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Abstract. Recently, Aravind et al. (IPEC 2014) showed that for any
finite set of connected graphs H, the problem H-Free Edge Deletion

admits a polynomial kernelization on bounded degree input graphs. We
generalize this theorem by no longer requiring the graphs in H to be
connected. Furthermore, we complement this result by showing that also
H-Free Edge Editing admits a polynomial kernelization on bounded
degree input graphs.

We show that there exists a finite set H of connected graphs such
that H-Free Edge Completion is incompressible even on input graphs
of maximum degree 5, unless the polynomial hierarchy collapses to the
third level. Under the same assumption, we show that C11-free Edge

Deletion—as well as H-Free Edge Editing—is incompressible on
2-degenerate graphs.

1 Introduction

Graph modification problems have been a fundamental part of computational
graph theory throughout its history [11, A1. GraphTheory]. In these classical
problems you are to apply at most k modifications to an input graph G to make
it adhere to a specific set of properties, where both the modifying operations
and the target properties are problem specific. Unfortunately, even when con-
sidering vertex deletion to hereditary graph classes, the modification problems
often regarded as the most tractable, almost all of them are NP-complete [17].
A similar dichotomy is yet to appear for edge modification problems and hence
the classical complexity landscape seems far more involved. However, various
results display the NP-hardness of the edge variants as well [3,7,19]. Due to this
inherent intractability we need to find other ways of coping. A well-established
tool for tackling hard problems, in practice as well as in theory, is preprocessing
of data. In theoretical computer science, preprocessing is best described within
the framework of parameterized complexity as kernelization. For our purposes
a problem admits a kernel of size f(k) if given a graph G and an integer k as
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input, one can in polynomial time output an equivalent instance (G′, k′) such
that both the size of G′ and the value k′ is bounded by f(k). If f is a polynomial
we say that the problem admits a polynomial kernelization.

In this paper we will restrict our attention to hereditary graph classes char-
acterized by finite sets of forbidden induced subgraphs. Hence, for every graph
class studied there is a set of finite graphs H such that a graph G is in the graph
class if and only if no graph in H is an induced subgraph of G. In this situation
Cai’s theorem [4] shows that all H-free modification problems are fixed parameter
tractable, that is, they are all solvable in time f(k) · poly(n). And furthermore,
every vertex deletion problem admits a classic O(kd) polynomial kernel, based
on the sunflower lemma [1,10]. However, for edge modification problems the
landscape is much less understood. In particular, P4-free edge deletion admits a
polynomial kernel, C4-free edge deletion does not and for S4 and the claw (K1,3),
nobody knows.

The edge modification problems characterized by a finite set of forbidden
induced subgraphs H are often referred to as H-Free Edge Completion,
H-Free Edge Deletion and H-Free Edge Editing, where one is to add,
remove or both add and remove k edges to make the graph H-free. In dealing with
the inherent intractability of graph modification problems Natanzon, Shamir,
and Sharan [18] suggested to study H-Free Edge Deletion on bounded degree
input graphs. Recently, following this direction of research, Aravind, Sandeep and
Sivadasan [2] were able to show that as long as every graph H ∈ H is connected,
the problem H-Free Edge Deletion admits a polynomial kernel of size

O
(
Δc · kd

)
,

where c is depending only on H and d on H and Δ. In particular, this yields a
polynomial kernel for every fixed maximum degree Δ.

The first result of the paper is several, simultaneously applicable improve-
ments upon the above mentioned result. First, we are able to remove the condi-
tion requiring all graphs of H to be connected. As many interesting graph classes
(threshold graphs, split graphs e.g.) are described by disconnected forbidden sub-
graphs, this is a major extension. Second, we complement it by proving that the
same kernels can be obtained when considering H-Free Edge Editing. And
third, we improve the kernel dependency on Δ. The novelty of our approach lies
within a better understanding of how forbidden subgraphs are introduced when
edges are modified in the input graph. Due to this, we can localize the crucial
part of the instance even when both forbidden subgraphs and modifications are
spread throughout the graph.

We continue by providing several hardness results. First, we prove that some-
what surprisingly the positive result does not extend to the completion variant.
Due to page restrictions, we have deferred some of the proofs from the kernel-
ization section to the full version. The statements to which these proofs belong
have been marked with a ♠.
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Table 1. Overview of polynomial kernelization complexity for graph modification on
bounded degree and degenerate input graphs. The table shows that there is no dis-
tinction between disconnected graphs, and that the completion variant is notoriously
incompressible—bounded degree does not help compressing completion problems.

