
Tight Approximations of Degeneracy
in Large Graphs

Mart́ın Farach-Colton and Meng-Tsung Tsai(B)

Rutgers University, New Brunswick, NJ 08901, USA
{farach,mtsung.tsai}@cs.rutgers.edu

Abstract. Given an n-node m-edge graph G, the degeneracy of graph
G and the associated node ordering can be computed in linear time in
the RAM model by a greedy algorithm that iteratively removes the node
of min-degree [28]. In the semi-streaming model for large graphs, where
memory is limited to O(n polylog n) and edges can only be accessed
in sequential passes, the greedy algorithm requires too many passes, so
another approach is needed.

In the semi-streaming model, there is a deterministic log-pass algo-
rithm for generating an ordering whose degeneracy approximates the
minimum possible to within a factor of (2+ε) for any constant ε > 0 [12].
In this paper, we propose a randomized algorithm that improves the
approximation factor to (1 + ε) with high probability and needs only a
single pass. Our algorithm can be generalized to the model that allows
edge deletions, but then it requires more computation and space usage.

The generated node ordering not only yields a (1+ ε)-approximation
for the degeneracy but gives constant-factor approximations for arboric-
ity and thickness.

Keywords: Degeneracy · Arboricity · Thickness · Semi-streaming
algorithm · Space lower bound

1 Introduction

Any ordering of the nodes of an n-node, m-edge simple undirected graph G
defines an acyclic orientation of the edges in which each edge is oriented from
the earlier node in the ordering to the latter. The degeneracy of an ordering is
the maximum out-degree it induces. The degeneracy of G, denoted by d(G), is
the smallest degeneracy among all orderings1, and an ordering whose degeneracy

Work supported by CNS-1408782 and IIS-1247750.
1 The degeneracy of a graph was originally defined to be the maximum minimum

degree among all subgraphs [2,5–7,14,28,34]. The definition here is a slight modifi-
cation of the coloring number [5,6,14] of a graph, a dual definition of degeneracy.
The coloring number of a graph was shown to be one larger than the degener-
acy [5,6,14], and our definition yields the same value as the original definition of
degeneracy.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 429–440, 2016.
DOI: 10.1007/978-3-662-49529-2 32

430 M. Farach-Colton and M.-T. Tsai

is d(G) is called a degenerate ordering . An ordering is d-degenerate if it has
degeneracy at most d.

Degenerate orderings have many uses. Given a degenerate ordering, one
can: decompose a graph into at most twice the minimum number of disjoint
forests [2,5]; decompose a graph into at most six times the minimum num-
ber of disjoint planar graphs [5,9]; speed up the counting of the number of
short paths or cycles [2], for example, counting the exact number of 3-cycles in
O̧(md(G)) time; find a component of density at least half the maximum den-
sity of any subgraph, i.e. a 1/2-approximation [7]; identify a dominating set of
cardinality at most O̧(d2(G)) times the cardinality of a minimum dominating
set [26] as well as some variations of dominating sets [10], e.g. k-dominating
sets; etc. Although most of these problems can be solved exactly in polynomial
time [7,15,16,24], the approximation algorithms based on degenerate orderings
are faster, use less space or yield better approximation factors for large graphs.
For example, such orderings yield a better approximation algorithm for decom-
posing a graph into a minimum number of planar subgraphs than other algo-
rithms using O(n) space [22,27]. Although all of the results listed originally
relied on (optimally) degenerate orderings, in [12], we show that orderings that
are nearly degenerate orderings, that is, whose degeneracy approximates rather
than matches the graph degeneracy also yield good approximation algorithms.

The degeneracy of graph G and the associated node ordering can be com-
puted in linear time in the RAM model by a greedy algorithm that iteratively
removes the node of min-degree, as shown by Matula and Beck [28]. However,
iteratively removing a single min-degree node is inefficient when graphs are larger
than memory. Thus, another approach is needed.

