
Evangelos Kranakis
Gonzalo Navarro
Edgar Chávez (Eds.)

 123

12th Latin American Symposium
Ensenada, Mexico, April 11–15, 2016
Proceedings

LATIN 2016:
Theoretical InformaticsLN

CS
 9

64
4

AR
Co

SS

Lecture Notes in Computer Science 9644

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK
Josef Kittler, UK
Friedemann Mattern, Switzerland
Moni Naor, Israel
Bernhard Steffen, Germany
Doug Tygar, USA

Takeo Kanade, USA
Jon M. Kleinberg, USA
John C. Mitchell, USA
C. Pandu Rangan, India
Demetri Terzopoulos, USA
Gerhard Weikum, Germany

Advanced Research in Computing and Software Science

Subline of Lecture Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, TU Munich, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Deng Xiaotie, City University of Hong Kong

Jeannette M.Wing, Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Evangelos Kranakis • Gonzalo Navarro
Edgar Chávez (Eds.)

LATIN 2016:
Theoretical Informatics
12th Latin American Symposium
Ensenada, Mexico, April 11–15, 2016
Proceedings

123

Editors
Evangelos Kranakis
Carleton University
Ottawa, ON
Canada

Gonzalo Navarro
University Chile
Santiago
Chile

Edgar Chávez
Centro de Investigación Científica
de Educación Superior de Ensenada

Ensenada
Mexico

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-49528-5 ISBN 978-3-662-49529-2 (eBook)
DOI 10.1007/978-3-662-49529-2

Library of Congress Control Number: 2016932342

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

This volume contains the papers presented at the 12th Latin American Theoretical
Informatics Symposium (LATIN 2016) held during April 11–15, 2016, in Ensenada,
Mexico. Previous editions of LATIN took place in Sao Paulo, Brazil (1992), Val-
paraiso, Chile (1995), Campinas, Brazil (1998), Punta del Este, Uruguay (2000),
Cancun, Mexico (2002), Buenos Aires, Argentina (2004), Valdivia, Chile (2006),
Buzios, Brazil (2008), Oaxaca, Mexico (2010), Arequipa, Peru (2012), and Montev-
ideo, Uruguay (2014).

The conference received 131 submissions from around the world. Each submission
was reviewed by at least three Program Committee members, and carefully evaluated
on quality, originality, and relevance to the conference. Committee members wrote the
reviews with the help of additional external referees. Based on an extensive electronic
discussion, the committee selected 52 papers. In addition to the accepted contributions,
the symposium featured distinguished lectures by Jin Akiyama (Tokyo University of
Science), Allan Borodin (University of Toronto), José Correa (University of Chile),
Alan Frieze (Carnegie Mellon University), and Héctor García-Molina (Stanford
University).

The Imre Simon Test-of-Time Award started in 2012 and is given to the authors
of the LATIN paper deemed to be most influential among all those published at least
ten years prior to the current edition of the conference. Papers published in the LATIN
proceedings up to and including 2006 were eligible for the 2016 award. This year the
winner was Alistair Sinclair for his paper “Improved Bounds for Mixing Rates of
Marked Chains and Multicommodity Flow,” which appeared in LATIN 1992. This
year the award was partially supported by Springer.

Many people helped to make LATIN 2016 possible. First, we would like to rec-
ognize the outstanding work of the members of the Program Committee. Their com-
mitment contributed to a very detailed discussion on each of the submitted papers.
The LATIN Steering Committee offered valuable advice and feedback; the conference
benefitted immensely from their knowledge and experience.

The main organizer of the conference was the Centro de Investigación Científica y
de Educación Superior de Ensenada (CICESE), located in northern Mexico. The
conference was financially supported by CONACyT, CICESE, and the Mexican
Mathematical Society. We are grateful for the facilities provided by EasyChair for
paper evaluation and the preparation of the volume.

April 2016 Evangelos Kranakis
Gonzalo Navarro

Edgar Chávez

The Imre Simon Test-of-Time Award

For many fundamental sampling problems, the best and often the only known approach
to solving them is to take a long enough random walk on a certain Markov chain and
then return to the current state of the chain. Techniques to prove how long “long
enough” is, i.e., the number of steps in the chain one needs to take in order to be
sufficiently close to its stationary distribution, are crucial in obtaining estimates of
running times of such sampling algorithms.

The mixing time of a Markov chain is quite tightly captured by the “spectral gap” of
its underlying transition matrix. The spectral gap is closely related to a geometric
parameter called “conductance,” which is a measure of the edge-expansion of the
Markov chain. Conductance also captures the mixing time up to square factors. Lower
bounds on conductance, which give upper bounds on the mixing time, are typically
obtained by a technique called “canonical paths” where the idea is to find a set of paths,
one between every unequal source-destination pair, such that no edge is very heavily
congested.

The method of canonical paths for bounding mixing time was introduced by Sinclair
and Jerrum (1989), and then further developed by Diaconis and Stroock (1991).
However, the canonical paths approach cannot always show rapid mixing of a rapidly
mixing chain. In his LATIN 1992 paper, Sinclair establishes that this “drawback”
disappears if one allows flow between a pair of states to be spread along multiple paths.
Moreover, solutions to this multi-commodity flow problem are shown to capture the
mixing rate closely. Thus, under fairly general conditions, we now know that a Markov
chain is rapidly mixing if and only if it supports multicommodity flows of low cost.

In considering Sinclair’s paper for the award, the selection committee was especially
impressed by the elegance of the proposed technique, the quality of presentation, its
general applicability, and its widespread recognition throughout the literature.
This LATIN 1992 paper and its journal version (in the first volume of Combinatorics,
Probability and Computing) has over 415 citations in Google Scholar. The areas that
this paper has influenced include Markov chain Monte Carlo algorithms, random
graphs, flows on graphs, approximation algorithms, statistical physics, and commu-
nication complexity, among others.

For all these reasons the committee selects “Improved Bounds for Mixing Rates of
Markov Chains and Multicommodity Flow” by Alistair Sinclair (LATIN 1992, LNCS
583, 474–487) as the LATIN 2016 winner of the Imre Simon Test-of-Time Paper
Award.

Michael Bender
Marcos Kiwi

Daniel Panario

Organization

Program Committee

Dimitris Achlioptas UC Santa Cruz, USA
Amihood Amir Bar-Ilan University, Israel

and Johns Hopkins University, USA
Djamal Belazzougui University of Helsinki, Finland
Michael Bender Stony Brook University, USA
Edgar Chavez CICESE, Mexico
Josep Diaz UPC Barcelona, Spain
Martin Farach-Colton Rutgers University, USA
Cristina Fernandes University of São Paulo, Brazil
Esteban Feuerstein University of Buenos Aires, Argentina
Fedor Fomin University of Bergen, Norway
Leszek Gasieniec University of Liverpool, UK
Joachim von zur Gathen University of Bonn, Germany
Konstantinos Georgiou Ryerson University, Canada
Roberto Grossi University of Pisa, Italy
Giuseppe F. Italiano University of Rome Tor Vergata, Italy
Christos Kaklamanis University of Patras, Greece and CTI, The Netherlands
Marcos Kiwi University of Chile, Chile
Evangelos Kranakis Carleton University, Canada
Danny Krizanc Wesleyan University, USA
Gregory Kucherov CNRS/LIGM, France
Gad M. Landau University of Haifa, Israel and NYU-Poly, USA
Lucia Moura University of Ottawa, Canada
J. Munro University of Waterloo, Canada
Lata Narayanan Concordia University, Canada
Gonzalo Navarro University of Chile, Chile
Yakov Nekrich University of Waterloo, Canada
Jaroslav Opatrny Concordia University, Canada
Daniel Panario Carleton University, Canada
Pablo Pérez-Lantero University of Valparaíso, Chile
Sergio Rajsbaum National Autonomous University of Mexico, Mexico
Rajeev Raman University of Leicester, UK
Ivan Rapaport University of Chile, Chile
Jose Rolim University of Geneva, Switzerland
Gelasio Salazar Autonomous University of San Luis Potosi, Mexico
Nicola Santoro Carleton University, Canada
Subhash Suri UC Santa Barbara, USA

Dimitrios Thilikos AlGCo project, CNRS, LIRMM, France and National
and Kapodistrian University of Athens, Greece

Jorge Urrutia National Autonomous University of Mexico, Mexico
Peter Widmayer ETH Zurich, Switzerland

Additional Reviewers

Alekseyev, Max
Alistarh, Dan
Alon, Noga
Alonso, Laurent
Alvarez, Carme
Ambainis, Andris
Amit, Mika
Aspnes, James
Bampas, Evangelos
Bampis, Evripidis
Bansal, Nikhil
Baste, Julien
Bodini, Oliver
Bohmova, Katerina
Bonomo, Flavia
Bravo, Mario
Brazdil, Tomas
Bringmann, Karl
Broutin, Nicolas
Bus, Norbert
Buss, Sam
Butman, Ayelet
Bärtschi, Andreas
Cao, Yixin
Carvajal, Rodolfo
Chan, Timothy M.
Chandran, L. Sunil
Chechik, Shiri
Cheng, Siu-Wing
Chitnis, Rajesh
Cicalese, Ferdinando
Conte, Alessio
Conway, Alexander
Cording, Patrick Hagge
Crochemore, Maxime
Cygan, Marek
Dabrowski, Konrad

Daigle, Alexandre
De Beaudrap, Jonathan
De Marco, Gianluca
de Pina, José Coelho
Diez Donoso, Yago
Dokka, Trivikram
Duch, Amalia
Durocher, Stephane
Dürr, Christoph
El-Zein, Hicham
Eppstein, David
Escoffier, Bruno
Feijao, Pedro
Fischer, Johannes
Fotakis, Dimitris
Freedman, Ofer
Gagie, Travis
Ganian, Robert
García-Colín, Natalia
Gawrychowski, Pawel
Geissmann, Barbara
Gekman, Efraim
Gelashvili, Rati
Giakkoupis, George
Giannopoulou, Archontia
Gonzalez-Aguilar, Hernan
Grabowski, Szymon
Graf, Daniel
Grant, Oliver
Grzesik, Andrzej
Hagerup, Torben
Hemaspaandra, Lane
Henning, Gabriela
Hernández-Vélez, César
Hwang, Hsien-Kuei
Jansen, Bart M.P.
Jeż, Artur

Kammer, Frank
Karakostas, George
Kempa, Dominik
Klein, Rolf
Koivisto, Mikko
Kolay, Sudeshna
Kolliopoulos, Stavros
Komusiewicz, Christian
Korman, Matias
Kostitsyna, Irina
Kowalik, Lukasz
Kuszner, Lukasz
Kärkkäinen, Juha
Laber, Eduardo
Lamprou, Ioannis
Lee, Orlando
Lewenstein, Noa
Lin, Min Chih
Liu, Chih-Hung
Löffler, Maarten
Maack, Marten
Madry, Aleksander
Mamageishvili, Akaki
Maneth, Sebastian
Maniatis, Spyridon
Marenco, Javier
Marino, Andrea
Martínez-Viademonte,

Javier
Mastrolilli, Monaldo
Mayer, Tyler
Mayr, Richard
Mccauley, Samuel
Mcconnell, Ross
Mignot, Ludovic
Misra, Neeldhara
Mitsou, Valia

X Organization

Mnich, Matthias
Moisset de Espanes, Pablo
Montanari, Sandro
Montealegre, Pedro
Moreno, Eduardo
Moura, Arnaldo
Moysoglou, Yannis
Mozes, Shay
Nebel, Markus
Nekrich, Yakov
Nicaud, Cyril
Nikoletseas, Sotiris
Nimbhorkar, Shriram
Nishimura, Naomi
Nisse, Nicolas
Ota, Takahiro
Panholzer, Alois
Panolan, Fahad
Papadopoulos, Charis
Pardini, Giovanni
Parotsidis, Nikos
Pedrosa, Lehilton L.C.
Peleg, David
Pelsmajer, Michael
Pietrzak, Krzysztof
Pilz, Alexander
Pizaña, Miguel
Ponty, Yann
Popa, Alexandru

Prencipe, Giuseppe
Pruhs, Kirk
Pröger, Tobias
Puleo, Gregory
Radoszewski, Jakub
Rampersad, Narad
Raymond, Jean-Florent
Rigo, Michel
Rojas, Javiel
Rozenberg, Liat
Rubinstein, Aviad
Sach, Benjamin
Salikhov, Kamil
Saptharishi, Ramprasad
Sau, Ignasi
Sauerwald, Thomas
Saurabh, Saket
Schabanel, Nicolas
Schmitz, Sylvain
Schouery, Rafael
Schutt, Andreas
Serna, Maria
Sitters, Rene
Soltys, Michael
Sorenson, Jonathan
Stojakovic, Milos
Strejilevich de Loma,

Alejandro
Strømme, Torstein

Subramanya, Vijay
Suchan, Karol
Sulzbach, Henning
Suomela, Jukka
Svensson, Ola
Ta-Shma, Amnon
Talbot, Jean-Marc
Tani, Seiichiro
Thraves Caro, Christopher
Todinca, Ioan
Tschager, Thomas
Turowski, Krzysztof
Unger, Luise
Valicov, Petru
Versari, Luca
Verschae, José
Vialette, Stéphane
Viglietta, Giovanni
Wahlström, Magnus
Wakabayashi, Yoshiko
Weimann, Oren
Weinberg, S. Matthew
Xavier, Eduardo
Xiao, Mingyu
Yang, Siwei
Zabala, Paula
Zhang, Shaojie
Zito, Michele
Ziv-Ukelson, Michal

Organization XI

Abstracts

Reversible Figures and Solids

Jin Akiyama and Kiyoko Matsunaga

Tokyo University of Science
1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

ja@jin-akiyama.com

An example of reversible (or hinge inside-out transformable) figures is Dudeney’s
Haberdasher’s puzzle in which an equilateral triangle is dissected into four pieces,
hinged like a chain, and then is transformed into a square by rotating the hinged pieces.
Furthermore, the entire boundary of each figure goes into the inside of the other figure
and becomes the dissection lines of the figure. Many intriguing results on reversibilities
of figures have been found in the preceding research, but most of them are results on
polygons. We generalize those results to general connected figures. It is shown that two
nets obtained by cutting the surface of an arbitrary convex polyhedron along
non-interesting dissection trees are reversible. Moreover, we generalize reversibility for
2D-figures to one for 3D-solids.

Definition (Reversible figures). A pair of hinged figures P and Q is said to be re-
versible (or hinge inside-out transformable) if P and Q satisfy the following conditions:

1. There exists a dissection of P into finite number of pieces P1, P2, P3,…, Pn. A set of
dissection lines or curves forms a tree. Such a trees is called a dissection tree.

2. Pieces P1, P2, P3, …, Pn can be joined by n − 1 hinges on the perimeter of P like a
chain.

3. If one of the end-pieces of the chain is fixed and rotated, then the remaining pieces
form Q when rotated clockwise and P when rotated counterclockwise.

4. The entire boundary of P goes into the inside of Q and the entire boundary of Q is
composed of the edges of the dissection tree only.

Definition (trunk T, conjugate trunk T′, (T, T′)-chain). A trunk of P is a special kind
of an inscribed region T of P. First, cut out an inscribed region T from P. For i = 1, 2,
…, n, let ei be the perimeter part of T joining two vertices vi−1 and vi of T, where v0 =
vn. Denote by Pi the piece located outside of T that contains the perimeter part ei. Some
Pi may be empty (or just a part ei). Then, hinge each pair Pi and Pi+1 at their common
vertex vi for (1 ≤ i ≤ n − 1); this gives us a chain of pieces Pi (i = 1, 2, …, n) of P. A
chain and T are called a (T, T′)-chain of P, a trunk of P, respectively, if an appropriate
rotation of the chain forms T′, which is one of the conjugate regions of T with all the
pieces Pi packed inside T′ without overlaps or gaps. T′ is called a conjugate trunk of P.

Theorem A (Reversible Transformation between Figures). Let P be a figure with a
trunk T and conjugate trunk T′, and let Q have a trunk T′ and conjugate trunk T. Then
P is reversible to Q.

Theorem B (Reversible Transformation Between Nets of a Polyhedron). Let P be a
polyhedron with n vertices v1, v2, …vn and for i = 1, 2 let Di be the dissection trees on
the surface of P. Denote by Ni (i = 1, 2) the nets of P obtained by cutting P along Di (i =
1, 2), respectively. If D1 and D2 don’t intersect other than at the vertices of P, then a
pair of nets N1 and N2 is reversible.

Theorem C. For any net N1 of a polyhedron P with n vertices, there exist infinity many
nets N2 of P such that N1 is reversible to N2.

Theorem D. For any polyhedron P, there exist infinitely many pairs of
non-self-overlapping nets of P that are reversible.

Theorem E (Reversible Transformation Between Nets of an Isotetrahedron). Let
D1 be an arbitrary dissection tree of an isotetrahedron T. Then there exists a dissection
tree D2 of T, which does not intersect D1 other than vertices of T. A pair of nets Ni (i =
1, 2) obtained by cutting along D1 is reversible, and each Ni tiles the plane.

Definition (Reversible solids). A pair of solids P, Q is said to be hinge inside-out
transformable (or simply reversible) if P and Q satisfy these conditions:

(a) The solid P is dissected into several pieces by planes. Such a plane is called a
dissection (or cutting) plane.

(b) The pieces are joined by piano hinges into a tree.
(c) If the pieces of P are reassembled inside out, you will get a solid Q.

We found a lot of reversible pairs of solids by using two different methods: the
“chimera superimposition method” and “double-reversal-plates method”.

Definition ((P, Q)-chimera superimposition). For a tessellative solid P, let T(P) de-
note a tessellation by copies of P. A superimposition of T(P) and T(Q) is called a (P,
Q)-chimera superimposition if T(P) and T(Q) satisfy these conditions:

1. Each copy of P in T(P) is dissected into the same collection of pieces P1, P2, …, Pn

by faces of copies of Q.
2. Each copy of Q in T(Q) is dissected into the same collection of pieces Q1, Q2, …,

Qn by faces of copies of P.
3. Pi can be transferred to Qi by rotations and translations for all i = 1, 2, …, n (by

reordering Q1, Q2, …, Qn appropriately).

Theorem 1. A (P, Q)-chimera superimposition of T(P) and T(Q) gives dissection
planes such that P is reversible to Q.

Definition (Double-reversal-plates). A solid P is said a double-reversal-plates solid of
T if P satisfies these conditions:

1. P contains an inscribed polyhedron T with n faces.
2. T is decomposed into n solids Ti (i = 1, 2, …, n) each of which has one face fi of

P. If each Ti is glued on the face fi of T, then the resultant solid is identical with
P. Such an inscribed polyhedron T is called a trunk of P.

XVI J. Akiyama and K. Matsunaga

One example of double-reversal-plates solids is a rhombic dodecahedron.
A rhombic dodecahedron P contains an inscribed cube T and the cube T can be
decomposed into 6 congruent square pyramids Ti, each of which has one face fi of T. A
rhombic dodecahedron P can be constructed by putting a congruent square pyramid
T on each face of a cube T.

Theorem 2. A pair of solids P and Q is reversible if both P and Q contain the identical
trunk (inscribed polyhedron) T and are double-reversal-plates solids of T.

Theorem 3. A parallelohedron π is called canonical if it is axis-symmetric with respect
to an orthogonal coordinate system, where the origin of the system is located at the
center of π. Every canonical parallelohedron Si 2 Fi (i = 1, 2, …, 5) is reversible to the
same canonical parallelohedron Si0 2 Fi. Moreover, for every canonical parallelohe-
dron Sij 2 Fi (i = 1, 2, …, 5) there exists a canonical parallelohedron Sji 2 Fj (j = 1, 2,
…, 5) such that Sij is reversible to Sji.

Reversible Figures and Solids XVII

Simplicity Is in Vogue (again)

Allan Borodin

Abstract. Throughout history there has been an appreciation of the importance of
simplicity in the arts and sciences. In the context of algorithm design, and in
particular in apprxoximation algorithms and algorithmic game theory, the
importance of simplicity is currently very much in vogue. I will present some
examples of the current interest in the design of “simple algorithms”. And what is
a simple algorithm? Is it just “you’ll know it when you see it”, or can we benefit
from some precise models in various contexts?

Subgame Perfect Equilibrium:
Computation and Efficiency

José Correa

Department of Industrial Engineering, Universidad de Chile

The concept of Subgame Perfect Equilibrium (SPE) naturally arises in games which are
played sequentially. In a simultaneous game the natural solution concept is that of a
Nash equilibrium in which no players has an incentive to unilaterally deviate from her
current strategy. However, if the game is played sequentially, i.e., there is a prescribed
order in which the players make their moves, an SPE is a situation in which all players
anticipate the full strategy of all other players contingent on the decisions of previous
players. Although most research in algorithmic game theory has been devoted to
understand properties of Nash equilibria including its computation and the so-called
price of anarchy in recent years there has been an interest in understanding the com-
putational properties of SPE and its corresponding efficiency measure, the sequential
price of anarchy.

In this talk we will review some of these recent results putting particular emphasis
on a very basic game, namely that of atomic selfish routing in a network [1–6]. In
particular we will discuss some hardness results such as the PSPACE-completeness of
computing an SPE and its NP-hardness even when the number of players fixed to two.
We will also see that for interesting classes of games SPE avoid worst case Nash
equilibria, resulting in substantial improvements for the price of anarchy. However, for
the atomic network routing games with linear latencies, where the price of anarchy has
long been known to be equal to 5/2, we prove that the sequential price of arachy is not
bounded by any constant and can be as large as Ω(√n), with n being the number of
players.

References

1. Bhawalkar, K., Gairing, M., Roughgarden, T.: Weighted congestion games: the price of
anarchy, universal worst-case examples, and tightness. ACM Trans. Econ. Comput. 2(4), 14
(2014)

2. Bilo, V., Flammini, M.,Monaco, G., Moscardelli, L.: Some anomalies of farsighted strategic
behavior. In: WAOA 2012

3. Correa, J., de Keijzer, B., de Jong, J., Uetz, M.: The curse of sequentiality in routing games.
In: WINE 2015

Partially supported by the Millennium Nucleus Information and Coordination in Networks ICM/FIC
RC130003.

4. de Jong, J., Uetz, M.: The sequential price of anarchy for atomic congestion games. In: WINE
2014

5. Milchtaich, I.: Crowding games are sequentially solvable. Int. J. Game Theory 27, 501–509
(1998)

6. Paes Leme, R., Syrgkanis, V., Tardos, É.: The curse of simultaneity. In: ITCS 2012

XX J. Correa

Buying Stuff Online

Alan Frieze and Wesley Pegden

Abstract. Suppose there is a collection x1, x2, …, xN of independent uniform
[0, 1] random variables, and a hypergraph F of target structures on the vertex
set {1, …, N}. We would like to buy a target structure at small cost, but we do
not know all the costs xi ahead of time. Instead, we inspect the random variables
xi one at a time, and after each inspection, choose to either keep the vertex i at
cost xi, or reject vertex i forever.

In the present paper, we consider the case where {1, …, N} is the edge-set
of some graph, and the target structures are the spanning trees of a graph; the
spanning arborescences of a digraph; the Hamilton cycles of a graph; the prefect
matchings of a graph; the paths between a fixed pair of vertices; or the cliques of
some fixed size.

Data Crowdsourcing: Is It for Real?

Hector Garcia-Molina

Abstract. Crowdsourcing refers to performing a task using human workers that
solve sub-problems that arise in the task. In this talk I will give an overview of
crowdsourcing, focusing on how crowdsourcing can help traditional data pro-
cessing and analysis tasks. I will also give a brief overview of some of the
crowdsourcing research we have done at the Stanford University InfoLab.

Contents

A Faster FPT Algorithm and a Smaller Kernel for BLOCK GRAPH VERTEX

DELETION . 1
Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov,
and Saket Saurabh

A Middle Curve Based on Discrete Fréchet Distance. 14
Hee-Kap Ahn, Helmut Alt, Maike Buchin, Eunjin Oh, Ludmila Scharf,
and Carola Wenk

Comparison-Based FIFO Buffer Management in QoS Switches. 27
Kamal Al-Bawani, Matthias Englert, and Matthias Westermann

Scheduling on Power-Heterogeneous Processors . 41
Susanne Albers, Evripidis Bampis, Dimitrios Letsios, Giorgio Lucarelli,
and Richard Stotz

Period Recovery over the Hamming and Edit Distances 55
Amihood Amir, Mika Amit, Gad M. Landau, and Dina Sokol

Chasing Convex Bodies and Functions . 68
Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs,
Kevin Schewior, and Michele Scquizzato

Parameterized Lower Bounds and Dichotomy Results for the
NP-completeness of H-free Edge Modification Problems 82

N.R. Aravind, R.B. Sandeep, and Naveen Sivadasan

Parameterized Complexity of RED BLUE SET COVER for Lines 96
Pradeesha Ashok, Sudeshna Kolay, and Saket Saurabh

Tight Bounds for Beacon-Based Coverage in Simple Rectilinear Polygons . . . 110
Sang Won Bae, Chan-Su Shin, and Antoine Vigneron

On Mobile Agent Verifiable Problems . 123
Evangelos Bampas and David Ilcinkas

Computing Maximal Layers of Points in Ef ðnÞ . 138
Indranil Banerjee and Dana Richards

On the Total Number of Bends for Planar Octilinear Drawings 152
Michael A. Bekos, Michael Kaufmann, and Robert Krug

http://dx.doi.org/10.1007/978-3-662-49529-2_1
http://dx.doi.org/10.1007/978-3-662-49529-2_1
http://dx.doi.org/10.1007/978-3-662-49529-2_2
http://dx.doi.org/10.1007/978-3-662-49529-2_3
http://dx.doi.org/10.1007/978-3-662-49529-2_4
http://dx.doi.org/10.1007/978-3-662-49529-2_5
http://dx.doi.org/10.1007/978-3-662-49529-2_6
http://dx.doi.org/10.1007/978-3-662-49529-2_7
http://dx.doi.org/10.1007/978-3-662-49529-2_7
http://dx.doi.org/10.1007/978-3-662-49529-2_8
http://dx.doi.org/10.1007/978-3-662-49529-2_9
http://dx.doi.org/10.1007/978-3-662-49529-2_10
http://dx.doi.org/10.1007/978-3-662-49529-2_11
http://dx.doi.org/10.1007/978-3-662-49529-2_12

Bidirectional Variable-Order de Bruijn Graphs . 164
Djamal Belazzougui, Travis Gagie, Veli Mäkinen, Marco Previtali,
and Simon J. Puglisi

The Read/Write Protocol Complex Is Collapsible . 179
Fernando Benavides and Sergio Rajsbaum

The I/O Complexity of Computing Prime Tables . 192
Michael A. Bender, Rezaul Chowdhury, Alexander Conway,
Martín Farach-Colton, Pramod Ganapathi, Rob Johnson,
Samuel McCauley, Bertrand Simon, and Shikha Singh

Increasing Diamonds . 207
Olivier Bodini, Matthieu Dien, Xavier Fontaine, Antoine Genitrini,
and Hsien-Kuei Hwang

Scheduling Transfers of Resources over Time: Towards Car-Sharing
with Flexible Drop-Offs . 220

Kateřina Böhmová, Yann Disser, Matúš Mihalák, and Rastislav Šrámek

A 0.821-Ratio Purely Combinatorial Algorithm for Maximum k-vertex
Cover in Bipartite Graphs . 235

Édouard Bonnet, Bruno Escoffier, Vangelis Th. Paschos,
and Georgios Stamoulis

Improved Spanning Ratio for Low Degree Plane Spanners 249
Prosenjit Bose, Darryl Hill, and Michiel Smid

Constructing Consistent Digital Line Segments . 263
Iffat Chowdhury and Matt Gibson

Faster Information Gathering in Ad-Hoc Radio Tree Networks 275
Marek Chrobak and Kevin P. Costello

Stabbing Circles for Sets of Segments in the Plane 290
Mercè Claverol, Elena Khramtcova, Evanthia Papadopoulou,
Maria Saumell, and Carlos Seara

Faster Algorithms to Enumerate Hypergraph Transversals 306
Manfred Cochefert, Jean-François Couturier, Serge Gaspers,
and Dieter Kratsch

Listing Acyclic Orientations of Graphs with Single and Multiple Sources. . . . 319
Alessio Conte, Roberto Grossi, Andrea Marino, and Romeo Rizzi

Linear-Time Sequence Comparison Using Minimal Absent Words
& Applications . 334

Maxime Crochemore, Gabriele Fici, Robert Mercaş, and Solon P. Pissis

XXIV Contents

http://dx.doi.org/10.1007/978-3-662-49529-2_13
http://dx.doi.org/10.1007/978-3-662-49529-2_14
http://dx.doi.org/10.1007/978-3-662-49529-2_15
http://dx.doi.org/10.1007/978-3-662-49529-2_16
http://dx.doi.org/10.1007/978-3-662-49529-2_17
http://dx.doi.org/10.1007/978-3-662-49529-2_17
http://dx.doi.org/10.1007/978-3-662-49529-2_18
http://dx.doi.org/10.1007/978-3-662-49529-2_18
http://dx.doi.org/10.1007/978-3-662-49529-2_19
http://dx.doi.org/10.1007/978-3-662-49529-2_20
http://dx.doi.org/10.1007/978-3-662-49529-2_21
http://dx.doi.org/10.1007/978-3-662-49529-2_22
http://dx.doi.org/10.1007/978-3-662-49529-2_23
http://dx.doi.org/10.1007/978-3-662-49529-2_24
http://dx.doi.org/10.1007/978-3-662-49529-2_25
http://dx.doi.org/10.1007/978-3-662-49529-2_25

The Grandmama de Bruijn Sequence for Binary Strings. 347
Patrick Baxter Dragon, Oscar I. Hernandez, and Aaron Williams

Compressing Bounded Degree Graphs . 362
Pål Grønås Drange, Markus Dregi, and R.B. Sandeep

Random Partial Match in Quad-K-d Trees . 376
A. Duch, G. Lau, and C. Martínez

From Discrepancy to Majority . 390
David Eppstein and Daniel S. Hirschberg

On the Planar Split Thickness of Graphs . 403
David Eppstein, Philipp Kindermann, Stephen Kobourov,
Giuseppe Liotta, Anna Lubiw, Aude Maignan, Debajyoti Mondal,
Hamideh Vosoughpour, Sue Whitesides, and Stephen Wismath

A Bounded-Risk Mechanism for the Kidney Exchange Game. 416
Hossein Esfandiari and Guy Kortsarz

Tight Approximations of Degeneracy in Large Graphs. 429
Martín Farach-Colton and Meng-Tsung Tsai

Improved Approximation Algorithms for Capacitated Fault-Tolerant
k-Center . 441

Cristina G. Fernandes, Samuel P. de Paula, and Lehilton L.C. Pedrosa

Bundled Crossings in Embedded Graphs . 454
Martin Fink, John Hershberger, Subhash Suri, and Kevin Verbeek

Probabilistic Analysis of the Dual Next-Fit Algorithm for Bin Covering 469
Carsten Fischer and Heiko Röglin

Deterministic Sparse Suffix Sorting on Rewritable Texts 483
Johannes Fischer, Tomohiro I., and Dominik Köppl

Minimizing the Number of Opinions for Fault-Tolerant Distributed
Decision Using Well-Quasi Orderings . 497

Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers

Unshuffling Permutations . 509
Samuele Giraudo and Stéphane Vialette

Generating Random Spanning Trees via Fast Matrix Multiplication 522
Nicholas J.A. Harvey and Keyulu Xu

Routing in Unit Disk Graphs . 536
Haim Kaplan, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth

Contents XXV

http://dx.doi.org/10.1007/978-3-662-49529-2_26
http://dx.doi.org/10.1007/978-3-662-49529-2_27
http://dx.doi.org/10.1007/978-3-662-49529-2_28
http://dx.doi.org/10.1007/978-3-662-49529-2_29
http://dx.doi.org/10.1007/978-3-662-49529-2_30
http://dx.doi.org/10.1007/978-3-662-49529-2_31
http://dx.doi.org/10.1007/978-3-662-49529-2_32
http://dx.doi.org/10.1007/978-3-662-49529-2_33
http://dx.doi.org/10.1007/978-3-662-49529-2_33
http://dx.doi.org/10.1007/978-3-662-49529-2_34
http://dx.doi.org/10.1007/978-3-662-49529-2_35
http://dx.doi.org/10.1007/978-3-662-49529-2_36
http://dx.doi.org/10.1007/978-3-662-49529-2_37
http://dx.doi.org/10.1007/978-3-662-49529-2_37
http://dx.doi.org/10.1007/978-3-662-49529-2_38
http://dx.doi.org/10.1007/978-3-662-49529-2_39
http://dx.doi.org/10.1007/978-3-662-49529-2_40

Graph Drawings with One Bend and Few Slopes . 549
Kolja Knauer and Bartosz Walczak

Edge-Editing to a Dense and a Sparse Graph Class 562
Michal Kotrbčík, Rastislav Královič, and Sebastian Ordyniak

Containment and Evasion in Stochastic Point Data 576
Nirman Kumar and Subhash Suri

Tree Compression Using String Grammars . 590
Moses Ganardi, Danny Hucke, Markus Lohrey, and Eric Noeth

Trees and Languages with Periodic Signature . 605
Victor Marsault and Jacques Sakarovitch

Rank Reduction of Directed Graphs by Vertex and Edge Deletions 619
Syed Mohammad Meesum and Saket Saurabh

New Deterministic Algorithms for Solving Parity Games 634
Matthias Mnich, Heiko Röglin, and Clemens Rösner

Computing a Geodesic Two-Center of Points in a Simple Polygon 646
Eunjin Oh, Sang Won Bae, and Hee-Kap Ahn

Simple Approximation Algorithms for Balanced MAX 2SAT 659
Alice Paul, Matthias Poloczek, and David P. Williamson

A Parameterized Algorithm for MIXED-CUT. 672
Ashutosh Rai, M.S. Ramanujan, and Saket Saurabh

ðk; n� kÞ-MAX-CUT: An O�ð2pÞ-Time Algorithm and a Polynomial Kernel . . . 686
Saket Saurabh and Meirav Zehavi

Independent Set of Convex Polygons: From n� to 1þ � via Shrinking 700
Andreas Wiese

Author Index . 713

XXVI Contents

http://dx.doi.org/10.1007/978-3-662-49529-2_41
http://dx.doi.org/10.1007/978-3-662-49529-2_42
http://dx.doi.org/10.1007/978-3-662-49529-2_43
http://dx.doi.org/10.1007/978-3-662-49529-2_44
http://dx.doi.org/10.1007/978-3-662-49529-2_45
http://dx.doi.org/10.1007/978-3-662-49529-2_46
http://dx.doi.org/10.1007/978-3-662-49529-2_47
http://dx.doi.org/10.1007/978-3-662-49529-2_48
http://dx.doi.org/10.1007/978-3-662-49529-2_49
http://dx.doi.org/10.1007/978-3-662-49529-2_50
http://dx.doi.org/10.1007/978-3-662-49529-2_51
http://dx.doi.org/10.1007/978-3-662-49529-2_51
http://dx.doi.org/10.1007/978-3-662-49529-2_52
http://dx.doi.org/10.1007/978-3-662-49529-2_52
http://dx.doi.org/10.1007/978-3-662-49529-2_52

A Faster FPT Algorithm and a Smaller Kernel
for Block Graph Vertex Deletion

Akanksha Agrawal1(B), Sudeshna Kolay2, Daniel Lokshtanov1,
and Saket Saurabh1,2

1 University of Bergen, Bergen, Norway
{akanksha.agrawal,daniello}@uib.no

2 Institute of Mathematical Sciences, Chennai, India
{skolay,saket}@imsc.res.in

Abstract. A graph G is called a block graph if every maximal
2-connected component of G is a clique. In this paper we study the
Block Graph Vertex Deletion from the perspective of fixed para-
meter tractable (FPT) and kernelization algorithms. In particular, an
input to Block Graph Vertex Deletion consists of a graph G and
a positive integer k, and the objective to check whether there exists a
subset S ⊆ V (G) of size at most k such that the graph induced on
V (G) \S is a block graph. In this paper we give an FPT algorithm with
running time 4knO(1) and a polynomial kernel of size O(k4) for Block

Graph Vertex Deletion. The running time of our FPT algorithm
improves over the previous best algorithm for the problem that runs in
time 10knO(1), and the size of our kernel reduces over the previously
known kernel of size O(k6). Our results are based on a novel connection
between Block Graph Vertex Deletion and the classical Feedback
Vertex Set problem in graphs without induced C4 and K4 − e. To
achieve our results we also obtain an algorithm for Weighted Feed-

back Vertex Set running in time 3.618knO(1) and improving over the
running time of previously known algorithm with running time 5knO(1).

1 Introduction

Deleting the minimum number of vertices from a graph such that the resulting
graph belongs to a family F of graphs, is a measure on how close the graph is to
the graphs in the family F . In the problem of vertex deletion, we ask whether
we can delete at most k vertices from the input graph G such that the result-
ing graph belongs to the family F . Lewis and Yannakakis [12] showed that for
any non-trivial and hereditary graph property Π on induced subgraphs, the ver-
tex deletion problem is NP-complete. Thus these problems have been subjected
to intensive study in algorithmic paradigms that are meant for coping with
NP-completeness [7,8,13,14]. These paradigms among others include applying

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007–2013) / ERC grant agreement no. 306992.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 1–13, 2016.
DOI: 10.1007/978-3-662-49529-2 1

2 A. Agrawal et al.

restrictions on inputs, approximation algorithms and parameterized complexity.
The focus of this paper is to study one such problem from the viewpoint of
parameterized algorithms.

Given a family F , a typical parameterized vertex deletion problem gets as
an input an undirected graph G and a positive integer k and the goal is to
test whether there exists a vertex subset S ⊆ V (G) of size at most k such that
G \ S ∈ F . In the parameterized complexity paradigm the main objective is to
design an algorithm for the vertex deletion problem that runs in time f(k)·nO(1),
where n = |V (G)| and f is an arbitrary computable function depending only on
the parameter k. Such an algorithm is called an FPT algorithm and such a
running time is called FPT running time. We also design a polynomial time
preprocessing algorithm that reduces the given instance to an equivalent one
with size as small as possible. This is mathematically modelled by the notion of
kernelization. A parameterized problem is said to admit a h(k)-kernel if there is
a polynomial time algorithm (the degree of the polynomial is independent of k),
called a kernelization algorithm, that reduces the input instance to an equivalent
instance with size upper bounded by h(k). In other words, let (x, k) be the input
instance and (x′, k′) be the reduced instance. Then, (x, k) ∈ Π if and only if
(x′, k′) ∈ Π. Also, |x′|, k′ ≤ h(k). If the function h(k) is polynomial in k, then
we say that the problem admits a polynomial kernel. For more background, the
reader may refer to the following monograph [6].

A graph G is known as a block graph if every maximal 2-connected component
in G is a clique. Equivalently, we can see a block graph as a graph obtained by
replacing each edge in a forest by a clique. A chordal graph is a graph which
has no induced cycles of length at least four. An equivalent characterisation of a
block graph is a chordal graph with no induced K4 − e [2,9]. The class of block
graphs is the intersection of the chordal and distance-hereditary graphs [9].

In this paper, we consider the problem which we call Block Graph Vertex

Deletion (BGVD). Here, as an input we are given a graph G and an integer
k, and the question is whether we can find a subset S ⊆ V (G) of size at most
k such that G \ S is a block graph. The NP-hardness of the BGVD problem
follows from [12].

Block Graph Vertex Deletion (BGVD) Parameter: k
Input: An undirected graph G = (V,E), and a positive integer k
Question: Is there a set S ⊆ V , of size at most k, such that G\S is a block
graph?

Kim and Kwon [10] gave an FPT algorithm with running time O�(10k) and
a kernel of size O(k6) for the BGVD problem. In this paper we improve both
these results via a novel connection to Feedback Vertex Set problem.

Our Results and Methods. We start by giving the results we obtain in this
article and then we explain how we obtain these results. Our three main results
are:

A Faster FPT Algorithm and a Smaller Kernel 3

Theorem 1. BGVD has an FPT algorithm running in time O�(4k).

Theorem 2. BGVD admits a factor four approximation algorithm.

Theorem 3. BGVD has a kernel of size O(k4).

Our two of the theorems improve both the results in [10]. That is, the running
time of our FPT algorithm improves over the previous best algorithm for the
problem that runs in time 10knO(1), and the size of our kernel reduces over the
previously known kernel of size O(k6).

Our results are based on a connection between the Weighted-FVS and
BGVD problems. In particular we show that if the given input graph does not
have induced four cycles or diamonds (K4−e) then we can construct an auxiliary
bipartite graph and solve Weighted-FVS on it. This results in a faster FPT

algorithm for BGVD. In the algorithm that we give for the BGVD problem,
as a sub-routine we use the algorithm for the Weighted-FVS problem. For
obtaining a better polynomial kernel for BGVD, most of our Reduction Rules
are same as those used in [10]. On the way to our result we also design a factor
four approximation algorithm for BGVD.

Finally, we talk about Weighted-FVS. For which, we also design a faster
algorithm than known in the literature. The Feedback Vertex Set problem
is one of the most well studied problems. Given an undirected graph G = (V,E)
and a positive integer k, the problem is to decide whether there is a set S ⊆ V
such that G \ S is a forest. Thus, S is a vertex subset that intersects with every
cycle of G. In the parameterized complexity setting, Feedback Vertex Set

parameterized by k, has an FPT algorithm. The best known FPT algorithm
runs in time O�(3.618k) [4,11]. The problem also admits a kernel on O(k2)
vertices [15]. Another variant of Feedback Vertex Set that has been studied
in parameterized complexity is Weighted Feedback Vertex Set, where each
vertex in the graph has some rational number as its weight.

Weighted-FVS Parameter: k
Input: An undirected graph G = (V,E), a weight function w : V → Q, and
a positive integer k
Output: The minimum weighted set S ⊆ V of size at most k, such that G\S
is a forest.

Weighted-FVS is known to be in FPT with an algorithm of running time
5knO(1) [3]. We obtain a faster FPT algorithm for Weighted-FVS. This algo-
rithm uses, as a subroutine, the algorithm for solving Weighted-Matroid

Parity [16]. In fact, this algorithm is very similar to the algorithm for Feed-

back Vertex Set given in [4,11]. Thus, our final new result is the following
theorem.

Theorem 4 [�]. Weighted-FVS has an FPT algorithm running in time
O�(3.618k).

Due to paucity of space, results stated without proof in the short version are
marked with [�]. These proofs can be found in the full version of the paper.

4 A. Agrawal et al.

2 Preliminaries

We start with some basic definitions and terminology from graph theory and
algorithms. We also establish some of the notation that will be used in this
paper.

We will use the O� notation to describe the running time of our algorithms.
Given f : N → N, we define O�(f(n)) to be O(f(n) · p(n)), where p(·) is some
polynomial function. That is, the O� notation suppresses polynomial factors in
the running-time expression. We denote the set of rational numbers by Q.

Graphs. A graph is denoted by G = (V,E), where V and E are the vertex
and edge sets, respectively. We also denote the vertex set and edge set of G by
V (G) and E(G), respectively. All the graphs that we consider are finite graphs,
possibly having loops and multi-edges. For any non-empty subset W ⊆ V (G),
the subgraph of G induced by W is denoted by G[W]; its vertex set is W and
its edge set consists of all those edges of E(G) with both endpoints in W . For
W ⊆ V (G), by G \ W we denote the graph obtained by deleting the vertices in
W and all edges which are incident to at least one vertex in W .

For a graph G, we denote the degree of vertex v in G by dG(v). A vertex
v ∈ V (G) is called as a cut vertex if the number of connected components in
G \ {v} is more than the number of connected components in G. For a vertex
v ∈ V (G), the neighborhood of v in G is the set NG(v) = {u|(v, u) ∈ E(G)}. We
drop the subscript G from NG(v), whenever the context is clear. Two vertices
u, v ∈ V (G) are called true-twins in G if N(u)\{v} = N(v)\{u}. For A ⊂ V (G),
an A-path in G is a path with at least one edge, whose end vertices are in A and
all the internal vertices are from V (G) \ A.

A weighted undirected graph is a graph G = (V,E), with a weight function
w : V (G) → Q. For a subset X ⊆ V (G), w(X) =

∑
v∈X w(v).

A feedback vertex set is a subset S ⊆ V (G) such that G \ S is a forest.
A minimum weight feedback vertex set of a weighted graph G is a subset X ⊆
V (G), such that G \ X is a forest and w(X) is minimum among all possible
weighted-fvs in G. In a graph with vertex weights, an FVS is called a weighted
feedback vertex set (weighted-fvs). Similarly, for a given positive integer k, a
minimum weighted-fvs of size k is a subset X ⊆ V (G) such that |X| ≤ k, G \ X
is a forest and w(X) is minimum among all possible weighted-fvs in G that are
of size at most k. Given a graph G and a vertex subset S ⊆ V (G), we say that
S is a block vertex deletion set if G \ S is a block graph.

A maximal 2-connected subgraph of a graph G is called a block. By K4 − e
we denote the graph obtained by removing an edge e from a complete graph on
4 vertices. For a graph G, let Vc denote the set of cut vertices of G, and B the
set of its blocks. We then have a natural bipartite graph F on Vc ∪ B formed
by the edges (v,B) if and only if c ∈ V (B). Note that for a block graph G, F
is a forest [5]. The bipartite graph F is called as the block forest of G. We will
arbitrarily root F at some vertex B ∈ V (F).

A Faster FPT Algorithm and a Smaller Kernel 5

A leaf block of a block graph G is a maximal 2-connected component with
at most one cut vertex. For a maximal 2-connected component C in G a vertex
v ∈ V (C) is called as an internal vertex if v is not a cut vertex in G.

We refer the reader to [5] for details on standard graph theoretic notation
and terminology we use in the paper.

3 FPT Algorithm for Block Graph Vertex Deletion

In this section, we present an FPT algorithm for the BGVD problem. First,
we look at the special case, when the input graph does not have any small
obstructions in the form of D4’s and C4’s. Here, D4 = K4 − e. We show that,
in this case, BGVD reduces to Weighted-FVS. Later, we solve the general
problem, using the algorithm of the special case.

3.1 Restricted BGVD

In this part, we solve the following special case of BGVD in FPT time.

Restricted BGVD Parameter: k
Input: A connected undirected graph G, which is {D4, C4}-free, and a pos-
itive integer k.
Question: Does there exist a set S such that G \ S is a block graph?

Let G be the input graph. Let C be the set of maximal cliques in G. We start
with the following simple observation about graphs without C4 and D4.

Lemma 1. Let G be a graph that does not contain C4 and D4 as an induced
subgraph then (a) any two maximal cliques intersect on at most one vertex and
(b) the number of maximal cliques in G is at most n2.

Proof. Let C1 and C2 be two maximal cliques in C. Since G is D4-free, V (C1) ∩
V (C2) can have at most one vertex. Thus, each edge of G belongs to exactly one
maximal clique. This gives a bound of n2 on the number of maximal cliques. 	

We construct an auxiliary weighted bipartite graph Ĝ in the following way:
Ĝ is a bipartite graph with vertex set bipartition V (G) ∪ VC , where VC is the
set where we add a vertex vC corresponding to each C ∈ C. Note that there is a
bijective correspondence between the vertices of VC and the maximal cliques in
C. A vertex v of a clique C is called external if it is part of at least two maximal
cliques in C. We add an edge between a vertex v ∈ V (G) and a vertex vC ∈ VC
in E(Ĝ) if and only if v is an external vertex of the clique C ∈ C.

Lemma 2. Let G be a graph without induced C4 and D4 and S ⊆ V (G). Then
S is block vertex deletion set of G if and only if Ĝ \ S is acyclic.

6 A. Agrawal et al.

Proof. First, let S be a block vertex deletion set solution for G. Suppose that
Ĝ \ S has a cycle C. Notice that C cannot be a C4, as this corresponds to two
maximal cliques that share 2 vertices. Thus, C is an even cycle of length at least
6. Suppose C has length 6. This corresponds to maximal cliques C1, C2, C3 such
that u = C1 ∩ C2, v = C2 ∩ C3 and w = C1 ∩ C3. Since C1, C2, C3 are distinct
maximal cliques, at least one of them must have a vertex other than u, v or w.
Without loss of generality, let C1 have a vertex x /∈ {u, v, w}. Then, the set
{x, u, v, w} forms a D4 in G. However, this is not possible, as G did not have a
D4 to start with. Hence, C must be an even cycle of length at least 8. However,
this corresponds to a set of maximal cliques and external vertices, such that the
external vertices form an induced cycle of length at least four. This contradicts
that S was a block vertex deletion set for G. Thus, Ĝ \ S must be acyclic.

On the other hand, let Ĝ\S be acyclic. Suppose G\S has an induced cycle C,
of length at least four. As C is an induced cycle of length at least four, no two
edges of C can belong to the same maximal clique. For an edge (u, v) of C, let
C(u,v) be the maximal clique containing it. Also, let c(u,v) be the corresponding
vertex in Ĝ. We replace the edge (u, v) in C by two edges (u, c(u,v)) and (v, c(u,v)).
In this way, We obtain a cycle C ′ of Ĝ \ S, which is a contradiction. Thus, S
must be a block vertex deletion set for G. 	

If the input graph G is without induced C4 and D4 then Lemma 2 tells us that
to find block vertex deletion set of G of size at most k one can check whether
there is a feedback vertex set of size at most k for Ĝ contained in V (G). To
enforce that we find feedback vertex set for Ĝ completely contained in V (G)
we solve an appropriate instance of Weighted-FVS. In particular we give the
weight function w : V (Ĝ) → N as follows. For v ∈ V (G), w(v) = 1 and for
vC ∈ VC , w(vC) = n4. Clearly, V (G) is a feedback vertex set of Ĝ and thus the
weight of a minimum sized feedback vertex set of Ĝ is at most n. This implies
that running an algorithm for Weighted-FVS on an instance (Ĝ, w, k) either
returns a feedback vertex set contained inside V (G) or returns that the given
instance is a No instance.

Theorem 5. Restricted BGVD can be solved in O�(3.618k).

Proof. Given an instance (G, k) of Restricted BGVD. We apply the Weighted-

FVS on the instance (Ĝ, w, k), where Ĝ is obtained as described above. Let S be
the weighted-fvs of size at most k in Ĝ returned by Weighted-FVS (of course
if there exists one). By the discussion above we know that if Weighted-FVS

does not return that the given instance is a No instance then S ⊆ V (G). If
it returns that the given instance is a No instance then we return the same.
Else, assume that S is non-empty. Now we check whether w(S) is at most k
or not. Since every vertex in V (G) has been assigned weight one we have that
w(S) = |S| and thus if w(S) ≤ k then we return S as block vertex deletion set
of G. In the case when w(S) > k we return that the given instance is a No

instance for Restricted BGVD. Correctness of these steps are guaranteed by
Lemma 2. The running time of the algorithm is dominated by the running time
of Weighted-FVS and thus it is O�(3.618k). This completes the proof. 	

A Faster FPT Algorithm and a Smaller Kernel 7

3.2 Block Graph Vertex Deletion

We are now ready to describe an FPT algorithm for BGVD, and hence prove
Theorem 1. We design the algorithm for the general case with the help of the
algorithm for Restricted BGVD.

Proof (of Theorem 1). Let O be a D4 or C4 present in the input graph G. For
any potential solution S, at least one of the vertices of O must belong to S.
Therefore, we branch on the choice of these vertices, and for every vertex v ∈ O,
we recursively apply the algorithm to solve BGVD instance (G \ {v}, k − 1). If
one of these branches returns a solution X, then clearly X ∪{v} is a block vertex
deletion set of size at most k for G. Else, we return that the given instance is a
No instance. On the other hand, if G is {D4, C4}-free, then we do not make any
further recursive calls. Instead, we run the algorithm for Restricted BGVD

on G and return the output of the algorithm. Thus, the running time of this
algorithm is upper bounded by O∗(4k). 	

4 An Approximation Algorithm for BGVD

In this section, we present a simple approximation algorithm A1 for BGVD.
Given a graph G, we give a block vertex deletion set S of size at most 4 · OPT,
where OPT is the size of a minimum sized block vertex deletion set for G.

Proof (of Theorem 2). Let G be the given instance of BGVD and OPT be the
size of a minimum sized block vertex deletion set for G and SOPT be a minimum
sized block vertex deletion set for G.

Let S be a maximal family of D4 and C4 such that any two members of
S are pairwise disjoint. One can easily construct such a family S greedily in
polynomial time. Let S1 be the set of vertices contained in any obstruction in S.
That is, S1 =

⋃
O∈S O. Since any block vertex deletion set must contain a vertex

from each obstruction in S and any two members of S are pairwise disjoint, we
have that |SOPT ∩ S1| ≥ |S|.

Let G′ = G \ S1. Observe that G′ does not contain either D4 or C4 as an
induced subgraph. Now we construct Ĝ′, as described in Sect. 3.1. We apply
the factor two approximation algorithm A given in [1] on the instance (Ĝ′, w).
This returns an fvs S2 of Ĝ′ such that w(S2) is at most twice the weight of a
minimum weight feedback vertex set. By out construction S2 ⊆ V (G′). Lemma 2
implies that S2 is a factor two approximation for BGVD on G′. We return the
set S = S1 ∪ S2 as our solution. Since SOPT \ S1 is also an optimum solution for
G′ we have that |S2| ≤ 2|SOPT \ S1|.

It is evident that S is block vertex deletion set of G. To conclude the proof
of the theorem we will show that |S| ≤ 4OPT. Towards this observe that

|S| = |S1| + |S2| ≤ 4|S| + 2|SOPT \ S1|
≤ 4|SOPT ∩ S1| + 2|SOPT \ S1|
≤ 4|SOPT| = 4OPT.

This completes the proof. 	

8 A. Agrawal et al.

5 Improved Kernel for Block Graph Vertex Deletion

In this section, we give a kernel of O(k4) vertices for BGVD. Let (G, k) be an
instance of the BGVD problem. We start with some of the known reduction
rules from [10].

Reduction Rule BGVD 1. If G has a component H, where H is a block
graph, then remove H from G.

Reduction Rule BGVD 2. If there is a vertex v ∈ V (G), such that G \ {v}
has a component H, where G[{v}∪V (H)] is a connected block graph then, remove
H from G.

Reduction Rule BGVD 3. Let S ⊆ V (G), where each u, v ∈ S are true-twins
in G. If |S| > k + 1, then remove all the vertices from S except k + 1 vertices.

Reduction Rule BGVD 4. Let t1, t2, t3, t4 be an induced path in G. For i ∈
{1, 2, 3}, let Si ⊆ V (G) \ {t1, t2, t3, t4} be a clique in G such that the following
holds.

– For i ∈ {1, 2, 3}, v ∈ Si, NG(v) \ Si = {ti, ti+1}, and
– For i ∈ {2, 3}, NG(ti) = {ti−1, ti+1} ∪ Si−1 ∪ Si.

Remove S2 from G and contract the edge (t2, t3).

Proposition 1 (Proposition 3.1 [10]). Let G be a graph and k be a positive
integer. For a vertex v ∈ V (G), in O(kn3) time, we can find one of the following.

i. k + 1 pairwise vertex disjoint obstructions,
ii. k + 1 obstructions whose pairwise intersection is exactly v,
iii. S′

v ⊆ V (G), such that |S′
v| ≤ 7k and G \ S′

v has no block graph obstruction
containing v.

Reduction Rule BGVD 5. Let v ∈ V (G) and G′ = G \ {v}. We remove the
edges between NG(v) from G′, i.e. E(G′) = E(G′) \ {(u,w)|u,w ∈ NG(v)}. In
G′ if there are at least 2k + 1 vertex-disjoint NG(v)-paths in G′ then we do one
of the following.

– If G contains k + 1 vertex disjoint obstructions, then return that the graph is
a no-instance.

– Otherwise, delete v from G and decrease k by 1.

The Reduction rules BGVD 1 to BGVD 5 are safe and can be applied in
polynomial time [10]. For sake of clarity we denote the reduced instance at each
step by (G, k). We always apply the lowest numbered Reduction Rule, in the
order that they have been stated, that is applicable at any point of time. For the
rest of the discussion, we assume that Reduction rules BGVD 1 to BGVD 5 are
not applicable.

A Faster FPT Algorithm and a Smaller Kernel 9

For a vertex v ∈ V (G), by Proposition 1, we may find k + 1 pairwise vertex-
disjoint obstructions, and we can safely conclude that the graph is a No instance.
Secondly, if we find k + 1 obstructions whose pairwise intersection is exactly v
then the Reduction rule BGVD 5 will be applicable. Thus, we assume that
for each vertex v ∈ V (G), the third condition of Proposition 1 holds. In other
words, we have a set S′

v of size at most 7k, such that G\S′
v does not contain any

obstruction passing through v. In fact, for each v ∈ V (G), we can find a block
vertex deletion set Sv ⊆ V (G) \ {v} of bounded size.

Observation 1 [�]. For every vertex v ∈ V (G), we can find in nO(1) time, a
set Sv ⊆ V (G) \ {v} such that |Sv| ≤ 11k and G \ Sv is a block graph.

For a vertex v ∈ V (G), component degree of v is the number of connected
components in C, where C is the set of connected components in G \ (Sv ∪ {v})
that have a vertex adjacent to v. We give a reduction rule that bounds the
component degree of a vertex v ∈ V (G), using Expansion Lemma [15].

A q-star, q ≥ 1, is a graph with q + 1 vertices, one vertex of degree q and all
other vertices of degree 1. Let B be a bipartite graph with the vertex bipartition
as (X,Y). A set of edges M ⊆ E(B) is called a q-expansion of X into Y if
(i) every vertex of X is incident with exactly q edges of M and (ii) M saturates
exactly q|X| vertices in Y , i.e. edges in M are adjacent to exactly q|X| vertices
in Y .

Lemma 3 (Expansion Lemma). Let q be a positive integer and B be a bipar-
tite graph with vertex bipartition (X,Y) such that |Y | ≥ q|X| and there are
no isolated vertices in Y . Then, there exist nonempty vertex sets X ′ ⊆ X and
Y ′ ⊆ Y such that:

1. X ′ has a q-expansion into Y ′ and
2. no vertex in Y ′ has a neighbour outside X ′, i.e. N(Y ′) ⊆ X ′.

Furthermore, the sets X ′ and Y ′ can be found in polynomial time.

See [4] for the version of the Lemma 3 stated above. For a vertex v ∈ V (G), let
Cv be the set of connected components in G\(Sv∪{v}) that have a vertex adjacent
to v. Consider a connected component C ∈ Cv, such that no vertex u ∈ V (C)
is adjacent to any vertex in Sv. But then, G \ {v} has a component which
is a block graph (namely, the connected component C) therefore, Reduction
rule BGVD 2 is applicable, a contradiction to the assumption that none of the
previous Reduction rules are applicable. Therefore, for each C ∈ C there is a
vertex u ∈ V (C) and s ∈ Sv, such that (u, s) ∈ E(G). Let D be a vertex set,
with a vertex d corresponding to each component D ∈ C. Consider the bipartite
graph Bv with the vertex set bipartitioned as (D, Sv). There is an edge between
d ∈ D and s ∈ Sv if and only if the component D corresponding to which the
vertex d was added to D has a vertex ud such that (ud, s) ∈ E(G).

10 A. Agrawal et al.

Reduction Rule BGVD 6. For a vertex v ∈ V (G) if |Cv| > 33k, then we do
the following.

– Let D′ ⊆ D and S ⊆ Sv be the sets obtained after applying Lemma3 with
q = 3, X = Sv and Y = D;

– For each d ∈ D′, let the component corresponding to d be D ∈ Cv. Delete all
the edges between (u, v), where u ∈ V (D);

– For each s ∈ S, add two vertex disjoint paths between v and s.

Safeness of the Reduction rule BGVD 6 follows from the safeness of Reduc-
tion rule 6 in [10].

5.1 Bounding the Number of Blocks in G \ A

Using the approximation algorithm for BGVD we compute an approximate
solution A of size at most 4k. Of course if |A| > 4k then we can immediately
return that G is a No instance. First, we bound the number of leaf blocks in
G\A, when none of the Reduction rules apply. Note that G\A is a block graph,
since A is an approximate solution to BGVD. For v ∈ A, let S′

v be the set
obtained from Proposition 1 and Sv be the set obtained from Observation 1. Let
Cv be the set of connected components in G \ (Sv ∪ {v}) which have a vertex
adjacent to v. All the connected components in G\A, which do not have a vertex
that is adjacent to v, must be adjacent to some v′ ∈ A. Otherwise, Reduction
rule BGVD 1 will be applicable. Also, all the leaf blocks in G \ A must have an
internal vertex that is adjacent to some vertex in A, since the Reduction rules
BGVD 1 and BGVD 2 are not applicable. The number of leaf blocks, in G \ A,
whose set of internal vertices have a non-empty intersection with S′

v, is at most
7k. Therefore, it is enough to count, for each v ∈ A, the number of leaf blocks
in Cv. In the Observation 2, we give a bound on the number of leaf blocks in
G \ A, not containing any vertex from S′

v.

Observation 2 [�]. For v ∈ A, the number of leaf blocks in G\A not containing
any vertex from S′

v is at most the number of leaf blocks in G \ (Sv ∪ {v}).

Therefore, for each v ∈ A we count those leaf blocks in Cv which do not
contain any vertex from S′

v.

Lemma 4. Consider a vertex v ∈ V (G) and its corresponding set Sv. Let C be
the set of connected components in G \ (Sv ∪ {v}). For each C ∈ C, there is a
block B̃ in C, such that NC(v) ⊆ V (B̃).

Proof. Let C be the set of connected components of G \ (Sv ∪ {v}), v ∈ V (G).
By definition of Sv, for each C ∈ C, C ∪ {v} is a block graph.

If for some C ∈ C, NC(v) = ∅, then the condition is trivially satisfied for
that connected component C. Let C ∈ C be a connected component such that
NC(v) = ∅. Let t be a vertex in NB(v), where B is a block in C. Let B′ be a
block in C, where B′ = B and B′ has a vertex t′ ∈ V (B′)\V (B) that is adjacent

A Faster FPT Algorithm and a Smaller Kernel 11

to v. Note that B,B′ are in the same connected component C. Let P be the
shortest path from t to t′.

We first argue for the case when (t, t′) /∈ E(G). Therefore, the path P has
at least 2 edges. We prove that we can find an obstruction, by induction on the
length of the path (number of edges). If length of path P is 2, say P = t, u, t′.
If (u, v) ∈ E(G), then {t, t′, u, v} forms an induced D4, otherwise they form an
induced C4, contradicting that C ∪ {v} is a block graph.

Let us assume that we can find an obstruction if the path length is l. We
now prove it for paths of length l + 1. Let P = t, x1, x2, . . . , xl−1, t

′ and y be the
first vertex other than t in P such that (y, v) ∈ E(G). If y = t′, then P along
with v forms an induced cycle of length at least 5, contradicting that C ∪ {v}
is a block graph. If y = x1, then {t, x1, x2, v} either forms a D4, the case when
(x2, v) ∈ E(G), or P̂ = x1, x2, . . . , t

′ is a path of shorter length with at least 2
edges and by induction hypothesis has an obstruction along with v. Otherwise,
P ′ = t, x1, . . . , y is a path of length less than l, with at least 2 edges, such that
(y, t) ∈ E(G). Therefore, by induction hypothesis there is an obstruction along
with the vertex v, contradicting that C ∪ {v} is a block graph.

From the above arguments it follows that if v has a neighbour t in block B
in C, then v cannot have a neighbour t′ in block B′, if the shortest path between
t, t′ has at least 2 edges.

If (t, t′) ∈ E(G), then t, t′ are contained in some block B̂. If v is adjacent to
any other vertex u not in V (B̂) then at most one of (t, u) or (t′, u) can be an
edge in G, since t, t′ and u are in different blocks. If there is an edge, say (t, u),
then t, t′, u, v forms an induced D4, contradicting that C ∪ {v} is a block graph.
Otherwise, there is a path with at least two edges between u and t. Therefore,
by the previous arguments we can find an obstruction along with the vertex v.
Therefore, NC(v) ⊆ V (B̂) when (t, t′) ∈ E(G).

Hence, it follows that there is a block B̃ in C such that NC(v) ⊆ V (B̃). 	

This leads us to the following Lemma.

Lemma 5 [�]. For every v ∈ A , the number of leaf blocks in Cv is O(k).

Observe that in G \ A, a vertex v ∈ A can be adjacent to at most O(k) leaf
blocks by Observation 2 and Lemma 5. Also, for a leaf block B in G \ A, there
must be an internal vertex b ∈ V (B), such that b is adjacent to some vertex in
Sv, since the Reduction rule BGVD 2 is not applicable. Therefore, the number
of leaf blocks in G \ A is O(k2).

Lemma 6 [�]. The number of blocks B in G \ A such that the vertex set of B
intersects with the vertex set of at least three other block in G \ A is O(k2).

Let L be the of leaf blocks in G \ A and T be the set of blocks in G \ A
such that each block in T intersects with at least three other blocks in G \ A.
By Lemmas 5 and 6, we have that |L| = O(k2) and |T | = O(k2).

Let B be a block in G∗ = G \ (Sv ∪ {v}) such that the vertex set of B has
exactly two cut vertices, and intersects with exactly two blocks of G∗. Further-
more, the vertex set of B has an empty intersection with leaf blocks of G∗ and

12 A. Agrawal et al.

those blocks in G∗ which vertex set intersects with at least three other blocks
of G∗. Also, B has a vertex that is neighbor to v. Such blocks are called nice
degree two blocks of v. If a block satisfies the above conditions for some vertex
w ∈ A, the block is called a nice degree two block. We denote the set of nice
degree two blocks by T1.

Lemma 7 [�]. Let G∗ = G \ (Sv ∪{v}). Then G∗ has at most O(k) nice degree
two blocks of v.

What remains is to bound the number of blocks which have exactly two cut
vertices and are not nice degree two blocks.

Lemma 8 [�]. The number of blocks in G \ A with exactly two cut vertices is
O(k2).

Now, we have a bound on the total number of blocks in G \ A.

Lemma 9. Consider a graph G, a positive integer k and an approximate block
vertex deletion set set A of size O(k). If none of the Reduction rules BGVD 1 to
BGVD 6 is applicable then the number of blocks in G \ A is bounded by O(k2).

Proof. Follows from Lemmas 5, 6 and 8. 	

5.2 Bounding the Number of Internal Vertices
in a Maximal Clique of the Block Graph

We start by bounding the number of internal vertices in a maximal 2-connected
component of G\A. Consider a block B in G\A. We partition the internal vertices
VI(B) of block B into three sets B,R and I depending on the neighborhood
of A in block B. We also partition the vertices in A depending on the number
of vertices they are adjacent to in B. In Lemma 10 we show that the number of
internal vertices in a block B of G \ A is upper bounded by O(k2). We do so
by partitioning the vertices into different sets and bounding each of these sets
separately.

Lemma 10 [�]. Let (G, k) be an instance to BGVD and let A be an approxi-
mate block vertex deletion set of G of size O(k). If none of the Reduction rules
BGVD 1 to BGVD 6 is applicable then the number of internal vertices in a block
B of G \ A is bounded by O(k2).

We wrap up our arguments to show a O(k4) sized vertex kernel for BGVD,
and hence prove Theorem 3.

Proof (of Theorem 3). Let (G, k) be an instance to BGVD and let A be an
approximate block vertex deletion set of G of size O(k). Also, assume that none
of the Reduction rules BGVD 1 to BGVD 6 are applicable. By Theorem 9, the
number of blocks in G \ A is bounded by O(k2). By Lemma 10 the number of
internal vertices in a block of G \ A is bounded by O(k2). Also note that the
number of cut-vertices in G\A is bounded by the number of blocks in G\A, i.e.
O(k2). The number of vertices in G \ A is sum of the internal vertices in G \ A
and the number of cut vertices in G \A. Therefore, |V (G)| = |V (G \A)|+ |A| =
(O(k2) · O(k2) + O(k2)) + O(k) = O(k4). 	

A Faster FPT Algorithm and a Smaller Kernel 13

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discret. Math. 12(3), 289–297 (1999)

2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, Philadelphia (1999)

3. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for
feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Switzerland
(2015)

5. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

6. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, New York (2006)

7. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S., F-deletion, P.: Approxima-
tion, kernelization and optimal FPT algorithms. In: FOCS (2012)

8. Fujito, T.: A unified approximation algorithm for node-deletion problems. Discrete
Appl. Math. 86, 213–231 (1998)

9. Howorka, E.: A characterization of ptolemaic graphs. J. Graph Theor. 5(3),
323–331 (1981)

10. Kim, E.J., Kwon, O.: A polynomial kernel for block graph vertex deletion. CoRR,
abs/1506.08477 (2015)

11. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf.
Process. Lett. 114(10), 556–560 (2014)

12. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

13. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM 41, 960–981 (1994)

14. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms 9(4), 30 (2013)

15. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms 6(2),
32: 1–32: 8 (2010)

16. Tong, P., Lawler, E.L., Vazirani, V.V.: Solving the weighted parity problem for
gammoids by reduction to graphic matching. Technical report UCB/CSD-82-103,
EECS Department, University of California, Berkeley, April 1982

A Middle Curve Based on Discrete
Fréchet Distance

Hee-Kap Ahn1, Helmut Alt2, Maike Buchin3, Eunjin Oh1(B),
Ludmila Scharf2, and Carola Wenk4

1 Pohang University of Science and Technology, Pohang, Korea
{heekap,jin9082}@postech.ac.kr

2 Free University of Berlin, Berlin, Germany
{alt,scharf}@mi.fu-berlin.de

3 Ruhr University Bochum, Bochum, Germany
maike.buchin@rub.de

4 Tulane University, New Orleans, USA
cwenk@tulane.edu

Abstract. Given a set of polygonal curves we seek to find a middle
curve that represents the set of curves. We require that the middle curve
consists of points of the input curves and that it minimizes the discrete
Fréchet distance to the input curves. We present algorithms for three
different variants of this problem: computing an ordered middle curve,
computing an ordered and restricted middle curve, and computing an
unordered middle curve.

1 Introduction

Sequential point data, such as time series and trajectories, are ever increasing
due to technological advances, and the analysis of these data calls for efficient
algorithms. An important analysis task is to find a “representative” or “middle”
curve for a set of similar curves. For instance, this could be the route of a group
of people or animals traveling together. Or it could be a representation of a
handwritten letter for a class of similar handwritten letters. Such a middle curve
provides a concise representation of the data, which is useful for data analysis
and for reducing the size of the data, possibly by many magnitudes.

Since sampled locations are more reliable than positions interpolated in
between those, we seek a middle curve consisting only of sampled point loca-
tions. The middle curve should then be as close as possible to the path of the
individuals, hence we ask for it to minimize the discrete Fréchet distance to
these. The Fréchet distance [1] and the discrete Fréchet distance [5] are well-
known distance measures, which have been successfully used before in analyzing
handwritten characters [7] and trajectories [2,9].

This work was partially supported by research grant AL 253/8-1 from Deutsche
Forschungsgemeinschaft (German Science Association), and by the National Science
Foundation under grant CCF-1301911. Work by Ahn and Oh was supported by the
NRF grant 2011-0030044 (SRC-GAIA) funded by the government of Korea.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 14–26, 2016.
DOI: 10.1007/978-3-662-49529-2 2

A Middle Curve Based on Discrete Fréchet Distance 15

(a) unordered

P

Q

R

(b) ordered

P

Q

R

(c) restricted

P

Q

R

Fig. 1. Illustration of the three different cases. The curve R is an optimal middle curve
for each case. The two-way arrow which points to a point in P ∪ Q and a point in R
indicates a mapping between two points realizing the discrete Fréchet distance.

We consider three variants of this problem, which we introduce now more
formally for two curves. Given two point sequences P and Q, we wish to compute
a middle curve R consisting of points from P ∪Q that minimizes max(dF (R,P),
dF (R,Q)), where dF denotes the discrete Fréchet distance. In the following we
assume that each point in R uniquely corresponds to a point in P or Q (in
particular, if P and Q share points). We say a middle curve R is ordered, if
any two points of P occurring in R have the same order as in P , likewise with
points from Q. And we call an ordered middle curve R restricted, if points on R
are mapped to themselves in a matching realizing the discrete Fréchet distance.
Recall that points from R originate from P or Q, hence this seems a natural
restriction. Furthermore, we distinguish whether points may occur multiple times
or not (but still respecting the order/restriction if applicable).

Figure 1 illustrates the three cases we consider: the ordered, restricted, and
unordered cases. Note how adding the restrictions (from unordered to restricted)
changes the middle curve and increases the distance to the input curves. Requir-
ing to respect the order of the input curves seems very natural. However, as we
will see, the unordered case allows for the most efficient algorithm. Matching a
vertex to itself on the middle curve is also natural. Furthermore, we will see that
the restricted case allows for a more efficient algorithm.

Related Work. Several papers [3,6,8] study the problem of finding a middle curve
but without the restriction that the middle curve should consist of points of the
input curves. Buchin et al. [3] and Kreveld et al. [8] both require the middle
curve to use parts of edges of the input. Buchin et al. aim to always “stay
in the middle” in the sense of a median and give an O(k2n2)-time algorithm,
where k is the number of given curves and n is the number of vertices in each
curve. Kreveld et al. aim to be as close as possible to all trajectories at any
time and allow small jumps between different trajectories and give an O(k3n)-
time algorithm. Note that neither of these approaches makes use of the Fréchet
distance or its variants. Using neither input vertices nor input edges, Har-Peled
and Raichel [6] show that a curve minimizing the Fréchet distance to k input
curves can be computed in O(nk) time in the k-dimensional free space using the
radius of the smallest enclosing disk as “distance”.

16 H.-K. Ahn et al.

RR

P

P

Q
Q

(a) (b)

ε

ε

Fig. 2. (a) The middle curve may need to consist of vertices from both curves. (b) The
2-approximation is tight.

2-Approximation. A simple observation is that any of the input curves is a 2-
approximation for minimizing the distance, which follows by triangle inequality.
The 2-approximation is tight, as the example in Fig. 2 shows. We observe, how-
ever, that for an optimal middle curve we may need to choose a subset of vertices
from both curves.

Our Results. We present algorithms for three variants of this problem for k ≥ 2
curves of size at most n each:

1. Ordered case: An O(n2k)-time algorithm for computing an optimal ordered
middle curve.

2. Restricted case: An O(nk logk n)-time algorithm for computing an optimal
restricted middle curve.

3. Unordered case: An O(nk log n)-time algorithm for computing an optimal
unordered middle curve.

In the following sections, we present the algorithms for these cases. The
algorithms for the restricted and the unordered cases allow points to appear
multiple times. In the ordered case, we give algorithms for both.

Note that all algorithms run in time exponential in k, the number of trajec-
tories. Hence these are practical only for small k. Other algorithms that compute
variants of the Fréchet distance for k curves such as [4] and [6] also take time
exponential in k due to the use of a k-dimensional free space diagram. Hence we
do not expect faster algorithms for finding a middle curve based on the (discrete)
Fréchet distance.

2 Algorithm for the Ordered Case

Here we present a dynamic programming algorithm for computing an ordered
middle curve R. We first consider the case of two input curves P = (p1, . . . , pn)
and Q = (q1, . . . , qm), and we do not allow multiple occurrences of the same
point on R. Later we show how to generalize the algorithm to multiple input
curves and to allow multiple point occurrences. Let Pi, 1 ≤ i ≤ n denote the
prefix (p1, ..., pi) of P , where P0 is defined as the empty sequence.

A Middle Curve Based on Discrete Fréchet Distance 17

A

qj

pi

qj

pi

B

qj

pi

D

qj

pi

F

qj

pi

G

qj

pi

C

qj

pi

E

R R R R RRR

Fig. 3. Illustration of cases in the dynamic programming.

The dynamic programming algorithm operates with four-dimensional
Boolean arrays of the form X[i, j, k, l], 0 ≤ i, k ≤ n, 0 ≤ j, l ≤ m, where
X[i, j, k, l] is true iff there exists an ordered sequence R from points in Pi ∪ Qj

with
max(dF (R,Pk), dF (R,Ql)) ≤ ε.

We say in this case that R covers Pk and Ql (at distance ε). Clearly, the decision
problem has a positive answer iff X[n,m, n,m], or any X[i, j, n,m], is true.

In order to determine the value of some X[i, j, k, l] from entries of X with
lower indices, we need more information, particularly, whether there is a covering
sequence R in which the points pi and qj occur, and if they do, whether they
occur in the interior or at the end of the sequence. To this end, we can represent
the array X as the component-wise disjunction of seven Boolean arrays

X = A ∨ B ∨ C ∨ D ∨ E ∨ F ∨ G.

For each array defined below, a sequence R covering Pk and Ql exists with the
following properties, respectively:

A[i, j, k, l]: R contains neither pi nor qj .
B[i, j, k, l]: R contains pi in its interior but does not contain qj .
C[i, j, k, l]: R ends in pi but does not contain qj .
D[i, j, k, l]: R contains qj in its interior but does not contain pi.
E[i, j, k, l]: R ends in qj but does not contain pi.
F [i, j, k, l]: R contains qj in its interior and ends in pi.
G[i, j, k, l]: R contains pi in its interior and ends in qj .

Observe that R cannot contain both pi and qj in its interior. See Fig. 3 for an
illustration of the seven different cases that can occur. Our dynamic program-
ming algorithm is based on these recursive identities for i, j, k, l ≥ 0:

A[0, 0, 0, 0] = true
A[0, 0, k, l] = false for k ≥ 1 or l ≥ 1
A[i, 0, k, l] = X[i − 1, 0, k, l]
A[0, j, k, l] = X[0, j − 1, k, l]
A[i, j, k, l] = X[i − 1, j − 1, k, l]
B[i, 0, k, l] = B[0, j, k, l] = false
B[i, j, k, l] = G[i, j − 1, k, l] ∨ B[i, j − 1, k, l]

18 H.-K. Ahn et al.

The first equality for B holds since pi must be at the end of R if no points from
Q are available. In the second equality, G[i, j − 1, k, l] accounts for the case that
R contains qj−1 (which then must be at the end), and B[i, j −1, k, l] for the case
that it does not.

In the following, let cl(p, q) denote the truth value of ‖p − q‖ ≤ ε, for two
points p and q. The following identities hold for C.

C[i, j, 0, l] = C[i, j, k, 0] = C[0, j, k, l] = false
C[i, j, k, l] = cl(pi, pk) ∧ cl(pi, ql) ∧

(A[i, j, k − 1, l − 1] ∨ A[i, j, k − 1, l] ∨ A[i, j, k, l − 1] ∨
C[i, j, k − 1, l − 1] ∨ C[i, j, k − 1, l] ∨ C[i, j, k, l − 1])

The first two equalities hold because only an empty middle curve can cover 0
points. The equality for C[i, j, k, l] models the two cases of whether the final
point pi in R covers pk and ql only, or whether it also covers additional points
that occur earlier in the sequences Pk and Ql. The entries of D and E can
be determined analogously to the ones of B and C with the roles of pi and qj
exchanged. The identities of F have similar explanations as the ones of C:

F [0, j, k, l] = F [i, 0, k, l] = F [i, j, 0, l] = F [i, j, k, 0] = false
F [i, j, k, l] = cl(pi, pk) ∧ cl(pi, ql)∧

(D[i, j, k − 1, l − 1] ∨ D[i, j, k − 1, l] ∨ D[i, j, k, l − 1]∨
E[i, j, k − 1, l − 1] ∨ E[i, j, k − 1, l] ∨ E[i, j, k, l − 1]∨
F [i, j, k − 1, l − 1] ∨ F [i, j, k − 1, l] ∨ F [i, j, k, l − 1])

The entries of G can be determined analogously to the ones of F with the roles
of pi and qj exchanged.

The dynamic programming algorithm runs in time O(n2m2), which is the
size of each of the seven arrays. Not only the existence of a covering sequence R,
but R itself can be computed by setting a pointer for each array entry of the form
Y [i, j, k, l], which is set to true, to the 4-tuple(s) of indices at the right hand
side of an equality that has made it true. Note that there can be an exponential
number of valid middle curves.

For the optimization problem, we can adapt a dynamic programming to com-
pute the minimal value such that a covering middle curve exists. For this, X takes
the minimum value of A to G; initialization is to 0|∞ instead of true|false;
∨ becomes min, and ∧ becomes max. In this way we can solve the optimization
problem in the same time as the decision problem.

The decision and optimization algorithms can be generalized to k sequences
P 1, ..., P k. The running time in this case is O(n2

1...n
2
k) for constant k, but the

number of arrays is 2k−1k + 2k − 1. The dynamic programming algorithm can
also be modified to allow multiple occurrences of points on R, which requires
distinguishing slightly more cases than before. Note that the length of a middle
curve is at most nk if points may not appear multiple times, and at most 2nk
if they may appear multiple times. The latter bound follows from a longest
monotone path in the array of size n2k.

A Middle Curve Based on Discrete Fréchet Distance 19

Theorem 1. For two polygonal curves with m and n vertices, the optimization
problem for the ordered case can be solved in O(m2n2) time. An optimal covering
sequence can be computed in the same time. For k ≥ 2 curves of size at most n
each, the optimization can be solved in O(n2k) time.

3 Algorithm for the Restricted Case

Now we consider the case where the reparameterizations are restricted to map
every vertex of R to itself in the input curve it originated from. This case allows
for a more efficient dynamic programming algorithm.

For this, we define arrays similar to Sect. 2. Let X[i, j], 0 ≤ i ≤ n, 0 ≤ j ≤ m,
be true iff there exists an ordered sequence R from points in Pi ∪ Qj with

max(dF (R,Pi), dF (R,Qj)) ≤ ε,

with the restriction that any vertex of R is mapped to itself in the input curve
it originated from. We say in this case that R restrictively covers Pi and Qj .
Clearly, the decision problem has a positive answer iff X[n,m] is true. Similar
to Sect. 2 we can write X as a disjunction of three Boolean arrays

X = A′ ∨ C ′ ∨ E′.

For each array defined below, a sequence R covering Pi and Qj exists with the
following properties, respectively:

A′[i, j]: R ends in neither pi nor qj (but may contain one of them in its
interior).
C ′[i, j]: R ends in pi (and may or may not contain qj in its interior).
E′[i, j]: R ends in qj (and may or may not contain pi in its interior).

In contrast to Sect. 2, we now only distinguish the cases by the last point of R.
Hence, we only distinguish three cases. (In comparison to the ordered case, A′

combines A,B,D, and C ′ combines C,F , and E′ combines E,G).
We compute all X[i, j] incrementally for increasing j and increasing i using

dynamic programming. Consider pi being matched to qj . We use the upper wedge
UP (i, j) to describe the resulting coverage of P and Q. Specifically, UP (i, j)
denotes the set of index pairs (i′, j′) such that ‖pi′′ − pi‖ ≤ ε and ‖qj′′ − pi‖ ≤ ε
for all i ≤ i′′ ≤ i′ and j ≤ j′′ ≤ j′. That is, UP (i, j) consists of the connected set
of index pairs (i′, j′) ≥ (i, j) that are covered by pi. The lower wedge LP (i, j)
denotes the set of index pairs (i′, j′) such that ‖pi′′−pi‖ ≤ ε and ‖qj′′−pi‖ ≤ ε for
all i′ ≤ i′′ ≤ i and j′ ≤ j′′ ≤ j. Furthermore, we define the extended lower wedge
L̂P (i, j) which, in addition to all points in the lower wedge LP (i, j) also contains
(i′, j′) immediately to the left or below, i.e., for which (i′ + 1, j′), (i′, j′ + 1), or
(i′ + 1, j′ + 1) is contained in LP (i, j). The wedges UQ[i, j], LQ[i, j], and L̂Q[i, j]
are defined analogously, consisting of point pairs (pi′ , qj′) for which pi′ and qj′

20 H.-K. Ahn et al.

pi

qj

i

jε

LP (i, j)

L̂P (i, j)

UP (i, j)

Fig. 4. Illustration of the wedges.

are both close to qi. Figure 4 illustrates these wedges for a pair (i, j). Using this
terminology we observe:

A′[i, j] ⇔ (∃i′ < i, j′ ≤ j : (C ′[i′, j′] ∧ (i, j) ∈ UP (i′, j′)))
∨ (∃i′ ≤ i, j′ < j : (E′[i′, j′] ∧ (i, j) ∈ UQ(i′, j′)))

C ′[i, j] ⇔ cl(pi, qj) ∧ (∃i′ ≤ i, j′ < j : (X[i′, j′] ∧ (i′, j′) ∈ L̂P (i, j)))
E′[i, j] ⇔ cl(pi, qj) ∧ (∃i′ < i, j′ ≤ j : (X[i′, j′] ∧ (i′, j′) ∈ L̂Q(i, j)))

During the dynamic programming, in order to efficiently compute the values
X[i, j] = A′[i, j] ∨ C ′[i, j] ∨ E′[i, j] we maintain the upper envelope X̄ of all true
elements in X. More specifically, we define X̄[i] = max{j | X[i, j] =true}. Note
that X as well as X̄ change during the dynamic programming for increasing j
and i.

We store X̄ in an augmented balanced binary search tree sorted on i. Each
leaf corresponds to an index i and stores X̄[i]. Each internal node v represents
the interval of indices stored in the leaves of the subtree rooted at v, and stores
two key values m[v] and M [v]. Here, m[v] is the minimum of all X̄[i] over all
leaves i in the subtree rooted at v, and M [v] is the maximum.

We need the following two operations.

1. Querying whether a rectangle intersects X̄. Given an extended lower wedge
with bottom-left corner (iB , jB) and top-right corner (iT , jT), we need to
check if there is an index pair (i, j) such that jB ≤ X̄[i] and iB ≤ i ≤ iT .
This can be done as follows. Consider the search paths from the root to
iB and iT . Let uc be the lowest common ancestor of iB and iT . Whenever
we descend into the right child at a node v on the path from uc to the
node iT , we check the maximum key value of the left child vL of v. The
interval corresponding to vL is fully contained in the interval [iB , iT]. Thus,
if M [vL] ≥ jB, the correct answer for the query is “yes”. Otherwise, we do
not need to consider the subtree rooted vL further. Whenever we descend
into the left child at a node on the path to iB , we check the answer for the
query analogously. Hence we can answer the query while we traverse the two
paths, which takes logarithmic time.

A Middle Curve Based on Discrete Fréchet Distance 21

2. Updating X̄. We are given an upper wedge whose bottom-left corner is
(iB , jB) and top-right corner is (iT , jT). We need to update X̄[i] to jT for
all iB ≤ i ≤ iT , if X̄[i] < jT .

We traverse the balanced binary search tree from the root as follows. Assume
that we reach a node v. If jT ≤ m[v] or the interval corresponding to v does
not intersect [iB , iT], then we do not need to update the values of the leaf
nodes in the subtree rooted at v. Hence we do not traverse this subtree.
If m[v] < jT and the interval corresponding to v intersects [iB , iT], then
we need to search further in the subtree rooted at v. So, we move to both
children of v.

Finally we reach some leaf nodes, which will be updated. Then we go back to
the root from those leaf nodes and update the key values for internal nodes
lying on the paths. It is easy to see that the running time of the update is
O(c log n), where c is the number of indices which are updated.

The algorithm consists of two parts: constructing all wedges and constructing
the free space matrix X.

Constructing All Wedges. We construct the wedge UP (i, j) as follows: For fixed
pi, we first find the largest k ≥ i such that all pi, . . . , pk are in the disk of radius
ε around pi. Then we find the largest l ≥ j such that all qj , . . . , ql are in the disk
of radius ε around pi. This determines the upper right corner (k, l) of UP (i, j).
Note that (k, l) is also the upper right corner for all UP (i, j′) for j ≤ j′ ≤ l.
Hence, all wedges UP (i, j) can be computed in O(m + n) time using two linear
scans, one over P and one over Q. The wedges UQ(i, j), LP (i, j), LQ(i, j) are
computed in a similar manner.

Constructing the Free Space Matrix X. First, initialize all X[i, j] to false, except
for X[0, 0] which is set to true. Then compute X[i, j] for j = 1 to m and for
i = 1 to n. In each iteration, we process (pi, qj) only if they can be matched to
each other, i.e., if cl(pi, qj).

If X[i, j] is false, i.e., we do not yet know of a middle curve covering Pi

and Qj , we first check whether adding pi or qj to a covering sequence extends
the coverage to here. For this, we check if L̂P (i, j) or L̂Q(i, j) intersects X̄. If
L̂P (i, j) intersects X̄ then pi can be added to a covering sequence, and we set
X[i, j] =true. Since in this case qj can be added in addition, we set a flag in
X[i, j] to P , indicating that pi has to be added first. Conversely, if L̂Q(i, j)
intersects X̄, then qj can be added to a covering sequence, and we do the same,
setting a flag for qj this time.

If X[i, j] is true, then both pi or qj can be added to a covering sequence,
hence we add the points covered by pi or qj , i.e., UP (i, j) and UQ(i, j), to X
and X̄. The wedge UP (i, j) is added to X and X̄ as follows: We update X̄ with
UP (i, j). During the update step we can identify all pairs (i′, j′) ∈ UP (i, j) with
¬X[i′, j′]; these are all (i′, j′) such that i′ is a leaf in X̄ that gets updated and

22 H.-K. Ahn et al.

max(jB , X̄[i′]) ≤ j′ ≤ jT where (iB , jB) is the lower left and (iT , jT) the upper
right corner of UP (i, j). We set all X[i′, j′] =true and store a pointer from (i′, j′)
to (i, j) that is labeled with P . Adding UQ(i, j) to X and X̄ is done in a similar
manner, but the pointers are labeled with Q. Note that the upper wedges are
added to X in such a way that each X[i, j] is touched only once, and at that
time it is set to true.

The algorithm can now be summarized as follows.
Set X[i, j] = false for all index pairs (i, j) except X[0, 0] which is set to true.
for j = 1 to m do

for i = 1 to n do
if cl(pi, qj) :

if ¬X[i, j]: If L̂P (i, j) or L̂Q(i, j) intersects X̄, set X[i, j] to true and

set the according flag in X[i, j].
if X[i, j]: Add UP (i, j) and UQ(i, j) to X and X̄.

Analysis. For the correctness of the algorithm, observe that if X[i, j] holds
because of A′[i, j], then it is marked when the last point of a covering is processed.
If X[i, j] holds by C ′[i, j] or E′[i, j], then this is handled in the ¬X[i, j]∧cl(pi, qj)
case of the algorithm.

The running time for computing all wedges is O((m + n)2) since for each
point pi ∈ P or qj ∈ Q, we perform a constant number of linear scans. For the
main part of the dynamic programming algorithm, when we consider an index
pair (i, j), we may perform a query on X̄ which takes O(log(mn)) time, and we
may add one or two upper wedges to X. The update operation that is part of
adding a wedge takes O(c log n) time, where c is the number of indices that are
updated. Note that X̄[i] is updated at most m times for each index i in total,
and X[i, j] is updated at most once for each index pair (i, j). Thus the running
time for the decision algorithm is O((m + n)2 + mn log(mn)).

Lemma 1. For two polygonal curves with m and n vertices, the decision problem
for the restricted case can be solved in O((m + n)2 + mn log(mn)) time.

Note that the algorithm allows multiple occurrences of vertices. However it
restricts that if a vertex occurs multiple times, then all vertices of the other
curve that occur in between are matched to that vertex in the discrete Fréchet
matching. Figure 5 shows an example of this.

Optimization. The optimal distance will take one of the distances between pairs
of points from P ∪ Q, hence we first sort all distances in O((m + n)2 log(mn))
time and again search over them using the decision algorithm.

Lemma 2. An optimal covering sequence for the restricted case can be computed
in O((m + n)2 log(mn) + mn log2(mn)) time.

Several Curves. For k > 2 curves the decision algorithm works the same with a
k−1 dimensional range tree for X̄ and runtime O(nk logk−1 n). We again search
over all distances between two points from any curves, so the optimal middle
curve can be computed in O(nk logk n) time.

A Middle Curve Based on Discrete Fréchet Distance 23

q2

q1
q3

p1

p2

p3

middle curve p0, p2, q1, p2

q0

p0

p0 p1 p2 p3

q0

q1

q2

q3

p2, q1

p2LP (2, 3) UP (2, 3)

UQ(2, 1)

UP (2, 1)LP (2, 1)

p0, q0

Fig. 5. An example of a middle curve R that uses a vertex (p2) multiple times.

Output a Middle Curve. Using the pointers set by the algorithm, the algorithm
can also output a middle curve. Note that a middle curve computed by the
algorithm may have up to 2nk vertices. This follows from the algorithm because
at each (i, j) at most two vertices (pi and qj) are added, and the length of a
longest monotone path in the nk grid is nk.

Theorem 2. For two polygonal curves with m and n vertices, the decision
problem for the restricted case can be solved in O((m + n)2 + mn log(mn))
time. An optimal covering sequence can be computed in O((m + n)2 log(mn) +
mn log2(mn)) time. For k ≥ 2 curves of size at most n each, the optimization
can be solved in O(nk logk n) time.

4 Algorithm for the Unordered Case

Let again P = (p1, . . . , pn) and Q = (q1, . . . , qm) be two input curves. To solve
the decision problem for the unordered case, we modify the dynamic program-
ming algorithm for computing the discrete Fréchet distance of two curves [5] as
follows. We consider the n × m matrix X, which we call the free space matrix.
Each entry X[i, j] corresponds to the pair (pi, qj) of points. In contrast to the
original algorithm, we color an entry X[i, j] free if and only if there exists a point
v from P or Q such that v has distance at most ε to both pi and qj . Then we
search for a monotone path within the free entries in X.

4.1 Algorithm for the Decision Problem

We describe how to compute the labels more efficiently for the decision problem.
Here, we use a circular sweep to determine for each point pi all points qj such
that X[i, j] is free, i.e., there is some point v of P or Q which has distance at
most ε to both pi and qj . Let Upi

(ε) be the union of disks of radius ε centered
at points in P ∪ Q and containing pi. Then, for a point qj ∈ Q contained in
Upi

(ε), X[i, j] is free. To compute X[i, j] for all qj ∈ Q, we construct Upi
(ε) and

24 H.-K. Ahn et al.

perform a circular sweep around pi for all points in Q. Once the circular arcs
of the boundary ∂Upi

(ε) and all points qj ∈ Q are sorted along pi in clockwise
fashion, the circular sweep takes O(m + n) time.

We design an algorithm that computes Upi
(ε) efficiently by constructing two

data structures, called the history Hpi
and the deletion list Dpi

. In the pre-
processing phase, we gradually increase ε and construct the two data structures.
When a fixed ε is given, we compute Upi

(ε) using the two data structures in
the construction phase. This will allow us to solve the optimization problem
efficiently in Sect. 4.2. The construction phase takes O(m + n) time while the
preprocessing phase takes O(mn log(mn)) time. The space we use for the data
structures is O(mn).

In this extended abstract we give a sketch of the algorithm. The details will
be presented in a full version of this paper.
The data structures for a point p ∈ P.

1. The history list Hpi
= {x1, . . . , xl}: This list represents the order of circular

arcs of ∂Upi
(ε) for all ε > 0. For any three elements in Hpi

, if all arcs
corresponding to the elements appear on ∂Upi

(ε) for some ε > 0, then the
order of them on ∂Upi

(ε) is the same as the one in Hpi
.

2. The deletion list Dpi
= {(ε1, ε′

1), . . . , (εt, ε
′
t)}: The k-th element of this list is

assigned to the point in P ∪ Q that is the k-th closest to pi. For any ε > 0,
the disk of radius ε, centered at the k-th closest point, has at most two arcs
appearing on ∂Upi

(ε). An arc of the disk disappears from ∂Upi
(ε) at ε = εk,

and the other arc disappears from ∂Upi
(ε) at ε = ε′

k. Since Dpi
is an array

of size m + n, we can access each element in O(1) time.

Theorem 3. For two polygonal curves with m and n vertices, the decision prob-
lem for the unordered case can be solved in O(mn) time with O(mn log(mn))
preprocessing time. A covering sequence can be computed in the same time.

4.2 Algorithm for the Optimization Problem

We apply binary search on the set of distances between pairs of points from
P ∪ Q involved in each step. Without loss of generality, assume that n ≤ m.
There are O((m+n)2) distances between pairs of points from P ∪Q, but we will
show that we need only O(mn) of them to compute the optimal distance ε∗.

1. Compute the set D of distances between pairs of points that are either both
from P , or one from P and one from Q.

2. Sort the O(mn) distances of D and apply binary search on the sorted list
with the decision algorithm above. Let [ε1, ε2] be the interval returned by
the decision algorithm with ε1, ε2 ∈ D. If ε1 �= ε∗ and ε2 �= ε∗, then ε∗ is the
distance of a pair of points in Q.

3. To find ε∗, for each point pi ∈ P ,
(a) compute the set Spi

of points in P ∪ Q that are at distance at most ε2
from pi, and construct the Voronoi diagram VD(Spi

).

A Middle Curve Based on Discrete Fréchet Distance 25

(b) For each point qj in Q \ Spi
, locate the cell of VD(Spi

) that contains qj .
If the site r associated with the cell is from Q and ε1 < ‖qj − r‖ < ε2,
then ‖qj − r‖ is a candidate for ε∗.

4. For a point pair (pi, qj), there exists at most one such point r ∈ Q, thus
there are O(mn) candidates in total, and we sort them and again apply
binary search on the sorted list with the decision algorithm above.

Analysis. Let (pi, qj , r) be a tuple realizing ε∗, i.e., max(‖pi − r‖, ‖qj − r‖) = ε∗.
Clearly, r is the point in P ∪Q that minimizes max(‖pi − r‖, ‖qj − r‖). If r ∈ Q,
then r is the point in Spi

that is closest to qj . Thus, r is the point site associated
with the Voronoi cell in VD(Spi

) that contains qj . This proves that ε∗ is in the
set of all candidates.

Let us analyze the running time of the optimization algorithm. The set D can
be constructed in O(mn) time. Sorting the distances in D takes O(mn log(mn))
time. The binary search on the sorted list with the decision algorithm takes
O(mn log(mn)) time as the preprocessing phase is executed only once for each
pi ∈ P and the history and deletion lists can be reused for different radii. In step
3, the Voronoi diagram V D(Spi

) can be constructed in O(m log(mn)) time for
each pi ∈ P , and the point location can be performed in the same time. Step
3(b) takes O(m log(mn)) time for each pi ∈ P .

Several Curves. The decision algorithm can be extended to k curves P 1 =
(p11, . . . , p

1
n1

), ..., P k = (pk1 , . . . , p
k
nk

). If the outer loop iterates over all points
pi1 ∈ P 1 for 1 ≤ i1 ≤ n1, then we determine which points pi2 ∈ P 2, . . . , pik ∈ P k

lie inside the disk of radius ε centered at pi1 . For all tuples (i1, . . . , ik) the corre-
sponding entries in the k-dimensional free space matrix are marked as free. The
running time is O(n1N log N + M) where N =

∑k
i=1 ni and M =

∏k
i=1 ni. If

the history data structure has already been constructed, this running time can
be reduced to O(n1N + M) time. For a constant k ≥ 2 curves of size at most n
each, the running time becomes O(nk).

To compute an optimal middle curve, we sort all distances between point
pairs from P 1 ∪ . . .∪P k and search the optimal distance among them. Thus, we
can compute an optimal covering sequence in O(nk log n) time.

Theorem 4. For two polygonal curves with m and n vertices, the optimization
problem for the unordered case can be solved in O(mn log(mn)) time. An optimal
covering sequence can be computed in the same time. For k ≥ 2 curves of size
at most n each, the optimization can be solved in O(nk log n) time.

Acknowledgments. This work was initiated at the 17th Korean Workshop on Com-
putational Geometry. We thank the organizers and all participants for the stimulating
atmosphere. In particular we thank Fabian Stehn and Wolfgang Mulzer for discussing
this paper.

26 H.-K. Ahn et al.

References

1. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves.
Int. J. Comput. Geom. Appl. 5, 75–91 (1995)

2. Buchin, K., Buchin, M., Gudmundsson, J., Löffler, M., Luo, J.: Detecting commuting
patterns by clustering subtrajectories. In: Hong, S.-H., Nagamochi, H., Fukunaga,
T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 644–655. Springer, Heidelberg (2008)

3. Buchin, K., Buchin, M., van Kreveld, M., Löffler, M., Silveira, R.I., Wenk, C.,
Wiratma, L.: Median trajectories. Algorithmica 66(3), 595–614 (2013)

4. Dumitrescu, A., Rote, G.: On the Fréchet distance of a set of curves. In: Proceed-
ings of the 16th Canadian Conference on Computational Geometry, CCCG 2004,
Concordia University, Montréal, Québec, Canada, pp. 162–165, 9–11 August 2004

5. Eiter, T., Mannila, H.: Computing discrete Fréchet distance. Technical report, Tech-
nische Universität Wien (1994)

6. Har-Peled, S., Raichel, B.: The Fréchet distance revisited and extended. ACM Trans.
Algorithms 10(1), 3:1–3:22 (2014)

7. Sriraghavendra, E., Karthik, K., Bhattacharyya, C.: Fréchet distance based app-
roach for searching online handwritten documents. In: Proceedings of the Ninth
International Conference on Document Analysis and Recognition, ICDAR 2007,
vol. 1, pp. 461–465. IEEE Computer Society (2007)

8. van Kreveld, M.J., Löffler, M., Staals, F.: Central trajectories. In: 31st European
Workshop on Computational Geometry (EuroCG), Book of Abstracts, pp. 129–132
(2015)

9. Zhu, H., Luo, J., Yin, H., Zhou, X., Huang, J.Z., Zhan, F.B.: Mining trajectory cor-
ridors using Fréchet distance and meshing grids. In: Zaki, M.J., Yu, J.X., Ravindran,
B., Pudi, V. (eds.) PAKDD 2010, Part I. LNCS, vol. 6118, pp. 228–237. Springer,
Heidelberg (2010)

Comparison-Based FIFO Buffer Management
in QoS Switches

Kamal Al-Bawani1(B), Matthias Englert2, and Matthias Westermann3

1 Department of Computer Science, RWTH Aachen University, Aachen, Germany
kbawani@cs.rwth-aachen.de

2 DIMAP and Department of Computer Science, University of Warwick,
Coventry, UK

englert@dcs.warwick.ac.uk
3 Department of Computer Science, TU Dortmund, Dortmund, Germany

matthias.westermann@cs.tu-dortmund.de

Abstract. The following online problem arises in network devices, e.g.,
switches, with quality of service (QoS) guarantees. In each time step, an
arbitrary number of packets arrive at a single FIFO buffer and only one
packet can be transmitted. Packets may be kept in the buffer of limited
size and, due to the FIFO property, the sequence of transmitted packets
has to be a subsequence of the arriving packets. The differentiated service
concept is implemented by attributing each packet with a non-negative
value corresponding to its service level. A buffer management algorithm
can reject arriving packets and preempt buffered packets. The goal is to
maximize the total value of transmitted packets.

We study comparison-based buffer management algorithms, i.e.,
algorithms that make their decisions based solely on the relative order
between packet values with no regard to the actual values. This kind of
algorithms proves to be robust in the realm of QoS switches. Kesselman
et al. [13] present a comparison-based algorithm that is 2-competitive.
For a long time, it has been an open problem whether a comparison-
based algorithm exists with a competitive ratio below 2. We present a
lower bound of 1 + 1/

√
2 ≈ 1.707 on the competitive ratio of any deter-

ministic comparison-based algorithm and give an algorithm that matches
this lower bound in the case of monotonic sequences, i.e., packets arrive
in a non-decreasing order according to their values.

Keywords: Online algorithms · Competitive analysis · Network
switches · Buffer management · Quality of service · Comparison-based

1 Introduction

We consider the following online problem which arises in network devices, e.g.,
switches, with quality of service (QoS) guarantees. In each time step, an arbitrary

The second and third author’s work was supported by ERC Grant Agreement No.
307696.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 27–40, 2016.
DOI: 10.1007/978-3-662-49529-2 3

28 K. Al-Bawani et al.

number of packets arrive at a single buffer, i.e., a FIFO queue, of bounded
capacity. Each packet has a non-negative value attributing its service level (also
known as class of service (CoS)). Packets are stored in the buffer and only one
packet can be transmitted in each time step. Due to the FIFO property, the
sequence of transmitted packets has to be a subsequence of the arriving packets.
A buffer management algorithm can reject arriving packets and preempt packets
that were previously inserted into the buffer. The goal is to maximize the total
value of transmitted packets.

In probabilistic analysis of network traffic, packet arrivals are often assumed
to be Poisson processes. However, such processes are not considered to model net-
work traffic accurately due to the fact that in reality packets have been observed
to frequently arrive in bursts rather than in smooth Poisson-like flows (see, e.g.,
[15,17]). Therefore, we do not make any prior assumptions about the arrival
behavior of packets, and instead resort to the framework of competitive analysis
[16], which is the typical worst-case analysis used to assess the performance of
online algorithms, i.e., algorithms whose input is revealed piece by piece over
time, and the decision they make in each time step is irrevocable.

In competitive analysis, the benefit of an online algorithm is compared to the
benefit of an optimal algorithm opt which is assumed to know the entire input
sequence in advance. An online algorithm onl is called c-competitive if, for each
input sequence σ, the benefit of opt over σ is at most c times the benefit of onl
over σ. The value c is also called the competitive ratio of onl.

Comparison-Based Buffer Management. In QoS networks, packet values are only
an implementation of the concept of differentiated service. A packet value stands
for the packet’s service level, i.e., the priority with which this packet is trans-
mitted, and does not have any intrinsic meaning in itself. However, just slight
changes to the packet values, even though the relative order of their correspond-
ing service levels is preserved, can result in substantial changes in the outcome
of current buffer management algorithms. We aim to design new buffer man-
agement algorithms whose behavior is independent of how the service levels
are implemented in practice. Therefore, we study comparison-based buffer man-
agement algorithms, i.e., algorithms that make their decisions based solely on
the relative order between values with no regard to the actual values. Such
algorithms are robust to order-preserving changes of packet values.

Kesselman et al. [13] present the following simple greedy algorithm: Accept
any arriving packet as long as the queue is not full. If a packet arrives while
the queue is full, drop the packet with the smallest value. Clearly, greedy is
comparison-based, and Kesselman et al. show it is 2-competitive. Since the intro-
duction of greedy, it has been an open problem to show whether a comparison-
based algorithm exists with a competitive ratio below 2.

Comparison-Based FIFO Buffer Management in QoS Switches 29

1.1 Related Work

In their seminal work, Mansour, Patt-Shamir and Lapid show that greedy is
4-competitive. Kesselman et al. [13] show that the exact competitive ratio of
greedy is 2 − 1/B, where B is the size of the buffer.

Azar and Richter [7] introduce the 0/1 principle for the analysis of compari-
son-based algorithms in a variety of buffering models. They show the following
theorem.

Theorem 1 [7]. Let alg be a comparison-based switching algorithm (determin-
istic or randomized). alg is c-competitive if and only if alg is c-competitive for
all input sequences of packets with values 0 and 1, under every possible way of
breaking ties between equal values.

For our model of a single FIFO queue, Andelman [4] employs the 0/1 principle
to give a randomized comparison-based algorithm with a competitive ratio of
1.75. In fact, this is the only randomized algorithm known for this model.

In a related model with multiple FIFO queues, Azar and Richter [7] give
a comparison-based deterministic algorithm with a competitive ratio of 3. In
another related model, where the buffer is not FIFO and packet values are not
known for the online algorithm, Azar et al. [6] use the 0/1 principle to show a
randomized algorithm with a competitive ratio of 1.69. This algorithm is mod-
ified to a 1.55-competitive randomized algorithm, and a lower bound of 1.5 on
the competitive ratio of any randomized algorithm is shown for that model [5].

Apart from comparison-based algorithms, the model of a single FIFO queue
has been extensively studied. Kesselman, Mansour, and van Stee [12] give the
state-of-the-art algorithm pg, and prove that pg is 1.983-competitive. Addition-
ally, they give a lower bound of (1 +

√
5)/2 ≈ 1.618 on the competitive ratio

of pg and a lower bound of 1.419 on the competitive ratio of any deterministic
algorithm. Algorithm pg adopts the same preemption strategy of greedy and
moreover, upon the arrival of a packet p, it proactively drops the first packet
in the queue whose value is within a fraction of the value of p. This additional
rule makes pg non-comparison-based. Bansal et al. [8] slightly modify pg and
show that the modified algorithm is 1.75-competitive. Finally, Englert and
Westermann [10] show that pg is in fact 1.732-competitive and give a lower
bound of 1 + (1/

√
2) ≈ 1.707 on its competitive ratio.

In the case where packets take on only two values, 1 and α > 1, Kesselman
et al. [13] give a lower bound of 1.282 on the competitive ratio of any determin-
istic algorithm. Englert and Westermann [10] give an algorithm that matches
this lower bound. In the non-preemptive model of this case, Andelman et al. [3]
optimally provide a deterministic algorithm which matches a lower bound of
2 − 1/α given by Aiello et al. [1] on the competitive ratio of any deterministic
algorithm.

In the general-value case of the non-preemptive model, Andelman et al. [3]
show a lower bound of 1 + ln(α) for any deterministic algorithm, where α is the
ratio between the maximum and minimum packet values. This bound is achieved
by a deterministic algorithm given by Andelman and Mansour [2].

30 K. Al-Bawani et al.

The problem of online buffer management has also been studied under sev-
eral other models. For example, the bounded delay model, where packets have
deadlines besides their values [9,14]. A recent and comprehensive survey on this
problem and most of its variants is given in [11].

1.2 Our Results

We present a lower bound of 1 + 1/
√

2 ≈ 1.707 on the competitive ratio of
any deterministic comparison-based algorithm. This lower bound is significantly
larger than the lower bound of 1.419 known for general deterministic algorithms.
We also give an algorithm, cpg, that matches our lower bound in the case of
monotonic sequences, i.e., packets arrive in a non-decreasing order according to
their values. Note that greedy remains 2-competitive in the case of monotonic
sequences. For general sequences, we give a lower bound of 1.829 on the com-
petitive ratio of cpg.

An intriguing question in this respect is whether a comparison-based algo-
rithm with a competitive ratio close to 1 + 1/

√
2 ≈ 1.707 could exist. If so, this

would mean that we do not need to know the actual values of packets in order to
compete with pg, the best non-comparison-based algorithm so far. If not, and
in particular if 2 is the right lower bound for any comparison-based algorithm,
the desired robustness of this kind of algorithms must come at a price, namely,
a significantly degraded performance.

1.3 Model and Notations

We consider a single buffer that can store up to B packets. All packets are
assumed to be of unit size, and each packet p is associated with a non-negative
value, denoted by v(p), that corresponds to its level of service. The buffer is
implemented as a FIFO queue, i.e., packets are stored and sent in the order of
their arrival.

Time is discretized into slots of unit length. An arbitrary number of packets
arrive at fractional (non-integral) times, while at most one packet is sent from
the queue, i.e., transmitted, at every integral time, i.e., at the end of each time
slot. We denote the arrival time of a packet p by arr(p). An arriving packet is
either inserted into the queue or it is rejected, and an enqueued packet may be
dropped from the queue before it is sent. The latter event is called preemption.
Rejected and preempted packets are lost.

We denote the arrival of a new packet as an arrival event, and the sending
of a packet as a send event. An input sequence σ consists of arrival and send
events. The time that precedes the first arrival event of the sequence is denoted
as time 0. We assume that the queue of any algorithm is empty at time 0.

The benefit that an algorithm alg makes on an input sequence σ is denoted
by alg(σ), and is defined as the total value of packets that alg sends. We aim
at maximizing this benefit. We denote by opt an optimal (offline) algorithm
that sends packets in FIFO order.

Comparison-Based FIFO Buffer Management in QoS Switches 31

2 Lower Bound

The following theorem shows that no deterministic comparison-based
algorithm can be better than 1 + 1/

√
2 ≈ 1.707. Recall that the best lower

bound for general deterministic algorithms is 1.419.

Theorem 2. The competitive ratio of any deterministic comparison-based algo-
rithm is at least 1 + 1/

√
2 ≈ 1.707.

Proof. Fix an online algorithm onl. The adversary constructs a sequence of
packets with non-decreasing values over a number of iterations. The 0/1 values
corresponding to the packets’ real values are revealed only when the sequence
stops. In each iteration, the adversary generates a burst of B packets in one
time slot followed by a number of individual packets, each in one time slot. We
call a slot with B arrivals a bursty slot, and a slot with one arrival a light slot.
A construction routine is repeated by the adversary until the desired lower bound
is obtained. For i ≥ 0, let fi denote the i-th bursty slot, and let ti denote the
number of time slots that onl takes to send and preempt all packets that it has
in slot fi.

As initialization, the adversary generates B packets in the first time slot.
Thus, the first slot is f0. After that, the adversary generates t0 light slots, i.e., one
packet arrives in each slot. Now, starting with i = 0, the adversary constructs the
rest of the sequence by the following routine which is repeated until ti ≥ B/

√
2.

1. Generate the bursty slot fi+1.
2. If ti ≥ B/

√
2, stop the sequence. At this point, all packets that arrive between

f0 and fi (inclusive) are revealed as 0-packets and all packets after that are
revealed as 1-packets, i.e., the 1-packets are those which arrive in the ti light
slots and in the bursty slot fi+1. Clearly, the optimal algorithm, denoted as
opt, will send all the 1-packets while onl will gain only the B 1-packets
which it has in slot fi+1. Notice that onl sends only 0-packets in the ti light
slots. Hence, provided that ti ≥ B/

√
2,

opt

onl

=
ti + B

B

≥ B/
√

2 + B

B
.

3. If ti < B/
√

2, continue the sequence after fi+1 by generating ti+1 light slots.
(a) If ti+1 ≤ ti, stop the sequence. At this point, all packets that arrive

between f0 and fi (inclusive) are revealed as 0-packets and all packets
after that are revealed as 1-packets, i.e., the 1-packets are those which
arrive in the ti and ti+1 light slots and in the bursty slot fi+1. Clearly,
opt will send all the 1-packets while onl will send only ti+1 packets of
the B 1-packets which it has in slot fi+1 and also the ti+1 1-packets which

32 K. Al-Bawani et al.

it collects after fi+1. Hence, provided that B >
√

2 · ti and ti ≥ ti+1,

opt

onl

=
ti + B + ti+1

ti+1 + ti+1

≥ ti +
√

2 · ti + ti+1

2 · ti+1

≥ (1 +
√

2)ti+1 + ti+1

2 · ti+1
.

(b) If ti+1 > ti, set i = i + 1 and repeat the routine.

Obviously, the above routine terminates eventually, because a new iteration is
invoked only when ti+1 > ti, and thus the amount of ti is strictly increased in
each iteration. Therefore, there must exist i such that ti ≥ B/

√
2. ��

3 Algorithm cpg

We present a comparison-based preemptive greedy (cpg) algorithm. This algo-
rithm can be seen as the comparison-based version of the well-studied algorithm
pg [8]. It follows a similar rule of preemption as pg, but without addressing the
actual values of packets: Roughly speaking, once you have a set S of β packets
in the queue with a packet r in front of them, such that r is less valuable than
each packet in S, preempt r.

cpg is described more precisely in Algorithm 1. To avoid using the same
set of packets to preempt many other packets, it associates with each arriving
packet p a non-negative credit, denoted by c(p). For a set S of packets, c(S)
will also denote the total credit of all packets in S. We now describe the above
preemption rule in more details.

First, we present the notations of preemptable packets and preempting sets.
Assume that a packet p arrives at time t. Let Q(t) be the set of packets in cpg’s
queue immediately before t. For any packet r ∈ Q(t), if there exists a set S ⊆
(Q(t) ∪ {p}) \ {r} such that (i) p ∈ S, (ii) c (S) ≥ β, and (iii) for each packet
q ∈ (S), arr(q) ≥ arr(r) and v(q) ≥ v(r), then we say that r is preemptable by p.
Furthermore, we call S a preempting set of r.

A packet r is preempted upon the arrival of another packet p if r is the first
packet in the queue (in the FIFO order) such that r is preemptable by p and the
value of r is less than the value of the packet that is behind r in the queue (if
any). After a packet r is preempted, cpg invokes a subroutine charge to deduct
a total of β units from the credits of the preempting packets of r. This charging
operation can be done arbitrarily, but subject to the non-negative constraint
of credits, i.e., c(p) ≥ 0, for any packet p. After that, the algorithm proceeds
similarly to greedy: It inserts the arriving packet p into the queue if the queue
is not full or p is more valuable than the packet with the least value in the queue.
In the latter case, the packet with the least value is dropped. Otherwise, p is
rejected. Finally, in send events, cpg simply sends the packet at the head of the
queue.

Comparison-Based FIFO Buffer Management in QoS Switches 33

Algorithm 1. cpg
arrival event. A packet p arrives at time t:

c(p) ← 1;

Let r be the first packet in the queue such that r is preemptable by p and the
value of r is less than the value of the packet that is behind r (if any).

if r exists then
let S be a preempting set of r;
drop r;
charge(S);

if the queue is not full then
insert p;

else
let q be the packet with the smallest value in the queue;
if v(q) < v(p) then

drop q and insert p;
else

reject p;

Notice that cpg is a comparison-based algorithm. Hence, by Theorem 1, it
is sufficient to show the competitive ratio of cpg for only 0/1 sequences. We
denote a packet of value 0 as 0-packet, and of value 1 as 1-packet.

Lost Packets. We distinguish between three types of packets lost by cpg:

1. Rejected packets: An arriving packet p is rejected if the queue is full and no
packet in the queue is less valuable than p.

2. Evicted packets: An enqueued packet q is evicted by an arriving packet p if
the queue is full and q is the least valuable among p and the packets in the
queue.

3. Preempted packets: An enqueued packet r is preempted upon the arrival of
another packet p if r is the first packet in the queue such that r is preemptable
by p and the value of r is less than the value of the packet that is behind r
(if any).

Notice that a 1-packet can only be evicted by a 1-packet. Also, if a 1-packet
q is preempted, the preempting packets of q are all 1-packets.

3.1 Monotonic Sequences

In this section, we consider input sequences in which packets arrive with non-
decreasing values, i.e., for any two packets p and q, v(p) ≤ v(q) if and only if p
arrives before q. We observe that the 2-competitive greedy algorithm from [13]
remains 2-competitive in this case.

Theorem 3. Choosing β =
√

2 + 1, the competitive ratio of cpg is at most
1 + 1/

√
2 ≈ 1.707.

34 K. Al-Bawani et al.

For the rest of the analysis, we fix an event sequence σ of only 0- and 1-
packets. Furthermore, let Q(t) (resp. Q∗(t)) denote the set of 1-packets in the
queue of cpg (resp. opt) at time t.

Assumptions on the Optimal and the Online Algorithms. Notice that opt, in
contrast to cpg, can determine whether a packet of σ has value 0 or 1. Therefore,
we can assume that opt accepts arriving 1-packets as long as its queue is not
full, and rejects all 0-packets. In send events, it sends 1-packets (in FIFO order)
unless its queue is empty.

We further assume that no packets arrive after the first time in which the
queue of cpg becomes empty. This assumption is also without loss of generality
as we can partition σ into phases such that each phase satisfies this assumption
and the queues of cpg and opt are both empty at the start and the end of the
phase. Then, it is sufficient to show the competitive ratio on any arbitrary phase.
Consider for example the creation of the first phase. Let t be the first time in
which the queue of cpg becomes empty. We postpone the packets arriving after
t until opt’s queue is empty as well, say at time t′, so that opt and cpg are
both empty at t′. This change can only increase the benefit of opt. Clearly, t′

defines the end of the first phase, and the next arrival event in σ defines the
start of the second phase. The remaining of σ can be further partitioned in the
same way.

Overflow Time Slot. We call a time slot in which cpg rejects or evicts 1-packets
an overflow time slot. Assume for the moment that at least one overflow time slot
occurs in σ. For the rest of the analysis, we will use f to denote the last overflow
slot, and tf to denote the time immediately before this slot ends. Obviously,
rejection and eviction of 1-packets can happen only when the queue of cpg is
full of 1-packets. Let t′f be the point of time immediately before the first rejection
or eviction in f takes place. Thus, the number of 1-packets in the queue at time
t′f is B. Thereafter, between t′f and tf , any 1-packet that is evicted or preempted
is replaced by the 1-packet whose arrival invokes that eviction or preemption.
Thus, the size of the queue does not change between t′f and tf , and hence the
following observation.

Remark 1. |Q(tf)| = B.

Furthermore, the following lemma shows that the B 1-packets in the queue
at time tf can be used to preempt at most one 1-packet in later arrival events.

Lemma 1. Consider any arrival event e. Let t be the time immediately after
e and let D(t) denote the set of packets in the queue at time t except the head
packet. Then, c(D(t)) < β.

Proof. We show the lemma by contradiction. Let e be the first arrival event in
σ, such that immediately after e, say at time t, c(D(t)) ≥ β. Hence, immediately
before e, say at time t′, β > c(D(t′)) ≥ β − 1, since the total credit of the queue
cannot increase by more than 1 in each arrival event.

Comparison-Based FIFO Buffer Management in QoS Switches 35

Now, let p be the packet arriving in e and let q be the head packet at the
arrival of p. Recall that σ is monotonic. Thus, the packets behind q in the queue
and packet p are all at least as valuable as q. Hence, adding the credit of p to
c(D(t′)), these packets would preempt q upon the arrival of p, and thus the total
credit would decrease by 1. Therefore, c(D(·)) does not change between t′ and t
which contradicts the definition of e. ��

Before we proceed, we introduce further notations. Let arr(t, t′) denote the
set of 1-packets that arrive in σ between time t and t′. Furthermore, let sent(t, t′)
and lost(t, t′) denote the set of 1-packets that cpg sends and loses, respectively,
between time t and t′. Similarly, we define sent

∗(t, t′) and lost
∗(t, t′) for opt.

Lemma 2. It holds that

|lost(0, tf)|−|lost∗(0, tf)|+|Q(tf)|−|Q∗(tf)| = |sent∗(0, tf)|−|sent(0, tf)| .

Proof. The lemma follows from this simple observation:

|Q(tf)| + |sent(0, tf)| + |lost(0, tf)|
= |arr(0, tf)|
= |Q∗(tf)| + |sent∗(0, tf)| + |lost∗(0, tf)| .

��

The following lemma is crucial for the analysis of cpg. It essentially upper-
bounds the number of 1-packets that cpg loses between the start of the sequence
and the end of the overflow slot.

Lemma 3. |lost(0, tf)| − |lost∗(0, tf)| + |Q(tf)| − |Q∗(tf)| ≤ β
β+1B .

Proof. First, we present further notations. If an algorithm alg does not send
anything in a sent event t, we say that alg sends a ∅-packet in t. We call a send
event in which opt sends an x-packet and cpg sends a y-packet an x/y send
event, where x and y take on values from {0, 1, ∅}. Furthermore, we denote by
δx/y(t, t′) the number of x/y send events that occur between time t and time t′.

Now, observe that

|sent∗(0, tf)| = δ1/0(0, tf) + δ1/1(0, tf) + δ1/∅(0, tf) ,

|sent(0, tf)| = δ0/1(0, tf) + δ1/1(0, tf) + δ∅/1(0, tf) .

Recall that opt does not send 0-packets and that, by assumption, the queue
of cpg does not get empty before tf . Thus, δ0/1(0, tf) = δ1/∅(0, tf) = 0, and
therefore

|sent∗(0, tf)| − |sent(0, tf)| = δ1/0(0, tf) − δ∅/1(0, tf) ≤ δ1/0(0, tf) .

Hence, given Lemma 2, it suffices to show that δ1/0(0, tf) ≤ � β
β+1B.

36 K. Al-Bawani et al.

Assume for the sake of contradiction that δ1/0(0, tf) > � β
β+1B. Let M1

(resp. M0) be the set of 1-packets (resp. 0-packets) that opt (resp. cpg) sends
in these 1/0 send events. Thus,

|M1| = |M0| ≥ � β

β + 1
B + 1 >

β

β + 1
B . (1)

Let p (resp. q) denote the first arriving packet in M1 (resp. M0). Furthermore,
let r be the last arriving packet in M0 and denote the time in which it is sent
by tr. Recall that σ is monotonic. Thus, all the 1-packets of M1 arrive after r.
Moreover, since cpg’s buffer is FIFO, none of these 1-packets is sent before tr.
Also, since r, which is a 0-packet, is before them in the queue and is eventually
sent, cpg does not either reject, evict or preempt any 1-packet from M1 before
tr. Therefore, all the 1-packets of M1 must be in the queue of cpg at time tr.

Let’s now look closely at the queue of cpg immediately after the arrival of p.
Let that time be denoted as tp. Since q is sent with p in the same 1/0 send event
and since r is between q and p (by the above argument), q and r must be in the
queue as well at time tp. Moreover, since r is the last arriving 0-packet in M0, the
remaining 0-packets of M0 must also be in the queue at tp. Hence, the queue of
cpg contains all the packets of M0 along with p at time tp.

Next, notice that all the 1-packets of M1 are inserted in cpg’s queue after
r (which is a 0-packet) without preempting it. Since the credits of packets are
used only in preemption, the credits of these 1-packets must be used to preempt
other packets before r. Let R be the set of these preempted packets. Obviously,

|R| ≥ �|M1|/β > |M1|/β − 1 . (2)

Since the packets of R cannot be preempted before the arrivals of the packets
of M1, all of them must be then before r in the queue at time tp. Thus, the queue
of cpg contains the packets of both M0 and R along with p at time tp. Clearly,
M0 ∩ R ∩ {p} = ∅. Hence, given Inequalities 1 and 2, the size of cpg’s queue at
tp is at least

|M0| + |R| + 1 > |M0| + |M1|/β =
β + 1

β
M0 >

β + 1
β

β

β + 1
B = B ,

which is strictly larger than B, and hence a contradiction. ��
So far, our discussion has been focused on one half of the scene; namely, the

one between the start of the sequence and the end of the last overflow slot. We
shall now move our focus to the second half which extends from time tf until
the end of the sequence.

First, let t0 be defined as follows: t0 = 0 if no overflow slot occurs in σ, and
t0 = tf otherwise. Notice that in both cases, no 1-packet is rejected or evicted
by cpg after t0. Moreover, let T denote the first time by which the sequence
stops and the queues of opt and cpg are both empty. Thus, the benefits of opt
and cpg are given by |sent∗(0, T)| and |sent(0, T)|, respectively.

The following lemma is the main ingredient of the proof of the competitive
ratio.

Comparison-Based FIFO Buffer Management in QoS Switches 37

Lemma 4. |sent(0, T)| ≥ (β − 1) (|lost(0, T)| − |lost∗(0, T)|) .

Proof. Obviously, we can write |sent(0, T)| as follows:

|sent(0, T)| = |sent(0, t0)| + |Q(t0)| + |arr(t0, T)| − |lost(t0, T)|
≥ |Q(t0)| + |arr(t0, T)| − |lost(t0, T)| .

Due to the fact that no 1-packet is rejected or evicted by cpg after t0, all
packets in lost(t0, T) are lost by preemption. We further notice that all these
packets are preempted using packets that arrive after t0. This is trivial in case
t0 = 0, and follows from Lemma 1 in case t0 = tf . (In fact, in the latter case,
at most one packet of lost(t0, T) can be preempted using the credits of packets
that are in the queue at time tf , but this anomaly can be covered by introducing
an additive constant in the competitive ratio of cpg.) Since preempting a packet
requires a credit of β, preempting the packets of lost(t0, T) implies the arrival
of at least new β |lost(t0, T)| 1-packets that are inserted into the queue after
t0. Thus, |arr(t0, T)| ≥ β |lost(t0, T)|, and hence we can rewrite |sent(0, T)|
in the following way:

|sent(0, T)| ≥ |Q(t0)| + β |lost(t0, T)| − |lost(t0, T)|
= |Q(t0)| + (β − 1)|lost(t0, T)|
≥ |Q(t0)| + (β − 1) (|lost(t0, T)| − |lost∗(t0, T)|) .

Now, if t0 = 0, then |Q(t0)| = 0 and thus the lemma follows immediately. If
t0 = tf , we continue as follows:

|sent(0, T)| ≥ B + (β − 1)
(
|lost(tf , T)| − |lost∗(tf , T)| − |Q(tf)| + |Q∗(tf)|

)

≥ β + 1
β

(
|lost(0, tf)| − |lost∗(0, tf)| + |Q(tf)| − |Q∗(tf)|

)

+ (β − 1)
(
|lost(tf , T)| − |lost∗(tf , T)| − |Q(tf)| + |Q∗(tf)|

)

= (β − 1)
(
|lost(0, T)| − |lost∗(0, T)|

)
,

where the first inequality follows from Remark 1, the second inequality from
Lemma 3, and the equality from the fact that β −1 = (β +1)/β, for β =

√
2+1.

��

Now, we use Lemma 4 to show that |sent∗(0, T)| ≤ β
β−1 |sent(0, T)|, which

obviously completes the proof of Theorem 3:

|sent∗(0, T)| = |arr(0, T)| − |lost∗(0, T)|
= |sent(0, T)| + |lost(0, T)| − |lost∗(0, T)|

≤ |sent(0, T)| +
1

β − 1
|sent(0, T)|

=
β

β − 1
|sent(0, T)| .

38 K. Al-Bawani et al.

3.2 General Sequences

Theorem 3 shows that cpg is an optimal comparison-based algorithm in the
case of monotonic sequences. In this section, we investigate how this algorithm
performs on general sequences.

We notice that Lemma 1 does not necessarily hold for general sequences.
Therefore, after an overflow of 1-packets takes place, the total credit of the
1-packets in the online buffer can significantly exceed β and thus some of these
packets may be used in a subsequent time steps to preempt other packets from
the same group, i.e., the group of the B 1-packets from the overflow slot. Con-
sequently, the lower bound of B on the number of cpg’s sent 1-packets may no
longer hold in the general case, resulting in a competitive ratio worse than 1.707.
Such a bad scenario for cpg is illustrated in the proof of the following theorem
and leads to a lower bound of 1.829 on its competitive ratio.

Theorem 4. For any value of β, cpg cannot be better than 1.829-competitive.

Proof. The adversary generates one of the following two sequences based on the
value of β:

Case 1. β ≤ 2.206: In the first time slot, B 1-packets are generated in an increas-
ing order (with respect to their original values). After that, no more packets
arrive. Clearly, opt sends all the B packets, while in cpg, every β packets pre-
empt a packet from the front. Thus, cpg preempts B/β in total. Hence, its
competitive ratio is given by

opt

cpg

=
B

B − B/β
=

β

β − 1
≥ 1.829.

Case 2. β > 2.206: In the first time slot, (B−1) 0-packets are generated followed
by a single 1-packet. Then, over the next βB/(β + 1) − 1 time slots, a single
1-packet is generated in each slot. Let M1 denote the set of those 1-packets that
arrive in the first βB/(β+1) time slots. After that, in slot number βB/(β+1)+1,
B 1-packets arrive at once. Let M2 denote the set of these packets. Finally, in
the next B/(β(β + 1)) time slots, a single 1-packet arrives in each slot. Let M3

denote the set of these packets. After that, no more packets arrive.
Clearly, opt sends all the 1-packets in the sequence. To minimize the number

of 1-packets sent by cpg, the adversary can choose the original values of the
1-packets in the following malicious way. First, the values of packets in M2 are
all strictly less than the smallest value in M1. Let M ′

2 denote the set of the
first B/(β + 1) packets in M2. The packets of M ′

2 are ordered as follows. For
each group of β packets, starting from the earliest, the first packet is strictly
smaller than the β − 1 packets behind it, and all the β packets of this group
are strictly smaller than all packets before them in M ′

2. For example, for β = 3,
theses groups may look like |50, 51, 51|40, 41, 41|30, 31, 31| · · · . For the rest of M2,
i.e., the set M2 \ M ′

2, packets are given values that are strictly less than the
smallest value in M ′

2. Finally, the packets in M3 are all assigned a value that is
equal to the greatest value in M ′

2.

Comparison-Based FIFO Buffer Management in QoS Switches 39

Obviously, cpg accepts all the βB/(β + 1) packets of M1 and uses them to
preempt B/(β + 1) 0-packets. Meanwhile, the rest of the B 0-packets are sent
in the first βB/(β + 1) time slots. Thus, the packets of M1 will be all in the
queue of cpg when the packets of M2 arrive. Clearly, this leads to an overflow
of 1-packets and only the packets of M ′

2 can be accepted in this time slot. These
packets are inserted with full credits into the queue, and thus when each packet
from M3 arrives, it groups with β−1 packets from M ′

2 to preempt the first packet
in one β-group of M ′

2, according to the above description of M ′
2. Therefore, cpg

sends a total of B 1-packets only, and hence its competitive ratio is given by

opt

cpg

=
|M1| + |M2| + |M3|

B

=
β

β + 1
+ 1 +

1
β(β + 1)

=
β(β + 1) + β2 + 1

β(β + 1)
≥ 1.829 .

��

4 Conclusions

Our main result is a lower bound of 1 + 1/
√

2 ≈ 1.707 on the competitive
ratio of any deterministic comparison-based algorithm, and an algorithm, cpg,
that matches this lower bound in the case of monotonic sequences. For general
sequences, cpg is shown to be no better than 1.829-competitive. However, for
general sequences, the intriguing question of whether there exists a deterministic
comparison-based online algorithm with a competitive ratio below 2 remains
open.

References

1. Aiello, W., Mansour, Y., Rajagopolan, S., Rosén, A.: Competitive queue policies
for differentiated services. J. Algorithms 55(2), 113–141 (2005)

2. Andelman, N., Mansour, Y.: Competitive management of non-preemptive queues
with multiple values. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 166–180.
Springer, Heidelberg (2003)

3. Andelma, N., Mansour, Y., Zhu, A.: Competitive queueing policies for QoS
switches. In: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 761–770 (2003)

4. Andelman, N.: Randomized queue management for DiffServ. In: Proceedings of the
17th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pp. 1–10 (2005)

5. Azar, Y., Cohen, I.R.: Serving in the dark should be done non-uniformly. In:
Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015.
LNCS, vol. 9134, pp. 91–102. Springer, Heidelberg (2015)

6. Azar,Y., Cohen, IR., Gamzu, I.: The loss of serving in the dark. In: Proceedings of
the 45th ACM Symposium on Theory of Computing (STOC), pp. 951–960 (2013)

40 K. Al-Bawani et al.

7. Azar, Y., Richter, Y.: The zero-one principle for switching networks. In: Proceed-
ings of the 36th ACM Symposium on Theory of Computing (STOC), pp. 64–71
(2004)

8. Bansal, N., Fleischer, L.K., Kimbrel, T., Mahdian, M., Schieber, B., Sviridenko,
M.I.: Further improvements in competitive guarantees for QoS buffering. In: Dı́az,
J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 196–207. Springer, Heidelberg (2004)

9. Englert, M., Westermann, M.: Considering suppressed packets improves buffer
management in QoS switches. In: Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 209–218 (2007)

10. Englert, M., Westermann, M.: Lower and upper bounds on FIFO buffer manage-
ment in QoS switches. Algorithmica 53(4), 523–548 (2009)

11. Goldwasser, M.H.: A survey of buffer management policies for packet switches.
SIGACT News 41, 100–128 (2010)

12. Kesselman, A., Mansour, Y., Van Stee, R.: Improved competitive guarantees for
QoS buffering. Algorithmica 43(1–2), 97–111 (2005)

13. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. SIAM J. Comput. 33(3), 563–
583 (2004)

14. Li, F., Sethuraman, J., Stein, C.: Better online buffer management. In: Proceedings
of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
199–208 (2007)

15. Paxson, V., Floyd, S.: Wide-area traffic: the failure of Poisson modeling.
IEEE/ACM Trans. Networking 3(3), 226–244 (1995)

16. Sleator, D., Tarjan, R.: Amortized efficiency of list update and paging rules. Com-
mun. ACM 28(2), 202–208 (1985)

17. Veres, A., Boda, M.: The chaotic nature of TCP congestion control. In: Proceedings
of IEEE INFOCOM, pp. 1715–1723 (2000)

Scheduling on Power-Heterogeneous Processors

Susanne Albers1, Evripidis Bampis2, Dimitrios Letsios3,
Giorgio Lucarelli4(B), and Richard Stotz1

1 Fakultät für Informatik, Technische Universität München, Munich, Germany
{albers,stotz}@in.tum.de

2 Sorbonne Universités, UPMC Univ. Paris 06, UMR 7606, LIP6, Paris, France
Evripidis.Bampis@lip6.fr

3 Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271,
06900 Sophia Antipolis, France

dletsios@unice.fr
4 Université Grenoble-Alpes, INP, UMR 5217, LIG,Saint-Martin-d’Hères, France

giorgio.lucarelli@inria.fr

Abstract. We consider the problem of scheduling a set of jobs, each
one specified by its release date, its deadline and its processing volume,
on a set of heterogeneous speed-scalable processors, where the energy-
consumption rate is processor-dependent. Our objective is to minimize
the total energy consumption when both the preemption and the migra-
tion of jobs are allowed. We propose a new algorithm based on a compact
linear programming formulation. Our method approaches the value of the
optimal solution within any desired accuracy for a large set of contin-
uous power functions. Furthermore, we develop a faster combinatorial
algorithm based on flows for standard power functions and jobs whose
density is lower bounded by a small constant. Finally, we extend and
analyze the AVerage Rate (AVR) online algorithm in the heterogeneous
setting.

