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Abstract. Given a set of polygonal curves we seek to find a middle
curve that represents the set of curves. We require that the middle curve
consists of points of the input curves and that it minimizes the discrete
Fréchet distance to the input curves. We present algorithms for three
different variants of this problem: computing an ordered middle curve,
computing an ordered and restricted middle curve, and computing an
unordered middle curve.

1 Introduction

Sequential point data, such as time series and trajectories, are ever increasing
due to technological advances, and the analysis of these data calls for efficient
algorithms. An important analysis task is to find a “representative” or “middle”
curve for a set of similar curves. For instance, this could be the route of a group
of people or animals traveling together. Or it could be a representation of a
handwritten letter for a class of similar handwritten letters. Such a middle curve
provides a concise representation of the data, which is useful for data analysis
and for reducing the size of the data, possibly by many magnitudes.

Since sampled locations are more reliable than positions interpolated in
between those, we seek a middle curve consisting only of sampled point loca-
tions. The middle curve should then be as close as possible to the path of the
individuals, hence we ask for it to minimize the discrete Fréchet distance to
these. The Fréchet distance [1] and the discrete Fréchet distance [5] are well-
known distance measures, which have been successfully used before in analyzing
handwritten characters [7] and trajectories [2,9].
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Fig. 1. Illustration of the three different cases. The curve R is an optimal middle curve
for each case. The two-way arrow which points to a point in P ∪ Q and a point in R
indicates a mapping between two points realizing the discrete Fréchet distance.

We consider three variants of this problem, which we introduce now more
formally for two curves. Given two point sequences P and Q, we wish to compute
a middle curve R consisting of points from P ∪Q that minimizes max(dF (R,P ),
dF (R,Q)), where dF denotes the discrete Fréchet distance. In the following we
assume that each point in R uniquely corresponds to a point in P or Q (in
particular, if P and Q share points). We say a middle curve R is ordered, if
any two points of P occurring in R have the same order as in P , likewise with
points from Q. And we call an ordered middle curve R restricted, if points on R
are mapped to themselves in a matching realizing the discrete Fréchet distance.
Recall that points from R originate from P or Q, hence this seems a natural
restriction. Furthermore, we distinguish whether points may occur multiple times
or not (but still respecting the order/restriction if applicable).

Figure 1 illustrates the three cases we consider: the ordered, restricted, and
unordered cases. Note how adding the restrictions (from unordered to restricted)
changes the middle curve and increases the distance to the input curves. Requir-
ing to respect the order of the input curves seems very natural. However, as we
will see, the unordered case allows for the most efficient algorithm. Matching a
vertex to itself on the middle curve is also natural. Furthermore, we will see that
the restricted case allows for a more efficient algorithm.

Related Work. Several papers [3,6,8] study the problem of finding a middle curve
but without the restriction that the middle curve should consist of points of the
input curves. Buchin et al. [3] and Kreveld et al. [8] both require the middle
curve to use parts of edges of the input. Buchin et al. aim to always “stay
in the middle” in the sense of a median and give an O(k2n2)-time algorithm,
where k is the number of given curves and n is the number of vertices in each
curve. Kreveld et al. aim to be as close as possible to all trajectories at any
time and allow small jumps between different trajectories and give an O(k3n)-
time algorithm. Note that neither of these approaches makes use of the Fréchet
distance or its variants. Using neither input vertices nor input edges, Har-Peled
and Raichel [6] show that a curve minimizing the Fréchet distance to k input
curves can be computed in O(nk) time in the k-dimensional free space using the
radius of the smallest enclosing disk as “distance”.
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Fig. 2. (a) The middle curve may need to consist of vertices from both curves. (b) The
2-approximation is tight.

2-Approximation. A simple observation is that any of the input curves is a 2-
approximation for minimizing the distance, which follows by triangle inequality.
The 2-approximation is tight, as the example in Fig. 2 shows. We observe, how-
ever, that for an optimal middle curve we may need to choose a subset of vertices
from both curves.