We consider algorithms in the semi-streaming model [30,32,33], in which we
are allowed O(npolylog n) working space, and edges can be accessed in sequential
read-only passes through the graph. The goal is then to minimize the number of
passes and the time complexity of the algorithm.

Some graph problems that have similar complexities in the RAM model can
have quite different complexities in the semi-streaming model. Some graph prob-
lems, e.g. connectivity, minimum spanning tree, finding bridges and articulation
points, can be solved optimally [11,13]. Other graph problems, e.g. counting the
number of 3-cycles, maximum matching and graph degeneracy, can be approxi-
mated [1,3,12]. Some fundamental problems, such as breath-first search, depth-
first search, topological sorting, and directed connectivity, are believed to be
difficult to solve in a small number of passes [18,32,33].

In [12], we give a deterministic log-pass algorithm for generating a node order-
ing whose degeneracy approximates the minimum possible to within a factor of
(2 + ε) for any constant ε > 0. In this paper, we propose a randomized algorithm
that improves the approximation factor to (1+ε) and reduces the number of pass
to one but which has a small probability of failure. Theorem 1 is our main result.

Theorem 1. In the semi-streaming model, there exists an O(m)-time 1-pass
randomized algorithm that outputs a node ordering whose degeneracy approxi-
mates the minimum possible to within a factor of (1 + ε) for any constant ε > 0
with probability 1 − 1/nΩ(1) using a space of O(ε−2n log2 n) bits.

Tight Approximations of Degeneracy in Large Graphs 431

Our algorithm can be generalized to the model that allows edge deletions,
known as the dynamic stream [4,8,17,20,21,25,29] or the turnstile model [23,35],
by appealing the Jowhari et al. [19] result on building L0-samplers, which are data
structures that can be updated in the streaming model and can generate a sam-
pled edge once the stream has been processed, and the algorithm that deals with
sets of L0-samplers efficiently, due to McGregor et al. [29]. In our case, we need
O(ε−2n log n) L0-samplers to produce a sampled subgraph with O(ε−2n log n)
edges. The generalization to the turnstile model increases the time- and space-
complexity by polylog n factors. We summarize the result in Theorem 2.

Theorem 2. In the turnstile model, there exists an O(m polylog n)-time 1-pass
randomized algorithm that outputs a node ordering whose degeneracy approxi-
mates the minimum possible to within a factor of (1 + ε) for any constant ε > 0
with probability 1 − 1/nΩ(1) using a space of O(ε−2n log3 n) bits.

In addition to these upper bounds, we also show that computing the degen-
eracy in the semi-streaming model in one pass with constant success rate has
a space lower bound of Ω(n log n) bits. The space lower bound also holds in
the turnstile model, because the turnstile model is a generalization of the semi-
streaming model. We note that our algorithm in the semi-streaming model is
optimal in both time- and pass-complexity and has a nearly-optimal space-
complexity, which is no more log n times optimal.

To illustrate how to apply the low-degeneracy node ordering to other prob-
lems, we also show constant-factor approximations for arboricity and thickness.

Our Techniques. We sample a small random subgraph H ⊆ G such that H fits
in memory. Then, we show that the degenerate ordering of H is a low-degenerate
ordering of G, as follows:

In [12], we show that iteratively removing a node of degree no more than
(1+ε) times the minimum degree generates a node ordering whose degeneracy is
no more than (1+ε) times the graph degeneracy. This fact leaves some flexibility
in picking the next node to remove, rather than always having to pick the min-
degree node, as required in the exact algorithm [28]. Since low degree nodes in
H are likely to be low degree nodes in G, we are about to exploit this flexibility
to minimize the probability of error in the final order.

Organization. We prove that the degenerate ordering of a random subgraph H
is a low-degenerate ordering of graph G in Sect. 2. To obtain a random subgraph
H, in Sect. 3 we devise algorithms to sample an H in the semi-streaming model
and in the turnstile model. In Sect. 4, we show a lower bound on the space needed
to compute a low-degenerate ordering in one pass. Lastly, in Sect. 5, we present
some applications of low-degenerate orderings.

