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Abstract. For a graph H, the H-free Edge Deletion problem asks
whether there exist at most k edges whose deletion from the input graph
G results in a graph without any induced copy of H. H-free Edge

Completion and H-free Edge Editing are defined similarly where
only completion (addition) of edges are allowed in the former and both
completion and deletion are allowed in the latter. We completely set-
tle the classical complexities of these problems by proving that H-free
Edge Deletion is NP-complete if and only if H is a graph with at least
two edges, H-free Edge Completion is NP-complete if and only if
H is a graph with at least two non-edges and H-free Edge Editing

is NP-complete if and only if H is a graph with at least three vertices.
Our result on H-free Edge Editing resolves a conjecture by Alon
and Stav (2009). Additionally, we prove that, these NP-complete prob-
lems cannot be solved in parameterized subexponential time, i.e., in time
2o(k) · |G|O(1), unless Exponential Time Hypothesis fails. Furthermore,
we obtain implications on the incompressibility of these problems.

1 Introduction

Edge modification problems are to test whether modifying at most k edges makes
the input graph satisfy certain properties. The three major edge modification
problems are edge deletion, edge completion and edge editing problems. In edge
deletion problems we are allowed to delete at most k edges from the input graph.
Similarly, in completion problems, it is allowed to complete (add) at most k
edges and in editing problems at most k editing (deletion or completion) are
allowed. Edge modification problems come under the broader category of graph
modification problems which have found applications in DNA physical mapping
[11], numerical algebra [14], circuit design [9] and machine learning [3].

The focus of this paper is on H-free edge modification problems, in which we
are allowed to modify at most k edges to make the input graph devoid of any
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induced copy of H, where H is any fixed graph. Though these problems have
been studied for four decades, a complete dichotomy result on the classical com-
plexities of these problems are not yet found. We settle this by proving that
H-free Edge Deletion is NP-complete if and only if H is a graph with at
least two edges, H-free Edge Completion is NP-complete if and only if H is
a graph with at least two non-edges and H-free Edge Editing is NP-complete
if and only if H is a graph with at least three vertices. Our result on H-free
Edge Editing settles a conjecture by Alon and Stav [1]. Further, we obtain the
parameterized lower bounds for these NP-complete problems. We obtain that
these NP-complete problems cannot be solved in parameterized subexponential
time (i.e., in time 2o(k) · |G|O(1)), unless Exponential Time Hypothesis (ETH)
fails. Cai proved that these problems are in FPT and gave a branch and bound
algorithm to solve these problems in time |V (H)|O(k) · |G|O(1). In this sense, our
lower bounds are tight. Furthermore, we obtain implications on the incompress-
ibility (non-existence of polynomial kernels) of these problems.

We build on our recent paper [2], in which we proved that H-free Edge

Deletion is NP-complete if H has at least two edges and has a component
with maximum number of vertices which is a tree or a regular graph. We also
proved that these problems cannot be solved in parameterized subexponential
time, unless ETH fails.

Related Work: In 1981, Yannakakis proved that H-free Edge Deletion is
NP-complete if H is a cycle [16]. Later in 1988, El-Mallah and Colbourn proved
that the problem is NP-complete if H is a path of at least two edges [9]. Address-
ing the fixed parameter tractability of a generalized version of these problems,
Cai proved that [4] H-free Edge Deletion, Completion and Editing are
fixed parameter tractable, i.e., they can be solved in time f(k) · |G|O(1), for
some function f . Polynomial kernelizability of these problems have been stud-
ied widely. Given an instance (G, k) of the problem the objective is to obtain
in polynomial time an equivalent instance of size polynomial in k. Kratsch and
Wahlström gave the first result on the incompressibility of H-free edge modifi-
cation problems. They proved that [13] for a certain graph H on seven vertices,
H-free Edge Deletion and H-free Edge Editing do not admit polynomial
kernels, unless NP ⊆ coNP/poly. They use polynomial parameter transformation
from an NP-complete problem and hence their results imply the NP-completeness
of these problems. Later, Cai and Cai proved that H-free Edge Editing,
Deletion and Completion do not admit polynomial kernels if H is a path
or a cycle with at least four edges, unless NP ⊆ coNP/poly [5]. Further, they
proved that H-free Edge Editing and Deletion are incompressible if H is 3-
connected but not complete, and H-free Edge Completion is incompressible
if H is 3-connected and has at least two non-edges, unless NP ⊆ coNP/poly [5].
Under the same assumption, it is proved that H-free Edge Deletion and H-
free Edge Completion are incompressible if H is a tree on at least 7 vertices,
which is not a star graph and H-free Edge Deletion is incompressible if H
is the star graph K1,s, where s ≥ 10 [6]. They also use polynomial parameter
transformations and hence these problems are NP-complete.
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Outline of the Paper: Sect. 2 gives the notations and terminology used in the
paper. It also introduces a construction which is a modified version of the main
construction used in [2]. Section 3 settles the case of H-free Edge Editing.
Section 4 obtains results for H-free Edge Deletion and Completion. In the
concluding section, we discuss the implications of our results on the incompress-
ibility of H-free edge modification problems.

