � m22 � m33 þm44ð Þ

ð47Þ

It can be seen that coherence matrix J is positive semidefinite Hermitian and,
hence, has always four real eigenvalues. The eigenvalues of the coherence matrix,
ki, can be combined to form a quantity that is a measure of the depolarization,
depolarization metric, of the studied medium. This quantity is called entropy and is
defined as

H ¼ �
XN
i¼1

ki
.X

j
kj

	 

logN ki

.X
j
kj

	 

ð48Þ

Given eigenvalues ki of coherence matrix J, we have for initial Mueller matrix:

M ¼
X4
k¼1

kkMk
D; Mk

D , Tk; ð49Þ

here Mk
D are the pure Mueller matrices obtained from the Jones matrices by Eq. (5).

The Jones matrix, T, in turn, is obtained in the following manner:

tðkÞ11 ¼ WðkÞ
1 þWðkÞ

2 ; tðkÞ12 ¼ WðkÞ
3 � iWðkÞ

4

tðkÞ21 ¼ WðkÞ
3 þ iWðkÞ

4 ; tðkÞ22 ¼ WðkÞ
1 �WðkÞ

2 k ¼ 1; 4
; ð50Þ
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where W kð Þ ¼ W1 W2 W3 W4ð ÞTk is kth eigenvector of coherence matrix J.
Thus, the substance of the Cloude’s coherency matrix concept, which, in

essence, is an additive matrix model of depolarizing Mueller matrix, Eq. (49), is the
representation of the initial depolarizing Mueller matrix as a weighted convex sum
of four pure Mueller matrices.

If three of the eigenvalues of J vanish, then the entropy H ¼ 0 and initial matrix
M is a deterministic Mueller–Jones matrix. If all four eigenvalues of J are not equal
to zero and H� 0:5, then the pure Mueller matrix, which corresponds to the
maximal eigenvalue, is the dominant type of deterministic polarization transfor-
mation of the studied object. So, this model gives the possibility to study the
anisotropy properties of depolarizing objects on the one hand and, on the other
hand, it is a necessary and sufficient criterion for given 4� 4 real matrix to be
Mueller matrix (the case when all four eigenvalues of J are nonnegative) and pure
Mueller matrix (the case when three of the eigenvalues vanish) (Munoz et al. 2001,
2002, 2004; Volten et al. 2001).

3 Mueller Matrix Polarimetry

The aim of this section is to discuss the general concept of the Mueller matrix
measurement. An ample of practical schemes of the Stokes and Mueller
polarimeters can be found elsewhere (Hauge 1980; Azzam 1997; Chipman 1995;
Tyo et al. 2006).

The Mueller matrix polarimeter at visible and infrared is composed of a polar-
ization state generator (PSG) and polarization state analyzer (PSA), as shown in
Fig. 1.

The PSG forms the particular polarization state of incident light on the studied
object. The PSA is operated to measure either the full Stokes vector or some of the
Stokes parameters of the scattered light. Both PSG and PSA consist of retarders and
diattenuators that are capable of analyzing the polarization state of the scattered
beam.

incident
 angle

Measured object

PSG PSA

Source
Detector

scattering
 angle

Fig. 1 Schematic overview
to measure the Mueller
matrices
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Nearly all existing Mueller matrix polarimeters are configured so that the entire
Mueller matrix has to be measured (Chipman 1995). Such approach is required to
make up the well-conditioned set of 16 equations for matrix elements in order to
reconstruct the full 4 � 4 Mueller matrix. The approach has been determined by the
structure of the so-called characteristic or data reduction matrix of generalized
measurement equation. The data reduction matrix describes the conversion of a set
of polarized intensity measurements into the Mueller matrix which is represented as
a 16 × 1 vector. For any PSG and PSA, the total flux measured by the detector is

g ¼ QML ¼
X4
i¼1

X4
j¼1

qimijlj; ð51Þ

where L is the Stokes vector produced by PSG;M is the object Mueller matrix; Q is
the Stokes vector corresponding to the first row of the Mueller matrix representing
the PSA.

To measure the full Mueller matrix, N � 16 flux measurements Eq. (51) are
required. Flattening the Mueller matrix M into 16� 1 Mueller vector of the form
~M ¼ m11 m12 m13 m14 
 
 
 m43 m44½ �T the polarimetric measurement
equation can be represented as follows:

G ¼ W~M ¼

q11l
1
1 q11l

1
2 q11l

1
3 
 
 
 q14l

1
4

q21l
2
1 q21l

2
2 q21l

2
3 
 
 
 q24l

2
4

q31l
3
1 q31l

3
1 q31l

3
3 
 
 
 q34l

3
4


 
 
 
 
 
 
 
 
 
 
 
 
 
 

qN1 l

N
1 qN1 l

N
2 qN1 l

N
3 
 
 
 qN4 l

N
4

0
BBBB@

1
CCCCA

m11

m12

m13


 
 

m44

0
BBBB@

1
CCCCA; ð52Þ

where G is N � 1 vector, whose components are the fluxes measured by detector;
W is N � 16 general characteristic or data reduction matrix with elements
wN
ij ¼ qNi l

N
j .

Equation (52) is a system of generally N algebraic equations for Mueller matrix
elements mij. The simplest case of the system Eq. (52) occurs when 16 independent
measurements are performed. In this case N ¼ 16, W is of rank 16, and inverse
matrix W�1 is unique. Then all 16 Mueller matrix elements are

~M ¼ W�1G: ð53Þ

Most Mueller matrix polarimeters are configured so that N[ 16. This makes ~M
overdetermined, and W�1 does not exist. The optimal (least squares) estimation of
~M can be obtained using the pseudoinverse matrix fW of W (Lankaster and
Tismenetsky 1985):
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~M ¼ fWG ¼ WTW
� ��1

WTG: ð54Þ

In mathematics, there exist a variety of pseudoinverse matrices (e.g., one-sided
inverse, Drazin inverse, group inverse, Bott–Duffin inverse, etc.). Here, we use the
so-called Moore–Penrose pseudoinverse matrix (Moore 1920; Bjerhammar 1951;
Penrose 1955). Note that the characteristic matrix W in Eq. (52) is or can evidently
be reduced to those of the full column rank.

This approach is named as the complete Mueller polarimetry. The theory of
operation and calibration of Mueller matrix polarimetry was developed in (Chipman
1995), and the general formalism has been applied by many authors to the opti-
mization of Mueller matrix polarimeters in the presence of noise and measurement
error (Savenkov 2002; Smith 2002; De Martino et al. 2003; Twietmeyer and
Chipman 2008). This procedure is repeated at different scattering angles in order to
determine the angular profile of the Mueller matrix.

However, in many applications reconstruction of the full Mueller matrix is not
necessary (Savenkov 2002, 2007; Tyo et al. 2010; Oberemok and Savenkov 2003).
First of all, some subset of matrix elements might completely describe scattering
which is of interest and hence, these subsets can be considered as initial information
for the solution of corresponding classes of inverse problems. Another reason
making the measurement of complete Mueller matrix unnecessary is matrix sym-
metry. Illustrative example is the pure Mueller matrix with symmetry determined by
the first Jones equivalence theorem (Hurwitz and Jones 1941; Hovenier 1994). This
matrix is widespread in the literature (Tang and Kwok 2001; Swami et al. 2006)
because it describes linear crystal optics without absorption. This approach is ter-
med incomplete or partial Mueller polarimetry (Savenkov 2007; Tyo et al. 2010).

The exact sets of matrix elements, i.e., structures of incomplete Mueller matri-
ces, which can be measured in the framework of any of measurement strategies
(time sequential, dynamic, etc.), are also determined by the structure of the data
reduction matrix of generalized measurement equation, Eq. (52). This corresponds
to the third case in Eq. (52) occurring when N\16 and W is of rank less than 16.

The optimal estimation of ~M is again obtained using the pseudoinverse matrix fW.
However, in this case only 15 or fewer Mueller matrix elements can be determined
from the system Eq. (54), i.e., polarimetry is “incomplete” or “partial.”

4 Radar Polarimetry

In this section, we discuss the polarimetric metrics and targets’ decompositions
used for data interpretation in radar polarimetry. In so doing, we restricted ourselves
mainly by those, which are used in the sections to follow. The comprehensive
review of this subject can be found, for example, in excellent book by Lee and
Pottier (2009).
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Radar polarimetry is a special class of methods and equipments to carry out the
polarization characterization at micro- and radiowave. Being active tool radar
polarimetry is able to “see through” clouds and dusty conditions, to sense a target at
any time of day or night, and, to some extent, “look under” vegetation and soil
depending on wave bands, surface characteristics (e.g., ice, desert sand, close
canopy, etc.), and conditions (e.g., moisture content).

Monostatic radars use the same antenna to transmit and receive electromagnetic
radiation and are limited to measurements at the exact backscattering direction.
Bistatic radars use one or more additional receiving antennas which provide sup-
plementary polarization information.

Radar polarimetry has different polarization configurations. The most widely
used are the linear polarizations indicated as HH, VV, HV, and VH where the first
term refers to the polarization of input (emitted) and the latter to the received
radiations, respectively. In this sense, the radar polarimetry can have different
polarization levels:

• single polarization—HH or VV or HV or VH;
• dual polarizations—HH and HV, VV and VH, or HH and VV;
• four (quad) polarizations—HH, VV, HV, and VH.

The modes HV or VH are termed cross-polarization, whereas HH and VV modes
are denoted as standard polarization. Quad-polarization polarimetry provides the four
polarizations as HH, VV, HV, and VH, and also measures the difference in the
magnitudes and phase between channels. Fully polarimetric sensors provide data that
can be created using all possible combinations of transmitting and receiving polar-
izations, not the standard HH and VV only (Evans et al. 1988; Boerner et al. 1998).

The microwave electromagnetic ranges, in which radar polarimetry operates, are
traditionally denoted by the letters shown in Table 1.