2 Degeneracy and Random Subgraphs

We revisit some properties of degeneracy and, based on those, we show that the
degenerate ordering of H = G(p) is also a low-degenerate ordering of G, where

432 M. Farach-Colton and M.-T. Tsai

G(p) is a random subgraph of G such that every edge in G is included in G(p)
independently with probability p.

To begin, let v (resp. v̂) be the min-degree node of G (resp. H). By dG(v)
we denote the degree of v in G. Intuitively, since H = G(p) is a sketch of G, the
difference between dG(v) and dG(v̂) is likely to be small. We claim that if p is
set to be Ω(ε−2n log n/m),

dG(v̂) ≤ max
{
(1 + ε)dG(v),m/n

}

with probability 1−1/nΩ(1). We prove a stronger form of this claim in Lemma 3,
in which GU denotes the subgraph of G induced by node set U , and δ(GU)
denotes the minimum node degree in GU .

Lemma 3. Let H = G(p) be a random subgraph of an n-node m-edge graph G.
For any node set U , the node v̂ that has minimum degree in HU has degree in
GU bounded by

max
{
(1 + ε)δ(GU),m/n

}
for any constant ε > 0

with probability 1 − 1/nΩ(1) if p = Ω(ε−2n log n/m).

Proof. Let v be the min-degree node in GU , and let Q be the set of bad candidates
of v̂; formally,

Q =
{
x ∈ GU : dGU

(x) > max
{
(1 + ε)dGU

(v),m/n
}}

.

We show that the degree dGU
(v̂) is bounded as required w.h.p. by considering

the two probabilities

Pr [v̂ ∈ Q | C1 : dGU
(v) ≥ m/n] and Pr [v̂ ∈ Q | C2 : dGU

(v) < m/n],

such that dGU
(v̂) is not bounded as required. Here we bound the first probability

by the Chernoff and Union bounds as follows:

Pr [v̂ ∈ Q | C1] ≤
∑

x∈Q

Pr [dHU
(x) ≤ dHU

(v)]

≤
∑

x∈Q

Pr [dHU
(x) ≤ (1 − c)pdGU

(x) ∨ dHU
(v) ≥ (1 + c)pdGU

(v)]

≤
∑

x∈Q

exp
(

−c2

2
pdGU

(x)
)

+ exp
(

− c2

2 + c
pdGU

(v)
)

(1)

≤ n exp (−Ω(log n))

= 1/nΩ(1),

where c = ε/(2 + ε), so that (1 − c)pdGU
(x) ≥ (1 + c)pdGU

(v) if x ∈ Q. The
second probability has the same upper bound as well because Pr [v̂ ∈ Q | C1] ≥
Pr [v̂ ∈ Q | C2]. ��

Tight Approximations of Degeneracy in Large Graphs 433

Lemma 3 implies that the degenerate ordering of H = G(p) is a low-
degeneracy ordering of G w.h.p. Before proceeding to the proof of our main
claim, we observe the following facts about degeneracy:

1. d(G) ≥ m/n: the degeneracy of an n-node m-edge graph is at least m/n,
because the sum of the out-degrees is m for any node ordering, and therefore
the maximum out-degree induced by any ordering is at least m/n;

2. d(G) ≥ d(H): the degeneracy of graph G is no less than the degeneracy of
any subgraph H ⊆ G, because adding edges cannot decrease the degeneracy;

3. d(G) ≥ δ(G): the minimum degree is no more than the degeneracy, because
for any node ordering, the induced out-degree of the first node equals its
degree and of course cannot be less than the minimum.