1 Introduction

Nowadays energy consumption of computing devices is an important issue in
both industry and academia. One of the main technological alternatives in order
to take into account the energy consumed in modern computer systems is based
on the use of speed-scalable processors where the speed of a processor may be
dynamically changed over time. When a processor runs at speed s, then the
rate with which the energy is consumed (i.e., the power) is f(s) with f a non-
decreasing function of the speed. According to the well-known cube-root rule

S. Albers—Work supported by the German Research Foundation, projects Al 464/
7-1 and Al 464/9-1.
E. Bampis—Research partially supported by projet GDR-RO AGaPe of CNRS.
D. Letsios—Research partially supported by ANR project Stint and ANR program
“Investments for the Future”.
G. Lucarelli—Research supported by projet ANR Moebus.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 41–54, 2016.
DOI: 10.1007/978-3-662-49529-2 4

42 S. Albers et al.

for CMOS devices, the speed of a device is proportional to the cube-root of the
power and hence f(s) = s3. However, the standard model that is usually studied
in the literature considers that the power is f(s) = sα with α > 1 a constant.
Other works consider that the power is an arbitrary convex function [4,6].

The algorithmic study of this area started with the seminal paper of Yao
et al. [16], where a set of jobs, each one specified by its work, its release date and
its deadline, has to be scheduled preemptively on a single processor so that the
energy consumption is minimized. In [16], an optimal polynomial-time algorithm
has been proposed for this problem, while Li et al. [15] proposed an optimal algo-
rithm with lower running time. The homogeneous multiprocessor setting in which
the preemption and the migration of the jobs are allowed has been also stud-
ied. Chen et al. [9] proposed a greedy algorithm if all jobs have common release
dates and deadlines. Bingham and Greenstreet [8] presented a polynomial-time
algorithm for the more general problem with arbitrary release dates and dead-
lines. Their algorithm is based on solving a series of linear programs. Since the
complexity of this algorithm can be high for practical applications, Albers et al.
[1] and Angel et al. [2], independently, have been interested in the design of a
combinatorial algorithm. Both works are based on the computation of several
maximum flows in appropriate networks. Albers et al. [1] have also considered
the online version of the multiprocessor problem and they studied two well-
known algorithms, namely the Optimal Available (OA) and the Average Rate
(AVR), which have been proposed by Yao et al. in [16] for the single-processor
setting. Specifically, they proved that OA is αα-competitive and that AVR is
(2α−1αα + 1)-competitive. Note that, for the single-processor case, the compet-
itive ratio of OA cannot be better than αα [7], while the lower bound for AVR
is 2α−1αα [5].

In this paper, we consider the problem of scheduling a set of jobs on a set of
power-heterogeneous processors when the preemption and the migration of the
jobs are allowed. In our setting, each processor Pp is characterized by each own
power function. This means that if a processor Pp runs at speed s, then its power
is given by a non-decreasing function fp(s). The motivation to study power-aware
scheduling problems is based on the need for more efficient computing. Indeed,
parallel heterogeneous systems with multiple cores running at lower frequencies
offer better performances than a single core. However, in order to exploit the
opportunities offered by the heterogeneous systems, it is essential to focus on
the design of new efficient power-aware algorithms taking into account the het-
erogeneity of these architectures. In this direction, some recent papers [3,13,14]
have studied the impact of the introduction of the heterogeneity on the diffi-
culty of some power-aware scheduling problems. Especially in [13], Gupta et al.
show that well-known priority scheduling algorithms that are energy-efficient for
homogeneous systems become energy inefficient for heterogeneous systems.

For the case where job migrations are allowed and the heterogeneous power
functions are convex, an algorithm has been proposed in [3] that returns a solu-
tion within an additive factor of ε far from the optimal and runs in time poly-
nomial to the size of the instance and to 1/ε. This result generalizes the results

Scheduling on Power-Heterogeneous Processors 43

of [1,2,4,8] from the homogeneous setting to the heterogeneous one. However,
the algorithm proposed in [3] is based on solving a configuration linear program
using the Ellipsoid method. Given that this method may not be very efficient
in practice, we focus on other approaches. We first propose a polynomial-time
algorithm based on a compact linear programming formulation which solves the
problem within any desired accuracy. Our algorithm does not need the use of
the Ellipsoid method like in [3] and it applies for more general than convex
power functions; it is valid for a large family of continuous non-decreasing power
functions.

The above result leaves open a natural question: is it possible to generalize
the flow-based approach used in [1,2] for the homogeneous multiprocessor problem
to the power-heterogeneous case? This question is interesting even for standard
power functions of the form fp(s) = sαp . This last case is the goal of the second
part of our paper. However, when power-heterogeneous processors are considered
some structural properties of the optimal schedules of the homogeneous case are
no more valid. For instance, in the heterogeneous setting, in any optimal sched-
ule, the speed of a job is not necessarily unique, but it may change when parts
of the same job are executed on different processors. A second difficulty comes
from the fact that, while in the homogeneous case the processor on which a job
is executed at a given time has no influence on the energy consumption, this is
a crucial decision when scheduling on heterogeneous multiprocessors. Here, we
overcome these subtle difficulties and we propose a max-flow based algorithm
which is rather more complicated than its homogeneous counterpart (for exam-
ple, the network formulation is more enhanced). In particular, we show that it
produces a solution arbitrarily close to the optimal for jobs whose density is
lower bounded by a small constant; this constant depends on the exponents of
the power functions. The above assumption ensures that no job is processed
with a speed less than one by any processor and allows us to solve the problem
by performing maximum flow computations in a principled way. Note that this
assumption is reasonable in practice because the speed of a processor is multiple
CPU cycles per second.

The third part of our paper is devoted to the analysis of the well known
online algorithm AVR. Our analysis simplifies the analysis in [1] for the homo-
geneous case and allows us to extend it in the power-heterogeneous setting.
Specifically, we prove that Heterogeneous-AVR is ((1 + ε)(ρ + 1))-competitive
algorithm for arbitrary power functions, where ρ is the worst competitive ratio
of the single-processor AVR algorithm among all processors. This turns to be
((1+ ε)(αα2α−1 +1))-competitive algorithm for standard power functions of the
form fp(s) = sαp , where α is the maximum power exponent among all processors.

In the following section we formally define our problem and we give the nota-
tion that we use. In Sect. 3, we present our LP-based algorithm, while in Sect. 4
we describe a flow-based combinatorial algorithm. Finally, the Heterogeneous-
AVR and its analysis are given in Sect. 5. The missing proofs are given in the
full version of this paper.

44 S. Albers et al.

2 Problem Definition and Notations

An instance of the heterogeneous speed-scaling problem consists of a set of n
jobs J = {J1, J2, . . . , Jn} which have to be executed by a set of m parallel
speed-scalable power-heterogeneous processors P = {P1, P2, . . . , Pm}. Each job
Jj is specified by an amount of work wj , a release time rj and a deadline dj .
We say that Jj is alive during an interval of time I, if I ⊆ [rj , dj). Moreover, we
define the density of a job Jj as δj = wj

dj−rj
.

The speed of a processor can be varied over time and it corresponds to the
amount of work that the processor executes per unit of time. Furthermore, the
power of processor Pp (i.e. its instantaneous energy consumption) is assumed to
be a function fp(s) of its speed. We consider two classes of functions:

1. Arbitrary Power Functions: The function fp(s) of each processor Pp is an
arbitrary and continuous function of s. However, we require an oracle for
computing fp(s) in polynomial time, for any value of s.

2. Standard Power Functions : Each processor Pp satisfies the power function
fp(s) = sαp , where αp > 1 is a small constant. This is the usual assumption
in the speed-scaling literature. Note that, we denote by α the maximum power
exponent, i.e., α = maxp∈P{αp}.

During an interval of time I, the energy consumption of Pp is
∫

I
fp(sp,t)dt,

where sp,t is the speed of Pp at t ∈ I. The objective is to find a minimum
energy schedule such that every job Jj is executed during the interval [rj , dj).
Preemptions and migrations of jobs are allowed, which means that a job may
be executed, suspended and resumed later from the point of suspension on the
same or on a different processor. However, we do not allow parallel execution of
a job, i.e., each job may be executed by at most one processor at each time.

We define the important times t1 < t2 < . . . < t� < t�+1 which correspond to
all the different possible release dates and deadlines of jobs, sorted in increasing
order. Moreover, let Ii = [ti, ti+1), for i = 1, 2, . . . , � and I be the set of all Ii’s.
We denote by ni the number of jobs which are alive during Ii. Then, for each
interval Ii ∈ I, we define mi = min{m,ni}. Furthermore, we denote by J (t) and
J (I) the set of the alive jobs at time t and during the interval I, respectively.
At a given time t, we say that processor Pp is occupied if it executes some job,
or we say that it is idle, otherwise. For a given schedule S, we define by E(S)
the total energy consumption of S. Finally, we denote by S∗ an optimal schedule
and by OPT = E(S∗) its energy consumption.

3 LP-Based Algorithm for Generalized Power Functions

In this section we present a linear program (LP) for the heterogeneous speed-
scaling problem for a wide family of continuous power functions. Our formula-
tion is more compact than the configuration LP proposed in [3] which contains
an exponential number of variables and requires the use of the Ellipsoid method.
Moreover, the formulation in [3] is polynomially solvable only for convex functions.

Scheduling on Power-Heterogeneous Processors 45

In order to define our LP, we discretize the possible speed values. Let sLB and
sUB be a lower and an upper bound, respectively, on the speed of any processor
in an optimal schedule. For example, we could choose sLB = wmin/[m

∑
i |Ii|]

and sUB =
∑

j wjdj/|Imin|. Given a constant ε > 0, we geometrically discretize
the interval [sLB , sUB] and we define the set of discrete speeds D = {sLB ,
sLB(1+ ε), sLB(1+ ε)2, . . . , sLB(1+ ε)k}, where k = min{i : sLB(1+ ε)i ≥ sUB}.
The set D contains O(1ε log(sUB

sLB
)) different speeds.

We consider a wide class of continuous power functions satisfying the follow-
ing invariant: for any speed value s ∈ [sLB , sUB] and small constant ε > 0, there
exists a sufficiently small constant ε′ > 0 such that f((1+ε)s) ≤ (1+ε′)f(s). Note
that ε′ is a characteristic of the function f . For example, in the case of standard
power functions, we have that f((1 + ε)s) ≤ (1 + ε′)f(s) with ε′ = (1 + ε)α − 1.
In the reminder of this section, we consider this kind of functions.

Lemma 1. There exists a (1 + ε′)-approximate schedule such that, at each
time, the speed of every processor belongs to the discrete set D, where |D| =
O(1ε log(sUB

sLB
)).

The feasibility of our LP formulation is based on the following lemma.

Lemma 2. Consider a schedule S and let ti,j,p,s be the total amount of time
that job Jj is processed during the interval Ii by the processor Pp with speed s.
Then, S is feasible if and only if all the following hold.

–
∑

i,p,s ti,j,p,s · s ≥ wj, for each job Jj,
–

∑
p,s ti,j,p,s ≤ |Ii|, for each interval Ii and job Jj, and

–
∑

j,s ti,j,p,s ≤ |Ii|, for each interval Ii and processor Pp.

Let Ep,s = fp(s) be the power consumption of processor Pp if it runs with
speed s. We introduce a variable xi,j,p,s which corresponds to the total amount
of time that the job Jj is processed during the interval Ii by the processor Pp

with speed s. Then, we obtain the following LP:

min
∑

i,j,p,s

xi,j,p,s · Ep,s

∑

i,p,s

xi,j,p,s · s ≥ wj∀j

∑

p,s

xi,j,s,p ≤ |Ii|∀i, j

∑

j,s

xi,j,p,s ≤ |Ii|∀i, p

xi,j,p,s ≥ 0∀i, j, p, s

Given a solution of the above LP, we obtain an operation of job Jj on proces-
sor Pp with processing time

∑
s xi,j,p,s during each interval Ii. So, for each Ii, we

obtain an instance of the preemptive open shop problem, which can be solved in
polynomial time with the algorithm of Gonzalez and Sahni [11]. This observation
implies an algorithm for our problem, and the following theorem holds.

46 S. Albers et al.

Theorem 1. There is an algorithm which produces an (1 + ε′)-approximate
schedule in O(poly(n,m, 1

ε , log sUB

sLB
)) time.

4 Flow-Based Algorithm for Standard Power Functions

In this section, we first characterize the structure of an optimal solution for the
heterogeneous speed-scaling problem with power functions of the form fp(s) =
sαp and jobs whose density is lower bounded by a small constant, which is defined
below. Then, we derive a combinatorial algorithm based on flow computations.

4.1 Structure of an Optimal Schedule

We elaborate on the structure of a specific optimal schedule and we derive a set
of properties and lemmas which are always satisfied by this optimal schedule.
Since we allow preemptions and migrations of jobs, more than one processors
may execute part of one job Jj . Due to convexity of the power functions, in any
minimum energy schedule, the part of job Jj assigned to processor Pp is executed
(preemptively) with constant speed sj,p. Of course, a job may be executed with
different speeds by different processors. However, the following lemma shows
that these speeds are related through the derivatives of the power functions.

Lemma 3. For each job Jj ∈ J which is partially executed by the processors Pp

and Pq with speeds sj,p and sj,q, respectively, it holds that f ′
p(sj,p) = f ′

q(sj,q).

The above lemma describes the relation of the speeds of a job on different
processors. Based on this, we define the hypopower of a job Jj ∈ J as Qj =
f ′

p(sj,p), for every Pp ∈ P. The following property is a corollary of Lemma 3.

Property 1. Each job Jj ∈ J is executed with constant hypopower Qj .

The following property implies that the jobs which are executed at each time
are the ones with the greatest hypopowers.

Property 2. For each pair of jobs Jj , Jk ∈ J and time t ∈ [rj , dj) ∩ [rk, dk) such
that Jj is executed at t and Jk is not executed at t, it holds that Qj ≥ Qk.

In the following lemma we set the minimum job density such that all speeds
in the optimal schedule are at least one.

Lemma 4. Assume that δj ≥ maxp,q{(αp

αq
)1/(αq−1)} for every Jj ∈ J . For every

pair of job Jj ∈ J and processor Pp ∈ P, it holds that sj,p ≥ 1.

By using Lemma 4, we can define an order P1, P2, . . . , Pm of the processors
such that for any value of speed s ≥ 1, we have that f1(s) ≤ f2(s) ≤ . . . ≤ fm(s).
Observe that this order is obtained by sorting the processors in non-decreasing
order of their power exponent, i.e., α1 ≤ α2 ≤ . . . ≤ αm. Furthermore, it is
not hard to verify that, for every speed s of a job in the optimal schedule, it
also holds that f ′

1(s) ≤ f ′
2(s) ≤ . . . ≤ f ′

m(s). Based on the above, we say that
Pp ∈ P is cheaper than Pq ∈ P if p < q; similarly, Pq is more expensive than Pp.
The following lemma implies that cheap processors run, in general, with greater
speeds than expensive processors in the optimal schedule.

Scheduling on Power-Heterogeneous Processors 47

Lemma 5. For an interval I and any pair of jobs Jj , Jk ∈ J executed by the
processors Pp, Pq ∈ P during whole I, respectively, if p < q then sj,p ≥ sk,q.

The next property implies that cheap processors execute, in general, jobs
with greater hypopowers compared to expensive processors.

Property 3. For an interval I and any pair of jobs Jj , Jk ∈ J executed by the
processors Pp, Pq ∈ P during whole I, respectively, if p < q then Qj ≥ Qk.

The next property specifies the set of occupied processors at each time; these
are the mi cheapest ones. The remaining processors are idle. This means that, in
the optimal schedule, the total processing time of all jobs is equal to

∑
i{mi ·|Ii|},

i.e., the maximum possible that any feasible schedule may have.

Property 4. During an interval Ii ∈ I, the processors in {P1, P2, . . . , Pmi
} are

occupied, while the processors in {Pmi+1, Pmi+2, . . . , Pm} are idle.

The following corollary, which follows directly from Properties (1)-(4) implies
that if we know the hypopowers of the jobs in the optimal schedule, then we know
the speed of each processor at each time.

Corollary 1. Consider an interval Ii ∈ I and let Jjk
be the alive job during

Ii with the k-th greatest hypopower, breaking ties arbitrarily. Then, at each time
t ∈ Ii, processors P1, P2, . . . , Pmi

run with hypopowers Qj1 ≥ Qj2 ≥ . . . ≥ Qjmi
,

respectively. Moreover, processors Pmi+1, Pmi+2, . . . , Pm are idle.

Theorem 2. Properties (1)-(4) are necessary and sufficient for optimality.

4.2 Presentation and Analysis of the Algorithm

Given the optimal structure presented in the previous section, we are now ready
to describe a polynomial-time algorithm which is based on maximum flow com-
putations. Initially, we present the high-level idea of the algorithm and, then, we
describe its main components, in more detail, together with its analysis.

High-Level Idea. Initially, we define a slightly more general problem which
is the one that the algorithm actually solves. An instance of this problem is
specified by a triple < J ,P, I >. Specifically, there is a set J of n jobs which
have to be executed by a set P of m parallel processors during a set I of disjoint
time intervals. During each interval Ii ∈ I there is a subset J (Ii) ⊆ J of alive
jobs and a subset P(Ii) ⊆ P of available processors. Every job Jj ∈ J (Ii) (and
processor Pp ∈ P(Ii)) is alive (resp. available) during the whole Ii. We denote
by ni = |J (Ii)| (and ai = |P(Ii)|) the number of alive jobs (resp. available
processors) during Ii. Our original problem is a special case of the above; we
observe that Jj is alive during every interval Ii ∈ [rj , dj) and all the m processors
are available in each interval. Moreover, the optimal structure of the previous
section is extended in a straightforward way to this more general problem.

48 S. Albers et al.

Let S∗ be an optimal schedule with the structure presented in the previous
section and consider an interval Ii ∈ I. By Property 4, the mi = min{ai, ni}
cheapest processors are used during the entire Ii while the remaining ones are
always idle during Ii. So, the property specifies the exact amount of time, say tp,
that each processor Pp ∈ P is used in S∗ as well as the corresponding intervals.
A similar argument with the one for proving Property 1 implies that the most
energy-efficient, though not necessarily feasible, way to schedule the jobs is by
executing them with the same hypopower Q such that

m∑

p=1

tp

(
Q

αp

) 1
αp−1

=
∑

Jj∈J
wj (1)

In what follows, we assume that we can compute a solution to the above equa-
tion with arbitrary precision (we explain later how to treat errors occurred due
to limited precision). If there is a feasible schedule in which all jobs are exe-
cuted with equal hypopower Q, then this schedule is optimal and we are done.
Note that, as we explain in the next subsection, this feasibility problem can be
answered with a maximum flow computation. If such a feasible schedule does not
exist, then J can be partitioned into two disjoint and non-empty subsets J≥Q

and J<Q containing the jobs executed with hypopower at least Q and smaller
than Q, respectively, in S∗. In each interval Ii ∈ I, Properties 2 and 3 specify the
subsets of available processors P≥Q(Ii),P<Q(Ii) ⊆ P(Ii) dedicated to the execu-
tion of J≥Q and J<Q, respectively, which are disjoint. Specifically, let J≥Q(Ii)
and J<Q(Ii) be the subsets of jobs of J≥Q and J<Q, respectively, which are alive
during Ii. The jobs in J≥Q occupy the cheapest min{ai, |J≥Q(Ii)|} processors
during Ii while the jobs in J<Q use the remaining occupied processors. Then,
the problem < J ,P, I > can be decomposed into the two independent sub-
problems < J≥Q,P≥Q, I > and < J<Q,P<Q, I >. Therefore, < J ,P, I > can
be decomposed recursively as it is described in Algorithm 1.

Algorithm 1. Opt(J ,P, I)
Compute the most energy-efficient hypopower Q for executing (J ,P, I);1

(J≥Q,P≥Q, I), (J<Q,P<Q, I) ← Biseparation(J ,P, I, Q);2

if J = J≥Q then3

return ConstantHypopowerSchedule(J ,P, I, Q);4

else5

S≥Q ← Opt(J≥Q,P≥Q, I);6

S<Q ← Opt(J<Q,P<Q, I);7

return S≥Q ∪ S<Q;8

In order to complete the presentation of our algorithm, it remains to describe
a way of answering the feasibility of the problem < J ,P, I > in which all jobs
are executed with constant hypopower Q (which has been computed according
to Eq. 1) and, in the case of infeasibility, the biseparation procedure.

Scheduling on Power-Heterogeneous Processors 49

Feasibility. Consider an interval Ii ∈ I and a processor Pp ∈ P(Ii). Recall
that, if processor Pp runs with hypopower Q during Ii, then its speed is si,p =
(Q

αp
)1/(αp−1). For simplicity, in what follows, we slightly abuse our notation: let

si,p be the speed of the p-th cheapest (and fastest) available processor during Ii,
and P(Ii) be the set of the mi cheapest available processors during Ii.

The feasibility of < J ,P, I > w.r.t. the hypopower Q is based on a maximum
flow computation in an appropriate network N (J ,P, I, Q) which is defined as
follows (see Fig. 1). There is a source node u0, a node uj for each job Jj ∈ J ,
a node vi,p for each pair of interval Ii ∈ I and processor Pp ∈ P(Ii), a node
vi for each interval Ii ∈ I and a destination node v0. Moreover, the network
contains the arc (u0, uj) with capacity wj for each job Jj ∈ J , the arc (uj , vi,p)
with capacity (si,p − si,p+1)|Ii| for each interval Ii, job Jj ∈ J (Ii) and processor
Pp ∈ P(Ii), the arc (vi,p, vi) with capacity p(si,p − si,p+1)|Ii| for each interval
Ii ∈ I and processor Pp ∈ P(Ii) as well as the arc (vi, v0) with infinite capacity
for each Ii ∈ I. By convention, let si,mi+1 = 0. This formulation was introduced
by Federgruen and Groenevelt [10] and the following theorem is a corollary
of [10].

u0

u1

...

uj

...

un

v1,1

...
v1,m1

...

vi,1

...

vi,p

...

vi,mi

...

v1

...

vi

...

vn

v0

w1

wj

wn

(si,1 − si,2)|Ii|

(si,p − si,p+1)|Ii|

(si,mi
− si,mi+1)|Ii|

1 · (s1,1 − s1,2)|I1|

m1 · (s1,m1 − s1,m1+1)|I1|

1 · (si,1 − si,2)|Ii|

p · (si,p − si,p+1)|Ii|

mi · (si,mi
− si,mi+1)|Ii|

∞

∞

∞

Fig. 1. The flow network N (J ,P, I, Q)

Theorem 3. There exists a feasible schedule of < J ,P, I > with constant
hypopower Q iff there exists a feasible flow in N (J ,P, I, Q) of value

∑
Jj∈J wj.

Theorem 3 implies that any feasible schedule for < J ,P, I, Q > can be
transformed to a feasible flow of value

∑
Jj∈J wj in the network N (J ,P, I, Q)

and vice versa. In particular, consider a feasible schedule, an interval Ii ∈ I and
assume that wi,j,p = t · si,p units of work of job Jj ∈ J (Ii) are processed by the
p-th fastest processor in P(Ii). Then, it holds that

wi,j,p = t · si,p = t · (si,p − si,p+1) + t · (si,p+1 − si,p+2) + . . . + t · (si,mi
− smi+1)

50 S. Albers et al.

Algorithm 2. Biseparation(J ,P, I, Q)
1: J≥Q = J and J<Q = ∅;
2: Find a maximum flow F in the network N (J≥Q,P, I, Q);

3: while there is a path from v0 to some job node uj in ˜RF (J≥Q,P, I, Q) do
4: J≥Q = J≥Q \ {Jj} and J<Q = J<Q ∪ {Jj};
5: Remove the flow passing through uj from F and uj from N (J≥Q,P, I, Q);
6: Compute P≥Q and P<Q based on Corollary 1;
7: return (J≥Q,P≥Q, I), (J<Q,P<Q, I);

This observation shows the way for obtaining a feasible flow of value
∑

Jj∈J wj .
Conversely, consider a feasible flow, an interval Ii ∈ I, a job Jj ∈ J (Ii) and
assume that wi,j units of flow cross the network induced by the nodes uj , vi

and vi,p for each p = 1, 2, . . . ,mi. By applying the algorithm of Gonzalez and
Sahni [12] for scheduling a set of jobs (where job Jj has work wi,j) with common
release dates and deadlines on related machines, we obtain a feasible schedule.

Biseparation. If there is not a feasible schedule for < J ,P, I > with constant
hypopower Q computed by Eq. (1), we next show how to decompose the problem
in the two subproblems (J<Q,P<Q, I) and (J≥Q,P≥Q, I). Initially, we introduce
some notation. Consider an optimal schedule S∗ with the structure presented in
Sect. 4.1. We refer to every job Jj ∈ J≥Q, i.e., which executed with hypopower
at least Q, as critical. By Corollary 1, during interval Ii ∈ I, the critical jobs
occupy the ci = min{mi, |J≥Q(Ii)|} fastest processors in S∗. In the network
N (J ,P, I, Q), we denote by U(x, y) the capacity of the arc (x, y). Moreover,
given a feasible (u0, v0)-flow F , let F(x, y) the amount of flow crossing the arc
(x, y). Our biseparation algorithm is based on the following lemma.

Lemma 6. Let J ′ ⊆ J<Q be any subset of non-critical jobs. A job Jj ∈ J \J ′ is
critical if and only if, in the network N (J \J ′,P, I, Q), there exists a minimum
(u0, v0)-cut which does not contain the arc (u0, uj).

We define the residual network RF (J ,P, I, Q) of N (J ,P, I, Q) with respect
to F as the network which contains the same nodes with N (J ,P, I, Q), the
arc (x, y) with capacity U(x, y) − F(x, y), if (x, y) is not saturated by F in
N (J ,P, I, Q) and the arc (y, x) with capacity F(x, y), if there is a positive
amount of flow F(x, y) > 0 crossing the arc (x, y) by F in N (J ,P, I, Q). Then,
we define the inverse residual network R̃F (J ,P, I, Q) which is the same as
RF (J ,P, I, Q) except that all arcs are reversed. Algorithm 2 formally describes
the biseparation procedure.

Lemma 7. Algorithm 2 correctly identifies J<Q and J≥Q.

Correctness and Running Time. The correctness of the algorithm follows
from the fact that it produces a schedule satisfying Properties (1)-(4). Assume

Scheduling on Power-Heterogeneous Processors 51

that by solving Eq. (1), we get a solution Q+ε instead of Q, where ε > 0 is a small
constant. If all jobs are executed with hypopower Q in the optimal schedule, then
the algorithm will construct a feasible schedule in which all jobs are executed
with hypopower Q + ε. On the other hand, if there does not exists a feasible
schedule of all jobs w.r.t. Q, then the algorithm will perform a biseparation
w.r.t. Q+ε. Even though this biseparation is performed w.r.t. Q+ε, it is correct
in the sense that a job is characterized as critical if and only if it is executed with
hypopower at least Q + ε in the optimal schedule. Therefore, the algorithm will
produce a (1 + ε′)-approximate schedule in which, at each time, the hypopower
of a processor is at most an additive factor of ε more than its hypopower in the
optimal schedule, where ε′ > 0 is a small constant.

Concerning its running time, it makes O(n) recursive calls because there are
O(n) distinct values of hypopower in the optimal schedule. In every such call, it
computes a hypopower value by solving Eq. (1) in O(f(n, 1

ε)) time, where ε is the
desired accuracy, it computes a maximum flow in a graph with O(nm) vertices
in O(g(nm)) time and it performs O(n) Breadth-First Searches in a graph with
O(n2m) arcs in O(n3m).

Theorem 4. Algorithm 1 produces a (1+ε′)-approximate schedule with running
time O(nf(n, 1

ε) + ng(nm) + n4m).

5 Online Scheduling with Heterogeneous AVR

For the single-processor case, Yao et al. [16] proposed the AVerage Rate algorithm
(or simply AVR) and they showed that it is αα · 2α−1-competitive for standard
power functions of the form f(s) = sα. AVR sets the processor’s speed at each
time t equal to the total density of the alive jobs at t, i.e.,

∑
Jj∈J (t) δj . Then, it

schedules the jobs according to the Earliest Deadline First (EDF) policy.
In order to generalize AVR to the multiprocessor setting, we consider a vari-

ation of the single-processor AVR algorithm which assigns exactly the same
speed to the processor at each time t but it follows a different job selection
policy. Without loss of generality, we assume that all release dates and dead-
lines are integers. Assume also that rmin = min{rj : Jj ∈ J } = 0 and let
dmax = max{dj : Jj ∈ J } = T be the maximum deadline among the released
jobs. We can partition the time horizon into unit-size intervals of the form
It = [t, t + 1), 0 ≤ t < T . In particular, for each job Jj ∈ J (It), the algorithm
assigns δj = wj

dj−rj
work of Jj to the interval It, and then it produces an arbi-

trary schedule of the total work assigned to It using constant speed
∑

Jj∈J (It)
δj

during the whole It. The above variation achieves the same competitive ratio as
the original AVR algorithm proposed in [16], since they both follow the same
speed assignment rule and hence they have the same energy consumption.

We now turn our attention to the case of multiple heterogeneous processors.
Based on the previous variation, we say that a schedule S is an AVR-schedule
if for every job Jj ∈ J and interval It ⊆ [rj , dj) the total amount of work of Jj

executed during It on all processors in S is exactly equal to δj . The following
lemma provides a lower bound on the optimal offline solution.

52 S. Albers et al.

Lemma 8. There exists a feasible AVR-schedule SAVR for the heterogeneous
speed-scaling problem with arbitrary power functions such that E(SAVR) ≤
(maxPp∈P{ρp}+1)OPT , where ρp is the competitive ratio of the single-processor
AVR algorithm when it is applied to the processor Pp with power function fp(s).

Proof. Let S∗ be an optimal offline schedule. We denote by S∗
p the part of S∗

which corresponds to the processor Pp. In other words, S∗ is the concatenation
of S∗

p ’s. Let w∗
j,p and s∗

j,p be the amount of work and the corresponding speed
of job Jj on processor Pp, respectively, in S∗. For each Pp ∈ P, we modify
S∗

p to Sp by applying the variation of the single-processor AVR algorithm; the
work executed for each Jj ∈ J in Sp is equal to w∗

j,p. Let S be the resulting
schedule, i.e., the concatenation of Sp’s. Moreover, let wj,p,t and sj,p,t be the
amount of work and the corresponding speed of job Jj on processor Pp during
It, respectively, in S. Finally, we modify S by setting the speed of the piece of Jj

executed by Pp during It equal to max{s∗
j,p, sj,p,t} and we denote the obtained

schedule by SAV R.
The total amount of work executed for Jj during It in SAV R is equal to

∑

Pp∈P
wj,p,t =

∑

Pp∈P

w∗
j,p

dj − rj
=

wj

dj − rj
= δj

Thus, SAV R is an AVR-schedule.
The total processing time of all the pieces of Jj during It in SAV R is equal

to
∑

Pp∈P

w∗
j,p

dj−rj

max{s∗
j,p, sj,p,t}

≤ 1
dj − rj

∑

Pp∈P

w∗
j,p

s∗
j,p

≤ 1 = |It|

where the last inequality follows because S∗ is feasible. By Lemma 2, we conclude
that SAV R can be constructed to be feasible.

In SAV R, the speed of the piece of Jj executed by Pp during It is equal either
to the speed that the piece has in S∗ or to the speed that it has in S. Therefore,
the energy consumption of SAV R is

E(SAV R) =
∑

Pp∈P

∑

Jj∈J

T−1∑

t=0

∫

It

max{fp(s∗
j,p), fp(sj,p,t)}

≤
∑

Pp∈P

∑

Jj∈J

T−1∑

t=0

∫

It

fp(s∗
j,p) +

∑

Pp∈P

∑

Jj∈J

T−1∑

t=0

∫

It

fp(sj,p,t)

= E(S∗) +
∑

Pp∈P
E(Sp)

For each Pp ∈ P, let S̃p be an optimal offline schedule for Pp in which for each
job Jj ∈ J an amount of work w∗

j,p is executed. Therefore, given that the single-
processor AVR algorithm is ρp-competitive when it is applied to the processor
Pp with power function fp(s), we have that

Scheduling on Power-Heterogeneous Processors 53

E(SAV R) ≤ E(S∗) +
∑

Pp∈P
ρpE(S̃p) ≤ E(S∗) + max

Pp∈P
{ρp}

∑

Pp∈P
E(S̃p)

≤ E(S∗) + max
Pp∈P

{ρp}
∑

Pp∈P
E(S∗

p) = E(S∗) + max
Pp∈P

{ρp}E(S∗)

= (max
Pp∈P

{ρp} + 1)E(S∗)

where the last inequality follows by the optimality of S̃p and the fact that the
amount of work of each job Jj ∈ J is the same on both S̃p and S∗

p . �	

We are now ready to describe our algorithm. The high level idea is that we
create a (1 + ε)-approximate AVR-schedule, by using the algorithm proposed in
Sect. 3. More specifically, given the assignment of work into intervals implied by
the definition of the AVR-schedules, for each interval It = [t, t + 1) we create
an offline (1+ ε)-approximate schedule for this subinstance of the heterogeneous
speed-scaling problem. We call this algorithm Heterogeneous-AVR (or simply
H-AVR). Note that, if the time t + 1 does not correspond to a release date or a
deadline then the schedules for the intervals It and It+1 are the same, and hence
we have to compute it only once. The following theorem follows.

Theorem 5. H-AVR is a ((1+ ε)(maxPp∈P{ρp}+1))-competitive algorithm for
the heterogeneous speed-scaling problem, where ρp is the competitive ratio of the
single-processor AVR algorithm when it is applied to the processor Pp with power
function fp(s).

For the case of standard power functions of the form f(s) = sα, the single-
processor AVR algorithm is αα2α−1-competitive [16]. Therefore, the following
corollary holds.

Corollary 2. H-AVR is a ((1 + ε)(αα2α−1 + 1))-competitive algorithm for the
heterogeneous speed-scaling problem for standard power functions of the form
fp(s) = sαp , where α = maxPp∈P{αp}.

References

1. Albers, S., Antoniadis, A., Greiner, G.: On multi-processor speed scaling with
migration. J. Comput. Syst. Sci. 81(7), 1194–1209 (2015)

2. Angel, E., Bampis, E., Kacem, F., Letsios, D.: Speed scaling on parallel processors
with migration. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-
Par 2012. LNCS, vol. 7484, pp. 128–140. Springer, Heidelberg (2012)

3. Bampis, E., Kononov, A.V., Letsios, D., Lucarelli, G., Sviridenko, M.: Energy
efficient scheduling and routing via randomized rounding. In: FSTTCS, vol. 24 of
LIPIcs, pp. 449–460. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2013)

4. Bampis, E., Letsios, D., Lucarelli, G.: Green scheduling, flows and matchings.
Theor. Comput. Sci. 579, 126–136 (2015)

54 S. Albers et al.

5. Bansal, N., Bunde, D.P., Chan, H.-L., Pruhs, K.: Average rate speed scaling. Algo-
rithmica 60(4), 877–889 (2011)

6. Bansal, N., Chan, H.-L., Pruhs, K.: Speed scaling with an arbitrary power function.
ACM Trans. Algorithms 9(2), 18 (2013)

7. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and temper-
ature. J. ACM 54(1) (2007)

8. Bingham, B.D., Greenstreet, M.R.: Energy optimal scheduling on multiprocessors
with migration. In: ISPA, pp. 153–161 (2008)

9. Chen, J.-J., Hsu, H.-R., Chuang, K.-H., Yang, C.-L., Pang, A.-C., Kuo, T.-W.:
Multiprocessor energy-efficient scheduling with task migration considerations. In:
ECRTS, pp. 101–108. IEEE Computer Society (2004)

10. Federgruen, A., Groenevelt, H.: Preemptive scheduling of uniform machines by
ordinary network flow techniques. Manage. Sci. 32(3), 341–349 (1986)

11. Gonzalez, T., Sahni, S.: Open shop scheduling to minimize finish time. J. ACM
23(4), 665–679 (1976)

12. Gonzalez, T., Sahni, S.: Preemptive scheduling of uniform processor systems. J.
ACM 25, 92–101 (1978)

13. Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling hetero-
geneous processors isn’t as easy as you think. In: SODA, pp. 1242–1253 (2012)

14. Gupta, A., Krishnaswamy, R., Pruhs, K.: Scalably scheduling power-heterogeneous
processors. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 312–323. Springer,
Heidelberg (2010)

15. Li, M., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy schedules for
variable voltage processors. PNAS 103(11), 3983–3987 (2006)

16. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced CPU energy. In:
FOCS, pp. 374–382 (1995)

Period Recovery over the Hamming
and Edit Distances

Amihood Amir1,2, Mika Amit3(B), Gad M. Landau3,4, and Dina Sokol5

1 Department of Mathematics and Computer Science,
Bar-Ilan University, Ramat Gan, Israel

amir@cs.biu.ac.il
2 College of Computing, Georgia Tech, Atlanta, GA, USA

3 Department of Computer Science, University of Haifa, Mount Carmel, Haifa, Israel
mika.amit2@gmail.com,landau@cs.haifa.ac.il

4 Department of Computer Science and Engineering,
NYU Polytechnic School of Engineering, New York University,

Brooklyn, NY, USA
5 Department of Computer and Information Science,

Brooklyn College of the City University of New York, Brooklyn, NY, USA
sokol@sci.brooklyn.cuny.edu

Abstract. A string S of length n has period P of length p if S[i] =
S[i+ p] for all 1 ≤ i ≤ n− p and n ≥ 2p. The shortest such substring, P ,
is called the period of S, and the string S is called periodic in P . In this
paper we investigate the period recovery problem. Given a string S of
length n, find the primitive period(s) P such that the distance between
S and the string that is periodic in P is below a threshold τ . We consider
the period recovery problem over both the Hamming distance and the
edit distance. For the Hamming distance case, we present an O(n log n)
time algorithm, where τ is given as n

(2+ε)p
, for 0 < ε < 1. For the edit

distance case, τ = n
(4+ε)p

, and we provide an O(n4/3) time algorithm.

Keywords: Period recovery · Approximate periodicity · Hamming
distance · Edit distance

A. Amir—Partially supported by the Israel Science Foundation grant 571/14, and
grant No. 2014028 from the United States-Israel Binational Science Foundation
(BSF).

M. Amit—Partially supported by the Israel Science Foundation grant 571/14,
grant No. 2014028 from the United States-Israel Binational Science Foundation
(BSF) and DFG.

G. M. Landau—Partially supported by the Israel Science Foundation grant
571/14, grant No. 2014028 from the United States-Israel Binational Science Foun-
dation (BSF) and DFG.

D. Sokol—Partially supported by the United States-Israel Binational Science
Foundation (BSF) grant No. 2014028.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 55–67, 2016.
DOI: 10.1007/978-3-662-49529-2 5

56 A. Amir et al.

1 Introduction

The prevalence and importance of cyclic phenomena in nature is apparent in
diverse areas, including astronomy, geology, earth science, oceanography, mete-
orology, biological systems, the genome, economics, and more. Assume that an
instrument is taking measurements at fixed intervals. When the stream of mea-
surements is analyzed, the question of whether the measurements represent a
cycle is raised. The “cleanest” version of this question is whether the string of
measurements is periodic.

Periodicity is one of the most important properties of a string and plays
a key role in data analysis. As such, it has been extensively studied over the
years [20], and linear time algorithms for exploring the periodic nature of a
string were presented (e.g. [7,13,16]). However, realistic data may contain errors.
Such errors may be caused by the process of gathering the data which might be
prone to transient errors. Moreover, errors can also be an inherent part of the
data because the periodic nature of the data represented by the string may be
inexact. Thus, it is necessary to cope with periods that have errors.

In this paper, we present algorithms for the period recovery problem, defined
in [1]. Informally, the problem is to recover a set of periods that are likely to
be the underlying period of the corrupted periodic string, S. Given a sequence
S, assume that S was originally a periodic string, which had been corrupted.
Our task is to discover the original uncorrupted string, or more specifically, the
exact period of the uncorrupted periodic string. Of course, too many errors can
completely change the data, making it impossible to identify the original data
and reconstruct the original cycle. However, it is intuitive that few errors should
still preserve the periodic nature of the original string.

A related problem on which much work has been accomplished is finding all
runs in a given string. Runs are substrings that contain two or more consecutive
copies of a pattern. It has been shown in [14] that Fibonacci words contain only
a linear number of runs. In [16] a conjecture that the maximal number of runs
in a string of size n is at most n was given (see also [8], Chap. 8); this conjecture
was proven recently in [3]. The problem of finding all approximate runs in a
string was widely researched and many different measurements have been used
in order to find such runs (see [2,17,18,23]).

Formally, a string S is periodic if it can be written as P r, where P is some
prefix of S, and r ≥ 2 is a real number. A string P is primitive if it cannot be
written as Uk for any integer k ≥ 2, where U is some prefix of P . For example, the
string abcabca is both periodic and primitive, while the string abcabc is periodic
and non-primitive. Although a periodic string S may have many periods, when
we refer to “the period” of S we always mean the shortest possible period, i.e. the
period P of S such that P is primitive. Throughout the paper, when it is obvious
from the context, we use lowercase p to represent the length of a string P .

If S can be written as P 2, it is called a square. In this case, the substring P is
called the root of the square, and if P is primitive, then S is called a primitively
rooted square. For example, the string (ab)4 is a square with the non-primitive
root abab, while abab is a primitively rooted square. P 3 is a cube, i.e. three

Period Recovery over the Hamming and Edit Distances 57

consecutive copies of P , and in general P k, i.e. k consecutive copies of P , is
counted as k − 1 overlapping squares. The number of non-overlapping squares
in a string P k is equal to �k

2 �. P∞ denotes the periodic string in P that begins
with P and extends infinitely to the right.

A Lyndon word is a string that is lexicographically smaller than all of its
proper suffixes (see [21]). Any periodic string, S = P k, for k ≥ 2 contains a
substring L, of length p, that is a Lyndon word. We call this substring the
L-root of the periodic string.

In this paper we solve the following two problems, originally defined in [1].
Let ε be some real constant such that 0 < ε < 1.

Period Recovery over the Hamming Distance. Given a string S of length
n defined over unbounded alphabet Σ, find all (primitive) periods P , such that
the Hamming distance between a prefix of the string P∞ and S is less than or
equal to n

(2+ε)p (where p is the length of the period).

Period Recovery over the Edit Distance. Given a string S of length n
defined over unbounded alphabet Σ, find each (primitive) period P such that S
matches a prefix of P∞ with at most n

(4+ε)p insertions, deletions, and mismatches
(where p is the length of the period).

Remark. The parameter for the Hamming distance case, n
(2+ε)p , was chosen to

ensure that at least half of the occurrences of P in the input string are exact.
This enables handling one candidate (or, in special cases, two candidates) per
period length p. For the edit distance, [1] proved that when the number of allowed
errors is bounded by n

(4+ε)p , the number of answers is bounded by O(log n).
Two strings X,Y , are said to be conjugate if there exist strings U, V such

that X = UV and Y = V U , i.e. Y is a cyclic shift of X. Conjugacy defines an
equivalence relation, and a primitive string of length p has exactly p distinct con-
jugates [20]. For the edit distance problem, often several conjugates of the same
period P will satisfy the given constraints (due to the ability to delete leading
characters). An algorithm can report all conjugates of P , but it is preferable to
report only the best conjugate of P , i.e. the one that has the minimal distance
to S. Henceforth, we assume that we are interested only in the best conjugate
for each P in the solution set1.

In this paper we use the same threshold as in [1] and greatly improve the
time to find the candidates. We prove the following two theorems:

Theorem 1. Given a string S of length n, the period recovery over the Hamming
distance problem can be solved in O(n log n) time.

Theorem 2. Given a string S of length n, the period recovery over the edit
distance problem can be solved in O(n4/3) time.

1 In previous work, the lemmas state “up to cyclic rotations” which means that one
conjugate is counted/reported for each set of cyclic permutations of a given period
P . Here we clarify this language by always finding the single best conjugate.

58 A. Amir et al.

We start in Sect. 2 with presenting a simple algorithm for period recovery over
the Hamming distance, and prove Theorem 1. Our algorithm improves on [1] by a
logarithmic factor. Then, in Sect. 3, we present an algorithm for period recovery
over the edit distance, and prove Theorem 2. In this case the improvement is
more extensive as the edit distance algorithm of [1] has O(n3) time complexity2.

2 Period Recovery over the Hamming Distance

In the period recovery problem over the Hamming distance, the input is a string
S of length n, and the output is all primitive periods P of length p, such that the
Hamming distance between S and the string P

n
p is less than or equal to n

(2+ε)p ,
for some 0 < ε < 1.

We start with the following observations that reduce the number of candidate
substrings for being an approximate period of the string S.

Observation 1. For each solution P there are at least (1+ε)n
(2+ε)p > n

2p positions i

in S such that i ∈ {0, p, 2p, . . . , �n
p �p} and S[i . . . i + p − 1] = P .

The above observation follows immediately from the fact that there are at
most n

(2+ε)p mismatches between S and P
n
p . In addition, since there are at

least n
2p exact copies of period P in S, at most one substring P can fulfill this

requirement per each period length p. This leads to the following observation.

Observation 2. For each period length p, 1 ≤ p ≤ n
2 and n = pk, if k is an

integer then there can be at most 1 candidate of length p. In the case where k is
a rational number, there can be at most 2 candidates of length p.

Note that a substring, P , that has at least n
2p exact copies in S is only a

candidate substring for being an approximate period of S. The algorithm still
needs to verify whether the Hamming distance between S and P

n
p is not greater

than n
(2+ε)p .

The main idea of the algorithm comes from the above observations:

Algorithm Outline

Input: String S of length n.
Output: A set of primitive substrings that are approximate periods of S over
the Hamming Distance.
for each period p from 1 to n

2 do

1. Let k be an integer such that k = �n
p �. Count the number of distinct substrings

of length p that start at positions 0, p, 2p, . . . , kp and take the one that occurs
at least k

2 times. If no such substring occurs, there is no approximate period
of length p in S.

2 The paper actually states O(n3 log n) time complexity. However, more recent work [4]
for construction of a minimal augmented suffix tree can be used, reducing the time
complexity of [1] to O(n3).

Period Recovery over the Hamming and Edit Distances 59

2. Let P be the majority substring of length p found in the previous step. Com-
pute the Hamming distance between P

n
p and S. If the distance is smaller

than n
(2+ε)p , then P is a candidate for being an approximate period of S.

3. Check whether the candidate P is a primitive substring. Report P if it is
primitive.

Remark. Observe that in the special case where k is not an integer, there can
be a situation where two substrings P have exactly �k

2 � exact occurrences in the
input string. For example, for S = abcabdab, both abc and abd are candidates
for being an approximate period of S. In these cases, both substrings will be
verified by the algorithm. Additionally, if k is an integer and there exist two
substrings occurring exactly �k

2 � times, none of the substrings will be verified by
the algorithm since both have more than n

(2+ε)p mismatches with S.

2.1 Step 1: Finding a Candidate Substring of Length p

In this procedure we use the KMR naming technique of [15] in order to count the
number of different substrings in specified positions. This technique renames all
substrings of lengths 20, 21, 22, . . . , 2log n in S, and for each position i in S com-
putes a vector, Namesi, of size log n. The entry Namesi[j] contains a name of
the substring of length 2j that starts at position i. This naming procedure is run
once for the entire algorithm: first, the characters of S are sorted lexicographic,
and each S[i] is given a “name” according to its rank in the sorted order. Then,
for every position i ∈ S and every power of 2, j ∈ 2k, k ∈ {2, 4, . . . , �log n�}
a “name” is computed according to the lexicographical order the two names,
Namei[j − 1] and Namei+j/2[j − 1], which have already been computed.

The product of the naming algorithm is the vectors Namesi, which are used
in order to find the substring of length p that occurs the majority of times.

A substring P of length p that occurs more than n
2p times at positions

0, p, 2p, . . . , �n
p �p of S is denoted as a candidate substring of S. In order to find

a candidate substring P for a specific period length p, an auxiliary list of size n
p

is computed in order to keep the names of the substrings of length p starting at
positions i ∈ {0, p, 2p, . . . , �n

p �p} in S. Let P be the substring S[i . . . i + p − 1].
The name of P is found in constant time using the Namesi vector as follows.
If p is of size 2k then the name of P is equal to Namesi[k]. Otherwise, let k be
the maximal integer such that 2k < p. P is split into two overlapping substrings
such that P1 is a prefix of P , P2 is a suffix of P , and |P1| = |P2| = 2k. The name
of P is the concatenation of Namesi[k] and Namesi+p−2k [k].

After the list of substring names is established, the names are sorted using
radix sort. Then, for each name the number of its occurrences is summed, and
the name of the substring that occurs more than half of the times corresponds
to the winner substring. Denote the winner substring as P .

2.2 Step 2: Compute the Hamming Distance

The Hamming distance between P
n
p and S must be smaller than n

2p for P to
be a valid candidate. We compute the Hamming distance using the technique of

60 A. Amir et al.

“Kangaroo Jumps” [12] (i.e., using suffix tree and LCA algorithm for a constant
time “jump” over equal substrings): we count the number of mismatches between
all substrings of length p starting at positions 0, p, 2p, . . . and P . If this number
is smaller than n

2p , then P is a candidate substring for being an approximate
period of S. A candidate substring P is represented as a pair (i, p), where i is a
position in the string where P occurs and p is the length of the substring, such
that P = S[i . . . i + p − 1].

2.3 Step 3: Primitivity Check

As in exact periodicity, we only consider a string P to be the approximate
period of S if P is primitive. In order to decide whether a candidate substring is
primitive, we use the algorithm presented in Crochemore et al. [9]. There, a string
S of length n is preprocessed, such that given two indices, 0 ≤ i ≤ j ≤ n − 1,
the algorithm returns TRUE if the substring S[i . . . j] is primitive or FALSE,
otherwise. This query is done in O(log n) time, and if P is indeed a primitive
string, P is reported as an approximate period of S.

2.4 Time Complexity

The naming technique of [15] is done once in O(n log n) time. The preprocessing
of S in order to support O(log n)-time queries for substring primitivity is done
once in O(n logγ n) time, for an arbitrary positive real 0 < γ < 1 (see [9])3.

In Step 1, for each period length p, the procedure of finding a candidate
substring of length p is done in O(n

p) time: first, for each one of the positions
i ∈ {0, p, . . . , �n

p �p}, the name of the substring S[i . . . i + p − 1] is found and
inserted to a list in constant time. Then, finding the majority substring is done by
first sorting the list and then performing one pass over the sorted list, both done
in time linear to the list size, �n

p �. In Step 2, we compute the total number of mis-
matches between P and the substrings S[i . . . i+p−1], where i ∈ {0, p, . . . , �n

p �p}.
Note that this procedure is run at most 3

2 · n
p = O(n

p) times, since having more
than n

2p mismatches means that P is not a candidate substring. This gives a total

of Σ
n
2
p=1

n
p = nΣ

n
2
p=1

1
p = O(n log n) time for finding all candidate substrings in S.

Finally, in Step 3, primitivity checking costs O(log n) for each of the n/2 candi-
dates, for a total of O(n log n). Thus, the total time complexity of the algorithm
is bounded by O(n log n).

3 Period Recovery over the Edit Distance

In the period recovery problem over the edit distance, the input is a string S of
length n, and the output is all primitive periods P of length p, such that the
edit distance between S and any prefix of P∞ is at most n

(4+ε)p , for 0 < ε < 1.

3 More precisely, this time complexity can be further improved to linear time pre-
processing and O(log log n) time query, by replacing, in Crochemore et al. [9], the
2D range minimum query algorithm of Chazelle [6] with the algorithm of Chan [5].

Period Recovery over the Hamming and Edit Distances 61

In [1] it was proven that there are at most O(log n) solutions for P . However,
they computed the edit distance for O(n log n) candidates. In this paper we show
how it is possible to narrow down the set of candidates for P a priori, so that
verification is only necessary for O(log n) candidates (see Subsect. 3.1).

Our algorithm has three steps: as a first step, it finds the O(log n) candidate
substrings in S (see Subsect. 3.3). In step 2, the algorithm verifies short candi-
dates having p < n1/3 (see Subsect. 3.4), and finally, in the third step, it verifies
the long candidates with period length p ≥ n1/3 (see Subsect. 3.5).

For each candidate substring P , we compute the edit distance between any
substring of P∞ and S, and by this we find the best conjugate of P that has the
minimum number of errors with S.

Remark. if the divisions do not yield whole numbers, we simply take the floor
of the fractions without affecting the resulting complexities.

3.1 Reducing the Number of Candidates

In this subsection we prove that the initial number of possible candidates for
approximate periods of S can be reduced to O(log n). In Corollary 1 it becomes
apparent that for each possible period length p, 1 ≤ p ≤ n

2 , there can be at most
1 candidate substring for being an approximate period of S. We then proceed
to prove that if U and V (u > v) are both candidates for being approximate
periods of S, then the length of V must be a fraction of the length of U (Lemma
3). From both these facts we conclude that the total number of initial candidates
cannot exceed O(log n).

We start with a definition of a zone. A zone, z = (i, j, p), is a substring
S[i . . . j] in which S[x] = S[x + p] for every position i ≤ x < j − p. If the size of
the zone is greater than 2p, the zone is actually a run, and it can be written as
z = UkU ′ for some k ≥ 2 an integer.

For a string S, if S contains x errors with a prefix of a string U∞ then the
string S can be partitioned into x + 1 zones with respect to U (see Example
1). It is easy to see that a zone z, z = (i, j, p), in a string S contains exactly
�(j − i + 1)/2p� non-overlapping squares of the string S[i . . . i + p − 1]. For
simplicity of presentation, we further use the abbreviation NOS(U) to refer to
non-overlapping squares of some conjugate of the substring U .

Example 1. Let S = ac ab ac ac ac ac a ac ac ac ac x ac ac, and let U = ac
be a candidate substring for being an approximate period of S. The number of
allowed errors is n/(4 + ε)u = 26/(4 + ε)2 ≤ 3 for all 0 < ε < 1, and the errors
are in the following positions in S: 4 (mismatch), between 13 and 14 (insertion),
and 22 (deletion).

S has 4 zones with respect to U : z1 = S[1 . . . 3], z2 = S[5 . . . 13], z3 =
S[14 . . . 21] and z4 = S[23 . . . 26]. The first zone, z1, does not contain a repetition
of U or its conjugates, whereas the rest of the zones do: z2 contains 2 NOS(U)
(of either ac or ca), z3 contains 2 NOS(U) (of the substring U) and z4 contains
1 NOS(U) (of the substring U).

62 A. Amir et al.

In the following Lemma 1 we prove that a valid candidate for being an approx-
imate period of S, U , must have at least n

4u non-overlapping squares of conjugates
of U in S.

In the proof of Lemma 1 we count the maximum number of characters in
S that are not contained in NOS(U) in S. Denote these characters as “bad”
characters. In Example 1, there are 6 “bad” characters in S with respect to U :
S[1 . . . 4], S[21], and either S[5] or S[13].

Lemma 1. Given a string S of length n, and a string U of length u, if S has
at most n

(4+ε)u edit errors with a substring of U∞, then S contains at least n
4u

non-overlapping squares, each having a conjugate of U as its root.

Proof. Let S′ be a prefix of U∞ such that the alignment between S′ and S
contains at most n

(4+ε)u edit errors. The substrings between the alignment error
positions are zones in S with respect to U . Therefore, there are at most n

(4+ε)u +1
zones in S with respect to U .

Each zone contains at most 2u − 1 characters that do not participate in
NOS(U). In addition, each error position can imply a character that does not
participate in a NOS(U).

Thus, the total number of “bad” characters in S with respect to U is at most
Nbad = (n

(4+ε)u + 1) · (2u − 1) + n
(4+ε)u = 2n

(4+ε) + 2u − 1.
The number of characters in S that do participate in a NOS(U), is therefore

at least: Ngood = n − Nbad = n − (2n
(4+ε) + 2u − 1) = n(2+ε)

(4+ε) − 2u + 1.
Dividing Ngood by 2u gives a bound on the minimum number of non-

overlapping squares of conjugates of U in S.
Consider the case where Ngood

2u does not yield a whole number. This means
that there exists at least one zone, zi = (i, j, u), such that zi contains 2ku + g
“good” characters and 2u − 1 “bad” characters, for k ≥ 0 and 0 < g < 2u (i.e.,
the size of zi is equal to (2k + 2)u + g − 1). The number of NOS(U) in zi is
equal to (2k + 2)/2 = k + 1 (see Fig. 1).

Therefore, when counting the number of NOS(U) in S, we take the ceiling
of the value Ngood

2u as follows.

#NOS(U) = �Ngood

2u
� = �(n(2 + ε)

(4 + ε)
− 2u + 1)/2u� >

n

4u
− 1

for all 0 < ε < 1.
Since #NOS(U) is greater than n

4u−1, S contains at least n
4u non-overlapping

squares of conjugates of U in S. 	

Example 2. Let S = (abcde abcdX)1000(abcde abcde)1000abcde and let U =
abcde. In this example, n = 20005 and for ε = 0.01, we get that the number
of allowed errors is 1000, and the number of zones is 1001.
According to the equation above we get that the number of good characters in
S is at least 20005 − (1001 · 9 + 1000) = 9996. This means that the number of
NOS(abcde) = �Ngood

2u � = � 9996
20 � = 500 = � n

4u� = � 20005
40 �. In this example, the

actual number of “good” characters in S with respect to U is exactly 10000.

Period Recovery over the Hamming and Edit Distances 63

Fig. 1. A zone zi = (i, j, u) that contains 2ku+g “good” characters and was computed
as having 2u − 1 “bad” characters. The size of zi is equal to (2k + 2)u + g − 1, which
means that there are exactly k + 1 non-overlapping squares of conjugates of U in zi.

Corollary 1. For each period length p there can be at most 1 candidate substring
for being an approximate period of S.

Proof. Assume by contradiction that there are two candidate substrings, U and
V , both of size p, such that V is not a conjugate of U . Each candidate has at least
n
4p non-overlapping squares of its conjugates in S. Each NOS(U) contributes at
least 2 errors to the alignment of S with V ∞. This is due to the fact that V is
not a conjugate of U , hence a substring of S that equals U has to have at least 1
error with any substring of V ∞ of size p. This yields at least n

2p > n
(4+ε)p errors

for each U and V , which means that both substrings are not valid candidates. 	

We now proceed with showing that this initial number of n candidates can
be further reduced to O(log n).

Assume that a substring U contains n
4u non-overlapping squares of its conju-

gates in S. Note that this property is not sufficient to render U a valid solution,
but it can be used as a simple filter for initial candidates. We want to show
that any shorter candidate substring V that may be a possible solution, must
be significantly shorter than U . The main idea is to examine only the substrings
of S that contain exact squares of conjugates of U and “count” the number of
errors that must occur between the exact squares of the conjugates of U and any
substring of V ∞.

Lemma 2 (Common Factor Lemma [10]). For any primitive strings U and
V, such that U is not a conjugate of V, a prefix of U∞ and a prefix of V ∞ cannot
have a common factor of length greater than or equal to u + v − gcd(u, v) where
gcd stands for the greatest common divisor.

The common factor lemma implies that every square of a conjugate of U
contributes at least one error to the alignment between S and every substring
of V ∞ for every other possible candidate V , having v ≤ u.

Lemma 3. Let S be a string of length n, and 0 < ε < 1 be a constant. Let U be
a primitive substring of S such that there are at least n

4u exact non-overlapping
squares of conjugates of U in S. A primitive substring V of S, such that v ≤ u,
can be a member of the solution set to the Period Recovery Problem, only if the
following relation is true: u ≥ (1 + ε

4)v.

64 A. Amir et al.

Proof. By Lemma 2, a square contributes at least 1 error to the alignment
between S and every substring of V ∞. The initial condition for V being a valid
answer requires that the alignment for V contains no more than n

(4+ε)v errors.
Therefore, we bound u as follows: n

4u ≤ n
(4+ε)v . Since the numerator is the same,

the denominator has to be greater, thus we have: 4u ≥ (4 + ε)v dividing both
sides by 4 yields: u ≥ (1 + ε

4)v. 	

The above Lemma leads to the desired bound on the maximum number of
possible candidates that needs to be considered in a string S of length n:

Lemma 4. There are at most log1+ ε
4

n = O(log n) possible candidates for being
an approximate period over the edit distance in a string S of size n.

Proof. The longest candidate U has length at most n
2 . By Lemma 3, the next

longest candidate must have length less than or equal to u divided by 1 + ε
4 .

Thus, the number of candidates equals the number of times n/2 can be divided
by 1 + ε

4 , which equals log1+ ε
4

n = O(log n). 	

3.2 Algorithm Outline

Input: String S of length n.
Output: A set of at most O(log n) patterns that are approximate periods of S
over the edit distance.

1. Initialize candidates list:
(a) Find all runs in the string S. For each run, choose its L-root as a repre-

sentative.
(b) Sort the runs by their period size, and by their representative.
(c) For each run r, r = (i, j, p), compute the number of its non-overlapping

squares by taking �(j − i + 1)/2p�.
(d) For each representative, sum its non-overlapping conjugate squares (over

all the runs it represents), and discard all representatives that have less
than n

4u non-overlapping squares.
(e) For each representative U , starting from the longest candidate, discard

all candidates V such that u ≤ (1 + ε
4)v.

2. Verify all O(log n) candidate strings:
(a) If the length of candidate U is u < n1/3, use the verification procedure

for short candidates.
(b) Else (i.e., u ≥ n1/3), use the verification procedure for long candidates.

In the first part of the algorithm the initial list of candidates is computed.
This part is described in Subsect. 3.3. At the end of this step, the list of can-
didates contains only substrings U such that U contains at least n/4u non-
overlapping squares over all the conjugates of U . In addition, for each two
candidates in the list, U and V (u > v), we have that u > (1 + ε

4)v.
In the second part of the algorithm, an iteration over the list of candidates is

done. For each candidate U , a verification procedure is called according to the

Period Recovery over the Hamming and Edit Distances 65

size of the candidate: for candidates with u < n1/3 the procedure for verifying
short candidates is called (see Subsect. 3.4), and for candidates with u ≥ n1/3

the procedure for verifying long candidates is called (see Subsect. 3.5).
In the following subsections, the steps are further explained.

3.3 Finding the Candidate Substrings

As a preprocessing step, the suffix tree of S is built with a preparation for
constant time LCA queries between suffixes of S. These data structures are
built in linear time.

Step 1a of the algorithm uses the linear time algorithm of Bannai et al. [3] for
finding all runs in a string S. For each run found by the algorithm, the algorithm
marks a representative for the run, which is an occurrence of the L-root of the
run. Step 1b is done in linear time using radix sort, since there are at most
n − 1 runs in a string of length n. In addition, the comparison between two
representatives is done in constant time using LCA queries.

In steps 1c and 1d of the algorithm, for each L-root, we compute the number
of non-overlapping squares of all of its conjugates in S, and remove the ones that
do not have sufficient number of non-overlapping squares. Since the number of
L-roots is at most n − 1, the steps are done in linear time.

In the final step 1e, following Lemma 3, starting with the longest candidate
substring U , all candidate substrings V such that u ≤ (1 + ε

4)v are discarded,
since they cannot be a valid solution.

3.4 Verification of Short Candidates

In order to verify a given candidate P , it is necessary to perform an edit distance
alignment between the input string S, and the periodic string P∞. The goal is
to report whether there is a match with fewer than n

(4+ε)p errors, and if there
is, to report the best conjugate of P for which the match exists. We formally
state the problem as follows. Given a string S of length n, and a string P of
length p, such that p < n1/3, find the best scoring edit distance alignment of the
entire string S with any substring of P∞. Note that if there is more than one
alignment with the minimum distance, any alignment would be sufficient.

Wraparound dynamic programming (WDP) [11,22] can be used directly to
solve this problem. The idea of WDP is to align the string S with the period P ,
and to include an additional possibility in the dynamic programming calculation
of the first value of each row. Each row is computed twice. The first time, the
last value on the previous row is considered in the calculation of the first value
of a row, and the second time, the last value in its own row is considered as well.
In order to compute the edit distance between any conjugate of P and S, we set
the first row of the table to zeros in step 2 of the algorithm.

Algorithm Short Candidate Verification

1. Construct an edit distance matrix with S on the left, and P on top.

66 A. Amir et al.

2. Initialize the first row to all zero’s.
3. Calculate the entire matrix using wraparound dynamic programming.
4. The lowest value in the last row is the minimum edit distance.

Time Complexity: WDP runs in O(np) time. Since p < n1/3, this results in
O(n4/3) time per short candidate.

3.5 Verification of Long Candidates

For a candidate P with p ≥ n1/3, we use the algorithm of Landau-Vishkin
(LV) [19] to calculate the optimal edit distance alignment between S and sub-
strings of P∞. Given a fixed number of allowed errors, k, the LV algorithm
calculates O(k) elements on 2k diagonals using LCA queries on the suffix tree.
We modify this algorithm, since our goal is to report the best conjugate of P
that matches. We calculate O(k) elements on p + 2k diagonals, initializing the
first p − 1 diagonals with a zero. This allows the algorithm to choose the best
starting position from the first p − 1 positions, which in effect chooses the best
conjugate of P .

Time Complexity: in our case, the O(k2) time algorithm of LV becomes
O(k(p + k)) = O(kp + k2) since we calculate p + 2k diagonals. The number of
allowed errors for our algorithm is k = n/(4 + ε)p = O(n/p). Replacing this
value for k we get O(n + n2/p2). Recall that for long candidates, p ≥ n1/3, thus
p2 ≥ n2/3. This yields O(n2/n2/3) = O(n4/3) time per long candidate.

3.6 Time Complexity

The initialization of the candidate list takes O(n) time, as analyzed in Sub-
sect. 3.3. In the verification part, O(log n) candidates are verified. Assume that
the candidate sizes are p1 > p2 > p3 > . . . > plog n. Following Lemma 3, for
every 1 ≤ i ≤ log n, pi − pi+1 > pi

1+ ε
4
.

For the short candidates (where pi < n1/3) the verification takes O(npi)-
time (see Subsect. 3.4). Therefore, for all short candidates the time complexity
is expressed as the sum of the algebraic series: nΣlog n

i=0
n1/3

(1+ ε
4)

i = O(n4/3).

For long candidates (where pi ≥ n1/3), the verification takes O(n2

p2
i
)-time

(see Subsect. 3.5). The time complexity for all long candidates is equal to:
n2

n2/3 Σlog n
i=0

1
(1+ ε

4)
i = O(n4/3). Thus, overall, the time complexity of the entire

algorithm is bounded by O(n4/3).

References

1. Amir, A., Eisenberg, E., Levy, A., Porat, E., Shapira, N.: Cycle detection and
correction. ACM Trans. Algorithms 9(1), 13:1–13:20 (2012)

2. Amit, M., Crochemore, M., Landau, G.M.: Locating all maximal approximate runs
in a string. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 13–
27. Springer, Heidelberg (2013)

Period Recovery over the Hamming and Edit Distances 67

3. Bannai, H.., Inenaga, T.I.S., Nakashima, Y., Takeda, M., Tsuruta, K.: The “runs”
theorem. CoRR, abs/1406.0263v4 (2014)

4. Brodal, G.S., Lyngsø, R.B., Östlin, A., Pedersen, C.N.S.: Solving the string sta-
tistics problem in time O(n log n). In: Widmayer, P., Triguero, F., Morales, R.,
Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp.
728–739. Springer, Heidelberg (2002)

5. Chan, T.M.: Persistent predecessor search and orthogonal point location on the
word ram. ACM Trans. Algorithms (TALG) 9(3), 22 (2013)

6. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM J. Comput. 17(3), 427–462 (1988)

7. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett. 12(5), 244–250 (1981)

8. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings, 392 p. Cambridge
University Press, Cambridge (2007)

9. Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń,
T.: Extracting powers and periods in a string from its runs structure. In: Chavez,
E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 258–269. Springer, Hei-
delberg (2010)

10. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16, 109–114 (1965)

11. Fischetti, V.A., Landau, G.M., Sellers, P.H., Schmidt, J.P.: Identifying periodic
occurences of a template with applications to protein structure. Inf. Process. Lett.
45(1), 11–18 (1993)

12. Galil, Z., Giancarlo, R.: Improved string matching with k mismatches. SIGACT
News 17(4), 52–54 (1986)

13. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525–546 (2004)

14. Iliopoulos, C.S., Moore, D., Smyth, W.F.: A characterization of the squares in a
Fibonacci string. Theor. Comput. Sci. 172(1–2), 281–291 (1997)

15. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated pat-
terns in strings, trees, and arrays. In: STOC: ACM Symposium on Theory of
Computing (STOC) (1972)

16. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear
time. In: Proceedings of Symposium on Foundations of Computer Science (FOCS),
pp. 596–604 (1999)

17. Kolpakov, R.M., Kucherov, G.: Finding approximate repetitions under Hamming
distance. Theor. Comput. Sci 1(303), 135–156 (2003)

18. Landau, G.M., Schmidt, J.P., Sokol, D.: An algorithm for approximate tandem
repeats. J. Comput. Biol. 8(1), 1–18 (2001)

19. Landau, G.M., Vishkin, U.: Fast parallel and serial approximate string matching.
J. Algorithms 10(2), 157–169 (1989)

20. Lothaire, M.: Applied Combinatorics on Words (Encyclopedia of Mathematics and
its Applications). Cambridge University Press, New York (2005)

21. Lyndon, R.C.: On Burnside’s problem. Trans. Am. Math. Soc. 77(2), 202–215
(1954)

22. Myers, E.W., Miller, W.: Approximate matching of regular expressions. Bull. Math.
Biol. 51(1), 5–37 (1989)

23. Sim, J.S., Iliopoulos, C.S., Park, K., Smyth, W.F.: Approximate periods of strings.
In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 123–133.
Springer, Heidelberg (1999)

Chasing Convex Bodies and Functions

Antonios Antoniadis1, Neal Barcelo2, Michael Nugent2, Kirk Pruhs2,
Kevin Schewior3(B), and Michele Scquizzato4

1 Max-Planck-Institut Für Informatik, Saarbrücken, Germany
aantonia@mpi-inf.mpg.de

2 Department of Computer Science, University of Pittsburgh, Pittsburgh, USA
{NCB30,mpn1,krp2}@pitt.edu

3 Technische Universität Berlin, Institut Für Mathematik, Berlin, Germany
schewior@math.tu-berlin.de

4 Department of Computer Science, University of Houston, Houston, USA
michele@cs.uh.edu

Abstract. We consider three related online problems: Online Convex
Optimization, Convex Body Chasing, and Lazy Convex Body Chasing.
In Online Convex Optimization the input is an online sequence of convex
functions over some Euclidean space. In response to a function, the online
algorithm can move to any destination point in the Euclidean space. The
cost is the total distance moved plus the sum of the function costs at
the destination points. Lazy Convex Body Chasing is a special case of
Online Convex Optimization where the function is zero in some convex
region, and grows linearly with the distance from this region. And Con-
vex Body Chasing is a special case of Lazy Convex Body Chasing where
the destination point has to be in the convex region. We show that these
problems are equivalent in the sense that if any of these problems have
an O(1)-competitive algorithm then all of the problems have an O(1)-
competitive algorithm. By leveraging these results we then obtain the
first O(1)-competitive algorithm for Online Convex Optimization in two
dimensions, and give the first O(1)-competitive algorithm for chasing lin-
ear subspaces. We also give a simple algorithm and O(1)-competitiveness
analysis for chasing lines.

1 Introduction

We consider the following three related online problems, all set in a d-dimensional
Euclidean space S, with some distance function ρ.

Convex Body Chasing: The input consists of an online sequence F1,F2, . . . ,Fn

of convex bodies in S. In response to the convex body Fi, the online algorithm
has to move to any destination/point pi ∈ Fi. The cost of such a feasible solution

K. Pruhs—Supported, in part, by NSF grants CCF-1115575, CNS-1253218, CCF-
1421508, and an IBM Faculty Award.
K. Schewior—Supported by the DFG within the research training group ‘Methods
for Discrete Structures’ (GRK 1408).

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 68–81, 2016.
DOI: 10.1007/978-3-662-49529-2 6

Chasing Convex Bodies and Functions 69

is the total distance traveled by the online algorithm, namely
∑n

i=1 ρ(pi−1, pi).
The objective is to minimize the cost. If the convex bodies are restricted to be of
a particular type T , then we refer to the problem as T Chasing. So for example,
Line Chasing means that the convex bodies are restricted to being lines.

Lazy Convex Body Chasing: The input consists of an online sequence of lazy
convex bodies (F1, ε1), (F2, ε2), . . . , (Fn, εn), where each Fi is a convex body
in S, and each slope εi is a nonnegative real number. In response to the pair
(Fi, εi), the online algorithm can move to any destination/point in the metric
space S. The cost of such a feasible solution is

n∑

i=1

(ρ(pi−1, pi) + εiρ(pi,Fi)) ,

where ρ(pi,Fi) is the minimal distance of a point in Fi to pi. So the online
algorithm need not move inside each convex body, but if it is outside the convex
body, in addition to paying the distance traveled, the online algorithm pays an
additional cost that is linear in the distance to the convex body. The objective
is to minimize the cost. Again if the convex bodies are restricted to be of a
particular type T , then we refer to the problem as Lazy T Chasing.

Online Convex Optimization: The input is an online sequence F1, F2, . . . , Fn

of convex functions from S to R+. In response to the function Fi, the online
algorithm can move to any destination/point in the metric space S. The cost of
such a feasible solution is

n∑

i=1

(ρ(pi−1, pi) + Fi(pi)) .

So the algorithm pays the distance traveled plus the value of the convex functions
at the destinations points. The objective is to minimize the cost.

It is easy to see that a c-competitive algorithm for Online Convex Optimiza-
tion implies a c-competitive algorithm for Lazy Convex Body Chasing, and a c-
competitive algorithm for Lazy Convex Body Chasing implies a c-competitive
algorithm for Convex Body Chasing. To see this, note that Convex Body Chas-
ing is a special case of Lazy Convex Body Chasing where each εi is infinite (or,
more formally, so large that any competitive algorithm would essentially have to
move inside each convex body). Similarly, Lazy Convex Body Chasing is a spe-
cial case of Online Convex Optimization in which the convex functions are zero on
some convex set, and that grow linearly as one moves away from this convex set.

1.1 The History

Our initial interest in Online Convex Optimization arose from applications
involving right-sizing data centers [1,14–18,21]. In these applications, there is
a collection of d centrally-managed data centers, where each data center con-
sists of a homogeneous collection of servers/processors which may be powered

70 A. Antoniadis et al.

down. We represent the state of the data centers by a point in a d-dimensional
space where coordinate i represents how many servers are currently powered-
on in data center i (the assumption is that there are enough servers in each
data center so that one may reasonably treat the number of servers as a real
number instead of an integer). In response to a change in load, the number of
servers powered-on in various data centers can be changed. Under the standard
assumption that there is some fixed cost for powering a server on, or powering
the server off, the Manhattan-distance between states represents the costs for
powering on/off servers. The function costs represent the cost for operating the
data-centers with the specified number of servers in each data center. The stan-
dard models of operating costs, such as those based on either queuing theoretic
costs, and those based on energy costs for speed-scalable processors, are convex
functions of the state.

Online Convex Optimization for d = 1: Essentially all the results in the literature
for Online Convex Optimization are restricted to the case that the dimension is
d = 1. [16] observed that the offline problem can be modeled as a convex program,
which is solvable in polynomial time, and that if the line/states are discretized,
then the offline problem can be solved by a straight-forward dynamic program.
[16] also gave a 3-competitive deterministic algorithm that solves a (progres-
sively larger) convex program at each time. [1] shows that there is an algorithm
with sublinear regret, but that O(1)-competitiveness and sublinear regret cannot
be simultaneously achieved. [1] gave a randomized online algorithm, RBG, and
a 2-competitiveness analysis, but there is a bug in the analysis [22]. A revised
2-competitiveness analysis can be found in [2]. Independently, [4] gave a ran-
domized algorithm and showed that it is 2-competitive. [4] also observed that
any randomized algorithm can be derandomized, without any loss in the com-
petitive ratio. [4] also gave a simple 3-competitive memoryless algorithm, and
showed that this is optimally competitive for memoryless algorithms.

Convex Body Chasing: Convex Body Chasing and Lazy Convex Body Chasing
were introduced in [10]. [10] assumed the standard Euclidean distance func-
tion, and observed that the optimal competitive ratio is Ω(

√
d), where d is the

dimension of the space. [10] gave a somewhat complicated algorithm and O(1)-
competitiveness analysis for chasing lines in two dimensions, and observe that
any O(1)-competitive line chasing algorithm for two dimensions can be extended
to an O(1)-competitive line chasing algorithm for an arbitrary number of dimen-
sions. [10] gave an even more complicated algorithm and O(1)-competitiveness
analysis for chasing arbitrary convex bodies in two dimensions. [10] also observed
that plane chasing in three dimensions is equivalent to lazy line chasing in two
dimensions in the sense that one of these problems has an O(1)-competitive
algorithm if and only if the other one does. [20] showed in a complicated analy-
sis that the work function algorithm is O(1)-competitive for chasing lines and
line segments in any dimension. [11] showed that the greedy algorithm is O(1)-
competitive if d = 2 and the convex bodies are regular polygons with a constant
number of sides.

Chasing Convex Bodies and Functions 71

Classic Online Problems: Online Convex Optimization is also related to several
classic online optimization problems. It is a special case of the metrical task
system problem in which the metric space is restricted to be a d-dimensional
Euclidean space and the costs are restricted to be convex functions on that space.
The optimal deterministic competitive ratio for a general metrical task system
is 2n−1, where n is the number of points in the metric [7], and the optimal ran-
domized competitive ratio is Ω(log n/ log log n) [5,6] and O(log2 n log log n) [9].
Online Convex Optimization is related to the allocation problem defined in [3],
which arises when developing a randomized algorithm for the classic k-server
problem using tree embeddings of the underlying metric space [3,8]. In fact, the
algorithm RBG in [1] is derived from a similar algorithm in [8] for this alloca-
tion problem. The classic ski rental problem, where randomized algorithms are
allowed, is a special case of Online Convex Optimization. The optimal competi-
tive ratio for randomized algorithms for the ski rental problem is e/(e − 1) [12].
[4] showed that the optimal competitive ratio for Online Convex Optimization
for d = 1 is strictly greater than the one for online ski rental. The k-server and
CNN problems [13] can be viewed as chasing nonconvex sets.

1.2 Our Results

In Sect. 2 we show that all three of the problems that we consider are equiva-
lent in the sense that if one of the problems has an O(1)-competitive algorithm,
then they all have O(1)-competitive algorithms. More specifically, we show that
if there is an O(1)-competitive algorithm for Lazy Convex Body Chasing in d
dimensions then there is an O(1)-competitive algorithm for Online Convex Opti-
mization in d dimensions. The crux of this reduction is to show that any convex
function can be approximated to within a constant factor by a finite collection of
lazy convex bodies. We then show that if there is an O(1)-competitive algorithm
for Convex Body Chasing in d dimensions, then there is an O(1)-competitive
algorithm for Lazy Convex Body Chasing (objects of the same type) in d dimen-
sions. Intuitively in this reduction, each lazy convex body (Fi, εi) is fed to the
Convex Body Chasing algorithm with probability εi. As in [4], this algorithm
can be derandomized by deterministically moving to the expected location of the
randomized algorithm. The equivalence of these problems follows by combining
these reductions with the obvious reductions in the other direction. Combining
these reductions with the results in [10], most notably the O(1)-competitive algo-
rithm for chasing halfspaces in two dimensions, we obtain an O(1)-competitive
algorithm for Online Convex Optimization in two dimensions.

In Sect. 3 we give an online algorithm for Convex Body Chasing when the
convex bodies are subspaces, in any dimension, and an O(1)-competitiveness
analysis. In this context, subspace means a linear subspace closed under vector
addition and scalar multiplication; So a point, a line, a plane, etc. The two main
components of the algorithm are (1) A reduction from hyperplane chasing in d
dimensions to lazy hyperplane chasing in d−1 dimensions, and (2) our reduction
from Lazy Convex Body Chasing to Convex Body Chasing. The first reduction is
the natural generalization of the continuous reduction from plane chasing in three

72 A. Antoniadis et al.

dimesions to lazy line chasing in two dimensions given in [10]. Combining these
two components gives an O(1)-approximation reduction from subspace chasing
in d dimensions to subspace chasing in d−1 dimensions. One then obtains a 2O(d)-
competitive algorithm by repeated applications of these reductions, and the use
of any of the O(1)-competitive algorithms for Online Convex Optimization in
one dimension. Within the context of right-sizing data centers, it is reasonable
to assume that the number of data centers is a smallish constant, and thus this
algorithm would be O(1)-competitive under this assumption.

In Sect. 4 we give an online algorithm for chasing lines and line segments in
any dimension, and show that it is O(1)-competitive. The underlying insight of our
online algorithm is the same as in [10], to be greedy with occasional adjustments
toward the area where the adversary might have cheaply handled recent requests.
However, our algorithm is cleaner/simpler than the algorithm in [10]. In particular
our algorithm is essentially memoryless as the movement is based solely on the last
two lines, instead of an unbounded number of lines as in [10]. Our analysis is based
ona simple potential function: thedistancebetween the location for the online algo-
rithm and for the adversary, and is arguably cleaner than the analysis in [10], and
is certainly cleaner than the analysis of the work function algorithm in [20].

While our results are not that technically deep, they do provide a much
clearer picture of the algorithmic relationship of the various online problems in
this area. Our results also suggest that the “right” problem to attack in this area
is finding (if it exists) an O(1)-competitive algorithm for half-space chasing, as
this is the simplest problem that would give an O(1)-competitive algorithm for
all of these problems.

For concreteness we will assume ρ is the standard Euclidean distance func-
tion. Although as our focus is on O(1)-approximation, without being too con-
cerned about the exact constant, our results will also hold for the Manhattan
distance, and other standard normed distances.

2 Reductions

In this section we show in Lemma 1 that Lazy Convex Body Chasing is reducible to
Convex Body Chasing, in Lemma 2 that Online Convex Optimization is reducible
to Lazy Convex Body Chasing, and in Corollary 1 that these reductions give an
O(1)-competitive algorithm for Online Convex Optimization in two dimensions.

Lemma 1. If there is an O(1)-competitive algorithm AC for Convex Body Chas-
ing in d dimensions, then there is an O(1)-competitive algorithm AL for Lazy
Convex Body Chasing in d dimensions. The same result holds if the convex bodies
in both problems are restricted to be of a particular type.

Proof. We build a randomized algorithm AL from AC and then explain how to
derandomize it. We first modify the input instance by replacing each lazy convex
body (Fi, εi) whose slope εi is greater than 1 by �εi� lazy convex bodies, each
having Fi as the convex body. The first �εi� of these lazy convex bodies will have
slope 1, and the potentially remaining convex body will have slope εi −�εi�. This

Chasing Convex Bodies and Functions 73

modification does not affect the optimal cost, and will not decrease the online
cost. From now on, we will assume that any input instance for Lazy Convex Body
Chasing is of this modified form. It is easy to see how one can go back from a
solution to the modified input to one to the original input without increasing the
cost, since our algorithm will never “move away” from the line that just arrived.

Algorithm AL: Upon the arrival of a new lazy convex body (Fi, εi), the algorithm
with (independent) probability 1 − εi does not move, and with probability εi

passes Fi to AC and moves to the location to which AC moves.
Notice that in the modified input instance every slope is a real number

in [0, 1], and thus probabilities εi and 1 − εi are all well defined.

Analysis: Consider a particular input instance IL of Lazy Convex Body Chasing,
as defined before. Let IC denote the random variable representing the sequence of
convex bodies passed to AC . Let OptL be the optimal solution for Lazy Convex
Body Chasing on IL. Let OptC be a random variable equal to the optimal
solution for Convex Body Chasing on IC . Let OptT be a random variable equal
to the optimal solution for the Lazy Convex Body Chasing instance IT derived
from IC by replacing each Fi ∈ IC by the lazy convex body (Fi, 1). We will use
absolute value signs to denote the cost of a solution.

The O(1)-competitiveness of AL then follows from the following sequence of
inequalities:

E[|AL(IL)|] =
∑

i

P[Fi ∈ IC] E[Cost of AC on Fi | Fi ∈ IC]

+
∑

i

P[Fi /∈ IC] E[Cost of AL on Fi | Fi /∈ IC] (1)

=
∑

i

εi E[Cost of AC on Fi | Fi ∈ IC]

+
∑

i

(1 − εi) E[εi ρ(pi−1,Fi)] (2)

≤
∑

i

εi E[Cost of AC on Fi | Fi ∈ IC]

+
∑

i

εi E[ρ(pi−1,Fi)] (3)

≤ 2
∑

i

εi E[Cost of AC on Fi | Fi ∈ IC] (4)

= 2
∑

i

P[Fi ∈ IC] E[Cost of AC on Fi | Fi ∈ IC] (5)

= 2 E[|AC(IC)|] (6)
= O(E[|OptC |]) (7)
= O(E[|OptT |]) (8)
= O(|OptL|). (9)

74 A. Antoniadis et al.

Equality (1) follows from the definitions of expectation and conditional expec-
tation, and linearity of expectation. Notice that all expectations involving Fi only
depend upon the history up until Fi arrives. Equality (2) follows from the fact
that Fi is added to IC with probability εi, and if Fi is not added then AL pays εi

times the distance to Fi. Inequality (3) follows from the linearity of expectation
and since 1 − εi ≤ 1. Inequality (4) holds since AC has to move to each Fi ∈ IC

and thus in expectation has to pay at least E[ρ(pi−1,Fi)] (note that only by
independence of the coin flips the expected position of AC in case Fi ∈ IC is
identical to the expected position of AL). Equality (5) holds since Fi ∈ IC with
probability εi. Equality (6) follows by linearity of expectation and the definition
of conditional expectation. Inequality (7) follows by the assumption that AC is
O(1)-competitive. To prove Inequality (8) it is sufficient to construct a solution
S for each possible instantiation of IC that is at most a constant times more
expensive than OptT . In response to a convex body Fi ∈ IC , S moves to the
same destination point pi as OptT , then moves to the closest point on Fi, and
then back to pi. Thus the movement cost for S is at most the movement cost
for OptT plus twice the function costs for OptT . To prove Inequality (9) it is
sufficient to construct an algorithm B to solve Lazy Convex Body Chasing on
IT with expected cost O(|OptL|). For each convex body in Fi ∈ IC , Algorithm
B first moves to the destination point pi that OptL moves to after Fi. Call this
a basic move. Then algorithm B moves to the closest point in Fi, and then back
to pi. Call this a detour move. Then by the triangle inequality the expected total
cost of the basic moves for algorithm B is at most the movement cost of OptL.
The probability that algorithm B incurs a detour cost for convex body Fi is εi,
and when it incurs a detour cost, this detour cost is 2/εi times the function cost
incurred by OptL. Thus the expected cost for algorithm B on IT is at most
3|OptL|.
Derandomization: As in [4], we can derandomize AL to get a deterministic algo-
rithm AD with the same competitive ratio as AL. AD always resides in the
expected position of AL. More specifically, let xi be a random variable denoting
the position of AL directly after the arrival of Fi. Then AD sets its position
to μi := E[xi].

Then, we have that for each step i, AL’s expected cost is E[ρ(xi−1, xi)] +
εiE[ρ(xi,Fi)]. On the other hand, AD’s cost is ρ(E[xi],E[xi−1]) + εiρ(E[xi],Fi).
By a generalization of Jensen’s inequality (see for example Proposition B.1,
page 343 in the book by Marshall and Olkin [19]), and by the convexity of our
distance function ρ (the distance function is a norm, and therefore convexity
follows by triangle inequality and absolute homogeneity), we have, for each i,

E[ρ(xi, xi−1)] ≥ ρ(E[xi],E[xi−1])

and

E[ρ(xi,Fi)] ≥ ρ(E[xi],Fi).

Summing over all i completes the analysis.
�

Chasing Convex Bodies and Functions 75

Lemma 2. If there is an O(1)-competitive algorithm AL for Lazy Convex Body
Chasing in d dimensions, then there is an O(1)-competitive algorithm AO for
Online Convex Optimization in d dimensions.

Proof. Consider an arbitrary instance IO of the convex optimization problem.
We can without loss of generality ignore the prefix of the sequence of functions
that can be handled with zero cost. So let L > 0 be the optimal cost for chasing
function F1. The algorithm will use L as a lower bound for the optimal cost.

For each function Fi that it sees, the algorithm AO feeds the algorithm AL a
finite collection Ci of lazy convex bodies, and then moves to the final destination
point that AL moved to. Let IL be the resulting instance of Lazy Convex Body
Chasing. To define Ci assume without loss of generality that the minimum of Fi

occurs at the origin. We can also assume without loss of generality that the
minimum of Fi is zero.

Define F ′
i (x) to be the partial derivative of Fi at the point x ∈ S = Rd in the

direction away from the origin. Now let Cj be the curve in Rd+1 corresponding
to the points (x, F ′

i (x)) where F ′
i (x) = 2j for integer j ∈ (−∞,+∞). (Or more

technically where the F ′
i (x) transitions from being less than 2j to more than 2j .)

Let Dj be the projection of Cj onto S. Note that Dj is convex.
Let u be the minimum integer such that the location of AO just before Fi is

inside of Du. Let � be the maximum integer such that:

– the diameter of D� is less than L/8i,
– the maximum value of Fi(x) for an x ∈ D� is less than L/8i, and
– � < u − 10.

Then Ci consists of the lazy convex bodies (Dj , 2j) for j ∈ [�, u].
Let Gj(x) be the function that is zero within Dj and grows linearly at

a rate 2j as one moves away from Dj . Now what we want to prove is that∑
j Gj(x) = Θ(Fi(x)) for all x outside of D�+2. To do this consider moving

toward x from the origin. Consider the region between Dj and Dj+1 for j ≥ �+2,
and a point y in this region that lies on the line segment between the origin and x.
Then we know that 2j ≤ F ′

i (y) ≤ 2j+1. Thus as we are moving toward x, the
rate of increase of

∑
j Gj(x) is within a constant factor of the rate of increase

of Fi(x), and thus
∑

j Gj(x) = Θ(Fi(x)).
Let OptL be the optimal solution for the Lazy Line Chasing instance IL

and Let OptO be the optimal solution for the Online Convex Optimization
instance IO. Now the claim follows via the following inequalities:

|AO(IO)| = O(|AL(IL)|) (10)
= O(|OptL|) (11)
= O(|OptO|). (12)

Inequality (10) holds since the movement cost for AL and AO are identical, and
the function costs are within a constant of each other by the observation that∑

j Gj(x) = Θ(Fi(x)). Inequality (11) holds by the assumption that AL is O(1)-
competitive. Inequality (12) holds by the observation that

∑
j Gj(x) = Θ(Fi(x))

76 A. Antoniadis et al.

and the observation that the maximum savings that OptL can obtain from being
inside of each D� is at most L/2.
�

Corollary 1. There is an O(1)-competitive algorithm for Online Convex Opti-
mization in two dimensions.

Proof. This follows from the reduction from Online Convex Optimization to
Lazy Convex Body Chasing in Lemma 2, the reduction from Lazy Convex Body
Chasing to Convex Body Chasing in Lemma 1, and the O(1)-competitive algo-
rithm for Convex Body Chasing in two dimensions in [10].
�

3 Subspace Chasing

In this section we describe a 2O(d)-competitive algorithm for chasing subspaces
in any dimension d. As noticed in [10], it suffices to give such an algorithm for
chasing (d − 1)-dimensional subspaces (hyperplanes). Essentially this is because
every f ≤ d − 1-dimensional subspace is the intersection of d − f hyperplanes,
and by repeating these d−f hyperplanes many times, any competitive algorithm
can be forced arbitrarily close to their intersection.

Algorithm for Chasing Hyperplanes: The two main components of our algorithm
for chasing hyperplanes in d dimensions are:

– A reduction from hyperplane chasing in d dimensions to lazy hyperplane chas-
ing in d−1 dimensions. This is a discretized version of the continuous reduction
given in [10] for d = 3. In this section we give an overview of the reduction,
and the analysis, but defer the formal proof to the full version of the paper.

– Our reduction from Lazy Convex Body Chasing to Convex Body Chasing in
the previous section.

Combining these two components gives a reduction from subspace chasing in d
dimensions to subspace chasing in d − 1 dimensions. One then obtains a 2O(d)-
competitive algorithm by repeated applications of these reductions, and the use
of any of the O(1)-competitive algorithms for lazy point chasing (or online convex
optimization) when d = 1 [2,4,16].

Description of Reduction from Hyperplane Chasing in Dimension d to Lazy
Hyperplane Chasing in Dimension d − 1: Let ALHC be the algorithm for lazy
hyperplane chasing in dimension d − 1. We maintain a bijective mapping from
the Rd−1 space S that the algorithm ALHC moves in to the last hyperplane in
Rd. Initially, this mapping is an arbitrary one that maps the origin of Rd−1 to
the origin of Rd. Call this hyperplane F0.

Each time a new hyperplane Fi in Rd arrives, the algorithm moves in the
following way:

– If Fi is parallel to Fi−1, then the algorithm moves to the nearest position in
Fi.

Chasing Convex Bodies and Functions 77

– If Fi is not parallel to Fi−1, the two hyperplanes intersect in a (d − 2)-
dimensional subspace Ii. Let αi ≤ π/2 radians be the angle between hyper-
planes Fi−1 and Fi. The algorithm then calls ALHC with (Ii, αi). Let pi be
the point within Fi−1 that ALHC moves to. The bijection between Fi and S is
obtained from the bijection between Fi−1 and S by rotating αi radians around
Ii. The algorithm then moves to the location of pi in Fi.

Analysis Overview: Consecutive parallel hyperplanes is the easy case. In this
case, one can assume, at a loss of a factor of

√
2 in competitive ratio, that the

optimal solution moves to the closest point on the new parallel hyperplane. Thus
any competitive ratio c that one can prove under the assumption that consecutive
hyperplanes are not parallel will hold in general as long as c ≥

√
2.

When there are no two consecutive non-parallel hyperplanes, we show that
the cost for the reduction algorithm and the cost for ALHC are within a constant
of each other, and similarly the optimal cost for hyperplane chasing in d dimen-
sions and the optimal cost for lazy hyperplane chasing are within a constant of
each other. Intuitively this is because the additional movement costs incurred in
(non-lazy) hyperplane chasing can be related to the angle between the last two
hyperplanes, and thus to the distance cost (for not being on the hyperplane)
that has to be paid in lazy hyperplane chasing. From this we can conclude that:

Theorem 1. There is a 2O(d)-competitive algorithm for subspace chasing in d
dimensions.

We note that our algorithm can be implemented to run in time polynomial
in d and n.

4 Line Chasing

We give an online algorithm for chasing lines and line segments in any dimen-
sion, and show that it is O(1)-competitive. Let Ei be the unique line that is an
extension of the line segment Fi.

Algorithm Description: Let Pi be a plane containing the line Ei that is parallel
to the line Ei−1 (note this is uniquely defined when Ei and Ei−1 are not parallel).
The algorithm first moves to the closest point hi ∈ Pi. The algorithm then moves
to the closest point gi in Ei.

– If Ei−1 and Ei are parallel, then the algorithm stays at gi.
– If Ei−1 and Ei are not parallel, let mi be the intersection of Ei and the projec-

tion of Ei−1 onto Pi. Let β ∈ (0, 1) be some constant that we shall set later.
The algorithm makes an adjustment by moving toward mi along Ei until it
has traveled a distance of β · ρ(hi, gi), or until it reaches mi.

– Finally, the algorithm moves to the closest point pi in Fi.

Theorem 2. This algorithm is O(1)-competitive for Line Chasing in any
dimension.

78 A. Antoniadis et al.

mi

Ei

projection
of Ei−1

onto Pi

hi

h�
i

gi

g�
ipi p�

i

x

y
αx

βx

Fig. 1. An overview of the used points and distances in Pi.

Proof. Initially assume that all the line segments are lines. Let h�
i be the projec-

tion of the adversary’s position, just before Fi arrives, onto Pi. We will assume
that the adversary first moves to h�

i , and then to the nearest point g�
i on Fi, and

then to some arbitrary final point p�
i on Fi. This assumption increases the adver-

sary’s movement cost by at most a factor of
√

3 (a similar observation is made
in [10]). We will charge the algorithm’s cost for moving to Pi to the adversary’s
cost of moving to Pi. Thus by losing at most a factor of

√
3 in the competitive

ratio, we can assume that the adversary and the algorithm are at positions h�
i

and hi right before Fi arrives.
Let Algi and Opti denote the movement cost of the algorithm and the

adversary, respectively, in response to Fi. Let the potential function Φi be δ ·
ρ(pi, p

�
i) for some to be determined constant δ > 1. To show that the algorithm

is c-competitive it will be sufficient to show that, for each i,

Algi + Φi − Φi−1 ≤ c · Opti. (13)

We will only initially consider the adversary’s movement cost until it reaches g�
i .

Equation (13) will continue to hold for any adversary’s movement after g�
i if

c ≥ δ. (14)

We consider three cases. The notation that we will use is illustrated in Fig. 1.
In the first case assume ρ(h�

i , g
�
i) ≥ γx, where x = ρ(hi, gi), and γ > 0 is a

constant that we define later. Intuitively, this is the easiest case as the adversary’s
cost will pay for both the algorithm’s movement cost and the increase in the
potential due to this movement. For Eq. (13) to hold, it is sufficient that

(1 + β)x + δ((1 + β)x + γx) ≤ cγx,

Chasing Convex Bodies and Functions 79

or equivalently

c ≥ (1 + β) + δ((1 + β) + γ)
γ

. (15)

In the remaining two cases assume that ρ(h�
i , g

�
i) = αx ≤ γx, and let y =

ρ(mi, gi).
In the second case assume that x ≤ y. Intuitively in this case the decrease

in the potential due to the algorithm’s adjustment on Fi decreases the potential
enough to pay for the algorithm’s movement costs. Since β < 1 and x ≤ y, the
algorithm will not have to stop at mi when moving a distance of βx on Fi toward
mi. If

γ ≤ 1 − β, (16)

the algorithm will also not cross g�
i while adjusting on Fi, as this would contradict

the assumption that ρ(h�
i , g

�
i) ≤ γx. Equation (13) will be hardest to satisfy when

Φi − Φi−1 is maximal. This will occur when g�
i is maximally far from gi, which

in turn occurs when the points g�
i , mi, and gi lie on Fi in that order. In that

case, Eq. (13) evaluates to

(1 + β)x + δ((1 + α)y − βx − (1 + α)
√

x2 + y2) ≤ cαx.

Setting L = 1+β−δβ−cα
δ(1+α) , this is equivalent to

Lx + y ≤
√

x2 + y2. (17)

When x ≤ y, Eq. (17) holds if L ≤ 0. This in turn holds when

δ ≥ 1 + β

β
. (18)

Finally we consider the third case that x ≥ y. Intuitively in this case the
decrease in the potential due to the algorithm’s movement toward Fi decreases
the potential enough to pay for the algorithms movement costs. First consider
the algorithm’s move from pi−1 to gi. Again, the value of Φi −Φi−1 is maximized
when g�

i is on the other side of mi as is gi. In that case, the value of Φi − Φi−1

due to this move is at most

δ((1 + α)y − (1 + α)
√

x2 + y2).

Note that the maximum possible increase in the potential due to the algorithm
moving from gi to pi is δβx. Thus for Eq. (13) to hold, it is sufficient that

(1 + β)x + δβx + δ((1 + α)y − (1 + α)
√

x2 + y2) ≤ cαx.

Setting L = 1+β+δβ−cα
δ(1+α) , this is equivalent to

Lx + y ≤
√

x2 + y2. (19)

80 A. Antoniadis et al.

When x ≥ y, Eq. (19) holds if L ≤
√

2 − 1. This in turn holds when

δ ≥ 1 + β√
2 − 1 − β

. (20)

We now need to find a feasible setting of β, γ, δ, and compute the resulting
competitive ratio. Setting β =

√
2−1
2 and γ = 3−√

2
2 , and δ =

√
2+1√
2−1

one can see
that Eqs. (16), (18), and (20) hold. The minimum c satisfying (15) is c ≈ 16.22
and also satisfies (14). Then given that we overestimate the adversary’s cost by
a most a factor of

√
3, this gives us a competitive ratio for lines of approximately

28.1, approximately the same competitive ratio as obtained in [10].
If Fi is a line segment, then we need to account for the additional movement

along Ei to reach Fi. However, as we set δ > 1, the decrease in the potential can
pay for this movement cost.
�

Acknowledgement. We thank Nikhil Bansal, Anupam Gupta, Cliff Stein,
Ravishankar Krishnaswamy, and Adam Wierman for helpful discussions. We also thank
an anonymous reviewer for pointing out an important subtlety in one of our proofs.

References

1. Andrew, L.L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A.,
Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and
regret. In: Conference on Learning Theory, pp. 741–763 (2013)

2. Andrew, L.L.H., Barman, S., Ligett, K., Lin, M., Meyerson, A., Roytman, A.,
Wierman, A.: A tale of two metrics: simultaneous bounds on competitiveness and
regret. CoRR, abs/1508.03769 (2015)

3. Bansal, N., Buchbinder, N., Naor, J.: Towards the randomized k-server conjec-
ture: a primal-dual approach. In: ACM-SIAM Symposium on Discrete Algorithms,
pp. 40–55 (2010)

4. Bansal, N., Gupta, A., Krishnaswamy, R., Pruhs, K., Schewior, K., Stein, C.: A
2-competitive algorithm for online convex optimization with switching costs. In:
Workshop on Approximation Algorithms for Combinatorial Optimization Prob-
lems, pp. 96–109 (2015)

5. Bartal, Y., Bollobás, B., Mendel, M.: Ramsey-type theorems for metric spaces with
applications to online problems. J. Comput. Syst. Sci. 72(5), 890–921 (2006)

6. Bartal, Y., Linial, N., Mendel, M., Naor, A.: On metric Ramsey-type phenomena.
In: ACM Symposium on Theory of Computing, pp. 463–472 (2003)

7. Borodin, A., Linial, N., Saks, M.E.: An optimal on-line algorithm for metrical task
system. J. ACM 39(4), 745–763 (1992)

8. Coté, A., Meyerson, A., Poplawski, L.: Randomized k-server on hierarchical binary
trees. In: ACM Symposium on Theory of Computing, pp. 227–234 (2008)

9. Fiat, A., Mendel, M.: Better algorithms for unfair metrical task systems and appli-
cations. SIAM J. Comput. 32(6), 1403–1422 (2003)

10. Friedman, J., Linial, N.: On convex body chasing. Discrete Comput. Geom. 9,
293–321 (1993)

11. Fujiwara, H., Iwama, K., Yonezawa, K.: Online chasing problems for regular poly-
gons. Inf. Process. Lett. 108(3), 155–159 (2008)

Chasing Convex Bodies and Functions 81

12. Karlin, A.R., Manasse, M.S., McGeoch, L.A., Owicki, S.S.: Competitive random-
ized algorithms for nonuniform problems. Algorithmica 11(6), 542–571 (1994)

13. Koutsoupias, E., Taylor, D.S.: The CNN problem and other k-server variants.
Theor. Comput. Sci. 324(2–3), 347–359 (2004)

14. Lin, M., Liu, Z., Wierman, A., Andrew, L.L.H.: Online algorithms for geographical
load balancing. In: International Green Computing Conference, pp. 1–10 (2012)

15. Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Online dynamic capacity
provisioning in data centers. In: Allerton Conference on Communication, Control,
and Computing, pp. 1159–1163 (2011)

16. Lin, M., Wierman, A., Andrew, L.L.H., Thereska, E.: Dynamic right-sizing for
power-proportional data centers. IEEE/ACM Trans. Netw. 21(5), 1378–1391
(2013)

17. Lin, M., Wierman, A., Roytman, A., Meyerson, A., Andrew, L.L.H.: Online opti-
mization with switching cost. SIGMETRICS Perform. Eval. Rev. 40(3), 98–100
(2012)

18. Liu, Z., Lin, M., Wierman, A., Low, S.H., Andrew, L.L.H.: Greening geographical
load balancing. In: ACM SIGMETRICS International Conference on Measurement
and Modeling of Computer Systems, pp. 233–244 (2011)

19. Marshall, A.W., Olkin, I.: Inequalities: Theory of Majorization and Its Application.
Academic Press, Cambridge (1979)

20. Sitters, R.: The generalized work function algorithm is competitive for the gener-
alized 2-server problem. SIAM J. Comput. 43(1), 96–125 (2014)

21. Wang, K., Lin, M., Ciucu, F., Wierman, A., Lin, C.: Characterizing the impact of
the workload on the value of dynamic resizing in data centers. In: IEEE INFOCOM,
pp. 515–519 (2013)

22. Wierman, A.: Personal Communication (2015)

Parameterized Lower Bounds and Dichotomy
Results for the NP-completeness of H-free Edge

Modification Problems

N.R. Aravind1, R.B. Sandeep1(B), and Naveen Sivadasan2

1 Department of Computer Science and Engineering,
Indian Institute of Technology Hyderabad, Hyderabad, India

{aravind,cs12p0001}@iith.ac.in
2 TCS Innovation Labs, Hyderabad, India

naveen@atc.tcs.com

Abstract. For a graph H, the H-free Edge Deletion problem asks
whether there exist at most k edges whose deletion from the input graph
G results in a graph without any induced copy of H. H-free Edge

Completion and H-free Edge Editing are defined similarly where
only completion (addition) of edges are allowed in the former and both
completion and deletion are allowed in the latter. We completely set-
tle the classical complexities of these problems by proving that H-free
Edge Deletion is NP-complete if and only if H is a graph with at least
two edges, H-free Edge Completion is NP-complete if and only if
H is a graph with at least two non-edges and H-free Edge Editing

is NP-complete if and only if H is a graph with at least three vertices.
Our result on H-free Edge Editing resolves a conjecture by Alon
and Stav (2009). Additionally, we prove that, these NP-complete prob-
lems cannot be solved in parameterized subexponential time, i.e., in time
2o(k) · |G|O(1), unless Exponential Time Hypothesis fails. Furthermore,
we obtain implications on the incompressibility of these problems.

1 Introduction

Edge modification problems are to test whether modifying at most k edges makes
the input graph satisfy certain properties. The three major edge modification
problems are edge deletion, edge completion and edge editing problems. In edge
deletion problems we are allowed to delete at most k edges from the input graph.
Similarly, in completion problems, it is allowed to complete (add) at most k
edges and in editing problems at most k editing (deletion or completion) are
allowed. Edge modification problems come under the broader category of graph
modification problems which have found applications in DNA physical mapping
[11], numerical algebra [14], circuit design [9] and machine learning [3].

The focus of this paper is on H-free edge modification problems, in which we
are allowed to modify at most k edges to make the input graph devoid of any

R.B. Sandeep—supported by TCS Research Scholarship.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 82–95, 2016.
DOI: 10.1007/978-3-662-49529-2 7

Parameterized Lower Bounds and Dichotomy Results 83

induced copy of H, where H is any fixed graph. Though these problems have
been studied for four decades, a complete dichotomy result on the classical com-
plexities of these problems are not yet found. We settle this by proving that
H-free Edge Deletion is NP-complete if and only if H is a graph with at
least two edges, H-free Edge Completion is NP-complete if and only if H is
a graph with at least two non-edges and H-free Edge Editing is NP-complete
if and only if H is a graph with at least three vertices. Our result on H-free
Edge Editing settles a conjecture by Alon and Stav [1]. Further, we obtain the
parameterized lower bounds for these NP-complete problems. We obtain that
these NP-complete problems cannot be solved in parameterized subexponential
time (i.e., in time 2o(k) · |G|O(1)), unless Exponential Time Hypothesis (ETH)
fails. Cai proved that these problems are in FPT and gave a branch and bound
algorithm to solve these problems in time |V (H)|O(k) · |G|O(1). In this sense, our
lower bounds are tight. Furthermore, we obtain implications on the incompress-
ibility (non-existence of polynomial kernels) of these problems.

We build on our recent paper [2], in which we proved that H-free Edge

Deletion is NP-complete if H has at least two edges and has a component
with maximum number of vertices which is a tree or a regular graph. We also
proved that these problems cannot be solved in parameterized subexponential
time, unless ETH fails.

Related Work: In 1981, Yannakakis proved that H-free Edge Deletion is
NP-complete if H is a cycle [16]. Later in 1988, El-Mallah and Colbourn proved
that the problem is NP-complete if H is a path of at least two edges [9]. Address-
ing the fixed parameter tractability of a generalized version of these problems,
Cai proved that [4] H-free Edge Deletion, Completion and Editing are
fixed parameter tractable, i.e., they can be solved in time f(k) · |G|O(1), for
some function f . Polynomial kernelizability of these problems have been stud-
ied widely. Given an instance (G, k) of the problem the objective is to obtain
in polynomial time an equivalent instance of size polynomial in k. Kratsch and
Wahlström gave the first result on the incompressibility of H-free edge modifi-
cation problems. They proved that [13] for a certain graph H on seven vertices,
H-free Edge Deletion and H-free Edge Editing do not admit polynomial
kernels, unless NP ⊆ coNP/poly. They use polynomial parameter transformation
from an NP-complete problem and hence their results imply the NP-completeness
of these problems. Later, Cai and Cai proved that H-free Edge Editing,
Deletion and Completion do not admit polynomial kernels if H is a path
or a cycle with at least four edges, unless NP ⊆ coNP/poly [5]. Further, they
proved that H-free Edge Editing and Deletion are incompressible if H is 3-
connected but not complete, and H-free Edge Completion is incompressible
if H is 3-connected and has at least two non-edges, unless NP ⊆ coNP/poly [5].
Under the same assumption, it is proved that H-free Edge Deletion and H-
free Edge Completion are incompressible if H is a tree on at least 7 vertices,
which is not a star graph and H-free Edge Deletion is incompressible if H
is the star graph K1,s, where s ≥ 10 [6]. They also use polynomial parameter
transformations and hence these problems are NP-complete.

84 N.R. Aravind et al.

Outline of the Paper: Sect. 2 gives the notations and terminology used in the
paper. It also introduces a construction which is a modified version of the main
construction used in [2]. Section 3 settles the case of H-free Edge Editing.
Section 4 obtains results for H-free Edge Deletion and Completion. In the
concluding section, we discuss the implications of our results on the incompress-
ibility of H-free edge modification problems.

2 Preliminaries and Basic Tools

Graphs: For a graph G, V (G) denotes the vertex set and E(G) denotes the
edge set. We denote the symmetric difference operator by �, i.e., for two sets F
and F ′, F�F ′ = (F \F ′)∪(F ′ \F). For a graph G and a set F ⊆ [V (G)]2, G�F
denotes the graph (V (G), E(G)�F). A component of a graph is largest if it has
maximum number of vertices. By |G| we denote |V (G)| + |E(G)|. The disjoint
union of two graphs G and G′ is denoted by G ∪ G′ and the disjoint union of
t copies of G is denoted by tG. A simple path on t vertices is denoted by Pt.
The graph t-diamond is K2 + tK1, the join of K2 and tK1. Hence, 2-diamond
is the diamond graph. The minimum degree of a graph G is denoted by δ(G)
and the maximum degree is denoted by Δ(G). Degree of a vertex v in a graph
G is denoted by degG(v). We remove the subscript when there is no ambiguity.
We denote the complement of a graph G by G. For a graph H and a vertex set
V ′ ⊆ V (H), H[V ′] is the graph induced by V ′ in H. A null graph is a graph
without any edge.

For integers � and h such that h > �, (�, h)-degree graph is a graph in which
every vertex has degree either � or h. The set of vertices with degree � is denoted
by V� and the set of vertices with degree h is denoted by Vh. An (�, h)-degree
graph is called sparse if Vl induces a graph with at most one edge and Vh induces
a graph with at most one edge.

The context determines whether H-free Edge Deletion (Completion/
Editing) denotes the classical problem or the parameterized problem. For the
parameterized problems, we use k (the size of the solution being sought) as the
parameter. In this paper, edge modification implies either deletion, completion
or editing.

Technique for Proving Parameterized Lower Bounds: Exponential Time
Hypothesis (ETH) is a complexity theoretic assumption that 3-SAT cannot be
solved in time 2o(n), where n is the number of variables in the 3-SAT instance.
A linear parameterized reduction is a polynomial time reduction from a para-
meterized problem A to a parameterized problem B such that for every instance
(G, k) of A, the reduction gives an instance (G′, k′) such that k′ = O(k). The
following result helps us to obtain parameterized lower bound under ETH.

Proposition 2.1. [7] If there is a linear parameterized reduction from a para-
meterized problem A to a parameterized problem B and if A does not admit a
parameterized subexponential time algorithm, then B does not admit a parame-
terized subexponential time algorithm.

Parameterized Lower Bounds and Dichotomy Results 85

Two parameterized problems A and B are linear parameter equivalent if
there is a linear parameterized reduction from A to B and there is a linear
parameterized reduction from B to A. We refer the book [7] for various aspects
of parameterized algorithms and complexity. The following are some folklore
observations.

Proposition 2.2. H-free Edge Deletion and H-free Edge Completion

are linear parameter equivalent. Similarly, H-free Edge Editing and H-free

Edge Editing are linear parameter equivalent.

Proposition 2.3. (i) H-free Edge Deletion is NP-complete if and only if
H-free Edge Completion is NP-complete. Furthermore, H-free Edge

Deletion cannot be solved in parameterized subexponential time if and only
if H-free Edge Completion cannot be solved in parameterized subexpo-
nential time.

(ii) H-free Edge Editing is NP-complete if and only if H-free Edge Edit-

ing is NP-complete. Furthermore, H-free Edge Editing cannot be solved
in parameterized subexponential time if and only if H-free Edge Editing

cannot be solved in parameterized subexponential time.

Proposition 2.4. (i) H-free Edge Deletion is polynomial time solvable if
H is a graph with at most one edge.

(ii) H-free Edge Completion is polynomial time solvable if H is a graph
with at most one non-edge.

(iii) H-free Edge Editing is polynomial time solvable if H is a graph with at
most two vertices.

In this paper, we prove that these are the only polynomial time solvable
H-free edge modification problems. For any fixed graph H, the H-free edge
modification problems trivially belong to NP. Hence, we may state that these
problems are NP-complete by proving their NP-hardness.

2.1 Basic Tools

The following construction is a slightly modified version of the main construc-
tion used in [2]. The modification is done to make it work for reductions of
Completion and Editing problems. The input of the construction is a tuple
(G′, k,H, V ′), where G′ and H are graphs, k is a positive integer and V ′ ⊆ V (H).
In the old construction (Construction 1 in [2]), for every copy C of H[V ′] in G′,
we introduced k + 1 copies of H such that the intersection of every pair of them
is C. In the modified construction given below, we do the same for every copy
C of H[V ′] on a complete graph on V (G′).

Construction 1 Let (G′, k,H, V ′) be an input to the construction, where G′

and H are graphs, k is a positive integer and V ′ is a subset of vertices of H. Label
the vertices of H such that every vertex gets a unique label. Let the labelling be
�H . Consider a complete graph K ′ on V (G′). For every subgraph (not necessarily
induced) C with a vertex set V (C) and an edge set E(C) in K ′ such that C is
isomorphic to H[V ′], do the following:

86 N.R. Aravind et al.

– Give a labelling �C for the vertices in C such that there is an isomorphism f
between C and H[V ′] which maps every vertex v in C to a vertex v′ in H[V ′]
such that �C(v) = �H(v′), i.e., f(v) = v′ if and only if �C(v) = �H(v′).

– Introduce k + 1 sets of vertices V1, V2, . . . , Vk+1, each of size |V (H) \ V ′|.
– For each set Vi, introduce an edge set Ei of size |E(H)\E(H[V ′])| among Vi∪

V (C) such that there is an isomorphism h between H and (V (C)∪Vi, E(C)∪
Ei) which preserves f , i.e., for every vertex v ∈ V (C), h(v) = f(v).

This completes the construction. Let the constructed graph be G.

We remark that the complete graph K ′ on V (G′) is not part of the con-
structed graph. The complete graph is only used to find where we need to intro-
duce new vertices and edges. An example of the construction is shown in Fig. 1.
We use the terminology used in [2]. We repeat it here for convenience. Let C be a
copy of H[V ′] in K ′. Then, C is called a base. Let {Vi} be the k+1 sets of vertices
introduced in the construction for the base C. Then, each Vi is called a branch of
C and the vertices in Vi are called the branch vertices of C. If Vj is a branch of
C, then the vertex set of C is denoted by Bj . The vertex set of G′ in G is denoted
by VG′ . The copy of H formed by Vj , Ej and C is denoted by Hj . Since H is a
fixed graph and k can safely be assumed to be at most |V (G′)| · (|V (G′)| − 1)/2,
the construction runs in polynomial time. The following two Lemmas are the
generalized version of Lemma 2.3 and 3.5 of [2].

(a) G′ (b) H. The vertices
in V ′ are blackened.

(c) Output of Construction 1
with an input (G′, k =
1, H, V ′).

Fig. 1. An example of Construction 1

Lemma 2.5. Let G be obtained by Construction 1 on the input (G′, k,H, V ′),
where G′ and H are graphs, k is a positive integer and V ′ ⊆ V (H).
Then, if (G, k) is a yes-instance of H-free Edge Editing (Deletion/
Completion), then (G′, k) is a yes-instance of H ′-free Edge Edit-

ing (Deletion/Completion), where H ′ is H[V ′].

Proof. Let F be a solution of size at most k of (G, k). For a contradiction, assume
that G′�F has an induced H ′ with a vertex set U . Hence there is a base C in
G′ isomorphic to H ′ with the vertex set V (C) = U . Since there are k + 1 copies
of H in G, where each pair of copies of H has the intersection C, and |F | ≤ k,
operating with F cannot kill all the copies of H associated with C. Therefore,
since U induces an H ′ in G′�F , there exists a branch Vi of C such that U ∪ Vi

induces H in G�F , which is a contradiction. �	

Parameterized Lower Bounds and Dichotomy Results 87

Lemma 2.6. Let H be any graph and d be any integer. Let V ′ be the set of ver-
tices in H with degree more than d. Let H ′ be H[V ′]. Then, there is a linear para-
meterized reduction from H ′-free Edge Editing (Deletion/Completion)
to H-free Edge Editing (Deletion/Completion).

Proof. Let (G′, k) be an instance of H ′-free Edge Editing (Deletion/
Completion). Apply Construction 1 on (G′, k,H, V ′) to obtain G.
We claim that (G′, k) is a yes-instance of H ′-free Edge Edit-

ing (Deletion/Completion) if and only if (G, k) is a yes-instance of H-free
Edge Editing (Deletion/Completion).

Let F ′ be a solution of size at most k of (G′, k). For a contradiction, assume
that G�F ′ has an induced H with a vertex set U . Since a branch vertex has
degree at most d, every vertex in U with degree more than d in (G�F ′)[U] must
be from VG′ . Hence there is an induced H ′ in G′�F ′, which is a contradiction.
Lemma 2.5 proves the converse. �	

3 H-free Edge Editing

In this section, we prove that H-free Edge Editing is NP-complete if and only
if H is a graph with at least three vertices. We also prove that these problems
cannot be solved in parameterized subexponential time unless ETH fails. We use
the following known results.

Proposition 3.1. The following problems are NP-complete. Furthermore, they
cannot be solved in time 2o(k) · |G|O(1), unless ETH fails.

(i) P3-free Edge Editing [12].
(ii) P4-free Edge Editing [8].
(iii) C�-free Edge Editing, for any fixed l ≥ 3 [Follows from the proof for the

corresponding Deletion problems in [16]].
(iv) 2K2-free Edge Editing [(3.1) and Proposition 2.3(ii)].
(v) Diamond-free Edge Editing [Follows from the proof for the correspond-

ing Deletion problem in [15]].

In our previous work [2], we proved that R-free Edge Deletion is NP-
complete if R is a regular graph with at least two edges. We also proved that
these NP-complete problems cannot be solved in parameterized subexponential
time, unless ETH fails. We observe that the results for R-free Edge Deletion

follow for R-free Edge Editing as well. The proofs are very similar except
that we use Construction 1 instead of its ancestor in [2] and we reduce from
Editing problems instead of Deletion problems. We can use P3-free Edge

Editing, C�-free Edge Editing and 2K2-free Edge Editing as the base
cases instead of their Deletion counterparts. We skip the proof as it will be a
repetition of that in [2].

Lemma 3.2. Let R be a regular graph with at least two edges. Then R-free
Edge Editing is NP-complete. Furthermore, the problem cannot be solved in
time 2o(k) · |G|O(1), unless ETH fails.

88 N.R. Aravind et al.

Now, we strengthen the above lemma by proving the same results for all
regular graphs with at least three vertices.

Lemma 3.3. Let R be a regular graph with at least three vertices. Then R-free
Edge Editing is NP-complete. Furthermore, the problem cannot be solved in
time 2o(k) · |G|O(1), unless ETH fails.

Proof. If R has at least two edges then the statements follows from Lemma 3.2.
Assume that R has at most one edge and at least three vertices. It is straight-
forward to see that R must be the null graph. Then the complement of R is
a complete graph with at least two edges. Now, the statements follows from
Proposition 2.3(ii) and Lemma 3.2. �	

Having these results in hand, we use Lemma 2.6 to prove the dichotomy
result and the parameterized lower bound of H-free Edge Editing. Given a
graph H with at least three vertices, we introduce a method Editing-Churn(H)
to obtain a graph H ′ such that there is a linear parameterized reduction from
H ′-free Edge Editing to H-free Edge Editing and H ′ is a graph with at
least three vertices and is a regular graph or a P3 or a P4 or a diamond.

Editing-Churn(H)
H is a graph with at least three vertices.

Step 1: If H is a regular graph, a P3, a P4 or a diamond, then return H.
Step 2: If H is a graph in which the number of vertices with degree more than

δ(H) is at most two, then let H = H and goto Step 1.
Step 3: Delete all vertices with degree δ(H) in H and go to Step 1.

Observation 3.4 Let H be a graph with at least three vertices. Then Editing-
Churn(H) returns a graph H ′ which has at least three vertices and is a regular
graph or a P3 or a P4 or a diamond. Furthermore, there is a linear parameterized
reduction from H ′-free Edge Editing to H-free Edge Editing.

Proof. At any stage of the method, we make sure that the graph has at least
three vertices. Let H ′ be an intermediate graph obtained in the method such
that it is neither a regular graph nor a P3 nor a P4 nor a diamond. If Step 2 is
applicable to both H ′ and H ′, then H hat at most four vertices. Hence H has
either three or four vertices. It is straight-forward to verify that a graph (with
three or four vertices) or its complement, satisfying the condition in Step 2, is
either a regular graph or a P3 or a P4 or a diamond, which is a contradiction.
The linear parameterized reduction from H ′-free Edge Editing to H-free
Edge Editing follows from Proposition 2.3(ii) and Lemma 2.6. �	

Theorem 3.5. H-free Edge Editing is NP-complete if and only if H is
a graph with at least three vertices. Furthermore, these NP-complete problems
cannot be solved in time 2o(k) · |G|O(1), unless ETH fails.

Parameterized Lower Bounds and Dichotomy Results 89

Proof. If H is a graph with at most two vertices, the statements follows from
Proposition 2.4(iii). Let H be a graph with at least three vertices. Let H ′ be the
graph returned by Editing-Churn(H). By Observation 3.4, H ′ is either a regular
graph or a P3 or a P4 or a diamond and there is a linear parameterized reduction
from H ′-free Edge Editing to H-free Edge Editing. Now, the statements
follows from the lower bound results for these graphs (Proposition 3.1(i), (ii), (v)
and Lemma 3.3). �	

4 H-free Edge Deletion

In this section, we prove that H-free Edge Deletion is NP-complete if and
only if H is a graph with at least two edges. We also prove that these NP-complete
problems cannot be solved in parameterized subexponential time, unless ETH
fails. Then, from Proposition 2.3(i), we obtain a dichotomy result for H-free
Edge Completion. We apply a technique similar to that we applied for Edit-
ing in the last section.

Proposition 4.1. The following problems are NP-complete. Furthermore, they
cannot be solved in time 2o(k) · |G|O(1), unless ETH fails.

(i) P3-free Edge Deletion [12].
(ii) Diamond-free Edge Deletion [10,15].
(iii) H-free Edge Deletion, if H is a graph with at least two edges and has

a largest component which is a regular graph or a tree [2].

The following Lemma is a consequence of Lemma 2.6 and Proposition 2.3(i).

Lemma 4.2. Let H be any graph. Then the following hold true:

(i) Let H ′ be the subgraph of H obtained by removing all vertices with degree
δ(H). Then there is a linear parameterized reduction from H ′-free Edge

Deletion to H-free Edge Deletion.
(ii) Let H ′ be the subgraph of H obtained by removing all vertices with degree

Δ(H). Then there is a linear parameterized reduction from H ′-free Edge

Deletion to H-free Edge Deletion.

Proof. The first part directly follows from Lemma 2.6 by setting d = δ(H). To
prove the second part, consider the problem H-free Edge Completion. Let
H ′′ be the graph obtained by removing all vertices with degree δ(H) from H.
Now, by Lemma 2.6, there is a linear parameterized reduction from H ′′-free
Edge Completion to H-free Edge Completion. We observe that H ′′ is
H ′. Hence, by Proposition 2.3(i), there is a linear parameterized reduction from
H ′-free Edge Deletion to H-free Edge Deletion. �	

Given a graph H, we keep on deleting either the minimum degree vertices
or the maximum degree vertices by making sure that the resultant graph has at
least two edges. We do this process until we obtain a graph in which vertices

90 N.R. Aravind et al.

with degree more than δ(H) induce a graph with at most one edge and vertices
with degree less than Δ(H) induce a graph with at most one edge. We call this
method Deletion-Churn.

Deletion-Churn(H)
H is a graph with at least two edges.

1. If H is a graph in which the vertices with degree more than δ(H) induce
a subgraph with at most one edge and the vertices with degree less than
Δ(H) induce a subgraph with at most one edge, then return H.

2. If H is a graph in which the vertices with degree more than δ(H) induce a
subgraph with at least two edges, then delete all vertices with degree δ(H)
from H and goto Step 1.

3. If H is a graph in which the vertices with degree less than Δ(H) induce a
subgraph with at least two edges, then delete all vertices with degree Δ(H)
from H. Goto Step 1.

Observation 4.3 Let H be a graph with at least two edges. If the vertices with
degree more than δ(H) induce a graph with at most one edge and the vertices
with degree less than Δ(H) induce a graph with at most one edge, then H is
either a regular graph or a forest or a sparse (�, h)-degree graph.

Proof. Assume that H is not a regular graph. Since H has at least two edges and
it satisfies the premises, δ(H) ≥ 1. If δ(H) = 1, the premises imply that H is a
forest. Assume that δ(H) ≥ 2. Then we prove that H is a sparse (�, h)-degree
graph. For a contradiction, assume that there exists a vertex v ∈ V (H) such
that δ(H) < deg(v) < Δ(H). The premises imply that v has degree at most two,
which is a contradiction. �	

Lemma 4.4. Let H be a graph with at least two edges. Then Deletion-Churn(H)
returns a graph H ′ such that:

(i) There is a linear parameterized reduction from H ′-free Edge Deletion

to H-free Edge Deletion.
(ii) H ′ has at least two edges and is either a regular graph or a forest or a sparse

(�, h)-degree graph.

Proof. In every step, we make sure that there are at least two edges in the
resultant graph. Now, the first part follows from Lemma 4.2 and the second part
follows from Observation 4.3. �	

If the output of Deletion-Churn(H), H ′ is a regular graph or a forest, we
obtain from Proposition 4.1(iii) that H-free Edge Deletion is NP-complete
and cannot be solved in parameterized subexponential time, unless ETH fails.
Therefore, the only graphs to be handled now are the sparse (�, h)-degree graphs
with at least two edges. We do that in the next two subsections.

Parameterized Lower Bounds and Dichotomy Results 91

4.1 t-diamond-free Edge Deletion

We recall that t-diamond is the graph K2 + tK1 and that 2-diamond is the
diamond graph (see Fig. 2). Clearly, t-diamond is a sparse (�, h)-degree graph.
In this subsection, we prove that t-diamond-free Edge Deletion is NP-
complete. Further, we prove that the problem cannot be solved in parameterized
subexponential time, unless ETH fails. We use an inductive proof where the base
case is Diamond-free Edge Deletion. For the proof, we introduce a simple
construction, which is given below.

Fig. 2. A 2-diamond is isomorphic to a diamond graph.

Construction 2. Let (G′, k) be an input to the construction. For every edge
{u, v} in G′, introduce a clique C{u,v} of k + 1 vertices such that every vertex
in C{u,v} is adjacent to both u and v. This completes the construction. Let G be
the resultant graph.

Due to space constraints, the proof of the following lemma is moved to an
extended version of this paper.

Lemma 4.5. For any t ≥ 2, t-diamond-free Edge Deletion is NP-
complete. Furthermore, the problem cannot be solved in time 2o(k) ·|G|O(1), unless
ETH fails.

4.2 Handling Sparse (�, h)-degree Graphs

We recall that for h > �, every vertex of a sparse (�, h)-degree graph H is either
of degree � or of degree h and that V� induces a graph with at most one edge and
Vh induces a graph with at most one edge. We have already handled t-diamond
graphs. We handle the rest of the sparse (�, h)-degree graphs in this subsection.
Let H be any sparse (�, h)-graph. There are four cases to be handled:

Case 1: Vh is an independent set; V� is an independent set
Case 2: Vh induces a graph with one edge; V� is an independent set
Case 3: Vh is an independent set; V� induces a graph with one edge
Case 4: Vh induces a graph with one edge; V� induces a graph with one edge

Observation 4.6. Let H be a sparse (�, h)-graph with at least two edges. Then
the following hold true:

(i) If � = 1, then H is a forest.
(ii) If � ≥ 2, then |V�| ≥ 2 and the equality holds only when H is a diamond.

92 N.R. Aravind et al.

Proof. To prove the first part, we observe that H \ V� has at most one edge. To
prove the second part, we observe that if |V�| ≤ 2 and if H is not a diamond,
then h ≤ �, which is a contradiction. �	

Since the case of forest is already handled in Proposition 4.1(iii), we can safely
assume that � ≥ 2 and hence h ≥ 3. We start with handling Case 1. We use a
slightly modified version of Construction 1. We recall that, in Construction 1,
with an input (G′, k,H, V ′), For every copy C of H[V ′] in K ′ (a complete graph
on V (G′)), we introduced k + 1 branches such that each branch along with C
form a copy of H. In the modified construction, in addition to this, we make
every pair of vertices from different branches mutually adjacent.

Construction 3. Let (G′, k,H, V ′) be an input to the construction, where G′

and H are graphs, k is a positive integer and V ′ is a subset of vertices of H.
Apply Construction 1 on (G′, k,H, V ′) to obtain G′′. For every pair of vertices
{vi, vj} such that vi ∈ Vi and vj ∈ Vj, where i
= j, make vi and vj adjacent.
This completes the construction. Let the constructed graph be G.

Now, we have a lemma similar to Lemma 2.5. We skip the proof as it is quite
similar to that of Lemma 2.5.

Lemma 4.7. Let G be obtained by Construction 3 on the input (G′, k,H, V ′),
where G′ and H are graphs, k is a positive integer and V ′ ⊆ V (H). Then,
if (G, k) is a yes-instance of H-free Edge Deletion, then (G′, k) is a yes-
instance of H ′-free Edge Deletion, where H ′ is H[V ′].

The following lemma is proved by a reduction from P3-free Edge Deletion

using Construction 3. Due to space constraints, the proof is moved to an extended
version of this paper.

Lemma 4.8. Let H be a sparse (�, h)-graph, where h > � ≥ 2 such that both V�

and Vh are independent sets. Then H-free Edge Deletion is NP-complete.
Furthermore, the problem cannot be solved in time 2o(k) · |G|O(k), unless ETH
fails.

Now we handle the cases in which V� induces a graph with one edge.

Lemma 4.9. Let H be a sparse (�, h)-graph with at least two edges such that
Vl induces a graph with one edge. Let v�1 and v�2 be the two adjacent vertices
in V�. Let H ′ be the graph induced by V (H) \ {v�1 , v�2}. Then, there is a lin-
ear parameterized reduction from H ′-free Edge Deletion to H-free Edge

Deletion.

Proof. Let (G′, k) be an instance of H ′-free Edge Deletion. Apply Con-
struction 1 on (G′, k,H, V ′), where V ′ is V (H) \ {v�1 , v�2}. Let G be the graph
obtained from the construction. We claim that (G′, k) is a yes-instance of H ′-
free Edge Deletion if and only if (G, k) is a yes-instance of H-free Edge

Deletion.

Parameterized Lower Bounds and Dichotomy Results 93

Let (G′, k) be a yes-instance of H ′-free Edge Deletion and let F ′ be a
solution of size at most k of (G′, k). For a contradiction, assume that G − F ′

has an induced H with a vertex set U . It is straight-forward to verify that If a
branch vertex v1 ∈ V1 is in U , then its neighbor in the same branch u1 ∈ V1

must be in U and both acts as v�1 and v�2 in the H induced by U in G − F ′.
Hence ′ −F ′ has an induced H ′, which is a contradiction. Lemma 2.5 proves the
converse. �	

Observation 4.10. Let H be a sparse (�, h)-graph with at least two edges where
h > � ≥ 2 such that Vl induces a graph with one edge. Let v�1 and v�2 be the two
adjacent vertices in V�. Let H ′ be the graph induced by V (H) \ {v�1 , v�2}. Then
H ′ has at least two edges.

Proof. By Observation 4.6(ii) since H is not a diamond, |V�| ≥ 3. This implies
that V \ {v�1 , v�2} is nonempty. Now the observation follows from the fact that
� ≥ 2. �	

Now we handle Case 2, i.e., Vh induces a graph with one edge and V� is an
independent set.

Lemma 4.11. Let H be a sparse (�, h) graph where h > � ≥ 2, Vh induces a
graph with one edge and V� is an independent set. Let H be not a t-diamond.
Let vh1 and vh2 be the two adjacent vertices in H[Vh]. Let V ′ be V� ∪ {vh1 , vh2}.
Let H ′ be H[V ′]. Then, there is a linear parameterized reduction from H ′-free
Edge Deletion to H-free Edge Deletion.

Proof. For convenience, we give a reduction from H ′-free Edge Comple-

tion to H-free Edge Completion. Then the statements follow from Propo-
sition 2.3(i).

Let (G′, k) be an instance of H ′-free Edge Completion. Apply Construc-
tion 1 on (G′, k,H, V ′), where V ′ is V� ∪{vh1 , vh2}. Let G be the graph obtained
from the construction. We claim that (G′, k) is a yes-instance of H ′-free Edge

Completion if and only if (G, k) is a yes-instance of H-free Edge Comple-

tion.
Let (G′, k) be a yes-instance of H ′-free Edge Completion and let F ′ be

a solution of size at most k of (G′, k). For a contradiction, assume that G + F ′

has an induced H with a vertex set U . It is straight-forward to verify that If a
branch vertex v1 ∈ V1 is in U , then all its neighbors in the same branch are in U
and V1 acts as Vh \ {vh1 , vh2} of H in H induced by U in G + F ′. Hence G′ + F ′

has an induced H ′, which is a contradiction. Lemma 2.5 proves the converse. �	

Observation 4.12. Let H be a sparse (�, h) graph where h > � ≥ 2, Vh induces
a graph with one edge and V� is an independent set. Let H be not a t-diamond,
for t ≥ 2. Let vh1 and vh2 be the two adjacent vertices in H[Vh]. Let V ′ be
V� ∪ {vh1 , vh2}. Let H ′ be H[V ′]. Then H ′ has at least two edges and |V (H ′)| <
|V (H)|.

Proof. Follows from the facts that h ≥ 3 and H is not a t-diamond. �	

94 N.R. Aravind et al.

Lemma 4.13. Let H be a sparse (�, h)-degree graph with at least two edges.
Then H-free Edge Deletion is NP-complete. Furthermore, the problem can-
not be solved in time 2o(k) · |G|O(1), unless ETH fails.

Proof. If V� induces a graph with an edge, then we apply the technique used in
Lemma 4.9 and obtain a graph H ′ with at least two edges. Similarly, if H is not
a t-diamond and Vh induces a graph with an edge, then we apply the technique
used in Lemma 4.11 to obtain a graph H ′ with at least two edges. If the obtained
graph H ′ is not a sparse (�, h)-degree graph, then we apply Deletion-Churn(H ′)
to obtain H ′′. We repeat this process until no more repetition is possible. Then, it
is straight-forward to verify that we obtain a graph which is either a t-diamond,
or a graph handled in Lemma 4.8 or a regular graph or a forest with at least
two edges. �	

4.3 Dichotomy Results

We are ready to state the dichotomy results and the parameterized lower bounds
for H-free Edge Deletion and H-free Edge Completion.

Theorem 4.14. H-free Edge Deletion is NP-complete if and only if H is
a graph with at least two edges. Furthermore, the problem cannot be solved in
time 2o(k) · |G|O(k). H-free Edge Completion is NP-complete if and only if
H is a graph with at least two non-edges. Furthermore, the problem cannot be
solved in time 2o(k) · |G|O(k).

Proof. Consider H-free Edge Deletion. The statements follow from Propo-
sition 2.4(i), Lemma 4.4, Proposition 4.1(iii) and Lemma 4.13. Now the results
for H-free Edge Completion follows from Proposition 2.3(i). �	

5 Concluding Remarks

Our results have implications on the incompressibility of H-free edge modifica-
tion problems. Polynomial parameter transformation (PPT) is a technique to
prove the incompressibility of problems. It is a polynomial time reduction from
a parameterized problem to another where the parameter blow-up is polynomial.
To prove the incompressibility of a problem it is enough to to give a PPT from
a problem which is already known to be incompressible, under some complexity
theoretic assumption. All our reductions are PPTs. The following lemma is a
direct consequence of Lemma 2.6.

Lemma 5.1. Let H be a graph and d be any integer. Let H ′ be obtained from
H by deleting vertices with degree d or less. Then, if H ′-free Edge Edit-

ing (Deletion/Completion) is incompressible, then H-free Edge Edit-

ing (Deletion/Completion) is incompressible.