Deletion Completion Editing Vertex deletion

bounded degree Yes ([2], Theorem4) No (Theorem1) Yes (Theorem4) Yes

2-degenerate No (Theorem3) No (Theorem1) No (Theorem2) Yes

Theorem 1 (♠). There exists a finite set H such that H-Free Edge Com-

pletion does not admit a polynomial kernel, even on input graphs of maximum
degree 5, unless NP ⊆ coNP/poly.

Furthermore, we prove that for both H-Free Edge Editing and H-Free Edge

Deletion there is no hope for polynomial kernels, even when restricted to 2-
degenerate graphs. It can easily be observed that the same proofs can be applied
to generalize the results to K9-minor free graphs.

Theorem 2 (♠). There is a finite set of connected graphs H such
that H-Free Edge Editing does not admit a polynomial kernel, even on
2-degenerate graphs, unless NP ⊆ coNP/poly.

Theorem 3 (♠). There is a finite set of connected graphs H such that
H-Free Edge Deletion does not admit a polynomial kernel, even on
2-degenerate graphs, unless NP ⊆ coNP/poly.

We now have complete information on the kernelization complexity of edge and
vertex modification problems when the target graph class is characterized by a
finite set of forbidden induced subgraphs, on bounded degree and 2-degenerate
input graphs. Recall that the yes answer for the vertex deletion version on general
graphs is obtained by a simple reduction from the H-Free Vertex Deletion

problem to the d-Hitting Set problem, which, using the sunflower lemma [8],
can be shown to admit a polynomial kernel [1].

Related work. One should note that many modification problems remains NP-
complete for bounded degree graphs. Komusiewicz and Uhlmann showed [15]
that even for simple cases like H = {P3}, the path on three vertices, H-Free
Edge Deletion—also known as Cluster Deletion—is NP-complete, even
on graphs of maximum degree 6. Later, it was also shown that P4-free Edge

Deletion and Editing (Cograph Editing) and {C4, P4}-free Edge Dele-

tion and Editing (Trivially Perfect Editing) [6] had similar properties;
NP-complete, even on graphs of maximum degree 4.

Gramm et al. [12], and Guo [14] showed kernels for several graph modifica-
tion problems to graph classes characterized by a finite set of forbidden induced
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subgraphs. Several positive results followed, which led Fellows, Langston, Rosa-
mond, and Shaw to ask whether all H-free modification problems admit poly-
nomial kernels [9].

This was refuted by Kratsch and Wahlströ [16] who showed that for H = {H}
where H is a certain graph on seven vertices, H-Free Edge Deletion, as
well as H-Free Edge Editing, does not admit a polynomial kernel unless
NP ⊆ coNP/poly.1 Without stating it explicitly, but revealed by a more careful
analysis of the inner workings of their proofs, Kratsch and Wahlström actually
showed something even stronger; namely that the result holds when restricted
to 6-degenerate graphs, both for the deletion and for the editing version.

This line of research was followed up by Guillemot, Havet, Paul, and Perez
[13] showing large classes of simple graphs for which H-Free Edge Deletion

is incompressible, which was further developed by Cai and Cai [5]; Combining
these results, we now know that when H is a path or a cycle, H-Free Edge

Deletion, Editing and Completion is compressible if and only if H has at
most three edges, that is, only for the simplest graphs.

Notation

We consider only simple finite undirected graphs. Let G = (V,E) be a graph
on n vertices with v ∈ V . When X ⊆ V (G), we write G − X to denote the
graph (V \X,E). Similarly, when F ⊆ [V ]2, we write G−F to denote the graph
(V,E \ F ) and G�F to mean (V,E�F ) where � is the symmetric difference
operator, i.e., A�B = (A \ B) ∪ (B \ A).