We are now in a position to show our main claim, as stated in Theorem 4. We
prove this by construction. We obtain the degenerate ordering of H = G(p) by the
greedy algorithm [28] that iteratively removes the min-degree node from H until H
becomes empty. Such a node removal gives a node ordering v̂1, v̂2, . . . , v̂n. Let the
remainder of the graph after the node removal be G0 = G, Gk = Gk−1 \ {v̂k} for
each k > 0. Note that Gk is a subgraph of G induced by the node set {v̂i : i > k}.
By Lemma 3, if p = Ω(ε−2n log n/m), we have that

Pr [dGk−1(v̂k) > max
{
(1 + ε)δ(Gk−1),m/n

}
] < 1/nΩ(1) for each k,

and therefore we have, by the Union bound,

Pr

⎡

⎣
∨

k∈[1,n]

(
dGk−1(v̂k) > max

{
(1 + ε)δ(Gk−1),m/n

}
)

⎤

⎦ < 1/nΩ(1).

In other words, we can say that with probability 1 − 1/nΩ(1) every v̂k has
degree no more than the minimum degree in Gk−1 or the quantity m/n. Hence,
v̂1, v̂2, . . . , v̂k is a low-degeneracy ordering of G whose degeneracy is bounded by

max
{
(1 + ε)δ(Gk−1),m/n, d(Gk−1 \ {v̂k})

} ≤ (1 + ε)d(G)

with probability 1 − 1/nΩ(1), where the inequality immediately follows from the
abovementioned three facts and by induction on k. As a result, we have:

Theorem 4. The degenerate ordering of H = G(p) is a low-degeneracy ordering
of G whose degeneracy approximates the minimum possible to within a factor of
(1 + ε) with probability 1 − 1/nΩ(1) if p = Ω(ε−2n log n/m).

3 Algorithms

We now present how to compute a node ordering in the considered models such
that the computation takes a single pass, and the degeneracy of the ordering is
a (1 + ε)-approximation of the graph degeneracy w.h.p.

434 M. Farach-Colton and M.-T. Tsai

To recap, we propose an algorithm that samples a random subgraph H from
the entire graph G, and then outputs the degenerate ordering of the random
subgraph. We have shown in Theorem 4 that the ordering is a low-degenerate
ordering of the entire graph with a fairly good probability. In particular, we let
H = G(p) for p = Θ(ε−2n log n/m), and thus the output ordering has degeneracy
that approximates the minimum possible to within a factor of (1 + ε) with
probability 1 − 1/nΩ(1).

The sampling procedure is quite different in the semi-streaming and the turn-
stile models. We discuss them separately. In the semi-streaming model, each edge
in the data stream is contained in the final edge set of G. Thus, obtaining a sam-
pled subgraph H is straightforward. To make the algorithm optimal in runtime,
we batch the edges, as described below.

On the other hand, an edge on the data stream might be subsequently deleted
in the turnstile model. This uncertainty makes sampling hard. To handle the
uncertainty we appeal to the L0-sampler construction of Jowhari et al. [19]
and the algorithm for efficiently maintaining sets of such L0-samplers due to
McGregor et al. [29]. In this approach, the sampled subgraph H is an approx-
imate of G(p) that has a small distortion from G(p). We adapt Lemma 3 to
account for this distortion.

3.1 In the Semi-streaming Model

In this model the edge set of G is presented in a read-only stream. We assume
that n, the number of nodes, is known at the beginning of data stream, but m,
the number of edges, is not known until the end of data stream. The desired size
of H is

s = Θ(ε−2n log n).

We note here that s is known at the beginning because it only depends on n
and ε. Our goal is to pick a p so that s = mp, that is, so that H = G(p) has size
O(s), w.h.p. However, m is unknown, and therefore p is also unknown, when we
start sampling. To sample each edge with an unknown probability p, we guess
that m = s and set p = 1. If there are more than s edges, we adjust the guess
to be m = 2s, set p = 1/2, and then kick out some sampled edges to make sure
that all edges were sampled with probability 1/2. We keep adjusting the guess
for m and p and resampling, until we run out of edges. In order to implement
this intuition efficiently, we use the following algorithm.

