
A 0.821-Ratio Purely Combinatorial
Algorithm for Maximum k-vertex Cover

in Bipartite Graphs

Édouard Bonnet1, Bruno Escoffier2, Vangelis Th. Paschos3,4(B),
and Georgios Stamoulis3,4

1 Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary

bonnet.edouard@sztaki.mta.hu
2 Sorbonne Universités,

UPMC Universite Paris 06, CNRS, LIP6 UMR 7606, Paris, France
bruno.escoffier@lip6.fr

3 PSL* Research University, Université Paris-Dauphine, LAMSADE, Paris, France
4 CNRS UMR 7243, Paris, France

paschos@lamsade.dauphine.fr, georgios.stamoulis@dauphine.fr

Abstract. We study the polynomial time approximation of the max
k -vertex cover problem in bipartite graphs and propose a purely com-
binatorial algorithm that beats the only such known algorithm, namely
the greedy approach. We present a computer-assisted analysis of our
algorithm, establishing that the worst case approximation guarantee is
bounded below by 0.821.

1 Introduction

In max k -vertex cover, a graph G = (V,E) with |V | = n and |E| = m is
given together with an integer k � n. The goal is to find a subset K ⊆ V with
k vertices such that the total number of edges covered by K is maximized. We
say that an edge e = {u, v} is covered by a subset of vertices K if K ∩ e �= ∅.
max k -vertex cover is NP-hard in general graphs (as a generalization of min
vertex cover) and it remains so in bipartite graphs [1,2].

The approximation of max k -vertex cover has been originally studied
in [3], where ratio 1 − (1/e) (≈ 0.632) is achieved by the natural greedy algo-
rithm. This ratio is tight even in bipartite graphs [4]. Using a sophisticated linear
programming method, the approximation ratio for max k -vertex cover was
improved to 3/4 [5], which, until very recently, was the best known ratio even
in bipartite graphs. The best approximation ratio in bipartite graphs is now 8/9
and is still based on linear programming [2]. A direct reduction from min ver-
tex cover shows that max k -vertex cover can not admit a polynomial time
approximation schema (PTAS), unless P = NP [6].

Finally, we may observe that max k -vertex cover is easy in semiregular
bipartite graphs (where all the vertices of each color class have the same degree).
c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 235–248, 2016.
DOI: 10.1007/978-3-662-49529-2 18

236 É. Bonnet et al.

Indeed, any k vertices in the color class of maximum degree yield an optimal
solution. Obviously, if this color class contains less than k vertices, then one can
cover all the edges.

Our Contribution. The principal motivation of this paper is to determine to
what extent combinatorial methods compete with linear programming for max k -
vertex cover. In other words, what ratio can a purely combinatorial algorithm
guarantee? To this purpose, we first devise a very simple algorithm that guar-
antees approximation ratio 2/3, improving so the ratio of the greedy algorithm
in bipartite graphs. The proof is given in [7]. Our main contribution consists of
an approximation algorithm which computes six distinct solutions and returns
the best among them.

Analyzing the performance guarantee of such an algorithm is a challenging
task. Indeed, there is no obvious way to compare the different solutions and argue
globally over a lower bound on the maximum value taken by the six solutions.
The large number of variables (in all, 48) used to express the many solution
values participates in the difficulty of the analysis.

Similar situation was faced, for example, in [8] where the authors gave a 0.921
approximation guarantee for max cut in graphs of maximum degree 3 (and an
improved 0.924 for 3-regular graphs) by a computer-assisted analysis of the quan-
tities generated by theoretically analyzing a particular semi-definite relaxation
of the problem at hand. Similarly, by setting up a suitable non-linear program
and solving it, we give a computer-assisted analysis of a 0.821-approximation
guarantee for max k -vertex cover in bipartite graphs. We give all the details
of the implementation in [7].

2 Preliminaries

Consider a bipartite graph B = (V1, V2, E), instance of max k -vertex cover
and fix an optimal solution O (i.e., a set of k vertices covering a maximum
number of edges in E) as well as its parts O1 and O2 lying in color classes V1

and V2, respectively.
The algorithm (called k-VC ALGORITHM) proposed for solving max k -vertex

cover can be sketched as follows:
1. guess the cardinality k1 and therefore k2 = k − k1 of its subsets O1 and O2

lying in the color classes V1 and V2, respectively;
2. compute the sets Si of ki vertices in Vi, i = 1, 2 that cover the most of
edges; obviously Si is a set of the ki largest degree vertices in Vi (breaking ties
arbitrarily);
3. guess the cardinalities k′

i of the intersections Si ∩ Oi, i = 1, 2;
4. compute the sets Xi of the ki − k′

i vertices from Vi, i = 1, 2, that cover the
most of edges in graphs B[(V \ S1) ∪ V2] and B[V1 ∪ (V2 \ S2)], respectively;
5. choose the best among six solutions built as described in Sect. 3.

Let us note that our 2/3-approximation algorithm in [7] guarantees ratio 4/5,
when both k′

i = 0, i = 1, 2.

