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Preface

This volume of Transactions on Large-Scale Data- and Knowledge-Centered Systems
(TLDKS) contains five fully revised selected regular papers, covering a wide range of
hot topics in the field of data and knowledge management systems.

Topics covered include: a framework consisting of two heuristics with slightly
different characteristics to compute the action rating of data stores; a theoretical and
experimental study of filter-based equijoins in a MapReduce environment; a constraint
programming approach that is based on constraint reasoning to study the view selection
and data placement problem given a limited amount of resources; a formalization and
an approximate algorithm that have been proposed to tackle the problem of source
selection and query decomposition in federations of SPARQL endpoints; and a matcher
factory that enables the generation of a dedicated schema matcher for a given
schema-matching scenario.

We would like to express our great thanks to the editorial board and the external
reviewers for thoroughly reviewing the submitted papers and ensuring the high quality
of this volume.

Special thanks go to Gabriela Wagner for her availability and her valuable work in
the realization of this TLDKS volume.

December 2015 Abdelkader Hameurlain
Josef Küng

Roland Wagner
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On Expedited Rating of Data Stores

Sumita Barahmand(B) and Shahram Ghandeharizadeh

Computer Science Department, University of Southern California,
Los Angeles, USA

sumita.barahmand@gmail.com, shahram@dblab.usc.edu

Abstract. To rate a data store is to compute a value that describes the
performance of the data store with a database and a workload. A common
performance metric of interest is the highest throughput provided by the
data store given a pre-specified service level agreement such as 95 % of
requests observing a response time faster than 100 ms. This is termed
the action rating of the data store. This paper presents a framework
consisting of two search techniques with slightly different characteristics
to compute the action rating. With both, to expedite the rating process,
the framework employs agile data loading techniques and strategies that
reduce the duration of conducted experiments. We show these techniques
enhance the rating of a data store by one to two orders of magnitude.
The rating framework and its optimization techniques are implemented
using a social networking benchmark named BG.

1 Introduction

1.1 Motivation

The landscape of data stores has expanded to include SQL, NoSQL, NewSQL,
cache augmented, graph databases, and others. A survey of 23 systems is pre-
sented in [11] and we are aware of a handful more1 since that survey. Some data
stores provide a tabular representation of data while others offer alternative data
models that scale out [12]. Some may sacrifice strict ACID [16] properties and opt
for BASE [11] to enhance performance. Independent of a qualitative discussion
of these approaches and their merits, a key question is how do these systems
compare with one another quantitatively? A single metric that captures both
response time and processing capability of a data store is action rating [4,5]. It
is defined as the highest throughput provided by a data store given a pre-specified
service level agreement, SLA. An SLA is a performance agreement between the
application developer and the customer. An example SLA may require 95 % of
issued requests to observe a response time faster than 100 ms for a pre-specified
window of time Δ, say 10 min. The main contribution of this paper is presenting
a framework consisting of two search techniques to compute the action rating
for a data store. This framework employs strategies to reduce the number of

1 TAO [2], F1 [25], Apache’s RavenDB and Jackrabbit, Titan, Oracle NoSQL, Foun-
dationDB, STSdb, EJDB, FatDB, SAP HANA, and CouchBase.

c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXV, LNCS 9620, pp. 1–32, 2016.
DOI: 10.1007/978-3-662-49534-6 1



2 S. Barahmand and S. Ghandeharizadeh

Table 1. BG’s SoAR (actions/sec) with two workloads using a database consisting
of 100K members each with 100 friends and 100 resources. The machine hosting the
data store is a 64 bit 3.4 GHz Intel Core i7-2600 processor (4 cores hyperthreaded as 8)
configured with 16 GB of memory, 1.5 TB of storage, and one Gigabit networking card.

Data Store 100 % View Profile 100 % List Friends

SQL-X 5,714 401

MongoDB 7,699 295

HBase 5,653 214

Neo4j 2,521 112

conducted experiments and utilizes agile data loading techniques to reduce the
duration of the experiments.

The action rating reduces the performance of different data stores to one
number, simplifying the comparison of different data stores, their data models,
and design principles. Workload characteristics that are application specific pro-
vide a context for the rating. For example, the BG benchmark [4,5] uses a social
graph to generate a workload consisting of interactive social networking actions
to evaluate a data store. This is termed the Social Action Rating, SoAR, and can
be used to compare different data stores with one another. To illustrate, Table 1
shows the computed SoAR of a document store named MongoDB, an extensible
record store named HBase, a graph data store named Neo4j, and an industrial
strength Relational Database Management System (RDBMS) named2 SQL-X.
For the imposed workload consisting of a single action that looks up the profile
of a member, View Profile, MongoDB is the high performant data store. SQL-X
outperforms MongoDB for a workload consisting of 100 % List Friends action
even though it joins two tables, see [6] for details.

One may establish the action rating of a data store using either an open
or a closed emulation model. With an open emulation model, a benchmarking
framework imposes load on a data store by generating a pre-specified number
of requests per unit of time, termed arrival rate. This arrival rate, λ, is an
average over some period of time and might be modeled as a bursty pattern
using a Poisson distribution. With a closed emulation model, the benchmarking
framework consists of a fixed number of threads (or processes), T , that issue
requests to a data store. Once a thread issues a request, it does not issue another
until its pending request is serviced. Moreover, a thread may emulate think time
by sleeping for some time between issuing requests. Both the number of threads
and the think time control the amount of load imposed on a data store. With both
emulation models, one increases system load (either λ or T ) until the data store
violates the specified SLA. The highest observed number of requests3 processed
per unit of time is the action rating of a data store.

2 Due to licensing agreement, we cannot disclose the identity of this system.
3 This is λ with the open emulation model. With the closed emulation model, it is the

highest observed throughput, see discussions of Fig. 1.



On Expedited Rating of Data Stores 3

Fig. 1. Throughput as a function of the imposed load (T ). Percentage of requests that
satisfy the SLA requirement of 100ms or faster are shown in red.

The action rating is not a simple function of the average service time of a
data store for processing a workload. To illustrate, Fig. 1 shows the throughput of
SQL-X with a closed emulation model processing a social networking workload
generated by BG. On the x-axis, we increase system load by increasing the
number of threads T . The y-axis shows the number of actions processed per
second by SQL-X. In addition, we show the different percentage of requests that
observe a response time faster than 100 ms. With 1 to 4 threads, this percentage is
above 95 %. With 8 threads, it drops to 62 %. Beyond 32 threads, the throughput
of SQL-X drops as the average service time of the workload starts to increase [30]
with less than 1 % of the requests observing a response time faster than 100 ms.

To quantify the action rating of a data store, one must conduct experiments
that impose an increasing amount of system load until the highest throughput
that satisfies the pre-specified SLA is identified. A näıve technique may perform an
exhaustive search of possible system loads by enumerating them starting with the
lowest: λ=T=1. Alternatively, one may use a search technique such as the Golden
Section [31,32] which conducts fewer experiments than näıve and is as accurate.
Reducing the number of experiments expedites the rating process because each
experiment has a duration in the order of minutes and may have to load a bench-
mark database on the data store that is being evaluated. The load time is a func-
tion of the database size and the target data store. For example, the time to load a
modest sized BG database consisting of 100,000 members with 100 friends and 100
resources per member is approximately 3 hours with MongoDB. With MySQL,
this time is 8 hours. If these rating techniques conduct hundred experiments to
rate MongoDB and fifty experiments to rate MySQL then the time to re-create
the database at the beginning of each experiment alone is more than a week.

Ultimately, the time to rate a data store is dependent on the employed search
technique that dictates the number of conducted experiments, duration of each
experiment, frequency of re-loading the benchmark database in between experi-
ments, the time to load the benchmark database, and the true action rating of
the data store. A high performant data store with a million as its rating requires
more time to rate than a data store with 100 as its rating.
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1.2 Contribution

The primary contributions of this study are three folds. First, it introduces search
techniques that rate a data store both accurately and quickly. When compared
with näıve, they reduce the rating of MongoDB and MySQL from days and
weeks into hours. Second, it discusses the components of the rating framework.
This includes providing an answer to the following two questions:

– How the framework uses the heuristic search techniques to expedite the rating
process by reducing the number of conducted experiments?

– How it reduces the duration of each experiment? See discussions of the Delta
Analyzer in Sect. 3.

Table 2. BG’s rating parameters and their definitions. Some of these parameters are
used in Sect. 6.

Database parameters

M Number of members in the database

φ Number of friends per member

ρ Number of resources per member

Workload parameters

O Total number of sessions emulated by the benchmark

ε Think time between social actions constituting a session

ψ Inter-arrival time between users emulated by a thread

θ Exponent of the Zipfian distribution

Service Level Agreement (SLA) parameters

α Percentage of requests with response time ≤ β

β Max response time observed by α requests

τ Max % of requests that observe unpredictable data

Δ Min length of time the system must satisfy the SLA

Environmental parameters

N Number of BGClients

T Number of threads

δ Duration of the rating experiment

r Climbing factor

Incurred Times

ζ Amount of time to create the database for the first time

ν Amount of time to recreate the database in between experiments

η Number of rating experiments conducted by BGCoord

ω Number of times BGCoord loads the database

Υ Warmup duration

Λ Total rating duration
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Moreover, this framework employs agile data loading techniques to create the
benchmark database at the beginning of each experiment. In Sect. 5.2, we show
that hardware solutions are not a substitute for a smart strategy to create the
benchmark database.

Third, this study details an implementation of the proposed techniques using
the BG benchmark. We present experimental results to compare the heuristic
search technique when compared with its extensions that employ the agile data
loading techniques and techniques that reduce the duration of each experiment.
Using Amdahl’s law [1], we show these extensions to speedup the heuristic search
technique by one to two orders of magnitude, see Table 10.

The rest of his paper is organized as follows. Section 2 presents two variants
of our heuristic search technique. In Sects. 3 and 4, we present a technique to
reduce the duration of each experiment and three agile data loading techniques,
respectively. Section 5 describes an implementation of these techniques using
the BG benchmark. An analysis of these techniques including their observed
speedup is presented in Sect. 6. We present our related work in Sect. 7. Brief
words of conclusion and future research directions are presented in Sects. 8 and 9,
respectively.

2 Rating Process

To rate a data store is similar to computing a local maxima. One may compare
it to a search space consisting of nodes where each node corresponds to the
throughput observed by an experiment with an imposed system load, either T
with the closed or λ with the open simulation model. The node(s) with the
highest throughput that satisfies the pre-specified SLA identifies the rating of
the system. In the following, we focus on a closed emulation model and assume
a higher value of T imposes a higher system load on a data store. Section 9
describes extensions in support of an open emulation model.

This section presents two techniques to navigate the search space. The
assumptions of both techniques are described in Sect. 2.1. Subsequently, Sect. 2.2
details the two techniques and describes an alternative when the stated assump-
tions are violated. Section 2.3 compares these two alternatives with one another
by quantifying the number of nodes that they visit and their accuracy when
rating a data store.

2.1 Assumptions

Our proposed search techniques make the following two assumptions about the
behavior of a data store as a function of system load:

1. Throughput of a data store is either a square root or a concave inverse
parabola function of the system load, see Fig. 2.a.

2. Average response time of a workload either remains constant or increases as
a function of the system load, see Fig. 2.b.
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Fig. 2. Assumptions of BG’s rating technique.

These are reasonable assumptions that hold true almost always. Below, we for-
malize both assumptions in greater detail.

Figure 2.b shows the average response time (R̄T ) of a workload as a function
of T . With one thread, R̄T is the average service time (S̄) of the system for
processing the workload. With a handful of threads, R̄T may remain a constant
due to use of multiple cores and sufficient network and disk bandwidth to ser-
vice requests with no queuing delays. As we increase the number of threads,
R̄T may increase due to either (a) an increase in S̄ attributed to use of syn-
chronization primitives by the data store that slow it down [9,19], (b) queuing
delays attributed to fully utilized server resources where R̄T=S̄+Q̄ and Q̄ is the
average queuing delay, or (c) both. In the absence of (a), the throughput of the
data store is a square root function of T else it is an inverse parabola function
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of T , see Fig. 2.a. In scenario (b), with a closed emulation model where a thread
may not issue another request until its pending request is serviced, Q̄ is bounded
with a fixed number of threads. Moreover, as R̄T increases, the percentage of
requests observing an R̄T lower than or equal to β decrease, see Fig. 2.c.

2.2 Search Techniques

The two techniques that employ the assumptions of Sect. 2.1 to rate a data store
are as follows. The first technique, named Golden, is a search technique assured to
compute the rating for the system4. The second technique, named Approximate,
is a heuristic variant that is faster and less accurate. Both techniques realize the
search space by conducting experiments where each experiment imposes a fixed
load (T ) on the system to observe a throughput that may or may not satisfy
the pre-specified SLA. Each experiment is a node of the search space. While the
search space is potentially infinite, for a well behaved system, it consists of a
finite number of experiments defined by a system load (value of T ) high enough
to cause a resource such as CPU, network, or disk to become 100 % utilized.
A fully utilized resource dictates the maximum throughput of the system and
imposing a higher load by increasing the value of T (with a closed emulation
model) does not increase this observed maximum. A finite value of T limits the
number of nodes in the search space.

Both Golden and Approximate navigate the search space by changing the
value of T , imposed load. When navigating the search space by conducting exper-
iments, an experiment is successful if it satisfies the pre-specified SLA provided
by an experimentalist. Otherwise, the experiment has failed. Both techniques
traverse the search space in two distinct phases: a hill climbing phase and a
local search phase. The local search phase differentiates Golden from Approxi-
mate. Approximate conducts fewer experiments during this phase and is faster.
However, its rating incurs a margin of error and is not as accurate as Golden.
Below, we describe the hill climbing phase that is common to both techniques.
Subsequently, we describe the local search of Golden and Approximate in turn.

One may implement the hill climbing phase by maintaining the thread count
(Tmax) that results in the maximum observed throughput (λTmax

) among all con-
ducted experiments, i.e., visited nodes of the search space. It starts an exper-
iment using the lowest possible system load, one thread (T = 1) to issue the
pre-specified mix of actions. If this experiment fails then the rating process ter-
minates with a rating of zero. Otherwise, it enters the hill climbing phase where
it increases the thread count to T = r×T where r is the hill climbing factor and
an input to the technique. (See below for an analysis with different values of r.)
It repeats this process until an experiment either fails or observes a throughput
lower than λTmax

, establishing an interval for the value of T that yields the rating
of the system. Once this interval is identified, the hill climbing phase terminates,

4 We also developed a greedy algorithm of our own named Gauranteed [4]. Gauranteed
provides similar performance to Golden except that it visits a higher number of
states.
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providing the local search space with the identified interval, see lines 15 and 18
of Algorithm 1.

Algorithm 1. Compute SoAR

1: procedure Compute–SoAR
2: Tmax ← T ← 1
3: λTmax

← 0
4: while true do
5: (λT , SLAT ) ←Conduct an experiment using T
6: to compute λT and SLAT

7: if λT > λTmax
and SLA experiments are satisfied then

8: Tmax ← T
9: λTmax

← λT

10: T ← T × r
11: else
12: End ← T
13: if technique is Golden then
14: Start ← T

r×r
15: return Golden–LocalSearch(Start,End)
16: else
17: Start ← T

r
18: return Approximate–LocalSearch(Start,End)

end

The start of the local search interval is computed differently with Approxi-
mate and Golden, see lines 13–18 of Algorithm 1. With Approximate, the starting
thread count is T

r and the ending thread count is T and the peak throughput
is assumed to reside in the interval (T

r , T ). With Golden, the starting thread
count is T

r2 , the ending thread count is the current T and the peak throughput
is assumed to reside in the interval ( T

r2 , T ). Next, we describe how these local
search intervals are navigated by Golden and Approximate.

Golden identifies the peak throughput by maintaining the throughput values
for triples of thread counts (nodes) whose distances form a golden ration [31,32].
Next, it successively narrows the range of values inside which the maximum
throughput satisfying the SLA requirements is known to exist, see Algorithm 2
for details.
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Algorithm 2. Perform Local Search For Golden

1: procedure Golden–LocalSearch(Start, End)
2: GoldenRatio ← −1+

√
5

2
3: Point1 ← End + GoldenRatio × (Start − End)
4: Point2 ← Start + GoldenRatio × (End − Start)
5: while (End − Start > 1) do
6: (λPoint1, SLAPoint1) ←Conduct an experiment using Point1
7: to compute λPoint1 and SLAPoint1

8: (λPoint2, SLAPoint2) ←Conduct an experiment using Point2
9: to compute λPoint2 and SLAPoint2

10: if (λPoint1 > λPoint2) then
11: End ← Point2
12: Point2 ← Point1
13: Point1 ← End + GoldenRatio × (Start − End)
14: else
15: Start ← Point1
16: Point1 ← Point2
17: Point2 ← Start + GoldenRatio × (End − Start)
18: (λStart, SLAStart) ←Conduct an experiment using Start
19: to compute λStart and SLAStart

20: λTmax
← λStart

21: return λTmax

end

Approximate navigates the interval identified by the hill climbing phase dif-
ferently, see Algorithm 3. It treats the start of the interval as the point with
the highest observed throughput among all points that have been executed, T

r
and its end as the point with the lowest thread count that failed or resulted in
a lower throughput, T . It then executes an experiment with the mid-point in
this interval. If this experiment succeeds and observes a throughput higher than
λTmax

, then the heuristic changes the start of the interval to focus on to this
mid-point, does not change the end of the interval (T ) and repeats the process.
Otherwise, it changes the end point of the interval to be this mid-point, does not
change the starting point of the interval and repeats the process until the inter-
val shrinks to consist of one point. It repeats the experiment with this last point
as the value of T and compares the observed throughput with λTmax

to identify
the threadcount that maximized the throughput. The heuristic approach is not
guaranteed to find the peak throughput (rating) for a system. Its margin of error
depends on the behavior of the data store and the climbing factor r. Below, we
describe an example to illustrate why Approximate incurs a margin of error.
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Algorithm 3. Perform Local Search For Approximate

1: procedure Approximate–LocalSearch(Start,End)
2: while true do
3: intervalLength ← End − Start
4: if intervalLength < 2 then
5: break
6: else
7: T ← Start + intervalLength

2

8: (λT , SLAT ) ←Conduct an experiment using T
9: to compute λT and SLAT

10: if λT > λTmax
& SLA requirements satisfied then

11: Start ← T
12: Tmax ← T
13: λTmax

← λT

14: else
15: End ← T

return λTmax

end

Consider a scenario where the experiment succeeds with T threads and
increases the thread count to 2T . With 2T the experiment succeeds again and
observes a throughput higher than the max throughput observed with T , see
Fig. 2.d. Thus, the hill climbing phase increases the thread count to 4T (assum-
ing a climbing factor of 2, r=2). With 4T , the experiment produces a through-
put lower than the maximum throughput observed with 2T. This causes the hill
climbing phase to terminate and establishes the interval (2T , 4T ) for the local
search of Approximate. If the peak throughput is in the interval (T, 2T) then
Approximate returns 2T as the peak, failing to compute SoAR accurately. The
difference between the true peak and 2T is the margin of error observed with
Approximate. Golden avoids this error by navigating the interval (T, 4T)

Both Golden and Approximate maintain the observed throughput with a
given value of T in a hash table. (This is not shown in the Algorithms 1–3.)
When exploring points during either the hill climbing phase or local search,
an algorithm uses this hash table to detect repeated experiments. It does not
repeat them and simply looks up their observed throughput, expediting the
rating process significantly.

When comparing throughputs, both Golden and Approximate take some
amount of variation into consideration. For example, λa is considered higher than
λb only if it is ε% higher than it. It is the responsibility of the experimentalist
to identify the tolerable variation, ε.

With a system that violates the assumptions of Sect. 2.1, both Golden and
Approximate may fail to identify system rating. For example, Fig. 3 shows a
system where the observed throughput is not an increasing function of system
load. In such a case, both techniques may become trapped in a local maxima
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Fig. 3. Behavior of a system violating the rating assumptions.

and fail to identify the peak throughput of the system. A possible approach may
use simulated annealing to perform (random) jumps to escape the local maxima.
We do not discuss this possibility further as we have not observed a system that
violates the stated assumptions.

2.3 Comparison

To compare Golden and Approximate, we use a simple quadratic function,
−aT 2 + bT + c = y (a = 1 and b > 1), to model the throughput of a data
store as a function of number of threads issuing requests against it. The vertex
of this function is the maximum throughput and is computed by solving the
first derivative of the quadratic function: T = b

2 . Golden and Approximate must
compute this value as the rating of the system. We select different values of b and
c to model diverse systems whose ratings vary from 100 to 100 million actions
per second. We start with a comparison of Golden and Approximate, showing
Golden conducts 11 % to 33 % more experiments than Approximate but com-
putes the correct rating at all times. While Approximate is faster it computes
an action rating with some margin of error, see discussions of Table 3 below.

Figure 4 shows the number of visited nodes. When the true rating is 100
million actions per second, Golden conducts 69 experiments to compute the
value of T that realizes this rating. 35 experiments are repeated from previous
iterations with the same value of T . To eliminate these, the algorithm maintains
the observed results for the different values of T and performs a look up of the
results prior to conducting the experiment. This reduces the number of unique
experiments to 34. This is 2.8 times the number of experiments conducted with
a system modeled to have a rating of 500 actions per second (which is several
orders of magnitude lower than 100 million).

Figure 5 shows the number of unique experiments executed with each of the
techniques with Approximate conducting fewer experiments. Figure 6 shows the
ideal (expected) rating as well as the computed ratings by the two techniques for
the different curves. As shown in Fig. 6, Golden always computes the expected
rating for the system. With Approximate, the highest observed percentage error
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in the computed rating was 8 %. With most experiments, the percentage error
was less than 1 %. However, Golden conducts more experiments and visits more
nodes in order to find the solution, see Fig. 5. This is because Golden executes
a larger number of experiments before it discards intervals that do not contain
the peak.

The total number of visited nodes is computed by summing the number of
experiments executed in the hill climbing phase and the number of experiments
executed in the local search phase. For both techniques, this value is dependent
on the value of the climbing factor r. A small climbing factor may increase the
number of experiments executed in the hill climbing phase before the search
interval is identified. Whereas a large climbing factor may increase the number
of experiments executed in the local search phase as it may result in a larger
search interval, see Fig. 7.

Table 3 shows a comparison of Approximate with Golden using different
climbing factors r. The first column is a known system rating. The next three

Fig. 4. Number of conducted experiments using Golden.

Fig. 5. Number of unique experiments conducted by using Golden and Approximate,
r=2.
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Fig. 6. Rating with Golden and Approximate, r = 2.

Table 3. A comparison of Approximate with Golden using different climbing factor r.

System Rating % Reduction in Experiments % Error in SoAR

r=2 r=4 r=10 r=2 r=4 r=10

100 11.11 % 33.33% 25.00 % 0.00 % 0.00 % 0.00 %

500 16.67 % 25.00% 25.00 % 0.00 % 0.80 % 0.20 %

2500 17.65 % 25.00% 25.00 % 7.84 % 7.84 % 1.00 %

5000 17.65 % 20.00% 27.78 % 0.08 % 0.00 % 18.00 %

10000 20.00 % 25.00% 23.53 % 7.84 % 1.44 % 0.00 %

100000 18.18 % 25.00% 23.53 % 0.40 % 0.02 % 0.63 %

1000000 18.52 % 21.74% 21.74 % 0.06 % 0.06 % 0.00 %

100000000 17.65 % 22.22% 12.00 % 0.05 % 0.06 % 0.00 %

columns show the percentage reduction in the number of experiments conducted
by Approximate when compared with Golden with 2, 4, and 10 as values of r.
The last three columns report the percentage error introduced by Approximate
when computing SoAR for the same values of r. These results show Approxi-
mate reduces the number of experiments by as much as one third. While the
percentage error in the computed SoAR by Approximate is close to zero in most
experiments, it was as high as 18 % in one instance with r=10.

3 Experiment Duration, δ

With the search techniques of Sect. 2, the throughput of each experiment with
an imposed system load must be quantified accurately. A key parameter is the
duration of each experiment denoted as δ. The ideal duration, value of δ, is
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Fig. 7. The impact of the value of climbing factor on the rating, (a) small versus (b)
large climbing factor.

both data store and workload dependent. It must be long enough to satisfy two
constrains. First, it must generate a mix of requests that corresponds to the
specified workload. Here, a high throughput data store shortens the duration
of δ because it generates many requests per unit of time to approximate the
specified workload quicker than a low throughput data store. Second, the ideal δ
value must be long enough to enable a data store to produce a throughput that
is permanent5 with longer δ values. The specified workload and its mix of actions
play an important role here. If there is a significant variation in the service time
of the data store for the specified actions then the value of δ must be longer to
capture this variation. This section describes a technique named Delta Analyzer,
DA, to compute the ideal δ.

DA consists of a core timing component, DA-Core, that is invoked repeatedly.
(DA-Core might be realized using the component that is used by the search
techniques of Sect. 2 to compute the throughput of a node, see Sect. 5 for details.)
The input of DA-Core is the user defined workload and the amount of load that it
must impose, T . Its output is the value of δ, the observed resource utilization, and
the mix of requests issued. DA-Core generates the input workload and system
load for t time units repeatedly, doubling the value of t each time. The starting
value of t is configurable and might be 1 second by default. DA-Core terminates
when two conditions hold true. First, the mix of requests issued for the last
q experiments is approximately the same as the input workload. Second, the
observed throughput and resource utilization does not change beyond a certain
threshold for these q iterations. These last q iterations include t, 2t,..., 2q−1t.
The value of q is a configurable parameter of DA-Core. The value of t is the
ideal δ value for the specified workload and system load T .

5 One may define permanent using a tolerable threshold, say ±10 %, on the variation
in the observed throughput.
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DA invokes DA-Core with a low system load, T=1, to quantify the value
of t and utilization of resources. It then identifies the resource with the highest
utilization and uses its reciprocal to estimate the multiplicative increase ρ in the
value of T to cause this resource to become fully utilized. It invokes DA-Core
with the new value of ρT to establish a new value for δ. This process repeats until
a resource becomes fully utilized. The definition of full utilization of a resource
is configurable and might be set at 80 % usage. Once this termination condition
is reached, DA terminates and reports the value of δ= 2q−1t

2q−1 = t as the ideal
experiment duration.

Fig. 8. DA with BG and a social graph of 10,000 members, 100 friends per member,
and 100 resources per member. Workload consists of 0.1 % write actions.

To illustrate, Fig. 8 shows the behavior of DA with q=3 and 5 % tolerable
change in the observed throughput and system utilization with BG using a work-
load that has a low frequency (0.1 %) of write actions [6]. The x-axis of this figure
shows the different values of t. The y-axis is the observed throughput with dif-
ferent values of t employed by DA-Core, starting with t=1. The curves show the
different system loads considered by DA, i.e., invocation of DA-Core with T=1,
2, 4, 8, and 16 threads. When DA invokes DA-Core with a low system load,
T=1, the termination condition is satisfied with t=32 s. In this experiment, the
ideal δ is 8 s, i.e., t=32

2(3−1) . The network utilization is at 11 % and higher than both
CPU and disk. As DA doubles the system load by changing the value of T to 2,
4, 8, and 16, the network utilization increases sub-linearly to 22 %, 44 %, 75 %,
and 91 %. It is interesting to note that the throughput observed with 8 and 16
threads is almost identical with small values of t, i.e., 1 and 2 s. The observed
throughput is higher with T=16 threads and values of t higher than 4 s. The
ideal delta is 16 s and twice that observed with a low system load. One may
configure DA to report the maximum of the candidate delta values or the delta
value observed with the highest system load as the duration of experiments, δ,
conducted by the heuristic search technique.
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Table 4. Time to load (minutes) a BG social graph with 10,000 and 100,000 members
into three data stores.

Data Store 10K Members 100K Members

MongoDB 2 157

SQL-X 7 153.5

MySQL 15 2509

4 Agile Data Loading

With those workloads that change the state of the database (its size and char-
acteristics6) one may be required to destroy and reconstruct the database at the
beginning of each experiment to obtain meaningful ratings. To illustrate, Work-
load D of YCSB [13], inserts new records into a data store, increasing the size
of the benchmark database. Use of this workload across different experiments
with a different number of threads causes each experiment to impose its work-
load on a larger database size. If the data store becomes slower as a function of
the database size then the observed trends cannot be attributed to the different
amount of imposed load (T ) solely. Instead, they must be attributed to both
a changing database size (difficult to quantify) and the offered load. To avoid
this ambiguity, one may destroy and recreate the benchmark database at the
beginning of each experiment.

This repeated destruction and creation of the same database may consti-
tute a significant portion of the rating process, see Table 4. As an example,
the time to load a modest sized BG database consisting of 10,000 members
with 100 friends and 100 resources per member is 2 min with MongoDB. With
an industrial strength relational database management system (RDBMS) using
the same hardware platform, this time increases to 7 min. With MySQL, this
time is 15 min [6]. If the rating of a data store conducts 10 experiments, the
time attributed to loading the data store is ten times the reported numbers,
motivating the introduction of agile data load techniques to expedite the rating
mechanism.

This section presents three agile data loading techniques. The first technique,
named RepairDB, restores the database to its original state prior to the start of
an experiment. One may implement RepairDB using either point-in-time recov-
ery mechanism of a data store or techniques that are agnostic to a data store.
Section 5.1 presents an implementation of the latter.

The second technique, named Database Image Loading, DBIL, relies on the
capability of a data store to create a disk image of the database. DBIL uses this

6 Cardinality of a many-to-many relationship such as the number of friends per mem-
ber of a social networking site.
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image repeatedly across different experiments7. Depending on the percentage of
writes and the data store characteristics, RepairDB may be slower than DBIL.
When the percentage of write actions is very low, RepairDB might be faster
than DBIL.

The third technique, named LoadFree, does not load the database in between
experiments. Instead, it requires the benchmarking framework to maintain the
state of the database in its memory across different experiments. In order to use
LoadFree, the workload and its target data store must satisfy several conditions.
First, the workload must be symmetric: It must issue write actions that negate
one another in the long run. For example, with BG, a symmetric workload issues
Thaw Friendship (TF) action as frequently as Invite Friend (IF) and Accept
Friend Request (AFR). The TF action negates the other two actions across
repeated experiments. This prevents both an increased database size and the
possible depletion of the benchmark database from friendship relationships to
thaw. See Sect. 5.3 for other conditions that constrain the use of LoadFree.

In scenarios where LoadFree cannot be used for the entire rating of a data
store, it might be possible to use LoadFree in several experiments and restore the
database using either DBIL or RepairDB. The benchmarking framework may use
this hybrid approach until it rates its target data store. Section 6 shows the hybrid
approaches provide a factor of five to twelve speedup in rating a data store.

An implementation of these techniques in BG is detailed in Sect. 5. Section 6
presents an evaluation of these techniques.

5 An Implementation

Figure 9 shows the software architecture of an implementation of the concepts
presented in the previous three sections using the BG benchmark [5]. BG is a scal-
able benchmark that employs a shared-nothing hardware platform to generate
sufficient requests to rate high throughput data stores. Its components include
N BG Clients (BClient), one BG Coordinator (BGCoord), and one Delta Ana-
lyzer (DA). We describe these in turn. Subsequently, Sects. 5.1-5.3 describe an
implementation of the three agile data loading techniques.

BGCoord implements the search techniques of Sect. 2 that conduct repeated
experiments by issuing commands to BGClients to conduct experiments to com-
pute the SoAR of a data store. One of BGCoord’s inputs is the duration of each
experiment computed using the delta analyzer (DA) of Sect. 3. Each BGClient
instance consists of a workload generator and an implementation of BG’s eleven
social networking actions specific to a data store.

To be portable to different operating systems such as Linux and Windows,
BG is implemented using the Java programming language. The different compo-
nents communicate using message passing (instead of operating system specific
7 One may implement a similar loading technique named Virtual Machine Image Load-

ing (VMIL) by creating virtual machines with a clean copy of the database. The
resulting VM image is used repeatedly across different experiments. When com-
pared with DBIL, the VM image is larger than just the database image and may
require a longer time to copy.
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Fig. 9. Architecture of the BG benchmark.

remote invocations) to conduct different rounds of experiments. This is realized
using a BGListener (not shown in Fig. 9) that is co-located with each BGClient
instance. BGCoord and DA communicate with the BGListener using message
passing. BGListener communicates with a spawned BGClient directly. There is
one BGListener per BGClient.

Currently, the DA is separated from the BGCoord. Its input include the
workload, details of the social graph, and the data store parameters8. A workload
consists of a mix of eleven social networking actions and the degree of skew
for referencing different data items. DA conducts experiments by imposing a
different amount of load on a data store using the BGClients. Each BGClient
is multi-threaded and the number of threads dictates how much load it imposes
on a data store. Each BGClient gathers its observed throughput of a data store
along with the utilization of the resources of a server hosting the data store. DA

8 The data store parameters are those required to connect to the database such as the
connection URL, database name, data store username and password and all other
data store specific parameters such as MongoDB’s write concern and read preference.
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uses this information to computer δ, the duration of experiments to be conducted
by BGCoord, per discussions of Sect. 3.

BGCoord inputs the workload, details of the social graph and the data store,
the user specified SLA and δ to rate the data store. It implements the agile data
loading techniques of Sect. 4. The software architecture of Fig. 9 is general pur-
pose. One may adapt it for use with YCSB [13] and YCSB++ [24] by specifying
a high tolerable reponse time, i.e., max integer, for the input SLA. In addition,
the core classes of both YCSB and YCSB++ should be extended to (a) gather
resource utilization of servers hosting the data store, and (b) communicate the
gathered resource utilization and the observed throughput to BGCoord.

5.1 Repair Database

Repair Database, RepairDB, marks the start of an experiment (TStart). At the
end of the experiment, it may employ the point-in-time recovery [20,21] mecha-
nism of the data store to restore the state of the database to its state at TStart.
This enables the rating mechanism to conduct the next experiment as though
the previous benchmark database was destroyed and a new one was created. It
is appropriate for use with workloads consisting of infrequent write actions. It
expedites the rating process as long as the time to restore the database is faster
than destroying and re-creating the same database.

With those data stores that do not provide a point-in-time recovery mecha-
nism, the benchmarking framework may implement RepairDB. Below, we focus
on BG and describe two alternative implementations of RepairDB. Subsequently,
we extend the discussion to YCSB and YCSB++.

The write actions of BG impact the friendship relationships between the
members and post comments on resources. BG generates log records for these
actions in order to detect the amount of unpredictable [5] data during its val-
idation phase at the end of an experiment. One may implement point-in-time
recovery by using these log records (during validation phase) to restore the state
of the database to the beginning of the experiment.

Alternatively, BG may simply drop existing friendships and posted comments
and recreate friendships. When compared with creating the entire database, this
eliminates reconstructing members and their resources at the beginning of each
experiment. The amount of improvement is a function of the number of friend-
ships per member as the time to recreate friendship starts to dominate the data-
base load time. Table 5 shows RepairDB improves the load time of MongoDB9

by at least a factor of 2 with 1000 friends per member. This speedup is higher
with fewer friends per member as RepairDB is rendered faster.

BG’s implementation of RepairDB must consider two important details.
First, it must prevent race conditions between multiple BGClients. For example,
with an SQL solution, one may implement RepairDB by requiring BGClients
to drop tables. With multiple BGClients, one succeeds while others encounter
exceptions. Moreover, if one BGClient creates friendships prior to another

9 The factor of improvement with MySQL is 3.



20 S. Barahmand and S. Ghandeharizadeh

Table 5. Factor of improvement in MongoDB’s load times with RepairDB compared
with re-creating the database, M=100K, ρ=100.

No. of friends per member (φ) Speedup factor

10 12

100 7

1000 2

BGClient dropping tables then the resulting database will be wrong. We prevent
undesirable race conditions by requiring BGCoord to invoke only one BGClient
to destroy the existing friendships and comments.

Second, RepairDB’s creation of friendships must consider the number (N)
of BGClients used to create the self contained communities. Within each
BGClient [5], the number of threads (Tload) used to generate friendships simulta-
neously is also important. To address this, we implement BGCoord to maintain the
original values of N and Tload and to re-use them across the different experiments.

Extensions of YCSB and YCSB++ to implement RepairDB is trivial as
they consist of one table. This implementation may use either the point-in-time
recovery mechanism of a data store or generate log records similar to BG.

5.2 Database Image Loading

Various data stores provide specialized interfaces to create a “disk image” of
the database [23]. Ideally, the data store should provide a high-throughput
external tool [24] that the benchmarking framework employs to generate the
disk image. Our target data stores (MongoDB, MySQL, an industrial strength
RDBMS named SQL-X) do not provide such a tool. Hence, our proposed tech-
nique first populates the data store with benchmark database and then generates
its disk image. This produces one or more files (in one or more folders) stored in
a file system. A new experiment starts by shutting down the data store, copy-
ing the files as the database for the data store, and restarting the data store.
This technique is termed Database Image Loading, DBIL. In our experiments,
it improved the load time of MongoDB with 1 million members with 100 friends
and 100 resources per member by more than a factor of 400. Figure 10 compares
the amount of time it takes to load a social graph consisting of 100,000 members
using DBIL with using BG to construct the database for a data store that stores
its data on disk, an MLC SSD and a virtual disk10. All three are slower than
the DBIL technique.

The reason copying an image of a database using DBIL is faster than con-
structing the social graph using BG is because it does a sequential read and write

10 With disk and the MLC SSD the disk on the node hosting the data store becomes
the bottleneck. With the virtual disk, the CPU of the node hosting the data store
becomes the bottleneck as now all the data is written to the memory. DBIL is faster
than this approach as it eliminates the overhead of locking and synchronization on
the data store.
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Fig. 10. Time to load a 100K member social graph with 3 different hardware config-
urations and an agile data loading technique named DBIL.

of a file. BG’s construction of the social graph is slower because it generates users
and friendships dynamically11. This may cause a data store to read and write
the same page (corresponding to a user) many times in order to update a piece
of information (a user’s JSON object) repeatedly (modify friends). In addition,
it also must construct index structure that is time consuming12.

With DBIL, the load time depends on how quickly the system copies the
files pertaining to the database. One may expedite this process using multiple
disks, a RAID disk subsystem, a RAM disk or even flash memory. We defer this
analysis to future work. Instead, in the following, we assume a single disk and
focus on software changes to implement DBIL using BG.

Our implementation of DBIL utilizes a disk image when it is available. Other-
wise, it first creates the database using the required (evaluator provided) meth-
ods13. Subsequently, it creates the disk image of the database for future use.
Its implementation details are specific to a data store. Below, we present the
general framework. For illustration purposes, we describe how this framework is
instantiated in the context of MongoDB. At the time of this writing, an imple-
mentation of the general framework is available with MongoDB, MySQL and
SQL-X.

We implemented DBIL by extending BGCoord and introducing a new slave
component that runs on each server node (shard) hosting an instance of the data
store. (The BGClient and BGListener are left unchanged.) The new component
is named DBImageLoader and communicates with BGCoord using sockets. It

11 Constructing the social graph using BG without actually issuing calls to the data
store takes less than a second showing that BG does not impose any additional
overhead while loading the social graph into the data store.

12 In addition, with MongoDB, there is also the overhead of locking and synchronization
on the data store.

13 With BG, the methods are insertEntity and createFriendship. With YCSB, this
method is insert.
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performs operating system specific actions such as copy a file, and shutdown
and start the data store instance running on the local node.

When BGCoord loads a data store, it is aware of the nodes employed by
the data store. It contacts the DBImageLoader of each node with the para-
meters specified by the load configuration file such as the number of members
(M), number of friends per member (φ), number of BGClients (N), number of
threads used to create the image (TLoad), etc. The DBImageLoader uses the
values specified by the parameters to construct a folder name containing the
different folders and files that correspond to a shard. It looks up this folder in a
pre-specified path. If the folder exists, DBImageLoader recognizes its content as
the disk image of the target store and proceeds to shutdown the local instance
of the data store, copy the contents of the specified folder into the appropriate
directory of the data store, and restarts the data store instance. With a sharded
data store, the order in which the data store instances are populated and started
may be important. It is the responsibility of the programmer to specify the cor-
rect order by implementing the “MultiShardLoad” method of BGCoord. This
method issues a sequence of actions to the DBImageLoader of each server to
copy the appropriate disk images for each server and start the data store server.

As an example, a sharded MongoDB instance consists of one or more Con-
figuration Servers, and several Mongos and Mongod instances [22]. The Config-
uration Servers maintain the metadata (sharding and replication information)
used by the Mongos instances to route queries and perform write operations.
It is important to start the Configuration Servers prior to Mongos instances. It
is also important to start the shards (Mongod instances) before attaching them
to the data store cluster. The programmer specifies this sequence of actions by
implementing “MultiShardStart” and “MultiShardStop” methods of BGCoord.

5.3 Load Free

With Load Free, the rating framework uses the same database across different
experiments as long as the correctness of each experiment is preserved. Below,
we define correctness. Subsequently, we describe extensions of the BG framework
to implement LoadFree.

Correctness of an experiment is defined by the following three criteria. First,
the mix of actions performed by an experiment must match the mix specified
by its workload. In particular, it is unacceptable for an issued action to become
a no operation due to repeated use of the benchmark database. For example,
with both YCSB and YCSB++, a delete operation must reference a record that
exists in the database. It is unacceptable for an experiment to delete a record
that was deleted in a previous experiment. A similar example with BG is when a
database is created with 100 friends per member and the target workload issues
Thaw Friendship (TF) more frequently than creating friendships (combination
of Invite Friend and Accept Friend Request). This may cause BG to run out
of the available friendships across several experiments using LoadFree. Once
each member has zero friends, BG stops issuing TF actions as there exist no
friendships to be thawed. This may introduce noise by causing the performance
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results obtained in one experiment to deviate from their true value. To prevent
this, the workload should be symmetric such that the write actions negate one
another. Moreover, the benchmarking framework must maintain sufficient state
across different experiments to issue operations for the correct records.

Second, repeated use of the benchmark database should not cause the actions
issued by an experiment to fail. As an example, workloads D and E of YCSB
insert a record with a primary key in the database. It is acceptable for an insert
to fail due to internal logical errors in the data store such as deadlocks. However,
failure of the insert because a row with the same key exists is not acceptable.
It is caused by repeated use of the benchmark database. Such failures pollute
the response times observed from a data store as they do not perform the useful
work (insert a record) intended by YCSB. To use LoadFree, the uniqueness
of the primary key must be preserved across different experiments using the
same database. One way to realize this is to require the core classes of YCSB
to maintain sufficient state information across different experiments to insert
unique records in each experiment.

Third, the database of one experiment should not impact the performance
metrics computed by a subsequent experiment. In Sect. 4, we gave an exam-
ple with YCSB and the database size impacting the observed performance. As
another example, consider BG and its metric to quantify the amount of unpre-
dictable reads. This metric pertains to read actions that observe either stale,
inconsistent, or wrong data. For example, the design of a cache augmented data
store may incur dirty reads [17] or suffer from race conditions that leave the
cache and the database in an inconsistent state [15], a data store may employ
an eventual consistency [26,27] technique that produces either stale or inconsis-
tent data for some time [24], and others. Once unpredictable data is observed,
the in-memory state of database maintained by BG is no longer consistent with
the state of the database maintained by the data store. This prevents BG from
accurately quantifying the amount of stale data in a subsequent experiment.
Hence, once unpredictable data is observed in one experiment, BG may not use
LoadFree in a subsequent experiment. It must employ either DBIL or RepairDB
to recreate the database prior to conducting additional experiments.

LoadFree is very effective in expediting the rating process (see Sect. 6) as it
eliminates the load time between experiments. One may violate the above three
aforementioned criterion and still be able to use LoadFree for a BG workload.
For example, a workload might be asymmetric by issuing Post Comment on a
Resource (PCR) but not issuing Delete Comment from a Resource (DCR). Even
though the workload is asymmetric and causes the size of the database to grow,
if the data store does not slow down with a growing number of comments (due
to use of index structures), one might be able to use LoadFree, see Sect. 6. In
the following, we detail BG’s implementation of LoadFree.

To implement LoadFree, we extend each BGClient to execute either in one
time or repeated mode. With the former, BGListener starts the BGClient and
the BGClient terminates once it has either executed for a pre-specified14 amount

14 Described by the workload parameters.
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of time or has issued a pre-specified number of requests [13,24]. With the latter,
once BGListener starts the BGClient, the BGClient does not terminate and
maintains the state of its in-memory data structures that describe the state of
the database. The BGListener relays commands issued by the BGCoord to the
BGClient using sockets.

We extend BGCoord to issue the following additional15 commands to a
BGClient (via BGListener): reset and shutdown. BGCoord issues the reset com-
mand when it detects a violation of the three aforementioned criteria for using
LoadFree. The shutdown command is issued once BGCoord has completed the
rating of a data store and has no additional experiments to run using the current
database.

In between experiments identified by Execute On Experiment (EOE) com-
mands issued by BGCoord, BGClient maintains the state of its in-memory data
structures. These structures maintain the pending and confirmed friendship rela-
tionships between members along with the comments posted on resources owned
by members. When an experiment completes, the state of these data structures
is used to populate the data structures corresponding to the initial database
state for the next experiment. BGClient maintains both initial and final data-
base state to issue valid actions (e.g., Member A should not extend a friendship
invitation to Member B if they are already friends) and quantify the amount of
unpredictable data at the end of each experiment, see [5] for details.

6 Evaluation

This section quantifies the speedup observed with the 3 proposed loading tech-
niques and the DA using a fixed workload. With the data loading techniques, we
consider two hybrids: (1) LoadFree with DBIL and (2) LoadFree with RepairDB.
These capture scenarios where one applies LoadFree for some of the experiments
and reloads the database in between. With the DA, we focus both on Simple16

and agile data loading techniques to quantify the observed speedup.
In the following, we start with an analytical model that describes the total

time required by the heuristic search techniques to rate a data store. Next, we
describe how this model is instantiated by the data loading techniques. Sub-
sequently, we describe how the ideal δ impacts the overall rating duration. We
conclude by presenting the observed enhancements and quantifying the observed
speedup relative to not using the proposed techniques for three different single
node data stores17. Each node running a data store consists of an Intel i7-4770

15 Prior commands issued using BGListener include: create schema, load database
and create index, Execute One Experiment (EOE), construct friendship and drop
updates. The EOE command is accompanied by the number of threads and causes
BG to conduct an experiment to measure the throughput of the data store for its
specified workload (by BGCoord). The last two commands implement RepairDB.