We allocate a working space of size 2s to hold the sampled edges, and call this
space the pool . If we ever end up selecting more than 2s edges, our algorithm
goes into a low-probability failure mode in which it outputs an arbitrary node
ordering.

Now suppose, for ease of presentation, that m is a multiple of s. The pool is
empty at the beginning. Our algorithm works in rounds: in the k-th round, the
algorithm brings the k-th group of s edges into a buffer. Then, the algorithm
kicks out some of the edges that are already in the pool, if any, each with
probability pk = 1/k, and migrates the edges that are in the buffer to the pool,

Tight Approximations of Degeneracy in Large Graphs 435

each with probability qk = 1/k, discarding those that fails to migrate. At the
end of the (m/s)-th round, the pool contains a randomly sampled subgraph H in
which each edge is sampled independently from G with probability p = s/m even
though m was unknown initially. See Fig. 1 for an illustration of the sampling
procedure.

bufferpool

discarded

pk

1 − pk
qk

1 − qk

Fig. 1. Sampling procedure in the k-th round.

In the case that m is not a multiple of s, then there are αs edges for α ∈ (0, 1)
in the last-round buffer. For this last round, it suffices to set pk = α/(k − 1 + α)
and qk = 1/(k − 1 + α).

To quantify how often the sampling procedure has a pool of size greater than
2s, we give a bound on the probability of such a pool overflows in a round. By
the Chernoff bound, we have

Pr

⎡

⎣
∑

i=[1,m]

Xi > 2mp

⎤

⎦ ≤ exp
(−Ω(ε−2n log n)

) ≤ 1/nΩ(n),

where Xi is an indicator variable denoting whether the i-th edge of graph G is
included in the random subgraph H. Then, by the Union bound, the probability
that the pool overflows at some point of the entire sampling procedure is 1/nΩ(1),
which is dominated by the claimed failure rate.

Lastly, we analyze the time complexity of the proposed algorithm. The above
sampling procedure has O(m/s) rounds, and in each round it deals with at most
3s edges. Thus, the sampling procedure takes O(m) time. After obtaining the
random sampled subgraph H, the algorithm computes the degenerate ordering of
H using the in-memory algorithm for computing degenerate ordering introduced
by Matula and Beck [28], which takes O(s) = O(mp) time. Hence, the total
runtime is bounded by O(m).

This completes the proof of Theorem 1.

3.2 In the Turnstile Model

In this model a sequence of edge insertions and deletions is presented in a read-
only stream. The procedure described in the Sect. 3.1 does not work in this model

436 M. Farach-Colton and M.-T. Tsai

because the pool in Sect. 3.1 might end up choosing edges that are about to be
deleted, making H = ∅ rather than H = G(p).

Since that the working space cannot keep the entire edge set E (|E| = m),
using an L0-sampler [19] one can sample an edge e from E with success rate at
least 1 − δ using O(log2 n log(1/δ)) bits, such that the probability that an edge
e ∈ E is picked in the sample is

1/m + 1/nΩ(1),

which is roughly the desired 1/m but has a small distortion 1/nΩ(1).
To sample a random subgraph H = G(p), one can use 2s L0-samplers to

sample 2s = 2mp/(1 − δ) = Θ(ε−2n log n) for constant δ < 1 independent edges
from the final edge set E of G. These might be repeated, so pick the first t distinct
edges from the 2s samples, where t is a random variate sampled from Bin(m, p),
the binomial distribution of m trials and success rate p. Note that an L0-sampler
fails to return a sample with probability 1−δ, and so we set 2s = 2mp/(1−δ) to
balance the failure rate. One can assert that there exist t distinct edges among
the 2s samples with probability 1 − 1/nΩ(1) by the Chernoff bound. To handle
the failure case, again, the algorithm outputs an arbitrary node ordering.