Table 1 Radar polarimetry bands and frequencies (after Lasaponara and Masini 2013)

Name Nominal frequency
range

Wavelength
range

Specific bands used in SARs

VHF 30–300 MHz 10–1 m 138–144 MHz, 216–225 MHz

P (UHF) 300–1000 MHz 100–30 cm 420–450 MHz, 890–942 MHz

L 1–2 GHz 30–15 cm 1.215–1.4 GHz

S 2–4 GHz 17–7.5 cm 2.3–2.5 GHz, 2.7–3.7 GHz

C 4–8 GHz 7.5–3.75 cm 5.25–5.925 GHz

X 8–12 GHz 3.75–2.5 cm 8.5–10–68 GHz

Ku 12–18 GHz 2.5–1.67 cm 13.4–14.0 GHz, 15.7–
17.7 GHz

K 18–27 GHz 1.67–1.11 cm 24.05–24.25 GHz

Ka 27–40 GHz 1.11–0.75 cm 33.4–36.0 GHz

V 40–75 GHz 0.75–0.40 cm 59–64 GHz

W 75–110 GHz 0.40–0.27 cm 76–81 GHz 92–100 GHz

Millimeter 110–300 GHz 2.7–1.0 mm
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Different frequencies are characterized by different “penetration capabilities” as
schematically shown in Fig. 2.

SARs can have different polarization configurations. The most commonly used
polarimetric SAR systems are presented in Table 2.

Fig. 2 Different penetration capabilities of radar polarimetry according to bands, land cover, and
surface characteristics (after Lasaponara and Masini 2013)
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For radar polarimetry, the Stokes vector is not the most effective way to char-
acterize the data since there are effectively two measurements of polarization to
quantify—one for each of the orthogonal transmitted waves. The radar transmits a
horizontal polarized wave, measures the echo polarization, transmits a vertical
polarized wave, and measures the polarization of that echo. At least two Stokes
vectors would then be required (Woodhouse 2006). Since the polarimetric mea-
surements of the echoes are made as orthogonal measurements it is convenient to
define an alternative notion of the Jones matrix, Eq. (6), named in radar polarimetry
as scattering matrix (Mott 2007; Cloude 2010)

S ¼ sVV sVH
sHV sHH

� �
; ð55Þ

where sHV denotes a transmitting antenna of a horizontal polarization and a
receiving antenna of a vertical polarization. If the target is reciprocal sHV ¼ sVH
then S becomes symmetric and has only three independent elements. Having
measured this matrix, the strength and polarization of the scattered radiation for an
arbitrary polarization of the incident radiation can be determined.

In Eqs. (6) and (55) there are two major conventions currently used for coor-
dinates systems, the forward scatter alignment (FSA) convention and the
backscattered alignment (BSA) convention (van Zyl and Zebker 1990; Guissard
1994; Boerner et al. 1998). If BSA convention is used, then the scattering matrix
defined in Eq. (18) relates the scattered wave viewed approaching the receiving
antenna to the incident wave viewed receding from the transmitting antenna (van
Zyl et al. 1987). In optical or transmission polarimetry, the FSA convention is used.

The S matrix, which is expressed in the BSA coordinates, is referred to as the
Sinclair matrix (Sinclair 1950; Kennaugh 1952; Zebker and van Zyl 1991; Guissard
1994; Boerner et al. 1998).

When we say in Eq. (1) that the input and output Stokes vectors are connected
through the Mueller matrix, it assumes utilization of the FSA convention. Using the
BSA convention, the Stokes vector of the backscattered wave is related to the
incident-wave Stokes vector through the Kennaugh matrix, K (Kennaugh 1951; van
de Hulst 1957; van Zyl et al. 1987; Boerner et al. 1998). Thus, the Mueller matrix
M and the Kennaugh matrix K are formally related by (Guissard 1994; Luneburg
1995; Boerner et al. 1998)

M ¼ diag 1 1 1 �1½ � 
K: ð56Þ

For symmetrical targets the matrices S, K, and M are characterized by only five
parameters.

In addition toM and K, two matrices named the target covariance matrix and the
target coherence matrix might be used for characterization of partially polarized
waves.

The scattering matrix of Eq. (55) can be represented in the vector form as
follows:
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S
!¼ sHH sHV sVH sVV½ �T: ð57Þ

An ensemble average of the complex product between S
!

and S
!�T

leads to the
so-called covariance matrix C (Borgeaud et al. 1987; van Zyl and Ulaby 1990):

C ¼ S
!
 S!�T� �

: ð58Þ

The Hermitian positive semidefinite matrix C has precisely the same elements as
the Kennaugh matrix K and the Mueller matrix M but with different arrangements.
The full-established properties of Hermitian matrices make convenient the use of
C in some applications (Borgeaud et al. 1987; Kong et al. 1987; Novak and Burl
1990; van Zyl 1992; Touzi and Lopes 1994).

The coherency matrix Eq. (47) introduced by Cloude (1986) can per analogy
with Eq. (58) be written as

J ¼ k
!
 k!�TD E

; ð59Þ

where k
!

is the target scattering vector (Cloude 1986) and is given by

k
!¼ sHH þ sVV sHH � sVV sHV þ sHV i sHV � sVHð Þ½ �T : ð60Þ

Note that C and J are unitarily similar. The two matrices carry the same
information; both are Hermitian positive semidefinite and both have the same
eigenvalues but different eigenvectors (Cloude and Pottier 1996).

Once reciprocity, sHV ¼ sVH , has been assumed that the elements of S may be

stacked into a three-element vector k
!¼ sVV sHV sHH½ �T. The linear basis is not

always the most efficient way of dealing with the analysis of polarimetric data, and
the Pauli basis of the target vector

kP
! ¼ sHH � sVV 2sHV sHH þ sVV½ �T ð61Þ

is for many applications more useful as it helps to emphasize the phase difference
between the HH and VV terms. Double interactions are dominated by the first term,
multiple (volume) scattering dominates the second term, and direct scattering is
dominated by the second term.

In order to extract information from the polarized backscatter data and obtain
physical interpretation of the Mueller matrix M, the Kennaugh matrix K, the target
covariance matrix and coherence matrices, a number of polarimetric metrics and
targets decompositions have been devised (see, e.g., Freeman and Durden 1998;
Cloude and Pottier 1996, 1997). The target decomposition models attempt to
characterize the backscatter as a sum of elementary scattering mechanisms such as
single bounce, double bounce, and volume scattering, see Fig. 3.
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Equation (59) gives the 3� 3 coherency matrix and corresponding three com-
ponents’ decomposition of the target Mueller matrix. Using normalized eigenvalues
of coherency matrix pi ¼ ki=

P3
i¼1 ki (Cloude et al. 2001) one more important

polarimetric, the scattering anisotropy A, can be introduced,

A ¼ p2 � p3ð Þ= p2 þ p3ð Þ: ð62Þ

Scattering anisotropy A varies between zero and one defining the relation
between the second and the third eigenvalues, i.e., the difference of the secondary
scattering mechanisms. Entropy for smooth surfaces becomes zero implying a
nondepolarizing scattering process described by a single scattering matrix and
increases with surface roughness. Depolarizing surfaces are characterized by non-
zero entropy values. However, A can be zero even for rough surfaces. For surfaces
characterized by intermediate entropy values, a high scattering anisotropy
A indicates the presence of only one strong secondary scattering process, while a
low anisotropy indicates the appearance of two equally strong scattering processes.
For azimuthally symmetric surfaces p2 ¼ p3 and A becomes zero (Cloude and
Pottier 1996). In this sense, the anisotropy provides complementary information to
the entropy and facilitates the interpretation of the surface scatterer.

At last, eigenvalue–eigenvector decomposition of the coherency matrix Eq. (59)
provides one more metric, the alpha angle α, representing the dominant scattering
mechanism and is calculated from the eigenvectors and eigenvalues of J:

a ¼
X3
i¼1

aipið Þ; ð63Þ

where ai are the scattering mechanisms represented by the three eigenvectors: a ¼ 0
corresponds to a surface scattering, a ¼ 45� to a volume scattering, and a ¼ 90�.

Fig. 3 Elementary scattering mechanisms, from left to right: single bounce (smooth surface),
double bounce (urban settlement remains or upstanding relief), and volume scattering (urban
settlement remains and soil penetration) (after Lasaponara and Masini 2013)
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In Cloude and Pottier (1997) the useful geometrical interpretation of the infor-
mation in the coherency matrix based on H=A=a set of parameters in form of nine
classes has been suggested, see Fig. 4.

The class interpretations suggested by Cloude and Pottier are as follows:
Z1 Double bounce scattering in a high entropy environment
Z2 Multiple scattering in a high entropy environment (e.g., forest canopy)
Z3 Surface scattering in a high entropy environment (not a feasible region in H/α

space)
Z4 Medium entropy multiple scattering
Z5 Medium entropy dipole scattering
Z6 Medium entropy surface scattering

Because of the averaging of the different scattering mechanisms, i.e., averaging
of the different eigenvectors, restricts the range of the possible values of α and the
observable values of α for a given entropy are bounded between curves I and II as
the entropy increases.

The H / A plane has been used to distinguish different types of surface scattering.
Note the parameters H=A=a are independent of rotation of the target about the

radar line of sight. The latter in turn means that the parameters can be obtained
independent on the polarization basis. In addition, the classes above are chosen
based on general properties of the scattering mechanisms and do not depend on a
particular dataset. This allows to carry out an unsupervised classification of the
scenes under consideration according to the type of scattering process within the
sample H, A, and the corresponding physical scattering mechanism a.

Another set of polarimetric metrics to characterize the scattering scene can be
deduced from Pauly decomposition of the scattering matrix Eq. (55) (Lee and
Pottier 2009). In accordance with this decomposition the scattering matrix S is
represented as the complex sum of the Pauli matrices. The elementary scattering
mechanisms are associated with corresponding basis matrices:

Fig. 4 The H=a and H/A planes (after Cloude and Pottier 1997)
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S ¼ affiffiffi
2

p 0 0
0 1

� �
þ bffiffiffi

2
p 0 0

0 �1

� �
þ cffiffiffi

2
p 0 1

1 0

� �
þ dffiffiffi

2
p 0 �i

i 0

� �
; ð64Þ

where a, b, c, and d are complex and given by

a ¼ sHH þ sVVð Þ� ffiffiffi
2

p
; b ¼ sHH � sVVð Þ� ffiffiffi

2
p

c ¼ sHV þ sVHð Þ� ffiffiffi
2

p
; d ¼ i sHV � sVHð Þ� ffiffiffi

2
p ð65Þ

In the monostatic case, where sHV ¼ sVH , the Pauli matrix basis can be reduced
to the first three matrices yeilding d ¼ 0.