Our Results. We present algorithms for three variants of this problem for k ≥ 2
curves of size at most n each:

1. Ordered case: An O(n2k)-time algorithm for computing an optimal ordered
middle curve.

2. Restricted case: An O(nk logk n)-time algorithm for computing an optimal
restricted middle curve.

3. Unordered case: An O(nk log n)-time algorithm for computing an optimal
unordered middle curve.

In the following sections, we present the algorithms for these cases. The
algorithms for the restricted and the unordered cases allow points to appear
multiple times. In the ordered case, we give algorithms for both.

Note that all algorithms run in time exponential in k, the number of trajec-
tories. Hence these are practical only for small k. Other algorithms that compute
variants of the Fréchet distance for k curves such as [4] and [6] also take time
exponential in k due to the use of a k-dimensional free space diagram. Hence we
do not expect faster algorithms for finding a middle curve based on the (discrete)
Fréchet distance.

2 Algorithm for the Ordered Case

Here we present a dynamic programming algorithm for computing an ordered
middle curve R. We first consider the case of two input curves P = (p1, . . . , pn)
and Q = (q1, . . . , qm), and we do not allow multiple occurrences of the same
point on R. Later we show how to generalize the algorithm to multiple input
curves and to allow multiple point occurrences. Let Pi, 1 ≤ i ≤ n denote the
prefix (p1, ..., pi) of P , where P0 is defined as the empty sequence.
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Fig. 3. Illustration of cases in the dynamic programming.

The dynamic programming algorithm operates with four-dimensional
Boolean arrays of the form X[i, j, k, l], 0 ≤ i, k ≤ n, 0 ≤ j, l ≤ m, where
X[i, j, k, l] is true iff there exists an ordered sequence R from points in Pi ∪ Qj

with
max(dF (R,Pk), dF (R,Ql)) ≤ ε.

We say in this case that R covers Pk and Ql (at distance ε). Clearly, the decision
problem has a positive answer iff X[n,m, n,m], or any X[i, j, n,m], is true.

In order to determine the value of some X[i, j, k, l] from entries of X with
lower indices, we need more information, particularly, whether there is a covering
sequence R in which the points pi and qj occur, and if they do, whether they
occur in the interior or at the end of the sequence. To this end, we can represent
the array X as the component-wise disjunction of seven Boolean arrays

X = A ∨ B ∨ C ∨ D ∨ E ∨ F ∨ G.

For each array defined below, a sequence R covering Pk and Ql exists with the
following properties, respectively:

A[i, j, k, l]: R contains neither pi nor qj .
B[i, j, k, l]: R contains pi in its interior but does not contain qj .
C[i, j, k, l]: R ends in pi but does not contain qj .
D[i, j, k, l]: R contains qj in its interior but does not contain pi.
E[i, j, k, l]: R ends in qj but does not contain pi.
F [i, j, k, l]: R contains qj in its interior and ends in pi.
G[i, j, k, l]: R contains pi in its interior and ends in qj .

Observe that R cannot contain both pi and qj in its interior. See Fig. 3 for an
illustration of the seven different cases that can occur. Our dynamic program-
ming algorithm is based on these recursive identities for i, j, k, l ≥ 0:

A[0, 0, 0, 0] = true
A[0, 0, k, l] = false for k ≥ 1 or l ≥ 1
A[i, 0, k, l] = X[i − 1, 0, k, l]
A[0, j, k, l] = X[0, j − 1, k, l]
A[i, j, k, l] = X[i − 1, j − 1, k, l]
B[i, 0, k, l] = B[0, j, k, l] = false
B[i, j, k, l] = G[i, j − 1, k, l] ∨ B[i, j − 1, k, l]
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The first equality for B holds since pi must be at the end of R if no points from
Q are available. In the second equality, G[i, j − 1, k, l] accounts for the case that
R contains qj−1 (which then must be at the end), and B[i, j −1, k, l] for the case
that it does not.

In the following, let cl(p, q) denote the truth value of ‖p − q‖ ≤ ε, for two
points p and q. The following identities hold for C.

