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Abstract. The celebrated asynchronous computability theorem provides
a characterization of the class of decision tasks that can be solved in a
wait-free manner by asynchronous processes that communicate by writ-
ing and taking atomic snapshots of a shared memory. Several variations
of the model have been proposed (immediate snapshots and iterated
immediate snapshots), all equivalent for wait-free solution of decision
tasks, in spite of the fact that the protocol complexes that arise from the
different models are structurally distinct. The topological and combina-
torial properties of these snapshot protocol complexes have been studied
in detail, providing explanations for why the asynchronous computabil-
ity theorem holds in all the models.

In reality concurrent systems do not provide processes with snapshot
operations. Instead, snapshots are implemented (by a wait-free protocol)
using operations that write and read individual shared memory locations.
Thus, read/write protocols are also computationally equivalent to snap-
shot protocols. However, the structure of the read/write protocol com-
plex has not been studied. In this paper we show that the read/write
iterated protocol complex is collapsible (and hence contractible). Fur-
thermore, we show that a distributed protocol that wait-free implements
atomic snapshots in effect is performing the collapses.

1 Introduction

A decision task is the distributed equivalent of a function, where each process
knows only part of the input, and after communicating with the other processes,
each process computes part of the output. For example, in the k-set agreement
task processes have to agree on at most k of their input values; when k = 1 we
get the consensus task [8].

A central concern in distributed computability is studying which tasks are solv-
able in a distributed computing model, as determined by the type of communica-
tion mechanism available and the reliability of the processes. Early on it was shown
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that consensus is not solvable even if only one process can fail by crashing, when
asynchronous processes communicate by message passing [8] or even by writing
and reading a shared memory [22]. A graph theoretic characterization of the tasks
solvable in the presence of at most one process failure appeared soon after [3].

The asynchronous computability theorem [15] exposed that moving from tol-
erating one process failure, to any number of process failures, yields a character-
ization of the class of decision tasks that can be solved in a wait-free manner by
asynchronous processes based on simplicial complexes, which are higher dimen-
sional versions of graphs. In particular, n-set agreement is not wait-free solvable,
even for n + 1 processes [4,15,24].

Computability theory through combinatorial topology has evolved to
encompass arbitrary malicious failures, synchronous and partially synchronous
processes, and various communication mechanisms [13]. Still, the original wait-
free model of the asynchronous computability theorem, where crash-prone
processes that communicate wait-free by writing and reading a shared mem-
ory is fundamental. For instance, the question of solvability in other models
(e.g. f crash failures), can in many cases be reduced to the question of wait-free
solvability [7,14].

More specifically, in the AS model of [13] each process can write its own
location of the shared-memory, and it is able to read the whole shared mem-
ory in one atomic step, called a snapshot. The characterization is based on the
protocol complex, which is a geometric representation of the various possible exe-
cutions of a protocol. Simpler variations of this model have been considered. In
the immediate snapshot (IS) version [2,4,24], processes can execute a combined
write-snapshot operation. The iterated immediate snapshot (IIS) model [6] is
even simpler to analyze, and can be extended (IRIS) to analyze partially syn-
chronous models [23]. Processes communicate by accessing a sequence of shared
arrays, through immediate snapshot operations, one such operation in each array.
The success of the entire approach hinges on the fact that the topology of the
protocol complex of a model determines critical information about the solvability
of the task and, if solvable, about the complexity of solution [17].

All these snapshot models, AS, IS, IIS and IRIS can solve exactly the same set
of tasks. However, the protocol complexes that arise from the different models are
structurally distinct. The combinatorial topology properties of these complexes
have been studied in detail, providing insights for why some tasks are solvable
and others are not in a model.

Results. In reality concurrent systems do not provide processes with snapshot
operations. Instead, snapshots are implemented (by a wait-free protocol) using
operations that write and read individual shared memory locations [1]. Thus,
read/write protocols are also computationally equivalent to snapshot protocols.
However, the structure of the read/write protocol complex has not been studied.
Our results are the following.