2 Preliminaries and Basic Tools

Graphs: For a graph G, V (G) denotes the vertex set and E(G) denotes the
edge set. We denote the symmetric difference operator by �, i.e., for two sets F
and F ′, F�F ′ = (F \F ′)∪(F ′ \F ). For a graph G and a set F ⊆ [V (G)]2, G�F
denotes the graph (V (G), E(G)�F ). A component of a graph is largest if it has
maximum number of vertices. By |G| we denote |V (G)| + |E(G)|. The disjoint
union of two graphs G and G′ is denoted by G ∪ G′ and the disjoint union of
t copies of G is denoted by tG. A simple path on t vertices is denoted by Pt.
The graph t-diamond is K2 + tK1, the join of K2 and tK1. Hence, 2-diamond
is the diamond graph. The minimum degree of a graph G is denoted by δ(G)
and the maximum degree is denoted by Δ(G). Degree of a vertex v in a graph
G is denoted by degG(v). We remove the subscript when there is no ambiguity.
We denote the complement of a graph G by G. For a graph H and a vertex set
V ′ ⊆ V (H), H[V ′] is the graph induced by V ′ in H. A null graph is a graph
without any edge.

For integers � and h such that h > �, (�, h)-degree graph is a graph in which
every vertex has degree either � or h. The set of vertices with degree � is denoted
by V� and the set of vertices with degree h is denoted by Vh. An (�, h)-degree
graph is called sparse if Vl induces a graph with at most one edge and Vh induces
a graph with at most one edge.

The context determines whether H-free Edge Deletion (Completion/
Editing) denotes the classical problem or the parameterized problem. For the
parameterized problems, we use k (the size of the solution being sought) as the
parameter. In this paper, edge modification implies either deletion, completion
or editing.

Technique for Proving Parameterized Lower Bounds: Exponential Time
Hypothesis (ETH) is a complexity theoretic assumption that 3-SAT cannot be
solved in time 2o(n), where n is the number of variables in the 3-SAT instance.
A linear parameterized reduction is a polynomial time reduction from a para-
meterized problem A to a parameterized problem B such that for every instance
(G, k) of A, the reduction gives an instance (G′, k′) such that k′ = O(k). The
following result helps us to obtain parameterized lower bound under ETH.

Proposition 2.1. [7] If there is a linear parameterized reduction from a para-
meterized problem A to a parameterized problem B and if A does not admit a
parameterized subexponential time algorithm, then B does not admit a parame-
terized subexponential time algorithm.
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Two parameterized problems A and B are linear parameter equivalent if
there is a linear parameterized reduction from A to B and there is a linear
parameterized reduction from B to A. We refer the book [7] for various aspects
of parameterized algorithms and complexity. The following are some folklore
observations.

Proposition 2.2. H-free Edge Deletion and H-free Edge Completion

are linear parameter equivalent. Similarly, H-free Edge Editing and H-free

Edge Editing are linear parameter equivalent.

Proposition 2.3. (i) H-free Edge Deletion is NP-complete if and only if
H-free Edge Completion is NP-complete. Furthermore, H-free Edge

Deletion cannot be solved in parameterized subexponential time if and only
if H-free Edge Completion cannot be solved in parameterized subexpo-
nential time.

(ii) H-free Edge Editing is NP-complete if and only if H-free Edge Edit-

ing is NP-complete. Furthermore, H-free Edge Editing cannot be solved
in parameterized subexponential time if and only if H-free Edge Editing

cannot be solved in parameterized subexponential time.