Combinatorial Algorithm for Maximum k-vertex Cover 237

B

B

C

C F1

F3

H1H2 F2

J3

I6

L2

L5

L8

P2

P4

I1

I2

J1

L4

L6

L5

I1

I3

I5

P1

H1

J2

I3 I4 P1

P3

N2 H2

I6

I4

I2

L3 L6 L9

P2 P3

L4 L7

N2

J1

J2

J3

F3

P4

L7

L8

L9

L1

L2

L3

V1 V2

X2

X1

O2O1

F1

L1

N1

I5

F2

S1 S2

P5

P5

N1

U1 U1

U2

U2

U3

U3

Fig. 1. Sets Si, Oi, Xi i = 1, 2 and cuts between them.

Sets Si, Xi and Oi separate each color class in 6 regions, namely, Si ∩ Oi,
Si \ Oi, Xi ∩ Oi, Xi \ Oi, Oi \ (Si ∪ Xi) (denoted by Ōi, in what follows) and
Vi \ (Si ∪ Xi ∪ Oi). In total, there exist 36 groups of edges (cuts) among them,
the group (V1 \ (S1 ∪ X1 ∪ O1), V2 \ (S2 ∪ X2 ∪ O2)) being irrelevant as it will
become clear in the sequel. We will use the following notations to refer to the
values of the 35 relevant cuts (illustrated in Fig. 1.):

B: the number of edges in the cut (S1 \ O1, S2 ∩ O2);
C: the number of edges in the cut (S2 \ O2, S1 ∩ O1);
F1, F2, F3: the number of edges in the cuts (S1 \O1,X2 \O2), (S1 \O1, O2 \(X2∪

S2)) and (S1 \ O1, O2 ∩ X2), respectively;
H1,H2: the number of edges in the cuts (S1 ∩ O1,X2 \ O2) and (S1 ∩ O1, V2 \

(S2 ∪ X2 ∪ O2)), respectively;
{Ii}i∈[6]: the number of edges in the cuts (X1 \O1,X2 \O2), (X1 \O1, V2 \ (S2 ∪

X2 ∪ O2)), (O1 \ (S1 ∪ X1),X2 \ O2), (O1 \ (S1 ∪ X1), V2 \ (S2 ∪ X2 ∪ O2)),
(X1 ∩ O1,X2 \ O2) and (X1 ∩ O1, V2 \ (S2 ∪ X2 ∪ O2)), respectively;

J1, J2, J3: the number of edges in the cuts (S2 \O2,X1 \O1), (S2 \O2, O1 \ (S1 ∪
X1)) and (S2 \ O2, O1 ∩ X1), respectively;

238 É. Bonnet et al.

{Li}i∈[9]: the number of edges in the cuts (S1 ∩O1, S2 ∩O2), (S1 ∩O1,X2 ∩O2),
(S1 ∩ O1, O2 \ (S2 ∪ X2)), (X1 ∩ O1, S2 ∩ O2), (X1 ∩ O1,X2 ∩ O2), (X1 ∩
O1, O2 \ (S2 ∪ X2)), (O1 \ (S1 ∪ X1), S2 ∩ O2), (O1 \ (S1 ∪ X1),X2 ∩ O2), and
(O1 \ (S1 ∪ X1), O2 \ (S2 ∪ X2)), respectively;

N1, N2: the number of edges in the cuts (S2 ∩ O2,X1 \ O1) and (S2 ∩ O2, V1 \
(S1 ∪ X1 ∪ O1)), respectively;

{Pi}i∈[5]: the number of edges in the cuts (X2 \ O2, V1 \ (S1 ∪ X1 ∪ O1)), (O2 \
(S2 ∪ X2),X1 \ O1), (O2 \ (S2 ∪ X2), V1 \ (S1 ∪ X1 ∪ O1)), (X2 ∩ O2,X1 \ O1),
and (X2 ∩ O2, V1 \ (S1 ∪ X1 ∪ O1)), respectively;

U1, U2, U3: the number of edges is the cuts, (S1 \O1, S2 \O2), (S1 \O1, V2 \ (S2 ∪
X2 ∪ O2)) and (S2 \ O2, V1 \ (S1 ∪ X1 ∪ O1)), respectively.

Denoting by δ(V ′), V ′ ⊆ V , the number of edges covered by V ′ and by opt(B) the
value of an optimal solution (i.e., the number edges covered) for max k -vertex
cover in the input graph B, the following holds (see also Fig. 1):

δ (S1) = B + C + F1 + F2 + F3 + H1 + H2 + L1 + L2 + L3 + U1 + U2 (1)
δ (S2) = B + C + J1 + J2 + J3 + L1 + L4 + L7 + N1 + N2 + U1 + U3 (2)

δ (X1) = I1 + I2 + I5 + I6 + J1 + J3 +
6∑

i=4

Li + N1 + P2 + P4 (3)

δ (X2) = F1 + F3 + H1 + I1 + I3 + I5 + L2 + L5 + L8 + P1 + P4 + P5 (4)

δ (O1) = C + H1 + H2 + I3 + I4 + I5 + I6 + J2 + J3 +
9∑

i=1

Li (5)

δ (O2) = B + F2 + F3 +
9∑

i=1

Li + N1 + N2 +
5∑

i=2

Pi (6)

opt(B) = B + C +
3∑

i=2

Fi +
2∑

i=1

Hi +
6∑

i=3

Ii +
3∑

i=2

Ji +
9∑

i=1

Li

+
2∑

i=1

Ni +
5∑

i=2

Pi (7)

