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Abstract. MapReduce has become an increasingly popular framework
for large-scale data processing. However, complex operations such as
joins are quite expensive and require sophisticated techniques. In this
paper, we review state-of-the-art strategies for joining several relations
in a MapReduce environment and study their extension with filter-based
approaches. The general objective of filters is to eliminate non-matching
data as early as possible in order to reduce the I/O, communication and
CPU costs. We examine the impact of systematically adding filters as
early as possible in MapReduce join algorithms, both analytically with
cost models and practically with evaluations. The study covers binary
joins, multi-way joins and recursive joins, and addresses the case of large
inputs that gives rise to the most intricate challenges.
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1 Introduction

Since the advent of applications that propose Web-based services to a world-
wide population of connected people, the information technology community
has been confronted to unprecedented amount of data, either resulting from an
attempt to organize an access to the Web information space (search engines), or
directly generated by this massive amount of users (e.g., social networks). Com-
panies like Google and Facebook, representative of those two distinct trends,
have developed for their own needs large-scale data processing platforms. These
platforms combine an infrastructure based on millions of servers, data reposi-
tories where the least collection size is measured in Petabytes, and finally data
processing software products that massively exploit distributed computing and
batch processing to scale at the required level of magnitude. Although the Web
is a primary source of information production, Big Data issues can now be gen-
eralized to other areas that continuously collect data and attempt to make sense
of it. Sensors incorporated in electronic devices, satellite images, web server logs,
bioinformatics, are considered as gold mines of information that just wait for the
processing power to be available, reliable, and apt at evaluating complex analytic
algorithms.
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The MapReduce programming model [13] has become a standard for process-
ing and analyzing large datasets in a massively parallel manner. Its success comes
from both its simplicity and nice properties in terms of fault tolerance, a nec-
essary feature when hundreds or even thousands of commodity machines are
involved in a job that may extend over days or weeks. However, the MapReduce
programming model suffers from severe limitations when it comes to implement
algorithms that require data access patterns beyond simple scan/grouping oper-
ation. In particular, it is a priori not suited for operations with multiple inputs.

One of the most representative such operations are joins. A join combines
related tuples from datasets on different column schemes and thus raises at a
generic level the problem of combining several data sources with a programming
framework initially designed for scanning, processing and grouping a single input.
Join is a basic building block used in many sophisticated data mining algorithms,
and its optimization is essential to ensure efficient data processing at scale.

In the present paper we provide a systematic study of joins with filters for
early removal of non-participating tuples from the input datasets. As known for
a long time in the classical context of relational databases, early elimination of
useless data is a quite effective technique to reduce the IO, CPU and communi-
cation costs of data processing algorithms. The approach can be transposed in
distributed systems in general, and to MapReduce frameworks in particular.

We focus on equijoins, and examine state-of-the-art algorithms for two-way
joins, multi-way joins and recursive joins. We compare, analytically and exper-
imentally, the benefit that can be expected by introducing filters as early as
possible in the data processing workflow. Our result put the research contri-
butions in this field in a coherent setting and clarifies the stakes of combining
several inputs with MapReduce.

The rest of the paper is organized as follows. Section 2 summarizes the back-
ground of the basic join operation, recalls the essentials of the MapReduce frame-
work and intersection filters, and positions our paper with respect to related
work. Section 3 presents filter-based equijoins in MapReduce. We examine two-
way joins, multi-way joins, and recursive joins. Section 4 analyzes the algorithms
and introduces cost models. The evaluation environment and the results are
reported in Sect. 5. Finally, Sect. 6 concludes and discusses future work.

Table 1 provides a quick reference to the algorithms abbreviations used
throughout the text.

2 Background and Related Work

2.1 Join Operation

A join combines tuples from one or several relations according to some join
condition1. A tuple that participates to the result (and therefore satisfies the
join condition) is called a matching tuple in the following. Non-matching tuples
can simply be ignored from the join processing workflow, a fact that calls for
their early elimination. We distinguish the following types of joins:
1 Our study only considers conditions is based an equality operator (=), or equijoins.
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Table 1. List of abbreviations

Abbreviation Algorithm

ifbj Intersection filter-based join

bj Bloom join

rsj Reduce-side join

3wj Three-way join proposed by Afrati and Ullman [3]

cj-ifbj Chain join using an intersection filter-based join cascade

cj-bj Chain join using a Bloom join (bj) cascade

cj-rsj Chain join using a reduce-side join (rsj) cascade

ocj-2wj Optimized chain join using a two-way join cascade

ocj-3wj Optimized chain join using a three-way join (3wj) cascade

rej-shaw Recursive join using Shaw’s approach

rej-fb Recursive join using a filter-based approach

• Two-way join. Given two datasets R and L, a two-way join denotes the
pairs of tuples r ∈ R and l ∈ L, such that r.k1 = l.k2 where k1 and k2 are
join columns in R and L, respectively. The standard notation is:

R ��k1=k2 L

Notation: In order to simplify notations, we will often assume that join keys
are known from the context, and will use the abbreviated form R �� L.

• Multi-way join [35]. Given n datasets R1, R2, . . . , Rn, we define a multi-way
join as a pairwise combination of two-way joins:

R1 �� R2 �� R3 �� . . . �� Rn

Considering only pairwise combination is a restriction: this subclass is some-
times called a chain join in the literature.

• Recursive join [17,29]. Given a relation K(x, y) encoding a graph, a recur-
sive join computes the transitive closure of K. It requires an initialization,
and an iteration (until a fixpoint occurs):

{
(Initialization) A(x, y) = K(x, y)
(Iteration) A(x, y) = A(x, z) �� K(z, y)

We use the following running example: a user dataset R(uid, uname,
location), a log dataset L(uid, event, logtime) and an acquaintance dataset
K(uid1, uid2). These datasets illustrate the following searches.

• Q1 - Two-way join. Find the names and events of all users who logged an
event before 19/06/2015.

A1(uname, event) = πuname,event(R �� σlogtime<19/06/2015(L))
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• Q2 - Multi-way join. Find the log events of all users known by Cang

A2(uid, event, logtime) =

πL(σuname=′Cang′(R) ��uid=uid1 K ��uid2=uid L)

• Q3 - Recursive join. List the ids of all connected to Philippe.{
(Initialization) A3(id) = πuid(σuname=′Philippe′(R))
(Iteration) A3(id) = πuid2(K ��uid1=id A3)

2.2 MapReduce

MapReduce [13] is a parallel and distributed programming model apt at running
on computer clusters that scale to thousands of nodes in a fault-tolerant manner.
MapReduce usage has become widespread since Google first introduced it in
2004. It allows users to concentrate only on designing their data operations
regardless of the distributed aspects of the execution.

A MapReduce job consists of two distinct phases, namely, the map phase
and the reduce phase. Each phase executes a user-defined function on a key-
value pair. The user-defined map function (M) takes an input pair (k1, v1) and
outputs a list of intermediate key/value pairs 〈(k2, v2)〉.

(k1, v1)
map−−−→ list(k2, v2)

The intermediate values associated with the same key k2 are grouped by the
framework and then passed to the reduce function which aggregates the values.

(k2, list(v2))
reduce−−−−→ v3

Fig. 1. MapReduce distributed execution
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As illustrated by Fig. 1, a typical MapReduce job is executed across multiple
nodes. During the map phase, each map task reads a subset (called “split”)
of one input dataset, and applies the map function for each key/value pair of
the split. The framework takes care of grouping intermediate data and sends
them to the reducer nodes, a communication-intensive process called shuffling.
Each reduce task collects the intermediate key/value pairs from all the map
tasks, sorts/merges the data with the same key, and calls the reduce function to
generate the final results.

MapReduce is designed to process a single dataset. Combining several inputs
with a MapReduce framework is intricate. The problem has mostly been studied
for joins.

2.3 Bloom Filters

A Bloom filter (BF) [9] is a space-efficient randomized data structure used for
testing membership in a set with a small rate of false positives.

A variant of a Bloom filter is Intersection Bloom filter [30], denoted IBF (S1,
S2), is a probabilistic data structure designed to represent the intersection of sets
S1 and S2, and check membership in the intersection set. To achieve this, it com-
putes the intersection of the Bloom filters BF (S1) and BF (S2). In join process-
ing, matching a join key v against the intersection filter allows to decide (up to
the false positive probability) whether it belongs to the shared join keys. The
false positive probability of the intersection filter is estimated as fI representing
one of the probabilities of different approaches to the filter [30].

Extended Intersection filter [30] (EIF ) is developed from the intersection
Bloom filter. The EIF is a filter built on join key columns k1, k2, . . . , km of
datasets R1, R2, . . . , Rm. It consists of Bloom filters hashed on the key columns,
BF1(R1.k1), BF2(R2.k2 ∩R3.k2), . . . , BFm(Rm.km). The membership test takes
a tuple t(k1, k2, . . . , km, . . . , kn) and returns a “yes” or “no” answer indicating
whether t is/is not in the filter. If one of the join keys of the tuple t, t(ki)i=1...m,
is not a member of the component filter BFi of the EIF , the output is “no”
answer. Otherwise, the output is “yes” answer. Figure 2 depicts its structure.

For example, consider the three-way join R(uname, uid) �� K(uid1, uid2) ��

L(uid, event). K can be filtered by an EIF composed of BF1(R.uid ∩ K.uid1)
and BF2(K.uid2 ∩ L.uid), i.e., IBF1(R.uid,K.uid1) and IBF2(K.uid2, L.uid).