C[i, j, 0, l] = C[i, j, k, 0] = C[0, j, k, l] = false
C[i, j, k, l] = cl(pi, pk) ∧ cl(pi, ql) ∧

(A[i, j, k − 1, l − 1] ∨ A[i, j, k − 1, l] ∨ A[i, j, k, l − 1] ∨
C[i, j, k − 1, l − 1] ∨ C[i, j, k − 1, l] ∨ C[i, j, k, l − 1])

The first two equalities hold because only an empty middle curve can cover 0
points. The equality for C[i, j, k, l] models the two cases of whether the final
point pi in R covers pk and ql only, or whether it also covers additional points
that occur earlier in the sequences Pk and Ql. The entries of D and E can
be determined analogously to the ones of B and C with the roles of pi and qj
exchanged. The identities of F have similar explanations as the ones of C:

F [0, j, k, l] = F [i, 0, k, l] = F [i, j, 0, l] = F [i, j, k, 0] = false
F [i, j, k, l] = cl(pi, pk) ∧ cl(pi, ql)∧

(D[i, j, k − 1, l − 1] ∨ D[i, j, k − 1, l] ∨ D[i, j, k, l − 1]∨
E[i, j, k − 1, l − 1] ∨ E[i, j, k − 1, l] ∨ E[i, j, k, l − 1]∨
F [i, j, k − 1, l − 1] ∨ F [i, j, k − 1, l] ∨ F [i, j, k, l − 1])

The entries of G can be determined analogously to the ones of F with the roles
of pi and qj exchanged.

The dynamic programming algorithm runs in time O(n2m2), which is the
size of each of the seven arrays. Not only the existence of a covering sequence R,
but R itself can be computed by setting a pointer for each array entry of the form
Y [i, j, k, l], which is set to true, to the 4-tuple(s) of indices at the right hand
side of an equality that has made it true. Note that there can be an exponential
number of valid middle curves.

For the optimization problem, we can adapt a dynamic programming to com-
pute the minimal value such that a covering middle curve exists. For this, X takes
the minimum value of A to G; initialization is to 0|∞ instead of true|false;
∨ becomes min, and ∧ becomes max. In this way we can solve the optimization
problem in the same time as the decision problem.

The decision and optimization algorithms can be generalized to k sequences
P 1, ..., P k. The running time in this case is O(n2

1...n
2
k) for constant k, but the

number of arrays is 2k−1k + 2k − 1. The dynamic programming algorithm can
also be modified to allow multiple occurrences of points on R, which requires
distinguishing slightly more cases than before. Note that the length of a middle
curve is at most nk if points may not appear multiple times, and at most 2nk
if they may appear multiple times. The latter bound follows from a longest
monotone path in the array of size n2k.
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Theorem 1. For two polygonal curves with m and n vertices, the optimization
problem for the ordered case can be solved in O(m2n2) time. An optimal covering
sequence can be computed in the same time. For k ≥ 2 curves of size at most n
each, the optimization can be solved in O(n2k) time.

3 Algorithm for the Restricted Case

Now we consider the case where the reparameterizations are restricted to map
every vertex of R to itself in the input curve it originated from. This case allows
for a more efficient dynamic programming algorithm.

For this, we define arrays similar to Sect. 2. Let X[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m,
be true iff there exists an ordered sequence R from points in Pi ∪ Qj with

max(dF (R,Pi), dF (R,Qj)) ≤ ε,

with the restriction that any vertex of R is mapped to itself in the input curve
it originated from. We say in this case that R restrictively covers Pi and Qj .
Clearly, the decision problem has a positive answer iff X[n,m] is true. Similar
to Sect. 2 we can write X as a disjunction of three Boolean arrays

X = A′ ∨ C ′ ∨ E′.

For each array defined below, a sequence R covering Pi and Qj exists with the
following properties, respectively:

A′[i, j]: R ends in neither pi nor qj (but may contain one of them in its
interior).
C ′[i, j]: R ends in pi (and may or may not contain qj in its interior).
E′[i, j]: R ends in qj (and may or may not contain pi in its interior).