1. The one-round read/write protocol complex is collapsible to the IS proto-
col, i.e. to a chromatic subdivision of the input complex. The collapses can
be performed simultaneously in entire orbits of the natural symmetric group
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action. We use ideas from [21], together with distributed computing tech-
niques of partial orders.

2. Furthermore, the distributed protocol that wait-free implements immediate
snapshots of [5,9] in effect is performing the collapses.

3. Finally, also the multi-round iterated read/write complex is collapsible. We
use ideas from [10], together with carrier maps e.g. [13].

All omitted proofs are in the full version in http://arxiv.org/abs/1512.05427

Related Work. The one-round immediate snapshot protocol complex is the
simplest, with an elegant combinatorial representation; it is a chromatic subdi-
vision of the input complex [13,19], and so is the (multi-round) IIS protocol [6].
The multi-round (single shared memory array) IS protocol complex is harder to
analyze, combinatorially it can be shown to be a pseudomanifold [2]. IS and IIS
protocols are homeomorphic to the input complex. An AS protocol complex is
not generally homeomorphic to the underlying input complex, but it is homo-
topy equivalent to it [12]. The span of [15] provides an homotopy equivalence
of the (multi-round) AS protocol complex to the input complex [12], clarifying
the basis of the obstruction method [11] for detecting impossibility of solution
of tasks.

Later on stronger results were proved, about the collapsibility of the protocol
complex. The one-round IS protocol complex is collapsible [20] and homeomor-
phic to closed balls. The structure of the AS is more complicated, it was known
to be contractible [12,13], and then shown to be collapsible (one-round) to the IS
complex [21]. The IIS (multi-round) version was shown to be collapsible too [10].

There are several wait-free implementations of atomic snapshots starting
with [1], but we are aware of only two algorithms that implement immediate
snapshots; the original of [5], and its recursive version [9].

2 Preliminaries

2.1 Distributed Computing Model

The basic model we consider is the one-round read/write model (WR), e.g. [16]. It
consists of n+1 processes denoted by the numbers [n] = {0, 1, . . . , n}. A process is
a deterministic (possibly infinite) state machine. Processes communicate through
a shared memory array mem[0 . . . n] which consists of n + 1 single-writer/multi-
reader atomic registers. Each process accesses the shared memory by invoking
the atomic operations write(x) or read(j), 0 ≤ j ≤ n. The write(x) operation is
used by process i to write value x to register i, and process i can invoke read(j) to
read register mem[j], for any 0 ≤ j ≤ n. Each process i has an input value, which
may be its own id i. In its first operation, process i writes its input to mem[i],
then it reads each of the n + 1 registers, in an arbitrary order. Such a sequence
of operations, consisting of a write followed by all the reads is abbreviated by
WScan(x).

An execution consists of an interleaving of the operations of the processes, and
we assume any interleaving of the operations is a possible execution. We may also
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consider an execution where only a subset of processes participate, consisting of
an interleaving of the operations of those processes. These assumptions represent
a wait-free model where any number of processes may fail by crashing.

In more detail, an execution is described as a set of atomic operations together
with the irreflexive and transitive partial order given by: op precedes op′ if op was
completed before op′. If op does not precede op′ and viceversa, the operations
are called concurrent. The set of values read in an execution α by process i is
called the local view of i which is denoted by view(i, α). It consists of pairs (j, v),
indicating that the value v was read from the j-th register. The set of all local
views in the execution α is called the view of α and it is denoted by view(α).
Let E be a set of executions of the WR model. Consider the equivalence relation
on E given by: α ∼ α′ if view(α) = view(α′). Notice that for every execution α
there exists an equivalent sequential execution α′ with no concurrent operations.
In other words, if op and op′ are concurrent operations in α we can suppose that
op was executed immediately before op′ without modifying any views. Thus, we
often consider only sequential executions α, consisting of a linear order on the
set of all write and read operations.