Proposition 2.4. (i) H-free Edge Deletion is polynomial time solvable if
H is a graph with at most one edge.

(ii) H-free Edge Completion is polynomial time solvable if H is a graph
with at most one non-edge.

(iii) H-free Edge Editing is polynomial time solvable if H is a graph with at
most two vertices.

In this paper, we prove that these are the only polynomial time solvable
H-free edge modification problems. For any fixed graph H, the H-free edge
modification problems trivially belong to NP. Hence, we may state that these
problems are NP-complete by proving their NP-hardness.

2.1 Basic Tools

The following construction is a slightly modified version of the main construc-
tion used in [2]. The modification is done to make it work for reductions of
Completion and Editing problems. The input of the construction is a tuple
(G′, k,H, V ′), where G′ and H are graphs, k is a positive integer and V ′ ⊆ V (H).
In the old construction (Construction 1 in [2]), for every copy C of H[V ′] in G′,
we introduced k + 1 copies of H such that the intersection of every pair of them
is C. In the modified construction given below, we do the same for every copy
C of H[V ′] on a complete graph on V (G′).

Construction 1 Let (G′, k,H, V ′) be an input to the construction, where G′

and H are graphs, k is a positive integer and V ′ is a subset of vertices of H. Label
the vertices of H such that every vertex gets a unique label. Let the labelling be
�H . Consider a complete graph K ′ on V (G′). For every subgraph (not necessarily
induced) C with a vertex set V (C) and an edge set E(C) in K ′ such that C is
isomorphic to H[V ′], do the following:
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– Give a labelling �C for the vertices in C such that there is an isomorphism f
between C and H[V ′] which maps every vertex v in C to a vertex v′ in H[V ′]
such that �C(v) = �H(v′), i.e., f(v) = v′ if and only if �C(v) = �H(v′).

– Introduce k + 1 sets of vertices V1, V2, . . . , Vk+1, each of size |V (H) \ V ′|.
– For each set Vi, introduce an edge set Ei of size |E(H)\E(H[V ′])| among Vi∪

V (C) such that there is an isomorphism h between H and (V (C)∪Vi, E(C)∪
Ei) which preserves f , i.e., for every vertex v ∈ V (C), h(v) = f(v).

This completes the construction. Let the constructed graph be G.

We remark that the complete graph K ′ on V (G′) is not part of the con-
structed graph. The complete graph is only used to find where we need to intro-
duce new vertices and edges. An example of the construction is shown in Fig. 1.
We use the terminology used in [2]. We repeat it here for convenience. Let C be a
copy of H[V ′] in K ′. Then, C is called a base. Let {Vi} be the k+1 sets of vertices
introduced in the construction for the base C. Then, each Vi is called a branch of
C and the vertices in Vi are called the branch vertices of C. If Vj is a branch of
C, then the vertex set of C is denoted by Bj . The vertex set of G′ in G is denoted
by VG′ . The copy of H formed by Vj , Ej and C is denoted by Hj . Since H is a
fixed graph and k can safely be assumed to be at most |V (G′)| · (|V (G′)| − 1)/2,
the construction runs in polynomial time. The following two Lemmas are the
generalized version of Lemma 2.3 and 3.5 of [2].

(a) G′ (b) H. The vertices
in V ′ are blackened.

(c) Output of Construction 1
with an input (G′, k =
1, H, V ′).

Fig. 1. An example of Construction 1

Lemma 2.5. Let G be obtained by Construction 1 on the input (G′, k,H, V ′),
where G′ and H are graphs, k is a positive integer and V ′ ⊆ V (H).
Then, if (G, k) is a yes-instance of H-free Edge Editing (Deletion/
Completion), then (G′, k) is a yes-instance of H ′-free Edge Edit-

ing (Deletion/Completion), where H ′ is H[V ′].

Proof. Let F be a solution of size at most k of (G, k). For a contradiction, assume
that G′�F has an induced H ′ with a vertex set U . Hence there is a base C in
G′ isomorphic to H ′ with the vertex set V (C) = U . Since there are k + 1 copies
of H in G, where each pair of copies of H has the intersection C, and |F | ≤ k,
operating with F cannot kill all the copies of H associated with C. Therefore,
since U induces an H ′ in G′�F , there exists a branch Vi of C such that U ∪ Vi

induces H in G�F , which is a contradiction. �	
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Lemma 2.6. Let H be any graph and d be any integer. Let V ′ be the set of ver-
tices in H with degree more than d. Let H ′ be H[V ′]. Then, there is a linear para-
meterized reduction from H ′-free Edge Editing (Deletion/Completion)
to H-free Edge Editing (Deletion/Completion).