Without loss of generality, we assume k1 � k2 and we set: k1 = μk2 (μ � 1),
k′
1 = |S1 ∩ O1| = νk1 (0 � ν � 1) and k′

2 = |S2 ∩ O2| = ξk2 (0 � ξ � 1). Let us
note that, since k′

i vertices lie in the intersections Si ∩ Oi, the following hold for
Ōi = Oi \ (Si ∪ Xi), i = 1, 2: |Ō1| = |O1 \ (S1 ∪ X1)| � (1 − ν)k1 = μ(1 − ν)k2
and |Ō2| = |O2 \ (S2 ∪ X2)| � (1 − ξ)k2. From the definitions of the cuts and
using (1) to (6) and the expressions for |Ō1| and |Ō2|, simple average arguments
and the assumptions for k1, k2, k′

1 and k′
2 just above, the following holds:

Combinatorial Algorithm for Maximum k-vertex Cover 239

δ (S1) ≥ δ (O1)
δ (S2) ≥ δ (O2)
δ (X1) + C + H1 + H2 + L1 + L2 + L3 ≥ δ (O1)
δ (X2) + B + N1 + N2 + L1 + L4 + L7 ≥ δ (O2)
δ (S1) ≥ 1/(1−ν) · δ (X1)

δ (S2) ≥ 1/(1−ξ) · δ (X2)
δ (S1) + δ (X1) ≥ (2−ν)/(1−ν) · (I3 + I4 + J2 + L7 + L8 + L9)
δ (S2) + δ (X2) ≥ (2−ξ)/(1−ξ) · (F2 + L3 + L6 + L9 + P2 + P3)
B + F1 + F2 + F3 + U1 + U2 ≥ δ (X1)
C + J1 + J2 + J3 + U1 + U3 ≥ δ (X2)

(8)

For i = 1, 2, the two first inequalities in (8) hold because Si is the set of ki highest-
degree vertices in Vi; the third and fourth ones because the lefthand side quantities
are the number of edges covered by Xi ∪ (Si ∩ Oi); each of these sets has cardi-
nality ki and obviously covers more edges than Oi; the fifth and sixth inequal-
ities because the average degree of Si is at least the average degree of Xi and
|X1| = (1 − ν)k1 and |X2| = (1 − ξ)k2; seventh and eighth ones because the
average degree of vertices in Si ∪ Xi is at least the average degree of vertices in
Oi \ (Si ∪Xi); finally, for the last two inequalities the sum of degrees of the ki −k′

i

vertices in Si \ Oi is at least the sum of degrees of the ki − k′
i vertices of Xi.

In Sect. 3, we specify the approximation algorithm sketched above. In [7] a
computer assisted analysis of its approximation-performance is presented. The
non-linear program that we set up, not only computes the approximation ratio of
our algorithm but it also provides an experimental study over families of graphs.
Indeed, a particular configuration on the variables (i.e., a feasible value assign-
ments on the variables that represent the set of edges B,C, . . .) corresponds to
a particular family of bipartite graphs with similar structural properties (char-
acterized by the number of edges belonging to the several cut considered). Given
such a configuration, it is immediate to find the ratio of the algorithm, because
we can simply substitute the values of the variables in the corresponding ratios
and output the largest one. We can view our program as an experimental analy-
sis over all families of bipartite graphs, trying to find the particular family that
implements the worst case for the approximation ratio of the algorithm. Our
program not only finds such a configuration, but also provides data about the
range of approximation factor on other families of bipartite graphs. Experimen-
tal results show that the approximation factor for the absolute majority of the
instances is very close to 1, i.e., ≥ 0.95. Moreover, our program is independent on
the size of the instance. We just need a particular configuration on the relative
value of the variables B,C, . . . , thus providing a compact way of representing
families of bipartite graphs sharing common structural properties.

For the rest of the paper, we call “best” vertices a set of vertices that cover the
most of uncovered edges1 in B. Given a solution SOLk(B), we denote by solk(B)
its value. For the quantities implied in the ratios corresponding to these solutions,
one can be referred to Fig. 1 and to expressions (1) to (7).

1 For instance, “we take S1 plus the k2 best vertices in V2” means that we take S1

and then k2 vertices of highest degree in B[(V1 \ S1), V2].

240 É. Bonnet et al.

Let us note that the algorithm above, since it runs for any value of k1 and
k2, it will run for (k1, k2) = (k, 0) and (0, k). So, it will compute the optimum for
the instances of [4], where the greedy algorithm attains the ratio (e−1)/e. Observe
finally that, when k � min{|V1|, |V2|}, then min{|V1|, |V2|} is an optimal solution
since it covers the whole of E. This remark will be useful for some solutions in
the sequel, for example in the completion of solution SOL5(B).