Parameterized Lower Bounds and Dichotomy Results 95

We give a simple example to show an implication of this lemma. Consider an
n-sunlet graph which is a graph in which a vertex with degree one is attached to
each vertex of a cycle of n vertices. From the incompressibility of Cn-free Edge

Editing, Deletion and Completion, for any n ≥ 4, it follows that n-sunlet-
free Edge Editing, Deletion and Completion are incompressible for any
n ≥ 4. We believe that our result is a step towards a dichotomy result on the
incompressibility of H-free edge modification problems. Another direction is to
get a dichotomy result on the complexities of H-free edge modification problems
where H is a finite set of graphs.

References

1. Alon, N., Stav, U.: Hardness of edge-modification problems. Theor. Comput. Sci.
410(47–49), 4920–4927 (2009)

2. Aravind, N.R., Sandeep, R.B., Sivadasan, N.: Parameterized lower bound and
NP-completeness of some H-free edge deletion problems. In: Lu, Z., et al. (eds.)
COCOA 2015. LNCS, vol. 9486, pp. 424–438. Springer, Heidelberg (2015). doi:10.
1007/978-3-319-26626-8 31

3. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

5. Cai, L., Cai, Y.: Incompressibility of H-free edge modification problems. Algorith-
mica 71(3), 731–757 (2015)

6. Yufei, C.: Polynomial kernelisation of H-free edge modification problems. M.phil
thesis, Department of Computer Science and Engineering, The Chinese University
of Hong Kong, Hong Kong SAR, China (2012)

7. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Saurabh, S.: Parameterized Algorithms. Springer, Heidelberg (2015)

8. Drange, P.G.: Parameterized Graph Modification Algorithms. PhD dissertation,
University of Bergen (2015)

9. El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems.
IEEE Trans. Circuits Syst. 35(3), 354–362 (1988)

10. Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-
based data clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011)

11. Paul, W., Goldberg, M.C., Kaplan, H., Shamir, R.: Four strikes against physical
mapping of DNA. J. Comput. Biol. 2(1), 139–152 (1995)

12. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications.
Discrete Appl. Math. 160(15), 2259–2270 (2012)

13. Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial
kernels. Discrete Optim. 10(3), 193–199 (2013)

14. Rose, D.J.: A Graph-theoretic Study of the Numerical Solution of Sparse Pos-
itive Definite Systems of Linear Equations. Academic Press, Cambridge (1972).
pp. 183–217

15. Sandeep, R.B., Sivadasan, N.: Parameterized lower bound and improved Kernel for
diamond-free edge deletion. In: Husfeldt, T., Kanj, I. (eds) IPEC Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 43, pp. 365–376. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik (2015)

16. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)

http://dx.doi.org/10.1007/978-3-319-26626-8_31
http://dx.doi.org/10.1007/978-3-319-26626-8_31

Parameterized Complexity of Red Blue Set

Cover for Lines

Pradeesha Ashok1(B), Sudeshna Kolay1, and Saket Saurabh1,2

1 Institute of Mathematical Sciences, Chennai, India
{pradeesha,skolay,saket}@imsc.res.in
2 University of Bergen, Bergen, Norway

saket.saurabh@uib.no

Abstract. We investigate the parameterized complexity of General-

ized Red Blue Set Cover (Gen-RBSC), a generalization of the classic
SetCover problem and themore recently studiedRedBlue SetCover

problem.Given a universeU containing b blue elements and r red elements,
positive integers k� and kr, and a familyF of � sets overU , theGen-RBSC

problem is to decide whether there is a subfamily F ′ ⊆ F of size at most
k� that covers all blue elements, but at most kr of the red elements. This
generalizes Set Cover and thus in full generality it is intractable in the
parameterized setting, when parameterized by k� + kr. In this paper, we
study Gen-RBSC-lines, where the elements are points in the plane and
sets are defined by lines. We study this problem for the parameters k�, kr,
and k� + kr. For all these cases, we either prove that the problem is W-
hard or show that the problem is fixed parameter tractable (FPT). Finally,
for the parameter k� + kr, for which Gen-RBSC-lines admits FPT algo-
rithms, we show that the problem does not have a polynomial kernel unless
co-NP ⊆ NP/poly.Further, we show that theFPTalgorithmdoes not gen-
eralize to higher dimensions.

1 Introduction

The input to a covering problem consists of a universe U of size n, a family F of m
subsets of U and a positive integer k, and the objective is to check whether there
exists a subfamily F ′ ⊆ F of size at most k satisfying some desired properties.
A set S is said to cover a point p ∈ U if p ∈ S. If F ′ is required to contain all the
elements of U , then it corresponds to the classical Set Cover problem. The Set
Cover problem is part of Karp’s 21 NP-complete problems [10]. This, together
with its numerous variants, is one of the most well-studied problems in the area of
algorithms and complexity. It is one of the central problems in all the paradigms
that have been established to cope with NP-hardness, including approximation
algorithms, randomized algorithms and parameterized complexity.

S. Saurabh—The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC grant agreement no. 306992.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 96–109, 2016.
DOI: 10.1007/978-3-662-49529-2 8

Parameterized Complexity of RBSC 97

Problems Studied, Context and Framework. The goal of this paper is to
study a generalization of a variant of Set Cover namely the Red Blue Set

Cover problem.

Red Blue Set Cover (RBSC)
Input: A universe U = (R,B) where R is a set of r red elements and B is a
set of b blue elements, a family F of � subsets of U , and a positive integer kr.
Question: Is there a subfamily F ′ ⊆ F that covers all blue elements but at
most kr red elements?

Red Blue Set Cover was introduced in 2000 by Carr et al. [2]. This problem
is closely related to several combinatorial optimization problems such as the
Group Steiner, Minimum Label Path, Minimum Monotone Satisfying

Assignment and Symmetric Label Cover problems. This has also found
applications in areas like fraud/anomaly detection, information retrieval and
the classification problem. Red Blue Set Cover is NP-complete, following
from an easy reduction from Set Cover itself.

In this paper, we study the parameterized complexity, under various para-
meters, of a common generalization of both Set Cover and Red Blue Set

Cover, in a geometric setting.

Generalized Red Blue Set Cover (Gen-RBSC)
Input: A universe U = (R,B) where R is a set of r red elements and B is
a set of b blue elements, a family F of � subsets of U , and positive integers
k�, kr.
Question: Is there a subfamily F ′ ⊆ F of size at most k� that covers all blue
elements but at most kr red elements?

It is easy to see that when k� = |F| then it is a RBSC instance, while it is a Set

Cover instance when k� = k,R = ∅, kr = 0. Next we take a short detour and
give a few essential definitions regarding parameterized complexity.

Parameterized Complexity. The goal of parameterized complexity is to find
ways of solving NP-hard problems more efficiently than brute force: here the aim
is to restrict the combinatorial explosion to a parameter that is hopefully much
smaller than the input size. Formally, a parameterization of a problem is assigning
a positive integer parameter k to each input instance and we say that a parameter-
ized problem is fixed-parameter tractable (FPT) if there is an algorithm that solves
the problem in time f(k) · |I|O(1), where |I| is the size of the input and f is an
arbitrary computable function depending only on the parameter k. If the problem
had a set Γ of positive integers as parameters, then the problem is called FPT if
there is an algorithm solving the problem in f(Γ) · |I|O(1), where |I| is the size of
the input and f is an arbitrary computable function depending only on the para-
meters in Γ . Equivalently, the problem can be considered to be parameterized by
k =

∑
q∈Γ q. Such an algorithm is called an FPT algorithm and such a running

time is called FPT running time. There is also an accompanying theory of parame-
terized intractability usingwhich one can identify parameterized problems that are
unlikely to admitFPTalgorithms.These are essentially provedby showing that the

98 P. Ashok et al.

problem is W-hard. A parameterized problem is said to admit a h(k)-kernel if there
is a polynomial time algorithm (the degree of the polynomial is independent of k),
called a kernelization algorithm, that reduces the input instance to an instancewith
size upper bounded by h(k), while preserving the answer. If the function h(k) is
polynomial in k, then we say that the problem admits a polynomial kernel. While
positive kernelization results have appeared regularly over the last two decades,
the first results establishing infeasibility of polynomial kernels for specific prob-
lems have appeared only recently. In particular, Bodlaender et al. [1], and Fortnow
and Santhanam [9] have developed a framework for showing that a problem does
not admit a polynomial kernel unless co-NP ⊆ NP/poly, which is deemed unlikely.
For more background, the reader is referred to the following monograph [8].

In the parameterized setting, Set Cover, parameterized by k, is W[2]-
hard [7] and it is not expected to have an FPT algorithm. The NP-hardness
reduction from Set Cover to Red Blue Set Cover implies that Red Blue

Set Cover is W[2]-hard parameterized by the size k� of a solution subfam-
ily. However, the hardness result was not the end of the story for the Set

Cover problem in parameterized complexity. In literature, various special cases
of Set Cover have been studied. A few examples are instances with sets of
bounded size, sets with bounded intersection [13,18], and instances where the
bipartite incidence graph corresponding to the set family has bounded treewidth
or excludes some graph H as a minor. Apart from these results, there has also
been extended study on different parameterizations of Set Cover. A special
case of Set Cover which is central to the topic of this paper, is the one where
the universe consists of a point set and sets in the family are defined by intersec-
tion of point set with some geometric object. In the simplest geometric variant
of Set Cover, called Point Line Cover, the elements of U are points in R2

and each set contains a maximal number of collinear points. This version of the
problem was motivated by the problem of covering a rectilinear polygon with
holes using rectangles [14] which in turn has applications in printing integrated
circuits and image compression [4]. Point Line Cover is in FPT and in fact
has a polynomial kernel [13]. Moreover, the size of these kernels has been proved
to be tight, under standard assumptions, in [11]. Similarly, we can take our uni-
verse to be defined by n points in Rd, for a fixed d, and each set to be defined
by a maximal set of points that lie on the same hyperplane. A hyperplane in
Rd is the affine hull of a set of d affinely independent points. Set Cover with
hyperplanes is also known to be FPT with a polynomial kernel [13].

In this paper, we concentrate on the Generalized Red Blue Set Cover

with lines problem, parameterized by the size of the solution.

Generalized Red Blue Set Cover with lines (Gen-RBSC-lines)
Input: A universe U = (R,B) where R is a set of r red points and B is a
set of b blue points, in R2, a family F of � subsets of U such that each set
contains a maximal set of collinear points of U , and positive integers k�, kr.
Question: Is there a subfamily F ′ ⊆ F of size at most k� that covers all blue
points but at most kr red points?

Parameterized Complexity of RBSC 99

We also study a generalization of this problem in higher dimensions. In this case
each set is a maximal set of points that lie on a hyperplane of Rd. A hyperplane in
Rd is the affine hull of a set of d + 1 affinely independent points [13].

Generalized Red Blue Set Cover with Hyperplanes

Input: A universe U = (R,B) where R is a set of r red points and B is a set
of b blue points, in Rd, a family F of � subsets of U such that each set is a
maximal set of points that lie on a hyperplane in Rd., and positive integers
k�, kr.
Question: Is there a subfamily F ′ ⊆ F of size at most k� that covers all blue
points but at most kr red points?

We finish this section with some related results. As mentioned earlier, the Red

Blue Set Cover problem in classical complexity is NP-complete. Interestingly,
if the incidence matrix, built over the sets and elements, has the consecutive ones
property then the problem is in P [5]. The problem has been studied in approx-
imation algorithms as well [2,17]. Specially, the geometric variant, where every
set is the space bounded by a unit square, has a polynomial time approximation
scheme (PTAS) [3].

Our Contributions

1. We show that Gen-RBSC-lines parameterized by kr is para-NP-complete.
This also shows that RBSC is para-NP-complete under standard parameter-
ization.

2. We show that Gen-RBSC-lines parameterized by k� is W[1]-hard.
3. We give an FPT algorithm for Gen-RBSC-lines parameterized by kr + k�

that runs in O(kO(k�)
� .k

O(kr)
r) time. We further show that this problem does

not admit a polynomial kernel unless co-NP ⊆ NP/poly.
4. Finally, we show that Gen-RBSC for hyperplanes in Rd, d > 2, parameter-

ized by k� + kr is W[1]-hard.

2 Preliminaries

In this paper an undirected graph is denoted by a tuple G = (V,E), where V
denotes the set of vertices and E the set of edges. For a set S ⊆ V , the subgraph
of G induced by S, denoted by G[S], is defined as the subgraph of G with vertex
set S and edge set {(u, v) ∈ E : u, v ∈ S}. The subgraph obtained after deleting
S is denoted as G \ S. All vertices adjacent to a vertex v are called neighbors
of v and the set of all such vertices is called the neighborhood of v. Similarly, a
non-adjacent vertex of v is called a non-neighbor and the set of all non-neighbors
of v is called the non-neighborhood of v. The neighborhood of v is denoted by
N(v). A vertex in a connected graph is called a cut vertex if its deletion results
in the graph becoming disconnected.

Recall that showing a problem W[1] or W[2] hard implies that the problem is
unlikely to be FPT. One can show that a problem is W[1]-hard (W[2]-hard) by

100 P. Ashok et al.

presenting a parameterized reduction from a known W[1]-hard problem (W[2]-
hard) such as Clique (Set Cover) to it. The most important property of a
parameterized reduction is that it corresponds to an FPT algorithm that bounds
the parameter value of the constructed instance by a function of the parameter of
the source instance. A parameterized problem is said to be in the class para-NP
if it has a nondeterministic algorithm with FPT running time. To show that a
problem is para-NP-hard we need to show that the problem is NP-hard for some
constant value of the parameter. For an example 3-Coloring is para-NP-hard
parameterized by the number of colors. See [8] for more details.

Lower Bounds in Kernelization. In the recent years, several techniques have
been developed to show that certain parameterized problems belonging to the
FPT class cannot have any polynomial sized kernel unless some classical com-
plexity assumptions are violated. One such technique that is widely used is the
polynomial parameter transformation technique.

Definition 1. Let Π,Γ be two parameterized problems. A polynomial time algo-
rithm A is called a polynomial parameter transformation (or ppt) from Π to Γ
if, given an instance (x, k) of Π, A outputs in polynomial time an instance
(x′, k′) of Γ such that (x, k) ∈ Π if and only if (x′, k′) ∈ Γ and k′ ≤ p(k) for a
polynomial p.

We use the following theorem together with ppt reductions to rule out poly-
nomial kernels.

Proposition 1. Let Π,Γ be two parameterized problems such that Π is NP-hard
and Γ ∈ NP. Assume that there exists a polynomial parameter transformation
from Π to Γ . Then, if Π does not admit a polynomial kernel neither does Γ .

For further details on lower bound techniques in kernelization refer to [1,9].

Generalized Red Blue Set Cover. A set S in a Generalized Red Blue

Set Cover instance (U,F) is said to cover a point p ∈ U if p ∈ S. A solution
family for the instance is a family of sets of size at most k� that covers all the
blue points and at most kr red points. In case of Red Blue Set Cover, the
solution family is simply a family of sets that covers all the blue points but at
most kr red points. Such a family will also be referred to as a valid family. A
minimal family of sets is a family of sets such that every set contains a unique
blue point. In other words, deleting any set from the family implies that a strictly
smaller set of blue points is covered by the remaining sets. It is safe to assume
that r ≥ kr, and � ≥ k�. Since it is enough to find a minimal solution family
F ′, we can also assume that b ≥ k�. The sets of Generalized Red Blue Set

Cover with lines are also called lines in this paper. We now mention a key
observation about lines that is crucial in many arguments in this paper.

Observation 1. Given a set of points S, let F be the set of lines such that each
line contains at least 2 points from S. Then |F| ≤

(|S|
2

)
.

Parameterized Complexity of RBSC 101

Definition 2. An intersection graph GF = (V,E) for an instance (U,F) of
Generalized Red Blue Set Cover is a graph with vertices corresponding
to the sets in F . We give an edge between two vertices if the corresponding sets
have non-empty intersection.

The following proposition is a collection of results on the Set Cover prob-
lem, that will be repeatedly used in the paper. The results are from [6,7]

Proposition 2. The Set Cover problem is:

i. W[2] hard when parameterized by the solution family size k.
ii. FPT when parameterized by the universe size n, but does not admit polyno-

mial kernels unless co-NP ⊆ NP/poly.
iii. FPT when parameterized by the number of sets m in the instance, but does

not admit polynomial kernels unless co-NP ⊆ NP/poly.

3 Hardness When Parameterized by kr and by k�

In this section we show that Gen-RBSC-lines parameterized by kr and Gen-

RBSC-lines parameterized by k� are hard.

Theorem 1. [�]1 Gen-RBSC-lines is para-NP-complete parameterized by kr.

Theorem 1 follows from a reduction from Point Line Cover problem, which
is NP-hard [12].

We now show that Gen-RBSC-lines parameterized by k� is hard. We give
a reduction to this problem from the Multicolored Clique problem, which
is known to be W[1] hard even on regular graphs [16].

Multicolored Clique Parameter: k
Input: A graph G = (V,E) where V = V1 � V2 � . . . � Vk with Vi being an
independent set for all 1 ≤ i ≤ k, and an integer k.
Question: Is there a multi-colored clique C ⊆ G of size k such that ∀1 ≤
i ≤ k,C ∩ Vi
= ∅.

Theorem 2. Gen-RBSC-lines parameterized by k� is W[1]-hard.

Proof. We give a reduction from Multicolored Clique on regular graphs.
Let (G = (V,E), k) be an instance of Multicolored Clique, where G is a d-
regular graph, |V | = v, |E| = e. We construct an instance of Gen-RBSC-lines

(R ∪ B,F), as follows. Let V = V1 � V2 � . . . � Vk.

1. For each vertex class Vi, 1 ≤ i ≤ k, add two blue points bi at (0, i) and b′
i at

(i, 0).

1 All results marked with a � have their full proofs given in the full version.

102 P. Ashok et al.

2. For each vertex v ∈ Vi, we add a line l1v, which we call a near-horizontal
line, such that all the near-horizontal lines corresponding to vertices in Vi

intersect at bi. Also, the lines are drawn such that for any two vertices u ∈ Vi

and v ∈ Vj , with i
= j, the lines l1u and l1v do not intersect at a point with
x-coordinate from the closed interval [0, k].

3. Similarly, for each vertex v ∈ Vi, we add a line l2v, which we call a near-
vertical line, such that all the near-vertical lines corresponding to vertices in
Vi intersect at b′

i. Also, the lines are drawn such that for any two vertices
u ∈ Vi and v ∈ Vj , with i
= j, the lines l2u and l2v do not intersect at
a point with y-coordinate from the closed interval [0, k]. However, a near-
horizontal line and a near-vertical line will intersect at a point with both x
and y-coordinate from the closed interval [0, k].

4. For each edge e = (u, v) ∈ E, add two red points, ruv at the intersection of
lines l1u and l2v, and rvu at the intersection of lines l1v and l2u.

5. For each vertex v ∈ V , add a red point at the intersection of the lines l1v
and l2v.

Thus we have an instance (R ∪ B,F) of Gen-RBSC-lines with 2v lines, 2k
blue points and 2e + v red points. The construction ensures that no 3 lines in F
intersect at a red point.

Claim. G = (V,E) has a multi-colored clique of size k if and only if (R∪B,F) has
a solution family of 2k lines, covering the 2k blue points and at most 2(d+1)k−k2

red points.

Proof. Assume there exists a multi-colored clique C of size k in G. Select the
2k lines corresponding to the vertices in the clique. That is, select the subset
of lines F ′ = {lju | 1 ≤ j ≤ 2, u ∈ C} in the Gen-RBSC-lines instance.
Since the clique is multi-colored, these lines cover all the blue points. Each
line (near-horizontal or near-vertical) has exactly d + 1 red points. Thus, the
number of red points covered by F ′ is at most (d + 1)2k. However, each red
point corresponding to vertices in C and the two red points corresponding to
each edge in C are counted twice. Thus, the number of red points covered by F ′

is at most (d+1)2k − k − 2
(
k
2

)
= 2(d+1)k − k2. This completes the proof in the

forward direction.
Now, assume there is a minimal solution family of size at most 2k, containing

at most 2(d + 1)k − k2 red points. As no two blue points are on the same
line and there are 2k blue points, there exists a unique line covering each blue
point. Let L1 and L2 represent the sets of near-horizontal and near-vertical lines
respectively in the solution family. Observe that L1 covers {b1, . . . , bk} and L2

covers {b′
1, . . . , b

′
k}. Let C = {v1, . . . , vk} be the set of vertices in G corresponding

to the lines in L1. We claim that C forms a multicolored k-clique in G. Since bi

can only be covered by lines corresponding to the vertices in Vi and L1 covers
{b1, . . . , bk} we have that C ∩ Vi
= ∅. It remains to show that for every pair of
vertices in C there exists an edge between them in G. Let vi denote the vertex
in C ∩ Vi.

Parameterized Complexity of RBSC 103

Consider all the lines in L1. Each of these lines are near-horizontal and have
exactly d+1 red points. Furthermore, no two of them intersect at a red point. Since
the total number of red points covered by L1∪L2 is at most 2(d+1)k−k2, we have
that the k lines in L2 can only cover at most k(d + 1) − k2 red points that are not
covered by the lines in L1. That is, the k lines in L2 contribute at most k(d+1)−k2

new red points to the solution. Thus, the number of red points that are covered by
both L1 and L2 is k2. Therefore, any two lines l1 and l2 such that l1 ∈ L1 and
l2 ∈ L2 must intersect at a red point. This implies that either l1 and l2 correspond
to the same vertex in V or there exists an edge between the vertices corresponding
to them. Let C ′ = {w1, . . . , wk} be the set of vertices in G corresponding to the
lines in L2. Since b′

i can only be covered by lines corresponding to the vertices in Vi

and L2 covers {b′
1, . . . , b

′
k} we have that C ′ ∩ Vi
= ∅. Let wi denote the vertex in

Vi such that l2wi
∈ L2 covers b′

i. We know that l1vi
and l2wi

must intersect on a red
point. However, by construction no two distinct vertices vi and wi belonging to the
same vertex class Vi intersect at red point. Thus vi = wi. This means C = C ′.
This, together with the fact that two lines l1 and l2 such that l1 ∈ L1 and l2 ∈ L2

(now lines corresponding to C) must intersect at a red point, implies that C is a
multicolored k-clique in G. �

Since k� = 2k, we have that Gen-RBSC-lines is W[1]-hard parameterized by
k�. This concludes the proof. �

4 FPT Algorithm When Parematerized by k� + kr

In this section, we describe an FPT algorithm for Gen-RBSC-lines parame-
terized by k� + kr, which is our main technical/algorithmic contribution.

We start with a few preprocessing rules, after which we obtain an equivalent
instance for the problem.
Reduction Rule 1: If there is a set S ∈ F with only red points then delete S
from F .
Reduction Rule 2: If there is a set S ∈ F with more than kr red points in it
then delete S from F .
Reduction Rule 3: If there is a set S ∈ F with at least k� +1 blue points then
reduce the budget of k� by 1 and the budget of kr by |R ∩ S|. The new instance
is (U \ S, F̃), where F̃ = {F \ S | F ∈ F and F
= S}.

The last Rule is similar to a Reduction Rule used in [13], for the Point Line

Cover problem. The following simple observation can be made after exhaustive
application of Reduction Rule 3.

Observation 2. There can be at most b ≤ k2
� blue points in a YES instance.

If there are more than k2
� blue points remaining to be covered then we correctly

say NO.

At first, we consider a simpler case where any line in the input instance
contains exactly 1 blue point. Here, no two blue points can be covered by the
same line and therefore, any solution family contains at least b lines. Thus, b ≤ k�

104 P. Ashok et al.

or else, it is a NO instance. Also, a minimal solution family contains at most
b ≤ k� lines. Hence, a minimal solution family contains exactly b lines.

Definition 3. Given a universe U of points and a family F of subsets of U , an
intersection graph GF = (V,E) is a graph with vertices corresponding to the sets
in F and an edge between two vertices implies that the corresponding sets have
non-empty intersection.

Let GF ′ be the intersection graph that corresponds to a minimal solution
family F ′.

Definition 4. Given an instance (R,B,F) of Gen-RBSC-lines we call a
tuple

(
b, p, s, P, {I ′

1, . . . , I
′
s}, (k1

r , k2
r , . . . , ks

r)
)

good if the following hold.
(a) Integers p ≤ kr and s ≤ b ≤ k�; Here b is the number of blue vertices in the
instance.
(b) P = P1 ∪ · · · ∪ Ps is an s-partition of B;
(c) For each 1 ≤ i ≤ s, I ′

i is an ordering for the blue points in part Pi;
(d) Integers ki

r, 1 ≤ i ≤ s, are such that Σ1≤i≤sk
i
r = p.

Definition 5. We say that the minimal solution family F ′ conforms with a good
tuple

(
b, p, s, P, {I ′

1, . . . , I
′
s}, (k1

r , k2
r , . . . , ks

r)
)
if the following properties hold:

1. The components C1, . . . , Cs of GF ′ give the partition P = P1, . . . , Ps on the
blue points.

2. For each component Ci, 1 ≤ i ≤ s, let ti = |Pi|. Let I ′
i = bi

1, . . . , b
i
ti

be an
ordering of blue points in Pi. Furthermore assume that Li

j ∈ F ′ covers the
blue point bi

j. I ′
i has the property that for all j ≤ ti, GF ′ [{Li

1, . . . , L
i
j}] is

connected. In other words for all j ≤ ti, Li
j intersects with at least one of the

lines from the set {Li
1, . . . , L

i
j−1}. Notice that, by minimality of F ′, the point

of intersection for such a pair of lines is a red point.
3. F ′ covers p ≤ kr red points.
4. In each component Ci, ki

r is the number of red points covered by the lines in
that component. It follows that Σ1≤i≤sk

i
r = p. In other words, the integers ki

r

form a combination of p.

Basically, a good tuple provides a numerical representation of connected com-
ponents of GF ′ .

Lemma 1. Let (U,F) be an input to Gen-RBSC-lines parameterized by k� +
kr, such that every line contains exactly 1 blue point. If there exists a solution
subfamily F ′ then there is a conforming good tuple.

Proof. Let F ′ be a minimal solution family of size b ≤ k� that covers p ≤ kr

red points. Let GF ′ have s components viz. C1, C2, · · · , Cs, where s ≤ k�. For
each i ≤ s, let FCi

denote the set of lines corresponding to the vertices of Ci.
Pi = B∩FCi

, ti = |Pi| and ki
r = |R∩FCi

|. In this special case and by minimality
of F ′, |FCi

| = ti. As Ci is connected, there is a sequence {Li
1, L

i
2, . . . L

i
ti

} for the

Parameterized Complexity of RBSC 105

lines in FCi
such that for all j ≤ ti we have that GF ′ [{Li

1, . . . , L
i
j}] is connected.

This means that, for all j ≤ ti Li
j intersects with at least one of the lines from

the set {Li
1, . . . , L

i
j−1}. By minimality of F ′, the point of intersection for such a

pair of lines is a red point. For all j ≤ ti, let Li
j cover the blue point bi

j . Let I ′
i =

bi
1, b

i
2, . . . , b

i
ti

. The tuple
(
b, p, s, P = P1∪P2 . . .∪Ps, {I ′

1, . . . , I
′
s}, (k1

r , k2
r , . . . , ks

r)
)

is a good tuple and it also conforms with F ′. This completes the proof.

The idea of the algorithm is to generate all good tuples and then check
whether there is a solution subfamily F ′ that conforms to it.

Lemma 2. For a good tuple (b, p, s, P, {I ′
1, . . . , I

′
s}, (k1

r , k2
r , . . . , ks

r)), we can ver-
ify in O(b�pb) time whether there is a minimal solution family F ′ that conforms
with this tuple.

Proof. The algorithm essentially builds a search tree for each partition Pi, 1 ≤
i ≤ s. For each part Pi, we define a set of points R′

i which is initially an empty
set.

For each 1 ≤ i ≤ s, let ti = |Pi| and let I ′
i = bi

1, . . . , b
i
ti

be the ordering of
blue points in Pi. Our objective is to check whether there is a subfamily F ′

i ⊆ F
such that it covers bi

1, . . . , b
i
ti

, and at most ki
r red points.

Initially, F ′
i = ∅, R′

i = ∅. At any point of the recursive algorithm, we represent
the problem to be solved by the following tuple: (F ′

i , R′
i, (bi

j , . . . , b
i
ti

), ki
r −|R′

i|).
Here, F ′

i covers bi
1, . . . , b

i
j−1, and at most ki

r red points of R′
i. In the next step

we try to extend F ′
i in such a way that it also covers bi

j , but still covers at most
ki

r red points. Thus we follow the ordering given by I ′
i to build F ′

i .
We start the process by guessing the line in F that covers bi

1, say Li
1. That is,

for every L ∈ F such that bi
1 is contained in L we recursively check whether there

is a solution to the tuple (F ′
i := F ′

i ∪ {L}, R′
i := R′

i ∪ (R ∩ L), (bi
2, . . . , b

i
ti

),ki
r :=

ki
r −|R′

i|). If any tuple returns YES then we return that there is a subset F ′
i ⊆ F

which covers bi
1, . . . , b

i
ti

, and at most ki
r red points.

Similarly, at an intermediate stage of the algorithm, let the tuple we have be
(F ′

i , R′
i, (bi

j , . . . , b
i
ti

), ki
r). Let L be the set of lines that contain bi

j and a red point
from R′

i. Clearly, |L| ≤ |R′
i| ≤ ki

r. For every line L ∈ L, we recursively check
whether there is a solution to the tuple (F ′

i := F ′
i ∪ {L}, R′

i := R′
i ∪ (R ∩ L),

(bi
j+1, . . . , b

i
ti

),ki
r := ki

r − |R′
i|). If any tuple returns YES then we return that

there is a subset F ′
i ⊆ F which covers bi

1, . . . , b
i
ti

, and at most ki
r red points.

Let μ = ti. At each stage μ drops by one and, except for the first step,
the algorithm recursively solves at most ki

r subproblems. This implies that the
algorithm takes at most O(|F|kti

r) = O(�kti
r) time.

Notice that the lines in the input instance are partitioned according to the
blue points contained in it. Hence, the search corresponding to each part Pi is
independent of those in other parts. In effect, we are searching for the components
for GF ′ in the input instance, in parallel. If for each Pi we are successful in finding
a minimal set of lines covering exactly the blue points of Pi while covering at
most ki

r red points, we conclude that a solution family F ′ that conforms to the
given tuple exists and hence the input instance is a YES instance.

106 P. Ashok et al.

The time taken for the described procedure in each part is at most O(�kti
r).

Hence, the total time taken to check if there is a conforming minimal solution
family F ′ is at most O(� ·

∑s
i=1 kti

r) = O(s�pb) = O(b�pb). This concludes the
proof. �

We are ready to describe our FPT algorithm for this special case.

Lemma 3. Let (U,F , k�, kr) be an input to Gen-RBSC-lines such that every
line contains exactly 1 blue point. Then we can check whether there is a solution
subfamily F ′ to this instance in time k

O(k�)
� · k

O(kr)
r · (|U | + |F|)O(1) time.

Proof. Lemma 1 implies that all we need to do is enumerate all possible good
tuples (b, p, s, P, {I ′

1, . . . , I
′
s}, (k1

r , k2
r , . . . , ks

r)), and for each tuple, check whether
there is a conforming minimal solution family. We first give an upper bound
on the number of tuples and how to enumerate them. There are k� choices for
s and kr choices for p. There can be at most bk� choices for P which can be
enumerated in O(bk� · k�) time. Recall that, for each 1 ≤ i ≤ s, I ′

i represents an
ordering for blue points in Pi. If |Pi| = ti, then the number of distinct orderings
is upper bounded by

∏s
i=1 ti! ≤

∏s
i=1 tti

i ≤
∏s

i=1 bti = bb. Such orderings can be
enumerated in O(bb) time. For a fixed p ≤ kr, s ≤ k�, there are at most

(
p+s−1

s−1

)

solutions for k1
r +k2

r + . . .+ks
r = p and this set of solutions can be enumerated in

O(
(
p+s−1

s−1

)
·ps) time. Notice that if p ≥ s then the time required for enumeration

is O((2p)p · ps). Otherwise, the required time is O((2s)s · ps). As p ≤ kr and
s ≤ k�, the time required to enumerate the set of solutions is O(kO(k�)

� k
O(kr)
r ·

k�kr). Thus we can generate the set of tuples in time k
O(k�)
� · k

O(kr)
r . Using

Lemma 2, for each tuple, we can check whether there is a conforming solution
family or not in O(kk�

r ·k��) time. If there is no tuple with a conforming solution
family, we know that the input instance is a NO instance. The total time for
this algorithm is k

O(k�)
� k

O(kr)
r k

O(k�)
r · (|U | + |F|)O(1). Again, if kr ≤ kl then

k
O(k�)
r = k

O(k�)
� . Otherwise, k

O(k�)
r = k

O(kr)
r . Either way, it is always true that

k
O(k�)
r = k

O(k�)
� k

O(kr)
r . Thus, we can simply state the running time to be k

O(k�)
� ·

k
O(kr)
r · (|U | + |F|)O(1). �

We return to the general problem of Gen-RBSC-lines parameterized by
k� + kr. Instances in this problem may have lines containing 2 or more blue
points. We use the results and observations described above to arrive at an FPT
algorithm for Gen-RBSC-lines parameterized by k� + kr.

Theorem 3. Gen-RBSC-lines parameterized by k� +kr is FPT, with an algo-
rithm that runs in k

O(k�)
� · k

O(kr)
r · (|U | + |F|)O(1) time.

Proof. Given an input (U,F , k�, kr) for Gen-RBSC-lines parameterized by k�+
kr, we do some preprocessing to make the instance simpler. We exhaustively
apply Reduction Rules 1, 2 and 3. After this, by Observation 2, the reduced
equivalent instance has at most k2

� blue points if it is a YES instance.
A minimal solution family can be broken down into two parts: the set of lines

containing at least 2 blue points, and the remaining set of lines which contain

Parameterized Complexity of RBSC 107

exactly 1 blue point. Let us call these sets F2 and F1 respectively. We start with
the following observation.

Observation 3. Let F ′′ ⊆ F be the set of lines that contain at least 2 blue points.
There are at most

(
k4

�
k�

)
ways in which a solution family can intersect with F ′′.

From Observation 3, there are k4k�

� choices for the set of lines in F2. We
branch on all these choices of F2. On each branch, we reduce the budget of k� by
the number of lines in F2 and the budget of kr by |R ∩F2|. Also, we make some
modifications on the input instance: we delete all other lines containing at least 2
blue points from the input instance. We delete all points of U covered by F2 and
all lines passing through blue points covered by F2. Our modified input instance
in this branch now satisfies the assumption of Lemma 3 and we can find out in
k

O(k�)
� k

O(kr)
r · (|U |+ |F|)O(1) time whether there is a minimal solution family F1

for this reduced instance. If there is, then F2 ∪ F1 is a minimal solution for our
original input instance and we correctly say YES. Thus the total running time
of this algorithm is k

O(k�)
� · k

O(kr)
r · (|U | + |F|)O(1).

It may be noted here that for a special case where we can use any line in
the plane as part of the solution, the second part of the algorithm becomes
considerably simpler. Here for each blue point b, we can use an arbitrary line
containing only b and no red point. �

4.1 Kernelization for GEN-RBSC-LINES Parameterized by k� + kr

We give a polynomial parameter transformation from Set Cover parameterized
by universe size n to Gen-RBSC-lines parameterized by k� + kr.

Theorem 4. Gen-RBSC-lines parameterized by k� +kr does not allow a poly-
nomial kernel unless co-NP ⊆ NP/poly.

Proof. Let (U,S) be a given instance of Set Cover. Let |U | = n, |S| = m. We
construct an instance (R ∪ B,F) of Gen-RBSC-lines as follows. We assign a
blue point bu ∈ B for each element u ∈ U and a red point rS ∈ R for each set
S ∈ S. The red and blue points are placed such that no three points are collinear.
We add a line between bu and rS if u ∈ S in the Set Cover instance. Thus the
new instance that we have constructed has b = n, r = m and � =

∑
S∈S |S|. We

set kr = k and k� = n.

Claim.[�] All the elements in (U,S) can be covered by k sets if and only if there
exist n lines in (R ∪ B,F) that contain all blue points but only k red points.

If k > n, then the Set Cover instance is a trivial YES instance. Hence, we
can always assume that k ≤ n. This completes the proof. �

108 P. Ashok et al.

5 Hardness in Higher Dimensions When Parameterized
by k� + kr

While we obtain an FPT algorithm for Gen-RBSC-lines we also show that on
generalizing the sets from lines to hyperplanes in higher Euclidean spaces, the
problem is W[1]-hard under k� + kr.

Theorem 5. Gen-RBSC for hyperplanes in Rd, d > 2, parameterized by k�+kr

is W[1] -hard.

Proof. The proof of hardness follows from a reduction from k-Clique problem.
The proof follows a framework given in [15].

Let (G(V,E), k) be an instance of k-Clique problem. Our construction con-
sists of a k ×k matrix of gadgets Gij , 1 ≤ i, j,≤ k. Consecutive gadgets in a row
are connected by horizontal connectors and consecutive gadgets in a column are
connected by vertical connectors. Let us denote the horizontal connector con-
necting the gadgets Gij and Gih as Hi(jh) and the vertical connector connecting
the gadgets Gij and Ghj as V(ih)j , 1 ≤ i, j, h ≤ k.

Gadgets: The gadget Gij contains a blue point bij and a set Rij of d − 2 red
points. In addition there are n2 sets R′

ij(a, b), 1 ≤ a, b ≤ n, each having two red
points each.

Connectors: The horizontal connector Hi(jh) has a blue point bi(jh) and a set
Ri(jh) of d − 2 red points. Similarly, the vertical connector V(ih)j a blue point
b(ih)j) and a set R(ih)j of d − 2 red points.

The points are arranged in general position i.e., no set of d + 2 points lie
on the same d-dimensional hyperplane. In other words, any set of d + 1 points
define a distinct hyperplane.

Hyperplanes: Assume 1 ≤ i, j, h ≤ k and 1 ≤ a, b, c ≤ n. Let Pij(a, b) be the
hyperplane defined by the d + 1 points of bij ∪ Rij ∪ R′

ij(a, b). Let Ph
i(jh)(a, b, c)

be the hyperplane defined by d + 1 points of bi(jh) ∪ Ri(jh) ∪ r1 ∪ r2 where
r1 ∈ R′

ij(a, b) and r2 ∈ R′
ih(a, c). Let P v

(ij)h(a, b, c) be the hyperplane defined by
d + 1 points of b(ij)h) ∪ R(ij)h ∪ r1 ∪ r2 where r1 ∈ R′

ih(a, c) and r2 ∈ R′
jh(b, c).

For each edge (a, b) ∈ E(G), we add k(k−1) hyperplanes of the type Pij(a, b), i
=
j. Further, for all 1 ≤ a ≤ n, we add k hyperplanes of the type Pii(a, a), 1 ≤ i ≤
k. The hyperplane Ph

i(jh)(a, b, c) containing the blue point bi(jh) in a horizontal
connector is added to the construction if Pij(a, b) and Pih(a, c) are present in the
construction. Similarly, the hyperplane P v

(ij)h(a, b, c) containing the blue point
b(ij)h in a vertical connector is added to the construction if Pih(a, c) and Pjh(b, c)
are present in the construction.

Thus our construction has k2 + 2k(k − 1) blue points, (k2 + 2k(k − 1))
(d − 2) + 2n2k2 red points and O((m2k2) hyperplanes.

Claim.[�] G has a k-clique if and only if all the blue points in the constructed
instance can be covered by k2 + 2k(k − 1) hyperplanes covering at most k2d +
2k(k − 1)(d − 2) red points. �

Parameterized Complexity of RBSC 109

References

1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

2. Carr, R.D., Doddi, S., Konjevod, G., Marathe, M.V.: On the red-blue set cover
problem. In: SODA, vol. 9, pp. 345–353 (2000)

3. Chan, T.M., Hu, N.: Geometric red-blue set cover for unit squares and related
problems. In: CCCG (2013)

4. Ying Cheng, S., Iyengar, S., Kashyap, R.L.: A new method of image compression
using irreducible covers of maximal rectangles. IEEE Trans. Software Eng. 14(5),
651–658 (1988)

5. Dom, M., Guo, J., Niedermeier, R., Wernicke, S.: Red-blue covering problems and
the consecutive ones property. J. Discrete Algorithms 6(3), 393–407 (2008)

6. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors,
ids. ACM Trans. Algorithms 11(2), 1–20 (2014)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity, p. 530. Springer-Verlag,
Heidelberg (1999)

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag, Heidelberg (2006)

9. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
pcps for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

10. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Sym-
posium on the Complexity of Computer Computations, pp. 85–103 (1972)

11. Kratsch, S., Philip, G., Ray, S.: Point line cover: The easy kernel is essentially
tight. In: SODA, pp. 1596–1606 (2014)

12. Kumar, V.S.A., Arya, S., Ramesh, H.: Hardness of set cover with intersection 1.
In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853,
pp. 624–635. Springer, Heidelberg (2000)

13. Langerman, S., Morin, P.: Covering things with things. Discrete Comput. Geom.
33(4), 717–729 (2005)

14. Levcopoulos, C.: Improved bounds for covering general polygons with rectan-
gles. In: Nori, K.V. (ed.) FSTTCS 1987. LNCS, vol. 287, pp. 95–102. Springer,
Heidelberg (1987)

15. Marx, D.: Parameterized complexity of independence and domination on geomet-
ric graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS,
vol. 4169, pp. 154–165. Springer, Heidelberg (2006)

16. Mathieson, L., Szeider, S.: The parameterized complexity of regular subgraph prob-
lems and generalizations. CATS 77, 79–86 (2008)

17. Peleg, D.: Approximation algorithms for the label-covermax and red-blue set cover
problems. J. Discrete Algorithms 5(1), 55–64 (2007)

18. Raman, V., Saurabh, S.: Short cycles make W-hard problems hard: FPT algorithms
for W-hard problems in graphs with no short cycles. Algorithmica 52(2), 203–225
(2008)

Tight Bounds for Beacon-Based Coverage
in Simple Rectilinear Polygons

Sang Won Bae1, Chan-Su Shin2, and Antoine Vigneron3(B)

1 Department of Computer Science, Kyonggi University, Suwon, Korea
swbae@kgu.ac.kr

2 Division of Computer and Electronic Systems Engineering,
Hankuk University of Foreign Studies, Yongin, Korea

cssin@hufs.ac.kr
3 Visual Computing Center, King Abdullah University of Science

and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
antoine.vigneron@kaust.edu.sa

Abstract. We establish tight bounds for beacon-based coverage prob-
lems. In particular, we show that �n

6
� beacons are always sufficient and

sometimes necessary to cover a simple rectilinear polygon P with n ver-
tices. When P is monotone and rectilinear, we prove that this bound
becomes �n+4

8
�. We also present an optimal linear-time algorithm for

computing the beacon kernel of P .

1 Introduction

A beacon is a facility or a device that attracts objects within a given domain.
We assume that objects in the domain, such as mobile agents or robots, know
the exact location or the direction towards an activated beacon in the domain,
even if it is not directly visible. More precisely, given a polygonal domain P , a
beacon is placed at a fixed point in P . When a beacon b ∈ P is activated, an
object p ∈ P moves along the ray starting at p and towards the beacon b until
it either hits the boundary ∂P of P , or it reaches b (See Fig. 1a). If p hits an
edge e of P , then it continues to move along e in the direction such that the
Euclidean distance to b decreases. When p reaches an endpoint of e, it may move
along the ray from the current position of p towards b, if possible, until it again
hits the boundary ∂P of P . So, p is pulled by b in a greedy way, so that the
Euclidean distance to b is monotonically decreasing, as an iron particle is pulled
by a magnet. There are two possible outcomes: Either p finally reaches b, or it
stops at a local minimum, called a dead point, where there is no direction in

Work by S.W.Bae was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (2013R1A1A1A05006927) and by the Ministry of Education
(2015R1D1A1A01057220). Work by C.-S. Shin was supported by Research Grant
of Hankuk University of Foreign Studies. Work by A. Vigneron was supported by
KAUST base funding.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 110–122, 2016.
DOI: 10.1007/978-3-662-49529-2 9

Tight Bounds for Beacon-Based Coverage in Simple Rectilinear Polygons 111

which, locally, the distance to b strictly decreases. In the former case, p is said
to be attracted by the beacon b.

This model of beacon attraction was recently suggested by Biro [1–3], and
extends the classical notion of visibility. Biro et al. [1–3] introduced the coverage
problem under this model: We want to place beacons in P so that any point
p ∈ P is attracted by at least one of the beacons. In this case, we say that the
set of beacons covers or guards P .

In this paper, we are interested in combinatorial bounds on the number of
beacons required for covering a simple rectilinear polygon P , called the domain.
Our bounds are variations on visibility-based guarding results, such as the well-
known art gallery theorem [4] and its relatives [5–7,9,10]. For the art gallery
problem, it is known that �n

3 � point guards are sufficient, and sometimes nec-
essary, to guard a simple polygon P with n vertices [4]. If P is rectilinear, then
�n
4 � are necessary and sufficient [5,7,11]. Other related results are mentioned in

the book [11] by O’Rourke or the surveys by Shermer [12] and Urrutia [14].
Biro et al. [2] initiated research on combinatorial bounds for beacon-based

coverage, and for the corresponding routing problem. (In this routing problem,
one wants to place beacons such that any object can be moved to any point
of the domain by activating a sequence of beacons one at a time.) They gave
several nontrivial bounds for different types of domains such as rectilinear or
non rectilinear polygons, with or without holes. When the domain P is a simple
rectilinear polygon with n vertices, they showed that �n

4 � beacons are sufficient to
cover any rectilinear polygon with n vertices, while �n+4

8 � beacons are necessary
to cover the polygon in Fig. 1, and conjectured that �n+4

8 � would be the tight
bound. They also proved that �n

2 � − 1 beacons are always sufficient for routing,
and some domains, such as the domain depicted in Fig. 1a, require �n

4 � − 1
beacons. Recently, Shermer closed the gap by showing that �n−4

3 � beacons are
sufficient, and sometimes necessary, for beacon-based routing within a simple
rectilinear polygon [13].

Our Results. We first present an optimal linear-time algorithm that computes
the beacon kernel K(P) of a simple rectilinear polygon P (Sect. 3). The beacon
kernel K(P) of P is defined to be the set of points p ∈ P such that placing a
single beacon at p is sufficient to completely cover P . Biro first presented an
O(n2)-time algorithm that computes the kernel K(P) of a simple polygon P in
his thesis [1], and Kouhestani et al. [8] soon improved it to O(n log n) time with
the observation that K(P) has a linear complexity. Our algorithm is based on a
new, yet simple, characterization of the kernel K(P).

Our main result is presented in Sect. 4: We prove tight bounds on beacon-
based coverage problems for simple rectilinear polygons. We first show how to
construct a simple rectilinear polygon with n vertices that cannot be covered by
less than �n

6 � beacons, and then we present a method for covering any simple rec-
tilinear polygon with the same number of beacons. These results settle the open
questions on the beacon-based coverage problem for simple rectilinear polygons

112 S.W. Bae et al.

Fig. 1. (a) A lower bound construction P by Biro et al. [2]. A point p ∈ P is attracted
by a beacon b through the beacon attraction path depicted by the thick gray path, while
q ∈ P is not since it stops at the dead point d. (b) Another rectilinear polygon P . If
one partitions P by the horizontal cut c (dashed segment) at v into two subpolygons
P+
c and P−

c and handle each separately, then it does not guarantee that P is guarded.
In this case, p ∈ P+

c is attracted by b inside the subpolygon P+
c while it is not the case

in the whole domain P .

posed by Biro et al. [2]. We also prove that �n+4
8 � beacons are always sufficient

to cover a monotone rectilinear polygon, which matches the lower bound by Biro
et al. [2], and proves their conjecture.

2 Preliminaries

A simple rectilinear polygon is a simple polygon whose edges are either horizontal
or vertical. The internal angle at each vertex of a rectilinear polygon is always
90◦ or 270◦. We call a vertex with internal angle 90◦ a convex vertex, and a
vertex with internal angle 270◦ is called a reflex vertex. For any simple rectilinear
polygon P , we let r = r(P) be the number of its reflex vertices. If P has n vertices
in total, then n = 2r + 4, because the sum of the signed turning angles along
∂P is 360◦. An edge of P between two convex vertices is called a convex edge,
and an edge between two reflex vertices is called a reflex edge. Each convex or
reflex edge e shall be called top, bottom, left or right according to its orientation:
If e is horizontal and the two adjacent edges of e are downwards from e, then e
is a top convex or reflex edge. (The edge e in Fig. 1b is a top reflex edge.) For
each edge e of P , we are often interested in the half-plane He whose boundary
supports e and whose interior includes the interior of P locally at e. We shall
call He the half-plane supporting e.

A rectilinear polygon P is called x-monotone (or y-monotone) if any vertical
(resp., horizontal) line intersects P in at most one connected component. If P is
both x-monotone and y-monotone, then P is said to be xy-monotone. It follows
from this definition that:

Observation 1. A rectilinear polygon P is x-monotone if and only if P has no
vertical reflex edge. Hence, P is xy-monotone if and only if P has no reflex edge.

Our approach to attain tight upper bounds relies on partitioning a given
rectilinear polygon P into subpolygons by cuts. More precisely, a cut in P is a

Tight Bounds for Beacon-Based Coverage in Simple Rectilinear Polygons 113

chord1 of P that is horizontal or vertical. There is a unique cut at a point p
on the boundary ∂P of P unless p is a vertex of P . If p is a reflex vertex, then
there are two cuts at p, one of which is horizontal and the other is vertical, while
there is no cut at p if p is a convex vertex. Any horizontal cut c in P partitions
P into two subpolygons: one below c, denoted by P−

c , and the other above c
denoted by P+

c . Analogously, for any vertical cut c, let P−
c and P+

c denote the
subpolygons to the left and to the right of c, respectively.

For a beacon b and a point p ∈ P , the beacon attraction path of p with
respect to b, or simply the b-attraction path of p, is the piecewise linear path
from p created by the attraction of b as described in Sect. 1 (See Fig. 1a). If
the b-attraction path of p reaches b, then we say that p is attracted to b. As
was done for the classical visibility notion [6,10], a natural approach would
find a partition of P into smaller subpolygons of similar size, and handle them
recursively. However, we must be careful when choosing a partition of P , because
an attraction path within a subpolygon may not be an attraction path within P
(See Fig. 1b). So P is not necessarily guarded by the union of the guarding sets
of the subpolygons.

Thus, when applying a cut in P , we want to make sure that beacon attraction
paths in a subpolygon Q of P do not hit the new edge of Q produced by c. To
be more precise, we say that an edge e of P is hit by p with respect to b if the
b-attraction path of p makes a bend along e.

Observation 2. Let b be a beacon in P and p ∈ P be any point such that p
is attracted by b. If the b-attraction path of p hits an edge e of P , then p ∈ He

and b /∈ He, where He denotes the half-plane supporting e. Therefore, no beacon
attraction path hits a convex edge of P .

Thus, if we choose a cut that becomes a convex edge on both sides, then we
will be able to handle each subpolygon separately.

In this paper, we make the general position assumption that no cut in P
connects two reflex vertices. This general position can be obtained by perturbing
the reflex vertices of P locally, and such a perturbation does not harm the upper
bounds on our problems in general. It will be discussed in the full version of this
paper.

3 The Beacon Kernel

Before continuing to the beacon-based coverage problem, we consider simple
rectilinear polygons that can be covered by a single beacon. This is related to
the beacon kernel K(P) of a simple polygon P , defined to be the set of all points
p ∈ P such that a beacon placed at p attracts all points in P . Specifically,
we give a characterization of rectilinear polygons P such that K(P) �= ∅. Our
characterization is simple and constructive, resulting in a linear-time algorithm
that computes the beacon kernel K(P) of any simple rectilinear polygon P .
1 A chord c of a polygon is a line segment between two points on the boundary such

that all points on c except the two endpoints lie in the interior of the polygon.

114 S.W. Bae et al.

Fig. 2. Proof of Lemma 2.

Let R be the set of reflex vertices of P . Let v ∈ R be any reflex vertex with
two incident edges e1 and e2. For i ∈ {1, 2}, define Ni to be the closed half-
plane whose boundary is the line orthogonal to ei through v and whose interior
excludes ei. Let Cv := N1 ∪ N2. Observe that Cv is a closed cone with apex v.
Biro [1, Theorem 5.2.8] showed that the kernel K(P) of P is the set of points in
P that lie in Cv for all reflex vertices v ∈ R:

Lemma 1 (Biro [1]). For any simple polygon P with set R of reflex vertices,
it holds that

K(P) =

(
⋂

v∈R

Cv

)

∩ P = P \
(

⋃

v∈R

Cv

)

,

where Cv = R2 \ Cv denotes the complement of Cv.

Note that Lemma 1 holds for any simple polygon P . We now assume that
P is a simple rectilinear polygon. Then, for any reflex vertex r ∈ R, the set
Cv forms a closed cone with aperture angle 270◦ whose boundary consists of
two rays following the two edges incident to v. Let R1 ⊆ R be the set of reflex
vertices incident to at least one reflex edge, and let R2 := R \ R1. So a vertex in
R1 is adjacent to at least one reflex vertex that also belongs to R1, and a vertex
in R2 is always adjacent to two convex vertices. We then observe the following.

Lemma 2. For any simple rectilinear polygon P ,
(

⋂

v∈R1

Cv

)

∩ P ⊆
(

⋂

v∈R2

Cv

)

∩ P.

Proof. For a contradiction, suppose that there exists a point p ∈ P that is
included in

⋂
v∈R1

Cv but avoids
⋂

v∈R2
Cv. Then, there must exist a reflex vertex

v ∈ R2 such that p /∈ Cv, or equivalently, p ∈ Cv. That is,
⋂

v′∈R1
Cv′ and Cv

have a nonempty intersection. Let u and w be the two vertices adjacent to v
such that u, v, and w appear on ∂P in counterclockwise order. Note that both
u and w are convex since v ∈ R2.

Tight Bounds for Beacon-Based Coverage in Simple Rectilinear Polygons 115

Since Cv ∩ P �= ∅ and Cv is an open set, the boundary ∂P of P crosses ∂Cv

at some points other than the two edges uv and vw. Let w′ be the first point in
∂P ∩∂Cv that we encounter when traveling along ∂P counterclockwise, starting
at w. Analogously, let u′ be the first point in ∂P ∩ ∂Cv that we encounter when
traveling along ∂P clockwise, starting at u. Let πw ⊂ ∂P and πu ⊂ ∂P be the
paths described above from w to w′ and from u to u′, respectively. As πw and
πu are subpaths of ∂P , they do not intersect, and we have w′ /∈ uv and u′ /∈ vw.

The boundary ∂Cv of Cv consists of two rays ρw and ρu, starting from v
towards w and u, respectively. We claim that either w′ lies on ρw or u′ lies on
ρu (See Fig. 2a). Indeed, suppose that u′ /∈ ρu. Then πw should be contained in
the region bounded by the simple closed curve πu ∪ u′v ∪ vu, since πw does not
intersect Cv ∪ uv. This implies that w′ must lie on wu′ ⊂ ρw. Hence, our claim
is true.

Without any loss of generality, we assume that w′ ∈ ρw, the edge vw is
horizontal, and the interior of P lies locally above vw, as shown in Fig. 2b.
Then, the path πw must contain at least one top reflex edge e lying above the
line through w and w′, since w and w′ have the same y-coordinate and πw avoids
Cv. Let v1 and v2 be the two endpoints of e, so v1, v2 ∈ R1. Then Cv1 ∩ Cv2 is
the half-plane He supporting e. Since e is a top reflex edge, He ∩ Cv = ∅. This
is a contradiction to our assumption that

⋂
v′∈R1

Cv′ intersects Cv. �

Let R(P) be the intersection of the half-planes He supporting e over all reflex
edges e of P . We conclude the following.

Theorem 1. Let P be a simple rectilinear polygon. A point p ∈ P lies in its
beacon kernel K(P) if and only if p ∈ He for any reflex edge e of P . Therefore,
it always holds that K(P) = R(P) ∩ P , and the kernel K(P) can be computed in
linear time.

Proof. Recall that Cv for any v ∈ R1 forms a cone with apex v and aperture
angle 270◦. Since any v ∈ R1 is adjacent to another reflex vertex w ∈ R1 the
intersection Cv ∩ Cw forms exactly the half-plane He supporting the reflex edge
e with endpoints v and w. It implies that R(P) =

⋂
v∈R1

Cv. So by Lemma 2,
we have

K(P) =
⋂

v∈R

Cv ∩ P =
⋂

v∈R1

Cv ∩ P = R(P) ∩ P.

The set R(P) is an intersection of axis-parallel halfplanes, so it is a (possibly
unbounded) axis-parallel rectangle. In order to compute the kernel K(P), we
identify the extreme reflex edge in each of the four directions to compute R(P),
and then intersect it with P . This can be done in linear time. �

4 Beacon-Based Coverage

In this section, we study the beacon-based coverage problem for rectilinear poly-
gons. A set of beacons in P is said to cover or guard P if and only if every point
p ∈ P can be attracted by at least one of them.

116 S.W. Bae et al.

Fig. 3. Lower bound construction: (a) Placing two beacons b1 and b2 in P7 near v2 and
v6 is not enough to cover the shaded region near the reflex vertex v4. (b)(c) The spine
of our construction Pr for r = 9 and for r = 18.

Our main result is the following.

Theorem 2. Let P be a simple rectilinear polygon P with n � 6 vertices and
r � 1 reflex vertices. Then �n

6 � = � r
3� beacons are sufficient to guard P , and

sometimes necessary. Moreover, all these beacons can be placed at reflex vertices
of P .

We now sketch the proof of Theorem2. The lower bound construction is a
rectangular spiral Pr consisting of a sequence of r+1 thin rectangles, as depicted
in Fig. 3. The sequence of vertices v0v1v2 . . . vr+1, where v1 . . . vr are the reflex
vertices of Pr, forms a polyline called the spine of the spiral. The key idea is
the following. Consider the case r = 7 (Fig. 3a). At first glance, it seems that
the spiral can be covered by two beacons b1 and b2 placed near v2 and v6,
respectively. However, at closer look, it appears that the small shaded triangular
region on the bottom left corner is not covered. Hence, P7 requires 3 = � 7

3�
beacons, as announced. More generally, we can prove that for a suitable choice
of the edge lengths of the spine of Pr, an optimal coverings for Pr consists in
placing a beacon at every third rectangle of Pr, which yields the bound � r

3�. The
spine of Pr is depicted in Fig. 3b and c, where the aspect ratio of the rectangles
is roughly 4 + r/2.

The construction for the upper bound in Theorem2 is more involved. We first
prove that for any polygon with at most 3 reflex vertices, one beacon placed at
a suitable reflex vertex is sufficient. For a larger number r � 4 of reflex vertices,
we proceed by induction. So we partition P using a cut, and we handle each
side recursively. As mentioned in Sect. 2, the difficulty is that in some cases, the
union of the two guarding sets of the subpolygons does not cover P . So we first
try to perform a safe cut c, that is, a cut c which is not incident to any reflex
vertex, such that there is at least one reflex vertex on each side, and such that
�r(P−

c)/3� + �r(P+
c)/3� = �r/3� (See Fig. 4a). If such a cut exists, then we can

recurse on both side. By Observation 2, the union of the guarding sets of the two
subpolygons guards P . Unfortunately, some polygons do not admit any safe cut.

Tight Bounds for Beacon-Based Coverage in Simple Rectilinear Polygons 117

Fig. 4. Upper bound construction. (a) A safe cut c of a polygon with r = 10 reflex ver-
tices. (b) This polygon admits no safe cut. We cut along d, and the polygon is guarded
by any two beacons b and b′ placed at reflex vertices of P−

d and P+
d , respectively.

Fig. 5. (a) The spine (bold) of a spiral. The point s(p) appears before v6 = s(q) along
the spine, so p ≺ q. (b) The partition of P7 into rectangles Ai, Bi, Ci.

In this case, we show by a careful case analysis that we can always find a suitable
cut (See the example in Fig. 4b). Due to space limitation, we omit the proof of
this upper bound.

4.1 Proof of the Lower Bound

In this section, we prove the lower bound in Theorem2. Our construction is
a spiral-like rectilinear polygon Pr that cannot be guarded by less than � r

3�
beacons (See Fig. 3). More precisely, a rectilinear polygon is called a spiral if all
its reflex vertices are consecutive along its boundary.

The spine of a spiral P with r reflex vertices is the portion of its boundary
∂P connecting r +2 consecutive vertices v0, v1, . . . , vr+1 such that v1, . . . , vr are
the reflex vertices of P (See Fig. 5a). Note that the two end vertices v0 and
vr+1 of the spine of a spiral are the only convex vertices that are adjacent to
a reflex vertex. The spine can also be specified by the sequence of edge lengths
(a0, . . . , ar) such that ai is the length of the edge vivi+1 for i = 0, . . . , r.

We will use the following partition of a spiral P with r reflex vertices into 3r+
2 rectangular subpolygons. It is obtained by applying the vertical and horizontal

118 S.W. Bae et al.

Fig. 6. Proof of Lemma 3.

cuts at vi for each i = 1, . . . , r and the cut at the midpoint of edge vivi+1 for each
i = 0, . . . , r. We call these rectangles A0, B0, C1, A1, B1, . . . , Cr, Ar, Br, ordered
along the spine (See Fig. 5b).

For any integer r � 0, let Pr be the spiral with r reflex vertices whose spine
is determined by the following edge length sequence (a0, . . . , ar): For any integer
j � 0, we have a2j = ρ2� j

3 � + jε and a2j+1 = ρ1+2� j+1
3 	 + jε, where ε > 0 is a

sufficiently small positive number and ρ > 2+ (r +2)ε is a constant (See Fig. 3).
Therefore, the rectangles Ai, Bi, Ci corresponding to Pr are as follows, for

any i. Rectangle Ai and Bi have side lengths ai/2 and w < ε. Rectangle Ci is a
square with side length w.

We define an order ≺ among points in any spiral P as follows. Let p, q be
two points in P . Let s(p) and s(q) denote the closest point to p and q along
the spine, according to the geodesic distance within P (See Fig. 5a). Then we
say that p precedes q, which we denote by p ≺ q, if s(p) precedes s(q) along the
spine, that is, s(p) is on the portion of the spine between v0 and s(q).

Let k = k(r) denote the smallest possible number of beacons that can
guard Pr. We will say that a sequence of beacons b1, . . . , bk covering Pr is a
greedy placement if s(b1) ≺ . . . ≺ s(bk), and the sequence s(b1), . . . , s(bk) is max-
imum in lexicographical order. So intuitively, we obtain the greedy placement by
pushing the beacons as far as possible from the origin v0 of the spiral. Clearly,
b1 must be placed in C2. We then observe the following for b2, . . . , bk−1.

Lemma 3. For 2 � i � k − 1, the i-th beacon bi in a greedy placement for Pr

is in A3i−1.

Proof. We prove the lemma by induction on i. We first verify the lemma for b2.
Without loss of generality, we assume that the edge v1v2 is a top reflex edge. Let
�1 be the line through v4 and b1. Observe that b1 attracts all points in C3, but
not all of those in C4. More precisely, b1 attracts those in C4 below �1 but misses
those above �1. Hence, b2 must be placed on �1 to cover the points in C4 above
�1. For our purpose, we compare the slopes of �1 and any line through v4 and a

Tight Bounds for Beacon-Based Coverage in Simple Rectilinear Polygons 119

point in B5 (See Fig. 6a). Recall that ρ > 2+(r +2)ε and w < ε. The slope of �1
is at least

a2

a3 + w
>

a2

a3 + ε
=

ρ2 + ε

ρ + 2ε
>

ρ2

ρ + 2ε
>

(2 + 2ε)ρ
ρ + 2ε

> 2.

On the other hand, the slope of any line through v4 and a point in B5 is at most

a4 + w

a5/2
< 2

a4 + ε

a5
= 2

ρ2 + 3ε

ρ3 + 2ε
<

2ρ2 + 6ε

ρ3
<

2 + 6ε/ρ2

2 + (r + 2)ε
< 1.

This implies that �1 cannot intersect B5. Thus, if b2 ∈ B5, then b2 fails to attract
some points near v4 and above �1, similarly as in Fig. 3a, so b2 must lie in A5.

For the inductive step, assume that j ∈ {2, . . . , k − 2} and bj lies in A3j−1.
Since bj attracts all points in C3j ∪A3j ∪B3j , we must have r � 3j+1, otherwise
bj would the last beacon in the greedy placement, contradicting our assumption
that j � k − 2. Then C3j+1 cannot be completely covered by bj , so the next
beacon bj+1 must cover C3j+1 partially. More precisely, bj+1 must lie on the line
�j through v3j+1 and bj (See Fig. 6b). Without loss of generality, we assume that
the edge v3j−1v3j is a right reflex edge. Also, note that r � 3j+2, since otherwise
placing bj+1 completes the greedy placement and thus k = j + 1, contradicting
our assumption that j � k − 2.

First assume that 3j − 1 is even, and hence 3j − 1 = 2j′ for some integer j′.
It implies that j′ ≡ 1 (mod 3) and r � 2j′ +3. Similarly to the above argument,
the slope of �j is at least

a3j−1/2
a3j + w

>
a3j−1/2
a3j + ε

=
1
2

ρ2� j′
3 � + j′ε

ρ1+2� j′+1
3 	 + (j′ + 1)ε

=
1
2

ρ2
j′+2

3 + j′ε

ρ1+2 j′−1
3 + (j′ + 1)ε

>
1
2

ρ2
j′+2

3

ρ1+2 j′−1
3 + (j′ + 1)ε

=
ρ

2
ρ

2j′+1
3

ρ
2j′+1

3 + (j′ + 1)ε

>
ρ

2j′+1
3 (1 + rε/2 + ε)

ρ
2j′+1

3 + (j′ + 1)ε
>

ρ
2j′+1

3 (1 + rε/2 + ε)

ρ
2j′+1

3 (1 + j′ε + ε)
> 1.

On the other hand, the slope of any line through v3j+1 and any point in B3j+2

is at most

a3j+1 + ε

a3j+2/2
< 2

ρ2� j′+1
3 � + (j′ + 2)ε

ρ1+2� j′+2
3 	 + (j′ + 1)ε

= 2
ρ2

j′+2
3 + (j′ + 2)ε

ρ1+2 j′+2
3 + (j′ + 1)ε

< 2
ρ2

j′+2
3 + (j′ + 2)ε

ρ1+2 j′+2
3

=
2 + 2(j′ + 2)ε/ρ2

j′+2
3

ρ
<

2 + (r + 2)ε
ρ

< 1.

This implies that the next beacon bj+1 should also be placed in A3j+2.

120 S.W. Bae et al.

We now handle the remaining case, where 3j−1 = 2j′ +1 for some integer j′.
It implies that j′ ≡ 2 (mod 3) and r � 2j′ + 4. The slope of �j is at least

a3j−1/2
a3j + w

>
a3j−1/2
a3j + ε

=
1
2

ρ1+2� j′+1
3 	 + j′ε

ρ2� j′+1
3 � + (j′ + 2)ε

=
1
2

ρ1+2 j′+1
3 + j′ε

ρ2
j′+1

3 + (j′ + 2)ε

>
1
2

ρ1+2 j′+1
3

ρ2
j′+1

3 + (j′ + 2)ε
=

ρ

2
ρ2

j′+1
3

ρ2
j′+1

3 + (j′ + 2)ε

>
ρ2

j′+1
3 (1 + rε/2 + ε)

ρ2
j′+1

3 + (j′ + 2)ε
>

ρ2
j′+1

3 (1 + rε/2 + ε)

ρ2
j′+1

3 (1 + j′ε + 2ε)
> 1.

On the other hand, the slope of any line through v3j+1 and any point in B3j+2

is at most

a3j+1 + ε

a3j+2/2
< 2

ρ1+2� j′+2
3 	 + (j′ + 2)ε

ρ2� j′+2
3 � + (j′ + 2)ε

= 2
ρ1+2 j′+1

3 + (j′ + 2)ε

ρ2+2 j′+1
3 + (j′ + 2)ε

< 2
ρ1+2 j′+1

3 + (j′ + 2)ε

ρ2+2 j′+1
3

=
2 + 2(j′ + 2)ε/ρ1+2 j′+1

3

ρ
<

2 + (r + 2)ε
ρ

< 1

Again, it implies that the next beacon bj+1 must be placed in A3j+2. �

It follows from Lemma 3 that the first k − 1 beacons in an optimal greedy
placement cover the whole spiral until the block B3k−3, and thus r � 3k − 2. In
other words:

Lemma 4. The spiral Pr defined above cannot be guarded by less than � r
3� =

�n
6 � beacons, where n denotes the number of vertices of Pr.

4.2 Monotone Polygons

Our last result is to show that in the worst case, monotone rectilinear polygons
require fewer beacons than simple rectilinear polygons. It matches the lower
bound by Biro [1].

Theorem 3. For any rectilinear monotone polygon P with n vertices, r of which
are reflex, �n+4

8 � = � r
4� + 1 beacons are sufficient to guard P , and sometimes

necessary.

Proof. Without loss of generality, we assume that P is x-monotone. Thus, P
has no vertical reflex edge by Observation 1. Our proof is by induction on the
number r of reflex vertices. If P has at most one reflex edge e, then we observe
that any point on e is contained in the kernel K(P) by Theorem 1. Thus, one
beacon is sufficient to guard P .

Now, assume that P has at least two reflex edges. This implies that r � 4
since P is x-monotone. Let v1, v2, . . . , vk be the right endpoints of the reflex edges

Tight Bounds for Beacon-Based Coverage in Simple Rectilinear Polygons 121

sorted from left to right. Let e1 and e2 be the reflex edges that are incident to
v1 and v2, respectively. Let c be the vertical cut at v2. We partition P into P+

c

and P−
c by c. Then the left side subpolygon P−

c has at most one reflex edge e1,
and thus can be guarded by a single beacon placed at any point on e1. The right
side subpolygon P+

c has r(P+
c) = r − 4 reflex vertices. Thus, by induction, at

most � r−4
4 � + 1 beacons can guard P+

c . The total number of beacons placed in
P is at most

1 +
⌊

r − 4
4

⌋

+ 1 =
⌊r

4

⌋
+ 1,

as desired.
Finally, observe that cutting by c always makes a new convex edge in P−

c

and P+
c since there is no vertical reflex edge in P . This implies that separately

guarding P−
c and P+

c is sufficient to guard the whole P by Observation 2. �

5 Concluding Remarks

In this paper, we gave tight bounds for beacon-based coverage in a simple rec-
tilinear polygon, and in a monotone rectilinear polygon, which settles two open
problems given by Biro et al. [2]. Furthermore, we presented an optimal linear
time algorithm for computing the beacon-based kernel of a simple rectilinear
polygon P . The problem of computing in subquadratic time the inverse kernel
of P , which is defined as a set of points in P that are attracted to all the points
in P , remains open.

Acknowledgments. We thank the anonymous referees for their helpful comments.

References

1. Biro, M.: Beacon-based routing and guarding. Dissertation, Stony Brook University
(2013)

2. Biro, M., Gao, J., Iwerks, J., Kostitsyna, I., Mitchell, J.S.B.: Combinatorics
of beacon-based routing and coverage. In: Proceedings of the 25th Canadian
Conference on Computational Geometry (CCCG) (2013)

3. Biro, M., Iwerks, J., Kostitsyna, I., Mitchell, J.S.B.: Beacon-based algorithms for
geometric routing. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013.
LNCS, vol. 8037, pp. 158–169. Springer, Heidelberg (2013)

4. Chavátal, V.: A combinatorial theorem in plane geometry. J. Combinat. Theory
Series B 18, 39–41 (1975)

5. Györi, E.: A short proof of the rectilinear art gallery theorem. SIAM J. Algebraic
Discrete Methods 7(3), 452–454 (1986)

6. Györi, E., Hoffmann, F., Kriegel, K., Shermer, T.: Generalized guarding, partition-
ing for rectilinear polygons. Comput. Geom. Theory Appl. 6(1), 21–44 (1996)

7. Kahn, J., Klawe, M., Kleitman, D.: Traditional galleries require fewer watchmen.
SIAM J. Algebraic Discrete Methods 4(2), 194–206 (1983)

122 S.W. Bae et al.

8. Kouhestani, B., Rappaport, D., Salmoaa, K.: Routing in a polygonal terrain with
the shortest beacon watchtower. In: Proceedings of the 26th Canadian Conference
on Computational Geometry (CCCG) (2014)

9. Michael, T.S., Pinciu, V.: Art gallery theorems for guarded guards. Comput. Geom.
Theory Appl. 26, 247–258 (2003)

10. O’Rourke, J.: An alternative proof of the rectilinear art gallery theorem. J. Geom.
21, 118–130 (1983)

11. O’Rourke, J.: Art Gallery Theorems and Algorithms. International Series of
Monographs on Computer Sciences. Oxford University Press, New York (1987)

12. Shermer, T.: Recent results in art galleries. IEEE Proc. 90(9), 1384–1399 (1992)
13. Shermer, T.C.: A combinatorial bound for beacon-based routing in orthogonal

polygons. In: Proceedings of CCCG 2015, pp. 213–219 (2015)
14. Urrutia, J.: Art gallery and illumination problems (chap. 22). In: Sack, J.-R.,

Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 973–1027.
North-Holland (2000)

On Mobile Agent Verifiable Problems

Evangelos Bampas(B) and David Ilcinkas

CNRS and University of Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
{evangelos.bampas,david.ilcinkas}@labri.fr

Abstract. We consider decision problems that are solved in a distrib-
uted fashion by synchronous mobile agents operating in an unknown,
anonymous network. Each agent has a unique identifier and an input
string and they have to decide collectively a property which may involve
their input strings, the graph on which they are operating, and their
particular starting positions. Building on recent work by Fraigniaud and
Pelc [LATIN 2012, LNCS 7256, pp. 362–374], we introduce several nat-
ural new computability classes allowing for a finer classification of prob-
lems below co-MAV or MAV, the latter being the class of problems that
are verifiable when the agents are provided with an appropriate certifi-
cate. We provide inclusion and separation results among all these classes.
We also determine their closure properties with respect to set-theoretic
operations. Our main technical tool, which is of independent interest,
is a new meta-protocol that enables the execution of a possibly infinite
number of mobile agent protocols essentially in parallel, similarly to the
well-known dovetailing technique from classical computability theory.

1 Introduction

1.1 Context and Motivation

The last few decades have seen a surge of research interest in the direction of
studying computability- and complexity-theoretic aspects for various models of
distributed computing. Significant examples of this trend include the investi-
gation of unreliable failure detectors [5,6], as well as wait-free hierarchies [14].
A more recent line of work studies the impact of randomization and non-
determinism in what concerns the computational capabilities of the LOCAL
model [9,12], as well as the impact of identifiers in the same model [10,11]. A
different approach considers the characterization of problems that can be solved
under various notions of termination detection or various types of knowledge
about the network in message-passing systems [1–4,17]. Finally, a recent work
focuses on the computational power of teams of mobile agents [13]. Our work lies
in this latter direction.

This work was partially funded by the ANR projects DISPLEXITY (ANR-11-BS02-
014) and MACARON (ANR-13-JS02-002). This study has been carried out in the
frame of the “Investments for the future” Programme IdEx Bordeaux – CPU (ANR-
10-IDEX-03-02).

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 123–137, 2016.
DOI: 10.1007/978-3-662-49529-2 10

124 E. Bampas and D. Ilcinkas

The mobile agent paradigm has been proposed since the 90’s as a concept
that facilitates several fundamental networking tasks including, among others,
fault tolerance, network management, and data acquisition [15], and has been of
significant interest to the distributed computing community (see, e.g., the recent
surveys [7,16]). As such, it is highly pertinent to develop a computability theory
for mobile agents, that classifies different problems according to their degree
of (non-)computability, insofar as we are interested in really understanding the
computational capabilities of groups of mobile agents.

In this paper, we consider a distributed system in which computation is per-
formed by one or more deterministic mobile agents, operating in an unknown,
anonymous network. Each agent has a unique identifier and is provided with an
input string, and they have to collectively decide a property which may involve
their input strings, the graph on which they are operating, and their particular
starting positions. One may argue about the usefulness of developing a theory
specifically for mobile agent decision problems. We believe that, apart from its
inherent theoretical interest, such a study is bound to yield intermediate results,
tools, intuitions, and techniques that will prove useful when one moves on to
consider from a computability/complexity point of view other, perhaps more
traditional, mobile agent problems, such as exploration, rendezvous, pattern for-
mation, etc. One such tool is the protocol that we develop in this paper, which
enables the interleaving of the executions of a possibly infinite number of mobile
agent protocols.

1.2 Related Work

In [13], Fraigniaud and Pelc introduced two natural computability classes, MAD
and MAV, as well as their counterparts co-MAD and co-MAV. The class MAD,
for “Mobile Agent Decidable”, is the class of all mobile agent decision problems
which can be decided, i.e., for which there exists a mobile agent protocol such that
all agents accept in a “yes” instance, while at least one agent rejects in a “no”
instance. On the other hand, the class MAV, for “Mobile Agent Verifiable”, is the
class of all mobile agent decision problems which can be verified. More precisely,
in a “yes” instance, there exists a certificate such that if each agent receives its
dedicated piece of it, then all agents accept, whereas in a “no” instance, for every
possible certificate, at least one agent rejects. Certificates are for example useful
in applications in which repeated verifications of some property are required.
Fraigniaud and Pelc proved in [13] that MAD is strictly included in MAV, and
they exhibited a problem which is complete for MAV under an appropriate notion
of oracle reduction.

In [8], Das et al. focus on the complexity of distributed verification, rather
than on its computability. In fact, their model differs in several aspects. First
of all, the networks in which the mobile agents operate are not anonymous, but
each node has a unique identifier. This greatly facilitates symmetry breaking, a
central issue in anonymous networks. On the other hand though, the memory
of the mobile agents is limited. Indeed, in [8], the authors study the minimal
amount of memory needed by the mobile agents to distributedly verify some

On Mobile Agent Verifiable Problems 125

MADsMAV co-MAVMAVs co-MAVs

co-MAD MAD

teamsize

degree degree

degreeγ degreeγtreesize

allemptyallempty

mineven

Fig. 1. Containments between classes below MAV and co-MAV with corresponding
illustrative problems. Class and problem definitions are summarized in Tables 1 and 2,
respectively.

classes of graph properties. Again, the studied properties are different from the
ones studied here and in [13], since they do not depend on the mobile agents
or their starting positions. However, they may depend on labels that nodes can
possess in addition to their unique identifiers.

1.3 Our Contributions

We introduce several new mobile agent computability classes which play a key
role in our endeavor for a finer classification of problems below MAV and co-MAV.
The classes MADs and MAVs are strict versions of MAD and MAV, respectively, in
which unanimity is required in both “yes” and “no” instances. Furthermore, we
consider the class co-MAV′ (and its counterpart MAV′) of mobile agent decision
problems that admit a certificate for “no” instances, while retaining the system-
wide acceptance mechanism of MAV.

We perform a thorough investigation of the relationships between the newly
introduced and pre-existing classes. As a result, we obtain a complete Venn
diagram (Fig. 1) which illustrates the tight interconnections between them. We
take care to place natural decision problems (in the mobile agent context) in
each of the considered classes. Among other results, we obtain a couple of fun-
damental, previously unknown, inclusions which concern pre-existing classes:
MAD ⊆ co-MAV and co-MAD ⊆ MAV.

We complement our results with a complete study of the closure properties of
these classes under the standard set-theoretic operations of union, intersection,
and complement. The various class definitions together with the corresponding
closure properties are summarized in Table 1.

The main technical tool that we develop and use in the paper is a new meta-
protocol that enables the execution of a possibly infinite number of mobile agent
protocols essentially in parallel. This can be seen as a mobile agent computing
analogue of the well-known dovetailing technique from classical recursion theory.

Proofs are omitted due to lack of space.

126 E. Bampas and D. Ilcinkas

Table 1. Overview of mobile agent decidability and verifiability classes and their
closure properties. The notation yes (resp. no) means that all agents accept (resp.

reject). Similarly,
�
yes (resp.

�
no) means that at least one agent accepts (resp. rejects).

2 Preliminaries

The graphs in which the mobile agents operate are undirected, connected, and
anonymous. The edges incident to each node v (ports) are assigned distinct
local port numbers (also called labels) from {1, . . . , dv}, where dv is the degree
of node v. The port numbers assigned to the same edge at its two endpoints do
not have to be in agreement.

We conventionally fix a binary alphabet Σ = {0, 1}. In view of the natural
bijection between binary strings and N which maps a string to its rank in the
quasi-lexicographic order of strings (shorter strings precede longer strings, the
rank of the empty string ε being 0), we will occasionally treat strings and nat-
ural numbers interchangeably. If x and y are strings, then 〈x, y〉 stands for any
standard encoding as a string of the pair of strings (x, y).

If x is a list, then |x | is the length of x and xi is the i-th element of x . If f is
a function that can be applied to the elements of x , then we will use the notation
f(x) = (f(x1), . . . , f(x|x |)). In the same spirit, if x and y are equal-length lists
of strings, then 〈x ,y〉 stands for the list (〈x1, y1〉 , . . . , 〈x|x |y|y |〉).

We denote by Σ0
1 the set of recursively enumerable (or Turing-acceptable)

decision problems, Π0
1 = co-Σ0

1, and Δ0
1 = Σ0

1 ∩ Π0
1. Δ0

1 is exactly the set of
Turing-decidable problems.

2.1 Mobile Agent Computations

A mobile agent protocol is modeled as a deterministic Turing machine. Mobile
agents are modeled as instances of a mobile agent protocol (i.e., copies of the
corresponding deterministic Turing machine) which move in an undirected, con-
nected, anonymous graph with port labels. Each mobile agent is provided ini-
tially with two input strings: its ID, denoted by id, and its input, denoted by x.

On Mobile Agent Verifiable Problems 127

By assumption, in any particular execution of the protocol, the ID of each agent
is unique. The execution of a group of mobile agents on a graph G proceeds in
synchronous steps. At the beginning of each step, each agent is provided with an
additional input string, which contains the following information: (i) the degree
of the current node u, (ii) the port label at u through which the agent arrived at
u (or ε if the agent is in its first step or did not move in the previous step), and
(iii) the configuration of all other agents which are currently on u. Then, each
agent performs a local computation and eventually halts by accepting or reject-
ing, or it moves through one of the ports of u, or remains at the same node. We
assume that all local computations take the same time and that edge traversals
are instantaneous. Therefore, the execution is completely synchronous.

Let M be a mobile agent protocol, G be a graph, id be a list of distinct
IDs, s be a list of nodes of G, and x be a list of strings such that |id| =
|s| = |x | = k > 0. We denote by M(id, G, s,x) the execution of k copies of
M , the i-th copy starting on node si and receiving as inputs the ID idi and
the string xi. The tuple (id, G, s ,x) is called the implicit input. Similarly, we
denote by M(id, x; id, G, s ,x) the personal view of the execution of M on the
implicit input, as experienced by the agent with ID id and input x. We distinguish
between the explicit input (id, x), which is provided to the agent at the beginning
of the execution, and the implicit input, which may or may not be discovered
by the agent in the course of the execution.

Given an implicit input, we write M(id, x; id, G, s ,x) = yes (resp. no) if the
agent with explicit input (id, x) accepts (resp. rejects) during M(id, G, s ,x). Fur-
thermore, we write M(id, G, s ,x) �→ yes (resp. no), if ∀i M(idi, xi; id, G, s ,x) =
yes (resp. no), and M(id, G, s ,x) �→ �

yes (resp.
�
no), if all agents halt and for some

i M(idi, xi; id, G, s ,x) = yes (resp. no).

2.2 Mobile Agent Decision Problems

Definition 1 [13]. A mobile agent decision problem on anonymous graphs is a
set Π of instances (G, s,x), where G is a graph, s is a non-empty list of nodes
of G, and x is a list of strings with |x| = |s|, which satisfies the following closure
property: For every G and for every automorphism α of G that preserves port
numbers, (G, s,x) ∈ Π if and only if (G,α(s),x) ∈ Π.1

We will refer to instances which belong to a problem Π as “yes” instances
of Π. Instances that do not belong to Π will be called “no” instances of Π.
The complement Π of a mobile agent decision problem Π is the problem Π =
{(G, s,x) : |s| = |x | and (G, s,x)
∈ Π}.2 Some examples of decision problems
are shown in Table 2.

1 Note that this closure property is syntactically different from the one used in [13]
due to notational differences, but the two are equivalent.

2 It is easy to check that if Π is a decision problem, then Π also satisfies the closure
property of Definition 1. Therefore, Π is also a decision problem.

128 E. Bampas and D. Ilcinkas

Table 2. Definitions of some mobile agent decision problems that we use in the rest
of the paper.

alone = {(G, s, x) : |s| = 1}
allempty = {(G, s, x) : ∀i xi = ε}
consensus = {(G, s, x) : ∀i, j xi = xj}
degree = {(G, s, x) : ∀i ∃v dv = xi}
degreeγ = {(G, s, x) : G contains a node of degree γ} (for γ ≥ 1)

mineven = {(G, s, x) : mini xi is even}
path = {(G, s, x) : G is a path}
teamsize = {(G, s, x) : ∀i xi = |s|}
treesize = {(G, s, x) : ∀i G is a tree of size xi}

Definition 2 [13]. A decision problem Π is mobile agent decidable if there
exists a protocol M such that for all instances (G, s,x): if (G, s,x) ∈ Π then
∀id M(id, G, s,x) �→ yes, whereas if (G, s,x) /∈ Π then ∀id M(id, G, s,x) �→ �

no.
The class of all decidable problems is denoted by MAD.

Definition 3 [13]. A decision problem Π is mobile agent verifiable if there
exists a protocol M such that for all instances (G, s,x): If (G, s,x) ∈ Π then
∃y ∀id M(id, G, s, 〈x,y〉) �→ yes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s,

〈x,y〉) �→ �
no. The class of all verifiable problems is denoted by MAV.

When there is no room for confusion, we will use the term certificate both for
the string y provided to an agent and for the collection of certificates y provided
to the group of agents. If we need to distinguish between the two, we will refer to
y as a certificate vector. Finally, if X is a class of mobile agent decision problems,
then co-X = {Π : Π ∈ X}.

Remark 1. Note that in [13], only decidable (in the classical sense) mobile agent
decision problems were taken into consideration. As a result, it was by definition
the case that MAD and MAV were both subsets of Δ0

1. For the purposes of this
work, we do not impose this constraint.

3 Mobile Agent Decidability Classes

A problem Π is in co-MAD if and only if it can be decided by a mobile agent
protocol in a sense which is dual to that of Definition 2: If the instance is in Π,
then at least one agent must accept, whereas if the instance is not in Π, then
all agents must reject. We will consider one more such variant in the form of the
“strict” class MADs. A problem belongs to this class if it can be solved in such
a way that every agent always outputs the correct answer.

Definition 4. A decision problem Π is in MADs if and only if there exists a pro-
tocol M such that for all instances (G, s,x): if (G, s,x) ∈ Π then ∀id M(id, G, s,
x) �→ yes, whereas if (G, s,x) /∈ Π then ∀id M(id, G, s,x) �→ no.

On Mobile Agent Verifiable Problems 129

By definition, MADs is a subset of both MAD and co-MAD and it is easy to
check that MADs = co-MADs. Moreover, all of these classes are subsets of Δ0

1,
since a centralized algorithm, provided with an encoding of the graph and the
starting positions, inputs, and IDs of the agents, can simulate the corresponding
mobile agent protocol and decide appropriately. As mentioned in [13], path is
an example of a mobile agent decision problem which is in Δ0

1 \ MAD, since,
intuitively, an agent cannot distinguish a long path from a cycle. In fact, this
observation yields path ∈ Δ0

1 \ (MAD ∪ co-MAD).
A nontrivial problem in MADs is treesize. The problem was already shown to

be in MAD in [13]. For the stronger property that treesize ∈ MADs, we need a
modification of the protocol given in [13].

Proposition 1. treesize ∈ MADs.

We now show that MAD and co-MAD are strict supersets of MADs.

Proposition 2. allempty ∈ MAD \ MADs and allempty ∈ co-MAD \ MADs.

As we mentioned, MADs is included in both MAD and co-MAD. In fact,
MADs = MAD ∩ co-MAD. We state this as a theorem without proof, since it can
be obtained as a corollary of Theorems 2 and 3, which we will prove in Sect. 5.

Theorem 1. MADs = MAD ∩ co-MAD.

By Theorem 1, if allempty was included in co-MAD, we would obtain
allempty ∈ MADs, which we know to be false. Thus, allempty /∈ co-MAD and
we obtain a separation between MAD and co-MAD. Symmetrically, allempty ∈
co-MAD \ MAD.

4 Interleaving Multiple Mobile Agent Protocols

It is important to have a tool that enables the execution of several mobile agent
protocols on the same instance, and that also permits the mobile agents to make
decisions based on the outcomes of these executions. For example, if one were
to give a direct proof of Theorem 1 above, one would need a way for the agents
to coordinate in order to execute both the MAD and the co-MAD protocol for a
particular problem, and then, based on the outcome of these executions, to give
a unanimous correct answer (in the spirit of MADs).

In classical computing, the well known dovetailing technique achieves this
interleaving of different computations. Classical dovetailing proceeds in phases:
in phase T , the first T steps of the first T programs are executed. At this point, an
auxiliary function is executed, which decides, based on these executions, whether
to accept, reject, or continue with the next phase. Correspondingly, the mobile
agent meta-protocol which we propose in this section, proceeds in phases: in
phase T , the agents execute the first T steps of the first T mobile agent protocols
and then decide whether to accept, reject, or proceed to the next phase. In
the mobile agent case, each agent decides independently by locally executing

130 E. Bampas and D. Ilcinkas

a function, which is given as a parameter to the meta-protocol. We call this
function a local decider.

Still, it may happen that one or more agents halt as a result of executing the
local decider, while others decide to continue. In such a case, the execution of
the protocols in the next phase could be corrupted because the halted agents no
longer follow the protocol. However, these halted agents can now be regarded
as fixed tokens and the meta-protocol uses them in order to create a map of
the graph. In fact, this is done in such a way as to ensure that all non-halted
agents obtain not only the map of the graph but actually full knowledge of the
implicit input. Based on this knowledge, each agent decides irrevocably whether
to accept or reject by means of a second function which is given as a parameter
to the meta-protocol, and which we call a global decider.

4.1 Ingredients of the Meta-Protocol

We propose a generic meta-protocol PN ,f,g, which is parameterized by N , f, g.
The set N is a, possibly infinite, recursively enumerable set of mobile agent
protocols. Let Ni, i ≥ 0, denote the i-th protocol in such an enumeration. The
functions f and g are computable functions which represent local computations
with the following specifications:

Global decider: The function f maps pairs consisting of an explicit and
an implicit input, i.e., tuples of the form (id, x; id, G, s ,x), to the set
{accept, reject}. In this case, we say that f is a global decider. When an agent
executes f , it halts by accepting or rejecting according to the outcome of f .

Local decider: The function g takes as input an explicit input (id, x) and a list
(H1, . . . , Hσ) of arbitrary length σ, where each Hj is the history of the partial
execution of Nj(id, x; id, G, s ,x) for a certain number of steps and (id, G, s ,x)
is an implicit input common for all histories H1, . . . , Hσ. The outcome of g is
one of {accept, reject, continue}. When an agent executes g, it halts in the
corresponding state if the outcome is accept or reject, otherwise it continues
without halting.

If for every implicit input (id, G, s ,x) and for every T0, there exists a T ≥
T0 and some i such that the local computation g(idi, xi,H1, . . . , Hmin(T,|N |))
returns either accept or reject, where each Hj is an encoding of the execution
of Nj(idi, xi; id, G, s,x) for T steps, then we say that g is a local decider for N .

The meta-protocol uses the following procedures Create-Map and Rdv:

Procedure Create-Map(R): An agent executes this procedure only when it is
on a node which contains at least one halted (or idle) agent. Starting from this
node, and treating the halted agent as a fixed mark, it attempts to create a map
of the graph assuming that the graph contains at most R nodes. More precisely,
the agent first creates a map consisting in a single node corresponding to the
marked node r, with dr pending edges with port numbers from 1 to dr. Then,
while there remain some pending edges and there are at most R explored nodes,
the agent explores some arbitrary pending edge as follows. The agent goes to

On Mobile Agent Verifiable Problems 131

the known extremity u of the pending edge by using the map and traverses it.
It then determines whether its current position v corresponds to a node of its
map, as follows: For every node w in its map, it computes a path in the map
going from w to r and follows the corresponding sequence of port numbers in
the unknown graph, starting from v. If it leads to the marked node, then v = w
and the agent updates its map by linking the pending edges of u and w with the
appropriate port numbers. Otherwise, it retraces its steps to come back to v and
tests a next node w. If all nodes turn out to be different from v, then the agent
goes back to the marked node through u, and updates its map by adding a new
node corresponding to v, linked to u, and with the appropriate number of new
pending edges. At the end of the procedure, the agent either has a complete map
of the graph, or knows that the graph has more than R nodes. This procedure
takes at most 4R4 steps.

Procedure Rdv(R, id): This procedure guarantees that a group of k agents
which (a) know the same upper bound R on the number of nodes in the graph,
(b) have distinct id’s {id1, . . . , idk}, and (c) start executing Rdv(R, idi) at the
same time from different nodes si, will all meet each other after finite time.
Moreover, each agent knows when it has met all other agents executing Rdv,
even without initial knowledge of k.

The Rdv procedure uses as a subroutine the following Explore-Ball pro-
cedure: An agent executing Explore-Ball(R) attempts to explore the ball
of radius R around its starting node si, assuming an upper bound of R on
the maximum degree of the graph. This is achieved by having the agent try
every sequence of length R of port numbers from the set {1, . . . , R}, retracing
its steps backward after each sequence to return to si. If a particular sequence
instructs the agent to follow a port number that does not exist at the current
node (i.e., the port number is larger than the degree of the node), then the
agent aborts that sequence and returns to si. Attempting all possible sequences
takes at most B(R) = 2R · RR steps. If an agent finishes earlier, it waits on si

until B(R) steps are completed. Therefore, a team of agents that start executing
Explore-Ball(R) at the same time from different nodes are synchronized and
back at their starting positions after B(R) steps.

Now, for each bit of idi, the Rdv procedure executes the following: If the bit
is 0, the agent waits at si for B(R) steps and then executes Explore-Ball(R),
whereas if the bit is 1, the agent first executes Explore-Ball(R) and then
waits on its starting position for B(R) steps. After it exhausts the bits of idi, the
agent executes twice Explore-Ball(R). This guarantees that, if the number of
nodes is at most R, then after 2 · (|idi| + 1) · B(R) steps, each agent i is located
at si and has met all other agents executing Rdv. Note that after every integer
multiple of B(R) steps, each agent is located at its initial node si.

4.2 Description of the Meta-Protocol

The meta-protocol PN ,f,g works in phases, which correspond to increasing values
of a presumed upper bound T on the number of nodes in the graph, the length

132 E. Bampas and D. Ilcinkas

Fig. 2. High-level flowchart of the meta-protocol of Sect. 4.

of all agent identifiers, and the completion time of protocols N1, . . . , NT .We will
say that an agent is idle if it is waiting indefinitely on its starting node for some
other agent to provide it with the knowledge of the full implicit input. We will
say that an agent is participating if it is not halted and not idle. Note that an
agent may halt only as a result of executing one of the decider functions f and
g. In each phase T , the agents perform the following actions (see also Fig. 2):

Search for nearby starting positions and set flags. Each participating agent i
first executes Rdv(2T, idi) for at most 2(T + 1)B(2T) steps. By design of Rdv,
this guarantees that agent i will explore its 2T -neighborhood at least once and,
in particular, if T ≥ |idi|, then for each other participating agent, agent i will
explore its 2T -neighborhood at least once with that agent staying on its starting
node. If, in the process, the agent meets any agent, then it sets its accompanied
flag. It also sets its neutralized flag if the encountered agent is participating and
it has a lexicographically larger ID. If the encountered agent is halted or idle,
the agent sets its mapseeker flag. Finally, if the agent finds a node with degree
larger than 2T or if the length of its ID is greater than T , it sets its cautious
flag. All agents synchronize at this point.

Mapseeker agents attempt to create a map of the graph. Next, each agent i
with the mapseeker flag set moves to a halted or idleagent which it has found
previously, while executing Rdv in the current phase. Then, it attempts to create
a map of the graph by executing Create-Map(T) and returns to si. Overall, this
takes at most 4T 4 + 4T steps. Moreover, during the execution of Create-Map,
mapseeker agents collect starting position and input information from allhalted
and idle agents that they encounter. Meanwhile, non-mapseeker agents wait for
4T 4 + 4T steps. All agents synchronize at this point.

So far, we have achieved that, if T ≥ n, where n is the number of nodes in G,
then either no agent is a mapseeker having the full map of G, or all participating
agents have the mapseeker flag set and they have the full map of G (Lemma 1
below). If all mapseeker agents have the full map of G and T ≥ n, then each

On Mobile Agent Verifiable Problems 133

such agent i executes Rdv(n, idi), which guarantees that, finally, it is located at
si and has met all other agents executing Rdv. Therefore, after concluding the
Rdv procedure, each mapseeker executes f with full knowledge of the implicit
input (Lemma 2).

Perform dovetailing. At this point, if no agent is a mapseeker having the full
map of G, the agents execute each of the protocols N1, . . . , Nmin(T,|N |) for at
most T steps, and then retrace backward to si (agents are synchronized after
executing each protocol). If any of these protocols instructs an agent to halt,
the agent instead waits until the T -step execution period has finished, and then
returns to si. If the agent does not have the cautiousor accompanied flags set, it
then executes g(id, x,H1, . . . , Hmin(T,|N |)), where Hj is the history of the T -step
execution of Nj with explicit input (id, x). Since this process takes at most 2T 2

steps, all agents that do not halt as a result of executing g are synchronized at
the end of the current phase. It is guaranteed that the histories fed to the local
decider g correspond to correct executions of the corresponding protocols for
implicit input (id, G, s ,x), even though some of the agents may have halted or
become idle in earlier phases (Lemma 3 and Corollary 1).

Neutralized agents become idle. Finally, at the end of the phase, neutralized
agents start waiting for the implicit input (i.e., they become idle), and when
they receive it (from some mapseeker agent), they execute the global decider f .

Lemma 1. In each phase, either all or none of the participating agents (i.e.,
non-halted and non-idle) execute f .

Lemma 2. Any agent that executes f has full knowledge of the implicit input
(id, G, s,x).

Lemma 3. If an agent i executes g during phase T , then no other agent’s start-
ing node is at distance 2T or less from si.

By Lemma 3, we obtain the following corollary:

Corollary 1. Any agent i that executes g has histories which correspond to the
correct histories of Nj(idi, xi; id, G, s,x) for T steps (1 ≤ j ≤ min(T, |N |)), even
though some of the agents may have halted or become idle in earlier phases.

In view of Corollary 1, we can show that all agents terminate and, in fact,
they all terminate on their respective starting nodes.

Lemma 4. Let f be a global decider and let g be a local decider for N . Then,
each agent halts under the execution PN ,f,g(id, G, s,x) by executing either f or
g. Moreover, each agent i halts on its starting node si.

4.3 Application of the Meta-Protocol

To summarize, the meta-protocol is a generic tool that enables us to interleave
the executions of a possibly infinite set of mobile agent protocols. Eventually,

134 E. Bampas and D. Ilcinkas

each agent accepts or rejects, based either on the histories of the executions of a
number of these protocols (by means of the local decider), or on full knowledge
of the implicit input (by means of the global decider).

We use the meta-protocol in order to place a particular problem in one of
the mobile agent computability classes of Table 1. A common part of the proofs
consists in defining the list of protocols N and suitable deciders f and g, and
in showing that f and g indeed satisfy the global and local decider properties,
respectively. This is followed by a part tailored to each particular result, where
we use the properties of the meta-protocol (Lemmas 1–4 and Corollary 1) and
the particular definitions of f and g, in order to show that agents that execute
PN ,f,g always terminate in the desired state. The desired state is indicated by
the class in which we wish to place the problem. For example, if we wish to show
that a problem is in MADs, we will have to show that all agents give the correct
answer for all implicit inputs.

5 Mobile Agent Verifiability Classes

Definition 5. A decision problem Π is in MAVs if and only if there exists a pro-
tocol M such that for all instances (G, s,x): if (G, s,x) ∈ Π then ∃y ∀id M(id, G,
s, 〈x,y〉) �→ yes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s, 〈x,y〉) �→ no.

By definition, MAVs ⊆ MAV. Moreover, MAV ⊆ Σ0
1, since a centralized algo-

rithm can simulate the MAV protocol for all possible certificate vectors (by clas-
sical dovetailing) and accept if it finds a certificate for which all agents accept.
By taking complements, we obtain as well that co-MAVs ⊆ co-MAV ⊆ Π0

1.
There exist several nontrivial problems in MAVs and co-MAVs (Proposition 3).

Furthermore, we can show that MAV is a strict superset of MAVs and, as a
corollary, co-MAV is a strict superset of co-MAVs (Proposition 4).

Proposition 3. For any fixed γ ≥ 1, degreeγ ∈ MAVs. Furthermore,
consensus ∈ co-MAVs and alone ∈ co-MAVs.

Proposition 4. degree ∈ MAV \ (MAVs ∪ co-MAV).

Proposition 4 also separates MAV from co-MAV. In order to separate Σ0
1

from MAV and Π0
1 from co-MAV, we observe that the teamsize problem, which

is clearly in Δ0
1 = Σ0

1 ∩ Π0
1, is neither in MAV nor in co-MAV.

Proposition 5. teamsize ∈ Δ0
1 \ (MAV ∪ co-MAV).

Decision problems with “no” certificates. In classical computability, the
class Π0

1 = co-Σ0
1 can be seen as the class of problems that admit a “no” cer-

tificate, i.e.: for “no” instances, there exists a certificate that leads to rejection,
whereas for “yes” instances, no certificate can lead to rejection. In this respect,
while MAV can certainly be considered as the mobile agent analogue of Σ0

1,
co-MAV is not quite the analogue of Π0

1. Problems in co-MAV indeed admit a
“no” certificate, but the acceptance mechanism is reversed: for “no” instances,

On Mobile Agent Verifiable Problems 135

there exists a certificate that leads all agents to reject. This motivates us to define
and study co-MAV′, the class of mobile agent problems that admit a “no” certifi-
cate while retaining the MAV acceptance mechanism, as well as its complement
MAV′. We give the definition of MAV′ below.

Definition 6. A decision problem Π is in MAV′ if and only if there exists a pro-
tocol M such that for all instances (G, s,x): if (G, s,x) ∈ Π then ∃y ∀id M(id, G,

s, 〈x,y〉) �→ �
yes, whereas if (G, s,x) /∈ Π then ∀y ∀id M(id, G, s, 〈x,y〉) �→ no.

By definition, it holds that MAVs ⊆ MAV′ and co-MAVs ⊆ co-MAV′. To show
MAV′ = MAVs (and thus co-MAV′ = co-MAVs), we need to “boost” the MAV′

protocol so that the agents answer unanimously even in “yes” instances. We
achieve this by supplying an extra certificate, which is interpreted as the number
of nodes of the graph. This enables the agents to meet and exchange information
in “yes” instances, and therefore reach a unanimous decision. The meta-protocol
from Sect. 4 essentially provides “for free” the necessary subroutines for meeting
and exchanging information.

Theorem 2. MAV′ = MAVs and co-MAV′ = co-MAVs.

In view of Theorem 2, it follows that MAVs ⊆ MAV∩co-MAV and co-MAVs ⊆
MAV ∩ co-MAV. We separate MAV ∩ co-MAV from both of these classes with the
problem mineven:

Proposition 6. mineven ∈ (MAV ∩ co-MAV) \ (MAVs ∪ co-MAVs).

Connections with the decidability classes. We explore the relationships
among the decidability classes of Sect. 3 and the classes defined in this section.
From the definitions we know that MAD ⊆ co-MAV′, therefore, by Theorem 2,
MAD ⊆ co-MAVs. Similarly, co-MAD ⊆ MAVs. Therefore, since MADs ⊆ MAD ∩
co-MAD, we also have that MADs ⊆ MAVs ∩ co-MAVs.

We show in Theorem 3 that, in fact, MADs = MAVs ∩co-MAVs. Furthermore,
from the definitions and Theorem 2, we have MAD ⊆ MAV ∩ co-MAVs and
co-MAD ⊆ MAVs ∩ co-MAV. We show that these actually hold as equalities in
Theorem 4 below. The proof of Theorem 3 (resp. Theorem 4) is based on trying
all possible combinations of certificates for the MAVs (resp. MAV) and co-MAVs

protocols. Here, we use the full power of the meta-protocol of Sect. 4 in order to
interleave and synchronize this infinite number of executions.

Theorem 3. MADs = MAVs ∩ co-MAVs.

Theorem 4. MAD = MAV ∩ co-MAVs and co-MAD = MAVs ∩ co-MAV.

Note that it was shown in [13] that, if we consider decision problems that are
decidable or verifiable by a single agent (thus giving rise to the classes MAD1

and MAV1), then it holds that MAD1 = MAV1 ∩ co-MAV1. Theorems 3 and 4
can be seen as generalizations of that result to multiagent classes.

136 E. Bampas and D. Ilcinkas

Proposition 7. For any fixed γ ≥ 1, degreeγ ∈ MAVs \ co-MAD and degreeγ ∈
co-MAVs \ MAD.

In view of Theorem 4, Proposition 7 yields a separation between MAVs and
co-MAV, as degreeγ ∈ MAVs \ co-MAV, and a separation between co-MAVs and
MAV, as degreeγ ∈ co-MAVs \ MAV.

By combining the results of this section with the results of Sect. 3, we obtain
a picture of the relationships among the classes below MAV and co-MAV, as
illustrated in Fig. 1.

References

1. Boldi, P., Vigna, S.: An effective characterization of computability in anonymous
networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 33–47. Springer,
Heidelberg (2001)

2. Boldi, P., Vigna, S.: Universal dynamic synchronous self-stabilization. Distrib.
Comput. 15(3), 137–153 (2002)

3. Chalopin, J., Godard, E., Métivier, Y.: Local terminations and distributed com-
putability in anonymous networks. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol.
5218, pp. 47–62. Springer, Heidelberg (2008)

4. Chalopin, J., Godard, E., Métivier, Y., Tel, G.: About the termination detection
in the asynchronous message passing model. In: van Leeuwen, J., Italiano, G.F.,
van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS,
vol. 4362, pp. 200–211. Springer, Heidelberg (2007)

5. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

6. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

7. Das, S.: Mobile agents in distributed computing: network exploration. Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS 109, 54–69 (2013)

8. Das, S., Kutten, S., Lotker, Z.: Distributed verification using mobile agents. In:
Frey, D., Raynal, M., Sarkar, S., Shyamasundar, R.K., Sinha, P. (eds.) ICDCN
2013. LNCS, vol. 7730, pp. 330–347. Springer, Heidelberg (2013)

9. Fraigniaud, P., Göös, M., Korman, A., Parter, M., Peleg, D.: Randomized distrib-
uted decision. Distrib. Comput. 27(6), 419–434 (2014)

10. Fraigniaud, P., Göös, M., Korman, A., Suomela, J.: What can be decided locally
without identifiers? In: PODC 2013, pp. 157–165. ACM (2013)

11. Fraigniaud, P., Halldórsson, M.M., Korman, A.: On the impact of identifiers on
local decision. In: Baldoni, R., Flocchini, P., Binoy, R. (eds.) OPODIS 2012. LNCS,
vol. 7702, pp. 224–238. Springer, Heidelberg (2012)

12. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35 (2013)

13. Fraigniaud, P., Pelc, A.: Decidability classes for mobile agents computing. In:
Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 362–374. Springer,
Heidelberg (2012)

14. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

On Mobile Agent Verifiable Problems 137

15. Lange, D.B., Oshima, M.: Seven good reasons for mobile agents. Commun. ACM
42(3), 88–89 (1999)

16. Markou, E.: Identifying hostile nodes in networks using mobile agents. Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS 108, 93–129 (2012)

17. Yamashita, M., Kameda, T.: Computing functions on asynchronous anonymous
networks. Math. Syst. Theory 29(4), 331–356 (1996)

Computing Maximal Layers of Points in Ef(n)

Indranil Banerjee(B) and Dana Richards

Department of Computer Science, George Mason University,
Fairfax, VA 22030, USA

{ibanerje,richards}@cs.gmu.edu

Abstract. In this paper we present a randomized algorithm for com-
puting the collection of maximal layers for a point set in Ek (k =
f(n)). The input to our algorithm is a point set P = {p1, . . . , pn}
with pi ∈ Ek. The proposed algorithm achieves a runtime of

O
(

kn
2− 1

log k
+logk (1+ 2

k+1) logn
)

when P is a random order and a run-

time of O(k2n3/2+(logk (k−1))/2 log n) for an arbitrary P . Both bounds
hold in expectation. Additionally, the run time is bounded by O(kn2)
in the worst case. This is the first non-trivial algorithm whose run-time
remains polynomial whenever f(n) is bounded by some polynomial in
n while remaining sub-quadratic in n for constant k (in expectation).
The algorithm is implemented using a new data-structure for storing
and answering dominance queries over the set of incomparable points.

Keywords: Maximal layers · Random order · Complexity

1 Introduction

The problem of finding the maximal layers of a set P = {p1, . . . , pn} of n points1

in [0, 1]k (where k = f(n)) is analogous to the problem of finding the convex
layers of P . Given P its first maximal layer is defined to be the set M1 of points
q ∈ P such that for any other p ∈ P , p �� q. Here, � is the usual domination
order between two points. That is: p � q if p[j] ≥ q[j] (where p[j] is the jth

coordinate of p) for all j. The first maximal set M1, which we simply refer to as
the maximal set of P , has been well studied [4–6]. The lth maximal layer Ml is
recursively defined as the first maximal layer of remainder of P upon removing
from P all the elements of layers from 1 to l − 1. Note that Ml could be empty.
The maximal layers problem is to identify all the non-empty maximal layers of
P and report them. We shall denote this problem as MaxLayers(P).

Related Work. We only have a tight bound for the runtime of MaxLay-
ers(P) when k ≤ 3, which is Θ(n log n) [6,12]. However, we do not have any
improved lower bound when k > 3. For fixed k > 3 best known upper-bound
1 We have restricted the sampling set to [0, 1]k in order to simplify our analysis. The
results hold for any arbitrary compact subset of Ek.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 138–151, 2016.
DOI: 10.1007/978-3-662-49529-2 11

Maximal Layers Problem 139

is O(n(log n)k−1) [3]. Interestingly, the upper bound to find only the first max-
imal set is O(n(log n)max(1,k−2)). Both of these bounds hold in the worst-case.
We see that, for fixed k, these algorithms can be regarded as almost optimal,
as they only have a poly-logrithmic overhead over the theoretical lower bound.
Conceptually, they implement multi-dimensional divide and conquer algorithms
[7] on input P which introduces the poly-log factor in their runtimes. The point
set P is partitioned into subsets based on ordering of points in some arbitrary
dimension. Then the maximal sets are computed recursively and merged later.

Things get interesting if the number of dimensions is not bounded by a con-
stant. When k = Ω(log n), these poly-logarithmic upper-bounds above become
quasi-polynomial (in n). However, there is a trivial algorithm (which compares
each point against the other, and keeps track of the computed transitive rela-
tions) that requires in the worst case O(kn2) comparisons. When k = n there is
a deterministic algorithm that runs in O(n(3+ω)/2) to compute the first maximal
layer [10], where O(nω) is the complexity of multiplying two n × n matrices. So
we see that the algorithm runs in ω(n2) time. In a recent paper [11], authors
show that determining whether there exists a pair (u, v), where u ∈ A and v ∈ B
(A and B are both sets of vector of size O(n)) such that u � v, can be done in
sub-quadratic time provided k = O(log n).

Our Results. In this paper we propose a randomized algorithm for the
MaxLayers(P) problem. When the point set P is also a random order the run-
time of our algorithm is bounded by O

(
kn2− 1

log k+logk (1+ 2
k+1) log n

)
in expecta-

tion. Otherwise, it is O(k2n3/2+(logk (k−1))/2 log n) also in expectation. Addition-
ally, it takes O(kn2) time in the worst case. This is the first non-trivial algorithm
for which the following two conditions holds simultaneously: (1) The worst case
run time is polynomially bounded (in n) as long as k is bounded by some polyno-
mial in n. (2) Whenever k is a constant the run time of the proposed algorithm
is sub-quadratic in n (in expectation).

2 Preliminaries

We denote P = {p1, . . . , pn} as the input set of n points in Ek. The jth coordinate
of a point p is denoted as p[j]. For any points p, q ∈ P , we define an ordering
relation �, such that p � q if p[j] op q[j] ∀j ∈ [1 . . . k]. Where, op is a place
holder for ≥ or ≤. Consequently, there are 2k different ordering relations � and
for each such an ordering there is a unique set of maximal layers (of P). Without
loss of generality, we assume that op is ≥ for all j, in this paper. Henceforth we
will simply use ≥ in place of op. We will use the notation S � p, where S is a
set of incomparable elements, to denote that ∃q ∈ S such that q � p. If S � p
we say that S is “above” p. Furthermore, if p 	 q then either p = q or p � q.

Clearly, (P,�) defines a partial order. We shall simply use P to denote this
poset when the context is clear. If p � q then we say that p precedes (or domi-
nates) q in the partial order and that they are comparable. We say that p and

140 I. Banerjee and D. Richards

q are incomparable (denoted by p ‖ q) if p �� q and q �� p. If p and q belong
to the same maximal layer then p ‖ q. Let the height h of P be defined as the
number of non-empty maximal layers of P . We also define the width w of P as
the size of the largest subset of P of mutually incomparable elements. Note, that
the maximum size of any layer is ≤ w.

Let O : Ek × Ek → {0, 1}k, such that O(p, q)[j] = 1 if p[j] < q[j] and 0
otherwise. This definition, which might seem inverted, will make sense when we
discuss it in the context of our data structures. We call O the orthant function
as it computes the orthant with origin p in which q resides. Henceforth, the
maximal layers will simply be referred to as layers. Let T be an ordering of the
points in P such that for any two points p, q ∈ P , if p � q then p precedes q in
the ordering T . Then T is a liner-extension of P . Let |S| denote the size of the
set S. We are now ready to state the MaxLayers(P) problem formally:

Definition 1 (MaxLayers(P)). Given a point set P along with an ordering
relation defined above, label each point in P with rank of the maximal layer it
belongs to.

In our analysis we shall use the typical RAM model, where operation of the

form p[j]
?
≥ q[j] takes constant time. Also we shall initially assume that the

point set P is a random order. Then we will extend the result to arbitrary set of
points. Below we define random orders formally according to its definition in [1].

Definition 2. We pick a set of n points uniformly at random from [0, 1]k. Then
the partial order generated by these points is a random order.

This is equivalent to saying that (P,�) is the intersection of k linear orders
T1 × . . .×Tk where the k-tuple (T1, . . . , Tk) is chosen uniformly at random from
(n!)k such tuples. Here, each Tj is a linear ordering (permutation) of {1, 2, . . . , n}.
Whenever we present our run-time results in terms of w or (and) h it is assumed
that both are upper bounded by n, the number of points in P . To simplify our
analysis we ignore the expected values of w and h, which could only have made
our results stronger (for example, see [1,2]).

3 The Iterative Algorithm

We shall use MaxPartition(P) as the main procedure for solving an instance
of MaxLayers(P). First we will describe a simpler algorithm and analyze it for
a random order P . Then we extend it for an arbitrary set of points.

3.1 Data Structures

In this section we introduce the framework on which our algorithm is based. Let
B be a self-balancing binary search tree (for example B could be realized as
a red-black tree). Let B(i) be the ith node in the in-order of B. Each node of
B stores three pointers. One for each of its children (null in place of an empty

Maximal Layers Problem 141

child) and another pointer which points to an auxiliary data structure. If X is
a node in B then left and right children of X are denoted as l(X) and r(X)
respectively. We also denote by L(X) the auxiliary data structure associate with
X. When the context is clear, we shall simply use L in place of L(X). We also
let L be a placeholder for any data structure that can be used to store the set of
points from a single layer of P . For example, L could be realized as a linked list.
Additionally, L must support Insert(L, p) and Above(L, p). The Above(L, p)

operation takes a query point p, and answers the query L
?
� p. The Insert(L, p)

operation inserts p into L, which assumes p is incomparable to the elements in L.
So, we must ensure that L is the correct layer for p before calling Insert(L, p).

We observe that the layers of P are themselves linearly ordered by their ranks
from 1 to h. We can thus use B to store the layers in sorted order, where each
node B(i) would store the corresponding layer Mi (using L(B(i))). We endow B
with Insert(B, p) and Search(B, p) (we do not need deletion) operations. The
Insert(B, p) procedure first calls the Search(B, p) procedure to identify which
node B(i) of B the new point p should belong and then calls Insert(L(B(i)), p).
If p does not belong to any layer currently in B then we create a new node in B.
The Search(B, p) procedure works as follows: we can think of B as a normal
binary search tree, where the usual comparison operator ≥ has been replaced
by the Above(L, p) procedure. Furthermore, the procedure can only identify
whether L � p or L �� p. This is exactly equivalent to the situation where we
have replaced the comparison operator ≥ with >. So we must determine two
successive nodes B(i) and B(i + 1) such that L(B(i)) � p and L(B(i + 1)) �� p.
If such a pair of nodes does not exist then we return a null node.

3.2 MaxPartition(P)

We begin by first computing a linear extension T of P . We initialize B as
an empty tree. We iteratively pick points from P in increasing order of their
ranks in T and call Insert(B, p), where p is the current point to be processed.
Insert(B, p) subsequently calls Search(B, p). We have two possibilities:

case 1: Search(B, p) returns a non-empty node B(i). We then call
Insert(L(B(i), p).

case 2: Search(B, p) returns a null node. Then we create the node B(m+1) in
B, where m is the number of nodes currently in B. We first initialize B(m + 1)
and then call Insert(L(B(m + 1), p) on it. We note that, when we create a new
node in B it must always be the right-most node of B. This follows from the
order in which we process the points. Since p succeeds a processed point q in
the linear extension T , hence p �� q. Thus, if p does not belong to any of nodes
currently in B then it must be the case that p is below all layers in B.

MaxPartition(P) terminates after all points have been processed. At ter-
mination L(B(i)) stores all of the points in Mi for 1 ≤ i ≤ h. We make a
couple of observations here. (1) When a point is inserted into a node B(i) it will
never be displaced from it by any point arriving after it. (2) Since, nodes are

142 I. Banerjee and D. Richards

always added as the right-most node in B, for Search(B, p) to be efficient, B
must support self-rebalancing. If we assume that Above(L, p) and Insert(L, p)
to work correctly, at once we see that Search(B, p) and Insert(B, p) are also
correct. Hence, each point is correctly assigned to the layer it belongs to.

3.3 Runtime Analysis

Let Above(L, p) take ta(|L|) time. As mentioned in Sect. 2, |L| ≤ w for any layer
in B. Hence, ta(w) is an upper bound on the runtime of Above(L, p). Similarly,
we bound the runtime of Insert(L, p) with ti(w). Let p be the next point to be
processed. At the time B will have at most h nodes. In order to process p the
Insert(B, p) will be invoked, which in turn calls the Search(B, p) as discussed
above. But the Search(B, p) will employ a normal binary search on B with the
exception that at each node of B it invokes the Above(L, p) instead of doing a
standard comparison. Since, B is self-balancing the height of B is bounded by
O(log h). Hence, number of calls to Above(L, p) is also bounded by O(log h),
each of which takes ta(w) time. Also, for each point p, Insert(L, p) is called only
once. We also assume initializing a node in B takes constant time. So, processing
of p takes O(ta(w) log h + ti(w)) and this holds for any point.

Lemma 1. We can compute a linear extension T of a random order P in
O(n log n + kn) time in the worst case.

Proof. We shall compute T as follows: Let μ(p) = max1≤j≤k p[j]. Then sorting
the points in decreasing order of μ(p) will give us T . It is trivial to see that T
is a linear extension of P when no two point in P share the same coordinate
(see footnote 2). For a random order this is true almost surely. Furthermore this
procedure takes O(n log n + kn) in the worst case.

The reason for computing T in this way will be clear when we get to the analy-
sis of our algorithm. Later we shall see that the time bounds for Above(L, p) and
Insert(L, p) will dominate the time it takes to compute T . So we shall ignore
this term in our run-time analysis. The next theorem trivially follows from the
discussion above.

Theorem 1. The procedure MaxPartition(P) takes O(n(ta(w) log h+ti(w)))
time and upon termination outputs a data structure consisting of the maximal
layers of P in sorted order.

4 Realization of L Using Half-Space Trees

In this section we introduce a new data structure for implementing L. We shall
refer to it as Half-Space Tree (HST). The function O(p, q) computes which
orthant q belongs to with respect to p as the origin. Clearly, there are 2k such
orthants, each having a unique label in {0, 1}k. Let Hj(p) be a half space defined
as: Hj(p) = {q ∈ [0, 1]k |O(p, q) = {0, 1}j−10{0, 1}k−j} passing through origin

Maximal Layers Problem 143

p whose normal is parallel to dimension j. Here, {0, 1}j−10{0, 1}k−j represents
a 0–1 vector for which the jth component is 0. We shall use the notation hj(p)
to denote the extremum orthant of Hj(p) (w.r.t �), that is, hj(p) = 1j−101k−j .
There are k such half spaces. An orthant whose label contains m 1’s lies in the
intersection of some k − m such half spaces.

Lemma 2. If p, q ∈ P and p ‖ q then O(p, q) ∈ {0, 1}k \{0k, 1k}. That is, q can
only belong to orthants which lie in the intersection of at most k − 1 half spaces.

Proof. Trivially follows from definitions.

Corollary 1. The above lemma holds if p and q belongs to the same layer.
However, the converse of this statement is not true.

4.1 Half-Space Tree

We define a k-dimensional HST recursively as follows:

Definition 3 (HST)

1. A singleton node (root) storing a point p.
2. A root has a number of non-empty children nodes (up to k) each of which is

a HST.
3. If node q is the jth child of node p then hj(p) 	 O(p, q).

An HST stores points from a single layer. So Corollary 1 tells us that for
any node p and a new point q at most k − 1 of the children nodes satisfy
hj(p) 	 O(p, q). Hence, q can be inserted into any one out of these children
nodes. Henceforth, we will also use w (the width of (P,�)) to bound the number
of points currently stored inside L.

Above(L, p). Let us assume that L is realized by an HST. The Above(L, p)
works as follows: First we compute O(r, p). Here, r is the root node. If O(r, p) =
0k then we return L � p. Otherwise we call Above(j(L), p) recursively on each
non-empty child node j of root r, such that hj(r) 	 O(r, p). When all calls reach
some leaf node, we stop and return L �� p.

Proof of Correctness. case 1:(L � p) Let q be some point in L such that q � p,
prior to calling Above(L, p). Before reaching the node q, if we find some other
node q′ � p then we are done. So we assume this is not the case. We claim that
p will be compared with q. We show this as follows: Let the length of path from
root r to q be i + 1. Let u0, . . . , ui be the sequence of nodes in this path (here
u0 = r and ui = q). Since, q � p, O(um, q) 	 O(um, p) for all 0 ≤ m < i. But,
um is a predecessor node in the path from r to q, hence hjm(um) 	 O(um, q)
where um+1 is the jth

m child of um. Which implies hjm(um) 	 O(um, p) (from
transitivity of) for 0 ≤ m < i. Thus we will traverse this path at some point
during our search.

case 2:(L �� p) Follows trivially from the description of Above(L, p).

144 I. Banerjee and D. Richards

Insert(L, p). Insert(L, p) is called with the assumption that L �� p. If the root
is empty then we make p as the root and stop. Otherwise, we pick one element
uniformly at random from the set Sr = {j ∈ {1, . . . , k} | hj(r) 	 O(r, p)} and
recursively call Insert(j(L), p).

Proof of Correctness. It is easy to verify that the insert procedure maintains the
properties of HST given in Definition 2.

Although the insert procedure is itself quite simple, it is important that we
understand the random choices it makes before moving further. These observa-
tions will be crucial to our analysis later. Let the current height of L be hL. By
L∗ we denote the complete HST of height hL, clearly L∗ has khl nodes. We color
edges of L∗ red if both of the nodes it is incident to are present in L, other-
wise we color it blue. Unlike Above, we can imagine that the Insert procedure
works with L∗ instead of L. Upon reaching a node r in L∗ the procedure samples
uniformly at random from the set Sr as above. This set may contain edges of
either color. If a blue edge have been sampled then we stop and insert p into the
empty node incident to the blue edge in L. So we see that, despite not being in
L, the nodes incident to blue edges effect the sampling probability equally.

4.2 Runtime Analysis

Here we compute ta(w) and ti(w) in expectation over the random order P and
the internal randomness of the Insert(L, p) procedure. From the discussion in
Sect. 4.1 we clearly see that ti(w) = O(ta(w)). So it suffices to upper bound
ta(w) in expectation. Furthermore, we only need to consider the case when
Above(L, p) returns L �� p as the other case would take fewer number of com-
parisons. Let this time be u(w). We divide our derivations to compute u(w) into
two main steps:

i. Compute the expected number of nodes at depth d of L having a total of w
nodes.

ii. Use that to put an upper bound on the number of nodes visited during a call
to Above(L, p) (when L �� p).

We choose to process points according to T as detailed earlier. We denote
this ordering by the ordered sequence (p1, . . . , pn).

Lemma 3. For any two points p, q where p precedes q in T we have the probabil-
ity that p[j] > q[j] is η1(k) = 1− 1

2
k−1
k+1 . Additionally, if p and q are incomparable

then it is η2(k) = 1 − 1
k − 1

2
k−2
k+2 .

Proof. See appendix.

Theorem 2. After w insertions the expected number of nodes at depth d in L
is given by:

kd

(

1 −
d∑

i=1

(1 − 1
ki)w−1

∏d
j=1,j �=i (1 − 1

ki−j)

)

Maximal Layers Problem 145

Proof. Let Xw,d be the number of nodes at depth d of L after w insertions. Due
to the second assertion of Lemma 3 we know that any new point to be inserted
can belong to any of the k half-spaces with probability η2(k), which is constant
over the half-spaces. The insert procedure selects one of these candidate half-
spaces uniformly at random. Thus it follows from symmetry that a particular
half-space will be chosen for insertion with probability 1

k . If the subtree is non-
empty then we do this recursively. We define an indicator random variable for
the event that the tth insertion adds a node at depth d as It,d. Then,

Xw,d =
w∑

t=1

It,d

Taking expectation on both sides we get,

E[Xw,d] =
w∑

t=1

Pr[It,d]

Trivially, E[Xw,0] = 1 for t > 0. When d = 1 and t ≥ 2 then Pr [It,1] = 1− Xt−1,1
k .

This is because there are Xt−1,1 nodes at depth 1 (nodes directly connected to
the root) hence there are k − Xt−1,1 empty slots for the node to get inserted at
depth 1, otherwise it will be recursively inserted to some deeper node. Hence we
have,

E[Xw,1] =
w∑

t=2

(

1 − Xt−1,1

k

)

For d = 2, we can similarly argue that the probability of insertion at depth 2
for some t ≥ 3 is equal to probability of reaching a node at depth 1 times the
probability of being inserted at depth 2. It is not difficult to see that this equals:(

Xt−1,1
k

) (
1 − Xt−1,2

kXt−1,1

)
. Hence,

E[Xw,2] =
w∑

t=3

(
Xt−1,1

k

)(

1 − Xt−1,2

kXt−1,1

)

Proceeding in this way we see that,

E[Xw,d] =
w∑

t=1

(
E[Xt−1,d−1]

kd−1
− E[Xt−1,d]

kd

)

Here we again take expectation on both sides and simplify the expression so that
the sum starts from t = 1 since the terms E[Xt,d] = 0 when t ≤ d.

Let a(w, d) = E[Xw,d], we can then simplify the above equation to get the
following recurrence,

a(w, d) =
a(w − 1, d − 1)

kd−1
+

(

1 − 1
kd

)

a(w − 1, d)

146 I. Banerjee and D. Richards

with a(w, d) = 0 for w ≤ d. The solution to this can be found by
choosing an ordinary generating function Gd(z) with parameter d, such that
Gd(z) =

∑∞
t=0 a(t, d)zt. The solution [see appendix] completes the proof of the

theorem.

Before moving on to the main theorem we need another lemma:

Lemma 4. If B = (b0, b1, . . . , bn) is a sequence such that br ≥ br+1 ≥ . . . ≥ bn,
then the sum S =

∑n
i=0 bim

i ≤
∑r

i=0 bim
i + br+1mr+1

(1−m) where m < 1.

Proof. Follows from elementary algebra. Details are omitted.

Corollary 2. If m = 1 − 1
2

k−1
k+1 and k ≥ 4 then , S ≤

∑r
i=0 bim

i + 7
3br+1m

r.

Theorem 3. Expected number of nodes visited during an unsuccessful search
u(w) is bounded by O

(
w1− 1

log k+logk (1+ 2
k+1)

)
.

Proof. Before proving this we make the following observation. If for any d = d0,
the sequence a(w, d) becomes decreasing, that is, a(w, d0) ≥ a(w, d0 − 1) and
a(w, d0) > a(w, d0+1), then afterwards it will stay decreasing. This is clear from
the fact that a(w, d) represents the expected number of nodes at depth d after w
insertions. So the sequence a(w, d) is unimodal since a(w, 0) ≤ a(w, 1) trivially
for w ≥ 2. Let d0 be the value that maximizes a(w, d).

Let us compute the probability of visiting a node at depth d during a call
to Above when the query point is not below L. Let q be the current node
being checked and p be the query point. According to Lemma 3 the probability
Pr[p ∈ Hj(q)] is same for any j and is not dependent on the rank of q in T . Hence
it is also not dependent on the depth of q in L. Furthermore, this probability is
η1 = 1 − 1

2
k−1
k+1 , again from Lemma 3.

Thus the probability of visiting a node at depth d is the result of d inde-
pendent moves each having probability η1, hence it is ηd

1 . Now we can find the
expression for the expected number of nodes visited:

u(w) =
w−1∑

d=0

ηd
1a(w, d)

≤
d0∑

d=0

ηd
1a(w, d) +

7
3
ηd0
1 a(w, d0 + 1) (1)

Here we use Theorem 2, Lemma 4 and its corollary and the fact that the sequence
a(w, d) is unimodal; to bound u(w). Also note that a(w, d) ≤ kd. Now we need to
upper bound d0. With some tedious algebra (details are omitted due to space con-
straints) we get, d0 ≤ logk w +2. Again, after some more algebra we finally get,

u(w) ≤ O
(
w1− 1

log k+logk (1+ 2
k+1)

)
(2)

This proves Theorem 3.

Maximal Layers Problem 147

Corollary 3. The algorithm runs in O
(
kn2− 1

log k+logk (1+ 2
k+1) log n

)
time in

expectation.

Proof. From Theorem 1 and the first paragraph of Sect. 4.2 we see that the run-
time of the algorithm is O(knu(w) log h). Since computing O(p, q) between pairs
of vectors takes O(k) time. Using the upper-bound of u(w) and the fact that
w, h ≤ n we get the runtime as claimed above.

Corollary 4. The worst case running time of the algorithm is bounded by
O(kn2).

Proof. The worst case occurs when each of the HSTs are just unbalanced chains.
Hence, both Above and Insert takes linear time (O(kn)) per point.

5 Extension to Arbitrary P

The previous algorithm would still be correct2 if P is not a random order. How-
ever the expected runtime will no longer hold. In order to make our previous
analysis work for any set of points we modify the way we store the layers. In
this new setting the layers are still arranged using a self-balancing binary tree
B, exactly as before. However, each layer is now maintained using a list of HSTs
instead of just a single one. Let us call this data structure List-HST. We extend
the Above and Insert procedure for HST as follows.

List-HST starts with an empty list. Attached to a List-HST is another
list R in which newly arrived points are kept temporarily before they are ready
to be inserted in the List-HST. Initially this list R is also empty. We take the
maximum size of R as

√
w (≤ √

n). As long as R has less than
√

w points we keep
adding to it. Once R has been filled, we create an HST from the points in R and
remove these points from R. This becomes the first HST in the list. We repeat
these steps again when R is full. We describe the modified List-HST-Above
and List-HST-Insert below.

List-HST-Insert(p). If R is not yet full then we just add p to R. Otherwise
we create an HST from points in P ′ = R ∪ p. We randomly permute elements
in P ′ and pick the first element in this ordering as the root. We then build the
HST iteratively by picking rest of the elements in this order. Next we prove a
lemma similar to Lemma 3.

Lemma 5. Assume that an HST is built by inserting points in a random order.
Let X represent a point which is already inserted and Y a new point being com-
pared to X. Then Y belongs to any of the children subtree of X with equal
probability.

2 However, we need to modify the procedure for computing a linear extension since
the assumption that no two point share a coordinate may longer hold. In this case
we can simply take the sorted order of the points according to the sum of their
coordinates.

148 I. Banerjee and D. Richards

Proof. Since the insertion order is random, X and Y are both random variables.
We compute the probability Pr[X[i] > Y [i]] for some i. Now for some arbitrary
pair of points {p, q} the probability that p precedes q in the ordering is 1/2. If
X,Y ∈ {p, q} then, Pr[X[i] > Y [i]|X,Y ∈ {p, q}] = (Pr[X[i] > Y [i]|X = p, Y =
q]+Pr[X[i] > Y [i]|X = q, Y = p])/2. Pr[p[i] > q[i]]is either 0 or 1 since the points
p and q themselves are not random. Hence, Pr[X[i] > Y [i]|X,Y ∈ {p, q}] = 1/2
for any pair {p, q}, which proves the claim above.

Using the above lemma and techniques used to prove Theorem 3 we can
show that d0 ≤ logk

√
w + 2. Hence, building an HST takes O(

√
w logk w) time

in expectation and O(w) in worst case. Since, there can only be
√

n such steps
where we build an HST and each takes O(n) (since w ≤ n) time hence the
insert operation on List-HST adds O(kn3/2) to the overall running time of our
algorithm. This is insignificant compared to the total time.

List-HST-Above(p). For each HST L in the list we call Above(L, p). If none
of these calls find a point above p then we check the remaining points in R.
However, since p is not random we cannot compute the probability η1 as we did
before. However, we can upper bound the fraction of subtrees that are visited
from a node. We see that a point p can visit at most k − 1 subtrees of a node q
otherwise we can conclude that q � p. The List-HST-Insert procedure creates
the jth subtree of q with equal probability for all j. Hence, during search the
point p will visit a non-empty subtree of q is with probability ≤ (k − 1)/k.
This value can be substituted as an upper bound for η1 in Eq. 1, which leads to
u(w) ≤ O(k

√
w

logk (k−1)). Since there are at most
√

w HSTs in a layers, it takes
O(kw1/2+(logk (k−1))/2) time in expectation to search a list of HSTs. We ignore
the time it takes to check the set R, which is O(k

√
w). Hence the total runtime

is bounded by O(k2n3/2+(logk (k−1))/2 log n) in expectation.

5.1 A Summary of Results

We summarize the main results as follows:

i. k is a constant. From Corollary 3 we can easily verify that the algorithm has
a runtime of O(n2−δ(k)) where δ(k) > 0. This remains true even when P is
not a random order.

ii. k is some function of n. We let k = f(n). For any k the runtime of our algo-
rithm is bounded by O(kn2) in the worst case. This bound does not hold for
the divide-and-conquer algorithm in [3]. Also, the proposed algorithm never
admits a quasi-polynomial runtime unlike any of the previously proposed
non-trivial algorithms.

Concluding Remarks. In this paper we proposed a randomized algorithm
for the MaxLayers(P) problem. Unlike previous authors we also consider
the case when k is not a constant; this is often the case for many real-world
data sets whose tuple dimensions are not insignificant with respect to its set

Maximal Layers Problem 149

size. In this setting we show that the expected runtime of our algorithm is
O

(
kn2− 1

log k+logk (1+ 2
k+1) log n

)
when P is a random order. For any arbitrary set

of points in Ek it exhibits a runtime of O(k2n3/2+(logk (k−1))/2 log n) in expec-
tation. It remains to be seen if there exists a deterministic algorithm that runs
in o(kn2) for this problem. As a future work it would be interesting to know
whether HST can be used for the unordered convex layers problem in higher
dimensions. We know that unlike the maximal layers problem this problem is
not decomposable [8]. So it would be interesting to know within our iterative
framework whether we can extend HST to store the convex layers also.