It follows from the above sampling procedure, for each edge e ∈ G, that the
probability that H contains e is

Pr [e ∈ H] =
∑

k=[0,m]

Pr [t ∼ Bin(m, p) = k]
(
k/m + k/nΩ(1)

)
= p
(
1 + 1/nΩ(1)

)
.

Hence, H ≈ G(p).
Since H �= G(p), to prove the correctness of Theorem 2, we adapt Lemma 3 to

accommodate the small distortion. The distortion changes the expected values of
dHU

(x) and dHU
(v̂). However the change is so small that the bounds on the tail

probabilities in Eq. 1 still hold. Therefore, Lemma 3 works as well for H ≈ G(p).
A näıve implementation of the above requires O(ε−2nm polylog n) time. We

appeal to the alternative sampling procedure devised by McGregor et al. [29] to
obtain the abovementioned 2s samples in O(m polylog n) time.

This establishes Theorem 2.

4 Space Lower Bounds

In this section, we show that any randomized algorithm in the semi-streaming
model that can approximate degeneracy, arboricity or thickness in one sequential
pass with constant success rate requires a working space of Ω(n log n) bits. Our
proofs rely on the space lower bounds of cycle-freeness [35, Theorem 7] and
planarity testing [35, Corollary 12] shown recently by Sun and Woodruff.

We observe that, combining the space lower bound of cycle-freeness test-
ing [35, Theorem 7] with Lemma 5, the space lower bound for approximating
degeneracy to within a factor of (2−ε) is immediate, summarized in Theorem 6.

Tight Approximations of Degeneracy in Large Graphs 437

Lemma 5. Graph G has degeneracy d(G) = 1 if and only if G is cycle-free.

Proof. If G is cycle-free, then G is a forest and one can make every tree in G
rooted. In this way, let the orientation of the edges in G from the descendant to
the ancestor. Since every node except the roots in such rooted cycle-free graph
has a single parent node. The out-degree of every node is either 0 or 1. In other
words, the degeneracy d(G) = 1.

Otherwise, G contains a cycle C. Since the degeneracy d(C) ≥ δ(C) (Fact 3
in Sect. 2) and δ(C) = 2, then d(C) ≥ 2. Combining that d(G) ≥ d(C) (Fact 2
in Sect. 2), d(G) ≥ 2. ��
Theorem 6. In the semi-streaming model, any randomized algorithm that can
approximate the degeneracy to within a factor of (2 − ε) for any constant ε > 0
with constant success rate has a space lower bound of Ω(n log n) bits.

In addition, we show similar space lower bounds for computing arboricity
and thickness. The proof directly follows from the definition of arboricity and
thickness. Recall that the arboricity (resp. thickness) of graph G is the mini-
mum number of forests (resp. planar subgraphs) whose union forms G. There-
fore, computing the arboricity (resp. thickness) is no easier than cycle-freeness
(resp. planarity) testing. Combining the space lower bounds of cycle-freeness and
planarity testing shown in [35], we have Theorem 7.

Theorem 7. In the semi-streaming model, any randomized algorithm that can
approximate arboricity or thickness to within a factor of (2−ε) for any constant
ε > 0 with constant success rate has a space lower bound of Ω(n log n) bits.

We note that the above space lower bounds also hold in the turnstile model,
because the turnstile model is a generalization of the semi-streaming model.

5 Applications

A low-degeneracy node ordering has many applications. Here we present how
to use the ordering to partition a graph into edge-disjoint forests such that the
number of forests approximates the minimum possible, i.e. the arboricity.

The Nash-William theorem [31] states that if mS (resp. nS) denotes the num-
ber of edges (resp. nodes) in the subgraph S, the arboricity can be stated as

α(G) = max
S⊆G

�mS/(nS − 1)
,

which has a form similar to that of the density of the densest subgraph. The
algorithm in [29] that approximates the density of the densest subgraph can be
adapted to approximate arboricity to within a factor of (1 + ε).