3 A 0.821-Approximation for the Bipartite Max k-vertex
Cover

Algorithm k-VC ALGORITHM builds the following max k -vertex cover-
solutions:
SOL1(B) and SOL2(B), take, respectively, S1 plus the k2 remaining best ver-
tices from V2, and S2 plus the k1 remaining best vertices from V1;
SOL3(B) takes first S1 ∪ X1 in the solution and completes it with the
(1 − μ(1 − ν))k2 best vertices from V2;
SOL4(B) takes S2 and completes it either with vertices from V2, or with vertices
from both V2 and V1 (as specified in the next page);
SOL5(B) takes a π-fraction of the best vertices in S1 and X1, π ∈ (0, 1/2]; then,
solution is completed with the k1 + k2 − π(2k1 − k′

1) best vertices in V2;
SOL6(B) takes a λ-fraction of the best vertices in S2 and X2, λ ∈ (0, (1+μ)/(2−ξ)];
then solution is completed with the k1 + k2 − λ(2k2 − k′

2) best vertices in V1.
Let us note that the values of λ and π are parameters that we can

fix. In what follows, we analyze solutions SOL1(B) . . . SOL6(B) computed by
k-VC ALGORITHM and give analytical expressions for their ratios. A fully detailed
analysis of all these solutions is given in [7].

Solution SOL1(B). The best k2 vertices in V2, provided that S1 has already
been chosen, cover at least the maximum of the following quantities:

A1 = J1 + J2 + J3 + L4 + L7 + N1 + N2 + U3 by S2

A2 = I1 + I3 + I5 + L5 + L8 + P1 + P4 + P5 by X2

A3 = L4 + L5 + L6 + L7 + L8 + L9 + N1 + N2 + P2 + P3 + P4 + P5 by O2

So, the approximation ratio for SOL1(B) satisfies:

r1 �
δ (S1) + max

{
A1,A2,A3

}

opt(B)

Solution SOL2(B). The best k1 vertices in V1, provided that S2 has already
been chosen, cover at least the maximum of the following quantities:

B1 = H1 + H2 + F1 + F2 + F3 + L2 + L3 + U2 by S1

B2 = I1 + I2 + I5 + I6 + L5 + L6 + P2 + P4 by X1

B3 = H1 + H2 + I3 + I4 + I5 + I6 + L2 + L3 + L5 + L6 + L8 + L9 by O1

Combinatorial Algorithm for Maximum k-vertex Cover 241

So, the approximation ratio for SOL2(B) satisfies:

r2 �
δ (S2) + max

{
B1,B2,B3

}

opt(B)

Solution SOL3(B). Taking first S1 ∪ X1 in the solution, k − (k1 + k1 − k′
1) =

k1 +k2 −2k1 +k′
1 = k2 − (k1 −k′

1) = (1−μ(1−ν))k2 vertices remain to be taken
in V2. The best such vertices will cover at least the maximum of the following
quantities:

C1 =(1 − μ(1 − ν)) (J2 + N2 + L7 + U3) (9)

C2 =
1 − μ(1 − ν)

2 − ξ
(I3 + J2 + L7 + L8 + N2 + P1 + P5 + U3) (10)

C3 =
1 − μ(1 − ν)

3 − 2ξ
(I3 + J2 + L7 + L8 + L9 + N2 + P1 + P3 + P5 + U3) (11)

where (9) corresponds to a completion by the (1−μ(1−ν))k2 best vertices of S2,
(10) corresponds to a completion by the (1−μ(1−ν))k2 best vertices of S2∪X2,
while (11) corresponds to a completion by the (1 − μ(1 − ν))k2 best vertices of
S2 ∪ X2 ∪ Ō2. The denominator 3 − 2ξ in (11) is due to the fact that, using the
expression for Ō2, |S2∪X2∪(O2\(S2∪X2))| � (3−2ξ)k2. So, the approximation
ratio for SOL3(B) is:

r3 �
δ (S1) + δ (X1) + max

{
C1, C2, C3

}

opt(B)
(12)

Solution SOL4(B). Once S2 is taken in the solution, k1 = μk2 are still to be
taken. Completion can be done in the following ways:

1. if k1 � k2 − k′
2, i.e., μ � 1 − ξ, completion can be done by vertices taken

either from X2, or from X2 ∪ Ō2; in the first case, the best vertices taken for
completion will cover at least either a μ/(1−ξ) fraction of edges incident to X2;
in the second case, they will cover at least a μ/2(1−ξ) fraction of edges incident
to X2 ∪ Ō2, i.e., at least M1 edges, where M1 is given by:

max
{

μ

1 − ξ
δ (X2) ,

μ

2(1 − ξ)
(δ (X2) + F2 + L3 + L6 + L9 + P2 + P3)

}

(13)
2. else, completion can be done by taking the whole set X2 and then the addi-

tional vertices taken:
(a) either within the rest of V2 covering, in particular, a min{1, (μ−1+ξ)/|Ō2|} �

min{1, (μ−1+ξ)/(1−ξ)} fraction of edges incident to Ō2 (quantity M2

in (14)),
(b) or in S1 covering, in particular, a (μ−1+ξ)/μ fraction of uncovered edges inci-

dent to S1 (quantity M3 in (14)),
(c) or in S1∪X1 covering, in particular, a (μ−1+ξ)/μ(2−ν) fraction of uncovered

edges incident to S1 ∪ X1 (quantity M4 in (14)),

242 É. Bonnet et al.