Proof. Let (G′, k) be an instance of H ′-free Edge Editing (Deletion/
Completion). Apply Construction 1 on (G′, k,H, V ′) to obtain G.
We claim that (G′, k) is a yes-instance of H ′-free Edge Edit-

ing (Deletion/Completion) if and only if (G, k) is a yes-instance of H-free
Edge Editing (Deletion/Completion).

Let F ′ be a solution of size at most k of (G′, k). For a contradiction, assume
that G�F ′ has an induced H with a vertex set U . Since a branch vertex has
degree at most d, every vertex in U with degree more than d in (G�F ′)[U ] must
be from VG′ . Hence there is an induced H ′ in G′�F ′, which is a contradiction.
Lemma 2.5 proves the converse. �	

3 H-free Edge Editing

In this section, we prove that H-free Edge Editing is NP-complete if and only
if H is a graph with at least three vertices. We also prove that these problems
cannot be solved in parameterized subexponential time unless ETH fails. We use
the following known results.

Proposition 3.1. The following problems are NP-complete. Furthermore, they
cannot be solved in time 2o(k) · |G|O(1), unless ETH fails.

(i) P3-free Edge Editing [12].
(ii) P4-free Edge Editing [8].
(iii) C�-free Edge Editing, for any fixed l ≥ 3 [Follows from the proof for the

corresponding Deletion problems in [16]].
(iv) 2K2-free Edge Editing [(3.1) and Proposition 2.3(ii)].
(v) Diamond-free Edge Editing [Follows from the proof for the correspond-

ing Deletion problem in [15]].

In our previous work [2], we proved that R-free Edge Deletion is NP-
complete if R is a regular graph with at least two edges. We also proved that
these NP-complete problems cannot be solved in parameterized subexponential
time, unless ETH fails. We observe that the results for R-free Edge Deletion

follow for R-free Edge Editing as well. The proofs are very similar except
that we use Construction 1 instead of its ancestor in [2] and we reduce from
Editing problems instead of Deletion problems. We can use P3-free Edge

Editing, C�-free Edge Editing and 2K2-free Edge Editing as the base
cases instead of their Deletion counterparts. We skip the proof as it will be a
repetition of that in [2].

Lemma 3.2. Let R be a regular graph with at least two edges. Then R-free
Edge Editing is NP-complete. Furthermore, the problem cannot be solved in
time 2o(k) · |G|O(1), unless ETH fails.
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Now, we strengthen the above lemma by proving the same results for all
regular graphs with at least three vertices.

Lemma 3.3. Let R be a regular graph with at least three vertices. Then R-free
Edge Editing is NP-complete. Furthermore, the problem cannot be solved in
time 2o(k) · |G|O(1), unless ETH fails.

Proof. If R has at least two edges then the statements follows from Lemma 3.2.
Assume that R has at most one edge and at least three vertices. It is straight-
forward to see that R must be the null graph. Then the complement of R is
a complete graph with at least two edges. Now, the statements follows from
Proposition 2.3(ii) and Lemma 3.2. �	

Having these results in hand, we use Lemma 2.6 to prove the dichotomy
result and the parameterized lower bound of H-free Edge Editing. Given a
graph H with at least three vertices, we introduce a method Editing-Churn(H)
to obtain a graph H ′ such that there is a linear parameterized reduction from
H ′-free Edge Editing to H-free Edge Editing and H ′ is a graph with at
least three vertices and is a regular graph or a P3 or a P4 or a diamond.

Editing-Churn(H)
H is a graph with at least three vertices.

Step 1: If H is a regular graph, a P3, a P4 or a diamond, then return H.
Step 2: If H is a graph in which the number of vertices with degree more than

δ(H) is at most two, then let H = H and goto Step 1.
Step 3: Delete all vertices with degree δ(H) in H and go to Step 1.