Appendix

Proof of Lemma 3

Proof. Recall that T is a linear extension of P . Since p precedes q in T , μ(p) >
μ(q). Hence, ∃ j

′ ∈ {1, . . . , k} such that p[j′] > q[j′]. Let j′ = argmax1≤j≤k p[j].
We compute the probability Pr[p[j] > q[j] | μ(p) > μ(q)] in two parts over the
disjoint sets {j = j

′} and {j �= j
′}:

Pr[p[j] > q[j] | μ(p) > μ(q)] = Pr[p[j] > q[j] | j = j
′
, μ(p) > μ(q)] Pr[j = j

′
]

+ Pr[p[j] > q[j] | j �= j
′
, μ(p) > μ(q)] Pr[j �= j

′
]

= 1
1
k

+
(

1 − 1
2

μ(q)
μ(p)

) (

1 − 1
k

)

(3)

Since,

Pr[p[j] > q[j] | j �= j
′
, μ(p) > μ(q)] =

(μ(p) − μ(q))μ(q) + μ(q)2

2

μ(p)μ(q)
= 1 − 1

2
μ(q)
μ(p)

This follows from the fact that p[j] and q[j] are independent random variables
uniformly distributed over [0, μ(p)] and [0, μ(q)] (given μ(p) > μ(q)) respectively.
In the set {j = j

′} clearly p[j] > q[j]. However, in the set {j �= j
′} the probability

that p[j] > q[j] is
(
1 − 1

2
μ(q)
μ(p)

)
. We note that μ(p), μ(q) are themselves random

variables. More importantly they are i.i.d random variables having the following
distribution:

Pr[μ(p) < t] = tk

on the interval [0, 1]. This follows from how points in P are constructed. We take
the expectation of both side of Eq. 3 over the event space generated by μ(p), μ(q)
on the set {μ(p) > μ(q)}:

Pr[p[j] > q[j] | μ(p) > μ(q)] = 1 − 1
2
E

[
μ(q)
μ(p)

| μ(p) > μ(q)
] (

1 − 1
k

)

= 1 − 1
2

(
k

k + 1

) (

1 − 1
k

)

= 1 − 1
2

(
k − 1
k + 1

)

150 I. Banerjee and D. Richards

Now, let us compute, E

[
μ(q)
μ(p) | μ(p) > μ(q)

]
. Recall that μ(p) =

max1≤i≤kp[j]. So the distribution function of μ(p) is,

F [μ(p)] = Pr[μ(p) < t] = Pr

⎡

⎣
∧

1≤i≤k

p[i] < t

⎤

⎦ =
∏

1≤i≤k

Pr[p[i] < t] = tk

Where the second equality comes from that fact that each component of p are
independent and identically distributed on [0, 1] with uniform probability. Hence,

E

[
μ(q)
μ(p)

| μ(p) > μ(q)
]

=
∫

μ(p)>μ(q)

μ(q)
μ(p)

dF [μ(p)]dF [μ(q)]

=
k2

Pr[μ(p) > μ(q)]

∫ 1

0

∫ μ(p)

0

μ(p)k−2μ(q)kdμ(p)dμ(p)

=
k

k + 1

A similar argument can be used to prove the second claim.

Solving a(w, d)

To simplify our calculations we modify the recurrence slightly: With a(w, d) =
kdb(w, d), the recurrence equation becomes,

b(w, d) =
1
kd

b(w − 1, d − 1) + (1 − 1
kd

)b(w − 1, d)

Let, Gd(z) =
∑∞

w=0 b(w, d)zw. We note that b(w, d) = 0 when w ≤ d. Then we
have,

Gd(z) =
z

kd
Gd−1(z) + z(1 − 1

kd
)Gd(z)

=
z

kd(1 − (1 − 1
kd)z)

Gd−1(z)

. . .

=
zd

∏d
i=1 ki(1 − (1 − 1

ki)z)
G0(z)

But, G0(z) =
∑∞

w=0 b(w, 0)zw =
∑∞

w=1 zw = z
1−z as b(w, 0) = a(w, 0) = 1 when

w ≥ 1. Hence,

b(w, d) = k−d(d+1)/2[zw−d−1]Gd(z)

= k−d(d+1)/2[zw−d−1]
1

(1 − z)
∏d

i=1 (1 − (1 − k−i)z)
(4)

Maximal Layers Problem 151

where the notation [zi]p(z) means the coefficient of zi in the polynomial p(z) as
usual. Using partial fractions: Let,

1

(1 − z)
∏d

i=1 (1 − (1 − k−1)z)
≡ β0

1 − z
+

d∑

i=1

βi

(1 − (1 − k−i)z)

For which we get the following solution,

β0 = kd(d+1)/2

βi =
kd(d+1)/2(1 − k−i)d

∏d
j �=i,j≥1 (1 − kj−i)

Substituting these in Eq. 4 above we get, b(w, d) = 1 −
∑d

i=1
(1−k−i)w−1

∏d
j=1,j �=i (1−kj−i)

,

which gives us the desired result for a(w, d).

References

1. Winkler, P.: Random orders. Order 1–4, 317–331 (1985)
2. Brightwell, G.: Random k-dimensional orders: width and number of linear exten-

sions. Order 9, 333–342 (1992)
3. Jensen, M.T.: Reducing the run-time complexity of multiobjective EAs: the NSGA-

II and other algorithms. IEEE TEC 7–5, 503–515 (2003)
4. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.

J. ACM 22–4, 469–476 (1975)
5. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average num-

ber of maxima in a set of vectors and applications. J. ACM 25–4, 536–543 (1978)
6. Yao, F.F.: On Finding the maximal elements in a set of plane vectors. Com-

puter Science Department of Report, University of Illinois at Urbana-Champaign,
Urbana, Illinois (1974)

7. Bentley, J.L.: Multidimensional divide-and-conquer. Commun. ACM 23–4,
214–229 (1980)

8. Preparata, P., Shamos, M.: Computational Geometry: An Introduction. Texts and
Monographs in Computer Science. Springer, Berlin (1985)

9. Overmars, M.H.: The Design of Dynamic Data Structures. LNCS, vol. 156.
Springer, New York, Tokyo (1983)

10. Matoušek, J.: Computing dominance in En. Inf. Process. Lett. 38, 277–278 (1991)
11. Impagliazzo, R., Lovett, S., Paturi, R., Schneider, S.: 0–1 Integer Linear Program-

ming with a Linear Number of Constraints, eprint arXiv:1401.5512 (2014)
12. Nielsen, F.: Output-sensitive peeling of convex and maximal layers. Inf. Process.

Lett. 59, 255–259 (1996)

http://arxiv.org/abs/1401.5512

On the Total Number of Bends for Planar
Octilinear Drawings

Michael A. Bekos(B), Michael Kaufmann, and Robert Krug

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

{bekos,mk,krug}@informatik.uni-tuebingen.de

Abstract. An octilinear drawing of a planar graph is one in which each
edge is drawn as a sequence of horizontal, vertical and diagonal at 45◦

line-segments. For such drawings to be readable, special care is needed
in order to keep the number of bends small. As the problem of finding
planar octilinear drawings of minimum number of bends is NP-hard, in
this paper we focus on upper and lower bounds. From a recent result
of Keszegh et al. on the slope number of planar graphs, we can derive
an upper bound of 4n − 10 bends for 8-planar graphs with n vertices.
We considerably improve this general bound and corresponding previous
ones for triconnected 4-, 5- and 6-planar graphs. We also derive non-
trivial lower bounds for these three classes of graphs by a technique
inspired by the network flow formulation of Tamassia.

1 Motivation and Background

Octilinear drawings of graphs have a long history of research, which dates back
to the early thirties of the last century, when an English technical draftsman,
Henry Charles Beck (also known as Harry Beck), designed the first schematic
map of London Underground. His map, the so-called Tube map, looked more like
an electrical circuit diagram (consisting of horizontal, vertical and diagonal line
segments) rather than a true map, as the underlying geographic accuracy was
neglected. Laying out networks in such a way is called octilinear graph drawing.
In particular, an octilinear drawing Γ (G) of a graph G = (V,E) is one in which
each vertex occupies a point on an integer grid and each edge is drawn as a
sequence of horizontal, vertical and diagonal at 45◦ line segments.

In planar octilinear graph drawing, an important goal is to keep the number
of bends small, so that the produced drawings can be understood easily. However,
the problem of determining whether a given embedded planar graph of maximum
degree eight admits a bend-less planar octilinear drawing is NP-complete [16].
This motivated us to neglect optimality and study upper and lower bounds
on the total number of bends of such drawings. Surprisingly enough, very few
results were known, even if the octilinear model has been extensively studied in
the areas of metro-map visualization and map schematization.

This work has been supported by DFG grant Ka812/17-1.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 152–163, 2016.
DOI: 10.1007/978-3-662-49529-2 12

On the Total Number of Bends for Planar Octilinear Drawings 153

Table 1. A short summary of our results.

Upper bounds

Graph class Lower bound Ref. Previous Ref. New Ref.

3-con. 4-planar n/3 − 1 Theorem 4 2n [2] n + 5 Theorem 1

3-con. 5-planar 2n/3 − 2 Theorem 4 5n/2 [2] 2n − 2 Theorem 2

3-con. 6-planar 4n/3 − 6 Theorem 4 4n − 10 [14] 3n − 8 Theorem 3

One can derive the first (non-trivial) upper bound on the required number of
bends from a result on the planar slope number of graphs by Keszegh et al. [14],
who proved that every k-planar graph (that is, planar of maximum degree k)
has a planar drawing with at most �k

2 � different slopes in which each edge has
two bends. For 3 ≤ k ≤ 8, the drawings are octilinear, which yields an upper
bound of 6n − 12, where n is the number of vertices of the graph. This bound
can be reduced to 4n − 10 as follows. The edge that “enters” a vertex from its
south port and the edge that “leaves” each vertex from its top port in the s-t
ordering of the algorithm of Keszegh et al. can both be drawn with one bend
each. This leads to a reduction by 2n−2 bends and the bound of 4n−10 follows.

On the other hand, it is known that every 3-planar graph with five or more
vertices admits a planar octilinear drawing in which all edges are bend-less [8,13].
Recently, it was proved that 4- and 5-planar graphs admit planar octilinear
drawings with at most one bend per edge [2], which implies that their total
number of bends can be upper bounded by 2n and 5n/2, respectively.

Octilinear drawings form a natural extension of the so-called orthogonal draw-
ings, which allow for horizontal and vertical edge segments only. For such draw-
ings, several bounds on the total number of bends are given, see e.g., [4,5,15,18].
It is also known that the bend minimization problem can be solved efficiently,
when the input graph is embedded [17], while the corresponding minimizaton
problem over all embeddings is NP-hard [11]. In [17], the author describes how
one can extend his approach, so to compute a bend-optimal octilinear represen-
tation of any given embedded 8-planar graph. However, such a representation
may not be realizable by a corresponding planar octilinear drawing [6].

The remainder of this paper is organized as follows. In Sect. 2, we recall basic
definitions. In Sect. 3, we improve all aforementioned bounds for the classes of
triconnected 4-, 5- and 6-planar graphs. In Sect. 4, we present lower bounds for
these classes of planar graphs. We conclude in Sect. 5 with open problems. For
a summary of our results refer to Table 1.

2 Preliminaries

Let G = (V,E) be a triconnected planar graph and let Π = (P0, . . . , Pm) be a
partition of V into paths, such that P0 = {v1, v2}, Pm = {vn} and v2 → v1 → vn

is a path on the outerface of G. For k = 0, 1, . . . ,m, let Gk be the subgraph
induced by ∪k

i=0Pi. Partition Π is a canonical order [7,12] of G if the following

154 M.A. Bekos et al.

hold: (i) Gk is biconnected, (ii) all neighbors of Pk in Gk−1 are on the outer face
of Gk−1 and (iii) all vertices of Pk have at least one neighbor in Pj for some
j > k. Pk is called singleton if |Pk| = 1 and chain otherwise.

To simplify the description of our algorithms, we direct and color the edges
of G based on Π (similar to Schnyder colorings [9]) as follows. The first path
P0 of Π consists of exclusively one edge (that is, edge (v1, v2)), which we color
blue and direct towards vertex v1. For each path Pk = {vi, . . . , vi+j} ∈ Π later
in the order, let v� and vr be the leftmost and rightmost neighbors of Pk in
Gk−1, respectively. In the case where Pk is a chain (that is, j > 0), we color edge
(vi, v�) and all edges of Pk blue and direct them towards v�. The edge (vi+j , vr)
is colored green and is directed towards vr (see Fig. 1a). In the case where Pk is a
singleton (that is, j = 0), we color the edges (vi, v�) and (vi, vr) blue and green,
respectively and we direct them towards v� and vr. We color the remaining edges
of Pk that are incident to Gk−1 (if any) red and we direct them towards vi (see
Fig. 1e). Given a vertex v ∈ V of G, we denote by indegx(v) (outdegx(v), resp.)
the in-degree (out-degree, resp.) of vertex v in color x ∈ {r, b, g}.

3 Upper Bounds

3.1 Triconnected 4-Planar Graphs

Let G = (V,E) be a triconnected 4-planar graph. Before we proceed with the
description of our approach, we need to define two useful notions. First, a vertical
cut is a y-monotone continuous curve that crosses only horizontal segments and
divides a drawing into a left and a right part; see e.g. [10]. Such a cut makes a
drawing horizontally stretchable in the following sense: One can shift the right
part of the drawing that is defined by the vertical cut further to the right while
keeping the left part of the drawing in place and the result is a valid octilinear
drawing. Similarly, a horizontal cut is defined. Since G has at most 2n edges, it
follows that G has at most n + 2 faces. In order to construct a drawing Γ (G)
of G, which has roughly at most n + 2 bends, we also need to associate to each
face of G a so-called reference edge. This is done as follows.

Let Π = {P0, . . . , Pm} be a canonical order of G and assume that Γ (G) is
constructed incrementally by placing a new path of Π each time, so that the
boundary of the drawing constructed so far is a x-monotone path. When placing
a new path Pk ∈ Π, k = 1, . . . , m−1, one or two bounded faces of G are formed
(note that we treat the last partition Pm of Π separately). More precisely, if Pk

is a chain or a singleton of degree 3 in Gk, then only one bounded face is formed.
Otherwise (that is, Pk is a singleton of degree 4 in Gk), two new bounded faces
are formed. In both cases, each newly-formed bounded face consists of at least
two edges incident to vertices of Pk and at least one edge of Gk−1. In the former
case, the reference edge of the newly-formed bounded face, say f , is defined as
follows. If f contains at least one green edge that belongs to Gk−1, then the
reference edge of f is the leftmost such edge (see Fig. 1a and c). Otherwise, the
reference edge of f is the leftmost blue edge of f that belongs to Gk−1 (see Fig. 1b
and d). In the case where Pk is a singleton of degree 4 in Gk, the reference edge

On the Total Number of Bends for Planar Octilinear Drawings 155

Fig. 1. Illustration of the reference edge (bold drawn) in the case of: (a-b) a chain,
(c-d) a singleton of degree 2 in Gk and (e) a singleton of degree 3 in Gk.

of each of the newly formed faces is the edge of Gk−1 that is incident to the
endpoint of the red edge involved.

As already stated, we will construct Γ (G) in an incremental manner by plac-
ing one partition of Π at a time. For the base, we momentarily neglect edge
(v1, v2) of the first partition P0 of Π and we start by placing the second one, say
a chain P1 = {v3, . . . , v|P1|+2}, on a horizontal line from left to right. Since by
definition of Π, v3 and v|P1|+2 are adjacent to the two vertices, v1 and v2, of the
first partition P0, we place v1 to the left of v3 and v2 to the right of v|P1|+2. So,
they form a single chain where all edges are drawn using horizontal line segments
that are attached to the east and west port at their endpoints. The case where
P1 is a singleton is analogous. Assume now that we have already constructed a
drawing for Gk−1 which has the following invariant properties:

IP-1: The number of edges of Gk−1 with a bend is at most equal to the number
of reference edges in Gk−1.

IP-2: The north-west, north and north-east (south-west, south and south-east)
ports of each vertex are occupied by incoming (outgoing) blue and green
edges and by outgoing (incoming) red edges1.

IP-3: If a horizontal port of a vertex is occupied, then it is occupied either by
an edge with a bend (to support vertical cuts) or by an edge of a chain.

IP-4: A red edge is not on the outerface of Gk−1.
IP-5: A blue (green, resp.) edge of Gk−1 is never incident to the north-west

(north-east, resp.) port of a vertex of Gk−1.
IP-6: From each reference edge on the outerface of Gk−1 one can devise a vertical

cut through the drawing of Gk−1.

The base of our algorithm conforms with the aforementioned invariant proper-
ties. Next, we consider the three main cases.

C.1: Pk = {vi} is a singleton of degree 2 in Gk. Let v� and vr be the leftmost and
rightmost neighbors of vi in Gk−1. We claim that the north-east port of v�

and the north-west port of vr cannot be simultaneously occupied. Assume
to the contrary that the claim does not hold and denote by v� � vr the
path from v� to vr at the outerface of Gk−1 (neglecting the direction of

1 Note, however, that not all of them can be simultaneously be occupied due to the
degree restriction.

156 M.A. Bekos et al.

the edges). By IP-5, v� � vr starts as blue from the north-east port of v�

and ends as green at the north-west port of vr. So, inbetween there is a
vertex of the path v� � vr which has a neighbor in Pj for some j ≥ k;
a contradiction to the degree of vi. W.l.o.g. assume that the north-east
port of v� is unoccupied. If (vi, v�) is the reference edge of a face, then we
draw (vi, v�) as a horizontal-diagonal combination from the west port of
vi towards the north-east port of v�. Otherwise, (vi, v�) is drawn bend-less
from the south-west port of vi towards the north-east port of v�. To draw
the edge (vi, vr), again we distinguish two cases. If the north-west port at
vr is unoccupied, then (vi, vr) will use this port at vr. Otherwise, (vi, vr)
will use the north port at vr. In addition, if (vi, vr) is the reference edge of a
face, then (vi, vr) will use the east port at vi. Otherwise, the south-east port
at vi. The port assignment described above conforms to IP-2–5. Clearly,
IP-1 also holds. IP-6 holds because the newly introduced edges that are
reference edges have a horizontal segment, which inductively implies that
vertical cuts through them are possible.

C.2: Pk = {vi} is a singleton of degree 3 in Gk. This is the most involved case.
However, due to space constraints we give the details in [3].

C.3: Pk = {vi, . . . vi+j}; j ≥ 1 is a chain. This case is similar to case C.1, as Pk

has exactly two neighbors in Gk−1, which we denote by v� and vr. The edges
between vi, . . . , vi+j will be drawn as horizontal segments connecting the
west and east ports of the respective vertices. Edges (vi, v�) and (vi+j , vr)
are drawn based on the rules of the corresponding case of a singleton with
two neighbors in Gk−1. The port assignment still conforms to IP-2–IP-5.
IP-1 and IP-6 hold, since all edges of the chain are horizontal.

Note that the coordinates of the newly introduced vertices are determined
by the shape of the edges connecting them to Gk−1. If there is not enough space
between v� and vr to accommodate the new vertices, IP-6 allows us to stretch
the drawing horizontally using the reference edge of the newly formed face.

If vn is of degree 3, we cope with the last partition Pm = {vn} as being an
ordinary singleton. Otherwise (i.e., vn is of degree 4), we momentarily ignore
(vn, v1) and proceed to draw the remaining edges incident to vn. Edge (vn, v1)
can be drawn afterwards using two bends. Since by construction v1 and v2 are
horizontally aligned, we can draw the edge (v1, v2) with a single bend, emanating
from the south-east port of v1 towards the south-west port of v2.

Theorem 1. Let G be a triconnected 4-planar graph with n vertices. A planar
octilinear drawing Γ (G) with at most n+5 bends can be computed in O(n) time.

Proof. By IP-1, all bends of Γ (G) are in correspondence with the reference edges
of G, except for the bends of (v1, v2) and (vn, v1). Since the number of reference
edges is at most n + 2 and the edges (v1, v2) and (vn, v1) require 3 additional
bends, the total number of bends of Γ (G) does not exceed n + 5. The linear
running time follows by adopting the shifting method of Kant [13] to compute
the actual coordinates of the vertices of G. 	

On the Total Number of Bends for Planar Octilinear Drawings 157

3.2 Triconnected 5-Planar Graphs

Our algorithm for triconnected 5-planar graphs is an extension of an algorithm
of Bekos et al. [2], which computes for a given triconnected 5-planar graph G on
n vertices a planar octilinear drawing Γ (G) of G with at most one bend per edge.
Since G cannot have more than 5n/2 edges, it follows that the total number of
bends of Γ (G) is at most 5n/2. However, before we proceed with the description
of our extension, we first provide some insights into this algorithm, which is
based on a canonical order Π of G. Central are IP-2 and IP-4 of the previous
section and the so-called stretchability invariant, according to which all edges
on the outerface of the drawing constructed at some step of the canonical order
have a horizontal segment and therefore one can devise corresponding vertical
cuts to horizontally stretch the drawing. We claim that we can appropriately
modify this algorithm, so that all red edges of Π are bend-less.

Since we seek to draw all red edges of Π bend-less, our modification is limited
to singletons. So, let Pk = {vi} be a singleton of Π. The degree restriction implies
that vi has at most two incoming red edges (we also assume that Pk is not the
last partition of Π, that is k �= m). We first consider the case where vi has
exactly one incoming red edge, say e = (vj , vi), with j < i. By construction, e
must be attached to one of the northern ports of vj (that is, north-west, north or
north-east). On the other hand, e can be attached to any of the southern ports
of vi, as e is its only incoming red edge. This guarantees that e can be drawn
bend-less. Due to space constraints, the more involved case, according to which
vi has exactly two incoming red edges, is discussed in [3].

Theorem 2. Let G be a triconnected 5-planar graph with n vertices. A planar
octilinear drawing Γ (G) with at most 2n−2 bends can be computed in O(n) time.

Proof. The only edges of Γ (G) that have a bend are the blue and the green ones
and possibly the third incoming red edge of vertex vn of the last partition Pm

of Π. Hence, 2n − 2 at most. The running time remains linear since the shifting
technique can still be applied. 	

3.3 Triconnected 6-Planar Graphs

We present an algorithm that based on a canonical order Π = {P0, . . . , Pm} of
a given triconnected 6-planar graph G results in a drawing Γ (G) of G, in which
each edge has at most two bends. So, in total Γ (G) has 6n − 12 bends. Then,
we appropriately adjust Γ (G) to reduce the total number of bends.

Algorithm 1 describes rules R1 - R6 to assign the edges to the ports of the
corresponding vertices. It is not difficult to see that all port combinations implied
by these rules can be realized with at most two bends, so that all edges have
a horizontal segment (which makes the drawing horizontally stretchable): (i) a
blue edge emanates from the west or south-west port of a vertex (by rule R4)
and leads to one of the south-east, east, north-east, north or north-west ports of
its other endvertex (by rule R1); see Fig. 2g and h, (ii) a green edge emanates

158 M.A. Bekos et al.

Algorithm 1. PortAssignment(v)
input : A vertex v of a triconnected 6-planar graph.
output: The port assignment of the edges around v.

R1: The incoming blue edges of v occupy consecutive ports in counterclockwise
order around v starting from:

a. the south-east port of v, if indegb(v) + outdegr(v) = 5; see Figure 2a.
b. the east port of v, if indegb(v) + outdegr(v) = 4; see Figure 2b
c. the east port of v, if outdegg(v)=0 and (a),(b) do not hold; see Figure 2c
d. the north-east port of v, otherwise; see Figure 2d

R2: The outgoing red edge occupies the counterclockwise next free port, if v
has at least one incoming blue edge. Otherwise, the north-east port of v.

R3: The incoming green edges of v occupy consecutive ports in clockwise order
around v starting from:

a. the west port of v, if indegg(v)+outdegr(v)+indegb(v) ≥ 4; see Figure 2e
b. the north-west port of v, otherwise; see Figure 2f

R4: The outgoing blue edge of v occupies the west port of v, if it is free;
otherwise, the south-west port of v.

R5: The outgoing green edge of v occupies the east port of v, if it is free;
otherwise, the south-east port of v.

R6: The incoming red edges of v occupy consecutively counterclockwisel the
south-west, south and south-east ports of v starting from the first available.

from the east or south-east port of a vertex (by rule R5) and leads to one of the
west, north-west, north or north-east ports of its other endvertex (by rule R3);
see Fig. 2i and j, (iii) a red edge emanates from one of the north-west, north,
north-east ports of a vertex (by rule R2) and leads to one of the south-west,
south, south-east ports of its other endvertex (by rule R6); see Fig. 2k.

Fig. 2. (a)-(f) Illustration of the port assignment computed by Algorithm 1. (g)-(k)
Different segment combinations with at most two bends (horizontal ones are drawn
dotted)

On the Total Number of Bends for Planar Octilinear Drawings 159

Fig. 3. Red edges can be redrawn with one bend (in boxes we show their initial shapes)

The shape of each edge is completely determined by the aforementioned rules.
To compute the actual drawing Γ (G) of G, we follow an incremental approach
according to which one partition (that is, a singleton or a chain) of Π is placed
at a time, similar to Kant’s approach [12] and the 4- or 5-planar case. Each edge
is drawn based on its shape, while the horizontal stretchability ensures that
potential crossings can always be eliminated. Note additionally that we adopt
the leftist canonical order [1].

We reduce the total number of bends in two steps. In the first step, we show
that all red edges can be drawn with at most one bend each. Recall that a red
edge emanates from one of the north-west, north, north-east ports of a vertex
and leads to one of the south-west, south, south-east ports of its other-endvertex.
So, in order to prove that all red edges can be drawn with at most one bend
each, we have to consider in total nine cases, which are illustrated in Fig. 3. It is
not difficult to see that in each of these cases, the red edge can be drawn with
at most one bend. Note that the absence of horizontal segments at the red edges
does not affect the stretchability of Γ (G), since each face of Γ (G) has at most
two such edges (which both “point upward” at a common vertex). Since a red
edge cannot be incident to the outerface of any intermediate drawing constructed
during the incremental construction of Γ (G), it follows that it is always possible
to use only horizontal segments (of blue and green edges) to define vertical cuts,
thus, avoiding all red edges.

The second step of our bend reduction is more involved. We seek to “save”
two bends per vertex2, which yields a reduction by roughly 2n bends in total.
Consider an arbitrary vertex u ∈ V of G. Our goal is to prove that there always
exist two edges incident to u, which can be drawn with only one bend each. By
rules R3 and R4, it follows that the west port of vertex u is always occupied,
either by an incoming green edge (by rule R3) or by a blue outgoing edge (by
rule R4; u �= v1 ∈ P0). Analogously, the east port of vertex u is always occupied;
either by a blue incoming edge (by rules R1 and R2) or by an outgoing green
edge (by rule R5). Let (u, v) ∈ E be the edge attached at the west port of u
(symmetrically we cope with the edge at the east port of u). If edge (u, v) is
attached to a non-horizontal port at v, then (u, v) is by construction drawn with
one bend (regardless of its color; see Fig. 2g and i) and our claim follows.

2 Except for vertex v1 of the first partition P0 of Π, which has no outgoing blue edge.

160 M.A. Bekos et al.

Fig. 4. Aligning vertices u and v.

It remains to consider the case where (u, v) is attached to a horizontal port
at v. Assume first that (u, v) is blue (we discuss the case where (u, v) is green
later). By Algorithm 1, it follows that (u, v) is either the first blue incoming
edge attached at v (by rules R1b and R1c) or the second one (by rule R1a).
We consider each of these cases separately. In rule R1c, observe that (u, v) is
part of a chain (because outdegg(u) = 0). Hence, when placing this chain in the
canonical order, we will place u directly to the right of v. This implies that (u, v)
will be drawn as a horizontal line segment (that is, bend-less). Similarly, we cope
with rule R1b, when additionally outdegg(u) = 0. So, there are still two cases
to consider: rule R1a and rule R1b, when additionally outdegg(u) = 1; see the
left part of Fig. 4. In both cases, the current degree of vertex u is 3 and vertex
v (and other vertices that are potentially horizontally-aligned with v) must be
shifted diagonally up, when u is placed based on the canonical order, such that
(u, v) is drawn as a horizontal line segment (that is, bend-less; see the right part
of Fig. 4). Note that when v is shifted up, vertex v and all vertices that are
potentially horizontally-aligned with v are also of degree 3, since otherwise one
of these vertices would not have a neighbor in some later partition of Π, which
contradicts the definition of Π.

We complete our case analysis with the case where (u, v) is green. By rule
R3a, it follows that (u, v) is the first green incoming edge attached at u. In
addition, when (u, v) is placed based on the canonical order, there is no red
outgoing edge attached at u. The leftist canonical order also ensures that there
is no blue incoming edge at u drawn before (u, v). Hence, u is of degree two, when
edge (u, v) is placed, which guarantees that v can be shifted up (potentially with
other vertices that are horizontally-aligned with u), such that (u, v) is drawn as
a horizontal line segment. We summarize our approach in the following theorem.

Theorem 3. Let G be a triconnected 6-planar graph with n vertices. A planar
octilinear drawing Γ (G) with at most 3n−8 bends can be computed in O(n2) time.

Proof. Before the two bend-reduction steps, Γ (G) contains at most 6n − 12
bends. In the first reduction step, all red edges are drawn with one bend. Hence,
Γ (G) contains at most 5n − 9 bends. In the second reduction step, we “save”
two bends per vertex (except for v1 ∈ P0), which yields a reduction by 2n − 1
bends. So, in total Γ (G) contains at most 3n−8 bends. On the negative side, we
cannot keep the running time of our algorithm linear. The reason is the second
reduction step, which yields changes in the y-coordinates of the vertices. In the
worst case, however, quadratic time suffices. 	

On the Total Number of Bends for Planar Octilinear Drawings 161

Note that there exist 6-planar graphs that do not admit planar octilinear draw-
ings with at most one bend per edge [2]. Theorem 3 implies that on average one
bend per edge suffices.

4 Lower Bounds

4.1 4-Planar Graphs

We start our study with the case of 4-planar graphs. Our main observation is that
if a 3-cycle C3 of a graph has at least two vertices, with at least one neighbor in
the interior of C3 each, then at least one edge of C3 must contain a bend, since the
sum of the interior angles at the corners of C3 exceeds 180◦. In fact, elementary
geometry implies that a k-cycle, say Ck with k ≥ 3, whose vertices have σ ≥ 0
neighbors in the interior of Ck requires (at least) max{0, �(σ−3k+8)/3�} bends.
Therefore, a bend is necessary. Now, refer to the 4-planar graph of Fig. 5a, which
contains n/3 nested triangles, where n is the number of its vertices. It follows
that this particular graph requires at least n/3 − 1 bends in total.

4.2 5- and 6-Planar Graphs

For these classes of graphs, we follow an approach inspired by Tamassia’s
min-cost flow formulation [17] for computing bend-minimum representations of
embedded planar graphs of bounded degree. Since it is rather difficult to imple-
ment this algorithm in the case where the underlying drawing model is not
the orthogonal model, we developed an ILP instead. Recall that a representa-
tion describes the “shape” of a drawing without specifying its exact geometry.
This is enough to determine a lower bound on the number of bends, even if a
bend-optimal octilinear representation may not be realizable by a corresponding
(planar) octilinear drawing.

In our formulation, variable α(u, v) · 45◦ corresponds to the angle formed
at vertex u by edge (u, v) and its cyclic predecessor around vertex u. Hence,
1 ≤ α(u, v) ≤ 8. Since the sum of the angles around a vertex is 360◦, it follows
that

∑
v∈N(u) a(u, v) = 8. Given an edge e = (u, v), variables �45(u, v), �90(u, v)

and �135(u, v) correspond to the number of left turns at 45◦, 90◦ and 135◦ when
moving along (u, v) from vertex u towards vertex v. Similarly, variables r45(u, v),
r90(u, v) and r135(u, v) are defined for right turns. All aforementioned variables
are integer lower-bounded by zero. For a face f , we assume that its edges are
directed according to the clockwise traversal of f . This implies that each (undi-
rected) edge of the graph appears twice in our formulation. For reasons of sym-
metry, we require �45(u, v) = r45(v, u), �90(u, v) = r90(v, u) and �135(u, v) =
r135(v, u). Since the sum of the angles formed at the vertices and at the bends of a
bounded face f equals to 180◦ ·(p(f)−2), where p(f) denotes the total number of
such angles, it follows that

∑
(u,v)∈E(f) α(u, v)+(�45(u, v)+�90(u, v)+�135(u, v))−

(r45(u, v)+r90(u, v)+r135(u, v)) = 4a(f)−8, where a(f) denotes the total number
of vertex angles in f , and, E(f) the directed arcs of f in its clockwise traversal.

162 M.A. Bekos et al.

Fig. 5. Planar graphs of different degrees that require (a) n/3 − 1, (b) 2n/3 − 2 and
(c) 4n/3 − 6 bends.

If f is unbounded, the respective sum is increased by 16. Of course, the objec-
tive is to minimize the total number of bends over all edges, or, equivalently
min

∑
(u,v)∈E �45(u, v) + �90(u, v) + �135(u, v) + r45(u, v) + r90(u, v) + r135(u, v).

Now, consider the 5-planar graph of Fig. 5b and observe that each “layer” of
this graph consist of six vertices that form an octahedron (solid-drawn), while
octahedrons of consecutive layers are connected with three edges (dotted-drawn).
Using our ILP formulation, we prove that each octahedron subgraph requires at
least 4 bends, when drawn in the octilinear model (except for the innermost one
for which we can guarantee only two bends). This implies that 2n/3 − 2 bends
are required in total to draw the graph of Fig. 5b. For the 6-planar case, we
apply our ILP approach to a similar graph consisting of nested octahedrons that
are connected by six edges each; see Fig. 5c. This leads to a better lower bound
of 4n/3 − 6 bends, as each octahedron except for the innermost one requires 8
bends. Summarizing we have the following theorem.

Theorem 4. There exists a class Gn,k of triconnected embedded k-planar
graphs, with 4 ≤ k ≤ 6, whose octilinear drawings require at least: (i) n/3 − 1
bends, if k = 4, (ii) 2n/3 − 2 bends, if k = 5 and (iii) 4n/3 − 6 bends, if k = 6.

5 Conclusions

In this paper, we studied bounds on the total number of bends of octilinear
drawings of triconnected planar graphs. We showed how one can adjust an algo-
rithm of Keszegh et al. [14] to derive an upper bound of 4n−10 bends for general
8-planar graphs. Then, we improved this general bound and previously-known
ones for the classes of triconnected 4-, 5- and 6-planar graphs. For these classes
of graphs, we also presented corresponding lower bounds.

We mention two major open problems in this context. The first one is to
extend our results to biconnected and simply connected graphs and to fur-
ther tighten the bounds. Since our drawing algorithms might require super-
polynomial area (cf. arguments from [2]), the second problem is to study
trade-offs between the total number of bends and the required area.

On the Total Number of Bends for Planar Octilinear Drawings 163

References

1. Badent, M., Brandes, U., Cornelsen, S.: More canonical ordering. J. Graph Algo-
rithms Appl. 15(1), 97–126 (2011)

2. Bekos, M.A., Gronemann, M., Kaufmann, M., Krug, R.: Planar octilinear drawings
with one bend per edge. J. Graph Algorithms Appl. 19(2), 657–680 (2015)

3. Bekos, M.A., Kaufmann, M., Krug, R.: On the total number of bends for planar
octilinear drawings. Arxiv report arxiv.org/abs/1512.04866 (2014)

4. Biedl, T.C.: New lower bounds for orthogonal graph drawings. In: Brandenburg,
F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 28–39. Springer, Heidelberg (1996)

5. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.
Geom. 9(3), 159–180 (1998)

6. Bodlaender, H.L., Tel, G.: A note on rectilinearity and angular resolution. J. Graph
Algorithms Appl. 8(1), 89–94 (2004)

7. De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

8. Di Giacomo, E., Liotta, G., Montecchiani, F.: The Planar Slope Number of Sub-
cubic Graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392,
pp. 132–143. Springer, Heidelberg (2014)

9. Felsner, S.: Schnyder woods or how to draw a planar graph? In: Geomet-
ric Graphs and Arrangements, pp. 17–42. Advanced Lectures in Mathematics,
Vieweg/Teubner Verlag (2004)

10. Fößmeier, U., Heß, C., Kaufmann, M.: On improving orthogonal drawings: the
4M-algorithm. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 125–137.
Springer, Heidelberg (1999)

11. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

12. Kant, G.: Drawing planar graphs using the lmc-ordering. In: FOCS, pp. 101–110.
IEEE (1992)

13. Kant, G.: Hexagonal grid drawings. In: Mayr, E.W. (ed.) WG 1992. LNCS, vol.
657, pp. 263–276. Springer, Heidelberg (1993)

14. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree
with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)

15. Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of
planar graphs in the two-dimensional grid. Discrete Appl. Math. 81(1–3), 69–91
(1998)

16. Nöllenburg, M.: Automated drawings of metro maps. Technical Report 2005–25,
Fakultät für Informatik, Universität Karlsruhe (2005)

17. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

18. Tamassia, R., Tollis, I.G., Vitter, J.S.: Lower bounds for planar orthogonal draw-
ings of graphs. Inf. Process. Lett. 39(1), 35–40 (1991)

http://arxiv.org/abs/org/abs/1512.04866

Bidirectional Variable-Order de Bruijn Graphs

Djamal Belazzougui1, Travis Gagie2(B), Veli Mäkinen2, Marco Previtali3,
and Simon J. Puglisi2

1 Center for Research on Technical and Scientific Information (CERIST),
Algiers, Algeria

2 Department of Computer Science, Helsinki Institute for Information Technology,
University of Helsinki, Helsinki, Finland

travis.gagie@gmail.com
3 Department of Computer Science, University of Milano-Bicocca, Milan, Italy

Abstract. Implementing de Bruijn graphs compactly is an important
problem because of their role in genome assembly. There are currently
two main approaches, one using Bloom filters and the other using a
kind of Burrows-Wheeler Transform on the edge labels of the graph.
The second representation is more elegant and can even handle many
graph-orders at once, but it does not cleanly support traversing edges
backwards or inserting new nodes or edges. In this paper we resolve the
first of these issues and partially address the second.

1 Introduction

De Bruijn graphs are central to state-of-the-art methods for genome assembly
[1,6,13,20,23], which is in turn fundamental to bioinformatics and many modern
biological and medical projects [10,18,24,25]. The assembly process builds long
contiguous DNA sequences, called contigs, from a set of much shorter DNA
fragments, called reads. All de-Bruijn-graph-based assemblers follow the same
general outline: extract the (K + 1)-mers from the reads, for some value K;
construct the de Bruijn graph for the (K +1)-mers; simplify the graph; and take
contigs to be simple paths in the graph. The value of K can be, and is often
required to be, specified by the user. Construction and navigation of the graph
is a space and time bottleneck in practice and the main hurdle for assembling
large genomes, so space-efficient representations of de Bruijn graphs have been
the focus of intense research in recent years.

Simpson et al. [23] made one of the first attempts to reduce the space required
by the graph via the use of a distributed hash table. For a set of reads from
a human genome (HapMap: NA18507), this method requires 336 GB to store
the graph. Conway and Bromage [9] reduced space requirements to 32 GB for
the same data set by using a sparse bitvector (see [17]) to represent the edges

Supported by the Academy of Finland through grants 258308, 268324, and 284598,
and Italian MIUR PRIN 2010–2011 grant Automi e Linguaggi Formali: Aspetti
Matematici e Applicativi (code 2010LYA9RH). This work was done while the fourth
author was visiting the University of Helsinki.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 164–178, 2016.
DOI: 10.1007/978-3-662-49529-2 13

Bidirectional Variable-Order de Bruijn Graphs 165

(i.e. the (K+1)-mers). Efficient traversal of the graph was supported by rank and
select operations over the bitvectors. Minia, by Chikhi and Rizk [8], uses a Bloom
filter to store edges (with additional structures to avoid false positive edges that
would affect the assembly). They traverse the graph by generating all possible
outgoing edges1 at each node and testing their membership in the Bloom filter.
Using this approach, the graph was reduced to 5.7 GB on the same dataset.
Salikov et al. [21] recently used cascading Bloom filters to further reduce the
space requirements of Chikhi and Rizk’s approach. Other authors have also made
use of Bloom filters to implement de Bruijn graphs for metagenomic assembly [19]
and pan-genomics [11].

Bowe, Onodera, Sadakane and Shibuya [4] developed a different succinct de
Bruijn graph data structure based on the Burrows-Wheeler transform (BWT) [5].
We refer to this representation as BOSS, after the authors’ initials. On the
above mentioned data set the BOSS representation requires 2.5 GB. Boucher
et al. [3] have since shown how to augment the BOSS representation to allow
changing the order of the graph (denoted k ≤ K) during traversal, while adding
little space overhead to the original representation. Supporting variable-orders is
useful when non-uniform sampling of the reads leads to some parts of the graph
being sparser than others. Our results in this paper build on the BOSS and
variable-order BOSS representations, and so we describe them briefly in Sect. 2
below. More recently, Chikhi et al. [7] implemented the de Bruijn graph using
a combination of the BWT and minimizers. Their method uses 1.5 GB on the
same NA18507 data.

The BOSS representation is asymmetric in the sense that, when visiting a
node v, it takes much longer to follow the edge with a given label arriving at
v than it does to follow the edge with that label leaving v. As we describe in
Sect. 2.4, we can easily make the original BOSS representation bidirectional by
storing a second BWT; to make the variable-order BOSS representation bidirec-
tional in the same way, however, would require another BWT for each order. Our
first contribution is a space-efficient bidirectional variable-order BOSS represen-
tation. Although we admit to being motivated partly by aesthetics — symmetry
is beautiful — we also think that such a representation could be useful someday,
either for bioinformatics or for some other application.

For example, given a long string containing relatively few distinct K-mers,
we can build the BOSS representation of its de Bruijn graph and later, given
a pattern of length at most K, we can quickly determine whether the string
contains any occurrences of that pattern. Moreover, if we build a bidirectional
variable-order BOSS representation, then we should be able to use it to list all the
distinct substrings of length at most K that approximately match the pattern
(see [2] for a discussion of how to use a bidirectional BWT for approximate
pattern matching). We can even use the de Bruijn graph to compile a list of
candidate approximate matches of length more than K, which contains all the
approximate matches in the string and possibly some false positive matches

1 Note that there are at most four possible outgoing edges, corresponding to each
letter of the DNA alphabet {A, C, G, T}.

166 D. Belazzougui et al.

that are not contained in the string. Once we know all the distinct substrings
approximately matching the pattern (and possibly some false positives), we can
find all their occurrences in the string itself via exact pattern matching. At
least in theory, therefore, we should be able to use a bidirectional variable-order
BOSS representation to reduce approximate pattern matching to exact pattern
matching. We are currently investigating this possibility.

The BOSS representation also lacks support for adding new nodes and edges,
although this is possible with some representations based on Bloom filters. Our
second contribution is to augment the BOSS representation such that we can
both add and delete nodes and edges efficiently. It should be possible to adapt
our approach to add support for deletions to implementation based on Bloom
filters, but we leave this as future work. We make only the fixed-order BOSS
representation dynamic in this paper; in the full version we will also show how
to do the same for the variable-order representation. Our motivation for this
contribution is mainly to provide a representation with complete functional-
ity, without an immediate application. A dynamic bidirectional variable-order
BOSS representation could be useful, however, for the approximate-matching
problem discussed in the previous paragraph when the long string to be indexed
is dynamic.

The rest of this paper is laid out as follows: in Sect. 2 we review the definition
of de Bruijn graphs, the fixed- and variable-order BOSS representations and
the bidirectional BWT; in Sect. 3 we describe our bidirectional variable-order
BOSS representation; and in Sect. 4 we show how to make a fixed-order BOSS
representation dynamic.

2 Preliminaries

2.1 De Bruijn Graphs

In bioinformatics, a de Bruijn graph of order K over some alphabet is a directed
graph in which each node is labelled by a K-tuple from that alphabet, such that
if there is an edge between nodes u and v then u’s K-tuple can be changed into
v’s K-tuple by deleting the first character and appending a character. (Some
authors assume that, if it is possible to change u’s label into v’s label this way,
then the edge is always present.) As an aside, we note that such a graph is a
subgraph (induced, under the assumption just mentioned) of the de Bruijn graph
of order K as defined in combinatorics.

2.2 BOSS Representation

To construct the BOSS representation [4] of a Kth-order de Bruijn graph from
a set of (K +1)-mers, we first add enough dummy (K +1)-mers starting with $s
so that if αa is in the set, then some (K + 1)-mer ends with α (α a K-mer, a a
symbol). We also add enough dummy (K +1)-mers ending with $ that if bα is in
the set, with α containing no $ symbols, then some (K + 1)-mer starts with α.

Bidirectional Variable-Order de Bruijn Graphs 167

We then sort the set of (K +1)-mers into the right-to-left lexicographic order of
their first K symbols (with ties broken by the last symbol) to obtain a matrix.
If the ith through jth (K + 1)-mers start with α, then we say node [i, j] in the
graph has label α, with j − i + 1 outgoing edges labelled with the last symbols
of the ith through jth (K + 1)-mers. If there are n nodes in the graph, then
there are at most σn rows in the matrix, i.e., (K + 1)-mers. We store the last
column W of the matrix, which functions as a BWT of the edge labels. Nodes
correspond to the substrings of this BWT that contain the edge labels. We also
store a bitvector L with 1 s marking the each character in W that labels the last
outgoing edge of each node, and another bitvector marking how many incoming
edges each node has. Bowe et al. described a number of queries for traversing
the graph, all of which can be implemented in terms of the following three basic
queries, with at most an O(σ)-factor slowdown:

– forward(v, a) returns the node w reached from v by an edge labelled a, or
NULL if there is no such node;

– backward(v) lists the nodes u with an edge from u to v;
– lastchar(v) returns the last character of v’s label.

2.3 Variable-Order BOSS

In the BOSS representation, nodes correspond to the intervals of the edge-BWT.
Boucher et al. [3] augment the BOSS representation of the original graph, by
storing the length of the longest common suffix of each consecutive pair of nodes,
to support the following three queries:

– shorter(v, k) returns the node whose label is the last k characters of v’s label;
– longer(v, k) lists nodes whose labels have length k ≤ K and end with v’s

label;
– maxlen(v, a) returns some node in the original graph whose label ends with

v’s label, and that has an outgoing edge labelled a, or NULL if there is no
such node.

Together, these operations allow the order (k) of the de Bruijn graph to be
changed on the fly. The main addition to the BOSS representation is a wavelet
tree over the array L∗ storing the length of the longest suffix common to each
row in the BOSS matrix and the preceding row.

2.4 Bidirectional BWT

Given a text string T = t1, t2, . . . , tn, where each ti ∈ Σ, the suffix array of
T$ is an array A[1..n + 1] where A[1] = n + 1 and T [A[i]..n]$, for i > 1, is
the lexicographically i-th smallest suffix of T$, with $ interpreted as a unique
smallest character. A lexicographic range of suffixes is an interval in A. The
bidirectional Burrows-Wheeler transform (bidirectional BWT) [14,22] allows us
to move from a lexicographic range of text suffixes prefixed by a pattern string P
to the range cP and to the range Pc, for any character c ∈ Σ, without needing
an explicit suffix array to be available. In [2] an O(n log σ) bits data structure
was developed to support these operations in constant time.

168 D. Belazzougui et al.

3 Bidirectional BOSS

BOSS allows us to move backward in the graph, accurately using rank and select
on W and L (defined in Subsect. 2.2). This procedure has a major drawback,
which is that is we cannot read which is the label of the edge we are traversing
backward but can only read labels when we traverse edges forward.

A näıve yet inefficient solution would be to traverse k edges backward in
order to retrieve the character in the first position of the current k-mer. Note
that this way we shift the label of the current vertex until the first character
becomes the label of the outgoing edge of the reached vertex. This procedure
clearly requires O(k) for each incoming edge of the source node. Moreover, if the
current node has j incoming edges we should perform j × k backward steps in
order to find all the possible backward labels of those edges. Therefore, for an
alphabet of size σ this procedure would require O(σ × k).

For fixed-k BOSS we can avoid backtracking in the graph by storing the first
character of each k-mer, although this approach is not viable in variable-order
DBGs since it require storing the whole k-mers. Indeed, note that storing the
first character of the k-mers allows us to gather the backward label of an edge in
the graph of order k but we need to store the second character in order to gather
the backward label of an edge in the graph of order k − 1, the third character
for the graph of order k − 2, etc. We now introduce an elegant and efficient
approach to move backward and forward in BOSS, namely bidirectional BOSS
(biBOSS for short). This idea is loosely inspired by bidirectional BWT.

First, note that if we build the DBG of order k for a set of strings and
their reverse, we obtain two isomorphic graphs; we refer to the former as DBGf

k

and to the latter as DBGr
k. For each vertex vf

i with label li in DBGf
k there is

a vertex vr
i with label reverse(li) in DBGr

k and for each edge ef
h = (vf

i , vf
j)

labeled with σf = vf
j [k] in DBGf

k there is an edge er
h = (vr

j , vr
i) labeled with

σr = vr
i [k] = vf

i [1] in DBGr
k. Therefore, if we can maintain a link between the

nodes and the edges in the two graphs we can easily retrieve the forward and
backward labels simply by looking at ef

h and er
h.

Moreover, note that outgoing edges from vf
i in DBGf

k are edges incoming to
vr

i in DBGr
k and, conversely, edges outgoing from vr

i are incoming to vf
i . This

remark clearly points out that we can simulate a backward step in DBGf
k with

a forward step in DBGr
k without any need for further backtracking in neither

DBGf
k nor DBGr

k.
A biBOSS for a set of strings S is therefore a data structure composed by

two BOSSs. The first one, BOSSf , is the BOSS data structure for S whereas the
second one, BOSSr, is the BOSS data structure for Sr = {reverse(si) | si ∈ S}.
Each node vf

i in DBGf
k is defined in BOSSf as an interval If

i = [i, j] over W ,
L, and L∗ (W f , Lf , and L∗f from now on). (Recall the definition of L∗ from
Subsect. 2.3.) The last vector is needed only when we want to augment BOSS to
support variable order. Conversely, each node vr

i in DBGr
k is defined in BOSSr

as an interval Ir
i = [p, q] over W r, Lr, and L∗r.

Bidirectional Variable-Order de Bruijn Graphs 169

Therefore, in order to support forward and backward navigation of the DBG
we propose maintaining a pair of intervals (If

i , Ir
i), one to describe the vertex

vf
i (If

i) and the other to describe the vertex vr
i (Ir

i). From now on we will use
vf

i and vr
i to define vertices and intervals interchangeably.

Boucher et al. [3] described three main functions for a variable order BOSS,
namely shorter, longer, and maxlen in order to move upwards and downwards
in the order of the DBGs and to move forward. Obviously we want to support
the same set of functions so we will provide the bidirectional versions of the
first two. We will not define maxlen for biBOSS since it is related to a specific
direction of the graph. The examples in Figs. 1, 2 and 3 show a biBOSS graphical
representation for a DBG of order 5. We will use this example to show the
execution of the new procedures graphically.

Let vf
i and vr

i be two vertices of order k labeled by li and reverse(li) and let
K be the maximum order of the variable order BOSS. We define bi-shorter as
bi-shorter(vf

i , vr
i) = (vf

j , vr
j) such that the labels of vf

j and vr
j are respectively

li[2 : k] and reverse(li[2 : k]) = reverse(li)[1 : k −1]. This function returns the
node in DBGf

k−1 which label is the last k − 1 character of li and its linked node
in DBGr

k−1. Note that we can swap the two vertices in order to move downward
between the orders of DBGr

∗.
Computing vf

j is straightforward since we only need to compute shorter

(vf
i , k − 1) as defined in Sect. 2.3. This procedure requires O(log K) time [3].
Computing vr

j is more challenging since we need to remove the last char-
acter of reverse(li). Nevertheless we can easily find a node in the graph with
maximum order K that ends with reverse(li)[1 : k − 1] selecting any posi-
tion in the interval vr

i and applying backward as defined in Bowe et al. [4] and
then moving downwards in the order of the graph. More formally we can say
that vr

j = shorter(backward(maxlen(vr
i , ∗)), k − 1). This procedure requires

O(log K) time since we can compute maxlen and backward in constant time
and shorter in O(log K).

The example in Fig. 1 shows the computation of bi-shorter on the pair of
linked vertices vf

i = AAGTA and vr
i = ATGAA. The vertex vf

j = AGTA is
computed by finding the L∗f -interval of order 4 that contains vf

i . In order to
compute vr

j we first gather any node in the original graph contained in vr
i (in this

case the same node since vr
i has maximum order 5) and, by applying backward to

it, obtain a node in which the reversed label of vf
j is a suffix (CATGA). Finally

we move downwards in the order of BOSSr obtaining the vertex vr
j = ATGA.

Let σk ∈ Σ be a character in the alphabet; we define bi-longer as

bi-longer(vf
i , vr

i , σk) = (vf
j , vr

j)

such that the labels of vf
j and vr

j are respectively σk · li and reverse(li) · σk,
thus the two computed vertices have reversed labels. Note that bi-longer is
slightly different than its corresponding function in variable order BOSS, namely
longer. Indeed, applying the latter function (longer) to a vertex v ∈ DBGf

i in
order to gather the nodes of order j, returns a list of vertices V ∈ DBGf

j such

170 D. Belazzougui et al.

Fig. 1. A graphical example of bi-shorter.

that each vertex vh ∈ V has a label that ends with the label of v. bi-longer,
instead, allow us to select the character we want to concatenate to the labels.
Nevertheless, gathering all the vertices from bi-longer to simulate longer is
straightforward.

Clearly, we cannot directly compute vf
j using longer. Our goal is therefore

to provide a method that allows us to select the correct vertex from the list
produced by longer, i.e. the one labeled with σk · li. First, note that if V is the
list returned by longer(vf

i , k+1) then the labels of the vertices in V end with li
and have length equal to |li| + 1. Moreover, the vertices in V are sorted by RLO
(reverse lexicographic order) and for each vertex vh in V the first character of
its label is in the interval vr

i . Indeed, since vh is a backward extension of vf
i its

first character is a label of an edge outgoing from vr
i . This remark hints that we

can analyze vr
i in order to correctly label the vertices in V . It is easy to prove

that |V | is equal to the cardinality of the set of the distinct characters in vr
i and

since the elements of V are sorted we can easily link each vertex with its first
character and select the vertices that starts with σk (if it exists).

Computing vr
j is straightforward, we need only to follow an edge labeled by σk

(if it exists) and then find the vertex of order k + 1. More formally, if t is the car-
dinality of the set {c | c ∈ vr

i ∩ c < σk}�=, vf
j and vr

j can be computed respectively
as longer(vf

i , k + 1)[t + 1] and shorter(forward(maxlen(vr
i , σk)), k + 1).

This procedure requires O(σ log σ + |V | log K) time since computing t
requires us to compute the rank values for each character in the alphabet at
the beginning and at the end of the interval of vr

i (O(σ log σ)), longer takes
O(|V | log K), forward takes constant time, maxlen takes O(log σ), shorter

Bidirectional Variable-Order de Bruijn Graphs 171

Fig. 2. A graphical example of bi-longer.

takes O(log K), and selecting an element from a list takes constant time. When
σ = O(1), therefore, bi-longer takes O(log K) time.

The example in Fig. 2 shows the computation of longer on the pair of linked
vertices vf

i = TA and vr
i = AT with σk = T . The interval vf

i is first split
into the 3 possible vertices of order 3 using L∗f . By analyzing vr

i we find that
the characters at the beginning of each 3-mer are respectively $, G, and T . We
therefore select the third interval since $ < G < T . In order to compute vr

j we
first select an edge in vr

i labeled with T (the one outgoing from CACAT) and
follow it, obtaining a vertex in the graph of maximum order 5 that has the label
of vr

j as suffix (ACATT). As a last step we move upward in the order of the
graph using the information stored in L∗r and obtaining the correct vertex in
BOSSr (ATT , represented by the same interval).

Until now we have described how we can move between the different orders
described by the variable order BOSS maintaining the linking between the nodes.
We will now show how to move forward in either of the two graphs and maintain
the link with the vertex in the other one with reversed label. Note that this
actually means we move backward in one of the two graphs by selecting the
correct graph in which to perform the forward step.

Let σk be a character in the alphabet; we define FwdBwd(vf
i , vr

i , σk) =
(vf

j , vr
j) such that the labels of vf

j and vr
j are respectively li[2 : k] · σk and

σk · reverse(li)[1 : k − 1] = reverse(li[2 : k] · σk).
Computing vf

j is straightforward since we only need to compute forward

(vf
i , σk) as defined in Sect. 2.3. This step requires O(log K).
Computing vr

j is mostly a combination of the previous two functions. Indeed,
if we consider the labels of vr

i (li) and vr
j (lj) we can note that, for some ch ∈ Σ,

172 D. Belazzougui et al.

li · ck = ch · lj , that is, in order to obtain vr
j we must remove the last character

of vr
i and concatenate ck at the beginning of the obtained node. This two-step

description clearly highlights the connections with bi-shorter (delete the last
character) and bi-longer (concatenate a character at the beginning).

Our proposed method is as follows. First we compute the interval for
reverse(li[2 : k]) by applying backward to vr

i ; note that this step produces
a node (vr

h) in DBGr
k−1 which label is a suffix of the label of vr

j . At this point
it is easy to see that we can apply longer to vr

h in order to find the list of ver-
tices V that share the label of vr

h as suffix; clearly vr
j will be in V by definition.

Selecting the correct vertex can be done similarly as in bi-longer, the ver-
tices are sorted by RLO and we can access the different characters by analyzing
shorter(vf

i , k − 1).
More formally, if t is the cardinality of the set |{c | c ∈ shorter(vf

i ,

k − 1) ∩ c < σk}�=|, vf
j and vr

j can be computed respectively as forward(vf
i , σk)

and longer(shorter(backward(maxlen(vr
i , ∗)), k − 1), k + 1)[t].

This procedure requires O(σ log σ + |V | log K) time where |V | ≤ σ is the
number of nodes returned by longer. Computing i requires us to compute
shorter (O(log K)) and perform the same rank operation as for bi-longer

(O(σ log σ)), computing vf
j requires O(log K), and computing vr

j requires
O(|V | log K) since maxlen and backward can be computed in constant time,
shorter requires O(log K), and longer requires O(|V | log K). When σ = O(1),
therefore, fwdbwd takes O(log K) time.

The example in Fig. 3 shows the computation of FwdBwd on the pair of linked
vertices vf

i = GTA and vr
i = ATG with σk = G. First we gather the index t,

that we will use in the last step, by applying shorter to vf
i (obtaining the vertex

TA) and counting the number of distinct character smaller than σk. We then
compute vf

j by selecting an edge in vf
i labeled with σk and following it, obtaining

the vertex in the original graph labeled with AGTAG. We then apply shorter in
order to gather the vertex vf

j of order 3. In order to compute vr
j we first select any

edge in vr
i and traverse it backward obtaining a vertex with suffix AT . We then

compute vr
j by applying shorter (order k−1) and longer (order k) and selecting

the t-th interval computed. This example clearly shows why we cannot directly
compute shorter of order k. When we select a random edge in vr

i we cannot
directly access the k-mers so we may concatenate a character σh �= σk at the
beginning of the label of our vertex (in our example σh = C). We therefore need
to get rid of this character by moving downward between the orders obtaining
the node AT and then select the correct vertex by moving upward using the
information of the edges outgoing from its reverse (TA = shorter(vf

i , k − 1)).

Theorem 1. When σ = O(1), we can store a variable-order de Bruijn graph of
maximum order K in O(n log K) bits on top of the BOSS representation of the
order-K graph, where n is the number of nodes in the order-K graph, such that
incrementing or decrementing the order and forward or backward traversals take
O(log K) time.

Bidirectional Variable-Order de Bruijn Graphs 173

Fig. 3. A graphical example of FwdBwd.

4 Updating the Graph

Implementations based on Bloom filters can usually be made semi-dynamic
(insertions only) without much difficulty. We can easily make our data structure
dynamic by using dynamic sequences (see, e.g., [15]), but this would slow down
our queries even on stable parts of the graph by an almost logarithmic factor.2

In this section we show how we can achieve O(log2+ε m) time updates (deletes
and insertions) while retaining the same O(1) query time. Here m denotes the
total number of edges in the graph. For simplicity and due to space constraints,
here we describe only how to make a fixed-order BOSS representation dynamic;
we will show how to make our variable-order representation dynamic in the full
version of this paper.

The basic idea is to use a dynamic pointer-based structure to describe all
new added nodes. We call this data structure a buffer. The buffer will also

2 In the original (single-order) BOSS representation, one maintains a sequence of char-
acters from alphabet 2σ and a bitvecor. The sequence is built by sorting the k-mers
(nodes) in lexicographic order and for each k-mer storing the characters labelling its
outgoing edges. The bitvector is used to mark the beginning of the labels of each
k-mer in the sequence. We additionally use another bitvector to mark the beginning
of each block of edges outgoing from a group of nodes whose labels have the same
prefix of length k − 1. Queries, and insertions or deletions of nodes and edges can
then easily be done by rank and select queries and insertions, deletions in the two
bitvectors and the sequence (the reader can easily guess the details by looking at
the original BOSS representation [4]). The total time for an update or query will be
O(log m/ log log m).

174 D. Belazzougui et al.

store the edges that connect new nodes. The buffer capacity will be limited to
O(m/ log1+ε n) edges. Since the description of an edge or a node takes O(log m)
bits, the total space used by the data structure will be O(m/ logε m) bits. When-
ever the buffer reaches its capacity we rebuild the whole succinct data structure
in O(m log m/ log log m) time and in succinct space. The amortized time will
be O(log2+ε m) by edge or node. The process can be deamortized by standard
techniques, e.g., keeping two versions of the static representation, one under
construction and one on which queries are made. The construction of the first
representation is advanced by O(log1+ε m) steps each time we have an update.
We will store a dictionary for the new nodes stored in the buffer (henceforth the
new-node dictionary). This dictionary will be based on Karp-Rabin hashes which
are now computed on the full k-mers that label the nodes. This dictionary will
work with high probability and will allow us at insertion time to check whether
a node exists in the buffer or needs to be created.

It remains to show how to remove or add edges. For this, we will have to
distinguish three kinds of edges:

1. an edge that connects an old node with another old node, both present in the
static structure.

2. an edge that connects a new node with a new node, both present in the buffer.
3. an edge that connects a new node with an old node (one is present in the

static structure and the other in the buffer).

We will use some additional information and data structures which will allow us
to properly encode and handle insertions of the different kinds of edges.

In order to manage the first type of edge, we will use a hash-based dictionary
which will store a set of pairs (key, value), where key is an identifier of the edge
made of an integer describing one of the two ending nodes and the character
labelling the edge, and value is satellite information that stores the identifier of
the other ending node. Each edge will thus generate two entries in the dictionary,
one for each of the two ending nodes. This dictionary will thus store information
about old nodes, and the hash values used for building it are computed on the
identifiers of the nodes (the field key). The field value will either store a pointer
to the other node in the buffer, if the node is new, or an integer identifier if the
node is old. We call this dictionary the old-edge dictionary.

In order to manage the second kind of edges, we will store another dictionary
which will store a pair (key, value), where key is a pair of a pointer to a new
node and a character that labels an edge outgoing from that node. The field
value will an identifier of the other ending node, which will be either an integer
if the node is old or a pointer in the pointer-based structure if the node is new.
We will call this dictionary the new-edge dictionary.

Finally for each node in the graph, we will keep the locus of the longest
common prefix of the k−mer that labels the node with the suffix tree of the
static structure. This locus will be represented with a pair (STnodeID, depth),
where STnodeID is the identifier of a node in the suffix tree of the static dBG
representation and depth is the length of that longest common prefix. In order to
be able to maintain the locus for all nodes, we will store the suffix tree topology

Bidirectional Variable-Order de Bruijn Graphs 175

of the static dBG representation as well as the support for the operation which
provides the string depth of every node. While navigating the graph we will
always keep the Karp-Rabin hash of the k-mer that labels the current node,
even if the node exists in the static structure.

We are now ready to describe how updates and queries are supported. For
queries, supposing we are at an old node and want to check for the existence of
an outgoing edge labelled by character a. We first check whether that edge exists
in static structure using the usual algorithm. If that is not the case, we check for
the existence of the edge using the old-edge dictionary. If the edge exists in the
dictionary, we will get the identifier of the other ending node of the edge. That
edge might be in either the static structure or in the buffer. We then generate
the Karp-Rabin hash of that node from the Karp-Rabin hash of the current
node in constant time. We now describe the queries, whenever we are at a new
node (a node in the buffer). In this case, we query the old-edge dictionary, using
the pointer to the node in the buffer and the edge label. If the answer is positive,
we get the other ending node and compute the Karp-Rabin hash of that node
from the Karp-Rabin hash of current node in constant time.

In order to support insertions we will need to maintain the locus infor-
mation. In particular for that, suppose we are at a node N0 with locus
(STnodeID0, depth0) and have an edge labelled with character a starting from
that node and ending in a node N1 (the edge N1 might or might not exist yet).
We can compute the locus of node N1 denoted by (STnodeID1, depth1), by doing
binary search on ancestors of STnodeID in the suffix tree topology of the static
dBG, and each time checking whether the node has a Weiner link labelled with
a. The binary search will determine the deepest (closest) ancestor of STnodeID0
with Weiner link labelled by a. Then depth1 will be equal to the depth of that
ancestor incremented by one and STnodeID1 will be the target of the Weiner
link that starts from that ancestor and is labelled by a. The total time needed to
determine the locus will be O(log k · tancestor + tdepth), where tancestor and tdepth
are respectively the times needed to support the ancestor and depth operations
on the suffix tree topology of the static dBG. By setting tancestor to O(1) and
tdepth to O(log1+ε m) and by considering that k ≤ m, we deduce that the total
time for determining the locus is O(log1+ε m).

We now describe how updates are supported. We start with the description
of insertions and, specifically, with the case of an insertion of an edge that starts
from a node that exists in the static structure (evidently, we assume that the
edge exists neither in the static structure nor in the buffer). Supposing we are
at a node N0 and want to determine the ending node N1 of a new edge that
connects N0 to N1 and is labelled by a. Since the k-mer that corresponds to that
edge does not exist, we cannot directly use the navigation on the static structure
to determine N1 from N0; instead we will use the locus computation as described
above, starting from the suffix tree node of N1 and then check whether the locus
of N1 has depth k. If that is the case, then the edge exists in the static structure
and we insert it into the old-edge dictionary and we are done. Otherwise the
node does not exist in the static structure and we check whether it exists in the

176 D. Belazzougui et al.

buffer by querying the new-node dictionary. If the node is not found, we insert
it into the new-node dictionary. We finally insert the edge N0 to N1 into the
old-edge dictionary.

We now describe the case, where the edge starts at a node N0 that exists
in the buffer. This case is very similar to the previous one, the main difference
being that now the locus of the node will have a depth k′ < k. We can then
compute the locus N1 and as before, if the locus has depth k, then we know the
node N1 will be in the static structure. If it has depth less than k, then we query
the node new-edge dictionary, and if it does not exist, we create the node N1

and store it in the new-node dictionary. We finally insert the edge in the old-edge
dictionary and we are done.

Another case would be the one in which we are at a node in the static
structure and the node we want to go to does not exist in the static structure.
We can check for its existence in the buffer by querying the new-node dictionary.
This can be done since we can easily compute the Karp-Rabin hash of the new
node from the Karp-Rabin hash of the current node (which, by assumption, we
already have) and the edge label. If the node exists, then we just need to insert
an element in the old-edge dictionary and an element in the new-edge dictionary.

Supporting deletions is straightforward. If the edge is new (it did not exist
in the static structure), we can remove it by updating the three dictionaries. To
remove edges that exist into old structure, we will need to use another dictionary
which we call removed-edge dictionary and which will store the removed edges.
Consequently queries will have to be modified so that an edge in the old structure
is reported only if it is not found in the removed-edge dictionary.

Finally the reconstruction algorithm will use the dynamic algorithm of [16]
which uses space m log σ + o(m log σ) bits of space to construct the BWT in
time O(n log m/ log log m) and [12] to construct the suffix tree topology and the
support for string depth operation in time O(m logε m).

Theorem 2. We can maintain a dynamic dBG representation in O(m log σ)
bits of space with query time O(1) and expected update time O(log2+ε m) (with
no amortization) to insert or delete a node or edge, where m is the number of dis-
tinct k-mers. The data structure works with high probability (it has polynomially
small probability of failure).

We note that we can make the data structure error-free if we can afford to
check the label of a node, by following O(k) edges. We can thus remove the last
sentence of the theorem if k = O(log2+ε n).

References

1. Bankevich, A., et al.: SPAdes: a new genome assembly algorithm and its applica-
tions to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012)

2. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct rep-
resentations of the bidirectional burrows-wheeler transform. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 133–144. Springer, Heidelberg
(2013)

Bidirectional Variable-Order de Bruijn Graphs 177

3. Boucher, C., Bowe, A., Gagie, T., Puglisi, S.J., Sadakane, K.: Variable-order de
Bruijn graphs. In: Proceedings of the Data Compression Conference (DCC), pp.
383–392. IEEE (2015)

4. Bowe, A., Onodera, T., Sadakane, K., Shibuya, T.: Succinct de Bruijn graphs. In:
Raphael, B., Tang, J. (eds.) WABI 2012. LNCS, vol. 7534, pp. 225–235. Springer,
Heidelberg (2012)

5. Burrows, M., Wheeler, D.J.: A block sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994)

6. Butler, J., et al.: ALLPATHS: de novo assembly of whole-genome shotgun microre-
ads. Genome Res. 18(5), 810–820 (2008)

7. Chikhi, R., Limasset, A., Jackman, S., Simpson, J.T., Medvedev, P.: On the rep-
resentation of de Bruijn graphs. In: Sharan, R. (ed.) RECOMB 2014. LNCS, vol.
8394, pp. 35–55. Springer, Heidelberg (2014)

8. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based
on a Bloom filter. Algorithm. Mol. Biol. 8(22) (2012)

9. Conway, T.C., Bromage, A.J.: Succinct data structures for assembling large
genomes. Bioinformatics 27(4), 479–486 (2011)

10. Haussler, D., et al.: Genome 10K: a proposal to obtain whole-genome sequence for
10,000 vertebrate species. J. Hered. 100(6), 659–674 (2009)

11. Holley, G., Wittler, R., Stoye, J.: Bloom filter trie – a data structure for pan-
genome storage. In: Pop, M., Touzet, H. (eds.) WABI 2015. LNCS, vol. 9289, pp.
217–230. Springer, Heidelberg (2015)

12. Hon, W.-K., Sadakane, K.: Space-economical algorithms for finding maximal
unique matches. In: Apostolico, A., Takeda, M. (eds.) CPM 2002. LNCS, vol.
2373, pp. 144–152. Springer, Heidelberg (2002)

13. Li, R., et al.: De novo assembly of human genomes with massively parallel short
read sequencing. Genome Res. 20(2), 265–272 (2010)

14. Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., Wang, J.: SOAP2.
Bioinformatics 25(15), 1966–1967 (2009)

15. Munro, J.I., Nekrich, Y.: Compressed data structures for dynamic sequences. In:
Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 891–902. Springer,
Heidelberg (2015)

16. Navarro, G., Nekrich, Y.: Optimal dynamic sequence representations. SIAM J.
Comput. 43(5), 1781–1806 (2014)

17. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: ALENEX, pp. 60–70 (2007)

18. Ossowski, S., et al.: Sequencing of natural strains of Arabidopsis thaliana with
short reads. Genome Res. 18(12), 2024–2033 (2008)

19. Pell, J., Hintze, A., Canino-Koning, R., Howe, A., Tiedje, J.M., Brown, C.T.:
Scaling metagenome sequence assembly with probabilistic de Bruijn graphs. Proc.
Nat. Acad. Sci. 109(33), 13272–13277 (2012)

20. Peng, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L.: IDBA – a practical iterative de
Bruijn graph de novo assembler. In: Berger, B. (ed.) RECOMB 2010. LNCS, vol.
6044, pp. 426–440. Springer, Heidelberg (2010)

21. Salikhov, K., Sacomoto, G., Kucherov, G.: Using cascading Bloom filters to improve
the memory usage for de Bruijn graphs. Algorithms Mol. Biol. 9(2) (2014)

22. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with
wavelet trees. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
40–50. Springer, Heidelberg (2010)

178 D. Belazzougui et al.

23. Simpson, J.T., et al.: ABySS: a parallel assembler for short read sequence data.
Genome Res. 19(6), 1117–1123 (2009)

24. The 1000 Genomes Project Consortium. An integrated map of genetic variation
from 1,092 human genomes. Nature 491(7422), 56–65 (2012)

25. Turnbaugh, P.J., et al.: The human microbiome project: exploring the microbial
part of ourselves in a changing world. Nature 449(7164), 804–810 (2007)

The Read/Write Protocol Complex
Is Collapsible

Fernando Benavides1,2 and Sergio Rajsbaum1(B)

1 Instituto de Matemáticas, Universidad Nacional Autónoma de México,
Ciudad Universitaria, 04510 Mexico City, Mexico

rajsbaum@im.unam.mx
2 Departamento de Matemáticas y Estad́ıstica, Universidad de Nariño,

San Juan de Pasto, Colombia
fandresbenavides@gmail.com

Abstract. The celebrated asynchronous computability theorem provides
a characterization of the class of decision tasks that can be solved in a
wait-free manner by asynchronous processes that communicate by writ-
ing and taking atomic snapshots of a shared memory. Several variations
of the model have been proposed (immediate snapshots and iterated
immediate snapshots), all equivalent for wait-free solution of decision
tasks, in spite of the fact that the protocol complexes that arise from the
different models are structurally distinct. The topological and combina-
torial properties of these snapshot protocol complexes have been studied
in detail, providing explanations for why the asynchronous computabil-
ity theorem holds in all the models.

In reality concurrent systems do not provide processes with snapshot
operations. Instead, snapshots are implemented (by a wait-free protocol)
using operations that write and read individual shared memory locations.
Thus, read/write protocols are also computationally equivalent to snap-
shot protocols. However, the structure of the read/write protocol com-
plex has not been studied. In this paper we show that the read/write
iterated protocol complex is collapsible (and hence contractible). Fur-
thermore, we show that a distributed protocol that wait-free implements
atomic snapshots in effect is performing the collapses.

1 Introduction

A decision task is the distributed equivalent of a function, where each process
knows only part of the input, and after communicating with the other processes,
each process computes part of the output. For example, in the k-set agreement
task processes have to agree on at most k of their input values; when k = 1 we
get the consensus task [8].

A central concern in distributed computability is studying which tasks are solv-
able in a distributed computing model, as determined by the type of communica-
tion mechanism available and the reliability of the processes. Early on it was shown

Full version in arXiv 1512.05427. Partially supported by UNAM-PAPIIT grant
IN107714.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 179–191, 2016.
DOI: 10.1007/978-3-662-49529-2 14

180 F. Benavides and S. Rajsbaum

that consensus is not solvable even if only one process can fail by crashing, when
asynchronous processes communicate by message passing [8] or even by writing
and reading a shared memory [22]. A graph theoretic characterization of the tasks
solvable in the presence of at most one process failure appeared soon after [3].

The asynchronous computability theorem [15] exposed that moving from tol-
erating one process failure, to any number of process failures, yields a character-
ization of the class of decision tasks that can be solved in a wait-free manner by
asynchronous processes based on simplicial complexes, which are higher dimen-
sional versions of graphs. In particular, n-set agreement is not wait-free solvable,
even for n + 1 processes [4,15,24].

Computability theory through combinatorial topology has evolved to
encompass arbitrary malicious failures, synchronous and partially synchronous
processes, and various communication mechanisms [13]. Still, the original wait-
free model of the asynchronous computability theorem, where crash-prone
processes that communicate wait-free by writing and reading a shared mem-
ory is fundamental. For instance, the question of solvability in other models
(e.g. f crash failures), can in many cases be reduced to the question of wait-free
solvability [7,14].

More specifically, in the AS model of [13] each process can write its own
location of the shared-memory, and it is able to read the whole shared mem-
ory in one atomic step, called a snapshot. The characterization is based on the
protocol complex, which is a geometric representation of the various possible exe-
cutions of a protocol. Simpler variations of this model have been considered. In
the immediate snapshot (IS) version [2,4,24], processes can execute a combined
write-snapshot operation. The iterated immediate snapshot (IIS) model [6] is
even simpler to analyze, and can be extended (IRIS) to analyze partially syn-
chronous models [23]. Processes communicate by accessing a sequence of shared
arrays, through immediate snapshot operations, one such operation in each array.
The success of the entire approach hinges on the fact that the topology of the
protocol complex of a model determines critical information about the solvability
of the task and, if solvable, about the complexity of solution [17].

All these snapshot models, AS, IS, IIS and IRIS can solve exactly the same set
of tasks. However, the protocol complexes that arise from the different models are
structurally distinct. The combinatorial topology properties of these complexes
have been studied in detail, providing insights for why some tasks are solvable
and others are not in a model.

Results. In reality concurrent systems do not provide processes with snapshot
operations. Instead, snapshots are implemented (by a wait-free protocol) using
operations that write and read individual shared memory locations [1]. Thus,
read/write protocols are also computationally equivalent to snapshot protocols.
However, the structure of the read/write protocol complex has not been studied.
Our results are the following.

1. The one-round read/write protocol complex is collapsible to the IS proto-
col, i.e. to a chromatic subdivision of the input complex. The collapses can
be performed simultaneously in entire orbits of the natural symmetric group

The Read/Write Protocol Complex Is Collapsible 181

action. We use ideas from [21], together with distributed computing tech-
niques of partial orders.

2. Furthermore, the distributed protocol that wait-free implements immediate
snapshots of [5,9] in effect is performing the collapses.

3. Finally, also the multi-round iterated read/write complex is collapsible. We
use ideas from [10], together with carrier maps e.g. [13].

All omitted proofs are in the full version in http://arxiv.org/abs/1512.05427

Related Work. The one-round immediate snapshot protocol complex is the
simplest, with an elegant combinatorial representation; it is a chromatic subdi-
vision of the input complex [13,19], and so is the (multi-round) IIS protocol [6].
The multi-round (single shared memory array) IS protocol complex is harder to
analyze, combinatorially it can be shown to be a pseudomanifold [2]. IS and IIS
protocols are homeomorphic to the input complex. An AS protocol complex is
not generally homeomorphic to the underlying input complex, but it is homo-
topy equivalent to it [12]. The span of [15] provides an homotopy equivalence
of the (multi-round) AS protocol complex to the input complex [12], clarifying
the basis of the obstruction method [11] for detecting impossibility of solution
of tasks.

Later on stronger results were proved, about the collapsibility of the protocol
complex. The one-round IS protocol complex is collapsible [20] and homeomor-
phic to closed balls. The structure of the AS is more complicated, it was known
to be contractible [12,13], and then shown to be collapsible (one-round) to the IS
complex [21]. The IIS (multi-round) version was shown to be collapsible too [10].

There are several wait-free implementations of atomic snapshots starting
with [1], but we are aware of only two algorithms that implement immediate
snapshots; the original of [5], and its recursive version [9].

2 Preliminaries

2.1 Distributed Computing Model

The basic model we consider is the one-round read/write model (WR), e.g. [16]. It
consists of n+1 processes denoted by the numbers [n] = {0, 1, . . . , n}. A process is
a deterministic (possibly infinite) state machine. Processes communicate through
a shared memory array mem[0 . . . n] which consists of n + 1 single-writer/multi-
reader atomic registers. Each process accesses the shared memory by invoking
the atomic operations write(x) or read(j), 0 ≤ j ≤ n. The write(x) operation is
used by process i to write value x to register i, and process i can invoke read(j) to
read register mem[j], for any 0 ≤ j ≤ n. Each process i has an input value, which
may be its own id i. In its first operation, process i writes its input to mem[i],
then it reads each of the n + 1 registers, in an arbitrary order. Such a sequence
of operations, consisting of a write followed by all the reads is abbreviated by
WScan(x).

An execution consists of an interleaving of the operations of the processes, and
we assume any interleaving of the operations is a possible execution. We may also

http://arxiv.org/abs/1512.05427

182 F. Benavides and S. Rajsbaum

consider an execution where only a subset of processes participate, consisting of
an interleaving of the operations of those processes. These assumptions represent
a wait-free model where any number of processes may fail by crashing.

In more detail, an execution is described as a set of atomic operations together
with the irreflexive and transitive partial order given by: op precedes op′ if op was
completed before op′. If op does not precede op′ and viceversa, the operations
are called concurrent. The set of values read in an execution α by process i is
called the local view of i which is denoted by view(i, α). It consists of pairs (j, v),
indicating that the value v was read from the j-th register. The set of all local
views in the execution α is called the view of α and it is denoted by view(α).
Let E be a set of executions of the WR model. Consider the equivalence relation
on E given by: α ∼ α′ if view(α) = view(α′). Notice that for every execution α
there exists an equivalent sequential execution α′ with no concurrent operations.
In other words, if op and op′ are concurrent operations in α we can suppose that
op was executed immediately before op′ without modifying any views. Thus, we
often consider only sequential executions α, consisting of a linear order on the
set of all write and read operations.

Two other models can be derived from the WR model. In the iterated WR
model, processes communicate through a sequence of arrays. They all go through
the sequence of arrays mem0, mem1 . . . in the same order, and in the r-th round,
they access the r-th array, memr, exactly as in the one-round version of the WR
model. Namely, process i executes one write to memr[i] and then reads one by
one all entries j, memr[j], in arbitrary order. In the non-iterated, multi-round
version of the WR model, there is only one array mem, but processes can execute
several rounds of writing and then reading one by one the entries of the array.
The immediate snapshot model (IS) [4,24], consists of a subset of executions of
the WR one round model. Namely, all the executions where the operations can
be organized in concurrency classes, each one consisting a set of writes by the
set of processes participating in the concurrency class, followed by a read to all
registers by each of these processes. See Sect. 3.1.

2.2 Algorithm IS

Consider the recursive algorithm IS of [9] for the iterated WR model, pre-
sented in Fig. 1. Processes go trough a series of disjoint shared memory arrays
mem0,mem1, . . . ,memn. Each array memk is accessed by process i invoking
WScan(i) in the recursive call IS(n + 1 − k). Process i executes WScan(i) (line
(1)), by performing first write(i), followed by read(j) for each j ∈ [n], in an
arbitrary order. The set of values read (each one with its location) is what the
invocation of WScan(i) returns. In line (2) the process checks if view contains
n + 1 − k id’s, else IS(n − k) is again invoked on the next shared memory in line
(3). It is important to note that in each recursive call IS(n + 1 − k) at least one
process returns with |view| = n+1−k, given that n+1−k processes invoked IS.
For example, in the first recursive call IS(n + 1) the last process to write reads
n + 1 values and terminates the algorithm.

The Read/Write Protocol Complex Is Collapsible 183

Algorithm IS(n + 1)
(1) view ← WScan(i)
(2) if |view| = n + 1 then return view
(3) else return IS(n).

Fig. 1. Code for process i

Every execution of the IS protocol can be represented by a finite sequence
α = α0, α1, . . . , αl with αk an execution of the WR one round model where every
process that takes a step in αk invokes the recursive call with IS(n + 1 − k).
Since at least one process terminates the algorithm the length l(α) = l + 1 is at
most n + 1. The last returned local view in execution α for process i is denoted
view(i, α), and the set of all local views is denoted by view(α).

Denote by El the set of views of all executions α with l(α) = l + 1. Then
En ⊆ · · · ⊆ E0. In particular, E0 corresponds to the views of executions of the
one round WR of Sect. 2.1. Also, En corresponds to the views of the immediate
snapshot model, see Theorem 1 of [9].

3 Definition and Properties of the Protocol Complex

Here we define the protocol complex of the write/read model and other models,
which arise from the sets Ei mentioned in the previous section.

3.1 Additional Properties About Executions

Recall from Sect. 2.1 that an execution can be seen as a linear order on the set
of write and read operations. For a subset I ⊆ [n] let

OI = {wi, ri(j) : i ∈ I, j ∈ [n]}.

with I = Oi = ∅. A wr-execution on I is a pair α = (OI ,→α) with →α a linear
order on OI such that wi →α ri(j) for all j ∈ [n]. The set I is called the Id
set of α which is denoted by Id(α). Hence the view of i is view(i, α) = {j ∈
I : wj →α ri(j)} and the view of α is view(α) = {(i, view(i, α)) : i ∈ I}.
Note the chain wi →α ri(j0) →α · · · →α ri(jn) represents the invoking of WScan
by the process i in the wr-execution α. Consider a wr-execution α and suppose
that the order in which the process i reads the array mem[0 . . . n] is given by
ri(j0) →α · · · →α ri(jn). If every write operation wk satisfies wk →α ri(j0) or
ri(jn) →α wk then view(i, α) corresponds to an atomic snapshot.

As a consequence, every execution in the snapshot model and immedi-
ate snapshot model corresponds to an execution in the write/read model. For
instance in the wr-execution

α : w2 → r2(0) → w0 → r0(0) → r0(1) → r0(2) → w1 →
→ r1(0) → r2(1) → r1(1) → r2(2) → r1(2)

184 F. Benavides and S. Rajsbaum

the view(0, α) = {0, 2} and view(1, α) = [2] are immediate snapshots, this means
the processes 0 and 2 could have read the array instantaneously. In contrast, the
view(2, α) = {1, 2} does not correspond to a snapshot. For the following consider
the process j such that wi →α wj for all i.

Proposition 1. Let α be a wr-execution on I. Then there exists j ∈ I such that
view(j, α) = I.

Let α be a wr-execution. For 0 ≤ k ≤ n, define Idk(α) = {j ∈ Id(α) :
|view(j, α)| = n + 1 − k}. An IS-execution is a finite sequence α = α0, . . . , αl

such that α0 is a wr-execution on [n], and αk+1 is a wr-execution on Id(αk) −
Idk(αk). Given an IS-execution α, Proposition 1 implies l(α) ≤ n+1. Moreover
Id(αk+1) ⊆ Id(αk) for all 0 ≤ k ≤ l − 1. Hence |Id(αk)| ≤ n + 1 − k. Executions
α, α′ are equivalent if view(α) = view(α′), denoted α ∼ α′.

Lemma 1. Let α and α′ be IS-executions with l(α) = l(α). Given 0 ≤ k ≤ l,
(1) If α ∼ α′ then Id(αk) = Id(α′

k). (2) If αk ∼ α′
k then α ∼ α′.

According to the behavior of the protocol in Fig. 1, the local view of
i is defined as view(i, α) = view(i, αk), if i ∈ Id(αk) − Id(αk+1) and
view(i, α) = view(i, αl) for k = l. Hence the view of α is defined as view(α) =
{(i, view(i, α)) : i ∈ [n]}.

Lemma 2. Let α = α0, . . . , αl+1 be an IS-execution, l(α) = l + 2. Then
view(α) = view(α′) for some IS-execution α′ such that l(α′) = l + 1.

The wr-execution α′ = α0, . . . , αl−1, α
′
l of the lemma is obtained by, α′

l such
that

view(i, α′
l) =

{
view(i, αl), if i ∈ Idl(αl)
view(i, αl+1), if i �∈ Idl(αl).

It follows El = {view(α) : α = α0, . . . , αl}. Thus, Lemma 2 implies El+1 ⊆
El. For example consider the IS-execution α = α0, α1, α2 where α0 : w0 →
r0(0) → r0(1) → r0(2) → w1 → r1(0) → r1(1) → r1(2) → w2 → r2(0) →
r2(1) → r2(2). α1 : w0 → r0(0) → r0(1) → r0(2) → w1 → r1(0) → r1(1) →
r1(2). α2 : w0 → r0(0) → r0(1) → r0(2).
So view(α) = {(0, {0}), (1, {0, 1}), (2, {0, 1, 2})} ∈ E2 ⊆ E1 ⊆ E0, Figs. 2 and 3.

3.2 Topological Definitions

The following are standard technical definitions, see [18,21]. A (abstract) sim-
plicial complex Δ on a finite set V is a collection of subsets of V such that for
any v ∈ V , {v} ∈ Δ, and if σ ∈ Δ and τ ⊆ σ then τ ∈ Δ. The elements of V are
called vertices and the elements of Δ simplices. The dimension of a simplex σ is
dim(σ) = |σ| − 1. For instance the vertices are 0-simplices. For the purposes of
this paper, we adopt the convention that the void complex Δ = ∅ is a simplicial
complex which is different from the empty complex Δ = {∅}. Given a positive
integer n, Δn denotes the standard simplicial complex whose vertex set is [n]

The Read/Write Protocol Complex Is Collapsible 185

and every subset of [n] is a simplex. From now on we identify a complex Δ with
its collection of subsets. For every simplex τ we denote by I(τ) the set of all sim-
plices ρ, τ ⊆ ρ. A simplex τ of Δ is called free if there exists a maximal simplex
σ such that τ ⊆ σ and no other maximal simplex contains τ . The procedure of
removing every simplex of I(τ) from Δ is called a collapse.

Let Δ and Γ be simplicial complexes, Δ is collapsible to Γ if there exists
a sequence of collapses leading from Δ to Γ . The corresponding procedure is
denoted by Δ ↘ Γ . In particular, if the collapse is elementary with free simplex
τ , it is denoted by Δ ↘τ Γ . If Γ is the void complex, Δ is collapsible. The
next definition from [21] gives a procedure to collapse a simplicial complex, by
collapsing simultaneously by entire orbits of the group action on the vertex set.
Let Δ be a simplicial complex with a simplicial action of a finite group G. A
simplex τ is called G-free if it is free and for all g ∈ G such that g(τ) �= τ ,
I(τ) ∩ I(g(τ)) = ∅. If τ is G-free, the procedure of removing every simplex
ρ ∈

⋃

g∈G

I(g(τ)) is called a G-collapse of Δ.

Since, if τ is G-free then g(τ) is free as well, the above definition guarantees
that all collapses in the orbit of τ can be done in any order i.e. every G-collapse is
a collapse. A simplicial complex Δ is G-collapsible to Γ if there exist a sequence
of G-collapses leading from Δ to Γ , it is denoted by Δ ↘G Γ . In similar way,
if the G-collapse is elementary with G-free simplex τ , the notation Δ ↘G(τ) Γ
will be used. In the case Γ is the void complex, Δ is called G-collapsible. For
instance consider a 2-simplex σ, τ a 1-face of σ and the action of Z3 over σ, then
τ is free but not Z3-free.

3.3 Protocol Complex

Let n be a positive integer. The abstract simplicial complex WRl(Δn) with 0 ≤
l ≤ n consists of the set of vertices V = {(i, viewi) : i ∈ viewi ⊆ [n]}. A subset
σ ⊆ V forms a simplex if only if there exist an IS-execution α of length l + 1
such that σ ⊆ view(α).

The complex WR0(Δn) is called the protocol complex of the write/read model
and it will be denoted by WR(Δn). Protocol complexes for the particular cases
n = 1 and n = 2 are shown in Fig. 2. In [21] a combinatorial description of the
protocol complex Viewn associated to the snapshot model is given. There every
simplex of Viewn is represented as a 2 × t matrix. Every simplex σ ∈ WR(Δn)
can be expressed as

W(σ) =
(

V1 · · · Vt−1 [n]
I1 · · · It−1 It

)

where Ii ∩ Ij = ∅ with i �= j and Ii ⊆ Vj for all i ≤ j. Moreover we can associate
a matrix for every simplex in the complex WRl(Δn). This representation implies
that χ(Δn) and Viewn are subcomplexes of WR(Δn). Figure 3 shows the complex
WRl(Δ2). From now on we will write WRl instead of WRl(Δn) unless we specify
the standard complex. Lemma 2 implies that every maximal simplex of WRl+1

is a simplex of WRl, which implies that WRl+1 is a subcomplex of WRl. From
now on σ will denote a simplex of WRl. For 0 ≤ k ≤ l let σ<

k = {(i, viewi) ∈

186 F. Benavides and S. Rajsbaum

σ : |viewi| < n + 1 − k}. In a similar way σ=
k and σk = σ<

k ∪ σ=
k are defined.

Therefore, the set of processes in σ which participate in the l + 1 call recursive
of Algorithm 1 is partitioned in those which read n + 1 − l processes and those
which read less than n + 1 − l processes in the l + 1 layer shared memory. Let
us define I<

σ =
⋃

i∈Id(σ<
l)

viewi and Iσ =
⋃

i∈Id(σl)

viewi.

(0, {0})
(0, {0})

(1, {1})

(1, {1})

(2, {2})

(0, {0, 1})

(0, {0, 2})

(1, {0, 1})

(1, {1, 2})

(2, {0, 2}) (2, {1, 2})

(0, [1])

(1, [1])

(0, [2])(1, [2])

(2, [2])

WR(Δ1) WR(Δ2)

Fig. 2. Protocol complex for n = 1 and n = 2.

Theorem 1. σ ∈ WRl+1 if only if I<
σ ∩ Id(σ=

l) = ∅ and |I<
σ | < n + 1 − l.

Proof. Suppose I<
σ ∩ Id(σ=

l) �= ∅ or |I<
σ | = n + 1 − l and there exists an

IS-execution α = α0, . . . , αl+1 such that σ<
l ⊆ view(αl+1). Then there exist

processes i and k such that |viewi| < n+1− l, |viewk| = n+1− l and k ∈ viewi.
This implies that k wrote in the l + 1 shared memory, a contradiction. For the
other direction, since I<

σ ∩ Id(σ=
l) = ∅ and |I<

σ | < n + 1 − l we can build an
IS-execution α = α0, . . . , αl+1 such that σ ⊆ view(α). �

Notice that Iσ represents the set of processes which have been read in the
l + 1 recursive call of the algorithm in Fig. 1.

Corollary 1. If σ �∈ WRl+1 then

1. |Iσ| = n + 1 − l. 2. Iσ = Iτ for all σ ⊆ τ .

Let inv(σ) = {(k, Iσ) : k ∈ Iσ\I<
σ } if I<

σ �= Iσ else inv(σ) = {(k, Iσ) : k ∈
Iσ\Id(σ<

l)}. Notice that if σ �∈ WRl+1 then inv(σ) �= ∅.
For the simplices σ− = σ − inv(σ) and σ+ = σ ∪ inv(σ).

The Read/Write Protocol Complex Is Collapsible 187

Proposition 2. If σ �∈ WRl+1 then

1. σ+ = σ− ∪ inv(σ).
2. σ− ⊆ σ ⊆ σ+.
3. σ− �∈ WRl+1.
4. If σ− ⊆ τ ⊆ σ+ then σ− = τ− and σ+ = τ+.
5. (σ−)− = σ−.

Consider I+−(σ) = {τ ∈ WRl : σ− ⊆ τ ⊆ σ+}. Item (3) above implies
that I+−(σ) ∩ WRl+1 = ∅ if σ �∈ WRl+1. Moreover from (4) it is obtained that
I+−(σ) ∩ I+−(τ) = ∅ or I+−(σ) = I+−(τ).

Δ2 WR0 WR1 WR2

� � �

Fig. 3. Complexes WRl.

4 Collapsibility

Let S[n] denote the permutation group of [n]. Notice that if the Id’s of processes
in a wr-execution on I are permuted according to π ∈ S[n] then we obtain
a new linear order on π(I). In other words if α is a wr-execution on I and
π ∈ S[n] then α′ = π(α) is a wr-execution on π(I). Moreover if σ = view(α)
then π(σ) = view(π(α)). This shows that there exists a natural group action on
each simplicial complex WRl.

Proposition 3. Let σ ∈ WRl be a simplex. Then

1. π(σ) ∈ WRl.
2. π(σ−) = π(σ)−.

3. π(σ+) = π(σ)+.
4. π(I+−(σ)) = I+−(π(σ)).

For example in Fig. 2, σ = {(1, {1, 2}), (2, {0, 2}), (0, [2])} and π(0) = 1,
π(1) = 2 and π(2) = 0, then π(σ) = {(2, {0, 2}), (0, {0, 1}), (1, [2])}.

Theorem 2. For every 0 ≤ l ≤ n + 1,

1. WRl is collapsible to WRl+1.
2. WRl is S[n]-collapsible to WRl+1.

188 F. Benavides and S. Rajsbaum

Proof. Since σ ∈ I+−(σ) for all simplices σ ∈ WRl, the intervals I+− (σ) cover
L = {σ : σ ∈ WRl, σ �∈ WRl+1}. Also, Proposition 2 (4) implies that L can
be decomposed as a disjoint union of intervals I+− (σ1), . . . , I+− (σk) s.t. σi = σ+

i

for all 1 ≤ i ≤ k. Suppose dim(σi+1)<
l ≤ dim(σi)<

l or if dim(σi+1)<
l = dim(σi)<

l

then dim(σi+1) ≤ dim(σi). We will prove by induction on i, 1 ≤ i ≤ k,
that WRi

l ↘σ−
i

WRi+1
l where WR1

l = WRl and WRk+1
l = WRl+1. If there

exists a maximal simplex σ ∈ WRi
l such that σi ⊆ σ then σ = σj for

some i ≤ j ≤ k. Hence (σi)<
l ⊆ (σj)<

l and therefore σi = σj . Now sup-
pose there exists a maximal simplex σj ∈ WRi

l with i ≤ j ≤ k such that
σ−

i ⊆ σj . This implies that (σi)<
l = (σj)<

l and inv(σi) = inv(σj). Thus
σi = σ−

i ∪ inv(σi) ⊆ σj ∪ inv(σj) = σj and therefore σ−
i is free in WRi

l. There-
fore, WRl = WR1

l ↘σ−
1

. . . ↘σ−
k

WRk+1
l = WRl+1. Now if we specify in more

detail the order of the sequence, the complex WRl can be collapsed to WRl+1

in a S[n]-equivariant way. First note that if π(σi) ∈ I+−(σj) for some 1 ≤ j ≤ k,
then Proposition 3 (3) and Proposition 2 (4) imply that π(σi) = σj . Moreover,
dim(σi)<

l = dim π(σi)<
l and dim(σi) = dim π(σi). Hence the set {σ1, . . . , σk}

can be partitioned according to the equivalence relation given by: σi ∼ σj if
there exists π ∈ S[n] such that π(σi) = σj . Let τ1, . . . , τp be representatives of
the equivalence classes which satisfy the order given in the proof of the item 1,
then WRl ↘S[n](τ

−
1) · · · ↘S[n](τ

−
p) WRl+1. �

Figure 4 illustrates the collapsing procedure WR0 ↘S[n] WR1 for n = 2. In
this case consider the simplexes σ1 = {(1, {1, 2}), (2, {0, 2}), (0, [2])} and σ2 =
{(0, {0, 1}), (1, [2]), (2, [2])} then WR1

0 ↘S[n](σ
−
1) WR2

0 ↘S[n](σ
−
2) WR3

0 = WR1.

And we have the following consequence.

WR0 = WR1
0

WR2
0 WR1 = WR3

0

� �

Fig. 4. S[n]-collapse.

Corollary 2. For every natural number n, the simplicial complex WR(Δn) is
S[n]-collapsible to χ(Δn).

Multi-round Protocol Complex. A carrier map Φ from complex C to com-
plex D assigns to each simplex σ a subcomplex Φ(σ) of D such that Φ(τ) ⊆ Φ(σ)

The Read/Write Protocol Complex Is Collapsible 189

if τ ⊆ σ. The protocol complex of the iterated write/read model (see Fig. 5),
k ≥ 0, is WR(k+1)(Δn) =

⋃

σ∈WR(k)(Δn)

WR(σ).

Corollary 3. For all k ≥ 1, WR(k)(Δn) ↘ χ(k)(Δn).

The collapsing procedure consists first in collapsing, in parallel, each
subcomplex WR(σ) where σ is a maximal simplex of WR(k−1)(Δn) as in
Theorem 2. An illustration is in Fig. 6, applied to the simplexes σ1 =
{(0, {0, 1}), (1, {0, 1}), (2, [2])} and σ2 = {(0, {0, 1}), (1, [2]), (2, [2])} of WR(Δ2).
Second, we collapse χ(WR(k−1)(Δn)) to χ(k)(Δn).

Δ2

�

WR(Δ2) WR(2)(Δ2)

σ1

�

σ2

Fig. 5. Complexes of the iterated model; in WR(2)(Δ2) only WR(σ1) is depicted.

σ1

σ2

WR(σ1 ∪ σ2)σ1 ∪ σ2

χ(σ1 ∪ σ2)WR1(σ1 ∪ σ2)

Fig. 6. First collapsing.

190 F. Benavides and S. Rajsbaum

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Attiya, H., Rajsbaum, S.: The combinatorial structure of wait-free solvable tasks.
SIAM J. Comput. 31(4), 1286–1313 (2002)

3. Biran, O., Moran, S., Zaks, S.: A combinatorial characterization of the distributed
1-solvable tasks. J. Algorithms 11(3), 420–440 (1990)

4. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: Proceedings of the 25th Annual ACM Symposium on
Theory of Computing, STOC, pp. 91–100. ACM, New York (1993)

5. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: Pro-
ceedings of the 12th ACM Symposium on Principles of Distributed Computing,
PODC, pp. 41–51. ACM, New York (1993)

6. Borowsky, E., Gafni, E.: A simple algorithmically reasoned characterization of wait-
free computation (extended abstract). In: Proceedings of the Sixteenth Annual
ACM Symposium on Principles of Distributed Computing, PODC 1997, pp. 189–
198. ACM, New York (1997)

7. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation
algorithm. Distrib. Comput. 14(3), 127–146 (2001)

8. Fischer, M., Lynch, N.A., Paterson, M.S.: Impossibility of distributed commit with
one faulty process. J. ACM 32(2), 374–382 (1985)

9. Gafni, E., Rajsbaum, S.: Recursion in distributed computing. In: Dolev, S., Cobb,
J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 362–376. Springer,
Heidelberg (2010)

10. Goubault, E., Mimram, S., Tasson, C.: Iterated chromatic subdivisions are coll
apsible. Appl. Categorical Struct. 23(6), 777–818 (2015)

11. Havlicek, J.: Computable obstructions to wait-free computability. Distrib. Comput.
13(2), 59–83 (2000)

12. Havlicek, J.: A note on the homotopy type of wait-free atomic snapshot protocol
complexes. SIAM J. Comput. 33(5), 1215–1222 (2004)

13. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Elsevier, Imprint Morgan Kaufmann, Boston (2013)

14. Herlihy, M., Rajsbaum, S.: Simulations and reductions for colorless tasks. In: Pro-
ceedings of the ACM Symposium on Principles of Distributed Computing, PODC
2012, pp. 253–260. ACM, New York (2012)

15. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46(6), 858–923 (1999)

16. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kauf-
mann Publishers Inc., San Francisco (2008)

17. Hoest, G., Shavit, N.: Towards a topological characterization of asynchronous com-
plexity. In: Proceedings of the 16th ACM Symposium Principles of Distributed
Computing, PODC, pp. 199–208. ACM, New York (1997)

18. Jonsson, J.: Simplicial Complexes of Graphs. Lecture Notes in Mathematics.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-75859-4

19. Kozlov, D.N.: Chromatic subdivision of a simplicial complex. Homology Homotopy
Appl. 14(2), 197–209 (2012)

20. Kozlov, D.N.: Topology of the immediate snapshot complexes. Topology Appl.
178, 160–184 (2014)

http://dx.doi.org/10.1007/978-3-540-75859-4

The Read/Write Protocol Complex Is Collapsible 191

21. Kozlov, D.N.: Topology of the view complex. Homology Homotopy Appl. 17(1),
307–319 (2015)

22. Loui, M.C., Abu-Amara, H.H.: Memory requirements for agreement among unre-
liable asynchronous processes 4, 163–183 (1987). JAI Press

23. Rajsbaum, S., Raynal, M., Travers, C.: The iterated restricted immediate snapshot
model. In: Hu, X., Wang, J. (eds.) COCOON 2008. LNCS, vol. 5092, pp. 487–497.
Springer, Heidelberg (2008)

24. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of
public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

The I/O Complexity of Computing Prime Tables

Michael A. Bender1, Rezaul Chowdhury1, Alexander Conway2(B),
Mart́ın Farach-Colton2, Pramod Ganapathi1, Rob Johnson1,

Samuel McCauley1, Bertrand Simon3, and Shikha Singh1

1 Stony Brook University, Stony Brook, NY 11794-2424, USA
{bender,rezaul,pganapathi,rob,smccauley,shiksingh}@cs.stonybrook.edu

2 Rutgers University, Piscataway, NJ 08854, USA
{alexander.conway,farach}@cs.rutgers.edu

3 LIP, ENS de Lyon, 46 allée d’Italie, Lyon, France
bertrand.simon@ens-lyon.fr

Abstract. We revisit classical sieves for computing primes and analyze
their performance in the external-memory model. Most prior sieves are
analyzed in the RAM model, where the focus is on minimizing both the
total number of operations and the size of the working set. The hope is
that if the working set fits in RAM, then the sieve will have good I/O
performance, though such an outcome is by no means guaranteed by a
small working-set size.

We analyze our algorithms directly in terms of I/Os and operations.
In the external-memory model, permutation can be the most expensive
aspect of sieving, in contrast to the RAM model, where permutations
are trivial. We show how to implement classical sieves so that they have
both good I/O performance and good RAM performance, even when
the problem size N becomes huge—even superpolynomially larger than
RAM. Towards this goal, we give two I/O-efficient priority queues that
are optimized for the operations incurred by these sieves.

Keywords: External-memory algorithms · Prime tables · Sorting ·
Priority queues

1 Introduction

According to Fox News [21], “Prime numbers, which are divisible only by them-
selves and one, have little mathematical importance. Yet the oddities have long
fascinated amateur and professional mathematicians.” Indeed, finding prime
numbers has been the subject of intensive study for millennia.

Prime-number-computation problems come in many forms, and in this paper
we revisit the classical (and Classical) problem of computing prime tables: how
efficiently can we compute the table P [a, b] of all primes from a to b and the table

This research was supported by NSF grants CCF 1217708, IIS 1247726, IIS 1251137,
CNS 1408695, CCF 1439084, CNS-1408782, IIS-1247750, and Sandia National
Laboratories.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 192–206, 2016.
DOI: 10.1007/978-3-662-49529-2 15

The I/O Complexity of Computing Prime Tables 193

P [N] = P [2, N]. Such prime-table-computation problems have a rich history,
dating back 23 centuries to the sieve of Eratosthenes [17,30].

Until recently, all efficient prime-table algorithms were sieves, which use
a partial (and expanding) list of primes to find and disqualify composites
[6,7,15,30]. For example, the sieve of Eratosthenes maintains an array repre-
senting 2, . . . , N and works by crossing off all multiples of each prime up to

√
N

starting with 2. The surviving numbers, those that have not been crossed off,
comprise the prime numbers up to N .

Polynomial-time primality testing [2,18] makes another approach possible:
independently test each i ∈ {2, . . . , N} (or any subrange {a, . . . , b}) for primality.
The approaches can be combined; sieving steps can be used to eliminate many
candidates cheaply before relatively expensive primality tests are performed.
This is a feature of the sieve of Sorenson [31] (discussed in Sect. 6) and can also
be used to improve the efficiency of AKS [2] when implemented over a range.

Prime-table algorithms are generally compared according to two criteria
[6,25,27,30,31]. One is the standard run-time complexity, that is, the number
of RAM operations. However, when computing very large prime tables that
do not fit in RAM, such a measure may be a poor predictor of performance.
Therefore, there has been a push to reduce the working-set size , that is, the
size of memory used other than the output itself [6,11,31].1 The hope is that
if the working-set size is small enough to fit in memory for larger N , larger
prime tables will be computable efficiently, though there is no direct connection
between working-set size and input-output (I/O) efficiency.

Sieves and primality testing offer a trade-off between the number of opera-
tions and the working-set size of prime-table algorithms. For example, the sieve of
Eratosthenes performs O(N log log N) operations on a RAM but has a working-
set size of O(N). The fastest primality tests take polylogarithmic time in N ,
and so run in O(NpolylogN) time for a table but enjoy polylogarithmic working
space.2 This run-time versus working-set-size analysis has lead to a proliferation
of prime-table algorithms that are hard to compare.

A small working set does not guarantee a fast algorithm for two reasons.
First, eventually even slowly growing working sets will be too big for RAM. But
more importantly, even if a working set is small, an algorithm can still be slow
if the output table is accessed with little locality of reference.

In thispaper,weanalyzeavarietyof sievingalgorithms in termsof thenumberof
block transfers they induce, in addition to the number of operations. For out-of-
core computations, these block transfers are page faults, and for smaller computa-
tions, they are cache misses. Directly counting such I/Os are often more predictive
of the efficiency of an algorithm than the working set size or the instruction count.

1 In our analyses, we model each sieving algorithm as if it writes the list of primes
to an append-only output tape (i.e., the algorithm cannot read from this tape). All
other memory used by the algorithm counts towards its working set size.

2 Sieves are also less effective at computing P [a, b]. For primality-test algorithms,
one simply checks the b − a + 1 candidate primes, whereas sieves generally require
computing many primes smaller than a.

194 M.A. Bender et al.

1.1 Computational Model

In this paper, we are interested in both the I/O complexity CI/O and the RAM
complexity CRAM. We indicate an algorithm’s performance using the notation〈
CI/O, CRAM

〉
.

We use the standard external memory or disk-access machine (DAM)
model of Aggarwal and Vitter [1] to analyze the I/O complexity. The DAM model
allows block transfers between any two levels of the memory hierarchy. In this
paper, we denote the smaller level by RAM or main memory and the larger
level by disk or external memory .

In the DAM model, main memory is divided into M words, and the disk
is modeled as arbitrarily large. Data is transferred between RAM and disk in
blocks of B words. The I/O cost of an algorithm is the number of block transfers
it induces [1,33].

We use the RAM model for counting operations. It costs O(1) to compare,
multiply, or add machine words. As in the standard RAM, a machine word has
Ω(log N) bits.

The prime table P [N] is represented as a bit array that is stored on disk.
We set P [i] = 1 when we determine that i is prime and set P [i] = 0 when we
determine that i is composite. The prime table fills O(N/ log N) words.3 We are
interested in values of N such that P [N] is too large to fit in RAM.

1.2 Sieving to Optimize both I/Os and Operations

Let’s begin by analyzing the sieve of Eratosthenes. Each prime is used in turn
to eliminate composites, so the ith prime pi touches all multiples of pi in the
array. If pi < B, every block is touched. As pi gets larger, every �pi/B�th
block is touched. We bound the I/Os by

∑√
N

i=2 N/(B�pi/B�) ≤ N log log N . In
short, this algorithm exhibits essentially no locality of reference, and for large
N , most instructions induce I/Os. Thus, the näıve implementation of the sieve
of Eratosthenes runs in 〈Θ(N log log N), Θ(N log log N)〉.

Section 2 gives descriptions of other sieves. For large N (e.g., N = Ω(M2)),
most of these sieves also have poor I/O performance. For example, the seg-
mented sieve of Eratosthenes [7] also requires 〈Θ(N log log N), Θ(N log log N)〉.
The sieve of Atkin [6] requires 〈O(N/ log log N), O(N/ log log N)〉. On the other
hand, the primality-checking sieve based on AKS has good I/O performance but
worse RAM performance, running in 〈Θ (N/(B log N)) , Θ(N logc N)〉, as long
as M = Ω (logc N).4

3 It is possible to compress this table using known prime-density theorems, decreasing
the space usage further.

4 Here the representation of P [N] matters most, because the I/O complexity depends
on the size (and cost to scan) P [N]. For most other sieves in this paper, P [N] is
represented as a bit array and the I/O cost to scan P [N] is a lower-order term.

The I/O Complexity of Computing Prime Tables 195

As a lead-in to our approach given in Sect. 3, we show how to improve the
I/O complexity of the näıve sieve of Eratosthenes (based on Schöhage et al.’s
algorithm on Turing Machines [12,28]) as follows. Compute the primes up to

√
N

recursively. Then for each prime, make a list of all its multiples. The total num-
ber of elements in all lists is O(N log log N). Sort using an I/O-optimal sorting
algorithm, and remove duplicates: this is the list of all composites. Take the com-
plement of this list. The total I/O-complexity is dominated by the sorting step,
that is, O(N

B (log log N)(logM/B
N
B)). Although this is a considerable improve-

ment in the number of I/Os, the number of operations grows by a log factor
to O(N log N log log N). Thus, this implementation of the sieve of Eratosthenes
runs in

〈
O(N

B (log log N)(logM/B
N
B)), O(N log N log log N)

〉
.

In our analysis of the I/O complexity of diverse prime-table algorithms, one
thing becomes clear. All known fast algorithms that produce prime numbers,
or equivalently composite numbers, do so out of order. Indeed, sublinear sieves
seem to require the careful representation of integers according to some order
other than by value.

Consequently, the resulting primes or composites need to be permuted. In
RAM, permuting values (or equivalently, sorting small integers) is trivial. In
external memory, permuting values is essentially as slow as sorting [1]. Therefore,
our results will involve sorting bounds. Until an in-order sieve is produced, all
fast external-memory algorithms are likely to involve sorting.

1.3 Our Contributions

The results in this paper comprise a collection of data structures based on buffer
trees [3] and external-memory priority queues [3–5] that allow prime tables to
be computed quickly, with less computation than sorting implies.

We present data structures for efficient implementation of the sieve of Eratos-
thenes [17], the linear sieve of Gries and Misra [15] (henceforth called the GM
linear sieve), the sieve of Atkin [6], and the sieve of Sorenson [31]. Our algorithms
work even when N 	 M .

Table 1 summarizes our main results. Throughout, we use the notation
sort (x) = O(x

B logM/B
x
B). Thus, the I/O lower bound of permuting x ele-

ments can be written as min(sort (x) , x) [1].
The GM linear sieve and the sieve of Atkin both slightly outperform the

classical sieve of Eratosthenes. The sieve of Sorenson on the other hand induces
far fewer I/O operations, but the RAM complexity is dependent on some number-
theoretic unknowns, and may be far higher.

Note that the sieves of Eratosthenes and Atkins use O(
√

N) working space,
whereas the GM Linear sieve and the sieve of Sorenson use O(N) working space,
which is consistent with our observation that working space is not predictive of
the I/O complexity of an algorithm.

196 M.A. Bender et al.

Table 1. Complexities of the main results of the paper, simplified under the assump-
tion that N is large relative to M and B (see the corresponding theorems for the
full complexities and exact requirements on N , M , and B). Note that sort (x) =
O(x

B
logM/B

x
B

) is used as a unitless function, when specifying the number of I/Os in
the I/O column and the number of operations in the RAM column. It is denoted by
“sort” because it matches the number of I/Os necessary for sorting in the DAM model.
Here p(N) is the smallest prime such that the pseudosquare Lp(N) > N/(π(p) log2 N),
and π is the prime counting function (see Sect. 6). Sorensen [31] conjectures, and the
extended Riemann hypothesis implies, that π(p(N)) is polylogarithmic in N .

Sieve I/O operations RAM operations

Eratosthenes Sect. 3 sort (N) Bsort (N)

GM Linear Sect. 4 sort
(

N
log logN

)

Bsort
(

N
log logN

)

Atkin Sect. 5 sort
(

N
log logN

)

Bsort
(

N
log logN

)

Sorenson Sect. 6 O(N/B) O(Nπ(p(N))) s

2 Background and Related Work

In this Section we discuss some previous work on prime sieves. For a more
extensive survey on prime sieves, we refer readers to [30].

Much of the previous work on sieving has focused on optimizing the sieve
of Eratosthenes. Recall that the original sieve has an O(N) working set size
and performs O(N log log N) operations. The notion of chopping up the input
into intervals and sieving on each of them, referred to as the segmented sieve
of Eratosthenes [7], is used frequently [6,9,11,29,30]. Segmenting results in
the same number of operations as the original but with only O(N1/2) working
space. On the other hand, linear variants of the sieve [8,15,19,27] improve the
operation count by a Θ(log log N) factor to O(N), but also require a working
set size of about Θ(N); see Sect. 4.

Recent advances in sieving achieve better performance. The sieve of Atkin
[6] improves the operation count by an additional Θ(log log N) factor to
Θ(N/ log log N), with a working set of N1/2 words [6] or even N1/3 [6,14]; see
Sect. 5.

Alternatively, a primality testing algorithm such as AKS [2] can be used to
test the primality of each number directly. Using AKS leads to a very small
working set size but a large RAM complexity. The sieve of Sorenson uses a
hybrid sieving approach, combining both sieving and direct primality testing.
This results in polylogarithmic working space, but a smaller RAM complexity if
certain number-theoretic conjectures hold; see Sect. 6.

A common technique to increase sieve efficiency is preprocessing by a wheel
sieve , which was introduced by Pritchard [25,26]. A wheel sieve preprocesses a
large set of potential primes, quickly eliminating composites with small divisors.
Specifically, a wheel sieve begins with a number W =

∏�
i=1 pi, the product of

the first � primes (for some �). It then marks all x < W that have at least

The I/O Complexity of Computing Prime Tables 197

one pi as a factor by simply testing x for divisibility by each pi. This requires
O(�W) operations and O(W/B log N) I/Os, because marks are stored in a bit
vector and the machine has a word size of Ω(log N). The wheel sieve then uses
the observation that a composite x > W has a prime divisor among the first
� primes iff x mod W is also divisible by that prime. Thus, the wheel iterates
through each interval of W consecutive potential primes, marking off a number x
iff x mod W is marked off. When using a bit vector to store these marks, this can
be accomplished by copying the first W bits into each subsequent chunk of W
bits. On a machine with word size Ω(log N), the total operations for these copies
is O(N/ log N), and the I/O complexity is O(N/B log N), so these costs will
not affect the overall complexities of our algorithms. Typically, � =

√
log N , so

W = No(1). Thus, marking off the composites less than W can be done in No(1)

time and No(1)/B I/Os using O(
√

log N) space, which will not contribute to the
overall complexity of the main sieving algorithm. By Mertens’ Theorem [20,32],
there will be Θ(N/ log log N) potential composites left after this pre-sieving step,
which can often translate into a Θ(log log n) speedup to the remaining steps in
the sieving algorithm.

An important component of some of the data structures presented in this
paper is the priority queue of Arge and Thorup [5], which is simultaneously
efficient in RAM and in external memory. In particular, their priority queue
can handle inserts with O(1

B logM/B N/B) amortized I/Os and O(logM/B N/B)
amortized RAM operations. Delete-min requires O(1

B logM/B N/B) amortized
I/Os and O(logM/B N/B +log log M) amortized RAM operations. They assume
that each element fits in a machine word and use integer sorting techniques to
achieve this low RAM cost while retaining optimal I/O complexity.

3 Sieve of Eratosthenes

In the introduction we showed that due to the lack of locality of
reference, the näıve implementation of the sieve of Eratosthenes used
〈O (N log log N) , O (N log log N)〉. A more sophisticated approach—creating
lists of the multiples of each prime, and then sorting them together—improved
the locality at the cost of additional computation, leading to a cost of
〈sort (N log log N) , O(N log N log log N)〉. We can sharpen this approach by
using a (general) efficient data structure instead of the sorting step, and then
further by introducing a data structure designed specifically for this problem.

Using Priority Queues. The sieve of Eratosthenes can be implemented using
only priority-queue operations: insert and delete-min. In this version, instead of
crossing off all multiples of a discovered prime consecutively, we perform lazy
inserts of these multiples into the priority queue.

The priority queue Q stores 〈k, v〉 pairs, where v is a prime and k is a mul-
tiple of v. That is, the composites are the keys in the priority queue and the
corresponding prime-factor is its value .5 We start off by inserting the first pair
5 Note that the delete-min operations of the priority queue are on the keys, i.e., the

composites.

198 M.A. Bender et al.

〈4, 2〉 into Q, and at each step, we extract (and delete) the minimum composite
〈k, v〉 pair in Q. Any number less than k which has never been inserted into
Q must be prime. We keep track of the last deleted composite k′, and check if
k > k′ + 1. If so, we declare p = k′ + 1 as prime, and insert 〈p2, p〉 into Q. In
each of these iterations, we always insert the next multiple 〈k + v, v〉 into Q.

We implement this algorithm using the RAM-efficient priority queue of Arge
and Thorup [5].

Lemma 1. The sieve of Eratosthenes implemented using a RAM-
efficient external-memory priority queue [5] has complexity

〈
O(sort(N log

log N)), O
(
N log log N

(
logM/B N + log log M

))〉
and uses O

(√
N

)
space for

sieving primes in [1, N].

Proof. This follows from the observation that the sieve performs
Θ

(∑
primep∈[1,

√
N]

N
p

)
= Θ (N log log N) operations on Q costing

〈
O

(
1
B

logM/B N
)
, O

(
logM/B N + log log M

)〉
each.
�

Using a Value-sensitive Priority Queue. In the above algorithm, the key-
value pairs corresponding to smaller values are accessed more frequently because
smaller primes have more multiples in a given range. Therefore, a structure that
prioritizes the efficiency of operations on smaller primes (values) outperforms
a generic priority queue. We introduce a value-sensitive priority queue, in
which the amortized access cost of an operation with value v depends on v
instead of the size of the data structure.

A value-sensitive priority queue Q has two parts—the top part consisting of
a single internal-memory priority queue Q′ and the bottom part consisting of
�log log N� external-memory priority queues Q1, Q2, . . . , Q�log log N�.

Each Qi in the bottom-part of Q is a RAM-efficient external-memory prior-
ity queue [5] that stores 〈k, v〉 pairs, for v ∈ [22

i

, 22
i+1

). Hence, each Qi contains
fewer than Ni = 22

i+1
items. With a cache of size M , Qi supports insert and

delete-min operations in
〈
O((logM/B Ni)/B), O(logM/B Ni + log log M)

〉
amor-

tized cost [5]. Moreover, in each Qi we have log v = Θ (log Ni). Thus, the cost
reduces to

〈
O((logM/B v)/B), O(logM/B v + log log M)

〉
for an itemwith value v.

Though we divide the cache equally among all Qi’s, the asymptotic cost per opera-
tion remains unchanged assuming M > B(log log N)1+ε for some constant ε > 0.

The queue Q′ in the top part only contains the minimum composite (key)
item from each Qi, and so the size of Q′ will be Θ (log log N). We use the dynamic
integer set data structure [22] to implement Q′ which supports insert and delete-
min operations on Q′ in O (1) time using only O (log n) space. We also maintain
an array A[1 : �log log N�] such that A[i] stores Qi’s contributed item to Q′; thus
we can access it in constant time.

To perform a delete-min, we extract the minimum key item from Q′, check
its value to find the Qi it came from, extract the minimum key item from that

The I/O Complexity of Computing Prime Tables 199

Qi and insert it into Q′. To insert an item , we first check its value to determine
the destination Qi, compare it with the item in A[i], and depending on the result
of the comparison we either insert the new item directly into Qi or move Qi’s
current item in Q′ to Qi and insert the new item into Q′. The following lemma
summarizes the performance of these operations.

Lemma 2. Using a value-sensitive priority queue Q as defined above, insert-
ing an item with value v takes

〈
O((logM/B v)/B), O(logM/B v)

〉
, and a delete-

min that returns an item with value v takes
〈
O((logM/B v)/B), O(logM/B v +

log log M)
〉
, assuming M > log N + B(log log N)1+ε for some constant ε > 0.

We now use this value-sensitive priority queue to efficiently implement the
sieve of Eratosthenes. Each prime p is involved in Θ (N/p) priority queue oper-
ations, and by the Prime Number Theorem [16], there are O(

√
N/ log N) prime

numbers in [1,
√

N], and the ith prime number is approximately i ln i. Theorem 1
now follows.

Theorem 1. Using a value-sensitive priority queue, the sieve of Eratosthenes
runs in

〈
sort (N) , O(N(logM/B N + log log M log log N))

〉
and uses O(

√
N)

space, provided M > log N + B(log log N)1+ε for some constant ε > 0.
We can simplify this to 〈sort (N) , Bsort (N)〉 if log N/ log log N =

Ω(log(M/B) log log M) and log(N/B) = Ω(log N).

4 Linear Sieve of Gries and Misra

There are several variants of the sieve of Eratosthenes [8,13,15,19] that perform
O(N) operations by only marking each composite exactly once; see [27] for a
survey. We will focus on one of the linear variants, the GM linear sieve [15].
Other linear-sieve variants, such as [8,13,19] share the same underlying data-
structural operations, and much of the basic analysis below carries over.

The GM linear sieve is based on the following basic property of composite
numbers: each composite C can be represented uniquely as C = prq where p is
the smallest prime factor of C, and either q = p or p does not divide q [15].

Thus, each composite has a unique normal form based on p, q and r. Crossing
off the composites in a lexicographical order based on these (p, q, r) ensures that
each composite is marked exactly once. Thus the RAM complexity is O(N).

C ← {1}; p ← 1;

while p ≤ √
N do

p ← InvSucc(p,C); q ← p;
while q ≤ N/p do

for r = 1, 2, . . . , logp(N/q)
do
Insert(prq, C);
q ← InvSucc(q, C);

return [1;N] \ C
Algorithm 1. GM Linear Sieve

Algorithm 1 describes the linear
sieve in terms of subroutines. It builds
a set C of composite numbers, then
returns its complement.

The subroutine Insert (x, C) inserts
x in C. Inverse successor (InvSucc(x, C)
returns the smallest element larger than
x that is not in C.

200 M.A. Bender et al.

While the RAM complexity is an improvement by a factor of log log N over
the classic sieve of Eratosthenes, the algorithm (thematically) performs poorly in
the DAM model. Even though each composite is marked exactly once, resulting
in O(N) operations, the overall complexity of this algorithm is 〈O (N) , O (N)〉,
as a result poor data locality. In the rest of the section we improve the locality
using a “buffer-tree-like” data structure, while also taking advantage of the bit-
complexity of words to improve the performance further.

Using a Buffer Tree. We first introduce the classical buffer tree of Arge [3],
and then modify the structure to improve the bounds of the GM linear sieve.
We give a high-level overview of the data structure here.

The classical buffer tree has branching factor M/B, with a buffer of size
M at each node. We assume a complete tree for simplicity, so its height is
�logM/B N/M� = O(logM/B N/B). Newly-inserted elements are placed into the
root buffer. If the root buffer is full, all of its elements are flushed: first sorted, and
then placed in their respective children. This takes 〈O (M/B) , O (M log M)〉.
This process is then repeated recursively as necessary for the buffer of each
child. Since each element is only flushed to one node at each level, and the
amortized cost of a flush is 〈O(1/B), O(log M)〉, the cost to flush all elements
is

〈
O(N/B logM/B N/B), O(N log N)

〉
.

Inverse successor can be performed by searching within the tree. However,
these searches are very expensive, as we must search every level of the tree—it
may be that a recently-inserted element changed the inverse successor. Thus it
costs at least

〈
O(M/B logM/B N/B), O(M logM/B N/B)

〉
for a single inverse

successor query.

Using a Buffer-tree-like Structure. In order to achieve better bounds, we
will need to improve the inverse successor time to match the insert time. It turns
out that this will also improve the computation time considerably; we will only
do O(B) computations per I/O, the best possible for a given I/O bound.

As an initial optimization, we perform a wheel sieve using the primes up to√
log N . By an analogue of Merten’s Theorem, this leaves only N/ log log N

candidate primes. This reduces the number of insertions into the buffer tree.
To avoid the I/Os along the search path for the inverse successor queries,

we adjust the branching factor to
√

M/B rather than M/B, which doubles the
height, and partition each buffer into

√
M/B subarrays of size

√
MB: one for

each child. Then as we scan the array, we can store the path from the root to the
current leaf in

√
MB logM/B N/B words. If

√
M/B > logM/B N/B this path

fits in memory. Thus, the inverse successor queries can avoid the path-searching
I/O cost without affecting the amortized insert cost.

Next, since the elements of the leaves are consecutive integers, each can be
encoded using a single bit, rather than an entire word. Recall that we can read
Ω(B log N) of these bits in a single block transfer. This could potentially speed
up queries, but only if we can guarantee that the inverse successor can always
be found by scanning only the bit array. However, during an inverse successor
scan, we already maintain the path in memory; thus, we can flush all elements

The I/O Complexity of Computing Prime Tables 201

along the path without any I/O cost. Therefore we can in fact get the correct
inverse successor by scanning the array.

As an bonus, we can improve the RAM complexity during a flush. Since our
array is static and the leaves divide the array evenly, we can calculate the child
being flushed to using modular arithmetic.

In total, we insert N/ log log N elements into the buffer tree. Each must be
flushed through O(logM/B N/B) levels, where a flush takes 〈O (1/B) , O (1)〉
amortized. The inverse successor queries must scan through N log log N ele-
ments (by the analysis of the sieve of Eratostheses), but due to our bit array
representation this only takes 〈O(N log log N/B log N), O(N log log N/ log N)〉,
a lower-order term.

Theorem 2. The GM linear sieve implemented using our modified buffer
tree structure, assuming M > B2,

√
M/B > logM/B(N/B), and

√
M/B > log2M/B(N/B)/ log log N , uses O(N) space and has a complexity of

〈sort (N/ log log N) , Bsort (N/ log log N)〉.

Using Priority Queues. The GM linear sieve can also be implemented using
a standard priority queue API. While any priority-queue of choice can be used,
the RAM- and I/O-efficient priority queue of Arge and Thorup [5] in particular
achieves the same bounds as the modified buffer tree implementation.

The two data structures presented to implement the GM linear sieve offer
a nice contrast. The buffer tree approach is self-contained and designed specifi-
cally for sieving, while the PQ based approach offers flexibility to use a PQ of
your choice. The RAM-efficient PQ [5], in particular, is based on integer sorting
techniques, while the buffer tree avoids such heavy machinery. We sketch the
PQ-based version here for completeness.

The basic algorithm is the same (Algorithm 1), that is, enumerate composites
in their unique normal form prq. However, in this variant, InvSucc is imple-
mented using only insert and delete-min operations.

In contrast to the buffer tree approach where we build the entire set of
composites C and eventually return its complement, we maintain a running list
of potential primes as a priority queue P. As the primes are discovered, we
extract them from P and output. The composites prq generated by the GM
linear sieve algorithm are temporarily stored in another priority queue C. We
ensure locality of reference by lazily deleting the discovered composites in C
from P. In particular, we update P every time InvSucc is called, just as much
as is required to find the next candidate for p or q, by using delete-min operations
on P and C.

Theorem 3. The GM linear sieve implemented using RAM-efficient priority
queues [5], assuming N > 2M and M > 2B, uses O(N) space and has a com-
plexity of

〈
sort

(
N

log log N

)
, N

log log N

(
logM

B

N
B + log log M

)〉
.

We can simplify this to
〈
sort

(
N

log log N

)
, B sort

(
N

log log N

)〉
if log N >

log M log log M .

202 M.A. Bender et al.

5 Sieve of Atkin

The sieve of Atkin [6,12] is one of the most efficient known sieves in terms of
RAM computations. It can compute all the primes up to N in O(N/ log log N)
time using O(

√
N) memory. We first describe the original algorithm from [6] and

then use various priority queues to improve its I/O efficiency.
The algorithm works by exploiting the following characterization of primes

using binary quadratic forms. Note that every number that is not trivially com-
posite (divisible by 2 or 3) must satisfy one of the three congruences. For an
excellent introduction to the underlying number theoretic concepts, see [10].

Theorem 4 [6]. Let k be a square-free integer with k ≡ 1 (mod 4) (resp. k ≡ 1
(mod 6), k ≡ 11 (mod 12)) . Then k is prime if and only if the number of positive
solutions to x2 + 4y2 = k (resp. 3x2 + y2 = k, 3x2 − y2 = k (x > y)) is odd.

For each quadratic form f(x, y), the number of solutions can be computed
by brute force in O(N) operations by iterating over the set L = {(x, y) | 0 <
f(x, y) ≤ N}. This can be done with a working set size of O(

√
N) by “tracing”

the level curves of f . Then, the number of solutions that occur an even number of
times are removed, and by precomputing the primes less than

√
N , the numbers

that are not square-free can be sieved out leaving only the primes as a result of
Theorem 4.

The algorithm as described above requires O(N) operations, as it must iterate
through the entire domain L. This can be made more efficient by first performing
a wheel sieve. If we choose W = 12 ·

∏
p2≤log N p, then by an analog of Mertens’

theorem, the proportion of (x, y) pairs with 0 ≤ x, y < W such that f(x, y) is
a unit mod W is 1/ log log N . By only considering the W -translations of these
pairs we obtain L′ ⊆ L, with |L′| = O(N/ log log N) and f(x, y) composite on
L \ L′. The algorithm can then proceed as above.

Using Priority Queues. The above algorithm and its variants require that
M = Ω(

√
N). By utilizing a priority queue to store the multiplicities of the

values of f over L, as well as one to implement the square-free sieve, we can
trade this memory requirement for I/O operations. In what follows we use an
analog of the wheel sieve optimization described above, however we note that
the algorithm and analysis can be adapted to omit this.

Having performed the wheel sieve as described above, we insert the values
of each quadratic form f over each domain L into an I/O- and RAM-efficient
priority queue Q [5]. This requires |L| such operations (and their subsequent
extractions), and so this takes

〈
sort (|L|), O(|L| logM/B |L| + |L| log log M/

log log N)
〉
. Because we have used a wheel sieve, |L| = O(N/ log log N), and

so this reduces to
〈

sort

(
N

log log N

)

, O

(
N logM/B N

log log N
+

N log log M

log log N

)〉

. (1)

The remaining entries in Q are now either primes or squareful numbers. In
order to remove the squareful numbers, we sieve the numbers in Q as follows.

The I/O Complexity of Computing Prime Tables 203

We maintain a separate I/O- and RAM-efficient priority queue Q′ of pairs 〈v, p〉,
where p ≤

√
N is a previously discovered prime and v is a multiple of p2. For

each value v we pull from Q, we repeatedly extract the min value 〈w, p〉 from Q′

and insert 〈w + p2, p〉 until either v is found, in which case v is not square-free
and thus not a prime, or exceeded, in which case v is prime. If v is a prime, then
we insert 〈v2, v〉 into Q′.

Each prime p ≤
√

N will be involved in at most N/p2 operations on Q′,
and so will contribute

〈
O(

N logM/B N

p2B , O(N
p2 (logM/B N + log log M)

〉
operations.

Summing over p, the total number of operations in this phase of the algorithm
is less than 〈O (sort (N) /(B log N)) , O ((sort (N) + log log M)/ log N)〉 .

As described above, the priority queue Q may contain up to N items. We
can reduce the max size of Q to O(

√
N) by tracing the level curves much like

the sieve of Atkin.

Theorem 5. The sieve of Atkin implemented with a wheel sieve, as well
as I/O and RAM efficient priority queues runs in 〈sort (N/ log log N) ,
O((N logM/B N)/ log log N + N log log M/ log log N)

〉
, using O(

√
N) space.

We can simplify this to 〈sort (N/ log log N) , B sort (N/ log log N)〉 if
log N = Ω(log(M/B) log log M) and log N/B = Ω(log N).

6 Sieve of Sorenson

The sieve of Sorenson [31] uses a hybrid approach. It first uses a wheel sieve to
remove multiples of small primes. Then, it eliminates non-primes using a test
based on so called pseudosquares. Finally it removes composite prime powers
with another sieve.

The pseudosquare Lp is the smallest non-square integer with Lp ≡ 1
(mod 8) that is a quadratic residue modulo every odd prime q ≤ p. The sieve of
Sorenson is based on the following theorem in that its steps satisfy each require-
ment of the theorem explicitly.

Theorem 6 [31]. Let x and s be positive integers. If the following hold:

(i) All prime divisors of x exceed s,
(ii) x/s < Lp, the p-th pseudosquare for some prime p,
(iii) p

(x−1)/2
i ≡ ±1 (mod x) for all primes pi ≤ p,

(iv) 2(x−1)/2 ≡ −1 (mod x) when x ≡ 5 (mod 8),
(v) p

(x−1)/2
i ≡ −1 (mod x) for some prime pi ≤ p when x ≡ 1 (mod 8),

then x is a prime or a prime power.

The algorithm first sets s =
⌈√

log N
⌉
. It then chooses p(N) so that Lp(N)

is the smallest pseudosquare satisfying Lp(N) > N/s. Thus, the algorithm must
calculate Lp(N). We omit this calculation; see [31] for an o(N) algorithm to do so.

204 M.A. Bender et al.

A table of the first 73 pseudosquares is sufficient for any N < 2.9 × 1024.6 Next,
the algorithm calculates the first s primes. We assume that M 	 π(p(N)).

The algorithm proceeds in three phases. Sorenson’s original algorithm seg-
ments the range in order to fit in cache, but this step is omitted here:

1. Perform a (linear) wheel sieve to eliminate multiples of the first s primes.7

All remaining numbers satisfy the first requirement of Theorem6.
2. For each remaining k:

– It verifies that 2(k−1)/2 ≡ ±1 (mod k) and is −1 if k ≡ 5 mod 8.
– If k passes the above test, then it verifies that p

(k−1)/2
i ≡ ±1 (mod k) for

all odd primes pi ≤ p(N), and that p
(k−1)/2
i ≡ −1 (mod k) for at least one

pi if k ≡ 1 (mod 8).
Note that this second test determines if the remaining requirements of The-
orem 6 are met.

3. Remove all prime powers, as follows. If N ≤ 6.4 × 1037, only primes remain
and this phase is unnecessary [31,34]. Otherwise construct a list of all the
perfect powers less than N by repeatedly exponentiating every element of
the set {2, . . . , �

√
N�} until it is greater than N . Sort these O(

√
N log N)

elements and remove them from the prime candidate list.

The complexity of this algorithm is dominated by step 2. To analyze the
RAM complexity, first note that only O(N/ log log N) elements remain after the
wheel sieve. Performing each base 2 pseudoprime test takes O(log N) time, so
the cumulative total is O(N log N/ log log N). Now, only O(N/ log N) numbers
up to N pass the base-2 pseudoprime test (see e.g. [23,31]). For each of the
remaining integers, we must do π(p(N)) modular exponentiations (to a power
less than N), which requires a total of O(Nπ(p(N))) operations. Thus we get a
total cost of O(Nπ(p(N)) + N log N/ log log N))

We can remove the second term using recent bounds on pseudoprimes. Pomer-
ance and Shparlinski [24] have shown that Lp(N) ≤ exp(3p(N)/ log log p(N)).
Thus, N log N/ log log N = O(Nπ(p(N))/ log log p(N)), and so the running time
simplifies to O(Nπ(p(N))).

Theorem 7. The sieve of Sorenson runs in
〈
O

(
N
B

)
, O (Nπ(p(N)))

〉
.

We can phrase the complexity in terms of N alone by bounding p. The best
known bound for p leads to a running time of roughly O(N1.1516). On the other
hand, the Extended Riemann Hypothesis implies p < 2 log2 N , and Sorenson
conjectures that p ∼ 1

log 2 log N log log N [31]; under these conjectures the RAM
complexity is O(N log2 N/ log log N) and O(N log N) respectively.