16 We refer to constructing the database by issuing queries against it as the Simple
loading technique.

17 SQL-X, MongoDB 2.0.6 and MySQL 5.5.
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CPU (quad core, 3.8 GHz), 16 Gigabytes of memory, a 1 Terabyte disk drive, and
1 network interface card.

Table 6. BG’s rating of MongoDB (minutes) with 1 BGClient for a fixed workload,
φ=100, ρ=100, Υ =1 min, δ=3 min, Δ=10 min, and η=11. The hybrid techniques used
either DBIL or RepairDB for approximately 25% of experiments.

M Action DBIL RepairDB LoadFree LoadFree + DBIL LoadFree + RepairDB

100K ζ 165 157 157 165 157

ν 8 26 0 1.9 6.4

Λ 308 498 212 242 284

500K ζ 361 351 351 361 351

ν 10 165 0 2.5 41.2

Λ 526 2221 406 444 860

1000K ζ 14804 14773 14773 14804 14773

ν 31 588 0 7.75 147

Λ 15200 21296 14828 14887 16445

6.1 Analytical Model

With BG, the time required to rate a data store depends on:

– The very first time to create the database schema and populate it with data.
This can be done either by using BGClients to load BG’s database or by using
high throughput tools (such as the Bulkload of YCSB++ [24]) that convert
BG’s database to an on-disk native format of a data store. We let ζ denote
the duration of this operation. With DBIL, ζ is incurred when there exists no
disk image for the target database specified by the workload parameters M ,
P , φ, ι, � and ρ, and environmental parameter N and others. In this case,
the value of ζ with DBIL is higher than RepairDB because, in addition to
creating the database, it must also create its disk image for future use, see
Table 6.

– The time to recreate the database in between rating experiments, ν. With
DBIL and RepairDB, ν should be a value less than ζ. Without these tech-
niques, ν equals ζ, see below.

– The duration of each rating experiment, δ.
– The warmup duration required for each round of experiment, Υ . This duration

may be determined either by experience or using DA. One may use DA to
compute the amount of time it takes for a system to warm up.

– Total number of rating experiments conducted by the heuristic search tech-
niques, η.

– Total number of times BGCoord loads the database, ω. This might be differ-
ent than η with LoadFree and hybrid techniques that use a combination of
LoadFree with the other two techniques.
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– The duration of the final rating round per the pre-specified SLA, Δ.

The total rating duration is:

Λ = ζ + (ω × ν) + (η × (Υ + δ)) + (Υ + Δ) (1)

With LoadFree, ω equals zero. The value of ω is greater than zero with a hybrid
technique that combines LoadFree with either DBIL or RepairDB. The value of
ν differentiates between DBIL and RepairDB, see Table 6. Its value is zero with
LoadFree18.

By setting ν equal to ζ, Eq. 1 models a simple use of BG’s heuristic search
technique that does not employ the agile data loading techniques described in
this chapter. This technique would require 1939 min (1 day and eight hours) to
rate MongoDB with 100 K members. The third row of Table 6 shows this time is
reduced to a few hours with the proposed loading techniques. This is primarily
due to considerable improvement in load times, see the first two rows of Table 6.
Note that the initial load time (ζ) with DBIL is longer because it must both
load the database and construct the disk image of the database. The last six
rows of Table 6 show the observed trends continue to hold true with databases
consisting of 500 K and 1 million members. In addition, if δ < Δ is used as the
duration of each rating experiment, then the overall duration for of the rating
process will improve.

An obvious question is the impact of the discussed techniques while leaving
other pieces alone relative to the simple use of the heuristic techniques (ν=ζ)
and when δ = Δ? Amdahl’s Law [1] provides the following answer:

S =
1

(1 − f) + f/k
(2)

where S is the observed speedup, f is the fraction of work in the faster mode,
and k is speedup while in faster mode. The next two paragraphs will describe
how f and k are computed for various agile data loading techniques and the
ideal δ computed by DA.

Focusing on the data loading techniques alone, the fraction of work done in
the faster mode is computed as f = ω×ζ

Λ , and the speedup while in faster mode
is computed using k = ζ

ν . With LoadFree, ν is zero, causing k to become infinite.
In this case, we compute speedup using a large integer value (maximum integer
value) for k because S levels off with very large k values. In [7], we show the
value of S to level off with the value of k in the order of hundred thousand.

When only changing the duration of rating experiments from Δ to ideal δ, the
fraction of work done in the faster mode is computed as f = η×(Υ+Δ)

Λ . Speedup
while in faster mode is computed as k = (Υ+Δ)

(Υ+δ) .
When we use both an agile data loading technique and the ideal δ computed

by the DA in our rating experiments, the following are used to compute the
overall speedup compared to the simple use of heuristic search without the use
of agile data loading techniques: f = (ω×ζ)+(η×(Υ+Δ))

Λ and k = (ω×ζ)+(η×(Υ+Δ))
(ω×ν)+(η×(Υ+δ)) .

18 With LoadFree, a value of ν higher than zero is irrelevant as ω equals zero.
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Table 7. Observed speedup (S) when rating MongoDB using agile loading techniques.

M DBIL RepairDB LoadFree LoadFree + DBIL LoadFree + RepairDB

100K 6.5 3.9 9.1 8.3 6.8

500K 8.3 1.9 10.5 9.8 5

1000K 11.7 8.3 12 11.9 10.8

Table 8. BG’s rating (minutes) of MongoDB, MySQL and SQL-X with 1 BGClient
for a fixed workload, M=100K, φ=100, ρ=100, ω=11, Υ=1 min, δ=3 min, Δ=10 min,
and η=11. The hybrid techniques used either DBIL or RepairDB for approximately
25% of the experiments.

Data Store Action DBIL RepairDB LoadFree LoadFree+DBIL LoadFree+RepairDB

MongoDB ζ 165 157 157 165 157

ν 8 26 0 1.9 6.4

Λ 308 498 212 242 284

MySQL ζ 2514 2509 2509 2514 2509

ν 4.7 1206 0 1.2 302

Λ 2620 15830 2564 2582 5881

SQL-X ζ 158.5 153.5 153.5 158.5 153.5

ν 5 30 0 1.3 7.5

Λ 274 544 214 232 296

6.2 Speedup with Loading Techniques

Table 7 shows the observed speedup (S) for the experiments reported in Table 6.
LoadFree provides the highest speedup followed by DBIL and RepairDB. The
hybrid techniques follow the same trend with DBIL outperforming RepairDB.
Speedups reported in Table 7 are modest when compared with the factor of
improvement observed in database load time between the very first and subse-
quent load times, compare the first two rows (ζ and ν) of Table 6. These results
suggest the following: Using the proposed techniques, we must enhance the per-
formance of other components of BG to expedite its overall rating duration. (It
is impossible to do better than a zero load time of LoadFree.) A strong can-
didate is the duration of each experiment (δ) conducted by BG. Another is to
reduce the number of conducted experiments by enhancing the heuristic search
techniques.

Reported trends with MongoDB hold true with both MySQL and an indus-
trial strength RDBMS named19 SQL-X. The time to load these data stores and
rate them with 100 K member database is shown in Table 8. For all three data
stores Load Free provides the highest speedup followed by DBIL and RepairDB.
And the hybrid techniques follow the same trend. While SQL-X provides compa-
rable response time to MongoDB, MySQL is significantly slower than the other

19 Due to licensing restrictions, we cannot disclose the name of this system.
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Table 9. Speedup (S) when rating MongoDB, MySQL and SQL-X with M=100K.

Data Store DBIL RepairDB LoadFree LoadFree+ DBIL LoadFree+ RepairDB

MongoDB 6.5 3.9 9.1 8.3 6.8

MySQL 11.5 1.9 11.8 11.7 5.1

SQL-X 7.3 3.6 9.2 8.6 6.6

two. This enables BG’s rating of MySQL to observe the highest speedups when
compared with the näıve technique, see Table 9.

6.3 Speedup with Loading Techniques and DA

This section analyzes the observed speedup with the δ value computed using
the DA, highlighting its usefulness to expedite the rating process. We assume
the heuristic search technique conducts 11 experiments to rate the data store,
comparing the alternative data loading techniques using two different values of
δ. First, when δ is set to the SLA duration specified by the experimentalist, i.e.,
δ=Δ. Second, when δ is computed using the DA as 16 s. Table 10 shows the latter
with different data loading techniques compared with Simple loading technique
for four different values of Δ: 3, 10, 100 and 1,000 min. Note that there is a
column for Simple, comparing the technique that uses BG to load the database
at the beginning of each experiment with the two δ values.

The observed speedup increases as we increase the value of Δ because it
causes both f and k to increase, approaching a speedup of 12. With Δ=3 min,
Simple observes the lowest speedup as its load time is significant and does not
benefit from the use of the DA computing the duration of each experiment to
be 11 times faster (δ=16 s instead of 3 min). At the other extreme, LoadFree
observes the highest speedup because its database load time is zero and benefits
greatly from a δ of 16 s. For the same reason, LoadFree observes approximately
the same speedup when Δ approaches 1,000 min.

Table 10. Speedup when rating MongoDB using agile data loading techniques and
DA compared to Simple with δ=Δ.

δ = Δ (mins) Simple DBIL RepairDB LoadFree LoadFree+DBIL LoadFree+RepairdDB

3 1.02 7.3 4.2 11 9.8 7.8

10 1.1 7.5 4.3 11.1 9.9 8

100 1.5 8.6 5.6 11.4 10.5 9.02

1,000 4.8 11.03 9.53 11.9 11.6 11.2
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7 Related Work

Both the action rating metric and the use of a heuristic search technique to com-
pute this metric for a data store were originally described in [5]. Both were tightly
coupled with BG. Subsequently, we realized that both concepts are orthogo-
nal to an application specific benchmark and its abstractions. To illustrate, all
concepts described in this paper are applicable to YCSB [13], YCSB++ [24],
LinkBench [33] and benchmarks for graph databases [3,18] among the others.

The agile data loading techniques were originally described in [7]. They
address the challenge of loading a benchmark database that is a recognized topic
by practitioners dating back to Wisconsin Benchmark [8,14] and 007 [10,28,29],
and by YCSB [13] and YCSB++ [24] more recently. YCSB++ [24] describes a
bulk loading technique that utilizes the high throughput tool of a data store to
directly process its generated data and store it in an on-disk format native to
the data store. This is similar to DBIL. DBIL is different in two ways. First,
DBIL does not require a data store to provide such a tool. Instead, it assumes
the data store provides a tool that creates the disk image of the benchmark data-
base once its loaded onto the data store for the very first time. This image is
used in subsequent experiments. Second, DBIL accommodates complex schemas
similar to BG’s schema. Both RepairDB and LoadFree are novel and apply to
data stores that do not support either the high throughput tool of YCSB++ or
the disk image generation tool of DBIL. They may be adapted and applied to
other benchmarking frameworks that rate a data store similar to BG.

To the best of our knowledge, the delta analyzer to compute the duration
of each experiment is novel and not described elsewhere in the literature. This
component is different than a warmup phase and its duration. Assuming the
presence of a warmup phase, it considers how long each experiment must run in
order to obtain meaningful numbers.

8 Conclusion

Experimentalists require fast and accurate frameworks to quantify the perfor-
mance tradeoffs associated with alternative design decisions that implement
novel data stores. Response time and throughput are two key metrics. Action
rating is a single number that monetizes these two metrics into one. It quanti-
fies the highest observed throughput while a fixed percentage of issued requests
observe a response time faster than a pre-specified threshold. When compar-
ing two data stores with one another, the one with the highest action rating is
superior. The same holds true when comparing two different algorithms. The
primary contribution of this study is a framework to compute action rating. To
speedup the rating process, we described the following optimizations: (1) reduce
the number of conducted experiments using Approximate instead of Golden with
the understanding that its computed SoAR may not be as accurate as Golden,
(2) reduce the duration of each conducted experiment using the Delta Analyzer,
(3) minimize the time required to create the database at the beginning of each
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Fig. 11. SoAR rating with three BGClients where one node is slower than the other
two.

experiment for those workloads that require it. With these improvements and a
fixed amount of time, an experimentalist may rate many more design alternatives
to gain insights.

9 Future Work

With the agile data loading techniques, one may expedite the rating process by
using a RAID disk subsystem, a RAM disk or even a flash memory. Our imme-
diate future work is to analyze these techniques and to quantify their tradeoffs.

We are extending this study by doing a switch from a closed emulation model
to an open one which requires the following changes. First, each BGClient is
extended with a main thread that generates requests based on a pre-specified
arrival rate using a distribution such as Poisson. This thread generates requests
for a collection of threads that issue requests and measure the response time.
With Poisson, it is acceptable for a coordinator to require N BGClients to gener-
ate requests using an implementation of Poisson with input λ

N . Now, the heuristic
changes the value of λ instead of the number of threads T . The Delta Analyzer
uses this same infrastructure to compute the duration of each experiment. The
three agile data loading techniques remain unchanged.

Moreover we intend to extend the rating framework by detecting when a com-
ponent of the framework is a bottleneck. In this case, the obtained action ratings
are invalid and the rating process must be repeated with additional computing
and networking resources. For example, with the implementation of Sect. 5, there
might be an insufficient number of BGClients [5] or one of the BGClients might
become the bottleneck because its hardware is slower than that used by other
BGClients. For example, Fig. 11 shows the SoAR rating with 3 BGClients where
one is unable to produce requests at the rate specified by the BGCoord. This
misleads BGCoord and its heuristic to compute 8 instead of 16 as the SoAR rat-
ing of the data store. A preventive technique may compute the required number
of BGClients given a workload and an approximate processing capability of a
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data store. Other possibilities include detecting the slower BGClient and either
not using it or requiring it to produce a load that does not exhaust its processing
capability. These extensions enhance the accuracy of the framework when rating
a data store.
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Abstract. MapReduce has become an increasingly popular framework
for large-scale data processing. However, complex operations such as
joins are quite expensive and require sophisticated techniques. In this
paper, we review state-of-the-art strategies for joining several relations
in a MapReduce environment and study their extension with filter-based
approaches. The general objective of filters is to eliminate non-matching
data as early as possible in order to reduce the I/O, communication and
CPU costs. We examine the impact of systematically adding filters as
early as possible in MapReduce join algorithms, both analytically with
cost models and practically with evaluations. The study covers binary
joins, multi-way joins and recursive joins, and addresses the case of large
inputs that gives rise to the most intricate challenges.

Keywords: Big data · Cloud computing · Big data analysis · MapRe-
duce · Equijoin · Bloom filter · Intersection Bloom filter

1 Introduction

Since the advent of applications that propose Web-based services to a world-
wide population of connected people, the information technology community
has been confronted to unprecedented amount of data, either resulting from an
attempt to organize an access to the Web information space (search engines), or
directly generated by this massive amount of users (e.g., social networks). Com-
panies like Google and Facebook, representative of those two distinct trends,
have developed for their own needs large-scale data processing platforms. These
platforms combine an infrastructure based on millions of servers, data reposi-
tories where the least collection size is measured in Petabytes, and finally data
processing software products that massively exploit distributed computing and
batch processing to scale at the required level of magnitude. Although the Web
is a primary source of information production, Big Data issues can now be gen-
eralized to other areas that continuously collect data and attempt to make sense
of it. Sensors incorporated in electronic devices, satellite images, web server logs,
bioinformatics, are considered as gold mines of information that just wait for the
processing power to be available, reliable, and apt at evaluating complex analytic
algorithms.
c© Springer-Verlag Berlin Heidelberg 2016
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The MapReduce programming model [13] has become a standard for process-
ing and analyzing large datasets in a massively parallel manner. Its success comes
from both its simplicity and nice properties in terms of fault tolerance, a nec-
essary feature when hundreds or even thousands of commodity machines are
involved in a job that may extend over days or weeks. However, the MapReduce
programming model suffers from severe limitations when it comes to implement
algorithms that require data access patterns beyond simple scan/grouping oper-
ation. In particular, it is a priori not suited for operations with multiple inputs.

One of the most representative such operations are joins. A join combines
related tuples from datasets on different column schemes and thus raises at a
generic level the problem of combining several data sources with a programming
framework initially designed for scanning, processing and grouping a single input.
Join is a basic building block used in many sophisticated data mining algorithms,
and its optimization is essential to ensure efficient data processing at scale.

In the present paper we provide a systematic study of joins with filters for
early removal of non-participating tuples from the input datasets. As known for
a long time in the classical context of relational databases, early elimination of
useless data is a quite effective technique to reduce the IO, CPU and communi-
cation costs of data processing algorithms. The approach can be transposed in
distributed systems in general, and to MapReduce frameworks in particular.

We focus on equijoins, and examine state-of-the-art algorithms for two-way
joins, multi-way joins and recursive joins. We compare, analytically and exper-
imentally, the benefit that can be expected by introducing filters as early as
possible in the data processing workflow. Our result put the research contri-
butions in this field in a coherent setting and clarifies the stakes of combining
several inputs with MapReduce.

The rest of the paper is organized as follows. Section 2 summarizes the back-
ground of the basic join operation, recalls the essentials of the MapReduce frame-
work and intersection filters, and positions our paper with respect to related
work. Section 3 presents filter-based equijoins in MapReduce. We examine two-
way joins, multi-way joins, and recursive joins. Section 4 analyzes the algorithms
and introduces cost models. The evaluation environment and the results are
reported in Sect. 5. Finally, Sect. 6 concludes and discusses future work.

Table 1 provides a quick reference to the algorithms abbreviations used
throughout the text.

2 Background and Related Work

2.1 Join Operation

A join combines tuples from one or several relations according to some join
condition1. A tuple that participates to the result (and therefore satisfies the
join condition) is called a matching tuple in the following. Non-matching tuples
can simply be ignored from the join processing workflow, a fact that calls for
their early elimination. We distinguish the following types of joins:
1 Our study only considers conditions is based an equality operator (=), or equijoins.
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Table 1. List of abbreviations

Abbreviation Algorithm

ifbj Intersection filter-based join

bj Bloom join

rsj Reduce-side join

3wj Three-way join proposed by Afrati and Ullman [3]

cj-ifbj Chain join using an intersection filter-based join cascade

cj-bj Chain join using a Bloom join (bj) cascade

cj-rsj Chain join using a reduce-side join (rsj) cascade

ocj-2wj Optimized chain join using a two-way join cascade

ocj-3wj Optimized chain join using a three-way join (3wj) cascade

rej-shaw Recursive join using Shaw’s approach

rej-fb Recursive join using a filter-based approach

• Two-way join. Given two datasets R and L, a two-way join denotes the
pairs of tuples r ∈ R and l ∈ L, such that r.k1 = l.k2 where k1 and k2 are
join columns in R and L, respectively. The standard notation is:

R ��k1=k2 L

Notation: In order to simplify notations, we will often assume that join keys
are known from the context, and will use the abbreviated form R �� L.

• Multi-way join [35]. Given n datasets R1, R2, . . . , Rn, we define a multi-way
join as a pairwise combination of two-way joins:

R1 �� R2 �� R3 �� . . . �� Rn

Considering only pairwise combination is a restriction: this subclass is some-
times called a chain join in the literature.

• Recursive join [17,29]. Given a relation K(x, y) encoding a graph, a recur-
sive join computes the transitive closure of K. It requires an initialization,
and an iteration (until a fixpoint occurs):

{
(Initialization) A(x, y) = K(x, y)
(Iteration) A(x, y) = A(x, z) �� K(z, y)

We use the following running example: a user dataset R(uid, uname,
location), a log dataset L(uid, event, logtime) and an acquaintance dataset
K(uid1, uid2). These datasets illustrate the following searches.

• Q1 - Two-way join. Find the names and events of all users who logged an
event before 19/06/2015.

A1(uname, event) = πuname,event(R �� σlogtime<19/06/2015(L))
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• Q2 - Multi-way join. Find the log events of all users known by Cang

A2(uid, event, logtime) =

πL(σuname=′Cang′(R) ��uid=uid1 K ��uid2=uid L)

• Q3 - Recursive join. List the ids of all connected to Philippe.{
(Initialization) A3(id) = πuid(σuname=′Philippe′(R))
(Iteration) A3(id) = πuid2(K ��uid1=id A3)

2.2 MapReduce

MapReduce [13] is a parallel and distributed programming model apt at running
on computer clusters that scale to thousands of nodes in a fault-tolerant manner.
MapReduce usage has become widespread since Google first introduced it in
2004. It allows users to concentrate only on designing their data operations
regardless of the distributed aspects of the execution.

A MapReduce job consists of two distinct phases, namely, the map phase
and the reduce phase. Each phase executes a user-defined function on a key-
value pair. The user-defined map function (M) takes an input pair (k1, v1) and
outputs a list of intermediate key/value pairs 〈(k2, v2)〉.

(k1, v1)
map−−−→ list(k2, v2)

The intermediate values associated with the same key k2 are grouped by the
framework and then passed to the reduce function which aggregates the values.

(k2, list(v2))
reduce−−−−→ v3

Fig. 1. MapReduce distributed execution
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As illustrated by Fig. 1, a typical MapReduce job is executed across multiple
nodes. During the map phase, each map task reads a subset (called “split”)
of one input dataset, and applies the map function for each key/value pair of
the split. The framework takes care of grouping intermediate data and sends
them to the reducer nodes, a communication-intensive process called shuffling.
Each reduce task collects the intermediate key/value pairs from all the map
tasks, sorts/merges the data with the same key, and calls the reduce function to
generate the final results.

MapReduce is designed to process a single dataset. Combining several inputs
with a MapReduce framework is intricate. The problem has mostly been studied
for joins.

2.3 Bloom Filters

A Bloom filter (BF) [9] is a space-efficient randomized data structure used for
testing membership in a set with a small rate of false positives.

A variant of a Bloom filter is Intersection Bloom filter [30], denoted IBF (S1,
S2), is a probabilistic data structure designed to represent the intersection of sets
S1 and S2, and check membership in the intersection set. To achieve this, it com-
putes the intersection of the Bloom filters BF (S1) and BF (S2). In join process-
ing, matching a join key v against the intersection filter allows to decide (up to
the false positive probability) whether it belongs to the shared join keys. The
false positive probability of the intersection filter is estimated as fI representing
one of the probabilities of different approaches to the filter [30].

Extended Intersection filter [30] (EIF ) is developed from the intersection
Bloom filter. The EIF is a filter built on join key columns k1, k2, . . . , km of
datasets R1, R2, . . . , Rm. It consists of Bloom filters hashed on the key columns,
BF1(R1.k1), BF2(R2.k2 ∩R3.k2), . . . , BFm(Rm.km). The membership test takes
a tuple t(k1, k2, . . . , km, . . . , kn) and returns a “yes” or “no” answer indicating
whether t is/is not in the filter. If one of the join keys of the tuple t, t(ki)i=1...m,
is not a member of the component filter BFi of the EIF , the output is “no”
answer. Otherwise, the output is “yes” answer. Figure 2 depicts its structure.

For example, consider the three-way join R(uname, uid) �� K(uid1, uid2) ��

L(uid, event). K can be filtered by an EIF composed of BF1(R.uid ∩ K.uid1)
and BF2(K.uid2 ∩ L.uid), i.e., IBF1(R.uid,K.uid1) and IBF2(K.uid2, L.uid).

Fig. 2. Extended intersection filter - EIF (BF1, BF2, . . . , BFm)
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Each tuple t(k1, k2) ∈ K is checked against the two filters. If k1 and k2 are in
IBF1 and IBF2, respectively, t is accepted, else it is eliminated.

2.4 Joins with MapReduce

Join processing in MapReduce has become a hot research topic in recent years
[2,3,8,11,16,22,30]. Many studies have been carried out to evaluate join queries
and analyze large datasets in a MapReduce environment. Although joins in
MapReduce can be implemented in many ways, the relative performance of the
various algorithms depends on certain assumptions such as the size of inputs,
data constraints, and joining rates. Map-side joins [8,20,37] would be better to
perform the entire joining operation in the map phase since it may save the
shuffle and reduce phases. But this solution is limited in running extra MapRe-
duce jobs to repartition the data sources to be usable. Meanwhile, Reduce-side
joins [8,20,25,37] are more flexible and general to process a join operation as a
standard MapReduce job without any constraints, but they are quite inefficient
solutions. Joining does not take place until the reduce phase. In addition, the
shuffle phase is really expensive since it needs to shuffle all data, sort and merge.

Observing Reduce-side joins shows that many intermediate pairs generated
in the map phase may not actually participate in the joining process due to
no matching with any pairs in another input dataset. Consequently, it would
be much more efficient if we eliminate the non-matching data right in the map
phase. This problem can be solved by Semi-join [8]. It uses a distributed cache
to disseminate a hashmap of one of input datasets across all the mappers, then
dropping tuples whose join key not in the hashmap. The main obstacle in this
way resides at the hashmap because the hashmap may not fit in memory and its
replication across all the mappers may be inefficient. In this situation, therefore,
Bloom join [19,22,23,39,40] is a worthy replacement for Semi-join because it
benefits from a Bloom filter [9] to do existence tests in less memory than a full
list of keys from the hashmap. Another restriction on these solutions is derived
from their filtering efficiency, even for recent research efforts [3,22,40]. There
remain a lot of non-matching data after filtering because the solutions can only
filter on one of input datasets instead of both. Thus, Intersection filter-based
join [30] may become a better solution to address this problem by eliminating
non-matching data from both input datasets. However, it is necessary to have a
complete evaluation of the solutions that indicates their benefits and limitations.

In addition to the above two-way joins, the researchers are also confronted
big challenges that come from multi-way joins and recursive joins in MapReduce.
The multi-way join extends the two-way join by handling multiple input datasets,
whereas the recursive join represents a computation of a repeated join operation.
Both of them are still open issues and their existing solutions from traditional dis-
tributed and parallel databases cannot be easily extended to adapt to a shared-
nothing distributed computing paradigm as MapReduce. For latest approaches,
computing multi-way joins [3,8,21,40] and recursive joins [1,2,12,33] also often
generates intermediate results that may be inputs of component joins of the
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joins. These intermediate results contain a lot of non-matching data that con-
siderably increases total overheads for I/O, CPU, sort, merge, and especially
communication. We need to figure out optimized solutions that can prevent the
non-matching data involved in the intermediate results. Besides, minimizing the
intermediate data amount sent to the reducers should be calculated appropri-
ately.

The purpose of the present paper is to provide a consistent review of filter-
based join processing techniques in a MapReduce environment. It not only (a)
covers the recently various techniques for computing two-way joins, multi-way
joins and recursive joins, but also (b) qualifies these techniques with cost models
and (c) evaluates them with experimental studies to both validate the proposed
cost model and investigate their practical behavior. Overall, our goal is to provide
a clear, robust and comparative assessment of join processing solutions to guide
the choice of practitioners confronted to the need to perform join at scale in a
specific context. By founding this assessment on both an analytic and empirical
study, we hope to provide a material that puts the research contributions in this
field in a coherent setting and clarifies the stakes of combining several inputs
with MapReduce.

For the sake of consistency, we focus on join algorithms that share some
common features. First, we only consider equijoins. Second, we investigate algo-
rithms that exploit filters to reduce the network communication. Filtering is a
strategy that can be combined with all kind of approaches, and turns out to be
(almost) always beneficial in a context where I/O and network exchanges con-
stitute the major bottleneck. Third, our work complements a few other surveys
recently published [14,20,24,31,32,40] which, on the one hand, explore a larger
scope (e.g., non-equi joins [14,27,38,41]), but on the other hand do not propose
an in-depth coverage as we do, and a comparison methods uniformly applied to
the range of proposals published so far.

3 Extending Equijoins with Filters in MapReduce

The most straightforward way to join datasets with MapReduce is the Reduce-
side join algorithm [8,20,25,37], denoted rsj. It groups tuples from both datasets
on their respective join key value during the map phase, and merges/joins them
during the reduce phase. Tuples are processed regardless of their actual contri-
bution to the final result, and thus the join algorithm has to pay an overhead
for processing and shipping useless data.

Consider for instance the Facebook user dataset R containing more than 1.23
billion users [15]. We would like to obtain users’ activities in a certain period of
time (e.g., one hour) by joining R and the log dataset L. Since L, over this period,
contains the activities of only a few million unique users, most of the users in
R are not represented, and rsj spends useless resources to access, process and
transfer over the network the non-matching tuples of R.

Several filter-based extensions have been proposed to tackle the problem.
Their common idea is to filter out the non-matching tuples from the input
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datasets during the map phase. A filter in this context is a compact data struc-
ture that supports fast membership tests. Filter-based joins require two stages:

• Stage1 (pre-processing). A filter F is built on a join key value set of one
input dataset. For the intersection filter, F represents the intersection of the
key value sets. A membership test for some key value k on F tells whether k
participates or not to the join result.

• Stage 2 (join). F is distributed to all the computing nodes, and used to
eliminate non-matching tuples during the map phase. The join then proceeds
as explained above.

A filter is a compact representation of a set. It accepts a rate of false positives
(i.e., positive answer for non-matching tuples in our case) but no false negatives.
Filtering avoids the communication overhead of shipping tuples from the map-
pers to the reducers, and the storage and CPU overhead of processing such tuples
during the reduce phase. The join strategy remains unchanged, and exploits the
MapReduce paradigm: the input datasets are partitioned and grouped during
the map phase, in order to solve locally the problem during the reduce phase.
Filtering presents some advantages and disadvantages:

• Advantages : the strategy does not impose any restrictions on input datasets,
nor modifications to the MapReduce framework. Besides, it removes non-
matching data to reduce the communication overhead.

• Disadvantages: building the filters represents a significant cost, since it
requires scanning the input, and transferring the filters.

In the rest of this section, we examine in detail the application of filter-based
techniques to the following join variants: two-way joins, multi-way joins and
recursive joins. For each variant, we present the state-of-the-art algorithms, along
with a discussion on their expected advantages/disadvantages.

3.1 Two-Way Joins

A two-way join R1 �� R2 involves two relations R1 and R2. In the following r1
(resp. r2) denote a tuple from R1 (resp. R2) and k refers to the join key attribute.
We use simplified notations when allowed by the context.

Bloom Joins. Bloom join (bj) [19,22,39] is a specific type of the filter-based
join strategy in which the well-known Bloom filter [9] is used. bj is implemented
by two MapReduce jobs as follows:

• Job 1 (preprocessing) is a job with only one reducer. The mappers scan splits
of the input R2, extract the join key value from each tuple, and produces
local Bloom filters. Then, the mappers emit the local filters to the reducer
that merges them into a global filter BF (R2) using the bit-wise OR.
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• Job 2 (processing) filters out non-matching tuples in R1 and joins the filtered
result R′

1 with R2. It relies on a distributed cache to store BF (R2). The map-
pers scan splits of R1 and R2, and eliminate the tuples of R1 whose keys are
not in BF (R2). Tuples from R2 are not filtered.
Each tuple is then ticked with a tag that indicates its dataset name.
For our example, mappers emit tagged tuples with composite keys of the
form ((r1.k, ‘R1’), r1) or ((r2.k, ‘R2’), r2). The reducers receive tagged tuples
grouped on the k value (this requires a small change of the partitioning func-
tion). For each group, the reduce function constructs all the pairs (r1, r2) to
complete the join.

Note that it requires to override the default grouping function in order to
ensure that grouping the tagged tuples takes into consideration only the join key
part and ignores the tag part. The tag is used for secondary sort which ensures
that, for a given key value, all tuples from R1 are processed before those of R2.
This allows to apply a standard in-memory hash join.

Discussion. bj benefits from the compacity of the Bloom filter to reduce
the amount of data transferred over the network. The size of the filter can be
fixed regardless of the number of join keys. However, given a fixed filter size, the
probability f of false positives increases with the number of join keys.

A major concern with the filtering approach in general is the need to run a
pre-processing job for building the filter. Besides, broadcasting the filter becomes
inefficient if its size is large. Finally, it is worth noting that the bj is asymmetric:
non-matching tuples of R2 have not been filtered, hence the problem is half-
solved.

The authors of [22] have proposed an improvement of bj that avoids the pre-
processing job, but requires two internal modifications of the framework. We do
not consider in the present study such extensions that necessitate a non-standard
environment.

Intersection Filter-Based Joins. We now describe an improvement of the
above approach, the Intersection filter-based join [30], denoted ifbj. It relies on
the fact that only tuples whose join keys belong to the set of shared join keys
do participate to the result.

The implementation of ifbj is done with the following jobs:

• Job 1 (pre-processing) is a job with only one reducer. The mappers scan splits
of R1 and R2, extract the join key value for each tuple, and insert them in
the local Bloom filters regardless of duplicate keys.
The mappers then emit the local filters to the reducer which merges them
in two global filters BF (R1) and BF (R2) using the bit-wise OR. Based on
one of three approaches to building the intersection filter [30], the reducer
computes the intersection filter IBF (R1, R2) from the global filters.

• Job 2 (join) uses a distributed cache to provide IBF to all the compute nodes.
The mappers scan splits of R1 and R2, extract the join key for each tuple and
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match it against the intersection filter. If the key v belongs to the intersection
filter, the tuple is emitted as a pair ((v, tag), tuple). The join evaluation in
the reduce phase is similar to the Bloom join algorithm.

ifbj benefits from the standard features of Bloom filters: its small size, its
independence from the number of the keys and key duplication, and fast mem-
bership test. Join based on the intersection filter is expected to be more efficient
than the Bloom join because of its ability to filter out non-matching tuples from
both two input datasets. An interesting characteristic of the intersection filter
is that if IBF (R1, R2) has all bits set to zero, then the sets R1.k and R2.k
are disjoint and the join evaluation stops without doing anything. However, the
algorithm has to pay the additional cost of a MapReduce job for building the
intersection filter and requires scanning the two input datasets twice.

3.2 Multi-way Joins

We can extend the above approach to the computation of multi-way joins with
an extended intersection filter (EIF ) in the following.

Three-Way Joins. We begin our study of multi-way joins by considering the
special case of a three-way join R1 �� R2 �� R3. For the sake of concreteness, we
will discuss the following query on our example relations.

R ��uid=uid1 K ��uid2=uid L

There are several possible pairwise combinations to compute this three-way join.

R ��uid=uid1 K ��uid2=uid L = (R ��uid=uid1 K) ��uid2=uid L

= R ��uid=uid1 (K ��uid2=uid L)

We can evaluate three-way joins as a sequence of 2 two-way joins, using
two successive jobs. An alternative is to join the three datasets together with a

Fig. 3. Distributing tuples of R, K, and L among r = n2 reducers
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single job, as recently proposed by Afrati and Ullman [3]. It relies on the idea of
a matrix of reducers as shown in Fig. 3.

The number of reducers must be the square of some integer n (r = n2) and
reducers are mapped (virtually) to a matrix n × n. Each reducer is mapped to
a cell (i, j), and identified by i ∗ n + j. With n = 5, cell (3, 2) is for instance
associated with the reducer 17.

The mappers assign tuples of R, K, and L to the reducer matrix as follows.
Let h be a hash function with range [0, n − 1]. Each tuple of K is sent to a
single reducer, the one in cell (h(K.uid1 ), h(K.uid2 )). Tuples from R and L are
sent to all the reducers of, resp. a whole row or column in the matrix. Each
tuple r(uid, uname) is sent to all the reducers of the row h(uid). Each tuple
l(uid, event) is sent to all the reducers of the column h(uid).

We can give a perspective: assume three tuples R(‘Laurent’, u1), K (u1, u2),
and L(u2, ‘login’). They will all be sent to the reducer h(u1) ∗ n + h(u2) and the
joined tuple will therefore be produced.

Let us assume, for simplicity, that |R|=|K |=|L|. The total communication
cost for the Afrati’s three-way join (denoted 3wj in the following) is O(|R|.√r),
whereas the total communication cost for the cascade of 2 two-way joins without
filters is O(|R|2.α), where α is the probability for two tuples from different
datasets to match on the join key (Sect. 4.2 for more details). It follows that
3wj is better than the cascade of the two-way joins when r < (|R|.α)2.

A downside of 3wj is that it generates n duplicates for each tuple of either
R or L. This represents a large communication and I/O overhead. This situation
can be improved significantly by removing non-matching tuples prior to the
reduce phase. We extend 3wj with intersection filters as shown in Fig. 4.

Fig. 4. Three-way join extended with intersection filters

R and L are filtered by IBF1(R.uid,K.uid1) and IBF2(K.uid2, L.uid),
respectively. K is filtered by an extended intersection filter EIF (IBF1, IBF2).

The extension of the three-way join with filters uses two jobs as follows.

• Job 1 (pre-processing) builds IBF1(R.uid,K.uid1) and IBF2(K.uid2, L.uid).
Let mp1, mp2 and mp3 be the number of map tasks for R, K and L, respec-
tively. The job consists of mp1 + mp2 + mp3 map tasks that build filters and
one reduce task that produces two intersection filters. In detail, mp1 tasks
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build local filters on R.uid; mp2 tasks build local filters on K.uid1 and K.uid2;
mp3 tasks build local filters on L.uid. Those filters are shipped to the reducer
which produces BF (R.uid), BF (L.uid), BF (K.uid1), BF (K.uid2), as well
as IBF1, IBF2 and EIF (IBF1, IBF2). Note that the join result is known to
be empty right away if either IBF 1 or IBF 2 is empty.

• Job 2 (join) filters out non-matching tuples from R, K and L, and carries out
the join evaluation. It distributes the intersection filters to all tasktrackers,
creates map tasks for R, K and L and r reduce tasks.

� Map phase with filtering: Each mapper matches any tuple of R or L against
the relevant filter IBF1, IBF2, or EIF (IBF1, IBF2). Tuples that pass
the filtering process are then sent to the reducers according the 3wj
policy. This involves tuple replication as shown in Fig. 3.

� Reduce phase: the reduce function applies a full cross-product of tuples
from the different input datasets. Locally, the reducer buffers the tuples
of R and L, streams the tuples from K, and performs the cross product.

Chain Joins. We now consider the more general case of multi-way joins, or chain
joins, a sequence or pair wise joins of the form of R1(x 1, x 2) �� R2(x 2, x 3) ��

R3(x 3, x 4) �� · · · �� Rn(xn, xn+1).
The baseline solution is a cascade of Bloom joins (cj-bj). The query plan is a

left-deep join tree, and relies on a set of filters BF2(R2.x2), . . . , BFn(Rn.xn) built
on the base datasets by a pre-processing job. In this scenario, we can regconize
that R1 and all intermediate results R1,2,··· ,i are filtered by the filters, whereas
the base relations Ri are not, where i ∈ [2, n].

We propose an improved evaluation that generalizes intersection filters as
shown by Fig. 5. In addition to the filters BF on base relations, the extended

Fig. 5. Implementation of a chain join using a cascade of two-way joins using intersec-
tion filters (cj-ifbj)
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algorithm denoted cj-ifbj creates on the fly intersection Bloom Filters on inter-
mediate results, IBF (R1,··· ,i−1.xi, Ri.xi), i ∈ [2, n] during the reduce phases of
intermediate joins

All the input datasets and intermediate join results are filtered by their cor-
responding intersection filters. For instance, IBF (R1,2.x3, R3.x3) is used to elim-
inate non-matching tuples in both R1,2 and R3. Intermediate data sent to the
reducers with cj-ifbj is expected to be much less than in the case of cj-bj.

We can even go one step further by noting that intermediate join results still
contain non-matching tuples transmitted to the next join. For instance, the join
of R1 and R2 likely contains tuples that do not match any tuples of R3 on x 3.
We can therefore “push” the filter BF (R3.x 3), down to the scan of relation R2.
The idea is actually quite reminiscent of the traditional optimization heuristics
that pushes selection down the query tree in relational systems.

Fig. 6. Optimization of a chain join using extended intersection filters (OCJ)

Figure 6(a) shows a first optimized solution using a cascade of filter-based
two-way joins, denoted ocj-2wj. The input datasets R2, . . . , Rn are fil-
tered by extended intersection filters EIF . The extended filter EIF i includes
a filter BF (R1,··· ,i−1.xi) built from the intermediate join result and a fil-
ter BF (Ri+1.xi+1) from the next input dataset, where i ∈ (2, n). Spe-
cially, EIF2 contains BF (R1.x2) and BF (R3.x3), and EIFn only consists of
BF (R1,2,··· ,n−1.xn). This solution ensures that intermediate join results only
contain (up to false positives) matching data that can be sent to the next join
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without filtering. This is an important characteristic which avoids to apply addi-
tional filters to intermediate join results.

The implementation first uses a pre-processing job to build the Bloom filters
BF (Ri.xi), i = 2, . . . , n, and BF (R1.x2). Next, it evaluates the chain join as
a sequence of two-way joins. During the evaluation of R1,··· ,i−1 �� Ri, the left
input need not be filtered, except R1 filtered by BF (R2.x2). The right input
is filtered by the EIFi built from BF (R1,··· ,i−1.xi) and BF (Ri+1.xi+1). The
former is generated in the reduce phase of the previous join processing between
R1,··· ,i−2 and Ri−1. Building the filters from the intermediate join results does
not involve any overhead. The iteration stops if one of the two input datasets is
null.

Figure 6(b) illustrates a second optimization, where pairwise joins are
replaced by filtered three-way joins (3wj). We denote this further optimized
solution as ocj-3wj. Consider the three-way join R1,··· ,i−1 �� Ri �� Ri+1, i ∈
[2, n − 1] and i is an even number. The left relation does not need to be fil-
tered, apart from R1 filtered by BF (R2.x2). The middle relation is filtered
by the extended intersection filter EIF i built from BF (R1,··· ,i−1.xi) and a
filter IBF (Ri.xi+1, Ri+1.xi+1). The last input is filtered by EIF ′

i , built from
IBF (Ri.xi+1, Ri+1.xi+1) and BF (Ri+2.xi+2). When (i+2) > n, the filter EIF ′

i

does not contain BF (Ri+2.xi+2) because Ri+2 does not exist. It is noted that
ocj-3wj may contain a two-way join of R1,··· ,n−1 and Rn if n is an even number.

The implementation of the second solution is similar to the first one. ocj-2wj
is expected to use less memory than ocj-3wj because the former only buffers
one input for each two-way join, whereas the second one must buffer two inputs
for each three-way join. The downside is that ocj-2wj requires more jobs than
ocj-3wj. If n denotes the number of input datasets, the number of the two-way
join jobs of ocj-2wj is (n − 1), while ocj-3wj needs 	n−1

2 
 jobs.

3.3 Recursive Joins

We now turn to another complex type of join. A recursive join [17,29] computes
the transitive closure of a relation encoding a graph. A typical example, expressed
in Datalog, is given below.

Friend(x, y) ←− Know(x, y)
Friend(x, y) ←− Friend(x, z) �� Know(z, y)

Evaluating a recursive join is tantamount to computing the transitive closure
of the graph represented by the relation. This can be done via an iterative
process that stops whenever a fixpoint is reached. We examine how the semi-
naive algorithm [36] can be evaluated in MapReduce.

Let F and K denote the relations Friend and Know, respectively. Let Fi, 0 <
i ≤ n be the temporary value of the relation Friend at step 0, with F0 = ∅. The
incremental relation of Fi, i > 0, denoted ΔFi, is defined as:

ΔFi = Fi − Fi−1 = Πxy(ΔFi−1 ��z K) − Fi−1
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The semi-naive algorithm uses this delta relation to avoid redundant compu-
tations (Algorithm 1).

Algorithm 1. Semi-Naive evaluation for recursive joins
Input: A graph encoded as a relation K
Output: The transitive closure of K

1 F = ∅, ΔF0 = K(x, y), i = 1
2 while ΔFi−1 ! = ∅ do
3 ΔFi = Πxy(ΔFi−1 ��z K) − F
4 F = F ∪ ΔFi

5 i+ = 1

6 return F

At each step i, some new facts are inferred and stored in ΔFi. The loop is
repeated until no new fact is inferred (ΔFi = ∅), i.e., the fixpoint is reached.
The union of all incremental relations, (ΔF0 ∪ . . . ∪ ΔFi−1), is the transitive
closure of the graph.

Shaw et al. [33] have proposed the following algorithm to implement the
semi-naive algorithm in MapReduce (rej-shaw). Each iteration evaluates ΔFi

= Πxy(ΔFi−1 ��z K) − Fi−1 with two jobs, namely, one for join and one for
deduplication and difference (dedup-diff ), as shown on Fig. 7.

Fig. 7. Semi-naive implementation of recursive joins in MapReduce

The first job computes (ΔFi−1 �� K), the second computes the new delta
relation ΔFi. This 2-jobs execution is iterated until ΔFi is empty. This means
that the invariant relation K and the incremental relation Fi−1 are re-scanned



48 T.-C. Phan et al.

and re-shuffled for every iteration. Shaw et al. have tackled this situation in the
HaLoop system [12] by using the Reducer Input Cache (RIC). RIC stores and
indexes reducer inputs across all reducers. To avoid re-scanning and re-shuffling
the same data with the same mapper on iterations, the solution therefore uses
RIC for the datasets K and Fi−1 in the join job and the dedup-diff job, respec-
tively, as shown on Fig. 7. K is scanned only once, at the first loop. Ki and Kj are
splits of K, which are cached at the reducer input caches i and j, resp. Note that
caching intermediate results during iterative computations is now integrated in
modern distributed engines such as Spark [7] and Flink [5].

The dedup-diff job using RIC is described as follows. Each tuple is stored
in the cache as a key/value pair (t, i), where the key is the tuple t discovered
by the previous join job and the value is the iteration number i for which that
tuple was discovered. The map phase of the difference job hashes the incoming
tuples as keys with values indicating the current iteration number. During the
reduce phase, for each incoming tuple, the cache is probed to find all instances
of the tuples previously discovered across all iterations. Both the incoming and
cached data are passed to the user-defined reduce function. A tuple previously
discovered is omitted from the output, else it is included in ΔFi.