Two other models can be derived from the WR model. In the iterated WR
model, processes communicate through a sequence of arrays. They all go through
the sequence of arrays mem0, mem1 . . . in the same order, and in the r-th round,
they access the r-th array, memr, exactly as in the one-round version of the WR
model. Namely, process i executes one write to memr[i] and then reads one by
one all entries j, memr[j], in arbitrary order. In the non-iterated, multi-round
version of the WR model, there is only one array mem, but processes can execute
several rounds of writing and then reading one by one the entries of the array.
The immediate snapshot model (IS) [4,24], consists of a subset of executions of
the WR one round model. Namely, all the executions where the operations can
be organized in concurrency classes, each one consisting a set of writes by the
set of processes participating in the concurrency class, followed by a read to all
registers by each of these processes. See Sect. 3.1.

2.2 Algorithm IS

Consider the recursive algorithm IS of [9] for the iterated WR model, pre-
sented in Fig. 1. Processes go trough a series of disjoint shared memory arrays
mem0,mem1, . . . ,memn. Each array memk is accessed by process i invoking
WScan(i) in the recursive call IS(n + 1 − k). Process i executes WScan(i) (line
(1)), by performing first write(i), followed by read(j) for each j ∈ [n], in an
arbitrary order. The set of values read (each one with its location) is what the
invocation of WScan(i) returns. In line (2) the process checks if view contains
n + 1 − k id’s, else IS(n − k) is again invoked on the next shared memory in line
(3). It is important to note that in each recursive call IS(n + 1 − k) at least one
process returns with |view| = n+1−k, given that n+1−k processes invoked IS.
For example, in the first recursive call IS(n + 1) the last process to write reads
n + 1 values and terminates the algorithm.
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Algorithm IS(n + 1)
(1) view ← WScan(i)
(2) if |view| = n + 1 then return view
(3) else return IS(n).

Fig. 1. Code for process i

Every execution of the IS protocol can be represented by a finite sequence
α = α0, α1, . . . , αl with αk an execution of the WR one round model where every
process that takes a step in αk invokes the recursive call with IS(n + 1 − k).
Since at least one process terminates the algorithm the length l(α) = l + 1 is at
most n + 1. The last returned local view in execution α for process i is denoted
view(i, α), and the set of all local views is denoted by view(α).

Denote by El the set of views of all executions α with l(α) = l + 1. Then
En ⊆ · · · ⊆ E0. In particular, E0 corresponds to the views of executions of the
one round WR of Sect. 2.1. Also, En corresponds to the views of the immediate
snapshot model, see Theorem 1 of [9].

3 Definition and Properties of the Protocol Complex

Here we define the protocol complex of the write/read model and other models,
which arise from the sets Ei mentioned in the previous section.

3.1 Additional Properties About Executions

Recall from Sect. 2.1 that an execution can be seen as a linear order on the set
of write and read operations. For a subset I ⊆ [n] let

OI = {wi, ri(j) : i ∈ I, j ∈ [n]}.

with I = Oi = ∅. A wr-execution on I is a pair α = (OI ,→α) with →α a linear
order on OI such that wi →α ri(j) for all j ∈ [n]. The set I is called the Id
set of α which is denoted by Id(α). Hence the view of i is view(i, α) = {j ∈
I : wj →α ri(j)} and the view of α is view(α) = {(i, view(i, α)) : i ∈ I}.
Note the chain wi →α ri(j0) →α · · · →α ri(jn) represents the invoking of WScan
by the process i in the wr-execution α. Consider a wr-execution α and suppose
that the order in which the process i reads the array mem[0 . . . n] is given by
ri(j0) →α · · · →α ri(jn). If every write operation wk satisfies wk →α ri(j0) or
ri(jn) →α wk then view(i, α) corresponds to an atomic snapshot.