It is unclear how to exploit the actual value of the arboricity to actually
partition the input graph into a small number of forests, however a d-degenerate
node ordering has a direct application to such a partition. Considering that in
the acyclic orientation induced by the ordering, the out-degree of each node is

438 M. Farach-Colton and M.-T. Tsai

no more than d, and thus one can partition the edge set into d subgraphs, each
of which contains the i-th out-going edge of each node, if any. Note that the
subgraphs are forests because all of them have degeneracy 1 or, equivalently, are
cycle-free due to Lemma 5.

The above procedure has a simple two-pass implementation in the semi-
streaming model. We use the d-degenerate ordering obtained in the first pass to
assign the orientation of the incoming edges in the second pass. Then, maintain-
ing the out-degree of each node suffices to partition the edges as described.

Since the computed d-degenerate ordering has d ≤ (1 + ε)d(G), and each of
the degeneracy, arboricity and thickness approximates each other, we have the
result in Theorem 8. Our result improves the approximation ratio by a factor of
2, compared to that in [12].

Theorem 8. In the semi-streaming model, there exists an O(m)-time 2-pass
randomized algorithm that partition the edges into forests (resp. planar graphs)
such that the number of forests (resp. planar graphs) approximates the minimum
possible to within a factor of (2 + ε) (resp. (6 + ε)) with probability 1 − 1/nΩ(1)

using a space of O(ε−2n log2 n) bits.

References

1. Ahn, K.J., Guha, S.: Linear programming in the semi-streaming model with
application to the maximum matching problem. In: Aceto, L., Henzinger, M.,
Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 526–538. Springer,
Heidelberg (2011)

2. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles.
Algorithmica 17(3), 209–223 (1997)

3. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algo-
rithms, with an application to counting triangles in graphs. In: Proceedings of
the thirteenth annual ACM-SIAM symposium on Discrete algorithms (SODA),
pp. 623–632. SIAM (2002)

4. Bhattacharya, S., Henzinger, M., Nanongkai, D., Tsourakakis, C.E.: Space- and
time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing (STOC), pp. 173–182 (2015)

5. Bollobás, B.: Extremal Graph Theory. Academic Press, London (1978)
6. Bollobás, B.: The evolution of sparse graphs. In: Graph Theory and Combinatorics,

Proceedings of the Cambridge Combinatorial Conference in honor of Paul Erdős,
pp. 35–57. Academic Press (1984)

7. Charikar, M.: Greedy approximation algorithms for finding dense components
in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913,
pp. 84–95. Springer, Heidelberg (2000)

8. Chitnis, R.H., Cormode, G., Esfandiari, H., Hajiaghayi, M., McGregor, A.,
Monemizadeh, M., Vorotnikova, S.: Kernelization via sampling with applications
to dynamic graph streams, CoRR abs/1505.01731 (2015)

9. Dean, A.M., Hutchinson, J.P., Scheinerman, E.R.: On the thickness and arboricity
of a graph. J. Comb. Theor. Series B 52(1), 147–151 (1991)

Tight Approximations of Degeneracy in Large Graphs 439

10. Dvor̆ák, Z.: Constant-factor approximation of the domination number in sparse
graphs. Eur. J. Comb. 34(5), 833–840 (2013)

11. Farach-Colton, M., Hsu, T., Li, M., Tsai, M.-T.: Finding articulation points of
large graphs in linear time. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS
2015. LNCS, vol. 9214, pp. 363–372. Springer, Heidelberg (2015)

12. Farach-Colton, M., Tsai, M.-T.: Computing the degeneracy of large graphs.
In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 250–260.
Springer, Heidelberg (2014)

13. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348(2), 207–216 (2005)

14. Frank, A., Gyarfas, A.: How to orient the edges of a graph. In: Proceedings of the
Fifth Hungarian Colloquium on Combinatorics. vol. I, Combinatorics, pp. 353–364
(1976)