The Pauli decomposition determines the following three scattering mechanisms
characterizing the target under consideration: aj j2 determines the power scattered
by the targets characterized by single or odd bounce; bj j2 determines the power
characterized by double or even bounce; cj j2 determines the power characterized by
a deplane oriented at 45�. The scattering mechanism represented by cj j2 refers to
backscattering with orthogonal polarization. One of the character examples of this
is the volume scattering produced by the forest canopy.

The scattering patterns are described by four independent variables, the ellip-
ticity and orientation of the incident wave, and the ellipticity and orientation of the
backscattered wave. However, using all four of these variables would result in a
response that would be too cumbersome and complicated to interpret. Therefore, for
clearness, only two variables are used at a time to interpret the scattering patterns—
the ellipticity and orientation angle of the incident wave. This yields two signatures
—the copolarization and cross-polarization signatures introduced in (van Zyl et al.
1987; Agrawal and Boerner 1989; McNairn et al. 2002), see Fig. 5. In the copo-
larization case, the polarization of the scattered wave is the same as the polarization

Fig. 5 Example of
polarization signature (after
McNairna et al. 2002)
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of the incident wave, while in the cross-polarization case, the polarization of the
scattered wave is orthogonal to the polarization of the incident wave.

The height of the pedestal, see Fig. 5, is an indicator of the presence of an
unpolarized scattering component, and thus the degree of polarization of a scattered
wave (van Zyl et al. 1987). Signatures with significant pedestals are typical of
targets that are dominated by volume scattering or multiple surface scattering, e.g.,
Evans et al. (1988) reported that pedestal height was directly proportional to veg-
etation density. Ray et al. (1992) and van Zyl (1989) noted that pedestal height was
related to surface roughness with increase in roughness resulting in higher
pedestals.

Although being not unique, polarization signature capturing many scattering
characteristics of the target, at all polarizations, is informative and can indicate the
scattering mechanisms dominating the target response. Since different scattering
mechanisms give different polarization signatures, they could be extracted from the
measured Mueller matrix. The “building blocks” of such interpretation of the
measured Mueller matrix are the following scattering mechanisms: (1) double
bounce scattering; (2) Bragg scattering; (3) single (odd) bounce scattering;
(4) cross-scattering (see, for example, Dong et al. 1996). Since measurements for
independent scattering mechanisms can be added incoherently (van de Hulst 1957;
Kim et al. 1987) then the total Mueller matrix can be represented as a sum of above
basic scattering mechanisms. A number of additive decompositions of the scattering
and Mueller matrix can be found elsewhere (Cloude and Pottier 1996, 1997; Touzi
et al. 2004).

Double bounce scattering models are typically the scattering from the dihedral-
corner-reflector-like structures such as the trunk-ground structure in forested areas
and the wall-ground structures in urban areas. It has been shown (Dong and Richards
1995a) that the scattering matrix for this mechanism can be written as

S1 ¼ 1 0
0 1=

ffiffiffi
a

pð Þ exp idð Þ
� �

; ð66Þ

where a and d are referred to as polarization index defined as the ratio of HH to VV
polarization response and polarization phase difference defined as the phase dif-
ference between HH and VV backscattered responses. For trunk-ground structure,
a � 4� 6 and d � 140� � 160� (Dong and Richards 1995b). The Mueller matrix
for the double bounce scattering has the form

M1 ¼
aþ 1ð Þ=2a a� 1ð Þ=2a 0 0
a� 1ð Þ=2a aþ 1ð Þ=2a 0 0

0 0 1=
ffiffiffi
a

pð Þ cos d � 1=
ffiffiffi
a

pð Þ sin d
0 0 � 1=

ffiffiffi
a

pð Þ sin d � 1=
ffiffiffi
a

pð Þ cos d

0
BB@

1
CCA: ð67Þ
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Bragg scattering models the scattering from slightly rough surfaces, for example,
sea surface (Valenzuela 1967; Elachi 1987). The Mueller matrix of the Bragg
scattering is

M2 ¼
aþ 1ð Þ=2a a� 1ð Þ=2a 0 0
a� 1ð Þ=2a aþ 1ð Þ=2a 0 0

0 0 1=
ffiffiffi
a

pð Þ 0
0 0 0 � 1=

ffiffiffi
a

pð Þ

0
BB@

1
CCA; ð68Þ

where the mean polarization index value a\1; the mean polarization phase dif-
ference value d is zero, the Bragg scattering undergoes a single bounce.

The single bounce scattering models the direct specular reflections from the
ground surfaces or from building roofs perpendicular to incident waves. The
Mueller matrix for this mechanism is

M3 ¼
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

0
BB@

1
CCA: ð69Þ

The copolarized response from forest crown volume backscattering can be
included in this mechanism. If the orientations of leaves, twigs, and small branches
are assumed to be uniformly distributed, the backscattering response will be
independent of polarization, giving the same HH and VV responses. The
backscattering from the trihedral-corner-reflector-like, wall–wall–ground structures
can also be classified in this mechanism, since the scattering undergoes odd
bounces (Dong et al. 1996).

The polarimetric response of a point or distributed target can generally consist of
the co- and cross-polarized responses. If the total cross-polarized component is of
interest, it can be assumed theoretically that the total cross-polarized response is
caused by a hypothetical cross-scattering mechanism whose scattering matrix is

S4 ¼ 0 1
1 0

� �
; ð70Þ

and the corresponding Mueller matrix is

M4 ¼
1 0 0 0
0 �1 0 0
0 0 1 0
0 0 0 1

0
BB@

1
CCA: ð71Þ
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5 Applications of Optical and Radar Polarimetry

Optical and radar polarimetry have recently demonstrated their unique abilities in
identification, characterization, and classification of anisotropic media and point or
distributed targets of various nature. Several examples of their applications will be
discussed in this section because a comprehensive survey would here be impossible
through, on the one hand, naturally restricted space of the chapter, and, on the other
hand, all applications considered below actually deserve to date the individual
books to be discussed systematically. Thus, we select only a few representative
examples taken from different polarimetrical problems. Additionally, in all cases
below we concentrate on polarimetric results literally. For more other computing,
technical details one should refer to corresponding bibliography hereinafter.

5.1 Contamination

5.1.1 Ocean

Although, yet almost decade ago it was suggested to pioneer the use of the
microwave polarimetric measurements for oil slick observation (Brown and Fingas
2003), first results appeared unsatisfactory (Gade et al. 1998) and not further
developed. Only recently new studies showed the usefulness of fully and partially
polarimetric SAR measurements (see, e.g., Migliaccio et al. 2007, 2009a; Nunziata
et al. 2008; and references therein).

Sea oil spills and pollution is a matter of great concern since it affects ruinously
and sometimes irretrievably both the environment and human health. Oil slick
detection is determinative for effective planning of restorative countermeasures and
to minimize pollution fatal consequences. In this sense, through its all-weather day
and night capabilities (Brown and Fingas 2003), the full polarimetric radar data is
undoubtedly recognized as the most informative and useful tool for global and
regional environment monitoring, disaster management support, and resource
survey.

The oil spill detection approach is based on the different sea surface scattering
mechanisms expected with and without surface slicks (non-Bragg and Bragg,
respectively) (Nunziata et al. 2008; Migliaccio et al. 2009a) and, therefore, they are
characterized by different polarimetric features (see Table 3).

Table 3 Oil-free and
oil-covered polarimetric
features (after Migliaccio
et al. 2009b)

Oil-free Oil-covered

Polarimetric entropy Low High

Unpolarized energy Low High

HH–VV correlation High Low
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In (Migliaccio et al. 2009b) two approaches to the Mueller matrix analysis of
three (one oil spill accident and two of look-alikes) data samples are presented.
First, Mueller matrix analysis approach assumes using the copolarized signatures
(see Sect. 4). Migliaccio et al. (2008) shows that a sea surface without slick,
characterized by low unpolarized backscattered energy (see Table 3), yields a
copolarized signature with a small pedestal height. The larger pedestal height
corresponds to the case of a sea surface with slick, characterized by a large
unpolarized backscattered signal. Second approach is based on the use of the
Cloude entropy, Eq. (48). In scope of this approach in the case of a sea surface
without slick low entropy is evidently expected, and high entropy is characteristic
to the case of a sea surface with slick.

First data sample is oil spill accident occurred with tanker Solar I in August 11,
2006 sank in 640 m of water about 24 km off the southern coast of Lusaca Point,
Guimaras Island of the Philippines, causing heavy oil spill (approximately
200,000 L) from the tanker.

In Fig. 6a polarimetric L band SAR data (VV) for accident area is presented.
Figure 6b depicts this area in the polarimetric entropy terms. It can be seen that, as
predicted in (Migliaccio et al. 2008), the entropy values for the oil-covered area are
larger than the surrounding sea ones.

The normalized copolarized signature has been synthesized for both the oil-free,
Fig. 7a, and the oil-covered, Fig. 7b, sea surfaces by considering two regions of
interest of equal size. Again, comparison of the two polarization signatures shows
that in accordance with (Migliaccio et al. 2008) the oil slick, increasing the amount
of unpolarized backscattered energy yields the higher pedestal.

Two other cases relate to two look-alikes which belong to the acquisition on
March 10, 2007, off the coasts of Da Nang (Vietnam). Figure 8a shows polarimetric
L band SAR data (VV) for one of look-alike area in which a dark elongated feature
is visible. Figure 8b is the same in the polarimetric entropy terms. In Fig. 9 the

Fig. 6 a Polarimetric L band SAR data (VV) for accident area. b Polarimetric entropy (after
Migliaccio et al. 2009b)
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Fig. 7 The normalized copolarized signatures a oil-free and b oil-covered sea surfaces (after
Migliaccio et al. 2009b)

Fig. 8 a Polarimetric L band SAR data (VV) for look-alike area. b Polarimetric entropy (after
Migliaccio et al. 2009b)

Fig. 9 Normalized copolarized signatures for a the slick-free sea surface and b the dark area (after
Migliaccio et al. 2009b)
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normalized copolarized signature, synthesized for both the slick-free sea surface
(a) and the dark area (b) is presented.