As a consequence, every execution in the snapshot model and immedi-
ate snapshot model corresponds to an execution in the write/read model. For
instance in the wr-execution

α : w2 → r2(0) → w0 → r0(0) → r0(1) → r0(2) → w1 →
→ r1(0) → r2(1) → r1(1) → r2(2) → r1(2)
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the view(0, α) = {0, 2} and view(1, α) = [2] are immediate snapshots, this means
the processes 0 and 2 could have read the array instantaneously. In contrast, the
view(2, α) = {1, 2} does not correspond to a snapshot. For the following consider
the process j such that wi →α wj for all i.

Proposition 1. Let α be a wr-execution on I. Then there exists j ∈ I such that
view(j, α) = I.

Let α be a wr-execution. For 0 ≤ k ≤ n, define Idk(α) = {j ∈ Id(α) :
|view(j, α)| = n + 1 − k}. An IS-execution is a finite sequence α = α0, . . . , αl

such that α0 is a wr-execution on [n], and αk+1 is a wr-execution on Id(αk) −
Idk(αk). Given an IS-execution α, Proposition 1 implies l(α) ≤ n+1. Moreover
Id(αk+1) ⊆ Id(αk) for all 0 ≤ k ≤ l − 1. Hence |Id(αk)| ≤ n + 1 − k. Executions
α, α′ are equivalent if view(α) = view(α′), denoted α ∼ α′.

Lemma 1. Let α and α′ be IS-executions with l(α) = l(α). Given 0 ≤ k ≤ l,
(1) If α ∼ α′ then Id(αk) = Id(α′

k). (2) If αk ∼ α′
k then α ∼ α′.

According to the behavior of the protocol in Fig. 1, the local view of
i is defined as view(i, α) = view(i, αk), if i ∈ Id(αk) − Id(αk+1) and
view(i, α) = view(i, αl) for k = l. Hence the view of α is defined as view(α) =
{(i, view(i, α)) : i ∈ [n]}.

Lemma 2. Let α = α0, . . . , αl+1 be an IS-execution, l(α) = l + 2. Then
view(α) = view(α′) for some IS-execution α′ such that l(α′) = l + 1.

The wr-execution α′ = α0, . . . , αl−1, α
′
l of the lemma is obtained by, α′

l such
that

view(i, α′
l) =

{
view(i, αl), if i ∈ Idl(αl)
view(i, αl+1), if i �∈ Idl(αl).

It follows El = {view(α) : α = α0, . . . , αl}. Thus, Lemma 2 implies El+1 ⊆
El. For example consider the IS-execution α = α0, α1, α2 where α0 : w0 →
r0(0) → r0(1) → r0(2) → w1 → r1(0) → r1(1) → r1(2) → w2 → r2(0) →
r2(1) → r2(2). α1 : w0 → r0(0) → r0(1) → r0(2) → w1 → r1(0) → r1(1) →
r1(2). α2 : w0 → r0(0) → r0(1) → r0(2).
So view(α) = {(0, {0}), (1, {0, 1}), (2, {0, 1, 2})} ∈ E2 ⊆ E1 ⊆ E0, Figs. 2 and 3.

3.2 Topological Definitions

The following are standard technical definitions, see [18,21]. A (abstract) sim-
plicial complex Δ on a finite set V is a collection of subsets of V such that for
any v ∈ V , {v} ∈ Δ, and if σ ∈ Δ and τ ⊆ σ then τ ∈ Δ. The elements of V are
called vertices and the elements of Δ simplices. The dimension of a simplex σ is
dim(σ) = |σ| − 1. For instance the vertices are 0-simplices. For the purposes of
this paper, we adopt the convention that the void complex Δ = ∅ is a simplicial
complex which is different from the empty complex Δ = {∅}. Given a positive
integer n, Δn denotes the standard simplicial complex whose vertex set is [n]
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and every subset of [n] is a simplex. From now on we identify a complex Δ with
its collection of subsets. For every simplex τ we denote by I(τ) the set of all sim-
plices ρ, τ ⊆ ρ. A simplex τ of Δ is called free if there exists a maximal simplex
σ such that τ ⊆ σ and no other maximal simplex contains τ . The procedure of
removing every simplex of I(τ) from Δ is called a collapse.