We say that a graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆
E(G) ∩ [V (H)]2. Furthermore, we say that H is an induced subgraph of G if
H is a subgraph of G and E(H) = E(G) ∩ [V (H)]2. For a set X ⊆ V (G)
we denote the induced subgraph of G with X as its vertices by G[X]. We lift
the notion of neighborhoods to subgraphs by letting N(H) = NG(V (H)) and
N [H] = NG[V (H)]. In addition, if H is a subgraph of G and F ⊆ E(G) we denote
by H�F the graph H�(F ∩ [V (H)]2). The diameter of a connected graph G,
denoted diam(G), is defined as the number of edges in a longest shortest path of
G, diam(G) = maxu,v∈V (G) distG(u, v). If G is disconnected, we define diam(G)
to be maxC diam(C), over all connected components C of G. For a graph G, a
vertex v ∈ V (G) and a set of vertices X ⊆ V (G) we define the distance from v to
X, denoted dist(v,X) as minu∈X dist(v, u). When provided with a non-negative
integer r in addition, we define the ball around X of radius r, denoted B(X, r),
as the set {v ∈ V (G) such that dist(v,X) ≤ r}.

Obstructions. An obstruction set H is a finite set of graphs. Given an obstruction
set H, a graph G and an induced subgraph H of G we say that H is an obstruction
in G if H is isomorphic to some element of H. If there is no obstruction H in
G we say that G is H-free. The size of the largest graph in H we denote by
1 NP ⊆ coNP/poly implies that PH is contained in Σp

3 . It is widely believed that
PH does not collapse, and hence it is also believed that NP �⊆ coNP/poly. We will
throughout this section assume that NP �⊆ coNP/poly.
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nH = max{|V (H)| for H ∈ H}. In addition, we lift the notation of diameter to
account for a finite set of graphs H, denoted diam(H), being the maximum of
diam G for G ∈ H.

Given a graph G and an integer k the problem H-Free Edge Deletion

asks whether there is a set F ⊆ E(G) with |F | ≤ k such that G − F is H-free.
And similarly, H-Free Edge Editing asks whether there is a set F ⊆ E(G)
with |F | ≤ k such that G�F is H-free. We say that a set of edges F is an
H-solution if G�F is H-free. When H is clear from context, we will refer to
F simply as a solution. When the problem at hand is the deletion problem, we
furthermore assume F ⊆ E(G), and when the problem at hand is the completion
problem, we assume F ∩ E(G) = ∅, as is expected.

Definition 1 (H-packing). Given a graph G and an obstruction H we say
that X ⊆ 2V (G) forms an H-packing in G if

(i) G[X] and H are isomorphic for every X ∈ X , and
(ii) X and Y are disjoint for every X,Y ∈ X .

Observation 1. Given a graph G and an obstruction H we can obtain a max-
imal H-packing X in O(n|V (H)|+1) time.

The problem we are dealing with in this article is the following, where we may
replace editing with deletion or completion, by simply putting restrictions on
where we chose F from.

Input: A graph G and an integer k
Parameter: k
Question: Is there a set F of at most k edges s.t. G�F is H-free?

H-Free Edge Editing

2 Graph Modification on Bounded Degree Graphs

In this section we prove that for any finite set of obstructions H, the problem of
deleting or editing at most k edges to make an input graph of bounded degree
H-free admits polynomial kernels. More precisely, both H-Free Edge Editing

and H-Free Edge Deletion admits polynomial kernels on bounded degree
graphs.

The argument consists of two parts. First, we identify a set of critical vertices
in the input graph G, called the obstruction core Z. Based on this set we can
decompose any set of modifications F in G. The decomposition leads to the
construction of a set of vertices in the graph, called the extended obstruction
core Z+. The first crucial property of Z+ is that if F modifies G[Z+] into an
H-free graph, then F also modifies G into an H-free graph. In other words, the
obstructions you want to eliminate in your graph, should be eliminated within
the extended obstruction core. The second crucial property is that the extended
obstruction core can be proved to live within a ball around the obstruction core,
were the radius depends on how well the solution decomposes. This ball will in
the end constitute the kernel.
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In the second part of the argument we prove that every minimal solution
decomposes well. Hence we can bound the size of the ball containing the extended
obstruction core and obtain a kernel.

We point out that we have considered the editing variant of the problem
where you are allowed to surpass the original maximum degree in the graph
by adding edges. However, it is the case that there is always a solution that at
most doubles the maximum degree of the graph since if more edges are added
one might as well remove all edges incident to the vertex. The validity of this is
proved in Lemma 9. It can furthermore be argued that this version of the problem
is the most general one. This is due to the fact that adding every supergraph of
the star with Δ(G) + 1 leaves to the obstruction set ensures that any solution
respects the current maximum degree.