The polarimetric entropy, Fig. 8b, does not show any reliable features which can
be attributed to the dark area in Fig. 8a. Comparison of the two copolarized sig-
natures, Fig. 30, shows low and almost equal pedestals for the slick-free sea surface
and the dark area. These allow classifying the dark area in Fig. 8a as a look-alike.

The experimental results obtained show the effectiveness and the usefulness of
the polarimetric L band SAR data for sea oil slick observation.

5.1.2 Chemical–Biological Materials

Undoubtedly, a need for the rapid and reliable identification of toxic chemical–
biological materials and their derivatives in the atmosphere or on remote surfaces at
safe distances (standoff detection) is urgent for military, industrial, and civilian
defense practices (Demirev et al. 2005; Petryk 2007 and references therein). It is
even more crucial because only long-range and beforehand detection and classifi-
cation of toxic chemical–biological materials will allow one to take appropriate
countermeasures minimizing their environment and population consequences.

In (Haugland et al. 1992; Carrieri 1999; Carrieri et al. 1998, 2007, 2008, and
2010) an approach to detect the presence of particular compounds in the atmosphere
or on remote surfaces named differential absorption Mueller matrix spectroscopy
(DIAMMS) has been suggested. The approach consists of twice the measurements
of the Mueller matrix of the suspected contaminant in the backscattering direction,
using two CO2 laser emission lines as the light sources. The matter is that the
Mueller matrices would not normally be measurably different for two close
wavelengths. However, if one of the wavelengths is selected to coincide with a
known IR absorption band of the suspected contaminant, a significant difference in
one or more of the 16 Mueller matrix elements in switching between wavelengths
can occur.

This approach was tested on number of materials, in particular, crystalline
samples comprising amino acids, sugars, enantiomorphs, aerosolized γ-irradiated
Bacillus subtilus and protein chicken egg white albumen, and some others. These
materials were chosen because they are nontoxic, easy to handle, have some
polarization properties that are inherent in the more complex biological organisms,
and acting as biological warfare agent surrogates.

Samples of crystalline organic materials were prepared by pressing the powder
to form the wafers, which could then be vertically arranged in polarimeter. The
sample Mueller matrix for backscattering was measured for the orientation angle
which is of normal incidence 	20�. For aerosol measurements, materials were
dispersed inside windowless pneumatic chambers, and then irradiated across
9:1�12:0 μm optical bandwidth. Each aerosol was interrogated between 30 and 94
beam wavelengths, and at least one fundamental molecular vibration or vibration–
rotation resonance mode in the analyte is stimulated from these infrared probing
beams.
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Figure 10 displays the example of results of the Mueller matrix element mea-
surements for L-tartaric acid. The dotted curves represent data acquired with a laser
line coincident with an absorption band in L-tartaric acid ð1082:3 cm�1Þ; the solid
curve data were taken at a wavelength off-resonance ð1029:9 cm�1Þ. The data in
Fig. 10 are qualitatively typical of all the samples. The dependence on the orien-
tation angle is observed only in the diagonal elements and the rapid and seemingly
random fluctuations in amplitude as orientation angle is scanned are not electronic
detector noise—the pattern is reproduced in detail as the orientation angle is
scanned back and forth.

The DIAMMS approach requires that the detection of the suspected contaminant
is based on the Mueller matrix elements whose values differ when the probe beam is
switched between on- and off-resonance wavelengths at least not lesser than the
sum of the standard deviations associated with each of the two measurements. The

Fig. 10 Normalized Mueller matrix elements as a function of backscattering orientation for
L-tartaric acid off- and on-vibration resonance (solid line 1029:9 cm�1 and dotted line
1082:3 cm�1, respectively) (after Carrieri et al. 1998)
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analysis of the data presented in Fig. 10 indicates that, for L-tartaric acid, five
Mueller matrix elements correspond to this requirement, see Table 4.

The column “Scaled difference” in Table 4 presents a quantity related to the simple
difference between matrix elements on- and off-resonance and is computed by

Dmij ¼ Dmij a; ko; krð Þ � Dmij a; ko; krð Þ� �� ��
4 
 SD; ð72Þ

where Dmij a; ko; krð Þ ¼ mij a; koð Þ � mij a; krð Þ and the subscripts o and r refer to
off- and on-resonance wavelengths, respectively; 〈 〉 is the average; SD denotes
standard deviations for matrix elements.

Figure 11 is an example of DIAMMS data of biological aerosol protein chicken
egg white albumen irradiated at beam wavelengths k ¼ 9:155 and k� ¼ 10:458 μm.
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where i; j ¼ 1; 2; 3; 4 and 6¼ 11. Quantities qij are measures of analyte susceptibility
and key identification parameters of the dual-beam-interrogated aerosol. In the
example of Fig. 11, for instance, eight most significant values of qij for chicken egg
white albumen are grouped in the Mueller space (m14, m24, m31, m32, m33, m34, m42,
m43) denoted by solid rectangles.

Some common conclusions relating the results have to be noted (i) a complete
Mueller matrix is not required for establishing biosimulant materials features;
(ii) diagonal matrix elements undergo the error test rarely; (iii) matrix elements m12,

Table 4 Measured polarization signatures of L-tartaric acid

Matrix
element

Off-resonance
1029:9 cm�1

On-resonance
1082:3 cm�1

Scaled difference
Dmij

m13 0.058 0.188 0.105

m21 0.208 0.704 1.587

m31 0.120 −0.310 −1.101

m34 −0.039 0.131 0.099

m43 −0.038 0.011 0.003
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m21, m13, m31, m24, m42, m34, and m43 seem to be the most informative detection
matrix elements.

5.2 Urban Objects

In (Dong et al. 1996) the comparison of two groups of buildings in the test site of
Sydney (complete polarimetric data acquired in Sydney, Australia, in August–
September 1993 at P band) has been carried out. The motivation was to study the
features of polarization signatures of two groups of buildings, which are similar to
one another, but are seen for radar at different angles: one group in the near range at
30° and the other in the far range at 60°. Figure 12 shows measured P band
polarization signatures (top row) for these two groups of buildings: (a) at incidence
angle of 30° and (b) at incidence angle 60°.

Fig. 11 Mueller matrix elements of biological aerosol protein chicken egg white albumen.
Mantissa, measurement at k ¼ 9:155 lm; abscissa, measurement at k� ¼ 10:458 lm (after Carrieri
et al. 2010)
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For analysis of polarization signatures measured the approach to decompose
them into a combination of contributions by four basic scattering mechanisms was
suggested. These four basic mechanisms are (see Sect. 4 for details): (i) double
bounce scattering; (ii) Bragg scattering; (iii) single (odd) bounce scattering, and
(iv) cross-scattering. Bottom row of Fig. 12 presents the theoretic polarization
signatures by (a) single bounce and (b) double bounce scattering for comparison.

Table 5 lists the percentages of single, double, and Bragg scattering components
of HH polarization for two groups of buildings considered at P band. Last column
named “error” presents the error between measured and predicted by decomposition
suggested values.

The results obtained indicate that at incidence angle 30° single bounce scattering
is a dominant mechanism, while, at 60° is a pronounced double bounce scattering.
The reason is that the roofs of most of buildings covered by plain tiles are tilted
about 30°–35° from vertical. So, in the near range at incidence angle 30° the
pronounced specular reflections from the roofs are expected. In far range the roof
are not almost normal to the radar and strong double bounce scattering from
wall-ground structures is observed.

Identification of man-made objects from radar images has always been a difficult
task, especially for single polarization radar. Fully polarimetric radar can provide
detailed information on scattering mechanisms that could enable the targets to be
identified and classified. However, physical interpretation of scattering signatures
remains a challenge resulting from overlaps of single bounce scattering, double

Fig. 12 P band polarization signatures for two groups of buildings: a at incidence angle of 30°
and b at incidence angle 60° (after Dong et al. 1996)

Table 5 Scattering
components as a percentage
of the total HH backscattering
response

Incidence
angle

Single,
%

Double,
%

Bragg,
%

Error,
%

30° 65 35 0 3.4

60° 25 75 0 3.2
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bounce scattering, and triple- and higher order bounce scattering from various
components of a man-made object, Fig. 13.

In Lee et al. 2006 an interesting example of using PolSAR data to differentiate
multiple bounce scatterings is presented. The side under consideration was the
Great Belt Bridge, Denmark. Two sets of C band EMISAR data were considered to
extract the scattering characteristics of the bridge deck, bridge cables, and sup-
porting structures: the first is obtained during the bridge’s construction, Fig. 14a,
and the second after its completion, Fig. 14b. The radar look angle is between 28°
and 64°, and the range and the azimuth resolution are about 3 m.

Figure 15 shows the results of HHj j for the site under consideration during its
construction. Looking at Fig. 15, one would think that the top of the arcs are returns
from the two giant cables, the middle two bright lines represent returns from the
decks, and the arcs below the two bright lines are double bounce returns from the
two cables. However, an aerial photo in Fig. 14a demonstrates that the deck was not
installed during that time.

The Pauli decomposition of the PolSAR data corresponding to the case of
Fig. 15 is presented in Fig. 16a. The decomposition uses HH � VVj j; HVj j, and
HHþVVj j as red, green, and blue, respectively, and separates the dihedral,
cross-pol, and surface scatterings. The absolute value of a polarization orientation
angle during bridge construction is shown in Fig. 16b.

It can be seen that the two bright lines in the middle are double bounce from the
cables, and the lower arcs are triple bounce returns from the cables. The two giant
cables were assembled from several hundreds of small cables, and they were not
tightened together by wrapping wires.

The ocean surface has near-zero orientation angle values, whereas, the tilted
cables demonstrate higher orientation angle values.

The single bounce from the ocean surface possesses the typical Bragg resonant
scattering shown in blue in Fig. 16b. The single bounce from the cables is specular
and is shown in green in Fig. 16b. The bridge towers induce a very weak surface
backscattering and cannot be discerned.