Sieving an Interval. Note that a similar analysis shows we can efficiently sieve
an interval with the sieve of Sorenson as well.
6 These tables are available online. For example, see https://oeis.org/A002189/

b002189.txt.
7 Sorenson’s exposition removes multiples of the small primes one by one on each

segment in order to retain small working space. From an external memory point of
view, building the whole wheel of size No(1) is also effective.

https://oeis.org/A002189/b002189.txt
https://oeis.org/A002189/b002189.txt

The I/O Complexity of Computing Prime Tables 205

Acknowledgments. We thank Oleksii Starov for suggesting this problem to us.

References

1. Aggarwal, A., Vitter, S.: Jeffrey: the input/output complexity of sorting and related
problems. Commun. ACM 31(9), 1116–1127 (1988)

2. Agrawal, M., Kayal, N., Saxena, N.: Primes is in P. Ann. Math. 50, 781–793 (2004)
3. Arge, L.: The buffer tree: a technique for designing batched external data struc-

tures. Algorithmica 37(1), 1–24 (2003)
4. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: Cache-

oblivious priority queue and graph algorithm applications. In: Proceedings of the
34th Annual Symposium on Theory of Computing, pp. 268–276 (2002)

5. Arge, L., Thorup, M.: RAM-efficient external memory sorting. In: Cai, L., Cheng,
S.-W., Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 491–
501. Springer, Heidelberg (2013)

6. Atkin, A., Bernstein, D.: Prime sieves using binary quadratic forms. Math. Com-
put. 73(246), 1023–1030 (2004)

7. Bays, C., Hudson, R.H.: The segmented sieve of Eratosthenes and primes in arith-
metic progressions to 1012. BIT Numer. Math. 17(2), 121–127 (1977)

8. Bengelloun, S.: An incremental primal sieve. Acta Informatica 23(2), 119–125
(1986)

9. Brent, R.P.: The first occurrence of large gaps between successive primes. Math.
Comput. 27(124), 959–963 (1973)

10. Cox, D.A.: Primes of the Form x2+ny2: Fermat, Class Field Theory, and Complex
Multiplication. Wiley, New York (1989)

11. Dunten, B., Jones, J., Sorenson, J.: A space-efficient fast prime number sieve. IPL
59(2), 79–84 (1996)

12. Farach-Colton, M., Tsai, M.-T.: On the complexity of computing prime tables.
In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 677–688.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0 57

13. Gale, R., Pratt, V.: CGOL-an Algebraic Notation for MACLISP Users. MIT Arti-
ficial Intelligence Library, Cambridge (1977)

14. Galway, W.F.: Dissecting a sieve to cut its need for space. In: Bosma, W. (ed.)
ANTS-IV. LNCS, vol. 1838, pp. 297–312. Springer, Heidelberg (2000)

15. Gries, D., Misra, J.: A linear sieve algorithm for finding prime numbers. Commun.
ACM 21(12), 999–1003 (1978)

16. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford
University Press, Oxford (1979)

17. Horsley, S.: KOΣKINON EPATOΣΘENOYΣ. or, the sieve of eratosthenes. being
an account of his method of finding all the prime numbers, by the Rev. Samuel
Horsley, FRS. Philos. Trans. 62, 327–347 (1772)

18. Lenstra Jr., H.W.: Primality testing with gaussian periods. In: Agrawal, M., Seth,
A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 1–1. Springer, Heidelberg (2002)

19. Mairson, H.G.: Some new upper bounds on the generation of prime numbers.
Commun. ACM 20(9), 664–669 (1977)

20. Mertens, F.: Ein beitrag zur analytischen zahlentheorie. J. fr die reine und ange-
wandte Mathematik 78, 46–62 (1874)

21. News, F.: World’s largest prime number discovered - all 17 million digits, Feb-
ruary 2013. https://web.archive.org/web/20130205223234/, http://www.foxnews.
com/science/2013/02/05/worlds-largest-prime-number-discovered/

http://dx.doi.org/10.1007/978-3-662-48971-0_57
https://web.archive.org/web/20130205223234/
http://www.foxnews.com/science/2013/02/05/worlds-largest-prime-number-discovered/
http://www.foxnews.com/science/2013/02/05/worlds-largest-prime-number-discovered/

206 M.A. Bender et al.

22. Patrascu, M., Thorup, M., Dynamic integer sets with optimal rank, select, prede-
cessor search. In: FOCS, pp. 166–175 (2014)

23. Pomerance, C., Selfridge, J.L., Wagstaff, S.S.: The pseudoprimes to 25 ·109. Math.
Comput. 35(151), 1003–1026 (1980)

24. Pomerance, C., Shparlinski, I.E.: On pseudosquares and pseudopowers. Comb.
Number Theor., 171–184 (2009)

25. Pritchard, P.: A sublinear additive sieve for finding prime number. Commun. ACM
24(1), 18–23 (1981)

26. Pritchard, P.: Explaining the wheel sieve. Acta Informatica 17(4), 477–485 (1982)
27. Pritchard, P.: Linear prime-number sieves: a family tree. Sci. Comput. Program.

9(1), 17–35 (1987)
28. Schönhage, A., Grotefeld, A., Vetter, E.: Fast algorithms: a multitape turing

machine implementation. Wissenschaftsverlag, B.I (1994)
29. Singleton, R.C.: Algorithm 357: an efficient prime number generator. Commun.

ACM 12, 563–564 (1969)
30. Sorenson, J.: An introduction to prime number sieves. Technical report 909, Com-

puter Sciences Department, University of Wisconsin-Madison (1990)
31. Sorenson, J.P.: The pseudosquares prime sieve. In: Hess, F., Pauli, S., Pohst, M.

(eds.) ANTS 2006. LNCS, vol. 4076, pp. 193–207. Springer, Heidelberg (2006)
32. Villarino, M.B.: Mertens’ proof of mertens’ theorem. arXiv:math/0504289 (2005)
33. Vitter, J.S.: External memory algorithms and data structures: dealing with massive

data. ACM Comput. Surv. (CsUR) 33(2), 209–271 (2001)
34. Williams, H.C.: Edouard Lucas and primality testing. Canadian Mathematics Soci-

ety Series of Monographs and Advanced Texts, 22 (1998)

http://arxiv.org/abs/math/0504289

Increasing Diamonds

Olivier Bodini1, Matthieu Dien2, Xavier Fontaine1,
Antoine Genitrini2(B), and Hsien-Kuei Hwang3

1 Laboratoire d’Informatique de Paris-Nord, CNRS UMR 7030 - Institut Galilée -
Université Paris-Nord, 99, Avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
Olivier.Bodini@lipn.univ-paris13.fr, Xavier.Fontaine@polytechnique.edu

2 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606,
4 Place Jussieu, 75005 Paris, France

{Matthieu.Dien,Antoine.Genitrini}@lip6.fr
3 Institute of Statistical Science, Academia Sinica, Taipei 115, Taiwan

hkhwang@stat.sinica.edu.tw

Abstract. A class of diamond-shaped combinatorial structures is stud-
ied whose enumerating generating functions satisfy differential equations
of the form f ′′ = G(f), for some function G. In addition to their own
interests and being natural extensions of increasing trees, the study of
such DAG-structures was motivated by modelling executions of series-
parallel concurrent processes; they may also be used in other digraph
contexts having simultaneously a source and a sink, and are closely con-
nected to a few other known combinatorial structures such as trees, cacti
and permutations. We explore in this extended abstract the analytic-
combinatorial aspect of these structures, as well as the algorithmic issues
for efficiently generating random instances.

1 Introduction

Simple combinatorial structures that are both mathematically tractable and
physically useful in different modeling purposes have received much attention
in the literature. Typical representative examples include the simply-generated
family of trees characterized by the functional equation (see [13])

f = zG(f),

and the varieties of increasing trees by the differential equation (see [3])

f ′ = G(f).

Due to their simplicity, these tree models also appeared naturally under various
guises in many areas. Three simple prototypical cases are given in the following
table.

This research was partially supported by the ANR MetACOnc project ANR-15-
CE40-0014.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 207–219, 2016.
DOI: 10.1007/978-3-662-49529-2 16

208 O. Bodini et al.

G f = zG(f) f ′ = G(f)

1 + z2

(1 + z)2
Binary tree

(Catalan tree)

Binary increasing tree

(Binary search tree)

exp(z) Cayley tree Recursive tree
1

1−z
Planted (ordered) tree Plane-oriented recursive tree

In particular, binary trees have long been studied in the computer science
literature (see Knuth’s book [9]) and a compilation of 214 combinatorial objects
leading to the same enumerating Catalan numbers can be found in Stanley’s
recent book [14]. On the other hand, binary increasing trees are isomorphic to
binary search trees, which represent another class of fundamental data struc-
tures with a huge number of variants; they are also closely related to Quicksort
in Algorithms, to Yule-Harding models in Phylogenetics, to random permuta-
tions in Combinatorics, Rényi’s car-parking problem in Applied Probability, and
to Eden model in Statistical Physics, to name just a few; see [6,8] for more
information.

We explore in this paper another class of combinatorial structures, which
we call increasing diamonds: they are labelled, directed acyclic graphs (DAGs)
with a source and a sink such that the labels along any path are increasing ; see
Fig. 1 for an illustration of two different diamonds. In standard symbolic notation
(see [8]), increasing diamonds can be described as

F = Z� + Z� � G(F) � Z�. (1)

where G is some functional operation specifying possible degrees and construction
rules, and the two symbols � and � represent the smallest and the largest labels,
respectively. This equation then translates into the differential equation satisfied
by the enumerating generating function1

f ′′(z) = G(f(z)), with f(0) = 0 and f ′(0) = 1. (2)

Here f(z) =
∑

n≥1 anzn/n!, where an enumerates the number of increasing
diamonds with n labels.

We study in this paper three simple representative cases, and focus on asymp-
totic enumeration and random generation. The following table lists the dominant
term in the corresponding asymptotic approximation in each case.
Here OEIS stands for Sloane’s Online Encyclopedia of Integer Sequences, Cm is
a constant (see Theorem 3), and ρbinary, ρm-ary and ρplane are three constants
given in (9), (12) and (14), respectively. While most properties are expected
to be similar to those of increasing trees (see [3]), the higher order derivative
introduces more technical difficulties, as visible from the less common asymptotic
order produced when G = 1/(1 − z).

1 We limit our discussion in this paper to the situation when f ′(0) = 1 for simplicity.

Increasing Diamonds 209

1

4 2

5 3

7

6 8

9

1

2 3 4

5 6 7 8 9 10

11 12 13

14

Fig. 1. A binary (left) and a ternary (right) increasing diamonds of size 9 and 14,
respectively.

G OEIS Other description an
n!

∼ Error term of order

exp(z) A000111 Euler or up/down
numbers

2n(2
π
)n Exponential

(1 + z)2 A007558 Shifts 2 places left after
squared

6nρ−n−2
binary Exponential

1 + zm

(m ≥ 3)
– – Cmn

− m−3
m−1 ρ

−n− 2
m−1

m-ary Polynomial

1
1−z

A032035 Triangular cacti with
bridges

ρ1−n
plane

n2√
2 log n

Logarithmic

1
(1−z)3

A001147 Double factorial 2n√
πn

Polynomial

Structurally, increasing diamonds are bipolar digraphs with a downward pla-
narity; they are also special cases of series-parallel graphs and are more expres-
sive than quasi-trees in [2]. Since DAGs with a unique source and a unique
sink appear naturally in many concrete applications, our increasing diamonds
may be of potential use in modelling structural parameters or problem complex-
ity in these contexts. Typical examples include: partial orders and their linear
extensions, computational processes and their executions in parallel computing,
network or data flows, food-webs, register sharing, machine learning, streaming
analysis, grid computing, etc.

To be useful for modelling concrete structures in applications, we need either
more precise statistical properties or more efficient generation algorithms for
random increasing diamonds. The former will be addressed elsewhere, and for
the latter, we will focus on the by now popular Boltzmann sampling algorithm
proposed in [7], which was recently extended in [5] to deal with the situation

210 O. Bodini et al.

of first-order differential equations. We develop further techniques to handle the
second-order differential equations.

On the other hand, the type of differential equations we study in this paper
(f ′′ = G(f)) also emerges naturally in other contexts, notably in a recent paper
by Kuba and Panholzer [12] on multi-labeled increasing trees and hook-length
formulae; see also their earlier paper [11]. While the equations are the same,
our combinatorial structures here are different and to some extent more natural,
and such a difference is reflected by the initial conditions: we focus on f(0) = 0
and f ′(0) = 1 whereas they deal with f(0) = f ′(0) = 0. Also we will derive
asymptotic expansions. Along the same direction, Kuba and Panholzer examined
in [10] another class of tree structures whose exponential generating function
satisfies f (m) = (m−1)!emf , where m ≥ 2, which coincides with our model when
m = 2. They studied in detail some shape characteristics in such random trees.
Further connections can be made between such bucket trees and our increasing
diamonds.

The paper is organized as follows. In the next section, we analyze the three
classes of increasing diamonds in detail. Then Sect. 3 is devoted to the develop-
ment of algorithmic tools for generating efficiently random diamonds that rely
on the notion of uniform Boltzmann sampling.

2 Exact Enumeration and Asymptotics

In this section, we first discuss the general solution of the differential equation
f ′′ = G(f) subject to the initial conditions f(0) = 0 and f ′(0) = 1 (other initial
conditions can be dealt with in a similar manner), and then concentrate our
discussion on a few special cases for which we will derive more precise asymptotic
approximations.

2.1 General Solution of f ′′ = G(f)

Multiplying both sides of (2) by 2f ′, we obtain 2f ′′f ′ = 2G(f)f ′, which implies
that

f ′(z)2 = f ′(0)2 +
∫ z

0

2G(f(t))f ′(t)dt = 1 + 2G (f(z)),

where G (z) :=
∫ z

0
G(t)dt. Thus f ′(z) = ±

√
1 + 2G (f(z)), or

±
∫ f(z)

0

1
√

1 + 2G (t)
dt = z. (3)

Lemma 1. The solution to the differential equation f ′′ = G(f) with f(0) = 0
and f ′(0) = 1 is given by

∫ f(z)

0

1
√

1 + 2G (t)
dt = z. (4)

Increasing Diamonds 211

Proof. By expanding the left-hand side of the second equation in (3) as a Taylor
series, we exclude the negative solution and conclude (4).

The solution (4) is, although implicit, useful in our asymptotic analysis even
when no further simplification is possible. First recall a useful property when f
blows up near the dominant singularity, which is readily modified from Lemma
1 of [3].

Lemma 2. Given an entire function G, the dominant real positive singularity
of the function f(z), solution to Y ′′ = G(Y) with Y (0) = 0 and Y ′(0) = 1, is
given by

ρ =
∫ ∞

0

dt
√

1 + 2
∫ t

0
G(v)dv

,

provided that the integral converges.

From the brief discussion in Introduction, we see that the coefficient an of
f is well-approximated by an ∼ Cn!ρ−nnα(log n)β , and from this observation
we expect that the singularity analysis of Flajolet and Odlyzko (see [8]) will be
useful in such an analysis, as in [3].

2.2 Non-plane (Unordered) Increasing Diamonds

We discuss in detail the class of non-plane increasing diamonds, which can be
decomposed as sets of increasing diamonds:

F = Z� + Z� � Set (F) � Z�,

so that the corresponding exponential generating function satisfies f ′′ = ef . The
two diamonds in Fig. 1 may be regarded, neglecting the order of subtrees, as two
instances of non-plane increasing diamonds.

By (4) with G(z) = ez and G (z) = ez − 1, we see that the exponential
generating function f of an has the solution

f(z) = − log(1 − sin z), (5)

and the number an of such increasing diamonds with n labels starts with

{an}n≥1 = {1, 1, 1, 2, 5, 16, 61, 272, 1385, 7936, 50521, 353792, . . . },

which coincides with A000111 in Sloane’s OEIS, where many other structures
with identical enumerating sequence are also given (alternating permutations,
zig-zag posets, some increasing trees, etc.). This shows the richness and useful-
ness of the equation f ′′ = ef in combinatorial objects.

Note that, by the differential equation f ′′′ = f ′f ′′ (obtained by the differen-
tiation of f ′′ = ef), we have the recurrence relation

an =
∑

2≤k<n

(
n − 3
k − 2

)

akan−k (n ≥ 3),

which is useful for numerical purposes.

212 O. Bodini et al.

Theorem 1. The number an of non-plane increasing diamonds with n labels
satisfies

an =
2n+1 (n − 1)!

πn

+∞∑

j=−∞

1
(1 + 4j)n

. (6)

It is less obvious that the right-hand side represents an integer.

Proof. By (5), we have f ′(z) = tan z + sec z, which has only simple poles at
z = (2k+ 1

2)π. By standard expansion for meromorphic functions ([8, Ch. IV]), we
obtain the expansion (6), which is not only an asymptotic expansion (expressible
as Hurwitz’s zeta function)

an =
2n+1 (n − 1)!

πn

∑

j≥0

(
1

(1 + 4j)n
+

(−1)n

(4j + 3)n

)

,

but also an identity for n ≥ 1.

Another exactly solvable case is when G(z) = (1−z)−3. In this case, we have
the surprisingly simple solution (cf. [12])

f(z) = 1 −
√

1 − 2z, (7)

leading to the simple expression for the total number of size-n diamonds

an = (2n − 3)!! =
(2n − 2)!

2n−1(n − 1)!
(n ≥ 1).

However, exact solutions as (5) and (7) are exceptional rather than common-
place, and different techniques are needed in most cases as we will see below.

2.3 m-ary Increasing Diamonds

Consider now increasing diamonds in which the degrees of nodes are limited to
m ≥ 2; see Fig. 1 for a binary and a ternary diamond. In this case, we have the
specification

F = Z� + Z� � Fm � Z�, (8)

which leads to the differential equation f ′′ = 1+fm with f(0) = 0 and f ′(0) = 1.
Closed-form solutions are possible when m = 2 and m = 3 (in terms of elliptic
integrals), but they are not simple. So we present only the solution for m = 2
and derive asymptotic approximation for m ≥ 3 (in a slightly more general
formulation).

Binary increasing diamonds and Weierstrass’s ℘-function. From (4), we see that
f satisfies the equation

∫ f(z)

0

1
√

1 + 2t + 2
m+1 tm+1

dt = z.

Increasing Diamonds 213

When m = 2, we can express the solution in terms of Weierstrass’s elliptic
function ℘ (see [1]), which is defined periodically over a lattice that contains one
double pole in a corner of each cell. Thus, by construction,

℘(z;ω1, ω2) =
1
z2

+
∑

(k,l)∈Z2\{(0,0)}

(
1

(z + kω1 + lω2)2
− 1

(kω1 + lω2)
2

)

,

where ω1 and ω2 are the periods of ℘.

Theorem 2. The exponential generating function of the number of binary
increasing diamonds can be expressed as

f(z) = 6℘
(
z − ρ;− 1

3 ,− 1
36

)
where ρ :=

∫ ∞

0

dt
√

1 + 2t + 2
3 t3

, (9)

and the number of size-n binary increasing diamonds is given by

an = 6
(n + 1)!
ρn+2

∑

(k,l)∈Z2

1
(
1 + kω1

ρ + lω2
ρ

)n+2 , (10)

where ω1 and ω2 are computable constants.

Asymptotically, an ∼ 6(n + 1)!ρ−n−2, with an exponentially small error. Note
that, by starting with the initial conditions f(0) = f ′(0) = 0, we then obtain the
bi-labelled increasing trees defined in [12], which corresponds to the sequence
A144849 in OEIS.

Proof. (Sketch) The ℘-function satisfies the differential equation

℘′2(z) = 4℘3(z) − g2℘(z) − g3,

and we need only to identify the corresponding parameters.
By Lemma 2, we first determine the dominant singularity ρ; then from the

series expansion of ℘, we deduce (10) by a direct application of singularity analy-
sis (see [8]). �

Although few cases lead to closed-form expressions in terms of known func-
tions, it is not difficult to derive asymptotic approximations based on complex
analysis and singularity analysis, as already highlighted in the classical paper [3].

Polynomial varieties of increasing diamonds. As in [3], we consider the polyno-
mial varieties of increasing diamonds, which are characterized by G(z) being a
polynomial, say

G(z) =
∑

0≤j≤m

bjz
j , (11)

214 O. Bodini et al.

where m ≥ 2 and bm > 0. For simplicity, we may assume that G(z) �≡ z�H(zk),
for some k ≥ 2 and � ≥ 0, namely, G is aperiodic.

Then by (2), the dominant singularity is given by

ρ =
∫ ∞

0

1
√

1 + 2
∑

0≤j≤m
bj

j+1 tj+1
dt, (12)

which is absolutely convergent since m ≥ 2. Then we apply the same idea used
in [3], and obtain

ρ − z =
∫ ∞

f(z)

1
√

1 + 2
∑

0≤j≤m
bj

j+1 tj+1
dt

=
√

m + 1
(m − 1)

√
2bm

f−m−1
2 − bm−1

√
m + 1

mb
3/2
m

f−m+1
2 + · · · ,

as z → ∞. Then by inverting, we get

f(z) =

(
(m − 1)

√
bm√

2(m + 1)

)− 2
m−1

(ρ − z)− 2
m−1

(
1 + O

(
|ρ − z| 2

m−1

))
,

as z ∼ ρ, the justification following also standard line. We then deduce by the
singularity analysis the following asymptotic approximation.

Theorem 3. Assume that G is a polynomial given in (11) and an > 0 for
n ≥ n0 for some n0 > 0. Then the number of increasing diamonds with n labels
in a polynomial variety satisfies

an =

(√
2(m + 1)

(m − 1)
√

bm

) 2
m−1

n−m−3
m−1

Γ (2
m−1)

ρ−n− 2
m−1

(
1 + O

(
n− 4

m−1

))
,

for m ≥ 2, where ρ is given in (12).

Note that the asymptotic estimates here are independent of the initial conditions.
In the special case when m = 3, it is possible to express f in terms of Jacobi

elliptic functions, but the expression is messy.

2.4 Plane Increasing Diamonds

We now focus on plane (ordered) increasing diamonds, which are described by

F = Z� + Z� � Seq (F) � Z�, (13)

leading to the differential equation f ′′ = 1
1−f with the initial conditions f(0) = 0

and f ′(0) = 1.
The analysis of such diamonds is more involved and the asymptotic expan-

sion we obtain has a much poorer convergence rate: instead of exponential or
polynomial, the terms are now in decreasing powers of log n.

Increasing Diamonds 215

Theorem 4. The number of plane increasing diamonds with n labels satisfies

an =
n!ρ1−n

n2
√

2 log n

⎛

⎝
∑

0≤k<K

Pk(log log n)
(log n)k

+ O
(

(log log n)K

(log n)K

)
⎞

⎠ ,

where

ρ :=
∫ ∞

0

1
√

1 − 2 log(1 − t)
dt =

√
e

2

∫ ∞

0

v− 1
2 e−vdv ≈ 0.65567 95424 . . . , (14)

and the Pk’s are computable polynomials (of degree k).

In particular, P0(x) = 1 and P1(x) = 1
8 (x − 3 − 2γ + log 2 + 2 log ρ).

The method of proof is the same as above, details being omitted here. The
first few terms of an are

{1, 1, 1, 3, 13, 77, 573, 5143, 54025, 650121, 8817001, 133049339, . . . },

and corresponds to sequence A032035 in OEIS, which also enumerates increasing
rooted (2,3)-cacti with n−1 nodes. Note that f1 = f ′ −1 satisfies the differential
equation f ′

1 = ef1+f2
1 /2.

3 Random Generation via Boltzmann Samplers

3.1 Boltzmann Samplers for the Differential Classes

The Boltzmann sampling technique was first proposed in the seminal paper [7],
and has been widely developed and extended since then. It captures the features
any successful algorithm must have: simple, efficient and easily extensible.

In this subsection, we briefly recall this technique for labeled structures.

Definition 1. A Boltzmann sampler of parameter x > 0 is an algorithm that
draws an object α of size |α| in a given combinatorial class A with the probability

Px(α) =
x|α|

|α|!A(x)
.

Note that the output size N of a Boltzmann sampler is a random variable
with the law Px(N = n) = anxn/(n!A(x)), and the expectation of N is Ex(N) =
xA′(x)/A(x). Here x is a free variable. To generate an object of size n, one
can choose the parameter x to be the solution of the saddle point equation
Ex(N) = n. With this choice, it is possible to devise a linear-time algorithm to
generate a random instance by repeated use of trial-and-rejection until reaching
an output of size in [(1 − ε)n, (1 + ε)n]) (referred to as an approximate-size
algorithm).

216 O. Bodini et al.

This universal method is not only very efficient but also fully automatizable.
What we need is a complete symbolic (recursive or not) description of the class
in order to construct a sampler. Indeed, Boltzmann samplers for the neutral
and atomic classes E and Z are trivial, and from there general procedures exist
for constructing more complex samplers through elementary operations such
as addition, multiplication, cycle, set, etc. We refer the reader to the original
paper [7] for more details. On the other hand, the Boltzmann sampler for the
box-operator of two classes was addressed in [5].

Note that Boltzmann samplers does not return a labeled object, but only the
unlabeled skeleton. To complete the process, a labeling algorithm is needed.

3.2 Boltzmann Samplers for Second-Order Differential Classes

It is natural to divide the problem into two cases, one in which the differential
equation is induced by the general shape specification F ′′ = φ(Z,F), where F ′′

denotes the class of objects of F in which two nodes are pointed, and the other
by F ′′ = φ(F).

Before considering these two issues, we recall some basic and classical prop-
erties. First, the box product and the derivative operator are linked together
by the fact that C = A � � B entails that C′ = A′ × B. Secondly, we know
how to get a sampler of parameter x for F by just using a sampler of F ′. This
surprising result is obtained by multiplying the Boltzmann parameter x by a
suitable continuous random variable u in [0, 1]. Indeed, this yields the following
algorithm described in [4], which can also be derived from results in [5].

Algorithm 1. ΓxF from ΓF ′

1: if Bernoulli(f(0)/f(x)) then
2: return an object of size 0
3: else
4: Draw U ∈ [0, 1] with the density δx(u) = f ′(ux)x/(f(x) − f(0)) · 1[0,1](u)
5: Draw γ′ = ΓUxF ′

6: return γ′ where the bud is replaced by an atom.
7: end if

In line 5, the object contains what is called a bud in Species Theory. It can be
seen as a hole, that is the reason why it is replaced by an atom (in line 6).

General Case F ′′ = φ(Z,F). We consider now the case F ′′ = φ(Z,F), which
can be dealt with by applying twice Algorithm 1. But this requires to draw two
continuous random variables U and V , and use only their product UV . Clearly,
this can be factored by calculating directly the random variable S = UV . This
gives the following algorithm for which the proof is similar to that of F ′′ =
φ(Z,F) in [5].

Increasing Diamonds 217

Algorithm 2. ΓxF generates an object in F from a sampling in F ′′

1: Draw W ∈ [0, 1] uniformly

2: if W <
f(0)

f(x)
then

3: return an object of size 0

4: else if W <
f(0) + xf ′(0)

f(x)
then

5: return an object of size 1

6: else

7: Draw S ∈ [0, 1] according to the density δx(s) =
x2(1 − s)f ′′(sx)

f(x) − xf ′(0) − f(0)
1[0,1](s)

8: Draw γ′′ using ΓSxF ′′
9: return replace the buds in γ′′ by two atoms.
10: end if

Particular Case F ′′ = φ(F). We consider here the special case where φ does not
explicitly depend on Z. The Algorithm from [4] can be amended to deal with
uniform continuous random variables rather than non-uniform random variables
that are hard to simulate.

Classical Boltzmann samplers Γ are parametrized by x, so the sampler draws
an object α in A with probability Px(α) = x|α|/(|α|!A(x)). But in the case of
functional equations where x is not explicit (such as F ′ = φ(F)), it has been
observed in [4] that it is preferable to deal with another parameter τ = f(x).
In this case, the output is distributed as P(N = n) = anf−1(τ)n/(n!τ). It is
nevertheless always a Boltzmann sampler but with a different parametrization.
To avoid confusion, we then indicate Γ[τ]F instead of ΓxF . Thus we can now give
an algorithm similar to Algorithm1 that uses only uniform random variables.

Algorithm 3. Γ[τ]F generates an object in F from a sampling in F ′

1: if Bernoulli(f(0)/τ) then
2: return an object of size 0
3: else
4: Draw U uniformly ∈ [0, 1]
5: τnew ← Uτ + (1 − U)f(0)
6: Draw γ′ using Γ[τnew]F ′

7: return γ′ where we replace the bud by an atom.
8: end if

In order to apply twice this procedure (because F ′′ = (F ′)′), we need
to obtain Γ[τnew]F ′ by using the Boltzmann sampler of F ′′. For this, let
y = f−1(τnew). We have f ′(vy) = V f ′(y) + (1 − V)f ′(0) where V is a uniform
random variable on [0, 1]. Since we are looking for an algorithm Γ[τnew]F ′ where
τnew = f(y), we need an expression of f(vy) in function of τnew. But since the dif-
ferential equation f ′′(z) = φ(f(z)) can be integrated (by multiplying both sides
by f ′(z)), we then get f ′(z) = g(f(z)), where 1

2g2 is the primitive of φ such that

f(0) = f ′(0)2

2 . Then we get the expression f(vy) = g−1(V g(f(y))+(1−V)f ′(0)).
Finally, we obtain the following algorithm.

218 O. Bodini et al.

Algorithm 4. Γ[τ0]F generates an object of F following the Boltzmann
distribution of parameter x = f−1(τ0), from a sampler of F ′′ = Φ(F)

1: if Bernoulli(f(0)/τ0) then
2: return an object of size 0
3: else
4: Draw U uniformly on [0, 1]
5: σ ← Uτ0 + (1 − U)f(0)
6: if Bernoulli(f ′(0)/g(σ)) then
7: return an object of size 1
8: else
9: Draw V uniformly on [0, 1]

10: τ ← g−1(V g(σ) + (1 − V)f ′(0))
11: Draw γ′′ using Γ[τ]F ′′ = Γ[τ]Φ(F)
12: return γ′′ where the buds are replaced by two atoms.
13: end if
14: end if

In contrast to the previous algorithm, we do not need here to draw random
variables with complicated laws. This very simple sampler is easily implemented
for testing purposes. It remains to analyze its complexity. As already discussed
above, the dominant singularity ρ of f is of the form (1−z/ρ)−α for some α > 0.
This ensures the following theorem.

Theorem 5. Algorithm 4 provides a Boltzmann sampler, and its approximate-
size version gives a linear time algorithm for drawing uniformly at random a
diamond of type F ′′ = Φ(F), where Φ is a polynomial.

We implemented this algorithm in Java, and obtained the following table,
which synthesizes benchmarks computed on a laptop (1.5 GHz CPU and 4G
RAM). The examples we tested consist of ternary diamonds f ′′ = 1 + f3 with
initial conditions f(0) = 0 and f ′(0) = 1, and with size tolerance set at 10
percent. One of such diamonds is depicted in Fig. 2. We observe that the timing
results are consistent with our analysis.

Fig. 2. A random diamond of size 591 satisfying f ′′ = 1+f3, with f(0) = 0 et f ′(0) = 1.

Size n 10 100 1000 5000 10000 50000 100000 150000

τ0 8.73 80.44 794 3972 7941 39752 79559 119086

Time (ms) 1 7 66 322 668 3887 7098 9812

Increasing Diamonds 219

References

1. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions: with Formulas,
Graphs, and Mathematical Tables. Dover Publications, New York (2012)

2. Ando, E., Nakata, T., Yamashita, M.: Approximating the longest path length of
a stochastic DAG by a normal distribution in linear time. J. Discrete Algorithms
7(4), 420–438 (2009)

3. Bergeron, F., Flajolet, P., Salvy, B.: Varieties of increasing trees. In: Raoult, J.-C.
(ed.) CAAP ’92. LNCS, vol. 581, pp. 24–48. Springer, Heidelberg (1992)

4. Bodini, O.: Autour de la génération aléatoire sous modèle de Boltzmann. Habili-
tation thesis, UPMC (2010)

5. Bodini, O., Roussel, O., Soria, M.: Boltzmann samplers for first-order differential
specifications. Discrete Appl. Math. 160(18), 2563–2572 (2012)

6. Chern, H.-H., Fernández-Camacho, M.-I., Hwang, H.-K., Mart́ınez, C.: Psi-series
method for equality of random trees and quadratic convolution recurrences. Ran-
dom Struct. Algorithms 44(1), 67–108 (2014)

7. Duchon, P., Flajolet, P., Louchard, G., Schaeffer, G.: Boltzmann samplers for the
random generation of combinatorial structures. Comb. Prob. Comput. 13(4–5),
577–625 (2004)

8. Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press,
Cambridge (2009)

9. Knuth, D.E.: The Art of Computer Programming, volume 1 (3rd ed.): Fundamental
Algorithms, Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA (1997)

10. Kuba, M., Panholzer, A.: A combinatorial approach to the analysis of bucket recur-
sive trees. Theor. Comput. Sci. 411(34–36), 3255–3273 (2010)

11. Kuba, M., Panholzer, A.: Bilabelled increasing trees and hook-length formulae.
Eur. J. Combin. 33(2), 248–258 (2012)

12. Kuba, M., Panholzer, A.: Combinatorial families of multilabelled increasing trees
and hook-length formulas. Discrete Math. 339, 227–254 (2016)

13. Meir, A., Moon, J.W.: On the altitude of nodes in random trees. Can. J. Math.
30(5), 997–1015 (1978)

14. Stanley, R.: Catalan Numbers. Cambridge University Press, Cambridge (2015)

Scheduling Transfers of Resources over Time:
Towards Car-Sharing with Flexible Drop-Offs

Kateřina Böhmová1(B), Yann Disser2, Matúš Mihalák1,3,
and Rastislav Šrámek4

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
katerina.boehmova@inf.ethz.ch

2 Department of Mathematics, TU Berlin, Berlin, Germany
disser@math.tu-berlin.de

3 Department of Knowledge Engineering, Maastricht University,
Maastricht, The Netherlands

matus.mihalak@maastrichtuniversity.nl
4 Google Zürich, Zürich, Switzerland

sramek@google.com

Abstract. We consider an offline car-sharing assignment problem with
flexible drop-offs, in which n users (customers) present their driving
demands, and the system aims to assign the cars, initially located at
given locations, to maximize the number of satisfied users. Each driving
demand specifies the pick-up location and the drop-off location, as well as
the time interval in which the car will be used. If a user requests several
driving demands, then she is satisfied only if all her demands are ful-
filled. We show that minimizing the number of vehicles that are needed
to fulfill all demands is solvable in polynomial time. If every user has
exactly one demand, we show that for given number of cars at locations,
maximizing the number of satisfied users is also solvable in polynomial
time. We then study the problem with two locations A and B, and where
every user has two demands: one demand for transfer from A to B, and
one demand for transfer from B to A, not necessarily in this order. We
show that maximizing the number of satisfied users is NP-hard, and even
APX-hard, even if all the transfers take exactly the same (non-zero) time.
On the other hand, if all the transfers are instantaneous, the problem is
again solvable in polynomial time.

Keywords: Interval scheduling · Complexity · Algorithms · Transfer ·
Resources

1 Introduction

In car sharing services, a company manages a fleet of cars that are offered to
customers for rent for a short period of time. Every car is stationed at a fixed
parking location, and a customer who wishes to rent the car is usually required
to return the car back to the very same location. This is a constraint that many
c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 220–234, 2016.
DOI: 10.1007/978-3-662-49529-2 17

Scheduling Transfers of Resources over Time 221

customers would like to soften. It is thus a natural question to find alternatives
allowing the customers a flexible drop-off possibility. We investigate this “flexible
drop-off” idea in the case where the demands for driving (pick-up at location A
at time tA and drop-off at location B at time tB) are known in advance, and
we study the problem of finding a maximum number of demands that can be
realized by the existing fleet of cars and parking locations.

We show that the problem can be solved in polynomial time by a reduction
to the minimum-cost maximum-flow problem in a dedicated auxiliary graph. We
further consider the problem when every user (customer) has multiple driving
demands. A user is satisfied if all her demands are fulfilled (the user needs to
get a car for all the requested drivings, and has no interest in partial rentals).
We show that satisfying the maximum number of users is an APX-hard problem
already when there are only two locations, every user has two demands, the
time for driving is the same for every demand, and there is only one car. An
exemplary problem that falls into this setting is the situation where a single
car is used to commute between two popular, but (by public transportation)
badly connected locations. The users want to use this car for their daily travel:
Every user wants to get from one location to the other one, and later in the day
also from the other location back to her original one. Interestingly, the hardness
holds only whenever the travelling takes non-zero time, as we also show that for
an instantaneous travel (that takes zero time), the problem becomes solvable in
polynomial time.

1.1 Formal Problem Description and Outline of the Paper

We define formally only the setting with two locations, as this setting forms the
base of our main results. The problem definition for more locations is straight-
forward. User that rents a car at location A effectively blocks the car for a fixed
time interval, and makes it available at the drop-off location B. The usage and
trajectory of the car in the rental period is irrelevant for our scheduling prob-
lem, and we can simply model the renting as a transfer of the car from location
A to location B at the given time interval. We abstract from our car-sharing
motivation, and refer to the cars as resources.

We consider two locations, A and B, with an initial distribution of indis-
tinguishable resources within these two locations, say there are a resources at
location A and b resources at location B in the beginning. A transfer from A
to B is a movement of a resource from A to B. A transfer is possible only if
there is an available resource. There are n users and each of them has one or
more demands: A demand d is specified by a direction X → Y (either A → B
or B → A) and time interval (tsd, t

e
d), and represents a request for a resource

transfer from location X to location Y , leaving the origin X at time tsd and
arriving at the destination Y at time ted. The demand d is fulfilled by moving
one resource from X to Y . In this case, the resource is blocked (i.e., cannot be
transferred further) for the time period (tsd, t

e
d). The goal is to select a feasible set

of demands that maximizes the number of satisfied users. Here, a set of demands
is feasible if: (i) whenever a demand of a user is selected, then all demands of

222 K. Böhmová et al.

the user are selected, and (ii) all selected demands can be fulfilled, i.e., we can
move the resources as suggested by the demands.

We first considered the simplest questions: (1) Decide whether all users can
be satisfied (or equivalently, decide whether all the demands can be fulfilled);
(2) Compute the minimum number of resources initially needed at each location
to satisfy all the users. We observed that straightforward “simulation-like” algo-
rithms can answer these questions for any number of users, demands per user,
locations, and resources.

In Sect. 2, we study the problem where each user has only one demand. We
show that the problem of maximizing the number of satisfied users for given num-
ber of resources at locations (i.e., in this case, the number of fulfilled demands)
is polynomially solvable, by reducing it to the minimum-cost maximum-flow
problem. This approach works even if there are multiple locations and multiple
resources in the system.

In Sect. 3, we study the variant where every user has exactly two demands:
One transfer from A to B and one transfer from B to A, but not necessarily in
this order. Recall that a user is satisfied only if both the demands are fulfilled. We
show that in this setting, it is APX-hard to maximize the number of satisfied
users even if (i) there is only one resource in the system, initially placed at
location A, and (ii) all transfers take the same non-zero time (independently of
the user and the direction). On the other hand, if the transfer time is always 0
(i.e., tsd = ted for every demand d), we show that this problem is polynomially
solvable even if there are many resources in the system.

1.2 Related Work

Our problem lies in the area of interval scheduling (for recent surveys see [10,11]),
where, in the simplest case, one asks for a maximum non-intersecting subset of
a given set of intervals. This simplest case would correspond to our setting with
only one location A and every request of type “pick-up at A and drop-off at A”.

In our problem with several locations, the transfers of a resource correspond
to non-intersecting intervals (demands), with the following additional require-
ment: we label the interval with the corresponding pick-up and drop-off locations,
and any two consecutive intervals for the same resource need to be compatible,
i.e., the drop-off location of the first interval needs to be identical to the pick-up
location of the second interval. For the setting with one resource and one demand
per user, we ask for a maximum set of non-intersecting intervals with exactly this
compatibility condition. With k resources (and one demand per user), we ask
for k “chains” of such compatible solutions that together contain the maximum
number of intervals (demands).

If every user has two or more demands, our problem relates to results on split
intervals. A t-split interval is simply a union of t disjoint intervals. A t-interval
graph is a conflict graph of n t-split intervals. Bar-Yehuda et al. [2] study the
problem of finding the maximum number of non-intersecting t-split intervals, and
show that it is APX-hard even when t = 2, and present a 2t-approximation algo-
rithm. Neither the approximation algorithm (or its techniques) nor the hardness

Scheduling Transfers of Resources over Time 223

A

B
d1

tsd1

ted1

d2
d3

d4
d5

tsd2

ted2
tsd3

ted3

ted5

tsd5

tsd4

ted4

vb1 = vsd1

va2 = ved1va1 = vsd2

vb3 = ved2
vb2 = vsd3

va5 = ved3

vb5 = ved5

va4 = vsd5

vb4 = vsd4

va3 = ved4

s t
(a, 0)

(b, 0)
(1,−1) (1,−1) (1,−1)

(1,−1)
(1,−1)

(∞, 0) (∞, 0) (∞, 0) (∞, 0)
(∞, 0)

(∞, 0)
(∞, 0) (∞, 0) (∞, 0) (∞, 0)

Fig. 1. An example of TransfersOneDemand transformed into minimum-cost
maximum-flow problem. The labels on the edges in the second figure specify the capac-
ity and the cost of the edges.

result carries over to our problem with one resource and two locations. The main
reason is that in our problem we require neighboring intervals in the solution
to be compatible. These local compatibility requirements that we impose on the
solution is what also makes our problem hard. As we will see, the hardness of our
problem arises even in some configurations of intervals that would be trivially
polynomially solvable under the split intervals setting (no local compatibility
requirement). In particular, if every split interval intersects at most one other
split interval, then the conflict graph forms a matching, and finding a maximum
independent set becomes trivial. In our hardness result, in the reduction we use
we obtain exactly such instances. The hardness arises due to the compatibility
requirements.

Finding the maximum number of non-intersecting split intervals with certain
additional pattern requirement has been studied before with the relation to
problems in RNA secondary structure prediction. The 2-interval pattern problem
(see e.g., [3,7]) asks for a non-intersecting subset of 2-split intervals such that
every pair of selected split intervals are in one of the prescribed relations R ⊆
{<,�, �} (with < meaning preceding, � nested, and � crossed split intervals).
The complexity as well as (approximation) algorithms for different subsets of
{<,�, �} were studied.

2 Resource Transfers with One Demand per User

If every user has only one demand (either of the form A → B or B → A), and
there are, initially, a resources at location A and b resources at location B, we
show that TransfersOneDemand, the problem of maximizing the number of
satisfied users (which is in this case equal to the number of fulfilled demands),
is solvable in polynomial time.

Theorem 1. TransfersOneDemand is solvable in polynomial time, for any
number of locations.

224 K. Böhmová et al.

Proof. We formulate the problem as a minimum-cost maximum-flow problem,
which is polynomial-time solvable. For simplicity, we present this reduction con-
sidering two locations (A and B) only. The generalization for arbitrary number
of locations is straightforward.

Consider an arbitrary instance of TransfersOneDemand with two loca-
tions. We construct an instance of the network flow problem, where the only
arcs of non-zero cost correspond to the demands of the users, and have cost −1.
Formally, we proceed as follows (see Fig. 1 for illustration). For every demand
d = (tsd, t

e
d) there are two vertices in the network, vs

d and ve
d, one for each endpoint

of d. The network contains two additional vertices – a source s, and a target t.
Based on the location of each demand’s endpoint, the corresponding vertex is
either of type A, or B. Let 〈va1, . . . , van〉 be the vertices of type A ordered by
the time of the corresponding demands’ endpoints, and let 〈vb1, . . . , vbn〉 be the
vertices of type B ordered by the time of the corresponding demands’ endpoints.
The network contains edges of three types. For every demand d = (tsd, t

e
d), there

is a directed demand edge (vs
d, v

e
d) from the vertex corresponding to the start-

point of d to the vertex corresponding to its endpoint. All demand edges have
capacity 1 and cost −1. For every two consecutive vertices vai, vai+1 of type A,
there is a directed connecting edge (vai, vai+1). Similarly, there is a connecting
edge for every two consecutive vertices of B. There are also connecting edges
(van, t) and (vbn, t), from the last vertices of each type to the target vertex. For
all the connecting edges, the capacity is set to ∞ and the cost is set to 0. Finally,
there is an edge from s to vertex va1 with capacity a and cost 0, and there is
an edge from s to vb1 with capacity b and cost 0. Observe that from any vertex
other than s, there is unlimited capacity for a flow to t, using the connecting
edges. Clearly, any st-flow has to pass via va1 or vb1, and the sum of capacities
of (s, va1) and (s, vb1) is a + b. Thus, the maximum st-flow is of size a + b.

We now determine the cost of an optimum minimum-cost maximum st-flow.
Since all the costs and capacities are integral, then, thanks to the integrality
theorem [5], there exists an integral optimum solution (which can be found in
polynomial time). From the above it follows that there is a maximum st-flow
of cost 0 that does not use any demand edge. Since the network is acyclic, the
capacity of a demand edge is 1, and its cost is −1, it follows that a minimum-cost
st-flow aims at using as many demand edges as possible (with unit flow on each
edge). We can see the integral flow as the course of the a + b resources between
the locations – one st-flow of size one per resource. Obviously, an integral st-flow
of cost −C satisfies C demands (users), and every schedule satisfying C users
gives an integral flow of cost C. ��

3 Resource Transfers with Two Demands per User

If the users have more than one demand, the problem of maximizing the number
of satisfied users becomes NP-hard, even APX-hard. We will show the hardness
even for the special case of “using the car to commute between two badly con-
nected locations”, i.e., for the setting with two locations A and B, where every

Scheduling Transfers of Resources over Time 225

DGc2DGc1 DGcrHFG2GcrFGcrGc2FGc2Gc1FGc1HFG1GxsGx2Gx1

Fig. 2. Placement of the gadgets for the given instance Φ of Max-3-Sat(3) with clauses
C = {c1, c2, . . . , cr} over a set of Boolean variables X = {x1, x2, . . . , xs}.

user has exactly two transfer demands, one per each direction A → B, B → A.
We refer to this optimization problem as TransfersForCommuting. We actu-
ally show that the problem is APX-hard even if there is only a single resource.
We prove the hardness of TransfersForCommuting by an L-reduction (see
Proposition 1) from a Max-3-Sat(3), which is an APX-hard variant [1] of the
maximum satisfiability problem with at most 3 literals per clause and with each
variable appearing in the formula at most twice as a positive, and (exactly) once
as a negative literal.

Theorem 2. TransfersForCommuting is APX-hard even if there is only
one resource, originally placed at location A, and all the transfer times are equal,
but positive.

First we describe a construction used to prove Theorem 2 and its properties.

Construction. Let Φ be an instance of Max-3-Sat(3) given by a set of clauses
C = {c1, c2, . . . , cr} over a set of Boolean variables X = {x1, x2, . . . , xs}. We
construct from Φ the following instance I of TransfersForCommuting. There
is a single resource in the system, initially located at A. There are two users for
each occurrence of a variable in a clause and there are 26 users for each of the
r clauses, in total there are at most 32r users. In the following we describe how
the demands of the users are organized into gadgets, how they are placed, and
how they interact.

For every variable xi ∈ X there is a variable gadget Gxi. For each clause
cj ∈ C, there is a clause gadget Gcj , a dummy gadget DGcj , and a light forcing
gadget FGcj . Finally, there are two heavy forcing gadgets HFG1 and HFG2. The
gadgets are placed as follows (see Fig. 2). First all the variable gadgets are placed
(one per variable in Φ). After that, the heavy forcing gadget HFG1 is placed.
Then, all the clause gadgets are placed (one per clause in Φ), each preceded by
a light forcing gadget. Then the heavy forcing gadget HFG2 is placed. Finally,
all the dummy gadgets are placed (again, one per clause in Φ).

For each occurrence of a variable xi in a clause cj there is one variable user,
demanding a transfer B → A first and A → B later, and a dummy variable user
demanding a transfer A → B first and B → A later. Their outbound demands
are placed in Gxi. The return demand of the variable user is placed in Gcj , and
the return demand of the dummy variable user is placed in DGcj . For each clause
cj , there is one clause user, demanding an outbound transfer B → A, placed in
Gcj , and a return transfer A → B, placed in DGcj . Finally, there is a large
number of forcing users, each demanding a transfer A → B and an immediate
return B → A, both placed in one of the forcing gadgets FGcj , HFG1, or HFG1.

226 K. Böhmová et al.

light forcing gadget FGcj

fj,1

fj,1

fj,2

fj,2 fj,3

fj,3 fj,4

fj,4 fj,5

fj,5

B

A

dxi,1
dxi,1

xi,1

dxi,2

xi,1 xi,2

variable gadget GxiA

B

cj

xj,cxj,bxj,a

clause gadget GcjA

B

cj

dxj,cdxj,bdxj,a

dummy gadget DGcjA

B

Fig. 3. Placement of the demanded transfers within the gadgets (building blocks of
the hardness construction). The demands of variable users are displayed as full arrows,
the demands of clause users are dashed, those of dummy variable users are dotted,
and those of forcing users are dash-dotted. The heavy forcing gadget is not illustrated
in the figure, since it is similar to the light forcing gadget, but consists of 10r users
instead of 5.

We now describe the placement of the transfers within each gadget in more
detail, see Fig. 3 for the exact configurations. Each light forcing gadget FGcj ,
consists of five light forcing users, each demanding a transfer A → B and an
immediate return B → A. These demands are placed in such a way that all the
users of a light forcing gadget can be satisfied together. Both heavy forcing gad-
gets HFG1 and HFG2 are similar to light forcing gadgets, but instead of 5 users,
each HFG consists of 10r heavy forcing users (again demanding transfer A → B
and an immediate return B → A, placed in such a way that all can be satisfied
together). The purpose of the light/heavy forcing gadgets is to ensure that at a
certain moment the resource is located at A. Each forcing gadget consists of a
significant number of users, such that any schedule can be transformed into the
same or a larger schedule, with all forcing users satisfied.

For a variable xi, the variable gadget Gxi consists of the outbound demands
of up to six users (two for each occurrence of xi in Φ). We describe the case when
xi appears three times in Φ, other cases are similar. The gadget Gxi contains 3
variable users—two positive users xi,1, xi,2 corresponding to the positive literals
of xi, and one negative user xi,1 corresponding to the negative literal of xi. Each
of these users demands in Gxi an outbound transfer B → A. Additionally, the
gadget contains 3 dummy variable users dxi,1, dxi,2, and dxi,1 (complementing
the variable users). Again, only their outbound demands, in direction A → B, are
part of Gxi. The construction of Gxi ensures that positive and negative variable
users can never be satisfied together (the demand xi,1 can only be fulfilled when
xi,1 and xi,2 are not, and vice versa). Moreover, the demands of each variable
user and the demands of the corresponding dummy variable user can always be
fulfilled together. These gadgets relate satisfying of positive/negative variable
users of I with the true/false assignment of the corresponding variables in Φ.

For a clause cj , the clause gadget Gcj contains the return demands of up to 3
variable users (in the direction A → B) that correspond to the variables appear-

Scheduling Transfers of Resources over Time 227

ing in cj , and then an outbound demand B → A of a clause user cj . (To simplify
the notation we use cj to denote both the clause of Φ and the corresponding
user.) Each Gcj is preceded by FGcj enforcing that whenever the demand of
cj is fulfilled in Gcj , also a variable demand corresponding to a literal of cj
is fulfilled there, and vice versa. Thus, these gadgets bind together clause and
variable users: User cj is satisfied if and only if the variable user of a variable
satisfying cj in Φ is satisfied.

A dummy gadget DGcj consists of the return demand of the clause user cj ,
in the direction A → B, and the return demands of up to 3 dummy variable
users (again, based on the literals appearing in cj) in the direction B → A.
Gadget DGcj in a sense mirrors Gcj and allows fulfilling the return demand
of cj whenever its outbound demand is fulfilled. In a schedule where all the
forcing users are satisfied, for every satisfied cj , also a variable user and a dummy
variable user (both corresponding to the same literal of cj) will be satisfied.

Let I be an instance of TransfersForCommuting constructed as above.

Lemma 1. Given a schedule S of I, we can construct a schedule of size at least
|S| where all the users of heavy forcing gadgets HFG1 and HFG2 are satisfied.

Proof. If |S| < 25r, we can construct a schedule where all the 25r users of heavy
and light forcing gadgets are satisfied. Thus, assume that |S| ≥ 25r. Since the
total number of users of I is at most 32r and each HFG consists of 10r users, at
least one user of each heavy forcing gadget HFG is satisfied. Clearly, whenever
a user of a HFG is satisfied in S, all users of that HFG can be added to S. ��

Lemma 2. Given a schedule S of I, we can construct a schedule of size at
least |S| where all the users of light forcing gadgets are satisfied, and whenever
a clause user cj is satisfied, also a variable user corresponding to an occurrence
of a literal in cj is satisfied, as well as the corresponding dummy variable user.

Proof. Using an iterative transformation of the given schedule S into a new
schedule with the required parameters. The details are omitted due to space
constraints. ��

To prove APX-hardness in Theorem 2, we use the following proposition.

Proposition 1 (L-reduction [6]). Consider two optimization problems H and
P , and let H be APX-hard. Assume that for each instance Φ of H, we can con-
struct an instance I of P in polynomial time. Also, assume that for each solution
S of I, we can construct a solution φ of Φ in polynomial time. Let OPT(I),
and OPT(Φ) denote the size of the optimum solution of I, and Φ, respectively.
Finally, assume that there exist positive constants α and β (independent on S)
such that the following two conditions are met.

(A) OPT(I) ≤ α OPT(Φ)
(B) |OPT(Φ) − |φ|| ≤ β|OPT(I) − |S||

Then, we have an L-reduction from H to P , and P is also APX-hard.

228 K. Böhmová et al.

Proof (Of Theorem 2). We show the APX-hardness by an L-reduction from
Max-3-Sat(3). Given an instance Φ of Max-3-Sat(3) with r clauses over s
variables, construct an instance I of TransfersForCommuting as above.
First we show the following: (⇒) For every solution φ of Φ of size |φ|, we con-
struct a solution of I of size at least 25r + 3|φ|. (⇐) For every solution S of I
of size |S|, we construct a solution φ of Φ of size at least (|S| − 25r)/3. Thus, in
particular, we get OPT(I) = 25r + 3OPT(Φ).

(⇒) Given an assignment φ satisfying |φ| clauses of the given instance Φ
of the Max-3-Sat(3) problem, we construct a schedule where all 25r forcing
users together with exactly 3|φ| other users are satisfied as follows. We schedule
|φ| clause users corresponding to the |φ| satisfied clauses. We select a subset
of (dummy) variable users: For each clause cj , we select exactly one literal of
those that satisfy cj in φ and we schedule both the corresponding variable user
and dummy variable user. We schedule all the users of the forcing gadgets.
Let us now observe that the created schedule is feasible. Clearly, the transfers
of the satisfied users do not overlap: The only overlapping transfers are those
of positive/negative literals in variable gadgets and those are never satisfied
together, since every variable is set either to TRUE, or to FALSE in φ. We now
observe that the movement of the resource induced by the selected transfers is
feasible. In each variable gadget the resource is moved A → B → A for every
picked literal: A → B by a dummy variable user and then B → A by the variable
user. After all the variable gadgets, the resource is moved 10r times A → B → A
by the users of the forcing gadget HFG1. In each clause gadget Gcj the resource
is moved A → B by a variable user and then B → A by the clause user. Before
each variable gadget, the resource is moved five times A → B → A by the users
of the forcing gadget FGcj . After the last clause gadget, the resource is moved
10r times A → B → A by the users of HFG2. Finally, in each dummy gadget
the resource moves A → B → A.

(⇐) Now assume that we have a schedule S with |S| satisfied users. It follows
from Lemmas 1 and 2 that there is a schedule S′ of size at least |S|, where all
25r forcing users are satisfied. Moreover, it also follows that at least (|S| −
25r)/3 clause users are satisfied, such that for each of them also a variable
user corresponding to an occurrence of a literal in cj is satisfied, as well as
the corresponding dummy variable user are satisfied. Since the variable gadgets
ensure that for each variable, either the users corresponding to the positive
literals can be satisfied, or only the user corresponding to the negative literal
can be satisfied, we can directly construct an assignment for Φ that satisfies at
least (|S| − 25r)/3 clauses.

To show that the above reduction is an L-reduction, we need to prove that
conditions (A) and (B) of Proposition 1 are met. First note that OPT(Φ) ≥ r/2
(either all-TRUE or all-FALSE assignment satisfies at least 1/2 of all the clauses).
Recall that OPT(I) = 25r + 3OPT(Φ). Also recall that for any solution S of I,
we can construct a solution φ of Φ of size |φ| ≥ (|S| − 25r)/3. Thus we get:

(A) OPT(I) = 25r + 3OPT(Φ) ≤ 53OPT(Φ),
(B) (|OPT(I)| − |S|) ≥ 25r + 3|OPT(Φ)| − 25r − 3|φ| = 3(|OPT(Φ)| − |φ|).

Scheduling Transfers of Resources over Time 229

It follows that the presented construction is an L-reduction from Max-3-Sat(3)

to TransfersForCommuting with α = 53 and β = 1/3. ��

3.1 Resource Transfers with Two Demands and Zero Transfer
Times

In the hardness result, we used “crossing” arrows (demands) to exclude schedul-
ing both demands. This is only possible if the transfer time is non-zero. In this
section we show that whenever all transfer times are zero, i.e., when they are
instantaneous, TransfersForCommuting becomes tractable, even if there is
more than one resource (initially, a resources at location A, and b resources at
location B). As a corollary, we obtain that TransfersForCommuting with
non-zero transfer times is polynomially-time solvable, whenever no two demand
arrows cross.

Depending on the direction of the first demanded transfer of a user, we distin-
guish two types of users: an ABA-type demands to transfer in direction A → B
first, and in direction B → A second, whereas user of type BAB demands
first the transfer in direction B → A, and later in direction A → B. We can
equivalently specify the problem with zero transfer times as follows (see an
example in Fig. 4). We represent the two demands of a user i (demanding instan-
taneous transfers at times ti,1 and ti,2) by a time interval (ti,1, ti,2), with a value
v(i) := −1 if user i is of type ABA and v(i) := 1 if i is of type BAB. Each such
time interval indicates the induced change in the number of available resources
present at location A. That is, if user i of type ABA transfers a resource from
A to B at time ti,1 and back to A at time ti,2, it implies that during the time
(ti,1, ti,2) there is one less resource item at A (and one more at B).

Clearly, satisfying a user i in the original problem corresponds to selecting the
corresponding interval i in the modified problem. In the original problem, there
must be a resource available for each selected transfer, but since the transfers
are instantaneous, we only need to ensure that, at any time, both locations have
a non-negative amount of resources. In particular, at A there can never be more
than a + b items and less than 0 items. Therefore, the original goal translates to
choosing a maximum subset I of the intervals (representing the users) such that
at any time point t we have

−a ≤
∑

t∈i∈I

v(i) ≤ b.

In the following, we show that the problem (in the equivalent alternative
formulation) is polynomially solvable by formulating it as an integral linear pro-
gram (i.e., linear program that has an optimum solution which is integral). To
prove that the constructed linear program Ax ≤ b is integral, we will show that
A is totally unimodular (a matrix A is totally unimodular if the determinant of
every square submatrix of A has value −1, 0 or 1).

230 K. Böhmová et al.

A

B

−1
1

1p1

n1

p2

s1 s2 s3 s4 s5

1 0 0
−1 0 0

1 0 −1
−1 0 1

1 1 −1
−1 −1 1

1 1 0
−1 −1 0

0 1 0
0 −1 0
1 0 0

−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1

s1

s2

s3

s4

s5

p1

p2

n1

⎛

⎝
p1
p2
n1

⎞

⎠

b
a
b
a
b
a
b
a
b
a
1
0
1
0
1
0

p1 p2 n1

Fig. 4. An example of TransfersForCommuting with zero transfer time, with 3
users; the transformation to an equivalent problem; and the corresponding system of
linear inequalities Ax ≤ b.

Theorem 3 ([12]). Every linear program in variables x with a totally unimod-
ular constraint matrix A is integral.

To show that A is totally unimodular, we use the following theorem [9].

Theorem 4 (Ghouila-Houri). A matrix is totally unimodular if and only if
for every subset of rows R, there exists a function f : R → {−1,+1} such that∑

r∈R f(r) · r ∈ {−1, 0, 1}n.

Theorem 5. The problem TransfersForCommuting with zero transfer time
and multiple resources is solvable in polynomial time.

Proof. Consider the following integer linear program formulation of the problem.
Let n+ be the number of positive intervals (i.e., intervals of value 1) and let n−

be the number of negative intervals (then n = n+ + n−). For each interval we
define one variable indicating whether this interval was chosen into the optimum
solution or not. In particular, for each positive interval i we define a binary
variable pi ∈ {0, 1} and for each negative interval j we define a binary variable
nj ∈ {0, 1}. The goal is to maximize

n+
∑

i=1

pi +
n−
∑

j=1

nj

subject to the following constraints. We divide the time axis into N segments,
defined by the endpoints of the n given intervals. Note that the number of
resources present at A may change from segment to segment, but within each
segment it does not change. For each segment s we have the following two con-
straints, based on the number of intervals that overlap s. We abuse the notation
here, and use pi and nj both as a variable and as the corresponding interval.

Scheduling Transfers of Resources over Time 231

+
∑

i∈[n+], pi∩s �=0

pi −
∑

j∈[n−], nj∩s �=0

nj ≤ b (1)

−
∑

i∈[n+], pi∩s �=0

pi +
∑

j∈[n−], nj∩s �=0

nj ≤ a (2)

We now consider the linear relaxation of the ILP, i.e., we additionally have
the linear constraints, for every i ∈ [n+] and j ∈ [n−],

0 ≤ pi, nj ≤ 1. (3)

We can write the constraints as a linear system Ax ≤ b (see Fig. 4 for an
example). To show that this linear program is integral, we show that the matrix
A is totally unimodular. For that let us first dwell into the structure of the
matrix. Matrix A contains one column for each variable (pi or nj) and one
row for each constraint. We first discuss the first 2N rows corresponding to
the constrains (1) and (2). For each segment s, the matrix A contains 2 rows.
If the segment s coincides with an interval pi, then the submatrix A(s, pi) is
(1,−1)T , otherwise, A(s, pi) = (0, 0)T . Similarly, if s coincides with an interval
nj , then A(s, nj) = (−1, 1)T , otherwise, A(s, nj) = (0, 0)T . Since all pi and nj

are intervals, each of them spans only consecutive segments. Thus, each column
(restricted to the first 2N rows) contains exactly one contiguous block of non-
zero entries (alternating 1s and −1s). We now look at the remaining 2n = 2(n++
n−) rows of A corresponding to the constraints (3). Clearly, each of these rows
contains exactly one non-zero symbol per row and it is either 1 or −1.

Using Theorem 4, we show that A is totally unimodular as follows. We first
observe that if the first 2N rows of A form a totally unimodular matrix A′, then
the whole A is totally unimodular. Each of the last 2n rows contains exactly one
non-zero element that is either 1 or −1. Thus, for every subset R′′ of these rows,
we can easily find a function f : R′′ → {−1,+1} so that each component of the
vector v′′ =

∑
r∈R′′ f(r) ·r is either 0, or we can choose between 1 and −1. Then,

for any vector v′ = {−1, 0, 1}n (any vector obtained from A′ due to Theorem 4)
we can choose the components of v′′ = {0,−1/1}n so that v′+v′′ = {−1, 0, 1}n. It
remains to be shown that the submatrix A′ corresponding to the first 2N rows of
A is totally unimodular. Let R′ be a subset of the 2N rows. As a preparatory step
we multiply every second row of A′ by −1 and obtain a matrix where each column
contains a single nonzero block of either 1s (if it corresponds to pi) or −1s (if it
corresponds to nj). We set the function g : R′ → {−1,+1} to be alternating 1
and −1 for the r ∈ R′ ordered by row number. Since each column c contains only
one block of consecutive 1s or −1s, we get

∑
r∈R′ g(cr)·cr ∈ {−1, 1}. Now we can

combine the function g with the preparatory step and obtain f : R′ → {−1,+1}
such that

∑
r∈R′ f(r) · r ∈ {−1, 0, 1}n.

Thus, the matrix A is totally unimodular, the constructed linear program is
integral and the considered problem is polynomially solvable. ��

Corollary 1. If all the demands do not cross in their arrow representation, the
problem TransfersForCommuting is solvable in polynomial time.

232 K. Böhmová et al.

A

B

d1,1

d1,2

d2,1 d2,2

d3,1

d3,2

d4,1d4,2

d4,2

d3,2

d1,2

d4,1

d3,1

d2,2

d2,1

d1,1

Fig. 5. An example of TransfersForCommuting with 1 resource in the system,
modeled as longest path problem with prescribed pairs of vertices. The edges in bold
indicate the longest path.

Proof. By shrinking the given instance so that all the intervals are of length 0,
we obtain an equivalent, polynomially solvable problem. ��

4 Further Notes

Longest Path Containing Subset of Prescribed Pairs of Vertices. By proving
hardness in Theorem 2, we prove also the following problem to be APX-hard.
Given a directed graph and a set of pairs of its vertices, the goal is to find a
longest path such that for each of the given pairs it either contain both vertices or
none of them. This problem is APX-hard even in directed acyclic graphs, since it
can be reduced from TransfersForCommuting with 1 resource as follows (see
Fig. 5). Every demand is modeled as one vertex, every user defines one prescribed
pair of vertices, and there is one directed edge for every pair of demands that
can be consecutively fulfilled. The constructed graph is acyclic. Clearly, any
path that uses from each pair either none or both vertices corresponds to a
feasible schedule for TransfersForCommuting and the length of the path
corresponds to twice the number of satisfied users.

We haven’t found this exact problem to be studied in the literature, but
we link to a similar problem that received a lot of attention. Given a directed
graph and a set of vertex pairs, the goal of the longest antisymmetric path prob-
lem is to find a longest path that does not simultaneously contain both vertices
of any of the prescribed forbidden pairs. This problem arises in the area of
automatic software testing and validation, and protein identification in bioinfor-
matics. Gabow et al. [8] showed that deciding whether there is an antisymmetric
st-path is NP-complete even if the given directed graph is acyclic and all the in-
and out-degrees are at most 2. Song et al. [13] showed that the longest antisym-
metric path problem cannot be approximated within (n − 2)/2 in polynomial
time unless P = NP, even in directed acyclic graphs of degree at most 6.

Any of Multiple Demands Satisfies User. Consider a different variant of the
problem, where each user has multiple demands, but is satisfied if any of her
demands is fulfilled. This problem, in general form where also a transfer from a
location L back to location L is allowed, is NP-hard. We consider a degenerated
problem as follows. There are two locations A and B and exactly one unit of

Scheduling Transfers of Resources over Time 233

resource placed at each of them. There are n users and each user demands
exactly one A → A transfer and one B → B transfer. Thus, each user specifies
exactly one interval on A and one on B, we satisfy the user by selecting either
of her intervals, and the goal is to maximize the number of satisfied users. This
problem is also known as IntervalSelection with 2 machines, and is known
to be NP-hard [4].

Open Problems. We already know (Theorem 2) that the problem Transfers-

ForCommuting where each user has exactly one demand in each of the two
directions is APX-hard. Thus, a natural question is to seek an approximation
algorithm for the problem. However, it is not clear whether it has a decent
approximation, since simple approaches fail drastically. Also, given the motiva-
tion, it would be interesting to explore the problems we studied under online
setting.

Acknowledgements. The authors wish to thank Peter Widmayer for many useful
discussions and helpful comments, as well as Andreas Bärtschi, Barbara Geissmann,
Sandro Montanari, Tobias Pröger, and Thomas Tschager for their ideas during early
stage discussions on the topic. Kateřina Böhmová is supported by a Google Europe
Fellowship in Optimization Algorithms. The project has been partially supported by
the Swiss National Science Foundation (SNF) under the grant number 200021 156620.

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.,
Protasi, M.: Complexity and Approximation: Combinatorial Optimization Prob-
lems and Their Approximability Properties. Springer Science & Business Media,
Heidelberg (2012)

2. Bar-Yehuda, R., Halldórsson, M.M., Naor, J., Shachnai, H., Shapira, I.: Scheduling
split intervals. SIAM J. Comput. 36(1), 1–15 (2006)

3. Blin, G., Fertin, G., Vialette, S.: New results for the 2-interval pattern problem.
In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS,
vol. 3109, pp. 311–322. Springer, Heidelberg (2004)

4. Böhmová, K., Disser, Y., Mihalák, M., Widmayer, P.: Interval selection with
machine-dependent intervals. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS
2013. LNCS, vol. 8037, pp. 170–181. Springer, Heidelberg (2013)

5. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, vol.
3. MIT Press, Cambridge (2001)

6. Crescenzi, P.: A short guide to approximation preserving reductions. In: 12th IEEE
Conference on Computational Complexity, pp. 262–273. IEEE (1997)

7. Crochemore, M., Hermelin, D., Landau, G.M., Vialette, S.: Approximating the 2-
interval pattern problem. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS,
vol. 3669, pp. 426–437. Springer, Heidelberg (2005)

8. Gabow, H.N., Maheshwari, S.N., Osterweil, L.J.: On two problems in the generation
of program test paths. IEEE Trans. Softw. Eng. 2(3), 227–231 (1976)

9. Ghouila-Houri, A.: Caracterisation des matrices totalement unimodulaires. CR
Acad. Sci. Paris 254, 1192–1194 (1962)

234 K. Böhmová et al.

10. Kolen, A.W.J., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.R.: Interval
scheduling: a survey. Naval Res. Logistics (NRL) 54(5), 530–543 (2007)

11. Kovalyov, M.Y., Ng, C., Cheng, T.E.: Fixed interval scheduling: models, applica-
tions, computational complexity and algorithms. Eur. J. Oper. Res. 178(2), 331–
342 (2007)

12. Schrijver, A.: Theory of Linear and Integer Programming. John Wiley & Sons,
Chichester (1998)

13. Song, Y., Yu, M.: On finding the longest antisymmetric path in directed acyclic
graphs. Inf. Process. Lett. 115(2), 377–381 (2015)

A 0.821-Ratio Purely Combinatorial
Algorithm for Maximum k-vertex Cover

in Bipartite Graphs

Édouard Bonnet1, Bruno Escoffier2, Vangelis Th. Paschos3,4(B),
and Georgios Stamoulis3,4

1 Institute for Computer Science and Control,
Hungarian Academy of Sciences (MTA SZTAKI), Budapest, Hungary

bonnet.edouard@sztaki.mta.hu
2 Sorbonne Universités,

UPMC Universite Paris 06, CNRS, LIP6 UMR 7606, Paris, France
bruno.escoffier@lip6.fr

3 PSL* Research University, Université Paris-Dauphine, LAMSADE, Paris, France
4 CNRS UMR 7243, Paris, France

paschos@lamsade.dauphine.fr, georgios.stamoulis@dauphine.fr

Abstract. We study the polynomial time approximation of the max
k -vertex cover problem in bipartite graphs and propose a purely com-
binatorial algorithm that beats the only such known algorithm, namely
the greedy approach. We present a computer-assisted analysis of our
algorithm, establishing that the worst case approximation guarantee is
bounded below by 0.821.

1 Introduction

In max k -vertex cover, a graph G = (V,E) with |V | = n and |E| = m is
given together with an integer k � n. The goal is to find a subset K ⊆ V with
k vertices such that the total number of edges covered by K is maximized. We
say that an edge e = {u, v} is covered by a subset of vertices K if K ∩ e �= ∅.
max k -vertex cover is NP-hard in general graphs (as a generalization of min
vertex cover) and it remains so in bipartite graphs [1,2].

The approximation of max k -vertex cover has been originally studied
in [3], where ratio 1 − (1/e) (≈ 0.632) is achieved by the natural greedy algo-
rithm. This ratio is tight even in bipartite graphs [4]. Using a sophisticated linear
programming method, the approximation ratio for max k -vertex cover was
improved to 3/4 [5], which, until very recently, was the best known ratio even
in bipartite graphs. The best approximation ratio in bipartite graphs is now 8/9
and is still based on linear programming [2]. A direct reduction from min ver-
tex cover shows that max k -vertex cover can not admit a polynomial time
approximation schema (PTAS), unless P = NP [6].

Finally, we may observe that max k -vertex cover is easy in semiregular
bipartite graphs (where all the vertices of each color class have the same degree).
c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 235–248, 2016.
DOI: 10.1007/978-3-662-49529-2 18

236 É. Bonnet et al.

Indeed, any k vertices in the color class of maximum degree yield an optimal
solution. Obviously, if this color class contains less than k vertices, then one can
cover all the edges.

Our Contribution. The principal motivation of this paper is to determine to
what extent combinatorial methods compete with linear programming for max k -
vertex cover. In other words, what ratio can a purely combinatorial algorithm
guarantee? To this purpose, we first devise a very simple algorithm that guar-
antees approximation ratio 2/3, improving so the ratio of the greedy algorithm
in bipartite graphs. The proof is given in [7]. Our main contribution consists of
an approximation algorithm which computes six distinct solutions and returns
the best among them.

Analyzing the performance guarantee of such an algorithm is a challenging
task. Indeed, there is no obvious way to compare the different solutions and argue
globally over a lower bound on the maximum value taken by the six solutions.
The large number of variables (in all, 48) used to express the many solution
values participates in the difficulty of the analysis.

Similar situation was faced, for example, in [8] where the authors gave a 0.921
approximation guarantee for max cut in graphs of maximum degree 3 (and an
improved 0.924 for 3-regular graphs) by a computer-assisted analysis of the quan-
tities generated by theoretically analyzing a particular semi-definite relaxation
of the problem at hand. Similarly, by setting up a suitable non-linear program
and solving it, we give a computer-assisted analysis of a 0.821-approximation
guarantee for max k -vertex cover in bipartite graphs. We give all the details
of the implementation in [7].

2 Preliminaries

Consider a bipartite graph B = (V1, V2, E), instance of max k -vertex cover
and fix an optimal solution O (i.e., a set of k vertices covering a maximum
number of edges in E) as well as its parts O1 and O2 lying in color classes V1

and V2, respectively.
The algorithm (called k-VC ALGORITHM) proposed for solving max k -vertex

cover can be sketched as follows:
1. guess the cardinality k1 and therefore k2 = k − k1 of its subsets O1 and O2

lying in the color classes V1 and V2, respectively;
2. compute the sets Si of ki vertices in Vi, i = 1, 2 that cover the most of
edges; obviously Si is a set of the ki largest degree vertices in Vi (breaking ties
arbitrarily);
3. guess the cardinalities k′

i of the intersections Si ∩ Oi, i = 1, 2;
4. compute the sets Xi of the ki − k′

i vertices from Vi, i = 1, 2, that cover the
most of edges in graphs B[(V \ S1) ∪ V2] and B[V1 ∪ (V2 \ S2)], respectively;
5. choose the best among six solutions built as described in Sect. 3.

Let us note that our 2/3-approximation algorithm in [7] guarantees ratio 4/5,
when both k′

i = 0, i = 1, 2.

Combinatorial Algorithm for Maximum k-vertex Cover 237

B

B

C

C F1

F3

H1H2 F2

J3

I6

L2

L5

L8

P2

P4

I1

I2

J1

L4

L6

L5

I1

I3

I5

P1

H1

J2

I3 I4 P1

P3

N2 H2

I6

I4

I2

L3 L6 L9

P2 P3

L4 L7

N2

J1

J2

J3

F3

P4

L7

L8

L9

L1

L2

L3

V1 V2

X2

X1

O2O1

F1

L1

N1

I5

F2

S1 S2

P5

P5

N1

U1 U1

U2

U2

U3

U3

Fig. 1. Sets Si, Oi, Xi i = 1, 2 and cuts between them.

Sets Si, Xi and Oi separate each color class in 6 regions, namely, Si ∩ Oi,
Si \ Oi, Xi ∩ Oi, Xi \ Oi, Oi \ (Si ∪ Xi) (denoted by Ōi, in what follows) and
Vi \ (Si ∪ Xi ∪ Oi). In total, there exist 36 groups of edges (cuts) among them,
the group (V1 \ (S1 ∪ X1 ∪ O1), V2 \ (S2 ∪ X2 ∪ O2)) being irrelevant as it will
become clear in the sequel. We will use the following notations to refer to the
values of the 35 relevant cuts (illustrated in Fig. 1.):

B: the number of edges in the cut (S1 \ O1, S2 ∩ O2);
C: the number of edges in the cut (S2 \ O2, S1 ∩ O1);
F1, F2, F3: the number of edges in the cuts (S1 \O1,X2 \O2), (S1 \O1, O2 \(X2∪

S2)) and (S1 \ O1, O2 ∩ X2), respectively;
H1,H2: the number of edges in the cuts (S1 ∩ O1,X2 \ O2) and (S1 ∩ O1, V2 \

(S2 ∪ X2 ∪ O2)), respectively;
{Ii}i∈[6]: the number of edges in the cuts (X1 \O1,X2 \O2), (X1 \O1, V2 \ (S2 ∪

X2 ∪ O2)), (O1 \ (S1 ∪ X1),X2 \ O2), (O1 \ (S1 ∪ X1), V2 \ (S2 ∪ X2 ∪ O2)),
(X1 ∩ O1,X2 \ O2) and (X1 ∩ O1, V2 \ (S2 ∪ X2 ∪ O2)), respectively;

J1, J2, J3: the number of edges in the cuts (S2 \O2,X1 \O1), (S2 \O2, O1 \ (S1 ∪
X1)) and (S2 \ O2, O1 ∩ X1), respectively;

238 É. Bonnet et al.

{Li}i∈[9]: the number of edges in the cuts (S1 ∩O1, S2 ∩O2), (S1 ∩O1,X2 ∩O2),
(S1 ∩ O1, O2 \ (S2 ∪ X2)), (X1 ∩ O1, S2 ∩ O2), (X1 ∩ O1,X2 ∩ O2), (X1 ∩
O1, O2 \ (S2 ∪ X2)), (O1 \ (S1 ∪ X1), S2 ∩ O2), (O1 \ (S1 ∪ X1),X2 ∩ O2), and
(O1 \ (S1 ∪ X1), O2 \ (S2 ∪ X2)), respectively;

N1, N2: the number of edges in the cuts (S2 ∩ O2,X1 \ O1) and (S2 ∩ O2, V1 \
(S1 ∪ X1 ∪ O1)), respectively;

{Pi}i∈[5]: the number of edges in the cuts (X2 \ O2, V1 \ (S1 ∪ X1 ∪ O1)), (O2 \
(S2 ∪ X2),X1 \ O1), (O2 \ (S2 ∪ X2), V1 \ (S1 ∪ X1 ∪ O1)), (X2 ∩ O2,X1 \ O1),
and (X2 ∩ O2, V1 \ (S1 ∪ X1 ∪ O1)), respectively;

U1, U2, U3: the number of edges is the cuts, (S1 \O1, S2 \O2), (S1 \O1, V2 \ (S2 ∪
X2 ∪ O2)) and (S2 \ O2, V1 \ (S1 ∪ X1 ∪ O1)), respectively.

Denoting by δ(V ′), V ′ ⊆ V , the number of edges covered by V ′ and by opt(B) the
value of an optimal solution (i.e., the number edges covered) for max k -vertex
cover in the input graph B, the following holds (see also Fig. 1):

δ (S1) = B + C + F1 + F2 + F3 + H1 + H2 + L1 + L2 + L3 + U1 + U2 (1)
δ (S2) = B + C + J1 + J2 + J3 + L1 + L4 + L7 + N1 + N2 + U1 + U3 (2)

δ (X1) = I1 + I2 + I5 + I6 + J1 + J3 +
6∑

i=4

Li + N1 + P2 + P4 (3)

δ (X2) = F1 + F3 + H1 + I1 + I3 + I5 + L2 + L5 + L8 + P1 + P4 + P5 (4)

δ (O1) = C + H1 + H2 + I3 + I4 + I5 + I6 + J2 + J3 +
9∑

i=1

Li (5)

δ (O2) = B + F2 + F3 +
9∑

i=1

Li + N1 + N2 +
5∑

i=2

Pi (6)

opt(B) = B + C +
3∑

i=2

Fi +
2∑

i=1

Hi +
6∑

i=3

Ii +
3∑

i=2

Ji +
9∑

i=1

Li

+
2∑

i=1

Ni +
5∑

i=2

Pi (7)

Without loss of generality, we assume k1 � k2 and we set: k1 = μk2 (μ � 1),
k′
1 = |S1 ∩ O1| = νk1 (0 � ν � 1) and k′

2 = |S2 ∩ O2| = ξk2 (0 � ξ � 1). Let us
note that, since k′

i vertices lie in the intersections Si ∩ Oi, the following hold for
Ōi = Oi \ (Si ∪ Xi), i = 1, 2: |Ō1| = |O1 \ (S1 ∪ X1)| � (1 − ν)k1 = μ(1 − ν)k2
and |Ō2| = |O2 \ (S2 ∪ X2)| � (1 − ξ)k2. From the definitions of the cuts and
using (1) to (6) and the expressions for |Ō1| and |Ō2|, simple average arguments
and the assumptions for k1, k2, k′

1 and k′
2 just above, the following holds:

Combinatorial Algorithm for Maximum k-vertex Cover 239

δ (S1) ≥ δ (O1)
δ (S2) ≥ δ (O2)
δ (X1) + C + H1 + H2 + L1 + L2 + L3 ≥ δ (O1)
δ (X2) + B + N1 + N2 + L1 + L4 + L7 ≥ δ (O2)
δ (S1) ≥ 1/(1−ν) · δ (X1)
δ (S2) ≥ 1/(1−ξ) · δ (X2)
δ (S1) + δ (X1) ≥ (2−ν)/(1−ν) · (I3 + I4 + J2 + L7 + L8 + L9)
δ (S2) + δ (X2) ≥ (2−ξ)/(1−ξ) · (F2 + L3 + L6 + L9 + P2 + P3)
B + F1 + F2 + F3 + U1 + U2 ≥ δ (X1)
C + J1 + J2 + J3 + U1 + U3 ≥ δ (X2)

(8)

For i = 1, 2, the two first inequalities in (8) hold because Si is the set of ki highest-
degree vertices in Vi; the third and fourth ones because the lefthand side quantities
are the number of edges covered by Xi ∪ (Si ∩ Oi); each of these sets has cardi-
nality ki and obviously covers more edges than Oi; the fifth and sixth inequal-
ities because the average degree of Si is at least the average degree of Xi and
|X1| = (1 − ν)k1 and |X2| = (1 − ξ)k2; seventh and eighth ones because the
average degree of vertices in Si ∪ Xi is at least the average degree of vertices in
Oi \ (Si ∪Xi); finally, for the last two inequalities the sum of degrees of the ki −k′

i

vertices in Si \ Oi is at least the sum of degrees of the ki − k′
i vertices of Xi.

In Sect. 3, we specify the approximation algorithm sketched above. In [7] a
computer assisted analysis of its approximation-performance is presented. The
non-linear program that we set up, not only computes the approximation ratio of
our algorithm but it also provides an experimental study over families of graphs.
Indeed, a particular configuration on the variables (i.e., a feasible value assign-
ments on the variables that represent the set of edges B,C, . . .) corresponds to
a particular family of bipartite graphs with similar structural properties (char-
acterized by the number of edges belonging to the several cut considered). Given
such a configuration, it is immediate to find the ratio of the algorithm, because
we can simply substitute the values of the variables in the corresponding ratios
and output the largest one. We can view our program as an experimental analy-
sis over all families of bipartite graphs, trying to find the particular family that
implements the worst case for the approximation ratio of the algorithm. Our
program not only finds such a configuration, but also provides data about the
range of approximation factor on other families of bipartite graphs. Experimen-
tal results show that the approximation factor for the absolute majority of the
instances is very close to 1, i.e., ≥ 0.95. Moreover, our program is independent on
the size of the instance. We just need a particular configuration on the relative
value of the variables B,C, . . . , thus providing a compact way of representing
families of bipartite graphs sharing common structural properties.

For the rest of the paper, we call “best” vertices a set of vertices that cover the
most of uncovered edges1 in B. Given a solution SOLk(B), we denote by solk(B)
its value. For the quantities implied in the ratios corresponding to these solutions,
one can be referred to Fig. 1 and to expressions (1) to (7).

1 For instance, “we take S1 plus the k2 best vertices in V2” means that we take S1

and then k2 vertices of highest degree in B[(V1 \ S1), V2].

240 É. Bonnet et al.

Let us note that the algorithm above, since it runs for any value of k1 and
k2, it will run for (k1, k2) = (k, 0) and (0, k). So, it will compute the optimum for
the instances of [4], where the greedy algorithm attains the ratio (e−1)/e. Observe
finally that, when k � min{|V1|, |V2|}, then min{|V1|, |V2|} is an optimal solution
since it covers the whole of E. This remark will be useful for some solutions in
the sequel, for example in the completion of solution SOL5(B).

3 A 0.821-Approximation for the Bipartite Max k-vertex
Cover

Algorithm k-VC ALGORITHM builds the following max k -vertex cover-
solutions:
SOL1(B) and SOL2(B), take, respectively, S1 plus the k2 remaining best ver-
tices from V2, and S2 plus the k1 remaining best vertices from V1;
SOL3(B) takes first S1 ∪ X1 in the solution and completes it with the
(1 − μ(1 − ν))k2 best vertices from V2;
SOL4(B) takes S2 and completes it either with vertices from V2, or with vertices
from both V2 and V1 (as specified in the next page);
SOL5(B) takes a π-fraction of the best vertices in S1 and X1, π ∈ (0, 1/2]; then,
solution is completed with the k1 + k2 − π(2k1 − k′

1) best vertices in V2;
SOL6(B) takes a λ-fraction of the best vertices in S2 and X2, λ ∈ (0, (1+μ)/(2−ξ)];
then solution is completed with the k1 + k2 − λ(2k2 − k′

2) best vertices in V1.
Let us note that the values of λ and π are parameters that we can

fix. In what follows, we analyze solutions SOL1(B) . . . SOL6(B) computed by
k-VC ALGORITHM and give analytical expressions for their ratios. A fully detailed
analysis of all these solutions is given in [7].

Solution SOL1(B). The best k2 vertices in V2, provided that S1 has already
been chosen, cover at least the maximum of the following quantities:

A1 = J1 + J2 + J3 + L4 + L7 + N1 + N2 + U3 by S2

A2 = I1 + I3 + I5 + L5 + L8 + P1 + P4 + P5 by X2

A3 = L4 + L5 + L6 + L7 + L8 + L9 + N1 + N2 + P2 + P3 + P4 + P5 by O2

So, the approximation ratio for SOL1(B) satisfies:

r1 �
δ (S1) + max

{
A1,A2,A3

}

opt(B)

Solution SOL2(B). The best k1 vertices in V1, provided that S2 has already
been chosen, cover at least the maximum of the following quantities:

B1 = H1 + H2 + F1 + F2 + F3 + L2 + L3 + U2 by S1

B2 = I1 + I2 + I5 + I6 + L5 + L6 + P2 + P4 by X1

B3 = H1 + H2 + I3 + I4 + I5 + I6 + L2 + L3 + L5 + L6 + L8 + L9 by O1

Combinatorial Algorithm for Maximum k-vertex Cover 241

So, the approximation ratio for SOL2(B) satisfies:

r2 �
δ (S2) + max

{
B1,B2,B3

}

opt(B)

Solution SOL3(B). Taking first S1 ∪ X1 in the solution, k − (k1 + k1 − k′
1) =

k1 +k2 −2k1 +k′
1 = k2 − (k1 −k′

1) = (1−μ(1−ν))k2 vertices remain to be taken
in V2. The best such vertices will cover at least the maximum of the following
quantities:

C1 =(1 − μ(1 − ν)) (J2 + N2 + L7 + U3) (9)

C2 =
1 − μ(1 − ν)

2 − ξ
(I3 + J2 + L7 + L8 + N2 + P1 + P5 + U3) (10)

C3 =
1 − μ(1 − ν)

3 − 2ξ
(I3 + J2 + L7 + L8 + L9 + N2 + P1 + P3 + P5 + U3) (11)

where (9) corresponds to a completion by the (1−μ(1−ν))k2 best vertices of S2,
(10) corresponds to a completion by the (1−μ(1−ν))k2 best vertices of S2∪X2,
while (11) corresponds to a completion by the (1 − μ(1 − ν))k2 best vertices of
S2 ∪ X2 ∪ Ō2. The denominator 3 − 2ξ in (11) is due to the fact that, using the
expression for Ō2, |S2∪X2∪(O2\(S2∪X2))| � (3−2ξ)k2. So, the approximation
ratio for SOL3(B) is:

r3 �
δ (S1) + δ (X1) + max

{
C1, C2, C3

}

opt(B)
(12)

Solution SOL4(B). Once S2 is taken in the solution, k1 = μk2 are still to be
taken. Completion can be done in the following ways:

1. if k1 � k2 − k′
2, i.e., μ � 1 − ξ, completion can be done by vertices taken

either from X2, or from X2 ∪ Ō2; in the first case, the best vertices taken for
completion will cover at least either a μ/(1−ξ) fraction of edges incident to X2;
in the second case, they will cover at least a μ/2(1−ξ) fraction of edges incident
to X2 ∪ Ō2, i.e., at least M1 edges, where M1 is given by:

max
{

μ

1 − ξ
δ (X2) ,

μ

2(1 − ξ)
(δ (X2) + F2 + L3 + L6 + L9 + P2 + P3)

}

(13)
2. else, completion can be done by taking the whole set X2 and then the addi-

tional vertices taken:
(a) either within the rest of V2 covering, in particular, a min{1, (μ−1+ξ)/|Ō2|} �

min{1, (μ−1+ξ)/(1−ξ)} fraction of edges incident to Ō2 (quantity M2

in (14)),
(b) or in S1 covering, in particular, a (μ−1+ξ)/μ fraction of uncovered edges inci-

dent to S1 (quantity M3 in (14)),
(c) or in S1∪X1 covering, in particular, a (μ−1+ξ)/μ(2−ν) fraction of uncovered

edges incident to S1 ∪ X1 (quantity M4 in (14)),

242 É. Bonnet et al.

(d) or, finally, in S1∪X1∪Ō1 covering, in particular, a (μ−1+ξ)/μ(3−2ν) fraction
of uncovered edges incident to this vertex-set (quantity M5 in (14));

in any case such a completion will cover a number of edges that is at least
the maximum of the following quantities:

M2 = min
{

1, μ−1+ξ
1−ξ

}
(F2 + L3 + L6 + L9 + P2 + P3)

M3 = μ−1+ξ
μ (F2 + H2 + L3 + U2)

M4 = μ−1+ξ
μ(2−ν) (F2 + H2 + I2 + I6 + L3 + L6 + P2 + U2)

M5 = μ−1+ξ
μ(3−2ν) (F2 + H2 + I2 + I4 + I6 + L3 + L6 + L9 + P2 + U2)

(14)

Using (13) and (14), the following holds for the approximation ratio of SOL4(B):

r4 �
δ (S2) +

{
M1 μ ≤ 1 − ξ
δ (X2) + max {M2,M3,M4,M5} μ ≥ 1 − ξ

opt(B)
(15)

Vertical Separations – Solutions SOL5(B) and SOL6(B). For i = 1, 2,
given a vertex subset V ′ ⊆ Vi, we call vertical separation of V ′ with parameter
c ∈ (0, 1/2], a partition of V ′ into two subsets such that one of them contains a
c-fraction of the best (highest degree) vertices of V ′ (i.e., contains the c|V ′| best
vertices of V ′). Then, the following easy claim holds for a vertical separation of
V ′ ∪ V ′′ with parameter c.

Claim. Let A(V ′) be a c-fraction of the best vertices in V ′ and A(V ′′) the same
in V ′′. Then δ(A(V ′)) + δ(A(V ′′)) ≥ cδ(V ′ ∪ V ′′).

Proof. Assume that in V ′ we have n′ vertices. To form A(V ′) we take the cn′

vertices of V ′ with highest degree. The average degree of V ′ is δ(V ′)/n′. The
average degree of A(V ′) is δ(A(V ′))/(cn′). But, from the selection of A(V ′) as
the cn′ vertices with highest degree, we have that δ(A(V ′))/(cn′) ≥ δ(V ′)/n′ ⇒
δ(A(V ′)) ≥ cδ(V ′). Similarly for V ′′, i.e., δ(A(V ′′)) ≥ cδ(V ′′).

Solutions SOL5(B) and SOL6(B) are based upon vertical separations of Si ∪
Xi, i = 1, 2, with parameters π and λ, called π- and λ-vertical separations,
respectively.

The idea behind vertical separation, is to handle the scenario when there is a
“tiny” part of the solution (i.e. few in comparison to, let’s say, k1 vertices) that
covers a large part of the solution and the “completion” of the solution done by
the previous cases does not contribute more than a small fraction to the final
solution. The vertical separation indeed tries to identify such a small part, and
then continues the completion on the other side of the bipartition.

Solution SOL5(B). It consists of separating S1∪X1 with parameter π ∈ (0, 1/2],
of taking a π-fraction of the best vertices of S1 and a π-fraction of the best vertices
of X1 in the solution and of completing it with the adequate vertices from V2.
A π-vertical separation of S1 ∪ X1 introduces in the solution π (2k1 − k′

1) =
π(2 − ν)μk2 vertices of V1, which are to be completed with k − π(2 − ν)μk2 =

Combinatorial Algorithm for Maximum k-vertex Cover 243

(1 + μ)k2 − π(2 − ν)μk2 = (1 − μ(2π − 1) + μνπ)k2 vertices from V2. Observe
that such a separation implies the cuts with corresponding cardinalities B, C,
Fi, i = 1, 2, 3, H1, H2, I1, I2, I5, I6, J1, J3, Lj , j = 1, . . . , 6, N1, P2, P4, U1

and U2. Let us group these cuts in the following way:

Π1 = C + J1 + J3 + U1

Π2 = B + L1 + L4 + N1

Π3 = F3 + L2 + L5 + P4

Π4 = I1 + I5 + F1 + H1

Π5 = F2 + L3 + L6 + P2

Π6 = I2 + I6 + H2 + U2

(16)

We may also notice that group Π1 refers to S2 \ O2, Π2 refers to S2 ∩ O2, Π3 to
X2 ∩ O2, Π5 to Ō2 and Π4 to X2 \ O2. Assume that a πi < 1 fraction of each
group Πi, i = 1, . . . 6 contributes in the π vertical separation of S1 ∪ X1. Then,
a π-vertical separation of S1 ∪ X1 will contribute with a value:

6∑

i=1

πiΠi � π
6∑

i=1

Πi (17)

to sol5(B). We now distinguish two cases.

Case 1: (1 − μ(2π − 1) + μνπ)k2 � k2, i.e., 1 − μ(2π − 1) + μνπ � 1. Then we
further distinguish the following two subcases 1. and 2.:
1. μ(1 − 2π) + μνπ ≤ 1 − ξ; then, the partial solution induced by the π-vertical
separation will be completed in such a way that the contribution of the comple-
tion is at least equal to max{Zi, i = 1, . . . , 5}, where:
Z1 refers to S2 plus the best (1−μ(2π −1)+μνπ)k2 −k2 = (μ(1−2π)+μνπ)k2
vertices of O2 having a contribution of:

Z1 =
2∑

i=1

(1 − πi) Πi + (J2 + L7 + N2 + U3) +
μ(1 − 2π) + μνπ

1 − ξ
[(1 − π3) Π3

+ (1 − π5) Π5 + (L8 + L9 + P3 + P5)] (18)

Z2 refers to S2 plus the best (μ(1 − 2π) + μνπ)k2 vertices of X2 having a con-
tribution of:

Z2 =
2∑

i=1

(1 − πi) Πi + (J2 + L7 + N2 + U3)

+
μ(1 − 2π) + μνπ

1 − ξ

⎡

⎣
4∑

j=3

(1 − πi) Πi + (I3 + L8 + P1 + P5)

⎤

⎦

244 É. Bonnet et al.

Z3 and Z4 refer to the best (1 − μ(2π − 1) + μνπ)k2 vertices of S2 ∪ X2 and of
S2 ∪ O2 having, respectively, contributions:

Z3 =
1 − μ(2π − 1) + μνπ

2 − ξ

[
4∑

i=1

(1 − πi) Πi

+ (I3 + J2 + L7 + L8 + N2 + P1 + P5 + U3)]

Z4 =
1 − μ(2π − 1) + μνπ

2 − ξ

[
3∑

i=1

(1 − πi) Πi + (1 − π5) Π5

+ (J2 + L7 + L8 + L9 + N2 + P3 + P5 + U3)]

Z5 refers to the best (1 − μ(2π − 1) + μνπ)k2 vertices of S2 ∪ X2 ∪ Ō2 having a
contribution of:

Z5 =
1 − μ(2π − 1) + μνπ

3 − 2ξ

[
5∑

i=1

(1 − πi) Πi

+ (I3 + J2 + L7 + L8 + L9 + N2 + P1 + P3 + P5 + U3)]

2. μ(1 − 2π) + μνπ ≥ 1 − ξ; in this case, the partial solution induced by the
π-vertical separation will be completed in such a way that the contribution of
the completion is at least max{Θi, i = 1, . . . , 3}, where:
Θ1 refers to S2 ∪ X2 plus the best (μ(1 − 2π) + μνπ − (1 − ξ))k2 vertices of Ō2,
all this having a contribution of:

Θ1 =
4∑

i=1

(1 − πi) Πi + (I3 + J2 + L7 + L8 + N2 + P1 + P5 + U3)

+
μ(1 − 2π) + μνπ − (1 − ξ)

1 − ξ
[(1 − π5) Π5 + L9 + P3]

Θ2 refers to S2 ∪ O2 plus the best (μ(1 − 2π) + μνπ − (1 − ξ))k2 vertices of
X2 \ O2, all this having a contribution of:

Θ2 =
3∑

i=1

(1 − πi) Πi

+ (1 − π5) Π5 + (J2 + L7 + L8 + L9 + N2 + P3 + P5 + U3)

+
μ(1 − 2π) + μνπ − (1 − ξ)

1 − ξ
[(1 − π4) Π4 + I3 + P1]

Θ3 refers to the best (1 − μ(2π − 1) + μνπ)k2 vertices of S2 ∪ X2 ∪ Ō2 having a
contribution of:

Θ3 =
1 − μ(2π − 1) + μνπ

3 − 2ξ

[
5∑

i=1

(1 − πi) Πi

+ (I3 + J2 + L7 + L8 + L9 + N2 + P1 + P3 + P5 + U3)]

Combinatorial Algorithm for Maximum k-vertex Cover 245

Case 2: 1 − μ(2π − 1) + μνπ < 1. The partial solution induced by the π-
vertical separation will be completed in such a way that the contribution of the
completion is at least equal to max{Φi, i = 1, . . . , 5}, where:
Φ1 refers to the best (1 − μ(2π − 1) + μνπ)k2 vertices in S2 with a contribution:

Φ1 = (1 − μ(2π − 1) + μνπ)

[
2∑

i=1

(1 − πi) Πi + (J2 + L7 + N2 + U3)

]

Φ2 refers to the best (1−μ(2π − 1)+μνπ)k2 vertices in X2 with a contribution:

Φ2 =
1 − μ(2π − 1) + μνπ

1 − ξ

[
4∑

i=3

(1 − πi) Πi + (I3 + L8 + P1 + P5)

]

Φ3 refers to the best (1−μ(2π −1)+μνπ)k2 vertices in O2 with a contribution:

Φ3 = (1 − μ(2π − 1) + μνπ)

[
3∑

i=2

(1 − πi) Πi + (1 − π5) Π5

+ (L7 + L8 + L9 + N2 + P3 + P5)]

Φ4 refers to the best (1 − μ(2π − 1) + μνπ)k2 vertices in S2 ∪ X2 with a
contribution:

Φ4 =
1 − μ(2π − 1) + μνπ

2 − ξ

⎡

⎣
4∑

j=1

(1 − πj) Πj

+ (I3 + J2 + L7 + L8 + N2 + P1 + P5 + U3)]

Φ5 refers to the best (1 − μ(2π − 1) + μνπ)k2 vertices in S2 ∪ X2 ∪ Ō2 with a
contribution:

Φ5 =
1 − μ(2π − 1) + μνπ

3 − 2ξ

⎡

⎣
5∑

j=1

(1 − πj) Πj

+ (I3 + J2 + L7 + L8 + L9 + N2 + P1 + P3 + P5 + U3)] (19)

Setting Z∗ = max{Zi : i = 1, . . . 5}, Θ∗ = max{Θi : i = 1, 2, 3} and Φ∗ =
max{Φi : i = 1, . . . 5}, and putting (16) and (17) together with expressions (18)
to (19), we get the following lower bound for ratio r5:

6∑

i=1

πiΠi +

⎧
⎨

⎩

{
Z∗ if μ(1 − 2π) + μνπ ≤ 1 − ξ
Θ∗ if μ(1 − 2π) + μνπ ≥ 1 − ξ

}

case: 1 − μ(2π − 1) + μνπ ≥ 1

Φ∗ case: 1 − μ(2π − 1) + μνπ < 1
opt(B)

(20)
Solution SOL6(B). In a complete analogy with SOL5, solution SOL6(B) con-
sists of separating S2 ∪ X2 with parameter λ ∈ (0, 1/2]. It consists of separating

246 É. Bonnet et al.

S2 ∪ X2 with parameter λ, of taking a λ fraction of the best vertices of S2 and
X2 in the solution and of completing it with the adequate vertices from V1. Here,
we need that λ(k2 + k2 − k′

2) � k ⇒ λ(2− ξ)k2 � (1+μ)k2 ⇒ λ � (1+μ)/(2−ξ) ⇒
λ ∈ (0, (1+μ)/(2−ξ)].

A λ-vertical separation of S2∪X2 introduces in the solution λ(2−ξ)k2 vertices
of V2, which are to be completed with k − λ(2 − ξ)k2 = (1 + μ)k2 − λ(2 − ξ)k2 =
(1 + μ − λ(2 − ξ))k2 vertices from V1.

Observe that such a separation implies the cuts with corresponding cardinal-
ities B, C, F1, F3, H1, I1, I3, I5, Ji, i = 1, 2, 3, L1, L2, L4, L5, L7, L8, N1, N2,
P1, P4, P5, U1 and U3. We group these cuts in the following way:

Λ1 = B + F1 + F3 + U1

Λ2 = C + H1 + L1 + L2

Λ3 = J3 + I5 + L4 + L5

Λ4 = I1 + J1 + N1 + P4

Λ5 = I3 + J2 + L7 + L8

Λ6 = N2 + P1 + P5 + U3

(21)

Group Λ1 refers to S1 \ O1, Λ2 to S1 ∩ O1, Λ3 to X1 ∩ O1, Λ5 to Ō1 and Λ4

to X1 \ O1. Assume, as previously, that a λi < 1 fraction of each group Λi,
i = 1, . . . 6 contributes in the λ vertical separation of S2 ∪X2. Then, a λ-vertical
separation of S2 ∪ X2 will contribute with a value:

6∑

i=1

λiΛi � λ
6∑

i=1

Λi (22)

to sol6(B). We again distinguish two cases.

Case 1. (1 + μ − λ(2 − ξ))k2 � μk2, i.e., 1 + μ − λ(2 − ξ) � μ. Here we have the
two following subcases.
(a) 1 − λ(2 − ξ) ≤ (1 − ν)μ; then, the partial solution induced by the λ-vertical
separation will be completed in such a way that the contribution of the comple-
tion is at least equal to Υ ∗ = max{Υi, i = 1, . . . , 5}, where: Υ1 refers to S1 plus
the best (1 − λ(2 − ξ))k2 vertices of X1;
Υ2 refers to S1 plus the best (1 − λ(2 − ξ))k2 vertices of O1;
Υ3 and Υ4 refer to the best (1 + μ − λ(2 − ξ))k2 vertices of S1 ∪ X1 and S1 ∪ O1;
Υ5 refers to the best (1 + μ − λ(2 − ξ))k2 vertices of S1 ∪ X1 ∪ Ō1. (b)
1 − λ(2 − ξ) ≥ (1 − ν)μ; in this case, the partial solution induced by the λ-
vertical separation will be completed in such a way that the contribution of the
completion is at least Ψ∗ = max{Ψi, i = 1, . . . , 3}, where:
Ψ1 refers to S1 ∪ X1 plus the best (1 − λ(2 − ξ) − (1 − ν))k2 vertices of Ō1;
Ψ2 refers to S1 ∪ O1 plus the best (1 − λ(2 − ξ) − (1 − ν))k2 vertices of X1 \ O1;
Ψ3 refers to the best (μ + 1 − λ(2 − ξ))k2 vertices of S1 ∪ X1 ∪ Ō1.

Case 2. 1 + μ − λ(2 − ξ) � μ. The partial solution induced by the λ-vertical
separation will be completed in such a way that the contribution of the comple-
tion is at least equal to Ω∗ = max{Ωi, i = 1, . . . , 5}, where:

Combinatorial Algorithm for Maximum k-vertex Cover 247

Ω1 refers to the best (1 + μ − λ(2 − ξ))k2 vertices in S1;
Ω2 refers to the best (1 + μ − λ(2 − ξ))k2 vertices in X1;
Ω3 refers to the best (1 + μ − λ(2 − ξ))k2 vertices in O1;
Ω4 refers to the best (1 + μ − λ(2 − ξ))k2 vertices in S1 ∪ X1;
Ω5 refers to the best (1 + μ − λ(2 − ξ))k2 vertices in S1 ∪ X1 ∪ Ō1.

Putting all this together we get:

r6 �

6∑

i=1

λiΛi +

⎧
⎨

⎩

{
Υ ∗ if 1 − λ(2 − ξ) ≤ (1 − ν)μ
Ψ∗ if 1 − λ(2 − ξ) > (1 − ν)μ

}

case: μ + 1 − λ(2 − ξ) ≥ μ

Ω∗ case: μ + 1 − λ(2 − ξ) < μ

opt(B)
(23)

The complete study of solution SOL6(B) is deferred to [7].

4 Results and Discussion

To analyze the performance guarantee of k-VC ALGORITHM, we set up a non-linear
program and solved it to optimality. Here, we interpret the cardinalities of the
edge-sets B,C, Fi, . . . , as variables, the expressions in (8) as constraints and the
objective function is min Z(≡ max6

j=1 rj). In other words, we try to find a value
assignments to the set of variables such that the maximum among all the six
ratios defined is minimized. This value would give us the desired approximation
guarantee of k-VC ALGORITHM.

Towards this goal, we set up a GRG (Generalized Reduced Gradient [9])
program. The reasons this method is selected are presented in [7], as well as
a more detailed description of the implementation. GRG is a generalization of
the classical Reduced Gradient method [10] for solving (concave) quadratic prob-
lems so that it can handle higher degree polynomials and incorporate non-linear
constraints.

As the values of parameters π and λ decrease, the approximation guarantee
increases. The maximum of these ratios is attained for π = λ = 10−5. For these
values, the corresponding values of ratios r1 ÷ r6 computed for them are the
following:

r1 = 0.81806
r2 = 0.81797
r3 = 0.79280
r4 = 0.79657
r5 = 0.82104

r6 = 0.82103

These results correspond to the cycle that outputs the minimum value for the
approximation factor and this is 0.821, given by solution SOL5.

To conclude, let us note that the formulation of the non-linear program
we developed for bounding the ratio below, could provide useful insights for

248 É. Bonnet et al.

problem’s understanding and could be applied for solving the problem on other
graph-classes. Finally, since the overall algorithm chooses the best among a cer-
tain number of solutions it is easily parallelizable.

Remark. As we note in [7], the GRG solver does not guarantee the global opti-
mal solution. The 0.821 guarantee is the minimum value that the solver returns
after several runs from different initial starting points. However, successive re-
executions of the algorithm, starting from this minimum value, were unable to
find another point with smaller value. In each one of these successive re-runs, we
tested the algorithm on 1000 random different starting points (which is greater
than the estimation of the number of local minima) and the solver did not find
value worse that the reported one.

Acknowledgement. The work of the last author was supported by the Swiss National
Research Foundation Early Post-Doc mobility grant P1TIP2 152282.

References

1. Apollonio, N., Simeone, B.: The maximum vertex coverage problem on bipartite
graphs. Discrete Appl. Math. 165, 37–48 (2014)

2. Caskurlu, B., Mkrtchyan, V., Parekh, O., Subramani, K.: On partial vertex cover
and budgeted maximum coverage problems in bipartite graphs. In: Diaz, J., Lanese,
I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 13–26. Springer, Heidelberg
(2014)

3. Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of
maximum k-coverage. Naval Res. Logistics 45, 615–627 (1998)

4. Badanidiyuru, A., Kleinberg, R., Lee, H.: Approximating low-dimensional coverage
problems. In: Dey, T.K., Whitesides, S. (eds.) SoCG 2012, pp. 161–170. ACM,
Chapel Hill (2012)

5. Ageev, A.A., Sviridenko, M.I.: Approximation algorithms for maximum coverage
and max cut with given sizes of parts. In: Cornuéjols, G., Burkard, R.E., Woeginger,
G.J. (eds.) IPCO 1999. LNCS, vol. 1610, p. 17. Springer, Heidelberg (1999)

6. Petrank, E.: The hardness of approximation: gap location. Comput. Complex. 4,
133–157 (1994)

7. Bonnet, E., Escoffier, B., Paschos, V.T., Stamoulis, G.: A 0.821-ratio purely
combinatorial algorithm for maximum k-vertex cover in bipartite graphs. CoRR
arXiv:1409.6952v2 (2015)

8. Feige, U., Karpinski, M., Langberg, M.: Improved approximation of max-cut on
graphs of bounded degree. J. Algorithms 43, 201–219 (2002)

9. Abadie, J., Carpentier, J.: Generalization of the wolfe reduced gradient method to
the case of non-linear constraints. In: Abadie, J., Carpentier, J. (eds.) Optimiza-
tion. Academic Publishers (1969)

10. Frank, M., Wolfe, P.: An algorithm for quadratic programming. Naval Res.
Logistics Q. 3, 95–110 (1956)

http://arxiv.org/abs/1409.6952v2

Improved Spanning Ratio
for Low Degree Plane Spanners

Prosenjit Bose, Darryl Hill(B), and Michiel Smid

School of Computer Science, Carleton University, Ottawa, Canada
darrylhill@email.carleton.ca

Abstract. We describe an algorithm that builds a plane spanner with
a maximum degree of 8 and a spanning ratio of ≈4.414 with respect to
the complete graph. This is the best currently known spanning ratio for
a plane spanner with a maximum degree of less than 14.

1 Introduction

Let P be a set of n points in the plane. Let G be a weighted geometric graph on
vertex set P , where edges are straight line segments and are weighted according
the Euclidean distance between their endpoints. Let δG(p, q) be the sum of the
weights of the edges on the shortest path from p to q in G. If, for graphs G and H
on the point set P , where G is a subgraph of H, for every pair of points p and q in
P , δG(p, q) ≤ t · δH(p, q) for some real number t > 1, then G is a t-spanner of H,
and t is called the spanning ratio. H is called the underlying graph of G. In this
paper the underlying graph is the Delaunay triangulation or the complete graph.

The L1-Delaunay triangulation was first proven to be a
√

10-spanner of the
complete graph by Chew [1]. Dobkin et al. [2] proved that the L2-Delaunay
triangulation is a 1+

√
5

2 π-spanner. This was improved by Keil and Gutwin [3] to
2π

3 cos(π
6) , and finally taken to its currently best known spanning ratio of 1.998 by

Xia [4].
The Delaunay triangulation may have an unbounded degree. High degree

nodes can be detrimental to real world applications of graphs. Thus there has
been research into bounded degree plane spanners. We present a brief overview
of some of the results in Table 1.

Bounded degree plane spanners are often obtained by taking a subset of edges
of an existing plane spanner and ensuring that it has bounded degree, while main-
taining spanning properties. We note how in Table 1 that all of the results are
subgraphs of some variant of the Delaunay triangulation. All of the algorithms
for building the graphs mentioned above run in O(n log n) time, including ours.

As we look down the column of results, we see a steady march towards lower
degrees. Indeed, Bonichon et al. [11] have impressively found a degree 4 plane
spanning graph. However, we believe that optimizing both degree and spanning

This work was partially supported by the Natural Sciences and Engineering Research
Council of Cananda (NSERC) and by the Ontario Graduate Scholarship (OGS).

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 249–262, 2016.
DOI: 10.1007/978-3-662-49529-2 19

250 P. Bose et al.

Table 1. Known results for bounded degree plane spanners.

Paper Degree Stretch factor

Bose et al. [5] 27 (π + 1)CDT ≈ 8.27

Li and Wang [6] 23 (1 + π sin(π/4))CDT ≈ 6.44

Bose et al. [7] 17 (((1 +
√

3 + 3π)/2) + 2π sin(π/12))CDT ≈ 23.58

Kanj et al. [8] 14 (1 + (2π/14 cos(π/14))))CDT ≈ 2.92

Bose et al. [9] 7 (1/(1 − 2 tan(π/8)))CDT ≈ 11.65

Bose et al. [9] 6 (1/(1 − tan(π/7)(1 + 1/ cos(π/14))))CDT ≈ 81.66

Bonichon et al. [10] 6 6

Bonichon et al. [11] 4
√

4 + 2
√

2(19 + 29
√

2) ≈ 156.82

This paper 8 (1 + (2π/(6 cos(π/6))))CDT ≈ 4.41

CDT is the spanning ratio of the Delaunay Triangulation, currently <1.998 [4]

ratio is of theoretical interest. Certainly in any practical setting both spanning
ratio and degree bound are important. Thus, looking at the above results we see
an opportunity for improvement in this field.

With this in mind, we present our contribution, an algorithm to construct a
plane spanner of maximum degree 8 with a spanning ratio of ≈4.41. This is the
lowest spanning ratio of any graph of degree less than 14.

The rest of the paper is organized as follows. In Sect. 2 we describe how to
select a subset of the edges of the Delaunay triangulation DT (P) to form the
graph D8(P). In Sect. 3 we prove that D8(P) has a maximum degree of 8. In
Sect. 4 we bound the spanning ratio of D8(P) with respect to DT (P). Since
DT (P) is a spanner of the complete Euclidean graph, this makes D8(P) a span-
ner of the complete Euclidean graph as well.

2 Building D8(P)

Given as input a set P of n points in the plane, we present an algorithm for build-
ing a bounded degree plane graph with maximum degree 8 and spanning ratio
bounded by a constant, which we denote as D8(P). The graph denoted D8(P) is
constructed by taking a subset of the edges of the Delaunay triangulation of P ,
denoted DT (P).

We assume general position of P ; i.e., no three points are on a line, no four
points are on a circle, and no two points form a line with slope 0,

√
3 or −

√
3.

The space around each vertex p is partitioned by cones consisting of 6 equally
spaced rays from p. Thus each cone has an angle of π/3. See Fig. 1. We number
the cones starting with the topmost cone as C0, then number in the clockwise
direction. Cone arithmetic is modulo 6. By our general position assumption we
note that no point of P lies on the boundary of a cone.

We denote the Euclidean distance between two vertices p and q by |pq|. We
also introduce a distance function known as the bisector distance, which is the
distance from p to the orthogonal projection of q onto the bisector of Cp

i , where
q ∈ Cp

i . See Fig. 1a. We denote this length [pq].

Improved Spanning Ratio for Low Degree Plane Spanners 251

Definition 1. Let {q0, q1, ..., qd−1} be the sequence of all neighbours of p in
DT (P) in consecutive clockwise order. The neighbourhood Np, with apex p,
is the graph with the vertex set {p, q0, q1, ..., qd−1} and the edge set {(p, qj)} ∪
{(qj , qj+1)}, 0 ≤ j ≤ d−1, with all values mod d. The edges {(qj , qj+1)} are called
canonical edges. Np

i is the subgraph of Np induced by all the vertices of Np in
Cp

i , including p. This is called the cone neighbourhood of p. See Fig. 1b. If we
refer to the induced subgraph of p and a consecutive subsequence of neighbours
{qk, ..., ql}, 0 ≤ k ≤ l ≤ d−1, we refer to this as a restricted neighbourhood,
which we denote as Nqk,ql

p .

Cp
0

Cp
1

Cp
2

Cp
3

Cp
4

Cp
5

p
π/3

q

[pq]

p

q1 q2
q3 q4q0

q5

Fig. 1. Preliminaries.

The algorithm ConstructD8(P) takes as input a point set P and returns the
bounded degree graph D8(P), with vertex set P and edge set E. The algorithm
calls two subroutines. AddIncident() selects a set of edges EA. For each edge
(p, r) of EA, we call AddCanonical(p, r) and AddCanonical(r, p) which add
edges to the set ECAN . Both EA and ECAN are a subset of the edges in DT (P).
The final graph D8(P) consists of the vertex set P and the union of edge sets
EA and ECAN .

We present the algorithm here;
Algorithm: ConstructD8(P)
INPUT: Set P of n points in the plane.
OUTPUT: D8(P): spanning subgraph of DT (P).

Step 1: Compute the Delaunay triangulation DT (P) of the point set P .
Step 2: Sort all the edges of DT (P) by their bisector distance, into an ordered

set L, in non-decreasing order.
Step 3: Call the function AddIncident(L) with L as the argument.

AddIncident() selects and returns the subset EA of the edges of L.
Step 4: For each edge (p, r) in EA in sorted order call AddCanonical(p, r) and

AddCanonical(r, p), which add edges to the set ECAN .
Step 5: Return D8(P) = (P,EA ∪ ECAN).

252 P. Bose et al.

Algorithm: AddIncident(L)
INPUT: L: ordered set of edges of DT (P) sorted by bisector distance.
OUTPUT: EA: a subset of edges of DT (P).

Step 1: Initialize the set EA = ∅.
Step 2: For each (p, q) ∈ L, in non-decreasing order, do:

(a) Let i be the number of the cone of p containing q. If EA has no
edges with endpoint p in Np

i , and if EA has no edges with endpoint
q in Nq

i+3, then we add (p, q) to EA.
Step 3: Return EA.

p

Cp
0

a b

r

c d

e

anchor
end endinner

Fig. 2. The graph Can
(p,r)
0 ,

based on (p, r) ∈ EA, in red.
Vertex r is the anchor, d and
b are end vertices, and c and
r are inner vertices (Color
figure online).

The next algorithm requires the following defin-
ition:

Definition 2. Let Can
(p,r)
i be the subgraph of

DT (P) consisting of the ordered subsequence of
canonical edges (s, t) of Np

i in clockwise order
around apex p such that [ps] ≥ [pr] and [pt] ≥ [pr].
We call Can

(p,r)
i a canonical subgraph. A vertex

that is the first or last vertex of Can
(p,r)
i is called

an end vertex of Can
(p,r)
i . A vertex that is not the

first or last vertex in Can
(p,r)
i is called an inner

vertex of Can
(p,r)
i . Vertex r is called the anchor of

Can
(p,r)
i . See Fig. 2.

Algorithm: AddCanonical(p, r)
INPUT: (p, r), an edge of EA.
OUTPUT: A set of edges that are a subset of the edges of DT (P). All edges

generated by calls to AddCanonical() form the set ECAN .

Step 1: Without loss of generality, let r ∈ Cp
0 .

Step 2: If there are at least three edges in Can
(p,r)
0 , then for every canonical

edge (s, t) in Can
(p,r)
0 that is not the first or last edge in the ordered

subsequence of canonical edges Can
(p,r)
0 , we add (s, t) to ECAN .

Step 3: If the anchor r is the first or last vertex in Can
(p,r)
0 , and there is more

than one edge in Can
(p,r)
0 , then add the edge of Can

(p,r)
0 with endpoint

r to ECAN . See Fig. 3b.
Step 4: Consider the first and last canonical edge in Can

(p,r)
0 . Since the con-

ditions for the first and last canonical edge are symmetric, we only
describe how to process the last canonical edge (y, z). There are three
possibilities.
(a) If (y, z) ∈ Nz

5 we add (y, z) to ECAN . See Fig. 3c.
(b) If (y, z) ∈ Nz

4 and Nz
4 does not have an edge with endpoint z in EA,

then we add (y, z) to ECAN . See Fig. 3d
(c) If (y, z) ∈ Nz

4 and there is an edge with endpoint z in EA∩Nz
4 \(y, z),

then there is exactly one canonical edge of z with endpoint y in Nz
4 .

We label this edge (w, y) and add it to ECAN . See Fig. 3e.

Improved Spanning Ratio for Low Degree Plane Spanners 253

p

r

t

Cp
0

u zy

p

r

t

Cp
0

u zy

p

r

t

Cp
0

u zy

p

r

t

Cp
0

u zy

z

p

w

y

Cp
0 u

r

Fig. 3. AddCanonical(p,r)

254 P. Bose et al.

3 D8(P) has Maximum Degree 8

To prove D8(P) has a maximum degree of 8 we use a simple charging scheme.
We charge each edge (p, q) of D8(P) once to p and once to q. Thus the total
charge on a vertex is equal to the degree of that vertex. To help track the number
of charges on a vertex, each charge is associated with a specific cone, which may
not be the cone containing the edge. We show that a cone can be charged at most
twice, and that for any vertex p of P , at most two cones of p can be charged
twice, while the remaining cones are charged at most once, which yields our
maximum degree of 8.

The charging scheme for the edges of EA is as follows. Consider an edge (p, r)
of EA, where without loss of generality r is in Cp

0 and p is in Cr
3 . An edge (p, r)

of EA charges Cp
0 once and Cr

3 once.

Lemma 1. Each cone of an arbitrary vertex p of the graph D8(P) is charged
at most once by an edge of EA (thus yielding a maximum degree for the graph
G = (P,EA) of 6).

Proof. The algorithm AddIncident(L), specifies in Step 2a that, for a vertex p and
cone Cp

i , 0 ≤ i ≤ 5, at most one edge in Cp
i with endpoint p is added to EA.
�

For edges in ECAN we consider an arbitrary canonical subgraph Can
(p,r)
i ,

and without loss of generality let i = 0. We note that there are three types of
vertices in Can

(p,r)
0 : anchor, inner and end vertices. Thus any edge added to

ECAN from Can
(p,r)
0 will be charged to an inner, end or anchor vertex (refer

to Fig. 2). First we would like to establish that there are empty cones to charge
these edges to.

When referring to an angle formed by three points, we refer to the smaller
of the two angles (that is, the angle that is <π) unless otherwise stated.

We consider the edge (p, r) of EA, where without loss of generality, r is in
Cp

0 . In this section we show the location of cones in the region of Can
(p,r)
0 , so we

may charge edges of ECAN to them.

Lemma 2. Consider the arbitrary restricted neighbourhood N
(r,q)
p . Each vertex

x ∈ N
(r,q)
p \{p, r, q} is in the circle Op,r,q through p, r, and q.

Proof. Since (p, x) is an edge in DT (P), we can draw a disk through p and x
that is empty of points of P . In particular, neither r nor q is in this disk. Hence
the sum of the angles ∠(prx) and ∠(pqx) which lie on opposite sides of the same
chord is smaller than π, and the sum of the other two angles ∠(rxq) and ∠(rpq)
in the quadrilateral (prxq) is greater then π. That implies x is inside Op,r,q.

Lemma 3. Consider the restricted neighbourhood N
(r,q)
p in cone Cp

i . Let (p, x)
be an edge in N

(r,q)
p where x �= r and x �= q. Then angle ∠(qxr) ≥ π − ∠(qpr).

Since the cone angle is π/3, we have that ∠(qxr) > 2π/3.

Improved Spanning Ratio for Low Degree Plane Spanners 255

Proof. We know by Lemma 2 that x lies inside the circle through p, r and q,
which we label Op,r,q. The angle ∠(qxr) is minimized when x is on Op,r,q. When
x is on Op,r,q, ∠rxq = π − ∠(qpr), since the two angles lie on the same chord
(r, q). Therefore ∠(rxq) ≥ π − ∠(qpr). Since both q and r are in the same cone
Cp

i , and the cone angle is π/3, the ∠(qxr) > 2π/3.

Which leads to the corollary:

Corollary 1. Let s be an inner vertex of Can
(p,r)
i that is not the anchor. Then

there is at least one empty cone of s in Can
(p,r)
i .

Proof. Since s is not the anchor, any internal cone of Can
(p,r)
i on vertex s is

empty, and by Lemma 3, there is at least one internal cone of Can
(p,r)
i on vertex s.

Therefore there is at least one empty internal cone on s in Can
(p,r)
i .
�

Other empty cones follow a similar analysis. We outline the charging scheme
below by referencing the steps of AddCanonical(p, r) where edges were added
to ECAN .

Step 2, Step 3: Charge vertex s:
i If s is the anchor (thus s = r), then Cr

2 and Cr
4 are empty cones inside

Can
(p,r)
0 (since (p, r) is the shortest edge incident to p, in bisector dis-

tance, in Np
0). If t is left of directed line segment pr, charge (r, t) to Cr

4 .
If t is right of pr, charge (r, t) to Cr

2 . See Fig. 4a.
ii If s �= r then by s has an empty cone Cs

j inside Can
(p,r)
0 (Corollary 1).

Charge (s, t) once to Cs
j . See Fig. 4a.

Step 4a, Step 4b: Charge vertex y:
i If y is the anchor, then Cy

2 is empty and inside Can
(p,r)
0 . Charge (y, z)

to Cy
2 . See Fig. 4a.

ii Otherwise y is not the first or last vertex in Can
(p,r)
0 , and has an empty

cone Cy
j inside Can

(p,r)
0 (Corollary 1). Charge (y, z) to Cy

j . Figure 4b.
Charge vertex z:
iii Step 4a : (y, z) is in Cz

5 . Then Cz
4 is empty and inside Can

(p,r)
0 . Charge

(y, z) to Cz
4 . See Fig. 4c.

iv Step 4b : (y, z) is in Cz
4 , and Cz

4 does not contain an edge of EA with
endpoint z. Charge (y, z) to Cz

4 . See Fig. 4d.
Step 4c: Charge vertex y:

i If y = r, then Cy
2 is empty and inside Can

(p,r)
0 . Charge (w, y) to Cy

2 .
ii Otherwise y is not the first or last vertex in Can

(p,r)
0 , and has an empty

cone Cy
j inside Can

(p,r)
0 (Corollary 1). Charge (w, y) to Cy

j . See Fig. 4e.
Charge vertex w:
iii If w = u (where (z, u) in EA), then Cw

2 is empty and inside Can
(z,w)
4

(since (z, w) is the shortest edge incident to z, in bisector distance, in
Nz

4). Charge (w, y) to Cw
2 .

iv If w �= u, then w is not the first or last vertex in Can
(z,u)
4 , and has an

empty cone Cw
j inside Can

(z,u)
4 (Corollary 1). Charge (w, y) to Cw

j . See
Fig. 4f.

256 P. Bose et al.

p

r(y)

t

Cp
0

t
z

p

r

Cp
0

z
y(s)

t

p

r

Cp
0

z
ys

p

r

Cp
0 z

ys

p

r

Cp
0 z

y(s)

u
w

t

p

r

Cp
0 z

y

u
w

t

Fig. 4. Charging scheme for edges of ECAN .

Improved Spanning Ratio for Low Degree Plane Spanners 257

Cs
0

Cs
1

Cs
2

Cs
3

Cs
4

Cs
5

p

p

s

> 2π/3

> 2π/3

Fig. 5. A degree 8 vertex in D8(P). The
red edges belong to ECAN , while the black
edges belong to EA. The light edges are
edges of DT (P) that may or may not be
in D8(P) (Color figure online).

An analysis of the charging scheme
yields the following results.

Lemma 4. Cones of an end vertex
or anchor of a canonical subgraph
are charged at most once by edges of
ECAN .

Lemma 5. Cones on an inner vertex
of a canonical subgraph are charged at
most twice by edges of ECAN .

Lemma 6. The edges of EA and
ECAN are never charged to the same
cone.

Proof. The edges of EA are charged
directly to the cone they occupy on
each endpoint. We know from the
charging scheme above that the edges
of ECAN are charged to either empty
cones, or to a cone that does not con-
tain an edge of EA. Thus the edges of ECAN and EA are never charged to the
same cone.
�

Lemma 7. Consider a cone Cs
i of a vertex s in D8(P) that is charged twice by

edges of ECAN . Then the two neighbouring cones Cs
i−1 and Cs

i+1 are charged at
most once by edges of D8(P).

Theorem 1. The maximum degree of D8(P) is at most 8.

Proof. Each edge (p, r) of EA is charged once to the cone of p containing r and
once to the cone of r containing p. By Lemma 1, no cone is charged more than
once by edges of EA.

No edge of ECAN is charged to a cone that is charged by an edge of EA by
Lemma 6.

By Lemma 7, if a cone of a vertex s of D8(P) is charged twice, then its
neighbouring cones are charged at most once. This implies that there are at
most 3 double charged cones on any vertex s in D8(P).

Assume that we have a vertex s with 3 cones that have been charged twice.
A cone of s that is charged twice is an internal cone of some cone neighbourhood
Np

i by our charging argument. Thus s is endpoint to two canonical edges (q, s)
and (s, t) in Np

i . Note that ∠(qst) > 2π/3, and this angle contains the cone
of s that is charged twice. Thus to have 3 cones charged twice, the total angle
around s would need to be > 2π, which is impossible. Thus there are at most
two double charged cones on s, which gives us a maximum degree of 8. See Fig. 5
for an example of a degree 8 vertex.
�

258 P. Bose et al.

4 D8(P) is a Spanner

We will prove that D8(P) is a spanner of DT (P) with a spanning ratio of
(1 + 2π

3
√
3
) ≈ 2.21, thus making it a (1 + 2π

3
√
3
) · CDT -spanner of the complete

geometric graph, where CDT is the spanning ratio of the Delaunay triangulation.
As of this writing, the current best bound of the spanning ratio of the Delaunay
triangulation is 1.998 [4], which makes D8(P) approximately a 4.42-spanner of
the complete graph.

Suppose that (p, q) is in DT (P) but not in D8(P). We will show the existence
of a short path between p and q in D8(P). If the short path from p to q consists
of the ideal situation of an edge (p, r) of EA in the same cone of p as q, plus
every canonical edge of p from r to q, then we have what we call the ideal path.
We give a spanning ratio of the ideal path with respect to the canonical triangle
Tpq. If q ∈ Cp

i , then Tpq is an equilateral triangle with vertex p, two edges on
the boundary of Cp

i , with q on the third edge. Notice that in our construction,
when adding canonical edges to ECAN on an edge (p, r) of EA, there are times
where the first or last edges of Can

(p,r)
i are not added to ECAN . In these cases

we prove the existence of alternate paths from p to q that still have the same
spanning ratio. Finally we prove that the spanning ratio given in terms of the
canonical triangle Tpq has an upper bound of (1 + θ/sin θ)|pq|, where θ = π/3 is
the cone angle.

Ideal Paths. First we establish that a canonical subgraph is a path.

Lemma 8. Let (p, r) be an edge in EA in the cone Cp
i . Then Can

(p,r)
i forms a

path.

This allows us to define the ideal path.

Definition 3. Consider an edge (p, r) in Cp
i in EA, and the graph Can

(p,r)
i . An

ideal path is a simple path from p to any vertex in Can
(p,r)
i using the edges of

(p, r) ∪ Can
(p,r)
i . See Fig. 6.

We will prove that the length of the ideal path from p to q is not greater
than |pa| + θ

sin θ |aq|, where a is the corner of the canonical triangle Tpq to the
side of (p, q) that has r, and θ = π/3 is the cone angle.

We then use ideal paths to prove there exists a path with bounded spanning
ratio between any two vertices p and q in D8(P), where (p, q) is an edge in
DT (P). We prove a bound on the length of the path from p to q of |pa|+ θ

sin θ |aq|.
We note that the distance |pa| + θ

sin θ |aq| is with respect to the canonical
triangle Tpq rather than the Euclidean distance |pq|. To finish the proof we show
that |pa| + θ

sin θ |aq| ≤ (1 + θ
sin θ)|pq|.

One of the main parts of the proof comes from a paper by Bose and Keil [12],
where they prove the Delaunay triangulation has a spanning ratio of ≈ 2.42 on
a point set with constraints. The main lemma of that prove puts a bound on the
length of the path from vertex r to q, given that there is a circle through r and

Improved Spanning Ratio for Low Degree Plane Spanners 259

q that is empty of vertices below the line through r and q. If we take the circle
O(r,q) that is empty of vertices below (r, q), then the path from r to q is not
greater than the upper arc of O(r,q) from r to q. This lemma does not provide
a construction, however Kanj and Perkovic [8], while working on a degree 14
spanning subgraph of the Delaunay triangulation, came up with a construction
for this proof that removes the constraint that O(r,q) is empty below (r, q), and
thus matches our ideal path.

p

Cp
0

r

q

Fig. 6. The ideal path is the simple path
from p to any vertex of Can

(p,r)
0 (seen in

red) using the edges of (p, r) ∪ Can
(p,r)
0

(Color figure online).

A slightly modified version of the
main lemma from the Bose and Keil
[12] result is Lemma 9.

Lemma 9. Consider the restricted
neighbourhood N

(r,q)
p in DT (P) in the

cone Cp
i . Let α = ∠(rpq) < π/3.

If no point of P lies in the triangle
(prq) then there is a path from r to
q in DT (P), using canonical edges of
p, whose length satisfies:

δ(r, q) ≤ |rq| α

sin α

Our construction is slightly differ-
ent from Kanj and Perkovic [8], in
that we use bisector distance instead
of Euclidean distance, but the con-
struction and subsequent analysis is
nonetheless largely the same. They are
summed up in the following two lemmas:

Lemma 10. Consider the restricted neighbourhood N
(r,q)
p and without loss of

generality let N
(r,q)
p be in Cp

0 . Let α = ∠(rpq). Let rq �= p be the point where
the line through p and r intersects the canonical triangle Tpq. Let qr �= p be the
point where the edge (p, q) intersects Tpr. If [pr] is the shortest edge of all edges
in N

(r,q)
p with endpoint p, then the distance from r to q using the canonical edges

of p in N
(r,q)
p is at most max{|rrq|, |qrq|} + |rqq| θ

sin θ . See Fig. 7.

Using Lemma 10 we can prove the main lemma of this section:

Lemma 11. Consider the edge (p, r) in EA, located in Canp
i , and the associated

canonical subgraph Can
(p,r)
i . Without loss of generality, assume that i = 0. The

length of the ideal path from p to any vertex q in Can
(p,r)
0 satisfies δ(p, q) ≤

|pa| + θ
sin θ |aq|, where a is the corner of Tpq such that r ∈ (pqa), and θ = π/3

is the angle of the cones.

Proof. (Refer to Fig. 7.) By Lemma 10 the path from r to q is no greater than
max{|rrq|, |qrq|} + |rqq| θ

sin θ .
Since |pr| + max{|rrq|, |qrq|} ≤ |pa| and |aq| ≥ |rqq| we have δ(p, q) ≤ |pr| +

max{|rrq|, |qrq|} + |rqq| θ
sin θ ≤ |pa| + |aq| θ

sin θ .
�

260 P. Bose et al.

p

r

q

qr

rq

Fig. 7. Lemmas 10, 11.

A path in D8(P) that approximates an
edge (p, q) of DT (P) may consist of the edge
(p, q), or the ideal path from p to q, or the
concatenation of two ideal paths from p to
q, or some combination of the above. We
prove that for any of these scenarios, the
length of the path in D8(P) from p to q,
denoted δ(p, q), is not longer than max{|pa|+

θ
sin θ |aq|, |pb|+ θ

sin θ |bq|}. Points a and b are the
top left and right corners of canonical trian-
gle Tpq respectively.

At this point we have a spanning ratio
given in terms of Tpq. We use this result to
prove that D8(P) is a spanner with respect
to the Euclidean distance |pq|.

We consider an edge (p, q) ∈ DT (P). If
(p, q) ∈ D8(P) then the length of the path

from p to q in D8(P) is |pq| ≤
(
1 + θ

sin θ

)
|pq|, as required.

Thus we assume (p, q) /∈ D8(P). Without loss of generality we assume q is in
Cp

0 . Since (p, q) /∈ D8(P), there is an edge (p, r) of EA in Canp
0 or (q, u) in Canq

3

(or both), where [pr] ≤ [pq] and [qu] ≤ [pq], otherwise (p, q) would have been
added to EA in AddIncident(L). Without loss of generality assume there is the
edge (p, r) ∈ EA, [pr] ≤ [pq], and that (p, q) is clockwise from (p, r) around p.

Let a be the upper left corner of Tpq, and b be the upper right corner. Let
α = ∠(rpq) and θ = π/3 be the angle of the cones.

Lemma 12. Let (p, r) ∈ EA, where r ∈ Cp
i . Then there is an ideal path from p

to any vertex q in Can
(p,r)
i , where q is not an end vertex of Canp

i .

Proof. In the algorithm AddCanonical(p, r), we add every canonical edge of p

in Can
(p,r)
i that is not the first or last edge. By Lemma 8, the edges of Can

(p,r)
i

form a path. Thus there is the ideal path from p to any vertex q in Can
(p,r)
i that

is not the first or last vertex.
�

The next lemma establishes there is a cone that the last edge in Can
(p,r)
i

cannot be in.

Lemma 13. Let z be the first or last vertex of Can
(p,r)
i , and assume that (p, z) is

not in EA. Let (y, z) be the first or last edge in Can
(p,r)
i . Then (y, z) is not in Cz

i .

Let (p, r) be an edge in EA in the graph D8(P). Without loss of generality,
assume that r is in Cp

0 . We now turn our attention to the first or last vertex in
Can

(p,r)
0 . Because the cases are symmetric, we focus on the last vertex, which

we designate z. If z = r, the path from p to z is trivial, thus we assume z �= r.
Let y be the neighbour of z in Can

(p,r)
0 . By Lemma 13, (y, z) cannot be in Cz

0 .
Thus (y, z) can be in Cz

5 , Cz
4 , or Cz

3 .