2.1 Cores and Layers

In this section we introduce the concepts of obstruction cores and extended
obstruction cores. They are heavily based on the notion of shattered obstructions;
the set of obstructions you get from H if you take every connected component
as an obstruction. It follows immediately that every shattered obstruction is
connected.

Definition 2. (Shattered obstructions). Given a set of obstructions H we
define the shattered obstructions, denoted H� as the set of all connected com-
ponents of graphs of H.

Based on shattered obstructions we now define an obstruction core and explain
how such a set of not too large size can be obtained.

Definition 3. (Obstruction core). Let (G, k) be an instance of H-Free
Edge Editing (H-Free Edge Deletion). We then say that a set Z ⊆ V (G)
is an obstruction core in G if for every shattered obstruction H in G it holds
that either:

(i) V (H) ⊆ Z or
(ii) there is an H-packing in G[Z] of size at least (Δ(G) + 1) · nH + 2k + 1.

Observe that for every H satisfying (ii) it holds that even if you discard an
arbitrary obstruction in G and its entire neighborhood, together with all vertices
touched by a set of at most k edges, it still holds that H occurs in G[Z]. This is
very useful if you want to replace some part of an obstruction.

Observation 2. Given an instance (G, k) of H-Free Edge Editing (H-Free
Edge Deletion) we can in O(|H�|nnH+1) time obtain an obstruction core Z
in G of size at most |H�|((Δ(G) + 1) · nH + 2k + 1).

Proof. Let Z be the empty set initially. Then for every shattered obstruction H
we find a maximal H-packing X = X1, . . . , Xt and add the following set

⋃p
i=1 Xi

to Z, where p = min(t, (Δ(G) + 1) · nH + 2k + 1). The time complexity follows
by Observation 1.
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The next definitions are the ones of layer decompositions and core extensions,
arguably the most central definitions of the kernelization algorithm. They are
both with respect to a fixed obstruction core Z and set of edges F . The solution
is decomposed into several layers such that the first layer consists of the edges
of F that are contained in Z. The second layer consists of the edges of F that
are contained in scattered obstructions created when the modifications in Z was
done, and so forth. The extended core is a set of vertices encapsulating all scat-
tered obstructions either in G[Z] or created in G when doing the modifications
of the layers. It should be observed by the reader that the consider solution F
is not constructed, but analyzed implicitly with the intention to locate a part of
the input graph that encapsulates all the crucial information of the instance.

Layer decompositions and core extensions. Let (G, k) be an instance of H-Free
Edge Editing (H-Free Edge Deletion), F ⊆ [V (G)]2 and Z an obstruction
core. We construct the layer decomposition F1, . . . , F� of F as follows: Let G1 =
G, R1 = F and Z1 = Z. Then, inductively we construct the set X = Ri ∩ [Zi]2.
If X is empty we stop the process, otherwise we let Fi = X, Gi+1 = Gi�Fi and
Ri+1 = Ri \ Fi. Furthermore, we let

Wi+1 = {v ∈ H : H is a shattered obstruction in Gi+1 with [V (H)]2 ∩ Fi 
= ∅},

and based on this we let Zi+1 = Zi ∪ Wi+1.
With the construction above in mind, we will refer to Gi as the ith interme-

diate graph, Ri as the ith remainder, Zi as the ith core extension and � as the
solution depth (all with respect to G, Z and F ). Furthermore, we will refer to
G+ = G�+1 as the resulting graph and Z+ = Z�+1 as the extended core.

The next lemma says that if there is an obstruction in some intermediate
graph such that every connected component of the obstruction is either inside
the corresponding core extension or not modified at all so far by the layers, then
there is an isomorphic obstruction contained entirely within the core extension.
The intuition is that any untouched connected component has a large packing
in Z and hence it can be replaced by an isomorphic subgraph inside Z that both
avoids the modifications and the neighborhood of the rest of the obstruction.

Lemma 3. Let (G, k) be an instance of H-Free Edge Editing (H-Free
Edge Deletion), Z an obstruction core of G, and F ⊆ [V (G)]2 with |F | ≤ k
and F1, . . . , F� a layer decomposition of F . For an integer j ∈ [1, � + 1] let Gj

be the intermediate graph and Zj the core extension with respect to G,Z and F .
Let H be an obstruction in Gj with connected components H1, . . . , Ht such that
every Hi satisfies either: (i) V (Hi) ⊆ Zj or (ii) Hi = G[V (Hi)]. Then there is an
obstruction H ′ in Gj isomorphic to H with V (H ′) ⊆ Zj and V (H ′)\V (H) ⊆ Z.