Fig. 13 Paths “1” and “2” are
single bounce and double
bounce, respectively. Path “3”
is triple bounce scattering
(after Lee et al. 2006)
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Two middle straight lines in Fig. 16b are from strong double bounce returns.
Since the ocean surface is horizontal and flat, the double bounces from the cables
are straight lines. The double bounce scattering is higher than those from the single
and triple bounces for all three linear polarizations (HH, HV, and VV).

It can be observed from Fig. 16 that the double bounce scattering from the two
supporting towers is extremely strong, because double bounce scattering from all
parts of the towers is projected down to the ocean surface.

Fig. 15 HHj j images of the Great Belt Bridge, Denmark during the construction (after Lee et al.
2006)

Fig. 14 Aerial photos of the Great Belt Bridge, Denmark: a during the construction and b after
completion (after Lee et al. 2006)

460 S.N. Savenkov



The sections of bridge in green in Fig. 16 have higher values in orientation
angles that produce higher HV scattering. The other sections are more aligned in the
azimuth direction with smaller orientation angles that produce higher scattering in
HH and VV. The scattering from HH is higher than VV, as shown in Fig. 3, for these
sections that produce the near-purple color in Fig. 16. The magnitude of triple
bounce scattering is, in general, comparable to that of single bounce scattering.

We see in Sects. 3 and 4 that the Cloude and Pottier decomposition is a good
technique to characterize scattering patterns because its derived parameters are
rotationally invariant. For example, the entropy is very useful to characterize the
diversity of scattering mechanisms, especially for random media.

However, authors report that the entropy is less useful than the alpha angle in
characterizing scattering mechanisms for man-made structures like the suspension
bridge. The reason is that averaging neighboring pixels (or multilooking) is required
to obtain meaningful entropy values, and the amount of averaging and the average
of cable pixels with neighboring ocean pixels falsely increases the entropy values
around the cables.

While, the average alpha angle is more useful because it can distinguish scat-
tering mechanisms from surface, to dipole, to dihedral, see Fig. 17.

The single bounce scattering from cables shows dipole scattering in green color
near 45°. Double bounce from the two supporting towers has an average alpha
angle close to 90°. The triple bounce returns are shown in green, implying dipole
scattering. We also noticed the absence of local double bounce effect that exists in
the triple bounce signature.

Fig. 16 The Pauli decomposition a and polarization orientation angle b of the PolSAR data for
the Great Belt Bridge during construction (after Lee et al. 2006)
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The polarimetric signature of the bridge becomes much more complicated after
the completion of the construction, see Fig. 17. The deck has been installed, and the
cables have been wrapped, reducing their radar cross sections. The addition of the
deck makes multiple bounces from the deck overlap with those from the cables.

The Pauli decomposed image, Fig. 18a, shows bridge signatures very differently
from those during construction.

The single bounce returns from the deck have a slight curvature as expected, and
the scattering is very strong because of the massive structure of the deck. The
double bounce from the cables and the deck appear as two straight lines and are
totally overlapped as they are all projected down to the ocean surface. The triple

Fig. 17 Averaged alpha angle derived from the Cloude and Pottier decomposition (after Lee et al.
2006)

Fig. 18 Pauli decomposition (a) and averaged alpha angle (b) derived from the Cloude and Pottier
decomposition after the completion of bridge construction (after Lee et al. 2006)
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bounce from the cables is weaker and partially obscured by the strong returns from
the deck.

The alpha angle image obtained by the Cloude–Pottier decomposition, Fig. 18b,
reveals multibounce scattering mechanisms of the cables and the deck much better
than that of the Pauli vector Fig. 18a.

Note that the two curvilinear lines, “B” and “C” in Fig. 18b, below the triple
bounce signature “A” from the deck also show blue color, which is indicative of an
odd bounce in the alpha angle image, but the number of bounces must be higher
than three because the slant ranges are longer than that from the triple bounce.

The “C” curvilinear line involves an additional two bounces from the deck to the
ocean surface and back to the deck. It can be also observed two more curvilinear
lines, “D” and “E” in Fig. 18b, which are somewhat broken up, but still visible in
this alpha angle image.

Thus, the results presented have demonstrated the importance of multibounce
scatterings, which contribute toward the overall complexity of target signatures.

One more extremely important area where the radar polarimetry can provide the
potential capability is the detection of landscape disturbance and damage to
man-made objects caused by natural disasters, e.g., earthquake.

In Park et al. (2013) the usability of polarimetric change detection for automatic
identification of damage caused by earthquakes and tsunamis is evaluated.
Disaster-induced change of backscattering characteristics has been studied using the
Phased array L band Synthetic Aperture Radar (PALSAR) onboard the Japanese
Advanced Land Observing Satellite (ALOS).

The study site is located in the Ishinomaki area, approximately 90 km west of the
epicenter of the 2011 Tohoku earthquake, Fig. 19.

The magnitude 9.0 Tohoku earthquake occurred at 14:46 JST on March 11,
2011, was the worst in Japan’s recorded history and one of the five most powerful
earthquakes in the world since 1900. It triggered powerful tsunami waves that
caused catastrophic damage along the coastal areas of northeastern Japan, with a
maximum wave height up to 40 m, Fig. 20a.

A data used to evaluate changes in polarimetric signatures was acquired before
2011 and on April 8, 2011, i.e., about 1 month after the earthquake and tsunami
disaster. All datasets used in the study have the same acquisition parameters with
the same viewing configuration. Evidently, this allows assuming that differences
observed are directly related to the changes that occurred to the ground scatterers.

Second and third rows in Fig. 20b–e present the parameters of Yamaguchi
decomposition [surface PS, double bounce PD, volume PV, and helix scattering PC

mechanisms (Yamaguchi et al. 2005)] and of Cloude decomposition (entropy, H,
anisotropy, A, and average scattering angle, a, see Sect. 4), respectively.

Evidently, different polarimetric parameters provide different information about
earthquake and tsunami damage; therefore, the detectability of each parameter is of
great interest. To evaluate detectability of polarimetric parameters, temporal sepa-
rability between damaged and undamaged conditions is used. Authors suggested
several additional parameters for that.
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The normalized distance, ND, between the mean values of each polarimetric
parameter acquired for pre- and postdisaster conditions is defined as

ND ¼ ma � mbj jffiffiffiffiffiffiffiffiffiffiffiffiffi
s2a þ s2b

p ð74Þ

where ma and mb are the mean values, and sa and sb are the standard deviations of
pre- and postdisaster conditions, respectively.

Fig. 19 The Ishinomaki study area and ALOS/PALSAR image acquired after the earthquake
(after Park et al. 2013)
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The copolarization coherence in the linear HV polarization basis ðqHHVV Þ and
circular polarization basis ðqRRLLÞ and the polarimetric orientation angle ðhPOÞ, are
as follows:

Fig. 20 a Image of the study site acquired after (2011/04/08) the earthquake with four subareas of
interest (U1, U2, F1, F2). Changes in polarimetric parameters in urban areas: b totally swept urban
area, U1; c flooded and partly swept urban area, U2; d heavily devastated area, F1, and e flooded
and partially damaged area, F2. Circle and error bar are sample mean and standard deviation,
respectively, of the regions of interest (after Park et al. 2013)
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Polarimetric coherences have been used to characterize surface roughness
(Mattia et al. 1997) and map urban areas (Moriyama et al. 2005), and can be a
useful polarimetric discriminator between damaged and undamaged conditions.

The polarimetric orientation angle is the angle about which the antenna has to be
rotated in order to align its horizontal polarization axis to the tangential plane of the
surface (Schuler et al. 1996). The changes in hPO may provide information for
detecting disaster-stricken building areas, such as inclined man-made objects.

Figure 21 shows change detection maps derived from 2010/11 to 2011/04 pairs
for each polarimetric parameter. The reference image in Fig. 6a is derived from the
damaged area maps (http://danso.env.nagoya-u.ac.jp/20110311/map/) produced by
the Geospatial Information Authority of Japan (GSI).

It is notable that Fig. 21b, c indicates that changes (post–pre) in the conventional
single-channel backscatter measurement, for either HH or VV polarization, cannot
provide useful information about damage caused by earthquakes or tsunamis.

As shown in the second row in Fig. 21, DPV exhibits good detectability of
damage conditions. In particular, the enhanced class in DPV corresponds to dam-
aged urban areas, while the reduced class can detect part of the flooded farmlands.
However, there are false alarms in the undamaged paddy fields in the northwestern
quarter of the image due to seasonal changes in land cover type.

DH is useful in identifying large areas of flooded farmland. However, significant
false alarms can also be found in undamaged areas. DA and Da indicate fewer false
alarms in seasonally changed areas, although detectable damage is limited to the
swept urban area.

DqHHVV exhibits the best performance in terms of detectability of both totally
and partly damaged urban areas. In this case, however, false alarms can be found in
forest areas in the northeastern quarter of the image. DqRRLL shows primarily
temporal changes in forest areas with limited detectability of swept urban areas. As
discussed in the previous section, change detection based on DhPO provides no
useful information about damage.

Thus, radar polarimetry has great potential to detect large area of damage.
However, it is not always possible to obtain datasets with sufficient spatial and
temporal resolutions to assess damaged areas precisely.

The change of radar signal backscattering from swept urban areas is character-
ized by a significant decrease of the double bounce scattering due to vanished
dihedral structures. In partly damaged urban areas, however, such a scattering
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characteristic is not distinctive. Still, minor changes in scattering properties can be
identified by polarimetric parameters such as the anisotropy and the polarimetric
coherence. On the other hand, changes in scattering properties of farmlands are not
characterized easily due to natural or land use dynamics of those areas as well as the
delayed post-event acquisition. However, tsunami-induced changes can be detected
by the polarimetric entropy or the volume scattering component.

Fig. 21 a Reference tsunami damage map, and b–l change detection maps derived from the
various polarimetric parameters (after Park et al. 2013)
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5.3 Mines

Over 50 countries worldwide are contaminated by land mines. Due to high ground
and foliage penetrating capabilities, radar polarimetry is a most promising technique
for the detection of obscured objects. A key challenge in remote mine detection is
discrimination between mines and non-mine objects (e.g., stones). In particular,
mines with low metal content are difficult to detect since they can only be found
using conventional metal detectors at the expense of high false alarm rates.