Let Δ and Γ be simplicial complexes, Δ is collapsible to Γ if there exists
a sequence of collapses leading from Δ to Γ . The corresponding procedure is
denoted by Δ ↘ Γ . In particular, if the collapse is elementary with free simplex
τ , it is denoted by Δ ↘τ Γ . If Γ is the void complex, Δ is collapsible. The
next definition from [21] gives a procedure to collapse a simplicial complex, by
collapsing simultaneously by entire orbits of the group action on the vertex set.
Let Δ be a simplicial complex with a simplicial action of a finite group G. A
simplex τ is called G-free if it is free and for all g ∈ G such that g(τ) �= τ ,
I(τ) ∩ I(g(τ)) = ∅. If τ is G-free, the procedure of removing every simplex
ρ ∈ ⋃

g∈G

I(g(τ)) is called a G-collapse of Δ.

Since, if τ is G-free then g(τ) is free as well, the above definition guarantees
that all collapses in the orbit of τ can be done in any order i.e. every G-collapse is
a collapse. A simplicial complex Δ is G-collapsible to Γ if there exist a sequence
of G-collapses leading from Δ to Γ , it is denoted by Δ ↘G Γ . In similar way,
if the G-collapse is elementary with G-free simplex τ , the notation Δ ↘G(τ) Γ
will be used. In the case Γ is the void complex, Δ is called G-collapsible. For
instance consider a 2-simplex σ, τ a 1-face of σ and the action of Z3 over σ, then
τ is free but not Z3-free.

3.3 Protocol Complex

Let n be a positive integer. The abstract simplicial complex WRl(Δn) with 0 ≤
l ≤ n consists of the set of vertices V = {(i, viewi) : i ∈ viewi ⊆ [n]}. A subset
σ ⊆ V forms a simplex if only if there exist an IS-execution α of length l + 1
such that σ ⊆ view(α).

The complex WR0(Δn) is called the protocol complex of the write/read model
and it will be denoted by WR(Δn). Protocol complexes for the particular cases
n = 1 and n = 2 are shown in Fig. 2. In [21] a combinatorial description of the
protocol complex Viewn associated to the snapshot model is given. There every
simplex of Viewn is represented as a 2 × t matrix. Every simplex σ ∈ WR(Δn)
can be expressed as

W(σ) =
(

V1 · · · Vt−1 [n]
I1 · · · It−1 It

)

where Ii ∩ Ij = ∅ with i �= j and Ii ⊆ Vj for all i ≤ j. Moreover we can associate
a matrix for every simplex in the complex WRl(Δn). This representation implies
that χ(Δn) and Viewn are subcomplexes of WR(Δn). Figure 3 shows the complex
WRl(Δ2). From now on we will write WRl instead of WRl(Δn) unless we specify
the standard complex. Lemma 2 implies that every maximal simplex of WRl+1

is a simplex of WRl, which implies that WRl+1 is a subcomplex of WRl. From
now on σ will denote a simplex of WRl. For 0 ≤ k ≤ l let σ<

k = {(i, viewi) ∈
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σ : |viewi| < n + 1 − k}. In a similar way σ=
k and σk = σ<

k ∪ σ=
k are defined.

Therefore, the set of processes in σ which participate in the l + 1 call recursive
of Algorithm 1 is partitioned in those which read n + 1 − l processes and those
which read less than n + 1 − l processes in the l + 1 layer shared memory. Let
us define I<

σ =
⋃

i∈Id(σ<
l )

viewi and Iσ =
⋃

i∈Id(σl)

viewi.

(0, {0})
(0, {0})

(1, {1})

(1, {1})

(2, {2})

(0, {0, 1})

(0, {0, 2})

(1, {0, 1})

(1, {1, 2})

(2, {0, 2}) (2, {1, 2})

(0, [1])

(1, [1])

(0, [2])(1, [2])

(2, [2])

WR(Δ1) WR(Δ2)

Fig. 2. Protocol complex for n = 1 and n = 2.