Fig. 2. Extended intersection filter - EIF (BF1, BF2, . . . , BFm)
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Each tuple t(k1, k2) ∈ K is checked against the two filters. If k1 and k2 are in
IBF1 and IBF2, respectively, t is accepted, else it is eliminated.

2.4 Joins with MapReduce

Join processing in MapReduce has become a hot research topic in recent years
[2,3,8,11,16,22,30]. Many studies have been carried out to evaluate join queries
and analyze large datasets in a MapReduce environment. Although joins in
MapReduce can be implemented in many ways, the relative performance of the
various algorithms depends on certain assumptions such as the size of inputs,
data constraints, and joining rates. Map-side joins [8,20,37] would be better to
perform the entire joining operation in the map phase since it may save the
shuffle and reduce phases. But this solution is limited in running extra MapRe-
duce jobs to repartition the data sources to be usable. Meanwhile, Reduce-side
joins [8,20,25,37] are more flexible and general to process a join operation as a
standard MapReduce job without any constraints, but they are quite inefficient
solutions. Joining does not take place until the reduce phase. In addition, the
shuffle phase is really expensive since it needs to shuffle all data, sort and merge.

Observing Reduce-side joins shows that many intermediate pairs generated
in the map phase may not actually participate in the joining process due to
no matching with any pairs in another input dataset. Consequently, it would
be much more efficient if we eliminate the non-matching data right in the map
phase. This problem can be solved by Semi-join [8]. It uses a distributed cache
to disseminate a hashmap of one of input datasets across all the mappers, then
dropping tuples whose join key not in the hashmap. The main obstacle in this
way resides at the hashmap because the hashmap may not fit in memory and its
replication across all the mappers may be inefficient. In this situation, therefore,
Bloom join [19,22,23,39,40] is a worthy replacement for Semi-join because it
benefits from a Bloom filter [9] to do existence tests in less memory than a full
list of keys from the hashmap. Another restriction on these solutions is derived
from their filtering efficiency, even for recent research efforts [3,22,40]. There
remain a lot of non-matching data after filtering because the solutions can only
filter on one of input datasets instead of both. Thus, Intersection filter-based
join [30] may become a better solution to address this problem by eliminating
non-matching data from both input datasets. However, it is necessary to have a
complete evaluation of the solutions that indicates their benefits and limitations.

In addition to the above two-way joins, the researchers are also confronted
big challenges that come from multi-way joins and recursive joins in MapReduce.
The multi-way join extends the two-way join by handling multiple input datasets,
whereas the recursive join represents a computation of a repeated join operation.
Both of them are still open issues and their existing solutions from traditional dis-
tributed and parallel databases cannot be easily extended to adapt to a shared-
nothing distributed computing paradigm as MapReduce. For latest approaches,
computing multi-way joins [3,8,21,40] and recursive joins [1,2,12,33] also often
generates intermediate results that may be inputs of component joins of the
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joins. These intermediate results contain a lot of non-matching data that con-
siderably increases total overheads for I/O, CPU, sort, merge, and especially
communication. We need to figure out optimized solutions that can prevent the
non-matching data involved in the intermediate results. Besides, minimizing the
intermediate data amount sent to the reducers should be calculated appropri-
ately.

The purpose of the present paper is to provide a consistent review of filter-
based join processing techniques in a MapReduce environment. It not only (a)
covers the recently various techniques for computing two-way joins, multi-way
joins and recursive joins, but also (b) qualifies these techniques with cost models
and (c) evaluates them with experimental studies to both validate the proposed
cost model and investigate their practical behavior. Overall, our goal is to provide
a clear, robust and comparative assessment of join processing solutions to guide
the choice of practitioners confronted to the need to perform join at scale in a
specific context. By founding this assessment on both an analytic and empirical
study, we hope to provide a material that puts the research contributions in this
field in a coherent setting and clarifies the stakes of combining several inputs
with MapReduce.

For the sake of consistency, we focus on join algorithms that share some
common features. First, we only consider equijoins. Second, we investigate algo-
rithms that exploit filters to reduce the network communication. Filtering is a
strategy that can be combined with all kind of approaches, and turns out to be
(almost) always beneficial in a context where I/O and network exchanges con-
stitute the major bottleneck. Third, our work complements a few other surveys
recently published [14,20,24,31,32,40] which, on the one hand, explore a larger
scope (e.g., non-equi joins [14,27,38,41]), but on the other hand do not propose
an in-depth coverage as we do, and a comparison methods uniformly applied to
the range of proposals published so far.

3 Extending Equijoins with Filters in MapReduce

The most straightforward way to join datasets with MapReduce is the Reduce-
side join algorithm [8,20,25,37], denoted rsj. It groups tuples from both datasets
on their respective join key value during the map phase, and merges/joins them
during the reduce phase. Tuples are processed regardless of their actual contri-
bution to the final result, and thus the join algorithm has to pay an overhead
for processing and shipping useless data.

Consider for instance the Facebook user dataset R containing more than 1.23
billion users [15]. We would like to obtain users’ activities in a certain period of
time (e.g., one hour) by joining R and the log dataset L. Since L, over this period,
contains the activities of only a few million unique users, most of the users in
R are not represented, and rsj spends useless resources to access, process and
transfer over the network the non-matching tuples of R.

Several filter-based extensions have been proposed to tackle the problem.
Their common idea is to filter out the non-matching tuples from the input
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datasets during the map phase. A filter in this context is a compact data struc-
ture that supports fast membership tests. Filter-based joins require two stages:

• Stage1 (pre-processing). A filter F is built on a join key value set of one
input dataset. For the intersection filter, F represents the intersection of the
key value sets. A membership test for some key value k on F tells whether k
participates or not to the join result.

• Stage 2 (join). F is distributed to all the computing nodes, and used to
eliminate non-matching tuples during the map phase. The join then proceeds
as explained above.

A filter is a compact representation of a set. It accepts a rate of false positives
(i.e., positive answer for non-matching tuples in our case) but no false negatives.
Filtering avoids the communication overhead of shipping tuples from the map-
pers to the reducers, and the storage and CPU overhead of processing such tuples
during the reduce phase. The join strategy remains unchanged, and exploits the
MapReduce paradigm: the input datasets are partitioned and grouped during
the map phase, in order to solve locally the problem during the reduce phase.
Filtering presents some advantages and disadvantages:

• Advantages : the strategy does not impose any restrictions on input datasets,
nor modifications to the MapReduce framework. Besides, it removes non-
matching data to reduce the communication overhead.

• Disadvantages: building the filters represents a significant cost, since it
requires scanning the input, and transferring the filters.

In the rest of this section, we examine in detail the application of filter-based
techniques to the following join variants: two-way joins, multi-way joins and
recursive joins. For each variant, we present the state-of-the-art algorithms, along
with a discussion on their expected advantages/disadvantages.

3.1 Two-Way Joins

A two-way join R1 �� R2 involves two relations R1 and R2. In the following r1
(resp. r2) denote a tuple from R1 (resp. R2) and k refers to the join key attribute.
We use simplified notations when allowed by the context.

Bloom Joins. Bloom join (bj) [19,22,39] is a specific type of the filter-based
join strategy in which the well-known Bloom filter [9] is used. bj is implemented
by two MapReduce jobs as follows:

• Job 1 (preprocessing) is a job with only one reducer. The mappers scan splits
of the input R2, extract the join key value from each tuple, and produces
local Bloom filters. Then, the mappers emit the local filters to the reducer
that merges them into a global filter BF (R2) using the bit-wise OR.
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• Job 2 (processing) filters out non-matching tuples in R1 and joins the filtered
result R′

1 with R2. It relies on a distributed cache to store BF (R2). The map-
pers scan splits of R1 and R2, and eliminate the tuples of R1 whose keys are
not in BF (R2). Tuples from R2 are not filtered.
Each tuple is then ticked with a tag that indicates its dataset name.
For our example, mappers emit tagged tuples with composite keys of the
form ((r1.k, ‘R1’), r1) or ((r2.k, ‘R2’), r2). The reducers receive tagged tuples
grouped on the k value (this requires a small change of the partitioning func-
tion). For each group, the reduce function constructs all the pairs (r1, r2) to
complete the join.

Note that it requires to override the default grouping function in order to
ensure that grouping the tagged tuples takes into consideration only the join key
part and ignores the tag part. The tag is used for secondary sort which ensures
that, for a given key value, all tuples from R1 are processed before those of R2.
This allows to apply a standard in-memory hash join.

Discussion. bj benefits from the compacity of the Bloom filter to reduce
the amount of data transferred over the network. The size of the filter can be
fixed regardless of the number of join keys. However, given a fixed filter size, the
probability f of false positives increases with the number of join keys.

A major concern with the filtering approach in general is the need to run a
pre-processing job for building the filter. Besides, broadcasting the filter becomes
inefficient if its size is large. Finally, it is worth noting that the bj is asymmetric:
non-matching tuples of R2 have not been filtered, hence the problem is half-
solved.

The authors of [22] have proposed an improvement of bj that avoids the pre-
processing job, but requires two internal modifications of the framework. We do
not consider in the present study such extensions that necessitate a non-standard
environment.

Intersection Filter-Based Joins. We now describe an improvement of the
above approach, the Intersection filter-based join [30], denoted ifbj. It relies on
the fact that only tuples whose join keys belong to the set of shared join keys
do participate to the result.