To discriminate between mine and non-mine objects, in Hellmann and Cloude
(2001) the scattering mechanisms of mines and mine-like objects were analyzed
based on the data performed by The European Joint Research Centre (JRC) in Ispra,
Italy in a range of frequencies below 5 GHz due to the limited penetration depth for
higher frequencies.

On the one hand, since a real mine field may contain anti-personal mines of
different types which are not known a priori it is essential to find features which are
common for all mines. On the other hand, mines vary in size, shape, and materials,
because of that these properties are unlikely to be useful for clutter rejection.
However, nearly all types of mines contain an air gap, which will strongly influence
the polarimetric signature.

Figure 22 presents the results of a angle and vorticity m, see Sect. 4, for two
anti-personal mines TAUPS and MAUS on azimuth (horizontal) and radar fre-
quency (vertical). For oblique incidence, the mines show at discrete frequencies
high alpha and vorticity values (called a-resonances). For close to vertical incidence
angles the features disappear as expected from symmetry arguments. The features
are largely independent of the azimuth angle.

JRC database provides polarimetric measurement data over a wide frequency
range for a variety of non-mine targets which are likely to be found amongst mines
in a real mine field (e.g., aluminum cans, plastic bottles, stones, wood, etc.). The
results of a angle and vorticity m for stone (upper row) and plastic bottle (lower row)
on azimuth and frequency are presented in Fig. 23.

Figure 22 shows that the distribution of the alpha and vorticity is a function of
the azimuth angle. However, for any specific azimuth the distribution always differs
from those of the mines. While the mines show clear resonances, the non-mine
targets do not. Only for nonmetallic objects with an air gap inside [e.g., the plastic
bottle shown in Fig. 23 (bottom)] do the features show some similarities, since the
structure of these objects (nonmetallic cylinder with air gap inside) is similar to the
structure of mines.

To evaluate the polarimetric properties of background surface clutters, authors
used a set of polarimetric surface measurements provided in Nesti (1998). The
results are shown in Fig. 24.

The distributions observed are clearly different from those of the mines and the
non-mine targets.

The results shown above indicate that radar polarimetry can provide substantial
information for the detection of anti-personal mines as well as for the discrimination
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between mines, non-mine targets, and background surface clutters at oblique
incidence angles. However, in order to validate these findings and also for buried
mines more measurements on surface laid mines are necessary. Because of the
scattering behavior of the various non-mine targets differ recognizably, further
polarimetric measurements on such objects could enhance the understanding of the
scattering mechanisms and yield the possibility to discriminate between different
types of non-mine targets. Additionally, this information might be useful for larger
sensors like airships for the detection of mine fields.

The problem of discrimination between mines and surface clutters is of great
interest in optical range as well. In Stabo-Eeg et al. 2008a the reflection spectrum
and Mueller matrices of seven different land mines (TMRP-6, TMA-1, TMA-4,
PMA-1, PMA-2, PMA-3, and MRUD) and three different plants (Yucca
guatemalensis, Plantago major, and Taraxacum officinale) were measured. The
reflection spectrum is taken within an integrating sphere (Labsphere DRA-CA-50D)
between 400 and 2500 nm, see Fig. 25.

The reflection coefficients are between 5 and 15 % and peak values are around
510 nm for all the mines, which contained green pigment, while PMA-3 made out

Fig. 22 Dependences of a angle (left) and vorticity (right) for two mines on azimuth and radar
frequency (after Hellmann and Cloude 2001)
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of black rubber material is characterized by constant reflection coefficient around 5–
6 %.

The mines were found to be less reflective in wet compared to dry conditions,
see Fig. 26.

In the polarimetric study, the Mueller matrices from specular and nonspecular
reflections were collected from the sample pieces from the cover of seven plastic
mines (the pieces were cut out from the covers and had a size of about 3� 3 cm)
and compared against three different plants (Y. Guatemalensis, P. major, and T.
officinale). More detail information on polarimeter used in this experiment can be
found in Stabo-Eeg et al. (2008b, c).

As an example, the results of nonspecular Mueller matrix measurements for the
mine TMRP-6 and leaf from the plant Y. guatemalensis are presented in Figs. 27
and 28, respectively. Measurements were performed at 1570 nm.

The mines clearly show a specular reflection behavior whereas reflection from
the plants is dominated by scattering. To compare the depolarization properties of
the mines and plants under consideration the depolarization index (Gil and
Bernabeu 1986) was calculated from the measured Mueller matrices. The results are
presented in Fig. 29

Fig. 23 Dependences of a angle (left) and vorticity (right) on azimuth and frequency for a stone
(top) and a plastic bottle (bottom) (after Hellmann and Cloude 2001)
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Fig. 24 Dependences of a angle (left) and vorticity (right) on azimuth and frequency for smooth
(top) and rough (bottom) surfaces (after Hellmann and Cloude 2001)

Fig. 25 Spectroscopic reflectance measurements of the mines: (Black circle) PMA-1, (white
circle) PMA-2, (times) PMA-3, (plus) TMRP-6, (asterisk) MRUD, (square) TMA-1, (diamond)
TMA-4 (after Stabo-Eeg et al. 2008a)

Polarimetry of Man-Made Objects 471



Fig. 26 Digital camera images and scanning laser radar reflectivity of the mines m/47 (left) and a
TMA-1 (right) in: a dry condition; and b wet condition (after Stabo-Eeg et al. 2008a)

Fig. 27 Dependences of the Mueller matrix elements of the mine TMRP-6 on scattering angle h.
All elements are normalized by m11 except m11 normalized by the maximal intensity value (after
Stabo-Eeg et al. 2008a)
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As it can be seen, the plants exhibit a larger depolarization than that of the mines.
This is an expected result since the plants are partially transparent at NIR wave-
length while the mines are more reflective. The depolarization of the plants is
probably caused from both scattering inside the leaves as well as different surface

Fig. 28 Dependences of the Mueller matrix elements of a leaf from the plant Yucca guatemalensis
on scattering angle h. m11 is in arbitrary units (after Stabo-Eeg et al. 2008a)

Fig. 29 Dependences of the depolarization index on scattering angle for different samples of
mines and plants at 1570 nm. (a) Mines: (Black circle) PMA-1, (white circle) PMA-2, (times)
PMA-3, (plus) TMRP-6, (asterisk) MRUD, (white square) TMA-1, (diamond) TMA-4; (b) Plants:
(triangle) Yucca guatemalensis, (left triangle) Taraxacum officinale, (asterisk) Plantago major
(after Stabo-Eeg et al. 2008a)
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profiles. Other depolarization effects originating from retardation and diattenuation
seem to be very small, since the nondiagonal matrix elements are close to zero.

Thus, Mueller matrix measurements and, in particular, depolarization informa-
tion at NIR seem as well a promising supplementary technique to distinguish
surface mines from natural vegetation backgrounds.

5.4 Archaeology

While remote observation for the analysis of archaeological structures has quite
long history starting at the end of the nineteenth century when in 1879 the ancient
city of Persepolis was studied using aerial photographic documentation, the SAR
polarimetric technique is rather new tool of investigation for cultural heritage
applications.

Below in this subsection, we examine several examples to assess the potential of
radar polarimetry to identify buried archaeological structures. These are sets of L
band PolSAR data of three archaeological sites: Pelusium on the northeastern edge
of the Nile Delta, Egypt (Stewart et al. 2013); Djebel Barkal the northern province
of Meroe, Sudan, and Samarra, 130 km north of Bagdad, Iraq (Dore et al. 2013;
Patruno et al. 2013).

The choosing of L band for this analysis is explained by deeper penetration of the
SAR signal in dry sand cover overlying potential buried structures. Indeed, if k is the
wavelength and e ¼ e0 � e0 is the relative complex dielectric constant, for materials
with e0=e0\0:1, then an approximate estimation of the penetration depth of a SAR
signal through a volume LP can be obtained as follows (Ulaby et al. 1982):

LP ffi k
ffiffiffi
e0

p

2pe0
ð77Þ

Equation (77) shows that the greater the wavelength, the greater the penetration
depth. Thus, ALOS PALSAR operates in L band (23.6 cm), which is noticeably
longer than other current, high-resolution, spaceborne SAR systems, which operate
either in C band (5.6 cm) or X band (3.1 cm).

Pelusium (modern Tell el-Farama) is a relatively large area with flat terrain
locating at latitude 31� 2023:0000N and longitude 32�33030:7400E on the northeastern
edge of the Nile Delta in Egypt at the mouth of the now extinct Pelusiac branch of
the Nile. It lies along the “Ways of Horus” and during Roman times it was the most
important harbor in Egypt after Alexandria. This area is characterized by a long
human occupation and thereby is considered the important archaeological site in
northern Sinai.

Samarra was the second capital of the Abbasid Caliphate. It was the capital of
Iraq only for 56 years (AD 836–892), when the city was suddenly and mysteriously
abandoned. This allowed very good preservation of its topography and provides an
important example for the study and comprehension of the ancient urban system for
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archaeologists. The portion of the whole area of Samarra properties (15,058 ha)
(N430450�43�510; E34�250�34�050) presented in this work is the octagonal city of
al-Qadisiyya, an unfinished city built in mudbrick and still unexcavated. It was
built, according to the texts, by Caliph Harun al-Rashid on the model of the Round
City of Baghdad and abandoned in AD 796, before Samarra city was built.

Djebel Barkal is one of the five Napatan (900–270 BC) and Meroitic (270 BC to
AD 350) archaeological sites stretching over more than 60 km in the Nile valley, in
a semidesert area considered to be part of Nubia. It was the capital of the Kushite
kingdom, probably by the end of ninth century BC, keeping both its religious and
administrative roles until the fourth century. This area was considered to be sacred,
with its tombs, temples, and pyramids, since New Kingdom times (ca. 1500 BC).
Several temples at the foot of the sacred hill and facing the Nile, have been revealed
by excavations and survey, together with administrative palaces and pyramids.