When evaluating (ΔFi−1 �� K), Shaw’s solution (rej-shaw) does not dis-
cover and eliminate non-matching tuples from ΔFi−1 and K. Our extension, rej-
fb in the following, adds an intersection filter IBF (ΔFi−1.z,K.z) as proposed
in Sect. 2.3. Initially, the filter is simply BF (K.z) generated by a pre-processing
job. During the ith iteration (i ≥ 1), rej-fb uses IBF (ΔFi−1.z,K.z) as a filter
in the map phase of the join job, and builds IBF (ΔFi.z,K.z) in the reduce
phase of the dedup-diff job.

A fixpoint of the recursive join is reached when no new tuples are discovered
(i.e. ΔFi is empty) or, equivalently, when the IBF is empty. The latter is a
better stop condition because it can save one iteration.

4 Performance Analysis for Filter-Based Equijoins

We now develop an analysis of the algorithms presented so far.

4.1 Two-Way Joins

We note R and L the two input datasets, and analyze the cost for, respectively,
the Bloom join (bj) and the intersection filter-based join (ifbj). Table 2 sum-
marizes the parameters of our cost model.

Cost Model. We adapt the cost model presented in [26]. We propose the
following global formula that captures the cost of a two-way join.

C2wJoin = Cpre + Cread + Csort + Ctr + Cwrite (1)
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where:

• Cread = cr · |R| + cr · |L|
• Csort = cl · |D| · 2 · (	logB |D| − logB(mp)
 + 	logB(mp)
) [26]
• Ctr = ct · |D|
• Cwrite = cr · |O|
• Cpre = C ′ + cr · m · t

� C ′ =

{
Cread + (cl + ct) · m · mp , for ifbj
cr · |L| + (cl + ct) · m · mp2 , forbj

� Cpre = 0, for approaches without filters. In addition, it is assumed that
the filters are the same size m. If m is small, we will not compress the
filter files and m is therefore the size of the Bloom filter.

An additional component, Cpre, is added to the cost model in [26] to form
Eq. (1). |D |, the size of the intermediate data, strongly influences the total
cost of a join operation, and is essential in particular to decide whether the
filter-based variant of the algorithm is worth its cost.

Table 2. Parameters of the cost model for two-way joins

Parameter Explanation

|R| The size of R

|L| The size of L

|D | The size of the intermediate data

cl The cost of reading or writing data locally

cr The cost of reading/writing data remotely

ct The cost of transferring data from one node to another

B+1 The size of the sort buffer in pages

mp1 The number of map tasks for R

mp2 The number of map tasks for L

mp The total number of map tasks, mp = mp1 + mp2

t The number of tasktrackers

m The compressed size of the Bloom filter (bits) m = the size of the Bloom
filter × the file compression ratio

|O | The size of the join processing output

Cpre The total cost to perform the pre-processing job

Cread The total cost to read the data

Csort The total cost to perform the sorting and copying at the map and reduce
nodes

Ctr The total cost to transfer intermediate data among the nodes

Cwrite The total cost to write the data on DFS
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Cost Comparison. In this section, we evaluate |D |, for each algorithm men-
tioned in Sect. 3.1, and provide a cost comparison. Importantly, we identify a
threshold that can guide the choice amongst of these algorithms. We add the
Reduce-side join (rsj) to our comparison to highlight the effect of filtering.

We denote as δL and δR, respectively, the ratio of the joined records of R
with L (resp. L with R). The size of intermediate data is:

|D| =

⎧⎪⎨
⎪⎩

δL|R| + fI(R,L) · (1 − δL)|R| + δR|L| + fI(R,L) · (1 − δR)|L| (2)
δL|R| + f(L) · (1 − δL)|R| + |L| (3)

|R| + |L| (4)

where:

• Equation (2) holds for ifbj, denoted Difbj

• Equation (3) holds for bj, denoted Dbj

• Equation (4) holds for rsj, denoted Drsj

• fI(R,L) is the false positive probability of the intersection filter
IBF (R,L) [30],

• and f(L) is the false positive probability of the Bloom filter BF (L).

From these equations, we can infer the following.

Theorem 1. An ifbj is more efficient than a bj because it produces less inter-
mediate data. Additionally, the following inequality holds:

Difbj ≤ Dbj ≤ Drsj (5)

where Difbj, Dbj, and Drsj are the sizes of intermediate data of ifbj, bj, and
rsj, resp.

Proof. We get 0 < fI(R,L) < f(L) < 1 [30]. So we can deduce that:

δL · |R| + fI(R,L) · (1 − δL) · |R| ≤ δL · |R| + f(L) · (1 − δL) · |R| ≤ |R| and (6)

δR · |L| + fI(R,L) · (1 − δR)|L| ≤ |L| (7)

Note that the ratio of the joined records, δL or δR, could be 1 in the case of
a join based on a foreign key.

By combining inequalities (6) and (7) into Eqs. (2), (3) and (4), Theorem1
is proved. ��

From Eqs. (1) and (5), we can evaluate the total cost of the join operation
for the different approaches.

Theorem 2. Once the pre-processing cost Cpre is negligible or less than the cost
of non-matching data, an ifbj has the lowest cost. In addition, a comparison of
the costs is given by:

C ifbj ≤ Cbj ≤ Crsj (8)
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where Cifbj, Cbj, and Crsj are the total costs of ifbj, bj, and rsj, resp.
As a result, the most efficient join approach is typically ifbj, the second one is
bj, and the worst one is rsj.

The total cost to perform the pre-processing job is given by:

Cpre =

⎧⎪⎨
⎪⎩

Cread + (cl + ct) · m · mp + cr · m · t , in case of ifbj

cr · |L| + (cl + ct) · m · mp2 + cr · m · t , in case of bj

0 , in case of rsj

Regarding data locality, the MapReduce framework makes its best efforts to
run the map task on a node where the input data resides. Although this cannot
always be achieved, we can see that the cost of this phase, Cpre, is negligible
compared to the generation and transfer of non-matching tuples over the net-
work. In general, choosing the filter-based joins relies on the read cost cr and a
threshold of non-matching data shown in Theorem 3.

The filter-based join algorithms will become inefficient when there is a large
number of map tasks, and very little non-matching data in the join operation.
For large inputs with many map tasks, a tasktracker running multiple map tasks
will maintain only two local filters BF (R) and (or) BF (L) thanks to merging
the local filters of the tasks. Two hundred map tasks running on a tasktracker,
for instance, will produce 200 local filters BF (R). The tasktracker merges all
the local filters into one BF (R). Besides, as the number of non-matching tuples
decreases, the filters become useless and computing them with an additional job
represents a penalty. It hence needs to indicate the dependence of the filter-based
joins on the amount of non-matching data through estimating the threshold for
this data that determines whether filters should be used.

Let |D∗| be the size of non-matching data, C∗
sort be the total cost of sorting

and copying it at the map and reduce nodes, and C∗
tr be the total cost to transfer

it among the nodes. Accordingly, the cost associated with non-matching data is
the sum of C∗

sort and C∗
tr.

Theorem 3. The filter-based joins become a good choice when:

Cpre < C∗
sort + C∗

tr (9)

where:

• |D∗| = |R| + |L| − |D|
• C∗

tr = ct · |D∗|
• C∗

sort = cl · |D∗| · 2 · (	logB |D∗| − logB(mp)
 + 	logB(mp)
) [26]

Based on the size of |D|, the threshold depends on δL and δR (the ratio of the
joined records).

In summary, the best choice of the join approaches is ifbj, the second one is
bj, and the worst one is rsj (Theorem 2). However, this would become incorrect
when the join has small input datasets and a high ratio of matching tuples that
is defined by the threshold of the joined records (Theorem 3). In these cases, rsj
would be the best choice and the filter-based joins should not be used because
the cost of building and broadcasting filter(s) becomes relatively significant.
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4.2 Multi-way Joins

Three-Way Joins. Let R, K and L be three input datasets. The general for-
mula that estimates the total cost of 3wj is:

C3wJoin = Cpre + Cread + Csort + Ctr + Cwrite (10)

where:

• Cread = cr · |R| + cr · |K| + cr · |L|
• Csort = cl · |D| · 2 · (	logB |D| − logB(mp)
 + 	logB(mp)
) [26]
• mp = mp1 + mp2 + mp3, the total number of map tasks for the three inputs
• Ctr = ct · |D|
• Cwrite = cr · |O|
• Cpre = Cread + (cl + ct) · m · mp + 2 · cr · m · t, for 3wj using filters;

Cpre = 0 for 3wj.

To simplify the computation, we suppose that R, K and L have the same
size. A 3wj increases the communication cost because each tuple of R and L is
sent to many different reducers. On the other hand, the two-way join cascade
must launch an additional job, then scan and shuffle the intermediate result.
We characterize the relative costs of the approaches as follows.

Theorem 4. A 3wj, R(A,B) �� K(B,C) �� L(C,D), is more efficient than
a cascade of 2 two-way joins (R(A,B) �� K(B,C)) �� L(C,D) or R(A,B) ��

(K(B,C) �� L(C,D)) when r < (|R|.α)2. Additionally, the size of the interme-
diate data is specified by

|D| =

{
2 · |R| · √

r , for 3wj.

|R|2 · α , for a cascade of 2 two-way joins.

where r is the number of reducers, |R|= |K|= |L|, and α is the probability of two
tuples from different datasets to match on the join key column.

Proof. Similar to the proof of Afrati and Ullman in [3]. First, we consider 3wj.
Two attributes B and C are join key columns. We use hash functions to map
values of B to b different buckets, and values of C to c buckets, as long as
b · c = r. The intermediate data size of the three-way join is

|R| · c + |K| + |L| · b (11)

We must find optimal values for b and c to minimize the above expression
subject to the constraint that b · c = r, b and c being positive integers. In this
case, the Lagrangian multiplier method is used to present the solution.

Here L = |R| · c + |K| + |L| · b − λ · (b · c − r). We consider the problem

min
b,c≥0

[|R| · c + |K| + |L| · b − λ · (b · c − r)]
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We make derivatives of L with respect to variables b and c.

∂L
∂b

= |L| − λ · c = 0 ⇒ |L| = λ · c ;
∂L
∂c

= |R| − λ · b = 0 ⇒ |R| = λ · b

We obtain the Lagrangian equations: |L| · b = λ · r, and |R| · c = λ · r
We can multiply these two equations together to get |L| · |R| = λ2 · r
From here, we deduce λ =

√|R| · |L|/r
By substituting the value of λ in the Lagrangian equations, we get:

b =
√

|R| · r/ |L|, and c =
√

|L| · r/ |R|
Then, from expression (11), we get the minimum communication cost of 3wj

|R| ·
√

|L| · r/ |R| + |K| + |L| ·
√

|R| · r/ |L| ≈ 2 · |R| · √
r

Next, we specify the intermediate data size of the cascade of 2 two-way joins:

|R| · |K| · α + |L| ≈ |R|2 · α (where |R| · α > 1)

The cost of 3wj, O(|R| · √r), is compared with the cost of the two-way join
cascade O(|R|2 · α). We can conclude that 3wj will be better than the cascade
when

√
r < |R|· α. In other words, for 3wj, there is a limit on the number of

reducers r < (|R|· α)2 and Theorem 4 is hence proved. ��
In general, we can extend Theorem 4 for 3wj with n join key columns using

an n-dimensional reducer matrix. For example, a 3wj R(A, B) �� K (B, C ) ��

L(C, A) with three join attributes A, B, and C. This three-way join needs a three-
dimensional reducer matrix. The three-way join will become more efficient than
a cascade of 2 two-way joins when r < (|R|.α)3 and its amount of communication
is 3·|R|· 3

√
r. In fact, choosing the number of reducers to satisfy this condition

is not difficult. For example, if |R|·α = 15, as might be the case for the Web
incidence matrix, we can choose the number of reducers r up to 3375. We can
now characterize the cost of three-way join using filters.

Theorem 5. A 3wj, R(A,B) �� K(B,C) �� L(C,D), is more efficient with
filters than without filters when Cpre is negligible or less than the cost of process-
ing non-matching data. Moreover, the 3wj using the filters is also more efficient
than the two-way join cascade using the filters when r < (|R′| · α)2. With using
the filters, the size of the intermediate data is defined by

|D′| =

{
2 · |R′| · √

r , for 3wj using the filters.
|R′|2 · α , for a cascade of 2 two-way joins using the filters.

|R′| = δ · |R| + fI · (1 − δ) · |R|, R′ is the filtered dataset of one input.

where r is the number of reducers, α is the probability of two tuples from dif-
ferent datasets to match on the join key, |R| = |K| = |L|, δ is the ratio of the
joined records of one input dataset with another, and fI is the false intersection
probability between the datasets.
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Proof. Theorems 2 and 3 show that joins with the filters is more efficient than
without the filters if Cpre is negligible or less than the cost of non-matching data.
The following inequalities hold: 0 < δ << 1 and 0 < fI << 1

⇒ δ · |R| + fI · (1 − δ) · |R| < |R| ⇒ |R′| < |R|
Combining this equality with Theorem 4, we can easily prove Theorem 5. ��

Chain Joins. Consider a chain join over n input datasets R1, R2, . . . , Rn.
We analyze ocj-3wj with the EIF filters presented in Sect. 3.2. The chain join
is executed as a sequence of 3wj jobs,

...

J= {J 2, J 4, J 6, . . . , Jn−1}. J 1 scans
R1,. . . , Rn inputs for building the filters. Each iteration carries out the join
of three inputs, R1,··· ,2i−1, R2i, and R2i+1, where 1 ≤ i ≤ �(n − 1)/2�. If n is
even, ocj-3wj contains an additional two-way join job of R1,··· ,n−1 and Rn. We
extend the cost model of 3wj as follows:

C(
...

J ) = Cpre + 	(n − 1)/2
 · CdistCache + C2wJoin

+
�(n−1)/2�∑

i=1

(Cread(J2i) + Csort(J2i) + Ctr(J2i) + Cwrite(J2i))

(12)

where:

• Cpre = (
∑n

i=1 cr · |Ri|) + (cl + ct) · m · mp
� Cpre = 0 and m = 0 for approaches without using filters.
� mp is the total number of map tasks.

• CdistCache = 3 · cr · m · t
� CdistCache = 0 for approaches without using filters.

• C2wJoin is specified by Eq. (1), the cost of joining R1,··· ,n−1 and Rn.
� C2wJoin = 0 if n is an odd number and greater than 2.

• Cread(J2i) = cr · |R1,··· ,2i−1| + cr · |R2i| + cr · |R2i+1|
• Csort(J2i) = cl · |Di| · 2 · (	logB |Di| − logB(mp)
 + 	logB(mp)
) [26]

� |Di| is the size of the intermediate data in the i th iteration.
• Ctr(J2i) = ct · |Di|
• Cwrite(J2i)= cr · |R1,··· ,2i+1| + a

� a = 2 · cr · m · t, for building BF (R1,··· ,2i+1) in the i th iteration.
� a = 0, for (2i + 1) = n.

The computation of ocj-2wj is a sequence of (n-1) two-way join jobs. This
computation can be also considered as a sequence of ((n-1)/2) three-way join
jobs in which each of them is executed by a cascade of 2 two-way join jobs. As
a result, ocj-2wj has the extra costs of writing and re-reading the intermediate
results of the two-way joins, and initializing additional jobs. On the other hand,
ocj-3wj incurs the costs of data duplication to the reducers. From Theorem 5,
we can show that ocj-3wj is more efficient than ocj-2wj when r < (|R′| · α)2.
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4.3 Recursive Joins

Cost Model. In the semi-naive algorithm, the number of iterations l is the
longest path length in the relation graph minus 1, called the depth of the tran-
sitive closure. The first job J1 reads K and ΔF0 = F, and caches K at the
reducers. Each subsequent job Ji reads ΔFi−1 and scans partitions of K cached
at the reducers (RIC). The dedup-diff job Ii reads the join output Oi containing
duplicates, maps and shuffles tuples of Oi to the reducers in order to generate
ΔFi.

We base our analysis on the cost model introduced in [26] and adapt it to
the evaluation of the recursive join. Table 3 gives the parameters.

The total cost of the recursive join is specified by:

C(Ĵ) = CK +
∑l

i=1 Cread(Ji) + Csort(Ji) + Ctr(Ji) + Ccache(Ji) + Cwrite(Ji)
+

∑l
i=1 Cread(Ii) + Csort(Ii) + Ctr(Ii) + Ccache(Ii) + Cwrite(Ii)

(13)
where:

• CK = cr · |K| + cl · |K| · 2 · (	logB|K| − logB(mpK)
 + 	logB(mpK)
)
+ (ct + cl) · |K|

• Cread(Ji) = cr · |ΔFi−1|
• Csort(Ji) = cl · |Di| · 2 · (	logB |Di| − logB(mpΔFi−1)
 + 	logB(mpΔFi−1)
)

[26]
• Ctr(Ji) = ct · |Di|
• Ccache(Ji) = cl · |K |
• Cwrite(Ji) = cr · |Oi|
• |Di|= |ΔFi−1|= βi−1 · |Oi−1|
• Cread(Ii) = cr · |Oi|
• Csort(Ii) = cl · |D+

i | · 2 · (	logB |D+
i| − logB(mpOi)
 + 	logB(mpOi)
) [26]

• Ctr(Ii) = ct · |D+
i|

• Ccache(Ii) = cl · |D+
i|· (|Fi−1| / r) + cl · |ΔFi| · (|Fi−1| / r + 1)

• Cwrite(Ii) = cr · |ΔFi|
• |D+

i|= |Oi|
• |ΔFi|= βi · |Oi|

The average size of the cache at each reducer is (|Fi−1| / r). For each incoming
tuple of Oi, the reducer probes the cache to get all tuples previously discovered.
For each new tuple discovered, the reducer rewrites its entire cache along with
the new tuple. Therefore, the total cost of accessing the cache in the dedup-diff
job, Ccache(Ii), includes the costs of reading the reducer cache for tuples of Oi

and rewriting the reducer cache for new tuples of ΔFi.

Cost Comparison. The total cost of rej-fb is smaller than that of rej-
shaw because the intermediate data of rej-fb is less than that of rej-shaw
(|D′

i| < |Di|). The amount of intermediate data of rej-fb is defined by:

|D′
i| = δi−1

K · |ΔFi−1| + f(K) · (1 − δi−1
K ) · |ΔFi−1|

= δi−1
K · |Di| + f(K) · (1 − δi−1

K ) · |Di| < |Di| (14)
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Table 3. Parameters of our cost model for recursive joins

Parameter Explanation

cl The cost of reading or writing data locally

cr The cost of reading/writing data remotely

ct The cost of transferring data from one node to another

B+1 The size of the sort buffer is B+1 pages (all costs are measured in seconds per
page)

mpK The total number of map tasks of the dataset K

mpΔF i−1 The total number of map tasks of the incremental relation ΔFi−1

mpOi The number of the map tasks of the join output (Oi)

r The number of reduce tasks

t The number of tasktrackers

|K | The size of the dataset K that is invariant in loops

|ΔFi−1| The size of the incremental relation in the (i − 1)th iteration (|ΔF0| = |K|)
|ΔFi| The size of the incremental relation in the ith iteration. The dataset ΔFi contains

only the differences between the join output Oi and Fi−1

|Fi−1| The size of all incremental relations in the iterations 0 to i − 1 (|ΔF0 ∪ · · · ∪
ΔFi−1|)

|Di| The intermediate data size of the join job Ji in the ith iteration

|D+
i| The intermediate data size of the dup-diff job Ii in the ith iteration

|Oi| The size of the join processing output Oi. The output Oi may contain duplicate
elements with Fi−1 (previous incremental relations)

βi The difference ratio of the output Oi with Fi−1

CK The total cost to read, map and sort, shuffle, and cache K at the reducers (RIC)
in the first iteration

Cread(Ji) The total cost to read the incremental relation ΔFi−1 from DFS

Csort(Ji) The total cost to perform the sorting and copying of the join job at the map
and reduce nodes

Ctr(Ji) The total cost to transfer intermediate data of the join job among nodes

Ccache(Ji) The total cost to locally read partitions of K cached at the reducers

Cwrite(Ji) The total cost to write Oi to DFS

Cread(Ii) The total cost to read the join output Oi from DFS

Csort(Ii) The total cost to perform the sorting and copying of the dup-diff job at the map
and reduce nodes

Ctr(Ii) The total cost to transfer intermediate data of the dup-diff job (=Oi) among
the nodes

Ccache(Ii) The total cost to locally read partitions of Fi−1 cached at the reducers

Cwrite(Ii) The total cost to write ΔFi to DFS

where:

• δi−1
K is the ratio of the joined records of ΔFi−1 with K

• f(K) is the false positive probability of the Bloom filter BF (K.z)
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We need a pre-processing job for building the Bloom filter BF (K.z ) that is
used in all iterations. The additional overhead of building the filter BF (K.z ) is:

C ′
K = CK + Cpre (15)

where:

• Cpre= cr · |K | + (cl + ct) · mk · mpk + cr · mk · t
• mk is the compressed size of the Bloom filter of the input dataset K (bits).

It is the product of the size of the filter and the file compression ratio. If the
size of the filter is small, the file compression ratio should be one.

Besides, on each iteration, the program also re-computes the global filter
BF (ΔFi.z) generated in the reduce phase of the dedup-diff job. The overhead
of creating the filter BF (ΔFi.z) is:

C ′
write(Ii) = Cwrite(Ii) + (2 · cr · mΔFi · r + cr · mΔFi) (16)

where:

• mΔFi is the compressed size of the Bloom filter of the incremental dataset
ΔFi (bits)

Since the size of the filters is small, these extra overheads are negligible
compared to the overheads associated with redundant data in the incremental
dataset.

5 Experimental Evaluation for Filter-Based Equijoins

In this section, we present experimental results obtained from the execution of
two-way joins, chain joins, and recursive joins.

5.1 Two-Way Joins

Cluster Environment and Datasets. All experiments were run on a cluster
of 15 virtual machines using Virtualbox [28]. Each machine has two 2.4 Ghz
AMD Opteron CPUs with 2 MB cache, 10 GB RAM and 100 GB SATA disks.
The operating system is 64-bit Ubuntu server 12.04, and the java version is
1.7.0.21. We installed Hadoop [6] version 1.0.4 on all nodes. One of the nodes was
selected to act as Master and ran the NameNode and the JobTracker processes;
the remaining nodes host the TaskTrackers in charge of data storage and data
processing. Each TaskTracker node was configured to run up to two simultaneous
map tasks and two reduce tasks. The HDFS block size was set to 128MB, size
of read/write buffer was 128 KB, heap-size for JVMs was set to 2048 M, and the
number of reduce tasks set to 28.

All test datasets were produced by a data generation script of the Purdue
MapReduce Benchmarks Suite [4], called “PUMA” which represents a broad
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Table 4. Input datasets

Inputs Test 1 Test 2 Test 3

size records size records size records

Dataset1 15GB 40,259,163 35GB 92,681,333 55 GB 145,099,559

Dataset2 15GB 40,108,215 35GB 92,524,495 55 GB 139,573,823

Total 30GB 80,367,378 70GB 185,205,828 110 GB 284,673,382

range of MapReduce applications with high/low computing requirements and
high/low shuffle volumes. The maximum number of columns in the datasets is
39 and string length in each column is set to 19 characters. The first column of
Dataset1 is a foreign key that refers to the fifth column of Dataset2. We used
three test sets Test 1, Test 2, and Test 3 with respective sizes 30 GB, 70 GB, and
110 GB. Table 4 summarizes the dataset sizes used in our experiments. The ratios
of the joined records are 0.054 % (Test 1), 0.057 %(Test 2), 0.063 %(Test 3).

We executed our algorithm for the following join query.

SELECT *

FROM dataset1(column0..column20) d1, dataset2(column0..column20) d2

WHERE d1.column0 = d2.column5

We particularly investigate four aspects: the number of intermediate tuples
generated, the total execution time, the tasks timeline, and the scalability mea-
sured by varying the input size.

Evaluation of Approaches. In order to execute the filter-based algorithms
efficiently, we specified the size of filters according to the cardinality of the join
key values of datasets and chose the largest filter. There is a tradeoff between m
and the probability of a false positive. Hence, the probability of a false positive
f is approximated by:

f ≈
(
1 − e−ρ·n/m

)ρ

For a given false positive probability f, the size of the Bloom filter m is
proportional to the number of elements n in the filter as shown in Table 5.

Table 5. Parameters for filters

Tests f ρ n m/n m (bit)

Test 1 0.001 7 14,866 15 222,990

Test 2 0.0001 8 15,790 21 331,590

Test 3 0.0001 8 15,790 21 331,590

where ρ is the number of hash functions, and m/n is the number of bits allocated
to each join key.
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We can determine optimized parameters for the filter (e.g. f, ρ and m) [10].
In practice, however, we should choose values less than an optimized value to
reduce computational overhead. As shown in Table 5, we deliberately select var-
ious values of f, ρ and m/n for the experiments to consider if they might affect
our join performance. The filter files generated in the tests are compressed with
gzip.

Table 6. Number of intermediate tuples (Map output)

Join algorithms Test 1 (30GB) Test 2 (70 GB) Test 3 (110 GB)

ifbj 43,453 106,116 179,091

bj 40,276,915 92,747,151 145,206,430

rsj 80,320,684 185,098,062 284,510,488

The intermediate data size (Map output) is given in Table 6. The Reduce-
side join (without filter) is the most inefficient solution, although it runs as a
single job. This is correlated to the large size of intermediate data. Note that
the number of intermediate tuples generated in this case is almost equal to
the number of Map input records, see Tables 4 and 6. This slight difference is
because a few tuples of Dataset2 have less than 6 columns, and so they have
been eliminated.

Filter-based joins are more efficient in general. bj and ifbj include the pre-
processing job and the filtering operation to improve the join performance.

The number of intermediate tuples produced by bj is considerably reduced
with respect to rsj. However, in comparison to ifbj (see in Table 6), bj still
produces much more intermediate data because the filtering operation is only
executed on one input dataset (Dataset1 ). This situation is overcome by ifbj.

Looking at bj and ifbj, Table 6 points out that bj generates more intermedi-
ate data than ifbj. Namely, for the 110 GB test, bj produces 145,206,430 inter-
mediate tuples, whereas ifbj produces 179,091 tuples. The experiments reported
above are consistent with our theoretical analysis (Theorem 1).

Next, we evaluate the efficiency of these join algorithms by comparing the
total execution time. As a general fact, the join algorithms generating less inter-
mediate data turn out to be faster, even if we sum up the cost of the pre-
processing and join jobs.

Table 7 gives the total execution time of the pre-processing job and the join
job for each algorithm. Regarding pre-processing, the cost of the filter-based joins
is related to the size of the data accessed to build the filter(s). In particular, ifbj
has to scan two input datasets. However, it pays off, since once the filters are
available, the cost of join jobs is drastically reduced.

Figure 8 demonstrates that the best execution results from using intersection
filters. Their total execution time is significantly reduced compared to bj in
spite of the time spent in the pre-processing job. The total execution time of
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Table 7. Execution of pre-processing job and join job (in minutes)

Joins Test 1 (30GB) Test 2 (70 GB) Test 3 (110 GB)

Pre- Join Total Pre- Join Total Pre- Join Total

proc. job time proc. job time proc. job time

ifbj 3.17 6.15 9.32 6.45 24.25 31.10 10.00 92.12 102.12

bj 2.12 17.07 19.19 3.63 43.63 47.26 5.22 139.58 145.20

rsj 0 28.25 28.25 0 70.13 70.13 0 150.00 150.00

Fig. 8. Total execution time

ifbj increases from about 10 to 105 (mns), whereas that of bj ranges from 19.19
to 145.20 (mns). The worst execution is rsj, ranging 28.25 to 150 (mns). The
smaller cost of ifbj compared to the others (Table 7), is analyzed in Theorem 2.

Finally, we analyze the sequence of tasks during job execution (called task
timelines). We do not examine the task timelines of the pre-processing job which
is negligible compared to the join query over large datasets (see Table 7).

Figure 9 represents the task timelines of 70GB join jobs. These graphs are
created by parsing log files generated by Hadoop during the job execution (555
map tasks and 28 reduce task, processing 185,205,828 input records and produc-
ing 26,062,967 output records). Each graph shows the respective timelines for
map, shuffle and reduce phases.

There is a notable difference between the task timeline of ifbj and that of
other joins. The execution time of all map and reduce tasks of ifbj, Fig. 9(a), is
significantly reduced compared to bj and rsj, Fig. 9(b) and (c). Besides, the map
and reduce phases of ifbj finished earlier than bj and rsj because they produce
less intermediate data and, as a consequence, the total cost of the local I/O,
sort, and remote data copy is also smaller. Joins that use the intersection filter
are the most efficient solutions because of their better data filtering efficiency.

The efficiency of filter-based joins depends on the ratio of non-matching
tuples. The threshold is defined by the two parameters δdataset2 and δdataset1,
which are the ratios of matching tuples. Figure 10 shows the execution time
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(a) Intersection filter-based join - IFBJ

(b) Bloom join - BJ (c) Reduce-side join - RSJ

Fig. 9. 70GB Task timelines during the execution of the join job

of algorithms for several values of these parameters, in order to identify their
impact.

We start with an extreme case (first column) where domain of join attributes
in Dataset1 and Dataset2 are disjoint. A ifbj is then able to discover the empty
intersection and the join job can therefore be omitted altogether, and their costs
represents only that of the pre-processing job. This cost is roughly comparable
with that of rsj because of the small size of the dataset which make the join job
fast enough. Filtered joins should not be used for small input datasets because
the cost of building and broadcasting filter(s) becomes relatively significant.

We next examine the cases of a high ratio of matching tuples (85 % : 4 %)
and (95 % : 65 %). They represent respectively the thresholds for filter-based join
resulting from our analysis. Figure 10 clearly shows that this is the point where
filters become counter-productive. This can be determined at compile time based
on the ratios δdataset2 : δdataset1.

The last case shows a join between fully matching datasets (100 % : 100 %),
in which case rsj is the best solution.

5.2 Multi-way Joins

Cluster Environment and Datasets. We run experiments for the chain join
on another computer cluster of 15 virtual machines using KVM (Kernel-based
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Fig. 10. Identification of threshold for non-matching tuples for joins with 2 GB inputs

Virtual Machine) [18]. Each machine has two 1.4 Ghz AMD Opteron CP Us
with 512 KB cache, 5 GB RAM and 100 GB SATA disks. We installed Hadoop
[6] version 1.0.4 on all nodes. The other configurations of this cluster are similar
to the ones of the cluster running the experiments of the two-way joins. The
number of reduce tasks is set to 25.

All datasets were also produced by the data generation script of the PUMA.
The maximum number of columns in the datasets is 39 and string length in each
column is set 19 characters. The datasets Dataset1, Dataset2, Dataset3, and
Dataset4 contain the join key columns column1 (c1), column2 (c2), column3
(c3), and column4 (c4). Tables 8 and 9 summarizes the different input dataset
sizes and the joined record ratios, resp.

The chain join algorithms developed in our experiments are the Reduce-side
join cascade (cj-rsj), the Bloom join cascade (cj-bj), the IF-based join cascade
(cj-ifbj), the optimized two-way join cascade (ocj-2wj), and the optimized
three-way join cascade (ocj-3wj). The following chain join query is used.

SELECT * FROM dataset1(c1..c10) d1, dataset2(c1..c10) d2,
dataset3(c1..c10) d3, dataset4(c1..c10) d4

WHERE d1.c2 = d2.c2 AND d2.c3 = d3.c3 AND d3.4 = d4.c4
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Table 8. Input datasets used in three tests

Inputs Test 1 Test 2 Test 3

size records size records size records

dataset1 10 GB 26,836,497 20GB 53,675,946 20 GB 53,682,929

dataset2 3 GB 8,051,454 10GB 26,838,960 30 GB 73,881,305

dataset3 10 GB 26,836,497 20GB 53,675,946 20 GB 53,682,929

dataset4 3 GB 8,051,454 10GB 26,838,960 30 GB 73,881,305

Total 26 GB 69,775,902 60GB 161,029,812 100 GB 255,128,468

Table 9. The ratios of the joined records of the datasets (%)

Inputs Test 1 Test 2 Test 3

dataset1 0.721722639 0.304090688 0.123521020

dataset2 0.216530370 0.152050936 0.169996205

dataset3 0.721722639 0.304090688 0.123521020

dataset4 0.216530370 0.152050936 0.169996205

Evaluation. The experiments use the parameters of the Boom filters given in
Table 10.

In order to confirm the cost model of chain joins (Sect. 4.2), we first examine
the amount of intermediate data (Table 11)

Table 11 shows that cj-rsj and cj-bj generate much more intermediate data
than any algorithms using the (extended) intersection filters. Figure 11 helps us

Table 10. Parameters of Bloom filters

Tests f ρ n m/n m (bit)

Test 1 0.000101 8 13,147 21 276,087

Test 2 0.000101 8 13,840 21 290,640

Test 3 0.000101 8 15,295 21 321,195

Table 11. Number of intermediate tuples (all map outputs)

Chain join algorithms Test 1 (26 GB) Test 2 (60 GB) Test 3 (100 GB)

cj-ifbj 1,309,349 1,469,048 1,497,692

cj-bj 45,402,907 89,201,979 89,248,190

cj-rsj 88,296,034 196,465,292 290,582,143

ocj-2wj 1,281,036 1,417,684 1,445,428

ocj-3wj 1,221,769 1,359,575 1,385,053
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Fig. 11. Total intermediate data of the chain join

to obtain a visual comparison of the intersection filter-based chain joins. ocj-
3wj has the least amount of intermediate data because it has the least number of
jobs, and filters out almost all non-matching tuples in intermediate results. The
intermediate data amount of ocj-2wj is slightly greater than the intermediate
data amount of ocj-3wj, as analyzed by Theorem 5. However, ocj-2wj is still
better than cj-ifbj chain joins which do not fully prevent non-matching tuples
to propagate throughout the join chain.

Next, we examine the total output of the chain join algorithms (Fig. 12). The
total output consists of all the intermediate data generated in the map phase

Fig. 12. Total output data (Map output + Reduce output)
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Fig. 13. Total execution time

and the intermediate join results. In other words, it includes all map output
tuples and reduce output tuples produced during the chain join.

As shown in Fig. 12, cj-rsj and cj-bj generate the largest outputs; whilst
the OCJ joins (e.g. ocj-2wj and ocj-3wj) using the extended intersection fil-
ters produce the least output. The cj-ifbj joins generally produce a little more
output than the OCJ joins. The main reason is that the OCJ joins have the
ability to filter out much more non-matching tuples than the others.

Both cj-rsj and cj-bj exhibit a similar pattern, with a significant cost
increase from 26GB to 100GB. Obviously, cj-rsj has the highest cost with
119,928,957 tuples for Test 1, (77,035,830 for cj-bj and 32,942,272 for the cj-
ifbj joins). This is even worse with Test 3, cj-rsj produces 371,782,345 tuples
compared to 170,448,392 for cj-bj and 82,697,894 for the cj-ifbj joins.

Let us finally discuss the performance comparison, summarized by Fig. 13.
The run time is clearly correlated to the size of the intermediate data, as con-
firmed by the comparison of the relative performance of the algorithms and the
number of tuples shipped during the execution of joins.

The two bottom graphs show the total execution times of the OCJ joins (ocj-
3wj and ocj-2wj), the next three ones deal with cj-ifbj, and the two top graphs
show cj-bj and cj-rsj. For the largest dataset (100GB), ocj-3wj and ocj-2wj
run time is about 52.57 and 57.22 min respectively, while the cj-ifbj joins run
time is about 65.13 min. cj-bj and cj-rsj run time is much longer, about 72.09
and 88.34 min resp. This shows the high benefit of filtering out useless data, as
carrying this data all over the process constitutes a strong penalty. Note that
these costs include the pre-processing step for filter-based joins. In a scenario
where filters are built once, and the joins processed many times, the benefit of
the approach is even reinforced. The results of these experiments are consistent
with our cost analysis presented in Sect. 4.2.
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5.3 Recursive Joins

Cluster Environment and Datasets. We performed experiments on a
HaLoop cluster running the modified version of Hadoop 0.20.2. The cluster con-
sists of 12 PC computers. Each machine has two 2.53 GHz Intel(R) Core(TM)2
Duo CPUs with 3 MB cache, 3 GB RAM and 80 GB SATA disks. The operating
system is 64-bit Ubuntu server 14.04 LTS, and the java version is 1.8.0.20. This
cluster has one TaskTracker and one DataNode daemon running on each node.
One of the nodes is selected to act as a master and run the NameNode and
the JobTracker processes. TaskTracker nodes are configured to run up to two
simultaneous map tasks and two reduce tasks. The HDFS block size was set to
128 MB, size of read/write buffer was 128 KB, and the number of reduce tasks
is set to 16.

We use test datasets generated by the PUMA to conduct the experiments.
The maximum number of columns in the datasets is 31 and string length in
each column is set 19 characters. The input dataset Know contains two join
key columns, namely, column0 (c0), and column1 (c1). Table 12 lists the different
sizes of the dataset Know used in our tests.

Table 12. Input dataset Know with different sizes

Test Size Records

Test 1 10 GB 53,674,078

Test 2 20 GB 107,349,426

Test 3 30 GB 150,000,054

The following recursive join query is used to evaluate our experiments.

Friend(c0, c1, . . . , c30) ←− Know(c0, c1, . . . , c30)
Friend(c0, c1, . . . , c30) ←− Friend(c0, c1, . . . , c30) ��c1=c′0 Know(c′

0, c
′
1, . . . , c

′
30)

Evaluation. The filters’ parameters used in the filter-based approach are listed
in Table 13.

Table 13. Parameters of filters

Tests f ρ n m/n m (bit)

Test 1 0.000101 8 7,111 21 149,331

Test 2 0.000101 8 7,123 21 149,583

Test 3 0.000101 8 7,130 21 149,730
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Table 14. The total number of intermediate tuples

Recursive join approaches Test 1 (10 GB) Test 2 (20 GB) Test 3 (30 GB)

rej-shaw 215,609,705 431,589,879 602,707,978

rej-fb 188,597,706 377,403,437 527,220,188

Fig. 14. Total execution time

We first examine the total map output (Table 14). The Shaw’s approach (rej-
shaw) generates more intermediate data than the filter-based approach (rej-
fb). For the tests from 10 GB to 30 GB, rej-shaw generates from 215,609,705 to
602,707,978 tuples, whilst rej-fb has less than from 188,597,706 to 527,220,188
respectively. This is because the intermediate data of the join jobs in rej-shaw
contains a lot of non-matching tuples, whereas rej-fb uses the intersection filter
to eliminate these non-matching tuples from the intermediate data of the join
jobs.

Next, we examine the efficiency of the recursive join approaches. The total
execution time of rej-shaw is compared to that of rej-fb. Let us look in Fig. 14
for more details.

Figure 14 presents the total execution time of the pre-processing job and
the iterative (join + dedup-diff) jobs for each algorithm. The cost of rej-fb is
considerably reduced in spite of the additional pre-processing job.

With the 10 GB input dataset Know, the total execution time of the Shaw’s
approach is higher than that of rej-fb. This remains so through the other tests.

6 Conclusions and Future Work

The join operation is one of the essential operations for data analysis. Join evalu-
ation is expensive and not straightforward to implement with MapReduce. This
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paper makes three contributions. First, we attempt to gather in a uniform set-
ting some of the main approaches recently proposed for the most common types
of joins. In particular, we systematically considered the introduction of filters in
execution plans. Filters are known to greatly improve the cost of distributed joins
thanks to their ability to avoid network transfer of useless data. We showed how
to adapt the join algorithms with filters, on a systematic basis. The second con-
tribution is a modeling of cost that serves as a yardstick to compare the expected
efficiency of joins. In particular, we characterize the situations where filters are
indeed beneficial. Finally, we conducted a full set of experiments to validate our
models, and reported the behavior of the join algorithms in a practical situation.

In general, join evaluation using filters is more efficient than other solutions
since it reduces the need for shipping non-matching data. Specific situations
may lead to reconsider this general assumption. For instance, in the case of a
join between two relations linked by an integrity constraint (primary, foreign
key), the system guarantees the inclusion of one key set into the other, and
filtering becomes useless. Such structured datasets are arguably not common in
the Big Data realms. As another example, small dataset size may reveal the cost
of producing and shipping the filters. A direct join approach should be used in
that case (in fact using MapReduce for small datasets is probably not a good
idea in the first place). Our cost models help to detect those special cases and
adopt the proper evaluation strategy.

The present study could be extended in several directions. First, a complete
coverage would include star joins, and in general joins amongst n relations linked
by complex relationships. Given the complexity of matching such a general set-
ting with a MapReduce framework, we consider that the set of joins cases inves-
tigated in what precedes constitute a satisfying set of primitives to start with.
Regarding our experimental evaluation, we did our best to use the state-of-the-
art MapReduce framework (e.g., HaLoop). We note that some recent distributed
engines (e.g., Spark [7], Stratosphere/Flink [5,34]) natively bring some of the fea-
tures examined here, and notably iterations. At a physical level, they support
caching of intermediate result, if possible in main memory. This strengthens our
expectation that joins (including recursive joins) as studied here, constitute the
basic building block of sophisticated algorithms for machine learning and data
mining, which stand as the most promising outcome of Big Data processing in
a near future. In this respect, the present study stands as a first step toward
the design of an optimizer for distributed query processing, apt at considering
complex integration of iterative, recursive and multi-set operators. We plan to
investigate in the future the foundations of such an optimizer.
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Abstract. View materialization is a commonly used technique in many
data-intensive systems to improve the query performance. Increasing
need for large-scale data processing has led to investigating the view
selection problem in distributed complex scenarios where a set of coop-
erating computer nodes may share data and issue numerous queries. In
our work, the view selection and data placement problem is studied given
a limited amount of resources e.g. storage space capacity per computer
node and maximum view maintenance cost. We also consider the IO and
CPU costs for each computer node as well as the network bandwidth.
To address this problem, we have proposed a constraint programming
approach which is based on constraint reasoning to tackle problems that
aim to satisfy a set of constraints. Then, we have designed a set of effi-
cient heuristics that result in a drastic reduction in the solution space
so that the problem becomes solvable for complex scenarios consisting of
realistically large numbers of sites, queries and views. Our experimental
study shows that our approach performs consistently better compared
to a practical approach designed for large-scale distributed environments
which uses a genetic algorithm to compute which view has to be mate-
rialized at what computer node.

Keywords: Distributed database design · Modeling and management ·
Query processing and optimization · Materialized views · Constraint
optimization problem

1 Introduction

Materialized views have long been used in many data-intensive systems, such
as commercial or scientific database systems, to obtain significant performance
improvements when processing complex queries. View materialization would
improve query evaluation by avoiding re-computation of expensive query oper-
ations. User queries can be answered using the information stored at the view
relations and need not to be translated and shipped to the original sources for
execution. Indeed, data sources may contain several millions of tuples. There-
fore, scanning these data sources can take a significant amount of time. Because
optimal set of materialized views can significantly speed up query processing,
research has provided a huge set of view-based techniques for the efficient query
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evaluation but most of these works presents a solution in the central case. The
growing interest in large-scale data analytics has turned query optimization prob-
lems in distributed data-intensive systems to a challenging and critical task.
Such problems are typical for large retailer companies. In such complex scenar-
ios, multiple computer nodes with different resource constraints (e.g., CPU, IO,
storage space capacity, network bandwidth, etc.) query and update numerous
base relations on different sites (i.e., computer nodes). A key factor to ensure
query performance in such context is the intelligent placement of materialized
views at different sites on the network.

Consider a simple example showing how materialized views can improve
query evaluation. Let us consider the SQL query q1 (defined over the TPC-
H schema [2]) which finds the minimal supply cost for each product supplied in
the USA.

q1:Select PS.partkey, Min(PS.supplycost)
From PartSupp PS, Supplier S, Nation N
Where PS.suppkey=S.suppkey and S.nationkey=N.nationkey and
N.name=‘USA’
Group By PS.partkey;

Note that the base relations PartSupp (PS), Supplier (S) and Nation (N),
which contain very large numbers of tuples, are stored at site s2 and the query
q1 is posed frequently at site s1. Suppose that two sites are connected by a slow
connection speed. Therefore, the cost of transferring large amounts of data from
s2 to s1 is high. This communication cost has to be paid every time the site s1
issues the query q1. One way to reduce the evaluation cost of the query q1, is to
use pre-computed results (i.e., the result of query q1 or part of it), in the form of
views over data. For instance, answering the query q1 using the view v1 (see below
q1v1 ). The view v1 stores the list of suppliers who are from USA and was selected
to be materialized at s1. The costs of performing subsequent queries would be
reduced significantly by using in their evaluation the materialized view v1.

v1:CREATE MATERIALIZED VIEW v1 AS
Select *
From Supplier S, Nation N
Where S.nationkey=N.nationkey and N.name=‘USA’;

q1v1 :PS.partkey, Min(PS.supplycost)
From v1, PartSupp PS
Where v1.suppkey=PS.suppkey
Group By PS.partkey;

Obviously, materialized views have significantly improved the query perfor-
mance. However, the result of the queries may be too large to fit in the available
storage space at a specific site. Another concern is the cost of view maintenance.
Whenever the data at the sources are changed, the materialized views built on
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it have to be updated in order to compute up-to-date query results. Indeed,
the cost of view maintenance may offset the performance advantages provided
by the view materialization. Thus, the view is considered as beneficial if and
only if its materialization reduces significantly the query processing cost with-
out increasing significantly the view maintenance cost. On the other hand, it is
possible that some other neighbors sites, who have stored (part of) the required
data, can be accessed through a much faster network connection, compared to
the sites which provides original content. This highlights the need of considering
resource constraints (e.g., storage space capacity of each site, view maintenance
time and network bandwidth) while making view selection and data placement
decisions. The heterogeneity between the different sites of the network (e.g., sites
with different constraints on CPU and I/O) has also to be considered during the
view selection and data placement process. The problem of deciding which views
have to be selected and at what sites should be materialized given a limited
amount of resources, is referred as the view selection problem and is known to
be a NP-complete optimization problem. To the best of our knowledge, no past
work described in the open literature has addressed this problem under all these
resource constraints. Our approach fills this gap. There are very few studies on
materialized view selection in a distributed context. The most efficient work on
this field is [7]. They proposed a practical approach that solves the view selection
problem with a genetic algorithm, a type of randomized algorithms. The study
described in [7] seems to be the only one which addresses the problem in large
and complex scenarios that represent real world problems. Genetic algorithms
can be applicable on the large search space. They can find a reasonable solution
within a relatively short period of time by trading execution time for quality.
However, there is no guarantee of performance because of their probabilistic
behavior. Besides, the quality of the solution depends on the set-up of the algo-
rithm as well as the extremely difficult fine-tuning of the algorithm that must be
performed during many test runs. To provide better query-processing efficiency
with respect to the currently most efficient approach [7], we have proposed a
novel approach that is based on constraint programming techniques.