The implementation of ifbj is done with the following jobs:

• Job 1 (pre-processing) is a job with only one reducer. The mappers scan splits
of R1 and R2, extract the join key value for each tuple, and insert them in
the local Bloom filters regardless of duplicate keys.
The mappers then emit the local filters to the reducer which merges them
in two global filters BF (R1) and BF (R2) using the bit-wise OR. Based on
one of three approaches to building the intersection filter [30], the reducer
computes the intersection filter IBF (R1, R2) from the global filters.

• Job 2 (join) uses a distributed cache to provide IBF to all the compute nodes.
The mappers scan splits of R1 and R2, extract the join key for each tuple and
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match it against the intersection filter. If the key v belongs to the intersection
filter, the tuple is emitted as a pair ((v, tag), tuple). The join evaluation in
the reduce phase is similar to the Bloom join algorithm.

ifbj benefits from the standard features of Bloom filters: its small size, its
independence from the number of the keys and key duplication, and fast mem-
bership test. Join based on the intersection filter is expected to be more efficient
than the Bloom join because of its ability to filter out non-matching tuples from
both two input datasets. An interesting characteristic of the intersection filter
is that if IBF (R1, R2) has all bits set to zero, then the sets R1.k and R2.k
are disjoint and the join evaluation stops without doing anything. However, the
algorithm has to pay the additional cost of a MapReduce job for building the
intersection filter and requires scanning the two input datasets twice.

3.2 Multi-way Joins

We can extend the above approach to the computation of multi-way joins with
an extended intersection filter (EIF ) in the following.

Three-Way Joins. We begin our study of multi-way joins by considering the
special case of a three-way join R1 �� R2 �� R3. For the sake of concreteness, we
will discuss the following query on our example relations.

R ��uid=uid1 K ��uid2=uid L

There are several possible pairwise combinations to compute this three-way join.

R ��uid=uid1 K ��uid2=uid L = (R ��uid=uid1 K) ��uid2=uid L

= R ��uid=uid1 (K ��uid2=uid L)

We can evaluate three-way joins as a sequence of 2 two-way joins, using
two successive jobs. An alternative is to join the three datasets together with a

Fig. 3. Distributing tuples of R, K, and L among r = n2 reducers
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single job, as recently proposed by Afrati and Ullman [3]. It relies on the idea of
a matrix of reducers as shown in Fig. 3.

The number of reducers must be the square of some integer n (r = n2) and
reducers are mapped (virtually) to a matrix n × n. Each reducer is mapped to
a cell (i, j), and identified by i ∗ n + j. With n = 5, cell (3, 2) is for instance
associated with the reducer 17.

The mappers assign tuples of R, K, and L to the reducer matrix as follows.
Let h be a hash function with range [0, n − 1]. Each tuple of K is sent to a
single reducer, the one in cell (h(K.uid1 ), h(K.uid2 )). Tuples from R and L are
sent to all the reducers of, resp. a whole row or column in the matrix. Each
tuple r(uid, uname) is sent to all the reducers of the row h(uid). Each tuple
l(uid, event) is sent to all the reducers of the column h(uid).

We can give a perspective: assume three tuples R(‘Laurent’, u1), K (u1, u2),
and L(u2, ‘login’). They will all be sent to the reducer h(u1) ∗ n + h(u2) and the
joined tuple will therefore be produced.

Let us assume, for simplicity, that |R|=|K |=|L|. The total communication
cost for the Afrati’s three-way join (denoted 3wj in the following) is O(|R|.√r),
whereas the total communication cost for the cascade of 2 two-way joins without
filters is O(|R|2.α), where α is the probability for two tuples from different
datasets to match on the join key (Sect. 4.2 for more details). It follows that
3wj is better than the cascade of the two-way joins when r < (|R|.α)2.

A downside of 3wj is that it generates n duplicates for each tuple of either
R or L. This represents a large communication and I/O overhead. This situation
can be improved significantly by removing non-matching tuples prior to the
reduce phase. We extend 3wj with intersection filters as shown in Fig. 4.

Fig. 4. Three-way join extended with intersection filters

R and L are filtered by IBF1(R.uid,K.uid1) and IBF2(K.uid2, L.uid),
respectively. K is filtered by an extended intersection filter EIF (IBF1, IBF2).

The extension of the three-way join with filters uses two jobs as follows.

• Job 1 (pre-processing) builds IBF1(R.uid,K.uid1) and IBF2(K.uid2, L.uid).
Let mp1, mp2 and mp3 be the number of map tasks for R, K and L, respec-
tively. The job consists of mp1 + mp2 + mp3 map tasks that build filters and
one reduce task that produces two intersection filters. In detail, mp1 tasks



44 T.-C. Phan et al.

build local filters on R.uid; mp2 tasks build local filters on K.uid1 and K.uid2;
mp3 tasks build local filters on L.uid. Those filters are shipped to the reducer
which produces BF (R.uid), BF (L.uid), BF (K.uid1), BF (K.uid2), as well
as IBF1, IBF2 and EIF (IBF1, IBF2). Note that the join result is known to
be empty right away if either IBF 1 or IBF 2 is empty.

• Job 2 (join) filters out non-matching tuples from R, K and L, and carries out
the join evaluation. It distributes the intersection filters to all tasktrackers,
creates map tasks for R, K and L and r reduce tasks.

� Map phase with filtering: Each mapper matches any tuple of R or L against
the relevant filter IBF1, IBF2, or EIF (IBF1, IBF2). Tuples that pass
the filtering process are then sent to the reducers according the 3wj
policy. This involves tuple replication as shown in Fig. 3.

� Reduce phase: the reduce function applies a full cross-product of tuples
from the different input datasets. Locally, the reducer buffers the tuples
of R and L, streams the tuples from K, and performs the cross product.

Chain Joins. We now consider the more general case of multi-way joins, or chain
joins, a sequence or pair wise joins of the form of R1(x 1, x 2) �� R2(x 2, x 3) ��

R3(x 3, x 4) �� · · · �� Rn(xn, xn+1).
The baseline solution is a cascade of Bloom joins (cj-bj). The query plan is a

left-deep join tree, and relies on a set of filters BF2(R2.x2), . . . , BFn(Rn.xn) built
on the base datasets by a pre-processing job. In this scenario, we can regconize
that R1 and all intermediate results R1,2,··· ,i are filtered by the filters, whereas
the base relations Ri are not, where i ∈ [2, n].

We propose an improved evaluation that generalizes intersection filters as
shown by Fig. 5. In addition to the filters BF on base relations, the extended

Fig. 5. Implementation of a chain join using a cascade of two-way joins using intersec-
tion filters (cj-ifbj)
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algorithm denoted cj-ifbj creates on the fly intersection Bloom Filters on inter-
mediate results, IBF (R1,··· ,i−1.xi, Ri.xi), i ∈ [2, n] during the reduce phases of
intermediate joins

All the input datasets and intermediate join results are filtered by their cor-
responding intersection filters. For instance, IBF (R1,2.x3, R3.x3) is used to elim-
inate non-matching tuples in both R1,2 and R3. Intermediate data sent to the
reducers with cj-ifbj is expected to be much less than in the case of cj-bj.

We can even go one step further by noting that intermediate join results still
contain non-matching tuples transmitted to the next join. For instance, the join
of R1 and R2 likely contains tuples that do not match any tuples of R3 on x 3.
We can therefore “push” the filter BF (R3.x 3), down to the scan of relation R2.
The idea is actually quite reminiscent of the traditional optimization heuristics
that pushes selection down the query tree in relational systems.

Fig. 6. Optimization of a chain join using extended intersection filters (OCJ)

Figure 6(a) shows a first optimized solution using a cascade of filter-based
two-way joins, denoted ocj-2wj. The input datasets R2, . . . , Rn are fil-
tered by extended intersection filters EIF . The extended filter EIF i includes
a filter BF (R1,··· ,i−1.xi) built from the intermediate join result and a fil-
ter BF (Ri+1.xi+1) from the next input dataset, where i ∈ (2, n). Spe-
cially, EIF2 contains BF (R1.x2) and BF (R3.x3), and EIFn only consists of
BF (R1,2,··· ,n−1.xn). This solution ensures that intermediate join results only
contain (up to false positives) matching data that can be sent to the next join
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without filtering. This is an important characteristic which avoids to apply addi-
tional filters to intermediate join results.

The implementation first uses a pre-processing job to build the Bloom filters
BF (Ri.xi), i = 2, . . . , n, and BF (R1.x2). Next, it evaluates the chain join as
a sequence of two-way joins. During the evaluation of R1,··· ,i−1 �� Ri, the left
input need not be filtered, except R1 filtered by BF (R2.x2). The right input
is filtered by the EIFi built from BF (R1,··· ,i−1.xi) and BF (Ri+1.xi+1). The
former is generated in the reduce phase of the previous join processing between
R1,··· ,i−2 and Ri−1. Building the filters from the intermediate join results does
not involve any overhead. The iteration stops if one of the two input datasets is
null.