The 18 PALSAR images acquired in various polarimetric modes were obtained
for the analysis through a European Space Agency Category-1 project. Processing
included coregistration and summation of images for each polarimetric mode in
order to reduce speckle, see Figs. 30 and 31. The summed images were then

Fig. 30 Sum of eight PALSAR images acquired from 2007 to 2010 in single polarization mode
(HH). The red ellipse indicates features of potential archaeological interest (after Stewart et al.
2013)

Fig. 31 Sum of nine PALSAR images acquired from 2007 to 2010 in dual polarization mode
(HH). Green ellipses indicate features of potential archaeological interest (after Stewart et al. 2013)
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compared with each other and with optical imagery, Fig. 32 (Courtesy Google
Earth. Image copyright 2013 GeoEye. Copyright 2013 ORION-ME), to identify
any features that may be of archaeological interest.

Comparing the HH polarized images, some features are more evident in one than
the other, the reasons probably being simply due to the different acquisition dates of
the images in each stack, and the differences in spatial resolution and pixel spacing.
Comparing the SAR images with the optical, Fig. 32, many of the features in the
SAR are visible also in the optical imagery, but in some cases are not so clearly
delineated.

A number of what appear to be paleaoenvironmental features are highlighted by
the SAR dual HH polarization images shown in Fig. 33, where arrows indicate both
brighter and darker radar features.

Yellow arrows indicate possible Nile palaeobranches, whereas blue and red
arrows indicate potential palaeochannels. The potential palaeochannels highlighted
by the blue arrows are spatially linked to the area of urban remains. Previous studies
have suggested the presence of minor northern branches of the Nile, easily iden-
tified in Fig. 33 by red arrows, the silting up of which occurred around AD 25, as
suggested by Sneh and Weissbrod (1973). Ancient ruins have been found very
close to these possible palaeoriver courses, and therefore, the potential channels fit
well with these findings. The red arrows in Fig. 33 indicate both brighter and darker
features and, in particular, darker features that connect the defunct river branches
with the baths, thus suggesting that it may be related to a Roman hydraulic system
built to bring water to the thermal areas.

Results of the polarimetric analysis deriving Freeman decomposition [odd
bounce (red), volume scattering (green) and double bounce (blue)] and entropy
undertaken on the SAR quad-pol image of Pelusium archaeological site are shown
in Fig. 34.

Figure 34a shows that the dominant scattering mechanism over the site is single
bounce. This means that the incident SAR signal generally scatters once on the
surface before returning to the sensor and does not generally get depolarized. Bright
pixels have high entropy, indicating mixed scattering. Dark pixels have low
entropy, indicating the presence of a dominant scattering mechanism, Fig. 34b.

Fig. 32 Optical image acquired on August 1, 2009 (after Stewart et al. 2013)
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Green and blue ellipses circle highlight features of potential archaeological interest
(Image provided by the European Space Agency.).

In Fig. 35 an example of entropy and alpha angle from the al-Qadisiyya area
together with H=a plane is shown.

High values of H and medium values of a are recorded in almost the whole of
the zone corresponding to surface roughness (Zone 8) and vegetation (Zone 5) in
the H=a plane. Except for part of the octagonal city walls and part of interior system
of the canals (black ellipses in the image), both recorded with low values of H and
low values of a, no other archaeological features were detected by the
ALOS PALSAR sensor (Dore et al. 2010).

The low archaeological information gained with H and a polarimetric descriptors
turned our attention to other parameters in order to test the validity of the scattering
mechanisms both upon the already-known structures and in the areas around them.

The results of Freeman (a) and Yamaguchi 3 (b) decompositions in the form of
RGB images (R—double bounce; G—volume scattering; B—single bounce) are
presented in Fig. 36.

From an archaeological point of view, the features, which can be detected in
Fig. 36, are also well known in optical images and previously recorded in the
literature. The wall perimeter is well detected and visible in the Freeman image
(white arrows). It responds to a single bounce scattering mechanism. Note that there
are no responses from the qanāt, the underground channel entering the city through
the northwest wall with clear surface alterations. Authors assumed that even if at a

Fig. 33 Sum of two SAR dual HH polarization images acquired on Jul 28,2008 and Sep 15, 2009
(after Stewart et al. 2013)
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first level of interpretation this absence of response may be ascribed to the low
ALOS PALSAR spatial resolution (about 20 m), however, it is hardly possible as
the width of the surface alterations is about 64 m wide. Most of all, it is possible to
detect the qanāt in ENVISAT-ASAR imagery (a series of images spanning from
2004 to 2008) with a spatial resolution of about 30 m. These results therefore are
not due to their spatial resolution, but to the deformation of the surface.

Concerning Djebel Barkal, the same polarimetric decompositions were per-
formed. The area investigated is the portion northwest of the archaeological com-
plex, near the first group of Royal pyramids. Here, a strong backscatter is noticed in
all the products obtained: Fig. 37a—Pauli RGB (Patruno et al. 2013); Fig. 37b—
Freeman; and Fig. 37c—Yamaguchi decompositions.

The additional analysis including the 3 years (2006 and 2009 years) difference in
time acquisition shows that only for that particular bright response there is a cor-
respondence in all images. It is interesting that the target is visible in an area where
a high content of archaeological structures is present, but it is not visible in optical

Fig. 34 a Freeman decomposition and b entropy for SAR quad-pol image acquired on April 8,
2009 (after Stewart et al. 2013)
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images, see Fig. 38. This could be due to penetration of radar waves. Latter it is
confirmed also by Yamaguchi decomposition, Fig. 37c.

In the ellipse, Fig. 38, is the area where the anomaly was detected in Fig. 37. In
rectangles, the three archaeological areas where remains are already known are
marked.

Thus, the analysis conducted above with the SAR data of archaeological areas
under consideration results in the identification of a number of what appear to be
palaeolandscape and archaeological features. However, validation of these findings,
possibly by geophysical survey or excavation, would be required to determine the
precise nature of these anomalies. On the other part, SAR data analysis demon-
strates great potential for places of cultural interest where a validation or archae-
ological excavations in situ are not allowed for a variety reasons or have not yet

Fig. 35 Entropy (left) and alpha angle (right) and the H=a plane (below) (after Dore et al. 2013)
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started. Moreover, this allows monitoring the threats and risks caused by uncon-
trolled urbanization, agricultural exploitation, or even illegal excavations.

The spatial resolution of the SAR data does not permit the identification of
small-scale features. However, the features can be clearly distinguished in SAR data
at a scale at which the same features may be very difficult to distinguish in optical
imagery. This makes radar polarimetry a useful tool to be applied in a preliminary
observation of ancient areas providing a priori information about the natural and
human environment and an overview of the historical zones.

Fig. 37 a Pauli decomposition (after Patruno et al. 2013), b Freeman and c Yamaguchi 3
decompositions (after Dore et al. 2013). The yellow ellipse outlines the persistence of the strong
scattering noticed in the area

Fig. 36 Freeman (a) and Yamaguchi 3 (b) decompositions for the Samarra archaeological area
(al-Qadisiyya city) (after Dore et al. 2013)
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5.5 Miscellaneous Man-Made Targets

Remaining in the scope of the primary motivation for research in scatter polarimetry,
i.e., to gain understanding of the physical features of the interaction of polarized
beams with natural scenes and to search for useful discriminants to classify objects at
a distance, the main subject of interest in this section is polarimetry of various
man-made objects as diverse as wood samples and automobile paints.

In Moriyama et al. 1997 radar polarimetry was used to examine classification of
target, metallic plate, and pipe, buried in the underground. Measurements of the
scattering matrix, Fig. 39, are carried out at the Niigata University Campus in the
conventional linearly polarized HV basis and from 250 MHz to 1.0 GHz. The
targets are a metallic plate of 25 × 25 cm dimension and a metallic pipe of 10 cm in
diameter and 100 cm long which was buried in the ground at the depths of 50 and
80 cm, respectively, see Fig. 39.

Further, for classification of buried target authors used some polarimetric
identifiers extractable from the measured scattering matrices: the polarization ani-
sotropy coefficient, polarimetric signature, etc.

The results for polarimetric power signature of targets under consideration are
displayed in Fig. 40.

Note, that the tilt angle of co-pol maximum polarization state corresponded to
the orientation angle of buried cylindrical target. The polarization ratio of maximum
in Fig. 40b is found to be vmax ¼ 1:158� i0:236, which corresponds to the

Fig. 38 Optical image (Kompsat-2) image of Djebel Barkal archaeological area (after Patruno
et al. 2013)
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characteristic polarization states of h ¼ �49:9�; e ¼ �5:7� for the pipe. So, the tilt
angle of the co-pol maximum polarization state is quite close to the actual target
orientation.

The power polarization anisotropy coefficient is defined as

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

Det Sð Þ
Span Sð Þ
����

����
2

s
¼ k1j j2� k2j j2

k1j j2 þ k2j j2 ; k1j j � k2j j; 0� l� 1; ð78Þ

Fig. 39 Schemes of experiments (after Moriyama et al. 1997)

Fig. 40 Polarimetric copolar signatures of a plate and b pipe (after Moriyama et al. 1997)
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where k1 and k2 are the eigenvalues and DetðSÞ and SpanðSÞ are determinant and
span of the scattering matrix Eq. (55)

DetðSÞj j ¼ sHHsVV � s2HV
�� �� ¼ k1k2j j ð79Þ

SpanðSÞ ¼ sVVj j2 þ 2 sHVj j2 þ sHHj j2¼ k1j j2 þ k2j j2 ð80Þ

Both parameters are invariant regardless of polarization basis.
If the power polarization anisotropy coefficient is equal to 0, the target is iso-

tropic target (sphere, plate, etc.). If the parameter is close to 1, the target is ani-
sotropic target (wire, cylinder, etc.).

Figure 41 shows distribution of power polarization anisotropy coefficient around
target (5 × 11 pixels, complete polarimetric image consists of 64 × 150 pixels).

The average power polarization anisotropy coefficient is 0.21, Fig. 41a, and 0.88,
Fig. 41b, respectively. These results indicate eloquently that the plate behaves like
isotropic target, while, the pipe as anisotropic one.

Thus, polarimetric characteristics of buried metallic objects presented above
change significantly by target type (isotropic and anisotropic). This means that radar
polarimetry improves the detection capability of buried targets.

In (DeBoo et al. 2005) the Mueller matrix data of different man-made samples
(e.g., fabric, concrete, metal) as well as their reduced polarimetric data (e.g.,
depolarization and diattenuation) are studied as a function of scattering geometry at
808 nm (laser diode Hamamatsu L-8446). The seven man-made samples measured
are presented in Table 6.