Proof. For convenience we denote neighborhoods in Gj by Nj . Let H ′ be the
disjoint union of every Hi such that V (Hi) ⊆ Zj and L the list containing
every Hi not added to H ′. Let Hi be an element of L. We will now prove that
there is an H ′

i in Gj [Zj \ Nj [H ′]] such that Hi and H ′
i are isomorphic. Let

Xi be the maximal Hi-packing obtained when constructing Z. Since V (Hi) is
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not contained in Zj (and hence Z) and Hi’s edges are as in G it holds that
|Xi| ≥ (Δ(G)+1) ·nH +2k +1 by the definition of obstruction cores. This yields
that (Δ(G) + 1) · nH + 2k + 1 of the elements of the packing was added to Z.
Furthermore, we observe that |V (H ′)| ≤ nH and hence that |NG(H ′)| ≤ Δ · nH.
It follows immediately that |Nj(H ′)| ≤ Δ · nH + k and hence that |Nj [H ′]| ≤
(Δ+1) ·nH +k. By the previous arguments it follows that there is an Hi-packing
in Gj [Z \ Nj [H ′]] of size at least k + 1. And hence, by the pigeon hole principle
there is an H ′

i isomorphic to Hi in Gj [Zj \ Nj [H ′]] such that [V (H ′
i)]

2 and F ′

are disjoint.
To complete the proof we do the following for every Hi in L. We find an

H ′
i as described above, add H ′

i to H ′ and remove Hi from L. Since H1, . . . , Ht

are the connected components of H it follows that H and H ′ are isomorphic.
Furthermore, V (H ′) is clearly contained in Zj and V (H ′) \ V (H) in Z.

This possibility of moving obstructions to the inside of core extensions imme-
diately yields several very useful lemmata.

Lemma 4. Let (G, k) be an instance of H-Free Edge Editing(H-Free Edge

Deletion), Z an obstruction core of G, and F ⊆ [V (G)]2. Construct the layer
decomposition F1, . . . , F� of F with respect to Z, let F ′ = ∪�

i=1Fi and let Z+ be
the extended core with respect to Z and F . It then holds that: (G�F ′)[Z+] is
H-free if and only if G�F ′ is H-free.

Proof. Recall that G+ = G�F ′. It is trivial that if there is an obstruction H in
G+[Z+] then H is also an obstruction in G+. For the other direction, let H be
an obstruction in G+ and H1, . . . , Ht the connected components of H. Observe
that by the definition of Z+ it holds that every Hi satisfies either (i) or (ii)
of Lemma 3 with j = � + 1. It follows that there is an obstruction H ′ in G+

with V (H ′) ⊆ Z+. Hence H ′ is an obstruction in G+[Z+], which completes the
argument.

Lemma 5. Let (G, k) be an instance of H-Free Edge Editing(H-Free Edge

Deletion), Z an obstruction core of G, F a minimal solution and F1, . . . , F�

the layer decomposition of F with respect to Z. It then holds that F1, . . . , F�

forms a partition of F .

Proof. Let Fi and Fj be two layers with i < j. It follows immediately from the
definition of layer decomposition that Fj ⊆ Rj ⊆ Ri \ Fi and hence Fi and Fj

are disjoint. For convenience we let F ′ = ∪i∈[1,�]Fi. We now prove that F ′ = F .
It follows from the definition of layer decomposition that F ′ ⊆ F . Assume for
a contradiction that F ′ � F . Consider the final graph G+ = G�F ′. If G+ is
H-free it follows that F is not a minimal solution, yielding a contradiction.

Hence, G+ is not H-free. It follows immediately from Lemma 4 that G+[Z+] is
also not H-free. Furthermore, we know by the definition of layer decompositions
that G+[Z+] = (G�F )[Z+]. And hence G�F is not H-free, contradicting that
F is a solution.
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We finish the section by stating two important properties of the core; The first
one gives the true power of an extended core, namely that if a set of edges is
a solution for the graph induced on its extended core it also is a solution for
the entire graph. The second lemma gives us a partial tool for encapsulating
an extended core without knowing the solution beforehand. The next section is
dedicated to turning this partial tool into a true hammer.