Figure 6(b) illustrates a second optimization, where pairwise joins are
replaced by filtered three-way joins (3wj). We denote this further optimized
solution as ocj-3wj. Consider the three-way join R1,··· ,i−1 �� Ri �� Ri+1, i ∈
[2, n − 1] and i is an even number. The left relation does not need to be fil-
tered, apart from R1 filtered by BF (R2.x2). The middle relation is filtered
by the extended intersection filter EIF i built from BF (R1,··· ,i−1.xi) and a
filter IBF (Ri.xi+1, Ri+1.xi+1). The last input is filtered by EIF ′

i , built from
IBF (Ri.xi+1, Ri+1.xi+1) and BF (Ri+2.xi+2). When (i+2) > n, the filter EIF ′

i

does not contain BF (Ri+2.xi+2) because Ri+2 does not exist. It is noted that
ocj-3wj may contain a two-way join of R1,··· ,n−1 and Rn if n is an even number.

The implementation of the second solution is similar to the first one. ocj-2wj
is expected to use less memory than ocj-3wj because the former only buffers
one input for each two-way join, whereas the second one must buffer two inputs
for each three-way join. The downside is that ocj-2wj requires more jobs than
ocj-3wj. If n denotes the number of input datasets, the number of the two-way
join jobs of ocj-2wj is (n − 1), while ocj-3wj needs 	n−1

2 
 jobs.

3.3 Recursive Joins

We now turn to another complex type of join. A recursive join [17,29] computes
the transitive closure of a relation encoding a graph. A typical example, expressed
in Datalog, is given below.

Friend(x, y) ←− Know(x, y)
Friend(x, y) ←− Friend(x, z) �� Know(z, y)

Evaluating a recursive join is tantamount to computing the transitive closure
of the graph represented by the relation. This can be done via an iterative
process that stops whenever a fixpoint is reached. We examine how the semi-
naive algorithm [36] can be evaluated in MapReduce.

Let F and K denote the relations Friend and Know, respectively. Let Fi, 0 <
i ≤ n be the temporary value of the relation Friend at step 0, with F0 = ∅. The
incremental relation of Fi, i > 0, denoted ΔFi, is defined as:

ΔFi = Fi − Fi−1 = Πxy(ΔFi−1 ��z K) − Fi−1
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The semi-naive algorithm uses this delta relation to avoid redundant compu-
tations (Algorithm 1).

Algorithm 1. Semi-Naive evaluation for recursive joins
Input: A graph encoded as a relation K
Output: The transitive closure of K

1 F = ∅, ΔF0 = K(x, y), i = 1
2 while ΔFi−1 ! = ∅ do
3 ΔFi = Πxy(ΔFi−1 ��z K) − F
4 F = F ∪ ΔFi

5 i+ = 1

6 return F

At each step i, some new facts are inferred and stored in ΔFi. The loop is
repeated until no new fact is inferred (ΔFi = ∅), i.e., the fixpoint is reached.
The union of all incremental relations, (ΔF0 ∪ . . .∪ ΔFi−1), is the transitive
closure of the graph.

Shaw et al. [33] have proposed the following algorithm to implement the
semi-naive algorithm in MapReduce (rej-shaw). Each iteration evaluates ΔFi

= Πxy(ΔFi−1 ��z K) − Fi−1 with two jobs, namely, one for join and one for
deduplication and difference (dedup-diff ), as shown on Fig. 7.

Fig. 7. Semi-naive implementation of recursive joins in MapReduce

The first job computes (ΔFi−1 �� K), the second computes the new delta
relation ΔFi. This 2-jobs execution is iterated until ΔFi is empty. This means
that the invariant relation K and the incremental relation Fi−1 are re-scanned
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and re-shuffled for every iteration. Shaw et al. have tackled this situation in the
HaLoop system [12] by using the Reducer Input Cache (RIC). RIC stores and
indexes reducer inputs across all reducers. To avoid re-scanning and re-shuffling
the same data with the same mapper on iterations, the solution therefore uses
RIC for the datasets K and Fi−1 in the join job and the dedup-diff job, respec-
tively, as shown on Fig. 7. K is scanned only once, at the first loop. Ki and Kj are
splits of K, which are cached at the reducer input caches i and j, resp. Note that
caching intermediate results during iterative computations is now integrated in
modern distributed engines such as Spark [7] and Flink [5].

The dedup-diff job using RIC is described as follows. Each tuple is stored
in the cache as a key/value pair (t, i), where the key is the tuple t discovered
by the previous join job and the value is the iteration number i for which that
tuple was discovered. The map phase of the difference job hashes the incoming
tuples as keys with values indicating the current iteration number. During the
reduce phase, for each incoming tuple, the cache is probed to find all instances
of the tuples previously discovered across all iterations. Both the incoming and
cached data are passed to the user-defined reduce function. A tuple previously
discovered is omitted from the output, else it is included in ΔFi.

When evaluating (ΔFi−1 �� K), Shaw’s solution (rej-shaw) does not dis-
cover and eliminate non-matching tuples from ΔFi−1 and K. Our extension, rej-
fb in the following, adds an intersection filter IBF (ΔFi−1.z,K.z) as proposed
in Sect. 2.3. Initially, the filter is simply BF (K.z) generated by a pre-processing
job. During the ith iteration (i ≥ 1), rej-fb uses IBF (ΔFi−1.z,K.z) as a filter
in the map phase of the join job, and builds IBF (ΔFi.z,K.z) in the reduce
phase of the dedup-diff job.

A fixpoint of the recursive join is reached when no new tuples are discovered
(i.e. ΔFi is empty) or, equivalently, when the IBF is empty. The latter is a
better stop condition because it can save one iteration.

4 Performance Analysis for Filter-Based Equijoins

We now develop an analysis of the algorithms presented so far.

4.1 Two-Way Joins

We note R and L the two input datasets, and analyze the cost for, respectively,
the Bloom join (bj) and the intersection filter-based join (ifbj). Table 2 sum-
marizes the parameters of our cost model.

Cost Model. We adapt the cost model presented in [26]. We propose the
following global formula that captures the cost of a two-way join.

C2wJoin = Cpre + Cread + Csort + Ctr + Cwrite (1)
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where:

• Cread = cr · |R| + cr · |L|
• Csort = cl · |D| · 2 · (	logB |D| − logB(mp)
 + 	logB(mp)
) [26]
• Ctr = ct · |D|
• Cwrite = cr · |O|
• Cpre = C ′ + cr · m · t

� C ′ =

{
Cread + (cl + ct) · m · mp , for ifbj
cr · |L| + (cl + ct) · m · mp2 , forbj

� Cpre = 0, for approaches without filters. In addition, it is assumed that
the filters are the same size m. If m is small, we will not compress the
filter files and m is therefore the size of the Bloom filter.

An additional component, Cpre, is added to the cost model in [26] to form
Eq. (1). |D |, the size of the intermediate data, strongly influences the total
cost of a join operation, and is essential in particular to decide whether the
filter-based variant of the algorithm is worth its cost.

Table 2. Parameters of the cost model for two-way joins

Parameter Explanation

|R| The size of R

|L| The size of L

|D | The size of the intermediate data

cl The cost of reading or writing data locally

cr The cost of reading/writing data remotely

ct The cost of transferring data from one node to another

B+1 The size of the sort buffer in pages

mp1 The number of map tasks for R

mp2 The number of map tasks for L

mp The total number of map tasks, mp = mp1 + mp2

t The number of tasktrackers

m The compressed size of the Bloom filter (bits) m = the size of the Bloom
filter × the file compression ratio

|O | The size of the join processing output

Cpre The total cost to perform the pre-processing job

Cread The total cost to read the data

Csort The total cost to perform the sorting and copying at the map and reduce
nodes

Ctr The total cost to transfer intermediate data among the nodes

Cwrite The total cost to write the data on DFS
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Cost Comparison. In this section, we evaluate |D |, for each algorithm men-
tioned in Sect. 3.1, and provide a cost comparison. Importantly, we identify a
threshold that can guide the choice amongst of these algorithms. We add the
Reduce-side join (rsj) to our comparison to highlight the effect of filtering.

We denote as δL and δR, respectively, the ratio of the joined records of R
with L (resp. L with R). The size of intermediate data is:

|D| =

⎧⎪⎨
⎪⎩

δL|R| + fI(R,L) · (1 − δL)|R| + δR|L| + fI(R,L) · (1 − δR)|L| (2)
δL|R| + f(L) · (1 − δL)|R| + |L| (3)

|R| + |L| (4)

where:

• Equation (2) holds for ifbj, denoted Difbj

• Equation (3) holds for bj, denoted Dbj

• Equation (4) holds for rsj, denoted Drsj

• fI(R,L) is the false positive probability of the intersection filter
IBF (R,L) [30],

• and f(L) is the false positive probability of the Bloom filter BF (L).

From these equations, we can infer the following.

Theorem 1. An ifbj is more efficient than a bj because it produces less inter-
mediate data. Additionally, the following inequality holds:

Difbj ≤ Dbj ≤ Drsj (5)

where Difbj, Dbj, and Drsj are the sizes of intermediate data of ifbj, bj, and
rsj, resp.

Proof. We get 0 < fI(R,L) < f(L) < 1 [30]. So we can deduce that:

δL · |R| + fI(R,L) · (1 − δL) · |R| ≤ δL · |R| + f(L) · (1 − δL) · |R| ≤ |R| and (6)

δR · |L| + fI(R,L) · (1 − δR)|L| ≤ |L| (7)

Note that the ratio of the joined records, δL or δR, could be 1 in the case of
a join based on a foreign key.

By combining inequalities (6) and (7) into Eqs. (2), (3) and (4), Theorem1
is proved. ��

From Eqs. (1) and (5), we can evaluate the total cost of the join operation
for the different approaches.