In contrast to Sect. 2, we now only distinguish the cases by the last point of R.
Hence, we only distinguish three cases. (In comparison to the ordered case, A′

combines A,B,D, and C ′ combines C,F , and E′ combines E,G).
We compute all X[i, j] incrementally for increasing j and increasing i using

dynamic programming. Consider pi being matched to qj . We use the upper wedge
UP (i, j) to describe the resulting coverage of P and Q. Specifically, UP (i, j)
denotes the set of index pairs (i′, j′) such that ‖pi′′ − pi‖ ≤ ε and ‖qj′′ − pi‖ ≤ ε
for all i ≤ i′′ ≤ i′ and j ≤ j′′ ≤ j′. That is, UP (i, j) consists of the connected set
of index pairs (i′, j′) ≥ (i, j) that are covered by pi. The lower wedge LP (i, j)
denotes the set of index pairs (i′, j′) such that ‖pi′′−pi‖ ≤ ε and ‖qj′′−pi‖ ≤ ε for
all i′ ≤ i′′ ≤ i and j′ ≤ j′′ ≤ j. Furthermore, we define the extended lower wedge
L̂P (i, j) which, in addition to all points in the lower wedge LP (i, j) also contains
(i′, j′) immediately to the left or below, i.e., for which (i′ + 1, j′), (i′, j′ + 1), or
(i′ + 1, j′ + 1) is contained in LP (i, j). The wedges UQ[i, j], LQ[i, j], and L̂Q[i, j]
are defined analogously, consisting of point pairs (pi′ , qj′) for which pi′ and qj′
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Fig. 4. Illustration of the wedges.

are both close to qi. Figure 4 illustrates these wedges for a pair (i, j). Using this
terminology we observe:

A′[i, j] ⇔ (∃i′ < i, j′ ≤ j : (C ′[i′, j′] ∧ (i, j) ∈ UP (i′, j′)))
∨ (∃i′ ≤ i, j′ < j : (E′[i′, j′] ∧ (i, j) ∈ UQ(i′, j′)))

C ′[i, j] ⇔ cl(pi, qj) ∧ ( ∃i′ ≤ i, j′ < j : (X[i′, j′] ∧ (i′, j′) ∈ L̂P (i, j)))
E′[i, j] ⇔ cl(pi, qj) ∧ ( ∃i′ < i, j′ ≤ j : (X[i′, j′] ∧ (i′, j′) ∈ L̂Q(i, j)))

During the dynamic programming, in order to efficiently compute the values
X[i, j] = A′[i, j] ∨ C ′[i, j] ∨ E′[i, j] we maintain the upper envelope X̄ of all true
elements in X. More specifically, we define X̄[i] = max{j | X[i, j] =true}. Note
that X as well as X̄ change during the dynamic programming for increasing j
and i.

We store X̄ in an augmented balanced binary search tree sorted on i. Each
leaf corresponds to an index i and stores X̄[i]. Each internal node v represents
the interval of indices stored in the leaves of the subtree rooted at v, and stores
two key values m[v] and M [v]. Here, m[v] is the minimum of all X̄[i] over all
leaves i in the subtree rooted at v, and M [v] is the maximum.

We need the following two operations.

1. Querying whether a rectangle intersects X̄. Given an extended lower wedge
with bottom-left corner (iB , jB) and top-right corner (iT , jT ), we need to
check if there is an index pair (i, j) such that jB ≤ X̄[i] and iB ≤ i ≤ iT .
This can be done as follows. Consider the search paths from the root to
iB and iT . Let uc be the lowest common ancestor of iB and iT . Whenever
we descend into the right child at a node v on the path from uc to the
node iT , we check the maximum key value of the left child vL of v. The
interval corresponding to vL is fully contained in the interval [iB , iT ]. Thus,
if M [vL] ≥ jB, the correct answer for the query is “yes”. Otherwise, we do
not need to consider the subtree rooted vL further. Whenever we descend
into the left child at a node on the path to iB , we check the answer for the
query analogously. Hence we can answer the query while we traverse the two
paths, which takes logarithmic time.
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2. Updating X̄. We are given an upper wedge whose bottom-left corner is
(iB , jB) and top-right corner is (iT , jT ). We need to update X̄[i] to jT for
all iB ≤ i ≤ iT , if X̄[i] < jT .

We traverse the balanced binary search tree from the root as follows. Assume
that we reach a node v. If jT ≤ m[v] or the interval corresponding to v does
not intersect [iB , iT ], then we do not need to update the values of the leaf
nodes in the subtree rooted at v. Hence we do not traverse this subtree.
If m[v] < jT and the interval corresponding to v intersects [iB , iT ], then
we need to search further in the subtree rooted at v. So, we move to both
children of v.