Observation 3.4 Let H be a graph with at least three vertices. Then Editing-
Churn(H) returns a graph H ′ which has at least three vertices and is a regular
graph or a P3 or a P4 or a diamond. Furthermore, there is a linear parameterized
reduction from H ′-free Edge Editing to H-free Edge Editing.

Proof. At any stage of the method, we make sure that the graph has at least
three vertices. Let H ′ be an intermediate graph obtained in the method such
that it is neither a regular graph nor a P3 nor a P4 nor a diamond. If Step 2 is
applicable to both H ′ and H ′, then H hat at most four vertices. Hence H has
either three or four vertices. It is straight-forward to verify that a graph (with
three or four vertices) or its complement, satisfying the condition in Step 2, is
either a regular graph or a P3 or a P4 or a diamond, which is a contradiction.
The linear parameterized reduction from H ′-free Edge Editing to H-free
Edge Editing follows from Proposition 2.3(ii) and Lemma 2.6. �	
Theorem 3.5. H-free Edge Editing is NP-complete if and only if H is
a graph with at least three vertices. Furthermore, these NP-complete problems
cannot be solved in time 2o(k) · |G|O(1), unless ETH fails.
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Proof. If H is a graph with at most two vertices, the statements follows from
Proposition 2.4(iii). Let H be a graph with at least three vertices. Let H ′ be the
graph returned by Editing-Churn(H). By Observation 3.4, H ′ is either a regular
graph or a P3 or a P4 or a diamond and there is a linear parameterized reduction
from H ′-free Edge Editing to H-free Edge Editing. Now, the statements
follows from the lower bound results for these graphs (Proposition 3.1(i), (ii), (v)
and Lemma 3.3). �	

4 H-free Edge Deletion

In this section, we prove that H-free Edge Deletion is NP-complete if and
only if H is a graph with at least two edges. We also prove that these NP-complete
problems cannot be solved in parameterized subexponential time, unless ETH
fails. Then, from Proposition 2.3(i), we obtain a dichotomy result for H-free
Edge Completion. We apply a technique similar to that we applied for Edit-
ing in the last section.

Proposition 4.1. The following problems are NP-complete. Furthermore, they
cannot be solved in time 2o(k) · |G|O(1), unless ETH fails.

(i) P3-free Edge Deletion [12].
(ii) Diamond-free Edge Deletion [10,15].
(iii) H-free Edge Deletion, if H is a graph with at least two edges and has

a largest component which is a regular graph or a tree [2].

The following Lemma is a consequence of Lemma 2.6 and Proposition 2.3(i).

Lemma 4.2. Let H be any graph. Then the following hold true:

(i) Let H ′ be the subgraph of H obtained by removing all vertices with degree
δ(H). Then there is a linear parameterized reduction from H ′-free Edge

Deletion to H-free Edge Deletion.
(ii) Let H ′ be the subgraph of H obtained by removing all vertices with degree

Δ(H). Then there is a linear parameterized reduction from H ′-free Edge

Deletion to H-free Edge Deletion.

Proof. The first part directly follows from Lemma 2.6 by setting d = δ(H). To
prove the second part, consider the problem H-free Edge Completion. Let
H ′′ be the graph obtained by removing all vertices with degree δ(H) from H.
Now, by Lemma 2.6, there is a linear parameterized reduction from H ′′-free
Edge Completion to H-free Edge Completion. We observe that H ′′ is
H ′. Hence, by Proposition 2.3(i), there is a linear parameterized reduction from
H ′-free Edge Deletion to H-free Edge Deletion. �	

Given a graph H, we keep on deleting either the minimum degree vertices
or the maximum degree vertices by making sure that the resultant graph has at
least two edges. We do this process until we obtain a graph in which vertices
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with degree more than δ(H) induce a graph with at most one edge and vertices
with degree less than Δ(H) induce a graph with at most one edge. We call this
method Deletion-Churn.

Deletion-Churn(H)
H is a graph with at least two edges.

1. If H is a graph in which the vertices with degree more than δ(H) induce
a subgraph with at most one edge and the vertices with degree less than
Δ(H) induce a subgraph with at most one edge, then return H.

2. If H is a graph in which the vertices with degree more than δ(H) induce a
subgraph with at least two edges, then delete all vertices with degree δ(H)
from H and goto Step 1.

3. If H is a graph in which the vertices with degree less than Δ(H) induce a
subgraph with at least two edges, then delete all vertices with degree Δ(H)
from H. Goto Step 1.