Constraint programming is known to be efficient for the resolution of NP-
complete problems and a powerful method for modeling and solving combina-
torial optimization problems [36]. We have demonstrated in our previous work
[30,31] the benefit of using constraint programming techniques for solving the
view selection problem with reference to the centralized context. We have also
exploited the capabilities offered by the constraint programming paradigm for
the benefit of the distributed management for data analysis [29]. In this pri-
mary work, we have modeled the view selection problem in a distributed con-
text as a constraint optimization problem in order to solve it by means of con-
straint programming. We have also been able to easily handle and model all the
resource constraints with the rich constraint programming language. Our first
results confirm the efficiency of our approach for recommending a high quality
set of materialized views. However, our approach grows out of memory and fails
to produce a solution within a reasonable execution time for large scenarios.
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The reason is that we have considered the complete solution space of all possible
view combinations. Obviously, the complexity of a complete search is extremely
high: the number of possible views to materialize grows exponentially with the
number of sites and queries as well as with the number of columns, join predi-
cates, grouping clauses and the base relations referenced in each query. Conse-
quently, we have evaluated our approach with only simple scenarios consisting of
small number of sites (i.e., 20 sites). Due to the huge solution space, constraint
solvers cannot be applied directly to solve the view selection problem in complex
and large scenarios. This would lead to the need of robust and efficient heuristic
search strategies which may reduce significantly the solution space so that the
problem becomes solvable.

Goals and Contributions. Our aim is to improve the processing efficiency of
queries in distributed relational data-intensive systems by using materialized view
techniques. The goal is to propose the most appropriate views to be materialized
at the right sites, in order to optimize the combined cost of query evaluation, view
maintenance, view storage, network reads and writes, CPU utilization and I/O.

We have formulated and solved this problem, drawing connections to con-
straint satisfaction and optimization problems studied in both artificial intel-
ligence and operations research. The focus of this paper is to improve the
materialized-views search strategy and confirm that our approach scales very well
with very large distributed environments.

Our key contributions include designing and developing efficient heuristics to
reduce the solution space of candidate views to materialization. We start by con-
sidering only efficient query plans and discarding those which are very costly for
executing the query workload in the most cost-effective way. To do this, we have
been inspired by the join ordering heuristic that is an important aspect of central-
ized query optimization [40]. join ordering in a distributed context is even more
important since joins between fragments may increase the communication time
[34] which is considered to be the dominant parameter in a distributed context.
The query processor must also select the best sites to process data, and where the
data should be materialized in order to avoid having to pay an important cost of
communication. For this reason, we have designed site selection heuristics which
select the most promising sites on which the views may be processed or material-
ized. We have also defined heuristic search strategies within the constraint solver
to restrict its search space. This could lead to guide the search close to the opti-
mal solution and find near-optimal solutions in a small amount of time. The most
common branching strategies in constraint solvers are variable ordering heuristics
and value ordering heuristics. We have designed these heuristics in the way that
constraint solver starts by placing a view closest to where it is frequently accessed,
while considering resource constraints.

We have proved the effectiveness of these heuristics and their improvements
over our approach to trade off completeness for efficiency of the search. The experi-
ment results show the benefit of using these heuristics to reduce the solution space,
small enough so that the view selection problem becomes solvable in large-scale
scenarios. We have evaluated and compared our approach with a practical solution
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that uses a genetic algorithm to solve the view selection problem in a large-scale
distributed environment [7]. We experimentally show that our approach is able to
achieve significant performance gains in comparison with the genetic algorithm.
The results of these experiments have also shown the robustness and scalability of
our approach. We are able to propose a high quality set of materialized views for
very large scenarios consisting of big relations containing millions of tuples and
distributed over a large number of sites, which issue large query workloads.

Outline. The rest of this paper is organized as follows. Section 2 reviews related
work. In Sect. 3, we formally define the view selection problem in a distributed
context and discuss the settings for the problem. Section 4 provides an overview
of constraint programming techniques and describes how to model the view selec-
tion problem as a constraint optimization problem. Section 5 presents the heuris-
tic search strategies that we have designed for optimization purpose. In Sect. 6, we
provide our experimental evaluation. Section 7 contains concluding remarks and
future research directions.

2 RelatedWork

Query performance optimization based on views has been intensely studied for a
number of years. One line of past research considers the view selection in a central-
ized environment. In such scenarios, heuristic algorithms to the well studied prob-
lem of view selection can be classified into three main categories. The first category
of deterministic view selection algorithms takes a deterministic approach either by
exhaustive search or by some heuristics such as greedy [5,13,14,16,24,26,41,42].
These techniques have been shown to consider a maximum storage overhead
and/or maximum maintenance costs when deciding which views to materialize.

The second main category of randomized view selection algorithms either uses
genetic algorithms [17,23,25,44,45] or simulated annealing [8,9,18] to solve the
view selection problem. Genetic algorithms are inspired by the natural evolution
process such as selection, mutation, and crossover. The search strategy for these
algorithms is very similar to biological evolution while simulated annealing algo-
rithms are motivated by an analogy to annealing in solids. In contrast with simu-
lated annealing algorithms, genetic algorithmsuse amulti-directional searchwhich
allows to efficiently search the space and find better solution quality [25]. The suc-
cess of randomized algorithms often depends on the set-up of the algorithm as well
as the extremely difficult fine-tuning of the algorithm that must be performed dur-
ing many test runs. To overcome this, we designed a solution that is based on con-
straint logic programming in which the user has only to specify the problem itself
instead of specifying how to solve the problem.

The last category focuses on hybrid view selection algorithms. These algo-
rithms combine the strategies of deterministic and randomized algorithms in their
search in order to provide better query performance. A hybrid approach has been
applied in [46] to solve the view selection problem. Their experimental results con-
firmed that hybrid algorithms provide better performance in terms of solution
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quality. However, their algorithms are more time consuming and may be imprac-
tical due to their excessive computation time.

The view selection algorithms, which have been proposed so far to facilitate
efficient query processing, may provide near-optimal solutions but there is no per-
formance guarantee because of their greedy nature or their probabilistic behavior.
We innovate by proposing an approach that can guarantee to have a set of recom-
mended views to be materialized at any time and seek the optimal solution while
the computational time is not restricted.

Past work has also focused on dynamic view selection [22,47]. To respond to
the changes in the query workload over time, views have to be selected continu-
ously and replaced with more beneficial views. However, the task of monitoring
constantly the query pattern andperiodically recalibrating the views is rather com-
plicated and time consuming especially in large data warehouse where many users
with different profiles submit their queries. This is different with our study since
we consider a given workload where queries are assumed to be known and with
each query it is associated a frequency of occurrence. A variation of this setting are
caching approaches [10,38]. With caching, the cache is initially empty and data are
inserted or deleted from it during the query processing. Materialization could be
performed even if no queries have been processed and materialized views have to
be updated in response of changes on the base relations. A detailed comparison of
these two techniques is given in [20].

Improving query performance is also being studied in distributed databases
and data warehouses. Returning to view caching setting, some research works
have adopted caching in distributed databases [21] and peer-to-peer systems [19].
Dynamic materialized view selection has also been explored in peer-to-peer envi-
ronment [6].However, the results of this studywere not validated through an exper-
imental evaluation. Investigating the view selection problem in a dynamic and
distributed system is what we are planning to do as future work which is one of
challenging research directions. The studies in [3,7,12,43] focus on the problem
of materializing the right views at the appropriate sites while considering static
queries. The authors in [12] deal with the problem in peer-to-peer environment. In
fact, it is provided a full definition of the problem but without providing any algo-
rithm or detail on how to select an effective set of views to materialize and place
them at appropriate peers. The works published in [3,43] address the view selection
problem in a distributed datawarehouse environment.They extend a greedy-based
selection algorithm for the distributed case.However, the costmodel that theyhave
used does not include the network transmission cost which is very important in a
distributed context. The study presented in [7] deals with the view selection prob-
lem in distributed databases. This approach consists in applying a genetic algo-
rithm to compute which view has to be materialized at what site of the network.
However, this approach does not take into account the resource constrains. In con-
trary, our approach considers the storage space capacity associated to each site of
the network as well as the view maintenance time while making view selection and
data placement decisions. The results of the work in [7] are scalable to large-scale
distributed scenarios. For these reasons, we have extended our approach, on the
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results of [29], by designing a set of pruning heuristics which may be used to prove
the scalability of our approach in distributed scenarios.

For a deeper overview of view selection methods in a centralized environment
as well as in a distributed scenario, we may refer the reader to the survey that we
have done in our previous work [28].

3 Formal Setting and Problems

3.1 View Selection in a Distributed Context

We define the view selection for a distributed system as follows. Assume we have
given a set of cooperating sites connected by a network with different resource con-
straints on CPU, IO and network bandwidth. Sites issue numerous queries and
exchange data with a collection of participating sites. To minimize the total eval-
uation cost of the queries, we may materialize a set of views at a collection of sites
and use these views to answer the queries. We assume that we have a storage space
limit at each site that is the total space of views must not exceed the one associated
to the site where they should be materialized. The view selection is also constrained
by a maintenance cost limit to keep the materialized views in synchronization with
the underlying base data. The general problem of view selection in a distributed
context can be formally formulated as follows.

Definition 3.1 Distributed View Selection Problem (DVSP). Let S = {s1, s2,
..., ss} be a set of sites in the network where each site si has associated IO and CPU
resources and storage space Spmaxi

. Every pair of sites si and sj is connected by a
bandwidth-constrained link. Let Q = {q1, q2, ..., qq} the query workload we expect to
be given and fQ = {fq1 , fq2 , ..., fqq} their query frequency. Each query has an asso-
ciated non-negative weight which describes its frequency relative to the combined
workload across all sites. Assume that U = {u1, u2, ..., uu} is the set of updates on
base data, fU = {fur1 , fur2 , ..., furr} their update frequency and Umax the main-
tenance time limit. TheDVSP consists in finding candidate view set 〈V, S〉 such that
the cost of evaluating Q is minimal.

An overview of the architecture of our system is shown in Fig. 1. Sites are connected
by bandwidth-constrained links and cooperate to materialize views and answer
queries. In our approach, sites may serve any or all of the following four roles:

– Data origin SDO provides original content (base relations) and is the authori-
tative source of that data.

– Storage provider SSP stores materialized views if there is enough storage space.
– Query evaluator SQE uses a portion of its CPU and IO resources to evaluate the

set of queries forming its workload.
– Query initiator SQI acts as a user in the system and issues queries.

To illustrate, we present the following example for a network with five sites.
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Fig. 1. Overview of our system architecture: Simple example scenario

Example 3.1 Given a distributed database scenario consisting of five sites s1, s2,
s3, s4 and s5 which are connected by a network that has limited bandwidth (see
Fig. 1). Recall from Sect. 1 that the query q1 is posed frequently at site s1, and we
have used the view v1 which is materialized at site s1 to speed up the evaluation of
query q1. Suppose that the view v1 is too large to fit in the available storage space at
the site s1 or the base relations referenced in query q1 are frequently updated and the
cost that we save for answering the query is now involved for the maintenance cost.
In this case, materializing v1 at site s1 cannot be attractive because of the space or
maintenance cost constraint. The cooperative decisions between sites should also be
taken into account during the view selection and data placement process. Assume in
our example that the connection speed between (s1, s4) and (s2, s4) is very high and
the resources in site s4 are under-utilized while the connection speed between (s1,
s3) and (s1, s5) is very low. In this case, it is not interesting to materialize v1 at s3
or s5 but it may be beneficial to materialize v1 at s4. Hence, to materialize the right
set of views (or queries) at the appropriate sites, the view selection problem has to
be studied under the existing resource and bandwidth constraints.

3.2 The Space of Candidate Views

For modeling the space of possible candidate views, our approach use the distrib-
uted AND-OR view graph which is an extension of the concept of the AND-OR
view graph to capture the distributed case. The AND-OR view graph framework
has been used as a tool for setting up the search space by identifying common sub-
expressions between the different queries of the workload [13–15,32,37] (consider-
ing the possibility of reusing parts of query plans). Recognize possibilities of shared
views can be exploited for sharing computation, updates and storage space. Hence,
exploiting common sub-expressions can help speed up query and update process-
ing. We borrow the rules provided in [37] for identifying common sub-expression.
In what follows, we start by giving a definition of the AND-OR view graph.

Definition 3.2 (AND-OR View Graph). Given a query set Q defined over a data-
base schemaR, the AND-OR view graphG = (N,E) is a DAG, whereN represents
nodes and E represents edges, such that:



A Constraint Optimization Method 79

Fig. 2. AND-OR DAG representation

– N = NEq∪NOp. The node type of G is an operation node (Op-Node) or an equiv-
alence (Eq-node). Each Op-node opi ∈ NOp represents an algebraic expression
(Select-Project-Join) with possible aggregate function. An Eq-Node eqi ∈ NEq

represents a set of logical expressions that yield the same result. In other words,
equivalence nodes correspond to each view that is candidate to the view selection.
The leaf nodes are equivalence nodes representing the base relations R and the
root nodes represents the result of every query q in Q.

– The dependence over the nodes are represented by OR-Arc or AND-Arc through
the edges. The first dependence means that a parent node can be computed for
any one of its children nodes. For example, in Fig. 2, node A can be computed
from any of the children nodes A’ and A”. While, the later dependence specifies
that the children nodes are required to compute the parent node. For instance, in
Fig. 2, Nodes B andC are needed to compute A’. For each query q inQ, there is an
AND-OR-DAG representation which consists of its all possible execution plans.

The AND-OR view graph of two queries, are shown in Fig. 3. In addition to
q1 presented previously in Sect. 1, we consider another query q2 which finds the
number of products having as a brand name ‘BMW’ and bought by the united
states.

q2:Select P.name, count(*)
From PartSupp PS, Supplier S, Nation N, Part P
Where PS.suppkey=S.suppkey and S.nationkey=N.nationkey and
P.partkey=PS.partkey and N.name=‘USA’ and P.brand=‘BMW’
Group By P.name;

For simplicity, we consider in our example (see Fig. 3) only one way to answer
the query q2. The remaining execution plans are just indicated by dashed lines.
Two ways for evaluating q1 have been considered by applying the join commuta-
tivity and associativity rules. For more details about constructing the AND-OR
view graph for the query workload, we may refer the reader to [37]. Circles rep-
resent operations nodes (Op-Nodes) and boxes represent equivalence nodes (Eq-
Nodes). The OR-Arc and AND-Arc are indicated by drawing a semicircle, through
the edges. The subscripts PS, S, N and P denote respectively the base relations of
TPC-H benchmark: PartSupp, Supplier, Nation and Part.

In the AND-OR view graph, the choice of materialized views is done in conjunc-
tion with choosing execution plans for queries which is very important to optimize
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Fig. 3. AND-OR view graph of two queries q1 and q2

query performance. For instance, a plan that seems quite inefficient could become
the best plan if some intermediate result of the plan is chosen to be materialized.
To deal with distributed settings and reflect the relation between views and com-
munication network, we propose the distributed AND-OR view graph, which can
be seen as an extension of the concept of the AND-OR view graph. The distributed
AND-OR view graph can be defined as follows.

Definition 3.3 (Distributed AND-OR View Graph). Let G = (N ′, E′) the dis-
tributed AND-OR view graph so that:

– N ′ = N(Eq,S) ∪ N(Op,S) where each node (eqi, sj) ∈ N(Eq,S) denotes a potential
site at which a view may be materialized and (opi, sj) ∈ N(Op,S) indicate the
decision on what site the algebraic operation can be evaluated. To include this
representation, every node of the AND-OR view graph is split into sub-nodes,
each of which denotes the evaluation at a given site.

– N(Eq,S) = No
(Eq,S) ∪ N t

(Eq,S).Further edges are introduced in E′ which are the
communication edges between equivalence nodes of the same level, denote that a
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view can be answered from any other site if it is less expensive. However, cycles
occur in the resulting distributed AND-OR view graph (which no longer con-
forms to the characteristics of a DAG). To eliminate cycles, each equivalence
node (eqi, sj) has to be split into two nodes (eqi, sj)

o (origin node) and (eqi, sj)
t

(target node).

A sample distributed AND-OR view graph is shown in Fig. 4. For simplicity,
we consider a network of only five sites s1, s2, s3, s4 and s5 depicted in Fig. 1 and
we illustrate a part of the query q1 by considering only one execution strategy
(Π((δN �� S) �� PS)). The communication edges between equivalence nodes of
the same level (i.e., (PA1 PS-S-N ,S2)), ((PA1 PS-S-N ,S3)) and ((PA1 PS-S-N ,S4))), are
shown in the dashed rectangle in Fig. 4. However, these edges are bidirectional cre-
ating cycles. To eliminate these cycles, each equivalence node (vi, sj) in the distrib-
uted AND-OR view graph, as illustrated in Fig. 5, has been artificially split into
two nodes (vi, sj)

o and (vi, sj)t.

3.3 Estimated View Cost

To each query or view (vi, sj) in the distributed AND-OR view graph, we associate
a cost estimation about the query cost that is the evaluation cost of the cheapest
execution strategy for (vi, sj), the maintenance cost which is the cost of the effi-
cient plan for maintaining the view (vi, sj)) and the reading cost that is the cost
of reading vi on site sj . In a distributed system, a cost model should reflect CPU,
I/O and communication costs. In our approach, the costs are estimated in terms
of time. The main factor for estimating the different costs is to estimate the size of
any possible view created throughout the search.

ViewSize.To estimate the size of a given view (vi, sj) ∈ 〈V, S〉 we adopt the solu-
tion of [34], which is based on database statistic and known relational formulas to
predict the cardinalities of the results of relational algebra operations. Two sim-
plifying assumptions are commonly made about the database: (i) the distribution
of attribute values in a relation is supposed to be uniform, and (ii) all attributes
are independent, meaning that the value of an attribute does not affect the value
of any other attribute. We define the size of the view vi as follows.

size(vi, sj) = size(vi) = card(vi) ∗ length(vi)

where length(vi) is the length (in number of bytes) of a tuple of vi, computed from
the lengths of its attributes and card(vi) is the number of tuples in vi.

ReadingCost.This cost is considered if a given viewhas been selected to bemate-
rialized on a given site. The cost of reading a view vi on site sj is estimated as fol-
lows.

RCost(vi, sj) = size(vi) ∗ I/Oj

Communication Cost. In a distributed system, the communication cost is con-
sidered to be the dominant factor. It reflects the time needed for exchanging data
between sites participating in the execution of the query. For instance, given a
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Fig. 4. Distributed AND-OR view graph
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Fig. 5. Applying split to eliminate cycles

query qi which is issued at the site sj and denoting by vk, a view required to answer
qi, the communication cost is zero if vk is materialized at sj . Otherwise, let sl
be the node containing vk, then the communication cost for transferring vk from
sl to sj is:

CCost(vk, sl → sj) =
size(vk)

Bw(sj , sl)

where Bw(sj , sl) is the bandwidth between sj and sl (i.e., network transmission
cost per unit of data transferred) and size(vk) is the size of vk in number of bytes.

Query Cost. This cost estimation refers to the amount of time necessary to com-
pute the answer to a given query or view using the most efficient execution strat-
egy. It includes CPU, I/O, and communication costs. The CPU cost is estimated
as the time needed to process each tuple of the relation e.g., checking selection con-
ditions. The IO cost estimate is the time necessary for fetching each tuple of the
relation. For the evaluation cost of relational operations, we use a cost model sim-
ilar to [7,11,27,39]. Note that for each relational operator, we consider its most
simple implementation, e.g., sequential scans and nested loop joins.

Estimated Cost of Relational Operations.

– Estimated Cost of Unary Operations
• cost(opi) = (IO ∗ card ∗ length) + (CPU ∗ card ∗ lengthP ) where opi is

a selection operation
• cost(opi) = (IO ∗ card ∗ log(card) ∗ length) + (CPU ∗ card ∗ log(card) ∗

lengthP ) where opi is a projection operation
• cost(opi) = (IO ∗ card ∗ length) + (CPU ∗ card ∗ lengthA) where opi is

an aggregation operation
– Estimated Cost of Binary Operations

• cost(opi) = (IO ∗ lcard ∗ rcard ∗ (llength + rlength)) + (CPU ∗ lcard ∗
rcard ∗ lengthP ) where opi is a join operation

Where card is the number of tuples of the operand, length is the length (in
bytes) of a tuple, lengthP is the length of columns checked by predicates, lengthA
is the length of the tuples being aggregated, lcard and rcard are respectively the
number of tuples of the left and right operands (the same for llength and rlength).

View Maintenance Cost. It is the cost required for updating views when the
related base relations are changed. The view maintenance cost is computed simi-
larly to the query cost, but the cost of relational operation evaluation is computed
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with respect to updates. In our work, we assume incremental maintenance to esti-
mate the view maintenance cost. We consider two kinds of maintenance operation:
insert and delete. Updates can be modeled as deletes followed by inserts. We use
techniques described in [32] to compute the set of tuples that get added to a given
view or removed from it with respect to the changes in the underlying base rela-
tions. The updates (inserts and/or deletes) to relations are logged in corresponding
delta relations, which are made available to the view refresh mechanism.

Section 4.1 details how we compute the query cost Qc(vi, sj) and maintenance
cost Mc(vi, sj) corresponding to each view (vi, sj) (or query) in the distributed
AND-OR view graph.

4 Constraint ProgrammingMethod for the DVSP

Constraint programming, originated from Artificial Intelligence, is a solution
method to the combinatorial optimization problems. It has been considered as
beneficial in data mining setting [35] and successfully applied in numerous combi-
natorial search problems [36] such as scheduling and timetabling. Constraint Pro-
gramming has the strength of modeling the problem by stating constraints in a
declarative way, which must be satisfied by the solution, without the need of being
interested in the way the problem is solved. By constraint programming, we mean
the techniques that are used to represent and solve the Constraint Satisfaction
Problem (CSP) and Constraint Optimization Problem (COP) arising from Artifi-
cial Intelligence.

4.1 Background

We now give the basic notation of constraint programming.

Definition 4.1 (Variable and Domain). Let V AR = {var1, var2, ..., varn} be the
set of variables of the problem. The domain DOM = {dvar1 , dvar2 , ..., dvarn} is the
set of possible values that can be assigned to each variable vari. A single value is
assigned to a variable

Example 4.1 Mat(v1, s1) and Mat(v2, s1) are variables and their respective
domains are dMat(v1,s1)=dMat(v1,s2)={0,1}. Mat(vi, sj) denotes for each view vi
if it is materialized or not materialized on site sj (0: vi is not materialized at site
sj, 1: vi is materialized at sj)

Definition 4.2 (Constraint). Consider a finite sequence of variables V AR =
{var1, var2, ..., varn}, with respective domains DOM = {dvar1 , dvar2 , ..., dvarn}.
A constraint Cijk between the variables vari, varj , vark is any subset of the possible
combinations of values of vari, varj , vark, i.e., Cijk ⊂ dvari × dvarj × dvark

Example 4.2 On variables Mat(v1, s1) and Mat(v2, s1), we impose the binary
constraint Mat(v1, s1) ∗ size(v1) + Mat(v2, s1) ∗ size(v2) ≤ 5. The constraint
states that the size of materialized views v1 and v2 at site s1 should be less or equal
that 5
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Definition 4.3 (Constraint Satisfaction Problem (CSP). A CSP, is defined by a
finite sequence of variables V AR = {var1, var2, ..., varn} with respective domains
DOM = {dvar1 , dvar2 , ..., dvarn}, together with a finite set of constraints CST =
{c1, c2, ..., cn}, each on a subsequence of V AR. Therefore, a CSP is defined by a
triplet (VAR;DOM;CST). A feasible solution to a CSP is an assignment of a value
from its domain to every variable, so that the constraints on these variables are sat-
isfied.

Example 4.3 Based on the variables given in Example 4.1 and constraints given
in Example 4.2, we denote the resulting CSP as:

Mat(v1, s1) ∈ {0, 1},Mat(v2, s1) ∈ {0, 1}

Mat(v1, s1) ∗ size(v1) + Mat(v2, s1) ∗ size(v2, s1) ≤ 5

Definition 4.4 (ConstraintOptimizationProblem (COP)).ACOP is aCSPwith
an objective function f : dvar1 × dvar2 × dvarn → R to be optimized. An optimal
solution to a COP is a solution to CSP that is optimal with respect to f. The cost
expression on these variables takes a maximal or minimal value for maximization
or a minimization problem, respectively

In our work, the DVSP is modeled as a COP in order to solve it by means of
constraint programming. The goal is to decide which view has to be materialized
at what site to optimize the query processing.

The solution process in constraint programming interleaves constraint propa-
gation, and search. Actually, this is the main strength of constraint programming.
The solution approach to combinatorial optimization problems requires the explo-
ration of the search space representedby all the possible combinations of the assign-
ments of values to the variables. However, some parts of the search space can be
pruned (no need to be visited). This can be done by efficient propagation algo-
rithms associated with constraints. Constraint propagation (also called the feasi-
bility prune) is based on the feasibility reasoning which removes the assignments
of values to variables that do not lead to any feasible solutions [4,36]. When the
search fixes the value of a variable, constraint propagation is applied to restrict
the domains of other variables whose values are not currently fixed. This means
that when a value is assigned to the current variable, any value in the domain of a
future variable which conflicts with this assignment is removed from the domain.
In constraint programming, constraint propagation and search are applied in an
alternated fashion.

Let us now illustrate how constraint programming can be applied to select
and place the right views at the appropriate sites (see Fig. 6). At the beginning,
the initial variable domains dMat(vi,sj) = {0,1} where i, j ∈ {1, 2, 3}. Recall that
Mat(vi, sj) denotes for each view vi whether it is materialized or not material-
ized at site sj (0: vi is not materialized at site sj , 1: vi is materialized at sj). The
problem is to select a set of views and a set of sites at which these views should
be materialized subject to a space and maintenance constrains. The space con-
straint ensures that the total space occupied by the materialized views at each site
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Fig. 6. Using constraint programming to solve the DVSP: constraint propagation and
search

is less or equal than its storage space capacity (∀sj ∈ S
∑

(vi,sj)∈V (Mat(vi, sj) ∗
size(vi)) ≤ Spmaxsj

). Let as assume that Spmaxs1
= 4 MB, Spmaxs2

= 10 MB,
Spmaxs3

= 15 MB, size(v1) = 10 MB, size(v2) = 5 MB and size(v3) = 14 MB. Con-
sidering the space constraint, it appears for example that the view v1 cannot be
materialized at site s1 since size(v1) � Spmaxs1

. The maintenance cost constraint
guarantees that the total maintenance cost of the set of materialized views is less or
equal than the maximum view maintenance cost Umax (

∑
(vi,sj)∈V (Mat(vi, sj) ∗

fu(vi) ∗ Mc(vi, sj)) ≤ Umax). Assuming that Umax = 20 s, Mc(v1, s1) = 13 s,
Mc(v1, s2) = 24 s, Mc(v1, s3) = 21 sec, Mc(v2, s1) = 3 s, Mc(v2, s2) = 8 s,
Mc(v2, s3) = 5 s, Mc(v3, s1) = 6 s, Mc(v3, s2) = 15 s and Mc(v3, s3) = 10 s; where
Mc(vi, sj) denotes the cost of maintaining the view vi on site sj . The update fre-
quencies fu(vi) are at scale 1. It appears that Mat(v1, s2) and Mat(v1, s3) can-
not take the value 1 because otherwise the total maintenance cost will be greater
than Umax. This value is eliminated from the variable domain by applying con-
straint propagation. In a similar fashion the inconsistent value 1 is removed from
the domain of Mat(v1, s1), Mat(v2, s1), Mat(v3, s1) and Mat(v3, s2) by taking
into account the space constraint.

After this stage the variable domains are not reduced to singletons (there is
more than one value in each variable’s domain), the solver takes during the search
step one of these variables and tries to assign it each of the possible values in
turn e.g., Mat(v3, s3) = 1. This enumeration stage triggers more variable domain
reductions by using constraint propagation techniques which leads in our example
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to five solutions that are marked with a black circle. These solutions are of various
cost or quality. The costs are indicated in the small dashed rectangle.

In addition to providing a rich constraint language to model a problem as
a COP and techniques such as search and constraint propagation to reduce the
search space by excluding solutions where the constraints become inconsistent,
constraint programming offers facilities to control the search behavior. This means
that search strategies can be defined to decide in which order to explore the cre-
ated children nodes in an enumeration tree. This avoid visiting a large subset of
unpromising candidate solutions during the tree search. Returning to our exam-
ple illustrated in Fig. 6, a well-suited search strategy would reduce the number of
expanded nodes in the tree search by avoid visiting the solutions that are in the
dashed block. In Sect. 5, we present our own search strategy that we have designed
within the constraint solver to speed up the search to near-optimal or optimal
solutions for the DVSP. Constraint programming also provides ways to limit the
tree search regarding different criteria. For instance performing the search until
reaching a feasible solution in which all constraints are satisfied, or until reaching
a search time limit or until reaching the optimal solution.

4.2 Modeling the DVSP as a COP

In this subsection, we describe how to model the view selection problem in a dis-
tributed scenario as a Constraint Optimization Problem (COP). Then, its reso-
lution is supported automatically by the constraint solver embedded in the con-
straint programming language. In what follows, we define all the symbols as well
as the variables that we have used in our COP. A prior version of this COP was
demonstrated in [29].

– G. The distributed AND-OR view graph for the queries of workload.
– Q(G). The query workload which models our expected queries.
– V (G). The set of candidate views that is highly dependent on the set of queries

we expect to be given.
– U . The set of updates (inserts/deletes) to base relations.
– δ(vi, sj , u). The differential result of view vi on sj (i.e., the set of tuples inserted

into and/or deleted from (vi, sj)), with respect to update u.
– fq. The non-negative weight associated to query q which describes its relative

frequency within the workload.
– fu. The update frequency that indicates the frequency of updating a given view.
– S. The set of sites which represents the computer nodes over the network.
– Spmaxsi

. The storage space capacity of the site si.
– Umax. The maximum view maintenance cost which is the time window available

to provide up-to-date responses to queries.
– size(vi). The size of the view vi in terms of number of bytes.
– Bw(sk, sj). The bandwidth between sj and sk that represents the network

transmission cost per unit of data transferred.
– Mat(vi, sj). The materialization variable that denotes for each view (vi, sj)

(equivalence node in the distributed AND-OR view graph G), if it is materi-
alized or not materialized. It is a binary variable, dMat(vi,sj)

={0,1}.
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– Qc(vi, sj). The query cost corresponding to the view vi if it is evaluated or mate-
rialized on site sj . The domain is a finite subset of R

∗
+ such as dQc(vi,sj) ⊂ R

∗
+

– Mc(vi, sj). The maintenance cost corresponding to the view vi if it is updated
on site sj , where dMc(vi,sj) ⊂ R

∗
+).

The view selection in a distributed scenario can be formulated by the following
constraint optimization model.

minimize
∑

(vi,sj)∈Q(G)

(
fq(vi) ∗ Qc(vi, sj)

)
(1)

subject to ∀sj ∈ S
∑

(vi,sj)∈V (G)

(
Mat(vi, sj) ∗ size(vi)

)
≤ Spmaxsj

(2)

∑
(vi,sj)∈V (G)

(
Mat(vi, sj) ∗ fu(vi) ∗ Mc(vi, sj)

)
≤ Umax (3)

In our approach, the main objective is the minimization of the weighted query
processing cost. The total query cost is computed by summing over the cost of
processing each input query rewritten over the materialized views. Constraints
(2) and (3) state that the distributed view selection problem is studied given a
limited amount of resources e.g., storage space and maintenance time. Constraint
(2) ensures that for each site the total space with respect to materialized views
on it is at most equal to its storage space capacity. Constraint (3) guarantees that
views are selected to be materialized under the constraint that their update costs
is less or equal than the total view maintenance cost.

The query and maintenance costs corresponding to a view are implemented
by using a depth-first traversal of the distributed AND-OR view graph. Note that
the query and maintenance costs corresponding to base relations (leaf nodes) are
equal to zero. They may be formulated as follows.

Qc(vi, sj) = min
sk∈S

(
Qclocal(vi, sk) +

size(vi)
Bw(sk, sj)

)
(4)

Qclocal(vi, sj) =
{

ComputeCost(vi, sj) if Mat(vi, sj) = 0
size(vi) ∗ I/Osj otherwise

(5)

ComputeCost(vi, sj) = min
opl∈child(vi,sj)

(
cost(opl, sj) +

∑
(vm,sn)∈child(opl)

(
Qc(vm, sn) +

size(vm)
Bw(sn, sj)

)) (6)
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Query Cost. The query cost corresponding to each given view in the AND-OR
view graph in a distributed system reflects the local processing cost and the com-
munication cost. The first component is estimated with respect to the evaluation
costs of the required relational operations (see Sect. 3.3). The communication cost
is computed as the time needed for transmitting views on the communication net-
work. Constraint (4) guarantees that sites which can provide responses with lowest
cost are selected to answer views (or queries). Constraint (5) and (6) ensure that
the most efficient execution plans are chosen to compute query results. Each query
plan is composed of all the cost of executing the relational operations (operation
nodes in the distributed AND-OR view graph) on the path. The reading cost is
considered if the view has been selected to be materialized.

Mc(vi, sj) =

⎧⎪⎨
⎪⎩

0 if Mat(vi, sj) = 0
∑

u∈U

(
minsk∈S

(
Mcost(vi, sk, u) + size(vi)

Bw(sk,sj)

))
otherwise

(7)

Mcost(vi, sj , u) = min
opl∈child(vi,sj)

(
cost(opl, sj , u) +

∑
(vm,sn)∈child(opl)

(
UpdateCost(vm, sn, u) +

size(vm)
Bw(sn, sj)

)) (8)

UpdateCost(vm, sn, u) =

{
Mcost(vm, sn, u) + size(vl)

Bw(sn,sm) if Mat(vm, sn) = 0
δ(vm, sn, u) ∗ I/Osn otherwise

(9)

View Maintenance Cost. Because materialized views have to be kept up to date,
the view maintenance cost has to be considered during view selection and data
placement process. The maintenance cost is the differential results of material-
ized views given the updates of the bases relations. Constraint (7) guarantees that
there is no maintenance cost if the view has not been materialized. Otherwise,
this cost is computed by summing the number of changes in the base relations
from which the view is updated. A view (or a query) is updated from the site that
can provide the differential results with the lowest cost. As mentioned in Sect. 3.3,
we assume incremental maintenance to estimate the view maintenance cost. Con-
straints (8) and (9) insure that the best plan with the minimum maintenance cost
is selected in order to optimize the update of a set of materialized views. The view
maintenance cost is computed similarly to the query cost, but the cost of each
update plan is composed of all the cost of executing the relational operations with
respect to updates corresponding to the related base relations. The maintenance
cost is considered equal to the cost of reading the changes over the view if the latter
has been materialized.



90 I. Mami et al.

5 Heuristics to Reduce the Search Space of Views

In this Section, we discuss search strategies for navigating in the solution space of
candidate view sets, looking for a low or minimal query cost subject to resource
constraints. The distributed AND-OR view graph defined in Sect. 3.2 which is
one of the inputs to the DVSP, represent all possible execution strategies for each
query in the workload. Clearly, the solution space is huge by considering all pos-
sible execution query plans. Indeed, the number of possible views to materialize
grows exponentially with the number of sites and queries as well as with the num-
ber of join predicate and relations referenced in each query. Even if views are
selected off line and thus time is not a big concern, it brings real issues due to
memory limitations. To solve the DVSP with low memory needs, special pruning
heuristics has to be designed in order to reduce the solution space. We start by con-
sidering only efficient execution plans and discarding those which are very costly.
As this task is of importance similar to query optimization, we have been inspired
by the standard heuristic join ordering [34,40] to optimize the ordering of joins
in distributed queries. The second reduction of the search space of views is based
on a site selection heuristic which constructs a set of promising candidate sites
at which views should be evaluated or materialized. The third reduction defines
robust heuristic search strategies within the constraint solver to determine the tra-
versal of the search tree. The most common branching strategies in the constraint
solver are based on the assignment of a selected variable to one or several selected
values. The objective of defining our own variable and value ordering heuristics
is to guide the search close to the optimal solution to the DVSP, which leads the
solver to find near-optimal solutions very fast.

5.1 Join Ordering Heuristic (JOH)

An important aspect of query optimization is join ordering [34], since permuta-
tions of the joins within the query may lead to improvements of orders of mag-
nitude. Join ordering in a distributed environment is even more important since
joins between fragments may increase the communication cost which is considered
to be the dominant factor in a distributed context. Indeed, minimizing distributed
joins is fundamental to minimize data communication. Let us first concentrate on
the simpler problem: consider the query A �� B, where A and B are relations
stored respectively on site s1 and s2. The obvious choice of the join-ordering algo-
rithm is to transfer the smaller relation to the site of the larger one. For instance
the order (A,B) (i.e., size(A) < size(B)) could use the strategy which sends the
relation A to site s2, while the order (B,A) (i.e., size(B) < size(A)) could use
the strategy that transmitted B to site s1.

Let us now consider the query q1 expressed in relational algebra as follows:
Π(δN �� S �� PS). This query can be executed in many different ways, some of
them are shown in Fig. 4. We define the set of query plans for qi as QPi = ∪jqpij
where j ≤ n and j ≥ 1, and n is the number of possible execution strategies for
qi. We denote by Vqpij

the set of views in qpij . In what follows, we describe two
possible strategies qp11 and qp12 for q1. Note that vi → sj stands for “view vi is
transferred to site sj”.
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qp11:
s2 computes SE1 N:δN
SE1 N → s1
S → s1
s1 computes JO1 S-N : SE1 N�� S

PS → s1

s1 computes JO2 PS-S-N : JO1 S-N�� PS

s1 computes PA1 PS-S-N: Π(JO2 PS − S − N)

Vqp11 = {SE1 N, JO1 S-N, JO2 PS-S-N,PA1 PS-S-N}

qp12:
PS → s1

S → s1
s1 computes JO3 PS-S : PS�� S

s2 computes SE1 N:δN
SE1 N → s1
s1 computes JO2 PS-S-N : JO3 PS-S�� SE1 N

s1 computes PA1 PS-S-N: Π(JO2 PS-S-N)

Vqp12 = {SE1 N, JO3 PS-S, JO2 PS-S-N,PA1 PS − S − N}

To reduce the search space of candidate views by considering only efficient
query plans, we have been inspired by the common used join-ordering algorithm.

Our heuristic works as follows: it starts by considering for each possible exe-
cution strategy the join views, denoted by JV JVqp11 ={(JO1 S-N), (JO2 PS-S-N)})
and then it computes an estimation of their size (e.g. size(JO1 S-N) and
size(JO2 PS-S-N)). A query plan qpij ∈ QPi is considered as a possible execution
strategy for a query qi ∈ Q only if the size estimation of join results is smaller
than a cost threshold:
size(v1) ∗ size(v2)... ∗ size(vv) ≤ K ∗ sizemax where vk ∈ JVqpij

The cost threshold requires two metrics: K is a constant where K ≤ 1 and K � 0
(If K=1, then all execution plan alternatives are considered for each query in the
workload) and sizemax that is computed as follows:

maxqpij∈QPi

(
size(v1) ∗ size(v2)... ∗ size(vv)

)
where vk ∈ JVqpij

It follows that qp11, as defined above, is considered as a possible execution strat-
egy for q1 only if: size(JO1 S-N)∗ size(JO2 PS-S-N)≤ K ∗ sizemax where sizemax is
computed as follows while considering only the query plans qp11 and qp12.

max
(

size(JO1 S-N)∗ size(JO2 PS-S-N), size(JO3 PS-S)∗ size(JO2 PS-S-N)
)

5.2 Site Selection Heuristic (SSH)

When distributed query optimization is used, either a single site or several sites
may participate to the selection of the strategy to be applied for answering the
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query. However, the number of possible execution strategies is in fact exponential
in the number of sites in the network. In the distributed AND-OR view graph that
we have presented in Sect. 3.2, every equivalence node (or view) and operation
node is spread over all sites to model all possible execution strategies. A practical
solution for the distributed view selection must design heuristics which select the
most promising sites on which the views may be computed or materialized in order
to avoid having to pay an important cost of communication.

Returning to theExample 3.1 described previously, it appears that it is not ben-
eficial to materialize the query q1 at site s3 or site s5. This leads to the reduction
of the search space in the distributed AND-OR view graph by discarding the exe-
cution strategies involving the sites s3 and s5 instead of considering all sites of the
network as shown in Fig. 4. This example illustrates the importance of producing
execution plans by carrying out site selection. The sites which are not able to com-
municate with the query issuer with high bandwidth connections may be discarded
in the elaboration of the best execution strategy, when the goal is the efficient usage
of the available bandwidth. Intuitively, this strategy may be especially attractive
for reducing the search space by considering that some sites in the network are not
promising and should not be explored during view selection and data placement
process. Site selection heuristics consider the following sites to participate to the
selection of the execution strategy for each query of the workload:

– SQI(qi). Answering the query (or view) at the site that issues this query would
improve the efficiency of evaluating the query especially when it is posed fre-
quently. However, it is not always possible when the query issuer has not the
required data.

– SDO(qi). Responses to the queries can be obtained from the data origin if the
required data can be found only at the data source. One way to reduce the eval-
uation cost of queries is to pre-compute and store extra relations at the data
origin in order to avoid having to transfer large amounts of data through the
network.

– SNE(qi). The effective utilization of site resources justifies the overhead of
searching potential neighbor sites. The request may be sent to the neighbors
of the query issuer or data origin. This attempts to exploit under-utilized
resources that may exist in some sites and exploring the option of materializing
at them the query results.

5.3 Variable and Value Ordering Heuristics (V V O)

A key ingredient of any constraint optimization approach is an efficient search
strategy. Indeed, defining well-suited heuristic search strategies within the con-
straint solver can prune the unpromising nodes in the tree search and hence speed
up the search to the optimal solution. Recall from Sect. 4 that the search in a con-
straint programming approach is organized as an enumeration tree, where each
node corresponds to a subspace of the search. A search tree in constraint program-
ming is dynamically built by splitting a problem into smaller subproblems. A sub-
problem is not further decomposed when the node is either pruned by feasibility
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Fig. 7. A search tree for a CSP/COP.

or optimality pruning or a leaf node is reached (as we can see in Fig. 7). The leaf
nodes are represented by circles, each of which indicates a possible solution where
all variables have value assignments. The costs associated to each solution are indi-
cated in the small dashed rectangle. The feasibility pruning is marked by a cross
while the pruned subtree is indicated by a triangle. Indeed, the search subtrees
can be pruned where the optimal solution does not settle. Note that every time
when a feasible solution is found, such solution imposes an additional constraint,
so that further solutions must have a better objective function value.

The tree is progressively constructed by applying series of branching strategies
that define the way to branch from a tree search node. The most common branch-
ing strategies in the constraint solver are based on variable and value ordering
heuristics. These heuristics impose an ordering on the variables and values respec-
tively. The order in which variables and values are selected has a great impact
on the search process. An example of variable ordering heuristic is the most con-
strained first variable heuristic. It orders the variables with respect to the num-
ber of their appearance in the constraints. An example of value selection ordering
is the random value heuristic, which orders the variables randomly and does not
imposes a partial order on the domain.

In what follows, we describe the variable and value ordering heuristics that we
have specified in our search strategy. They are based on domain knowledge from a
particular application. Of course, the closer the heuristic is to the objective func-
tion, the larger the subtree that can be pruned. Therefore, the more nodes pruned,
the more efficient the search is. In our work, the best solution is the one that min-
imizes the query cost subject to space and maintenance cost constraints. In our
model, the query cost reflects the local processing cost and the communication cost.
As mentioned before, the communication cost is considered to be the dominant fac-
tor in a distributed environment. For this purpose, we apply the following heuris-
tic: A view is preferably to be placed (materialized) closest to where it is frequently
accessed. In the pseudo-code below, we describe our heuristic.
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for each (vi, sj) in V (G) do
if size(vi) ≤ Spmaxj

and Mc(vi, sj) ≤ UMax then
// compute the benefit of materializing the view vi on site sj
Benefit(vi, sj) = CCost(vi, sorigin → sq) − CCost(vi, sj → sq)

end if
end for

Note that CCost(vi, sorigin → sq) is the cost of answering vi at sq by using the
data origin and CCost(vi, sj → sq) is the cost of answering vi at sq by using the
data from the site sj . This cost reflects the communication costs for transferring
the data.

In the constraint solver, branching are applied to decision variables. In our con-
straint optimization model, the materialization variable Mat(vi, sj) is the decision
variable since the aim of the problem that we address in this work is to decide
which views to materialize at what site of the network. Therefore, the variable
selector has to start by instantiating the variables Mat(vi, sj) corresponding to
the views with highest benefit. For this purpose, we sort the views in V (G) accord-
ing to their Benefit in descending order (as it is presented below). We iterate over
the sorted set starting with the views which have the highest benefit and we store
them according to this order in the variable MV S.