Theorem 2. Once the pre-processing cost Cpre is negligible or less than the cost
of non-matching data, an ifbj has the lowest cost. In addition, a comparison of
the costs is given by:

C ifbj ≤ Cbj ≤ Crsj (8)



TLDKS Journal: A Comparison of Filter-based Equijoins in MR 51

where Cifbj, Cbj, and Crsj are the total costs of ifbj, bj, and rsj, resp.
As a result, the most efficient join approach is typically ifbj, the second one is
bj, and the worst one is rsj.

The total cost to perform the pre-processing job is given by:

Cpre =

⎧⎪⎨
⎪⎩

Cread + (cl + ct) · m · mp + cr · m · t , in case of ifbj

cr · |L| + (cl + ct) · m · mp2 + cr · m · t , in case of bj

0 , in case of rsj

Regarding data locality, the MapReduce framework makes its best efforts to
run the map task on a node where the input data resides. Although this cannot
always be achieved, we can see that the cost of this phase, Cpre, is negligible
compared to the generation and transfer of non-matching tuples over the net-
work. In general, choosing the filter-based joins relies on the read cost cr and a
threshold of non-matching data shown in Theorem 3.

The filter-based join algorithms will become inefficient when there is a large
number of map tasks, and very little non-matching data in the join operation.
For large inputs with many map tasks, a tasktracker running multiple map tasks
will maintain only two local filters BF (R) and (or) BF (L) thanks to merging
the local filters of the tasks. Two hundred map tasks running on a tasktracker,
for instance, will produce 200 local filters BF (R). The tasktracker merges all
the local filters into one BF (R). Besides, as the number of non-matching tuples
decreases, the filters become useless and computing them with an additional job
represents a penalty. It hence needs to indicate the dependence of the filter-based
joins on the amount of non-matching data through estimating the threshold for
this data that determines whether filters should be used.

Let |D∗| be the size of non-matching data, C∗
sort be the total cost of sorting

and copying it at the map and reduce nodes, and C∗
tr be the total cost to transfer

it among the nodes. Accordingly, the cost associated with non-matching data is
the sum of C∗

sort and C∗
tr.

Theorem 3. The filter-based joins become a good choice when:

Cpre < C∗
sort + C∗

tr (9)

where:

• |D∗| = |R| + |L| − |D|
• C∗

tr = ct · |D∗|
• C∗

sort = cl · |D∗| · 2 · (	logB |D∗| − logB(mp)
 + 	logB(mp)
) [26]

Based on the size of |D|, the threshold depends on δL and δR (the ratio of the
joined records).

In summary, the best choice of the join approaches is ifbj, the second one is
bj, and the worst one is rsj (Theorem 2). However, this would become incorrect
when the join has small input datasets and a high ratio of matching tuples that
is defined by the threshold of the joined records (Theorem 3). In these cases, rsj
would be the best choice and the filter-based joins should not be used because
the cost of building and broadcasting filter(s) becomes relatively significant.
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4.2 Multi-way Joins

Three-Way Joins. Let R, K and L be three input datasets. The general for-
mula that estimates the total cost of 3wj is:

C3wJoin = Cpre + Cread + Csort + Ctr + Cwrite (10)

where:

• Cread = cr · |R| + cr · |K| + cr · |L|
• Csort = cl · |D| · 2 · (	logB |D| − logB(mp)
 + 	logB(mp)
) [26]
• mp = mp1 + mp2 + mp3, the total number of map tasks for the three inputs
• Ctr = ct · |D|
• Cwrite = cr · |O|
• Cpre = Cread + (cl + ct) · m · mp + 2 · cr · m · t, for 3wj using filters;

Cpre = 0 for 3wj.

To simplify the computation, we suppose that R, K and L have the same
size. A 3wj increases the communication cost because each tuple of R and L is
sent to many different reducers. On the other hand, the two-way join cascade
must launch an additional job, then scan and shuffle the intermediate result.
We characterize the relative costs of the approaches as follows.

Theorem 4. A 3wj, R(A,B) �� K(B,C) �� L(C,D), is more efficient than
a cascade of 2 two-way joins (R(A,B) �� K(B,C)) �� L(C,D) or R(A,B) ��

(K(B,C) �� L(C,D)) when r < (|R|.α)2. Additionally, the size of the interme-
diate data is specified by

|D| =

{
2 · |R| · √r , for 3wj.

|R|2 · α , for a cascade of 2 two-way joins.

where r is the number of reducers, |R|= |K|= |L|, and α is the probability of two
tuples from different datasets to match on the join key column.

Proof. Similar to the proof of Afrati and Ullman in [3]. First, we consider 3wj.
Two attributes B and C are join key columns. We use hash functions to map
values of B to b different buckets, and values of C to c buckets, as long as
b · c = r. The intermediate data size of the three-way join is

|R| · c + |K| + |L| · b (11)

We must find optimal values for b and c to minimize the above expression
subject to the constraint that b · c = r, b and c being positive integers. In this
case, the Lagrangian multiplier method is used to present the solution.

Here L = |R| · c + |K| + |L| · b − λ · (b · c − r). We consider the problem

min
b,c≥0

[|R| · c + |K| + |L| · b − λ · (b · c − r)]
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We make derivatives of L with respect to variables b and c.

∂L
∂b

= |L| − λ · c = 0 ⇒ |L| = λ · c ;
∂L
∂c

= |R| − λ · b = 0 ⇒ |R| = λ · b

We obtain the Lagrangian equations: |L| · b = λ · r, and |R| · c = λ · r
We can multiply these two equations together to get |L| · |R| = λ2 · r
From here, we deduce λ =

√|R| · |L|/r
By substituting the value of λ in the Lagrangian equations, we get:

b =
√

|R| · r/ |L|, and c =
√

|L| · r/ |R|
Then, from expression (11), we get the minimum communication cost of 3wj

|R| ·
√

|L| · r/ |R| + |K| + |L| ·
√

|R| · r/ |L| ≈ 2 · |R| · √
r

Next, we specify the intermediate data size of the cascade of 2 two-way joins:

|R| · |K| · α + |L| ≈ |R|2 · α (where |R| · α > 1)

The cost of 3wj, O(|R| · √r), is compared with the cost of the two-way join
cascade O(|R|2 · α). We can conclude that 3wj will be better than the cascade
when

√
r < |R|· α. In other words, for 3wj, there is a limit on the number of

reducers r < (|R|· α)2 and Theorem 4 is hence proved. ��
In general, we can extend Theorem 4 for 3wj with n join key columns using

an n-dimensional reducer matrix. For example, a 3wj R(A, B) �� K (B, C ) ��

L(C, A) with three join attributes A, B, and C. This three-way join needs a three-
dimensional reducer matrix. The three-way join will become more efficient than
a cascade of 2 two-way joins when r < (|R|.α)3 and its amount of communication
is 3·|R|· 3

√
r. In fact, choosing the number of reducers to satisfy this condition

is not difficult. For example, if |R|·α = 15, as might be the case for the Web
incidence matrix, we can choose the number of reducers r up to 3375. We can
now characterize the cost of three-way join using filters.

Theorem 5. A 3wj, R(A,B) �� K(B,C) �� L(C,D), is more efficient with
filters than without filters when Cpre is negligible or less than the cost of process-
ing non-matching data. Moreover, the 3wj using the filters is also more efficient
than the two-way join cascade using the filters when r < (|R′| · α)2. With using
the filters, the size of the intermediate data is defined by

|D′| =

{
2 · |R′| · √r , for 3wj using the filters.
|R′|2 · α , for a cascade of 2 two-way joins using the filters.

|R′| = δ · |R| + fI · (1 − δ) · |R|, R′ is the filtered dataset of one input.

where r is the number of reducers, α is the probability of two tuples from dif-
ferent datasets to match on the join key, |R| = |K| = |L|, δ is the ratio of the
joined records of one input dataset with another, and fI is the false intersection
probability between the datasets.
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Proof. Theorems 2 and 3 show that joins with the filters is more efficient than
without the filters if Cpre is negligible or less than the cost of non-matching data.
The following inequalities hold: 0 < δ << 1 and 0 < fI << 1

⇒ δ · |R| + fI · (1 − δ) · |R| < |R| ⇒ |R′| < |R|
Combining this equality with Theorem 4, we can easily prove Theorem 5. ��

Chain Joins. Consider a chain join over n input datasets R1, R2, . . . , Rn.
We analyze ocj-3wj with the EIF filters presented in Sect. 3.2. The chain join
is executed as a sequence of 3wj jobs,

...

J= {J 2, J 4, J 6, . . . , Jn−1}. J 1 scans
R1,. . . , Rn inputs for building the filters. Each iteration carries out the join
of three inputs, R1,··· ,2i−1, R2i, and R2i+1, where 1 ≤ i ≤ �(n − 1)/2�. If n is
even, ocj-3wj contains an additional two-way join job of R1,··· ,n−1 and Rn. We
extend the cost model of 3wj as follows:

C(
...

J ) = Cpre + 	(n − 1)/2
 · CdistCache + C2wJoin

+
�(n−1)/2�∑

i=1

(Cread(J2i) + Csort(J2i) + Ctr(J2i) + Cwrite(J2i))

(12)

where:

• Cpre = (
∑n

i=1 cr · |Ri|) + (cl + ct) · m · mp
� Cpre = 0 and m = 0 for approaches without using filters.
� mp is the total number of map tasks.