Observation 4.3 Let H be a graph with at least two edges. If the vertices with
degree more than δ(H) induce a graph with at most one edge and the vertices
with degree less than Δ(H) induce a graph with at most one edge, then H is
either a regular graph or a forest or a sparse (�, h)-degree graph.

Proof. Assume that H is not a regular graph. Since H has at least two edges and
it satisfies the premises, δ(H) ≥ 1. If δ(H) = 1, the premises imply that H is a
forest. Assume that δ(H) ≥ 2. Then we prove that H is a sparse (�, h)-degree
graph. For a contradiction, assume that there exists a vertex v ∈ V (H) such
that δ(H) < deg(v) < Δ(H). The premises imply that v has degree at most two,
which is a contradiction. �	
Lemma 4.4. Let H be a graph with at least two edges. Then Deletion-Churn(H)
returns a graph H ′ such that:

(i) There is a linear parameterized reduction from H ′-free Edge Deletion

to H-free Edge Deletion.
(ii) H ′ has at least two edges and is either a regular graph or a forest or a sparse

(�, h)-degree graph.

Proof. In every step, we make sure that there are at least two edges in the
resultant graph. Now, the first part follows from Lemma 4.2 and the second part
follows from Observation 4.3. �	

If the output of Deletion-Churn(H), H ′ is a regular graph or a forest, we
obtain from Proposition 4.1(iii) that H-free Edge Deletion is NP-complete
and cannot be solved in parameterized subexponential time, unless ETH fails.
Therefore, the only graphs to be handled now are the sparse (�, h)-degree graphs
with at least two edges. We do that in the next two subsections.
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4.1 t-diamond-free Edge Deletion

We recall that t-diamond is the graph K2 + tK1 and that 2-diamond is the
diamond graph (see Fig. 2). Clearly, t-diamond is a sparse (�, h)-degree graph.
In this subsection, we prove that t-diamond-free Edge Deletion is NP-
complete. Further, we prove that the problem cannot be solved in parameterized
subexponential time, unless ETH fails. We use an inductive proof where the base
case is Diamond-free Edge Deletion. For the proof, we introduce a simple
construction, which is given below.

Fig. 2. A 2-diamond is isomorphic to a diamond graph.

Construction 2. Let (G′, k) be an input to the construction. For every edge
{u, v} in G′, introduce a clique C{u,v} of k + 1 vertices such that every vertex
in C{u,v} is adjacent to both u and v. This completes the construction. Let G be
the resultant graph.

Due to space constraints, the proof of the following lemma is moved to an
extended version of this paper.

Lemma 4.5. For any t ≥ 2, t-diamond-free Edge Deletion is NP-
complete. Furthermore, the problem cannot be solved in time 2o(k) ·|G|O(1), unless
ETH fails.

4.2 Handling Sparse (�, h)-degree Graphs

We recall that for h > �, every vertex of a sparse (�, h)-degree graph H is either
of degree � or of degree h and that V� induces a graph with at most one edge and
Vh induces a graph with at most one edge. We have already handled t-diamond
graphs. We handle the rest of the sparse (�, h)-degree graphs in this subsection.
Let H be any sparse (�, h)-graph. There are four cases to be handled:

Case 1: Vh is an independent set; V� is an independent set
Case 2: Vh induces a graph with one edge; V� is an independent set
Case 3: Vh is an independent set; V� induces a graph with one edge
Case 4: Vh induces a graph with one edge; V� induces a graph with one edge

Observation 4.6. Let H be a sparse (�, h)-graph with at least two edges. Then
the following hold true:

(i) If � = 1, then H is a forest.
(ii) If � ≥ 2, then |V�| ≥ 2 and the equality holds only when H is a diamond.
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Proof. To prove the first part, we observe that H \ V� has at most one edge. To
prove the second part, we observe that if |V�| ≤ 2 and if H is not a diamond,
then h ≤ �, which is a contradiction. �	

Since the case of forest is already handled in Proposition 4.1(iii), we can safely
assume that � ≥ 2 and hence h ≥ 3. We start with handling Case 1. We use a
slightly modified version of Construction 1. We recall that, in Construction 1,
with an input (G′, k,H, V ′), For every copy C of H[V ′] in K ′ (a complete graph
on V (G′)), we introduced k + 1 branches such that each branch along with C
form a copy of H. In the modified construction, in addition to this, we make
every pair of vertices from different branches mutually adjacent.