(d) or, finally, in S1∪X1∪Ō1 covering, in particular, a (μ−1+ξ)/μ(3−2ν) fraction
of uncovered edges incident to this vertex-set (quantity M5 in (14));

in any case such a completion will cover a number of edges that is at least
the maximum of the following quantities:

M2 = min
{

1, μ−1+ξ
1−ξ

}
(F2 + L3 + L6 + L9 + P2 + P3)

M3 = μ−1+ξ
μ (F2 + H2 + L3 + U2)

M4 = μ−1+ξ
μ(2−ν) (F2 + H2 + I2 + I6 + L3 + L6 + P2 + U2)

M5 = μ−1+ξ
μ(3−2ν) (F2 + H2 + I2 + I4 + I6 + L3 + L6 + L9 + P2 + U2)

(14)

Using (13) and (14), the following holds for the approximation ratio of SOL4(B):

r4 �
δ (S2) +

{M1 μ ≤ 1 − ξ
δ (X2) + max {M2,M3,M4,M5} μ ≥ 1 − ξ

opt(B)
(15)

Vertical Separations – Solutions SOL5(B) and SOL6(B). For i = 1, 2,
given a vertex subset V ′ ⊆ Vi, we call vertical separation of V ′ with parameter
c ∈ (0, 1/2], a partition of V ′ into two subsets such that one of them contains a
c-fraction of the best (highest degree) vertices of V ′ (i.e., contains the c|V ′| best
vertices of V ′). Then, the following easy claim holds for a vertical separation of
V ′ ∪ V ′′ with parameter c.

Claim. Let A(V ′) be a c-fraction of the best vertices in V ′ and A(V ′′) the same
in V ′′. Then δ(A(V ′)) + δ(A(V ′′)) ≥ cδ(V ′ ∪ V ′′).

Proof. Assume that in V ′ we have n′ vertices. To form A(V ′) we take the cn′

vertices of V ′ with highest degree. The average degree of V ′ is δ(V ′)/n′. The
average degree of A(V ′) is δ(A(V ′))/(cn′). But, from the selection of A(V ′) as
the cn′ vertices with highest degree, we have that δ(A(V ′))/(cn′) ≥ δ(V ′)/n′ ⇒
δ(A(V ′)) ≥ cδ(V ′). Similarly for V ′′, i.e., δ(A(V ′′)) ≥ cδ(V ′′).

Solutions SOL5(B) and SOL6(B) are based upon vertical separations of Si ∪
Xi, i = 1, 2, with parameters π and λ, called π- and λ-vertical separations,
respectively.

The idea behind vertical separation, is to handle the scenario when there is a
“tiny” part of the solution (i.e. few in comparison to, let’s say, k1 vertices) that
covers a large part of the solution and the “completion” of the solution done by
the previous cases does not contribute more than a small fraction to the final
solution. The vertical separation indeed tries to identify such a small part, and
then continues the completion on the other side of the bipartition.

Solution SOL5(B). It consists of separating S1∪X1 with parameter π ∈ (0, 1/2],
of taking a π-fraction of the best vertices of S1 and a π-fraction of the best vertices
of X1 in the solution and of completing it with the adequate vertices from V2.
A π-vertical separation of S1 ∪ X1 introduces in the solution π (2k1 − k′

1) =
π(2 − ν)μk2 vertices of V1, which are to be completed with k − π(2 − ν)μk2 =

Combinatorial Algorithm for Maximum k-vertex Cover 243

(1 + μ)k2 − π(2 − ν)μk2 = (1 − μ(2π − 1) + μνπ)k2 vertices from V2. Observe
that such a separation implies the cuts with corresponding cardinalities B, C,
Fi, i = 1, 2, 3, H1, H2, I1, I2, I5, I6, J1, J3, Lj , j = 1, . . . , 6, N1, P2, P4, U1

and U2. Let us group these cuts in the following way:

Π1 = C + J1 + J3 + U1

Π2 = B + L1 + L4 + N1

Π3 = F3 + L2 + L5 + P4

Π4 = I1 + I5 + F1 + H1

Π5 = F2 + L3 + L6 + P2

Π6 = I2 + I6 + H2 + U2

(16)

We may also notice that group Π1 refers to S2 \ O2, Π2 refers to S2 ∩ O2, Π3 to
X2 ∩ O2, Π5 to Ō2 and Π4 to X2 \ O2. Assume that a πi < 1 fraction of each
group Πi, i = 1, . . . 6 contributes in the π vertical separation of S1 ∪ X1. Then,
a π-vertical separation of S1 ∪ X1 will contribute with a value:

6∑

i=1

πiΠi � π
6∑

i=1

Πi (17)

to sol5(B). We now distinguish two cases.