//sort according to the Benefit in descending order
V SSort = SortV iewsSites(Benefit)
for each (vi, sj) in V SSort do

MV S = MV S ∪ {Mat(vi, sj)}
end for

Then, the variable selector will choose the materialization variable Mat(vi, sj)
in the order they appear in MV S. Once the variable has been selected, the value
selector will assign the variable to its highest value: max(dMat(vi,sj)). As this way,
the view vi is considered as materialized at site sj . By defining these heuristics in
the search strategy, we expect that time and memory that the constraint solver
incurs to find near-optimal solutions and the optimal solution will be significantly
reduced since a large number of nodes in the search tree will be pruned.

6 Experimental Evaluation

This section present the results of a set of experiments designed to evaluate the
effects of our approach on query processing time. The application takes as input
a distributed scenario consisting of computer nodes with different resource con-
straints where each site (i.e., computer node) has its own query workload. As out-
put, it produces the set of recommended views and sites at which they should be
materialized. The distributed AND-OR view graph model, defined in Sect. 3, has
been used as a tool to compactly represent alternative query plans, find common-
alities among the queries and exploit materialized views whenever cost-effective.
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Our approach uses a set of pruning heuristics, that reduce the solution space mod-
eled by the graph, and search strategies which let the constraint solver converge
quickly, to further bolster the claim that our approach is applicable to large-scale
distributed environments.

The rest of this section is organized as follows. In Sect. 6.1, we describe
our experimental setup, and the approach that we have used for comparison. In
Sect. 6.2, we first study the effectiveness of the heuristics and search strategies that
we have proposed in the previous section to trade off completeness for efficiency
of the search. Then, we investigate the influence of resource limits on performance
while varying the storage space and maintenance cost constraints. Next, we study
the scalability of our approach for large query workloads as well as for complex
scenarios by an increasing site numbers. Finally, we summarize the performance
results in Sect. 6.3.

6.1 Experimental Setup

We have implemented our approach and compared it with the one presented in
[7] that uses a genetic algorithm to compute the views and the sites to materialize
them on. The study in [7] was chosen for comparison since it is the only effective
and practical approach for large-scale distributed scenarios.

The setting that we have used in our experiments consists of a scenario simu-
lation including a set of sites with different resource constraints (e.g., CPU, I/O,
storage space capacity and bandwidth) and is additionally constrained by a max-
imum global maintenance cost. Each site query and update numerous relations
on different sites. The query workload associated to each site is defined over the
schema of the TPC-H benchmark [2]. The complexity of the query workload is
important since query plans contain several join operations. The queries of the
workload are randomly distributed over the network so that each query initiator
has an associated query workload. The dataset is obtained by using the TPC-H
relations which contain millions of tuples. The frequencies for access and update
are randomly assigned based on a uniform distribution. We used the latest power-
ful version of CHOCO [1] to solve the distributed view selection problem (DVSP)
as a constraint optimization problem (COP). Because the DVSP has been stud-
ied under resources constraints, we incorporate space and maintenance cost con-
straints into the genetic algorithm presented in [7]. All the methods are imple-
mented in Java and all the experiments were carried out on a Quad-Core AMD
Opteron(tm) Processor 8384 CPU @ 2,693 GHz machine running with 64 GB of
RAM (the JVM was given 16 GB) and CentOS 5.9.

The performance of our approach was evaluated by measuring the gain in solu-
tion quality obtained by the materialized views. To evaluate the performance of
distributed view selection methods, we measure the following metrics.

SolutionQuality.The approach performance is evaluated by measuring the gain
in solution quality obtained by view selection and data placement. The solution
quality results from appraising the quality of the obtained set of views and sites
at which they should be materialized in terms of cost savings. In the experimental
results, the solution quality denoted by Qs is computed as follows:
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Qs =
WM − ∑

(vi,sj)∈Q(G)

(
fq(vi) ∗ Qc(vi, sj)

)
WM − ALLM

where WM and AllM denotes respectively the “WithoutMat” approach and
“AllMat” approach that are used as a benchmark for our normalized results.
The “WithoutMat” approach does not materialize views and always recomputes
queries whereas the “AllMat” approach materializes the result of each query of
the workload at the site to whom it is associated this query. As defined in Sect. 4,
Qc(vi, sj) is the query cost corresponding to the view (vi, sj) and fq(vi) is the
query frequency. Note that the higher the Qs-value , the better solution quality.

Space Constraint. The search space in this study is the total number of view
combinations that meet the space constraint. The difficulty of solving the problem
may depend on the relative magnitude of the storage space limits as compared
with the size of the queries of workload. Following a common practice in literature
[18], the storage space capacities are computed as follows.

Spmaxsi
= α ∗ SpAllMsi

where Spmaxsi
, defined in Sect. 4, is the maximum storage space corresponding

to site si and SpAllMsi
is the size of the whole workload associated to site si. α

is a constant where α ≤ 1 and α � 0. We assume the case where the problem is
studied under restrictive constraints as well as the case where we relax the space
constraints for each site.

Maintenance Cost Constraint. The aim is to select a set of views and place
them on the appropriate sites, while meeting the maintenance cost constraint.
Similar to [18], we evaluate this constraint as follows.

Umax = β ∗ McAllM

where Umax is total view maintenance cost limit as defined in Sect. 4, McAllM

is the total maintenance cost when the result of each query of the workload is
materialized and β is a constant. The value of β was set similar to α (see above).

TimeoutCondition. The constraint solver provides ways to limit the tree search
regarding different criteria. These limits have to be specified before the resolution.
In our experiments, we use the two following timeout conditions.

– Timeout(first-solution): The search stops when a solution is found.
– Timeout(timelimit): Performing the search until reaching a search time limit

timelimit. Observe that our approach is guaranteed to have some recom-
mended views and sites to materialize them on at any time T ≥ TFS (where
TFS is the time needed to find the first solution to the problem).

The search space in a constraint programming approach is explored to find fea-
sible solutions and optimal solutions. However, the constraint solver may require
an important amount of time to find the optimal solution to the DVSP, especially
in large-scale distributed environments. In order to allow a fair comparison with
the competitive approach [7], that uses a genetic algorithm to solve the DVSP,
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and since our approach is able to provide a solution at any time, the CHOCO
solver was left to run until the convergence of the genetic algorithm in the follow-
ing experiments. More precisely, the timeout condition was set to TGA that is the
time required by the genetic algorithm to solve the problem. Because our approach
is known to be a powerful method for modeling and solving combinatorial opti-
mization problems and our designed search strategies aim to speed up the search
to optimal solutions, we expect to achieve a high solution quality when the genetic
algorithm converges.

6.2 Impact of Heuristics and Optimizations

We study the impact of Join Ordering Heuristic (JOH), Site Selection Heuristic
(SSH) and Variable and Value Ordering heuristics (V V O) on the search space
explored by our approach which models the DVSP as a COP and by the genetic
algorithm (GA). Two simple and small scenarios (Scenario 1 and Scenario 2) suf-
fice to illustrate this.

The scenario 1 contains 5 sites which different constraints for CPU, I/O and
network bandwidth. Two sites behave as query initiator (|SQI |=2) and one site
contains the original contents (|SDO|=1). For each query initiator, it is associ-
ated a workload of 5 queries (|QSQI

|=5). ALL the sites may serve the role of stor-
age provider or query evaluator. The roles that can be assigned to the sites of the
network are explained in Sect. 3.1. Whereas the setting of the scenario 2 consists
of 10 sites, each of which can evaluate any query of the workload or materialize
pre-computed results. For this scenario, we assume that |SQI |=4, |SDO|=2 and
|QSQI

|=5.
To study the benefit of our designed heuristics, we attempted to evaluate

the reduction in the search space and compare the solution quality found by the
genetic algorithm and our approach where the timeout is set to TGA (COP) and
TFS (COP firstSol). We also compare the time that it takes to (i) solve the DVSP
as a COP by the CHOCO solver and (ii) the convergence of the genetic algorithm
(GA). In the following experiments, α and β, which define respectively the storage
space and the view maintenance cost limits, was set to 0.4 and 0.6.

Impact of JOH. To evaluate the effectiveness of the JOH heuristic, we built
different experiments with various values of K over ]0,1]. The reason of varying the
parameter K is explained in Sect. 5. In the case where K=1, all possible execution
plans for each query of the workload are considered. The smaller the K-value, the
more eliminate costly query execution strategies. Table 1 reports the reduction in
the size of the graph for scenario 1 and scenario 2, as expressed by the total number
of operation and equivalence nodes (views). The number of views and query plans
is significantly reduced as the value of K decreases since we consider less query
plan alternatives.

Figure 8a and b show respectively the solution quality of our approach and the
one of the genetic algorithm over scenario 1 and scenario 2. We can observe that
the reduction in the search space of candidate views conducts to a reduction in
the solution quality. This confirms the intuition that considering only a subset of
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Table 1. Comparing the sizes of the distributed AND-OR view graph over the JOH

K Number of Eq-Nodes Number of Op-Nodes TOTAL

(views)

Scenario 1

0.25 105 832 937

0.5 120 1037 1157

0.75 122 1047 1169

1 135 1362 1497

Scenario 2

0.25 350 7367 7717

0.5 360 7567 7927

0.75 363 7635 7998

1 400 10967 11367

Fig. 8. Solution quality and execution time while varying K
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possible execution strategies lead to miss global optimal plans. However, the time
needed to solve the problem by our approach and the genetic algorithm is signif-
icantly reduced for the instances with a relatively large reduction in the search
space, as can be seen in Fig. 8c. The same trend was observed for scenario 2 (see
Fig. 8d). Therefore, the small reduction in solution quality may be inconsequen-
tial compared to the significant reduction in execution time and search space (and
hence memory needs).

Another important remark is that our approach achieves always significant
gains in the solution quality compared to the genetic algorithm. This is even more
pronounced in for the Scenario 2 (larger number of sites). Indeed the quality of the
first solution found by the constraint solver is better that the one returned by the
genetic algorithm.

Table 2. Comparing the sizes of the distributed AND-OR view graph over the SSH

S Number of Eq-Nodes Number of Op-Nodes TOTAL

(views)

Scenario 1

SQI 38 112 150

SQI ∪ SDO 65 303 368

SQI ∪ SNE 75 481 556

SQI ∪ SDO ∪ SNE 97 911 1008

All sites 135 1362 1497

Scenario 2

SQI 72 376 448

SQI ∪ SDO 145 1221 1366

SQI ∪ SNE 159 2038 2197

SQI ∪ SDO ∪ SNE 232 4043 4275

All sites 400 10967 11367

Impact of SSH. This heuristic can also help in reducing the solution space by
considering for each query of the workload only a subset of sites during the data
placement. We conduct experiments where the recommended sites are (i) S =
SQI ; (ii) S = SQI∪SDO; (iii) S = SQI∪SNE (iiii) S = SQI∪SDO∪SNE ; (iiiii) S =
∪i=1..nsi where n is the number of sites in the network. Recall for Sect. 5 that SQI ,
SDO and SNE correspond respectively to the query initiators, the data origins and
the most promising neighbors of query initiators and data origins. Table 2 show
the number of equivalence and operation nodes as we change the type of sites that
we consider during the data placement. Obviously it appears that the magnitude
of the reduction in the search space depends on the set of recommended sites for
evaluating or materializing views. Next, we examine the impact of this reduction
on the solution quality and the execution time.
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Fig. 9. Solution quality and execution time as a function of S

Figure 9a and b plots for Scenario 1 and Scenario 2 respectively the evolution
of the quality of the solutions returned by our approach and the genetic algorithm.

We can observe that the quality decreases and tends to be relatively signif-
icant when we consider the first case in which we take into account only the
query initiators since we discards a significant number of sites. For instance in
Fig. 9b, the cost savings corresponding to the first case is degraded by approxi-
mately 13 % in comparison with the case where we consider all the sites of the
network. However, this degradation is relatively small with respect to the fourth
case (S = SQI ∪ SDO ∪ SNE) which is less than 4 %.

From Fig. 9c and d, we note that the time to solve the DVSP decreases drasti-
cally while varying the recommended site set. Indeed, we observe for example in
Fig. 9d that we could solve the problem within slightly over 90 sec where we con-
sider the fourth case (S = SQI ∪SDO ∪SNE) instead of 912 sec where we consider
all the sites (S = ∪i=1..nsi). This represents a very important gain in the exe-
cution time of approximately 90 %. By considering the fourth case, we expect to
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reduce the search space and hence the evaluation time by several orders of magni-
tude with a relatively small reduction in the query performance. In all cases, our
approach outperforms the genetic algorithm.

Impact of VV0. Here we study the impact of V V 0 on the search space explored
by the constraint solver and not on the solution space modeled by the distributed
AND-OR view graph like with the previous heuristics. To evaluate this, we study
the benefit that we bring to query evaluation and computing time when we use the
VVO strategy and several combinations of heuristics denoted by (JOH;V V O),
(SSH;V V O), (JOH;SSH) and (JOH;SSH;V V O). We also consider WH
which represents the case where no heuristics is defined. Note that V V 0 has no
influence on the quality of the solution of the genetic algorithm as well as the time
required by GA to converge. This can be explained by the fact that V V 0 is defined
only in the search strategy of the constraint solver. To ensure balance between
solution quality and execution time, we set the parameters for JOH and SSH as
follows: k=0.5 and S = SQI ∪ SDO ∪ SNE .

The results on query performance are shown in Fig. 10a and b for Scenario 1
and Scenario 2 respectively. We can see that the quality of the different solutions
of our approach is improved in the presence of V V 0. This is because V V 0 is a tech-
nique which helps the constraint solver to seek good (i.e. near-optimal) solutions in
the beginning of the search. The direct descendants of each node in the search tree
of the solver are totally ordered based on the variable and value ordering heuristic.
Hence each move in the search tree is only performed if the resulting solution is
better than the current solution. V V 0 can also allows to build the search tree in
the way that unfeasible solutions are eliminated subject to a subset of constraints
(i.e. violation of space or maintenance constraints).

We can also observe from Fig. 10c and d that the time that a constraint solver
incurs in the presence of a custom search for finding solutions is significantly
reduced. This is because the variable and value ordering heuristics V V 0 that we
have defined in the search strategy reduce significantly the search space explored
by the solver. Another important remark which is also valuable for the all experi-
ments that we conducted so far, is that our approach provides good solution qual-
ity and can find a solution in a smaller amount of time. The performance differ-
ences are quite drastic with respect to the genetic algorithm. For scalability rea-
sons, we have used the set of pruning heuristics JOH, SHH and VVO in the fol-
lowing experiments.

6.3 Performance Under Resource Constraints

To examine the impact of space and maintenance cost constraints on solution qual-
ity, we conduct experiments over a scenario of 100 sites with different constraints
on CPU, IO and network bandwidth. The number of query initiators is equal to
one-tenth of the total number of sites. Each query initiator issues ten queries so
that the number of queries in the workload is equal to 100 queries. We assume that
there is eight sites which behave as data origin. Each site of the network may serve
the role of storage provider or query evaluator.
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Fig. 10. Solution quality and execution time for different heuristic combinations

Performance While Varying the Space Constraint. In these experiments,
we vary only the space constraint. Figure 11a investigates the influence of space
limit on solution quality for each value of α which defines the storage space capaci-
ties (see Sect. 6.2). The values of α at each site are varied from 0.1 to 1. β that deter-
mines the view maintenance cost limit, is set to 0.6. We note that the quality of the
solutions in terms of cost savings produced by the two methods improves when α
increases, since there is storage space available for more views to be materialized.
However, there is no improvement or very slight one in query performance from
certain values of α because the maintenance cost constraint becomes the signifi-
cant factor. Second, Fig. 11a shows that our approach provides the best gain in the
solution quality for different values of α in comparison with the genetic algorithm.

Performance While Varying the Maintenance Cost Constraint. We dis-
cuss now the impact of the maintenance cost constraint on performance. Although
the space constraint seems similar to the maintenance cost constraint, they have a



A Constraint Optimization Method 103

Fig. 11. Performance under resource constraints

significant difference. The space occupied by a set of views always increases when a
new view is materialized, while the maintenance cost does not: it is possible for the
maintenance cost of a set of views to decrease after the addition of a new one. This
property is formally defined in [14]. In this experiment as it is shown in Fig. 11b,
the values of β are varied from 0.1 to 1 while α is set at each site to 0.4. Similarly to
the last experiment, we can see that we have better solutions when β increases since
the maintenance time window is available for making the materialized views up-to-
date. The performance stabilizes from certain values of β since the space constraint
becomes the dominant parameter. Our approach again performs consistently bet-
ter than the other method.

6.4 Scalability of Our Approach

To evaluate the scalability of our proposed approach, we attempted to solve the
problem for instances with a larger number of queries in the workload. Next, we
present the results for large-scale distributed scenarios to show how our approach
scales well to a large number of sites.

SolutionQualityonLargeQueryWorkloads. Let us nowevaluate the perfor-
mance of our approach and the one of genetic algorithm on larger query workloads.
To this purpose, we generated a scenario of 100 sites where the query workload
ranges from 100 to 1000 queries. The number of query initiators is equal to one-
tenth of the total number of sites. While the number of data origin is equal to eight.
As in previous experiments, any site of the network may serve the role of storage
provider or query evaluator. For the space and maintenance cost constrains, α=0.4
at each site of the network and β=0.6.

The experiment results aredepicted inFig. 12.Wecanmake the followingobser-
vations. 0ur approach provides better performances in terms of the solution quality
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Fig. 12. Solution Quality for large query workloads

while varying the number of queries compared to the other algorithm. Indeed, our
approach provides the better solution by a significant margin. The cost saving is
up to 48 % more than the genetic algorithm. The quality of the solution is slightly
decreasingwith aworkload of 1000 queries.The timeout condition is set close to 5 h.
This is the time that the genetic takes to converge with a scenario of 100 sites and
a workload of 1000 queries which correspond to thousands of views. We conclude
that our approach scales well up to 1000 queries since the quality of the results is
not significantly influenced by an increasing query number.

SolutionQuality onLarge-ScaleDistributed Scenarios. We study the scal-
ability of our approach for complex scenario which contains large number of sites.
We run experiments while varying the number of sites from 100 to 1000 sites. Each
query initiator poses ten queries. As in previous experiments, query initiators rep-
resent one-tenth of the total number of sites and the base relations are stored at

Fig. 13. Solution Quality for large-scale distributed scenarios.
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eight different sites. The sites of the network are heterogeneous with respect to the
resource constraints (e.g., CPU, I/O and network bandwidth) and may serve any
role of those defined in Sect. 3. The DVSP is studied under space and maintenance
constraints. For each site, α is set to 0.4 and for the maintenance cost constraint,
β is set to 0.6.

The experiment results are shown in Fig. 13. We can observe that an increase
in the number of sites does not seem to affect much the solution quality in terms
of cost savings, which indicates the effectiveness of our approach in large-scale sce-
narios. Note that the timeout condition is slightly over 16 h which is the time that
the genetic algorithm takes to converge for a scenario of 1000 sites. We once again
see that our approach performs the best, finding significantly better quality of the
obtained set of materialized views in terms of cost saving compared with the other
method.

6.5 Experiment Conclusion

Our experiments show that our approach achieves significant performance gains.
Indeed, our recommended views do improve the query evaluation with impressive
cost saving factors subject to space and maintenance constraints. The JOH, SSH
heuristics that we have designed are efficient and effective since they reduce sig-
nificantly the search space and hence the density of the distributed AND-OR view
graph with a relatively small reduction in the solution quality. The VVO heuristic
that we have defined within the constraint solver helps the latter to reach high solu-
tionquality fromthebeginningof the searchbydiscardinga largenumberof inferior
solutions. The experiment results confirm our expectation that the set of pruning
heuristics that we have proposed allows our approach to scale well with large query
workloads up to 1000 queries aswell aswith complex scenarioswhich contains up to
1000 heterogeneous sites. Finally, we can conclude from the experimental evalua-
tion that our constraint optimization approach outperforms the genetic algorithm
by several orders of magnitude.

7 ConcludingRemarks and FutureWork

In this paper, we formalize and study the distributed view selection problem which
is the combined problem of view selection and data placement. Our work explores
the full potential of view materialization techniques for improving query perfor-
mance. In this context, we address the problem of efficiently recommending a set
of views and a set of sites to materialize them on, subject to view storage and view
maintenance cost constraints. We have proposed a new approach which is based on
the integration of constraint programming that is a well known solution method
to the combinatorial optimization problems. To this purpose, the distributed view
selection problem has been modeled as a constraint optimization problem. This
study focuses on the construction of effective and efficient heuristics that reduce
drastically the solution space to solve the problem with large-scale distributed sce-
narios, for which an early version of this work failed to produce any solution as
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they outgrow the available memory. We evaluate the performance of our approach
over various experiments. Our experimental study corroborates our claim that our
approach can significantly improve the query performance and by a drastic margin
compared to the other method. The evaluation also confirms that our approach is
applicable for large number of queries or sites. As a future work, we are planning to
extend our constraint optimization model and adapt our approach to address the
dynamic distributed view selection problem which is still an open issue. Comput-
ing which view has to be materialized at what machine in the cloud computing, in
which large amounts of data, content and knowledge are being spread over the ser-
vice providers’ infrastructures, is another avenue of further research. It seems inter-
esting to explore new costs models in this context. Indeed, [33] has been worked on
a novel cost models that complement the existing materialized view cost models
with a monetary cost component that is primordial in the cloud.
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Abstract. We consider the problem of source selection and query
decomposition in federations of SPARQL endpoints, where query decom-
positions of a SPARQL query should reduce execution time and maxi-
mize answer completeness. This problem is in general intractable, and
performance and answer completeness of SPARQL queries can be con-
siderably affected when the number of SPARQL endpoints in a federa-
tion increases. We devise a formalization of this problem as the Vertex
Coloring Problem and propose an approximate algorithm named Fed-
DSATUR. We rely on existing results from graph theory to characterize
the family of SPARQL queries for which Fed-DSATUR can produce opti-
mal decompositions in polynomial time on the size of the query, i.e., on
the number of SPARQL triple patterns in the query. Fed-DSATUR scales
up much better to SPARQL queries with a large number of triple pat-
terns, and may exhibit significant improvements in performance while
answer completeness remains close to 100%. More importantly, we put
our results in perspective, and provide evidence of SPARQL queries
that are hard to decompose and constitute new challenges for data
management.

1 Introduction

Over the past decade, the number of Linked Data sets in the Linking Open Data
cloud has exploded as well as the number of SPARQL endpoints that access these
datasets [25]. As more Linked Open Data becomes available, applications from
different domains are frequently developed, and queries that require gathering
data from several Linked Data sets are more likely everyday. Linked Data appli-
cations include [9]: TELEIOS1 relies on Linked Geospatial Data to uncover hid-
den patterns in earth observations; OpenPHACTS2 links pharmacological data
in order to provide support for the discovery of new patterns and connections;
1 http://www.earthobservatory.eu/.
2 https://www.openphacts.org/.
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and GeoKnow3 integrates geo-spatial knowledge with the Linked Data Web for
data exploration and curation. As a result, given the vast amount of Linked Data
sets and the diversity of applications, federated SPARQL query engines need to
provide a unify querying interface to large federations of SPARQL endpoints,
and execute SPARQL queries against the federation in a way that execution
time is minimized while the query answer completeness is maximized.

So far, several approaches have addressed the problem of decomposing
a SPARQL query into subqueries that can be executed on the Web of
Data [1,3,13,27]. Some approaches for the source selection decision rely on sta-
tistics collected from the sources [13] or simply consider all possible subqueries
and choose the most promising ones [3]. Others implement heuristic-based strate-
gies to identify the subqueries that can be executed by the available SPARQL
endpoints [1,27]. For example, FedX [27] is a rule-based system able to generate
left-linear plans comprised of subqueries that can be exclusively answered by one
SPARQL endpoint (exclusive groups); FedX does not derive the query decom-
position decision on knowledge about schema alignments or data distributions.
ANAPSID [1] resorts to source descriptions to determine the SPARQL endpoints
that can answer a SPARQL triple pattern. All the triple patterns that can be
executed the same set of SPARQL endpoints are grouped together in a way that
the number of operations done by the selected endpoints are maximized while the
size of intermediate results is minimized. SPLENDID [10] exploits statistics that
describe RDF data accessible from the federation of SPARQL endpoints to per-
form the source selection and query optimization tasks. DAW [24] exploits infor-
mation encoded in index-based descriptions of the data accessible via SPARQL
endpoints, to identify execution plans that reduce the gathering of replicated
data from the selected SPARQL endpoints. Finally, HiBISCuS [23] also resorts
to index-based structures to discard the SPARQL endpoints that do not con-
tribute to the final answer. Although these federated approaches may effectively
address the source selection problem, performance may be deteriorated when-
ever SPARQL queries with a large number of triple patterns are executed or
large intermediate results are retrieved from the SPARQL endpoints.

In this paper, we study the characteristics of SPARQL queries for which exist-
ing federated SPARQL query engines may perform poorly, and the complexity
of decomposing these queries into efficient and effective plans. We conduct our
study from a theoretical and empirical point of view, and provide formal proofs
that reveal a theoretical justification of the behavior shown by state-of-the-art
engines in a class of SPARQL queries. The main idea of our approach is to
cast the SPARQL federated query decomposition problem into the Vertex Col-
oring Problem such that colorings correspond to decompositions of a SPARQL
query against the SPARQL endpoints of a federation. Additionally, building
on existing results from graph theory, we identify properties of the SPARQL
queries that ensure optimality of the query decomposition, i.e., the partition of
the original query into subqueries executable on available SPARQL endpoints
whose execution cost is minimal and the percentage of answer completeness is

3 http://geoknow.eu/.

http://geoknow.eu/
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100 %. Fed-DSATUR extends DSATUR [4], a coloring approximate algorithm
that implements a greedy iterative strategy to color each node once, while it fol-
lows a heuristic to color first the nodes with a reduced number of possible colors.
To experimentally evaluate Fed-DSATUR, we study the topology of the graphs
generated from both FedBench queries [26] and additional queries comprised of a
large number of triple patterns, and compare the performance of state-of-the-art
engines during the execution of these queries. Our experimental results reveal
that for SPARQL queries whose optimal solutions can be identified in polyno-
mial time, existing engines perform similarly. In contrast, for SPARQL queries
that do not meet this property, dissimilar behaviors are observed, raising new
challenges to state-of-the-art federated SPARQL query engines.

In summary, we make the following crisp contributions to the problem of
federated SPARQL query decomposition:

– Formalization of the Federated SPARQL Query Decomposition Problem
(FSQD) and characterization of tractability conditions.

– Mapping of the Federated SPARQL Query Decomposition Problem (FSQD)
into the Vertex Coloring Problem. Definition of the optimization criteria in
a way that the generated query decompositions can reduce execution time
while answer completeness is maximized.

– An approximate solution named Fed-DSATUR that extends the greedy algo-
rithm DSATUR [4] to solve the problem of source selection and query decom-
position on federations of SPARQL endpoints. Fed-DSATUR does not rely on
statistics, indices, or any kind of estimates during source selection and query
decomposition. Therefore, Fed-DSATUR adapts the selection criteria to the
current conditions of the RDF datasets, e.g., the existence or not of RDF
triples of a given predicate in an RDF dataset.

– An empirical evaluation of Fed-DSATUR and existing approaches on diverse
instances of the problem. Queries and datasets from the FedBench benchmark
are used in the study. We configure two federations of SPARQL endpoints to
access the FedBench data collections. In both federations RDF triples are frag-
mented in datasets accessible via SPARQL endpoints. The goal of the study
is to evaluate the impact of fragmenting data across several RDF datasets
on the behavior of the studied federated SPARQL query engines. Further-
more, additional complex SPARQL queries which comprise large number of
triple patterns and SPARQL operators are evaluated. We aim at evaluating
the behavior of federated SPARQL query engines in queries with large spaces
of potential query decompositions; some of these SPARQL queries raise new
challenges to the evaluated approaches.

The rest of the paper is as follows: Sect. 2 gives a motivating example.
Section 3 summarizes the terminology and concepts required to understand our
proposed approach. Section 4 presents the Federated SPARQL Query Decompo-
sition Problem (FSQD) and the Fed-DSATUR approximate algorithm. Exper-
imental results are reported in Sect. 5. Section 6 summarizes the related work.
Finally, we conclude in Sect. 7 with an outlook to future work.
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2 Preliminaries

2.1 RDF and SPARQL

An RDF graph [21] is a set of RDF triples (s, p, o), where s represents a subject,
p is a predicate, and o is an object. Formally, an RDF graph T is as follows:

T ⊆ (U ∪ B) × U × (U ∪ B ∪ L)

– U : An infinite set of URI references;
– B: An infinite set of blank nodes; and
– L: An infinite set of RDF literals.

A SPARQL query Q is represented by a set of the basic graph patterns BGPs
in the WHERE clause of Q; each BGP is a set of triple patterns, and BGPs can
be connected by OPTIONALs or UNIONs in Q. An exact star ES(P,?X) of triple
patterns of a basic graph pattern P on a variable ?X is as follows [29]:

– ES(S,?X) is a triple pattern in S of the form {s p ?X } or {?X p o} such
that, s �= ?X, p �= ?X and o �= ?X.

– ES(S,?X) is the union of two exact starts, ES1(S,?X) and ES2(S,?X), such
that they only share the variable ?X, i.e., var(ES1(S,?X))∩ var(ES2(S,?X))
= {?X}.

Consider the following LS5 SPARQL query: “Drugs and their components’
url and image”, see Listing 1.1.

Listing 1.1. Query LS5 from FedBench [26]
1 PREFIX r d f : <ht tp : //www.w3 . org /1999/02/22− rd f−syntax−ns#>

2 PREFIX drugbank : <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ drugbank / r e s o u r c e / drugbank/>

3 PREFIX p u r l :<ht tp : // p u r l . o rg /dc/ e l ement s /1.1/>

4 PREFIX b i o 2 r d f :<ht tp : // b i o 2 r d f . o rg / ns / b i o 2 r d f#>

5 SELECT ? drug ? keggUr l ? cheb i Image WHERE {
6 ? drug r d f : t ype drugbank : d rugs .

7 ? drug drugbank : keggCompoundId ? keggDrug .

8 ? drug drugbank : gener icName ?drugBankName .

9 ? keggDrug b i o 2 r d f : u r l ? keggUr l .

10 ? cheb iDrug p u r l : t i t l e ?drugBankName .

11 ? cheb iDrug b i o 2 r d f : image ? cheb i Image

12 }

LS5 comprises one basic graph pattern BGP of six triple patterns. This BGP
can be decomposed into one subquery composed of the triple pattern in line
9, and into two star groups: (i) One star subquery is on the variable ?drug
and is composed of three triple patterns in the lines 6, 7, and 8; and (ii) The
other star subquery comprises the triple patterns in lines 10 and 11 and is
on the variable ?chebiDrug. Different studies reported in the literature [17,29,
31] suggest that query plans composed of small-sized star-shaped groups can
be effectively executed on existing RDF triple stores. We rely on these results
and propose a query decomposition technique able to identify stars groups as
subqueries that can be executed against the SPARQL endpoints of a federation.
The proposed decomposition techniques benefit the generation of subqueries
that correspond to maximal star-shaped subqueries whenever the non-selected
SPARQL endpoints do not affect the completeness of the query answer.
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2.2 Federations of SPARQL Endpoints

A federation of SPARQL endpoints is a set of RDF datasets that can be accessed
via SPARQL endpoints. A SPARQL endpoint is a Web service that provides
a Web interface to query RDF data following the SPARQL protocol4. RDF
datasets comprise sets of RDF triples; predicates of these triples can be from
more than one Linked Open Vocabulary5, e.g., FOAF6 or DBpedia ontology.
Additionally, proprietary vocabularies can be used to describe the RDF resources
of these triples, and controlled vocabularies as VoID7, can be used to describe
the properties of the RDF data accessible through a given SPARQL endpoint.
In this work, we assume no information about the properties of the RDF data
accessible through a SPARQL endpoints is available; only, the URL is provided
as a description of the endpoint.

Table 1 illustrates a federation comprised of 26 SPARQL endpoints which
provide access to 26 RDF datasets. These RDF collections are part of Fed-
Bench [26] which is the only benchmark available to evaluate performance and
behavior of the query processing techniques implemented in the existing fed-
erated query engines. We use FedBench in our running examples and in the
empirical evaluation of our approach. FedBench comprises three data collections:

Cross Domain Collection: Data from different linked domains, e.g., movies
(LMDB)8, DBpedia9, GeoNames10, news from the New York Times (NYT)11,
information from the Semantic Web conferences (SW Dog Food)12, and music
from Jamendo13.

Life Science Collection: Biomedical data with drugs and targets from Drug-
bank14 and DBpedia, genes and genomes from KEGG15, and molecular enti-
ties on chemical components from ChEBi16.

SP2Bench Data Collection: Synthetic data divided into different smaller
datasets according to the type of the data.

Additionally, FedBench provides four sets of SPARQL queries designed to
stress query answer completeness and query execution performance. In total the
benchmark comprises 39 SPARQL queries:

4 http://www.w3.org/TR/rdf-sparql-protocol/.
5 http://lov.okfn.org/dataset/lov.
6 http://xmlns.com/foaf/spec/.
7 http://www.w3.org/TR/void/.
8 http://www.linkedmdb.org/.
9 http://dbpedia.org/About.

10 http://www.geonames.org/.
11 http://data.nytimes.com/.
12 http://data.semanticweb.org/.
13 http://dbtune.org/jamendo/.
14 http://www.drugbank.ca/.
15 http://www.genome.jp/kegg/.
16 http://www.ebi.ac.uk/chebi/.

http://www.w3.org/TR/rdf-sparql-protocol/
http://lov.okfn.org/dataset/lov
http://xmlns.com/foaf/spec/
http://www.w3.org/TR/void/
http://www.linkedmdb.org/
http://dbpedia.org/About
http://www.geonames.org/
http://data.nytimes.com/
http://data.semanticweb.org/
http://dbtune.org/jamendo/
http://www.drugbank.ca/
http://www.genome.jp/kegg/
http://www.ebi.ac.uk/chebi/
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Table 1. Running example: federation of SPARQL endpoints. Fed1 is a fed-
eration of 26 SPARQL endpoints to access FedBench RDF datasets

RDF dataset name # Endpoints # Triples per endpoint

NY Times (NYT) 1 314 k

LinkedMDB (LMDB) 1 6.14 M

Jamendo 1 1.04 M

Geonames (eleven data sets) 10 9.9 M

1 7.98 M

SW Dog Food (SWDF) 1 84 k

KEGG 1 10.9 M

Drugbank 1 517 k

ChEBi 1 4.77 M

SP2B-10M 1 10 M

DBpedia

Infobox types 1 5.49 M

Infobox properties 1 10.80 M

Titles 1 7.33 M

Articles categories 1 10.91 M

Images 1 3.88 M

SKOS categories 1 2.24 M

Other 1 2.45 M

Cross Domain (CD): Seven full SPARQL queries17 against RDF datasets in
the Cross Domain Collection.

Life Science (LS): Seven full SPARQL queries against RDF datasets in the
Life Science Collection.

Linked Data (LD): Eleven basic graph patterns SPARQL queries against RDF
datasets in the Cross Domain and Life Science Collections.

SP2: 14 full SPARQL queries against RDF datasets in the SP2 Bench Data
Collection.

Queries against federations of SPARQL endpoints are posed through feder-
ated SPARQL query engines. Figure 1 presents a generic architecture of a fed-
erated SPARQL query engine. This architecture is based on the mediator and
wrapper architecture [30]. Light-weight wrappers translate SPARQL subqueries
into calls to the SPARQL endpoints as well as convert endpoint answers into the
query engine internal structures. The mediator is composed of three main com-
ponents: (i) Source Selection and Query Decomposer: Decomposes user queries
into multiple simple subqueries, and selects the endpoints that are capable of
executing each subquery. Simple subqueries comprise a list of triple patterns that

17 SPARQL queries with different SPARQL operators, e.g., UNION or OPTIONAL.
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Fig. 1. Typical federated SPARQL query engine architecture. Main compo-
nents: Source selection and query decomposition identifies SPARQL endpoints to exe-
cute the subqueries of original query; Query optimizer generates physical plans; and
Query engine executes the physical plan against the selected SPARQL endpoints

can be evaluated against at least one endpoint. (ii) Query Optimizer: Identifies
execution plans that combine subqueries and benefits the generation of specific
physical plans that exploit the properties of the physical operators implemented
by the query engine. Statistics about the distribution of values in the different
datasets may be used to identify the best combination of subqueries as well
as the shape of the plan that will ensure an efficient execution of the query.
(iii) Query Engine: Implements different physical operators to combine tuples
from different endpoints. We focus on the Source Selection and Query Decom-
poser component and propose techniques able to reduce execution time without
affecting query answer completeness. Because properties of the SPARQL end-
points can be collected on the fly by executing SPARQL ASK queries, federated
SPARQL query engines can implement adaptivity at the level of source selection
and query decomposition, i.e., these are adaptive planning engines.

3 Motivating Example

We motivate our work by observing how the performance and answer complete-
ness of queries executed against federations of SPARQL endpoints are impacted
by the type of decomposition. An experiment was set up in order to evaluate the
performance and answer completeness of different query decompositions of the
query CD6 (Cross Domain) of FedBench. We fragmented the FedBench collec-
tions18 as reported in Table 2. The federated query engine ANAPSID [1] (Version
May 2014) was used to evaluate CD6 as well as the different decompositions.
Figure 3 presents CD6 and the endpoints that access RDF datasets comprised of
RDF triples with the predicates used in the query. As can be observed in Fig. 3,

18 http://iwb.fluidops.com:7879/resource/Datasets, November 2011.

http://iwb.fluidops.com:7879/resource/Datasets
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Table 2. Running example: federation of SPARQL endpoints. Fed2 is a fed-
eration of 10 SPARQL endpoints to access FedBench RDF datasets

Collection name # Endpoints # Triples per endpoint

NY Times (NYT) 1 314 k

Linked MDB (LMDB) 1 6.14 M

Jamendo 1 1.04 M

Geonames (Geo) 1 9.9 M

SW Dog Food (SWDF) 1 84 k

KEGG 1 10.9 M

Drugbank 1 517 k

ChEBi 1 4.77 M

DBpedia 1 43.1 M

SP2B-10M (Bibliographic) 1 10 M

Fig. 2. Running example cross domain FedBench query CD6 and relevant endpoints
per RDF predicate of CD6 triple patterns

seven different SPARQL endpoints can be used to execute the triple patterns of
CD6; these SPARQL endpoints correspond to our baseline.

Further, Fig. 3(a)–(c) show three decompositions for contacting the selected
endpoints and executing CD6. For each decomposition we present the number
of subqueries, and the triple patterns assigned to the subqueries as well as the
endpoints selected for each subquery. Further, we summarize the total number of
endpoints assigned to the decomposition as the Number of Contacts to Endpoints
(NCE); the Number of Non-Selected Endpoints (NNME) corresponds to the
number of endpoints that even being relevant for a triple pattern are not selected
for the subquery where the triple pattern is assigned in the decomposition. For
example, decomposition D1 comprises four subqueries, one per triple pattern;
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Fig. 3. Running example: decompositions for FedBench CD6 query. Each
query decomposition is defined in terms of subqueries, Number of Contacts to End-
points (NCE), and Number of Non-Selected Endpoints (NNME). NCE corresponds to
the sum of the number of relevant endpoints assigned to each subquery. NNME repre-
sents the number of endpoints that are relevant for a triple pattern but that were not
selected in the decomposition

all the endpoints that define the corresponding predicate of each triple pattern
are selected; thus, Number of Contacts to Endpoints (NCE) is the sum of the
endpoints contacts per subquery, i.e., 13; the Number of Non-Selected Endpoints
(NNME) is 0. On the other hand, decomposition D2 is composed of two subgoals
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Table 3. Running example: Execution Time seconds (ET) and Percentage of
Answers (PA) for CD6. Given decompositions D1, D2, and D3 of CD6, queries are
executed on ANAPSID (Version May 2014) against 10 SPARQL Virtuoso endpoints
that access the FedBench collections (Fed2)

Decompositions Execution Time (ET) Percentage of
Answers (PA)

ANAPSID SSGM decomposition for CD6 36.49 100

D1 52.50 100

D2 9.61 100

D3 40.66 100

that group triple patterns that share one variable; each subgoal is associated with
the endpoints where the two triple patterns in the subgoal can be executed, i.e.,
five out of seven relevant endpoints will be contacted in total, i.e., the Number
of Contacts to Endpoints (NCE) is 5. Additionally, endpoints that are not in
the intersection of the relevant endpoints of the triple patterns assigned to each
subquery are not selected, i.e., one endpoint is not selected per triple patterns 1,
2, and 3; thus, the Number of Non-Selected Endpoints (NNME) is 3. Reducing
the number of sources can have a great impact on the query execution time but
may negatively affect the answer completeness.

We ran CD6 and decompositions D1, D2, and D3 on ANAPSID to evaluate
the impact of these decompositions on execution time and number of query
results. The studied metrics are Execution Time (ET) and Percentage of Answers
(PA). ET corresponds to the elapsed time measured as the absolute wall-clock
system time reported by the Python time.time() function, while PA reports
on the percentage of the answers produced by the engine; duplicates are not
considered. CD6 was executed against ten Virtuoso endpoints that locally access
the FedBench collections. Table 2 describes the distribution of the FedBench
collections per endpoint. This study was executed on a Linux Mint machine with
an Intel Pentium Core 2 Duo E7500 2.93 GHz 8 GB RAM 1333 MHz DDR3.

Table 3 reports on ET and PA. As expected, values of execution time are
diverse and are considerably impacted by the number of subqueries and con-
tacted endpoints. Nevertheless, it is important to highlight the reduction on the
execution time that is observed when decomposition D2 is run on ANAPSID.
We formalize the problem of source selection and query decomposition in the
context of federations of SPARQL endpoints, and provide an approach able to
identify decompositions as D2 that can be efficiently executed without affecting
the percentage of answers. Building on existing results from graph theory, we
map the SPARQL federated query decomposition problem into the Vertex Col-
oring Problem such that colorings correspond to decompositions of a SPARQL
query against a federation of SPARQL endpoints, and extend an approximate
solution of the Vertex Coloring Problem for decomposing SPARQL queries into
subqueries against SPARQL endpoints in the federation.
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4 Fed-DSATUR: An Adaptive Approach to the Problem
of Federated Query Processing

In this section we introduce the Federated SPARQL Query Decomposition Prob-
lem (FSQD), and an approximate algorithm named Fed-DSATUR that exploits
properties of Graph theory to provide an efficient and effective solution to FSQD.
We first define the FSQD problem, then we briefly describe the Vertex Color-
ing problem and the mapping of the FSQD problem into the Vertex Coloring
problem. Finally, properties of Fed-DSATUR are presented.

4.1 The Federated SPARQL Query Decomposition Problem

A federation is a triple FE = (En, ds, ins), where En is a set of SPARQL end-
points. The function ds(.) maps a resource p in I (resources’ URIs according to
terminology from [21]) to the set of endpoints in En that can answer the triple
pattern {?s p ?o}, i.e., the endpoints where the query ASK {?s p ?o} evalu-
ates TRUE. Further, ins(.) is a mapping from endpoints in En to RDF graphs,
and ins(e) represents the RDF graphs that are accessible via e. The Feder-
ated SPARQL Query Decomposition Problem (FSQD) consists of a federation
FE = (En, ds, ins) of SPARQL endpoints, and a SPARQL query Q. FSQD cor-
responds to the problem of decomposing Q into subqueries that can be executed
against endpoints in FE, and minimize the execution time and maximize query
answer completeness.

Definition 1 (SPARQL Query Decomposition). Given a BGP in a query
Q executed against a federation FE = (En, ds, ins). Let D = (DP, f, g) be a
decomposition of BGP, where:

– DP = {SQ1, . . . , SQm} is a partition of the triple patterns in BGP, where
SQi is a subquery for 1 ≤ i ≤ m;

– f(.) maps SQi to the endpoints in En where SQi will be executed; and
– g(.) maps each triple pattern of BGP to the subquery SQi where is assigned

to in D.

Consider query CD6 from our running example. CD6 has one BGP, and decom-
position D1 is represented as follows: D1 = (DP = {SQ1, SQ2, SQ3, SQ4}, f, g):

– f = {(SQ1,{Jamendo, SWDF, DBpedia, Bibliographic}),
(SQ2,{LMDB, SWDF, DBpedia, Jamendo}),
(SQ3,{DBpedia, NYT, Geo}),
(SQ4,{DBpedia, Geo})}

– g = {(1,SQ1),(2,SQ2),(3,SQ3),(4,SQ4)}
Given a decomposition D = (DP, f, g) of query Q, and a partition component

(i.e., a subquery of DP) d ∈ DP , the execution of d against the endpoints in
f(d), eval(Q,f(d)), corresponds to the union of the result sets of executing the
triple patterns in d on each endpoint in f(d); filters on triple patterns in d are
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also executed. For example, in the decomposition D1 of our running example, the
result of executing triple SQ1 on f(SQ1)={LMDB, SWDF, DBpedia, Jamendo}
corresponds to the union of the results of executing triple pattern 1 against each
of these endpoints. Similarly, the results of SQ2, SQ3, and SQ4 are built.

The execution of Q according to D = (DP, f, g), eval(Q,D), corresponds to
the result set of joining the result sets of eval(Q,f(d)), for all d in DP. Thus,
the answer of CD6 corresponds to the join of the results of executing SQ1,
SQ2, SQ3, and SQ4. In case the WHERE clause of Q comprises several BGPs,
i.e., (Pi OP Pj), and OP is UNION or OPTIONAL, then DQ = {Di} ∪ {Dj}
and eval(Q,DQ) = (eval(Q,Di) OP eval(Q,Dj)) where Di and Dj represent the
decompositions of Pi and Pj , respectively. Finally, given a federation FE =
(En, ds, ins), IVF(FE) is an integrated view of FE and corresponds to the union
of ins(e) for all the e in En; eval(Q,IVF(FE)) is the result set of executing Q in
IVF(FE). A decomposition D is valid iff for all the federations FE, eval(Q,D) ⊆
eval(Q,IVF(FE)).