15. Gabow, H., Westermann, H.: Forests, frames, and games: algorithms for matroid
sums and applications. In: Proceedings of the twentieth annual ACM Symposium
on Theory of Computing (STOC), pp. 407–421. ACM (1988)

16. Goldberg, A.V.: Finding a maximum density subgraph. Technical report (1984)
17. Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic

graph streams. In: Proceedings of the 34th ACM Symposium on Principles of
Database Systems (PODS), pp. 241–247 (2015)

18. Guruswami, V., Onak, K.: Superlinear lower bounds for multipass graph process-
ing. In: 28th Conference on Computational Complexity (CCC), pp. 287–298. IEEE
(2013)

19. Jowhari, H., Sağlam, M., Tardos, G.: Tight bounds for Lp samplers, finding dupli-
cates in streams, and related problems. In: Proceedings of the 30th ACM Sympo-
sium on Principles of Database Systems (PODS), pp. 49–58. ACM (2011)

20. Kapralov, M., Lee, Y.T., Musco, C., Musco, C., Sidford, A.: Single pass spectral
sparsification in dynamic streams. In: 55th IEEE Annual Symposium on Founda-
tions of Computer Science (FOCS), pp. 561–570 (2014)

21. Kapralov, M., Woodruff, D.P.: Spanners and sparsifiers in dynamic streams. In:
ACM Symposium on Principles of Distributed Computing (PODC), pp. 272–281
(2014)

22. Kawano, S., Yamazaki, K.: Worst case analysis of a greedy algorithm for graph
thickness. Inf. Process. Lett. 85(6), 333–337 (2003)

23. Konrad, C.: Maximum matching in turnstile streams. In: Bansal, N.,
Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 840–852. Springer, Verlag (2015)

24. Kowalik, �L.: Approximation scheme for lowest outdegree orientation and graph
density measures. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 557–566.
Springer, Heidelberg (2006)

25. Kutzkov, K., Pagh, R.: Triangle counting in dynamic graph streams. In: Ravi, R.,
Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 306–318. Springer, Heidelberg
(2014)

26. Lenzen, C., Wattenhofer, R.: Minimum dominating set approximation in graphs of
bounded arboricity. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 510–524. Springer, Heidelberg (2010)

27. Mansfield, A.: Determining the thickness of graphs is NP-hard. Math. Proc.
Cambridge Philos. Soc. 93, 9–23 (1983)

28. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30(3), 417–427 (1983)

440 M. Farach-Colton and M.-T. Tsai

29. McGregor, A., Tench, D., Vorotnikova, S., Vu, H.T.: Densest subgraph in dynamic
graph streams. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9235, pp. 472–482. Springer, Heidelberg (2015)

30. Muthukrishnan, S.: Data streams: algorithms and applications. Technical report
(2003)

31. Nash-Williams, C.S.A.: Edge-disjoint spanning trees of finite graphs. J. Lond.
Math. Soc. s1–36(1), 445–450 (1961)

32. O’Connell, T.C.: A survey of graph algorithms under extended streaming models
of computation. In: Ravi, S.S., Shukla, S.K. (eds.) Fundamental Problems in Com-
puting, pp. 455–476. Springer, The Netherlands (2009)

33. Ruhl, J.M.: Efficient algorithms for new computational models. Ph.D. thesis,
Massachusetts Institute of Technology, September 2003

34. Schank, T., Wagner, D.: Finding, counting and listing all triangles in large graphs,
an experimental study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503,
pp. 606–609. Springer, Heidelberg (2005)

35. Sun, X., Woodruff, D.P.: Tight bounds for graph problems in insertion streams.
In: Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM, pp. 435–448 (2015)

	Tight Approximations of Degeneracy in Large Graphs
	1 Introduction
	2 Degeneracy and Random Subgraphs
	3 Algorithms
	3.1 In the Semi-streaming Model
	3.2 In the Turnstile Model

	4 Space Lower Bounds
	5 Applications
	References