Lemma 6. Let (G, k) be an instance of H-Free Edge Editing(H-Free Edge

Deletion), Z an obstruction core of G, F ⊆ [V (G)]2 and Z+ the extended core
with respect to Z and F . If F ⊆ [Z+]2 then (G�F )[Z+] is H-free if and only if
G�F is H-free.

Proof. Since F ⊆ [Z+]2 it holds that G+ = G�F . It trivially holds that if G+

is H-free, then so is G+[Z+]. Let H be an obstruction in G+ with connected
components H1, . . . , Ht. Observe that if Hi contains an edge of F then V (Hi) ⊆
Z+ due to the definition of Z+ and the assumption that F ⊆ [Z+]. Apply
Lemma 3 with j = � + 1 to obtain an obstruction H ′ in Z+.

Lemma 7. Let (G, k) be an instance of H-Free Edge Editing(H-Free Edge

Deletion), Z an obstruction core of G, F ⊆ [V (G)]2 and Z+ the extended core
with respect to Z and F . It then holds that: Z+ ⊆ B(Z, � · diam(H)).

Proof. Let Z1, . . . , Z�+1 be the extended cores. Instead of proving the lemma
directly we prove the following, stronger claim:

(�) For every Zi it holds that Zi ⊆ B(Z, (i − 1) · diam(H)).

Since Z+ = Z�+1, it is clear that (�) implies the lemma. The proof of (�) is by
induction. First, we observe that (�) holds for i = 1 by the definition of balls,
since Z = Z1. Assume for the induction step that (�) holds for i. Let v be a
vertex in Zi+1. If v is also in Zi we are done by assumption. Hence, we assume v
to be a vertex in Zi+1 \ Zi. Or in other words, v is in Wi+1. By definition there
is a scattered obstruction H in Gi+1 and an edge uw in Fi such that both u, v
and w are in H. Observe that the distance between u and v is at most diam(H)
and recall that u is in Zi ⊆ B(Z, (i − 1) · diam(H)). It follows immediately that
v is in B(Z, i · diam(H)) and hence the proof is complete.

2.2 Solutions are Shallow

In this section we prove that the depth of any solution is bounded logarithmically
by the size of the solution. This, combined with Lemma7 gives that linearly in k
many balls of logarithmic radius is sufficient to encapsulate an extended core. To
motivate that we obtain a polynomial kernel, observe that a ball of logarithmic
radius in a bounded degree graph is of polynomial size.

First, we prove that when considering any layer we can always find a set of
vertices of the same size, the removal of which would result in an H-free graph.
Next we prove that as long as the graph is not very small, removing a set of
vertices from the graph has the same effect as modifying the graph such that
the set becomes a set of isolates.
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Lemma 8. Let (G, k) be an instance of H-Free Edge Editing(H-Free Edge

Deletion), Z an obstruction core of G, F a minimal solution of the instance
and F1, . . . , F� the layer partition of F with respect to Z. For every i ∈ [1, �]
there exist a set Y with Y ≤ |Fi| such that Gi − Y is H-free.

Proof. We construct Y as follows: For every edge uv in Fi we add to Z the
endpoint furthest away from Z. If it is a tie, we choose an arbitrary endpoint.
Assume for a contradiction that Gi − Y is not H-free. Let H be an obstruction
in Gi − Y and H1, . . . , Ht the connected components of H.

First, we consider the case when i = 1. We then apply a modification of the
proof of Lemma 3. The idea is as follows: Let H ′ be the disjoint union of the
components of H contained in Z and Hx a component not in Z. Then there is a
Hx-packing of size k+1 in Z avoiding the closed neighborhood of H ′. We observe
that Y intersects with at most k of the elements of the packing and hence we can
find a subgraph H ′

x in G[Z] not intersecting with Y such that Hx and H ′
x are

isomorphic. Add H ′
x to H ′ and continue with the next component not contained

in Z. It follows immediately that H ′ is also an obstruction in G2. By definition
G2[Z] = G+[Z] and hence H ′ is an obstruction in G+. This contradicts F being
a solution.