Finally we reach some leaf nodes, which will be updated. Then we go back to
the root from those leaf nodes and update the key values for internal nodes
lying on the paths. It is easy to see that the running time of the update is
O(c log n), where c is the number of indices which are updated.

The algorithm consists of two parts: constructing all wedges and constructing
the free space matrix X.

Constructing All Wedges. We construct the wedge UP (i, j) as follows: For fixed
pi, we first find the largest k ≥ i such that all pi, . . . , pk are in the disk of radius
ε around pi. Then we find the largest l ≥ j such that all qj , . . . , ql are in the disk
of radius ε around pi. This determines the upper right corner (k, l) of UP (i, j).
Note that (k, l) is also the upper right corner for all UP (i, j′) for j ≤ j′ ≤ l.
Hence, all wedges UP (i, j) can be computed in O(m + n) time using two linear
scans, one over P and one over Q. The wedges UQ(i, j), LP (i, j), LQ(i, j) are
computed in a similar manner.

Constructing the Free Space Matrix X. First, initialize all X[i, j] to false, except
for X[0, 0] which is set to true. Then compute X[i, j] for j = 1 to m and for
i = 1 to n. In each iteration, we process (pi, qj) only if they can be matched to
each other, i.e., if cl(pi, qj).

If X[i, j] is false, i.e., we do not yet know of a middle curve covering Pi

and Qj , we first check whether adding pi or qj to a covering sequence extends
the coverage to here. For this, we check if L̂P (i, j) or L̂Q(i, j) intersects X̄. If
L̂P (i, j) intersects X̄ then pi can be added to a covering sequence, and we set
X[i, j] =true. Since in this case qj can be added in addition, we set a flag in
X[i, j] to P , indicating that pi has to be added first. Conversely, if L̂Q(i, j)
intersects X̄, then qj can be added to a covering sequence, and we do the same,
setting a flag for qj this time.

If X[i, j] is true, then both pi or qj can be added to a covering sequence,
hence we add the points covered by pi or qj , i.e., UP (i, j) and UQ(i, j), to X
and X̄. The wedge UP (i, j) is added to X and X̄ as follows: We update X̄ with
UP (i, j). During the update step we can identify all pairs (i′, j′) ∈ UP (i, j) with
¬X[i′, j′]; these are all (i′, j′) such that i′ is a leaf in X̄ that gets updated and
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max(jB , X̄[i′]) ≤ j′ ≤ jT where (iB , jB) is the lower left and (iT , jT ) the upper
right corner of UP (i, j). We set all X[i′, j′] =true and store a pointer from (i′, j′)
to (i, j) that is labeled with P . Adding UQ(i, j) to X and X̄ is done in a similar
manner, but the pointers are labeled with Q. Note that the upper wedges are
added to X in such a way that each X[i, j] is touched only once, and at that
time it is set to true.

The algorithm can now be summarized as follows.
Set X[i, j] = false for all index pairs (i, j) except X[0, 0] which is set to true.
for j = 1 to m do

for i = 1 to n do
if cl(pi, qj) :

if ¬X[i, j]: If L̂P (i, j) or L̂Q(i, j) intersects X̄, set X[i, j] to true and

set the according flag in X[i, j].
if X[i, j]: Add UP (i, j) and UQ(i, j) to X and X̄.

Analysis. For the correctness of the algorithm, observe that if X[i, j] holds
because of A′[i, j], then it is marked when the last point of a covering is processed.
If X[i, j] holds by C ′[i, j] or E′[i, j], then this is handled in the ¬X[i, j]∧cl(pi, qj)
case of the algorithm.

The running time for computing all wedges is O((m + n)2) since for each
point pi ∈ P or qj ∈ Q, we perform a constant number of linear scans. For the
main part of the dynamic programming algorithm, when we consider an index
pair (i, j), we may perform a query on X̄ which takes O(log(mn)) time, and we
may add one or two upper wedges to X. The update operation that is part of
adding a wedge takes O(c log n) time, where c is the number of indices that are
updated. Note that X̄[i] is updated at most m times for each index i in total,
and X[i, j] is updated at most once for each index pair (i, j). Thus the running
time for the decision algorithm is O((m + n)2 + mn log(mn)).