In order to solve the FSQD, we estimate the cost of a decomposition
D = (DP, f, g) of query Q, cost(D), as a trade-off between query execution per-
formance and query completeness. Relying on results that support the efficiency
of executing star-shaped queries against SPARQL engines [17,29,31], we assume
that queries decomposed with a minimal number star-shaped subqueries will
reduce execution time. Further, queries whose evaluation contact the majority
of the federation endpoints will result in more complete answers. Thus, cost(D)
is defined as the arithmetic mean of the Estimated Triple Pattern Coverage
(ESTC), Estimated Number of Non-Selected Endpoints (ENNSE), and Esti-
mated Number of Endpoint Contacts (ENCE). Values of cost(.) belong to [0.0;
1.0]. A value close to 0.0 indicates that the query is decomposed into few sub-
queries that correspond all to maximal star-shape subqueries, a small number
of endpoints are not selected, and the same endpoint is not contacted several
times. Contrary, a value close to 1.0 denotes a costly decomposition that meet at
least one of the following conditions: (i) Subqueries comprise one triple pattern;
(ii) A large number of endpoints are not selected for the evaluation of a triple
pattern; and (iii) The same endpoints are contacted several times.

We formally define cost(.) as follows; then we provide an example that illus-
trates the values of cost(.) for the decompositions of our running example.

Definition 2 (Cost of Query Decomposition). Given a BGP P of N triple
patterns in a query Q executed against a federation FE = (En, ds, ins). Let
D = (DP = {SQ1, . . . , SQm}, f, g) be a query decomposition of P, the cost of
D, cost(D), is the arithmetic mean of ESTC, ENNSE, and ENCE, where:

– ESTC estimates the coverage of the SPARQL triple patterns, and corresponds
to the ratio of the number of subqueries in D to the number of triple patterns
in P, i.e., ESTC = m

N ;
– ENNSE estimates the number of non-selected endpoints (NNSE) per SPARQL

triple pattern19, i.e., ENNSE =
∑

t∈P
|ds(pred(t))−(ds(pred(t))∩f(g(t)))|

|ds(pred(t))|
19 pred(t) returns the predicate of the triple pattern t.



On the Selection of SPARQL Endpoints 121

– ENCE estimates the proportion of endpoints that are contacted several times.
ENCE is computed as the ratio of the number of contacts to endpoints (NCE)

to the number of relevant endpoints, i.e., ENCE =
∑

SQi∈DP |f(SQi)|
|⋃t∈BGP ds(pred(t))| .

To illustrate the proposed cost function, lets first consider a decomposition
D0 of CD6 with only one subquery SQ1, i.e., SQ1 comprises all the triple pat-
terns. SQ1 is associated with DBpedia, the only endpoint where all the triple
patterns can be executed. Thus, cost(D0) is 0.91 and it is computed as the
arithmetic mean of: (i) ESTC = 1

4 ; (ii) ENNSE = (34 + 3
4 + 2

3 + 1
2 ); (iii) ENCE

= 1
7 . Table 4 reports on the costs of decompositions D1, D2, and D3. As can

be observed, high values of cost(.) suggest that the same endpoints are con-
tacted several times or endpoints required to produce a complete answer are not
included in the decomposition. Contacting the same endpoint several times may
negatively impact on the execution time, while removing endpoints from the
decomposition may conduct to incomplete answers. According to the reported
values of cost(.) for decompositions D1, D2, and D3, the best trade off between
execution time and answer completeness can be reached evaluating decomposi-
tion D2, where five out of seven endpoints are contacted and only two subqueries
of triple patterns that share one variable are executed. These estimates corrobo-
rate the results reported in Table 3 where D2 allows the ANAPSID query engine
to reduce execution time, while the percentage of answers remains 100 %.

Table 4. Running example: computing the cost(.) of decompositions. Decom-
positions of SPARQL query CD6. AVG stands for the arithmetic mean of cost(.) of
each decomposition D1, D2, and D3

Decomposition cost(.)

D1 AVG( 4
4
,( 0

4
+ 0

4
+ 0

3
+ 0

2
), 13

7
) = 0.95

D2 AVG( 2
4
,( 1

4
+ 1

4
+ 1

3
+ 0

2
), 5

7
) = 0.68

D3 AVG( 3
4
,( 0

4
+ 0

4
+ 1

3
+ 0

2
), 10

7
) = 0.83

Definition 3 (The Federated SPARQL Query Decomposition Problem
(FSQD)). Given a BGP P in a query Q executed against a federation FE =
(En, ds, ins), the Federated SPARQL Query Decomposition Problem (FSQD)
identifies a decomposition D of Q such that the cost of the decomposition D,
cost(D), is minimal.

4.2 Mapping the Federated SPARQL Query Decomposition
Problem to the Vertex Coloring Problem

The Vertex Coloring Problem refers to coloring graph vertices such that adjacent
vertices are colored with different colors and the number of colors is minimized.
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Table 5. Notation summary

Q SPARQL query

U Infinite set of URIs

B Infinite set of blank nodes

L Infinite set of literals

I Finite set of URIs

FE = (En, ds, ins) Federation of SPARQL endpoints

En Set of endpoints in the federation FE

ds(p) Mapping from a predicate p to the set of endpoints that
access triples (?s, p, ?o)

ins(e) RDF graphs accessible through endpoint e

V CG = (V, E) Undirected coloring graph

SC Set of colors

c A mapping from set of vertex V to the set of colors SC

UsedColors(VCG) Colors used in a coloring of VCG

cl A class color, i.e., a color in UsedColors(VCG)

BGP Basic graph pattern, i.e., set of triple patterns

D = (DP, f, g) Query decomposition of BGP

DP A partition of BGP into subqueries

f Mapping from subqueries in DP to set of endpoints in En

g Mapping from triple patterns BGP to the SQ in DP to which
is assigned to in D

eval(Q, f(d)) Result set of evaluating the conjunction of triple patterns
from d in f(d)

eval(Q, D) Result set of joining eval(Q,f(d)) for all d in DP

IVF(FE) Integrated view of RDF datasets accessible via endpoints in
FE

eval(Q, IVF(FE)) Result set of evaluating Q in IVF(FE)

cost(D) Cost of a decomposition D

pred(t) Predicate of the triple pattern t = (s, p, o)

θ Bijective map from basic graph pattern to vertices in V of
a VCG

var(t) Set of variables in triple pattern t

Definition 4 (Vertex Coloring Problem [4]). Let VCG = (V,E) be a graph
named vertex coloring graph. Let c be a mapping from V to SC, where SC is a
set of colors. The Vertex Coloring Problem for VCG is to identify for each pair
of vertices u and w in V , the values of c, such that the number of colors used in
the coloring of the graph is minimized, and c(u) �= c(w) if there exists an edge
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between u and w in E. UsedColors(VCG) is the subset of SC that corresponds
to the set of colors used in the coloring of VCG.

Building on existing results from graph theory, we map the Federated
SPARQL Query Decomposition Problem (FSQD) into the Vertex Coloring Prob-
lem such that colorings correspond to decompositions of a SPARQL query
against a federation of SPARQL endpoints, and extend an approximate solu-
tion of the Vertex Coloring Problem to solve this query decomposition problem.
We focus on the decomposition of basic graph patterns BGPs. Next, we present
the definition of the mapping of the Federated SPARQL Query Decomposition
Problem (FSQD) into the Vertex Coloring Problem.

Definition 5 (Mapping of FSQD to the Vertex Coloring Problem). Let
P be a basic graph pattern in a SPARQL query Q against a federation FE =
(En, ds, ins). Let VCG = (V,E) be a vertex coloring graph built from P as
follows:

– P and V are homomorphically equivalent, i.e., there is a bijective map θ:
P→V, such that, for each triple pattern ti in P, there is a node θ(ti) in V.

– Given two triple patterns ti and tj in P, there is an edge (θ(ti), θ(tj)) ∈ E if
and only if:

• No endpoint in En answers ti and tj, i.e., ds(pred(ti)) ∩ ds(pred(tj)) =
∅, or

• ti and tj in P do not share a variable, i.e., var(ti) ∩ var(tj) = ∅.
Let D = (DP = {SQ1, . . . , SQm}, f, g) be a query decomposition of BGP P in
FE = (En, ds, ins). Let c be a mapping from V to SC, where SC is a set of
colors, and two vertices share the same color if they are in the same partition
component SQ of DP . The Vertex Coloring Problem for the coloring graph VCG
is to identify the values of c, such that the number of colors used in the coloring
C of the graph is minimized. Given the set UsedColors(VCG) of the colors in
SC used in C, number of colors corresponds to the cardinality of DP such that
the cost of the decomposition D, cost(D), is minimal.

The mapping of the FSQD Problem to the Vertex Coloring Problem is defined
just for one BGP of a query Q. In case of queries with more than one BGP, this
correspondence is performed for each BGP. Figure 4 illustrates the vertex col-
oring graph VCG created from CD6. VCG comprises four nodes, one per triple
pattern in CD6; edges represent that the corresponding triple patterns do not
share a variable. This restriction will allow for only selecting the same color to
nodes that correspond to triple patterns that all are connected by one variable.
We rely thus on results reported in the literature which suggest that subqueries
of triple patterns that share one variable reduce cardinality of the intermediate
results, and may improve the overall execution time of the query [20,29]. Fur-
thermore, because VCG for CD6 is a bipartite graph, and based on the results
stated at Preposition 1, an optimal coloring of VCG for CD6 can be found, i.e., a
decomposition of CD6 where the cost is minimal. Table 5 summarizes the nota-
tion used in our proposed formalization.
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Fig. 4. Running example: mapping from CD6 to a Vertex Coloring Graph
(VCG). Following Definition 5, nodes in VCG represent triple patterns in CD6, i.e.,
VCG has four nodes. There is an edge e between nodes ni and nj if and only if: (i)
Corresponding triple patterns do not share a variable, or (ii) There is no common
endpoint that can execute the corresponding triple patterns, i.e., VCG has three edges

4.3 Fed-DSATUR a Greedy Algorithm to the Federated SPARQL
Query Decomposition Problem

The Vertex Coloring Problem has been shown to be NP-complete [4] and approxi-
mate algorithms such as DSATUR, have been defined to solve tractable instances
of the problem [28]. DSATUR [4] implements a greedy iterative algorithm that
colors each vertex of the graph once by following a heuristic to choose the colors.
Given a graph VCG = (V,E), DSATUR orders the vertices in V dynamically
based on the number of different colors assigned to the adjacent vertices of each
vertex in V , i.e., vertices are chosen based on the degree of saturation on the
partial coloring of the graph built so far; only adjacent vertices that are already
colored are considered. Intuitively, selecting a vertex with the maximum degree
of saturation allows to color first those vertices with more restrictions and for
which there are smaller sets of colors available. Ties are broken based on the
maximum vertex degree of the tied vertices, i.e., the number of adjacent nodes
colored or not; time complexity of DSATUR is O(|V |3). Further, optimality con-
ditions of the proposed algorithms have received much of attention in the last
years; properties of the graphs that are hard to color, in terms of time complex-
ity, for every algorithm [15]. Thus, DSATUR optimally colors most of the graphs
that are k-colorable, i.e., k is the number of optimal colors, VCG is k-colorable,
and UsedColors(VCG) ≤ k. The following propositions enumerate graphs for
which DSATUR is optimal; Fig. 5 illustrates these graphs.

Proposition 1 (Optimality Conditions for DSATUR [15]). Let VCG =
(V,E) be a graph, a core of VCG named VCG′ = (V ′, E′), is a sub-graph of
VCG, i.e., V ′ ⊆ V and E′ ⊆ E, and there is no vertex v in V ′ such that,
degree(v) is 1. DSATUR optimally colors VCG if the core of VCG is as follows:
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Algorithm 1. Fed-DSATUR Algorithm
Input: A SPARQL query Q, a BGP P, and FE=(En,ds,ins)
Output: A Decomposition D=(DP ={SQ1, . . . , SQm},f,g)

1 begin
2 DP ← ∅; Generate VCG=(V,E) from P. // Definition 5
3 U ← V , DP ← ∅, f ← ∅, g ← ∅
4 VC ← (0, . . . , 0) // Vector for indicating the color of each

node
5 while U �= ∅ do
6 UsedColors(VCG) ← ∅
7 Choose a vertex v ∈ U with a maximal saturation degree. If there is a

tie choose the vertex v ∈ U of maximum degree
8 foreach color c used in VC do
9 nodesSameColor ← obtain vertex set using color c

10 if SQi be the subquery corresponding to color c then
11 f(SQi) ← the set of all the triple patterns t where θ(t) is colored

with c
12 foreach t′ ∈ SQi do
13 g(t′) ← SQi

14 UsedColors(VCG) ← UsedColors(VCG) ∪ {nodesSameColor}
15 newColor ← Choose a subquery SQj where the triple pattern t in P that

corresponds to vertex v, i.e., θ(t) = v, can be assigned, and the cost of
D is minimized, // Definition 5

16 if cj is the legal color that corresponds to SQj then
// ASK SPARQL queries are performed to determine
the SPARQL endpoints that can answer SQj ∪ {t}

17 VC[v] ← cj // assign legal color to vertex v
18 U ← U \ {v}
19 P ← P \ {t}
20 DP ← DP \ SQj

21 SQj ← SQj ∪ {t}
22 DP ← DP ∪ SQj

23 f(SQj) ← ⋂t={s p o}∈SQj
ds(p)

24 foreach t ∈ SQj do
25 g(t) ← SQj

26 return D = (DP, f, g)

– A single vertex;
– A bipartite graph, i.e., a graph that can be partitioned into two set of vertices

such that each vertex in each set is connected to a vertex in the other set;
– A wheel, i.e., a graph formed by connecting one vertex with all the vertices of

a cycle;
– A complete multipartite graph, i.e., a graph in which vertices are adjacent if

and only if they belong to different partitions of the graph;
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Fig. 5. Characterization of graphs for optimal coloring. Graphs where DSATUR
produces optimal colorings in polynomial time, i.e., they have a core graph that meets
Proposition 1 or are a polygon tree Proposition 2

– A cactus, i.e., a graph in which any pair of cycles has a vertex in common;
and

– A necklace, i.e., a graph made up of r beads where each bead is comprised of
one cycle of length k which is incident with a path of length l.

Proposition 2 (Optimality Conditions for DSATUR, Polygon Tree
[15]). DSATUR optimally colors VCG, if VCG is a polygon tree, i.e., (i) VCG
is a cycle (Base Case), or (ii) VCG is comprised of two polygon trees VCG′ and
VCG′′ that share exactly one edge.

As the result of casting FSQD to the Vertex Coloring Problem, we extended
the DSATUR algorithm to identify query decompositions where the cost is mini-
mal; we name this extension Fed-DSATUR. Fed-DSATUR iteratively adds triple
patterns to a subquery following the DSATUR heuristic, i.e., the triple patterns
that are chosen first, do not share a variable or an endpoint with the largest
number of triple patterns that have been already assigned to a subquery. Ties
between two triple patterns are broken based on the number of triple patterns
that do not share a variable or an endpoint with these two triple patterns. The
selected triple patterns and their assignments to subqueries ensure that the cost
of the decomposition is minimized. A sketch of Fed-DSATUR is presented in
Algorithm 1; properties of Fed-DSATUR are stated in Theorems 1 and 2.

Figure 6 shows the first three iterations of Fed-DSATUR conducted during
the decomposition of CD6, i.e., three iterations of the while loop between lines
5 and 25 of Algorithm 1. Nodes 1 and 4 have the highest vertex degree (line 7 of
Algorithm 1), i.e., the corresponding triple patterns are the ones with the largest
number of triple patterns that do not share a variable or an endpoint with them.
Thus, Fed-DSATUR can choose any of them, and selects node 4 in the iteration
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Fig. 6. Running example: iterations of Fed-DSATUR. The first three iterations
of Fed-DSATUR for CD6

1 (Fig. 6(a)). Then, node 1 is selected in iteration 2 of the while loop as shown
in Fig. 6(b). The SPARQL endpoints in the federation are contacted using ASK
SPARQL queries to determine the ones that can answer the corresponding triple
patterns (line 16 of Algorithm 1). Because both nodes are adjacent, they need to
be colored with different colors. Nodes 2 and 3 can be chosen in iteration 3 of the
while loop, and Fed-DSATUR considers all the combinations of colors of each of
these two nodes independently. For each coloring, values of the function cost(.)
are computed, and the configuration with the lowest value of cost is the one
where node 3 is colored in the same color than node 4 (line 15 of Algorithm 1),
i.e., triple 3 is placed in the same subquery that triple 4; Fig. 6(c) reports on
the result of this coloring. SPARQL endpoints are contacted to verify that the
subquery composed of triple patterns 3 and 4 can be executed in at least one
endpoint, i.e., ASK SPARQL queries are posed against the SPARQL endpoints
of the federation (line 16 of Algorithm 1).

Finally, in the last iteration of algorithm, node 2 is considered. Fed-DSATUR
analyzes if node 2 will be colored with the same color than node 1 or a new color
will be used. Once again, the SPARQL endpoints are contacted to verify that the
subquery composed of triple patterns 1 and 2 can be executed on the SPARQL
endpoints (line 16 in Algorithm 1). Figure 7(a), (b) present the two colorings
of the VCG that are considered in Iteration 4 as well as the corresponding
decompositions D2 and D3; these two decompositions are generated at lines
16–25 of Algorithm 1. Because assigning the same color to nodes 1 and 2 has
lower cost than using a new color for coloring node 2, Fed-DSATUR decides to
produce the coloring in Fig. 7(a). At this point, all the triple patterns in CD6 have
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Fig. 7. Running example: iterations of Fed-DSATUR. Decompositions consid-
ered during Iteration 4 for CD6: (a) decomposition D2 which is the one the lowest cost;
(b) decomposition D3. Although both decompositions are explored Fed-DSATUR only
consider D2 because it is the one that minimizes the values of the function cost(.)

been considered, and Fed-DSATUR outputs the decomposition D2. As shown in
Table 4, D2 is the decomposition with the lowest value of the function cost(.).

4.4 Complexity and Formal Proofs

Theorem 1 (FSQD Time Complexity). The FSQD Problem is NP-Hard.

Proof 1. We will reduce a well-known NP-Complete Problem to the FSQD
Problem. Let VCG = (V,E) be a graph instance of the Vertex Coloring Problem,
we can obtain the equivalent instance of the FSQD Problem given by Definition 5,
solve the FSQD problem, and from the output D = (DP, f, g) obtain the solution
to the Vertex Coloring Problem as follows: For each partition component d in
DP, {θ(t)| t ∈ d } is the set of vertices in V that are colored in color d, and the
number of used colors is cost(D) = k; we call this solution k-coloring. To con-
clude the proof, it is enough to show that k is the minimal number of colors needed
to color VCG. Suppose there exists, j < k such that, j is the minimal number of
colors needed to color VCG and j-coloring a coloring of VCG using j colors, then
there exists at least one color ck in k-coloring that is not in j-coloring. Suppose
the color ck is used in k-coloring to color the vertex v and let cj be the color
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in j-coloring used to color this vertex v. Because j < k, there exists a partition
component d ∈ DP such that, d = cj. However, v and θ(t) for t ∈ d share the
same color in j-coloring and by definition of the Vertex Coloring Problem, there
cannot be an edge between them. According to Definition 5, this means that they
share a variable and can be evaluated by the same endpoint. Thus, it is false that
a solution to the FSQD problem assigns them to different partitions because it
would violate the minimality of the cost of the decomposition D. 


Next we rely on the properties of the DSATUR greedy algorithm to state a
sufficient condition to be met by a decomposition D to be optimal.

Theorem 2 (Optimality of FSQD). Let P be a basic graph pattern BGP in
a SPARQL query Q. Let D = (DP, f, g) be a query decomposition of P in FE =
(En, ds, ins) produced by Fed-DSATUR. Let VCG be the vertex coloring graph
obtained from P following Definition 5. If the function cost(D) is monotonic
w.r.t. the number of subgoals in DP20, VCG meets Propositions 1 or 2, and
VCG is optimally colored with UsedColors(VCG) = k colors, then DP has k
subgoals and D = (DP, f, g) is an optimal decomposition of Q, i.e., there is no
other decomposition D′ = (DP ′, f ′, g′), such that: cost(D′)< cost(D).

Proof 2. Assume that D = (DP, f, g) is not optimal and cost(D’)=j. Following
Definition 5, there is another j-coloring of VCG such that j ≤ UsedColors(VCG)
; nevertheless, by Propositions 1 and 2, k-coloring of VCG is optimal, i.e., VCG
is k-colorable and UsedColors(VCG) ≤ k. Because the function cost is monotonic
w.r.t. cardinality of DP, if k is the optimal number of colors, there is no other
decomposition D′ = (DP ′, f ′, g′) such that | DP |<| DP ′ | and cost(D) >
cost(D’), i.e., D is optimal. 

As a result of Theorem 2, if a query comprises only triple patterns that can
be executed against only one SPARQL endpoint and the corresponding Vertex
Coloring Graph is of the forms stated in Propositions 1 or 2, the decomposition
produced by Fed-DSATUR is optimal in terms of the number of star-shaped
subqueries and number of query answers.

5 Experimental Study

Datasets and SPARQL Endpoints: We set up two federations of SPARQL
endpoints Fed1 and Fed2 to access the FedBench collections21: DBpedia, NY
Times, Geonames, KEGG, ChEBi, Drugbank, Jamendo, LinkedMDB, SW Dog
Food, and SP2B-10M. Both Fed1 and Fed2 comprise Virtuoso SPARQL end-
points, where Virtuoso timeout was set up to 240 s. or 71,000 tuples to simulate
20 cost(D) is monotonic w.r.t. number of subgoals in DP, if and only if, the values

of cost(D) monotonically increase with the number of subgoals in DP, i.e., for all
D = (DP, f, g) and D′ = (DP ′, f ′, g′) such that | DP |<| DP ′ | one has cost(D) <
cost(D′). A sufficient condition for the function cost(.) to be monotonic is that the
query comprises only triple pattern that can be evaluated against only one endpoint.

21 http://iwb.fluidops.com:7879/resource/Datasets, November 2011.

http://iwb.fluidops.com:7879/resource/Datasets
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Table 6. Datasets and SPARQL endpoints. RDF predicates distributed per
SPARQL endpoint in federations Fed1 and Fed2

Predicate Fed1 #Endpoints Fed2 #End-
points

http://www.w3.org/2002/07/owl#sameAs 17 6

http://www.w3.org/1999/02/22-rdf-syntax-ns#type 23 9

http://purl.org/dc/terms/title 2 2

http://xmlns.com/foaf/0.1/name 5 4

http://xmlns.com/foaf/0.1/based near 12 3

http://www.geonames.org/ontology#parentFeature 12 3

http://www.geonames.org/ontology#name 12 3

http://www.w3.org/2000/01/rdf-schema#label 7 6

http://www.geonames.org/ontology#officialName 11 1

http://xmlns.com/foaf/0.1/based near 3 3

http://www.w3.org/2004/02/skos/core#subject 2 2

http://bio2rdf.org/ns/bio2rdf#url 2 2

http://purl.org/dc/elements/1.1/title 5 5

http://bio2rdf.org/ns/bio2rdf#xRef 2 2

http://purl.org/dc/elements/1.1/title 5 5

configurations of real-world endpoints [2]; all the endpoints were installed in
the same machine. Fed1 comprises 26 endpoints; 11 of these endpoints access
data of horizontal and vertical fragments of Geonames, and seven SPARQL end-
points access seven DBpedia datasets which correspond to vertical fragments
of the original collection. Horizontal fragments contain subsets of the triples of
an RDF dataset independent of the fact that they share or not the same pred-
icate; description of Fed1 is presented in Table 1. On the other hand, vertical
fragmentation produces fragments which are comprised of all the triples shar-
ing one predicate in the RDF dataset. Horizontal fragmentation impacts on the
query answer completeness while vertical fragmentation affects mostly perfor-
mance. Federation Fed2 comprises 10 endpoints, one endpoint per collection in
the FedBench benchmark (see Table 2). Furthermore, Table 6 presents the RDF
predicates that belong to datasets accessible through more than one SPARQL
endpoint. This distribution clearly shows that queries against federation Fed1
that include triple patterns on the predicates http://www.w3.org/2002/07/owl#
sameAs or http://www.w3.org/1999/02/22-rdf-syntax-ns#type will require to
contact a large number of endpoints to ensure completeness of the answer. The
optimization techniques implemented by Fed-DSATUR that produce queries
with a reduced number of subqueries and cost will allow for a trade-off between
number of contacted endpoints and query answer completeness.

http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://purl.org/dc/terms/title
http://xmlns.com/foaf/0.1/name
http://xmlns.com/foaf/0.1/based_near
http://www.geonames.org/ontology#parentFeature
http://www.geonames.org/ontology#name
http://www.w3.org/2000/01/rdf-schema#label
http://www.geonames.org/ontology#officialName
http://xmlns.com/foaf/0.1/based_near
http://www.w3.org/2004/02/skos/core#subject
http://bio2rdf.org/ns/bio2rdf#url
http://purl.org/dc/elements/1.1/title
http://bio2rdf.org/ns/bio2rdf#xRef
http://purl.org/dc/elements/1.1/title
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/2002/07/owl#sameAs
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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Query Benchmarks: We ran the 25 FedBench queries against the collec-
tions [26]: Cross-Domain, Linked Data and Life Sciences, which are accessible
via the SPARQL endpoints of Fed1 and Fed2. Further, we defined ten additional
queries (Additional Queries, C1-C10) which comprise a large number of triple
patterns, basic graph patterns, and different SPARQL operators. Extended setup
evaluates the effects of selectivity of BGPs, large number of triple patterns, and
number of SPARQL operators. The additional queries are composed of between
6 and 46 triple patterns and can be decomposed into up to 9 subqueries. Details
of these queries are presented in Appendix A.

Federated Engines: We ran FedBench queries on the state-of-the-art feder-
ated engines: SPLENDID [10], FedX [27], and ANAPSID [1,20]. Details of the
configurations of each of the engines are presented at Table 7. SPLENDID was
configured to select execution plans in terms of a dynamic programming based
heuristic that relies on real estimates of the cardinalities of the RDF datasets.
FedX was run in both cold and warm caches. FedX in cold cache does not exploit
any information about the endpoints and contact all the endpoints in the fed-
eration to verify which of these endpoints can answer the triple patterns of a
query, i.e., instances of the function ds are created on-the-fly. On the other hand,
FedX in warm cache exploits information recorded in previous query executions,
to find the endpoints that can answer a particular triple pattern, i.e., instances
of the function ds are built from previous executions and used during source
selection. Finally, ANAPSID was set up to use the Star-Shaped Group Multi-
ple endpoint selection (SSGM) heuristic. Following the SSGM source selection
heuristics, ANAPSID decomposes BGPs into subqueries that can be executed
by at least one SPARQL endpoint; only information about the predicates associ-
ated with the RDF datasets accessible via the SPARQL endpoints is considered
by ANAPSID to perform the source selection task.

Table 7. Experimental set up. Federation SPARQL query engines

SPLENDID [10] Version November 2012. Source selection corresponds to source
selection: ASK, queryOptimization:
DYNAMIC PROGRAMMING, cardEstimator: TRUE CARD

FedX [27] Version 1.1 August 2012. Experiments ran on cold and warm
caches. FedX in cold cache does not record any information
about the endpoints, i.e., the file cache.db was deleted.
Cache was warmed up by running five times the same query
and reporting the best time

ANAPSID [1,20] Version May 2014. Endpoint selection technique SSGM, i.e.,
queries are decomposed into star subqueries that can be
evaluated by at least one endpoint
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Evaluation Metrics:

– Execution Time: Elapsed time between the submission of the query to an
engine and the generation of the query answer; optimization time just con-
siders the time elapsed between the submission of the query and the output
of the query physical plan. Execution time corresponds to absolute wall-clock
system time as reported by the Python time.time() function. We ran each
query ten times and reported the average Execution Time.

– Throughput: Number of answers produced per second; this is computed as the
ratio of the number of answers to execution time in seconds.

– Percentage of the Answer (PA): Query answer completeness percentage;
ground truths were computed by running each query against a SPARQL
endpoint that access via the SPARQL protocol, an integrated view of the
FedBench collections, i.e., IVF(FE).

Implementations: Fed-DSATUR was implemented on top of ANAPSID [1]
query engine using Python 2.6.5. Message size and execution timeout were 16 KB
and 600 s, respectively. SPARQL endpoints are installed in a Linux Mint machine
with an Intel Pentium Core 2 Duo E7500 2.93 GHz 8 GB RAM 1333 MHz DDR3.
Federated SPARQL engines are installed in Linux Debian 8 machine with an
CPU Intel I7 980X 3.3 GHz with 24 GB RAM 1333 MHz DDR3. Machine are
dedicated to exclusively execute these experiments.

5.1 Analysis of FedBench and Additional Queries

We analyze the evaluated SPARQL queries based on the characteristics of the
vertex coloring graphs generated following Definition 5. Table 8 reports on the
characteristics of the 25 FedBench and the ten additional queries. In case a
query comprises several BGPs, we only report on the BGP that induces a more
complex graph; #SubGoals corresponds to the number of parts or subqueries in
the corresponding decomposition; #Nodes and #Edges represent the nodes and
edges in the corresponding coloring vertex graph. Based on the properties stated
in Propositions 1 and 2 and Theorem 2, depending on the shape of the vertex
coloring graphs, optimality conditions of the coloring (i.e., decompositions) found
by Fed-DSATUR can be ensured whenever cost(.) is monotonic.

First, we can observe that BGPs of the FedBench queries can be represented
as Disconnected, Bipartite, or Tripartite graphs in both federations. Therefore,
the corresponding BGPs of these queries can be decomposed by Fed-DSATUR in
up to three subqueries. Note that optimality in the context of FSQD refers to the
decompositions where the cost is minimal and these decompositions can be found
by Fed-DSATUR in polynomial time. Additionally, we note that in both Fed1
and Fed2, the corresponding graphs of the ten additional queries are multipartite
graphs composed of a large number of edges, e.g., C1, C3, and C9. Optimal
decompositions can be obtained in polynomial time for some of these queries,
i.e., queries that meet Theorem 2. However, since time complexity depends on
the size of the graph, query decomposers can be considerably impacted during
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Table 8. Characterization of FedBench and additional queries in Fed1 and
Fed2. Based on the casting of Federated SPARQL Query Decomposition Problem
(FSQD) to the Vertex Coloring Problem (Definition 5) queries are characterized. If a
query comprises several BGPs, only the most complex subgraph is reported. #SubGoals
corresponds to the number of parts or subqueries in the corresponding decomposition;
#Nodes and #Edges represent the nodes and edges in the corresponding coloring
vertex graph. Queries, graphs, and colorings are published at http://scast.github.io/
fed-dsatur-decompositions/

Query Fed1 Fed2

# Nodes #Edges #SubGoals Shape # Nodes #Edges #SubGoals Shape

CD1 2 0 1 Disconnected 2 0 1 Disconnected

CD2 3 2 2 Bipartite 3 2 2 Bipartite

CD3 5 8 3 Tripartite 5 3 2 Bipartite

CD4 5 3 3 Tripartite 5 7 3 Tripartite

CD5 4 4 2 Bipartite 4 4 2 Bipartite

CD6 4 4 3 Tripartite 4 4 3 Tripartite

CD7 4 1 2 Bipartite 4 1 2 Bipartite

LD1 3 0 1 Disconnected 3 0 1 Disconnected

LD2 3 0 1 Disconnected 3 0 1 Disconnected

LD3 4 2 2 Bipartite 4 0 2 Disconnected

LD4 5 3 2 Bipartite 5 4 2 Bipartite

LD5 3 2 2 Tripartite 3 0 1 Disconnected

LD6 5 9 3 Tripartite 5 7 3 Tripartite

LD7 2 0 1 Disconnected 2 0 1 Disconnected

LD8 5 5 3 Tripartite 5 4 2 Bipartite

LD9 3 3 3 Tripartite 3 2 2 Bipartite

LD10 3 2 2 Bipartite 3 1 2 Bipartite

LD11 5 7 3 Tripartite 5 0 1 Disconnected

LSD1 1 0 1 Disconnected 1 0 1 Disconnected

LSD2 2 1 2 Bipartite 2 1 2 Bipartite

LSD3 5 4 2 Bipartite 5 4 2 Bipartite

LSD4 7 12 3 Bipartite 7 13 3 Bipartite

LSD5 6 11 3 Tripartite 6 11 3 Tripartite

LSD6 5 6 2 Bipartite 5 6 2 Bipartite

LSD7 4 4 2 Bipartite 4 4 2 Bipartite

C1 16 83 7 7-Partite 16 85 7 7-Partite

C2 12 36 4 4-Partite 12 38 4 4-Partite

C3 13 41 6 6-Partite 13 42 6 6-Partite

C4 19 79 6 4-Partite 19 79 6 4-Partite

C5 6 3 2 Bipartite 6 3 2 Bipartite

C6 2 1 2 Bipartite 5 4 3 Tripartite

C7 7 14 4 4-Partite 7 15 4 4-Partite

C8 7 14 4 4-Partite 7 14 4 4-Partite

C9 40 500 9 9-Partite 40 503 9 9-Partite

C10 4 5 3 Tripartite 4 5 3 Tripartite

the decomposition of these queries. Thus, they constitute a challenge for Fed-
DSATUR and to existing federated query engines. We refer the reader to http://
scast.github.io/fed-dsatur-decompositions/ to check the mappings and colorings
as well as the results of our experiments.

http://scast.github.io/fed-dsatur-decompositions/
http://scast.github.io/fed-dsatur-decompositions/
http://scast.github.io/fed-dsatur-decompositions/
http://scast.github.io/fed-dsatur-decompositions/
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We have developed a demo [7] named Silurian22 that illustrates the shapes
of the vertex coloring graphs, the available endpoints per triple pattern, and
different decompositions when queries are executed against federations Fed1 and
Fed2. Figure 8 presents the vertex coloring graph for the additional query C9
when it is executed against Fed1. C9 can be optimally decomposed into nine
subqueries all executed against the Drugbank endpoint. Nevertheless, because
there are 500 edges among 40 nodes, identifying the optimal coloring in this graph
is a challenging problem. We note that Fed-DSATUR was able to decompose this
query, but the execution engine timed out at 600 s without producing any answer.
Similar behavior was observed in the other federated query engines. These results
suggest that queries that can be mapped to vertex coloring graphs as the one
presented in Fig. 8, are hard to decompose and to execute for existing federated
query engines, and represent new challenges to the area.

Fig. 8. Vertex Coloring Graph VCG for query C9 on federation Fed1. VCG is
composed of 40 nodes and 500 edges, and is a 9-partite graph. Nodes represent triple
patterns in query C9. There is an edge e between nodes ni and nj if and only if:
(i) Corresponding triple patterns do not share a variable, or (ii) There is no shared
endpoint

5.2 Effectiveness and Efficiency of Fed-DSATUR FedBench Queries

The aim of this evaluation is to show the performance of Fed-DSATUR and
existing engines when FedBench queries are posed against federations Fed1 and
Fed2. Performance of Fed-DSATUR and existing engines is measured in terms
of Throughput and Percentage of Answer (PA). Tables 9 and 10 report a pair of
Throughput (# Answer per seconds) and Percentage of Answers (PA).

In general, we can observe that all the federated engines are competitive
and exhibit a similar behavior when the 25 queries of FedBench are executed.
22 http://silurian.thalassa.cbm.usb.ve/.

http://silurian.thalassa.cbm.usb.ve/
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Table 9. Effectiveness and efficiency of federated SPARQL engines on Fed-
Bench and additional queries in Fed1. Entries correspond to pairs of Throughput
(# Answer per seconds) and Percentage of Answers (PA). SPLENDID and FedX (Cold
cache) exhibit similar behavior; PA � 100 but lower Throughput. ANAPSID, FedX
(Warm cache), and Fed-DSATUR have similar behavior; ANAPSID and Fed-DSATUR
have the highest values of Throughput for LSD1: 2,979.05 and 2,689.14, respectively.
Fed-DSATUR obtained PA � 100% and high values of Throughput in 11 out of 25
FedBench queries. Fed-DSATUR also has the highest values of Throughput and PA in
8 out of 10 additional queries. The top-2 values of Throughput are highlighted in bold

Query Fed1 (Throughput;PA)

ANAPSID FedX Cold FedX Warm SPLENDID Fed-DSATUR

CD1 (17.16;77.77) (0.81;76.19) (71.33;76.19) (9.33;65.08) (62.67;77.77)

CD2 (3.25;100) (0.99;100) (2.08;100) (0.00;0.00) (2.70;100.00)

CD3 (0.18;40.00) (0.51;40.00) (1.65;40.00) (0.0;0.00) (0.10;100.00)

CD4 (0.01;100) (0.33;100) (0.88;100.00) (0.56;100.00) (0.17;100.00)

CD5 (3.48;100) (0.84;100.00) (2.78;100.00) (0.00;0.00) (1.52;100.00)

CD6 (0.0;0.00) (1.32;100.00) (3.16;100.00) (0.0;0.00) (0.17;100.00)

CD7 (0.0;0.00) (0.09;50.00) (0.18;50.00) (0.21;50.00) (1.79;50.00)

LD1 (310.91;100.00) (23.97;100.00) (151.86;100.00) (13.31;98.68) (255.08;100.00)

LD2 (54.39;100.00) (174.84;100.00) (344.61;100.00) (147.67;100.00) (153.50;100.00)

LD3 (0.0;0.00) (5.95;100.00) (24.20;100.00) (13.51;98.16) (5.73;100.00)

LD4 (115.30;100.00) (41.13;100.00) (99.24;100.00) (39.80;98.17) (158.79;100.00)

LD5 (0.0;0.00) (0.23;57.14) (22.05;57.14) (0.0;100.00) (1.07;57.14)

LD6 (0.82;50.00) (45.01;50.00) (45.27;50.00) (0.0;0.00) (0.0;0.00)

LD7 (0.0;0.00) (64.09;100.00) (117.60;100.00) (45.97;100.00) (535.41;45.47)

LD8 ( 0.0;100.00) (0.0;100.00) (0.0;100.00) (0.0;0.00) (0.0,100.00)

LD9 (0.0;100.00) (0.0;100.00) (0.0;100.00) (0.0;100.00) (0.0;100.00)

LD10 (0.0;0.00) (0.0;0.00) (0.0;0.00) (0.0;0.00) (0.0;0.00)

LD11 (0.0;0.00) (6.93;47.87) (66.94; 47.87) (0.0;0.00) (0.0;0.00)

LSD1 (2,979.05;100.00) (918.42;100.00) (1,490.84;100.00) (663.11;100.00) (2,689.14;100.00)

LSD2 (4.51;86.89) (40.29;86.89) (279.32;86.89) (5.31;85.82) (18.21;86.89)

LSD3 (332.66;100.00) (121.20;100.00) (127.26100.00) (0.0;0.00) (311.45;100.00)

LSD4 (0.38;100.00) (1.72;100.00) (6.30;100.00) (1.75;100.00) (0.52;100.00)

LSD5 (20.91;100.00) (19.82;100.00) (39.49;100.00) (4.42;100.00) (21.52;100.00)

LSD6 (1.82; 100.00) (3.92;100.00) (23.69;100.00) (1.71;100.00) (4.45;100.00)

LSD7 ( 81.38;100.00) (19.01;8.89) (24.88;8.89) (32.20;100.00) (103.99;100.00)

C1 (99.37;100.00) (0.0;0.00) (0.0;0.00) (0.0;0.00) (90.08;100.00)

C2 (6.76;100.00) (0.0;0.00) (0.0;0.00) (19.99;100.00) (2,306.64;100.00)

C3 ( 0.0;0.00) (0.0;0.00) (0.0;0.00) (2.94;51.38) (1.08;99.69)

C4 (1.40;100.00) (0.0;0.00) (0.0;0.00) (0.0;0.00) (7.31;100.00)

C5 (922.97;100.00) (0.72;0.38) (2.44;0.38) (4,871.06;100.00) (758.76;100.00)

C6 (0.92;100.00) (0.0;0.00) (0.0;0.00) (0.18;100.00) (2.40;100.00)

C7 (285.78;100.00) (0.0;0.00) (0.0;0.00) (0.0;0.00) (652.43;97.80)

C8 (45.34;100.00) (0.0;0.00) (0.0;0.00) (0.0;0.00) (101.30;100.00)

C9 (0.0;0.00) (0.0;0.00) (0.0;0.00) (0.0;0.00) (0.0;0.00)

C10 (0.0;0.00) (0.0;0.00) ( 0.0;0.00) (0.0;0.00) (0.0;0.00)
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Table 10. Effectiveness and efficiency of federated SPARQL engines on Fed-
Bench and additional queries in Fed2. Entries correspond to pairs of Throughput
(# Answer per seconds) and Percentage of Answers (PA). SPLENDID and FedX (Cold
cache) exhibit similar behavior; PA � 100 but lower Throughput. ANAPSID, FedX
(Warm cache), and Fed-DSATUR have similar behavior; ANAPSID and Fed-DSATUR
have the highest values of Throughput for LSD1: 2,443.22 and 3,199.74, respectively.
Fed-DSATUR exhibit the highest values of Throughput and PA in 8 out of 10 additional
queries. The top-2 values of Throughput are highlighted in bold

Query Fed2 (Throughput;PA)

ANAPSID FedX Cold FedX Warm SPLENDID Fed-DSATUR

CD1 (137.10;96.83) (24.96;95.23) (108.76;95.23) (21.25;96.83) (17.70;96.83)

CD2 (11.78;100.00) (1.50;100.00) (2.19;100.00) (0.83;100.00) (1.65;100.00)

CD3 (24.24;60.00) (3.54;80.00) (5.35;80.00) (0.94;60.00) (1.38;60.00)

CD4 (3.70;100.00) (0.67;100.00) (1.20;100.00) (0.29;100.00) (0.04;100.00)

CD5 (3.90;100.00) (1.24;100.00) (2.24;100.00) (0.40;100.00) (0.45;100.00)

CD6 (0.84;100.00) (1.92;100.00) (3.38;100.00) (0.36;100.00) (0.27;100.00)

CD7 (0.0;0.00) (0.25;50.00) (0.46;50.00) (0.05;50.00) (0.0.24;50.00)

LD1 (288.85;100.00) (68.44;100.00) (172.44;100.00) (20.21;99.68) (244.99;99.68)

LD2 (1751.08;100.00) (262.38;100.00) (343.92;100.00) (154.33;100.00) (1,000.24;100.00)

LD3 (4.45;100.00) (16.46;100.00) (39.61;100.00) (4.41;98.17) (178.74;98.17)

LD4 (126.59;100.00) (64.15;100.00) (99.31;100.00) (40.88;100.00) (178.26;100.00)

LD5 (52.04;100.00) (16.27;100.00) (41.70;100.00) (8.95;100.00) (26.38;100.00)

LD6 (15.61;100.00) (40.34;100.00) (81.93;100.00) (15.71;100.00) (0.0;0.00)

LD7 (126.60;100.00) (124.35;100.00) (506.54;100.00) (55.21;100.00) (1,277.34;100.00)

LD8 (0.0;100.00) (0.0;100.00) (0.0;100.00) (0.0;100.00) (0.0;100.00)

LD9 (0.0;100.00) (0.0;100.00) (0.0;100.00) (0.0;100.00) (0.0;100.00)

LD10 (21.36;100.00) (2.32;100.00) (3.52;100.00) (0.68;100.00) (1.59;100.00)

LD11 (2.54;100.00) (33.21;100.00) (98.12;100.00) (9.83;100.00) (2.91;100.00)

LSD1 (2,443.22; 100.00) (1,125.49;100.00) (1,492.05;100.00) (773.13;100.00) (3,199.74;100.00)

LSD2 (281.35;87.70) (189.33;87.70) (411.71;87.70) (107.93;87.70) (61.14;87.70)

LSD3 (681.17;100.00) (221.74;100.00) (252.61;100.00) (32.91;100.00) (335.69;100.00)

LSD4 (0.40;100.00) (2.40;100.00) (6.25;100.00) (1.79;100.00) (0.75;100.00)

LSD5 (41.45;100.00) (22.53;100.00) (39.77;100.00) (4.53;100.00) (21.82;100.00)

LSD6 (2.22;100.00) (6.05;100.00) (25.94;100.00) (1.94;100.00) (3.24;100.00)

LSD7 (99.32;100.00) (20.37;8.90) (23.63;8.90) (32.74;100.00) (10.26;100.00)

C1 (95.88;100.00) (0.0;0.00) (0.0;0.00) (0.26;100.00) (169.84;100.00)

C2 (6.33;100.00) (0.0;0.00) (0.0;0.00) (647.01;100.00) (2,400.53;100.00)

C3 (0.0;0.00) (0.0;0.00) (0.0;0.00) (3.19;51.38) (1.07;98.46)

C4 (1.20;100) (0.0;0.00) (0.0;0.00) (0.0;0.00) (7.23;100.00)

C5 (924.54;100.00) (5.40;0.38) (5.32;0.38) (148.46;100.00) (754.21;100.00)

C6 (0.26;100.00) (0.0;0.00) (0.0;0.00) (0.18;100.00) (0.65;100.00)

C7 (250.06;100.00) (0.0;0.00) (0.0;0.00) (0.0;0.00) (706.50;97.80)

C8 (67.28;100.00) (0.0;0.00) (0.0;0.00) (0.0;0.00) (104.94;100.00)

C9 (0.0; 0.00) (0.0;0.00) (0.0;0.00) (0.0; 0.00) (0.0;0.00)

C10 (0.0;0.00) (0.0;0.00) (0.0;0.00) (0.0;0.00) (0.0;0.00)



On the Selection of SPARQL Endpoints 137

All the engines are able to produce a great portion of the answers and exhibit
good performance. This similar behavior of all the engines may be caused by
the properties that characterize the FedBench queries. As can be observed in
Table 8, all the graphs are either disconnected, bipartite or tripartite, and in
general low execution cost and highly quality decompositions can be generated,
i.e., decompositions with a low number of subqueries where these engines have
high Throughput and Percentage of Answer.