• CdistCache = 3 · cr · m · t
� CdistCache = 0 for approaches without using filters.

• C2wJoin is specified by Eq. (1), the cost of joining R1,··· ,n−1 and Rn.
� C2wJoin = 0 if n is an odd number and greater than 2.

• Cread(J2i) = cr · |R1,··· ,2i−1| + cr · |R2i| + cr · |R2i+1|
• Csort(J2i) = cl · |Di| · 2 · (	logB |Di| − logB(mp)
 + 	logB(mp)
) [26]

� |Di| is the size of the intermediate data in the i th iteration.
• Ctr(J2i) = ct · |Di|
• Cwrite(J2i)= cr · |R1,··· ,2i+1| + a

� a = 2 · cr · m · t, for building BF (R1,··· ,2i+1) in the i th iteration.
� a = 0, for (2i + 1) = n.

The computation of ocj-2wj is a sequence of (n-1) two-way join jobs. This
computation can be also considered as a sequence of ((n-1)/2) three-way join
jobs in which each of them is executed by a cascade of 2 two-way join jobs. As
a result, ocj-2wj has the extra costs of writing and re-reading the intermediate
results of the two-way joins, and initializing additional jobs. On the other hand,
ocj-3wj incurs the costs of data duplication to the reducers. From Theorem 5,
we can show that ocj-3wj is more efficient than ocj-2wj when r < (|R′| · α)2.
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4.3 Recursive Joins

Cost Model. In the semi-naive algorithm, the number of iterations l is the
longest path length in the relation graph minus 1, called the depth of the tran-
sitive closure. The first job J1 reads K and ΔF0 = F, and caches K at the
reducers. Each subsequent job Ji reads ΔFi−1 and scans partitions of K cached
at the reducers (RIC). The dedup-diff job Ii reads the join output Oi containing
duplicates, maps and shuffles tuples of Oi to the reducers in order to generate
ΔFi.

We base our analysis on the cost model introduced in [26] and adapt it to
the evaluation of the recursive join. Table 3 gives the parameters.

The total cost of the recursive join is specified by:

C(Ĵ) = CK +
∑l

i=1 Cread(Ji) + Csort(Ji) + Ctr(Ji) + Ccache(Ji) + Cwrite(Ji)
+

∑l
i=1 Cread(Ii) + Csort(Ii) + Ctr(Ii) + Ccache(Ii) + Cwrite(Ii)

(13)
where:

• CK = cr · |K| + cl · |K| · 2 · (	logB|K| − logB(mpK)
 + 	logB(mpK)
)
+ (ct + cl) · |K|

• Cread(Ji) = cr · |ΔFi−1|
• Csort(Ji) = cl · |Di| · 2 · (	logB |Di| − logB(mpΔFi−1)
 + 	logB(mpΔFi−1)
)

[26]
• Ctr(Ji) = ct · |Di|
• Ccache(Ji) = cl · |K |
• Cwrite(Ji) = cr · |Oi|
• |Di|= |ΔFi−1|= βi−1 · |Oi−1|
• Cread(Ii) = cr · |Oi|
• Csort(Ii) = cl · |D+

i | · 2 · (	logB |D+
i| − logB(mpOi)
 + 	logB(mpOi)
) [26]

• Ctr(Ii) = ct · |D+
i|

• Ccache(Ii) = cl · |D+
i|· (|Fi−1| / r) + cl · |ΔFi| · (|Fi−1| / r + 1)

• Cwrite(Ii) = cr · |ΔFi|
• |D+

i|= |Oi|
• |ΔFi|= βi · |Oi|

The average size of the cache at each reducer is (|Fi−1| / r). For each incoming
tuple of Oi, the reducer probes the cache to get all tuples previously discovered.
For each new tuple discovered, the reducer rewrites its entire cache along with
the new tuple. Therefore, the total cost of accessing the cache in the dedup-diff
job, Ccache(Ii), includes the costs of reading the reducer cache for tuples of Oi

and rewriting the reducer cache for new tuples of ΔFi.

Cost Comparison. The total cost of rej-fb is smaller than that of rej-
shaw because the intermediate data of rej-fb is less than that of rej-shaw
(|D′

i| < |Di|). The amount of intermediate data of rej-fb is defined by:

|D′
i| = δi−1

K · |ΔFi−1| + f(K) · (1 − δi−1
K ) · |ΔFi−1|

= δi−1
K · |Di| + f(K) · (1 − δi−1

K ) · |Di| < |Di| (14)
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Table 3. Parameters of our cost model for recursive joins

Parameter Explanation

cl The cost of reading or writing data locally

cr The cost of reading/writing data remotely

ct The cost of transferring data from one node to another

B+1 The size of the sort buffer is B+1 pages (all costs are measured in seconds per
page)

mpK The total number of map tasks of the dataset K

mpΔF i−1 The total number of map tasks of the incremental relation ΔFi−1

mpOi The number of the map tasks of the join output (Oi)

r The number of reduce tasks

t The number of tasktrackers

|K | The size of the dataset K that is invariant in loops

|ΔFi−1| The size of the incremental relation in the (i − 1)th iteration (|ΔF0| = |K|)
|ΔFi| The size of the incremental relation in the ith iteration. The dataset ΔFi contains

only the differences between the join output Oi and Fi−1

|Fi−1| The size of all incremental relations in the iterations 0 to i − 1 (|ΔF0 ∪ · · · ∪
ΔFi−1|)

|Di| The intermediate data size of the join job Ji in the ith iteration

|D+
i| The intermediate data size of the dup-diff job Ii in the ith iteration

|Oi| The size of the join processing output Oi. The output Oi may contain duplicate
elements with Fi−1 (previous incremental relations)

βi The difference ratio of the output Oi with Fi−1

CK The total cost to read, map and sort, shuffle, and cache K at the reducers (RIC)
in the first iteration

Cread(Ji) The total cost to read the incremental relation ΔFi−1 from DFS

Csort(Ji) The total cost to perform the sorting and copying of the join job at the map
and reduce nodes

Ctr(Ji) The total cost to transfer intermediate data of the join job among nodes

Ccache(Ji) The total cost to locally read partitions of K cached at the reducers

Cwrite(Ji) The total cost to write Oi to DFS

Cread(Ii) The total cost to read the join output Oi from DFS

Csort(Ii) The total cost to perform the sorting and copying of the dup-diff job at the map
and reduce nodes

Ctr(Ii) The total cost to transfer intermediate data of the dup-diff job (=Oi) among
the nodes

Ccache(Ii) The total cost to locally read partitions of Fi−1 cached at the reducers

Cwrite(Ii) The total cost to write ΔFi to DFS

where:

• δi−1
K is the ratio of the joined records of ΔFi−1 with K

• f(K) is the false positive probability of the Bloom filter BF (K.z)
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We need a pre-processing job for building the Bloom filter BF (K.z ) that is
used in all iterations. The additional overhead of building the filter BF (K.z ) is:

C ′
K = CK + Cpre (15)

where:

• Cpre= cr · |K | + (cl + ct) · mk · mpk + cr · mk · t
• mk is the compressed size of the Bloom filter of the input dataset K (bits).

It is the product of the size of the filter and the file compression ratio. If the
size of the filter is small, the file compression ratio should be one.

Besides, on each iteration, the program also re-computes the global filter
BF (ΔFi.z) generated in the reduce phase of the dedup-diff job. The overhead
of creating the filter BF (ΔFi.z) is:

C ′
write(Ii) = Cwrite(Ii) + (2 · cr · mΔFi · r + cr · mΔFi) (16)

where:

• mΔFi is the compressed size of the Bloom filter of the incremental dataset
ΔFi (bits)

Since the size of the filters is small, these extra overheads are negligible
compared to the overheads associated with redundant data in the incremental
dataset.

5 Experimental Evaluation for Filter-Based Equijoins

In this section, we present experimental results obtained from the execution of
two-way joins, chain joins, and recursive joins.

5.1 Two-Way Joins

Cluster Environment and Datasets. All experiments were run on a cluster
of 15 virtual machines using Virtualbox [28]. Each machine has two 2.4 Ghz
AMD Opteron CPUs with 2 MB cache, 10 GB RAM and 100 GB SATA disks.
The operating system is 64-bit Ubuntu server 12.04, and the java version is
1.7.0.21. We installed Hadoop [6] version 1.0.4 on all nodes. One of the nodes was
selected to act as Master and ran the NameNode and the JobTracker processes;
the remaining nodes host the TaskTrackers in charge of data storage and data
processing. Each TaskTracker node was configured to run up to two simultaneous
map tasks and two reduce tasks. The HDFS block size was set to 128MB, size
of read/write buffer was 128 KB, heap-size for JVMs was set to 2048 M, and the
number of reduce tasks set to 28.

All test datasets were produced by a data generation script of the Purdue
MapReduce Benchmarks Suite [4], called “PUMA” which represents a broad
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Table 4. Input datasets

Inputs Test 1 Test 2 Test 3

size records size records size records

Dataset1 15GB 40,259,163 35GB 92,681,333 55 GB 145,099,559

Dataset2 15GB 40,108,215 35GB 92,524,495 55 GB 139,573,823

Total 30GB 80,367,378 70GB 185,205,828 110 GB 284,673,382

range of MapReduce applications with high/low computing requirements and
high/low shuffle volumes. The maximum number of columns in the datasets is
39 and string length in each column is set to 19 characters. The first column of
Dataset1 is a foreign key that refers to the fifth column of Dataset2. We used
three test sets Test 1, Test 2, and Test 3 with respective sizes 30 GB, 70 GB, and
110 GB. Table 4 summarizes the dataset sizes used in our experiments. The ratios
of the joined records are 0.054 % (Test 1), 0.057 %(Test 2), 0.063 %(Test 3).