If i ≥ 2 it holds that Y and Z are disjoint. This is true since if both endpoints
of an edge are included in Z, the edge would be in F1 and not Fi. It holds by the
definition of Y that [V (H)]2∩Fi is empty. Furthermore, by the definition of layer
decompositions it holds that if some Hx intersects with some Fj with j < i then
V (Hx) ⊆ Zj+1 ⊆ Zi. Hence we can apply Lemma 3 to obtain an obstruction
H ′ in Gi with V (H ′) ⊆ Zi. Since V (H) ⊆ V (G) \ Y and V (H ′) \ V (H) ⊆ Z
it follows that H ′ is an obstruction in Gi \ Y . It follows immediately that H ′

is also an obstruction in Gi+1. By definition Gi+1[Zi] = G+[Zi] and hence H ′

is an obstruction in G+. This contradicts F being a solution and completes the
proof.

Lemma 9. Let (G, k) be an instance of H-Free Edge Editing (H-Free
Edge Deletion), X a set of vertices in G and EX the set of edges incident to
vertices in X. It then holds that either

(i) |V (G)| < |X| + k + 2(Δ(G) + 1)nH or
(ii) the instances (G − X, k′) and (G − EX , k′) are equivalent for every k′.

Proof. We assume that (i) does not apply and prove that this implies (ii). It
is trivial that if (G − EX , k′) is a yes-instance then (G − X, k′) is also a yes-
instance. For the other direction, assume for a contradiction that (G − X, k′)
is a yes-instance and that (G − EX , k′) is a no-instance. Let F be a solution of
(G−X, k′). For convenience we define GV = (G−X)�F and GE = (G−EX)�F .
Let H an obstruction in GE and B the set of vertices V (H) \ X. Observe that
GV [B] = GE [B] and that |NGE

(V (H))| ≤ Δ(G) ·nH +k. It follows immediately
that
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|V (GE) \ (X ∪ NGE
[V (H)])|

≥ |V (GE)| − |X| − |NGE
[V (H)]|

≥ |X| + k + 2(Δ(G) + 1)nH − |X| − nH − Δ(G) · LH − k

= 2(Δ(G) + 1)nH − nH − Δ(G) · nH
= (Δ(G) + 1)nH.

Hence we can obtain an independent set I of size X ∩ V (H) that is contained
entirely outside of both X and NGE

[V (H)]. Let H ′ = GV [I ∪ B] and observe
that H ′ is isomorphic to H, contradicting GV being H-free.

With the two previous lemmata in mind we present the main intuition of the
shallowness of a solution. Basically, if for any level of a decomposed solution you
do a factor Δ(G) more modifications in the future than you do in this particular
level you could instead remove a set of edges related to this layer and stop any
further propagation. This ensures that in any optimal solution the size of the
union of the remaining layers are bounded by a layer and the maximum degree
of the graph.

Lemma 10. Given an instance (G, k) of H-Free Edge Editing(H-Free
Edge Deletion), an obstruction core Z, an optimal solution F and its layer
decomposition F1, . . . , F� it holds that either

(i) |V (G)| ≤ k + 2(Δ(G) + 1) · nH or
(ii) Δ(G) · |Fi| ≥ |Ri+1| for every i ∈ [1, �].

Proof. We assume that (i) does not apply and hence that |V (G)| > k+(Δ(G)+
2) · nH. Assume for a contradiction that there is an i ∈ [1, �] such that (ii) does
not hold. Specifically, i is so that Δ(G) · |Fi| < |Ri+1|. By Lemma 8 there is a set
of vertices Y with |Y | ≤ |Fi| such that Gi − Y is H-free. It follows by Lemma 9
with k′ = 0 that Gi − EX is also H-free. Let F ′ = (∪j∈[1,i−1]Fj) ∪ EX and
observe that G�F ′ is H-free. By the following calculations;

|F ′| ≤ | ∪j∈[1,i−1] Fj | + |EX | < | ∪j∈[1,i−1] Fj | + |Ri+1| = |F |,

we conclude that |F ′| < |F |. This contradicts the optimality of |F | and hence
our proof is complete.