Lemma 1. For two polygonal curves with m and n vertices, the decision problem
for the restricted case can be solved in O((m + n)2 + mn log(mn)) time.

Note that the algorithm allows multiple occurrences of vertices. However it
restricts that if a vertex occurs multiple times, then all vertices of the other
curve that occur in between are matched to that vertex in the discrete Fréchet
matching. Figure 5 shows an example of this.

Optimization. The optimal distance will take one of the distances between pairs
of points from P ∪ Q, hence we first sort all distances in O((m + n)2 log(mn))
time and again search over them using the decision algorithm.

Lemma 2. An optimal covering sequence for the restricted case can be computed
in O((m + n)2 log(mn) + mn log2(mn)) time.

Several Curves. For k > 2 curves the decision algorithm works the same with a
k−1 dimensional range tree for X̄ and runtime O(nk logk−1 n). We again search
over all distances between two points from any curves, so the optimal middle
curve can be computed in O(nk logk n) time.
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Fig. 5. An example of a middle curve R that uses a vertex (p2) multiple times.

Output a Middle Curve. Using the pointers set by the algorithm, the algorithm
can also output a middle curve. Note that a middle curve computed by the
algorithm may have up to 2nk vertices. This follows from the algorithm because
at each (i, j) at most two vertices (pi and qj) are added, and the length of a
longest monotone path in the nk grid is nk.

Theorem 2. For two polygonal curves with m and n vertices, the decision
problem for the restricted case can be solved in O((m + n)2 + mn log(mn))
time. An optimal covering sequence can be computed in O((m + n)2 log(mn) +
mn log2(mn)) time. For k ≥ 2 curves of size at most n each, the optimization
can be solved in O(nk logk n) time.

4 Algorithm for the Unordered Case

Let again P = (p1, . . . , pn) and Q = (q1, . . . , qm) be two input curves. To solve
the decision problem for the unordered case, we modify the dynamic program-
ming algorithm for computing the discrete Fréchet distance of two curves [5] as
follows. We consider the n × m matrix X, which we call the free space matrix.
Each entry X[i, j] corresponds to the pair (pi, qj) of points. In contrast to the
original algorithm, we color an entry X[i, j] free if and only if there exists a point
v from P or Q such that v has distance at most ε to both pi and qj . Then we
search for a monotone path within the free entries in X.

4.1 Algorithm for the Decision Problem

We describe how to compute the labels more efficiently for the decision problem.
Here, we use a circular sweep to determine for each point pi all points qj such
that X[i, j] is free, i.e., there is some point v of P or Q which has distance at
most ε to both pi and qj . Let Upi

(ε) be the union of disks of radius ε centered
at points in P ∪ Q and containing pi. Then, for a point qj ∈ Q contained in
Upi

(ε), X[i, j] is free. To compute X[i, j] for all qj ∈ Q, we construct Upi
(ε) and
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perform a circular sweep around pi for all points in Q. Once the circular arcs
of the boundary ∂Upi

(ε) and all points qj ∈ Q are sorted along pi in clockwise
fashion, the circular sweep takes O(m + n) time.

We design an algorithm that computes Upi
(ε) efficiently by constructing two

data structures, called the history Hpi
and the deletion list Dpi

. In the pre-
processing phase, we gradually increase ε and construct the two data structures.
When a fixed ε is given, we compute Upi

(ε) using the two data structures in
the construction phase. This will allow us to solve the optimization problem
efficiently in Sect. 4.2. The construction phase takes O(m + n) time while the
preprocessing phase takes O(mn log(mn)) time. The space we use for the data
structures is O(mn).

In this extended abstract we give a sketch of the algorithm. The details will
be presented in a full version of this paper.
The data structures for a point p ∈ P.

1. The history list Hpi
= {x1, . . . , xl}: This list represents the order of circular

arcs of ∂Upi
(ε) for all ε > 0. For any three elements in Hpi

, if all arcs
corresponding to the elements appear on ∂Upi

(ε) for some ε > 0, then the
order of them on ∂Upi

(ε) is the same as the one in Hpi
.