We executed our algorithm for the following join query.

SELECT *

FROM dataset1(column0..column20) d1, dataset2(column0..column20) d2

WHERE d1.column0 = d2.column5

We particularly investigate four aspects: the number of intermediate tuples
generated, the total execution time, the tasks timeline, and the scalability mea-
sured by varying the input size.

Evaluation of Approaches. In order to execute the filter-based algorithms
efficiently, we specified the size of filters according to the cardinality of the join
key values of datasets and chose the largest filter. There is a tradeoff between m
and the probability of a false positive. Hence, the probability of a false positive
f is approximated by:

f ≈
(
1 − e−ρ·n/m

)ρ

For a given false positive probability f, the size of the Bloom filter m is
proportional to the number of elements n in the filter as shown in Table 5.

Table 5. Parameters for filters

Tests f ρ n m/n m (bit)

Test 1 0.001 7 14,866 15 222,990

Test 2 0.0001 8 15,790 21 331,590

Test 3 0.0001 8 15,790 21 331,590

where ρ is the number of hash functions, and m/n is the number of bits allocated
to each join key.
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We can determine optimized parameters for the filter (e.g. f, ρ and m) [10].
In practice, however, we should choose values less than an optimized value to
reduce computational overhead. As shown in Table 5, we deliberately select var-
ious values of f, ρ and m/n for the experiments to consider if they might affect
our join performance. The filter files generated in the tests are compressed with
gzip.

Table 6. Number of intermediate tuples (Map output)

Join algorithms Test 1 (30GB) Test 2 (70 GB) Test 3 (110 GB)

ifbj 43,453 106,116 179,091

bj 40,276,915 92,747,151 145,206,430

rsj 80,320,684 185,098,062 284,510,488

The intermediate data size (Map output) is given in Table 6. The Reduce-
side join (without filter) is the most inefficient solution, although it runs as a
single job. This is correlated to the large size of intermediate data. Note that
the number of intermediate tuples generated in this case is almost equal to
the number of Map input records, see Tables 4 and 6. This slight difference is
because a few tuples of Dataset2 have less than 6 columns, and so they have
been eliminated.

Filter-based joins are more efficient in general. bj and ifbj include the pre-
processing job and the filtering operation to improve the join performance.

The number of intermediate tuples produced by bj is considerably reduced
with respect to rsj. However, in comparison to ifbj (see in Table 6), bj still
produces much more intermediate data because the filtering operation is only
executed on one input dataset (Dataset1 ). This situation is overcome by ifbj.

Looking at bj and ifbj, Table 6 points out that bj generates more intermedi-
ate data than ifbj. Namely, for the 110 GB test, bj produces 145,206,430 inter-
mediate tuples, whereas ifbj produces 179,091 tuples. The experiments reported
above are consistent with our theoretical analysis (Theorem 1).

Next, we evaluate the efficiency of these join algorithms by comparing the
total execution time. As a general fact, the join algorithms generating less inter-
mediate data turn out to be faster, even if we sum up the cost of the pre-
processing and join jobs.

Table 7 gives the total execution time of the pre-processing job and the join
job for each algorithm. Regarding pre-processing, the cost of the filter-based joins
is related to the size of the data accessed to build the filter(s). In particular, ifbj
has to scan two input datasets. However, it pays off, since once the filters are
available, the cost of join jobs is drastically reduced.

Figure 8 demonstrates that the best execution results from using intersection
filters. Their total execution time is significantly reduced compared to bj in
spite of the time spent in the pre-processing job. The total execution time of
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Table 7. Execution of pre-processing job and join job (in minutes)

Joins Test 1 (30GB) Test 2 (70 GB) Test 3 (110 GB)

Pre- Join Total Pre- Join Total Pre- Join Total

proc. job time proc. job time proc. job time

ifbj 3.17 6.15 9.32 6.45 24.25 31.10 10.00 92.12 102.12

bj 2.12 17.07 19.19 3.63 43.63 47.26 5.22 139.58 145.20

rsj 0 28.25 28.25 0 70.13 70.13 0 150.00 150.00

Fig. 8. Total execution time

ifbj increases from about 10 to 105 (mns), whereas that of bj ranges from 19.19
to 145.20 (mns). The worst execution is rsj, ranging 28.25 to 150 (mns). The
smaller cost of ifbj compared to the others (Table 7), is analyzed in Theorem 2.

Finally, we analyze the sequence of tasks during job execution (called task
timelines). We do not examine the task timelines of the pre-processing job which
is negligible compared to the join query over large datasets (see Table 7).

Figure 9 represents the task timelines of 70GB join jobs. These graphs are
created by parsing log files generated by Hadoop during the job execution (555
map tasks and 28 reduce task, processing 185,205,828 input records and produc-
ing 26,062,967 output records). Each graph shows the respective timelines for
map, shuffle and reduce phases.

There is a notable difference between the task timeline of ifbj and that of
other joins. The execution time of all map and reduce tasks of ifbj, Fig. 9(a), is
significantly reduced compared to bj and rsj, Fig. 9(b) and (c). Besides, the map
and reduce phases of ifbj finished earlier than bj and rsj because they produce
less intermediate data and, as a consequence, the total cost of the local I/O,
sort, and remote data copy is also smaller. Joins that use the intersection filter
are the most efficient solutions because of their better data filtering efficiency.

The efficiency of filter-based joins depends on the ratio of non-matching
tuples. The threshold is defined by the two parameters δdataset2 and δdataset1,
which are the ratios of matching tuples. Figure 10 shows the execution time
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(a) Intersection filter-based join - IFBJ

(b) Bloom join - BJ (c) Reduce-side join - RSJ

Fig. 9. 70GB Task timelines during the execution of the join job

of algorithms for several values of these parameters, in order to identify their
impact.

We start with an extreme case (first column) where domain of join attributes
in Dataset1 and Dataset2 are disjoint. A ifbj is then able to discover the empty
intersection and the join job can therefore be omitted altogether, and their costs
represents only that of the pre-processing job. This cost is roughly comparable
with that of rsj because of the small size of the dataset which make the join job
fast enough. Filtered joins should not be used for small input datasets because
the cost of building and broadcasting filter(s) becomes relatively significant.

We next examine the cases of a high ratio of matching tuples (85 % : 4 %)
and (95 % : 65 %). They represent respectively the thresholds for filter-based join
resulting from our analysis. Figure 10 clearly shows that this is the point where
filters become counter-productive. This can be determined at compile time based
on the ratios δdataset2 : δdataset1.

The last case shows a join between fully matching datasets (100 % : 100 %),
in which case rsj is the best solution.

5.2 Multi-way Joins

Cluster Environment and Datasets. We run experiments for the chain join
on another computer cluster of 15 virtual machines using KVM (Kernel-based
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Fig. 10. Identification of threshold for non-matching tuples for joins with 2 GB inputs

Virtual Machine) [18]. Each machine has two 1.4 Ghz AMD Opteron CP Us
with 512 KB cache, 5 GB RAM and 100 GB SATA disks. We installed Hadoop
[6] version 1.0.4 on all nodes. The other configurations of this cluster are similar
to the ones of the cluster running the experiments of the two-way joins. The
number of reduce tasks is set to 25.

All datasets were also produced by the data generation script of the PUMA.
The maximum number of columns in the datasets is 39 and string length in each
column is set 19 characters. The datasets Dataset1, Dataset2, Dataset3, and
Dataset4 contain the join key columns column1 (c1), column2 (c2), column3
(c3), and column4 (c4). Tables 8 and 9 summarizes the different input dataset
sizes and the joined record ratios, resp.

The chain join algorithms developed in our experiments are the Reduce-side
join cascade (cj-rsj), the Bloom join cascade (cj-bj), the IF-based join cascade
(cj-ifbj), the optimized two-way join cascade (ocj-2wj), and the optimized
three-way join cascade (ocj-3wj). The following chain join query is used.

SELECT * FROM dataset1(c1..c10) d1, dataset2(c1..c10) d2,
dataset3(c1..c10) d3, dataset4(c1..c10) d4

WHERE d1.c2 = d2.c2 AND d2.c3 = d3.c3 AND d3.4 = d4.c4
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Table 8. Input datasets used in three tests

Inputs Test 1 Test 2 Test 3

size records size records size records

dataset1 10 GB 26,836,497 20GB 53,675,946 20 GB 53,682,929

dataset2 3 GB 8,051,454 10GB 26,838,960 30 GB 73,881,305

dataset3 10 GB 26,836,497 20GB 53,675,946 20 GB 53,682,929

dataset4 3 GB 8,051,454 10GB 26,838,960 30 GB 73,881,305

Total 26 GB 69,775,902 60GB 161,029,812 100 GB 255,128,468

Table 9. The ratios of the joined records of the datasets (%)

Inputs Test 1 Test 2 Test 3

dataset1 0.721722639 0.304090688 0.123521020

dataset2 0.216530370 0.152050936 0.169996205

dataset3 0.721722639 0.304090688 0.123521020

dataset4 0.216530370 0.152050936 0.169996205

Evaluation. The experiments use the parameters of the Boom filters given in
Table 10.