Lemma 11. Given a instance (G, k) of H-Free Edge Editing(H-Free
Edge Deletion), an optimal solution F and its layer decomposition F1, . . . , F�

it holds that either

(i) |V (G)| ≤ k + 2(Δ(G) + 1) · nH or
(ii) � ≤ 1 + log Δ(G)+1

Δ(G)
|F |.
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Proof. Assume that (i) does not hold and hence that |V (G)| > k + 2(Δ(G) +
1) · nH. It follows immediately that (ii) in Lemma 10 applies.

|F | = |R1| = |F1| + |R2|

≥ |R2|
Δ(G)

+ |R2| =
Δ(G) + 1

Δ(G)
· |R2| =

Δ(G) + 1
Δ(G)

· (|F2| + |R3|)

≥ · · · ≥
(

Δ(G) + 1
Δ(G)

)�−1

· |R�|

=
(

Δ(G) + 1
Δ(G)

)�−1

· |F�|

≥
(

Δ(G) + 1
Δ(G)

)�−1

This gives that � ≤ 1 + log Δ(G)+1
Δ(G)

|F | and hence the argument is complete.

2.3 Obtaining the Kernels

We now have all the necessary tools for providing the kernels. We reduce the
graph to a ball of small radius around any obstruction core Z and by this obtain
a kernelized instance. Both the size bounds and the correctness of the reduction
rule follows by combining the tools developed during the section.

Rule 1. Given an instance (G, k) H-Free Edge Editing (H-Free Edge

Deletion) such that |V (G)| > k+2(Δ(G)+1) ·nH, we find an obstruction core
Z in G and return (G[B(Z, r)], k) where r = diam(H) · (1 + log Δ(G)+1

Δ(G)
k).

Lemma 12. Let (G, k) be an instance of H-Free Edge Editing (H-Free
Edge Deletion) and (G′, k) the instance obtained when applying Rule 1 to
(G, k). Then (G, k) is a yes-instance if and only if (G′, k) is a yes-instance.

Proof. It follows immediately from G′ being an induced subgraph of G that if
(G, k) is a yes-instance, then so is (G′, k). For the other direction, let (G′, k) be
a yes-instance and let Z be the obstruction core of G obtained when applying
Rule 1. Clearly, Z is also an obstruction core of G′. Let F be an optimal solution
of (G′, k) and construct the layer decomposition F ′

1, . . . , F
′
�′ and the core exten-

sions Z ′
i with respect to Z and F in G′. Now we construct the layer decomposition

F1, . . . , F� and the core extensions Zi with respect to Z and F in G. By the def-
inition core extensions it holds that Z ′

i ⊆ Zi and hence � ≤ �′. By Lemma 6 it
holds that Z+

G = Z�+1 ⊆ BG(Z, �·diam(H)) ⊆ BG(Z, �′ ·diam(H)). By Lemma 11
applied to F in G′ it holds that � ≤ 1+log Δ(G)+1

Δ(G)
|F | ≤ 1+log Δ(G)+1

Δ(G)
k and hence

Z+
G ⊆ V (G′). It follows immediately that (G�F )[Z+

G ] is H-free. By Lemma 5 it
holds that F ⊆ [Z ′

�′+1]
2 and hence F ⊆ [Z�+1]2. It follows immediately that

Lemma 6 applies and hence G�F is H-free. Hence (G, k) is a yes-instance and
the proof is complete.
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For ease of readability, we denote diam(H) simply by D and Δ(G) by Δ.

Theorem 4 (♠). Both H-Free Edge Deletion and H-Free Edge Edit-

ing admit kernels with at most 2nH|H�|ΔD+1k1+D(Δ log Δ) vertices. For fixed H
and Δ this is a kernel with kO(1) vertices.

3 Conclusion

We showed that for any finite set H of forbidden induced subgraphs, both
H-Free Edge Editing and H-Free Edge Deletion admit polynomial ker-
nelizations on bounded degree input graphs. This extendes and generalizes the
result of Aravind et al. [2], who showed that H-Free Edge Deletion admits
kernel when H is connected on bounded degree input. We not only extend their
kernel, but also improve on the size of their kernel.

We showed two lower bounds: (1) for a finite set H of connected graphs,
H-Free Edge Completion does not admit a polynomial kernel on bounded
degree input graphs, unless NP ⊆ coNP/poly. (2) Under the same assumption,
C11-Free Edge Deletion does not have a polynomial kernel on 2-degenerate
graphs, nor does H-Free Edge Editing.

Since there is a finite set H of connected graphs such H-Free Edge Com-

pletion does not admit a polynomial kernel, we encourage a further study of
these problems. We leave it as an open problem whether there is a dichotomy
for when H-Free Edge Completion admits a polynomial kernel, restricted
to bounded degree graphs and connected, forbidden induced subgraphs.
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