Case 1: (1 − μ(2π − 1) + μνπ)k2 � k2, i.e., 1 − μ(2π − 1) + μνπ � 1. Then we
further distinguish the following two subcases 1. and 2.:
1. μ(1 − 2π) + μνπ ≤ 1 − ξ; then, the partial solution induced by the π-vertical
separation will be completed in such a way that the contribution of the comple-
tion is at least equal to max{Zi, i = 1, . . . , 5}, where:
Z1 refers to S2 plus the best (1−μ(2π −1)+μνπ)k2 −k2 = (μ(1−2π)+μνπ)k2
vertices of O2 having a contribution of:

Z1 =
2∑

i=1

(1 − πi) Πi + (J2 + L7 + N2 + U3) +
μ(1 − 2π) + μνπ

1 − ξ
[(1 − π3) Π3

+ (1 − π5) Π5 + (L8 + L9 + P3 + P5)] (18)

Z2 refers to S2 plus the best (μ(1 − 2π) + μνπ)k2 vertices of X2 having a con-
tribution of:

Z2 =
2∑

i=1

(1 − πi) Πi + (J2 + L7 + N2 + U3)

+
μ(1 − 2π) + μνπ

1 − ξ

⎡

⎣
4∑

j=3

(1 − πi) Πi + (I3 + L8 + P1 + P5)

⎤

⎦

244 É. Bonnet et al.

Z3 and Z4 refer to the best (1 − μ(2π − 1) + μνπ)k2 vertices of S2 ∪ X2 and of
S2 ∪ O2 having, respectively, contributions:

Z3 =
1 − μ(2π − 1) + μνπ

2 − ξ

[
4∑

i=1

(1 − πi) Πi

+ (I3 + J2 + L7 + L8 + N2 + P1 + P5 + U3)]

Z4 =
1 − μ(2π − 1) + μνπ

2 − ξ

[
3∑

i=1

(1 − πi) Πi + (1 − π5) Π5

+ (J2 + L7 + L8 + L9 + N2 + P3 + P5 + U3)]

Z5 refers to the best (1 − μ(2π − 1) + μνπ)k2 vertices of S2 ∪ X2 ∪ Ō2 having a
contribution of:

Z5 =
1 − μ(2π − 1) + μνπ

3 − 2ξ

[
5∑

i=1

(1 − πi) Πi

+ (I3 + J2 + L7 + L8 + L9 + N2 + P1 + P3 + P5 + U3)]

2. μ(1 − 2π) + μνπ ≥ 1 − ξ; in this case, the partial solution induced by the
π-vertical separation will be completed in such a way that the contribution of
the completion is at least max{Θi, i = 1, . . . , 3}, where:
Θ1 refers to S2 ∪ X2 plus the best (μ(1 − 2π) + μνπ − (1 − ξ))k2 vertices of Ō2,
all this having a contribution of:

Θ1 =
4∑

i=1

(1 − πi) Πi + (I3 + J2 + L7 + L8 + N2 + P1 + P5 + U3)

+
μ(1 − 2π) + μνπ − (1 − ξ)

1 − ξ
[(1 − π5) Π5 + L9 + P3]

Θ2 refers to S2 ∪ O2 plus the best (μ(1 − 2π) + μνπ − (1 − ξ))k2 vertices of
X2 \ O2, all this having a contribution of:

Θ2 =
3∑

i=1

(1 − πi) Πi

+ (1 − π5) Π5 + (J2 + L7 + L8 + L9 + N2 + P3 + P5 + U3)

+
μ(1 − 2π) + μνπ − (1 − ξ)

1 − ξ
[(1 − π4) Π4 + I3 + P1]

Θ3 refers to the best (1 − μ(2π − 1) + μνπ)k2 vertices of S2 ∪ X2 ∪ Ō2 having a
contribution of:

Θ3 =
1 − μ(2π − 1) + μνπ

3 − 2ξ

[
5∑

i=1

(1 − πi) Πi

+ (I3 + J2 + L7 + L8 + L9 + N2 + P1 + P3 + P5 + U3)]

Combinatorial Algorithm for Maximum k-vertex Cover 245

Case 2: 1 − μ(2π − 1) + μνπ < 1. The partial solution induced by the π-
vertical separation will be completed in such a way that the contribution of the
completion is at least equal to max{Φi, i = 1, . . . , 5}, where:
Φ1 refers to the best (1 − μ(2π − 1) + μνπ)k2 vertices in S2 with a contribution:

Φ1 = (1 − μ(2π − 1) + μνπ)

[
2∑

i=1

(1 − πi) Πi + (J2 + L7 + N2 + U3)

]

Φ2 refers to the best (1−μ(2π − 1)+μνπ)k2 vertices in X2 with a contribution:

Φ2 =
1 − μ(2π − 1) + μνπ

1 − ξ

[
4∑

i=3

(1 − πi) Πi + (I3 + L8 + P1 + P5)

]

Φ3 refers to the best (1−μ(2π −1)+μνπ)k2 vertices in O2 with a contribution:

Φ3 = (1 − μ(2π − 1) + μνπ)

[
3∑

i=2

(1 − πi) Πi + (1 − π5) Π5

+ (L7 + L8 + L9 + N2 + P3 + P5)]

Φ4 refers to the best (1 − μ(2π − 1) + μνπ)k2 vertices in S2 ∪ X2 with a
contribution:

Φ4 =
1 − μ(2π − 1) + μνπ

2 − ξ

⎡

⎣
4∑

j=1

(1 − πj) Πj

+ (I3 + J2 + L7 + L8 + N2 + P1 + P5 + U3)]

Φ5 refers to the best (1 − μ(2π − 1) + μνπ)k2 vertices in S2 ∪ X2 ∪ Ō2 with a
contribution:

Φ5 =
1 − μ(2π − 1) + μνπ

3 − 2ξ

⎡

⎣
5∑

j=1

(1 − πj) Πj

+ (I3 + J2 + L7 + L8 + L9 + N2 + P1 + P3 + P5 + U3)] (19)

Setting Z∗ = max{Zi : i = 1, . . . 5}, Θ∗ = max{Θi : i = 1, 2, 3} and Φ∗ =
max{Φi : i = 1, . . . 5}, and putting (16) and (17) together with expressions (18)
to (19), we get the following lower bound for ratio r5:

6∑
i=1

πiΠi +

⎧
⎨

⎩

{
Z∗ if μ(1 − 2π) + μνπ ≤ 1 − ξ
Θ∗ if μ(1 − 2π) + μνπ ≥ 1 − ξ

}
case: 1 − μ(2π − 1) + μνπ ≥ 1

Φ∗ case: 1 − μ(2π − 1) + μνπ < 1
opt(B)

(20)
Solution SOL6(B). In a complete analogy with SOL5, solution SOL6(B) con-
sists of separating S2 ∪ X2 with parameter λ ∈ (0, 1/2]. It consists of separating

246 É. Bonnet et al.

S2 ∪ X2 with parameter λ, of taking a λ fraction of the best vertices of S2 and
X2 in the solution and of completing it with the adequate vertices from V1. Here,
we need that λ(k2 + k2 − k′

2) � k ⇒ λ(2− ξ)k2 � (1+μ)k2 ⇒ λ � (1+μ)/(2−ξ) ⇒
λ ∈ (0, (1+μ)/(2−ξ)].

A λ-vertical separation of S2∪X2 introduces in the solution λ(2−ξ)k2 vertices
of V2, which are to be completed with k − λ(2 − ξ)k2 = (1 + μ)k2 − λ(2 − ξ)k2 =
(1 + μ − λ(2 − ξ))k2 vertices from V1.

Observe that such a separation implies the cuts with corresponding cardinal-
ities B, C, F1, F3, H1, I1, I3, I5, Ji, i = 1, 2, 3, L1, L2, L4, L5, L7, L8, N1, N2,
P1, P4, P5, U1 and U3. We group these cuts in the following way:

Λ1 = B + F1 + F3 + U1

Λ2 = C + H1 + L1 + L2

Λ3 = J3 + I5 + L4 + L5

Λ4 = I1 + J1 + N1 + P4

Λ5 = I3 + J2 + L7 + L8

Λ6 = N2 + P1 + P5 + U3

(21)

Group Λ1 refers to S1 \ O1, Λ2 to S1 ∩ O1, Λ3 to X1 ∩ O1, Λ5 to Ō1 and Λ4

to X1 \ O1. Assume, as previously, that a λi < 1 fraction of each group Λi,
i = 1, . . . 6 contributes in the λ vertical separation of S2 ∪X2. Then, a λ-vertical
separation of S2 ∪ X2 will contribute with a value:

6∑

i=1

λiΛi � λ
6∑

i=1

Λi (22)

to sol6(B). We again distinguish two cases.

Case 1. (1 + μ − λ(2 − ξ))k2 � μk2, i.e., 1 + μ − λ(2 − ξ) � μ. Here we have the
two following subcases.
(a) 1 − λ(2 − ξ) ≤ (1 − ν)μ; then, the partial solution induced by the λ-vertical
separation will be completed in such a way that the contribution of the comple-
tion is at least equal to Υ ∗ = max{Υi, i = 1, . . . , 5}, where: Υ1 refers to S1 plus
the best (1 − λ(2 − ξ))k2 vertices of X1;
Υ2 refers to S1 plus the best (1 − λ(2 − ξ))k2 vertices of O1;
Υ3 and Υ4 refer to the best (1 + μ − λ(2 − ξ))k2 vertices of S1 ∪ X1 and S1 ∪ O1;
Υ5 refers to the best (1 + μ − λ(2 − ξ))k2 vertices of S1 ∪ X1 ∪ Ō1. (b)
1 − λ(2 − ξ) ≥ (1 − ν)μ; in this case, the partial solution induced by the λ-
vertical separation will be completed in such a way that the contribution of the
completion is at least Ψ∗ = max{Ψi, i = 1, . . . , 3}, where:
Ψ1 refers to S1 ∪ X1 plus the best (1 − λ(2 − ξ) − (1 − ν))k2 vertices of Ō1;
Ψ2 refers to S1 ∪ O1 plus the best (1 − λ(2 − ξ) − (1 − ν))k2 vertices of X1 \ O1;
Ψ3 refers to the best (μ + 1 − λ(2 − ξ))k2 vertices of S1 ∪ X1 ∪ Ō1.

Case 2. 1 + μ − λ(2 − ξ) � μ. The partial solution induced by the λ-vertical
separation will be completed in such a way that the contribution of the comple-
tion is at least equal to Ω∗ = max{Ωi, i = 1, . . . , 5}, where:

Combinatorial Algorithm for Maximum k-vertex Cover 247

Ω1 refers to the best (1 + μ − λ(2 − ξ))k2 vertices in S1;
Ω2 refers to the best (1 + μ − λ(2 − ξ))k2 vertices in X1;
Ω3 refers to the best (1 + μ − λ(2 − ξ))k2 vertices in O1;
Ω4 refers to the best (1 + μ − λ(2 − ξ))k2 vertices in S1 ∪ X1;
Ω5 refers to the best (1 + μ − λ(2 − ξ))k2 vertices in S1 ∪ X1 ∪ Ō1.