2. The deletion list Dpi
= {(ε1, ε′

1), . . . , (εt, ε
′
t)}: The k-th element of this list is

assigned to the point in P ∪ Q that is the k-th closest to pi. For any ε > 0,
the disk of radius ε, centered at the k-th closest point, has at most two arcs
appearing on ∂Upi

(ε). An arc of the disk disappears from ∂Upi
(ε) at ε = εk,

and the other arc disappears from ∂Upi
(ε) at ε = ε′

k. Since Dpi
is an array

of size m + n, we can access each element in O(1) time.

Theorem 3. For two polygonal curves with m and n vertices, the decision prob-
lem for the unordered case can be solved in O(mn) time with O(mn log(mn))
preprocessing time. A covering sequence can be computed in the same time.

4.2 Algorithm for the Optimization Problem

We apply binary search on the set of distances between pairs of points from
P ∪ Q involved in each step. Without loss of generality, assume that n ≤ m.
There are O((m+n)2) distances between pairs of points from P ∪Q, but we will
show that we need only O(mn) of them to compute the optimal distance ε∗.

1. Compute the set D of distances between pairs of points that are either both
from P , or one from P and one from Q.

2. Sort the O(mn) distances of D and apply binary search on the sorted list
with the decision algorithm above. Let [ε1, ε2] be the interval returned by
the decision algorithm with ε1, ε2 ∈ D. If ε1 �= ε∗ and ε2 �= ε∗, then ε∗ is the
distance of a pair of points in Q.

3. To find ε∗, for each point pi ∈ P ,
(a) compute the set Spi

of points in P ∪ Q that are at distance at most ε2
from pi, and construct the Voronoi diagram VD(Spi

).
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(b) For each point qj in Q \ Spi
, locate the cell of VD(Spi

) that contains qj .
If the site r associated with the cell is from Q and ε1 < ‖qj − r‖ < ε2,
then ‖qj − r‖ is a candidate for ε∗.

4. For a point pair (pi, qj), there exists at most one such point r ∈ Q, thus
there are O(mn) candidates in total, and we sort them and again apply
binary search on the sorted list with the decision algorithm above.

Analysis. Let (pi, qj , r) be a tuple realizing ε∗, i.e., max(‖pi − r‖, ‖qj − r‖) = ε∗.
Clearly, r is the point in P ∪Q that minimizes max(‖pi − r‖, ‖qj − r‖). If r ∈ Q,
then r is the point in Spi

that is closest to qj . Thus, r is the point site associated
with the Voronoi cell in VD(Spi

) that contains qj . This proves that ε∗ is in the
set of all candidates.

Let us analyze the running time of the optimization algorithm. The set D can
be constructed in O(mn) time. Sorting the distances in D takes O(mn log(mn))
time. The binary search on the sorted list with the decision algorithm takes
O(mn log(mn)) time as the preprocessing phase is executed only once for each
pi ∈ P and the history and deletion lists can be reused for different radii. In step
3, the Voronoi diagram V D(Spi

) can be constructed in O(m log(mn)) time for
each pi ∈ P , and the point location can be performed in the same time. Step
3(b) takes O(m log(mn)) time for each pi ∈ P .

Several Curves. The decision algorithm can be extended to k curves P 1 =
(p11, . . . , p

1
n1

), ..., P k = (pk1 , . . . , p
k
nk

). If the outer loop iterates over all points
pi1 ∈ P 1 for 1 ≤ i1 ≤ n1, then we determine which points pi2 ∈ P 2, . . . , pik ∈ P k

lie inside the disk of radius ε centered at pi1 . For all tuples (i1, . . . , ik) the corre-
sponding entries in the k-dimensional free space matrix are marked as free. The
running time is O(n1N log N + M) where N =

∑k
i=1 ni and M =

∏k
i=1 ni. If

the history data structure has already been constructed, this running time can
be reduced to O(n1N + M) time. For a constant k ≥ 2 curves of size at most n
each, the running time becomes O(nk).

To compute an optimal middle curve, we sort all distances between point
pairs from P 1 ∪ . . .∪P k and search the optimal distance among them. Thus, we
can compute an optimal covering sequence in O(nk log n) time.

Theorem 4. For two polygonal curves with m and n vertices, the optimization
problem for the unordered case can be solved in O(mn log(mn)) time. An optimal
covering sequence can be computed in the same time. For k ≥ 2 curves of size
at most n each, the optimization can be solved in O(nk log n) time.
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