SPLENDID and FedX (Cold cache) exhibit similar behavior in both Fed1 and
Fed2; PA � 100 but lower Throughput; SPLENDID relies on a cost model to esti-
mate cardinality of the results, and exploits this information to find plans that
minimize intermediate results. FedX on the other hand, does not consider any
cost or estimates, but relies on the Exclusive Group criteria to identify decom-
positions that benefit answer completeness. ANAPSID, FedX (Warm cache), and
Fed-DSATUR exhibit better performance in both Throughput and Percentage of
Answers (PA); particularly, ANAPSID and Fed-DSATUR have the highest values
ofThroughput for LSD1; in the federationFed1 the values are 2,979.05 and 2,689.14,
respectively. Further, in the federation Fed2 ANAPSID and Fed-DSATUR have
values of throughput for LSD1 of 2,443.22 and 3,199.74, respectively.

It is important to highlight that Fed-DSATUR exploits the shape of the
input queries, and their corresponding coloring vertex graphs and values of the
function cost(.). Thus, Fed-DSATUR is able to produce decompositions with an
optimal number of subqueries and values of the function cost(.). Based on this
property, Fed-DSATUR exhibits a slightly better performance than the rest of
the engines, particularly in federation Fed1 where the cost(.) function could more
precisely discriminate between costly plans with a smaller number of subqueries
from less costly plans with a larger number of subqueries, e.g., CD4 and CD6 are
decomposed into three subqueries even the number of optimal subqueries would
be two if cost(.) were not considered. Thus, Fed-DSATUR produces a percentage
of answers PA of 100 in 11 out of 25 queries with high values of throughput
in federation Fed1, and it is only competitive with FedX (Warm cache) which
relies on previously stored information about the endpoints to select the relevant
sources of a query. To conclude, these results on the 25 FedBench queries suggest
that even in queries where existing approaches exhibit a good performance, Fed-
DSATUR can generate decompositions with low values of cost(.)23 which result
in plans that produce large Percentage of the Answers and exhibit high values
of Throughput.

This behavior of Fed-DSATUR is more clearly observed when queries with a
large number of triple patterns are posed against the federated SPARQL engines.
SPLENDID exhibits a relatively good performance, with high values of Through-
put and Percentage of Answers for C2, C3, and C5, and with the maximum
Throughput in C5 (4,871.06) in federation Fed1. However, Fed-DSATUR query
plans are able to: (i) Reach high values of PA that ranges from 95 to 100 %,
i.e., decompositions are able to produce complete answers; (ii) Answer 8 out

23 As indicated in Theorem 2, these decompositions can be optimal depending on the
property of monotonicity of the function cost(.).
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of 10 queries and speed up the execution time of almost all of the queries; for
C2 the execution time is three orders of magnitude lower than ANAPSID and
two orders of magnitude lower than SPLENDID. These results suggest that
strategies implemented in DSATUR in conjunction with the ones implemented
in Fed-DSATUR positively impact on the effectiveness of the query decomposi-
tion problem solution. Furthermore, properties of DSATUR can be exploited to
decide optimality conditions of a query decomposed by Fed-DSATUR. This is a
unique property of Fed-DSATUR that none of the existing federated SPARQL
engines is able to ensure.

Finally, it is important to highlight that none of these engines could execute
C9 and C10 before timing out at 600 s. We emphasize that both queries induce
complex graphs which can have up to 503 edges, SPARQL OPTIONAL operators,
or need to be evaluated against a large number of SPARQL endpoints. Thus,
they require more than 600 s to be decomposed and executed, and constitute
challenges for federated engines and should be included in future benchmarks.

5.3 Efficiency and Effectiveness of the Fed-DSATUR Cost-Based
Optimization Techniques

This experiment evaluates the effect of the Fed-DSATUR cost-based optimiza-
tion technique. The FedX Exclusive Group technique was implemented on top
of the ANAPSID query engine, as well as a version of Fed-DSATUR that does
not consider the cost function, i.e., query plans have the number of subqueries as
colors assigned by the original DSATUR algorithm; we call these decomposers
Exclusive Group (EG) and Vertex Coloring Graph (CG), respectively. The EG
decomposer is a light-weight optimizer that decomposes a query into subqueries
that can be exclusively executed by exactly one SPARQL endpoint; it ensures
query completeness but execution time can be negatively impacted. The CG
decomposer generates plans with the minimal number of subqueries between
exact-star groups; CG plans can be efficient at the cost of query completeness.
Finally, Fed-DSATUR implements a cost model that trades off between answer
completeness and query execution; thus, optimization and execution time may
be impacted, while a larger number of answers can be generated.

Figures 9 and 10 report on the comparison of the behavior of Fed-DSATUR
(FD), Exclusive Groups (EG), and Vertex Coloring Graph (CG, Fed-DSATUR
with no cost function cost(.)). Source Selection, Optimization, First Tuple,
and Total are reported as well as the number of answers produced for each query.
As observed, both EG and FD are able to produce the same number of answers
when the 25 FedBench queries are executed against federation Fed1 (Fig. 9),
and the planning time (Source Selection and Optimization) of FD is higher
than the time required by CG and EG. However, it is important to notice that
once FD identifies a good decomposition, it facilitates the generation of a good
execution plan; as a result, FD plans can produce answers faster than EG and
CG. Moreover, in case federations do not frequently change, FD execution plans
could be computed off-line; thus, FD would provide an effective and efficient
solution to the Federated SPARQL Query Decomposition problem.
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Fig. 9. Efficiency and effectiveness of Fed-DSATUR Cost-Based Optimiza-
tion Techniques. Exclusive Group (EG), Vertex Coloring Graph (CG), and Fed-
DSATUR (FD) decomposers for FedBench queries on Fed1. Source Selection: Elapsed
time between the submission of query Q and generation of decomposition DQ; Opti-
mization: Elapsed time between generation of DQ and planning of physical plan PQ

for DQ; First Tuple: Elapsed time between execution of P and output of first answer
for Q; Total: Elapsed time between output of first answer and output of all the answers
of Q. Bars are annotated with number of answers produced at Total time. Timeout is
600 s. (a) Cross Domain (CD); (b, c) Linked Data (LD); (d) Life Sciences (LSD)
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Fig. 10. Efficiency and effectiveness of Fed-DSATUR cost-based optimiza-
tion techniques. Exclusive Group (EG), Vertex Coloring Graph (CG), and Fed-
DSATUR (FD) for additional queries on Fed1. Source selection: elapsed time between
submission of query Q and generation of decomposition DQ; Optimization: elapsed
time between generation of DQ and planning of physical plan PQ for DQ; First Tuple:
elapsed time between execution of P and output of first answer for Q; Total: elapsed
time between output of first answer and output of all answers of Q. Timeout is 600 s
additional queries have between 6 and 46 triple patterns and up to nine subqueries

These results indicate that the function cost(.) is able to guide the Fed-
DSATUR algorithm into the space of query decompositions that not only reduce
the execution time, but that produce complete answers. Furthermore, the behav-
ior of EG, CG, and FD is evaluated for the ten Additional Queries. These queries
comprise a large number of triple patterns, different SPARQL operators, and
decompositions can be composed of up to nine subqueries (see Table 8); because
of these characteristics, these queries represent real challenges for existing feder-
ated engines and allow for uncovering hidden properties of federated engines [19].
Figure 10 reports on runtimes and number of answers of these Additional Queries
when they are executed against Fed1. As observed, cost(.) guides FD to find
decompositions that not only reduce overall runtime but that are able to produce
answers before a timeout of 600 s. These outcomes also suggest that cost(.) suc-
cessfully trades off between query completeness and runtime. Further, although
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the planning time can be increased, saving achieved during execution time justify
the application of the proposed approach.

6 Related Work

The problem of integrating data from dissimilar data sources has been exten-
sively treated in the literature [8,11,12,14,32], and a vast set of integra-
tion frameworks [12] have been developed to query heterogeneous sources by
implementing the mediator and wrapper architecture proposed by Wieder-
hold [30]. Furthermore, the Semantic Data Management community has been
very active proposing solutions to the problem of query processing on the Web
of Data [1,3,10,13,18,23,24,27]. We mainly focus on approaches that imple-
ment strategies to address the problem of source selection and decomposition of
SPARQL queries, although, we recognize the tremendous advance that the Data
Base community has done to the general problem of data integration in the last
fifteen years. Existing approaches are grouped according to the amount of knowl-
edge that describes the data sources, and that is exploited during source selection
and query decomposition to enhance the quality of the generated query decom-
positions. First, we describe techniques that rely on index-based structures that
encode informations about the datasets and efficiently exploit this information
to select the endpoints and RDF documents that can be used to answer a partic-
ular query. Next, federated SPARQL query approaches that maintain cardinality
and similarity statistics are presented. Finally, we summarize source selection and
query decomposition approaches that in presence of zero-knowledge about statis-
tics that describe the cardinality or selectivity of the federated RDF datasets, are
able to identify query decompositions against federations of SPARQL endpoints.

6.1 Index-Based Approaches for Source Selection and Query
Decomposition

Several approaches have considered index-based approaches to solve the prob-
lem of selecting query data providers. Harth et al. [13] present a hybrid solution
that combines histograms and R-trees; histograms are used for source ranking,
while regions determine the best sources to answer a basic graph pattern. Li
and Heflin [18] propose a bottom-up tree based technique to integrate data from
multiple heterogeneous sources, and rely on an inverted-index from RDF doc-
uments to URIs and literals that identify the set of RDF datasets that can be
used to execute a basic graph pattern. Kaoudi et al. [16] propose a P2P system
running on top of Atlas for processing distributed RDF documents, and it imple-
ments a cost-based approach to identify an optimal plan; statistics are kept by
peers. DAW [24] implements duplicate-aware strategies for selecting SPARQL
endpoints to execute federated SPARQL queries, in a way that overlapping
among the selected endpoints is reduced. DAW relies on Min-Wise Indepen-
dent Permutations (MIPs) [5], and information about the selectivity of triple
patterns in the federation datasets to estimate the overlap among the selected
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sources. Finally, Saleeem and Ngonga propose the source selection approach
named HiBISCuS [23]; HiBISCuS describes RDF data accessible via SPARQL
endpoints in terms of capabilities, where a capability states for each predicate
p in a dataset the set of URI authorities of the subjects and objects that are
related through p. Further, SPARQL queries are represented as labelled hyper-
graphs to encode in the same hyper-edge, the set of triple patterns that share
at least one variable. Capabilities and the hyper-graph based query representa-
tion are exploited during source selection and query decomposition to identify
the endpoints that will not contribute to the final answer of a query. These
approaches can effectively identify data sources for executing a SPARQL query
triple patterns. Nevertheless, they all rely on index-based structures build on top
of meta-data and statistics about autonomous RDF datasets. Therefore, keeping
up-to-date all these indices may be costly in real-world scenarios where data may
constantly change or being affected by unexpected environment conditions.

6.2 Cost Based Approaches

DARQ [22] and SPLENDID [10] rely on source descriptions and statistics that
describe data accessible via SPARQL endpoints, to perform source selection and
query optimization. Both engines decompose queries into subqueries comprised
of triple patterns that are uniquely answered by one endpoint or that can be
answered by several endpoints. In the later case, triple patterns are sent indi-
vidually to every relevant endpoint; also, statistics about selectivities and car-
dinalities are used to identify optimal plans. However, in presence of subqueries
associated with more than one endpoint, both systems address the query decom-
position problem differently. DARQ uses statistics from endpoint descriptions to
build a plan that reduces the number of empty results. Contrary, SPLENDID
contacts endpoints to decide if a predicate can be answered. SPARQL-DQP [6]
and ARQ24 exploit information on SPARQL 1.1 queries to decide where the sub-
queries of triple patterns will be executed. Additionally, they rely on statistics
or heuristics to identify query plans. WoDQA25 is a tool built on top of ARQ to
provide access to federations of endpoints. Finally, Avalanche [3] implements an
inter-operator solution where a group of best plans is chosen heuristically. Statis-
tics about cardinalities and data distribution are considered to identify possibly
good plans. Avalanche follows a competition strategy where top-k plans are exe-
cuted in parallel, the output of a query corresponds to the answers produced
by the most promising plans in a given period of time. These systems are able
to achieve good performance and query answer completeness. However, in pres-
ence of data sources that constantly change, their behavior can be negatively
impacted because estimates can easily become imprecise and inaccurate.

24 http://jena.sourceforge.net/ARQ.
25 https://github.com/seagent/WoDQA/.

http://jena.sourceforge.net/ARQ
https://github.com/seagent/WoDQA/
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6.3 Adaptive Approaches for Source Selection and Query
Decomposition

We describe the approaches that do not resort to statistics, estimates, or index-
based structures to decide which endpoints are more suitable to execute a query.
FedX [27] and ANAPSID [1] are exemplars of these type of federated engines.
Both engines pose ASK and SELECT SPARQL queries against the endpoints
to create the instances of the ds function, i.e., to associate a predicate p with
the SPARQL endpoints that can answer triple patterns of the form {?s p ?o}.
FedX [27] is a rule-based system able to decompose SPARQL queries into sub-
queries that can be completely executed by an endpoint or exclusive groups.
FedX uses neither knowledge about mappings nor statistics associated with the
sources; it may contact every source to determine where the predicates presented
in a query are offered, and may save this information in cache for future queries
of the same predicate. FedX relies on the number of bound variables in a query
to decide the order in which subqueries will be posed to the selected endpoints.
ANAPSID [1] exploits information about the predicates in federation datasets
during source selection and query decomposition. ANAPSID identifies the triple
patterns that can be executed by the same endpoint and comprise a star. Triple
patterns are grouped together in a way that, the number of operations done by
one endpoint are maximized while the size of intermediate results and bandwidth
are minimized. These federated approaches may efficiently identify a query rel-
evant endpoints. However, because none of these engines implements the source
selection and query optimization task as an optimization problem, when queries
are comprised of a large number of triple patterns or there are many relevant
endpoints, they may produce query decompositions that may perform poorly,
i.e., query decompositions that do not minimize execution cost or maximize the
answer completeness. Fed-DSATUR overcomes this limitation, and provides a
greedy based solution that depending on the shape of the SPARQL query is able
to produce optimal decompositions.

7 Conclusions and Future Work

We have addressed the problem of source selection and query decomposition of
federations of SPARQL endpoints. The formalization of the federated SPARQL
query decomposition problem as the Vertex Coloring Problem was devised, and
built on results from graph theory, we defined a family of queries for which opti-
mal decompositions can be identified in polynomial time. Furthermore, we pro-
posed the query decomposition algorithm named Fed-DSATUR which extends
DSATUR to efficiently identify SPARQL query decompositions. We empirically
evaluated Fed-DSATUR and state-of-the-art federated SPARQL query engines
on the FedBench benchmark and in an additional set of complex queries. We set
up two different federations of SPARQL endpoints to access the data collections
of FedBench, and attempted to stress source selection and query decomposition
techniques when data collections were fragmented across different datasets acces-
sible via SPARQL endpoints. The observed results suggest that Fed-DSATUR
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and existing SPARQL query engines are competitive in queries comprised of a
small number of triple patterns or SPARQL operators. Nevertheless, in presence
of complex queries composed of a large number of BGPs and SPARQL operators,
Fed-DSATUR can clearly overcome existing approaches in both execution time
and answer completeness. In high number of queries, Fed-DSATUR could pro-
duce almost 100 % of the query answers and exhibit high values of throughput.
Additionally, our results pose strong arguments on the type of queries that exist-
ing engines are able to execute and when they may fail. In the future, we plan to
extend Fed-DSATUR to manage complex queries such as C9 and C10. Further
we will analyze the benefits of considering richest descriptions of the SPARQL
endpoints, e.g., range and domain of each RDF predicate, authority fragments
of the URL of the RDF datasets, RDF predicates associated with a class in a
dataset, and classes in an RDF dataset. We hypothesize that this information
can positively impact on the cost function in scenarios with a large number of
SPARQL endpoints that share similar RDF data.

A Additional Complex Queries

We have defined a set of ten additional queries which comprise a large number of
triple patterns, basic graph patterns, and different SPARQL operators. Extended
setup evaluates the effects of selectivity of BGPs, large number of triple patterns,
and number of SPARQL operators. The additionally queries are composed of
between 6 and 46 triple patterns and can be decomposed into up to 9 subqueries.

Listing 1.2. C1
SELECT DISTINCT ? drug ?enzyme ? r e a c t i o n Where {

? drug1 drugbank : d rugCategory d rugbankca tego ry
: a n t i b i o t i c s .

? drug2 drugbank : d rugCategory d rugbankca tego ry
: a n t i v i r a l A g e n t s .

? drug3 drugbank : d rugCategory d rugbankca tego ry
: a n t i h y p e r t e n s i v eAg e n t s .

? I 1 drugbank : i n t e r a c t i o nD r u g 2 ? drug1 .
? I 1 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 2 drugbank : i n t e r a c t i o nD r u g 2 ? drug2 .
? I 2 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 3 drugbank : i n t e r a c t i o nD r u g 2 ? drug3 .
? I 3 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? drug owl : sameAs ? drug5 .
? drug5 r d f : t ype dbped ia : Drug .
? drug drugbank : keggCompoundId ? cpd .
? enzyme kegg : xSub s t r a t e ? cpd .
? enzyme r d f : t ype kegg : Enzyme .
? r e a c t i o n kegg : xEnzyme ?enzyme .
? r e a c t i o n kegg : equa t i on ? equa t i on .

}

Listing 1.3. C2
SELECT DISTINCT ? drug ?enzyme ? r e a c t i o n Where {

? drug1 drugbank : d rugCategory d rugbankca tego ry :
a n t i b i o t i c s .

? drug2 drugbank : d rugCategory d rugbankca tego ry :
a n t i v i r a l A g e n t s .

? drug3 drugbank : d rugCategory d rugbankca tego ry :
a n t i h y p e r t e n s i v eAg e n t s .

? drug4 drugbank : d rugCategory d rugbankca tego ry : an t i
−b a c t e r i a l A g e n t s .

? I 1 drugbank : i n t e r a c t i o nD r u g 2 ? drug1 .
? I 1 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 2 drugbank : i n t e r a c t i o nD r u g 2 ? drug2 .
? I 2 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 3 drugbank : i n t e r a c t i o nD r u g 2 ? drug3 .
? I 3 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 4 drugbank : i n t e r a c t i o nD r u g 2 ? drug4 .
? I 4 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? drug owl : sameAs ? drug5 .
? drug5 r d f : t ype dbped ia : Drug .
? drug drugbank : keggCompoundId ? cpd .
? enzyme kegg : xSub s t r a t e ? cpd .
? enzyme r d f : t ype kegg : Enzyme .
? r e a c t i o n kegg : xEnzyme ?enzyme .
? r e a c t i o n kegg : equa t i on ? equa t i on .

}
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Listing 1.4. C3
SELECT DISTINCT ? drug ?enzyme ? r e a c t i o n WHERE {

? drug1 drugbank : p o s s i b l eD i s e a s eT a r g e t d i seasome : 3 0 2 .
? drug2 drugbank : p o s s i b l eD i s e a s eT a r g e t d i seasome :53 .
? drug3 drugbank : p o s s i b l eD i s e a s eT a r g e t d i seasome :59 .
? drug4 drugbank : p o s s i b l eD i s e a s eT a r g e t d i seasome :105 .
? drug1 drugbank : p o s s i b l eD i s e a s eT a r g e t ?d .
? drug2 drugbank : p o s s i b l eD i s e a s eT a r g e t ?d .
? drug3 drugbank : p o s s i b l eD i s e a s eT a r g e t ?d .
? drug4 drugbank : p o s s i b l eD i s e a s eT a r g e t ?d .
? drug drugbank : p o s s i b l eD i s e a s eT a r g e t ?d .
? drug drugbank : casReg i s t ryNumber ? i d .
? keggDrug r d f : t ype kegg : Drug .
? keggDrug b i o 2 r d f : xRef ? i d .
? keggDrug dc : t i t l e ? t i t l e .

}

Listing 1.5. C4
SELECT DISTINCT ?d ? drug5 ? cpd ?enzyme ? equa t i on
WHERE {

? drug1 drugbank : p o s s i b l eD i s e a s eT a r g e t d i seasome : 2 6 1 .
? drug1 drugbank : t a r g e t ?o .
?o drugbank : genbankIdGene ?g .
?o drugbank : l o c u s ? l .
?o drugbank : mo lecu la rWe ight ?mw.
?o drugbank : hp rd Id ?hp .
?o drugbank : swissprotName ? sn .
?o drugbank : p r o t e i nSequenc e ? ps .
?o drugbank : g e n e r a l R e f e r e n c e ? gr .
? drug drugbank : t a r g e t ?o .
? drug owl : sameAs ? drug5 .
? drug drugbank : p o s s i b l eD i s e a s eT a r g e t ?d1 .
? drug owl : sameAs ? drug5 .
? drug5 r d f : t ype dbped ia : Drug .
? drug drugbank : keggCompoundId ? cpd .
? enzyme kegg : xSub s t r a t e ? cpd .
? enzyme r d f : t ype kegg : Enzyme .
? r e a c t i o n kegg : xEnzyme ?enzyme .
? r e a c t i o n kegg : equa t i on ? equa t i on .
}

Listing 1.6. C5
SELECT DISTINCT ? drug5 ? drug6
WHERE {

? drug1 drugbank : p o s s i b l eD i s e a s eT a r g e t d i seasome :319 .
? drug1 drugbank : p o s s i b l eD i s e a s eTa r g e t> d i seasome :270 .
? I 1 drugbank : i n t e r a c t i o nD r u g 1 ? drug1 .
? I 1 drugbank : n t e r a c t i onDrug2 ? drug .
? drug1 owl : sameAs ? drug5 .
? drug owl : sameAs ? drug6 .

}

Listing 1.7. C6
SELECT DISTINCT ? drug
WHERE
{

? drug drugbank : d rugCategory d rugbankca t ego ry : m i c r o n u t r i e n t .
? drug drugbank : d rugCategory d rugbankca tego ry : d i e t a r ySupp l emen t .
? drug drugbank : d rugCategory d rugbankca t ego ry : non−e s s e n t i a lAm i n oAc i d s .
OPTIONAL {

? drug drugbank : i n d i c a t i o n ? i .
? drug drugbank : b i o t r a n s f o rma t i o n ?b .
? drug drugbank : i n ch iKey ?k .
? drug drugbank : synonym? s .
? drug drugbank : t o x i c i t y ? t .

} .
OPTIONAL {

? drug drugbank : keggCompoundId ? cpd .
? enzyme r d f : t ype kegg : Enzyme .
? enzyme kegg : xSub s t r a t e ? cpd .
? r e a c t i o n kegg : xEnzyme?enzyme .
? r e a c t i o n kegg : equa t i on ? equa t i on .

} .
OPTIONAL {

? drug5 r d f : t ype dbped ia : Drug .
? drug r d f : t ype dbped ia : Drug

}
}
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Listing 1.8. C7
SELECT DISTINCT ?d ? drug5 ? cpd ?enzyme ? equa t i on
WHERE {

? drug1 drugbank : p o s s i b l eD i s e a s eT a r g e t d i seasome :261 .
? drug1 drugbank : t a r g e t ?o .
?o drugbank : genbankIdGene ?g .
?o drugbank : l o c u s ? l .
?o drugbank : mo lecu la rWe ight ?mw .
?o drugbank : hp rd Id ?hp .
?o drugbank : swissprotName ? sn .
?o drugbank : p r o t e i nSequenc e ? ps .
?o drugbank : g e n e r a l R e f e r e n c e ? gr .
? drug drugbank : t a r g e t ?o .
OPTIONAL {

? drug owl : sameAs ? drug5 .
? drug5 r d f : t ype dbped ia : Drug .
? drug drugbank : keggCompoundId ? cpd .
? enzyme kegg : xSub s t r a t e ? cpd .
? enzyme r d f : t ype kegg : Enzyme .
? r e a c t i o n kegg : xEnzyme ?enzyme .
? r e a c t i o n kegg : equa t i on ? equa t i on .

}
}

Listing 1.9. C8
SELECT DISTINCT ? drug1
WHERE {

? drug1 drugbank : p o s s i b l eD i s e a s eT a r g e t <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ d i seasome / r e s o u r c e / d i s e a s e s /673>
.

? drug1 drugbank : t a r g e t ?o .
?o drugbank : genbankIdGene ?g .
?o drugbank : l o c u s ? l .
?o drugbank : mo lecu la rWe ight ?mw.
?o drugbank : hp rd Id ?hp .
?o drugbank : swissprotName ? sn .
?o drugbank : p r o t e i nSequenc e ? ps .
?o drugbank : g e n e r a l R e f e r e n c e ? gr .
? drug drugbank : t a r g e t ?o .
? drug drugbank : synonym?o1 .
OPTIONAL {

? drug owl : sameAs ? drug5 .
? drug5 r d f : t ype dbped ia : Drug .
? drug drugbank : keggCompoundId ? cpd .
? enzyme kegg : xSub s t r a t e ? cpd .
? enzyme r d f : t ype kegg : Enzyme .
? r e a c t i o n kegg : xEnzyme ?enzyme .
? r e a c t i o n kegg : equa t i on ? equa t i on .

}
}
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Listing 1.10. C9
SELECT DISTINCT ? drug ? drug1 ? drug2 ? drug3 ? drug4 ?d1 WHERE {

? drug1 drugbank : d rugCategory <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ drugbank / r e s o u r c e / d rugca t ego r y / a n t i b i o t i c s
> .

? drug2 drugbank : d rugCategory <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ drugbank / r e s o u r c e / d rugca t ego r y /
a n t i v i r a l A g e n t s> .

? drug3 drugbank : d rugCategory <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ drugbank / r e s o u r c e / d rugca t ego r y /
a n t i h y p e r t e n s i v eAg en t s> .

? drug4 drugbank : d rugCategory <ht tp : //www4 . w iw i s s . fu−b e r l i n . de/ drugbank / r e s o u r c e / d rugca t ego r y / an t i−
b a c t e r i a l A g e n t s> .

? drug1 drugbank : t a r g e t ?o1 .
?o1 drugbank : genbankIdGene ?g1 .
?o1 drugbank : l o c u s ? l 1 .
?o1 drugbank : mo lecu la rWe ight ?mw1 .
?o1 drugbank : hp rd Id ?hp1 .
?o1 drugbank : swissprotName ? sn1 .
?o1 drugbank : p r o t e i nSequenc e ? ps1 .
?o1 drugbank : g e n e r a l R e f e r e n c e ? gr1 .
? drug drugbank : t a r g e t ?o1 .
? drug2 drugbank : t a r g e t ?o2 .
?o1 drugbank : genbankIdGene ?g2 .
?o2 drugbank : l o c u s ? l 2 .
?o2 drugbank : mo lecu la rWe ight ?mw2 .
?o2 drugbank : hp rd Id ?hp2 .
?o2 drugbank : swissprotName ? sn2 .
?o2 drugbank : p r o t e i nSequenc e ? ps2 .
?o2 drugbank : g e n e r a l R e f e r e n c e ? gr2 .
? drug drugbank : t a r g e t ?o2 .
? drug3 drugbank : t a r g e t ?o3 .
?o3 drugbank : genbankIdGene ?g3 .
?o3 drugbank : l o c u s ? l 3 .
?o3 drugbank : mo lecu la rWe ight ?mw3 .
?o3 drugbank : hp rd Id ?hp3 .
?o3 drugbank : swissprotName ? sn3 .
?o3 drugbank : p r o t e i nSequenc e ? ps3 .
?o3 drugbank : g e n e r a l R e f e r e n c e ? gr3 .
? drug drugbank : t a r g e t ?o3 .
? drug4 drugbank : t a r g e t ?o4 .
?o4 drugbank : genbankIdGene ?g4 .
?o4 drugbank : l o c u s ? l 4 .
?o4 drugbank : mo lecu la rWe ight ?mw4 .
?o4 drugbank : hp rd Id ?hp4 .
?o4 drugbank : swissprotName ? sn4 .
?o4 drugbank : p r o t e i nSequenc e ? ps4 .
?o4 drugbank : g e n e r a l R e f e r e n c e ? gr4 .
? drug drugbank : t a r g e t ?o4 .
OPTIONAL{

? I 1 drugbank : i n t e r a c t i o nD r u g 2 ? drug1 .
? I 1 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 2 drugbank : i n t e r a c t i o nD r u g 2 ? drug2 .
? I 2 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 3 drugbank : i n t e r a c t i o nD r u g 2 ? drug3 .
? I 3 drugbank : i n t e r a c t i o nD r u g 1 ? drug .
? I 4 drugbank : i n t e r a c t i o nD r u g 2 ? drug4 .
? I 4 drugbank : i n t e r a c t i o nD r u g 1 ? drug .

}
}

Listing 1.11. C10
SELECT ? t i t l e ? a c t o r ?news ? d i r e c t o r ? f i l m ?n ? gen re WHERE {

? f i l m dc : t i t l e ’ Tarzan ’ .
? f i l m lmdb : a c t o r ? a c t o r .
? f i l m lmdb : product ion company <ht tp : // data . l inkedmdb . org / r e s o u r c e / product ion company/15> .
? a c t o r owl : sameAs ?x .
OPTIONAL{

?x dbped ia : d i r e c t o r ? d i r e c t o r .
? d i r e c t o r dbped ia : n a t i o n a l i t y ?n .
? f i l m lmdb : gen re ? gen re .
OPTIONAL {

?y owl : sameAs ?x .
} .
? y nyt : top i cPage ?news

} .
}
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Abstract. Discovering correspondences between schema elements is a
crucial task for data integration. Most schema matching tools are semi-
automatic, e.g., an expert must tune certain parameters (thresholds,
weights, etc.). They mainly use aggregation methods to combine sim-
ilarity measures. The tuning of a matcher, especially for its aggregation
function, has a strong impact on the matching quality of the resulting
correspondences, and makes it difficult to integrate a new similarity mea-
sure or to match specific domain schemas. In this paper, we present YAM
(Yet Another Matcher), a matcher factory which enables the generation
of a dedicated schema matcher for a given schema matching scenario.
For this purpose we have formulated the schema matching task as a
classification problem. Based on this machine learning framework, YAM
automatically selects and tunes the best method to combine similarity
measures (e.g., a decision tree, an aggregation function). In addition, we
describe how user inputs, such as a preference between recall or preci-
sion, can be closely integrated during the generation of the dedicated
matcher. Many experiments run against matchers generated by YAM
and traditional matching tools confirm the benefits of a matcher factory
and the significant impact of user preferences.

Keywords: Schema matching · Data integration · Matcher factory ·
Schema matcher · Machine learning · Classification

1 Introduction

There are a plethora of schema matching tools designed to help automate what
can be a painstaking task if done manually [3]. The diversity of tools hints at the
inherent complexity of this problem. The proliferation of schema matchers and
the proliferation of new (often domain-specific) similarity measures used within
these matchers have left data integration practitioners with the very perplexing
task of trying to decide which matcher to use for the schemas and tasks they need
to solve. Traditionally, the matcher, which combines various similarity measures,
is based on an aggregation function. Most matching tools are semi-automatic,
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meaning that to perform well, an expert must tune some (matcher-specific) para-
meters (thresholds, weights, etc.) Often this tuning can be a difficult task as the
meaning of these parameters and their effect on matching quality can only be
seen through trial-and-error [39]. Lee et al. have shown how important (and dif-
ficult) tuning is, and that without tuning most matchers perform poorly, thus
leading to a low quality of the data integration process [27]. To overcome this,
they proposed eTuner, a supervised learning approach for tuning these matching
knobs. However, eTuner has to be plugged into a matching tool, which requires
programming skills. A user must also still commit to one single matcher (the
matcher provided in the matching tool). Several research papers [10,12,18,31]
led to the conclusion that matchers based on machine learning provide acceptable
results w.r.t. existing tools. The main idea consists of training various similarity
measures with a sample of schemas and correspondences, and applying them to
match another set of schemas. Our intuition is that machine learning can be
used at the matcher level.

Another motivation deals with the pre-match interaction with the users [38].
They usually have some preferences or minor knowledge of the schemas to be
matched, which are rarely used by the schema matchers [43]. For instance, a
quick examination of the schemas may have revealed a few correct correspon-
dences, or the user may have an external resource (dictionary, ontology) or a
dedicated similarity measure which could be exploited for a specific domain.
Schema matchers (often implicitly) are designed with one or a few matching
tasks in mind. A matcher designed for automated web service composition may
use very stringent criteria in determining a match, i.e., it may only produce a
correspondence if it is close to 100% confident of the correspondence’s accuracy.
In other words, such a matcher uses precision as its performance measure. In
contrast, a matcher designed for federating large legacy schema may produce all
correspondences that look likely, even if they are not certain. Such a matcher may
favor recall over precision, because the human effort in “rejecting” a bad corre-
spondence is much less than the effort needed to search through large schemas
and find a missing correspondence. This difference can make a tremendous dif-
ference in the usefulness of a matcher for a given task. Integrating these user
preferences or knowledge prior to the matching is a challenge for improving the
quality results of a schema matcher.

In this context, we present YAM, which is actually not Y et Another
M atcher1. Rather YAM is the first schema matcher generator designed to pro-
duce a tailor-made matcher, based on the automatic tuning of the matcher and
the optional integration of user requirements. While schema matching tools pro-
duce correspondences between schemas, YAM is a matcher factory because it
produces a dedicated schema matcher (that can be used later for discovering
correspondences). This means that theoretically, YAM could generate schema
matchers which are very similar to the tools COMA++ [2] or MatchPlan-
ner [18]. Schema matching tools only have one predefined method for combining
similarity measures (e.g., a weighted average), while a schema matcher generated

1 The name of the tool refers to a discussion during a panel session at XSym 2007.

http://www.springerlink.com/content/978-3-540-75287-5
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by YAM includes a method selected among many available (e.g., a decision tree,
a Bayesian network, a weighted average). To fulfill this goal, YAM considers
the schema matcher as a machine learning classifier: given certain features (i.e.,
the similarity values computed with various similarity measures), the schema
matcher has to predict the relevance of a pair of schema elements (i.e., whether
this pair is a correspondence or not). In this framework, any type of classifier
can be trained for schema matching, hence the numerous methods available for
combining similarity measures. YAM does not only select the best method for
combining similarity measures but it also automatically tunes the parameters
inherent to this method (e.g., weights, thresholds). The automatic tuning capa-
bility has been confirmed as one of the challenges proposed in [43]. In addition,
YAM integrates user preferences or knowledge (about already matched scenarios
and training data), if available, during the generation of the schema matchers.
For instance, our approach benefits from expert correspondences provided as
input, because they are used for generating the schema matcher. In YAM, we
also allow a user to specify her/his preference for precision or recall, and we
produce a dedicated matcher that best meets the users needs. YAM is the first
tool that allows the tuning of this very important performance trade-off.

The main contributions in this paper are:

– Our approach is the first to refer to schema matching as a classification
task. Although other approaches may use classifiers as a similarity measure,
we propose to consider a schema matcher which combines various similarity
measures as a classifier.

– In addition, our work is the first matcher factory for schema matching. Con-
trary to traditional matching approaches, our factory of matchers generates
different matchers and selects the dedicated matcher for a given scenario, i.e.,
the matcher which includes the most relevant similarity measures, combined
with the most appropriate method, and best tuned.

– Another contribution deals with the close integration of user preferences
(e.g., preference between precision or recall, expert correspondences).

– A tool named YAM has been implemented. Its main features include self-
tuning (the method for combining similarity measures in a matcher is tailored
to the schemas to be matched) and extensibility (new similarity measures or
classifiers can be added with no need for manual tuning).

– Experiments over well-known datasets were performed to demonstrate the
significant impact of YAM at different levels: the need for a matcher fac-
tory, the benefit of user preferences on the matching quality, and the eval-
uation with other schema matching tools in terms of matching quality and
performance time.

Outline. The rest of the paper is organized as follows. Section 2 contains
the necessary background and definitions of the notions and concepts that are
used in this paper. Section 3 gives an overview of our approach while Sect. 4 pro-
vides the details of the learning process. The results of experiments showing the
effectiveness of our approach are presented in Sect. 5. Related work is described
in Sect. 6. Finally, we conclude in Sect. 7.
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2 Preliminaries

Schema matching is traditionally applied to matching pairs of edge-labeled trees
(a simple abstraction that can be used for XML2 schemas, web interfaces, JSON3

data types, or other semi-structured or structured data models). The schema
matching task can be divided into three steps. The first one is named pre-
match and is optional. Either the tool or the user can intervene, for instance to
provide resources (dictionaries, expert correspondences, etc.) or to set up para-
meters (tuning of weights, thresholds, etc.). Secondly, the matching process
occurs, during which correspondences are discovered. The final step, the post-
match process, mainly consists of validation of the discovered correspondences
by the user.

Definition 1 (Schema): A schema is a labeled unordered tree S =
(ES ,DS , rS , label) where ES is a set of elements; rS is the root element;
DS ⊆ ES × ES is a set of edges; and label ES → Λ where Λ is a countable
set of labels.

Definition 2 (Schema matching scenario): A schema matching scenario is
a set of schemas (typically from the same domain, e.g., genetics or business)
that need to be matched. A scenario may reflect one or more properties (e.g.,
domain specific, large scale schemas). An example of schema matching scenario
is composed of two hotel booking web forms, such as those depicted by Fig. 1(a)
and (b). Optionally, a schema matching scenario can include user preferences
(preference for precision or recall, expert correspondences, scenarios from the
same domain, number of training data and choice of the matching strategy).
These options are detailed in Sect. 4.3. In the next definitions, we focus on a
scenario with two schemas S1 and S2 for clarity, but the definitions are valid for
a larger set of schemas.

Definition 3 (Dataset): A dataset is a set of schema matching scenarios. For
instance, the dataset used in the experiments of this paper is composed of 200
scenarios from various domains.

Definition 4 (Pair): A pair of schema elements is defined as a tuple <e1, e2>
where e1 ∈ E1 and e2 ∈ E2 are schema elements. For instance, a pair from the
two hotel booking schemas is <city, hotel name>.

Definition 5 (Similarity Measure): A similarity measure is a function which
computes a similarity value between a pair of schema elements <e1, e2>. The
similarity value is noted sim(e1, e2) and it indicates the likeness between both
elements. It is defined by:

sim(e1, e2) → [0, 1]

2 Extensible Markup Language (XML) (November 2015).
3 JavaScript Object Notation (JSON) (November 2015).

https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/JSON
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Fig. 1. Two web forms about hotel booking

where a zero value means total dissimilarity and a value equal to one stands for
total similarity. Note that measures computed in � can usually be converted in
the range [0, 1]. In the last decades, many similarity measures have been defined
[20,25,29] and are available in libraries such as Second String4.

Definition 6 (Correspondence): A correspondence is a pair of schema ele-
ments which are semantically similar. It is defined as a tuple <e1, e2, k>, where
k is a confidence value (usually the average of all similarity values computed
for the pair <e1, e2>). A set of correspondences can be provided by an expert
(ground truth) or it may be produced by schema matchers. Figure 2 depicts two
sets of correspondences. The set on the left side (Fig. 2(a)) is the expert set,
which includes expected correspondences. The set on the right side (Fig. 2(b))
has been discovered by a schema matcher (YAM). Note that an expert cor-
respondence traditionally has a similarity value equal to 1. As an example,
<searchform, search, 1> is an expert correspondence.

Definition 7 (Schema Matcher): A schema matcher is an algorithm or a
function which combines similarity measures (e.g., the average of similarity val-
ues for a pair of schema elements). In addition, a matcher includes a decision
step to select which pair(s) become correspondences (e.g., the decision may be a
threshold or a top-K). Given a pair <e1, e2> and its similarities values computed
for k similarity measures, we represent the combination comb and the decision

4 Second String (November 2015).

http://secondstring.sourceforge.net
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Fig. 2. Two sets of correspondances for the hotel booking example

dec of a matcher as follows:

dec(comb(sim1(e1, e2), . . . , simk(e1, e2))) → <e1, e2, k> or ∅
A few matchers also use information about other pairs (e.g., <e1, e3>) to decide
whether the pair <e1, e2> is a correspondence or not. Thus, a more generic
definition of a schema matcher M focuses on the fact that it produces a set of
correspondences between two schemas S1 and S2:

M(S1, S2) → {<e1, e2, k>}

Definition 8 (Schema matching quality): The schema matching quality
evaluates the effectiveness of a schema matcher for a given schema matching
scenario, by comparing the correspondences discovered by this matcher for the
scenario to a ground truth. Figure 2(a) provides the ground truth between the
two web forms. Different metrics have been designed to measure the effectiveness
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of a matcher. For instance, precision measures the rate between the number of
correct correspondences discovered by a matcher and the number of expected
correspondences (provided in the ground truth).

One of the main assumptions in YAM is that the schema matching process
can be seen as a binary classification algorithm. Indeed, the goal of the schema
matching process is to determine whether a pair of schema elements is a cor-
respondence or not. For instance, a matcher will have to classify the pair
<city, hotel name> either as a correct or an incorrect correspondence. Thus,
YAM views schema matchers as machine learning classifiers [34].

Definition 9 (Classifier): A classifier is an algorithm that aims at sorting
input data into different classes. In our context, two classes indicate the validity
of a pair to be considered as a correspondence: relevant and irrelevant. Different
types of classifiers are available such as decision trees or support vector machines
[23,34]. Two processes are usually associated to a classifier: training (or learning)
consists of building a classifier from a given type by exploiting training data while
using stands for the application of the trained classifier against another dataset.
To train a classifier5, training data is described with features and a class. In our
context, the set of training data τ is represented with similarity measures and
associated values and its validity v:

τ = {((sim1, sim1(e1, e2)), . . . , (simk, simk(e1, e2)), v)}

Given a set of training data τ , the training for a type of classifier ω produces a
classifier c as follows:

ω(τ) → c

When training a classifier, the main objective is to promote a given evaluation
metric, and the chosen metric for YAM is the misclassification rate. At the end of
the learning, the generated classifier efficiently combines (a subset of) similarity
measures. In our context, using a classifier is equivalent to a schema matcher,
i.e., it produces a set of schema correspondences between two input schemas:

c(S1, S2) → {<e1, e2, k>}

Definition 10 (Matcher factory): A factory of matchers such as YAM pro-
duces different schema matchers based on the same inputs. Each of those match-
ers has its own specificity, mainly for combining similarity measures, tuning
internal parameters, taking a decision. In our context, these specificities mainly
relate to the types of classifiers. Given two schemas S1 and S2, a set of training
data τ , a set of type of classifiers Ω, and optional user preferences Φ, a matcher
factory generates a set of generated matchers C, i.e., one matcher for each type
of classifier.

M(S1, S2, τ, Ω, Φ) → C where C = {c1, . . . , cn} and |Ω| = n

5 We focus on supervised classification, i.e., all training data are labelled with a class.
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Definition 11 (Dedicated matcher): The motivation for generating many
classifiers within a factory comes from the fact that a given schema matcher, even
craftily tuned, may not reach the quality level of another matcher for a given
scenario [27]. Yet, no schema matcher performs well in all possible scenarios. In
addition to generating many matchers, a factory of schema matchers is also in
charge of selecting the dedicated schema matcher, i.e., the “best matcher among
all those generated”. The notion of “best matcher” depends on a strategy which
encompasses three criteria: an evaluation metric, a validation dataset and a
pool of matchers. Strategies are described in more detail in Sect. 4.4. Broadly
speaking, given an evaluation metric μ, a set of matchers C and a validation
dataset X , the dedicated matcher Γ ∈ C is the classifier which obtains the
highest score for the evaluation metric against the validation dataset:

∀ci ∈ C, μ(Γ,X ) ≥ μ(ci,X )

This dedicated matcher Γ is then used for matching S1 and S2.

3 Overview of Our Approach

YAM is a self-tuning and extensible matcher factory tool, which generates a ded-
icated schema matcher according to a scenario and optional user requirements.
Broadly speaking, YAM includes a repository of training data (scenarios with
expert correspondences) and a set of types of classifier. It generates tuned schema
matchers for various types of classifier, and then select the “best” one - according
to a strategy - as the dedicated matcher. This dedicated matcher can be used
for matching the input scenario. The self-tuning feature stands for the abil-
ity to produce a matcher with appropriate characteristics for a given scenario,
mainly the method for combining similarity measures (aggregation functions,
Bayes network, decision trees, etc.). The extensible feature enables users of a
matching tool to add new similarity measures. Traditional matching tools which
offer this extensibility are often restricted by the manual update of the configura-
tion for both the similarity measures and the method which combines them (e.g.,
adjusting thresholds, re-weighting values). However, YAM automatically tunes
these parameters and is therefore easily extensible. Finally, the integration of
user requirements allows YAM to convert user time spent to specify these
requirements into better quality results, mainly by generating matchers specifi-
cally tuned for the scenario. YAM provides these three capabilities because it is
based on machine learning techniques, as described in the next part on the archi-
tecture. The last part of the section illustrates a running example with YAM.

3.1 Architecture of the YAM System

To the best of our knowledge, YAM is the first factory of schema matchers and
it aims at generating a dedicated schema matcher (i.e., a craftily tuned schema
matcher) for a given schema matching scenario. For this purpose, YAM uses
machine learning techniques during the pre-match phase.
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Figure 3 depicts the architecture of YAM. The circles represent inputs or
outputs and the rectangles stand for processes. Note that a dotted circle means
that such an input is optional. YAM requires only one input, the set of schemas
to be matched. However, the user can also provide additional inputs, i.e., pref-
erences and/or expert correspondences (from a domain of interest, or for the
input schemas to be matched). The preferences consist of a precision and recall
trade-off and a strategy to select the dedicated matcher. In YAM, a repository
stores a set of classifiers (currently 20 from the Weka library [23]), a set of sim-
ilarity measures (mainly from the Second String project [41]), a set of training
data (200 schema matching scenarios from various domains with their expert
correspondences). The schema matcher generator is in charge of generating
one tuned matcher for each classifier in the repository according to the user
inputs (see Sects. 4.2 and 4.3). Then, the schema matcher selector applies
a strategy to choose the dedicated matcher among all the tuned matchers (see
Sect. 4.4). Finally, this dedicated schema matcher can be used for matching, and
specifically the input schemas for which it was tailored. This matching process
produces a list of correspondences discovered between the input schemas. Note
that the matching process is specific to the type of classifier that will be used
and it is not detailed in this paper. For instance, MatchPlanner performs the
matching with a decision tree [18] while SMB uses the Boosting meta-classifier
[31]. Next, we explain how YAM works with a simple example based on the hotel
booking web forms.