Improved Spanning Ratio for Low Degree Plane Spanners 261

Case 1: Edge (y, z) is in Cz
5 . Then (y, z) was added to ECAN in

AddCanonical(p, r), Step 4a, and there is an ideal path from p to z.
Case 2: Edge (y, z) is in Cz

4 . There are three possibilities.
(a) If (y, z) is an edge of EA, then there is an ideal path from p to z.
(b) If there is no edge in EA with endpoint z in Cz

4 , then (y, z) was
added to ECAN in AddCanonical(p, r), Step 4b, and there is an
ideal path from p to z.

(c) If there is an edge of EA in Cz
4 with endpoint z that is not (y, z),

then we have added the canonical edge of z in Cz
4 with endpoint y

to ECAN in AddCanonical(p, r), Step 4c. Therefore by Lemma 12
there is an ideal path from z to y, and also an ideal path from p to
y.

Case 3: Edge (y, z) is in Cz
3 . Then (y, z) was not added to ECAN .

In Case 1, Case 2a, and Case 2b there is an ideal path from p to q. Thus
Lemma 11 tells us there is a path from p to q not longer than |pa| + θ

sin θ |aq|.
In Case 2c, we have two ideal paths that meet at y, one starting at p and

one starting at z. As in the case of a single ideal path, the sum of the lengths
of these two paths is not more than |pa| + θ

sin θ |aq|. The following lemma proves
this claim:

Lemma 14. Consider the edge (p, r) in EA in the graph D8(P), r in Cp
0 . Let

(y, z) be the last edge in Can
(p,r)
0 , and let (y, z) be in Cz

4 . Let (z, u) be an edge
in EA in Cz

4 . Assume there is an ideal path from p to y in Cp
0 , and an ideal path

from z to y in Cz
4 . Let a be the top left corner of Tpz. We prove an upper bound

on the length δ(p, z) of |pa| + θ
sin θ |az|.

In Case 3 there is no edge from y to z. We prove the length of the path from
p to z in Case 3 by induction, as part of the main lemma of this section:

Lemma 15. Consider the edge (p, r) in EA in the graph D8(P). Without loss
of generality, let r be in Cp

0 . Let a and b be the top left corner and top right
corner respectively of Tpq. For any edge (p, q) ∈ DT (P), there exists a path from
p to q in D8(P) that is not longer than max{|pa| + θ

sin θ |aq|, |pb| + θ
sin θ |bq|}.

For an edge (p, q) in DT (P), we have a bound on the length of the path in
D8(P). However, this bound is terms of the size of the canonical triangle Tpq,
which is not the same as the Euclidean distance |pq|. We prove that max{|pa| +

θ
sin θ |aq|, |pb|+ θ

sin θ |bq|} ≤
(
1 + θ

sin θ

)
|pq|. However, due to space constraints, the

proof has been omitted. Using this inequality and Lemma15, the main theorem
now follows:

Theorem 2. For any edge (p, q) ∈ DT (P), there is a path in D8(P) from p to q
with length at most

(
1 + θ

sin θ

)
|pq|, where θ = π/3 is the cone width. Thus D8(P)

is a (1+ θ
sin θ)DT -spanner of the complete graph, where DT is the spanning ratio

of the Delaunay triangulation (currently 1.998 [4]).

262 P. Bose et al.

References

1. Chew, P.: There is a planar graph almost as good as the complete graph.
In: Proceedings of the Second Annual Symposium on Computational Geometry,
SCG 1986, pp.169–177. ACM, New York (1986)

2. Dobkin, D., Friedman, S., Supowit, K.: Delaunay graphs are almost as good as
complete graphs. Discrete & Comput. Geom. 5, 399–407 (1990)

3. Keil, J., Gutwin, C.: Classes of graphs which approximate the complete euclidean
graph. Discrete & Comput. Geom. 7, 13–28 (1992)

4. Xia, G.: Improved upper bound on the stretch factor of Delaunay triangulations. In:
Proceedings of the Twenty-Seventh Annual Symposium on Computational Geom-
etry, SoCG 2011, pp. 264–273. ACM, New York (2011)

5. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded
degree and low weight. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS,
vol. 2461, pp. 234–246. Springer, Heidelberg (2002)

6. Li, X.Y., Wang, Y.: Efficient construction of low weight bounded degree planar
spanner. In: Warnow, T., Zhu, B. (eds.) Comput. Comb. Lecture Notes in Com-
puter Science, vol. 2697, pp. 374–384. Springer, Berlin Heidelberg (2003)

7. Bose, P., Smid, M.H.M., Xu, D.: Delaunay and diamond triangulations contain
spanners of bounded degree. Int. J. Comput. Geom. Appl. 19, 119–140 (2009)

8. Kanj, I.A., Perković, L., Xia, G.: On spanners and lightweight spanners of geometric
graphs. SIAM J. Comput. 39, 2132–2161 (2010)

9. Bose, P., Carmi, P., Chaitman-Yerushalmi, L.: On bounded degree plane strong
geometric spanners. J. Discrete Algorithms 15, 16–31 (2012)

10. Bonichon, N., Gavoille, C., Hanusse, N., Perković, L.: Plane spanners of maximum
degree six. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F.,
Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 19–30. Springer, Heidelberg
(2010)

11. Bonichon, N., Kanj, I., Perković, L., Xia, G.: There are plane spanners of degree 4
and moderate stretch factor. Discrete & Comput. Geom. 53, 514–546 (2015)

12. Bose, P., Keil, J.M.: On the stretch factor of the constrained Delaunay trian-
gulation. In: 3rd International Symposium on Voronoi Diagrams in Science and
Engineering, ISVD 2006, Banff, Alberta, Canada, pp. 25–31, 2–5 July 2006. IEEE
Computer Society (2006)

13. Benson, R.: Euclidean Geometry and Convexity. McGraw-Hill, New York (1966)

Constructing Consistent Digital Line Segments

Iffat Chowdhury(B) and Matt Gibson

Department of Computer Science, University of Texas at San Antonio,
San Antonio, TX, USA

iffat.chowdhury@utsa.edu, gibson@cs.utsa.edu

Abstract. Our concern is the digitalization of line segments in the unit
grid as considered by Chun et al. [Discrete Comput. Geom., 2009], Christ
et al. [Discrete Comput. Geom., 2012], and Chowdhury and Gibson [ESA,
2015]. In this setting, digital segments are defined so that they satisfy a set
of axioms also satisfied by Euclidean line segments. The key property that
differentiates this research from other research in digital line segments is
that the intersection of any two segments must be connected. A system
of digital line segments that satisfies these desired axioms is called a con-
sistent digital line segments system (CDS). Our main contribution of this
paper is to show that any collection of digital segments that satisfy the
CDS properties in a finite n × n grid graph can be extended to a full CDS
(with a segment for every pair of grid points). Moreover, we show that this
extension can be computed with a polynomial-time algorithm. The algo-
rithm is such that one can manually define the segments for some subset
of the grid. For example, suppose one wants to precisely define the bound-
ary of a digital polygon. Then we would only be interested in CDSes such
that the digital line segments connecting the vertices of the polygon fit
this desired boundary definition. Our algorithm allows one to manually
specify the definitions of these desired segments. For any such definition
that satisfies all CDS properties, our algorithm will return in polynomial
time a CDS that “fits” with these manually chosen segments.

1 Introduction

This paper explores families of digital line segments as considered by Chun et
al. [3], Christ et al. [2], and Chowdhury and Gibson [1]. Consider the unit grid
Z2, and in particular the unit grid graph: for any two points p = (px, py) and
q = (qx, qy) in Z2, p and q are neighbors if and only if |px − qx| + |py − qy| = 1.
For any pair of grid vertices p and q, we’d like to define a digital line segment
Rp(q) from p to q. The collection of digital segments must satisfy the following
five properties.

(S1) Grid path property: For all p, q ∈ Z2, Rp(q) is the points of a path from p
to q in the grid topology.

(S2) Symmetry property: For all p, q ∈ Z2, we have Rp(q) = Rq(p).
(S3) Subsegment property: For all p, q ∈ Z2 and every r, s ∈ Rp(q), we have

Rr(s) ⊆ Rp(q).
c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 263–274, 2016.
DOI: 10.1007/978-3-662-49529-2 20

264 I. Chowdhury and M. Gibson

Properties (S2) and (S3) are quite natural to ask for; the subsegment prop-
erty (S3) is motivated by the fact that the intersection of any two Euclidean
line segments is connected. See Fig. 1(a) for an illustration of a violation of (S3).
Note that a simple “rounding” scheme of a Euclidean segment commonly used
in computer vision produces a good digitalization in isolation, but unfortunately
it will not satisfy (S3) when combined with other digital segments, see Fig. 1(b)
and (c).

(S4) Prolongation property: For all p, q ∈ Z2, there exists r ∈ Z2, such that
r /∈ Rp(q) and Rp(q) ⊆ Rp(r).

The prolongation property (S4) is also a quite natural property to desire with
respect to Euclidean line segments. Any Euclidean line segment can be extended
to an infinite line, and we would like a similar property to hold for our digital
line segments. While (S1)–(S4) form a natural set of axioms for digital segments,
there are pathological examples of segments that satisfy these properties which
we would like to rule out. For example, Christ et al. [2] describe a CDS where a
double spiral is centered at some point in Z2, traversing all points of Z2. A CDS
is obtained by defining Rp(q) to be the subsegment of this spiral connecting p
and q. To rule out these CDSes, the following property was added.

(S5) Monotonicity property: For all p, q ∈ Z2, if px = qx = c1 for any c1 (resp.
py = qy = c2 for any c2), then every point r ∈ Rp(q) has rx = c1 (resp.
ry = c2).

If a system of digital line segments satisfies the axioms (S1) − (S5), then it
is called a consistent digital line segments system (CDS).

Previous Works. Unknown to Chun et al. and Christ et al. when publishing
their papers, Luby [8] considers grid geometries which are equivalent to systems
of digital line segments satisfying (S1), (S2), (S5) described in this paper. Chun
et al. [3] give an Ω(log n) lower bound on the Hausdorff Distance of a CDS where
n is the number of points in the segment, and the result even applies to consistent
digital rays or CDRs. A CDR for any point p ∈ Z2 is the set of segments Rp(q)

p

q

r

s

t1
t2

(a) (b) (c)

Fig. 1. (a) An illustration of the violation of (S3). The solid segment is Rp(q), and the
dashed segment is Rr(s). (b) The dashed line and the solid line denote two different
Euclidean line segments. (c) The corresponding digital line segments via a rounding
approach.

Constructing Consistent Digital Line Segments 265

for every q ∈ Z2 (i.e., all segments with p as one of the endpoints). Note that this
lower bound is due to property (S3), as it is easy to see that if the requirement
of (S3) is removed then digital segments with O(1) Hausdorff distance are easily
obtained, for example the trivial “rounding” scheme used in Fig. 1(c). Chun et
al. give a construction of CDRs that satisfy the desired properties (S1)–(S5)
with a tight upper bound of O(log n) on the Hausdorff distance. Christ et al. [2]
extend the result to get an optimal O(log n) upper bound on Hausdorff distance
for a CDS in Z2.

After giving the optimal CDS in Z2, Christ et al. [2] investigate common
patterns in CDSes in an effort to obtain a characterization of CDSes. As a
starting point, they are able to give a characterization of CDRs. In their effort to
give a characterization, they proved a sufficient condition on the construction of
the CDSes but then they give an example of a CDS that demonstrates that their
sufficient condition is not necessary. They ask if there are any other interesting
examples of CDSes that do not follow their sufficient condition and left open
the question on how to characterize the CDSes in Z2. Recently, Chowdhury and
Gibson [1] give this characterization by giving a set of necessary and sufficient
conditions that CDSes must satisfy. Both the characterization of CDRs given in
[2] and the characterization of CDS given in [1] will be considered in more detail
in Sect. 2.

Our Contributions. Our main contribution of this paper is to show that any
collection of digital segments that satisfy the CDS properties in a finite n ×
n grid graph can be extended to a to a full CDS (with a segment for every
pair of grid points). Moreover, we show that this extension can be computed
with a polynomial-time algorithm. The algorithm is such that one can manually
define the segments for some subset of the grid. For example, suppose one wants
to precisely define the boundary of a digital polygon. Then we would only be
interested in CDSes such that the digital line segments connecting the vertices
of the polygon fit this desired boundary definition. Also perhaps one might want
to define a collection of digital line segments so that the digital arrangement of
these line segments is precisely defined. Our algorithm allows one to manually
specify the definitions of these desired segments. For any such definition that
satisfies all CDS properties, our algorithm will return in polynomial time a CDS
that “fits” with these manually chosen segments. Before giving this algorithm,
we give an alternative characterization of CDS that more naturally lends itself
to a polynomial-time construction algorithm. In our final result, we consider
the question of Christ et al. [2] regarding the existence of “interesting” CDSes.
We use our polynomial-time construction algorithm to construct a CDS in a
finite grid graph that has some interesting properties that did not appear in any
previously-given CDS.

Motivation and Related Work. Digital geometry plays a fundamental and
substantial role in many computer vision applications, for example image seg-
mentation, image processing, facial recognition, fingerprint recognition, and some
medical applications. One of the key challenges in digital geometry is to repre-
sent Euclidean objects in a digital space so that the digital objects have a similar

266 I. Chowdhury and M. Gibson

visual appearance as their Euclidean counterparts. Representation of Euclidean
objects in a digital space has been a focus in research for over 25 years, see for
example [5,7]. Digital line segments are particularly important to model accu-
rately, as other digital objects depend on them for their own definitions (e.g.
convex and star-shaped objects). In 1986, Greene and Yao [7] gave an interface
between continuous domain of Euclidean line segments and discrete domain of
digital line segments. Goodrich et al. [6] focused on rounding the Euclidean geo-
metric objects to a specific resolution for better computer representation. They
gave an efficient algorithm for R2 and R3 in the “snap rounding paradigm” where
the endpoints or the intersection points of several different line segments are the
main concerns.

2 Preliminaries

A characterization of CDRs. Before we describe our results, we first need to
give some details of the Christ et al. characterization of CDRs [2]. For any point
p ∈ Z2, let Q1

p, Q
2
p, Q

3
p, Q

4
p denote the first, second, third, and fourth quadrants

of p respectively. Christ et al. show how to construct Rp(q) for q ∈ Q1
p from any

total order of Z, which we denote ≺1
p. We describe Rp(q) by “walking” from p to

q. Starting from p, the segment will move either “up” or “right” until it reaches
q. Suppose on the walk we are currently at a point r = (rx, ry). Then it needs
to move to either (rx + 1, ry) or (rx, ry + 1). Either way, the sum of the two
coordinates of the current point is increased by 1 in each step. To move from p
to q, the segment will move up qy − py times and will move right qx − px times.
If the line segment is at a point r for which rx +ry is among the qy −py greatest
values in the interval I(p, q) := [px + py, qx + qy − 1] according to ≺1

p, the line
segment will move up. Otherwise, it will move right. See Fig. 2 for an example.

Property (S3) is generally the most difficult property to deal with, and we
will argue that the segments Rp(q) and Rp(q′) will not violate (S3) for any
points q and q′ in the first quadrant of p. As shown in [2], (S3) is violated if
and only if two segments intersect at a point t1, one segment moves vertically
from t1 while the other moves horizontally from t1, and the segments later inter-
sect again. Consider two digital segments that “break apart” at some point t1

3 ≺ 7 ≺ 5 ≺ 1 ≺ 6 ≺ 2 ≺ 4 ≺ 0
horizontal vertical

p=(0,0)

q=(3,5)
movements movements

Total order

Fig. 2. The digital line segment between p = (0, 0) and q = (3, 5). According to ≺p,
the qx − px = 3 smallest integers in [0, 7] correspond to the horizontal movements, and
the qy − py = 5 largest integers in [0, 7] correspond to the vertical movements.

Constructing Consistent Digital Line Segments 267

in this manner, and suppose they do intersect again. Let t2 be the first point
at which they intersect after “splitting apart”. Then we say that (t1, t2) is wit-
ness to the violation of (S3) or a witness for short. Therefore, one can show
that any two segments satisfy (S3) by showing that they do not have witnesses,
and this is how we will prove the segments satisfy (S3) now (and also in our
characterization). Consider the segments Rp(q) and Rp(q′) generated according
to the Christ et al. definition, and suppose for the sake of contradiction that
they have a witness (t1, t2) as in Fig. 1(a). One segment moves up at point t1
and moves right into the point t2 which implies tx2 + ty2 − 1 ≺1

p tx1 + ty1, and the
other segment moves right at point t1 and moves up into the point t2 which
implies tx1 + ty1 ≺1

p tx2 + ty2 − 1, a contradiction. Therefore Rp(q) and Rp(q′) do
not have any witnesses and therefore satisfy (S3). Christ et al. [2] show that
digital segments in quadrants Q2

p, Q3
p, and Q4

p can also be generated with total
orders ≺2

p,≺3
p, and ≺4

p, and moreover they establish a one-to-one correspondence
between CDRs and total orders. That is, (1) given any total order of Z, one can
generate all digital rays in any quadrant of p, and (2) for any set of digital rays R
in some quadrant of p, there is a total order that will generate R. This provides
a characterization of CDRs.

A Characterization of CDSes. In a full CDS, we have segments connecting
every pair of points of Z2. Note that for any point p, the segments that have p as an
endpoint can be viewed a system of CDRs, and therefore they can be generated by
a total order according to the CDR characterization described above. The question
is now to determine the properties that the total orders must satisfy so that a CDS
is obtained when each point generates its adjacent segments by its total order.
Chowdhury and Gibson [1] give a set of necessary and sufficient conditions that
the total orders must satisfy to obtain a CDS in Z2.

To understand the characterization, we need some preliminaries. It is known
[1,2] that any monotone segment with non-negative slope and a monotone seg-
ment with negative slope will always have a connected intersection. Therefore it
suffices to only consider segments with non-negative slope. Moreover, it suffices to
only consider segments Rp(q) where q ∈ Q1

p (i.e. “first quadrant segments”); given
Rp(q), the “third quadrant segment” Rq(p) can simply be obtained by following
Rp(q) “backwards”. Therefore throughout the rest of this paper, we will assume
without loss of generality that our concern is first quadrant segments and from
now on, we refer to a quadrant of a point p as Qp and total order as ≺p.

Consider two such segments Rp1(p3) and Rp2(p3) for a point p3 ∈ Qp1 ∩Qp2 .
A key definition in the characterization of [1] is the layout view of the integers in
the intervals I(p1, p3) and I(p2, p3) that are used to define the segments Rp1(p3)
and Rp2(p3) respectively. Without loss of generality assume px1 ≤ px2 . The inter-
vals are written in increasing order according to their total orders in a matrix
with two rows with I(p1, p3) in the top row and I(p2, p3) in the bottom row.
The first element of I(p2, p3) is “shifted” to the right (px2 − px1) positions after
the first element of I(p1, p3). Note that the integers in I(p1, p3) and I(p2, p3)
are determined by the natural total order on the integers, but then are sorted by
the total orders ≺p1 and ≺p2 respectively. The advantage of the layout view is

268 I. Chowdhury and M. Gibson

(0, 0)
p1

p2

p4
p3

p5

d8

I(p1, p3) : 3 5 7 2 4 6

I(p2, p3) : 5 7 6
px

2 − px
1

p3 = (3, 5)

I(p1, p3) :a b....
I(p2, p3) : ..b......... a

�

(a) (b) (c)

Fig. 3. An Illustration of layout view and bad pairs. (a) The points in the grid. (b)
The layout view of the intervals with p1 = (1, 1) and p2 = (3, 2). The dividing line
shown splits the intervals into the horizontal and vertical movements for Rp1(p3) and
Rp2(p3) respectively. (c) An illustration of a bad pair.

that a single vertical line can break both of the intervals into the horizontal move-
ments portion and the vertical movements portion. Such a line is called a dividing
line. See Fig. 3(a) and (b). Now, let a and b be two integers in I(p1, p3)∩I(p2, p3),
which are in layout view. Suppose there exists some dividing line � such that in
I(p1, p3) a is on the left side of � and b is on the right side of �, and simultane-
ously in I(p2, p3) b is on the left side of � and a is on the right side of �. Then
{a, b} is called a bad pair and � splits the bad pair. See Fig. 3(c). Total orders
≺p1 and ≺p2 are said to not have a bad pair if for every point p3 ∈ Qp1 ∩ Qp2 ,
the intervals I(p1, p3) and I(p2, p3) do not have a bad pair. They complete the
characterization of CDSes in Z2 by proving that a system of non-negative sloped
line segments in Z2 is a CDS if and only if every pair of total orders does not
have a bad pair.

3 Constructing Segments

An Alternative Characterization. In this section, we provide an alternative
characterization of CDSes for a finite {0, 1, . . . , n} × {0, 1, . . . , n} grid that more
naturally lends itself to a polynomial-time algorithm than the characterization
of [1]. This characterization will use the following ordering O of the points in
the grid. If for points p and q we have px + py < qx + qy then p comes before
q in O. If px + py = qx + qy, then the point that has smaller x-coordinate will
come first in O.

Note that because the total orders are now finite, we can consider total orders
in layout view (in Z2 we could only use intervals in layout view) as there is now
a well-defined smallest element in a total order in this finite setting which is not
the case when the total orders are infinite. Consider two points pi and pj ; we
will now define an indexing of the elements in their corresponding total orders
in layout view. Let Mj denote the number of positions in ≺pj

, and let q∗ denote
the point (n, n). We index the positions of the elements in ≺pj

from 1 to Mj .
We index the positions of ≺pi

relative to the indexing of ≺pj
. See Fig. 4(a). Note

that if pi comes before pj in O, we have I(pj , q∗) ⊆ I(pi, q∗). For any point p,
we let ≺p (k) denote the element in ≺p at index k, we let ≺←

p (k) be the set
of elements in ≺p which have index at most k, and we let ≺→

p (k) be the set

Constructing Consistent Digital Line Segments 269

≺pi
:

≺pj :
−1 0 1 2 (k − 1) (k) (k + 1) (Mj − 1)(Mj)(Mj + 1)

........

1 2 (k − 1) (k) (k + 1) (Mj − 1)(Mj)
....

≺p: 3 5 7 2 4 6
(k)

≺p (k) = {2}

≺←
p (k) = {3, 5, 7}

≺→
p (k) = {4, 6}

)b()a(

Fig. 4. (a) The indexing of ≺pj and ≺pi . (b) Illustration of ≺p (k), ≺←
p (k), and

≺→
p (k).

of elements that are in ≺p which have index at least k. See Fig. 4(b). Now, we
define an important concept of the characterization.

Consider a vertical line drawn in the layout between indices k and k + 1.
Here, we allow k to be the rightmost index (i.e., the line is just to the right of
the last element) or k + 1 to be the leftmost index (i.e., the line is just to the
left of the first element). We call this line a contracting line with respect to pi
if | ≺←

pi
(k) ∩ I(pj , q∗)| = k. We use αij to denote a contracting line for pj with

respect to pi. Note that if αij is a contracting line between indices k and k + 1
then | ≺→

pi
(k + 1) ∩ I(pj , q∗)| = Mj − k. See Fig. 5(a) and (b) for an illustration.

Note there is always at least one αij , as we always have | ≺←
pi

(0)∩I(pj , q∗)| ≥ 0,
| ≺←

pi
(Mj) ∩ I(pj , q∗)| ≤ Mj , and the value changes by at most one when the

line is shifted one position. This implies that there must be some k where the
condition for a contracting line holds.

Suppose αij is a contracting line (if there are multiple αij , we choose any one
arbitrarily) between indices k and k + 1. Now, consider some element a ∈≺←

pi

(k)∩I(pj , q∗). Let k′ ≤ k denote the index of a in ≺pi
, and suppose a is at index

k′′ in ≺pj
. We say that k′′ is valid if k′ ≤ k′′ ≤ k. Intuitively, it is valid if a only

gets closer to αij without crossing over it. Similarly, if k′ ≥ k + 1 is the index of
b ∈≺→

pi
(k +1)∩ I(pj , q∗), then k′′ is a valid index for b in ≺pj

if k +1 ≤ k′′ ≤ k′.
See Fig. 5(c) and (d) where the gray colored boxes are the possible spots for 5
in ≺pj

. If every element in I(pj , q∗) is in a valid index, then we say that ≺pj
is

a contraction of ≺pi
. If ≺pj

is a contraction of ≺pi
then we say that ≺pi

is an
expansion of ≺pj

. We have the following lemma.

≺pi : 3 5 7 2 4 6
≺pj : 7 5 6

αij

≺pi
: 3 5 7 2 4 6

≺pj : 7 3 5 4 6 2

αij

≺pi : 3 5 7 2 4 6
≺pj :

αij

≺pi : 3 5 7 2 4 6
≺pj :

αij

(a) (b) (c) (d)

Fig. 5. Suppose q∗ = (4, 4). (a) αij is a contracting line for pi = (1, 1) and pj = (3, 2).
(b) αij is a contracting line for pi = (1, 1) and pj = (3, −1). (c) pi is at (1, 1) and pj is
at (3, 2). (d) pi is at (1, 1) and pj is at (3, −1).

270 I. Chowdhury and M. Gibson

Lemma 1. Let pi and pj be two points such that pi comes before pj in O. Then
there is no bad pair in ≺pi

and ≺pj
if and only if ≺pj

is a contraction of ≺pi
.

Proof. Assume that ≺pj
is a contraction of ≺pi

and let αij denote the corre-
sponding contracting line. Let a and b be two numbers in both total orders such
that a is to the left of αij and b is to the right of αij in ≺pi

. Now, to have a
bad pair {a, b}, we should have that b is less than a in ≺pj

. Then at least one of
them will cross αij in ≺pj

because αij is between a and b. But a and b cannot
cross αij because ≺pj

is a contraction of ≺pi
. So, there is no bad pair {a, b}. Now

assume that a and b both are on the same side of αij . Without loss of generality,
assume that a and b are to the right of αij and a is closer to αij than b in ≺pi

.
Consider any dividing line � between a and b in ≺pi

(note a is to the left of �
and b is to the right of �). As a can only get closer to αij , a will remain on the
left side of � in ≺pj

(with b is on the right side). Therefore, we do not have a
bad pair {a, b}.

Suppose, ≺pi
and ≺pj

have a bad pair {a, b}, and let � be the dividing line
that splits them. We will show that ≺pj

is not a contraction of ≺pi
. Without

loss of generality, assume that a is less than b in ≺pi
and b is less than a in ≺pj

.
Now, suppose there is a contracting line αij to the left of a in ≺pi

. Then a is
not in a valid position in ≺pj

as a moves away from αij . Similarly, b is not in a
valid position if αij is to the right of b in ≺pi

. If αij is between a and b in ≺pi
,

then clearly at least one of a or b must have crossed over αij . We conclude that
≺pj

is not a contraction of ≺pi
. �	

The following Theorem 1 immediately follows from Lemma 1 and [1].

Theorem 1. A system of digital line segments is a CDS if and only if the
segments can be obtained from total orders such that each total order ≺pj

is
a contraction of ≺pi

for all pi that come before pj in O.

The Algorithm. We will now show that a partial CDS can be extended to
a full CDS with a polynomial-time algorithm. We are given a subset P of the
grid such that each point in P has been assigned total orders that satisfy the
necessary and sufficient conditions for being a CDS. We assume P
= ∅. If no
point has had its total order previously defined, then we can arbitrarily choose
a point and set its total order to be whatever we wish. We let N denote the
number of points in the grid. When defining the total order ≺pj

, let P1(j) (resp.
P2(j)) denote the set of points in P that are larger than (resp. smaller than)
pj in O. Our algorithm assigns the elements to the total order ≺pj

from left to
right. For each pi ∈ P1(j), we can compute a contracting line with respect to
pj , and we use these contracting lines to ensure that ≺pj

will be a contraction
of each ≺pi

. For each pl ∈ P2(j), we maintain a lower bound βlj on the index of
a contracting line with respect to pj . See Algorithm 1. We show if we construct
a total order ≺pj

using Algorithm 1, then ≺pj
will be a contraction of ≺pi

for
each pi ∈ P1(j) and ≺pj

will be an expansion of ≺pl
for all pl ∈ P2(j).

In the for loop at step 9, we compute a set Li for each point pi ∈ P1(j). Intu-
itively, this set Li is the set of all integers that we can assign to ≺pj

(k) without

Constructing Consistent Digital Line Segments 271

Algorithm 1. Construction of Total Orders
1: for all points pj �∈ P do
2: Let P1(j) be the subset of P that is larger than pj in O.
3: Let P2(j) be the subset of P that is smaller than pj in O.
4: Find contracting lines αij for each of the ≺pi for ≺pj such that pi ∈ P1(j).
5: For each pl ∈ P2(j), set βlj to be the index of the first position of ≺pl .
6: Let D be the set of all integers in I(pj , q

∗).
7: for all k = 1 to Mj do

8: If P1(j) = ∅, let L = D and go to step 18.
9: for all pi ∈ P1(j) do

10: if index k is to the left of αij then
11: Li ← D∩ ≺←

pi (k)
12: if index k is to the right of αij then
13: if ≺pi (k) ∈ D then
14: Li ← {≺pi (k)}
15: else
16: Li ←≺→

pi (k)
17: L ← ∩i:pi∈P1(j)Li.

18: for all pl ∈ P2(j) do
19: if index k is to the left of βlj then
20: if ≺pl (k) exists and ≺pl (k) ∈ D then
21: Remove every number from L not equal to ≺pl (k).
22: else
23: Remove from L every number α that doesn’t pass the count test.

24: Let a be an arbitrary value in L, set ≺pj (k) ← a, and remove a from D.

25: for all pl ∈ P2(j) do
26: if a is in ≺pl and k ≤ βlj then
27: Let x denote the index of a in ≺pl .
28: if x > βlj then
29: βlj ← x + 1
30: P ← P ∪ {pj}

violating the contracting line αij . Then L is the set of integers that satisfies con-
tracting lines for all pi ∈ P1(j). In the for loop at step 18, we remove from L all
integers whose placement would violate the contraction constraint with respect
to our current bound βlj on a contracting line for pj and pl. Therefore after this
for loop, L is the set of all integers that can be assigned to ≺pj

(k) and will
satisfy the conditions for all points in P . We arbitrarily choose an element from
L and assign it to position k in the total order ≺pj

. In the loop in step 25, we
update the bounds on the contracting lines for the points in P2(j) if necessary. If
we assign an integer a whose index x in ≺pl

is to the right of our current bound
to a index k which is to the left of our bound, then any contracting line for pl
and pj must be to the right of x. This follows because ≺pl

must be a contraction

272 I. Chowdhury and M. Gibson

of ≺pj
, and the integer a is sliding from position k in ≺pj

to some position x in
≺pl

. It must slide closer to the contracting line without crossing it, and therefore
the contracting line must be at position x + 1 or greater.

In step 23, we refer to a procedure called the count test which we will now
define. In this scenario, we are considering a point pl ∈ P2(j) such that position
k is to the left of our current bound βlj . Moreover, either k is not a position in
≺pl

or the element in this position was previously placed. See Fig. 6. Consider
an element λ ∈ L that is in ≺pl

. Since λ is in L, it has not yet been placed
and therefore must have an index in ≺pl

of k + a for some a > 1. Now consider
every point in P that has λ at an index greater than k in its total order. Let
D(k, k + a) denote the set of all integers in D with index at least k and at most
k + a in these points’ total orders (including λ). We say that λ passes the count
test if and only if |D(k, k + a)| ≤ a. Intuitively, if we were to place λ at index
k of ≺pj

, then every number of D(k, k + a) must have index between k + 1 and
k +a to satisfy the contraction property, and if there are more points than there
are indices then we cannot fit them.

≺pl
:

λ

λ
λ

(k)

Fig. 6. The shaded spots are the ones considered in the count test for this k and λ.

The correctness of Algorithm 1 follows from the fact that L
= ∅ in every
iteration of the algorithm. This implies that we will always be able to assign an
element to ≺pj

(k) that satisfies the constraints for every point in P .

Lemma 2. Algorithm 1 computes a total order ≺pj
that is a contraction of ≺pi

for all pi ∈ P1(j) and is an expansion of ≺pl
for all pl ∈ P2(j).

This lemma gives us our main result.

Theorem 2. Given a set of total orders for any subset P of a finite grid such
that satisfies the necessary and sufficient conditions for being a CDS, there is
a polynomial-time algorithm that computes total orders for the remaining grid
points that satisfy the necessary and sufficient conditions for being a CDS.

Corbett’s Rotator Example. Christ et al. [2] give an example of a CDS,
named the waterline example, where the points in Z2 do not all use the same total
order to generate their segments. They asked if there were any other examples of
interesting CDSes that use many different total orders. In this section, we give
such an example of a CDS. Consider a subset S of Z of cardinality k, and note
that there are k! total permutations of the integers in S. If we sort S according

Constructing Consistent Digital Line Segments 273

to each of the total orders used in the waterline example, then we will obtain
k different permutations of S. We show that for any k, there is a set S of k
consecutive integers and a CDS in a k! × k! grid such that when we sort S with
each of the total orders in our CDS, we obtain all k! permutations of S.

We call this CDS the Corbett’s rotator example because we make use of
Corbett’s rotator [4,9] to compute the total orders used by the points in the
CDS. Corbett’s rotator is a method of systematically generating all permutations
P1, P2, . . . Pk! of a set of k elements. Corbett’s rotator starts with an arbitrary
permutation, and then transforms Pj to Pj+1 using a “rotation” of the following
form: the first element of Pj becomes the ith element of Pj+1 for some integer i,
all elements that were in the positions 2 to i in Pj move one position to the left
in Pj+1, and every element with position at least i + 1 in Pj stays in the same
position in Pj+1. Each rotation may use a different choice of i. The choices of i
need to be carefully chosen to ensure that all permutations are generated (see
[9] for the details), but for this paper it is sufficient to understand this general
form of the rotations.

Consider the grid {1, . . . , k!} × {1, . . . , k!} and let S = {1, . . . , k}. We now
define the total orders used in our CDS. Let S̄ be the natural ordering of the
integers in Z \ S, and let P1, P2, . . . Pk! be each of the permutations of S as
computed by Corbett’s rotator. Our CDS uses k! total orders ≺1,≺2, . . . ,≺k!,
where the smallest k elements of ≺i is Pi in order followed by S̄ in order. Now
consider all points p such that px + py = k! + 1. Note that there are k! such
points in the grid. We assign ≺i to the point (px, py) such that px = i and
py = k! + 1 − i for each i ∈ {1, 2, 3, . . . , k!}. Then we can use Algorithm 1 to
generate the remaining segments of the CDS.

Theorem 3. For each positive integer k, there is a CDS and a subset S of k
integers such that all k! permutations are obtained when sorting S with the total
orders used in the CDS.

References

1. Chowdhury, I., Gibson, M.: A characterization of consistent digital linesegments in
Z2. In: Algorithms - ESA 2015 - 23rd Annual European Symposium,Patras, Greece,
14–16 September 2015, Proceedings, pp. 337–348 (2015)

2. Christ, T., Pálvölgyi, D., Stojakovic, M.: Consistent digital line segments. Discrete
Comput. Geom. 47(4), 691–710 (2012)

3. Chun, J., Korman, M., Nöllenburg, M., Tokuyama, T.: Consistent digital rays. Dis-
crete Comput. Geom. 42(3), 359–378 (2009)

4. Corbett, P.: Rotator graphs: an efficient topology for point-to-point multiprocessor
networks. IEEE Trans. Parallel Distrib. Syst. 3, 622–626 (1992)

5. Wm. Randolph Franklin: Problems with raster graphics algorithm. In: Peters, F.J.,
Kessener, L.R.A., van Lierop, M.L.P. (eds.) Data Structures for Raster Graphics,
Steensel, Netherlands. Springer, Heidelberg (1985)

6. Goodrich, M.T., Guibas, L.J., Hershberger, J., Tanenbaum, P.J.: Snap rounding line
segments efficiently in two and three dimensions. In: Symposium on Computational
Geometry, pp. 284–293 (1997)

274 I. Chowdhury and M. Gibson

7. Greene, D.H., Yao, F.F.: Finite-resolution computational geometry. In: 27th Annual
Symposium on Foundations of Computer Science, Toronto, Canada, 27–29 October,
pp. 143–152. IEEE Computer Society (1986)

8. Luby, M.G.: Grid geometries which preserve properties of euclidean geometry: a
study of graphics line drawing algorithms. In: Earnshaw, R.A. (ed.) Theoretical
Foundations of Computer Graphics and CAD, vol. 40, pp. 397–432. Springer,
Heidelberg (1988)

9. Williams, A.: The greedy Gray code algorithm. In: Dehne, F., Solis-Oba, R.,
Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 525–536. Springer, Heidelberg
(2013)

Faster Information Gathering in Ad-Hoc Radio
Tree Networks

Marek Chrobak1 and Kevin P. Costello2(B)

1 Department of Computer Science, University of California, Riverside, USA
marek@cs.ucr.edu

2 Department of Mathematics, University of California, Riverside, USA
costello@math.ucr.edu

Abstract. We study information gathering in ad-hoc radio networks.
Initially, each node of the network has a piece of information called a
rumor, and the overall objective is to gather all these rumors in the
designated target node. The ad-hoc property refers to the fact that the
topology of the network is unknown when the computation starts. Aggre-
gation of rumors is not allowed, which means that each node may trans-
mit at most one rumor in one step.

We focus on networks with tree topologies, that is we assume that the
network is a tree with all edges directed towards the root, but, being ad-
hoc, its actual topology is not known. We provide two deterministic algo-
rithms for this problem. For the model that does not assume any collision
detection nor acknowledgement mechanisms, we give an O(n log log n)-
time algorithm, improving the previous upper bound of O(n log n). We
also show that this running time can be further reduced to O(n) if the
model allows for acknowledgements of successful transmissions.

1 Introduction

We study the problem of information gathering in ad-hoc radio networks. Ini-
tially, each node of the network has a piece of information called a rumor, and the
objective is to gather all these rumors, as quickly as possible, in the designated
target node. The nodes communicate by sending messages via radio transmis-
sions. At any time step, several nodes in the network may transmit. When a
node transmits a message, this message is sent immediately to all nodes within
its range. When two nodes send their messages to the same node at the same
time, a collision occurs. Aggregation of rumors is not allowed, which means that
each node may transmit at most one rumor in one step.

The network can be naturally modeled by a directed graph, where an edge
(u, v) indicates that v is in the range of u. The ad-hoc property refers to the
fact that the actual topology of the network is unknown when the computation
starts. We assume that nodes are labeled by integers 0, 1, ..., n−1. An information
gathering protocol determines a sequence of transmissions of a node, based on
its label and on the previously received messages.

Research supported by NSF grants CCF-1217314, CCF-1536026, and NSA grant
H98230-13-1-0228.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 275–289, 2016.
DOI: 10.1007/978-3-662-49529-2 21

276 M. Chrobak and K.P. Costello

Our Results. In this paper, we focus on ad-hoc networks with tree topologies,
that is the underlying ad-hoc network is assumed to be a tree with all edges
directed towards the root, although the actual topology of this tree is unknown.

We consider two variants of the problem. In the first one, we do not assume
any collision detection or acknowledgment mechanisms, so none of the nodes (in
particular neither the sender nor the intended recipient) are notified about a
collision after it occurred. In this model, we give a deterministic algorithm that
completes information gathering in time O(n log log n). Our result significantly
improves the previous upper bound of O(n log n) from [7]. To our knowledge,
no lower bound for this problem is known, except for the trivial bound of Ω(n)
(since each rumor must be received by the root in a different time step).

In the second part of the paper, we also consider a variant where acknowledg-
ments of successful transmissions are provided to the sender. All the remaining
nodes, though, including the intended recipient, cannot distinguish between col-
lisions and absence of transmissions. Under this assumption, we show that the
running time can be improved to O(n), which is again optimal for trivial reasons,
up to the implicit constant.

While we assume that all nodes are labelled 0, 1, ..., n − 1 (where n is the
number of nodes), our algorithms’ asymptotic running times remain the same if
the labels are chosen from a larger range 0, 1, ..., N − 1, as long as N = O(n).

Related Work. The problem of information gathering for trees was introduced
in [7], where the model without any collision detection was studied. In addition
to the O(n log n)-time algorithm without aggregation – that we improve in this
paper – [7] develops an O(n)-time algorithm for the model with aggregation,
where a message can include any number of rumors. Another model studied
in [7], called fire-and-forward, requires that a node cannot store any rumors; a
rumor received by a node has to be either discarded or immediately forwarded.
For fire-and-forward protocols, a tight bound of Θ(n1.5) is given in [7].

The information gathering problem is closely related to two other information
dissemination primitives that have been well studied in the literature on ad-hoc
radio networks: broadcasting and gossiping. All the work discussed below is for
ad-hoc radio networks modeled by arbitrary directed graphs, and without any
collision detection capability.

In broadcasting, a single rumor from a specified source node has to be
delivered to all other nodes in the network. The näıve RoundRobin algo-
rithm (see the next section) completes broadcasting in time O(n2). Following
a sequence of papers [3,4,8,16] where this näıve bound was gradually improved,
it is now known that broadcasting can be solved in time O(n log n log log n) [19]
or O(n log2 D) [11], where D is the diameter of G. This nearly matches the
lower bound of Ω(n log D) from [10]. Randomized algorithms for broadcasting
have also been well studied [1,11,17].

The gossiping problem is an extension of broadcasting, where each node
starts with its own rumor, and all rumors need to be delivered to all nodes in
the network. The time complexity of deterministic algorithms for gossiping is
a major open problem in the theory of ad-hoc radio networks. Obviously, the

Faster Information Gathering in Ad-Hoc Radio Tree Networks 277

lower bound of Ω(n log D) for broadcasting [10] applies to gossiping as well, but
no better lower bound is known. It is also not known whether gossiping can be
solved in time O(n polylog(n)) with a deterministic algorithm, even if message
aggregation is allowed. The best currently known upper bound is O(n4/3 log4 n)
[14] (see [8,24] for some earlier work). The case when no aggregation is allowed
(or with limited aggregation) was studied in [5]. Randomized algorithms for
gossiping have also been well studied [9,11,18]. Interested readers can find more
information about gossiping in the survey paper [13].

Connections to Other Problems. For arbitrary graphs, assuming aggrega-
tion, one can solve the gossiping problem by running an algorithm for informa-
tion gathering and then broadcasting all rumors (as one message) to all nodes
in the network. Thus an O(n polylog(n))-time algorithm for information gath-
ering would resolve in positive the earlier-discussed open question about the
complexity of gossiping. Due to this connection, developing an O(n polylog(n))-
time algorithm for information gathering on arbitrary graphs is likely to be very
difficult, if possible at all.

This research, as well as the earlier work in [7], was motivated mainly by
this connection to gossiping. One can think of information gathering for trees
as a simple variant of the gossiping problem. We hope that developing efficient
algorithms for trees, or for some other natural special cases, will ultimately lead
to some insights helpful in resolving the complexity of the gossiping problem in
arbitrary graphs.

Some algorithms for ad-hoc radio networks (see [5,15], for example) involve
constructing a spanning subtree of the network and disseminating information
along this subtree. Better algorithms for information gathering on trees may
thus be useful in addressing problems for arbitrary graphs.

The problem of information gathering for trees is also related to the
contention resolution problem in multiple-access channels (MAC). There is a
myriad of variants of MAC contention resolution in the literature. (See, for
example, [2,20,21].) Generally, the instance of the problem involves a collec-
tion of transmitters connected to a shared channel, like Ethernet, for example.
Some of these transmitters need to send their messages across the channel, and
the objective is to design a distributed protocol that will allow them to do that.
The information gathering problem for trees is in essence an extension of MAC
contention resolution to multi-level hierarchies of channels, where transmitters
have unique identifiers, and the structure of this hierarchy is not known.

Note: Due to lack of space, in this extended abstract we only outline the main
ideas behind most proofs. Complete proofs can be found in the full version of
this paper [6].

2 Preliminaries

We now provide a formal definition of our model and introduce notation, termi-
nology, and some basic properties used throughout the paper.

278 M. Chrobak and K.P. Costello

Radio Networks with Tree Topology. In the paper we focus exclusively on
radio networks with tree topologies. Such a network will be represented by a tree
T with root r and with n = |T | nodes. The edges in T are directed towards the
root, representing the direction of information flow: a node can send messages to
its parent, but not to its children. We assume that each node v ∈ T is assigned
a unique label from [n] = {0, 1, ..., n − 1}, and we denote this label by label(v).

For a node v, by deg(v) we denote the degree of v, which is the number of
v’s children. For any subtree X of T and a node v ∈ X, Xv denotes the subtree
of X rooted at v that consists of all descendants of v in X.

For any integer γ = 1, 2, ..., n − 1 and any node v of T define the γ-height of
v as follows. If v is a leaf then the γ-height of v is 0. If v is an internal node then
let g be the maximum γ-height of a child of v. If v has fewer than γ children
of γ-height equal g then the γ-height of v is g. Otherwise, the γ-height of v
is g + 1. The γ-height of v will be denoted by heightγ(v). In case when more
than one tree are under consideration, to resolve potential ambiguity we will
write heightγ(v, T) for the γ-height of v in T . The γ-height of a tree T , denoted
heightγ(T), is defined as heightγ(r), that is the γ-height of its root.

Its name notwithstanding, the definition of γ-height is meant to capture the
“bushiness” of a tree. For example, if T is a path then its γ-height equals 0
for each γ > 1. The concept of γ-height generalizes Strahler numbers [22,23],
introduced in hydrology to measure the size of streams in terms of the complexity
of their tributaries. Figure 1 gives an example of a tree and values of 3-heights
for all its nodes. The lemma below is a slight refinement of an analogous lemma
in [7], and it will play a critical role in our algorithms.

Lemma 1. If T has q leaves, and 2 ≤ γ ≤ q, then heightγ(T) ≤ logγ q.

Equivalently, any tree having γ-height j must have at least γj leaves. This
can be seen by induction on j – if v is a node which is furthest from the root
among all nodes of γ-height j, then v by definition has γ descendants of γ-height
j − 1, each of which has γj−1 leaf descendants by inductive hypothesis.

Information Gathering Protocols. Each node v of T has a label (or an
identifier) associated with it, and denoted label(v). When the computation is
about to start, each node v has also a piece of information, ρv, that we call
a rumor. The computation proceeds in discrete, synchronized time steps, num-
bered 0, 1, 2, At any step, v can either be in the receiving state, when it listens
to radio transmissions from other nodes, or in the transmitting state, when it

0 0 0

0 0

1

0 0

1

1

1

0

0

1 0

0

1

1 2

2

0

0 0 0 0

0

0

0

Fig. 1. An example showing a tree and the values of 3-heights for all its nodes.

Faster Information Gathering in Ad-Hoc Radio Tree Networks 279

is allowed to transmit. When v transmits at a time t, the message from v is
sent immediately to its parent in T . As we do not allow rumor aggregation, this
message may contain at most one rumor, plus possibly O(log n) bits of other
information. If w is v’s parent, w will receive v’s message if and only if w is in
the receiving state and no other child of w transmitted at time t. In Sects. 3 and 4
we do not assume any collision detection nor acknowledgement mechanisms, so
if v’s message collides with one from a sibling, neither v nor w receive any noti-
fication. We relax this requirement in Sect. 5, by assuming that v (and only v)
will obtain an acknowledgment from w after each successful transmission.

The objective of an information gathering protocol is to deliver all rumors
from T to its root r, as quickly as possible. Such a protocol needs to achieve
its goal even without the knowledge of the topology of T . More formally, a
gathering protocol A can be defined as a function that, at each time t, and for
each given node v, determines the action of v at time t based only on v’s label
and the information received by v up to time t. The action of v at each time
step t involves choosing its state (either receiving or transmitting) and, if it is
in the transmitting state, choosing which rumor to transmit.

We will say that A runs in time T (n) if, for any tree T and any assignment
of labels to its nodes, after at most T (n) steps all rumors are delivered to r.

In a simple information gathering protocol called RoundRobin, nodes trans-
mit one at a time, in n rounds, where in each round they transmit in the order
0, 1, ..., n − 1 of their labels. For any node v, when it is its turn to transmit,
v transmits any rumor from the set of rumors that have been received so far
(including its own rumor) but not yet transmitted. In each round, each rumor
that is still not in r will get closer to r, so after n2 steps all rumors will reach r.

Strong k-selectors. Let S̄ = (S0, S1, ..., Sm−1) be a family of subsets of
{0, 1, ..., n − 1}. S̄ is called a strong k-selector if, for each k-element set A ⊆
{0, 1, ..., n − 1} and each a ∈ A, there is a set Si such that Si ∩ A = {a}. As
shown in [10,12], for each k there exists a strong k-selector S̄ = (S0, S1, ..., Sm−1)
with m = O(k2 log n). We will make extensive use of strong k-selectors in our
algorithms. At a certain time in the computation our protocols will “run” S̄, for
an appropriate choice of k, by which we mean that it will execute a sequence of
m consecutive steps, such that in the jth step the nodes from Sj will transmit,
while those not in Sj will stay quiet. This will guarantee that, for any node v
with at most k − 1 siblings, there will be at least one step in the execution of S̄
where v will transmit but none of its siblings will. Therefore at least one of v’s
transmissions will be successful.

3 An O(n
√
logn)-Time Protocol

We first give a gathering protocol SimpleGather for trees with running time
O(n

√
log n). Our faster protocol will be presented in the next section.

We fix three parameters K = 2�√
log n�, D = �logK n� = O(

√
log n) and D′ =

�log K3� = O(
√

log n). We also fix a strong K-selector S̄ = (S0, S1, ..., Sm−1),
where m ≤ CK2 log n, for some integer constant C.

280 M. Chrobak and K.P. Costello

By Lemma 1, we have that heightK(T) ≤ D. A node v of T is called light
if |Tv| ≤ n/K3; otherwise we say that v is heavy. Let T ′ be the subtree of T
induced by the heavy nodes. By the definition of heavy nodes, T ′ has at most
K3 leaves, so height2(T ′) ≤ D′. Also, obviously, r ∈ T ′.

To streamline the description of our algorithm we will allow each node to
receive and transmit messages at the same time. We will assume a preprocessing
step allowing each v to know both the size of its subtree Tv and its K-height.
In particular, v knows whether it is in T ′ or not. We will assume that each
node v ∈ T ′, also knows its 2-height in the subtree T ′. The full version of this
paper [6] contains the details of the preprocessing and the proof of the validity
of the simultaneous receive/transmit assumption.

A detailed description of Algorithm SimpleGather is given in Pseudocode 1.
To distinguish between computation steps (which do not consume time) and
communication steps, we use command “at time t”. When the algorithm reaches
this command it waits until time step t to continue processing. Each message
transmission takes one time step. For each node v we maintain a set Bv of rumors
received by v, including its own rumor ρv. The algorithm consists of two epochs,
and we describe the computation in each epoch separately.
Epoch 1: Light Nodes. In Epoch 1, only the light nodes participate, and the goal is
to move all rumors to T ′. This epoch has D+1 stages (numbered h = 0, 1, . . . ,D),
with stage h beginning at time αh = (C + 1)hn. A light node v with K-height
h is only active during stage h.

Each stage has two parts. In the first part of stage h, v will transmit according
to the strong K-selector S̄. Specifically, this part has n/K3 iterations, each
corresponding to a complete execution of S̄. During each iteration, v chooses a
single rumor ρz ∈ Bv that it has not yet marked, and transmits ρv in each time
step corresponding to a set Si containing the label of v. This ρz is then marked,
and not chosen again during the first part. Note that if the parent u of v has
degree at most K, the definition of strong K-selectors guarantees that ρz will
be received by u, but if u’s degree is larger it is possible for all transmissions of
ρz during this stage to be blocked.

Note that the total number of steps required for this part of stage h is (n/K3)·
m ≤ Cn, so these steps will be completed before the second part of stage h starts.

In the second part, (beginning at time αh + Cn), we simply run the
RoundRobin protocol: in the l-th step of this part, if v has the rumor of the
node with label l, then it transmits that rumor.
Epoch 2: Heavy Nodes. This epoch has D′ + 1 stages, with only heavy nodes in
T ′ participating. When the epoch starts, all rumors are assumed to already be in
T ′. In stage g the nodes in T ′ whose 2-height is equal g will participate. Similar
to the stages of epoch 1, each stage runs in time O(n) and has two parts. In the
first part, during each time step every heavy node holding a rumor it has not
yet marked chooses such a rumor, marks it, and transmits it (instead of using a
strong K-selector). The second part executes RoundRobin, as before.

The high-level overview of the analysis of this algorithm is that rumors main-
tain a steady rate of progress towards the root – during stage h of Epoch 1, each

Faster Information Gathering in Ad-Hoc Radio Tree Networks 281

Pseudocode 1. SimpleGather(v)

1: K = 2�√
logn�, D = �logK n�

2: Bv ← {ρv} � Initially v has only ρv

3: Throughout: all rumors received by v are automatically added to Bv

4: if |Tv| ≤ n/K3 then � v is light (epoch 1)
5: h ← heightK(v, T) ; αh ← (C + 1)nh � v participates in stage h
6: for i = 0, 1, ..., n/K3 − 1 do � iteration i
7: at time αh + im
8: if Bv has an unmarked rumor then � Part 1: strong K-selector
9: choose any unmarked ρz ∈ Bv and mark it

10: for j = 0, 1, ..., m − 1 do
11: at time αh + im + j
12: if label(v) ∈ Sj then Transmit(ρz)
13: for l = 0, 1, ..., n − 1 do � Part 2: RoundRobin
14: at time αh + Cn + l
15: z ← node with label(z) = l
16: if ρz ∈ Bv then Transmit(ρz)
17: else � v is heavy (epoch 2)
18: g ← height2(v, T ′) ; α′

g ← αD+1 + 2ng � v participates in stage g
19: for i = 0, 1, ..., n − 1 do � Part 1: all nodes transmit
20: at time α′

g + i
21: if Bv contains an unmarked rumor then
22: choose any unmarked ρz ∈ Bv and mark it
23: Transmit(ρz)
24: for l = 0, 1, ..., n − 1 do � Part 2: RoundRobin
25: at time α′

g + 2n + l
26: z ← node with label(z) = l
27: if ρz ∈ Bv then Transmit(ρz)

rumor either reaches the heavy tree or a node of K-height h + 1; during stage g
of Epoch 2 each rumor either reaches the root or a vertex of 2 height g + 1 in
T ′. Since the heights are bounded (by Lemma1), the algorithm will complete in
the required time of O(n

√
log n). The details of the analysis follow.

Analysis of Epoch 1 (The Light Nodes). We claim that the following invariant
holds for all h = 0, 1, ...,D:

(Ih) Let w ∈ T and let u be a light child of w with heightK(u) ≤ h − 1. Then at
time αh node w has received all rumors from Tu.

To prove this invariant we proceed by induction on h. If h = 0 the invariant (I0)
holds vacuously. So suppose that invariant (Ih) holds for some value of h. We
want to prove that (Ih+1) is true when stage h+1 starts. We thus need to prove
the following claim: if u is a light child of w with heightK(u) ≤ h then at time
αh+1 all rumors from Tu will arrive in w.

If heightK(u) ≤ h − 1 then the claim holds, immediately from the inductive
assumption (Ih). So assume that heightK(u) = h. Consider the subtree H rooted
at u and containing all descendants of u whose K-height is equal to h. By the

282 M. Chrobak and K.P. Costello

inductive assumption, at time αh any w′ ∈ H has all rumors from the subtrees
rooted at its descendants of K-height smaller than h, in addition to its own
rumor ρw′ . Therefore all rumors from Tu are already in H and each of them has
exactly one copy in H, because all nodes in H were idle before time αh.

When the algorithm executes the first part of stage h on H, then each node
v in H whose parent is also in H will successfully transmit an unmarked rumor
during each pass through the K selector – indeed, our definition of H guarantees
that v has at most K − 1 siblings in H, so by the definition of strong selector it
must succeed at least once. The following claim follows by simple induction:

Claim 1: At all times during stage h, the collection of nodes in H still holding
unmarked rumors forms an induced tree of H.

In particular, node u will receive a new rumor during every run through the
selector until it has received all rumors from its subtree. Since the tree originally
held at most |Tu| ≤ n/K3 rumors originally, u must have received all rumors
from its subtree after at most n/K3 runs through the selector.

Note that, as heightK(u) = h, u will also attempt to transmit its rumors to w
during this part, but, since we are not making any assumptions about the degree
of w, there is no guarantee that w will receive them. This is where the second
part of this stage is needed. Since in the second part each rumor is transmitted
without collisions, all rumors from u will reach w before time αh+1, completing
the inductive step and the proof that (Ih+1) holds.

In particular, using Invariant (Ih) for h = D, we obtain that after Epoch 1
each heavy node w will have received rumors from the subtrees rooted at all its
light children. Therefore at that time all rumors from T will be already in T ′,
with each rumor having exactly one copy in T ′.
Analysis of Epoch 2 (The Heavy Nodes). The argument for the heavy nodes is
similar as for the light nodes, but with a twist, since we do not use selectors
now. In essence, we show that each stage reduces by at least one the 2-depth of
the minimum subtree of T ′ that contains all rumors. Specifically, we show that
the following invariant holds for all g = 0, 1, ...,D′:

(Jg) Let w ∈ T ′ and let u ∈ T ′ be a child of w with height2(u, T ′) ≤ g − 1. Then
at time α′

g node w has received all rumors from Tu.

We prove invariant (Jg) by induction. For g = 0, (J0) holds vacuously. Assume
that (Jg) holds for some g. We claim that (Jg+1) holds right after stage g.

Choose any child u of w with height2(u, T ′) ≤ g. If height2(u, T ′) ≤ g −1, we
are done, by the inductive assumption. So we can assume that height2(u, T ′) = g.
Let P be the subtree of T ′ rooted at u and consisting of all descendants of u
whose 2-height in T ′ is equal g. Then P is simply a path. By the inductive
assumption, for each w′ ∈ P , all rumors from the subtrees of w′ rooted at its
children of 2-height at most g −1 are in w′. Thus all rumors from Tu are already
in P . All nodes in P participate in stage g, but their children outside P do not
transmit. Therefore each transmission from any node x ∈ P − {u} during stage
g will be successful. Due to pipelining, all rumors from P will reach u after the
first part of stage g. In the second part, all rumors from u will be successfully
sent to w. So after stage g all rumors from Tu will be in w, completing the proof.

Faster Information Gathering in Ad-Hoc Radio Tree Networks 283

4 A Protocol with Running Time O(n log logn)

In this section we present our first main result:

Theorem 1. The problem of information gathering on trees, without rumor
aggregation, can be solved in time O(n log log n).

The protocol can be thought of as an iterative application of the idea behind
Algorithm SimpleGather from Sect. 3. We assume that the reader is familiar
with Algorithm SimpleGather and its analysis, and in our presentation we
will focus on the high level ideas behind Algorithm FastGather, deferring the
implementation of some details to Sect. 3 and the full version of this paper [6].

As before, T is the input tree with n vertices. We fix some arbitrary integer
constant β ≥ 2. For � = 1, 2, ..., let K� = �nβ−��. So K1 = �n1/β�, the sequence
(K�)� is non-increasing, and lim�→∞ K� = 2. Let L be the largest value of � for
which nβ−� ≥ log n. (Note that L is well defined for sufficiently large n, since β
is fixed). Thus L ≤ logβ(log n/ log log n), L = Θ(log log n), and log n ≤ KL =
Kβ

L+1 < (log n)β .
For � = 1, 2, ..., L, by S̄� = (S�

1, S
�
2, ..., S

�
m�

) we denote a strong K�-selector of
size m� ≤ CK2

� log n, for some integer constant C. As discussed in Sect. 2, such
selectors S̄� exist.

Let T (0) = T , and for each � = 1, 2, ..., L, let T (�) be the subtree of T
induced by the nodes v with |Tv| ≥ n/K3

� . Each tree T (�) is rooted at r, and
T (�) ⊆ T (�−1) for � ≥ 1. For �
= 0, the definition of T (�) implies also that it
has at most K3

� leaves, so, by Lemma 1, its K�+1-height is at most logK�+1
(K3

�).

Since K� ≤ 2nβ−�

and K�+1 ≥ nβ−(�+1)
, direct calculation gives logK�+1

(K3
�) ≤

3β + 1 for sufficiently large n. In particular, the K�+1-height of T (�) is at most
D = 3β + 1 = O(1).

Similar to the previous section we will make some simplifying assumptions.
First, we will assume that all nodes can receive and transmit messages at the
same time. Second, we will also assume that each node v knows the size of its
subtree |Tv| and its K�-heights, for each � ≤ L. We describe how to remove these
assumptions in the full version of this paper [6].

Algorithm FastGather consists of L + 1 epochs, numbered 1, 2, ..., L + 1.
For � ≤ L, the goal of epoch L is to move all rumors from T (L−1) to T (L) Each
of these L epochs will run in time O(n), so their total running time will be
O(nL) = O(n log log n). The final epoch will move all rumors from T (L) to the
root, also in time O(n log log n). We now provide the details.

Epochs � = 1, 2, ..., L. In epoch �, only the nodes in T (�−1) − T (�) participate.
The computation in this epoch is very similar to the computation of light nodes
(in epoch 1) in Algorithm SimpleGather. Epoch � starts at time γ� = (D +
1)(C + 1)(� − 1)n and lasts (D + 1)(C + 1)n steps.

Let v ∈ T (�−1) − T (�). The computation of v in epoch � consists of D + 1
identical stages. Each stage h = 0, 1, ...,D starts at time step α�,h = γ� + (C +
1)hn and lasts (C + 1)n steps.

284 M. Chrobak and K.P. Costello

Stage h has two parts. The first part starts at time α�,h and lasts time
Cn. During this part we execute �n/K3

� � iterations, each iteration consisting of
running the strong K�+1-selector S̄�. The time needed to execute these iterations
is at most �n/K3

� �(CK2
�+1 log n), which can be seen by direct calculation to be

at most Cn.
Thus all iterations executing the strong selector will complete before time

α�,h + Cn. Then v stays idle until time α�,h + Cn, which is when the second
part starts. In the second part we run the RoundRobin protocol, which takes
n steps. So stage h will complete right before step α�,h + (C + 1)n = α�,h+1.
Epoch L + 1. Due to the definition of L, we have that T (L) contains at most
K3

L = O(log3β n) leaves, so its 2-depth is D′ = O(log log n), by Lemma 1. The
computation in this epoch is similar to epoch 2 from Algorithm SimpleGather.
As before, this epoch consists of D′ + 1 stages, where each stage g = 0, 1, ...,D′

has two parts. In the first part, we have n steps in which each node transmits.
In the second part, also of length n, we run one iteration of RoundRobin.

The high-level analysis of Algorithm FastGather is similar to that in
Sect. 3: During each stage a rumor’s K-height increases until it reaches the next
level (tree T (�)), and in the last epoch its 2-height increases until it reaches the
root. The full analysis is given in the full version of this paper [6].

5 An O(n)-time Protocol with Acknowledgments

In this section we consider a network model where acknowledgments of successful
transmissions are provided to the sender. All the remaining nodes, including the
intended recipient, cannot distinguish between collisions and absence of trans-
missions. In this section we present our second main result:

Theorem 2. The problem of information gathering on trees without rumor
aggregation can be solved in time O(n) if acknowledgments are provided.

As before, T is the input tree with n nodes. We will recycle the notions of
light and heavy nodes from Sect. 3, although now we will use slightly different
parameters. Let δ > 0 be a small constant, and let K = �nδ�. We say that
v ∈ T is light if |Tv| ≤ n/K3 and we call v heavy otherwise. By T ′ we denote
the subtree of T induced by the heavy nodes.

Algorithm LinGather. Our algorithm will consist of two epochs. The first
epoch is essentially identical to Epoch 1 in Algorithm SimpleGather, except
for a different choice of the parameters. The objective of this epoch is to collect
all rumors in T ′ in time O(n). In the second epoch, only the heavy nodes in
T ′ will participate in the computation, and the objective of this epoch is to
gather all rumors from T ′ in the root r. This epoch is quite different from our
earlier algorithms and it will use some novel combinatorial structures (obtained
via probabilistic constructions) to move all rumors from T ′ to r in time O(n).
Epoch 1: In this epoch only light nodes will participate, and the objective of
Epoch 1 is to move all rumors into T ′. In this epoch we will not be taking

Faster Information Gathering in Ad-Hoc Radio Tree Networks 285

advantage of the acknowledgement mechanism. As mentioned earlier, except for
different choices of parameters, this epoch is essentially identical to Epoch 1 of
Algorithm SimpleGather, so we only give a very brief overview here. We use
a strong K-selector S̄ of size m ≤ CK2 log n.

Let D = �logK n� ≤ 1/δ = O(1). By Lemma 1, the K-depth of T is at most
D. Epoch 1 consists of D + 1 stages, where in each stage h = 0, 1, ...,D, nodes
of K-depth h participate. Stage h consists of n/K3 executions of S̄, followed
by an execution of RoundRobin, taking total time n/K3 · m + n = O(n).
So the entire epoch takes time (D + 1) · O(n) = O(n) as well. The proof of
correctness (namely that after this epoch all rumors are in T ′) is identical as for
Algorithm SimpleGather.
Epoch 2: When this epoch starts, all rumors are already gathered in T ′, and the
objective is to push them further to the root. The key obstacle to be overcome in
this epoch is congestion stemming from the fact that nodes have many rumors to
transmit. This congestion means that simply repeatedly applying k-selectors is
no longer enough. For example, if the root has k children, each with n/k rumors,
then repeating a k-selector n/k times would get all the rumors to the root, but
take total time roughly nk log n, which would be too long.

To overcome this obstacle, we introduce two novel tools that will play a
critical role in our algorithm. The first tool is a so-called amortizing selector
family. Since a parent receives at most one rumor per round, if it has k children
it clearly cannot simultaneously be receiving rumors at a rate greater than 1

k
from each child individually. With the amortizing family, we will be able to
achieve within a constant fraction of this bound over long time intervals, so long
as each child knows (approximately) how many siblings it is competing with.

Similarly to a strong selector, this amortizing family will be a collection of
subsets of the underlying label set [n], though now it will be doubly indexed:
There will be sets Sij for each 1 ≤ i ≤ s and each j ∈ {1, 2, 4, 8, . . . , k} for
some parameters s and k. We say the family succeeds at cumulative rate q if the
following statement is true:

For each j ∈ {1, 2, 4, . . . , k
2}, each subset A ⊆ {1, . . . , n} satisfying j/2 ≤

|A| ≤ 2j, and each element v ∈ A there are at least q
|A|s distinct i for which

v ∈ Sij and A ∩ (Si(j/2) ∪ Sij ∪ Si(2j)) = {v}.

In the case j = 1 the set Si(j/2) is defined to be empty. Here s can be thought
of as the total running time of the selector, and j as a node’s estimate of its
parent’s degree, and k as some bound on the maximum degree handled by the
selector. A node fires at time step i if and only if its index is contained in the set
Sij . What the above statement is then saying that for any subset A of siblings,
if |A| is at most k/2 and each child estimates |A| within a factor of 2 then each
child will transmit at rate at least q

|A| .

286 M. Chrobak and K.P. Costello

Theorem 3. There are fixed constants c, C > 0 such that the following is true:
For any k and n and any s ≥ Ck2 log n, there is an amortizing selector with
parameters n, k, s succeeding with cumulative rate c.

The proof of Theorem 3 (through a probabilistic construction) appears in the
full version of this paper [6].

Of course, such a family will not be useful unless a node can obtain an
accurate estimate of its parent’s degree, which will be the focus of our second
tool, k-distinguishers. As with the amortizing selector, this will be a collection
of subsets of the label set [n]. Let S̄ = (S1, S2, ..., Sm), where each Sj ⊆ [n]
for each j. For A ⊆ [n] and a ∈ A, define Hitsa,A(S̄) = {j : Sj ∩ A = {a}},
that is Hitsa,A(S̄) is the collection of indices j for which Sj intersects A exactly
on a. Note that, using this terminology, S̄ is a strong k-selector if and only if
Hitsa,A(S̄)
= ∅ for all sets A ⊆ [n] of cardinality at most k and all a ∈ A.

We say that S̄ is a k-distinguisher if there is a threshold value ξ (dependent
on k) such that, for any A ⊆ [n] and a ∈ A, the following conditions hold:

if |A| ≤ k then |Hitsa,A(S̄)| > ξ, and if |A| ≥ 2k then |Hitsa,A(S̄)| < ξ.

We make no assumptions on what happens for |A| ∈ {k + 1, k + 2, ..., 2k − 1}.
The idea is this: consider a fixed a, and imagine that we have some set A

that contains a, but its other elements are not known. Suppose that we also
have an access to a hit oracle that for any set S will tell us whether S ∩ A =
{a} or not. With this oracle, we can then use a k-distinguisher S̄ to extract
some information about the cardinality of A by calculating the cardinality of
Hitsa,A(S̄). If |Hitsa,A(S̄)| ≤ ξ then we know that |A| > k, and if |Hitsa,A(S̄)| ≥ ξ
then we know that |A| < 2k.

The idea of the theorem below, again by a probabilistic argument, appears
in the full version of this paper [6].

Theorem 4. For any n ≥ 2 and 1 ≤ k ≤ n/2 there exists a k-distinguisher of
size m = O(k2 log n).

In our framework, the acknowledgement of a message received from a parent
corresponds exactly to such a hit oracle. So if all nodes fire according to such
a k-distinguisher, each node can determine in time O(k2 log n) either that its
parent has at least k children or that it has at most 2k children.

Now let λ be a fixed parameter between 0 and 1. For each i = 0, 1, ..., �λ log n�,
let S̄i be a 2i-distinguisher of size O(22i log n) and with threshold value ξi.
We can then concatenate these k-distinguishers to obtain a sequence S̃ of size
∑	λ log n

i=0 O(22i log n) = O(n2λ log n).
We will refer to S̃ as a cardinality estimator, because applying our hit oracle

to S̄ we can estimate a cardinality of an unknown set within a factor of 4, making
O(n2λ log n) hit queries. More specifically, consider again a scenario where we
have a fixed a and some unknown set A containing a, where |A| ≤ nλ. Using the
hit oracle, compute the values hi = |Hitsa,A(S̄i)|, for all i. If i0 is the smallest i

Faster Information Gathering in Ad-Hoc Radio Tree Networks 287

for which hi > ξi, then by definition of our distinguisher we must have 2i0−1 <
|A| < 2(2i0). In our gathering framework, this corresponds to each node in the
tree being able to determine in time O(n2λ log n) a value of j (specifically, i0−1)
such that the number of children of its parent is between 2j and 2j+2, which is
exactly what we need to be able to run the amortizing selector.

For the remainder of this section we will assume the existence of Amortizing
Selector Families and Distinguishers, and use them to construct an algorithm
which completes Epoch 2 in time O(n).

The Algorithm for Epoch 2: For the second epoch, we restrict our attention to
the tree T ′ of heavy nodes. As before, no parent in this tree can have more than
K3 = n3δ children, since each child is itself the ancestor of a subtree of size
n/K3. We will further assume the existence of a fixed amortizing selector family
with parameters k = 2K3 and s = K8, as well as a fixed cardinality estimator
with parameter λ = 3δ running in time D1 = O

(
n6δ log n

)
= O

(
K6 log n

)
.

Our protocol will be divided into stages, each consisting of 2(D1 +K8) steps.
A node will be active in a given stage if at the beginning of the stage it has
already received all of its rumors, but still has at least one rumor left to transmit
(it is possible for a node to never become active, if it receives its last rumor and
then finishes transmitting before the beginning of the next stage).

During each odd-numbered time step of a stage, all nodes (active or not)
holding at least one rumor they have not yet successfully passed on transmit such
a rumor. The even-numbered time steps are themselves divided into two parts.
In the first D1 even steps, all active nodes participate in the aforementioned
cardinality estimator. At the conclusion of the estimator, each node knows a j
such that their parent has between 2j and 2j+2 active children. Note that active
siblings do not necessarily have the same estimate for their family size. For
the remainder of the even steps, each active node fires using the corresponding
2j+1-selector from the amortizing family.

The stages repeat until all rumors have reached the root. Our key claim
(which is proven in the full version of this paper [6]) is that the rumors aggregate
at least at a steady rate over time – each node with subtree size m in the original
tree T will receive all m rumors within O(m) steps of the start of the epoch.

Acknowledgements. We thank the anonymous reviewers for constructive comments
that helped us improve the presentation.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J.
Comput. Syst. Sci. 43(2), 290–298 (1991)

2. Anta, A.F., Mosteiro, M.A., Munoz, J.R.: Unbounded contention resolution in
multiple-access channels. Algorithmica 67(3), 295–314 (2013)

288 M. Chrobak and K.P. Costello

3. Bruschi, D., Del Pinto, M.: Lower bounds for the broadcast problem in mobile
radio networks. Distrib. Comput. 10(3), 129–135 (1997)

4. Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic
broadcasting in ad hoc radio networks. Distrib. Comput. 15(1), 27–38 (2002)

5. Christersson, M., Gasieniec, L., Lingas, A.: Gossiping with bounded size messages
in ad hoc radio networks. In: Widmayer, P., Triguero, F., Morales, R., Hennessy,
M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 377–389.
Springer, Heidelberg (2002)

6. Chrobak, M., Costello, K.: Faster information gathering in ad-hoc radio tree net-
works (2015). arXiv: 1512.02179

7. Chrobak, M., Costello, K., Gasieniec, L., Kowalski, D.R.: Information gathering in
ad-hoc radio networks with tree topology. In: Zhang, Z., Wu, L., Xu, W., Du, D.-Z.
(eds.) COCOA 2014. LNCS, vol. 8881, pp. 129–145. Springer, Heidelberg (2014)

8. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio
networks. J. Algorithms 43(2), 177–189 (2002)

9. Chrobak, M., Gasieniec, L., Rytter, W.: A randomized algorithm for gossiping in
radio networks. Networks 43(2), 119–124 (2004)

10. Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks
of unknown topology. Theor. Comput. Sci. 302(1–3), 337–364 (2003)

11. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. J. Algorithms 60(2), 115–143 (2006)

12. Erdős, P., Frankl, P., Füredi, Z.: Families of finite sets in which no set is covered
by the union of r others. Israel J. Math. 51(1–2), 79–89 (1985)

13. Gasieniec, L.: On efficient gossiping in radio networks. In: Kutten, S., Žerovnik, J.
(eds.) SIROCCO 2009. LNCS, vol. 5869, pp. 2–14. Springer, Heidelberg (2010)

14. Gasieniec, L., Radzik, T., Xin, Q.: Faster deterministic gossiping in directed ad
hoc radio networks. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol.
3111, pp. 397–407. Springer, Heidelberg (2004)

15. Kowalski, D.R.: On selection problem in radio networks. In: Proceedings of the
Twenty-fourth Annual ACM Symposium on Principles of Distributed Computing,
PODC 2005, pp. 158–166 (2005)

16. Kowalski, D.R., Pelc, A.: Faster deterministic broadcasting in ad hoc radio net-
works. SIAM J. Discrete Math. 18(2), 332–346 (2004)

17. Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) lower bound for broadcast in
radio networks. SIAM J. Comput. 27(3), 702–712 (1998)

18. Liu, D., Prabhakaran, M.: On randomized broadcasting and gossiping in radio
networks. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp.
340–349. Springer, Heidelberg (2002)

19. De Marco, G.: Distributed broadcast in unknown radio networks. In: Proceedings
of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008),
pp. 208–217 (2008)

20. De Marco, G., Kowalski, D.R.: Fast nonadaptive deterministic algorithm for con-
flict resolution in a dynamic multiple-access channel. SIAM J. Comput. 44(3),
868–888 (2015)

21. De Marco, G., Kowalski, D.R.: Contention resolution in a non-synchronized multi-
ple access channel. In: IEEE 27th International Symposium on Parallel Distributed
Processing (IPDPS), pp. 525–533 (2013)

http://arxiv.org/abs/1512.02179

Faster Information Gathering in Ad-Hoc Radio Tree Networks 289

22. Strahler, A.N.: Hypsometric (area-altitude) analysis of erosional topology. Bull.
Geol. Soc. Amer. 63, 1117–1142 (1952)

23. Viennot, X.G.: A Strahler bijection between Dyck paths and planar trees. Discrete
Math. 246, 317–329 (2003)

24. Xu, Y.: An O(n1.5) deterministic gossiping algorithm for radio networks. Algorith-
mica 36(1), 93–96 (2003)

Stabbing Circles for Sets of Segments
in the Plane

Mercè Claverol1, Elena Khramtcova2, Evanthia Papadopoulou2(B),
Maria Saumell3, and Carlos Seara1

1 Universitat Politècnica de Catalunya, Barcelona, Spain
2 Faculty of Informatics, Università della Svizzera italiana (USI),

Lugano, Switzerland
evanthia.papadopoulou@usi.ch

3 Department of Mathematics and European Centre of Excellence NTIS,
University of West Bohemia, Pilsen, Czech Republic

Abstract. Stabbing a set S of n segments in the plane by a line is a well-
known problem. In this paper we consider the variation where the stab-
bing object is a circle instead of a line. We show that the problem is tightly
connected to cluster Voronoi diagrams, in particular, the Hausdorff and
the farthest-color Voronoi diagram. Based on these diagrams, we provide
a method to compute all the combinatorially different stabbing circles for
S, and the stabbing circles with maximum and minimum radius. We give
conditions under which our method is fast. These conditions are satisfied
if the segments in S are parallel, resulting in a O(n log2 n) time algorithm.
We also observe that the stabbing circle problem for S can be solved in
optimal O(n2) time and space by reducing the problem to computing the
stabbing planes for a set of segments in 3D.

1 Introduction

Let S be a set of n line segments (segments for short) in R2. We say that a
region R ⊆ R2 is a stabbing region for S if exactly one endpoint of each segment
of S lies in the exterior of R. The boundary of R (also known as a stabber for
S) intersects all the segments in S and separates/classifies their endpoints into
two classes, depending on whether or not they lie in the exterior of R. Two
stabbing regions R1 and R2 for S are combinatorially different if they classify
the endpoints of S differently.

A natural problem is to determine the existence and compute (when possible)
a representation of all combinatorially different stabbing regions for S. We are
interested in stabbing regions whose boundary has constant complexity. Perhaps
the simplest such region is a halfplane bounded by a line that intersects or stabs
all the segments. Edelsbrunner et al. [11] presented an optimal Θ(n log n) time
algorithm to compute a representation of all the O(n) combinatorially different

A preliminary version of this paper appeared in Abstracts XVI Spanish Meeting on
Computational Geometry (EGC’15), pp. 112–115.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 290–305, 2016.
DOI: 10.1007/978-3-662-49529-2 22

Stabbing Circles for Sets of Segments in the Plane 291

Fig. 1. Left: Segment set with a stabbing circle. Right: Segment set with no stabbing
circle.

stabbing lines for S. An Ω(n log n) lower bound for the decision problem was
later presented by Avis et al. [4]. For parallel segments the problem can be solved
in O(n) time by linear programming. If no stabbing halfplane exists for S, it is
natural to ask for other types of stabbers. Computing all the combinatorially
different stabbing wedges (regions defined by the intersection of two halfplanes)
can be carried out in O(n3 log n) time and O(n2) space [8]. The same question
with isothetic stabbers can be answered in O(n log n) time and O(n) space for
stabbing strips, quadrants and 3-sided rectangles; and in O(n2 log n) time and
O(n2) space for stabbing rectangles [9].

In this paper, we focus on the stabbing circle problem formulated as follows.
Let S be a set of n segments in the plane in general position (segments have non-
zero length, no three endpoints are collinear, and no four of them are cocircular).
A circle c is a stabbing circle for S if exactly one endpoint of each segment of S
is contained in the exterior of the closed disk (region) induced by c; see Fig. 1.
The stabbing circle problem for S consists on (1) answering whether a stabbing
circle for S exists; (2) reporting a representation (for the centers) of all the
combinatorially different stabbing circles for S; and (3) finding stabbing circles
with the minimum and maximum radius. Note that our stabbing criterion uses
only the segment endpoints, thus, S can be seen as a set of pairs of points, where
a segment is simply a convenient representation for such a pair.

Other works with similar criteria are as follows: Rappaport [19] considers the
problem of computing the stabbing simple polygon of minimum perimeter for a
set S of general segments, where a simple polygon stabs S if at least one point
(which is not necessarily an endpoint) of each segment is in the polygon; this
minimum stabbing polygon is always a convex polygon. Dı́az-Báñez et al. [10]
focus on computing the stabbing simple polygons of minimum perimeter or area
with a distinct criterion, specifically, that at least one endpoint of each segment
is required to be in the polygon. Arkin et al. [2] consider, given a collection
of compact sets, whether there exists a convex body R whose boundary inter-
sects every set in the collection. They show that, for segment sets, deciding the
existence of a convex stabber is NP-hard.

Our Results. First, we point out a connection between the stabbing circle problem
and two cluster Voronoi diagrams, the Hausdorff and the farthest-color Voronoi
diagram. This connection is interesting in its own right and it forms the base of our
method to solve the stabbing circle problem. For a family of clusters (sets) of points

292 M. Claverol et al.

in R2, the Hausdorff Voronoi diagram (HVD) is a subdivision of R2 into regions
such that every point within one region has the same nearest cluster, where the
distance between a point p ∈ R2 and a cluster C is the maximum distance between
p and all points in C. The farthest-color Voronoi diagram (FCVD) is the reverse:
it reveals the farthest cluster according to the minimum distance between a point
and a cluster. Both diagrams have quadratic structural complexity in the worst
case [1,12,14]. However, for some classes of input sites the diagrams are linear and
can be constructed efficiently, see e.g. [5,18] for the HVD. Here, clusters are the
pairs of segment endpoints, and S is a family of such pairs of points.

Our central object is FCVD∗(S), defined as the locus of points whose farthest-
color neighbor (i.e., their owner in the farthest-color Voronoi diagram) is closer
than their nearest cluster (i.e., their owner in the Hausdorff Voronoi diagram).
We observe that any point p ∈ R2 is the center of a stabbing circle for S if
and only if p lies in the interior of FCVD∗(S). Thus, FCVD∗(S) provides all the
information relevant to stabbing circles: whether such circles exist, a list of all
combinatorially different stabbing circles, and the stabbing circles with mini-
mum and maximum radius. We identify sufficient conditions for fast algorithms
to construct FCVD∗(S), and thus, to solve the stabbing circle problem. These
conditions are: (1) the Hausdorff Voronoi diagram and the farthest-color Voronoi
diagram have linear structural complexity and can be constructed fast; (2) any
segment in S can “spoil” at most a constant number of edges of the Hausdorff
Voronoi diagram, where by “spoiling” an edge e we mean a technical condition
necessary to cause e ∩ FCVD∗(S) to be disconnected. If the segments in S are
parallel, conditions (1) and (2) are satisfied, thus, we obtain that the stabbing
circle problem for S can be solved in O(n log2 n) time and O(n) space. As a
byproduct, we establish that the farthest-color Voronoi diagram for such a set
S has structural complexity O(n) and can be constructed in O(n log n) time,
which was not previously known.

Summary. In Sect. 2 we give the necessary definitions; in addition, we observe
that, using a known technique, the stabbing circle problem for arbitrary segments
can be solved in O(n2) time and space. In Sect. 3 we show the connection of
FCVD∗(S) with the problem, and we give useful properties of FCVD∗(S). In
Sect. 4 we present an algorithm to compute FCVD∗(S). Finally, in Sect. 5, we
show that the stabbing circle problem for parallel segments can be solved in
O(n log2 n) time and O(n) space.

2 Preliminaries and Definitions

In what follows, xx′ denotes either a pair of points or a segment as convenient.

Definition 1. [12,18] The Hausdorff Voronoi diagram of S is a partitioning of
R2 into regions defined as follows:

hreg(aa′) = {p ∈ R2 | ∀bb′ ∈ S \ {aa′} : max{d(p, a), d(p, a′)} < max{d(p, b), d(p, b′)}};

hreg(a) = {p ∈ hreg(aa′) | d(p, a) > d(p, a′)}.

Stabbing Circles for Sets of Segments in the Plane 293

Note that hreg(a) and hreg(a′) are subregions of hreg(aa′) (see Fig. 2a). The
graph structure of this diagram is HVD(S) = R2 \

⋃
aa′∈S (hreg(a) ∪ hreg(a′)).

An edge of HVD(S) is called pure if it is incident to regions of two distinct
segments; and it is called internal if it separates the subregions of the same
segment. A vertex of HVD(S) is called pure if it is incident to three pure edges,
and it is called mixed if it is incident to an internal edge. The pure vertices are
defined by three distinct sites, and the mixed vertices by two distinct sites.

Definition 2. [1,14] The farthest-color Voronoi diagram is a partitioning of R2

into regions defined as follows:

fcreg(aa′) = {p ∈ R2 | ∀bb′ ∈ S \ {aa′} : min{d(p, a), d(p, a′)} > min{d(p, b), d(p, b′)}};

fcreg(a) = {p ∈ fcreg(aa′) | d(p, a) < d(p, a′)}.

Its graph structure is FCVD(S) = R2\
⋃

aa′∈S (fcreg(a) ∪ fcreg(a′)). The edges
and vertices of FCVD(S) are characterized as pure or internal (resp., pure or
mixed) similarly to those of HVD(S) (see Fig. 2b).

When the segments in S are pairwise disjoint, the structural complexity of
HVD(S) is O(n) [12]. This is not necessarily the case for FCVD(S). For arbitrary
segments, the complexity of both diagrams is O(n2) [1,17].

(a)

(b)

(c)

(c)

(a)

a

a

b

b

c

c

(b)

(a)

(a)

(a)

(b)

(c)

(c)
a

a

b

b

c

c

(b)

(b)

Fig. 2. (a) HVD(S), (b) FCVD(S). Pure and internal edges are represented in solid and
dashed, respectively. The gray letters in parentheses label respective regions.

Let hreg(·) and fcreg(·) denote the closures of the respective regions.

Definition 3. Given a point p, the Hausdorff disk (resp., farthest-color disk)
of p, denoted Dh(p) (resp., Df (p)), is the closed disk of radius d(p, a), where
p ∈ hreg(a) (resp., p ∈ fcreg(a)). Its radius is called the Hausdorff radius (resp.,
farthest-color radius) of p, and is denoted as rh(p) (resp., rf (p)).

Now we are ready to define FCVD∗(S), which satisfies that the points in its
interior are exactly the centers of all stabbing circles for S (see Lemma 1).

Definition 4. The FCVD∗(S) is the locus of points in R2 for which the farthest-
color radius is less than or equal to the Hausdorff radius.

294 M. Claverol et al.

Both HVD(S) and FCVD(S) can be viewed as envelopes of wedges in 3D [12,
14]: Lift up the pairs of endpoints of the segments in S onto the unit paraboloid,
and join the lifted endpoints obtaining a set S′ of segments in 3D. Using the
transformation described in [12], each pair of endpoints of S′ is transformed into
a pair of planes in 3D, where the lower (resp., upper) envelope of such a pair
forms a lower (resp., upper) wedge. The HVD(S) and FCVD(S) correspond to the
upper envelope of all lower wedges and the lower envelope of all upper wedges,
respectively. Thus, FCVD∗(S) corresponds to the locus of points below HVD(S)
and above FCVD(S). This is a set of O(n2) convex cells in 3D with O(n2) total
complexity, and can be computed in O(n2) time and space [12]. Moreover, this
set is a representation of all combinatorially different stabbing planes of S′ (if
one exists) [12]. We observe that a stabbing circle for S can be transformed into
a stabbing plane for S′ and vice versa. Thus, we obtain:

Observation 1. The stabbing circle problem for a set S of n arbitrary segments
can be solved in O(n2) time and space.

Claverol [7] showed that the set S might have Θ(n2) combinatorially different
stabbing circles; see Fig. 3a. In the construction, each pair {ai, aj} of points in
the upper arc defines a combinatorially different stabbing circle.

aj ai

ai aj

(a)

p

q
w

c3

c2

c1
a

a

(b)

Fig. 3. (a) A set with Θ(n2) combinatorially different stabbing circles, and the stabbing
circle defined by {ai, aj}. (b) Illustration for the proof of Lemma 2.

3 Properties of FCVD∗(S)

For brevity, we refer to the connected components of FCVD∗(S) as components of
FCVD∗(S). We also let bis(a, b) denote the bisector of two points a, b ∈ R2, and
∂f denote the boundary of a region f . Lemmas 1 and 2 are key facts that connect
the Hausdorff and farthest-color diagrams and the stabbing circle problem.

Lemma 1. For a point p ∈ R2, there exists a stabbing circle for S with center
at p if and only if p lies in the interior of FCVD∗(S).

Stabbing Circles for Sets of Segments in the Plane 295

Proof. Let C be a circle centered at p with radius r, and let D be the closed disk
induced by C. Recall that C is a stabbing circle if and only if (1) each segment
in S has an endpoint outside D; and (2) each segment in S has an endpoint
inside D. Condition (1) is equivalent to r < rh(p). Condition (2) is equivalent
to r ≥ rf (p).

Lemma 2. For any two points p, q lying in two distinct components of
FCVD∗(S), the stabbing circles for S with centers at p and at q are combina-
torially different.

Proof. Assume for the sake of contradiction that two points p, q lying in differ-
ent components of FCVD∗(S) correspond to combinatorially equivalent stabbing
circles c1 and c2. We assume that c1 and c2 intersect at two points, see Fig. 3b;
the case when one of the circles encloses the other is similar. For any point
w ∈ pq, the circle centered at w and passing through the two points of intersec-
tion between c1 and c2 is a stabbing circle for S, and is combinatorially equivalent
to c1 and c2. Therefore the whole segment pq lies in FCVD∗(S), and p, q lie in
the same component. We obtain a contradiction.

In the rest of this paper we focus on computing FCVD∗(S). It is not hard to
see that a component of FCVD∗(S) is unbounded in a direction φ if and only
if there exists a stabbing line for S that is orthogonal to φ. All the stabbing
lines and corresponding components of FCVD∗(S) can be found in O(n log n)
time [11]. Thus from now on we assume that S has no stabbing line.

a

p
q

Dh(p)

Dh(q)

b

b

(a)

a

f

p

(b)

a

f

p

(c)

Fig. 4. Illustration for the proof of Lemma 3a: (a) visibility property, item (i); (b)
HVD(S) ∩ f cannot be empty; (c) HVD(S) ∩ f cannot be disconnected.

Lemma 3. Let f be a component of FCVD(S). Then:

(a) Each of HVD(S)∩f and FCVD(S)∩f is one non-empty connected component.
(b) If f intersects an internal edge of HVD(S), then f contains a mixed vertex

of HVD(S) or FCVD(S).
(c) ∂f is a closed polygonal line with O(1+H+F) edges, where H and F denote

the number of vertices of HVD(S) ∩ f and FCVD(S) ∩ f respectively.

296 M. Claverol et al.

Proof.(a) The proof is based on the following visibility property of FCVD∗(S):
(i) Let p be a point outside FCVD∗(S), and let aa′ be a segment in S such that

p ∈ hreg(a). Then the entire segment (pa∩ hreg(a)) is outside FCVD∗(S).
(ii) Let p′ be a point in FCVD∗(S), and let aa′ be a segment in S such that

p′ ∈ fcreg(a). Then the entire segment (p′a ∩ fcreg(a)) is in FCVD∗(S).
To prove item (i), let q be any point in pa ∩ hreg(a); see Fig. 4a. Clearly,

Dh(q) ⊆ Dh(p). Since p �∈ FCVD∗(S), there is a segment bb′ ∈ S such that
b, b′ �∈ Dh(p). Since Dh(q) ⊆ Dh(p), both b, b′ are also outside Dh(q). Thus
q �∈ FCVD∗(S). Item (ii) can be shown analogously using the disks Df (p) and
Df (q).

Using item (i), we prove that f ∩ HVD(S) is non-empty and connected. The
same fact about f ∩ FCVD(S) can be shown similarly, using item (ii) instead.

Suppose that f ∩ HVD(S) is empty. Then f does not intersect any edge of
HVD(S). Thus f ⊂ hreg(a), for some segment aa′ in S; see Fig. 4b. Since f is
bounded, there is a point p ∈ hreg(a) \ f such that segment pa intersects f ; a
contradiction to (i).

Suppose now that f∩HVD(S) is disconnected, see Fig. 4c showing f∩HVD(S)
in bold. Then there is aa′ ∈ S such that f ∩ ∂hreg(a) is disconnected, thus,
hreg(a) \ f is not connected. By [17, Property 2], for any point q ∈ hreg(a),
segment qa intersects ∂hreg(a) only once in the internal edge of HVD(S) (shown
dashed in Fig. 4c). Then there is a point p ∈ hreg(a) \ f such that pa intersects
f ; a contradiction to (i).

(b) Let f intersect an internal edge e of HVD(S), and let aa′ ∈ S be such that
e ⊂ bis(a, a′). By Lemma 3a, e ∩ f is a bounded connected component of
bis(a, a′)∩FCVD∗(S). Note that a point p ∈ bis(a, a′) is in FCVD∗(S) if and
only if rh(p) = rf (p) = d(p, a). Thus, bis(a, a′) ∩ FCVD∗(S) = bis(a, a′) ∩
(HVD(S) ∩ FCVD(S)) . All the bounded connected components of the latter
are bounded by mixed vertices of HVD(S) or FCVD(S).

(c) Observe that each bend in ∂f is caused by an intersection of ∂f with an
edge of HVD(S) or FCVD(S). Thus the number of edges in ∂f equals the
number of edges of HVD(S)∩ f and FCVD(S)∩ f intersected by ∂f . Each of
HVD(S) ∩ f and FCVD(S) ∩ f is a connected graph (by Lemma 3a) whose
vertices have degree 3 (by the general position assumption); the claim follows
from Euler’s formula.
�

Lemma 3a, b guarantees that, in order to identify the components of
FCVD∗(S), it is enough to search among the vertices of HVD(S) and FCVD(S),
and among the pure edges of HVD(S). Lemma 3c ensures that tracing the bound-
ary of FCVD∗(S) requires time proportional to the sum of the structural com-
plexities of HVD(S) and FCVD(S). This is the base of the algorithm to compute
FCVD∗(S) given in the next section.

Stabbing Circles for Sets of Segments in the Plane 297

4 Computing FCVD∗(S)

4.1 General Algorithm

The algorithm, described in Fig. 5, has two main parts. In the first part
(lines 2–9), using the characterization of Lemma 3a, b we create a list L such
that, for every component f of FCVD∗(S), L contains a point u that belongs
to f . In the second part (lines 10–11), we use each such point u to trace the
boundary of each component f .

Algorithm Computing FCVD∗(S)
1. compute HVD(S) and FCVD(S);
2. L = ∅;
3. for all vertices v of HVD(S) and FCVD(S) do
4. if v ∈ FCVD*(S) then
5. L ← L ∪ {v};
6. for all pure edges e of HVD(S) do
7. for all components f of FCVD*(S) such that e∩ f = ∅ do
8. find a point w in e ∩ f ;
9. L ← L ∪ {w};
10. for all points u ∈ L do
11. trace the component of FCVD*(S) containing u;

Fig. 5. Algorithm to compute FCVD∗(S).

Let THVD(S) and TFCVD(S) denote the time to compute HVD(S) and FCVD(S)
respectively. In general, both THVD(S) and TFCVD(S) are O(n2) [12], but in special
cases it is possible to achieve better running times.

With some abuse of notation, we denote by |HVD(S)|, |FCVD(S)| and
|FCVD∗(S)| respectively the number of edges of HVD(S), FCVD(S), and
∂FCVD∗(S). In time O(|HVD(S)| log n) and O(|FCVD(S)| log n) respectively
we can preprocess HVD(S) and FCVD(S) to answer point-location queries in
O(log n) time. Then Step 4 of the algorithm becomes simple: If v is a vertex of
say HVD(S), we first locate it in FCVD(S). Once we obtain a segment aa′ ∈ S
such that v ∈ fcreg(aa′), we can compare the Hausdorff and farthest-color radii
of v in constant time.

Step 11 is easy: Given a point u ∈ L contained in a component f of FCVD∗(S),
we first locate u in both HVD(S) and FCVD(S). Then ∂f can be computed in
time proportional to its complexity by standard tracing. By Lemma 3c, the total
time of Steps 10–11 is O(|FCVD∗(S)| log n + |HVD(S)| + |FCVD(S)|). Steps 7–9
are discussed next.

4.2 Searching in a Pure Edge of HVD(S)

Let e be a pure edge of HVD(S). We compute one point for each component
of FCVD∗(S) that intersects e but does not contain any endpoint of e, and

298 M. Claverol et al.

add it to L. We first crop e by removing any portions that contain one of its
endpoints and belong to FCVD∗(S). If e is an infinite ray or a line, due to the
assumption that S does not have any stabbing line, only a bounded portion of e
may be contained in FCVD∗(S). Thus, we crop e in such a way that the discarded
infinite portions have empty intersection with FCVD∗(S).

Let e be a portion of the border between hreg(a) and hreg(b), for two segments
aa′, bb′ ∈ S. Then e ⊆ bis(a, b). If the segment ab intersects the interior of e, this
intersection divides e into two portions, which we process separately.

For the rest of this subsection, it is convenient to perform a rotation of the
coordinate system so that e is horizontal. Let u and respectively v be the left
and right endpoints of e. By hypothesis, neither of u or v belong to FCVD∗(S).
If u is a mixed vertex of HVD(S), we redefine u as a point on e infinitesimally to
the right, so that u is only in the boundary of hreg(a) and hreg(b). We proceed
analogously with v.

The Hausdorff disks Dh(u) and Dh(v) contain aa′, bb′, and no other segment
of S. Hence, every segment cc′ ∈ S \ {aa′, bb′} can be classified as follows (see
Fig. 6):

– cc′ is of type out if both c and c′ are outside Dh(u) ∪ Dh(v);
– cc′ is of type in if either c or c′ is contained in Dh(u) ∩ Dh(v) and the other

endpoint is outside Dh(u) ∪ Dh(v);
– cc′ is of type left if either c or c′ is contained in Dh(u) \ Dh(v) and the other

endpoint is outside Dh(u) ∪ Dh(v);
– cc′ is of type right if either c or c′ is contained in Dh(v)\Dh(u) and the other

endpoint is outside Dh(u) ∪ Dh(v);
– cc′ is of type middle if either c or c′ is contained in Dh(u) \ Dh(v) and the

other endpoint in Dh(v) \ Dh(u).

Let w be any point in e. We define type(w) as a set containing one element
per each cc′ ∈ S such that w ∈ fcreg(cc′). The elements of type(w) are defined
as follows: Let cc′ be a segment in S such that w ∈ fcreg(cc′). If cc′ is not of
type middle, then we add the type of cc′ to type(w). If cc′ is of type middle, then
either c or c′ (say, c) is contained in Dh(u) \ Dh(v), and the other endpoint (c′)
is contained in Dh(v) \ Dh(u). We further differentiate the classification middle
as follows: If w lies on bis(c, c′), then mm ∈ type(w). Otherwise, if w ∈ fcreg(c),
then ml ∈ type(w); if w ∈ fcreg(c′), then mr ∈ type(w). When we need to specify

u v

a

b

Dh(v)
Dh(u)

Fig. 6. From top to bottom, the types of the dotted segments are middle, left, in, right,
and out.

Stabbing Circles for Sets of Segments in the Plane 299

cc′, we do as follows: Imagine that w ∈ fcreg(cc′) and cc′ is of type in. Then we
say in ∈ type(w) caused by cc′.

Further, we use l̃ to denote types left and ml; and r̃ to denote right and mr.
Notice that if a point w belongs to FCVD∗(S), then Dh(w) contains at least

one endpoint of every segment in S. Using this observation, we make the following
analysis. Since u /∈ FCVD∗(S), the segments cc′ ∈ S such that u ∈ fcreg(cc′)
have both endpoints outside Dh(u). So in /∈ type(u), l̃ /∈ type(u), and mm /∈
type(u). On the other hand, observe that the Hausdorff disk centered at any
point in e is contained in Dh(u) ∪ Dh(v). So if out ∈ type(u), then no point
in e lies in FCVD∗(S) and we can stop the search. The analysis for type(v) is
analogous. Therefore, it only remains to consider the case where r̃ (possibly
with some multiplicity) is the only element in type(u), and l̃ (possibly with some
multiplicity) is the only element in type(v). From now on, we assume that we
are in this situation.

For any point p ∈ e, we use p� and pr to denote two points in e infinitesimally
close to p and lying to the left and right of p, respectively. When dealing with
segments ts of e, or pairs (t, s) of points in e, we write the left-most point first.

Definition 5. A point w in e is a changing point if {r̃, l̃} ⊆ type(w).

Note that a changing point w is an intersection point between a pure edge
of HVD(S) and a pure edge of FCVD(S). Intuitively, at w the point giving the
farthest-color radius changes from being in Dh(v) \ Dh(u) to being in Dh(u) \
Dh(v), i.e., r̃ ∈ type(w�) and l̃ ∈ type(wr) (see Fig. 7, left). It is easy to see that
a point w′ where a change in the other direction happens must be of type mm,
i.e., w′ is in the intersection between a pure edge of HVD(S) and an internal
edge of FCVD(S). Then we have:

Observation 2. Let f be a component of FCVD∗(S) such that f ∩ e �= ∅. Then
there exists a point w in f ∩ e such that in ∈ type(w) or w is a changing point.

Thus, it is enough to examine the changing points of e, and the points w such
that in ∈ type(w). To find such points, we use the find-change query subroutine:

Definition 6 (Find-change query). The input of the query is a pair (t, s) of
points in edge e, such that type(t) contains r̃ but not l̃, and type(s) contains l̃

u v

a

b Dh(v)

Dh(u)

w

Df(w)

t s

a

b Dh(v)

Dh(u)
w

Dh(s)
c c

Dh(w)

Fig. 7. Left: w is a changing point. Right: right ∈ type(s) caused by cc′ and w /∈
FCVD∗(S).

300 M. Claverol et al.

but not r̃. The query returns a point w in the segment ts such that one of the
following holds: (i) w is a changing point; (ii) in ∈ type(w); (iii) out ∈ type(w).

Given a pair (t, s) of points in edge e such that type(t) contains r̃ but not l̃,
type(s) contains r̃, and s� /∈ FCVD∗(S), our algorithm uses a subroutine, called
ChopRight, that finds the right-most point s′ (if it exists) on the segment ts
such that type(s′) contains l̃ but not r̃. Additionally, it holds that the interior
of the segment s′s does not intersect FCVD∗(S). Notice that it is not possible to
perform a find-change query on (t, s), but it is possible on (t, s′).

Algorithm ChopRight
Input: Pair (t, s) of points in e s.t. r̃ ∈ type(t), l̃ /∈ type(t),

r̃ ∈ type(s), and s /∈ FCVD*(S)
1. if mr ∈ type(s) caused by cc and bis(c, c) ∩ ts = ∅

then
2. w ← bis(c, c) ∩ ts;
3. if right /∈ type(w) and mr ∈ type(w) caused by dd

and bis(d, d) ∩ tw = ∅ then
4. go to line 2 (replacing cc by dd , and s by w);
5. else if r̃ /∈ type(w) and l̃ ∈ type(w) then
6. return tw;
7. else if r̃ /∈ type(w) and mm ∈ type(w) then
8. return tw ;
9. else return ∅;
10. else return ∅;

Fig. 8. Algorithm to chop a right portion not intersecting FCVD∗(S) of a segment.

The pseudocode of ChopRight is in Fig. 8. It is based on the following:

Lemma 4. Let ts be a segment in e such that type(t) contains r̃ but not l̃.
If type(s) contains r̃ and s� /∈ FCVD∗(S), then:

(a) If right ∈ type(s), then ts� ∩ FCVD∗(S) = ∅.
(b) If mr ∈ type(s) caused by cc′, then ts� ∩ ws� ∩ FCVD∗(S) = ∅, where w is

the intersection between bis(c, c′) and the supporting line of e.

If type(s) = {mm}, then type(s�) = {l̃}.

Proof.(a) Suppose right ∈ type(s) caused by cc′. Then c or c′ (say, c) is con-
tained in Dh(v) \ Dh(u) and c′ is outside Dh(u) ∪ Dh(v) (see Fig. 7, right).
Since s� /∈ FCVD∗(S) and s ∈ fcreg(cc′), Dh(s) does not contain c′ and it
might contain c only on its “right” boundary (in gray in Fig. 7, right). Con-
sequently, for any point w in ts�, Dh(w) contains neither c nor c′ and hence
w /∈ FCVD∗(S). Thus, ts� ∩ FCVD∗(S) = ∅.

(b) Suppose that mr ∈ type(s) caused by cc′; we assume that c′ is contained in
Dh(u) \Dh(v) and c in Dh(v) \ Dh(u). Then we know that s ∈ fcreg(c). We
again have that Dh(s) does not contain c′ and it might contain c only on its

Stabbing Circles for Sets of Segments in the Plane 301

Algorithm Searching in e
1. Q = {e};
2. L = ∅;
3. while Q = ∅
4. u v ← element in Q;
5. Q ← Q \ u v ;
6. perform a find-change query on (u , v);
7. let w be the point returned by the query;
8. if out ∈ type(w) then
9. exit and return NULL;
10. if w ∈ FCVD*(S) then
11. L ← L ∪ {w};
12. find the subsegment qq of u v s.t. w ∈ qq ⊆ FCVD*(S);
13. Q ← Q ∪ {ChopRight(u , q),ChopLeft(q , v)};
14. else (∗ w is a changing point in uv and w /∈ FCVD*(S) ∗)
15. Q ← Q ∪ {ChopRight(u ,w),ChopLeft(w, v)};
16. return L;

Fig. 9. Algorithm to obtain a list L with a point in every component of FCVD∗(S)
intersecting e.

“right” boundary. Furthermore, for all points w′ on ts�, c lies outside Dh(w′).
Thus w′ can lie in FCVD∗(S) only if c′ is contained in Dh(w′). This is only
possible if c′ is closer to w′ than c, that is, after we cross the intersection
between bis(c, c′) and the supporting line of e. We obtain that ts� ∩ ws� ∩
FCVD∗(S) = ∅.

The last statement can be proved similarly.
�

ChopLeft is a symmetric subroutine, whose details are analogous to the
above.

Using all these subroutines, our algorithm to list a point in every component
of FCVD∗(S) intersecting e starts by performing a find-change query on (u, v).
It is sketched in Fig. 9. The correctness is based on Observation 2 and Lemma 4,
which guarantees that the portions of u′v′ that are chopped and discarded dur-
ing the subroutines ChopRight and ChopLeft have empty intersection with
FCVD∗(S).

4.3 Running Time

Lemma 5. A find-change query can be performed in O(log2 n) time.

Proof. For a pair (t, s) of points, we perform the find-change query as follows. We
use a point-location data structure for FCVD(S), such that the point location for
a query point q is performed by a sequence of O(log n) atomic questions of the
form “is q above or below (resp., to the left or right of) a line �?” (e.g., [13,15]).
Notice that in our case instead of a fixed point q, we only have a pair (t, s)
such that the segment ts contains desired point(s) (a changing point, a point
of type in or out). An atomic question is processed as follows. If ts ∩ � = ∅,

302 M. Claverol et al.

the answer is the same for any point in ts, and we continue with the pair (t, s).
Otherwise, let point p be ts ∩ �. First, the normal point location for p gives
us type(p). If r̃ ∈ type(p) and l̃ �∈ type(p), we continue with the pair (p, s).
Symmetrically, if l̃ ∈ type(p) and r̃ �∈ type(p), we continue with the pair (t, p).
If type(p) = {mm}, then we continue with either (p, s) or (t, p). Otherwise, we
stop the procedure, and return p. Clearly this happens in one of the following
cases: (i) {l̃, r̃} ⊆ type(p); (ii) in ∈ type(p); or (iii) out ∈ type(p).

Answering one atomic question within the procedure takes O(log n) time,
and the whole find-change query takes O(log2 n) time.
A similar trick of simulating a point location is used in [6], and in [5].
�

Let m denote the number of pairs formed by a segment aa′ ∈ S and a pure
edge e of HVD(S) such that aa′ is of type middle for e. The main result of this
subsection is:

Theorem 1. Let S be a set of n segments in R2. Then: (a) FCVD∗(S) can be
computed in O(THVD(S)+TFCVD(S)+|HVD(S)| log2 n+|FCVD(S)| log n+m log2 n);
(b) |FCVD∗(S)| = O(|HVD(S)| + |FCVD(S)| + m).

Proof (sketch). In Sect. 4.1 we have argued that the cost of the algorithm
Computing FCVD∗(S), except for Steps 7–9, is O(THVD(S) + TFCVD(S) +
|HVD(S)| log n + |FCVD(S)| log n + |FCVD∗(S)| log n).

Regarding Steps 7–9, we first show the following: Given a pure edge e of
HVD(S), the number of iterations of Searching in e is O(me), where me is
the number of segments of type middle for e. Roughly speaking, this is done by
showing that each iteration can be charged to a segment of type middle, and that
each of these segments is charged at most two iterations. Indeed, new portions
of uv are added to Q only when the algorithm visits line 1 of ChopRight (or
ChopLeft), and in this case the bisector of a segment of type middle intersects
a segment of Q. Since this segment is cropped precisely at the intersection point,
the same bisector does not intersect the interior of other segments of Q in future
iterations. This additionally shows that |L| = O(|HVD(S)| + |FCVD(S)| + m),
where L is the list of the algorithm Computing FCVD∗(S). Hence, the number
of components of FCVD∗(S) is O(|HVD(S)| + |FCVD(S)| + m), which, together
with Lemma 3c, yields (b).

Except for line 12, the running time of an iteration of Searching in e is
dominated by the find-change query. In total, this amounts to O((|HVD(S)| +
m) log2 n) time. Regarding line 12, in order to obtain the points q and q′ we
might have to cross several edges of |FCVD(S)|. It is possible to show that, if the
number of components of FCVD∗(S) that do not contain a vertex of HVD(S) is
k, then the total number of edges of FCVD(S) intersected by these components is
O(k+|FCVD(S)|). Thus, in total, line 12 takes O((|FCVD∗(S)|+|FCVD(S)|) log n)
time.
�

By Lemma 2, distinct components of FCVD∗(S) correspond to combinatori-
ally different stabbing circles. There might be combinatorially different stabbing
circles inside a single component f of FCVD∗(S), but this can be easily detected

Stabbing Circles for Sets of Segments in the Plane 303

while tracing ∂f . Furthermore, it is easy to see that stabbing circles of minimum
and maximum radii are centered on ∂FCVD∗(S). We obtain:

Corollary 1. All the combinatorially different stabbing circles for a set S of n
segments and the ones with minimum and maximum radius can be computed in
O(THVD(S) + TFCVD(S) + |HVD(S)| log2 n + |FCVD(S)| log n + m log2 n) time.

5 Parallel Segments

Let S be a set of parallel segments. The goal of this section is to prove the
following.

Theorem 2. The stabbing circle problem for a set S of n parallel segments can
be solved in O(n log2 n) time and O(n) space.

To prove the above theorem we exploit Corollary 1. First note that HVD(S)
is an instance of abstract Voronoi diagrams [16] and thus |HVD(S)| = O(n)
and THVD(S) = O(n log n). What remains is to show that (1) m = O(n), (2)
|FCVD(S)| = O(n), and (3) TFCVD(S) = O(n log n). Item (1) is immediately
implied by Lemma 6. Items (2) and (3) are proved in Theorem 3, which is
interesting on its own right.

Lemma 6. A segment gg′ ∈ S is of type middle for at most one pure edge of
HVD(S).

Proof (sketch). The proof of this lemma is very technical. Suppose that all seg-
ments in S are vertical. Assume for contradiction that segment gg′ ∈ S is of
type middle for e1 and e2, where e1 and e2 are pure edges of HVD(S) that
separate hreg(a) from hreg(b), and hreg(c) from hreg(d), respectively. We first
show that min{x(a), x(b)} < x(g) < max{x(a), x(b)} and min{x(c), x(d)} <
x(g) < max{x(c), x(d)}. Then, without loss of generality, we can assume that
x(a) ≤ x(c) < x(b). The disk having a, b and g on the boundary corresponds to
a disk Dh(w), for some point w on the edge e1, and does not contain both c and
c′. We suppose that c is outside Dh(w). Then we observe that c might lie in two
distinct regions of the plane. If c is in one of the regions, we show that every
disk containing c and g contains also aa′ or bb′. This yields a contradiction with
the fact that the Hausdorff disk centered at one of the endpoints of e2 contains
c and g but contains neither aa′ nor bb′ The other case is similar.
�
Theorem 3. If S is a set of parallel segments, then: (a) The combinatorial
complexity of FCVD(S) is O(n); (b) FCVD(S) can be constructed in O(n log n)
time.

Proof (sketch).(a) All unbounded faces of FCVD(S) coincide at infinity with the
faces of the farthest-segment Voronoi diagram of S, whose total number is
O(n) [3]. Further, FCVD(S) has at most one bounded face per segment of S.

(b) We use the divide-and-conquer technique. Assuming the segments in S to
be vertical, we divide S into two halves by a vertical line. We observe that
the merge chain is y-monotone. Thus the merging can be done in a standard
way in linear time [3].
�

304 M. Claverol et al.

Future Work. The connection between the stabbing circle problem and the clus-
ter Voronoi diagrams allows to solve the stabbing circle problem in an efficient
way under certain conditions on S. The further open question is to investigate
for which other segment sets the conditions are satisfied.

Acknowledgments. M. C. and C. S. were supported by projects MTM2012-30951
and Gen.Cat. DGR2014SGR46. E. K. and E. P. were supported by SNF project
20GG21-134355, under the ESF EUROCORES, EuroGIGA/VORONOI program.
M. S. was supported by project LO1506 of the Czech Ministry of Education, Youth and
Sports, and by project NEXLIZ CZ.1.07/2.3.00/30.0038, co-financed by the European
Social Fund and the state budget of the Czech Republic.

References

1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L.,Palop, B.,
Sacristán, V.: The farthest color Voronoi diagram and related problems. In: 17th
European Workshop on Computational Geometry, pp. 113–116 (2001)

2. Arkin, E.M., Dieckmann, C., Knauer, C., Mitchell, J.S., Polishchuk, V., Schlipf,
L., Yang, S.: Convex transversals. Comput. Geom. 47(2), 224–239 (2014)

3. Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangu-
lations. World Scientific, Singapore (2013)

4. Avis, D., Robert, J., Wenger, R.: Lower bounds for line stabbing. Inform. Process.
Lett. 33(2), 59–62 (1989)

5. Cheilaris, P., Khramtcova, E., Langerman, S., Papadopoulou, E.: A randomized
incremental approach for the Hausdorff Voronoi diagram of non-crossing clusters.
In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 96–107. Springer,
Heidelberg (2014)

6. Cheong, O., Everett, H., Glisse, M., Gudmundsson, J., Hornus, S., Lazard, S., Lee,
M., Na, H.: Farthest-polygon Voronoi diagrams. Comput. Geom. 44(4), 234–247
(2011)

7. Claverol, M.: Problemas geométricos en morfoloǵıa computacional. Ph.D. thesis,
Universitat Politècnica de Catalunya (2004)

8. Claverol, M., Garijo, D., Grima, C.I., Márquez, A., Seara, C.: Stabbers of line
segments in the plane. Comput. Geom. 44(5), 303–318 (2011)

9. Claverol, M., Garijo, D., Korman, M., Seara, C., Silveira, R.I.: Stabbing segments
with rectilinear objects. In: Kosowski, A., Walukiewicz, I. (eds.) FCT 2015. LNCS,
vol. 9210, pp. 53–64. Springer, Heidelberg (2015)

10. Dı́az-Báñez, J.M., Korman, M., Pérez-Lantero, P., Pilz, A., Seara, C., Silveira, R.I.:
New results on stabbing segments with a polygon. Comput. Geom. 48(1), 14–29
(2015)

11. Edelsbrunner, H., Maurer, H., Preparata, F., Rosenberg, A., Welzl, E., Wood, D.:
Stabbing line segments. BIT 22(3), 274–281 (1982)

12. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear
functions: algorithms and applications. Discrete Comput. Geom. 4, 311–336 (1989)

13. Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone
subdivision. SIAM J. Comput. 15(2), 317–340 (1986)

14. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces
and its applications. Discrete Comput. Geom. 9(1), 267–291 (1993)

Stabbing Circles for Sets of Segments in the Plane 305

15. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1),
28–35 (1983)

16. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer,
Heidelberg (1989)

17. Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects:
a divide and conquer approach. Int. J. Comput. Geom. Appl. 14(6), 421–452 (2004)

18. Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane.
Algorithmica 40(2), 63–82 (2004)

19. Rappaport, D.: Minimum polygon transversals of line segments. Int. J. Comput.
Geom. Appl. 5(3), 243–256 (1995)

Faster Algorithms to Enumerate
Hypergraph Transversals

Manfred Cochefert1, Jean-François Couturier2, Serge Gaspers3,4(B),
and Dieter Kratsch1

1 LITA, Université de Lorraine, Metz, France
manfred.cochefert@gmail.com, dieter.kratsch@univ-lorraine.fr

2 CReSTIC, Université de Reims, Reims, France
jean-francois.couturier@univ-reims.fr

3 University of New South Wales, Sydney, Australia
sergeg@cse.unsw.edu.au

4 Data61 (formerly: NICTA), CSIRO, Sydney, Australia

Abstract. A transversal of a hypergraph is a set of vertices inter-
secting each hyperedge. We design and analyze new exponential-
time polynomial-space algorithms to enumerate all inclusion-minimal
transversals of a hypergraph. For each fixed k ≥ 3, our algorithms for
hypergraphs of rank k, where the rank is the maximum size of a hyper-
edge, outperform the previous best. This also implies improved upper
bounds on the maximum number of minimal transversals in n-vertex
hypergraphs of rank k ≥ 3. Our main algorithm is a branching algo-
rithm whose running time is analyzed with Measure and Conquer. It
enumerates all minimal transversals of hypergraphs of rank 3 in time
O(1.6755n). Our enumeration algorithms improve upon the best known
algorithms for counting minimum transversals in hypergraphs of rank k
for k ≥ 3 and for computing a minimum transversal in hypergraphs of
rank k for k ≥ 6.

1 Introduction

A hypergraph H is a couple (V,E), where V is a set of vertices and E is a set of
subsets of V called hyperedges. A transversal of H is a subset of vertices S ⊆ V
such that each hyperedge of H contains at least one vertex from S. A transversal
of H is minimal if it does not contain a transversal of H as a proper subset.
The rank of a hypergraph H is the maximum size of a hyperedge. Finding,
counting and enumerating (minimal) transversals fulfilling certain constraints
are fundamental problems in Theoretical Computer Science with many impor-
tant applications, for example in artificial intelligence, biology, logics, relational
and distributed databases, Boolean switching theory and model-based diagnosis
[4, Section 3]. The notions hitting set and transversal are synonymous, both of
them name a subset of elements (vertices) having non empty intersection with
each subset (hyperedge) of a given set system (hypergraph). We shall use both

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 306–318, 2016.
DOI: 10.1007/978-3-662-49529-2 23

Faster Algorithms to Enumerate Hypergraph Transversals 307

notions interchangeably usually speaking of transversals in hypergraphs when-
ever adressing enumeration, while speaking of hitting sets when adressing opti-
mization and counting. The Minimum Hitting Set problem is a well-studied
problem that, like its dual Minimum Set Cover, belongs to the list of 21
problems shown to be NP-complete by Karp in 1972 [21]. It can be seen as
an extension of the fundamental graph problems Minimum Dominating Set,
Minimum Vertex Cover and Maximum Independent Set; all of them also
belonging to Karp’s list [21]. These fundamental NP-complete problems have
been studied extensively from many algorithmic viewpoints; among them exact,
approximation and parameterized algorithms.
Prior to Our Work. Wahlström studied Minimum Hitting Set on hyper-
graphs of rank 3 and achieved an O(1.6359n) time polynomial-space algorithm as
well as an O(1.6278n) time exponential-space algorithm [27,28]. Here, n denotes
the number of vertices. In an attempt to show that iterative compression can
be useful in exact exponential-time algorithms, Fomin et al. [10] studied Min-
imum Hitting Set on hypergraphs of rank at most k for any fixed k ≥ 2 as
well as the problem of counting minimum hitting sets and achieved best known
running times for most of these problems without improving upon Wahlström’s
algorithms (see also [10, Table 1].) The Minimum Hitting Set problem on
hypergraphs of fixed rank k has also been studied from a parameterized point
of view by various authors [7–10,26,28] (see [10, Table 2].) A result of Cygan
et al. [3] states that for every c < 1, Minimum Hitting Set cannot be solved
by an O(2cn) algorithm unless the Strong Exponential Time Hypothesis fails,
while there is a O(2n) algorithm based on verifying all subsets of elements. The
only nontrivial exponential-time algorithm to enumerate all minimal transver-
sals prior to our work was given by Gaspers [14]. It is a branching algorithm for
hypergraphs of rank k whose branching rule selects a hyperedge of size k in the
worst case and recurses on instances with n−1, n−2, . . . , and n−k vertices. We
say that its branching vector is (1, 2, . . . , k) and the corresponding recurrence for
k = 3 gives a running time of O(1.8393n).
Our Techniques and Results. We use various properties of minimal transver-
sals to design polynomial-space branching algorithms and analyze them using an
elaborate Measure & Conquer analysis. For an in-depth treatment of branching
algorithms we refer to [12]. For details on our approach, see Sect. 3.1 and [15,16].
Our main result is the algorithm for hypergraphs of rank 3 in Sect. 3 which runs
in time O(1.6755n). In Sect. 4 we show that the iterative compression approach
from [10] can be extended to enumeration problems and obtain an algorithm
of running time O(1.8863n) for hypergraphs of rank 4. In Sect. 5 we construct
branching algorithms to enumerate the minimal transversals of hypergraphs of
rank k, for all fixed k ≥ 5. Our algorithmic results combined with implied upper
bounds and new combinatorial lower bounds for the maximum number of min-
imal transversals in n-vertex hypergraphs of rank k are summarized in Table 1.
As a byproduct, our enumeration algorithms can be used to improve upon the
best known algorithms for counting minimum hitting sets in hypergraphs of rank
k ≥ 3 and for solving Minimum Hitting Set in hypergraphs of rank k ≥ 6.

308 M. Cochefert et al.

Table 1. Lower and upper bounds for the maximum number of minimal transversals
in an n-vertex hypergraph of rank k.

Rank Lower bound Upper bound Rank Lower bound Upper bound

2 1.4422n 1.4423n [24,25] 7 1.7734n O(1.9893n)

3 1.5848n O(1.6755n) 8 1.7943n O(1.9947n)

4 1.6618n O(1.8863n) 9 1.8112n O(1.9974n)

5 1.7114n O(1.9538n) 10 1.8253n O(1.9987n)

6 1.7467n O(1.9779n) 20 1.8962n O(1.9999988n)

Other Related Work. Enumerating all minimal transversals of a hypergraph
is probably the most studied problem in output-sensitive enumeration. It is still
open whether it has an output-polynomial time algorithm, i.e. an algorithm
whose running time is polynomial in the input size and the output size, despite
efforts of more than thirty years including many of the leading researchers of the
field. These efforts have produced many publications on the enumeration of the
minimal transversals on special hypergraphs [4–6,13,22,23] and has also turned
output-sensitive enumeration into an active field of research. Recent progress by
Kanté et al. [18] showing that an output-polynomial time algorithm to enumerate
all minimal dominating sets of a graph would imply an output-polynomial time
algorithm to enumerate the minimal transversals of a hypergraph has triggered
a lot of research on the enumeration of minimal dominating sets, both in output-
sensitive enumeration and exact exponential enumeration [2,17,19,20].

Subsequent to our work, Fomin et al. [11] improved the combinatorial upper
bounds presented in this paper to (2 − 1/k)nnO(1) and gave corresponding
exponential-space enumeration algorithms. Our algorithms remain the fastest
known polynomial-space enumeration algorithms.

2 Preliminaries

We refer to the set of vertices and hyperedges of a hypergraph H = (V,E) by
V (H) and E(H), respectively. Throughout the paper we denote the number of
vertices of a hypergraph by n. The degree of a vertex v in H, denoted dH(v),
is the number of hyperedges in E containing v. The neighborhood of v in H,
denoted NH(v), is the set of vertices that occur with v in some hyperedge of H.
We denote by di,H(v) the number of hyperedges of size i in H containing v. We
denote d≤i,H(v) :=

∑i
j=0 dj,H(v). We omit the subscript H when it is clear from

the context. If the hypergraph is viewed as a set system E over a ground set V ,
transversals are also called hitting sets. We say that a vertex v hits a hyperedge
e if v ∈ e. For a full version of this paper, see [1].

Faster Algorithms to Enumerate Hypergraph Transversals 309

3 Hypergraphs of Rank 3

3.1 Measure

We will now introduce the measure we use to track the progress of our algorithm.
A measure μ for a problem P is a function from the set of all instances for P to the
set of non-negative reals. Our measure will take into account the degrees of the
vertices and the number of hyperedges of size 2. Measures depending on vertex
degrees have become relatively standard in the literature. As for hyperedges of
size 2, our measure, similar to Wahlström’s [27], indicates an advantage when
we can branch on hyperedges of size 2 once or several times.

Let H = (V,E) be a hypergraph of rank at most 3. Denote by nk the number
of vertices of degree k ∈ N and by mk the number of hyperedges of size k ∈
{0, . . . , 3}. Also, denote by m≤k :=

∑k
i=0 mi. We define the measure of H by

μ(H) = Ψ(m≤2) +
∞∑

i=0

ωini ,

where Ψ : N → R≥0 is a non-increasing non-negative function independent of n,
and ωi are non-negative reals. Clearly, μ(H) ≥ 0.

We will now make some assumptions simplifying our analysis and introduce
notations easing the description of variations in measure. We constrain

ωi := ω5 , Ψ(i) := 0 for each i ≥ 6, (1)
Δωi := ωi − ωi−1 , ΔΨ(i) := Ψ(i) − Ψ(i − 1) for each i ≥ 1, (2)

0 ≤ Δωi+1 ≤ Δωi and 0 ≥ ΔΨ(i + 1) ≥ ΔΨ(i) for each i ≥ 1 . (3)

Note that, by (3), we have that ωi − ωi−k ≥ k · Δωi for 0 ≤ k ≤ i. In addition,
our branching rules will add constraints on the measure. Note that a branching
rule with one branch is a reduction rule and one with no branch is a halting rule.
Denote by T (μ) := 2μ an upper bound on the number of leaves of the search
trees modeling the recursive calls of the algorithm for all H with μ(H) ≤ μ.

Suppose a branching rule makes k recursive calls on instances B[1], . . . , B[k],
each B[i] decreasing the measure by ηi. Then, we obtain the following constraint
on the measure:

∑k
i=1 T (μ−ηi) ≤ T (μ). Dividing by 2μ, the constraint becomes

k∑

i=1

2−ηi ≤ 1 . (4)

Given these constraints for all branching rules, we will determine values for
Ψ(0), . . . , Ψ(5), ω0, . . . , ω5 so as to minimize the maximum value of μ(H)/|V (H)|
taken over all rank-3 hypergraphs H when |V (H)| is large. Since Ψ(m≤2) is a con-
stant, this part of the measure contributes only a constant factor to the running
time. Given our assumptions on the weights, optimizing the measure amounts
to solving a convex program [15,16] minimizing ω5 subject to all constraints. If
we make sure that the maximum recursion depth of the algorithm is polynomial,
we obtain that the running time is within a polynomial factor of 2ω5 . Formally,
we will use the following lemma to upper bound the running time.

310 M. Cochefert et al.

Lemma 1 ([16], Lemma 2.5 in [15]). Let A be an algorithm for a problem P ,
c ≥ 0 be a constant, and μ, η be measures for the instances of P , such that for
any input instance I, Algorithm A transforms I into instances I1, . . . , Ik, solves
these recursively, and combines their solutions to solve I, using time O(η(I)c)
for the transformation and combination steps (but not the recursive solves), and

(∀i) η(Ii) ≤ η(I) − 1 , and (5)
k∑

i=1

2μ(Ii) ≤ 2μ(I) . (6)

Then A solves any instance I in time O(η(I)c+1)2μ(I).

3.2 Algorithm

An instance of a recursive call of the algorithm is a hypergraph H = (V,E)
with rank at most 3 and a set S, which is a partial hitting set for the original
hypergraph. The hypergraph H contains all hyperedges that still need to be hit,
and the vertices that are eligible to be added to S. Thus, V ∩ S = ∅. Initially,
S = ∅. Each branching rule has a condition which is a prerequisite for applying
the rule. When the prerequisites of more than one rule hold, the first applicable
rule is used. Our branching rules create subinstances where some vertices are
selected and others are discarded.

– If we select a vertex v, we remove all hyperedges containing v from the subin-
stance of the branch, we add v to S, and remove v from V .

– If we discard a vertex v, we remove v from all hyperedges and from V .

We now come to the description of the branching rules, their correctness, and
their analysis, i.e., the constraints they impose on the measure. Rules 0.x are
halting rules, and Rules 1.x are reduction rules. Each rule first states the pre-
requisite, then describes its actions, then the soundness is proved if necessary,
and the constraints on the measure are given for the analysis.
Rule 0.0 ∅ ∈ E. Do nothing. The algorithm backtracks and enumerates no
transversal in this recursive call since there is a hyperedge that cannot be hit.
Rule 0.1 E = ∅. If S is a minimal transversal for the original hypergraph,
output S, otherwise do nothing. We are in a recursive call where no hyperedge
remains to be hit. Thus, S is a transversal of the original input hypergraph.
However, S might not be minimal, and the algorithm checks in polynomial time
if S is a minimal transversal of the initial hypergraph and outputs it if so.
Rule 1.0 There is a vertex v ∈ V with degree 0. Discard v. Indeed, since v
hits no hyperedge of H, a transversal for H containing v is not minimal. The
constraint on the measure is 2−ω0 ≤ 1, which is trivially satisfied since ω0 ≥ 0.
Rule 1.1 There is a hyperedge e1 ∈ E that is a subset of another hyperedge
e2 ∈ E of size 3. Remove e2 from E. The rule is sound since each transversal of

Faster Algorithms to Enumerate Hypergraph Transversals 311

(V,E \{e2}) is also a transversal of H. Since e2 has size 3, this rule has no effect
on the measure; the constraint 20 ≤ 1 is always satisfied.
Rule 1.2 There is a hyperedge e of size 1. Select v, where {v} = e. The rule
is sound since v is the only vertex that hits e. Selecting v removes v and all
hyperedges containing v from the instance. By (3), the decrease in measure is
at least η1 = ωd(v) + Ψ(d≤2(v)) − Ψ(0). To fulfill (4), we will need to constrain
that η1 ≥ 0. Since d≤2(v) ≤ d(v) and by (3), if suffices to constrain

Ψ(i) − Ψ(0) ≥ −ωi for 1 ≤ i ≤ 6 . (7)

Rule 2 There is a vertex v ∈ V with degree one. Denote by e the unique
hyperedge containing v and branch according to the following three subrules.

v u

Rule 2.1

v u w

Rule 2.2

v u w

Rule 2.3

Rule 2.1 |e| = 2. Denote e = {v, u}. Branch into two subproblems: B[1] where v
is selected, and B[2] where v is discarded. In B[1], the vertex u is discarded due
to minimality of the transversal, and the number of hyperedges of size at most
2 decreases by 1 since e is removed. By (3) the decrease in measure in B[1] is at
least η1 = ω1+ωd(u)+ΔΨ(m≤2). In B[2], the vertex u is selected by applying Rule
1.2 after having discarded v. We have that d≤2(u) ≤ min(d(u),m≤2) hyperedges
of size at most 2 disappear. By (3) the decrease in measure in B[2] is at least
η2 = ω1 + ωd(u) + Ψ(m≤2) − Ψ(max(m≤2 − d(u), 0)). Note that we do not take
into account additional sets of size at most 2 that may be created by discarding
u and degree-decreases of the other vertices in the neighborhood of u as a result
of selecting u. However, these do not increase the measure due to constraints
(3). Thus, we constrain that

2−ω1−ωd(u)−ΔΨ(m≤2) + 2−ω1−ωd(u)−Ψ(m≤2)+Ψ(max(m≤2−d(u),0)) ≤ 1 , (8)

for 1 ≤ d(u) ≤ 6 and 1 ≤ m≤2 ≤ 6. Note that the value of d(u) ranges up to 6
instead of 5 although ω5 = ω6, so that we have a constraint modeling that the
value of Ψ increases from Ψ(6) = 0 to Ψ(0) in the second branch.

In the remaining subrules of Rule 2, the hyperedge e has size 3.
Rule 2.2 The other two vertices in e also have degree 1. Branch into 3 subprob-
lems adding exactly one vertex from e to S and discarding the other 2. Clearly,
any minimal transversal contains exactly one vertex from e. The decrease in
measure is 3ω1 in each branch, giving the constraint

3 · 2−3ω1 ≤ 1 . (9)

312 M. Cochefert et al.

Rule 2.3 Otherwise, let e = {v, u, w} with d(u) ≥ 2. We create two subproblems:
in B[1] we select v and in B[2] we discard v. Additionally, in B[1] we discard u
and w due to minimality. The measure decreases by at least η1 = 2ω1 + ω2 and
η2 = ω1 − maxi≥1{ΔΨ(i)} = ω1; the last equality holds since Ψ(i) = 0, i ≥ 6,
and by (3). We obtain the constraint

2−2ω1−ω2 + 2−ω1 ≤ 1 . (10)

Rule 3 At least one hyperedge has size 2. Let v be a vertex that has maximum
degree among all vertices contained in a maximum number of hyperedges of size
2. Let e = {v, u1} be a hyperedge containing v. Note that, due to Rule 2, every
vertex has degree at least 2. We branch according to the following subrules.

v u1

Rule 3.1

v

u2

u1

Rule 3.2

v

u3

u2

u1

Rule 3.3

Rule 3.1 d2(v) = 1. We branch into two subproblems: in B[1] we select v
and in B[2] we discard v. Additionally, in B[2], we select u1 by Rule 1.2. Since
u1 is contained in the hyperedge e and since d2(u1) ≤ d2(v), we have that
d2(u1) = 1 and therefore d(v) ≥ d(u1). In B[1], we observe that the degrees of
v’s neighbors decrease. Also, e is a hyperedge of size 2 and it is removed; this
affects the value of Ψ . The measure decrease in the first branch is therefore at
least ωd(v) + Δωd(u1) + ΔΨ(m≤2) ≥ ωd(u1) + Δωd(u1) + ΔΨ(m≤2). In B[2], since
we select u1, we have that d2(u1) = 1 hyperedge of size 2 disappears, and since
we discard v, we have that d(v)−1 sets of size 3 will become sets of size 2. Also,
none of these size-2 sets already exist in E, otherwise Rule 1.1 would apply.
We have a measure decrease of ωd(v) + ωd(u1) + Ψ(m≤2) − Ψ(m≤2 + d(v) − 2) ≥
2ωd(u1)+Ψ(m≤2)−Ψ(m≤2+d(u1)−2). We obtain the following set of constraints:

2−ωd(u1)−Δωd(u1)−ΔΨ(m≤2) + 2−2ωd(u1)−Ψ(m≤2)+Ψ(m≤2+d(u1)−2) ≤ 1 , (11)

for each d(u1) and m≤2 with 2 ≤ d(u1) ≤ 6 and 1 ≤ m≤2 ≤ 6. Here, d(u1)
ranges up to 6 since Δω6 = 0, whereas Δω5 may be larger than 0.
Rule 3.2 d2(v) = 2. We branch into two subproblems: in B[1] we select v and in
B[2] we discard v. Denoting {v, u2} the second hyperedge of size 2 containing v,
we additionally select u1 and u2 in B[2]. In B[1], the measure decrease is at least
η1 = ωd(v)+Δωd(u1)+Δωd(u2)+Ψ(m≤2)−Ψ(m≤2−2). In B[2], selecting u1 and
u2 removes d2(u1)+d2(u2) ≤ min(4,m≤2) hyperedges of size 2, and discarding v
decreases the size of d(v)−2 hyperedges from 3 to 2. Thus, the measure decrease
is at least η2 = ωd(v) +ωd(u1) +ωd(u2) +Ψ(m≤2)−Ψ(max(m≤2 −4, 0)+d(v)−2).
We obtain the following set of constraints:

Faster Algorithms to Enumerate Hypergraph Transversals 313

2−ωd(v)−Δωd(u1)−Δωd(u2)−Ψ(m≤2)+Ψ(m≤2−2)

+ 2−ωd(v)−ωd(u1)−ωd(u2)−Ψ(m≤2)+Ψ(max(m≤2−4,0)+d(v)−2) ≤ 1 , (12)

for 2 ≤ d(v), d(u1), d(u2) ≤ 6 and 2 ≤ m≤2 ≤ 6.
Rule 3.3 d2(v) ≥ 3. We branch into two subproblems: in B[1] we select v
and in B[2] we discard v. In B[2] we additionally select all vertices occurring
in hyperedges of size 2 with v. Denote by {v, u2} and {v, u3} a second and
third hyperedge of size 2 containing v. In B[1], the number of size-2 hyperedges
decreases by d2(v). The measure decrease is at least ωd2(v)+Δωd(u1)+Δωd(u2)+
Δωd(u3) + Ψ(m≤2) − Ψ(m≤2 − d2(v)). In B[2], the number of hyperedges of size
at most 2 decreases at most by d2(u1) + d2(u2) + d2(u3) ≤ min(d(u1) + d(u2) +
d(u3),m≤2). We obtain a measure decrease of at least ωd2(v) + ωd(u1) + ωd(u2) +
ωd(u3) + (d2(v) − 3) · ω2 + Ψ(m≤2) − Ψ(max(m≤2 − d(u1) − d(u2) − d(u3), 0)).
The family of constraints for this branching rule is therefore

2−ωd2(v)−
∑3

i=1 Δωd(ui)−Ψ(m≤2)+Ψ(m≤2−d2(v))

+ 2−ωd2(v)−
∑3

i=1 ωd(ui)−(d2(v)−3)·ω2−Ψ(m≤2)+Ψ(max(m≤2−∑3
i=1 d(ui),0)) ≤ 1 , (13)

where 3 ≤ d2(v) ≤ m≤2 ≤ 6 and 2 ≤ d(u1), d(u2), d(u3) ≤ 6.
Rule 4 Otherwise, all hyperedges have size 3. Choose v ∈ V
with maximum degree, and branch according to the following subrules.

v

Rule 4.1

v u

Rule 4.2

v
u1

w1

u2

w2

Rule 4.3

Rule 4.1 d(v) ≥ 3. We branch into two subproblems: in B[1] we select v and
in B[2] we discard v. In B[1], the degree of each of v’s neighbors decreases by
the number of hyperedges it shares with v. We obtain a measure decrease of
at least ωd(v) +

∑
u∈N(v)(ωd(u) − ωd(u)−|{e∈E:{u,v}⊆e|), which, by (3), is at least

ωd(v) + 2 · d(v) · Δωd(v). In B[2], the number of hyperedges of size 2 increases
from 0 to d(v), for a measure decrease of at least ωd(v) + Ψ(0) − Ψ(d(v)). For
d(v) ∈ {3, . . . , 6}, this branching rules gives the constraint

2−ωd(v)−2·d(v)·Δωd(v) + 2−ωd(v)−Ψ(0)+Ψ(d(v)) ≤ 1 . (14)

Rule 4.2 d(v) = 2 and there is a vertex u ∈ V \{v} which shares two hyperedges
with v. We branch into two subproblems: in B[1] we select v and in B[2] we
discard v. Additionally, we discard u in B[1] due to minimality. Since each vertex
has degree 2, we obtain the following constraint.