In order to confirm the cost model of chain joins (Sect. 4.2), we first examine
the amount of intermediate data (Table 11)

Table 11 shows that cj-rsj and cj-bj generate much more intermediate data
than any algorithms using the (extended) intersection filters. Figure 11 helps us

Table 10. Parameters of Bloom filters

Tests f ρ n m/n m (bit)

Test 1 0.000101 8 13,147 21 276,087

Test 2 0.000101 8 13,840 21 290,640

Test 3 0.000101 8 15,295 21 321,195

Table 11. Number of intermediate tuples (all map outputs)

Chain join algorithms Test 1 (26 GB) Test 2 (60 GB) Test 3 (100 GB)

cj-ifbj 1,309,349 1,469,048 1,497,692

cj-bj 45,402,907 89,201,979 89,248,190

cj-rsj 88,296,034 196,465,292 290,582,143

ocj-2wj 1,281,036 1,417,684 1,445,428

ocj-3wj 1,221,769 1,359,575 1,385,053
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Fig. 11. Total intermediate data of the chain join

to obtain a visual comparison of the intersection filter-based chain joins. ocj-
3wj has the least amount of intermediate data because it has the least number of
jobs, and filters out almost all non-matching tuples in intermediate results. The
intermediate data amount of ocj-2wj is slightly greater than the intermediate
data amount of ocj-3wj, as analyzed by Theorem 5. However, ocj-2wj is still
better than cj-ifbj chain joins which do not fully prevent non-matching tuples
to propagate throughout the join chain.

Next, we examine the total output of the chain join algorithms (Fig. 12). The
total output consists of all the intermediate data generated in the map phase

Fig. 12. Total output data (Map output + Reduce output)
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Fig. 13. Total execution time

and the intermediate join results. In other words, it includes all map output
tuples and reduce output tuples produced during the chain join.

As shown in Fig. 12, cj-rsj and cj-bj generate the largest outputs; whilst
the OCJ joins (e.g. ocj-2wj and ocj-3wj) using the extended intersection fil-
ters produce the least output. The cj-ifbj joins generally produce a little more
output than the OCJ joins. The main reason is that the OCJ joins have the
ability to filter out much more non-matching tuples than the others.

Both cj-rsj and cj-bj exhibit a similar pattern, with a significant cost
increase from 26GB to 100GB. Obviously, cj-rsj has the highest cost with
119,928,957 tuples for Test 1, (77,035,830 for cj-bj and 32,942,272 for the cj-
ifbj joins). This is even worse with Test 3, cj-rsj produces 371,782,345 tuples
compared to 170,448,392 for cj-bj and 82,697,894 for the cj-ifbj joins.

Let us finally discuss the performance comparison, summarized by Fig. 13.
The run time is clearly correlated to the size of the intermediate data, as con-
firmed by the comparison of the relative performance of the algorithms and the
number of tuples shipped during the execution of joins.

The two bottom graphs show the total execution times of the OCJ joins (ocj-
3wj and ocj-2wj), the next three ones deal with cj-ifbj, and the two top graphs
show cj-bj and cj-rsj. For the largest dataset (100GB), ocj-3wj and ocj-2wj
run time is about 52.57 and 57.22 min respectively, while the cj-ifbj joins run
time is about 65.13 min. cj-bj and cj-rsj run time is much longer, about 72.09
and 88.34 min resp. This shows the high benefit of filtering out useless data, as
carrying this data all over the process constitutes a strong penalty. Note that
these costs include the pre-processing step for filter-based joins. In a scenario
where filters are built once, and the joins processed many times, the benefit of
the approach is even reinforced. The results of these experiments are consistent
with our cost analysis presented in Sect. 4.2.
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5.3 Recursive Joins

Cluster Environment and Datasets. We performed experiments on a
HaLoop cluster running the modified version of Hadoop 0.20.2. The cluster con-
sists of 12 PC computers. Each machine has two 2.53 GHz Intel(R) Core(TM)2
Duo CPUs with 3 MB cache, 3 GB RAM and 80 GB SATA disks. The operating
system is 64-bit Ubuntu server 14.04 LTS, and the java version is 1.8.0.20. This
cluster has one TaskTracker and one DataNode daemon running on each node.
One of the nodes is selected to act as a master and run the NameNode and
the JobTracker processes. TaskTracker nodes are configured to run up to two
simultaneous map tasks and two reduce tasks. The HDFS block size was set to
128 MB, size of read/write buffer was 128 KB, and the number of reduce tasks
is set to 16.

We use test datasets generated by the PUMA to conduct the experiments.
The maximum number of columns in the datasets is 31 and string length in
each column is set 19 characters. The input dataset Know contains two join
key columns, namely, column0 (c0), and column1 (c1). Table 12 lists the different
sizes of the dataset Know used in our tests.

Table 12. Input dataset Know with different sizes

Test Size Records

Test 1 10 GB 53,674,078

Test 2 20 GB 107,349,426

Test 3 30 GB 150,000,054

The following recursive join query is used to evaluate our experiments.

Friend(c0, c1, . . . , c30) ←− Know(c0, c1, . . . , c30)
Friend(c0, c1, . . . , c30) ←− Friend(c0, c1, . . . , c30) ��c1=c′0 Know(c′

0, c
′
1, . . . , c

′
30)

Evaluation. The filters’ parameters used in the filter-based approach are listed
in Table 13.

Table 13. Parameters of filters

Tests f ρ n m/n m (bit)

Test 1 0.000101 8 7,111 21 149,331

Test 2 0.000101 8 7,123 21 149,583

Test 3 0.000101 8 7,130 21 149,730
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Table 14. The total number of intermediate tuples

Recursive join approaches Test 1 (10 GB) Test 2 (20 GB) Test 3 (30 GB)

rej-shaw 215,609,705 431,589,879 602,707,978

rej-fb 188,597,706 377,403,437 527,220,188

Fig. 14. Total execution time

We first examine the total map output (Table 14). The Shaw’s approach (rej-
shaw) generates more intermediate data than the filter-based approach (rej-
fb). For the tests from 10 GB to 30 GB, rej-shaw generates from 215,609,705 to
602,707,978 tuples, whilst rej-fb has less than from 188,597,706 to 527,220,188
respectively. This is because the intermediate data of the join jobs in rej-shaw
contains a lot of non-matching tuples, whereas rej-fb uses the intersection filter
to eliminate these non-matching tuples from the intermediate data of the join
jobs.

Next, we examine the efficiency of the recursive join approaches. The total
execution time of rej-shaw is compared to that of rej-fb. Let us look in Fig. 14
for more details.

Figure 14 presents the total execution time of the pre-processing job and
the iterative (join + dedup-diff) jobs for each algorithm. The cost of rej-fb is
considerably reduced in spite of the additional pre-processing job.

With the 10 GB input dataset Know, the total execution time of the Shaw’s
approach is higher than that of rej-fb. This remains so through the other tests.

6 Conclusions and Future Work

The join operation is one of the essential operations for data analysis. Join evalu-
ation is expensive and not straightforward to implement with MapReduce. This
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paper makes three contributions. First, we attempt to gather in a uniform set-
ting some of the main approaches recently proposed for the most common types
of joins. In particular, we systematically considered the introduction of filters in
execution plans. Filters are known to greatly improve the cost of distributed joins
thanks to their ability to avoid network transfer of useless data. We showed how
to adapt the join algorithms with filters, on a systematic basis. The second con-
tribution is a modeling of cost that serves as a yardstick to compare the expected
efficiency of joins. In particular, we characterize the situations where filters are
indeed beneficial. Finally, we conducted a full set of experiments to validate our
models, and reported the behavior of the join algorithms in a practical situation.

In general, join evaluation using filters is more efficient than other solutions
since it reduces the need for shipping non-matching data. Specific situations
may lead to reconsider this general assumption. For instance, in the case of a
join between two relations linked by an integrity constraint (primary, foreign
key), the system guarantees the inclusion of one key set into the other, and
filtering becomes useless. Such structured datasets are arguably not common in
the Big Data realms. As another example, small dataset size may reveal the cost
of producing and shipping the filters. A direct join approach should be used in
that case (in fact using MapReduce for small datasets is probably not a good
idea in the first place). Our cost models help to detect those special cases and
adopt the proper evaluation strategy.

The present study could be extended in several directions. First, a complete
coverage would include star joins, and in general joins amongst n relations linked
by complex relationships. Given the complexity of matching such a general set-
ting with a MapReduce framework, we consider that the set of joins cases inves-
tigated in what precedes constitute a satisfying set of primitives to start with.
Regarding our experimental evaluation, we did our best to use the state-of-the-
art MapReduce framework (e.g., HaLoop). We note that some recent distributed
engines (e.g., Spark [7], Stratosphere/Flink [5,34]) natively bring some of the fea-
tures examined here, and notably iterations. At a physical level, they support
caching of intermediate result, if possible in main memory. This strengthens our
expectation that joins (including recursive joins) as studied here, constitute the
basic building block of sophisticated algorithms for machine learning and data
mining, which stand as the most promising outcome of Big Data processing in
a near future. In this respect, the present study stands as a first step toward
the design of an optimizer for distributed query processing, apt at considering
complex integration of iterative, recursive and multi-set operators. We plan to
investigate in the future the foundations of such an optimizer.
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