Theorem 1. σ ∈ WRl+1 if only if I<
σ ∩ Id(σ=

l ) = ∅ and |I<
σ | < n + 1 − l.

Proof. Suppose I<
σ ∩ Id(σ=

l ) �= ∅ or |I<
σ | = n + 1 − l and there exists an

IS-execution α = α0, . . . , αl+1 such that σ<
l ⊆ view(αl+1). Then there exist

processes i and k such that |viewi| < n+1− l, |viewk| = n+1− l and k ∈ viewi.
This implies that k wrote in the l + 1 shared memory, a contradiction. For the
other direction, since I<

σ ∩ Id(σ=
l ) = ∅ and |I<

σ | < n + 1 − l we can build an
IS-execution α = α0, . . . , αl+1 such that σ ⊆ view(α). �

Notice that Iσ represents the set of processes which have been read in the
l + 1 recursive call of the algorithm in Fig. 1.

Corollary 1. If σ �∈ WRl+1 then

1. |Iσ| = n + 1 − l. 2. Iσ = Iτ for all σ ⊆ τ .

Let inv(σ) = {(k, Iσ) : k ∈ Iσ\I<
σ } if I<

σ �= Iσ else inv(σ) = {(k, Iσ) : k ∈
Iσ\Id(σ<

l )}. Notice that if σ �∈ WRl+1 then inv(σ) �= ∅.
For the simplices σ− = σ − inv(σ) and σ+ = σ ∪ inv(σ).
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Proposition 2. If σ �∈ WRl+1 then

1. σ+ = σ− ∪ inv(σ).
2. σ− ⊆ σ ⊆ σ+.
3. σ− �∈ WRl+1.
4. If σ− ⊆ τ ⊆ σ+ then σ− = τ− and σ+ = τ+.
5. (σ−)− = σ−.

Consider I+−(σ) = {τ ∈ WRl : σ− ⊆ τ ⊆ σ+}. Item (3) above implies
that I+−(σ) ∩ WRl+1 = ∅ if σ �∈ WRl+1. Moreover from (4) it is obtained that
I+−(σ) ∩ I+−(τ) = ∅ or I+−(σ) = I+−(τ).

Δ2 WR0 WR1 WR2

� � �

Fig. 3. Complexes WRl.

4 Collapsibility

Let S[n] denote the permutation group of [n]. Notice that if the Id’s of processes
in a wr-execution on I are permuted according to π ∈ S[n] then we obtain
a new linear order on π(I). In other words if α is a wr-execution on I and
π ∈ S[n] then α′ = π(α) is a wr-execution on π(I). Moreover if σ = view(α)
then π(σ) = view(π(α)). This shows that there exists a natural group action on
each simplicial complex WRl.

Proposition 3. Let σ ∈ WRl be a simplex. Then

1. π(σ) ∈ WRl.
2. π(σ−) = π(σ)−.

3. π(σ+) = π(σ)+.
4. π(I+−(σ)) = I+−(π(σ)).

For example in Fig. 2, σ = {(1, {1, 2}), (2, {0, 2}), (0, [2])} and π(0) = 1,
π(1) = 2 and π(2) = 0, then π(σ) = {(2, {0, 2}), (0, {0, 1}), (1, [2])}.

Theorem 2. For every 0 ≤ l ≤ n + 1,

1. WRl is collapsible to WRl+1.
2. WRl is S[n]-collapsible to WRl+1.
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Proof. Since σ ∈ I+−(σ) for all simplices σ ∈ WRl, the intervals I+− (σ) cover
L = {σ : σ ∈ WRl, σ �∈ WRl+1}. Also, Proposition 2 (4) implies that L can
be decomposed as a disjoint union of intervals I+− (σ1), . . . , I+− (σk) s.t. σi = σ+