314 M. Cochefert et al.

2−2ω2−2Δω2 + 2−ω2−Ψ(0)+Ψ(2) ≤ 1 . (15)

Rule 4.3 Otherwise, d(v) = 2 and for every two distinct e1, e2 ∈ E with v ∈ e1
and v ∈ e2 we have that e1 ∩ e2 = {v}. Denoting e1 = {v, u1, w1} and e2 =
{v, u2, w2} the two hyperedges containing v, we branch into three subproblems:
in B[1] we select v and u1; in B[2] we select v and discard u1; and in B[3] we
discard v. Additionally, we discard u2 and w2 in B[1] due to minimality. Again,
all vertices have degree 2 in this case. In B[1], the degree of w1 decreases to
1. Among the two hyperedges containing u2 and w2 besides e2, at most one
is hit by u1, since d(u1) = 2, and none of them is hit by v; thus, the branch
creates at least one hyperedge of size at most 2. The measure decrease is at least
4ω2 + Δω2 − ΔΨ(1). In B[2], the degrees of w1, u2, and w2 decrease by 1 and
the size of a hyperedge containing u1 decreases. The measure decrease is at least
2ω2 + 3Δω2 − ΔΨ(1). In B[3], two size-2 hyperedges are created for a measure
decrease of ω2 − ΔΨ(2). This gives us the following constraint:

2−4ω2−Δω2+ΔΨ(1) + 2−2ω2−3Δω2+ΔΨ(1) + 2−ω2+ΔΨ(2) ≤ 1 . (16)

This finishes the description of the algorithm. We can now prove an upper bound
on its running time, along the lines described in Sect. 3.1.

Theorem 1. The described algorithm enumerates all minimal transversals of
an n-vertex hypergraph of rank 3 in time O(1.6755n).

Proof. Consider any input instance H = (V,E) with n vertices and measure
μ = μ(H). Using the following weights, the measure μ satisfies all constraints.

i ωi Ψ(i)
0 0 0.566096928
1 0.580392137 0.436314617
2 0.699175718 0.306532603
3 0.730706814 0.211986294

i ωi Ψ(i)
4 0.742114220 0.119795899
5 0.744541491 0.035202514
6 0.744541491 0

Also, μ ≤ ω5 · n + Ψ(0) by (3). Therefore, the number of times a halting rule is
executed (i.e., the number of leaves of the search tree) is at most 2ω5·n+O(1). Since
each recursive call of the algorithm decreases the measure η(H) := |V | + |E| by
at least 1, the height of the search tree is polynomial. We conclude, by Lemma
1, that the algorithm has running time O(1.6755n) since 2ω5 = 1.6754...
�

4 Hypergraphs of Rank 4

For hypergraphs of rank 4, we adapt an iterative compression algorithm of [10]
for counting the number of minimum transversals to the enumeration setting.

Theorem 2. Suppose there is an algorithm with running time O∗((ak−1)n),
1 < ak−1 ≤ 2, enumerating all minimal transversals in rank-(k−1) hypergraphs.
Then all minimal transversals in a rank-k hypergraph can be enumerated in time

min 0.5≤α≤1 max
{

O∗
((

n

αn

))

, O∗ (
2αn(ak−1)n−αn

)
}

.

Faster Algorithms to Enumerate Hypergraph Transversals 315

Combined with Theorem 1, the running time is minimized for α ≈ 0.66938.

Theorem 3. The described algorithm enumerates all minimal transversals of
an n-vertex hypergraph of rank 4 in time O(1.8863n).

5 Hypergraphs of Rank at Least 5

For a hypergraph H = (V,E) of rank k ≥ 5, we use the following algorithm
to enumerate all minimal transversals. As in Sect. 3.2, the instance of a recur-
sive call of the algorithm is a hypergraph H = (V,E) and set S which is a
partial transversal of the original hypergraph. The hypergraph H contains all
hyperedges that still need to be hit and the vertices that can be added to S.
The algorithm enumerates all minimal transversals Y of the original hypergraph
such that Y \ S is a minimal transversal of H.

H1 If E = ∅, then check whether S is a minimal transversal of the original
hypergraph and output S if so.

H2 If ∅ ∈ E, then H contains an empty hyperedge, and the algorithm backtracks.
R1 If there is a vertex v ∈ V with dH(v) = 0, then discard v and recurse.
R2 If there are two hyperedges e, e′ ∈ E with e ⊆ e′, then remove e′ and recurse.
R3 If there is a hyperedge {v} ∈ E, then select v and recurse.
B1 If there is a vertex v ∈ V with dH(v) = 1, then let e ∈ E denote the

hyperedge with v ∈ e. Make one recursive call where v is discarded, and one
recursive call where v is selected and all vertices from e \ {v} are discarded.

B2 Otherwise, select two hyperedges e, e′ such that e is a smallest hyperedge and
|e∩e′| ≥ 1. Order their vertices such that their common vertices appear first:
e = {v1, . . . , v|e|} and e′ = {v1, . . . , v�, u�+1, . . . , u|e′|}. Make |e| recursive
calls; in the ith recursive call, v1, . . . , vi−1 are discarded and vi is selected.

Theorem 4. For any k ≥ 2, the minimal transversals of a rank-k hypergraph
can be enumerated in time O((βk)n), where βk is the positive real root of

−1 + x−1 +
k∑

i=3

(i − 2) · x−i +
2k−1∑

i=k+1

(2k − i) · x−i = 0 .

0

k

2k − 1. . .k + 2k + 1

. . .� + 2

k + 2. . .� + 4� + 3

� + 1

k + 1. . .� + 3� + 2

�. . .21

Fig. 1. Decreasing the number of vertices in recursive calls of rule B2.

316 M. Cochefert et al.

Proof. The correctness of the halting and reduction rules are easy to see. For
the correctness of branching rule B1, it suffices to observe that a transversal
containing v and some other vertex from e is not minimal. The correctness of
B2 follows since the ith recursive call enumerates the minimal transversals such
that the first vertex among v1, . . . , v|e| they contain is vi.

As for the running time, a crude analysis gives the same running time as
the analysis of [14], since we can associate the branching vector (1, |e|) with B1,
which is (1, 2) in the worst case, and the branching vector (1, 2, . . . , k) with B2.

Let us look at B2 more closely. In the worst case, |e| = k. Due to the reduction
rules, we have that |e ∩ e′| = � < |e|. We consider two cases. In the first case,
� = 1. Since v1 is discarded in branches 2, . . . , k, we have that the size of e′

is at most k − 1 in each of these recursive calls, and the algorithm will either
use branching rule B1 or branching rule B2 on a hyperedge of size at most
k − 1 in branches 2, . . . , k. In the worst case, it uses branching rule B2 on a
hyperedge of size k−1 in each of these branches, leading to the branching vector
(1, 3, 4, . . . , k + 1, 4, 5, . . . , k + 2, 5, 6, . . . , 2k − 1) whose recurrence solves to βk.
In the second case, � ≥ 2, and we will show that this case is no worse than the
first one. Since v1, . . . , v� are discarded in branches � + 1, . . . , k, the size of e′ is
at most k− � in each of these recursive calls, and in the worst case the algorithm
will branch on a hyperedge of size k − � in branches � + 1, . . . , k, leading to
the branching vector (1, 2, . . . , �, � + 2, � + 3, . . . , k + 1, � + 3, � + 4, . . . , k + 2, . . . ,
k+1, k+2, . . . , 2k−�). See Fig. 1. To see that this is no worse than the branching
vector of the first case, follow each branch i with 2 ≤ i ≤ � by a k-way branching
(1, 2, . . . , k), replacing the entry i in the branching vector with 1+i, 2+i, . . . , k+i.
Compared with the branching vector of the first case, the only difference in
branches i, 2 ≤ i ≤ �, is that these have the additional entries k + i. But note
that branch � + 1 has entries k + 2, . . . , k + � in the first case but not in the
second case. We conclude that the branching vector where entries i, 2 ≤ i ≤ �,
are replaced by 1 + i, 2 + i, . . . , k + i is a sub-vector of the one for � = 1.
�

Since this algorithm guarantees branching on hyperedges of size at most k−1
in certain cases, its running time outperforms the one in [14] for each k ≥ 3.

6 Lower Bounds

The graphs with a maximum number of maximal independent sets are the dis-
joint unions of triangles. They are hypergraphs of rank 2 with 3n/3 minimal
transversals. We generalize this lower bound to hypergraphs with larger rank.

Theorem 5. For any two integers k, n > 0, there is an n-vertex hypergraph of
rank k with

(
2·k−1

k

)
n/(2·k−1)�
minimal transversals.

Acknowledgments. We thank Fabrizio Grandoni for initial discussions on this
research. Dieter Kratsch acknowledges support from the French Research Agency,
project GraphEn (ANR-15-CE40-0009). Serge Gaspers is the recipient of an Australian

Faster Algorithms to Enumerate Hypergraph Transversals 317

Research Council (ARC) Future Fellowship (project FT140100048) and acknowledges
support under the ARC’s Discovery Projects funding scheme (project DP150101134).
NICTA is funded by the Australian Government through the Department of Commu-
nications and the ARC through the ICT Centre of Excellence Program.

References

1. Cochefert, M., Couturier, J.-F., Gaspers, S., Kratsch, D.: Faster algorithms to
enumerate hypergraph transversals. Technical report arxiv:1510.05093 (2015)

2. Couturier, J.-F., Heggernes, P., van ’t Hof, P., Kratsch, D.: Minimal dominating
sets in graph classes: combinatorial bounds and enumeration. Theor. Comput. Sci.
487(8), 2–94 (2013)

3. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi,
R., Saurabh, S., Wahlström, M.: On problems as hard as CNF–SAT. In: Proceed-
ings of CCC, pp. 74–84 (2012)

4. Eiter, T., Gottlob, G.: Identifying the minimal transversals of a hypergraph and
related problems. SIAM J. Comput. 24(6), 1278–1304 (1995)

5. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and gen-
erating hypergraph transversals. SIAM J. Comput. 32(2), 514–537 (2003)

6. Elbassioni, K.M., Rauf, I.: Polynomial-time dualization of r-exact hypergraphs with
applications in geometry. Discrete Math. 310(17–18), 2356–2363 (2010)

7. Fernau, H.: Parameterized algorithmics for d-hitting set. Int. J. Comput. Math.
87(14), 3157–3174 (2010)

8. Fernau, H.: Parameterized algorithms for d-hitting set: the weighted case. Theor.
Comput. Sci. 411(16–18), 1698–1713 (2010)

9. Fernau, H.: A top-down approach to search-trees: Improved algorithmics for 3-
hitting set. Algorithmica 57(1), 97–118 (2010)

10. Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative com-
pression and exact algorithms. Theor. Comput. Sci. 411(7–9), 1045–1053 (2010)

11. Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via
monotone local search. Technical report arxiv:1512.01621 (2015)

12. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Heidelberg
(2010)

13. Fredman, M.L., Khachiyan, L.: On the complexity of dualization of monotone
disjunctive normal forms. J. Algorithms 21(3), 618–628 (1996)

14. Gaspers, S.: Algorithmes exponentiels. Master’s thesis, University Metz, France
(2005)

15. Gaspers, S., Algorithms, E.T.: Exponential Time Algorithms: Structures, Mea-
sures, and Bounds. VDM Verlag Dr. Mueller e.K, Saarbrücken (2010)

16. Gaspers, S., Sorkin, G.B.: A universally fastest algorithm for Max 2-Sat, Max
2-CSP, and everything in between. J. Comput. Syst. Sci. 78(1), 305–335 (2012)

17. Golovach, P.A., Heggernes, P., Kratsch, D., Villanger, Y.: An incremental polyno-
mial time algorithm to enumerate all minimal edge dominating sets. Algorithmica
72(3), 836–859 (2015)

18. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: On the enumeration of minimal
dominating sets and related notions. SIAM J. Discrete Math. 28(4), 1916–1929
(2014)

19. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: A polynomial delay
algorithm for enumerating minimal dominating sets in chordal graphs. In: Pro-
ceedings of WG (2015)

http://arxiv.org/abs/1510.05093
http://arxiv.org/abs/1512.01621

318 M. Cochefert et al.

20. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L., Uno, T.: Polynomial delay algo-
rithm for listing minimal edge dominating sets in graphs. In: Dehne, F., Sack, J.-R.,
Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 446–457. Springer, Heidelberg
(2015)

21. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of computer computations,
pp. 85–103. Plenum Press, New York (1972)

22. Kavvadias, D.J., Stavropoulos, E.C.: An efficient algorithm for the transversal
hypergraph generation. J. Graph Algorithms Appl. 9(2), 239–264 (2005)

23. Khachiyan, L., Boros, E., Elbassioni, K.M., Gurvich, V.: On the dualization of
hypergraphs with bounded edge-intersections and other related classes of hyper-
graphs. Theor. Comput. Sci. 382(2), 139–150 (2007)

24. Miller, R.E., Muller, D.E.: A problem of maximum consistent subsets. IBM
Research Report RC-240, J. T. Watson Research Center (1960)

25. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
26. Niedermeier, R., Rossmanith, P.: An efficient fixed-parameter algorithm for

3-hitting set. J. Discrete Algorithms 1(1), 89–102 (2003)
27. Wahlström, M.: Exact algorithms for finding minimum transversals in rank-3

hypergraphs. J. Algorithms 51(2), 107–121 (2004)
28. Wahlström, M.: Algorithms, measures and upper bounds for satisfiability and

related problems. Ph.D. thesis, Linköping University, Sweden (2007)

Listing Acyclic Orientations of Graphs
with Single and Multiple Sources

Alessio Conte1, Roberto Grossi1, Andrea Marino1(B), and Romeo Rizzi2

1 Erable, Inria, Università di Pisa, Pisa, Italy
{conte,grossi,marino}@di.unipi.it
2 Università di Verona, Verona, Italy

rizzi@di.univr.it

Abstract. We study enumeration problems for the acyclic orientations
of an undirected graph with n nodes and m edges, where each edge must
be assigned a direction so that the resulting directed graph is acyclic.
When the acyclic orientations have single or multiple sources specified
as input along with the graph, our algorithm is the first one to provide
guaranteed bounds, giving new bounds with a delay of O(m ·n) time per
solution and O(n2) working space. When no sources are specified, our
algorithm improves over previous work by reducing the delay to O(m),
and is the first one with linear delay.

1 Introduction

Acyclic orientations of graphs are related to several basic problems in graph the-
ory. An orientation of an undirected graph G is the directed graph

−→
G whose arcs

are obtained assigning a direction to each edge in G. The orientation
−→
G is acyclic

when it does not contain cycles, and a node s is a source in
−→
G if it has indegree

zero. For instance, consider the graphs in Fig. 1. The directed graph in (b) is an
acyclic orientation for the undirected graph in (a). In particular, since the orien-
tation has only one source (v9), it is called a single source acyclic orientation.

Starting from the observation that each acyclic orientation corresponds to
a partial order for the underlying graph, Iriarte [7] investigates which orien-
tations maximize the number of linear extensions of the corresponding poset.
Alon and Tarsi [1] look for special orientations to give bounds on the size of the
maximum independent set or the chromatic number. Gallai, Roy, and Vitaver
independently describe a well-known result stating that every orientation of a
graph with chromatic number k contains a simple directed path with k ver-
tices [6,12,17]. There are further problems that can be addressed by looking
at acyclic orientations. For instance, Benson et al. [4] show that there exists a
bijection between the set of the so-called superstable configurations of a graph
and the set of its acyclic orientations with a unique source.

This work has been partially supported by the Italian Ministry of Education,
University, and Research (MIUR) under PRIN 2012C4E3KT national research
project AMANDA — Algorithmics for MAssive and Networked DAta.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 319–333, 2016.
DOI: 10.1007/978-3-662-49529-2 24

320 A. Conte et al.

Fig. 1. An undirected connected graph without self-loops (a) and one of its acyclic
orientations (b).

Counting how many acyclic orientations can be found in a graph is a funda-
mental problem in combinatorics, dating back to the 70 s or earlier [16]. Linial [10]
proves that this problem is #P-complete. Stanley [15] shows how the number of
acyclic orientations can be computed by using the chromatic polynomial (a spe-
cial case of Tutte’s polynomial). Another approach that concerns the number of
acyclic orientations is the acyclic orientation game. Alon and Tuza [2] inquire
about the amount of oriented edges needed to define a unique orientation of G,
and find this number to be almost surely Θ(|V | log |V |) in Erdős-Rényi random
graphs. Pikhurko [11] shows that the number of these edges in the worst case is
no greater than (14 + o(1))|V |2 for general graphs.

Problems Addressed. Our paper investigates new algorithms for enumerat-
ing patterns for this interesting problem in graph theory, given an undirected
connected graph G(V,E) with n nodes and m edges.

single source acyclic orientations (ssao): Given a node s ∈ V , enumerate
all the acyclic orientations

−→
G of G, such that s is the only source.

single source acyclic orientations (weak ssao): Given a set of nodes S ⊆ V ,
enumerate all the acyclic orientations

−→
G of G such that there is exactly one

source x and x ∈ S.
multiple source acyclic orientations (strong msao): Given a set of nodes

S ⊆ V , enumerate all the acyclic orientations
−→
G of G such that all the nodes

in S are the only sources.1

multiple source acyclic orientations (weak msao): Given a set of nodes
S ⊆ V , enumerate all the acyclic orientations

−→
G of G such that if x is a source

then x ∈ S.2

acyclic orientations (ao): Enumerate all the acyclic orientations
−→
G of G.

We will show that these problems can be reduced to ssao, with a one-to-one
correspondence between their solutions. Many other variants with constraints
on the number or choice of sources can be reduced to ssao as well: the ones

1 These orientations are possible if and only if S is an independent set.
2 Not all nodes in S must be sources, but there cannot be sources in V \ S.

Listing Acyclic Orientations of Graphs with Single and Multiple Sources 321

we present are some of the most representative ones. We analyze the cost of an
enumeration algorithm for ssao, weak ssao, strong msao, weak msao, and ao
in terms of its delay cost, which is a well-known measure of performance for
enumeration algorithms corresponding to the worst-case time between any two
consecutively enumerated solutions (e.g. [8]). We are interested in algorithms
with guaranteed delay and space.

Previous Work. We are not aware of any provably good bounds for problems
ssao, weak ssao, strong msao and weak msao. Johnson’s backtracking algo-
rithm [9] for ssao has been presented over 30 years ago to solve problems on
network reliability. However its complexity is not given and is hard to estimate,
as it is based on a backtracking approach with dead ends.

In his paper presenting an algorithm for ao, Squire [14] writes that he has
been unable to efficiently implement Johnson’s approach because of its dead
ends. Squire’s algorithm for ao uses Gray codes and has an amortized cost of
O(n) per solution, but its delay can be O(n3) time for a solution. The algorithm
by Barbosa and Szwarcfiter [3] solves ao with an amortized time complexity of
O(n + m) per solution, delay O(n · m). The algorithm builds the oriented graph
incrementally by iteratively adding the nodes to an empty directed graph.

It is worth observing that by replacing each edge with a double arc and
applying any algorithm for maximal feedback arc set enumeration, one can obtain
all the acyclic orientations of G. State of the art approaches for the latter problem
guarantee a delay Ω(n3) as shown by Schwikowski and Speckenmeyer [13].

All the techniques above for ao, including the one in [14], do not to extend
smoothly to ssao, weak ssao, strong msao, and weak msao. In a previous
work [5], we studied the related problem of enumerating the cyclic orientations
of an undirected graph, but the proposed techniques cannot be reused for the
problems in this paper.

Our Results. Our contribution is the design of the first enumeration algorithms
with guaranteed bounds for ssao, weak ssao, strong msao, and weak msao: the
complexity is O(m · n) delay per solution using O(n2) space. For ao, we also
show how to obtain O(m) delay, improving the delay of [3,13,14], but we do not
improve the amortized cost of O(n) in [14].

We therefore focus on ssao in the first part of the paper, and then show
an optimization that holds for the case of ao. We guarantee that, at any given
partial solution, the extensions of the partial solution will enumerate new acyclic
orientations. To this aim, we solve several non-trivial issues.

– We use a recursive approach where each call surely leads to a solution. For
ssao this is achieved also by using a suitable ordering of the nodes.

– We quickly identify the next recursion calls within the claimed time delay.
– We do a careful analysis of the recursion tree, and show how to check efficiently

for node reachability during recursion.
– In the case of ao we exploit the fact that the recursion tree does not contain

unary nodes.

322 A. Conte et al.

The paper is organized as follows. We give the necessary definitions and
terminology in Sect. 2. We then discuss how to solve ssao in Sect. 3 and further
reduce the delay for ao in Sect. 4. In Sect. 5 we show how weak ssao, strong
msao, weak msao, and ao reduce to ssao. We draw some conclusions in Sect. 6.

2 Preliminaries

Given an undirected graph G(V,E) with n nodes and m edges, an orientation of
G is the directed graph

−→
G(V,

−→
E) where for any pair {u, v} ∈ E either (u, v) ∈ −→

E

or (v, u) ∈ −→
E . We call

−→
E an orientation of E. We say that the orientation

−→
G is

acyclic when it does not contain cycles. For the sake of clarity, in the following
we will call edges the unordered pairs {x, y} (undirected graph), while we will
call arcs the two possible orientations (x, y) and (y, x) (directed graphs). We
assume wlog that G is connected and does not contain self-loops.

Given an undirected graph G(V,E), let v1, . . . , vn ∈ V be an ordering of the
nodes of G. We define V≤i as the set {v1, . . . , vi}, N(vi) = {x : {vi, x} ∈ E}
as the set of neighbors of the node vi, and N≤i(v) as the set N(v) ∩ V≤i. For
brevity, N<(vj) means N≤j−1(vj). Clearly we have

∑n
j=1 |N<(vj)| = m.

Starting from an empty directed graph, for increasing values of i = 1, 2, . . . , n,
our algorithms add vi to the current graph and recursively exploit all the possible
ways of directing the edges {vi, x} with x ∈ N<(vi), called direction assignments:
a direction assignment

−→
Z for vi is an orientation of the set of edges {{vi, x} :

x ∈ N<(vi)}. We refer to the following special assignments as

Xi = {(x, vi) : x ∈ N<(vi)}

Yi = {(vi, x) : x ∈ N<(vi)}

We denote by
−→
G0 the starting empty directed graph, and by

−→
G i the graph whose

last added node is vi, with 1 ≤ i ≤ n.

3 Single Source Acyclic Orientations (SSAO)

Given a graph G and a node s, this section describes how to enumerate its acyclic
orientations

−→
G such that s is the unique source in

−→
G . Starting from an empty

graph
−→
G0, our algorithm adds vi to

−→
G i−1 for i = 1, 2, . . . , n. For the edges in

N<(vi), it exploits all the suitable direction assignments
−→
Z : each assignment

gives a certain
−→
G i, on which it recurses. Every time it adds the last vertex vn in

a recursive call, it outputs the corresponding
−→
Gn as a new solution

−→
G .

The above simple scheme can lead to dead ends in its recursive calls, where
partial orientations

−→
G i cannot be extended to reach

−→
Gn, i.e. an acyclic

−→
G whose

only source is s. We prevent this situation by examining the nodes of G in a
suitable order that allows us to exploit the following notions.

Listing Acyclic Orientations of Graphs with Single and Multiple Sources 323

v1

v3

v2

v4

v5

v6

v7

v8

v9

Fig. 2. A partial acyclic orientation (thick edges). To add v7 to the partial orientation
we exploit valid direction assignments for undirected edges {v4, v7}, {v5, v7}, {v6, v7}.

Definition 1 (full node). Given an ordering v1, . . . , vn of the nodes in G, a
node vj (1 ≤ j ≤ i) is full in

−→
G i if N≤i(vj) = N(vj).

Definition 2 (valid direction assignment). Given
−→
G i−1(V≤i−1,

−→
E), the

direction assignment
−→
Z is valid if

–
−→
G i(V≤i,

−→
E ∪ −→

Z) is acyclic, and
– any vj �= s that is full in

−→
G i(V≤i,

−→
E ∪ −→

Z) is not a source, for 1 ≤ j ≤ i.

The rationale is the following. When dealing with
−→
G i, full nodes are the ones

whose edges in G have been all already assigned in
−→
G i. This means that if a full

node is a source in
−→
G i it will be a source also in any extension of

−→
G i, i.e. in the

final orientation
−→
G . A valid direction assignment imposes that we do not create

cycles and each full node (except s) is not a source. We will deal with orientations
of

−→
G i that are the outcome of a sequence of valid direction assignments: such

orientations will be referred to as partial acyclic orientations of Gi.
Consider the graph in Fig. 1 (a). We want acyclic orientations whose only

source is s = v9 processing the nodes in the order v1, . . . , v9. In particular,
consider the situation in Fig. 2. We have the graph

−→
G6 (thick edges) and we have

to add the vertex v7, deciding how to orient the edges to the vertices in N<(vi),
namely {v4, v7}, {v5, v7}, {v6, v7}, to obtain all the possible

−→
G7. Notice that v1,

v2, and v3 are full in
−→
G6 since the edges in their whole neighborhood have been

already oriented: hence since they are not source in
−→
G6, they will be not sources

in the final orientation. The direction assignment {(v7, v4), (v5, v7), (v6, v7)} is
valid since the full nodes in the corresponding

−→
G7, namely v1, v2, v3, v4 are not

sources, and
−→
G7 is acyclic. On the other hand, {(v4, v7), (v5, v7), (v6, v7)} is not

a valid direction assignment since v4 is a source full in the corresponding
−→
G7

and it will be source in any final orientation extending
−→
G7. Notice that, since

v7, and v9 are not in N<(v6), v6 can be source in
−→
G6 and can remain source

also in
−→
G7, while it should be not a source in

−→
G9. Hence, exploiting just the

valid direction assignments means taking care that no cycle is created and no
full node is source.

324 A. Conte et al.

Algorithm 1. single-source-acyclic

Input: Graph G(V,E), a partial acyclic orientation
−→
G i−1(V≤i−1,

−→
E), integer i

Output: Acyclic orientations of G containing
−→
G i−1(V≤i,

−→
E) with source s

if i > n then output
−→
G ; return ;

Execute Algorithm 4;

for any valid direction assignment
−→
Z for vi starting from

−→
Z = Yi do

single-source-acyclic(G,
−→
G i(V≤i,

−→
E ∪ −→

Z), i+ 1);

In order to efficiently find valid direction assignments, our algorithm uses an
ordering of the nodes v1, . . . , vn that satisfies the conditions below.

Definition 3. An ordering of the nodes v1, . . . , vn is good if

– vn = s, and
– N<(vi) � N(vi), for 1 ≤ i < n.

The first condition in Definition 3 says that s should be the last node as it is
the only source. The second condition says that there is at least one unassigned
incident edge for each vi, when adding the latter to

−→
G i−1. Dead ends can be

avoided in this way: when adding vi to
−→
G i−1, we have at least one solution

extending
−→
G i−1 in which vi is not a source. Indeed the following property holds.

Property 1. For any partial acyclic orientation
−→
G i, there is always an acyclic

orientation
−→
G for G that has unique source s and includes

−→
G i.

Proof. For any j > i, consider the valid direction assignment Yj , i.e. {(vj , x) :
x ∈ N<(vj)} obtaining

−→
G . These direction assignments cannot create cycles in

−→
G j and the only final source is s. 	

Referring to the graph in Fig. 1 (a), if s = v9, the order induced by v1, . . . , v9

is a good order. Considering
−→
G6 in Fig. 2, according to Property 1, Y7 corre-

sponds to {(v7, v6), (v7, v5), (v7, v4)}, Y8 corresponds to {(v8, v7)}, while Y9 cor-
responds to {(v9, v8), (v9, v6)}. These direction assignments are valid and lead
to the acyclic orientation in Fig. 1 (b) whose only source is indeed v9.

A good ordering for G and s can be found in linear time by performing a
DFS from s and considering its nodes in postorder. Observe that this is a good
order according to our definition: node s is the last node and, for each node, its
parent in the DFS tree appears after it in the order.

Our recursive algorithm is shown in Algorithm 1, where the good ordering
of the nodes is employed. The initial call is single-source-acyclic(G,

−→
G0, 1).

The algorithm recursively exploits all the possible ways of expanding the cur-
rent partial solution

−→
G i−1 by iterating over all the valid direction assignments,

starting from Yi, which is surely valid. The latter assignments are generated
by a recursive computation. The general picture of our solution can be seen as

Listing Acyclic Orientations of Graphs with Single and Multiple Sources 325

Algorithm 2. Returning valid direction assignments

Input: Graph G(V,E), a partial acyclic orientation
−→
G i−1(V≤i−1,

−→
E), node vi

Output: Valid direction assignments
−→
Z

Fi ← set of full nodes in
−→
G i that are sources and not full in

−→
G i−1;−→

Z ← {(vi, y) : y ∈ Fi};
Let x1, . . . , xk be the nodes in N<(vi) \ Fi;

Execute Generate (G,
−→
G, vi,

−→
Z , 1, ∅, ∅).

Procedure Generate (G(V,E),
−→
G i−1(V≤i−1,

−→
E), vi,

−→
W, j,R,B)

if j > k then add
−→
W to the output list; return ;

Update B as the set of nodes leading to vi in
−→
G i(V≤i,

−→
E ∪ −→

W);

if xj �∈ B then Generate (G,
−→
G i−1, vi,

−→
W ∪ {(vi, xj)}, j + 1, R,B);

Update R as the set of nodes reachable from vi in
−→
G i(V≤i,

−→
E ∪ −→

W);

if xj �∈ R then Generate (G,
−→
G i−1, vi,

−→
W ∪ {(xj , vi)}, j + 1, R,B);

follows: we have the primary recursion tree to generate all the wanted cyclic
orientations (Algorithm 1), where each node has associated a secondary recur-
sion tree to generate locally all the valid direction assignments (Algorithm 2).
A naive implementation would simply consider each of the 2|N<(vi)| direction
assignments checking whether it is valid or not (e.g. using a DFS in O(m) time).
Instead, the following section introduces an efficient method that allows us to
iterate through valid direction assignments only.

3.1 Iterating Over Valid Direction Assignments

Given
−→
G i−1 and node vi, we show how to iterate over valid direction assign-

ments: our approach is shown in Algorithm 2. By definition, each valid direction
assignment

−→
W of the edges in {{vi, x} : x ∈ N<(vi)} should guarantee that we

are not creating a cycle and no new full node becomes a source.
Let Fi be the set of nodes which are: (a) full in

−→
G i, (b) sources in

−→
G i−1,

(c) not full in
−→
G i−1. Note that Fi ⊆ N<(vi). All the valid direction assignments

should guarantee that nodes in Fi are not sources in
−→
G i: this can be easily done

by adding the arcs {(vi, x) : x ∈ Fi} to
−→
W . Observe that this is mandatory for

the orientations of the corresponding edges because otherwise a node in Fi would
become a source in the final orientation

−→
G . Also,

−→
G i(V≤i,

−→
E ∪ −→

W) is acyclic.
After that, we have to decide the orientation of the remaining edges. This

part relies on procedure Generate in Algorithm 2. In particular, we have to
assign a direction to the edges {vi, u} for each node u in N<(vi) \ Fi and check
if they do not create cycles. We take these nodes in arbitrary order as x1, . . . , xk

and, for increasing values of j = 1, 2, . . . , k, we do the following: if the arc e ∈
{(vi, xj), (xj , vi)} does not create a cycle in

−→
G i(V≤i,

−→
E ∪−→

W), proceed recursively
with

−→
W =

−→
W ∪ {e}.

326 A. Conte et al.

For a given vi, the reachability tests above for xj (j = 1, 2, . . . , k) can be
performed with O(k) (forward and backward) DFS traversals, requiring overall
O(k · m) time. Since k is bounded by the degree of vi and can be O(n) in the
worst case, we propose a solution that reduces the cost from O(k · m) to O(m)
time. It truncates the DFSes using sets B and R to avoid visiting the nodes in
these sets. Since the partially built graph is acyclic, B and R are disjoint, and
a node can belong to either one of them or none of them. Below we provide an
analysis based on coloring the nodes of B and R showing that the overall time
required by these tests for each valid direction assignment is O(m).

Lemma 1. Algorithm 2 returns valid direction assignments with delay O(m).

Proof. The arcs directed to nodes in Fi are unchanged for all the valid direction
assignments for vi and can be computed in O(m) time at the beginning.

When exploring the possible orientations of edges {vi, xj}, for j = 1, 2, . . . , k,
each time we have to decide whether (vi, xj) or (xj , vi) creates a cycle or not
when added to

−→
G i(V≤i,

−→
E ∪ −→

W). To this aim we color incrementally the nodes:
all the nodes R reachable from vi are red ; all the nodes B that can lead to vi are
black ; the remaining nodes are uncolored. Initially, all the nodes are uncolored,
are R and B are empty. Since

−→
G i(V≤i,

−→
E ∪ −→

W) is acyclic any node has just one
color or is uncolored.

We now show that the sum of the costs to update the colors to produce
a solution (valid direction assignment) is O(m). Since each leaf in the sec-
ondary recursion tree induced by Generate corresponds to a distinct solution,
we should bound the sum of the costs along the k + 1 nodes from the root to
that leaf. Specifically, the delay is upper bounded by the sum of the costs along
two paths: the leaf-to-root path of the current solution and the root-to-next-leaf
path for the next solution (actually only the latter for the first solution). Observe
that the former cost is always O(|N<(vi)|). We prove that the sum of the costs
from the root to a leaf in the secondary recursion tree induced by Generate is
bounded by O(m). When j = 1, the red colors are assigned with a forward tra-
versal and the black colors are assigned with a backward traversal in the graph−→
G i(V≤i,

−→
E ∪ −→

W). When j > 1, while adding the arc (vi, xj) to
−→
W we have only

to make the traversed uncolored nodes red: since the forward traversal is rooted
at vi, we continue the traversal avoiding to visit red nodes. (No black node can
be reached, otherwise xj would be black also and thus

−→
G i cyclic). On the other

hand, when adding the arc (xj , vi) to
−→
W we have only to make the traversed

uncolored nodes black: once again, this corresponds to continue the backward
traversal rooted in vi avoiding to visit black nodes (no red node can be reached).
Since this process traverses each arc at most once for any 1 ≤ j ≤ k, the sum of
the costs of a root to leaf path in the secondary recursion tree induced by the
Generate procedure is O(m). 	

Remark 1. After the last valid direction assignment has been returned, Algo-
rithm 2 recognizes that there are no more valid direction assignments, using
time O(m).

Listing Acyclic Orientations of Graphs with Single and Multiple Sources 327

Lemma 2. Referring to Algorithm 1, the following holds.

1. All the acyclic orientations of G whose unique source is s are output.
2. Only the acyclic orientations of G whose unique source is s are output.
3. There are no duplicates.

Proof. We prove the three statements separately.

1. Given a good order of the nodes, we show that any single source acyclic
orientation

−→
G can be expressed as a sequence of direction assignments

−→
Z i for

vi, for increasing values of i. Consider the following process: for decreasing
values of j remove vj from

−→
G , and set

−→
Z j equal to the current outgoing arcs

from u in
−→
G . The sequence of sets

−→
Z 1, . . . ,

−→
Z n will lead the algorithm to the

discovery of
−→
G . Note that each direction assignment

−→
Z j is valid otherwise we

have a cycle or a source different from s in
−→
G .

2. Each solution is acyclic, since each time we add a node vi and a valid direc-
tion assignment we do not introduce a cycle by definition of valid direction
assignment. We have to show that s is the unique source; any vj full in

−→
G i,

with j ≤ i < n, is not a source in
−→
G i: hence it is not a source in

−→
Gn =

−→
G .

Indeed, for the good ordering definition, each node vj not full in
−→
G i, with

j ≤ i, has a neighbor in V \ V≤i: if it is a source in
−→
G i, when considering its

last neighbor vz in the good order, it will not be a source anymore in
−→
Gz.

3. Given any two solutions, looking at the primary recursion tree induced by
Algorithm 1, they differ at least for the valid direction assignments branching
in their least common ancestor. 	

Theorem 1. ssao can be solved with delay O(n · m) and space O(n2).

Proof. We exploit the properties of the primary recursion tree induced by Algo-
rithm 1. First of all, notice that each internal node has at least one child because
of Property 1. This means that all the leaves correspond to a solution. Moreover,
observe that all the leaves are at the same depth n, which is the height of the
recursion tree. The first solution is clearly returned in time O(n · m), which is
the height times the cost to get the first valid direction assignment for vi. This is
bounded by O(m) time by applying Lemma 1. For any two consecutive solutions,
the delay is bounded by the sum of the costs along a leaf-to-root path and the
root-to-next-leaf path. The former is bounded by O(n · m): indeed the height of
the tree is O(n) and each time we return we spend O(m) to recognize that no
more valid direction assignments are possible, as highlighted by Remark 1. The
latter is still bounded by O(n · m), applying n times Lemma 1.

The space is bounded by O(n2), that is the space occupancy of a root-to-leaf
path in the primary recursion. Indeed, in this path we have to maintain O(n) times
the status of the Generate iterator, whose total space is bounded by O(n). 	

328 A. Conte et al.

4 Acyclic Orientations (AO)

This section deals with the problem of enumerating all the acyclic orientations
of an undirected graph G. The general scheme remains the same as discussed in
Sect. 3. Differently from before, we have no restriction about the possible sources
when adding vi. Hence we redefine the concept of valid direction assignment as
follows.

Definition 4 (valid direction assignment). Given
−→
G i−1(V≤i−1,

−→
E), a direc-

tion assignment
−→
Z is valid if

−→
G i(V≤i,

−→
E ∪ −→

Z) is acyclic.

Referring to Fig. 2, when adding v7 to
−→
G6, this means that also the direction

assignment (v4, v7), (v5, v7), (v6, v7) is valid.

Algorithm 3. acyclic

Input: Graph G(V,E), partial acyclic orientation
−→
G i−1(V≤i−1,

−→
E), integer i

Output: Acyclic orientations of G containing
−→
G i−1(V≤i−1,

−→
E)

if i > n then output
−→
Gn; return ;

Execute Algorithm 2;

for any valid direction assignment
−→
Z for vi starting from

−→
Z = Xi to

−→
Z = Yi do

acyclic(G,
−→
G i(V≤i,

−→
E ∪ −→

Z), i+ 1);

Moreover, another difference from the previous section is that we do not need
the good order (Definition 3). Namely for any order of the nodes we can prove
that the following property holds.

Property 2. For any vi there are always at least two valid direction assignments,
i.e. Xi = {(x, vi) : x ∈ N<(vi)} and Yi = {(vi, x) : x ∈ N<(vi)}.

Proof. While adding vi to
−→
G i−1, adding the arcs of Xi to

−→
G i−1 or adding the

arcs of Yi does not create a cycle. Indeed, inductively the following facts hold.−→
G0 does not contains a cycle. Assuming that

−→
G i−1 does not contain a cycle,

any cycle should involve vi. Since in the two orientations above vi is source or
target, adopting one of these direction assignments cannot make

−→
G i cyclic. 	

Property 2 simply states that in Fig. 2, both {(v4, v7), (v5, v7), (v6, v7)} and
{(v7, v4), (v7, v5), (v7, v6)} are valid direction assignments when adding v7 to−→
G6. This is because

−→
G6 is acyclic and both of the new direction assignments

cannot create cycles in the corresponding
−→
G7.

The actual scheme is summarized in Algorithm 3, whose starting call is
acyclic(G,

−→
G0, 1). At step i, given the acyclic orientation

−→
G i−1(V≤i−1,

−→
E),

each recursive call is of the kind acyclic(G,
−→
G i, i + 1) where

−→
G i(V≤i,

−→
E ∪ −→

Z)
is obtained by adding a valid direction assignment

−→
Z . By Property 2,

−→
Z = Xi

and
−→
Z = Yi are always taken. The corresponding two recursive calls are done

respectively at the beginning and at the end of the procedure. All the other
possible valid direction assignments (if any) are explored in the other calls of

Listing Acyclic Orientations of Graphs with Single and Multiple Sources 329

Algorithm 4. Returning valid direction assignments

Input: Graph G(V,E), partial acyclic orientation
−→
G i−1(V≤i−1,

−→
E), node vi

Output: Valid direction assignments
−→
Z

Let x1, . . . , xk be the nodes of N<(vi);

Execute Generate (G,
−→
G, vi, ∅, 1, ∅, ∅).

Procedure Generate (G(V,E),
−→
G i−1(V≤i−1,

−→
E), vi,

−→
W, j,R,B)

if j > k then add
−→
W to the output list; return ;

if
−→
W ∩ Yi �= ∅ then

update R as the nodes reachable from vi in
−→
G i(V≤i,

−→
E ∪ −→

W)

if xj �∈ R then Generate (G,
−→
G i−1, vi,

−→
W ∪ {(xj , vi)}, j + 1, R,B);

if
−→
W ∩ Xi �= ∅ then

update B as the nodes leading to vi in
−→
G i(V≤i,

−→
E ∪ −→

W)

if xj �∈ B then Generate (G,
−→
G i−1, vi,

−→
W ∪ {(vi, xj)}, j + 1, R,B);

the for cycle. When i = n + 1, all the nodes have been added and all the edges
have been assigned a direction. In this case

−→
Gn is an acyclic orientation to be

output.

Lemma 3. Referring to Algorithm 3, the following holds.

1. All the acyclic orientations of G are output.
2. Just the acyclic orientations of G are output.
3. There are no duplicates.

Proof. Similar to the proof of Lemma 2. 	

We introduce a method that, at running time, allows us to iterate just on valid
direction assignments: in particular, this method gets the first valid direction
assignment Xi in O(|N<(vi)|) time and the remaining ones with delay O(m),
one after the other. The point is that we spend O(m) time and get a new solution.
Here it is crucial that Yi is the last valid direction assignment for this purpose
as it indicates when stopping the search for valid direction assignments. The
motivation for this choice is given by the following lemma.

Lemma 4. When iterating over valid direction assignments
−→
Z , suppose that

the first assignment Xi is returned in O(|N<(vi)|) time and the delay between
any two consecutive valid direction assignments is O(m). Then Algorithm 3 has
delay O(m).

Proof. In the primary recursion tree, the internal nodes have at least two chil-
dren, the leaves are all the solutions, and their depth is n. The solution in the
first leaf is obtained by using always Xi sets, each one corresponding to a node
vi, and the cost is

∑n
i=1 O(|N<(vi)|) = O(m), using the hypothesis of the lemma.

330 A. Conte et al.

The delay between two consecutive solutions is upper bounded by the sum
of the costs of the recursive calls to go from a leaf to the next leaf in preorder.
Now let S and T be the solutions in two consecutive leaves. The paths from the
root to S and to T share the prefix until a recursive call Rj , corresponding to
the recursion while adding vj to

−→
G j−1, for some 1 ≤ j ≤ n − 1. Let S′ and T ′

be Rj ’s children that are respectively the ancestors of S and T . Note that the
path from S′ to S is made of Yi branches while the path from T ′ to T is made
of Xi branches (j + 1 ≤ i ≤ n). The cost from S to S′ is O(n − j) as we do
not need to check for further valid direction assignments after each Yi. The cost
from S′ to T ′ is O(m) by hypothesis as they are two consecutive valid direction
assignments for vj . The cost from T ′ to T is O(

∑n
i=j+1 |N<(vi)|) = O(m) by

hypothesis on the costs to get each Xi. 	

In the next section we will provide a way of iterating over valid direction
assignments fitting the hypothesis of Lemma 4.

4.1 Iterating Over Valid Direction Assignments

Given the node vi and the current acyclic directed graph
−→
G i−1, this section

describes how to get all the valid direction assignments (i.e. such that adding
one of them and vi to

−→
G i−1, we obtain a

−→
G i which is still acyclic).

Algorithm 4 extends the current partial valid direction assignment
−→
W for vi:

for each edge in {vi, x} such that x ∈ N<(vi), it adds the arc (vi, x) or the arc
(x, vi) to

−→
W whether the partial direction assignment is still valid, i.e. no cycles

are created. It explores all of these extensions.
More formally, given

−→
G i−1(V≤i,

−→
E) and vi, we consider the nodes x1, . . . , xk

in N<(vi) (where |N<(vi)| = k) one after the other. Initially, let
−→
W be an empty

set. For increasing values of j, with 1 ≤ j ≤ k, we do the following. If the arc
e ∈ {(vi, xj), (xj , vi)} does not create a cycle in

−→
G i−1(V≤i,

−→
E ∪ −→

W), this arc can
be added to the ongoing solution

−→
W , exploring recursively the case

−→
W =

−→
W ∪{e}.

Let R and B be respectively the set of nodes reachable from vi in
−→
G i(V≤i,

−→
E ∪

−→
W) and the set of nodes leading to vi in

−→
G i(V≤i,

−→
E ∪−→

W). Adding the arc (vi, xj)
to

−→
W creates a cycle if and only if xj �∈ B. Analogously, adding the arc (xj , vi) to

−→
W creates a cycle if and only if xj �∈ R. The scheme of the iterator is summarized
by Algorithm 4. Notice that the first valid direction assignment produced is
Xi and the last valid direction assignment is Yi, as required by Algorithm 3.
Moreover observe that the update of R and B is respectively not required when−→
W ∩ Yi = ∅ and

−→
W ∩ Xi = ∅, since these conditions means respectively that the

outdegree and the indegree of vi in
−→
G i(V≤i,

−→
E ∪ −→

W) is zero.
We remark that there are no dead ends. Indeed, if xj ∈ R then xj �∈ B, mean-

ing that even if the first call is skipped the second one is performed. Similarly
xj ∈ B implies xj �∈ R. This means that each call produces at least another call
unless the direction assignment is completed, that is, each call returns at least
one solution.

Listing Acyclic Orientations of Graphs with Single and Multiple Sources 331

Lemma 5. Algorithm 4 returns the first valid direction assignment in time
O(|N<(vi)|), and the remaining ones with delay O(m).

Proof. Recall that the direction assignment Xi is always returned first while Yi

is returned last. For increasing values of i, adding the arcs of Xi (respectively Yi)
does not create cycles: in this case no check is needed. In particular Xi is returned
in time O(|N<(vi)|) since the update of R is not needed and never performed in
Algorithm 4 (because

−→
W ∩ Yi = ∅, i.e. the outdegree of vi in

−→
G i(V≤i,

−→
E ∪ −→

W) is
zero). Checking

−→
W ∩Yi �= ∅ and

−→
W ∩Xi �= ∅ can be done in constant time: these

are the out- and in-degree of xj in
−→
G(V≤i,

−→
E ∪ −→

W) that can be updated while
updating

−→
W . The time is hence dominated by the cost to update R and B. As

in Lemma 1, this can be done by growing R and B continuing the same forward
and backward traversals from vi: since each arc is traversed at most once, the
overall time to update R and B is O(m). 	

By combining Lemmas 4 and 5, we obtain the following result.

Theorem 2. Problem ao can be solved with delay O(m) and space O(n2).

5 Reducing to Single Source Acyclic Orientations

We show that the problems mentioned in Sect. 1 can be reduced to ssao. It is
easy to see that weak ssao can be solved simply by enumerating all the ssaos
in G with source s for each s ∈ S. It is worth observing that for each s there
is at least a solution, meaning that the size of S does not influence the delay of
weak ssao.

Let us consider weak msao. To solve it, we create a dummy node s, and
connect it to every node in S. More formally, we build G′(V ∪ {s}, E ∪ Es),
where Es = {{s, x} : x ∈ S}. Any weak msao of G can be transformed into
a ssao of G′ if we add s and all edges in Es (oriented away from s): s is a
source and all nodes in S are no longer sources since they can be reached from s,
hence s is the single source. Note that the orientation is still acyclic as s is a
source and cannot be part of a cycle. The opposite is true as well: any ssao
of G′ can be transformed into a weak msao of G by removing s and the edges
in Es. This process only removes edges incident to nodes in S, hence only nodes
in S possibly become sources. Clearly the orientation is still acyclic as removing
nodes and edges cannot create cycles.

Finally, consider strong msao. To solve it, we simply collapse all nodes of
S into one node s. More formally, we generate G′′(V ∪ {s} \ S,E ∪ Es), where
Es = {{s, x} : ∃ y ∈ S with {y, x} ∈ E}. As s and all nodes in S must be
sources, all of their incident edges must be oriented away from them in all acyclic
orientations, while the rest of the graph is exactly the same for both cases.
Clearly, any ssao for G′′ induces a strong msao of G that can be obtained by
removing s and Es and re-integrating S and the edges between S and V \ S
(oriented away from S). Similarly, removing S (and the edges between S and

332 A. Conte et al.

V \S) and integrating s and Es (with edges oriented away from s), creates a ssao
for G′′: there is an edge from s to any node in V \S that was previously connected
with S, hence these nodes cannot be sources; all other nodes in V \ S were not
connected to S and hence their in-degrees and out-degrees are unchanged.

As for ao, it can be obtained from weak msao by setting S = V . A direct
reduction to ssao is described in [14], although the paper does not provide an
algorithm for ssao.

By Theorem 1, observing that the above transformations requires O(m) time,
we can conclude the following result.

Theorem 3. Problems ssao, weak ssao, strong msao, and weak msao can be
solved with delay O(m · n) and space O(n2).

6 Conclusions

In this paper we have shown the first enumeration algorithms with guaranteed
bounds for ssao, weak ssao, strong msao, and weak msao, whose delay is
O(m · n) time and O(n2) space. The delay reduces to O(m) in the case of ao,
improving prior work. It would be interesting to reduce the delay of the former
problems to O(m) as well.

References

1. Alon, N., Tarsi, M.: Colorings and orientations of graphs. Combinatorica 12(2),
125–134 (1992)

2. Alon, N., Tuza, Z.: The acyclic orientation game on random graphs. Random
Struct. Algorithms 6(2–3), 261–268 (1995)

3. Barbosa, V.C., Szwarcfiter, J.L.: Generating all the acyclic orientations of an undi-
rected graph. Inf. Process. Lett. 72(1), 71–74 (1999)

4. Benson, B., Chakrabarty, D., Tetali, P.: G-parking functions, acyclic orientations
and spanning trees. Discrete Math. 310(8), 1340–1353 (2010)

5. Conte, A., Grossi, R., Marino, A., Rizzi, R.: Enumerating cyclic orientations of
a graph. In: IWOCA, 26th International Workshop on Combinatorial Algorithms
(2015, to appear)

6. Erdős, P., Katona, G., Társulat, B.J.M.: Theory of Graphs: Proceedings of the
Colloquium Held at Tihany, Hungary, September 1966. Academic Press, New York
(1968)

7. Iriarte, B.: Graph orientations and linear extensions. In: DMTCS Proceedings, pp.
945–956 (2014)

8. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal
independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

9. Johnson, R.: Network reliability and acyclic orientations. Networks 14(4), 489–505
(1984)

10. Linial, N.: Hard enumeration problems in geometry and combinatorics. SIAM J.
Algebraic Discrete Methods 7(2), 331–335 (1986)

11. Pikhurko, O.: Finding an unknown acyclic orientation of a given graph. Comb.
Probab. Comput. 19, 121–131 (2010)

Listing Acyclic Orientations of Graphs with Single and Multiple Sources 333

12. Roy, B.: Nombre chromatique et plus longs chemins d’un graphe. Rev. Fr.
D’informatique Rech. Opérationnelle 1(5), 129–132 (1967)

13. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feed-
back problems. Discrete Appl. Math. 117(1), 253–265 (2002)

14. Squire, M.B.: Generating the acyclic orientations of a graph. J. Algorithms 26(2),
275–290 (1998)

15. Stanley, R.: Acyclic orientations of graphs. In: Gessel, I., Rota, G.-C. (eds.) Classic
Papers in Combinatorics. Modern Birkhäuser Classics, pp. 453–460. Birkhäuser,
Boston (1987)

16. Stanley, R.P.: What Is Enumerative Combinatorics?. Springer, New York (1986)
17. Vitaver, L.M.: Determination of minimal coloring of vertices of a graph by means

of boolean powers of the incidence matrix. Dokl. Akad. Nauk SSSR 147, 728 (1962)

Linear-Time Sequence Comparison Using
Minimal Absent Words & Applications

Maxime Crochemore1, Gabriele Fici2, Robert Mercaş1,3,
and Solon P. Pissis1(B)

1 Department of Informatics, King’s College London, London, UK
{maxime.crochemore,solon.pissis}@kcl.ac.uk

2 Dipartimento di Matematica e Informatica, Università di Palermo, Palermo, Italy
gabriele.fici@unipa.it

3 Department of Computer Science, Kiel University, Kiel, Germany
rgm@informatik.uni-kiel.de

Abstract. Sequence comparison is a prerequisite to virtually all compar-
ative genomic analyses. It is often realized by sequence alignment tech-
niques, which are computationally expensive. This has led to increased
research into alignment-free techniques, which are based on measures
referring to the composition of sequences in terms of their constituent pat-
terns. These measures, such as q-gram distance, are usually computed in
time linear with respect to the length of the sequences. In this article, we
focus on the complementary idea: how two sequences can be efficiently
compared based on information that does not occur in the sequences.
A word is an absent word of some sequence if it does not occur in the
sequence. An absent word is minimal if all its proper factors occur in the
sequence. Here we present the first linear-time and linear-space algorithm
to compare two sequences by considering all their minimal absent words.
In the process, we present results of combinatorial interest, and also extend
the proposed techniques to compare circular sequences.

Keywords: Algorithms on strings · Sequence comparison · Alignment-
free comparison · Absent words · Forbidden words · Circular words

1 Introduction

Sequence comparison is an important step in many basic tasks in bioinformatics,
from phylogenies reconstruction to genomes assembly. It is often realized by
sequence alignment techniques, which are computationally expensive, requiring
quadratic time in the length of the sequences. This has led to increased research
into alignment-free techniques. Hence standard notions for sequence comparison
are gradually being complemented and in some cases replaced by alternative
ones [10]. One such notion is based on comparing the words that are absent
in each sequence [1]. A word is an absent word (or a forbidden word) of some
sequence if it does not occur in the sequence. Absent words represent a type of
negative information: information about what does not occur in the sequence.
c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 334–346, 2016.
DOI: 10.1007/978-3-662-49529-2 25

Linear-Time Sequence Comparison Using Minimal Absent Words 335

Given a sequence of length n, the number of absent words of length at most n
is exponential in n. However, the number of certain classes of absent words is only
linear in n. This is the case for minimal absent words, that is, absent words in the
sequence whose all proper factors occur in the sequence [5]. An upper bound on
the number of minimal absent words is known to be O(σn) [9,23], where σ is the
size of the alphabet Σ. Hence it may be possible to compare sequences in time
proportional to their lengths, for a fixed-sized alphabet, instead of proportional
to the product of their lengths. In what follows, we consider sequences on a fixed-
sized alphabet since the most commonly studied alphabet is Σ = {A,C,G,T}.

An O(n)-time and O(n)-space algorithm for computing all minimal absent
words on a fixed-sized alphabet based on the construction of suffix automata
was presented in [9]. The computation of minimal absent words based on the
construction of suffix arrays was considered in [28]; although this algorithm has
a linear-time performance in practice, the worst-case time complexity is O(n2).
New O(n)-time and O(n)-space suffix-array-based algorithms were presented
in [2,3,15] to bridge this unpleasant gap. An implementation of the algorithm
presented in [2] is currently, and to the best of our knowledge, the fastest available
for the computation of minimal absent words. A more space-efficient solution to
compute all minimal absent words in time O(n) was also presented in [6].

In this article, we consider the problem of comparing two sequences x and y
of respective lengths m and n, using their sets of minimal absent words. In [7],
Chairungsee and Crochemore introduced a measure of similarity between two
sequences based on the notion of minimal absent words. They made use of a
length-weighted index to provide a measure of similarity between two sequences,
using sample sets of their minimal absent words, by considering the length of
each member in the symmetric difference of these sample sets. This measure can
be trivially computed in time and space O(m + n) provided that these sample
sets contain minimal absent words of some bounded length �. For unbounded
length, the same measure can be trivially computed in time O(m2 + n2): for a
given sequence, the cumulative length of all its minimal absent words can grow
quadratically with respect to the length of the sequence.

The same problem can be considered for two circular sequences. The measure
of similarity of Chairungsee and Crochemore can be used in this setting provided
that one extends the definition of minimal absent words to circular sequences.
In Sect. 4, we give a definition of minimal absent words for a circular sequence
from the Formal Language Theory point of view. We believe that this definition
may also be of interest from the point of view of Symbolic Dynamics, which is
the original context in which minimal absent words have been introduced [5].

Our Contribution. Here we make the following threefold contribution:

(a) We present an O(m + n)-time and O(m + n)-space algorithm to compute
the similarity measure introduced by Chairungsee and Crochemore by con-
sidering all minimal absent words of two sequences x and y of lengths m
and n, respectively; thereby showing that it is indeed possible to compare
two sequences in time proportional to their lengths (Sect. 3).

336 M. Crochemore et al.

(b) We show how this algorithm can be applied to compute this similarity mea-
sure for two circular sequences x and y of lengths m and n, respectively,
in the same time and space complexity as a result of the extension of the
definition of minimal absent words to circular sequences (Sect. 4).

(c) We provide an open-source code implementation of our algorithms and inves-
tigate potential applications of our theoretical findings (Sect. 5).

2 Definitions and Notation

We begin with basic definitions and notation. Let y = y[0]y[1] . . y[n − 1] be a
word of length n = |y| over a finite ordered alphabet Σ of size σ = |Σ| = O(1).
For two positions i and j on y, we denote by y[i . . j] = y[i] . . y[j] the factor
(sometimes called substring) of y that starts at position i and ends at position j
(it is empty if j < i), and by ε the empty word, word of length 0. We recall that
a prefix of y is a factor that starts at position 0 (y[0 . . j]) and a suffix is a factor
that ends at position n−1 (y[i . . n−1]), and that a factor of y is a proper factor
if it is not y itself. The set of all the factors of the word y is denoted by Fy.

Let x be a word of length 0 < m ≤ n. We say that there exists an occurrence
of x in y, or, more simply, that x occurs in y, when x is a factor of y. Every
occurrence of x can be characterised by a starting position in y. Thus we say that
x occurs at the starting position i in y when x = y[i . . i + m − 1]. Opposingly,
we say that the word x is an absent word of y if it does not occur in y. The
absent word x of y is minimal if and only if all its proper factors occur in y. The
set of all minimal absent words for a word y is denoted by My. For example, if
y = abaab, then My = {aaa, aaba, bab, bb}. In general, if we suppose that all the
letters of the alphabet appear in y of length n, the length of a minimal absent
word of y lies between 2 and n + 1. It is equal to n + 1 if and only if y is the
catenation of n copies of the same letter. So, if y contains occurrences of at least
two different letters, the length of a minimal absent word for y is bounded from
above by n.

A language over the alphabet Σ is a set of finite words over Σ. A language is
regular if it is recognized by a finite state automaton. A language is factorial if it
contains all the factors of its words. A language is antifactorial if no word in the
language is a proper factor of another word in the language. Given a word x, the
language generated by x is the language x∗ = {xk | k ≥ 0} = {ε, x, xx, xxx, . . .}.
The factorial closure of a language L is the language FL = {Fy | y ∈ L}. Given
a factorial language L, one can define the (antifactorial) language of minimal
absent words for L as ML = {aub | aub /∈ L, au, ub ∈ L}. Notice that ML is not
the same language as the union of Mx for x ∈ L.

We denote by SA the suffix array of y of length n, that is, an integer array
of size n storing the starting positions of all (lexicographically) sorted suffixes of
y, i.e. for all 1 ≤ r < n we have y[SA[r − 1] . . n − 1] < y[SA[r] . . n − 1] [22]. Let
lcp(r, s) denote the length of the longest common prefix between y[SA[r] . . n−1]
and y[SA[s] . . n − 1] for all positions r, s on y, and 0 otherwise. We denote by
LCP the longest common prefix array of y defined by LCP[r] = lcp(r − 1, r) for

Linear-Time Sequence Comparison Using Minimal Absent Words 337

all 1 ≤ r < n, and LCP[0] = 0. The inverse iSA of the array SA is defined by
iSA[SA[r]] = r, for all 0 ≤ r < n. It is known that SA [25], iSA, and LCP [12] of
a word of length n can be computed in time and space O(n).

In what follows, as already proposed in [2], for every word y, the set of
minimal words associated with y, denoted by My, is represented as a set of
tuples 〈a, i, j〉, where the corresponding minimal absent word x of y is defined
by x[0] = a, a ∈ Σ, and x[1 . . m − 1] = y[i . . j], where j − i + 1 = m ≥ 2. It is
known that if |y| = n and |Σ| = σ, then |My| ≤ σn [23].

In [7], Chairungsee and Crochemore introduced a measure of similarity
between two words x and y based on the notion of minimal absent words. Let
M�

x (resp. M�
y) denote the set of minimal absent words of length at most � of

x (resp. y). The authors made use of a length-weighted index to provide a mea-
sure of the similarity between x and y, using their sample sets M�

x and M�
y, by

considering the length of each member in the symmetric difference (M�
x � M�

y)
of the sample sets. For sample sets M�

x and M�
y, they defined this index to be

LW(M�
x,M�

y) =
∑

w∈M�
x�M�

y

1
|w|2 .

This work considers the following generalized version of the same problem.

MAW-SequenceComparison

Input: a word x of length m and a word y of length n
Output: LW(Mx,My), where Mx and My denote the sets of minimal
absent words of x and y, respectively.

We also consider the aforementioned problem for two circular words. A cir-
cular word of length m can be viewed as a traditional linear word which has
the left- and right-most letters wrapped around and stuck together in some way.
Under this notion, the same circular word can be seen as m different linear
words, which would all be considered equivalent. More formally, given a word
x of length m, we denote by x〈i〉 = x[i . . m − 1]x[0 . . i − 1], 0 ≤ i < m, the
i-th rotation of x, where x〈0〉 = x. Given two words x and y, we define x ∼ y
if and only if there exist i, 0 ≤ i < |x|, such that y = x〈i〉. A circular word x̃
is a conjugacy class of the equivalence relation ∼. Given a circular word x̃, any
(linear) word x in the equivalence class x̃ is called a linearization of the circular
word x̃. Conversely, given a linear word x, we say that x̃ is a circularization of x
if and only if x is a linearization of x̃. The set Fx̃ of factors of the circular word
x̃ is equal to the set Fxx ∩ Σ≤|x| of factors of xx whose length is at most |x|,
where x is any linearization of x̃.

Note that if x〈i〉 and x〈j〉 are two rotations of the same word, then the factorial
languages F(x〈i〉)∗ and F(x〈j〉)∗ coincide, so one can unambiguously define the
(infinite) language Fx̃∗ as the language Fx∗ , where x is any linearization of x̃.

In Sect. 4, we give the definition of the set Mx̃ of minimal absent words for
a circular word x̃. We will prove that the following problem can be solved with
the same time and space complexity as its counterpart in the linear case.

338 M. Crochemore et al.

MAW-CircularSequenceComparison

Input: a word x of length m and a word y of length n
Output: LW(Mx̃,Mỹ), where Mx̃ and Mỹ denote the sets of minimal
absent words of the circularizations x̃ of x and ỹ of y, respectively.

3 Sequence Comparison

The goal of this section is to provide the first linear-time and linear-space algo-
rithm for computing the similarity measure (see Sect. 2) between two words
defined over a fixed-sized alphabet. To this end, we consider two words x and
y of lengths m and n, respectively, and their associated sets of minimal absent
words, Mx and My, respectively. Next, we give a linear-time and linear-space
solution for the MAW-SequenceComparison problem. It is known from [9]
and [2] that we can compute the sets Mx and My in linear time and space
with respect to the two lengths m and n, respectively. The idea of our strategy
consists of a merge sort on the sets Mx and My, after they have been ordered
with the help of suffix arrays.

To this end, we construct the suffix array associated to the word w = xy,
together with the implicit LCP array corresponding to it. All of these structures
can be constructed in time and space O(m + n), as mentioned earlier. Further-
more, we can preprocess the array LCP for range minimum queries, which we
denote by RMQLCP [13]. With the preprocessing complete, the longest common
prefix LCE of two suffixes of w starting at positions p and q can be computed
in constant time [19], using the formula LCE(w, p, q) = LCP[RMQLCP(iSA[p] +
1, iSA[q])].

Using these data structures, it is straightforward to sort the tuples in the sets
Mx and My lexicographically. That is, two tuples x1, x2 ∈ Mx, are ordered such
that the one being the prefix of the other one comes first, or according to the
letter following their longest common prefix, when the former is not the case. To
do this, we simply go once through the suffix array associated to w and assign
to each tuple in Mx, respectively My, the rank of the suffix starting at the
position indicated by its second component, in the suffix array. Since sorting
an array of n distinct integers, such that each is in [0, n − 1], can be done in
time O(n) (using bucket sort, for example), we can sort now each of the sets of
minimal absent words, taking into consideration the letter on the first position
and these ranks. Thus, from now on, we assume that Mx = (x0, x1, . . . , xk)
where xi is lexicographically smaller than xi+1, for 0 ≤ i < k ≤ σm, and
My = (y0, y1, . . . , y�), where yj is lexicographically smaller than yj+1, for 0 ≤
j < � ≤ σn.

Provided these tools, we now proceed to do the merge. Thus, considering
that we are analysing the (i + 1)th tuple in Mx and the (j + 1)th tuple in My,
we note that the two are equal if and only if xi[0] = yj [0] and

LCE(w, xi[1], |x| + yj [1]) ≥ �, where � = xi[2] − xi[1] = yj [2] − yj [1].

Linear-Time Sequence Comparison Using Minimal Absent Words 339

In other words, the two minimal absent words are equal if and only if their first
letters coincide, they have equal length � + 1, and the longest common prefix of
the suffixes of w starting at the positions indicated by the second components
of the tuples has length at least �.

Such a strategy will empower us with the means for constructing a new set
Mxy = Mx ∪ My. At each step, when analysing tuples xi and yj we proceed as
following:

Mxy =

⎧
⎨

⎩

Mxy ∪ {xi}, and increment i, if xi < yj ;
Mxy ∪ {yj}, and increment j, if xi > yj ;
Mxy ∪ {xi = yj}, and increment both i and j, if xi = yj .

Observe that the last condition is saying that basically each common tuple is
added only once to their union.

Furthermore, simultaneously with this construction we can also calculate the
similarity between the words, given by LW(Mx,My), which is initially set to 0.
Thus, at each step, when comparing the tuples xi and yj , we update

LW(Mx,My) =

⎧

⎪

⎨

⎪

⎩

LW(Mx,My) + 1
|xi|2 , and increment i, if xi < yj ;

LW(Mx,My) + 1
|yj |2 , and increment j, if xi > yj ;

LW(Mx,My), and increment both i and j, if xi = yj .

We impose the increment of both i and j in the case of equality as in this case we
only look at the symmetric difference between the sets of minimal absent words.

As all these operations take constant time, once per each tuple in Mx and
My, it is easily concluded that the whole operation takes in the case of a fixed-
sized alphabet time and space O(m + n). Thus, we can compute the symmetric
difference between the complete sets of minimal absent words, as opposed to [7],
of two words defined over a fixed-sized alphabet, in linear time and space with
respect to the lengths of the two words. We obtain the following result.

Theorem 1. Problem MAW-SequenceComparison can be solved in time
and space O(m + n).

4 Circular Sequence Comparison

Next, we discuss two possible definitions for the minimal absent words of a
circular word, and highlight the differences between them.

We start by recalling some basic facts about minimal absent words. For
further details and references the reader is recommended [11]. Every factorial
language L is uniquely determined by its (antifactorial) language of minimal
absent words ML, through the equation L = Σ∗ \ Σ∗MLΣ∗. The converse
is also true, since by the definition of a minimal absent word we have ML =
ΣL∩LΣ ∩ (Σ∗ \L). The previous equations define a bijection between factorial
and antifactorial languages. Moreover, this bijection preserves regularity. In the
case of a single (linear) word x, the set of minimal absent words for x is indeed

340 M. Crochemore et al.

the antifactorial language MFx
. Furthermore, we can retrieve x from its set of

minimal absent words in linear time and space [9].
Recall that given a circular word x̃, the set Fx̃ of factors of x̃ is equal to the

set Fxx ∩ Σ≤|x| of factors of xx whose lengths are at most |x|, where x is any
linearization of x̃. Since a circular word x̃ is a conjugacy class containing all the
rotations of a linear word x, the language Fx̃ can be seen as the factorial closure
of the set {x〈i〉 | i = 0, . . . , |x| − 1}. This leads to the first definition of the set
of minimal absent words for x̃, that is the set MFx̃

= {aub | a, b ∈ Σ, aub /∈
Fx̃, au, ub ∈ Fx̃}. For instance, if x = abaab, we have

MFx̃
= {aaa, aabaa, aababa, abaaba, ababaa, baabab, babaab, babab, bb}.

The advantage of this definition is that we can retrieve uniquely x̃ from MFx̃
.

However, the total size of MFx̃
(that is, the sum of the lengths of its elements)

can be very large, as the following lemma suggests.

Lemma 2. Let x̃ be a circular word of length m > 0. The set MFx̃
contains pre-

cisely � words of maximal length m+1, where � is the number of distinct rotations
of any linearization x of x̃, that is, the cardinality of {x〈i〉 | i = 0, . . . , |x| − 1}.

Proof. Let x = x[0]x[1] . . x[m− 1] be a linearization of x̃. The word obtained by
appending to x its first letter, x[0]x[1] . . x[m − 1]x[0], belongs to MFx̃

, since it
has length m + 1, hence it cannot belong to Fx̃, but its maximal proper prefix
x = x〈0〉 and its maximal proper suffix x〈1〉 = x[1] . . x[m − 1]x[0] belong to Fx̃.

The same argument shows that for any rotation x〈i〉 = x[i]x[i + 1] . . x[m −
1]x[0] . . x[i − 1] of x, the word x[i]x[i + 1] . . x[m − 1]x[0] . . x[i − 1]x[i], obtained
by appending to x〈i〉 its first letter, belongs to MFx̃

.
Conversely, if a word of maximal length m + 1 is in MFx̃

, then its maximal
proper prefix and its maximal proper suffix are words of length m in Fx̃, so they
must be consecutive rotations of x.

Therefore, the number of words of maximal length m + 1 in MFx̃
equals the

number of distinct rotations of x, hence the statement follows. ��

This is in sharp contrast with the situation for linear words, where the set
of minimal absent words can be represented on a trie having size linear in the
length of the word. Indeed, the algorithm MF-trie, introduced in [9], builds
the tree-like deterministic automaton accepting the set of minimal absent words
for a word x taking as input the factor automaton of x, that is the minimal
deterministic automaton recognizing the set of factors of x. The leaves of the
trie correspond to the minimal absent words for x, while the internal states are
those of the factor automaton. Since the factor automaton of a word x has less
than 2|x| states (for details, see [8]), this provides a representation of the minimal
absent words of a word of length n in space O(σn).

This algorithmic drawback leads us to the second definition. This second def-
inition of minimal absent words for circular strings has been already introduced
in [26,27]. First, we give a combinatorial result which shows that when consider-
ing circular words it does not make sense to look at absent words obtained from
more than two rotations.

Linear-Time Sequence Comparison Using Minimal Absent Words 341

Lemma 3. For any positive integer k and any word u, the set V = {v | k|u|+1 <
|v| ≤ (k + 1)|u|} ∩ (Muk+1 \ Muk) is empty.

Proof. This obviously holds for all words u of length 1. Assume towards a con-
tradiction that this is not the case in general. Hence, there must exist a word
v of length m that fulfills the conditions in the lemma, thus v ∈ V and m > 2.
Furthermore, since the length m − 1 prefix and the length m − 1 suffix of every
minimal absent word occur in the main word at non-consecutive positions, there
must exist positions i < j ≤ n = |u| such that

v[1 . . m − 2] = uk+1[i + 1 . . i + m − 2] = uk+1[j + 1 . . j + m − 2]. (1)

Obviously, following Eq. (1), since m − 2 ≥ kn, we have that v[1 . . m − 2] is
(j−i)-periodic. But, we know that v[1 . . m−2] is also n-periodic. Thus, following
a direct application of the periodicity lemma we have that v[1 . . m − 2] is p =
gcd(j−i, n)-periodic. But, in this case we have that u is p-periodic, and, therefore,
u[i] = u[j], which leads to a contradiction with the fact that v is a minimal absent
word, whenever i is defined. Thus, it must be the case that i = −1. Using the
same strategy and looking at positions u[i+m−2] and u[j +m−2], we conclude
that j + m − 2 = (k + 1)n. Therefore, in this case, we have that m = kn + 1,
which is a contradiction with the fact that the word v fulfills the conditions of
the lemma. This concludes the proof. ��

Observe now that the set V consists in fact of all extra minimal absent words
generated whenever we look at more than one rotation, that do not include the
length arguments. That is, V does not include the words bounding the maximum
length that a word is allowed, nor the words created, or lost, during a further
concatenation of an image of u. However, when considering an iterative con-
catenation of the word, these extra elements determined by the length constrain
cancel each other.

As observed in Sect. 2, two rotations of the same word x generate two lan-
guages that have the same set of factors. So, we can unambiguously associate to
a circular word x̃ the (infinite) factorial language Fx̃∗ . It is therefore natural to
define the set of minimal absent words for the circular word x̃ as the set MFx̃∗ .
For instance, if x̃ = abaab, then we have

MFx̃∗ = {aaa, aabaa, babab, bb}.

This second definition is much more efficient in terms of space, as we show
below. In particular, the length of the words in MFx̃∗ is bounded from above by
|x|, hence MFx̃∗ is a finite set.

Recall that a word x is a power of a word y if there exists a positive integer
k > 1 such that x is expressed as k consecutive concatenations of y, denoted
by x = yk. Conversely, a word x is primitive if x = yk implies k = 1. Notice
that a word is primitive if and only if any of its rotation is. We can therefore
extend the definition of primitivity to circular words. The definition of MFx̃∗
does not allow one to uniquely reconstruct x̃ from MFx̃∗ , unless x̃ is known

342 M. Crochemore et al.

to be primitive, since it is readily verified that Fx̃∗ = Fx̃x∗ and therefore also
the minimal absent words of these two languages coincide. However, from the
algorithmic point of view, this issue can be easily managed by storing the length
|x| of a linearization x of x̃ together with the set MFx̃∗ . Moreover, in most
practical cases, for example when dealing with biological sequences, it is highly
unlikely that the circular word considered is not primitive.

The difference between the two definitions above is presented in the next
lemma.

Lemma 4. MFx̃∗ = MFx̃
∩ Σ≤|x|.

Proof. Clearly, Fx̃∗ ∩Σ≤|x| = Fx̃. The statement then follows from the definition
of minimal absent words. ��

Based on the previous discussion, we set Mx̃ = MFx̃∗ , while the following
corollary comes straightforwardly as a consequence of Lemma 3.

Corollary 5. Let x̃ be a circular word. Then Mx̃ = M|x|
xx.

Corollary 5 was first introduced as a definition for the set of minimal absent
words of a circular word in [26]. Using the result of Corollary 5, we can easily
extend the algorithm described in the previous section to the case of circular
words. That is, given two circular words x̃ of length m and ỹ of length n, we can
compute in time and space O(m+n) the quantity LW(Mx̃,Mỹ). We obtain the
following result.

Theorem 6. Problem MAW-CircularSequenceComparison can be solved
in time and space O(m + n).

5 Implementation and Applications

We implemented the presented algorithms as programme scMAW to perform
pairwise sequence comparison for a set of sequences using minimal absent words.
scMAW uses programme MAW [2] for linear-time and linear-space computation
of minimal absent words using suffix array. scMAW was implemented in the C
programming language and developed under GNU/Linux operating system. It
takes, as input argument, a file in MultiFASTA format with the input sequences,
and then any of the two methods, for linear or circular sequence comparison, can
be applied. It then produces a file in PHYLIP format with the distance matrix
as output. Cell [x, y] of the matrix stores LW(Mx,My) (or LW(Mx̃,Mỹ) for the
circular case). The implementation is distributed under the GNU General Public
License (GPL), and it is available at http://github.com/solonas13/maw, which is
set up for maintaining the source code and the man-page documentation. Notice
that all input datasets and the produced outputs referred to in this section are
publicly maintained at the same web-site.

An important feature of the proposed algorithms is that they require space
linear in the length of the sequences (see Theorems 1 and 6). Hence, we were also

http://github.com/solonas13/maw

Linear-Time Sequence Comparison Using Minimal Absent Words 343

able to implement scMAW using the Open Multi-Processing (OpenMP) PI for
shared memory multiprocessing programming to distribute the workload across
the available processing threads without a large memory footprint.

Application. Recently, there has been a number of studies on the biological
significance of absent words in various species [1,16,31]. In [16], the authors
presented dendrograms from dinucleotide relative abundances in sets of minimal
absent words for prokaryotes and eukaryotic genomes. The analyses support the
hypothesis that minimal absent words are inherited through a common ancestor,
in addition to lineage-specific inheritance, only in vertebrates. Very recently,
in [31], it was shown that there exist three minimal words in the Ebola virus
genomes which are absent from human genome. The authors suggest that the
identification of such species-specific sequences may prove to be useful for the
development of both diagnosis and therapeutics.

In this section, we show a potential application of our results for the construc-
tion of dendrograms for DNA sequences with circular structure. Circular DNA
sequences can be found in viruses, as plasmids in archaea and bacteria, and in the
mitochondria and plastids of eukaryotic cells. Circular sequence comparison thus
finds applications in several contexts such as reconstructing phylogenies using
viroids RNA [24] or Mitochondrial DNA (MtDNA) [17]. Conventional tools to
align circular sequences could yield an incorrectly high genetic distance between
closely-related species. Indeed, when sequencing molecules, the position where
a circular sequence starts can be totally arbitrary. Due to this arbitrariness, a
suitable rotation of one sequence would give much better results for a pairwise
alignment [4,18]. In what follows, we demonstrate the power of minimal absent
words to pave a path to resolve this issue by applying Corollary 5 and Theo-
rem 6. Next we do not claim that a solid phylogenetic analysis is presented but
rather an investigation for potential applications of our theoretical findings.

We performed the following experiment with synthetic data. First, we sim-
ulated a basic dataset of DNA sequences using INDELible [14]. The number of
taxa, denoted by α, was set to 12; the length of the sequence generated at the
root of the tree, denoted by β, was set to 2500bp; and the substitution rate,
denoted by γ, was set to 0.05. We also used the following parameters: a deletion
rate, denoted by δ, of 0.06 relative to substitution rate of 1; and an insertion
rate, denoted by ε, of 0.04 relative to substitution rate of 1. The parameters
were chosen based on the genetic diversity standard measures observed for sets
of MtDNA sequences from primates and mammals [4]. We generated another
instance of the basic dataset, containing one arbitrary rotation of each of the
α sequences from the basic dataset. We then used this randomized dataset as
input to scMAW by considering LW(Mx̃,Mỹ) as the distance metric. The out-
put of scMAW was passed as input to NINJA [33], an efficient implementation
of neighbor-joining [30], a well-established hierarchical clustering algorithm for
inferring dendrograms (trees). We thus used NINJA to infer the respective tree
T1 under the neighbor-joining criterion. We also inferred the tree T2 by following
the same pipeline, but by considering LW(Mx,My) as distance metric, as well as
the tree T3 by using the basic dataset as input of this pipeline and LW(Mx̃,Mỹ)

344 M. Crochemore et al.

Table 1. Accuracy measurements based on relative pairwise RF distance

Dataset < α, β, γ, δ, ε > T1 vs. T3 T2 vs. T3

< 12, 2500, 0.05, 0.06, 0.04 > 100 % 100 %

< 12, 2500, 0.20, 0.06, 0.04 > 100 % 88,88 %

< 12, 2500, 0.35, 0.06, 0.04 > 100 % 100 %

< 25, 2500, 0.05, 0.06, 0.04 > 100 % 100 %

< 25, 2500, 0.20, 0.06, 0.04 > 100 % 100 %

< 25, 2500, 0.35, 0.06, 0.04 > 100 % 100 %

< 50, 2500, 0.05, 0.06, 0.04 > 100 % 97,87 %

< 50, 2500, 0.20, 0.06, 0.04 > 100 % 97,87 %

< 50, 2500, 0.35, 0.06, 0.04 > 100 % 100 %

as distance metric. Hence, notice that T3 represents the original tree. Finally, we
computed the pairwise Robinson-Foulds (RF) distance [29] between: T1 and T3;
and T2 and T3.

Let us define accuracy as the difference between 1 and the relative pairwise
RF distance. We repeated this experiment by simulating different datasets <
α, β, γ, δ, ε > and measured the corresponding accuracy. The results in Table 1
(see T1 vs. T3) suggest that by considering LW(Mx̃,Mỹ) we can always re-
construct the original tree even if the sequences have first been arbitrarily rotated
(Corollary 5). This is not the case (see T2 vs. T3) if we consider LW(Mx,My).
Notice that 100% accuracy denotes a (relative) pairwise RF distance of 0.

6 Final Remarks

In this article, complementary to measures that refer to the composition of
sequences in terms of their constituent patterns, we considered sequence com-
parison using minimal absent words, information about what does not occur
in the sequences. We presented the first linear-time and linear-space algorithm
to compare two sequences by considering all their minimal absent words (The-
orem 1). In the process, we presented some results of combinatorial interest,
and also extended the proposed techniques to circular sequences. The power of
minimal absent words is highlighted by the fact that they provide a tool for
sequence comparison that is as efficient for circular as it is for linear sequences
(Corollary 5 and Theorem 6); whereas, this is not the case, for instance, using
the general edit distance model [21]. Finally, a preliminary experimental study
shows the potential of our theoretical findings.

Our immediate target is to consider the following incremental version of the
same problem: given an appropriate encoding of a comparison between sequences
x and y, can one incrementally compute the answer for x and ay, and the answer
for x and ya, efficiently, where a is an additional letter? Incremental sequence
comparison, under the edit distance model, has already been considered in [20].

Linear-Time Sequence Comparison Using Minimal Absent Words 345

In [18], the authors considered a more powerful generalization of the q-gram
distance (see [32] for definition) to compare x and y. This generalization com-
prises partitioning x and y in β blocks each, as evenly as possible, computing
the q-gram distance between the corresponding block pairs, and then summing
up the distances computed blockwise to obtain the new measure. We are also
planning to apply this generalization to the similarity measure studied here and
evaluate it using real and synthetic data.

Acknowledgements. We warmly thank Alice Heliou for her inestimable code contri-
bution and Antonio Restivo for useful discussions. Gabriele Fici’s work was supported
by the PRIN 2010/2011 project “Automi e Linguaggi Formali: Aspetti Matematici
e Applicativi” of the Italian Ministry of Education (MIUR) and by the “National
Group for Algebraic and Geometric Structures, and their Applications” (GNSAGA –
INdAM). Robert Mercaş’s work was supported by the P.R.I.M.E. programme of DAAD
co-funded by BMBF and EU’s 7th Framework Programme (grant 605728). Solon P.
Pissis’s work was supported by a Research Grant (#RG130720) awarded by the Royal
Society.

References

1. Acquisti, C., Poste, G., Curtiss, D., Kumar, S.: Nullomers: really a matter of
natural selection? PLoS ONE 2(10), e1022 (2007)

2. Barton, C., Heliou, A., Mouchard, L., Pissis, S.P.: Linear-time computation of
minimal absent words using suffix array. BMC Bioinform. 15, 388 (2014)

3. Barton, C., Heliou, A., Mouchard, L., Pissis, S.P.: Parallelising the computation
of minimal absent words. In: PPAM, LNCS. Springer, Heidelberg (2015)

4. Barton, C., Iliopoulos, C.S., Kundu, R., Pissis, S.P., Retha, A., Vayani, F.: Accu-
rate and efficient methods to improve multiple circular sequence alignment. In:
Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 247–258. Springer, Heidelberg
(2015)

5. Béal, M., Mignosi, F., Restivo, A., Sciortino, M.: Forbidden words in symbolic
dynamics. Adv. Appl. Math. 25(2), 163–193 (2000)

6. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct rep-
resentations of the bidirectional burrows-wheeler transform. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 133–144. Springer, Heidelberg
(2013)

7. Chairungsee, S., Crochemore, M.: Using minimal absent words to build phylogeny.
Theor. Comput. Sci. 450, 109–116 (2012)

8. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press, New York, NY, USA (2007)

9. Crochemore, M., Mignosi, F., Restivo, A.: Automata and forbidden words. Inf.
Process. Lett. 67, 111–117 (1998)

10. Domazet-Lošo, M., Haubold, B.: Efficient estimation of pairwise distances between
genomes. Bioinformatics 25(24), 3221–3227 (2009)

11. Fici, G.: Minimal Forbidden Words and Applications. Ph.D. thesis, Université de
Marne-la-Vallée (2006)

12. Fischer, J.: Inducing the LCP-array. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.)
WADS 2011. LNCS, vol. 6844, pp. 374–385. Springer, Heidelberg (2011)

346 M. Crochemore et al.

13. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

14. Fletcher, W., Yang, Z.: INDELible: a flexible simulator of biological sequence evo-
lution. Mol. Biol. Evol. 26(8), 1879–1888 (2009)

15. Fukae, H., Ota, T., Morita, H.: On fast and memory-efficient construction of an
antidictionary array. In: ISIT, pp. 1092–1096. IEEE (2012)

16. Garcia, S.P., Pinho, A.J., Rodrigues, J.M.O.S., Bastos, C.A.C., Ferreira, P.J.S.G.:
Minimal absent words in prokaryotic and eukaryotic genomes. PLoS ONE 6(1),
e16065 (2011)

17. Goios, A., Pereira, L., Bogue, M., Macaulay, V., Amorim, A.: mtDNA phylogeny
and evolution of laboratory mouse strains. Genome Res. 17(3), 293–298 (2007)

18. Grossi, R., Iliopoulos, C.S., Mercaş, R., Pisanti, N., Pissis, S.P., Retha, A., Vayani,
F.: Circular sequence comparison with q-grams. In: Pop, M., Touzet, H. (eds.)
WABI 2015. LNCS, vol. 9289, pp. 203–216. Springer, Heidelberg (2015)

19. Ilie, L., Navarro, G., Tinta, L.: The longest common extension problem revisited
and applications to approximate string searching. J. Discrete Algorithms 8(4),
418–428 (2010)

20. Landau, G.M., Myers, E.W., Schmidt, J.P.: Incremental string comparison. SIAM
J. Comput. 27(2), 557–582 (1998)

21. Maes, M.: On a cyclic string-to-string correction problem. Inf. Process. Lett. 35(2),
73–78 (1990)

22. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

23. Mignosi, F., Restivo, A., Sciortino, M.: Words and forbidden factors. Theor. Com-
put. Sci. 273(1–2), 99–117 (2002)

24. Mosig, A., Hofacker, I.L., Stadler, P.F.: Comparative analysis of cyclic sequences:
viroids and other small circular RNAs. GCB, LNI 83, 93–102 (2006)

25. Nong, G., Zhang, S., Chan, W.H.: Linear suffix array construction by almost pure
induced-sorting. In: DCC, pp. 193–202. IEEE (2009)

26. Ota, T., Morita, H.: On a universal antidictionary coding for stationary ergodic
sources with finite alphabet. In: ISITA, pp. 294–298. IEEE (2014)

27. Ota, T., Morita, H.: On antidictionary coding based on compacted substring
automaton. In: ISIT, pp. 1754–1758. IEEE (2013)

28. Pinho, A.J., Ferreira, P.J.S.G., Garcia, S.P., Rodrigues, J.M.O.S.: On finding min-
imal absent words. BMC Bioinform. 10(1), 1 (2009)

29. Robinson, D., Fould, L.: Comparison of phylogenetic trees. Math. Biosci. 53(1–2),
131–147 (1981)

30. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

31. Silva, R.M., Pratas, D., Castro, L., Pinho, A.J., Ferreira, P.J.S.G.: Three minimal
sequences found in Ebola virus genomes and absent from human DNA. Bioinfor-
matics 31(15), 2421–2425 (2015)

32. Ukkonen, E.: Approximate string-matching with q-grams and maximal matches.
Theor. Comput. Sci. 92(1), 191–211 (1992)

33. Wheeler, T.J.: Large-scale neighbor-joining with NINJA. In: Salzberg, S.L.,
Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 375–389. Springer, Heidelberg
(2009)

The Grandmama de Bruijn Sequence
for Binary Strings

Patrick Baxter Dragon, Oscar I. Hernandez, and Aaron Williams(B)

Division of Science, Math and Computing, Bard College at Simon’s Rock,
Great Barrington, USA

{pdragon,ohernandez13}@simons-rock.edu, haron@uvic.ca

Abstract. A de Bruijn sequence is a binary string of length 2n which,
when viewed cyclically, contains every binary string of length n exactly
once as a substring. Knuth refers to the lexicographically least de Bruijn
sequence for each n as the “granddaddy” and Fredricksen et al. showed
that it can be constructed by concatenating the aperiodic prefixes of the
binary necklaces of length n in lexicographic order. In this paper we prove
that the granddaddy has a lexicographic partner. The “grandmama”
sequence is constructed by instead concatenating the aperiodic prefixes
in co-lexicographic order. We explain how our sequence differs from the
previous sequence and why it had not previously been discovered.

Keywords: de Bruijn sequence · Lexicographic order · Necklace · Lyn-
don word · FKM construction · Ford sequence

1 Introduction

Let B(n) be the set of binary strings of length n. A de Bruijn sequence is a
binary string of length 2n that contains each element of B(n) as a substring that
is allowed to wrap-around from the end to the beginning. For example,

D = 0000100110101111 (1)

is a de Bruijn sequence for n = 4 since its substrings are

0000, 0001, 0010, 0100, 1001, 0011, 0110, 1101,

1010, 0101, 1011, 0111, 1111, 1110, 1100, 1000,

where the last three substrings wrap-around. Another example for n = 4 is

M = 0000101001101111. (2)

Although D and M are not equal, they are equivalent, meaning that they are in
the same equivalence class generated by the following operations:

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 347–361, 2016.
DOI: 10.1007/978-3-662-49529-2 26

348 P.B. Dragon et al.

– rotation which maps b1b2 · · · b2n to b2 · · · b2nb1;
– complementation which maps b1b2 · · · b2n to b1b2 · · · b2n where b = 1 − b;
– reversal which maps b1b2 · · · b2n to b2n · · · b2b1.
In particular, the sequences in (1) and (2) are complemented reversals of each
other.

De Bruijn sequences are often used in the education of discrete mathematics
and theoretical computer science (see Concrete Mathematics by Knuth, Patash-
nik, and Graham [7]). Historically, they have been used in many interesting
applications (see the ‘Memory Wheels’ chapter in Mathematics: The Man-Made
Universe [18]). More recently they have been used in genome assembly [2]. For
these reasons it is helpful to have simple constructions and algorithms for gen-
erating specific de Bruijn sequences.

The most well-known de Bruijn sequence for each n is the lexicographically-
least, which means the first in lexicographic order when viewed as a binary string
of length 2n. In particular, the lexicographically-least for n = 4 is D from (1).

Lexicographically-least de Bruijn sequences were first constructed greed-
ily for all n by Martin in 1934 [9], and Knuth refers to Martin’s construc-
tion as the “granddaddy of all de Bruijn sequence constructions” [8]. We fol-
low Knuth’s playful nomenclature, although we use granddaddy to refer to the
lexicographically-least de Bruijn sequence, instead of Martin’s construction of
it. (The term Ford sequence also describes these sequences due to Ford’s inde-
pendent work [4].)

The granddaddy can be efficiently generated using the FKM construction,
which is named after the work of Fredricksen, Kessler, and Maiorana [5,6]. The
construction uses the concepts of necklaces, Lyndon words, and aperiodic pre-
fixes. For the purposes of this introduction it is sufficient to know the following:

– The set of necklaces for n = 4 is {0000, 0001, 0011, 0101, 0111, 1111}.
– The Lyndon words whose length divides n = 4 are {0, 0001, 0011, 01, 0111, 1}.
– The aperiodic prefixes of 0000, 0101, and 1111 are respectively 0, 01, and 1.

The FKM construction is defined in one of two ways:

1. Concatenate the Lyndon words whose length divides n in lexicographic order.
2. Concatenate the aperiodic prefixes of the necklaces of length n in lexico-

graphic order.

The two definitions always give identical concatenations, although the distinction
will prove to be important. The result for n = 4 matches D from (1) as follows:

D = 0 · 0001 · 0011 · 01 · 0111 · 1. (3)

We provide a new de Bruijn sequence that is closely-related to the grand-
daddy, yet non-equivalent for n ≥ 6. The grandmama is obtained by changing
lexicographic order to co-lexicographic order in the necklace-based definition of
the FKM construction1. The result for n = 4 matches M from (2) as follows:

M = 0 · 0001 · 01 · 0011 · 0111 · 1. (4)
1 Note: In the grandmama construction the necklaces are still the lexicographically

least representatives for their rotational equivalence class, as clarified in Sect. 4.1.

The Grandmama de Bruijn Sequence for Binary Strings 349

Co-lexicographic order is the same as lexicographic order, except that strings
are compared symbol-by-symbol from right-to-left instead of left-to-right. For
example, if α = 0011 and β = 0101, then α comes before β in lexicographic order,
but α comes after β in co-lexicographic order. This change is the only difference
between the granddaddy and grandmama when n = 4, as seen by the aperiodic
prefixes 0011 and 01 swapping places in (3) and (4). Surprisingly, the Lyndon word
definition of the FKM construction does not create a de Bruijn sequence when
using co-lexicographic order. In particular, when n = 4 the concatenation gives

0 · 1 · 01 · 0001 · 0011 · 0111 = 0101000100110111, (5)

which is not a de Bruijn sequence because it does not contain 0000 or 1111, and
instead has duplicates of 1010 and 1101. Although this modification of the FKM
construction does not work, our positive result suggests that the granddaddy and
grandmama sequences are part of a larger family of de Bruijn sequences that can
be generated using generalizations of the FKM construction. Also, the specific
definition of the FKM construction is crucial when considering generalizations.

The remainder of the paper is organized as follows:

– Section 2 defines the FKM construction and granddaddy de Bruijn sequence.
– Section 3 focuses on necklaces in co-lexicographic order.
– Section 4 gives our new construction and verifies its correctness.
– Section 5 investigates the originality of our new sequence, including its non-

equivalence to the granddaddy sequence for n ≥ 6, and the necessity of using
necklaces instead of Lyndon words with its FKM construction.

– Section 6 concludes with additional observations and open problems.

2 The Granddaddy de Bruijn Sequence

2.1 Necklaces and Lyndon Words

We define an equivalence relation on the set of binary strings of length n as fol-
lows: two strings are equivalent if one is a rotation of the other. The equivalence
classes with respect to this relation are called necklace classes. For example, the
necklace class for n = 4 containing the string 1000 is {0001, 0010, 0100, 1000}.
The preferred representatives for necklace classes are the lexicographically-least,
and are called necklaces representatives or often, simply necklaces. For example,
the necklace for the necklace class given above is 0001. Let N(n) denote the set
of necklaces of length n. For example,

N(4) = {0000, 0001, 0011, 0101, 0111, 1111}.

A string α is called periodic if it can be written as α = βk, for some integer
k > 1. Otherwise, the string is called aperiodic. For example, 01010101 = (01)4,
and so 01010101 is periodic. In contrast, the string 00101101 is aperiodic.

Given a string α, its aperiodic prefix, denoted ap(α), is its shortest prefix β
such that α = βk for some integer k ≥ 1. We define the period of α to be |ap(α)|.

350 P.B. Dragon et al.

For example, if α = 01010101 then ap(α) = 01 and α has period two. Note, if α
is aperiodic, then ap(α) = α, and the period of α is its length |α|.

An aperiodic necklace is called a Lyndon word. Let L(n) denote the set of
Lyndon words of length n. For example, L(4) = {0001, 0011, 0111}.

2.2 FKM Construction

The FKM construction of the granddaddy de Bruijn sequence Gd(n) can be
defined in two ways:

Definition 1. Gd(n) = L1L2 . . . Lm, where L1, L2, . . . , Lm lists the Lyndon
words whose lengths divide n, in lexicographic order.

Definition 2. Gd(n) = ap(α1) · ap(α2) · · · ap(αk), where α1, α2, . . . , αk lists the
necklaces of length n, in lexicographic order.

For example, choose n = 4. The divisors of 4 are 1, 2, and 4 and the corre-
sponding Lyndon words are

L(1) = {0, 1} and L(2) = {01} and L(4) = {0001, 0011, 0111}.

In lexicographic order these Lyndon words are 0, 0001, 0011, 01, 0111, 1. Con-
catenating them gives the sequence Gd(4) = 0000100110101111 which matches
D from (1) and (3). On the other hand, the necklaces for n = 4 were listed in
N(4) above. Their aperiodic prefixes are 0, 0001, 0011, 01, 0111, 1. We see that
Gd(4) coincides with the Lyndon word definition.

Notice that Definition 1 requires lexicographic order to be defined on strings
of different lengths, whereas Definition 2 does not. We give a precise definition
of lexicographic order in Sect. 3. Regardless of which definition is used, Gd(n) is
the lexicographically least de Bruijn sequence. This property has been proven in
more general settings by Sawada, Williams, and Wong for binary [16] and k-ary
strings [17], and also for k-ary strings by Moreno and Perrin [12] based on [10].

Theorem 1 ([12,16]). Gd(n) is the lexicographically least de Bruijn sequence.

The distinction between Definitions 1 and 2 was discussed in Ruskey, Sawada,
and Williams [14] who suggested that Definition 2 lends itself more readily to
generalizations; the results of Sect. 5.2 further justify that opinion. This subtlety,
along with the literature’s predominant use of Definition 1 helps explain why our
otherwise natural result had not previously been discovered.

We also mention that there does not appear to be a direct analogue of Theo-
rem 1 for the grandmama sequence. In particular, the co-lexicographically least
de Bruijn sequence is simply the granddaddy written in reverse, and hence is
not equivalent to the grandmama.

The Grandmama de Bruijn Sequence for Binary Strings 351

3 Co-lexicographic Order of Necklaces

In this section we define co-lexicographic order and lexicographic order for arbi-
trary sets of binary strings. Then we specifically look at co-lexicographic order
for necklaces, and prove several small results that will be helpful in Sect. 4. For
convenience, we often use the term co-lex instead of co-lexicographic and lex
instead of lexicographic.

3.1 Co-lex vs. Lex

Suppose that L is an arbitrary set of binary strings. Let x/L denote the set of
strings of L with prefix x ∈ {0, 1} removed. More specifically,

x/L = {b2b3 . . . bn | b1b2 . . . bn ∈ L and b1 = x}.

The lexicographic order of L is defined recursively as follows:

lex(L) =

{
ε, 0 · lex(0/L), 1 · lex(1/L) if ε ∈ L

0 · lex(0/L), 1 · lex(1/L) if ε /∈ L

where ε denotes the empty string. Notice that this definition orders symbols as
ε < 0 < 1 and applies the order from left-to-right. Thus, prefixes of a given
string are ordered before the string itself. For example, 0 is ordered before 0001.

Co-lexicographic order maintains the symbol ordering as ε < 0 < 1 but it
applies this order from right-to-left. To formalize this idea, let L\x denote set of
strings of L with suffix x ∈ {0, 1} removed. That is,

L\x = {b1b2 . . . bn−1 | b1b2 . . . bn−1bn ∈ L and bn = x}
The co-lexicographic order of L is then defined recursively as follows:

colex(L) =

{
ε, colex(L\0) · 0, colex(L\1) · 1 if ε ∈ L

colex(L\0) · 0, colex(L\1) · 1 if ε /∈ L

Notice that in this definition the suffixes of a given string are ordered before the
string itself, so 01 is ordered before 0001.

3.2 Necklaces in Co-lex Order

Now we consider the necklaces of length n in co-lex order. We focus on the
co-lexicographic successor of a given necklace, which is the necklace that imme-
diately follows it in co-lex order. (The successor will be undefined for α = 1n

since this is the last necklace in co-lex order.)
We begin with the following lemma, which proves that necklaces are closed

under replacing any prefix of length k by k copies of 0. Before proving this lemma,
it is worth noting that necklaces are not closed under replacing any prefix of
length k by a lexicographically smaller prefix of length k. For example, consider
α = 0110111 ∈ N(7). If we replace α’s prefix 011 with the lexicographically
smaller 010, then the result is 0100111 /∈ N(7). On the other hand, if we replace
the prefix with 000 then the result is 0000111 ∈ N(7).

352 P.B. Dragon et al.

Lemma 1. If b1b2 . . . bn is a necklace, then 0kbk+1bk+2 . . . bn is a necklace for
each integer k such that 1 ≤ k ≤ n.

Proof. The proof is trivial when b1 . . . bn = 0n and when k = n, so we ignore
these cases. Thus, bn = 1 since 0n is the only necklace ending in 0. Without loss
of generality we can also assume that bk = 1 since it is sufficient to prove the
lemma for prefixes that end in 1. Therefore, bk = bn = 1 and k < n.

Let χ = x1 . . . xn = 0kbk+1 . . . bn. From our earlier choices, xn = bn = 1.
For the sake of contradiction, suppose that χ is not a necklace. Therefore, χ’s
lexicographically smallest rotation is xi . . . xnx1 . . . xi−1 for some i > 1. Now we
place two bounds on the value of i:

– i+k−1 < n. Since χ contains 0k, its smallest rotation’s prefix must also begin
with 0k. That is, xi . . . xi+k−1 = 0k. The inequality follows from the fact that
xn = 1.

– i > k + 1. Recall that x1 . . . xk = 0k. Therefore, if i ≤ k + 1 then the last
symbol in χ’s lexicographically smallest rotation is xi−1 = 0, which is not
possible since χ is not equal to 0n and so its smallest rotation cannot end
in 0.

These two bounds imply that xi . . . xi+k−1 = bi . . . bi+k−1. Therefore, b1 . . . bi+k−1

contains a substring equal to 0k. This contradicts that b1 . . . bn is a necklace
because bk = 1, and hence its prefix of length k is strictly larger than 0k. ��

Increment Index. Now we define a specific index for every necklace that has
a successor. We explain why the index is well-defined and provide an example
after the definition.

Definition 3. The increment index of necklace x1x2 . . . xn �= 1n is the smallest
index k such that xk = 0 and 0k−11xk+1xk+2 . . . xn is a necklace.

To see why the increment index is well-defined, let d be the largest index such
that xd = 0. Substituting x1 . . . xd with 0d−11 creates the string 0d−11n−d+1,
which is a necklace for all 1 ≤ d ≤ n.

Remark 1. The increment index is well-defined for all necklaces x1 . . . xn �= 1n.

The increment index is the smallest index in which this substitution creates
a necklace. For example, consider the necklace α = 00010010001011 ∈ N(14).
We consider the indices of the 0-bits from left-to-right:

– 10010010001011 /∈ N(14);
– 01010010001011 /∈ N(14);
– 00110010001011 /∈ N(14);
– 00001010001011 ∈ N(14).

Therefore, α’s increment index is k = 5.

The Grandmama de Bruijn Sequence for Binary Strings 353

Co-lex Successor. Now we prove that the successor in co-lex order is precisely
the necklace defined in Definition 3.

Lemma 2. The successor of necklace χ = x1 . . . xn �= 1n in co-lex order is
0k−11xk+1 . . . xn, where k is its increment index.

Proof. From Remark 1 we know that ψ = 0k−11xk+1 . . . xn is well-defined. Fur-
thermore, it is a necklace that appears after χ in co-lex order. Therefore, in order
to prove that 0k−11xk+1 . . . xn is the successor, we only need to prove that there
are no necklaces between χ and ψ in co-lex order.

For the sake of contradiction suppose that there is another necklace between
χ and ψ in co-lex order. This necklace must have suffix 1xj+1 . . . xn for some j
that satisfies xj = 0 and j < k. By Lemma 1 this implies that 0j−11xj+1 . . . xn

is a necklace. However, this contradicts the definition of χ’s increment index k.
��

Properties. When proving the correctness of the grandmama construction, we
will need to consider common substrings between successive necklaces, including
those that are periodic. We now prove three Lemmata and one remark related
to this goal.

Lemma 3. Suppose α = a1a2 . . . an and β = b1b2 . . . bn are consecutive neck-
laces in co-lex order, and i is the minimum value such that ai+1 . . . an =
bi+1 . . . bn. Then b1b2 . . . bi = 0i−11.

Proof. By Lemma 2, β is obtained from α by replacing its prefix a1 . . . ak by
0k−11. Therefore, the result follows by taking i = k. ��

Lemma 4. Suppose that β = b1 . . . bn and γ = c1 . . . cn are consecutive necklaces
in co-lex order, and j is the maximum value such that b1 . . . bj = c1 . . . cj. Then
b1 . . . bj = 0j.

Proof. By Lemma 2, γ’s prefix of the form 0k−11 differs from β’s prefix of length
k. Therefore, any common prefix is of the form 0j for some j ≤ k − 1. ��

Next we consider periodic necklaces and the necklaces that come immedi-
ately before and after. An example of Lemma 5 appears below, where underlines
illustrate the common suffix and prefix lengths with β:

α = 000011 001011 001011 001011
β = 001011 001011 001011 001011
γ = 000111 001011 001011 001011

Lemma 5. Suppose that β is a periodic necklace with β /∈ {0n, 1n}. Let ap(β) =
ζ = z1 . . . zj with z1 . . . zi+1 = 0i1 and k = n

j . The necklace before β is aperiodic
and shares the same suffix of length n−i−1, and the necklace after β is aperiodic
and shares the same prefix of length i.

354 P.B. Dragon et al.

Proof. Consider the string α = 0i+1zi+2 · · · zjζk−1. Note that α is a necklace
since 0i+1 is lexicographically least substring of length i + 1 in α. Furthermore,
α is aperiodic. The increment index of α is at least i due to the prefix 0i in ζ,
and it is at most i due to the necklace β. Therefore, the increment index of alpha
is equal to i, and hence α is followed by β in co-lex order by Lemma 2. Thus,
α shares the suffix zi+2zi+3 . . . zjζ

k−1 with β. Next notice that the increment
index of β is at least i + 2. Therefore, by Lemma 2, γ must begin with at least
i + 1 copies of 0. Hence γ shares the prefix 0i with β. ��

The following simplification of Lemma 5 will be helpful in Sect. 4.

Remark 2. If χ and ψ are consecutive necklaces in co-lex order, and ψ is periodic,
then ap(χ)ap(ψ) has ψ as a suffix.

4 The Grandmama de Bruijn Sequence

4.1 Definition

The grandmama sequence Gm(n) is constructed by concatenating the aperiodic
prefixes of necklaces in co-lex order as in Definition 2. It is important to note
that we still use the lexicographically least representative for each necklace. In
other words, co-lex order replaces lex order only in the ordering of the necklaces,
and not in the representatives of each necklace.

Definition 4. Let Gm(n) = ap(α1) ·ap(α2) · · · ap(αk) where α1, · · · , αk lists the
necklaces of length n in co-lex order.

For example, the necklaces of length 4 in co-lex order are given by

colex(N(4)) = 0000, 0001, 0101, 0011, 0111, 1111.

Therefore,

Gm(4) = ap(0000) · ap(0001) · ap(0101) · ap(0011) · ap(0111) · ap(1111)
= 0 · 0001 · 01 · 0011 · 0111 · 1
= 0000101001101111

which is M in (2). Recall that D and M in (1) and (2) are equivalent, so when
n = 4 the granddaddy sequence Gd(4) and the grandmama sequence Gm(4) are
equivalent. In Sect. 5 we will see that this equivalence does not hold for n ≥ 6.

4.2 Verification

Now we verify that Gm(n) is a de Bruijn sequence.

Theorem 2. Gm(n) is a de Bruijn sequence.

The Grandmama de Bruijn Sequence for Binary Strings 355

Proof. Observe that |Gm(n)| = 2n since it is a reordering of the bits in Gd(n).
Thus, we can prove that Gm(n) is a de Bruijn sequence by showing that it
contains every n-bit binary string when Gm(n) is viewed cyclically. To prove
this we consider an arbitrary necklace β, and we prove that each rotation of β
appears as a substring in Gm(n) when Gm(n) is viewed cyclically. For clarity we
often underline the specific rotations.

Case One: β = 0m1n−m for some 0 ≤ m ≤ n. This case covers the first two
necklaces in co-lex order, namely 0n and 0n−11, and the last two necklaces in co-
lex order, namely 01n−1 and 1n. Also, note that Gm(n) has suffix 1n and prefix
0n, from ap(01n−1) · ap(1n) = 01n and ap(0n) · ap(01n−1) = 0n1, respectively.
Therefore, all of the substrings that “wrap-around” in Gm(n) have the form 1∗0∗

and hence belong to a necklace of the form 0m1n−m. Therefore, this case also
covers all necklaces that have a rotation in the “wrap-around”.

If m = n, then the only rotation of β = 0n is in ap(0n)·ap(0n−11) = 0 · 0n−11.
If m = 0, then the only rotation of β = 1m is in ap(01n−1) · ap(1n) = 01n−11.
Otherwise, β has n distinct rotations, which we consider in the following cases:

– The rotation 0m1n−m is in ap(0m1n−m) = 0m1n−m.

– The rotation 1n−m0m is in ap(01n−1) · ap(1n) · ap(0n) · ap(0n−11) since this is
equal to 01n−1100n−11 = 01m1n−m0m0n−m1.

– Consider a rotation 0x1n−m0m−x with 0 < x < m. Let β′ be the last necklace
in co-lex order with suffix 0x1n−m and let γ′ be the necklace after β′ in co-lex
order. (The choice of β′ is well-defined since β has this suffix.) Therefore, the
increment index of β′ is greater than m − x, and by Lemma 2 γ′ has prefix
0m−x. Therefore, ap(β′) · ap(γ′) contains 0x1n−m · 0m−x.

– Consider a rotation 1x0m1n−m−x with 0 < x < n − m. Let α be the last
necklace in co-lex order with suffix 01n−m−1. Notice that ap(α) must also
have suffix 01n−m−1. Furthermore, the necklace following α in co-lex order
will be the first necklace with suffix 1n−m, which is β. Therefore, ap(α) ·ap(β)
contains 01n−m−1 · 0m1n−m which itself contains 1x · 0m1n−m−x.

Case Two: β is periodic and β /∈ {0n, 1n}. Let |ap(β)| = j and so β has j
distinct rotations. By our choice of β, it must have a prefix of the form 0i1 for
some positive integer i < n. Let α and γ be the necklaces immediately before and
after β, respectively. By Lemma 5, α shares a suffix of length n− (i+ 1) with β,
and γ shares a prefix of length i with β. Furthermore, both α and γ are aperiodic.
Thus, ap(α) ·ap(β) ·ap(γ) has a substring of length n− (i+1)+ j + i = n+ j −1
which contains all j rotations of β.

Case Three: β = b1b2 · · · bn is aperiodic and β �= 0m1n−m for any 0 ≤ m ≤ n.
Let α = a1a2 . . . an and γ = c1c2 . . . cn be the necklaces before and after β
respectively. By Remark 2, Gm(n) must contain the following substring,

α · β · ap(γ).

Now consider the values of i and j from Lemmas 3 and 4 respectively. Thus,

356 P.B. Dragon et al.

1. ai+1 . . . an = bi+1 . . . bn
2. b1 . . . bj = c1 . . . cj = 0j
3. b1 . . . bi = 0i−11

From items 2 and 3, j ≤ i − 1. Notice that the 0j prefix in γ is also in ap(γ).
(This is due to the fact that β �= 0n−11 and so the necklace following it in co-lex
order is not 0n.) Therefore, Gm(n) has the following substring:

ai+1 . . . anb1 . . . bnc1 . . . cj = bi+1 . . . bnb1 . . . bnb1 . . . bj .

Notice that n−i+j+1 distinct rotations of β are included in this substring. The
‘missing’ rotations of β are those starting from the symbols bj+2, bj+3, . . . , bi. (If
j = i − 1, then there are no ‘missing’ rotations of β.) Consider an arbitrary one
of these rotations bx . . . bnb1 . . . bx−1 where j + 2 ≤ x ≤ i. Notice the following:

– b1 . . . bx−1 = 0x−1 since x ≤ i.
– bx . . . bn is a suffix of β;
– bx . . . bn �= 1n−x+1 since otherwise β = 0m1n−m for some 0 ≤ m ≤ n.

Therefore, there exists a last necklace β′ in co-lex order whose suffix is bx . . . bn.
The next necklace γ′ in co-lex order must not have this suffix. Therefore, by
Lemma 2, γ′ has prefix 0x−1. Therefore, Gm(n) contains the following substring

bx . . . bn0x−1 = bx . . . bnb1 . . . bx−1

where periodicity is addressed as above. Hence, this ‘missing’ rotation is con-
tained in Gm(n) and similarly all ‘missing’ rotations can be found. ��

5 Originality of the Grandmama Sequence

In this section we give two results on the originality of the grandmama sequence:

5.1 Distinctness

In this subsection we prove that the granddaddy and grandmama sequences are
not equivalent for sufficiently large n. Recall that two de Bruijn sequences are
equivalent if one can be obtained from the other by rotations, complementations,
and reversals. For example, Gd(4) and Gm(4) are equivalent by complementation
and reversal. The same operations also show equivalence when n = 5. That is,

Gd(5)
R

= 00000100011001010011101011011111R

= 00000100101000110101100111011111
and Gm(5) = 00000100101000110101100111011111

where overline represents bitwise complement and R denotes reversal. However,
these operations do not show equivalence when n = 6 as shown below,

Gd(6)
R

= 0000001000011000101000111001001011001101001111010101110110111111
R

= 0000001001000101010000110100110010110110001110101110011110111111

but Gm(6) = 0000001001000101010011010000110010110110001110101110011110111111

The Grandmama de Bruijn Sequence for Binary Strings 357

where the non-equal bits appear in bold. In fact, no series of operations make the
sequences equal, so they are not equivalent. Although the sequences for n = 6 are
not equivalent, this example shows that they can have long prefixes and suffixes
in common up to reversal and complement. Thus, we will need to venture further
into the sequences to prove that they are distinct.

To formalize our results we use two equivalence relations on binary strings.
Rotational equivalence ≡r is simply equivalence under rotation. We previously
used this equivalence when defining necklaces, however it is helpful in this section
to have explicit notation. Its equivalence classes are defined as follows:

[b1b2 · · · bn]r = {bibi+1 · · · bnb1b2 · · · bi−1 | 1 ≤ i ≤ n}.

For example, the rotational equivalence class for the granddaddy Gd(3) is

[00010111]r = {00010111, 00101110, 01011100, 10111000, 01110001, 11100010, 11000101, 10001011}.

De Bruijn equivalence ≡dB matches our notion of equivalent de Bruijn
sequences, meaning equivalence under rotation, complementation, and reversal.
We define its equivalence classes below as the union of four rotational equivalence
classes:

[b1b2 · · · bn]dB = [b1b2 · · · bn]r ∪ [b1b2 · · · bn]r ∪ [bn · · · b2b1]r ∪ [bn · · · b2b1]r. (6)

For example, the de Bruijn equivalence class for Gd(3) is

[00010111]r = [00010111]r ∪ [11101000]r ∪ [11101000]r ∪ [00010111]r = [00010111]r ∪ [11101000]r

= {00010111, 00101110, 01011100, 10111000, 01110001, 11100010, 11000101, 10001011} ∪

{11101000, 11010001, 10100011, 01000111, 10001110, 00011101, 00111010, 01110100}.

We now proceed with two lemmas.

Lemma 6. When viewed cyclically, every de Bruijn sequence for the binary
strings of length n contains exactly one copy of 10n1 and 01n0 as substrings.

Proof. A de Bruijn sequence has exactly one copy of the substring 0n. Further-
more, this substring must be flanked on the left and right by 1s, since otherwise
it would contain 0n+1 and hence two copies of 0n. Therefore, it must contain
exactly one copy of 10n1. A similar argument works for 01n0. ��

The next lemma points out that the substrings discussed in Lemma 6 overlap
each other in both the granddaddy and grandmama.

Lemma 7. Both Gd(n) and Gm(n) contain exactly one copy of 01n0n1.

Proof. Both sequences contain ap(01n−1) · ap(1n) · ap(0n) · ap(0n−11) = 01n0n1,
and by Lemma 6 it is not possible for either to contain more than one copy. ��

358 P.B. Dragon et al.

The string in Lemma 7 has two properties: Its reverse equals its complement,
and its complemented reversal equals itself. That is,

01n0n1 = 10n1n0 = 01n0n1R and 01n0n1R = 01n0n1. (7)

Now we prove the main result of this subsection.

Theorem 3. The de Bruijn sequences Gd(n) and Gm(n) are not equivalent
under de Bruijn equivalence ≡dB for all n ≥ 6.

Proof. The definition of de Bruijn equivalence in (6) uses four rotational equiv-
alences. We consider each equivalence in turn and prove that it does not hold.

Case One: Gd(n) ≡r Gm(n).
The first three necklaces in lex and co-lex order are given below:

lex begins 0n, 0n−11, 0n−211

co-lex begins 0n, 0n−11, 0�n−2
2 �10�n−2

2 �1

Therefore, Gd(n) contains 0n10n−211 while Gm(n) contains 0n10� n−2
2 �10�n−2

2 �1.
These substrings are different for n ≥ 4. Furthermore, they both contain 0n.
Therefore, Gd(n) and Gm(n) are not rotationally equivalent by Lemma 6.

Case Two: Gd(n) ≡r Gm(n).
By Lemma 7, Gd(n) contains 01n0n1 while Gm(n) contains 10n1n0. These sub-
strings reverse the order of 0n and 1n, so Gd(n) and Gm(n) are not rotationally
equivalent by Lemma 6.

Case Three: Gd(n) ≡r Gm(n)R.
This case is identical to Case Two by (7).

Case Four: Gd(n) ≡r Gm(n)
R
.

In this case the string in Lemma 7 is not sufficient for distinguishing the two
sequences by itself due to (7), so we must consider more bits in the sequences.
The first eight necklaces in lex order and the last eight necklaces in co-lex order
are given below for any n ≥ 6:

lex begins 0n, 0n−11, 0n−211, 0n−3101, 0n−3111, 0n−41001, 0n−41011, 0n−41101

co-lex ends 00001n−4, 00101n−4, 01101n−4, 0001n−3, 0101n−3, 001n−2, 01n−1, 1n

When n ≥ 7 all of these necklaces are aperiodic except for 0n and 1n. Therefore,
when n ≥ 7 the granddaddy Gd(n) contains

00n−110n−2110n−31010n−31110n−410010n−410110n−41101 (8)

and the grandmama Gm(n) contains

00001n−400101n−401101n−40001n−30101n−3001n−201n−11. (9)

The Grandmama de Bruijn Sequence for Binary Strings 359

Thus, the complemented and reversed grandmama will contain the following

00n−110n−2110n−31010n−31110n−410010n−410110n−41111. (10)

Both (8) and (10) contain 0n, but they are not equal. Therefore, Gd(n) and

Gm(n)
R

are not rotationally equivalent for n ≥ 7 by Lemma 6. The non-
equivalence for n = 6 can be similarly derived with the periodicity of 0n−41001 =
001001 and 01101n−4 = 011011 changing the above concatenations slightly. ��

5.2 Lyndon Words in Co-lex Order

Now we return to the distinction between Definitions 1 and 2. While both defi-
nitions create the granddaddy sequence when using lex order, we will now show
that using co-lex order with Definition 1 does not create a de Bruijn sequence.
In particular, (5) showed that Definition 1 does not work for n = 4. More specif-
ically, the divisors of n = 4 are d = 1, 2, 4 and hence the concatenation gives

colex({0, 1} ∪ {01} ∪ {0001, 0011, 0111}) = 0 · 1 · 01 · 0001 · 0011 · 0111.

As previously mentioned, this is not a de Bruijn sequence since it does not contain
0000 and 1111 as a substring, and instead contains 1010 and 1101 twice. More
generally, Theorems 2 and 4 imply that only the FKM construction specified by
Definition 2 provides a de Bruijn sequence when using co-lex order.

Theorem 4. The Lyndon word definition of the FKM construction does not
create a de Bruijn sequence when using co-lex order for all n ≥ 4.

Proof. When n ≥ 4 the last two Lyndon words in co-lex order are 001n−2 and
01n−1, and the first two Lyndon words are 0 and 1. Thus, Definition 1 includes

001n−2 · 01n−1 · 0 · 1,

which is not part of a de Bruijn sequence since it has two copies of 1n−201. ��

6 Open Problems and Additional Results

6.1 Efficient Generation

The FKM construction allows the granddaddy sequence to be generated in amor-
tized O(1)-time per bit without creating the underlying de Bruijn graph or stor-
ing previously generated bits. This important result was obtained by generating
necklaces in lex order in amortized O(1)-time (see Ruskey, Savage, and Wang
[13]). If necklaces can be generated in amortized O(1)-time in co-lex order, then
that would lead to an amortized O(1)-time per bit algorithm for the grandmama
sequence. Fixed-weight binary necklaces (and Lyndon words) have already been
generated in amortized O(1)-time in co-lex order by Sawada and Williams [15].

360 P.B. Dragon et al.

6.2 Properties of the Grandmama Sequence

The ‘discrepancy’ of the granddaddy sequence has been analyzed [3]. Also, many
of its subsequences have been shown to provide de Bruijn sequences for certain
subsets of binary strings. For example, see Au [1], Moreno [11], and Sawada,
Williams, and Wong [16,17]. It will be interesting to further analyze the grand-
mama sequence for properties like these and others.

6.3 Generalization to Larger Alphabets

The authors have observed that Theorem 2 holds for k-ary strings, and will prove
this generalization in an upcoming paper.

The authors would like to thank Joe Sawada and the anonymous first reviewer
for many helpful comments.

References

1. Au, Y.H.: Shortest sequences containing primitive words and powers. Discrete
Math. 338(12), 2320–2331 (2015)

2. Compeau, P.E.C., Pevzner, P.A., Tesler, G.: How to apply de Bruijn graphs to
genome assembly. Nat. Biotechnol. 29, 987–991 (2011)

3. Cooper, J., Heitsch, C.: The discrepancy of the lex-least de Bruijn sequence. Dis-
crete Math. 310, 1152–1159 (2014)

4. Ford, L.R.: A cyclic arrangement of m-tuples. Report No. P-1071, RAND Corp.,
Santa Monica (1957)

5. Fredricksen, H., Kessler, I.J.: An algorithm for generating necklaces of beads in
two colors. Discrete Math. 61, 181–188 (1986)

6. Fredricksen, H., Maiorana, J.: Necklaces of beads in k colors and k-ary de Bruijn
sequences. Discrete Math. 23, 207–210 (1978)

7. Graham, R.L., Knuth, D.E., Patashnik, O., Mathematics, C.: A Foundation for
Computer Science, 2nd edn. Addison-Wesley Professional, Reading (1994)

8. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, vol.
4A. Addison-Wesley Professional, Boston (2011)

9. Martin, M.H.: A problem in arrangements. Bull. Am. Math. Soc. 40, 859–864
(1934)

10. Moreno, E.: On the theorem of Fredricksen and Maiorana about de Bruijn
sequences. Adv. Appl. Math. 33, 413–415 (2004)

11. Moreno, E.: On the theorem of Fredricksen and Maiorana about de Bruijn
sequences. Adv. Appl. Math. 33(2), 413–415 (2004)

12. Moreno, E., Perrin, D.: Corrigendum to “On the theorem of Fredricksen and Maio-
rana about de Bruijn sequences”. Adv. Appl. Math. 62, 184–187 (2015)

13. Ruskey, F., Savage, C.D., Wang, T.M.Y.: Generating necklaces. J. Algorithms
13(3), 414–430 (1992)

14. Ruskey, F., Sawada, J., Williams, A.: De Bruijn sequences for fixed-weight binary
strings. SIAM J. Discrete Math. 26(2), 605–617 (2012)

15. Sawada, J., Williams, A.: A Gray code for fixed-density necklaces and Lyndon
words in constant amortized time. Theoret. Comput. Sci. 502, 46–54 (2013)

The Grandmama de Bruijn Sequence for Binary Strings 361

16. Sawada, J., Williams, A., Wong, D.: The lexicographically smallest universal cycle
for binary strings with minimum specified weight. J. Discrete Algorithms 28, 31–40
(2014). StringMasters 2012 & 2013 Special Issue

17. Sawada, J., Williams, A., Wong, D., Generalizing the classic greedy, necklace con-
structions for de Bruijn sequences, universal cycles. Electron. J. Comb., 23(1)
(2016). Paper #1.24

18. Stein, S.K.: Mathematics: The Man-Made Universe, 3rd edn. W. H. Freeman and
Company, San Francisco (1994)

Compressing Bounded Degree Graphs

P̊al Grøn̊as Drange1, Markus Dregi1(B), and R.B. Sandeep2

1 Department of Informatics, University of Bergen, Bergen, Norway
{pal.drange,markus.dregi}@ii.uib.no

2 Department of CSE, IIT Hyderabad, Medak, India
cs12p0001@iith.ac.in

Abstract. Recently, Aravind et al. (IPEC 2014) showed that for any
finite set of connected graphs H, the problem H-Free Edge Deletion

admits a polynomial kernelization on bounded degree input graphs. We
generalize this theorem by no longer requiring the graphs in H to be
connected. Furthermore, we complement this result by showing that also
H-Free Edge Editing admits a polynomial kernelization on bounded
degree input graphs.

We show that there exists a finite set H of connected graphs such
that H-Free Edge Completion is incompressible even on input graphs
of maximum degree 5, unless the polynomial hierarchy collapses to the
third level. Under the same assumption, we show that C11-free Edge

Deletion—as well as H-Free Edge Editing—is incompressible on
2-degenerate graphs.

1 Introduction

Graph modification problems have been a fundamental part of computational
graph theory throughout its history [11, A1. GraphTheory]. In these classical
problems you are to apply at most k modifications to an input graph G to make
it adhere to a specific set of properties, where both the modifying operations
and the target properties are problem specific. Unfortunately, even when con-
sidering vertex deletion to hereditary graph classes, the modification problems
often regarded as the most tractable, almost all of them are NP-complete [17].
A similar dichotomy is yet to appear for edge modification problems and hence
the classical complexity landscape seems far more involved. However, various
results display the NP-hardness of the edge variants as well [3,7,19]. Due to this
inherent intractability we need to find other ways of coping. A well-established
tool for tackling hard problems, in practice as well as in theory, is preprocessing
of data. In theoretical computer science, preprocessing is best described within
the framework of parameterized complexity as kernelization. For our purposes
a problem admits a kernel of size f(k) if given a graph G and an integer k as

The research leading to these results has received funding from the TCS Research
Scholarship, Bergen Research Foundation under the project Beating Hardness by
Preprocessing and the European Research Council under the European Union’s Sev-
enth Framework Programme (FP/2007-2013) / ERC Grant Agreement no. 267959.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 362–375, 2016.
DOI: 10.1007/978-3-662-49529-2 27

Compressing Bounded Degree Graphs 363

input, one can in polynomial time output an equivalent instance (G′, k′) such
that both the size of G′ and the value k′ is bounded by f(k). If f is a polynomial
we say that the problem admits a polynomial kernelization.

In this paper we will restrict our attention to hereditary graph classes char-
acterized by finite sets of forbidden induced subgraphs. Hence, for every graph
class studied there is a set of finite graphs H such that a graph G is in the graph
class if and only if no graph in H is an induced subgraph of G. In this situation
Cai’s theorem [4] shows that all H-free modification problems are fixed parameter
tractable, that is, they are all solvable in time f(k) · poly(n). And furthermore,
every vertex deletion problem admits a classic O(kd) polynomial kernel, based
on the sunflower lemma [1,10]. However, for edge modification problems the
landscape is much less understood. In particular, P4-free edge deletion admits a
polynomial kernel, C4-free edge deletion does not and for S4 and the claw (K1,3),
nobody knows.

The edge modification problems characterized by a finite set of forbidden
induced subgraphs H are often referred to as H-Free Edge Completion,
H-Free Edge Deletion and H-Free Edge Editing, where one is to add,
remove or both add and remove k edges to make the graph H-free. In dealing with
the inherent intractability of graph modification problems Natanzon, Shamir,
and Sharan [18] suggested to study H-Free Edge Deletion on bounded degree
input graphs. Recently, following this direction of research, Aravind, Sandeep and
Sivadasan [2] were able to show that as long as every graph H ∈ H is connected,
the problem H-Free Edge Deletion admits a polynomial kernel of size

O
(
Δc · kd

)
,

where c is depending only on H and d on H and Δ. In particular, this yields a
polynomial kernel for every fixed maximum degree Δ.

The first result of the paper is several, simultaneously applicable improve-
ments upon the above mentioned result. First, we are able to remove the condi-
tion requiring all graphs of H to be connected. As many interesting graph classes
(threshold graphs, split graphs e.g.) are described by disconnected forbidden sub-
graphs, this is a major extension. Second, we complement it by proving that the
same kernels can be obtained when considering H-Free Edge Editing. And
third, we improve the kernel dependency on Δ. The novelty of our approach lies
within a better understanding of how forbidden subgraphs are introduced when
edges are modified in the input graph. Due to this, we can localize the crucial
part of the instance even when both forbidden subgraphs and modifications are
spread throughout the graph.

We continue by providing several hardness results. First, we prove that some-
what surprisingly the positive result does not extend to the completion variant.
Due to page restrictions, we have deferred some of the proofs from the kernel-
ization section to the full version. The statements to which these proofs belong
have been marked with a ♠.

364 P.G. Drange et al.

Table 1. Overview of polynomial kernelization complexity for graph modification on
bounded degree and degenerate input graphs. The table shows that there is no dis-
tinction between disconnected graphs, and that the completion variant is notoriously
incompressible—bounded degree does not help compressing completion problems.

Deletion Completion Editing Vertex deletion

bounded degree Yes ([2], Theorem4) No (Theorem1) Yes (Theorem4) Yes

2-degenerate No (Theorem3) No (Theorem1) No (Theorem2) Yes

Theorem 1 (♠). There exists a finite set H such that H-Free Edge Com-

pletion does not admit a polynomial kernel, even on input graphs of maximum
degree 5, unless NP ⊆ coNP/poly.

Furthermore, we prove that for both H-Free Edge Editing and H-Free Edge

Deletion there is no hope for polynomial kernels, even when restricted to 2-
degenerate graphs. It can easily be observed that the same proofs can be applied
to generalize the results to K9-minor free graphs.

Theorem 2 (♠). There is a finite set of connected graphs H such
that H-Free Edge Editing does not admit a polynomial kernel, even on
2-degenerate graphs, unless NP ⊆ coNP/poly.

Theorem 3 (♠). There is a finite set of connected graphs H such that
H-Free Edge Deletion does not admit a polynomial kernel, even on
2-degenerate graphs, unless NP ⊆ coNP/poly.

We now have complete information on the kernelization complexity of edge and
vertex modification problems when the target graph class is characterized by a
finite set of forbidden induced subgraphs, on bounded degree and 2-degenerate
input graphs. Recall that the yes answer for the vertex deletion version on general
graphs is obtained by a simple reduction from the H-Free Vertex Deletion

problem to the d-Hitting Set problem, which, using the sunflower lemma [8],
can be shown to admit a polynomial kernel [1].

Related work. One should note that many modification problems remains NP-
complete for bounded degree graphs. Komusiewicz and Uhlmann showed [15]
that even for simple cases like H = {P3}, the path on three vertices, H-Free
Edge Deletion—also known as Cluster Deletion—is NP-complete, even
on graphs of maximum degree 6. Later, it was also shown that P4-free Edge

Deletion and Editing (Cograph Editing) and {C4, P4}-free Edge Dele-

tion and Editing (Trivially Perfect Editing) [6] had similar properties;
NP-complete, even on graphs of maximum degree 4.

Gramm et al. [12], and Guo [14] showed kernels for several graph modifica-
tion problems to graph classes characterized by a finite set of forbidden induced

Compressing Bounded Degree Graphs 365

subgraphs. Several positive results followed, which led Fellows, Langston, Rosa-
mond, and Shaw to ask whether all H-free modification problems admit poly-
nomial kernels [9].

This was refuted by Kratsch and Wahlströ [16] who showed that for H = {H}
where H is a certain graph on seven vertices, H-Free Edge Deletion, as
well as H-Free Edge Editing, does not admit a polynomial kernel unless
NP ⊆ coNP/poly.1 Without stating it explicitly, but revealed by a more careful
analysis of the inner workings of their proofs, Kratsch and Wahlström actually
showed something even stronger; namely that the result holds when restricted
to 6-degenerate graphs, both for the deletion and for the editing version.

This line of research was followed up by Guillemot, Havet, Paul, and Perez
[13] showing large classes of simple graphs for which H-Free Edge Deletion

is incompressible, which was further developed by Cai and Cai [5]; Combining
these results, we now know that when H is a path or a cycle, H-Free Edge

Deletion, Editing and Completion is compressible if and only if H has at
most three edges, that is, only for the simplest graphs.

Notation

We consider only simple finite undirected graphs. Let G = (V,E) be a graph
on n vertices with v ∈ V . When X ⊆ V (G), we write G − X to denote the
graph (V \X,E). Similarly, when F ⊆ [V]2, we write G−F to denote the graph
(V,E \ F) and G�F to mean (V,E�F) where � is the symmetric difference
operator, i.e., A�B = (A \ B) ∪ (B \ A).

We say that a graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆
E(G) ∩ [V (H)]2. Furthermore, we say that H is an induced subgraph of G if
H is a subgraph of G and E(H) = E(G) ∩ [V (H)]2. For a set X ⊆ V (G)
we denote the induced subgraph of G with X as its vertices by G[X]. We lift
the notion of neighborhoods to subgraphs by letting N(H) = NG(V (H)) and
N [H] = NG[V (H)]. In addition, if H is a subgraph of G and F ⊆ E(G) we denote
by H�F the graph H�(F ∩ [V (H)]2). The diameter of a connected graph G,
denoted diam(G), is defined as the number of edges in a longest shortest path of
G, diam(G) = maxu,v∈V (G) distG(u, v). If G is disconnected, we define diam(G)
to be maxC diam(C), over all connected components C of G. For a graph G, a
vertex v ∈ V (G) and a set of vertices X ⊆ V (G) we define the distance from v to
X, denoted dist(v,X) as minu∈X dist(v, u). When provided with a non-negative
integer r in addition, we define the ball around X of radius r, denoted B(X, r),
as the set {v ∈ V (G) such that dist(v,X) ≤ r}.

Obstructions. An obstruction set H is a finite set of graphs. Given an obstruction
set H, a graph G and an induced subgraph H of G we say that H is an obstruction
in G if H is isomorphic to some element of H. If there is no obstruction H in
G we say that G is H-free. The size of the largest graph in H we denote by
1 NP ⊆ coNP/poly implies that PH is contained in Σp

3 . It is widely believed that
PH does not collapse, and hence it is also believed that NP �⊆ coNP/poly. We will
throughout this section assume that NP �⊆ coNP/poly.

366 P.G. Drange et al.

nH = max{|V (H)| for H ∈ H}. In addition, we lift the notation of diameter to
account for a finite set of graphs H, denoted diam(H), being the maximum of
diam G for G ∈ H.

Given a graph G and an integer k the problem H-Free Edge Deletion

asks whether there is a set F ⊆ E(G) with |F | ≤ k such that G − F is H-free.
And similarly, H-Free Edge Editing asks whether there is a set F ⊆ E(G)
with |F | ≤ k such that G�F is H-free. We say that a set of edges F is an
H-solution if G�F is H-free. When H is clear from context, we will refer to
F simply as a solution. When the problem at hand is the deletion problem, we
furthermore assume F ⊆ E(G), and when the problem at hand is the completion
problem, we assume F ∩ E(G) = ∅, as is expected.

Definition 1 (H-packing). Given a graph G and an obstruction H we say
that X ⊆ 2V (G) forms an H-packing in G if

(i) G[X] and H are isomorphic for every X ∈ X , and
(ii) X and Y are disjoint for every X,Y ∈ X .