Construction 3. Let (G′, k,H, V ′) be an input to the construction, where G′

and H are graphs, k is a positive integer and V ′ is a subset of vertices of H.
Apply Construction 1 on (G′, k,H, V ′) to obtain G′′. For every pair of vertices
{vi, vj} such that vi ∈ Vi and vj ∈ Vj, where i 
= j, make vi and vj adjacent.
This completes the construction. Let the constructed graph be G.

Now, we have a lemma similar to Lemma 2.5. We skip the proof as it is quite
similar to that of Lemma 2.5.

Lemma 4.7. Let G be obtained by Construction 3 on the input (G′, k,H, V ′),
where G′ and H are graphs, k is a positive integer and V ′ ⊆ V (H). Then,
if (G, k) is a yes-instance of H-free Edge Deletion, then (G′, k) is a yes-
instance of H ′-free Edge Deletion, where H ′ is H[V ′].

The following lemma is proved by a reduction from P3-free Edge Deletion

using Construction 3. Due to space constraints, the proof is moved to an extended
version of this paper.

Lemma 4.8. Let H be a sparse (�, h)-graph, where h > � ≥ 2 such that both V�

and Vh are independent sets. Then H-free Edge Deletion is NP-complete.
Furthermore, the problem cannot be solved in time 2o(k) · |G|O(k), unless ETH
fails.

Now we handle the cases in which V� induces a graph with one edge.

Lemma 4.9. Let H be a sparse (�, h)-graph with at least two edges such that
Vl induces a graph with one edge. Let v�1 and v�2 be the two adjacent vertices
in V�. Let H ′ be the graph induced by V (H) \ {v�1 , v�2}. Then, there is a lin-
ear parameterized reduction from H ′-free Edge Deletion to H-free Edge

Deletion.

Proof. Let (G′, k) be an instance of H ′-free Edge Deletion. Apply Con-
struction 1 on (G′, k,H, V ′), where V ′ is V (H) \ {v�1 , v�2}. Let G be the graph
obtained from the construction. We claim that (G′, k) is a yes-instance of H ′-
free Edge Deletion if and only if (G, k) is a yes-instance of H-free Edge

Deletion.
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Let (G′, k) be a yes-instance of H ′-free Edge Deletion and let F ′ be a
solution of size at most k of (G′, k). For a contradiction, assume that G − F ′

has an induced H with a vertex set U . It is straight-forward to verify that If a
branch vertex v1 ∈ V1 is in U , then its neighbor in the same branch u1 ∈ V1

must be in U and both acts as v�1 and v�2 in the H induced by U in G − F ′.
Hence ′ −F ′ has an induced H ′, which is a contradiction. Lemma 2.5 proves the
converse. �	
Observation 4.10. Let H be a sparse (�, h)-graph with at least two edges where
h > � ≥ 2 such that Vl induces a graph with one edge. Let v�1 and v�2 be the two
adjacent vertices in V�. Let H ′ be the graph induced by V (H) \ {v�1 , v�2}. Then
H ′ has at least two edges.

Proof. By Observation 4.6(ii) since H is not a diamond, |V�| ≥ 3. This implies
that V \ {v�1 , v�2} is nonempty. Now the observation follows from the fact that
� ≥ 2. �	

Now we handle Case 2, i.e., Vh induces a graph with one edge and V� is an
independent set.

Lemma 4.11. Let H be a sparse (�, h) graph where h > � ≥ 2, Vh induces a
graph with one edge and V� is an independent set. Let H be not a t-diamond.
Let vh1 and vh2 be the two adjacent vertices in H[Vh]. Let V ′ be V� ∪ {vh1 , vh2}.
Let H ′ be H[V ′]. Then, there is a linear parameterized reduction from H ′-free
Edge Deletion to H-free Edge Deletion.

Proof. For convenience, we give a reduction from H ′-free Edge Comple-

tion to H-free Edge Completion. Then the statements follow from Propo-
sition 2.3(i).