Putting all this together we get:

r6 �

6∑
i=1

λiΛi +

⎧
⎨

⎩

{
Υ ∗ if 1 − λ(2 − ξ) ≤ (1 − ν)μ
Ψ∗ if 1 − λ(2 − ξ) > (1 − ν)μ

}
case: μ + 1 − λ(2 − ξ) ≥ μ

Ω∗ case: μ + 1 − λ(2 − ξ) < μ

opt(B)
(23)

The complete study of solution SOL6(B) is deferred to [7].

4 Results and Discussion

To analyze the performance guarantee of k-VC ALGORITHM, we set up a non-linear
program and solved it to optimality. Here, we interpret the cardinalities of the
edge-sets B,C, Fi, . . . , as variables, the expressions in (8) as constraints and the
objective function is min Z(≡ max6

j=1 rj). In other words, we try to find a value
assignments to the set of variables such that the maximum among all the six
ratios defined is minimized. This value would give us the desired approximation
guarantee of k-VC ALGORITHM.

Towards this goal, we set up a GRG (Generalized Reduced Gradient [9])
program. The reasons this method is selected are presented in [7], as well as
a more detailed description of the implementation. GRG is a generalization of
the classical Reduced Gradient method [10] for solving (concave) quadratic prob-
lems so that it can handle higher degree polynomials and incorporate non-linear
constraints.

As the values of parameters π and λ decrease, the approximation guarantee
increases. The maximum of these ratios is attained for π = λ = 10−5. For these
values, the corresponding values of ratios r1 ÷ r6 computed for them are the
following:

r1 = 0.81806
r2 = 0.81797
r3 = 0.79280
r4 = 0.79657
r5 = 0.82104

r6 = 0.82103

These results correspond to the cycle that outputs the minimum value for the
approximation factor and this is 0.821, given by solution SOL5.

To conclude, let us note that the formulation of the non-linear program
we developed for bounding the ratio below, could provide useful insights for

248 É. Bonnet et al.

problem’s understanding and could be applied for solving the problem on other
graph-classes. Finally, since the overall algorithm chooses the best among a cer-
tain number of solutions it is easily parallelizable.

Remark. As we note in [7], the GRG solver does not guarantee the global opti-
mal solution. The 0.821 guarantee is the minimum value that the solver returns
after several runs from different initial starting points. However, successive re-
executions of the algorithm, starting from this minimum value, were unable to
find another point with smaller value. In each one of these successive re-runs, we
tested the algorithm on 1000 random different starting points (which is greater
than the estimation of the number of local minima) and the solver did not find
value worse that the reported one.

Acknowledgement. The work of the last author was supported by the Swiss National
Research Foundation Early Post-Doc mobility grant P1TIP2 152282.

References

1. Apollonio, N., Simeone, B.: The maximum vertex coverage problem on bipartite
graphs. Discrete Appl. Math. 165, 37–48 (2014)

2. Caskurlu, B., Mkrtchyan, V., Parekh, O., Subramani, K.: On partial vertex cover
and budgeted maximum coverage problems in bipartite graphs. In: Diaz, J., Lanese,
I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 13–26. Springer, Heidelberg
(2014)

3. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of
maximum k-coverage. Naval Res. Logistics 45, 615–627 (1998)

4. Badanidiyuru, A., Kleinberg, R., Lee, H.: Approximating low-dimensional coverage
problems. In: Dey, T.K., Whitesides, S. (eds.) SoCG 2012, pp. 161–170. ACM,
Chapel Hill (2012)

5. Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for maximum coverage
and max cut with given sizes of parts. In: Cornuéjols, G., Burkard, R.E., Woeginger,
G.J. (eds.) IPCO 1999. LNCS, vol. 1610, p. 17. Springer, Heidelberg (1999)

6. Petrank, E.: The hardness of approximation: gap location. Comput. Complex. 4,
133–157 (1994)

7. Bonnet, E., Escoffier, B., Paschos, V.T., Stamoulis, G.: A 0.821-ratio purely
combinatorial algorithm for maximum k-vertex cover in bipartite graphs. CoRR
arXiv:1409.6952v2 (2015)

8. Feige, U., Karpinski, M., Langberg, M.: Improved approximation of max-cut on
graphs of bounded degree. J. Algorithms 43, 201–219 (2002)

9. Abadie, J., Carpentier, J.: Generalization of the wolfe reduced gradient method to
the case of non-linear constraints. In: Abadie, J., Carpentier, J. (eds.) Optimiza-
tion. Academic Publishers (1969)

10. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res.
Logistics Q. 3, 95–110 (1956)

http://arxiv.org/abs/1409.6952v2

	A 0.821-Ratio Purely Combinatorial Algorithm for Maximum k-vertex Cover in Bipartite Graphs
	1 Introduction
	2 Preliminaries
	3 A 0.821-Approximation for the Bipartite Max k-vertex Cover
	4 Results and Discussion
	References