i

for all 1 ≤ i ≤ k. Suppose dim(σi+1)<
l ≤ dim(σi)<

l or if dim(σi+1)<
l = dim(σi)<

l

then dim(σi+1) ≤ dim(σi). We will prove by induction on i, 1 ≤ i ≤ k,
that WRi

l ↘σ−
i

WRi+1
l where WR1

l = WRl and WRk+1
l = WRl+1. If there

exists a maximal simplex σ ∈ WRi
l such that σi ⊆ σ then σ = σj for

some i ≤ j ≤ k. Hence (σi)<
l ⊆ (σj)<

l and therefore σi = σj . Now sup-
pose there exists a maximal simplex σj ∈ WRi

l with i ≤ j ≤ k such that
σ−

i ⊆ σj . This implies that (σi)<
l = (σj)<

l and inv(σi) = inv(σj). Thus
σi = σ−

i ∪ inv(σi) ⊆ σj ∪ inv(σj) = σj and therefore σ−
i is free in WRi

l. There-
fore, WRl = WR1

l ↘σ−
1

. . . ↘σ−
k

WRk+1
l = WRl+1. Now if we specify in more

detail the order of the sequence, the complex WRl can be collapsed to WRl+1

in a S[n]-equivariant way. First note that if π(σi) ∈ I+−(σj) for some 1 ≤ j ≤ k,
then Proposition 3 (3) and Proposition 2 (4) imply that π(σi) = σj . Moreover,
dim(σi)<

l = dim π(σi)<
l and dim(σi) = dim π(σi). Hence the set {σ1, . . . , σk}

can be partitioned according to the equivalence relation given by: σi ∼ σj if
there exists π ∈ S[n] such that π(σi) = σj . Let τ1, . . . , τp be representatives of
the equivalence classes which satisfy the order given in the proof of the item 1,
then WRl ↘S[n](τ

−
1 ) · · · ↘S[n](τ

−
p ) WRl+1. �

Figure 4 illustrates the collapsing procedure WR0 ↘S[n] WR1 for n = 2. In
this case consider the simplexes σ1 = {(1, {1, 2}), (2, {0, 2}), (0, [2])} and σ2 =
{(0, {0, 1}), (1, [2]), (2, [2])} then WR1

0 ↘S[n](σ
−
1 ) WR2

0 ↘S[n](σ
−
2 ) WR3

0 = WR1.

And we have the following consequence.

WR0 = WR1
0

WR2
0 WR1 = WR3

0

� �

Fig. 4. S[n]-collapse.

Corollary 2. For every natural number n, the simplicial complex WR(Δn) is
S[n]-collapsible to χ(Δn).

Multi-round Protocol Complex. A carrier map Φ from complex C to com-
plex D assigns to each simplex σ a subcomplex Φ(σ) of D such that Φ(τ) ⊆ Φ(σ)
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if τ ⊆ σ. The protocol complex of the iterated write/read model (see Fig. 5),
k ≥ 0, is WR(k+1)(Δn) =

⋃
σ∈WR(k)(Δn)

WR(σ).

Corollary 3. For all k ≥ 1, WR(k)(Δn) ↘ χ(k)(Δn).

The collapsing procedure consists first in collapsing, in parallel, each
subcomplex WR(σ) where σ is a maximal simplex of WR(k−1)(Δn) as in
Theorem 2. An illustration is in Fig. 6, applied to the simplexes σ1 =
{(0, {0, 1}), (1, {0, 1}), (2, [2])} and σ2 = {(0, {0, 1}), (1, [2]), (2, [2])} of WR(Δ2).
Second, we collapse χ(WR(k−1)(Δn)) to χ(k)(Δn).

Δ2

�

WR(Δ2) WR(2)(Δ2)

σ1

�

σ2

Fig. 5. Complexes of the iterated model; in WR(2)(Δ2) only WR(σ1) is depicted.

σ1

σ2

WR(σ1 ∪ σ2)σ1 ∪ σ2

χ(σ1 ∪ σ2)WR1(σ1 ∪ σ2)

Fig. 6. First collapsing.
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