Let (G′, k) be an instance of H ′-free Edge Completion. Apply Construc-
tion 1 on (G′, k,H, V ′), where V ′ is V� ∪{vh1 , vh2}. Let G be the graph obtained
from the construction. We claim that (G′, k) is a yes-instance of H ′-free Edge

Completion if and only if (G, k) is a yes-instance of H-free Edge Comple-

tion.
Let (G′, k) be a yes-instance of H ′-free Edge Completion and let F ′ be

a solution of size at most k of (G′, k). For a contradiction, assume that G + F ′

has an induced H with a vertex set U . It is straight-forward to verify that If a
branch vertex v1 ∈ V1 is in U , then all its neighbors in the same branch are in U
and V1 acts as Vh \ {vh1 , vh2} of H in H induced by U in G + F ′. Hence G′ + F ′

has an induced H ′, which is a contradiction. Lemma 2.5 proves the converse. �	
Observation 4.12. Let H be a sparse (�, h) graph where h > � ≥ 2, Vh induces
a graph with one edge and V� is an independent set. Let H be not a t-diamond,
for t ≥ 2. Let vh1 and vh2 be the two adjacent vertices in H[Vh]. Let V ′ be
V� ∪ {vh1 , vh2}. Let H ′ be H[V ′]. Then H ′ has at least two edges and |V (H ′)| <
|V (H)|.
Proof. Follows from the facts that h ≥ 3 and H is not a t-diamond. �	
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Lemma 4.13. Let H be a sparse (�, h)-degree graph with at least two edges.
Then H-free Edge Deletion is NP-complete. Furthermore, the problem can-
not be solved in time 2o(k) · |G|O(1), unless ETH fails.

Proof. If V� induces a graph with an edge, then we apply the technique used in
Lemma 4.9 and obtain a graph H ′ with at least two edges. Similarly, if H is not
a t-diamond and Vh induces a graph with an edge, then we apply the technique
used in Lemma 4.11 to obtain a graph H ′ with at least two edges. If the obtained
graph H ′ is not a sparse (�, h)-degree graph, then we apply Deletion-Churn(H ′)
to obtain H ′′. We repeat this process until no more repetition is possible. Then, it
is straight-forward to verify that we obtain a graph which is either a t-diamond,
or a graph handled in Lemma 4.8 or a regular graph or a forest with at least
two edges. �	

4.3 Dichotomy Results

We are ready to state the dichotomy results and the parameterized lower bounds
for H-free Edge Deletion and H-free Edge Completion.

Theorem 4.14. H-free Edge Deletion is NP-complete if and only if H is
a graph with at least two edges. Furthermore, the problem cannot be solved in
time 2o(k) · |G|O(k). H-free Edge Completion is NP-complete if and only if
H is a graph with at least two non-edges. Furthermore, the problem cannot be
solved in time 2o(k) · |G|O(k).

Proof. Consider H-free Edge Deletion. The statements follow from Propo-
sition 2.4(i), Lemma 4.4, Proposition 4.1(iii) and Lemma 4.13. Now the results
for H-free Edge Completion follows from Proposition 2.3(i). �	

5 Concluding Remarks

Our results have implications on the incompressibility of H-free edge modifica-
tion problems. Polynomial parameter transformation (PPT) is a technique to
prove the incompressibility of problems. It is a polynomial time reduction from
a parameterized problem to another where the parameter blow-up is polynomial.
To prove the incompressibility of a problem it is enough to to give a PPT from
a problem which is already known to be incompressible, under some complexity
theoretic assumption. All our reductions are PPTs. The following lemma is a
direct consequence of Lemma 2.6.

Lemma 5.1. Let H be a graph and d be any integer. Let H ′ be obtained from
H by deleting vertices with degree d or less. Then, if H ′-free Edge Edit-

ing (Deletion/Completion) is incompressible, then H-free Edge Edit-

ing (Deletion/Completion) is incompressible.
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We give a simple example to show an implication of this lemma. Consider an
n-sunlet graph which is a graph in which a vertex with degree one is attached to
each vertex of a cycle of n vertices. From the incompressibility of Cn-free Edge

Editing, Deletion and Completion, for any n ≥ 4, it follows that n-sunlet-
free Edge Editing, Deletion and Completion are incompressible for any
n ≥ 4. We believe that our result is a step towards a dichotomy result on the
incompressibility of H-free edge modification problems. Another direction is to
get a dichotomy result on the complexities of H-free edge modification problems
where H is a finite set of graphs.
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