As an example, Fig. 42 depicts the Mueller matrix elements as a function of
sample rotation angle for (a) a green painted metal sample and (b) canvas material.

The Mueller matrix data allows making some common conclusions on polar-
ization properties of the samples considered. The green painted metal and the

Fig. 41 Distribution of power polarization anisotropy coefficients of a plate and b pipe (after
Moriyama et al. 1997)
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gold-coated diffuser are characterized by large m11 peaks at the origin and, hence,
exhibit pronounced specular components. Diffusely scattering samples (the nylon
plastic, screen mesh fabric, and concrete) exhibit small specular components
yielding nearly flat m11 curves. The majority of the nonzero matrix elements for all
samples are m11, m12, m21, m22, m23, m32, m33, and m44. Correspondingly, nearly
zero elements are m13, m14, m24, m31, m34, m41, m42, and m43. Utilization of polar
decomposition Eq. (41) shows that these samples being very different, all have
negligible retardance and a small diattenuation and polarizance oriented with the s
or p planes, but all exhibit high depolarization.

The depolarization index Eq. (29) versus sample rotation angle is shown for five
samples in Fig. 43A.

The depolarization profiles in Fig. 43A with changing sample rotation angle
resemble inverted Gaussian curves. However, depolarization profiles of the screen
mesh and nylon plastic material, which are depicted in Fig. 43B, are not well fit by
Gaussian curves.

For most samples the depolarization separately of each linear state and of both
circular states are nearly equal. However, the depolarization difference between
linear and circular states is significant; circular states are depolarized more than
linear states. This is consistent with previous results (Lewis et al. 1998; Mishchenko
and Hovenier 1995). Less difference between the depolarization of circular and
linear states is observed for three of the more reflective samples, the green painted
metal, and the two diffuser samples.

Measurements of the monostatic bidirectional reflectance distribution function
(mBRDF) and the complete Mueller matrix were used in Jones et al. (2006) for
separability studies of a number of urban (construction) type materials over a broad
spectral region from the ultraviolet to the far infrared.

The instrument used in these experiments is a dual rotating retarder spectropo-
larimeter, described by Azzam (1997), operating in the monostatic reflection mode,
Fig. 44.

This polarimeter consists of a PSG before the sample and a PSA after the
sample. The PSG consists of a linear polarizer followed by a quarter wave retarder.

Table 6 Man-made samples characterized by scatter polarimetry (after DeBoo et al. 2005)

Sample Description

Metal box part Smooth metal painted dark green

Nylon plastic material Dark green color, lightweight material

Canvas with paint
splotches

Varies in color and material, underlying cloth is greenish-khaki

Sidewalk concrete Flat, rough surface

Glass diffuser Frosted on only one side

Gold-coated glass diffuser Similar to glass diffuser, roughened surface has thin coating of
gold

Screen mesh Finely meshed material, as used for a window screen

484 S.N. Savenkov



Fig. 42 Normalized Mueller matrix elements for a a green-painted metal sample, b canvas
material as a function of sample rotation angle (after DeBoo et al. 2005)
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The PSA consists of a quarter wave retarder followed by a linear polarizer and is
located on the platter in front of the detector assembly.

Six samples were selected for analysis: rubber, shingle, plywood, drywall
(sheetrock) front side, brick, and concrete. Photographs of the test samples are
shown in Fig. 45.

For each sample, the mBRDFs and Mueller matrices were measured from 0.7 to
2.3 μm at 1290 distinct frequencies, each separated by wave numbers of approxi-
mately 16 cm−1. Each sample is measured at 18 incidence angles (relative to the
source) from −10° to +60° with finer resolution near normal incidence (−10°, −8°,
−6°, −4°, −2°, −1°, 0°, 1°, 2°, 4°, 6°, 8°, 10°, 15°, 20°, 30°, 45°, 60°). The
mBRDFs for all samples are shown in Fig. 46.

As an example, Fig. 47 shows the Mueller matrix data for drywall sample.
The wavelength cross sections of the Mueller matrix data at normal incidence

angle for all samples is depicted in Fig. 48.

Fig. 43 Depolarization index versus sample rotation angle for A samples with Gaussian profiles
((a) painted metal; (b) canvas; (c) concrete; (d) glass diffuser; and (e) gold-coated diffuser); B the
screen mesh and nylon plastic material (after DeBoo et al. 2005)

Fig. 44 Optical schematic of the spectropolarimeter (after Jones et al. 2006)
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For solving of the object discrimination problem support vector machine
(SVM) with feature vectors containing the three elements: mBRDF (ref), degree of
polarization (DoP), and retardance (ret) has been implemented. The retardance is
derived by the Lu–Chipman decomposition (Lu and Chipman 1996) of an exper-
imental Mueller matrix. To derive the necessary training and test vectors for the
SVM classifiers, authors use the 18 angular measurements at 1.55 μm and create
Gaussian statistical models for each feature of each material under consideration.
Next, 1000 samples are generated for training and testing: 20% for training, 80%
for testing. The results are presented in Fig. 49.

Thus, the support vector machine approach using the statistical models of
samples based on reflectance (mBRDF), retardance, and degree of polarization
provides adequate separability for the samples under study and yielded a high
probability of correct classification while maintaining a low number of false alarms.

Fig. 45 Material selection: a rubber; b shingle; c plywood; d drywall front side; e brick;
f concrete (after Jones et al. 2006)
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Fig. 46 mBRDFs for all samples (after Jones et al. 2006)

Fig. 47 Mueller matrices for drywall sample (after Jones et al. 2006)
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In Noble et al. (2009) the retardance and diattenuation parameters derived from
Lu–Chipman Mueller matrix decomposition, see Sect. 3, have been used to
determine orientation of a sample with a well-defined texture rotating about the
surface normal. The sample is a 4� 3 in. block of aluminum, which was sanded in
one direction with 220 count sandpaper to produce linear grooves typically 2.4 μm
deep with aperiodic structure, which was selected, see Fig. 50. In Fig. 50 white
regions are areas of low signal where signal-to-noise ratio is poor and where the
reflected light is not substantially captured by the instrument due to high slope.

Fig. 48 Mueller matrices at normal incidence in SWIR band for a rubber; b shingle; c plywood;
d drywall; e brick; and f concrete (after Jones et al. 2006)
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The specular and diffusely reflected Mueller matrices of sample were measured
using dynamic polarimeter operating at a wavelength of 700 nm (Azzam 1997). The
beam size at the sample was 1� 2 cm. Mueller matrices were acquired at 24 groove
orientations as the sample was rotated about its normal from 0° to 360°.

To account for the measurement configuration, Fig. 50, Mueller matrices were
multiplied by a reflection matrix of the form

1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

0
BB@

1
CCA: ð81Þ

Figure 51 shows the linear horizontal/vertical, 	45�, and circular values of
diattenuation and retardance derived from measured normalized Mueller matrices
for the sanded aluminum as a function of the mean groove orientation angle for the
specular and off-specular measurement schemes.

All above dependences demonstrate a nearly sinusoidal variation with groove
orientation. It can be seen that the diattenuation parameters are more effective.

Authors concluded that the method is suitable for samples with more complex
surfaces than those discussed above. However, exact types of rough surfaces for
which the method can be used require additional examination.

Fig. 49 Feature space for the object discrimination (after Jones et al. 2006)
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The data on polarimetric characteristics, anisotropy and depolarization, of the
wood sample (plate) obtained using Lu–Chipman decomposition, Sect. 3, were
reported in Srinivasa Reddy et al. (2010).

Experimental setup for measuring Mueller matrix elements and wood sample
(Wrigtia tinctoria) is presented in Fig. 52. As light source a HeNe laser (Suresh
Indu laser, India, 632.8 nm, 20 mW) was used.

Fig. 50 a Surface profile of sanded aluminum sample (heights are in nm). b Schemes of the
experiment: specular configuration with −60° incident, 60° scattering and off-specular configu-
ration with −60° incident, 30° scattering (after Noble et al. 2009)
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The sample under consideration is a wood plate obtained from Wrightia
Tinctoria, belonging to Apocynaceae family, which has a common name Pala
Indigo Plant, Dyers’s Oleander. This plant plays an important role in traditional
herbal remedies and is under investigation for antibacterial, antineoplastic, and
other pharmaceutical functions.

The material obtained is dried for 1 year in order to evaporate the moisture
content naturally without losing the chemical composition. The sample is finely
polished to have mean thickness of 1.15 mm and average width and length 58.25

Fig. 51 Diattenuation (a) and retardance (b) parameters with fit (dotted lines) for the specular
angle (solid line) and the off-specular angle (dashed line) (after Noble et al. 2009)

Fig. 52 Schematic
experimental setup for
obtaining Mueller matrix
elements and wood sample
(Wrigtia tinctoria) (after
Srinivasa Reddy et al. 2010)

492 S.N. Savenkov



and 136.45 mm, respectively. Figure 53 shows the results for diattenuation (mean
value 0.2718) and depolarization (mean value 0.7881) of the sample.

Mueller matrix measurements and depolarization index calculations were used in
(Goldstein 2008) for identification of samples of totally different nature, namely,
automobile panel samples at the range 0.7–2.6 µm. The samples selected are very
shiny: 90 Ford (mean roughness 0.37 µm), 04 Toyota, and 06 Kia; shiny but
somewhat dulled: 99 Honda; a satin finish: back of the VW bug (mean roughness
0.62 µm); and very aged and rough: front of the VW bug (mean roughness
1.66 µm), see Fig. 54a. Depolarization index versus sample angle at 1.06 µm is
presented in Fig. 54b.

Again depolarization index features enable to discriminate reliably between
automobile panel samples. However, it seems reasonable to use other depolarization

Fig. 53 Diattenuation (a) and depolarization (b) of the wood sample (after Srinivasa Reddy et al.
2010)

Fig. 54 a automobile panel samples and b depolarization index versus sample angle at 1.06 lm
(Goldstein 2008)
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metrics, see Sect. 3, for improving further the discrimination procedure. Thus,
depolarization offers an extremely informative metrics for identification of both
surface scattering properties such as roughness or reflectivity and bulk scattering
with large dynamic range.
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