Fig. 3. Architecture of YAM
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3.2 Running an Example

A user needs to match two schemas for hotel booking. The user is not an expert
in data integration, and does not have any idea about the appropriate similarity
measures or the configuration of the parameters for matching these schemas.
By using YAM, the user simply provides the two schemas as input and runs the
matching. Since no preferences have been provided, YAM has a default behaviour
and it uses random training data from its repository for learning the dedicated
matcher. First, YAM generates and tunes one schema matcher for each type of
classifier. Among these generated schema matchers, the one with the best results
on the training data is elected as the dedicated matcher. Let us imagine that the
dedicated matcher is based on a Bayes Net type of classifier. YAM can finally
use this dedicated matcher to match the schemas of the hotel booking scenario
(Fig. 1). The matching phase depends on the type of classifier of the dedicated
matcher (Bayes Net). In this example, the dedicated matcher computes the prob-
ability of a pair of schema elements being a correspondence for each similarity
measure. A global probability is finally derived to indicate whether the pair is a
correspondence or not. The set of correspondences resulting from this matching
is shown in Fig. 2(b). In comparison with the ground truth (Fig. 2(a)), we notice
that 8 out of the 9 correct correspondences have been discovered. However, two
irrelevant correspondences have also been found, namely (Hotel Location, Hotel
Name) and (Children:, Chain).

In this simple motivating example, we have described the main workflow of
YAM. The next section describes the learning process in detail by including
the integration of user requirements, which reduces the impact of the random
training data.

4 Learning a Dedicated Matcher

In this section, we describe YAM’s approach to learning a dedicated matcher
for a given matching scenario. This section is organized as follows: the first
part explains the relation between classification and schema matching. Then, we
describe the matcher factory, or how YAM generates a matcher for each classifier.
Next, we detail how user preferences are integrated during the learning process.
Finally, we focus on the strategies which aim at selecting the dedicated matcher
among all generated matchers.

4.1 Matching as a Machine Learning Task

The machine learning classification problem consists in predicting the class of an
object from a set of its attributes [34]. Thus, any schema matcher can be viewed
as a classifier. Each pair of schema elements is considered as a machine learning
object where its attributes are the similarity values computed by a set of selected
similarity measures of these elements. Given the similarity values of a pair, a
matcher labels this pair as either relevant or irrelevant (i.e., as a correspondence
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or not). Of course, a matcher may use any algorithm to compute its result –
classification, clustering, an aggregation of similarity measures, or any number
of ad hoc methods including techniques such as blocking to improve its efficiency.
In YAM, we use an extensible library of types of classifiers, among which are
decision trees (e.g., J48, NBTree), aggregation functions (e.g., SimpleLogistic),
lazy classifiers (e.g., IBk, K* ), rule-based classifiers (e.g., NNge, JRip), voting
systems or Bayes Networks. Three assumptions are required to include a type of
classifier in YAM: first, the type of classifier should support supervised learning,
i.e., all training data have to be labelled. Secondly, it has to use both numerical
and categorical features, i.e., the similarity measures may return either numerical
values or semantic values (e.g., synonym). The last assumption deals with the
discretization ability [15,21], i.e., the type of classifier should be able to split
values for continuous features (e.g., similarity measures which return a distance
or a value in [0, 1]). The generation of a dedicated matcher can be divided into
two steps: (i) training of tuned matchers, which can be impacted by parameters
and user preferences, and (ii) selection of the dedicated matcher.

Example: Let us consider the pair (searchform, search) from our running exam-
ple. We computed the similarity values of this pair for each similarity measure
in our library. For instance, let us assume we have three similarity measures:
AffineGap [1], NeedlemanWunsch [36] and JaroWinkler [45]. Processing them
over the pair (searchform, search) provides the following similarity values: Affine-
Gap = 14.0, NeedlemanWunsch = −4.0, JaroWinkler = 0.92. From these values,
a matcher must predict whether the pair is a relevant correspondence or not.

4.2 Training Tuned Matchers

In this part, we explain how to generate tuned matchers which aim at classify-
ing pairs in a class, either relevant or irrelevant. To reach this goal, classifiers
have to be trained. YAM trains each matcher using its repository of training
data and potential expert correspondences provided by the user (see Sect. 4.3).
The training data in the repository consists of expert correspondences, i.e., pairs
of schema elements with their relevance6. The training algorithm is specific to
each classifier [34]. However, we shall briefly sum up the main intuition: first,
an algorithm selects the similarity measures which provide a maximum of cor-
rectly classified correspondences (i.e., a minimal misclassification rate). Then,
the similarity measures that might solve harder cases are taken into account.

To illustrate the training process, we have chosen a well-known classifier,
the decision tree. In our context, a decision tree is a tree whose internal nodes
represent the similarity measures, and the edges stand for conditions applied to
the result of the similarity measure (e.g., the similarity value computed by a
measure must be greater than a value). All leaf nodes in the tree are the classes,
either a relevant correspondence or an irrelevant correspondence. Algorithm 1
describes the learning of a decision tree in our context. The learning takes as
6 The two schemas of a pair may be necessary to compute similarity values, for instance

with structural or contextual measures.
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input a set of training data T and a set S containing k similarity measures. This
training data is defined as a set T = {t}, and a single training data ti ∈ T is
represented as ti = {(simi1, vi1), . . . , (simik, vik), (labeli, classi)}. The output is
a decision tree. In the initialization function buildDecisionTree, an empty decision
tree is created and the recursive function partition is called (lines 2 and 3).
The goal of this second function is to split the training data into one or more
classes, thus creating a new level in the decision tree. To fulfill this goal, the best
feature has to be selected for partitioning the training data. Note that similarity
measures are continuous features (values in the range [0, 1]) and they need to be
discretized. This discretization is a well-known problem [15,21] and it generates
cut points, e.g., conditions representing a range of values associated to a class.
For each similarity measure, the algorithm produces a set of cut points (lines
6 to 11). Each training data is then associated to one class, i.e., the training
data satisfies the condition of a given cut point (lines 12 to 19). As a result,
Pclass
sim contains the training data of the class class according to a given feature

sim. When the partitioning has been performed for all similarity measures, the
algorithm is able to select the best partition according to an evaluation metric
(line 24). Various evaluation metrics are available, such as information gain, Gini
criterion or gain ratio [46], and we rely on misclassification rate in our context.
Finally, if the partition produced by the best similarity measure only contains
one class7, then there is no more partitioning of the data and that single class is
added as a child node in the tree (line 26). If several classes are present in the
partition of the best similarity measure, then the algorithm adds each of these
classes as child nodes in the tree, and the function partition is recursively called
for each class and its training data (lines 28 to 31). Note that Algorithm 1 aims
at facilitating the understanding of the learning process, but the building of a
classifier is usually improved with heuristics such as pruning [34].

Example: Let us study an example for generating a decision tree with
this algorithm. The training data is composed of nine pairs of elements,
among which three are relevant, namely <searchform, search>, <city, city>
and <brand, chain>. Two similarity measures, Trigrams and Context, serve as
attributes. Figure 4 depicts the generation of the decision tree at the first itera-
tion. A matrix represents the classification performed by a measure, and a pair
is either classified as relevant (R) or irrelevant (I). The white background colour
(respectively grey) indicates that a pair is correctly (respectively incorrectly)
classified. For instance, the pair <searchform, city> has been correctly classified
as an irrelevant correspondence by the Trigrams measure (Fig. 4(a)) while it
has been incorrectly classified as a relevant correspondence by the Context mea-
sure (Fig. 4(b)). Note that each classifier is in charge of adjusting the thresholds
of each similarity measure to obtain the best classification. Given these matri-
ces, the misclassification rate ε is computed for each measure (by counting the
number of grey boxes). In this case, Trigrams has achieved the lowest misclas-
sification rate (29 ) and it is therefore selected to be added to the decision tree,

7 Other stop conditions may be used, for instance “all training data have been correctly
classified”.
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Algorithm 1. Algorithm for building a decision tree
Input: set of training data T , set of similarity measures S
Output: a decision tree D
1: function buildDecisionTree(T , S)
2: D ← ∅
3: partition(T , S, D)
4: end function
5:
6: function partition(T , S, parent)
7: P ← ∅
8: for all sim ∈ S do
9: Psim ← ∅

10: Tsim ← T
11: CP ← discretize(Tsim, S)
12: for all (condition, class) ∈ CP do
13: Pclass

sim ← ∅
14: for all t ∈ Tsim do
15: if t � condition then
16: Pclass

sim ← Pclass
sim ∪ {t}

17: Tsim ← Tsim - {t}
18: end if
19: end for
20: Psim ← Psim ∪ {Pclass

sim }
21: end for
22: P ← P ∪ {Psim}
23: end for
24: best sim = findBestClassification(P)
25: if —Pbest sim— = 1 then
26: addChild(parent, class)
27: else
28: for all class ∈ Pbest sim do
29: addChild(parent, class)
30: partition(Pbest sim, S, class)
31: end for
32: end if
33: end function

as shown in Fig. 4(c). The variables X1 and X2 stand for the threshold values
which enable the achievement of this best classification. At the end of the first
iteration, two pairs were not correctly classified by the Trigrams measure. Thus,
a new iteration begins in order to classify these two pairs with all similarity mea-
sures. The matrices for the second iteration are shown in Fig. 5(a) and (b). Since
the training data are now composed of two pairs at the second iteration, the
classifier proposes different threshold and parameter values for each similarity
measure. This time, the Context measure has correctly minimized the misclassi-
fication rate and it is promoted in the decision tree, as shown in Fig. 5(c). Since
all the training data have been classified, the algorithm stops.
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Fig. 4. Training of a decision tree at first iteration

Fig. 5. Training of a decision tree at second iteration

During the training phase, all the thresholds, weights, and other parameters
of the matcher (i.e., classifier) are automatically configured, thus providing tuned
matchers. Next, we study how user preferences are integrated during this training
phase.

4.3 Integrating User Preferences

We have identified five options that the user may configure: (i) preference for
precision or recall, (ii) expert correspondences, (iii) scenarios from the
same domain (iv) number of training data and (v) strategy to select a ded-
icated matcher. These options can be combined to improve the matching quality.
We should keep in mind that the user has no requirement to provide options, and
specifically the training data and the strategy which are automatically selected
by YAM when necessary.

Preference for Precision or Recall. The ability to promote either precision
or recall is the first attempt to leverage the results of the matching quality. Many
applications need such tuning. For instance, matching tools may require training
data (usually expert correspondences as in Glue [13]), and YAM could auto-
matically discover a few correct correspondences by generating a high-precision
matcher. On the other hand, a typical scenario in which a high recall is neces-
sary is a matching process followed by a manual verification. Since the validation
of a discovered correspondence is cheaper in terms of time and resources than
the search of a missing correspondence, the discovery of a maximum number of
correct correspondences is crucial and implies a high-recall matcher [17].
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Fig. 6. Understanding the impact of FP and FN on precision and recall

We have seen that classification algorithms aim at reducing the misclassi-
fication rate. As shown in Fig. 6, two errors can occur while classifying: (i) an
irrelevant correspondence is labeled as correct, i.e., a false positive (FP) or (ii)
a relevant correspondence is classified as incorrect, i.e., a false negative (FN).
Since precision corresponds to the ratio TP

TP+FP , the first error decreases the
precision value. Conversely, recall is computed with formula TP

TP+FN , thus the
second error has a negative impact on recall.

To produce tuned matchers which promote either precision or recall, we pro-
pose to set a penalty for false positives or false negatives during the learning.
This means that false positives (or false negatives) have a stronger impact when
computing the misclassification rate. To increase precision (respectively recall)
on a given training dataset, we assign a greater penalty to false positives (respec-
tively false negatives). Note that promoting recall (respectively precision) mainly
decreases precision (respectively recall).

Example: Back to the first iteration of our example, but let us imagine that we
want to promote recall to avoid the misclassification of relevant correspondences
(see Fig. 7). Therefore, a penalty - equal to 4 in this example - is set for false
negatives. Due to the false negative <brand, chain>, the misclassification rate
of the measure Trigrams drops to 5

9 and the Context measure is selected to be
added in the decision tree with its two threshold values Y1 and Y2. The three
false positives of the Context measure should be reclassified in the next iteration.
In that way, YAM is able to produce matchers which favour the preference of
the user in terms of matching quality.

Expert Correspondences. The training data mainly consist of correspon-
dences from the repository. However, the user may decide to provide expert
correspondences between the schemas to be matched8. The benefit for provid-
ing these correspondences is threefold. First, expert correspondences enable a
better tuning for some similarity measures. For instance, structural or contex-
tual measures analyse the neighbouring elements in the schema for each element

8 If the user has not provided a sufficient number of correspondences, YAM will extract
others from the repository.
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Fig. 7. Training of a decision tree at first iteration while promoting recall

of the correspondence in order to evaluate their similarity. Such measures are
given more weight in this case. Another benefit is specific to the constraint-
based measures which may discard candidate pairs by relying on the relevance
of expert correspondences. Finally, the logic for designing a schema is usually
kept throughout the whole process. An expert correspondence between the two
schemas reflects the fact that the similarity measure(s) which confirm this corre-
spondence may have captured (a part of) this logic. These measures can be useful
for assessing the relevance of other pairs between the same schemas. Section 5.3
includes experiments showing the impact of these expert correspondences on the
matching quality.

Example: Let us illustrate this impact with our running example. The con-
sequence of providing the expert correspondence <searchform, search> can be
explained as follows. The Context measure (Figs. 4(b) or 7(b)) analyses the sim-
ilarity of other pairs (e.g., <searchform, city>). Since an expert correspondence
is established between <searchform, search>, the context of the searchform ele-
ment is modified, and it can imply that the pair <searchform, city> is now
classified as irrelevant. This means that the Context measure can have a lower
misclassification rate and thus be promoted as the measure to be added to the
decision tree at the first iteration.

Scenarios from the Same Domain. Similarly to expert correspondences, pro-
viding scenarios from the same domain as the schemas to be matched (e.g., the
hotel booking domain) produces better tuned matchers. The main reason is the
vocabulary which is shared across the domain, thus promoting the relevant simi-
larity measures to detect correspondences . The exploitation of external resources
(e.g., domain ontology, thesaurus) for schema matching has already been studied
[16,47]. However, these external resources differ from our same-domain scenar-
ios: when using external resources, a matching has to be performed between



166 F. Duchateau and Z. Bellahsene

the schemas and the external resource. On the other hand, our same-domain
scenarios are used in the same fashion as other training data in order to gener-
ate a tuned schema matcher. Besides, our approach is able to exploit external
resources when they are available with a similarity measure. For instance, YAM
already includes the Resnik similarity measure, which exploits Wordnet [40].

Example: Let us imagine that three pairs of schemas respectively include the
following correct correspondences <booking-form, search-form>, <form, form>
and <searchform, form> and that we use them as training data. Then, the
classifier selects similarity measures which facilitate the correct classification of
the pair <searchform, search>.

Number of Training Data. The number of training data clearly has an impact
on generating the tuned matchers, both in terms of matching quality and time
performance. The common rule is that a classifier performs better when trained
with more data. Yet, there are threshold values above which a classifier can
provide stable results. To determine these threshold values for generating robust
tuned matchers, we have conducted extensive experiments described in Sect. 5.3.
Thus, the number of training data is automatically set by YAM, but the user
can tune this value.

Strategy. This last preference can be provided by the user to select the dedi-
cated matcher. The available strategies are detailed in the next part.

4.4 Selecting a Dedicated Matcher

The final step of the learning process deals with the selection of the dedicated
matcher among all tuned matchers which have been generated by YAM for a
given schema matching scenario. This selection depends on the adopted strategy,
which can be user-defined or automatically configured by YAM. The strategy is
defined as a combination of one value for each of the three following criteria:

– Choice of the quality measure: precision, recall or F-measure
– Choice of the validation dataset: the repository, the set of expert corre-

spondences or the similar scenarios (when provided)
– Pool of matchers: generate (select the dedicated matcher among the tuned

matchers generated in Sect. 4.2), reuse (select the dedicated matcher among
those stored in the repository), both (select the dedicated matcher among the
repository and the tuned matchers).

If the user has not manually set up a strategy, YAM applies the following
algorithm to configure the strategy:

– If a preference for precision or recall is set, this preference is the quality
measure. Otherwise, the default measure is the F-measure.
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– If a set of expert correspondences or a set of similar schemas is provided, this
set becomes the validation dataset. Otherwise, YAM uses (a subset of) the
scenarios from the repository.

– The generated matchers form the pool of matchers. The reuse and both options
need to be provided by the user and they mainly aim at speeding up the
execution process by avoiding the learning of new tuned matchers.

Once the criteria of the strategy have been fixed, each matcher (from the
pool of matchers) computes their accuracy (depending on the selected measure)
by performing a cross-validation process against the validation dataset. The
matcher which obtains the best value is elected as the dedicated matcher. Note
that the dedicated matcher is finally stored in the repository, thus allowing it to
be reused for further experiments.

Example: To illustrate the impact of the strategy, let us comment Fig. 8. YAM
has generated two tuned matchers (J48 and Naive Bayes) and one matcher
from a previous generation is stored in the repository (Binary SMO). Each
matcher has its own technique for combining the different similarity measures
(reflected by thresholds, weights or intern metrics such as standard deviation).
To simplify the example, the training data consist only of examples stored in
the repository. The boxes below each matcher indicate the results of cross-
validation achieved by the matcher over the training data. If the user has not
provided any strategy or preference, YAM automatically selects the matcher
among those generated with the best F-measure value (default strategy equal
to <F-measure, repository, generated>). In this case, the dedicated matcher
will be Naive Bayes (83% F-measure) to the detriment of J48. On the con-
trary, if the user has set a preference for recall, the strategy is defined as
<recall, repository, generated>. Since J48 obtains a 89% recall, it is selected as
the dedicated matcher. Finally, if the strategy is <precision, repository, both>,
this means that the user needs a matcher with the best precision value among
all matchers both generated and stored in the repository. In this context, Binary
SMO achieves the best precision value (100%) and it will be elected as the
dedicated matcher.

5 Experiments

This section begins with a description of the protocol. Next, we firstly demon-
strate the need for a matcher factory (self-tuning feature). Then we study the
integration of user preferences (described in Sect. 4.3.), and their impact on the
matching quality. Finally, we compare our results with two matching tools that
have excellent matching quality, COMA++ [2] and Similarity Flooding (SF)
[32]. These tools are described in more detail in Sect. 6.

5.1 Experimental Protocol

Experiments were run on a 3.6 GHz computer with 4 Go RAM under Ubuntu
11.10.
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Fig. 8. Results of cross-validation for different matchers

Configurations of the Tools. The default configuration for SF was used in
the experiments. We tested the three pre-configured strategies of COMA++
(AllContext, FilteredContext and Fragment-based in the version 2005b) and we
kept the best score among the three.

The current version of YAM is implemented in Java 1.6. Our tool includes
20 classifiers from the Weka library [23] and 30 similarity measures, including
all terminological measures [8] from the Second String project9, a contextual
measure named Approxivect [19], the Resnik semantic similarity measure [40]
and a simple structural measure that compares the constraints and data types,
as described in Similarity Flooding [32]. YAM’s repository contains a large set
of 200 schema matching scenarios from various domains.

9 Second String (November 2015).

http://secondstring.sourceforge.net
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Dataset. The dataset used in these experiments is composed of more than 200
schema matching scenarios, covering the following domains:

– University department describes the organization of university depart-
ments [20]. These two small schemas have very heterogeneous labels.

– Thalia courses. These 40 schemas have been taken from Thalia collection
[24] and they are widely used in literature [14,19]. Each schema has about 20
elements and they describe the courses offered by some worldwide universities.
As explained in [44], this dataset could refer to a scenario where users need
to generate an exchange schema between various data sources.

– Travel includes 5 schemas that have been extracted from airfare web forms
[37]. In data sharing systems, partners have to choose a schema or a subset
of schema that will be used as a basis for exchanging information. This travel
dataset clearly reflects this need, since schema matching enables data sharing
partners to identify similar concepts that they are willing to share.

– Currency and sms datasets are popular web services10. Matching the
schemas extracted from web services is a recent challenge to build new appli-
cations such as mashups or to automatically compose web services.

– Web forms are a set of 176 schemas, extracted from various websites by the
authors of [31]. They are related to different domains, from hotel booking and
car renting to dating and betting. For instance, the finance domain contains
more than ten schemas of small size. Authors of [44] state that schema match-
ing is often a process which evaluates the costs (in terms of resources and
money) of a project, thus indicating its feasibility. These scenarios can be a
basis for project planning, i.e., to help users decide if integrating their data
sources is worth or not.

Table 1 summarizes the features of the schema matching scenarios. The size
column indicates the average number of schema elements in the scenario. The
structure column checks how deep the schema elements are nested. We consider
a schema to be flat when it includes at most three levels, and a schema is said to
be nested with at least four levels. The last column provides information about
the number of schemas in the scenario.

For all these scenarios, the expert correspondences are available, either manu-
ally or semi-automatically designed. We use these 200 scenarios, and their correct
correspondences, both to train YAM and to demonstrate the effectiveness of the
three matching tools.

Quality Metrics. To evaluate the matching quality, we use common metrics
in the literature, namely precision, recall and F-measure [3,17,20]. Precision
calculates the proportion of relevant correspondences extracted among those
discovered. Another typical metric is recall which computes the proportion of
relevant discovered correspondences between all relevant ones. F-measure is a
trade-off between precision and recall.

10 Free Web Services (November 2015).

http://free-web-services.com/
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Table 1. Schema matching scenarios according to their properties

Average size Structure Number of schemas

Small (<10) Average (10–100) Flat (≤3) Nested (>3)

Univ. dept × × 2

Thalia courses × × × 40

Travel × × 5

Currency × × 2

Sms × × 2

Web forms × × × 176

5.2 Self-tuning Feature

We begin with a study of the self-tuning feature, i.e., the ability to select the
most effective schema matcher. More specifically, we justify the need for a schema
matcher factory, since our approach can adapt the method for combining similar-
ity measures to the scenario. In other words, if a traditional schema matching tool
(e.g., COMA++) performs matching for these 200 scenarios, the same method
for combining similarity measures would be used (i.e., an aggregation function
for COMA++). With YAM, we demonstrate that from one scenario to another,
the optimal method is different (i.e., the dedicated schema matcher generated
with YAM is based on different types of classifier).

Let us describe the experiment. We ran YAM against 200 scenarios, and we
measured two criteria: the number of times (out of 200) that a type of classifier
was selected as the dedicated matcher (Fig. 9(a)) and the average F-measure
achieved by a type of classifier over the 200 scenarios (Fig. 9(b)). For instance,
the type of classifier VFI was selected as a dedicated matcher 57 times (out
of 200). This type of classifier VFI achieves over the 200 scenarios an average
F-measure equal to 59%. For this evaluation, we included no user preference, so
all matchers were trained only with the repository (20 random schema matching
scenarios) and the dedicated matcher was selected with the default strategy.
This process took roughly 1400 s to produce the dedicated matcher for each
given scenario. The plots are limited to the to the 14 best types of classifiers.

The first comment for Fig. 9(a) is the diversity of types of classifier which
have been selected. There is not one best schema matcher for matching the 200
scenarios, but more than fourteen. This means that a matcher factory, such as
YAM, is necessary to cope with the differences in the schema matching scenarios.
Secondly, we note that 2 types of classifier, namely VFI (Voting Feature Inter-
vals) and Bay (Bayes networks), are selected in half of the 200 scenarios. The
matchers based on these types of classifiers can be considered as robust because
they provide acceptable results in most scenarios in our repository. This trend is
confirmed with the second plot (Fig. 9(b)) on which VFI and Bayes Net achieve
the best average F-measure values over the 200 scenarios. Another comment on
these plots deals with the aggregation functions, represented by SLog (Simple
Logistic) and MLP. These functions, which are commonly used by traditional
matching tools, are selected as dedicated matchers in only a few scenarios. Thus,
they do not provide optimal matching quality results in most schema matching
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Fig. 9. Effectiveness by type of classifier

scenarios. Finally, a good ranking in terms of F-measure does not guarantee that
the type of classifier will be selected many times. For instance, the decision trees
J48 and its alternative J48graft obtain an average 40% F-measure but they are
selected as dedicated matchers only a few times. Conversely, the types of clas-
sifiers CR (Conjunction Rules) and ADT (Alternating Decision Tree), which
achieve a very low average F-measure on these 200 scenarios (5% for CR and
28% for ADT ), were respectively selected 3 and 10 times. This shows that dedi-
cated matchers based on these classifiers are very effective, in terms of matching
quality, for solving specific scenarios. Thus, these results support our claim that
a matcher factory such as YAM is a promising perspective.
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5.3 Impact of the Integration of User Preferences

In this part, we analyse the impact of three user preferences, which have been
described in Sect. 4.3: the number of training data, the preference between pre-
cision or recall and the providing of expert correspondences. Note that for these
experiments, we only keep the 5 most robust classifiers (see Sect. 5.2), namely
VFI, BayesNet, NBTree, NNge and IB1.

Number of Training Data. In this experiment, our goal is to show that
the amount of training data needed to produce a high performing matcher is
not onerous and that the number of training data can be automatically chosen
(when the user does not provide this input). Figure 10 depicts the average F-
measure11 of five matchers as we vary the number of training scenarios. Note
that the average F-measure has been computed over 40 scenarios (randomly
selected, 20 runs each). The training scenarios vary from 10 to 50. We note that
two types of classifiers (VFI, IB1 ) increase their F-measure of 20% when they
are generated with more training scenarios. This can be explained by the fact
that IB1 is an instance-based classifier12, thus the more examples it has, the
more accurate it becomes. Similarly, VFI uses a voting system on intervals that
it builds. Voting is also appropriate when numerous training examples are sup-
plied. NBTree and NNge also increase their average F-measure from around 10%
as training data is increased. On the contrary, BayesNet achieves the same F-
measure (60% to 65%) regardless of the number of training scenarios. Thus, as
expected, most matchers increase their F-measure when the number of training
scenarios increases. With 30 training scenarios, they already achieve an accept-
able matching quality.

Remember that YAM automatically chooses the number of training scenario
according to the matchers that have to be learned. To select this number of
training scenarios, we conducted an extensive series of experiments. More than
11, 500 experiments resulted from the runs, and we use them to deduce the
number of training scenarios for a given classifier. Table 2 shows the conclusion
of our empirical analysis. For instance, when learning a schema matcher based on
the J48 classifier, YAM ideally chooses a number of training scenarios between
20 and 30.

In a machine learning approach, it is crucial to analyse the relationship
between performance and the size of training data. Therefore, we evaluate the
performance of YAM according to the size of the training data. We have aver-
aged the training and matching times for 2000 runs (10 runs for each of the 200
scenarios) according to different number of training data (from 5 to 50). Table 3
summarizes the results for training 20 classifiers (i.e., 20 tuned matchers), select-
ing the dedicated matcher, and performing the matching with the dedicated
11 Only the F-measure plot is provided since the plots for precision and recall follow

the same trend as the F-measure.
12 This classifier is named instance-based since the correspondences (included in the

training scenarios) are considered as instances during learning. Our approach does
not currently use schema instances.
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Fig. 10. Average F-measure when varying the number of training scenarios

Table 2. Number of training scenarios for each type of classifier

Number of training scenarios Classifiers

20 and less SLog, ADT, CR

20 to 30 J48, J48graft

30 to 50 NNge, JRip, DecTable, BayesNet, VP, FT

50 and more VFI, IB1, IBk, SMO, NBTree, MLP

matcher. This experiment is independent from the empirical results shown in
Table 2, i.e., 20 classifiers were generated with 5 training data, 20 classifiers were
generated with 10 training data, etc. This means that the training time (e.g.,
165 s for 5 training data) corresponds to the training of 20 classifiers. Obviously
some types of classifier are quicker than others to generate a matcher, but our
main motivation is the selection of the best tuned matcher among a large panel
rather than an efficient generating process. The training step is time-consuming
but this is a fair time for learning 20 tuned matchers. The training time seems
constant according to the number of training scenarios. The matching time is
not significant (between 13 s and up to 128 s). We note that the matching time
slightly decreases to 110 s with 50 training scenarios. We believe this is due to
the type of classifier which is used: as shown in Table 2, the types of classifiers
which are selected with 50 and more training scenarios are mainly instance-based
classifiers such as IB1, VFI or IBk. In our context, the matching with such clas-
sifiers seems more efficient. It should be remembered that the training is carried
out with 20 classifiers and 30 similarity measures. If required, these numbers
can be reduced to improve performance, for instance based on the empirical
results from Table 2. Still, an automatic matching performed in around one hour
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Table 3. Average times according to the number of training scenarios for both training
20 tuned matchers and matching with the dedicated matcher

Number of training scenarios 5 10 20 30 40 50

Time for training (in seconds) 165 601 2227 3397 5182 6506

Time for matching (in seconds) 13 24 47 124 128 110

Total time (in seconds) 178 625 2274 3521 5310 6616

is an advantage compared to a manual matching. Besides, the current strategy
for selecting the dedicated matcher is only based on (matching) quality criteria.
But we could also take into account the training time for each type of classifier
within the strategy.

Precision vs. Recall Preference. We now present another interesting feature
of our tool, the possibility of choosing between promoting recall or precision,
by tuning the weight for false positives or false negatives. Schema matching
tools usually favour a better precision, but we demonstrate that YAM tuned
with a preference for recall effectively allows to obtain a better recall, with no
significant impact on F-measure. In other words, the gain in terms of recall is
proportionally equivalent to the loss in terms of precision, thus the F-measure is
roughly constant. Figure 11(a) and (b) respectively depict the average recall and
F-measure of five matchers for 40 scenarios, when tuning the preference between
precision and recall. Without any tuning (i.e., weight for false negatives and false
positives is equal to 1), this means that we give as much importance to recall as
to precision.

For 2 matchers (NBTree and NNge), the recall increases up to 20% when we
tune in favour of recall. As their F-measures does not vary, it means that this
tuning has a negative impact on the precision. However, in terms of post-match
effort, promoting recall may be a better choice depending on the integration task
for which the matching process is being performed. For example, let us imag-
ine we have two schemas of 100 elements: a precision which decreases by 20%
means a user has to eliminate 20% of irrelevant discovered correspondences.
But a 20% increase of recall means that (s)he has 20% fewer correspondences
to search through among 10, 000 possible pairs ! Hence, this tuning could have a
highly significant effect on the usability of the matcher for certain tasks. Indeed,
we highlight the fact that matching tools may be disregarded because the amount
of work during pre-match effort (tuning the tool) and the amount of work dur-
ing post-match effort (manual verification of the discovered correspondences) is
sometimes not worthwhile compared to the benefit of the tool, especially if the
user cannot leverage the results towards more precision or recall.

For the three other matchers (BayesNet, VFI and IB1 ), tuning in favour
of recall has no significant effect. This does not mean that only a few types of
classifiers can promote recall. Without any tuning, only one matcher (BayesNet)
has an average recall superior to its precision. Indeed, most of the matchers in our
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Fig. 11. Matching quality of robust matchers when promoting recall

library promote by default precision. However, when setting a weight for false
negatives to 2, then four matchers from the library have a higher recall than
precision. And with a weight for false negatives equal to 3, five other matchers
reduced the gap between precision and recall to less than 5%. Thus, this shows
how YAM is able to take into account this very important user preference, which
directly impacts post-match (manual) effort [17].

Impact of Expert Correspondences. As in Glue [13], the number of expert
correspondences is an input - compulsory for Glue, but optional for YAM - to the
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Fig. 12. F-measure of robust matchers when increasing the number of input expert
correspondences

system. YAM can use these expert correspondences to learn more appropriate
matchers. In this study, we measured the gain in terms of matching quality when
a user provides these correspondences. The training phase used 20 scenarios and
expert correspondences were randomly selected. We report the size of the sets of
expert correspondences in percentages, given that 5% of expert correspondences
usually means that we only provide 1 or 2 correspondences as input.

Figure 12 depicts the average F-measure for 40 random scenarios for the
five robust matchers. With only 5% of the correspondences given as expert
correspondences, NNge and IB1 are able to increase their F-measure by 40%.
The classifier NBTree also achieves an increase of 20%. Similarly, the F-measure
of these matchers still increases as 10% of the correspondences are provided as
expert correspondences. On the contrary, the VFI and BayesNet matchers do not
benefit at all from this input. Note that providing some expert correspondences
does not require a tedious effort by the user13. Yet, this input can improve
the matching quality of most matchers, even with a small amount of expert
correspondences. Besides, YAM closely integrates these expert correspondences
in generating a better matcher, while other tools such as Glue mainly use these
correspondences as a bootstrap.

5.4 Comparing with Other Matching Tools

In this last experiment, we compare YAM with two matching tools known to
provide a good matching quality: COMA++ and Similarity Flooding (SF).
COMA++ [2] uses 17 similarity measures to build a matrix between pairs of

13 Some GUIs already exist to facilitate this task by suggesting the most probable
correspondences.
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elements and aggregate their similarity values. Similarity Flooding [32] builds a
graph between input schemas. Then, it discovers some initial correspondences
using a string matching measure. These correspondences are refined using a
structural propagation mechanism. Both matching tools are described in more
detail in Sect. 6. YAM, our factory of schema matchers, uses the default strategy
(<F-measure, repository, generated>) to produce the dedicated matcher. The
number of training data is automatically adjusted according to the classifier
which is going to be trained (using Table 2).

Figure 13(a) and (b) depict the F-measure obtained by YAM, COMA++ and
Similarity Flooding on 10 schema matching scenarios. YAM obtains the highest
F-measure in 7 scenarios, and reaches 80% F-measure in 4 scenarios. COMA++
achieves the best F-measure for currency and university scenarios. SF obtains
the best F-measure in one scenario (travel). Besides, COMA++ is the only tool
which does not discover any correspondence for one scenario (travel). However,
we notice that YAM obtains better results in the web forms scenarios since it
was mainly trained with web forms (stored in the repository). With non-web
forms scenarios, YAM is still competitive with the other tools.

We have summarized the results of this comparison in Table 4. The numbers
in this table represent an average for the 10 scenarios in terms of precision,
recall and F-measure. YAM obtains the highest average F-measure (71%) while
COMA++ and SF achieve an average F-measure around 50%. In addition, in
the bottom part of the table we present the matching quality for YAM with user
preferences. We note that the promotion of recall is effective (78% instead of
65%) but to the detriment of precision. When YAM is trained with scenarios
from the same domain, the quality of results slightly improves (F-measure from
71% to 76%). The most significant increase in quality is due to the integration of
expert correspondences during training, which enables F-measure to reach 89%.

These experiments show how our matcher factory relies on the diversity of
classifiers. Indeed, the dedicated matchers that it has generated for these scenar-
ios are based on various classifiers (VFI, BayesNet, J48, etc.) while COMA++
and SF only rely on respectively an aggregation function and a single graph
propagation algorithm. Besides, YAM is able to integrate user preferences to
produce more efficient dedicated matchers and to improve the matching quality.

6 Related Work

Much work has been done both in schema matching and ontology alignment.
One can refer to the following books and surveys [3,6,20,22,42] for more details
about schema and ontology matchers. All related approaches aims at performing
matching (or alignment). On the contrary, YAM is a matcher factory, which
produces a schema matcher. There is no equivalent approach to our generator
of schema matchers. In this section, we have chosen to present an overview of
the last decade of research in schema and ontology matching, which has served
as a basis to our work. Still, a deeper comparison between traditional matching
tools and our factory of matchers is difficult due to the nature of the tools.
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Fig. 13. Precision, recall and F-measure achieved by the three matching tools on 10
scenarios

Table 4. Average matching quality of the tools: COMA++, SF and YAM (single and
tuned with 3 parameters)

Precision Recall F-measure

COMA++ 66 % 38 % 48%

SF 61 % 43 % 50%

YAM 81 % 65 % 71%

YAM-recall 68 % 78% 73%

YAM-domain-specific-scenarios 80 % 72 % 76%

YAM-expert-correspondences (5%) 88 % 90 % 89%
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Harmony schema matcher [35,44] combines multiple matching algorithms
by using a vote merger. The vote merging principle is a weighted average of
the match scores provided by each match voter. A match voter provides a confi-
dence score for each pair of schema elements to be matched. Then, the Similarity
Flooding strategy [32] is applied to adjust the confidence scores based on struc-
tural information. Thus, positive confidence scores propagate throughout the
graph. An interesting feature of Harmony lies in its graphical user interface for
viewing and modifying the discovered schema correspondences through filters.

RiMOM [28] is a multiple strategy dynamic ontology matching system. Dif-
ferent matching strategies are applied to a specific type of ontology information.
Based on the features of the ontologies to be matched, RiMOM selects the best
strategy (or strategy combination) to apply. When loading the ontologies, the
tool also computes three feature factors. The underlying idea is that if two
ontologies share similar feature factors, then the strategies that use these factors
should be given a high weight when computing similarity values. For instance,
if the label meaningful factor is low, then the Wordnet-based strategy will not be
used. Each strategy produces a set of correspondences, and all sets are finally
aggregated using a linear interpolation method. A last strategy dealing with
ontology structure is finally performed to confirm discovered correspondences
and to deduce new ones. Contrary to other approaches, RiMOM does not rely
on machine learning techniques to select the best strategy. It is quite similar to
the AHP work (described hereafter) in selecting an appropriate matcher based
on the input’s features.

AgreementMaker [9] provides a combination strategy based on the linear
interpolation of the similarity values. The weights can be either user assigned
or evaluated through automatically-determined quality measures. The system
allows for serial and parallel composition where, respectively, the output of one
or more methods can be used as input to another one, or several methods can be
used on the same input and then combined. The originality of AgreementMaker
is the capability of manually tuning the quality of matches. Indeed, this tool
includes a comprehensive user interface supporting both advanced visualization
techniques and a control panel that drives the matching methods.

In [31], the authors propose a machine learning approach, SMB. It uses the
Boosting algorithm to classify the similarity measures, divided into first line and
second line matchers. The Boosting algorithm consists in iterating weak classi-
fiers over the training set while re-adjusting the importance of elements in this
training set. Thus, SMB automatically selects a pair of similarity measures as a
matcher by focusing on harder training data. A specific feature of this algorithm
is the important weight given to misclassified pairs during training. Although
this approach makes use of several similarity measures, it mainly combines a sim-
ilarity measure (first line matcher) with a decision maker (second line matcher).
Empirical results show that the selection of a pair does not depend on their
individual performance. Thus, only relying on one classifier is risky.
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In a broader way, the STEM framework [26] identifies the most interesting
training data set which is then used to combine matching strategies and tune
several parameters such as thresholds. First, training data are generated, either
manually (i.e., an expert labels the entity pairs) or automatically (at random,
using static-active selection or active learning). Then, similarity values are com-
puted using pairs in the training data set to build a similarity matrix between
each pair and each similarity measure. Finally, the matching strategy is deduced
from this matrix thanks to supervised learned algorithm. The output is a tuned
matching strategy (how to combine similarity measures and tune their parame-
ters). The framework enables a comparative study of various similarity measures
(e.g., Trigrams, Jaccard) combined with different strategies (e.g., decision tree,
linear regression) whose parameters are either manually or automatically tuned.

The MatchPlanner approach [18] makes use of decision trees to select the
most appropriate similarity measures. This approach provides acceptable results
with regard to other matching tools. However, the decision trees are manually
built, thus requiring an expert intervention. Besides, decision trees are not always
the best classifier, as shown in Sect. 5.

eTuner [27] aims at automatically tuning schema matching tools. It proceeds
as follows: from a given schema, it derives many schemas which are semantically
equivalent. The correspondences between the initial schema and its derivations
are stored. Then, a given matching tool (e.g., COMA++ or Similarity Flooding)
is applied to the set of correspondences until an optimal parameters configuration
of the matching tool is found. eTuner strongly depends on the capabilities of
the matching tool, and it has to be integrated in an existing matching tool
by a programmer. Conversely, YAM learns a dedicated matcher according to a
given matching scenario. It is also able to integrate important features like user
preference between recall and precision. Contrary to eTuner, YAM is extensible
in terms of similarity measures and classifiers, thus enhancing the capabilities of
our tool.

Authors of [30] have proposed to select a relevant and suitable matcher for
ontology matching. They have used Analytic Hierarchical Process (AHP) to
fulfill this goal. They first define characteristics of the matching process divided
into six categories (inputs, approach, usage, output, documentation and costs).
Users then fill in a requirements questionnaire to set priorities for each defined
characteristic. Finally, AHP is applied with these priorities and it outputs the
most suitable matcher according to user requirements.

COMA/COMA++ [2,11] is a hybrid matching tool that incorporates many
independent similarity measures. It can process Relational, XML, RDF schemas
as well as ontologies. Internally it converts the input schemas as trees for struc-
tural matching. It provides a library of 17 element-level similarity measures. For
linguistic matching it utilizes a user defined synonym and abbreviation tables,
along with n-gram name matchers. Similarity values between each possible pair
of elements and for each similarity measure are stored in a similarity matrix.
Next, the combination of the values is performed using aggregation operators
such as max, min, average. Different strategies, e.g., reuse-oriented matching
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or fragment-based matching, can be included, offering different results. For each
source element, pairs with a combined similarity value higher than a threshold
are displayed to the user for validation. COMA++ supports a number of other
features like merging, saving and aggregating match results of two schemas.

Similarity Flooding (SF) and its successor Rondo [32,33] can be used with
Relational, RDF and XML schemas. These input data sources are initially con-
verted into labelled graphs and SF approach uses fix-point computation to deter-
mine correspondences between graph nodes. The algorithm has been imple-
mented as a hybrid matcher, in combination with a terminological similarity
measure. First, the prototype does an initial element-level terminological match-
ing, and then feeds the computed candidate correspondences to the structural
similarity measure for the propagation process. This structural measure includes
a few rules, for instance one of them states that two nodes from different schemas
are considered similar if their adjacent neighbours are similar. When similar ele-
ments are discovered, their similarity increases and it impacts adjacent elements
by propagation. This process runs until there is no longer similarity increasing.
Like most schema matchers, SF generates correspondences for pairs of elements
having a similarity value above a certain threshold. The generation of an inte-
grated schema is performed using Rondo’s merge operator. Given two schemas
and their correspondences, SF converts the schemas into graphs and it renames
elements involved in a correspondence according to the priorities provided by
the users.

Glue [13], and its predecessor LSD [12], are also based on machine learning
techniques. They have four different learners, which exploit different information
from the instances. The name learner (Whirl, a nearest-neighbour classifier)
makes predictions using word frequency (TF/IDF distance) on the label of the
schema elements. The content learner (also based on Whirl and TF/IDF) applies
a similar strategy to the instances associated to each schema element. A Naive
Bayes classifier considers labels and attributes as a set of tokens for performing
text classification. The XML learner (based on Naive Bayes too) exploits the
structure of the schema (hierarchy, constraints, etc.). Finally, a meta-learner,
based on stacking, is applied to return a linear weighted combination of the four
learners.

AUTOMATCH [5] is the predecessor of AUTOPLEX [4], which uses schema
instance data and machine learning techniques to find possible correspondences
between two schemas. An attribute dictionary contains attributes with a set of
possible instances and their probability. This dictionary is populated using Naive
Bayesian algorithm to extract relevant instances from Relational schemas fields.
A first step consists of matching each schema element to dictionary attributes,
thus computing a similarity value between them according to the number of com-
mon instances. Then, the similarity values of two schema elements that match
the same dictionary attribute are summed and minimum cost maximum flow
algorithm is applied to select the best correspondences. The major drawback
of this work is the importance of the data instances. Although this approach is
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interesting on the machine learning aspect, that matching is not as robust since
it only uses one similarity function based on a dictionary.

The main difference between YAM and all these matchers lies in the level of
abstraction. Theoretically, YAM could generate most of these matching tools.
This is actually the case with MatchPlanner [18]. The most relevant existing
approach to YAM is the configuration tool eTuner, since both approaches dis-
cover the best configuration of a matcher. Yet, eTuner’s capabilities are limited
compared to YAM: it has to be plugged into an existing matching tool (which
requires programming skills) and it totally depends on that matching tool, espe-
cially for the method which combines similarity measures. Thus, it does not offer
the extensibility and self-tuning features encompassed in YAM.

7 Conclusion

In this paper, we have presented YAM, the first extensible and self-tuning factory
of schema matchers. Instead of producing correspondences between schemas,
YAM generates a dedicated schema matcher for a given matching scenario. This
is made possible by formalizing the matching problem as a classification problem.
In addition, we described how to integrate user requirements into the generation
process so that the dedicated matcher fulfills the needs and preferences of the
user. Our approach is also the first work to let users choose the promotion of
either precision or recall. Experiments have shown that the dedicated matchers
generated with YAM obtain acceptable quality results with regard to reputed
matching tools. Finally, we outline here the lessons learned:

– We have demonstrated a strong need for a schema matcher factory;
– Our experiments support the idea that machine learning classifiers are suitable

for the matching task and that the traditional aggregation functions are not
always the most efficient method for combining similarity measures;

– We have studied the impact and the benefits on the matching quality when the
user provides preferences such as the promotion of recall/precision or input
expert correspondences.

In the future, we first plan to test further classifiers. Indeed, there exist a large
number of machine learning classifiers of which we have experimented only a sub-
set. Among them, the meta-classifiers base their predictions using the results of
several classifiers and therefore offer the possibilities for improving matching
quality. In a similar fashion, we foresee the possibility to deduce some corre-
spondences between the matching results of all matchers. These highly probable
correspondences could serve as input expert correspondences to produce a smart
dedicated matcher. Finally semi-supervised learning [7] could be used to improve
the accuracy of the dedicated matcher: the intuition is to include in the training
data some unlabelled pairs from the schemas to be matched.
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