Observation 1. Given a graph G and an obstruction H we can obtain a max-
imal H-packing X in O(n|V (H)|+1) time.

The problem we are dealing with in this article is the following, where we may
replace editing with deletion or completion, by simply putting restrictions on
where we chose F from.

Input: A graph G and an integer k
Parameter: k
Question: Is there a set F of at most k edges s.t. G�F is H-free?

H-Free Edge Editing

2 Graph Modification on Bounded Degree Graphs

In this section we prove that for any finite set of obstructions H, the problem of
deleting or editing at most k edges to make an input graph of bounded degree
H-free admits polynomial kernels. More precisely, both H-Free Edge Editing

and H-Free Edge Deletion admits polynomial kernels on bounded degree
graphs.

The argument consists of two parts. First, we identify a set of critical vertices
in the input graph G, called the obstruction core Z. Based on this set we can
decompose any set of modifications F in G. The decomposition leads to the
construction of a set of vertices in the graph, called the extended obstruction
core Z+. The first crucial property of Z+ is that if F modifies G[Z+] into an
H-free graph, then F also modifies G into an H-free graph. In other words, the
obstructions you want to eliminate in your graph, should be eliminated within
the extended obstruction core. The second crucial property is that the extended
obstruction core can be proved to live within a ball around the obstruction core,
were the radius depends on how well the solution decomposes. This ball will in
the end constitute the kernel.

Compressing Bounded Degree Graphs 367

In the second part of the argument we prove that every minimal solution
decomposes well. Hence we can bound the size of the ball containing the extended
obstruction core and obtain a kernel.

We point out that we have considered the editing variant of the problem
where you are allowed to surpass the original maximum degree in the graph
by adding edges. However, it is the case that there is always a solution that at
most doubles the maximum degree of the graph since if more edges are added
one might as well remove all edges incident to the vertex. The validity of this is
proved in Lemma 9. It can furthermore be argued that this version of the problem
is the most general one. This is due to the fact that adding every supergraph of
the star with Δ(G) + 1 leaves to the obstruction set ensures that any solution
respects the current maximum degree.

2.1 Cores and Layers

In this section we introduce the concepts of obstruction cores and extended
obstruction cores. They are heavily based on the notion of shattered obstructions;
the set of obstructions you get from H if you take every connected component
as an obstruction. It follows immediately that every shattered obstruction is
connected.

Definition 2. (Shattered obstructions). Given a set of obstructions H we
define the shattered obstructions, denoted H� as the set of all connected com-
ponents of graphs of H.

Based on shattered obstructions we now define an obstruction core and explain
how such a set of not too large size can be obtained.

Definition 3. (Obstruction core). Let (G, k) be an instance of H-Free
Edge Editing (H-Free Edge Deletion). We then say that a set Z ⊆ V (G)
is an obstruction core in G if for every shattered obstruction H in G it holds
that either:

(i) V (H) ⊆ Z or
(ii) there is an H-packing in G[Z] of size at least (Δ(G) + 1) · nH + 2k + 1.

Observe that for every H satisfying (ii) it holds that even if you discard an
arbitrary obstruction in G and its entire neighborhood, together with all vertices
touched by a set of at most k edges, it still holds that H occurs in G[Z]. This is
very useful if you want to replace some part of an obstruction.

Observation 2. Given an instance (G, k) of H-Free Edge Editing (H-Free
Edge Deletion) we can in O(|H�|nnH+1) time obtain an obstruction core Z
in G of size at most |H�|((Δ(G) + 1) · nH + 2k + 1).

Proof. Let Z be the empty set initially. Then for every shattered obstruction H
we find a maximal H-packing X = X1, . . . , Xt and add the following set

⋃p
i=1 Xi

to Z, where p = min(t, (Δ(G) + 1) · nH + 2k + 1). The time complexity follows
by Observation 1.

368 P.G. Drange et al.

The next definitions are the ones of layer decompositions and core extensions,
arguably the most central definitions of the kernelization algorithm. They are
both with respect to a fixed obstruction core Z and set of edges F . The solution
is decomposed into several layers such that the first layer consists of the edges
of F that are contained in Z. The second layer consists of the edges of F that
are contained in scattered obstructions created when the modifications in Z was
done, and so forth. The extended core is a set of vertices encapsulating all scat-
tered obstructions either in G[Z] or created in G when doing the modifications
of the layers. It should be observed by the reader that the consider solution F
is not constructed, but analyzed implicitly with the intention to locate a part of
the input graph that encapsulates all the crucial information of the instance.

Layer decompositions and core extensions. Let (G, k) be an instance of H-Free
Edge Editing (H-Free Edge Deletion), F ⊆ [V (G)]2 and Z an obstruction
core. We construct the layer decomposition F1, . . . , F� of F as follows: Let G1 =
G, R1 = F and Z1 = Z. Then, inductively we construct the set X = Ri ∩ [Zi]2.
If X is empty we stop the process, otherwise we let Fi = X, Gi+1 = Gi�Fi and
Ri+1 = Ri \ Fi. Furthermore, we let

Wi+1 = {v ∈ H : H is a shattered obstruction in Gi+1 with [V (H)]2 ∩ Fi
= ∅},

and based on this we let Zi+1 = Zi ∪ Wi+1.
With the construction above in mind, we will refer to Gi as the ith interme-

diate graph, Ri as the ith remainder, Zi as the ith core extension and � as the
solution depth (all with respect to G, Z and F). Furthermore, we will refer to
G+ = G�+1 as the resulting graph and Z+ = Z�+1 as the extended core.

The next lemma says that if there is an obstruction in some intermediate
graph such that every connected component of the obstruction is either inside
the corresponding core extension or not modified at all so far by the layers, then
there is an isomorphic obstruction contained entirely within the core extension.
The intuition is that any untouched connected component has a large packing
in Z and hence it can be replaced by an isomorphic subgraph inside Z that both
avoids the modifications and the neighborhood of the rest of the obstruction.

Lemma 3. Let (G, k) be an instance of H-Free Edge Editing (H-Free
Edge Deletion), Z an obstruction core of G, and F ⊆ [V (G)]2 with |F | ≤ k
and F1, . . . , F� a layer decomposition of F . For an integer j ∈ [1, � + 1] let Gj

be the intermediate graph and Zj the core extension with respect to G,Z and F .
Let H be an obstruction in Gj with connected components H1, . . . , Ht such that
every Hi satisfies either: (i) V (Hi) ⊆ Zj or (ii) Hi = G[V (Hi)]. Then there is an
obstruction H ′ in Gj isomorphic to H with V (H ′) ⊆ Zj and V (H ′)\V (H) ⊆ Z.

Proof. For convenience we denote neighborhoods in Gj by Nj . Let H ′ be the
disjoint union of every Hi such that V (Hi) ⊆ Zj and L the list containing
every Hi not added to H ′. Let Hi be an element of L. We will now prove that
there is an H ′

i in Gj [Zj \ Nj [H ′]] such that Hi and H ′
i are isomorphic. Let

Xi be the maximal Hi-packing obtained when constructing Z. Since V (Hi) is

Compressing Bounded Degree Graphs 369

not contained in Zj (and hence Z) and Hi’s edges are as in G it holds that
|Xi| ≥ (Δ(G)+1) ·nH +2k +1 by the definition of obstruction cores. This yields
that (Δ(G) + 1) · nH + 2k + 1 of the elements of the packing was added to Z.
Furthermore, we observe that |V (H ′)| ≤ nH and hence that |NG(H ′)| ≤ Δ · nH.
It follows immediately that |Nj(H ′)| ≤ Δ · nH + k and hence that |Nj [H ′]| ≤
(Δ+1) ·nH +k. By the previous arguments it follows that there is an Hi-packing
in Gj [Z \ Nj [H ′]] of size at least k + 1. And hence, by the pigeon hole principle
there is an H ′

i isomorphic to Hi in Gj [Zj \ Nj [H ′]] such that [V (H ′
i)]

2 and F ′

are disjoint.
To complete the proof we do the following for every Hi in L. We find an

H ′
i as described above, add H ′

i to H ′ and remove Hi from L. Since H1, . . . , Ht

are the connected components of H it follows that H and H ′ are isomorphic.
Furthermore, V (H ′) is clearly contained in Zj and V (H ′) \ V (H) in Z.

This possibility of moving obstructions to the inside of core extensions imme-
diately yields several very useful lemmata.

Lemma 4. Let (G, k) be an instance of H-Free Edge Editing(H-Free Edge

Deletion), Z an obstruction core of G, and F ⊆ [V (G)]2. Construct the layer
decomposition F1, . . . , F� of F with respect to Z, let F ′ = ∪�

i=1Fi and let Z+ be
the extended core with respect to Z and F . It then holds that: (G�F ′)[Z+] is
H-free if and only if G�F ′ is H-free.

Proof. Recall that G+ = G�F ′. It is trivial that if there is an obstruction H in
G+[Z+] then H is also an obstruction in G+. For the other direction, let H be
an obstruction in G+ and H1, . . . , Ht the connected components of H. Observe
that by the definition of Z+ it holds that every Hi satisfies either (i) or (ii)
of Lemma 3 with j = � + 1. It follows that there is an obstruction H ′ in G+

with V (H ′) ⊆ Z+. Hence H ′ is an obstruction in G+[Z+], which completes the
argument.

Lemma 5. Let (G, k) be an instance of H-Free Edge Editing(H-Free Edge

Deletion), Z an obstruction core of G, F a minimal solution and F1, . . . , F�

the layer decomposition of F with respect to Z. It then holds that F1, . . . , F�

forms a partition of F .

Proof. Let Fi and Fj be two layers with i < j. It follows immediately from the
definition of layer decomposition that Fj ⊆ Rj ⊆ Ri \ Fi and hence Fi and Fj

are disjoint. For convenience we let F ′ = ∪i∈[1,�]Fi. We now prove that F ′ = F .
It follows from the definition of layer decomposition that F ′ ⊆ F . Assume for
a contradiction that F ′ � F . Consider the final graph G+ = G�F ′. If G+ is
H-free it follows that F is not a minimal solution, yielding a contradiction.

Hence, G+ is not H-free. It follows immediately from Lemma 4 that G+[Z+] is
also not H-free. Furthermore, we know by the definition of layer decompositions
that G+[Z+] = (G�F)[Z+]. And hence G�F is not H-free, contradicting that
F is a solution.

370 P.G. Drange et al.

We finish the section by stating two important properties of the core; The first
one gives the true power of an extended core, namely that if a set of edges is
a solution for the graph induced on its extended core it also is a solution for
the entire graph. The second lemma gives us a partial tool for encapsulating
an extended core without knowing the solution beforehand. The next section is
dedicated to turning this partial tool into a true hammer.

Lemma 6. Let (G, k) be an instance of H-Free Edge Editing(H-Free Edge

Deletion), Z an obstruction core of G, F ⊆ [V (G)]2 and Z+ the extended core
with respect to Z and F . If F ⊆ [Z+]2 then (G�F)[Z+] is H-free if and only if
G�F is H-free.

Proof. Since F ⊆ [Z+]2 it holds that G+ = G�F . It trivially holds that if G+

is H-free, then so is G+[Z+]. Let H be an obstruction in G+ with connected
components H1, . . . , Ht. Observe that if Hi contains an edge of F then V (Hi) ⊆
Z+ due to the definition of Z+ and the assumption that F ⊆ [Z+]. Apply
Lemma 3 with j = � + 1 to obtain an obstruction H ′ in Z+.

Lemma 7. Let (G, k) be an instance of H-Free Edge Editing(H-Free Edge

Deletion), Z an obstruction core of G, F ⊆ [V (G)]2 and Z+ the extended core
with respect to Z and F . It then holds that: Z+ ⊆ B(Z, � · diam(H)).

Proof. Let Z1, . . . , Z�+1 be the extended cores. Instead of proving the lemma
directly we prove the following, stronger claim:

(�) For every Zi it holds that Zi ⊆ B(Z, (i − 1) · diam(H)).

Since Z+ = Z�+1, it is clear that (�) implies the lemma. The proof of (�) is by
induction. First, we observe that (�) holds for i = 1 by the definition of balls,
since Z = Z1. Assume for the induction step that (�) holds for i. Let v be a
vertex in Zi+1. If v is also in Zi we are done by assumption. Hence, we assume v
to be a vertex in Zi+1 \ Zi. Or in other words, v is in Wi+1. By definition there
is a scattered obstruction H in Gi+1 and an edge uw in Fi such that both u, v
and w are in H. Observe that the distance between u and v is at most diam(H)
and recall that u is in Zi ⊆ B(Z, (i − 1) · diam(H)). It follows immediately that
v is in B(Z, i · diam(H)) and hence the proof is complete.

2.2 Solutions are Shallow

In this section we prove that the depth of any solution is bounded logarithmically
by the size of the solution. This, combined with Lemma7 gives that linearly in k
many balls of logarithmic radius is sufficient to encapsulate an extended core. To
motivate that we obtain a polynomial kernel, observe that a ball of logarithmic
radius in a bounded degree graph is of polynomial size.

First, we prove that when considering any layer we can always find a set of
vertices of the same size, the removal of which would result in an H-free graph.
Next we prove that as long as the graph is not very small, removing a set of
vertices from the graph has the same effect as modifying the graph such that
the set becomes a set of isolates.

Compressing Bounded Degree Graphs 371

Lemma 8. Let (G, k) be an instance of H-Free Edge Editing(H-Free Edge

Deletion), Z an obstruction core of G, F a minimal solution of the instance
and F1, . . . , F� the layer partition of F with respect to Z. For every i ∈ [1, �]
there exist a set Y with Y ≤ |Fi| such that Gi − Y is H-free.

Proof. We construct Y as follows: For every edge uv in Fi we add to Z the
endpoint furthest away from Z. If it is a tie, we choose an arbitrary endpoint.
Assume for a contradiction that Gi − Y is not H-free. Let H be an obstruction
in Gi − Y and H1, . . . , Ht the connected components of H.

First, we consider the case when i = 1. We then apply a modification of the
proof of Lemma 3. The idea is as follows: Let H ′ be the disjoint union of the
components of H contained in Z and Hx a component not in Z. Then there is a
Hx-packing of size k+1 in Z avoiding the closed neighborhood of H ′. We observe
that Y intersects with at most k of the elements of the packing and hence we can
find a subgraph H ′

x in G[Z] not intersecting with Y such that Hx and H ′
x are

isomorphic. Add H ′
x to H ′ and continue with the next component not contained

in Z. It follows immediately that H ′ is also an obstruction in G2. By definition
G2[Z] = G+[Z] and hence H ′ is an obstruction in G+. This contradicts F being
a solution.

If i ≥ 2 it holds that Y and Z are disjoint. This is true since if both endpoints
of an edge are included in Z, the edge would be in F1 and not Fi. It holds by the
definition of Y that [V (H)]2∩Fi is empty. Furthermore, by the definition of layer
decompositions it holds that if some Hx intersects with some Fj with j < i then
V (Hx) ⊆ Zj+1 ⊆ Zi. Hence we can apply Lemma 3 to obtain an obstruction
H ′ in Gi with V (H ′) ⊆ Zi. Since V (H) ⊆ V (G) \ Y and V (H ′) \ V (H) ⊆ Z
it follows that H ′ is an obstruction in Gi \ Y . It follows immediately that H ′

is also an obstruction in Gi+1. By definition Gi+1[Zi] = G+[Zi] and hence H ′

is an obstruction in G+. This contradicts F being a solution and completes the
proof.

Lemma 9. Let (G, k) be an instance of H-Free Edge Editing (H-Free
Edge Deletion), X a set of vertices in G and EX the set of edges incident to
vertices in X. It then holds that either

(i) |V (G)| < |X| + k + 2(Δ(G) + 1)nH or
(ii) the instances (G − X, k′) and (G − EX , k′) are equivalent for every k′.

Proof. We assume that (i) does not apply and prove that this implies (ii). It
is trivial that if (G − EX , k′) is a yes-instance then (G − X, k′) is also a yes-
instance. For the other direction, assume for a contradiction that (G − X, k′)
is a yes-instance and that (G − EX , k′) is a no-instance. Let F be a solution of
(G−X, k′). For convenience we define GV = (G−X)�F and GE = (G−EX)�F .
Let H an obstruction in GE and B the set of vertices V (H) \ X. Observe that
GV [B] = GE [B] and that |NGE

(V (H))| ≤ Δ(G) ·nH +k. It follows immediately
that

372 P.G. Drange et al.

|V (GE) \ (X ∪ NGE
[V (H)])|

≥ |V (GE)| − |X| − |NGE
[V (H)]|

≥ |X| + k + 2(Δ(G) + 1)nH − |X| − nH − Δ(G) · LH − k

= 2(Δ(G) + 1)nH − nH − Δ(G) · nH
= (Δ(G) + 1)nH.

Hence we can obtain an independent set I of size X ∩ V (H) that is contained
entirely outside of both X and NGE

[V (H)]. Let H ′ = GV [I ∪ B] and observe
that H ′ is isomorphic to H, contradicting GV being H-free.

With the two previous lemmata in mind we present the main intuition of the
shallowness of a solution. Basically, if for any level of a decomposed solution you
do a factor Δ(G) more modifications in the future than you do in this particular
level you could instead remove a set of edges related to this layer and stop any
further propagation. This ensures that in any optimal solution the size of the
union of the remaining layers are bounded by a layer and the maximum degree
of the graph.

Lemma 10. Given an instance (G, k) of H-Free Edge Editing(H-Free
Edge Deletion), an obstruction core Z, an optimal solution F and its layer
decomposition F1, . . . , F� it holds that either

(i) |V (G)| ≤ k + 2(Δ(G) + 1) · nH or
(ii) Δ(G) · |Fi| ≥ |Ri+1| for every i ∈ [1, �].

Proof. We assume that (i) does not apply and hence that |V (G)| > k+(Δ(G)+
2) · nH. Assume for a contradiction that there is an i ∈ [1, �] such that (ii) does
not hold. Specifically, i is so that Δ(G) · |Fi| < |Ri+1|. By Lemma 8 there is a set
of vertices Y with |Y | ≤ |Fi| such that Gi − Y is H-free. It follows by Lemma 9
with k′ = 0 that Gi − EX is also H-free. Let F ′ = (∪j∈[1,i−1]Fj) ∪ EX and
observe that G�F ′ is H-free. By the following calculations;

|F ′| ≤ | ∪j∈[1,i−1] Fj | + |EX | < | ∪j∈[1,i−1] Fj | + |Ri+1| = |F |,

we conclude that |F ′| < |F |. This contradicts the optimality of |F | and hence
our proof is complete.

Lemma 11. Given a instance (G, k) of H-Free Edge Editing(H-Free
Edge Deletion), an optimal solution F and its layer decomposition F1, . . . , F�

it holds that either

(i) |V (G)| ≤ k + 2(Δ(G) + 1) · nH or
(ii) � ≤ 1 + log Δ(G)+1

Δ(G)
|F |.

Compressing Bounded Degree Graphs 373

Proof. Assume that (i) does not hold and hence that |V (G)| > k + 2(Δ(G) +
1) · nH. It follows immediately that (ii) in Lemma 10 applies.

|F | = |R1| = |F1| + |R2|

≥ |R2|
Δ(G)

+ |R2| =
Δ(G) + 1

Δ(G)
· |R2| =

Δ(G) + 1
Δ(G)

· (|F2| + |R3|)

≥ · · · ≥
(

Δ(G) + 1
Δ(G)

)�−1

· |R�|

=
(

Δ(G) + 1
Δ(G)

)�−1

· |F�|

≥
(

Δ(G) + 1
Δ(G)

)�−1

This gives that � ≤ 1 + log Δ(G)+1
Δ(G)

|F | and hence the argument is complete.

2.3 Obtaining the Kernels

We now have all the necessary tools for providing the kernels. We reduce the
graph to a ball of small radius around any obstruction core Z and by this obtain
a kernelized instance. Both the size bounds and the correctness of the reduction
rule follows by combining the tools developed during the section.

Rule 1. Given an instance (G, k) H-Free Edge Editing (H-Free Edge

Deletion) such that |V (G)| > k+2(Δ(G)+1) ·nH, we find an obstruction core
Z in G and return (G[B(Z, r)], k) where r = diam(H) · (1 + log Δ(G)+1

Δ(G)
k).

Lemma 12. Let (G, k) be an instance of H-Free Edge Editing (H-Free
Edge Deletion) and (G′, k) the instance obtained when applying Rule 1 to
(G, k). Then (G, k) is a yes-instance if and only if (G′, k) is a yes-instance.

Proof. It follows immediately from G′ being an induced subgraph of G that if
(G, k) is a yes-instance, then so is (G′, k). For the other direction, let (G′, k) be
a yes-instance and let Z be the obstruction core of G obtained when applying
Rule 1. Clearly, Z is also an obstruction core of G′. Let F be an optimal solution
of (G′, k) and construct the layer decomposition F ′

1, . . . , F
′
�′ and the core exten-

sions Z ′
i with respect to Z and F in G′. Now we construct the layer decomposition

F1, . . . , F� and the core extensions Zi with respect to Z and F in G. By the def-
inition core extensions it holds that Z ′

i ⊆ Zi and hence � ≤ �′. By Lemma 6 it
holds that Z+

G = Z�+1 ⊆ BG(Z, �·diam(H)) ⊆ BG(Z, �′ ·diam(H)). By Lemma 11
applied to F in G′ it holds that � ≤ 1+log Δ(G)+1

Δ(G)
|F | ≤ 1+log Δ(G)+1

Δ(G)
k and hence

Z+
G ⊆ V (G′). It follows immediately that (G�F)[Z+

G] is H-free. By Lemma 5 it
holds that F ⊆ [Z ′

�′+1]
2 and hence F ⊆ [Z�+1]2. It follows immediately that

Lemma 6 applies and hence G�F is H-free. Hence (G, k) is a yes-instance and
the proof is complete.

374 P.G. Drange et al.

For ease of readability, we denote diam(H) simply by D and Δ(G) by Δ.

Theorem 4 (♠). Both H-Free Edge Deletion and H-Free Edge Edit-

ing admit kernels with at most 2nH|H�|ΔD+1k1+D(Δ log Δ) vertices. For fixed H
and Δ this is a kernel with kO(1) vertices.

3 Conclusion

We showed that for any finite set H of forbidden induced subgraphs, both
H-Free Edge Editing and H-Free Edge Deletion admit polynomial ker-
nelizations on bounded degree input graphs. This extendes and generalizes the
result of Aravind et al. [2], who showed that H-Free Edge Deletion admits
kernel when H is connected on bounded degree input. We not only extend their
kernel, but also improve on the size of their kernel.

We showed two lower bounds: (1) for a finite set H of connected graphs,
H-Free Edge Completion does not admit a polynomial kernel on bounded
degree input graphs, unless NP ⊆ coNP/poly. (2) Under the same assumption,
C11-Free Edge Deletion does not have a polynomial kernel on 2-degenerate
graphs, nor does H-Free Edge Editing.

Since there is a finite set H of connected graphs such H-Free Edge Com-

pletion does not admit a polynomial kernel, we encourage a further study of
these problems. We leave it as an open problem whether there is a dichotomy
for when H-Free Edge Completion admits a polynomial kernel, restricted
to bounded degree graphs and connected, forbidden induced subgraphs.

References

1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76(7), 524–531 (2010)

2. Aravind, N.R., Sandeep, R.B., Sivadasan, N.: On polynomial kernelization of H-
free edge deletion. In: IPEC (2014)

3. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification
problems. Discrete Appl. Math. 154(13), 1824–1844 (2006)

4. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Proc. Lett. 58(4), 171–176 (1996)

5. Cai, L., Cai, Y.: Incompressibility of H-free edge modification problems. Algorith-
mica 71(3), 731–757 (2015)

6. Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. In:
ESA (2015)

7. El-Mallah, E.S., Colbourn, C.J.: The complexity of some edge deletion problems.
IEEE Trans. Circ. Syst. 35(3), 354–362 (1988)

8. Erdős, P., Rado, R.: Intersection theorems for systems of sets. J. Lond. Math. Soc.
1(1), 85–90 (1960)

9. Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized
preprocessing for cluster editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007.
LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, New York (2006)

Compressing Bounded Degree Graphs 375

11. Garey, M.R., Johnson, D.S.: Computers and Intractability: a Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

12. Gramm, J., Guo, F., Hüffner, J., Niedermeier, R.: Data reduction and exact algo-
rithms for clique cover. ACM J. Exp. Algorithmics 13, 1–14 (2008)

13. Guillemot, S., Havet, F., Paul, C., Perez, A.: On the (non-)existence of polynomial
kernels for Pl-free edge modification problems. Algorithmica 65(4), 900–926 (2013)

14. Guo, J.: Problem kernels for NP-complete edge deletion problems: split and related
graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp. 915–926.
Springer, Heidelberg (2007)

15. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications.
Discrete Appl. Math. 160(15), 2259–2270 (2012)

16. Kratsch, S., Wahlström, M.: Two edge modification problems without polynomial
kernels. Discrete Optim. 10(3), 193–199 (2013)

17. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is np-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

18. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge mod-
ification problems. Discrete Appl. Math. 113(1), 109–128 (2001)

19. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)

Random Partial Match in Quad-K-d Trees

A. Duch(B), G. Lau, and C. Mart́ınez

Computer Science Department, Technical University of Catalonia – Barcelona Tech,
Barcelona, Catalonia, Spain

{duch,glau,conrado}@cs.upc.edu

Abstract. Quad-K-d trees were introduced by Bereczky et al. [3] as a
generalization of several well-known hierarchical multidimensional data
structures such as K-d trees and quad trees. One of the interesting fea-
tures of quad-K-d trees is that they provide a unified framework for
the analysis of associative queries in hierarchical multidimensional data
structures. In this paper we consider partial match, one of the funda-
mental associative queries, and prove that the expected cost of a ran-
dom partial match in a random quad-K-d tree of size n is of the form
Θ(nα), with 0 < α < 1, for several families of quad-K-d trees including,
among others, K-d trees and quad trees. We actually give a general result
that applies to any family of quad-K-d trees where each node has a type
that is independent of the type of other nodes. We derive, exploiting
Roura’s Continuous Master Theorem, the general equation satisfied by
α, in terms of the dimension K, the number of specified coordinates s in
the partial match query, and also the additional parameters that charac-
terize each of the families of quad-K-d trees considered in the paper. We
also conduct an experimental study whose results match our theoretical
findings; as a by-product we propose an implementation of the partial
match search in quad-K-d trees in full generality.

1 Introduction

Partial match queries have been widely studied in the literature since they are a
fundamental associative query [13,16]. Given a collection (or file) F of n records,
in which each record in F is an ordered K-tuple of values (the attributes or
coordinates of the record), a query of F is a retrieval of the records whose
attributes satisfy certain given conditions. The query is considered associative
when the imposed conditions deal with more than one of the attributes.

In particular, partial match (PM hereinafter) queries consist of retrieving all
the records in F whose attributes match the attributes of the query record that
are specified. Other examples of associative queries are nearest-neighbor queries
whose aim is to retrieve a record in F that is closest to a given record under a

This work has been partially supported by funds from the Spanish Ministry for
Economy and Competitiveness (MINECO) and the European Union (FEDER
funds) under grant COMMAS (ref. TIN2013-46181-C2-1-R) and AGAUR grant SGR
2014:1034 (ALBCOM).

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 376–389, 2016.
DOI: 10.1007/978-3-662-49529-2 28

Random Partial Match in Quad-K-d Trees 377

given distance metric, or orthogonal range queries, in which we want to retrieve
all the records in F that fall inside a given hyper-rectangle whose sides are
parallel to the coordinate axes.

The study of PM queries is fundamental because of their intrinsic interest but
also because its analysis is the basis of the analysis of other associative queries
(in particular, of orthogonal range and nearest neighbor queries). Indeed, several
papers address the analysis of PM queries (either random or fixed) in a wide
variety of general purpose hierarchical multidimensional data structures [4,5,7,
8,10,11,14]. Undoubtedly, a unified analysis of PM queries and other associative
queries has great interest and might give us a better insight on their performance.
The work we present here is a step in that direction.

To do so, we use the general framework of quad-K-d trees introduced in [3]
and follow most of the definitions, terminology and conventions therein to prove
that the expected cost of a random PM query in a random quad-K-d tree of
size n is of the form Θ(nα), with 0 < α < 1. This result applies to any family
of quad-K-d trees when each node has a type that is independent of the type of
the other nodes. This includes random relaxed K-d trees and quad trees.

Standard K-d trees were introduced by Bentley [1]. They are binary search
trees such that, at every level of the tree, one of the K coordinates is used to dis-
criminate: at level 0 is coordinate 0, at level 1 is coordinate 1 and, in general, at
level i is coordinate i mod K. In order to facilitate their randomization, relaxed
K-d trees were proposed in [9]. They are K-d trees in which the coordinate to
discriminate at each individual node is uniformly chosen among the K possibili-
ties. When all the K coordinates are used to discriminate at each node, the tree
obtained is a quad tree [2]. A quad-K-d tree is a multidimensional tree in which
each node discriminates with respect to some number m (potentially distinct for
each node), 1 ≤ m ≤ K, of coordinates (and thus it has 2m subtrees).

The paper is organized as follows. In Sect. 2 we give some preliminaries
and introduce some families of quad-K-d trees. We then derive, in Sect. 3,
using Roura’s Continuous Master Theorem [15] (Roura’s CMT hereinafter), the
expected cost of a random PM query in a random quad-K-d tree (Subsect. 3.1).
We also propose an implementation of the PM search algorithm in quad-K-d
trees in full generality and conduct an experimental study whose results match
our theoretical findings (Subsect. 3.2). We finish with conclusions and possibili-
ties of further work in Sect. 4.

2 Random Quad-K-d Trees

The formal definition of quad-K-d trees as given in [3] is the following:

Definition 1 (Bereczky et al. [3]). A quad-K-d search tree T of size n ≥ 0
stores a set of n K-dimensional records, each holding a key x = (x0, . . . , xK−1) ∈
D and a coordinate split Boolean vector δ = (δ0, . . . , δK−1), where D = D0 ×
· · ·×DK−1 and each Dj, 0 ≤ j < K, is a totally ordered domain. The quad-K-d
tree T is such that

378 A. Duch et al.

– either it is empty when n = 0, or
– its root stores a record with key x, a bit-vector δ that contains exactly m

ones (i.e., it is of order m), with 1 ≤ m ≤ K, and pointers to its 2m sub-
trees that store the n − 1 remaining records as follows: each subtree, let us
call it Tw, is associated with a string w = w0w1 . . . wK−1 ∈ {0, 1,#}K , such
that ∀w ∈ {0, 1,#}K , Tw is a quad-K-d tree and, for any key y ∈ Tw and
0 ≤ j < K, it holds that
• if δj = 0 then wj = #
• if δj = 1 and wj = 0, then yj < xj

• if δj = 1 and wj = 1, then yj > xj.

We assume, without loss of generality, that Dj = [0, 1], 0 ≤ j < K.
It is worth noting that with this definition, as is the case for binary search

trees, a quad-K-d tree can not handle keys that have some coordinates that are
equal, to do so the definition as well as the algorithms supported by the data
structure should be slightly modified. However, because of our assumptions in
their analysis, we can safely disregard this situation since, as we will see, the
probability that two records share one coordinate value is 0.

A 3-dimensional quad-K-d tree is shown in Fig. 1. Inside each node appears
its label and in the table therein is the 3-dimensional key with which the node
is associated together with its split vector. Next to every edge appears the label
(the string w) of the subtree it points to.

Node Coordinates Split vector

1 [0.35, 0.5, 0.17] 010

2 [0.31, 0.45, 0.47] 010

3 [0.29, 0.6, 0.9] 110

4 [0.3, 0.3, 0.3] 001

5 [0.4, 0.47, 0.6] 110

6 [0.2, 0.7, 0.5] 111

7 [0.38, 0.8, 0.89] 011

8 [0.25, 0.68, 0.4] 100

1

2
3

4 5 6

7

8

#0# #1#

#0# #1#

00#

01#
10#

11#

000 001 010 011

100

101 110 111

Fig. 1. An example of a 3-dimensional quad-K-d tree, omitting some empty subtrees

As we have already mentioned, both K-d trees and quad trees are special
cases of quad-K-d trees. In fact, for any quad-K-d tree T of size n, if the split
vector δ associated with every node of T contains all the K coordinates (δj = 1
for all j) then T is a quad tree, and if it contains exactly one 1 for every node
then T is a relaxed K-d tree.

Random Partial Match in Quad-K-d Trees 379

A node with key x and split vector δ in a quad-K-d tree is of type m if and
only if δ is of order m, 1 ≤ m ≤ K. A direct consequence of this definition is
that nodes of type m have 2m children each. A m-regular (or m-ary) quad-K-d
tree is a quad-K-d tree that has all its internal nodes of type m.

Quad trees of dimension K are K-regular quad-K-d trees. All variants of
K-d trees are 1-regular quad-K-d trees.

In order to proceed to the average-case analysis of random PM queries in
quad-K-d trees we need to introduce the random model that will be used; it
is equivalent to the conventional random models found in the literature for the
particular cases of random quad trees and random relaxed K-d trees.

Definition 2. A random relaxed quad-K-d tree of size n is a quad-K-d tree built
by n random insertions1 into an initially empty tree, and it additionally satisfies
the following two conditions:

1. The types of its n nodes are given by n i.i.d. random variables in the set
{1, . . . , K}. We denote τm as the probability that an arbitrary node is of type m.

2. Any subset of m coordinates out of K is equally likely to be the set of dis-
criminating coordinates (that is, those for which δj = 1) for a node of type
m; in other words, the probability that the discriminating coordinates of a
node of type m are 0 ≤ i0 < i1 < · · · < im−1 < K is 1/

(
K
m

)
for any subset

{i0, . . . , im−1} ⊆ {0, . . . , K − 1}.

The above definition includes the following families of search trees:

– Random quad trees: these are K-regular random quad-K-d trees; here τK = 1,
and τm = 0 if m �= K.

– Random relaxed K-d trees: these are 1-regular random quad-K-d trees. We
have τ1 = 1, and τm = 0 if m �= 1.

– Random Split [3] quad-K-d trees. We will use the name Pseudo-binomial Split
to refer to this family hereinafter. Given some real value p, 0 < p < 1, for
m > 1 we have

τm =
(

K

m

)

pmqK−m, q = 1 − p,

and τ1 = qK + KpqK−1.

We now introduce the following new families of quad-K-d trees:

1. Uniform Split quad-K-d trees. We have here simply τm = 1/K, for any m.
2. Binomial Split quad-K-d trees. Given some real value p, 0 < p < 1, we have

τm =
(

K − 1
m − 1

)

pm−1qK−m, q = 1 − p.

1 There are several ways to characterize random insertions. The one we will consider
here is that every coordinate of the data point to be inserted is independently drawn
from some continuous distribution in [0, 1].

380 A. Duch et al.

3. Geometric Split quad-K-d trees. Given some real value p, 0 < p < 1, we have,
for m < K

τm = qpm−1, q = 1 − p,

and τK = 1 −
∑

1≤m≤K−1 τm = pK−1.
4. m-regular relaxed quad-K-d trees. All types are given by the “degenerate”

random variable X ∼ m; that is, τm = 1 and τ� = 0 for all � �= m.

In the case of Pseudo-binomial Split (a.k.a. Random Split), Binomial Split
and Geometric Split quad-K-d trees we have a “dial” to control the transition
from random relaxed K-d trees to quad trees. When p = 0 all these families
coincide with random relaxed K-d trees, while they become quad trees when
p = 1. In the case of m-regular relaxed quad-K-d trees we also have the transition
from relaxed K-d trees (m = 1) to quad trees (m = K).

The expected amount of memory used in a quad-K-d tree is obviously related
to the arity of the different nodes. If d is the average arity of the quad-K-d
tree, we might expect to need dn + 1 pointers, of which approximately (d − 1)n
will be null. Indeed, the average arity d of a random relaxed quad-K-d tree is
given by

d =
∑

1≤m≤K

τm2m

Table 1. Average arity in several families of random relaxed quad-K-d trees

Family Average arity

m-regular 2m

Uniform Split 2
K
(2K − 1)

Pseudo-binomial Split (1 + p)K + (1 − p)K

Binomial Split 2(1 + p)K−1

Geometric Split (2p)K+2p−2
2p−1

if p �= 1/2, K + 1 if p = 1/2

Table 1 gives the average arity for the families of random relaxed quad-K-d
trees studied in this paper. In the case of Geometric Split it is interesting to
observe that there are three regimes, according to p < 1/2, p = 1/2 or p > 1/2.
If p < 1/2 then the average degree is constant (d ≈ 2q

1−2p), irrespective of K, it
grows linearly with K when p = 1/2 (d = K + 1), and it grows exponentially
with K when p > 1/2 (d ≈ 1

2p−1 (2p)K).

3 Partial Match in Quad-K-d Trees

In this section we consider the expected cost of a random PM query in a random
relaxed quad-K-d tree. The cost is measured, as usual, by the number of nodes
visited by the PM search algorithm.

Random Partial Match in Quad-K-d Trees 381

A random PM query is a pair 〈q,u〉, where q = (q0, . . . , qK−1) is a
K-dimensional point independently drawn from the same continuous distrib-
ution as the data points, and u = (u0, . . . , uK−1) is the pattern of the query;
each ui = S (the i-th attribute of the query is specified) or ui = ∗ (the i-th
attribute is unspecified). The goal of the PM search is to report all data points
x = (x0, . . . , xK−1) in the tree such that xi = qi whenever ui = S. The num-
ber of specified coordinates will be denoted by s; the interesting cases are when
0 < s < K.

3.1 Analysis

Let Pn denote the expected cost of a random PM query in a random relaxed
quad-K-d tree of size n. Since the discriminating coordinates at each node of the
quad-K-d tree are randomly chosen, the pattern of the PM query is irrelevant
and there is no need to make it appear as a parameter, the required parameter
in this case is the value s. Let P

(m)
n denote the same cost, conditional on the root

of the quad-K-d tree being of type m; similarly, let P
(i,m)
n denote the expected

cost of a random PM query conditional on the root being of type m and that
exactly i, 0 ≤ i ≤ min(m, s) of the discriminating coordinates of the root are
specified in the PM query. Then, since the probability that the root of a random
quad-K-d tree is of type m is τm we have

Pn =
K∑

m=1

τmP (m)
n , (1)

P (m)
n =

∑

0≤i≤m

μi,mP (i,m)
n , (2)

P (i,m)
n = 1 +

∑

0≤k<n

π
(i,m)
n,k Pk, (3)

with μi,m the probability that exactly i of the m discriminating coordinates
are specified (these quantities also depend on s and K) and π

(i,m)
n,k the average

number of recursive calls on subtrees of the root of size k when the tree is of
size n, its root is of type m and exactly i discriminating coordinates out of m
are specified. It is not difficult to prove that

μi,m =

(
m
i

)(
K−m
s−i

)

(
K
s

)

and
Pn = 1 +

∑

0≤k<n

πn,kPk, (4)

where

πn,k =
K∑

m=1

τm

∑

0≤i≤m

μi,mπ
(i,m)
n,k .

382 A. Duch et al.

In order to apply Roura’s CMT [15] to solve the recurrence, we need to find
a shape function, that is, a normalized continuous approximation to the weights
πn,k, the expected number of recursive calls on subtrees of the root of size k,
when the input tree is of size n.

If ωi,m(z) is a shape function for the sequence of weights {π
(i,m)
n,k }0≤k<n then

ωm(z) =
∑

0≤i≤m

(
m
i

)(
K−m
s−i

)

(
K
s

) ωi,m(z)

is a shape function for the sequence
{

π
(m)
n,k :=

∑
0≤i<m μi,mπ

(i,m)
n,k

}

0≤k<n
and

ω(z) =
K∑

m=1

τmωm(z)

is a shape function for the sequence {πn,k}0≤k<n.
The shape function ωi,m(z) follows from a reasoning analogous to that used

by Flajolet et al. in their paper “Analytic Variations on Quadtrees” [12] where
they analyze random PM searches in quad trees when K = m and s = i.
Actually, in [12] the authors show that

π
(i,m)
n,k =

2m

n(n + 1)

∑

L

[1
(�1 + 2) . . . (�i−1 + 2)

][1
(�i+1 + 1) . . . (�m−1 + 1)

]
,

where L is the condition n > �1 ≥ �2 ≥ . . . ≥ �m−1 ≥ �m = k. An alternative
way to find π

(i,m)
n,k can be found in [6].

Lemma 1. For 0 ≤ i ≤ m, we have

ωi,m(z) = (−1)i+m2m
[i−1∑

k=0

d
(i,m)
k z lnk z −

m−i−1∑

k=0

c
(i,m)
k lnk z

]
, (5)

where

c
(i,m)
k =

(
m − 2 − k

i − 1

)
1
k!

,

and

d
(i,m)
k = (−1)k

(
m − 2 − k

m − i − 1

)
1
k!

.

Proof. The application of Roura’s CMT requires finding a shape function ω(z),
a continuous approximation of the discrete weights ωn,k (in our instance,
ωn,k := π

(i,m)
n,k) fulfilling the condition

n−1∑

k=0

∣
∣
∣
∣ωn,k −

∫ (k+1)/n

k/n

ω(z) dz

∣
∣
∣
∣ = O(n−d),

Random Partial Match in Quad-K-d Trees 383

for some d > 0. Such shape function can be easily found here replacing the sums
in the definition of π

(i,m)
n,k by integrals so that

π
(i,m)
n,k ∼ 2m

n

∫ 1

k/n

dym−1

ym−1

∫ 1

ym−1

dym−2

ym−2

∫ 1

ym−2

· · ·
∫ 1

yi+1

dyi

∫ 1

yi

dyi−1

yi−1

∫ 1

yi−1

· · ·
∫ 1

y2

dy1

y1
,

and letting ω(z) = limn→∞ n · π
(i,m)
n,z·n. �

From the explicit form of ωi,m(z) given above, the next lemma follows from
straightforward calculations and a few easy binomial identities (a computer alge-
bra system like Maple is of great help here).

Lemma 2. For any a > −1, and for any 0 ≤ i ≤ m,
∫ 1

0

zaωi,m(z) dz =
2m

(a + 1)m−i(a + 2)i
.

Now,

ω(z) =
K∑

m=1

τm

∑

0≤i≤s

(
m
i

)(
K−m
s−i

)

(
K
s

) ωi,m(z)

and, hence, for any a > −1,

∫ 1

0

zaω(z) dz =
K∑

m=1

τm

∑

0≤i≤s

(
m
i

)(
K−m
s−i

)

(
K
s

)
2m

(a + 1)m−i(a + 2)i
.

In particular, for a random PM search the toll function is tn = 1, hence,
computing the constant-entropy with a = 0 we get

H = 1 −
∫ 1

0

z0ω(z) dz = 1 −
K∑

m=1

τm

∑

0≤i≤s

(
m
i

)(
K−m
s−i

)

(
K
s

) 2m−i.

Since 2m−i ≥ 1 for all 0 ≤ i ≤ m, it follows that H ≤ 0. Furthermore,
whenever i < m, 2m−i > 0 and since these cases have positive probability
(because s < K) it follows that H < 0. Then, by direct application of Roura’s
CMT we have the following theorem.

Theorem 1. The expected cost Pn of a random PM in a random relaxed quad-
K-d tree of size n (measured as the number of nodes visited by Program1) is

Pn = Θ(nα)

where α is the unique real solution in [0, 1] of

K∑

m=1

τm

∑

0≤i≤s

(
m
i

)(
K−m
s−i

)

(
K
s

)
2m

(α + 1)m−i(α + 2)i
= 1. (6)

384 A. Duch et al.

3.2 Implementation and Experiments

In this section we give (in Program 1) a general implementation of the PM search
algorithm that receives as parameters a quad-K-d tree t of any kind and a
random PM query q and returns the cost of the PM search, i.e., the number of
nodes of the tree visited during the execution of the program.

Program 1. Implementation in C++ of the PM search algorithm

/ / S i n c e t h e q u e r y i s r a n d o m , w e a s s u m e w . l . o . g . t h a t t h e

/ / s s p e c i f i e d c o o r d i n a t e s a r e t h e f i r s t s c o o r d i n a t e s

typedef vector <int > VI;

typedef vector <double > VD;

typedef struct QKnode* tree;

typedef vector <tree > VT;

struct QKnode {

VD key;

VI disc; / / s p a r s e r e p r e s e n t a t i o n o f t h e b i t v e c t o r s

VT T;

int elems;

int dim;

};

/ / P o s t : R e t u r n s t h e n u m b e r o f v i s i t e d n o d e s i n t

int partial_match(tree t, const VD& query) {

if (t == NULL) return 0;

int res = 1;

int masc = 0;

int q = query.size ();

int m = t->disc.size ();

int j;

for (j = 0; j < m and t->disc[j] < q; ++j) {

int i = t->disc[j];

if (query[i] > t->key[i]) masc |= (1<<j);

}

for (int i = 0; i < m - j + 1; ++i) {

int st = (i << j) | masc;

res += partial_match(t->T[st], query);

}

return res;

}

Our theoretical analysis of the expected cost of a PM search for random
queries in quad-K-d trees is only asymptotic and provides the exponent of the
leading order term. We have conducted some experiments in order to investigate
whether our theoretical findings are good predictions of the average behavior of
PM searches and for which input sizes we can expect to start getting relatively
good predictions.

Random Partial Match in Quad-K-d Trees 385

As we will see, the main conclusion of our experiments is that, despite the
asymptotic nature of our theoretical results, they do a reasonably good job at
predicting the average cost of random PM queries, even for relatively small values
of n (less than 50000).

Each run of our experiments can be described by a tuple 〈T ,q, n,M〉 where
T is a type of quad-K-d tree (regular, binomial or geometric), q is the query, n
is the size of the trees in the sample and M is the size of the sample.

For each run we generate M random quad-K-d trees of type T and size
n. In each tree we perform a PM search with the random query q, counting
the total number of visited nodes and taking the corresponding sample mean
P̄n := 1/M

∑M
i=1 P

(i)
n , where the P

(i)
n are independent identically distributed

realizations of Pn.
We conjecture that the average cost of random PM searches in quad-K-d

trees is of the form Pn = β nα + l.o.t., as is the case for random PM searches in
K-d trees and quad trees. The conjectured constant β will depend on s, K and
the family of quad-K-d trees under consideration, just as the exponent α does.

Figures 2 and 3 show the behavior of quad-K-d trees built using Binomial
Split (top), Geometric Split (middle) and m-regular (bottom). Figure 2 plots
log P̄n/ log n for n in the range [25000, 50000]. The empirical curves should con-
verge to the theoretical value of α given by Theorem 1 in all cases, but the
convergence can be quite slow (as can be seen in most cases).

In Fig. 3 the plots depict the normalized mean cost P̄n/nα, where α is the
appropriate exponent for each case. The plots do not contradict our conjecture
that Pn = βnα +o(nα); in fact, they can be taken as evidence to support it. If our
conjecture is true then the curves in Fig. 3 should be close (closer as n grows) to
the values of the conjectured constants β. For 1-regular trees it corresponds to the
constant β of relaxed K-d trees while for K-regular trees it is that of quad trees.

In Table 2 we show the numerical values of α and the average arity for several
families of quad-K-d trees fixing K = 6 and varying the probability p or the value
of m, whichever is appropriate, and the ratio ρ = s/K. We appreciate, that for
fixed values of p and ρ, the average arity of Geometric quad-K-d trees is less
than that of Pseudo-binomial quad-K-d trees which in turn is less than that of
Binomial quad-K-d trees. Consequently, for the values of α, the inequalities go
in reverse sense, since the higher the arity the lower the value of α. A similar
phenomenon occurs for m-regular quad-K-d trees; while m decreases the average
arity decreases and α grows.

Both Table 2 and Fig. 3 show a fact already known from the analysis of ran-
dom PM queries in random K-d trees and quad trees, namely, when the ratio
ρ = s/K decreases the value of α decreases as well since, specifying more coor-
dinates in the query, fewer times the PM search algorithm will follow more than
one subtree of t.

All the programs used in the experiments were written in the C++ program-
ming language and compiled with the GNU gcc compiler version v4.4.3. The
experiments were run on a Pentium Genuine Intel x86 64 64-bit dual 32 K core
processor.

386 A. Duch et al.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

25000 30000 35000 40000 45000 50000

n

Binomial, p = 0.5, M = 200

K = 2, s = 1, α = 0.58
K = 3, s = 1, α = 0.73
K = 3, s = 2, α = 0.41

K = 4, s = 1, α = 0.8
K = 4, s = 2, α = 0.58
K = 4, s = 3, α = 0.32

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

25000 30000 35000 40000 45000 50000

n

Geometric, p = 0.5, M = 200

K = 2, s = 1, α = 0.58
K = 3, s = 1, α = 0.73
K = 3, s = 2, α = 0.42

K = 4, s = 1, α = 0.8
K = 4, s = 2, α = 0.59
K = 4, s = 3, α = 0.33

0.2

0.3

0.4

0.5

0.6

0.7

0.8

25000 30000 35000 40000 45000 50000

n

m-ary, M = 200

K = 4, s = 1, m = 1, α = 0.82
K = 4, s = 1, m = 3, α = 0.8

K = 4, s = 2, m = 1, α = 0.62

K = 4, s = 2, m = 3, α = 0.58
K = 4, s = 3, m = 1, α = 0.36
K = 4, s = 3, m = 3, α = 0.32

Fig. 2. Empirical estimates of α (log P̄n/ log n) as a function of n for Binomial Split
(top), Geometric Split (middle) and m-regular (bottom)

Random Partial Match in Quad-K-d Trees 387

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

25000 30000 35000 40000 45000 50000

n

Binomial, p = 0.5, M = 200

K = 2, s = 1, α = 0.58
K = 3, s = 1, α = 0.73
K = 3, s = 2, α = 0.41

K = 4, s = 1, α = 0.8
K = 4, s = 2, α = 0.58
K = 4, s = 3, α = 0.32

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

25000 30000 35000 40000 45000 50000

n

Geometric, p = 0.5, M = 200

K = 2, s = 1, α = 0.58
K = 3, s = 1, α = 0.73
K = 3, s = 2, α = 0.42

K = 4, s = 1, α = 0.8
K = 4, s = 2, α = 0.59
K = 4, s = 3, α = 0.33

0

0.2

0.4

0.6

0.8

1

1.2

1.4

25000 30000 35000 40000 45000 50000

n

m-ary, M = 200

K = 4, s = 1, m = 1, α = 0.82
K = 4, s = 1, m = 3, α = 0.8

K = 4, s = 2, m = 1, α = 0.62

K = 4, s = 2, m = 3, α = 0.58
K = 4, s = 3, m = 1, α = 0.36
K = 4, s = 3, m = 3, α = 0.32

Fig. 3. Empirical normalized cost (P̄n/nα) of Binomial Split (top), Geometric Split
(middle) and m-regular (bottom)

388 A. Duch et al.

Table 2. Performance (exponent α, average degree d) of Binomial Split, Geometric
Split and m-regular

K = 6 α d

ρ = 1/3 ρ = 1/2 ρ = 2/3 Average arity

Binomial p = 1/3 0.7423 0.5955 0.4308 8.32

p = 1/2 0.7357 0.5865 0.4209 15.18

p = 2/3 0.7295 0.5784 0.4122 25.20

Pseudo Binomial p = 1/3 0.7462 0.6 0.4371 5.62

p = 1/2 0.7388 0.5908 0.4256 11.4

p = 2/3 0.7318 0.5815 0.4155 20.92

Geometric p = 1/3 0.7509 0.6076 0.4451 3.69

p = 1/2 0.7442 0.5985 0.4348 7

p = 2/3 0.7358 0.5874 0.4226 14.4

m-regular K-d tree m = 1 0.7583 0.6180 0.4574 2

m = 2 0.7509 0.6073 0.4442 4

m = 3 0.743 0.5962 0.4312 8

m = 4 0.7346 0.5848 0.4186 16

m = 5 0.7256 0.5732 0.4064 32

Quad tree m = 6 0.7161 0.5615 0.3948 64

Uniform 0.7313 0.5812 0.4156 21

4 Conclusions and Further Work

In this work we show that quad-K-d trees are an appropriate framework for a
unified analysis of PM queries in hierarchical multidimensional data structures
such as K-d trees and quad trees. In particular, we propose some new families
of random quad-K-d trees and show that the expected cost of a random PM
query in a random quad-K-d tree of size n is of the form Θ(nα), with 0 < α < 1,
for several families of quad-K-d trees including, among others, K-d trees and
quad trees. We also propose a fully generic implementation of PM searches in
quad-K-d trees that allow us to provide several experiments and calculations
that support the theoretical result.

A natural and challenging way to continue the research in this area is to use
the framework of quad-K-d trees to try to go further in the average case analysis
of PM searches applying other analysis techniques (besides Roura’s CMT and in
a similar way as in [6]) to prove our conjecture and to find the hidden constant
factor β and apply the results to the analysis of other associative queries and
data structures.

An additional way to continue research on quad-K-d trees is to explore their
usefulness in practice by finding (or defining) benchmarks that would allow to
decide, among the models tested here, which one is better in practical situations.

Random Partial Match in Quad-K-d Trees 389

References

1. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

2. Bentley, J.L., Finkel, R.A.: Quad trees: a data structure for retrieval on composite
keys. Acta Informatica 4, 1–9 (1974)

3. Bereczky, N., Duch, A., Németh, K., Roura, S.: Quad-kd trees: a general framework
for kd trees and quad trees. Theor. Comput. Sci. 616, 126–140 (2016). doi:10.1016/
j.tcs.2015.12.030

4. Broutin, N., Neininger, R., Sulzbach, H.: A limit process for partial match queries
in random quadtrees and 2-d trees. Ann. Appl. Probab. 23(6), 2560–2603 (2013)

5. Chern, H.-H., Hwang, H.-K.: Partial match queries in random k-d trees. SIAM J.
Comput. 35(6), 1440–1466 (2006)

6. Chern, H.-H., Hwang, H.-K.: Partial match queries in random quadtrees. SIAM J.
Comput. 32(4), 904–915 (2003)

7. Cunto, W., Lau, G., Flajolet, P.: Analysis of kdt-trees: kd-trees improved by local
reorganisations. In: Dehne, F., Sack, J.R., Santoro, N. (eds.) WADS 1989. LNCS,
vol. 382, pp. 24–38. Springer, Heidelberg (1989)

8. Curien, N., Joseph, A.: Partial match queries in two-dimensional quadtrees: a prob-
abilistic approach. Adv. Appl. Probab. 43(1), 178–194 (2011)

9. Duch, A., Estivill-Castro, V., Mart́ınez, C.: Randomized K-dimensional binary
search trees. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533,
pp. 199–208. Springer, Heidelberg (1998)

10. Duch, A., Lau, G., Mart́ınez, C.: On the cost of fixed partial match queries in K-d
trees. Algorithmica (2016). doi:10.1007/s00453-015-0097-4

11. Flajolet, P., Puech, C.: Partial match retrieval of multidimensional data. J. ACM
33(2), 371–407 (1986)

12. Flajolet, P., Gonnet, G.H., Puech, C., Robson, J.M.: Analytic variations on
quadtrees. Algorithmica 10(6), 473–500 (1993)

13. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput. Surv.
30(2), 170–231 (1998)

14. Mart́ınez, C., Panholzer, A., Prodinger, H.: Partial match queries in relaxed mul-
tidimensional search trees. Algorithmica 29(1–2), 181–204 (2001)

15. Roura, S.: Improved master theorems for divide-and-conquer recurrences. J. ACM
48(2), 170–205 (2001)

16. Samet, H.: The Design and Analysis of Spatial Data Structures. Addison-Wesley,
Reading (1990)

http://dx.doi.org/10.1016/j.tcs.2015.12.030
http://dx.doi.org/10.1016/j.tcs.2015.12.030
http://dx.doi.org/10.1007/s00453-015-0097-4

From Discrepancy to Majority

David Eppstein(B) and Daniel S. Hirschberg

Department of Computer Science, University of California, Irvine, USA
david.eppstein@gmail.com

Abstract. We show how to select an item with the majority color
from n two-colored items, given access to the items only through an
oracle that returns the discrepancy of subsets of k items. We use
n/� k

2
� + O(k) queries, improving a previous method by De Marco and

Kranakis that used n−k +k2/2 queries. We also prove a lower bound of
n/(k − 1) − O(n1/3) on the number of queries needed, improving a lower
bound of �n/k� by De Marco and Kranakis.

1 Introduction

A large body of theoretical computer science research concerns problems of com-
puting a function using a minimal number of calls to an oracle for another function
on small subsets of input values. Such problems include sorting with a minimum
number of comparisons, as well as combinatorial group testing, in which the goal is
to identify the positions of a small set of true values among a larger number of false
values using an oracle that returns the disjunction of an arbitrary subset of val-
ues [1,2]. Other problems with this flavor include Valiant’s work on computing the
majority of n values by shallow circuits of 3-input majority gates [3] and recent
work by the authors using two-input disjunctions to identify a small number of
slackers among a larger number of workers [4].

De Marco and Kranakis [5] provide another interesting class of such problems.
Their input consists of n items, each having one of two colors. The goal is to
select an item of the majority color or, if the input is equally balanced between
colors, to report that fact rather than returning an item. The algorithm may
only access the input by counting queries on k-item subsets of the input. If a
subset has b black items and w = k − b white items, then the result of the query
is c = min(b, w), the size of the smaller of the two color classes. Equivalently,
one may ask for the discrepancy d = |b − w| of the query subset; the count can
be calculated from the discrepancy or vice versa via the identity 2c + d = k.
The motivating application of De Marco and Kranakis is in fault diagnosis of
distributed systems, which requires a majority of processors to be non-faulty.
Their queries model tests that examine a small number of processors per test in
order to determine whether the fault-free processors are indeed a majority.

The case k = 2 of this problem had been previously studied [6–8], and opti-
mal bounds are known [6,8]. De Marco and Kranakis [5] provide more general

David Eppstein was supported in part by NSF grant CCF-1228639.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 390–402, 2016.
DOI: 10.1007/978-3-662-49529-2 29

From Discrepancy to Majority 391

solutions that apply whenever k is sufficiently smaller than n. They show that
it is possible to find a majority item for even k using only n− k + k2/2 counting
queries1, and they prove a lower bound of �n/k� on the number of queries that
are necessary for this problem for all k.

The upper bound of De Marco and Kranakis for counting queries is greater
than the lower bound by a factor of k in its leading term. In this work, we reduce
this upper bound by a factor of approximately k/2 to n/�k

2 � + O(k), matching
the lower bound to within a constant factor independent of k.

De Marco and Kranakis also considered a more powerful type of query, the
output model, in which the answer to a query is a partition of the queried set into
two monochromatic subsets (not revealing the colors of each subset). For this
problem De Marco and Kranakis provided an upper bound of �(n − 1)/(k − 1)�
queries, and showed that the same �n/k� lower bound for counting queries applies
also to the output model. For odd k, we show that their upper bound is tight
by proving a matching lower bound. For even k, we slightly improve their upper
bound and prove a new lower bound that is within an additive O(n1/3) lower-
order term of the upper bound. Our new lower bounds apply both to counting
queries and to the output model, and the n/(k − 1) leading terms of the new
lower bounds improve the n/k leading term of the previously known bound.

Our results can also be interpreted in the framework of discrepancy theory,
the study of how small the discrepancy of the sets in a set system can be made
by choosing an appropriate 2-coloring of the set elements [9]. The first stage
in our counting-query algorithm, finding an unbalanced query, is equivalent to
constructing a system of k-element sets with discrepancy > 1, and our results
for this stage provide examples of such unbalanced k-set systems.

1.1 Notational Conventions and Problem Statement

We use the following shorthand notation for sets:

– [m] denotes the set {1, 2, . . . ,m} of the first m positive integers.
– If S is a set, i is an element of S, and j is not an element of S, then Sj

i denotes
the set (S \ {i}) ∪ {j}. That is, we replace i by j in S.

– With the same conventions, if A is a subset of S and B is disjoint from S,
then SB

A denotes the set (S \ A) ∪ B.
– If S and T are two sets of numbers with |S| ≥ |T |, then S �T is the set formed

from S by removing the |T \ S| largest elements of S \ T and replacing them
by the elements of T \ S. The result is a set with the same size as S that
forms a subset of S ∪ T and a superset of T . By abuse of notation, when t is
a number, we write S � t as a shorthand for S � {t}.

To avoid confusion with the equality predicate, we use the notation x := y to
indicate that a variable x of our algorithm should be assigned the new value y.

An instance of the majority problem may be parameterized by two val-
ues, n (the number of input items) and k (the size of queries), with n > k.
1 There is a bug in their method for odd k, in Case 1 of Theorem 4.1, when i = �k/2�.

392 D. Eppstein and D.S. Hirschberg

We may represent an input to the problem by an n-tuple X of numbers xi (i ∈ [n])
where each xi is a member of the set {0, 1}. The argument to a query made by a
majority-finding algorithm may be represented by a set Q ⊂ [n] with |Q| = k.
Then we may define the results of the input queries count and partition as

count(Q) = min

⎧
⎨

⎩

∑

i∈Q

xi,
∑

i∈Q

(1 − xi)

⎫
⎬

⎭

partition(Q) =
{
{i | xi = 0} , {i | xi = 1}

}
.

By extension, we allow these functions to be applied to any set, not necessarily
of cardinality k, with the same definitions.

For odd k it will be convenient to partition the set [n] into two complementary
subsets, M and L. M is the set of indices i whose associated values xi equal the
majority value of [k]. (This may differ from the majority of [n].) Similarly, L is
the set of indices i whose associated values xi equal the minority value in [k].

We say that a query set Q is homogeneous if all of its elements have
the same value; that is, it is homogeneous when count(Q) = 0 and when
partition(Q) = {∅, Q}. We say that a query is inhomogeneous if it is not homo-
geneous. We say that a query set is balanced if it is equally partitioned between
elements of the two values (or as near to equal as possible when k is odd). That
is, Q is balanced when its discrepancy is at most 1 or when count(Q) = �k/2�.
We say that Q is unbalanced when it is not balanced.

1.2 New Results

We prove the following new results.

– A majority element may be found by making n/�k
2 �+O(k) count queries. The

best previous bound, by De Marco and Kranakis [5], was n − k + k2/2.
– When n is odd, a majority element may be found by making �(n−2)/(k−1)�

partition queries. This improves for some values of k the best previous upper
bound, by De Marco and Kranakis [5], of �(n − 1)/(k − 1)�.

– Determining the majority element requires at least �(n − 1)/(k − 1)� queries,
for odd k, and n/(k − 1) − O(n1/3) queries, for even k, regardless of whether
the queries are of type count or partition. The best previous lower bound for
both these query types, by De Marco and Kranakis [5], was �n/k�.

In addition our methods prove the following discrepancy-theoretic result:

– For even k, there exists a family of at most 2 log2 k + 1 sets, each having k
elements, that cannot be 2-colored to make every set balanced. For odd k,
there exists a family of at most k + 3 log2 k + 4 sets with the same property.

2 Upper Bounds for Counting

For our new upper bounds for counting we use an algorithm with the following
four stages:

From Discrepancy to Majority 393

1. Find an unbalanced query U .
2. Use U to find a homogeneous query H.
3. Use H to determine count([n]).
4. Based on the value of count([n]), find the result of the majority problem.

We describe these four stages in the following four subsections.

2.1 Finding an Unbalanced Query

Throughout this section, when a subroutine discovers that a set U is unbalanced,
we will abort the subroutine and its callers, and pass U on to the next stage
of the algorithm. To indicate that this action is not simply returning to the
subroutine’s caller, we describe it using the Java-like pseudocode “throw U”.

For even k, we do not need to find an unbalanced set, as our algorithm
for finding a homogeneous set does not require it. However, the solution below
serves as a warmup for the odd-k case. It maintains a homogeneous subset H of
a balanced set B, repeatedly doubling H until it is too large to be a subset of a
balanced set. To double H, we query a set BQ

H ; if it is balanced, then Q and H
have the same composition and the doubled set H ∪ Q is homogeneous.

Subroutine 1 to find an unbalanced set when k is even:

1. Set B := [k] and H := {1}.
2. Repeat the following steps:

(a) If B is unbalanced, throw B.
(b) Let Q be a set disjoint from B with |Q| = |H|.
(c) If BQ

H is unbalanced, throw BQ
H .

(d) Set H := H ∪ Q and then set B := B � H.

Throughout the loop, H remains homogeneous, and doubles in size at each
iteration. The loop terminates on or before the iteration for which k/2 < |H| ≤ k,
after at most 2 log2 k+1 queries, because substituting such a large homogeneous
set into B will always produce an unbalanced set. Thus, |H| cannot grow larger
than k and cause BQ

H to become undefined. For the subroutine to work correctly,
we must have n ≥ 3k/2 to ensure that a large enough subset Q disjoint from B
can be chosen in step 2(b).

When k is odd we use a similar idea, doubling the size of a small unbalanced
seed set until it overwhelms the whole set, but the details are more complicated.
In the first place, the seed set for the doubling routine in the even case is always
the set {1}, found without any queries, but in the odd case we choose our seed
more carefully to have the form {j, j′} where {j, j′} ⊂ L. To construct this seed,
we choose j and j′ to be arbitrary indexes disjoint from [k] and then verify that
they both belong to L by using the following subroutine:

Subroutine 2 star(j) (for j > k) verifies that j ∈ L or finds an unbalanced set:

1. If [k] is unbalanced, throw [k].
2. For i := 1, 2, . . . (k + 3)/2, if [k]ji is unbalanced, throw [k]ji .

394 D. Eppstein and D.S. Hirschberg

1 2 k

j

(k+3)/2

Fig. 1. Left: the arrows connect pairs of elements swapped into and out of the queries
made by star(j). Right: if two overlapping queries (shown as ellipses) differ in a single
element, and are both balanced, then either the two swapped elements have equal
values (top) or they are unequal but both are in the majority for their query (bottom).

The subroutine name refers to the fact that the pairs (i, j) defining the queries
form the edges of a star graph (Fig. 1, left).

Lemma 1. If star(j) terminates without finding an unbalanced set, then j ∈ L.

Proof. There are two different possible ways that the sets [k] and [k]ji queried
by the algorithm can both be balanced (Fig. 1, right): either xi = xj (the upper
case in the figure), or i ∈ M and j ∈ L (the lower case). The first of these two
possibilities, that xi = xj , can happen only for �k/2� choices of i, for otherwise
too many of the members of [k] would be equal to xj (and each other) for [k] to
be balanced. However, star(j) tests a larger number of pairs than that. Therefore,
if it tests all of these pairs and fails to find an unbalanced set, then it must be
the case that j ∈ L. �

We define a set S with even cardinality to be L-heavy if a majority of S
belongs to L, and L-balanced if S is either balanced or L-heavy. Because we
assume |S| is even, an L-heavy set must contain at least 1 + |S|/2 elements
of L, and an L-balanced set must contain at least |S|/2 elements of L. The
disjoint union of an L-heavy and an L-balanced set must itself be L-heavy, for
if X and Y are disjoint with X containing at least 1 + |X|/2 elements of L
and |Y | containing at least |Y |/2 elements of L, then X ∪ Y contains at least
1+ |X|/2+ |Y |/2 = 1+ |X ∪Y |/2 elements of L. Our algorithm for the odd case
of stage 1 depends on the following result, which lets us determine an L-heavy
set of size double that of a previously known L-heavy set using O(1) queries.

Lemma 2. Suppose that S and T are sets disjoint from [k], that S is L-heavy,
that |S| = |T | ≤ k, and that [k], [k] � S, and [k] � T are all balanced. Then T is
necessarily L-balanced.

Proof. Let U be the set of the largest |S| elements of [k]; this is the subset of
[k] removed to make way for S in the set [k] � S (Fig. 2). For [k] and [k] � S to
be balanced, U can have at most one more member of M than S does; that is,
U is L-balanced. Again, for [k] and [k] � T to be balanced, T must have at least
as many members of L as U does; therefore, T is also L-balanced. �

From Discrepancy to Majority 395

[k]:

S:

T:
U

Fig. 2. The sets S (top), T (bottom), and U (middle right), and the query sets [k]
(yellow), [k] � S (red), and [k] � T (blue), used in the proof of Lemma 2 (Color figure
online).

Based on Lemma 2, we define a second subroutine multiply(P,m) that trans-
forms an L-heavy set P into a larger L-heavy set of cardinality m|P |. It takes as
input an L-heavy set P , where P has even size and is disjoint from [k], and a pos-
itive integer m with m|P | ≤ k. It either finds an unbalanced set U (aborting the
subroutine) or returns as output an L-heavy set of cardinality m|P |. We assume
as a precondition for this subroutine that [k] has already been determined to be
balanced. The subroutine uses the binary representation of m to find its return
value in a small number of doublings.

Subroutine 3 multiply(P,m) (where m and P are as described above) finds an
unbalanced set or returns an L-heavy set disjoint from [k] of size m|P |:

1. If m = 1, return P .
2. If [k] � P is unbalanced, throw [k] � P .
3. Choose Q disjoint from both P and [k] with |Q| = |P |.
4. If [k] � Q is unbalanced, throw [k] � Q.
5. Set R := multiply(P ∪ Q, �m/2�).
6. If m is even, return R.
7. Choose S disjoint from R and from [k] with |S| = |P |.
8. If [k] � S is unbalanced, throw [k] � S.
9. Return R ∪ S.

By Lemma 2, if multiply does not find an unbalanced set, then Q and S must
both be L-balanced, and their disjoint union with an L-heavy set is another
L-heavy set. Therefore, the set returned by this subroutine is L-heavy, and (by
induction on the number of recursive calls) has the desired cardinality. The
number of levels of recursion (counting only levels that can perform queries)
is �log2 m�; at each level it performs either two or three queries, depending on
whether m is even or odd. Therefore, in the worst case, it performs at most
3 log2 m queries.

Putting star and multiply together, we have the following algorithm to find an
unbalanced set when k is odd. It uses star twice to find a two-element L-heavy
set Y , then uses multiply to expand this set to an L-heavy set of k−1 elements. If
this L-heavy set together with one element i ∈ [k] remains unbalanced, it must

396 D. Eppstein and D.S. Hirschberg

be the case that i ∈ M . After we identify two members of M , we can replace
them with the two known members of L to obtain an unbalanced set.

Subroutine 4 finds an unbalanced set when k is odd:

1. Call star(k + 1) and star(k + 2), and set Y := {k + 1, k + 2}.
2. Set Z := multiply(Y, (k − 1)/2), an L-heavy set of k − 1 elements.
3. If Z ∪ {1} or Z ∪ {2} is unbalanced, throw the unbalanced set.
4. Throw [k]Y{1,2}.

The two calls to star (after eliminating the shared query of set [k]) take a
total of k+4 queries. The call to multiply takes at most 3(log2 k−1) queries. The
remaining steps of the algorithm use at most two queries. Therefore, the total
number of queries made in this stage of the algorithm is at most k +3 log2 k +3.
In order to work, this algorithm needs n to be at least 2k − 1 so that it can find
enough elements in the disjoint sets that it chooses.

For the algorithms in this stage, the sequence of queries made by the algo-
rithm is non-adaptive: whenever a query finds an unbalanced set, the algorithm
terminates, so the sequence of queries can be found by simulating the algorithm
using an oracle that knows nothing about the input and always returns a bal-
anced result. Eventually, the algorithm will determine that some particular set
is unbalanced without querying it. The sequence of query sets together with the
final unqueried and unbalanced set form a family of k-sets with the property
that, no matter how their elements are colored, at least one set in the family
will be unbalanced. This proves the following result:

Theorem 1. When k is even, there exists a family of at most 2 log2 k + 1 sets,
each having k elements, that cannot be 2-colored to make every set in the family
be balanced. When k is odd, there exists a family of at most k + 3 log2 k + 4 sets
with the same property.

These bounds are not tight for many values of k. When k = 2 (mod 4), three
k-sets with pairwise intersections of size k/2 cannot all be balanced. And for
many odd values of k our bound can be improved by using optimal addition
chains. However, such improvements would make our algorithms more complex
and would affect only a low-order term of our overall analysis.

2.2 Finding a Homogeneous Query

After the previous stage of the algorithm, we have obtained an unbalanced
query U . We may also assume that we know the result of the query count(U),
for the algorithm of the previous stage will either query this number itself or it
will find an unbalanced query U for which count(U) can be determined with-
out making a query. Our algorithm for finding a homogeneous query is based
on the principle that, for any two indices i and j with i ∈ U and j /∈ U ,
we can test whether xi = xj in a single additional query, by testing whether
count(U j

i) = count(U). If xi = xj then the count stays the same, clearly. How-
ever, with U unbalanced, it is not possible for the two indices to have different
values while preserving the count.

From Discrepancy to Majority 397

Fig. 3. Finding a homogeneous query. Given an unbalanced k-element query U (top,
yellow), we find a disjoint set V of k − 1 elements (bottom), and construct a spanning
tree of the complete bipartite graph that has U and V as its two vertex sets (blue
edges). We then query each set U j

i for each spanning tree edge ij and use the result
to label each edge 0 (if xi = xj) or 1 (otherwise). Any two elements of U ∪ V have the
same value if and only if the spanning tree path connecting them has even label sum
(Color figure online).

Subroutine 5 to find a homogeneous query:

1. Let V be a set of k − 1 elements disjoint from U .
2. Construct a spanning tree T of the complete bipartite graph Kk,k−1 having

U and V as the two sides of its bipartition.
3. For each edge (i, j) of T , with i ∈ U and j ∈ V , query count(U j

i). Label
the edge with the number 1 if the query value is different from count(U) and
instead label the edge with the number 0 if the two query values are equal.

4. Define two elements of U ∪V to be equivalent when the path connecting them
in T has even label sum, and partition U ∪V into the two equivalence classes
X and Y of the resulting equivalence relation.

5. Return a subset of k elements from the larger of the two equivalence classes.

The algorithm is illustrated in Fig. 3. This stage performs 2k − 2 queries and
requires that n ≥ 2k − 1.

2.3 Finding the Count

We next use the known homogeneous query H to compute count([n]).

Subroutine 6 to compute count([n]), given a homogeneous set H:

1. Partition [n]\H into (n−k)/�k
2 � subsets S1, S2, . . . , each having at most �k

2 �
elements.

2. For each subset Si of the partition, query count(H � Si). Since Si ≤ k/2 and
the remaining elements of H �Si are homogeneous, this query determines the
number of elements of Si that are not the same type as H.

3. Let c be the sum of the query values, and return min(c, n − c).

As well as computing count([n]), the same algorithm can determine whether
H is in the majority (according to whether c or n − c is the minimum) and, if
not, find an inhomogeneous query I for which |H ∩ I| ≥ k/2 (any of the queries
with a nonzero query value). The number of queries it needs is

n − k

�k/2� ≤ n

�k/2� − 2.

398 D. Eppstein and D.S. Hirschberg

2.4 Finding the Majority

After the previous three stages of the algorithm, we have the following informa-
tion:

– A homogeneous query H.
– The number count([n]).
– Whether the elements of H are in the majority.
– An inhomogeneous query I (if H is not in the majority), with |H ∩ I| ≥ k/2.

If count([n]) = n/2, we report that there is no majority. If H is a subset
of the majority, we may return any element of H as the majority element. In
the remaining case, we find an element of I that is not of the same type as the
elements of H, using binary search:

Subroutine 7 uses binary search to find a majority element:

1. Let U := I \ H, a set containing an element not the same type as H.
2. Let c := count(I), the number of majority elements in U already determined

in stage three of the algorithm.
3. While |U | > c, do the following steps:

(a) Let V := any subset of �|U |/2� elements of U .
(b) Query count(H � V).
(c) If the result of the query is nonzero, let U := V and let c := the query

result. Otherwise, let U := U \ V and leave c unchanged.
4. Return any element of the remaining set U .

By induction, for a given set U , this algorithm uses at most �1+log2(|U |−1)�
queries. The worst case occurs when |U | is one plus a power of two and the query
result is zero, resulting in a case of the same type in the next step. Since initially
|U | ≤ k/2, it follows that the total number of queries for this stage of the
algorithm is less than log2 k. This bound can be improved by making a more
careful choice of the set I to ensure that the initial values in the algorithm satisfy
c > |U |/2, but this improvement is unnecessary for our results.

2.5 Counting Analysis

By adding together the numbers of queries made in the four stages of our algo-
rithm we obtain the following result.

Theorem 2. Let k and n be given integers with n ≥ 2k − 1 and k > 1. Then
it is possible to find a majority element of a set of n 2-colored elements, or to
report that there is no majority, using at most n/�k

2 �+3k+4 log2 k count queries
on subsets of k elements.

In the full version of the paper we remove the constraint that n ≥ 2k − 1 by
providing substitute algorithms for the case that k < n < 2k − 1, using O(k)
queries.

From Discrepancy to Majority 399

3 Lower Bounds

In contrast to our upper bounds for counting queries, our lower bounds are
simpler and tighter in the case that k is odd, so we begin with that case first.

Our lower bound for odd k uses partition queries, as they are the most power-
ful and can simulate count queries: if it is impossible to find the majority using a
given number of partition queries, it is also impossible with the same number of
queries of the other types. We prove our lower bound by an adversary argument:
we design an algorithm for answering queries that, unless enough queries are
made, will be able to force the querying algorithm into making a wrong choice
of answer to the majority problem.

At any point during the interaction of the querying algorithm and adversary,
we define the query graph to be a bipartite graph that has the n given set ele-
ments on one side of its bipartition and the queries made so far on the other
side of the bipartition. We make each query be adjacent to the elements in it.
As a shorthand, we use the word component to refer to a connected component
of the query graph. The querying algorithm can be assumed to know the results
of applying the partition and count functions to any subset of elements within
a single component, as those results can be inferred from the queries actually
performed within the component. Note also that, if any component C has dis-
crepancy zero, the querying algorithm may safely ignore that component for the
rest of the querying process, as removing its elements from the problem will not
change the majority.

To simplify the task of the adversary, we restrict the querying algorithm
to make only reasonable queries, which we define as queries that never include
elements from components with zero discrepancy, and that (unless the result
of the query leaves at most one nonzero-discrepancy component) never include
more than one element from the same pre-query component. It follows from these
properties that the querying algorithm must stop making queries, and choose an
output for the majority problem, if it ever reaches a state where at most one
component has nonzero discrepancy.

Lemma 3. Any lower bound for an algorithm that makes only reasonable
queries will be valid as a lower bound for all querying algorithms.

Proof. An arbitrary querying algorithm can be transformed into one that makes
only reasonable queries by skipping any query whose elements belong to one
component, removing query elements that come from zero-discrepancy compo-
nents or that duplicate the component of another element, and replacing the
removed elements by elements from new components. This modification pro-
duces components that are supersets of the original ones, from which the results
of the original queries can be inferred. �

By induction, with only reasonable queries for k odd, if more than one
component remains, then all components have odd cardinality and therefore odd
discrepancy. We design an adversary that maintains for each odd component a par-
tition of its elements into two subsets (consistent with previous answers) that has

400 D. Eppstein and D.S. Hirschberg

discrepancy one. If a query produces a single component of even cardinality, we
allow the adversary to choose any partition consistent with previous answers. If
a query merges multiple discrepancy-one components, then (by choosing slightly
more than half of the input components to have a majority that coincides with the
majority of themerged component, and slightly fewer than half of the input compo-
nents to have a majority that falls into the minority of the merged component) we
can always find a consistent partition with discrepancy one. Therefore, by induc-
tion, the adversary can always achieve the goals stated above.

Lemma 4. If a querying algorithm that makes reasonable queries does not
reduce the input to a single component before producing its output, then the
adversary described above can force it to compute an incorrect answer.

Proof. Unless there is one component, more than one answer to the majority
problem is consistent with the choices already made by the adversary.

In particular, if there are evenly many odd components of discrepancy one,
then by choosing the majorities of all components to be the majority of the
whole input, it is possible to cause the whole input to have a majority. But by
choosing half of the components to have a majority of value 0 and half of the
components to have a majority of value 1, it is also possible to cause the whole
input to be evenly split between the two values and have no majority. Thus,
regardless of whether the querying algorithm declares that there is no majority
or whether it chooses a majority element, it can be made to be incorrect.

If there are an odd number of odd components, then a majority always exists.
We may achieve discrepancy one for the whole input set of elements by choosing
slightly more than half of the components to have majority value 1 and slightly
fewer than half to have majority value 0; however, each component can be either
on the majority 1 or majority 0 side, so each element can be either in the
majority or in the minority. Regardless of which element the querying algorithm
determines to belong to the majority, it can be made to be incorrect. �

Theorem 3. When k is odd, any algorithm that always correctly finds the
majority of n elements by making partition or count queries must use at least
�(n − 1)/(k − 1)� queries.

Proof. As above, the algorithm can be assumed to make only reasonable partition
queries, and must make enough queries to reduce the query graph to a single
component. This graph initially has n components, and each query reduces the
number of components by at most k − 1, from which the result follows. �

De Marco and Kranakis showed that the majority problem on n elements
may be solved using �(n − 1)/(k − 1)� partition queries on subsets of k ele-
ments, matched by the lower bound of Theorem3. For odd n, this bound may
be improved to �(n − 2)/(k − 1)� by applying it only to the first n − 1 ele-
ments, and either returning the result (if it is a majority) or the final element
(if the first n − 1 elements have no majority). However, this modification to
their algorithm can reduce the number of queries only when k −1 evenly divides

From Discrepancy to Majority 401

n − 2, which only happens when k is even. Therefore, this improvement does
not contradict Theorem3. When k = 2 a similar improvement can be continued
recursively by pairing up elements, eliminating balanced pairs, and recursively
finding the majority of a set of representative elements from each pair. The
resulting algorithm uses n − b queries, where b is the number of nonzero bits in
the binary representation of n, and a matching lower bound is known [8]. Again,
this does not contradict Theorem3 because k = 2 is even. These improvements
to the upper bound of De Marco and Kranakis raise the question of whether
the majority can be found with significantly fewer queries whenever k is even.
However, we show in the full version of the paper that the answer is no. An
adversary strategy similar to the odd-k strategy but more complicated than it
can be used to prove a lower bound of n/(k − 1) − O(n1/3) on the number of
queries.

4 Conclusions

We have provided new bounds for the majority problem, for count and partition
queries. For partition queries with odd query size, our bounds are tight, and
for even query size we achieve a matching leading term in our upper and lower
bounds. However, for count queries, our upper and lower bounds are separated
from each other by a factor of two. Reducing this gap remains open.

Recently, Gerbner et al. have given bounds for the majority problem for
a different type of query that returns an element of the majority of a three-
tuple [10]. It would be of interest to extend their results to k-tuples as well.

Our work also raises the discrepancy-theoretic question of how many sets are
needed in a family of k-element sets that cannot be balanced. In this, also, our
bounds are not tight and further improvement would be of interest.

References

1. Du, D.Z., Hwang, F.K.: Combinatorial Group Testing and its Applications. Ser.
Appl. Math., vol. 12, 2nd edn. World Scientific, New York (2000)

2. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved combinatorial group
testing algorithms for real-world problem sizes. SIAM J. Comput. 36(5), 1360–1375
(2007)

3. Valiant, L.G.: Short monotone formulae for the majority function. J. Algor. 5(3),
363–366 (1984)

4. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Combinatorial pair testing:
distinguishing workers from slackers. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.)
WADS 2013. LNCS, vol. 8037, pp. 316–327. Springer, Heidelberg (2013)

5. De Marco, G., Kranakis, E.: Searching for majority with k-tuple queries. Discrete
Math. Algor. Appl. 7(2), 1550009 (2015)

6. Alonso, L., Reingold, E.M., Schott, R.: Determining the majority. Inform. Process.
Lett. 47(5), 253–255 (1993)

7. Alonso, L., Reingold, E.M., Schott, R.: The average-case complexity of determining
the majority. SIAM J. Comput. 26(1), 1–14 (1997)

402 D. Eppstein and D.S. Hirschberg

8. Saks, M.E., Werman, M.: On computing majority by comparisons. Combinatorica
11(4), 383–387 (1991)

9. Beck, J., Chen, W.W.L.: Irregularities of Distribution. Cambridge Tracts in Math-
ematics, vol. 89. Cambridge University Press, Cambridge (2008)

10. Gerbner, D., Keszegh, B., Pálvölgyi, D., Patkós, B., Vizer, M., Wiener, G.: Finding
a majority ball with majority answers. In: Proceedings of the 8th European
Conference on Combinatorics, Graph Theory, and Applications (EuroComb 2015).
Elect. Notes Discrete Math., vol. 49, pp. 345–351. Elsevier (2015)

On the Planar Split Thickness of Graphs

David Eppstein1, Philipp Kindermann2, Stephen Kobourov3,
Giuseppe Liotta4, Anna Lubiw5, Aude Maignan6, Debajyoti Mondal7(B),

Hamideh Vosoughpour5, Sue Whitesides8, and Stephen Wismath9

1 University of California, Irvine, USA
eppstein@uci.edu

2 FernUniversität Hagen, Hagen, Germany
philipp.kindermann@fernuni-hagen.de
3 University of Arizona, Tucson, USA

kobourov@cs.arizona.edu
4 Università Degli Studi di Perugia, Perugia, Italy

giuseppe.liotta@unipg.it
5 University of Waterloo, Waterloo, Canada

{alubiw,hvosough}@uwaterloo.ca
6 Université Grenoble Alpes, Grenoble, France

aude.maignan@imag.fr
7 University of Manitoba, Winnipeg, Canada

jyoti@cs.umanitoba.ca
8 University of Victoria, Victoria, Canada

sue@uvic.ca
9 University of Lethbridge, Lethbridge, Canada

wismath@uleth.ca

Abstract. Motivated by applications in graph drawing and information
visualization, we examine the planar split thickness of a graph, that is,
the smallest k such that the graph is k-splittable into a planar graph. A
k-split operation substitutes a vertex v by at most k new vertices such
that each neighbor of v is connected to at least one of the new vertices.

We first examine the planar split thickness of complete and complete
bipartite graphs. We then prove that it is NP-hard to recognize graphs
that are 2-splittable into a planar graph, and show that one can approx-
imate the planar split thickness of a graph within a constant factor. If
the treewidth is bounded, then we can even verify k-splittablity in linear
time, for a constant k.

1 Introduction

Transforming one graph into another by repeatedly applying an operation such
as vertex/edge deletion, edge flip or vertex split is a classic problem in graph the-
ory [15]. In this paper, we examine graph transformations under the vertex split
operation. Specifically, a k-split operation at some vertex v inserts at most k new
vertices v1, v2, . . . , vk in the graph, then, for each neighbor w of v, adds at least
one edge (vi, w) where i ∈ [1, k], and finally deletes v along with its incident edges.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 403–415, 2016.
DOI: 10.1007/978-3-662-49529-2 30

404 D. Eppstein et al.

{A,B,D}

{A,B,C,D}

{A,C,D}

{C}

{C,D,E}

{D}

{A,B,D}
{A}

{A,B,C}

{B,C,D}

{C}

{A,C,D,E}

{C,D,E}

{D}

(a) (b)

Fig. 1. (a) A 2-split visualization of subset relations among 10 sets. (b) Visualization
of a social network. Note the 3 yellow clusters at the lower left of the map.

We define a k-split of graph G as a graph that is obtained by applying a k-split
to each vertex of G at most once. We say that G is k-splittable into Gk. If G is a
class of graphs, we say that G is k-splittable into a graph of G (or “k-splittable into
G”) if there is a k-split of G that lies in G. We introduce the G split thickness of a
graph G as the minimum integer k such that G is k-splittable into a graph of G.

Graph transformation via vertex splits is important in graph drawing and
information visualization. For example, assume that we want to visualize the
subset relation among a collection S of n sets. Construct an n-vertex graph G
with a vertex for each set and an edge when one set is a subset of another. A
planar drawing of this graph gives a nice visualization of the subset relation.
Since the graph is not necessarily planar, a natural approach is to split G into a
planar graph and then visualize the resulting graph, as illustrated in Fig. 1(a).
Let’s now consider another interesting scenario where we want to visualize a
graph G of a social network, see Fig. 1(b). First, group the vertices of the graph
into clusters by running a clustering algorithm. Now, consider the cluster graph:
every cluster is a node and there is an edge between two cluster-nodes if there
exists a pair of vertices in the corresponding clusters that are connected by an
edge. In general, the cluster graph is non-planar, but we would like to draw the
clusters in the plane. Thus, we may need to split a cluster into two or more sub-
clusters. The resulting “cluster map” will be confusing if clusters are broken into
too many disjoint pieces, which leads to the question of minimizing the planar
split thickness.

Related Work. The problem of determining the planar split thickness of a
graph G seems to be related to the graph thickness [1], empire-map [12] and
k-splitting [15] problem. The thickness of a graph G is the minimum integer t
such that G admits an edge-partition into t planar subgraphs. One can assume
that these planar subgraphs are obtained by applying a t-split operation at each
vertex. Hence, thickness is an upper bound on the planar split thickness, e.g.,
the thickness and thus the planar split thickness of graphs with treewidth ρ
and maximum-degree-4 is at most �ρ/2� [5] and 2 [6], respectively. Analogously,

On the Planar Split Thickness of Graphs 405

the planar split thickness of a graph is bounded by its arboricity, that is, the
minimum number of forests into which its edges can be partitioned. We will
later show that both parameters also provide an asymptotic lower bound on the
planar split thickness.

A k-pire map is a k-split planar graph, i.e., each empire consists of at most k
vertices. In 1890, Heawood [11] proved that every 12 mutually adjacent empires
can be drawn as a 2-pire map where each empire is assigned exactly two regions.
Later, Ringel and Jackson [19] showed that for every integer k ≥ 2 a set of 6k
mutually adjacent empires can be drawn as a k-pire map. This implies an upper
bound of �n/6� on the planar split thickness of a complete graph on n vertices.

A rich body of literature considers the planarization of non-planar graphs
via vertex splits [7,10,15,16]. Here a vertex split is one of our 2-split operations.
These results focus on minimizing the splitting number, i.e., the total number of
vertex splits. Note that upper bounding the splitting number does not necessarily
guarantee any good upper bound on the planar split thickness.

Knauer and Ueckerdt [13] studied the folded covering number which is equiv-
alent to our problem and stated several results for splitting graphs into star
forests, caterpillar forests, or interval graphs, e.g., planar graphs are 4-splittable
into a star forest, and planar bipartite graphs as well as outerplanar graphs are
3-splittable into a star forest or a caterpillar forest. It follows from Scheinerman
and West [20] that planar graphs are 3-splittable into interval graphs and 4-
splittable into a caterpillar forest, while outerplanar graphs are 2-splittable into
interval graphs.

Our Contribution. In this paper, we examine the planar split thickness for
non-planar graphs. Initially, we focus on splitting the complete and complete
bipartite graphs into planar graphs. We then prove that it is NP-hard to recog-
nize graphs that are 2-splittable into a planar graph, while we describe a tech-
nique for approximating the planar split thickness within a constant factor.
Finally, for bounded treewidth graphs, we present a technique to verify pla-
nar k-splittablity in linear time, for any constant k. Because our results are for
planar k-splittability, we will drop the word “planar”, and use “k-splittable” to
mean “planar k-splittable”.

2 Planar Split Thickness of Kn and Km,n

In this section, we focus on the planar split thickness of Kn and Km,n, and on
graphs with maximum degree Δ.

2.1 Complete Graphs

Let f(G) be the planar split thickness of the graph G. Recall that Ringel and
Jackson [19] showed that f(Kn) ≤ �n/6� for every n ≥ 12. Since a (n/6)-split
graph contains at most n2/2 − 6 edges, and the largest complete graph with at
most n2/2 − 6 edges is Kn, this bound is tight. Besides, for every n < 12, it is

406 D. Eppstein et al.

straightforward to construct a 2-split graph of Kn by deleting 2(12−n) vertices
from the 2-split graph of K12. Hence, we obtain the following theorem.

Theorem 1 (Ringel and Jackson [19]). If n ≤ 4, then f(Kn) = 1, and if
5 ≤ n ≤ 12, then f(Kn) = 2. Otherwise, f(Kn) = �n/6�.

Let K2
12 be any 2-split graph of K12. Then, K2

12 exhibits some useful struc-
ture, as stated in the following lemma.

Lemma 1. Any planar embedding Γ of K2
12 is a triangulation, where each vertex

of K12 is split exactly once and no two vertices that correspond to the same vertex
in K12 can appear in the same face.

Proof. K12 has 66 edges. The 2-split operation produces a graph with at most
twice the number of vertices and at least the original number of edges, so any
graph K2

12 has 24 vertices and 66 edges, since that is the largest number of edges
for a 24-vertex planar graph by Eulers formula. Therefore, if K2

12 is planar, it
must be maximal planar, with all faces triangles. If two copies of the same vertex
appear on a face, then those copies would not be adjacent and that face could
not be a triangle. ��

Let H be the graph consisting of 2 copies of K12 attached at a common
vertex v. Then, H provides an example of a graph that is not 2-splittable even
though its edge count does not preclude its possibility of being 2-splittable.

Lemma 2. The graph H is not 2-splittable.

Proof. Consider a 2-split graph H ′ of one copy of K12. By Lemma 1, the ver-
tices v1 and v2 in H ′ that correspond to the same vertex in K12 cannot appear
in the same face. Since v can be split only once, the 2-split graph H ′′ of the
other copy of K12 must lie inside some face that is incident to either v1 or v2.
Without loss of generality, assume that it is incident to some face incident to v1.
Note that both H ′ and H ′′ need a copy of v in some face which is not incident
to v1. Since both H ′ and H ′′ are triangulations, this would introduce a crossing
in any 2-split graph of H. ��

2.2 Complete Bipartite Graphs

Hartsfield et al. [10] showed that the splitting number of Km,n, where m,n ≥ 2, is
exactly �(m−2)(n−2)/2�. However, their construction does not guarantee tight
bounds on the splitting thickness of complete bipartite graphs. For example,
if m is an even number, then their construction does not duplicate any vertex of
the set A with m vertices, but uses n + (m/2 − 1)(n − 2) vertices to represent
the set B of n vertices. Therefore, at least one vertex in the set B is duplicated
at least (n + (m/2 − 1)(n − 2))/n = m/2 − m/n + 2/n ≥ 3 times, for m ≥ 6
and n ≥ 5. On the other hand, we show that Km,n is 2-splittable in some of
these cases, as stated in the following theorem.

On the Planar Split Thickness of Graphs 407

Fig. 2. The 2-split graphs of K5,16, K6,10 and K7,8.

Theorem 2. The graphs K5,16, K6,10, and K7,8 are 2-splittable, and their 2-
split graphs are quadrangulations, which implies that for complete bipartite graphs
Km,n, where m = 5, 6, 7, those are the largest graphs with planar split thickness 2.

Proof. The sufficiency can be observed from the 2-split construction of K5,16,
K6,10, and K7,8, as shown in Fig. 2. A planar bipartite graph can have at most
2n − 4 edges [10]. Since the graphs K5,16,K6,10 and K7,8 contain exactly 4(m +
n) − 4 edges, their 2-split graphs are quadrangulations, which in turn implies
that the result is tight. ��

The following theorem gives a necessary condition for a complete bipartite
graph to be k-splittable based on the edge count argument.

Theorem 3. If d ≥ 4k + 4
√

k2 − 1 and n > d−√
d2−8kd+16

2 , then Kn,d−n is not
k-splittable.

Proof. Note that any k-split graph Hk of Kn,m must be a planar bipartite graph.
Therefore, if p and q are the number of vertices and edges in Hk, respectively,
then the inequality q ≤ 2p − 4 holds.

Consider a complete bipartite graph Kn,d−n that is k-splittable. The number
of edges in this graph is n × (d − n). Since any k-split graph of Kn,d−n can have
at most kd vertices, we have

n(d − n) ≤ 2kd − 4 ⇔ n2 − nd + 2kd − 4 ≥ 0 (1)

The factorization of the previous polynomial (1) gives

n2 − nd + 2kd − 4 =

(

n − d −
√

d2 − 8kd + 16
2

) (

n − d +
√

d2 − 8kd + 16
2

)

,

when d ≥ 4k + 4
√

k2 − 1. Therefore, Eq. (1) holds if n ≤ d−√
d2−8kd+16

2 or
n ≥ d+

√
d2−8kd+16

2 . ��

408 D. Eppstein et al.

2.3 Graphs with Maximum Degree Δ

Recall that the planar split thickness of a graph is bounded by its arboricity. By
definition, any maximum-degree-Δ graph has degeneracy1 at most Δ and, thus,
arboricity at most Δ. Hence, the planar split thickness of a maximum-degree-Δ
graph is bounded by Δ.

Moreover, since every 2-regular graph is planar, the planar split thickness of
any graph with maximum degree Δ is bounded by �Δ/2�. Therefore, the planar
split thickness of a maximum-degree-5 graph is at most 3. The following theorem
states that this bound is tight.

Theorem 4. For any nontrivial minor-closed property P , there exists a graph G
of maximum degree five whose P split thickness is at least 3.

Proof. This follows from a combination of the following observations:

1. There exist arbitrarily large 5-regular graphs with girth Ω(log n) [17].
2. Splitting a graph cannot decrease its girth.
3. For every h, the Kh-minor-free n-vertex graphs all have at most O(nh

√
log h)

edges [21].
4. Every graph with n vertices, m edges, and girth g has a minor with O(n/g)

vertices and m − n + O(n/g) edges [2].

Thus, let h be large enough that Kh does not have property P . If G is a suf-
ficiently large n-vertex 5-regular graph with logarithmic girth (Observation 1),
then any 2-split of G will have 2n vertices and 5n/2 edges. By Observation 4,
this 2-split will have a minor whose number of edges is larger by a logarithmic
factor than its number of vertices, and for n sufficiently large this factor will
be large enough to ensure that a Kh minor exists within the 2-split of G (by
Observation 3). Thus, G cannot be 2-split into a graph with property P . ��

3 NP-Hardness and Approximation

Faria et al. [7] showed that determining the splitting number of a graph is
NP-hard, even when the input is restricted to cubic graphs. Since cubic graphs
are 2-splittable, their hardness proof does not readily imply the hardness of
2-splittable graph recognition. In this section, we show that it is NP-hard
to recognize graphs that are 2-splittable into a planar graph. We then show
that the arboricity of k-splittable graphs is bounded by 3k + 1 and that
testing k-splittability is fixed-parameter tractable in the treewidth of the given
graph.

1 A graph G is k-degenerate if every subgraph of G contains a vertex of degree at
most k.

On the Planar Split Thickness of Graphs 409

3.1 NP-Hardness of 2-Splittability

The reduction is from planar 3-SAT with a cycle through the clause vertices [14].
Specifically the input is an instance of 3-SAT with variables X and clauses C
such that the following graph is planar: the vertex set is X ∪ C; we add edge
(x, c) if variable x appears in clause c; and we add a cycle through all the clause
vertices. Kratochv́ıl et al. [14] showed that this version of 3-SAT remains NP-
complete.

For our construction, we will need to restrict the splitting options for some
vertices. For a vertex v, attaching K12 to v means inserting a new copy of K12

into the graph and identifying v with a vertex of this K12. A vertex that has a
K12 attached will be called a “K-vertex”.

Lemma 3. If C is a cycle of K-vertices then in any planar 2-split, the cycle C
appears intact, i.e. for each edge of C there is a copy of the edge in the 2-split
such that the copies are joined in a cycle.

Proof. Let v be a vertex of cycle C. We will argue that the two edges incident
to v in C are incident to the same copy of v in the planar 2-split. This implies
that the cycle appears intact in the planar 2-split.

Suppose the vertices of C are v = c0, c1, c2, . . . , ct in that order, with an
edge (v, ct). As noted earlier in the paper, a planar 2-split of K12 must split
all vertices, and no two copies of a vertex share a face in the planar 2-split.
Furthermore, any planar 2-split of K12 is connected.

Let Hi be the induced planar 2-split of the K12 incident to ci. Let v1 and v2

be the two copies of v in H0. Suppose that the copy of edge (v, c1) in the planar
2-split is incident to v1. Our goal is to show that the copy of edge (v, ct) in the
planar 2-split is also incident to v1. H1 must lie in a face F of H0 that is incident
to v1. Since there is an edge (c1, c2), H2 must also lie in face F of H0. Continuing
in this way, we find that Ht must also lie in the face F . Therefore, the copy of
the edge (ct, v) must be incident to v1 in the planar 2-split. ��

Note that the Lemma extends to any 2-connected subgraph of K-vertices.
Given an instance of planar 3-SAT with a cycle through the clause vertices,

we construct a graph as follows. We will make a K-vertex cj for each clause cj ,
and join them in a cycle as given in the input instance. By the Lemma above,
this “clause” cycle will appear intact in any planar 2-split of the graph.

Let T be any other cycle of K-vertices, disjoint from the clause cycle. T will
also appear intact in any planar 2-split, so we can identify the “outside” of the
cycle T as the side that contains the clause cycle. The other side is the “inside”.

For each variable vi, we create a vertex gadget as shown in Figs. 3(a)–(b) with
six K-vertices: two special vertices vi and v̄i and four other vertices forming a
“variable cycle” v1

i , v
2
i , v

3
i , v

4
i together with two paths v1

i , vi, v
3
i and v2

i , v̄i, v
4
i .

Observe that, in an embedding of any planar 2-split, the vertex gadget will
appear intact, and exactly one of vi and v̄i must lie inside the variable cycle and
exactly one must lie outside the variable cycle. Our intended correspondence is
that the one that lies outside is the one that is set to true.

410 D. Eppstein et al.

Fig. 3. (a) A variable gadget shown in the planar configuration corresponding to vi =
true and (b) in the planar configuration corresponding to vi = false. (c) A clause
gadget—a K5 with added subdivision vertices �j,1, �j,2, �j,3 corresponding to the literals
in the clause. The half-edges join the corresponding variable vertices.

For each clause cj with literals �j,k, k = 1, 2, 3, we create a K5 clause gadget,
as shown in Fig. 3(c), with five K-vertices: two vertices cj , c

′
j and three ver-

tices �′
j,k. Furthermore, we subdivide each edge (cj , �′

j,k) by a vertex �j,k that
is not a K-vertex. If literal �j,k is vi, then we add an edge (vi, �j,k) and if lit-
eral �j,k is v̄i, then we add an edge (v̄i, �j,k). Figure 4 shows an example of the
construction.

Note that the only non-K-vertices are the �j,k’s, which have degree 3 and can
be split in one of three ways as shown in Figs. 5(a)–(c). In each possibility, one
edge incident to �j,k is “split off” from the other two. If the edge to the variable
gadget is split off from the other two, we call this the F-split.

Observe that if, in the clause gadget for cj , all three of �j,1, �j,2, �j,3 use the
F-split (or no split), then we effectively have edges from cj to each of �′

j,1, �
′
j,2, �

′
j,3,

so the clause gadget is a K5 which must remain intact after the 2-split and is
not planar. This means that in any planar 2-split of the clause gadget, at least
one of �j,1, �j,2, �j,3 must be split with a non-F-split.

Lemma 4. If the formula is satisfiable, then the graph has a planar 2-split.

Proof. For every literal �j,k that is set to false, we do an F-split on the vertex �j,k.
For every literal �j,k that is set to true, we split off the edge to �′

j,k; see Fig. 5(b).
For any K-vertex v incident to edges Ev outside its K12, we split all vertices
of the K12 as required for a planar 2-split of K12 but we keep the edges of Ev

incident to the same copy of v, which we identify as the “real” v.
If variable vi is set to true, we place (real) vertex vi outside the variable

cycle and we place vertex v̄i and its dangling edges inside the variable cycle. If
variable vi is set to false, we place vertex v̄i outside the variable cycle and we
place vertex vi and its dangling edges inside the variable cycle.

Consider a clause cj . It has a true literal, say �j,1. We have split off the edge
from �j,1 to �′

j,1 which cuts one edge of the K5 and permits a planar drawing of
the clause gadget as shown in Fig. 5(d), with �′

j,1 and its dangling edge inside
the cycle c′, �′

j,2, �
′
j,3.

Because we started with an instance of planar 3-SAT with a cycle through
the clause vertices, we know that the graph of clauses versus variables plus the

On the Planar Split Thickness of Graphs 411

Fig. 4. (a) A graph that corresponds to the 3-SAT instance φ = (v̄1 ∨ v̄2 ∨ v̄3) ∧ (v1 ∨
v2∨v4)∧(v2∨ v̄3∨ v̄4). (b) A planarization of the graph in (a) that satisfies φ: v1 = true,
v2 = v3 = v4 = false

Fig. 5. (a)–(c) The three ways of splitting �j,1; (a) is the F-split. (d) A planar drawing
of the clause gadget when literal �j,1 is set to true and the split of vertex �j,1 results
in a dangling edge to �′

j,1.

412 D. Eppstein et al.

clause cycle is planar. We make a planar embedding of the split graph based
on this, embedding the variable and clause gadgets as described above. The
resulting embedding is planar. ��

Lemma 5. If the graph has a planar 2-split, then the formula is satisfiable.

Proof. Consider a planar embedding of a 2-split of the graph. As noted above,
in each clause gadget, say cj , at least one of the vertices �j,k, k = 1, 2, 3, must
be split with a non-F-split. Suppose that vertex �j,k is split with a non-F-split.
If literal �j,k is vi then we will set variable vi to true; and if literal �j,k is v̄i then
we will set variable vi to false. We must show that this is a valid truth-value
setting. Suppose not. Then, for some i, vertex vi is joined to vertex �j,k that is
split with a non-F-split, and vertex v̄i is joined to vertex �r,s that is split with a
non-F-split. But then we essentially have an edge from vi to a vertex of the cj
clause gadget and an edge from v̄i to a vertex of the cr clause gadget. Because
each clause gadget is a connected graph of K-vertices, and the clause gadgets are
joined by the clause cycle, this gives a path of K-vertices from vi to v̄i. Then the
6 vertices of the variable gadget for vi form a subdivided K3,3 of K-vertices. This
must remain intact under 2-splits and is non-planar. Contradiction to having a
planar 2-split of the graph. ��

Theorem 5. It is NP-hard to decide whether a graph has planar split
thickness 2.

3.2 Approximating Split Thickness

In this section, we need the concept of arboricity. The arboricity a(G) of a
graph G is the minimum integer such that G admits a decomposition into a(G)
forests. By definition, the planar split thickness of a graph is bounded by its
arboricity. We now show that the arboricity of a k-splittable graph approximates
its planar split thickness within a constant factor.

Let G be a k-splittable graph with n vertices and let Gk be a k-split graph
of G. Since Gk is planar, it has at most 3kn − 6 edges. Therefore, the number
of edges in an n-vertex graph is also at most (3k + 1)(n − 1): for n at most
6k, this follows simply from the fact that any n-vertex graph can have at most
n(n−1)/2 edges, and for larger n this modified expression is bigger than 3kn−6.
But Nash-Williams [18] showed that the arboricity of a graph is at most a(G) if
and only if every n-vertex subgraph has at most a(G)(n − 1) edges. Using this
characterization and the bound on the number of edges, the arboricity is at most
3k + 1.

Theorem 6. The arboricity of a k-splittable graph is bounded by 3k + 1, and
therefore approximates its planar split thickness within factor 3 + 1/k.

Note that the thickness of a graph is bounded by its arboricity, and thus also
approximates the planar split thickness within factor 3 + 1/k.

On the Planar Split Thickness of Graphs 413

3.3 Fixed-Parameter Tractability

Although k-splittability is NP-complete, we show in this section that it is solvable
in polynomial time for graphs of bounded treewidth. The result applies not only
to planarity, but to many other graph properties.

Theorem 7. Let P be a graph property, such as planarity, that can be tested
in monadic second-order graph logic, and let k and w be fixed constants. Then
it is possible to test in linear time whether a graph of treewidth at most w is
k-splittable into P in linear time.

Proof. We use Courcelle’s theorem [3], according to which any monadic second-
order property can be tested for bounded-treewidth graphs in linear time. We
modify the formula for P into a formula for the graphs k-splittable into P .

To do so, we need to be able to distinguish the two endpoints of each edge of
our given graph G, within the modified formula. Thus, we wrap the formula in
existential quantifiers for an edge set T and a vertex r, and we form the conjunc-
tion of the formula with the conditions that every partition of the vertices into
two subsets is crossed by an edge, that every nonempty vertex subset includes
at least one vertex with at most one neighbor in the subset, and that, for every
edge e that is not part of T , there is a path in T starting from r whose vertices
include the endpoints of e. These conditions ensure that T is a depth-first search
tree of the given graph, in which the two endpoints of each edge of the graph
are related to each other as ancestor and descendant; we can orient each edge
from its ancestor to its descendant [4].

With this orientation in hand, we wrap the formula in another set of exis-
tential quantifiers, asking for k2 edge sets, and we add conditions to the formula
ensuring that these sets form a partition of the edges of the given graph. If we
number the split copies of each vertex in a k-splitting of the given graph from 1
to k, then these k2 edge sets determine, for each input edge, which copy of its
ancestral endpoint and which copy of its descendant endpoint are connected in
the graph resulting from the splitting.

Given these preliminary modifications, it is straightforward but tedious to
modify the formula for P itself so that it applies to the graph whose splitting is
described by the above variables rather than to the input graph. To do so, we
need only replace every vertex set variable by k such variables (one for each copy
of each vertex), expand the formula into a disjunction or conjunction of k copies
of the formula for each individual vertex variable that it contains, and modify
the predicates for vertex-edge incidence within the formula to take account of
these multiple copies. ��

4 Conclusion

In this paper, we have explored the split thickness of graphs while transforming
them to planar graphs. We have proved some tight bounds on the planar split
thickness of complete and complete bipartite graphs. In general, we have proved

414 D. Eppstein et al.

that recognizing 2-splittable graphs is NP-hard, but it is possible to approximate
the planar split thickness of a graph within a constant factor. Furthermore, if
the treewidth of the input graph is bounded, then for any fixed k, one can decide
k-splittability into planar graphs in linear time.

Splitting number has been examined also on the projective plane [9] and
torus [8]. Hence, it is natural to study split thickness on different surfaces. We
observed that any graph that can be embedded on the torus or projective plane
is 2-splittable. For the projective plane, use the hemisphere model of the pro-
jective plane, in which points on the equator of the sphere are identified with
the opposite point on the equator; then expand the hemisphere to a sphere with
two copies of each point, and choose arbitrarily which of the two copies to use
for each edge. For the torus, draw the torus as a square with periodic boundary
conditions, make two copies of the square, and when an edge crosses the square
boundary connect it around between the two squares.

Acknowledgments. Most of the results of this paper were obtained at the McGill-
INRIA-Victoria Workshop on Computational Geometry, Barbados, February 2015. We
would like to thank the organizers of these events, as well as many participants for fruit-
ful discussions and suggestions. The first, fourth, sixth, and eighth authors acknowledge
the support from NSF grant 1228639, 2012C4E3KT PRIN Italian National Research
Project, PEPS egalite project, and NSERC respectively.

References

1. Beineke, L.W., Harary, F.: The thickness of the complete graph. Canad. J. Math.
14(17), 850–859 (1965)

2. Borradaile, G., Eppstein, D., Zhu, P.: Planar induced subgraphs of sparse graphs.
In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 1–12. Springer,
Heidelberg (2014)

3. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inform. Comput. 85(1), 12–75 (1990)

4. Courcelle, B.: On the expression of graph properties in some fragments of monadic
second-order logic. In: Immerman, N., Kolaitis, P.G. (eds.) Proc. Descr. Complex.
Finite Models. DIMACS, vol. 31, pp. 33–62. Amer. Math. Soc. (1996)

5. Dujmovic, V., Wood, D.R.: Graph treewidth and geometric thickness parameters.
Discrete Comput. Geom. 37(4), 641–670 (2007)

6. Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree
graphs. In: Snoeyink, J., Boissonnat, J. (eds.) Proceedings of the 20th ACM Sym-
posium on Computational Geometry (SOCG 2004). pp. 340–346. ACM (2004)

7. Faria, L., de Figueiredo, C.M.H., de Mendonça Neto, C.F.X.: Splitting number is
NP-complete. Discrete Appl. Math. 108(1–2), 65–83 (2001)

8. Hartsfield, N.: The toroidal splitting number of the complete graph Kn. Discrete
Math. 62, 35–47 (1986)

9. Hartsfield, N.: The splitting number of the complete graph in the projective plane.
Graphs Comb. 3(1), 349–356 (1987)

10. Hartsfield, N., Jackson, B., Ringel, G.: The splitting number of the complete graph.
Graphs Comb. 1(1), 311–329 (1985)

11. Heawood, P.J.: Map colour theorem. Quart. J. Math. 24, 332–338 (1890)

On the Planar Split Thickness of Graphs 415

12. Hutchinson, J.P.: Coloring ordinary maps, maps of empires, and maps of the moon.
Math. Mag. 66(4), 211–226 (1993)

13. Knauer, K., Ueckerdt, T.: Three ways to cover a graph. Arxiv report (2012). http://
arxiv.org/abs/1205.1627

14. Kratochv́ıl, J., Lubiw, A., Nesetril, J.: Noncrossing subgraphs in topological lay-
outs. SIAM J. Discrete Math. 4(2), 223–244 (1991)

15. Liebers, A.: Planarizing graphs - a survey and annotated bibliography. J. Graph
Algor. Appl. 5(1), 1–74 (2001)

16. de Mendonça Neto, C.F.X., Schaffer, K., Xavier, E.F., Stolfi, J., Faria, L., de
Figueiredo, C.M.H.: The splitting number and skewness of Cn × Cm. Ars Comb.
63 (2002)

17. Morgenstern, M.: Existence and explicit constructions of q +1 regular Ramanujan
graphs for every prime power q. J. Comb. Theory, Ser. B 62(1), 44–62 (1994)

18. Nash-Williams, C.: Decomposition of finite graphs into forests. J. London Math.
Soc. 39(1), 12 (1964)

19. Ringel, G., Jackson, B.: Solution of Heawood’s empire problem in the plane. J.
Reine Angew. Math. 347, 146–153 (1984)

20. Scheinerman, E.R., West, D.B.: The interval number of a planar graph: Three
intervals suffice. J. Comb. Theory, Ser. B 35(3), 224–239 (1983)

21. Thomason, A.: The extremal function for complete minors. J. Comb. Theory, Ser.
B 81(2), 318–338 (2001)

http://arxiv.org/abs/1205.1627
http://arxiv.org/abs/1205.1627

A Bounded-Risk Mechanism for the Kidney
Exchange Game

Hossein Esfandiari1(B) and Guy Kortsarz2

1 University of Maryland, College Park, USA
hossein@cs.umd.edu

2 Rutgers University, Camden, USA

Abstract. In this paper we consider the pairwise kidney exchange game.
This game naturally appears in situations that some service providers
benefit from pairwise allocations on a network, such as the kidney
exchanges between hospitals.

Ashlagi et al. [1] present a 2-approximation randomized truthful
mechanism for this problem. This is the best known result in this setting
with multiple players. However, we note that the variance of the utility
of an agent in this mechanism may be as large as Ω(n2), which is not
desirable in a real application. In this paper we resolve this issue by pro-
viding a 2-approximation randomized truthful mechanism in which the
variance of the utility of each agent is at most 2 + ε.

As a side result, we apply our technique to design a deterministic
mechanism such that, if an agent deviates from the mechanism, she does
not gain more than 2�log2 m�.

1 Introduction

Kidney transplant is the only treatment for several types of kidney diseases.
Since people have two kidneys and can survive with only one kidney, they can
potentially donate one of their kidneys. It may be the case that a patient finds a
family member or a friend willing to donate her kidney. Nevertheless, at times the
kidney’s donor is not compatible with the patient. These patient-donor pairs cre-
ate a list of incompatible pairs. Consider two incompatible patient-donor pairs.
If the donor of the first pair is compatible with the patient of the second pair and
vise-versa, we can efficiently serve both patients without affecting the donors.

In this paper we consider pairwise kidney exchange, even though there can be
a more complex combinations of transplantation of kidneys, that involves three
or more pairs. Nevertheless, such chains are complicated to deal with in the real
life applications since they need six or more simultaneous surgeries.

To make the pool of donor-patient pairs larger, hospitals combine their lists
of pairs to one big pool, trying to increase the number of treated patients by
exchanging pairs from different hospitals. This process is managed by some
national supervisor. A centralized mechanism can look at all of the hospitals

H. Esfandiari and G. Kortsarz—Supported by NSF grant number 1218620.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 416–428, 2016.
DOI: 10.1007/978-3-662-49529-2 31

A Bounded-Risk Mechanism for the Kidney Exchange Game 417

together and increase the total number of kidney exchanges. The problem is that
for a hospital its key interest is to increase the number of its own served patients.
Thus, the hospital may not report some patient-donors pairs, namely, the hos-
pital may report a partial list. This partial list is then matched by the national
supervisors. Undisclosed set of pairs are matched by the hospitals locally, with-
out the knowledge of the supervisor. This may have a negative effect on the
number of served patients.

A challenging problem is to design a mechanism for the national supervisor,
to convince the hospitals not to hide information, and report all of their pairs.
In fact, if hiding any subset of vertices does not increases the utility of an agent,
she has no intention to hide any vertex.

1.1 Notations and Definitions

To model this and similar situations hospitals are called agents, and each patient-
donor pair is modeled by a vertex. Let m be the number of agents. Each agent
owns a disjoint set of vertices. We denote the vertex set of the i-th agent by Vi

and �V = {V1, V2, ..., Vm} is called the vector of vertices of the agents. Denote an
instance of the kidney exchange problem by (G, �V), where G is the underlying
graph, �V is the vector of vertices of the agents and E is the edge set. Each vertex
in G = (V,E) belongs to exactly one agent. Thus, V = ∪m

i=1Vi holds.
In this game, the utility of an agent i is the expected number of matched

vertices in Vi and is denoted by ui. Similarly, the utility of an agent i with respect
to a matching M is the number of vertices of Vi matched by M and is denoted
by ui(M). The social welfare of a mechanism is the size of the output matching.

A mechanism for the kidney-exchange game is the mechanism employed by
the national supervisor to choose edges among the reported vertices. The process
is a three step process. First the agent expose some of their vertices. Then
the mechanism chooses a matching on the reported graph. Finally, each agent
matches her unmatched vertices, including her non disclosed vertices, privately.

Formally, a kidney exchange mechanism F is a function from an instance of
a kidney exchange problem (G, �V) to a matching M of G. The mechanism F
may be randomized.

Given that some pairs are undisclosed, we say a kidney exchange mechanism
F is α-approximation if for every graph G the number of matched vertices in the
maximum matching of G is at most α times the expected number of matched
vertices in F (G). This means that for every graph G

|Opt(G)|
E[|F (G)|] ≤ α,

where Opt(G) is the maximum matching in graph G, and the expectation is over
the run of the mechanism F .

We define the notion of bounded-risk mechanisms as follow.

Definition 1. A mechanism is a bounded-risk mechanism if the variance of the
utility of each agent is is bounded by a constant.

418 H. Esfandiari and G. Kortsarz

We say a kidney exchange mechanism is truthful if no agent has incentive to
hide any vertex i.e., for each agent i, we have

∀V ′
i ∈Vi

ui(F (G)) ≥ ui(F (G\V ′
i)) + ui(F (G\V ′

i), V ′
i)

where ui(F (G\V ′
i), V ′

i) is the [expected] number of vertices that agent i matches
privately if she hides V ′

i . We also define almost truthful mechanisms, to use for
our side result.

Definition 2. We say that a kidney exchange mechanism is almost truthful if
by deviating from the mechanism, an agent have an additional gain of at most
O(log m) vertices in the utility, where m is the number of agents.

Indeed, in a real application finding the right subset of vertices to hide is
costly. Roughly speaking, this cost involves extracting the information of m other
agents, and hence, is an increasing function in m. Thus, in an almost truthful
mechanism we hope that agents ignore gaining O(log m) vertices compare to the
cost involved, and report the true information. Remark that, in this paper we
do not consider a cost for deviating from the mechanism, and thus, we use two
different definitions of truthful mechanisms and almost truthful mechanisms.

1.2 Related Work

The model considered in this paper was initiated by Sönmez and Ünver [9] and
Ashlagi and Roth [2]. Sönmez and Ünver [9] show that there is no deterministic
truthful mechanism that gets the maximum possible social welfare. See Fig. 1.
In this example, the number of vertices is odd. Therefore, any mechanism that
provide a maximum matching leaves exactly one vertex unmatched. Consider a
mechanism that leaves a vertex of the first agent unmatched. In this case the
utility of the first agent is 2. If this agent hides the fifth and the sixth vertices,
any maximum matching matches the first vertex to the second vertex and the
third vertex to the fourth vertex. Later, agent one matches the fifth and sixth
vertices, privately. This increases the utility of the first agent to 3, and means
that such a mechanism is not truthful. Similarly, if the mechanism leaves a vertex
of the second agent unmatched, she can increases her utility by hiding the second
and third vertices and matching them privately. This shows that a mechanism
that always reports a maximum matching is not truthful.

Fig. 1. Black vertices belong to the first agent and white vertices belong to the second
agent.

Achieving social welfare optimal mechanisms, which are truthful, is thus not
possible. However, achieving approximate truthful mechanisms may be possi-
ble. Ashlagi et al. [1] used the same example as in Fig. 1 to show that there

A Bounded-Risk Mechanism for the Kidney Exchange Game 419

is no deterministic truthful mechanism for the kidney-exchange game, with
approximation ratio better than 2. Moreover, they show that there is no ran-
domized truthful mechanism with an approximation ratio better than 8/7.
They also introduce a deterministic 2-approximation truthful mechanism for
the two player kidney exchange game and a randomize 2-approximation truth-
ful mechanism for the multi-agent kidney exchange game. Later Caragiannis et
al. [4] improved the approximation ratio for two agents to an expected 3/2-
approximation truthful mechanism. It is conjectured that there is no deter-
ministic constant-approximation truthful mechanism for the multi-agent kidney
exchange game, even for three agents [1].

Almost truthful mechanisms has been widely studied (See [5–7]) with slightly
different definitions. However, all use the concept that an agent should not gain
more than small amount by deviating from the truthful mechanism.

1.3 Our Results

First, we show that the variance of the utility of an agent in the mechanism
proposed by Ashlagi et al. [1] may be as large as Ω(n2), where n is the number
of vertices. The variance of the utility can be interpreted as the risk of the agent
caused by the randomness in the mechanism. Indeed, in a real application agents
prefer to take less risk for the same expected utility. In Sect. 2, we provide a tool
to lower the variance of the utility of each agent in a kidney exchange mechanism
while keeping the expected utility of each agent the same. The following theorem
is an application of this tool to the mechanism proposed by Ashlagi et al. [1] low
variance.

Theorem 1. There exists a bounded-risk truthful 2-approximation mechanism
for multi-agent kidney exchange. Specifically, in this mechanism the variance of
the utility of each agent is at most 2 + ε, where ε is an arbitrary small constant.

As a side result, in Sect. 3, we provide a derandomization of our mechanism.
Specifically, we design an almost truthful deterministic 2-approximation mecha-
nism for this problem. To the best of our knowledge this is the first non-trivial
deterministic mechanism for the multi-agent kidney exchange game.

Theorem 2. There exists an almost truthful deterministic 2-approximation
mechanism for multi-agent kidney exchange.

Remark that in a real application hiding vertices involves extracting the
information about other agents and finding the right subset of vertices to hide,
which is costly itself. Thus, in a real application, if the loss stemming from being
truthful is negligible, it is likely that the hospital will absorb the small loss and
remain truthful.

2 A Truthful Mechanism with Small Utility Variance

Ashlagi et al. in EC’10 [1] study the multi-agent kidney exchange game. They
provide a polynomial time truthful 2-approximation mechanism called Mix and

420 H. Esfandiari and G. Kortsarz

Match. The Mix and Match mechanism is described as follows; independently
label each agent either by 1 or 0 each with probability 0.5. Remove the edges
between different agents with the same labels, i.e., for each edge (u, v) ∈ E,
if u and v belongs to different agents and these agents have the same label,
remove the edge (u, v) from G. Let G′ be the new graph. Consider all matchings
in G′ that contain a maximum matching over the induced subgraph of each
agent separately. Output the one with the maximum cardinality. Ties are broken
serially in favor of agents with label 1 and then agents with labels 0. The following
example shows that in this mechanism the variance of an agent utility may be
as large as Ω(n2).

Example 1. Consider a game with three agents. Each agent has n
3 vertices, where

n is the number of vertices in the graph. There is a perfect matching with n
3

edges between vertices of agent 1 and agent 2 and there is no other edges (see
Fig. 2).

Fig. 2. In this example, the variance of the first agent utility, is Ω(n2)

In this example, with probability 0.5, agent 1 and agent 2 get the same label
and all of the edges between these two agents are removed. In this case, all edges
are removed and thus the utility of each agent is zero. However, with probability
0.5, agent 1 and agent 2 get different labels and we have a matching of size n

3
between the vertices of these two agents. In this case, the utility of agent 1 is n

3 .
Therefore, the variance of the first agent utility is

σ2 = 0.5(0 − n

6
)2 + 0.5(

n

3
− n

6
)2 =

n2

36
,

which is Ω(n2).

A Bounded-Risk Mechanism for the Kidney Exchange Game 421

Our mechanism uses a randomized truthful mechanism as a core mechanism.
We take two matchings resulting from two independent runs of the core mech-
anism. These two matchings are combined into a new matching. The way we
choose the new matching is randomized too. The new matching preserves the
expected utility of each agent, and in addition, decreases the variance of the
utility of each agent by a constant factor. This gives a mechanism with a lower
utility-variance. We repeat this procedure iteratively (See Fig. 3) and decrease
the variance of the utilities to O(1). We show that for this purpose it is enough
to apply the combination of two matchings mechanism a logarithmic number
of times. For the purpose of this section, we use Mix and Match as the core
mechanism and show that there exists a truthful 2-approximation mechanism
such that the variance of each utility is at most 2 + ε, where ε is an arbitrary
small constant.

Fig. 3. Hierarchy of mechanisms

One can think of our mechanism as a multi-layered mechanism. The layer-0
mechanism is the core mechanism. In the i-th layer we combine two outputs
of the layer i − 1 mechanism. Lemma 2 shows that we can use the lower layer
mechanism and create a mechanism where the variance of the utilities is almost
halved.

Note that the utility of an agent can be completely different for two matchings
M1 and M2. Let M1⊕M2 denote the symmetric difference of M1 and M2. There
may be a path from u to v in M1 ⊕ M2 in which u is a vertex of agent i and
v is a vertex of agent j and i �= j. One of the two matchings will have a utility
smaller by 1 for agent i. As the number of such paths in M1 ⊕ M2 may be very
large, the difference in utility of an agent with respect to M1 and M2 can be
very large. We show how to find two matchings N1 and N2 such that the utility
of each agent with respect to these two matchings is almost equal.

Let (G, �V) be an instance of the kidney exchange graph. Consider two
matchings M1 and M2 derived by independent runs of the previous layer. Let
P = {p1, p2, . . . , pk} be a subset of distinct paths in M1 ⊕ M2 (ignoring cycles).

Definition 3. The contraction graph Cont((G, �V), P) is defined as follows:

422 H. Esfandiari and G. Kortsarz

– Each vertex in Cont((G, �V), P) corresponds to one agent in (G, �V).
– There is an edge in Cont((G, �V), P) between agent i and j if and only if there

is a path in P that begins with a vertex of agent i and ends with a vertex of
agent j.

We call this graph the contraction graph because the paths are replaced by edges.
When the instance of the kidney exchange game is clear from the context, we
drop (G, �V) from the notation of the contraction graph.

The following lemma proves that any two matchings can be transformed into
two other matchings such that for every agent i the utility of agent i in the two
new matchings has a difference of at most 2.

Lemma 1. Let M1 and M2 be two matchings of graph G. There exist two match-
ings N1 and N2 such that for any agent i we have

– |ui(N1) − ui(N2)| ≤ 2 and
– ui(N1) + ui(N2) = ui(M1) + ui(M2).

Proof. We decompose M1 ⊕ M2 into two different matchings N ′
1 and N ′

2 such
that N ′

1 ∪ N ′
2 = M1 ⊕ M2. Then define N1 and N2 as N1 = N ′

1 ∪ (M1 ∩ M2) and
N2 = N ′

2 ∪ (M1 ∩ M2) respectively. Clearly, an edge e belongs to exactly one of
N1 or N2, if and only if e belongs to exactly one of M1 or M2. In addition, e
belongs to both of N1 and N2 if and only if it belongs to both of M1 and M2.
This means that the equality ui(N1) + ui(N2) = ui(M1) + ui(M2) holds for all
agents. It holds true, regardless of the way we decompose M1 ⊕ M2 into N ′

1 and
N ′

2. We now describe our approach to achieve the main property, namely, change
M1 ⊕ M2 into two matchings N ′

1 and N ′
2 such that N ′

1 ∪ N ′
2 = M1 ⊕ M2 and

|ui(N ′
1) − ui(N ′

2)| ≤ 2.
Consider the subgraph induced in G by M1 ⊕ M2. The degrees of vertices

in this graph are either zero or one or two. There are three types of connected
components: cycles, even-length paths and odd-length paths. We explain how
to decompose the different parts of M1 ⊕ M2 in these three cases. Every path
p decomposes into two matchings Mp

1 and Mp
2 . In any such decompositions, all

the vertices of p except the endpoints are covered by both Mp
1 and Mp

2 .

– Case 1: Components that are cycles. Each of these cycles is the union of
two matchings. It means that every other edge in each cycle belongs to one
of the matchings. We add one of these matchings to N ′

1 and we add the other
one to N ′

2. Since these two matchings cover the same set of vertices, they have
the same effect on the utility of agents.

– Case 2: Edges of even length paths. Let p be an even size path between
two vertices v and u. Let Mp

1 and Mp
2 be a decomposition of p into matching

such that Mp
1 covers all vertices in p except u and Mp

2 covers all vertices in p
except v. For each path, we add one of Mp

1 and Mp
2 to N ′

1 and add the other
one to N ′

2. However, the assignment cannot be arbitrary. The assignment is
derived by performing computations on the contraction graph. We represent
the selection of Mp

1 by directing the edge in the contraction graph from the

A Bounded-Risk Mechanism for the Kidney Exchange Game 423

agent that contains u to the agent that contains v. Note that we deal with all
even paths simultaneously. The difference of the outgoing and in-going degrees
of each agent exactly equals the difference of her utilities caused by edges of
even length paths in N ′

1 and N ′
2. Thus, we just need to direct edges of the

contraction graph of even length paths, so as to minimize this difference. We
can direct the edges of this graph such that for each vertex the difference of
outgoing and in-going edges is at most one. This is done by adding a matching
between the odd degree vertices, directing the edges through an Eulerian cycle
and removing the added edges. We adopt this strategy to get our almost
balanced in and out degree pair of matchings, derived from all even sized
paths in M1 ⊕ M2.

– Case 3: Odd length paths. Let p be a path between vertices v and u which
has an odd number of edges. We can decompose p into two matchings Mp

1

and Mp
2 such that Mp

1 covers all vertices in p and Mp
2 covers all vertices in p

except v and u. Again in this case, for each path, we add one of Mp
1 or Mp

2 to
N ′

1 and add the other one to N ′
2.

In one of N ′
1 and N ′

2, both endpoints are matched and in the other none of
the two endpoints are matched.
We represent the selection of Mp

1 by coloring the edge corresponding to p blue.
Otherwise, we color the edge red. Let the blue (red) degree of a vertex be the
number of blue (red) edges touching the vertex. The difference between the
red and blue degrees of each agent, exactly equals the difference in her utilities
caused by odd length paths in M1 ⊕ M2.
We can color the edges of any arbitrary graph with blue and red such that
for each vertex the difference between the red and blue degree is at most 2.
This again is done by adding a matching of dummy edges between the odd
degree vertices, and coloring every second edge in the Eulerian cycle red and
every other second edge blue. Then we remove the fake edges added at the
beginning. Note that the start vertex of the cycle may be touched by two
red or two blue, edges. On the other hand, the other vertices in this cycle
are touched by the same number of blue and red edges. We use the following
rule: if the start vertex has a dummy edge, we use this edge as the first in the
Euler cycle. This is done such that the difference of blue and red degrees will
not accumulate to 3 (2 may be added to the difference due to the fact that
the path starts and ends in the same color, and an additional 1 can be added
to the difference when we take the dummy edge out). This clearly implies a
difference of 2 in the utility of any agent with respect to the new matchings.

If we combine the matchings of case 2 and case 3, the difference of the utilities
for any agent with respect to N ′

1 and N ′
2 may grow up to at most 3. We want

to avoid this situation. Let i be some agent for which the utility difference is 3.
The difference of the utilities is derived as follows:

– Agent i has a difference of two between the number of red edges and blue
edges. Note that this means that the other agents have a difference of at most
1 between the number of red and blue edges, as the agents are not start vertices
of the cycle.

424 H. Esfandiari and G. Kortsarz

– Agent i has a difference of one between the number of outgoing and in-going
edges. This means that the vertex is an odd degree vertex.

– The effect of these two differences accumulate and cause a difference of three
between N ′

1 and N ′
2.

In this case, we flip the color of edges in the component that contains i. This
decreases for i the difference of N ′

1 and N ′
2 from 3 to 1. Note that any vertex that

was not a start vertex of the Euler cycle has a difference of at most 1 in the edge
coloring stage. The flipping of colors still implies that the maximum difference
in the utility of every agent that is not a beginning of a cycle, is at most 1.
Together with the difference caused by even length paths, the total difference
is at most 2. Note that cycles of two different agents with difference 2 in their
utility, are disjoint. Only one agent with two red or two blue edges can exist in
every connected component.
�

The following lemma uses Lemma 1 to combine outcomes of two independent
runs of a mechanism.

Lemma 2. Let F be a mechanism for the multi-agent kidney exchange game
and let xi be the random variable of the utility of agent i in the mechanism F .
Then there exist a mechanism F ∗ such that for every input graph and every
agent i the following holds:

Var(yi) ≤ Var(xi)
2

+ 1, E[yi] = E[xi],

where yi is the random variable that indicates the utility of agent i in
mechanism F ∗.

Proof. We run mechanism F two times independently. Let M1 and M2 be the
random matchings resulting from these two runs. We apply Lemma1 on M1 and
M2 and let N1 and N2 be the resulting matchings. The mechanism F ∗ chooses
one of the two matchings N1 and N2 uniformly at random. Note that:

E[yi] =
E[ui(N1)] + E[ui(N2)]

2
=

E[ui(M1)] + E[ui(M2)]
2

=
2E[xi]

2
= E[xi]

where the second equality is an application of Lemma 1. This means that each
agent has the same expected utility in F and F ∗. Now, we need to bound the vari-
ance of the utilities of the agents in F ∗. Let Di be the difference between ui(N1)
and the average of ui(M1) and ui(M2). Note that ui(N1) = ui(M1)+ui(M2)

2 + Di

and ui(N2) = ui(M1)+ui(M2)
2 − Di. Let I be the random variable that indicates

whether F ∗ reports N1 or not. Thus, we have

A Bounded-Risk Mechanism for the Kidney Exchange Game 425

Var(yi) (1)

=Var
(

ui(M1) + ui(M2)
2

+ IDi

)

=Var
(

ui(M1) + ui(M2)
2

)

+ Var (IDi) + 2Cov

(
ui(M1) + ui(M2)

2
, IDi

)

=
Var(ui(M1))

4
+

Var(ui(M2))
4

+ Var(IDi) + 2Cov

(
ui(M1) + ui(M2)

2
, IDi

)

=
Var(xi)

2
+ Var(IDi) + 2Cov

(
ui(M1) + ui(M2)

2
, IDi

)

=
Var(xi)

2
+ Var(IDi). (2)

It remains to bound Var(IDi). From Bhatia-Davis Inequality [3] for any ran-
dom variable X: Var(X) ≤ (Sup(X) − μ)(μ − Inf(X)), where μ is the expected
value of X, Sup(X) is the supremum of X and Inf(X) is the infimum of X. By
applying Bhatia-Davis Inequality to IDi, we have

Var(IDi) ≤ (Sup(IDi) − μ)(μ − Inf(IDi)) ≤ (1 − μ)(μ + 1) ≤ 1

where the second inequality is by definition of Di and Lemma 1. Combining this
with inequality (2), gives us Var(yi) ≤ Var(xi)

2 + 1 as desired.
�

Lemma 2 provides a way to decrease the variance of the utilities, iteratively. New
we are ready to prove Theorem 1.

Proof (of Theorem 1).
Let F 0 be the Mix and Match mechanism and let F i be the combination of

two independent runs of F i−1 from Lemma 2. We call the mechanism a multi-
layered mechanism and F i denoted i-th layer mechanism in the multi-layered
mechanism. It is easy to see that F k is a combination of 2k independent runs
of the Mix and Match mechanism which is the layer 0 mechanism. Recall that
all those combinations preserve the expected utility of every agent. Thus, this
process preserves the social welfare function, which is the sum of utilities of all
of the agents. Thus, the assumption that F 0 is a 2-approximation mechanism
immediately gives us that F k is a 2-approximation mechanism, for any k.

Now, we show that for any k, F k is truthful. We prove this by contradiction.
Suppose that F k is not truthful. Without loss of generality we assume that if
agent 1 deviates, her expected utility increases. Since, F k preserves the expected
utility of each agent, this deviation should increase the expected utility of this
agent all the way back to F 0. However, this contradicts the truthfulness of F 0.
Therefore, F k is truthful.

Now, we need to bound the variance of the utility of each agent. Without
loss of generality, we fix an agent i and bound the variance of the utility of that
agent. The same bound holds for all agents, by symmetry.

426 H. Esfandiari and G. Kortsarz

Let σ2 be the variance of the utility of the agent in F 0. We prove by induction
that the variance of the utility of this agent in F k is σ2

2k + 2 − 2
2k . The base case

is clear since σ2

20 + 2 − 2
20 = σ2. Assume the bound for F k and then we prove

it for F k+1. By applying Lemma 2, for F k+1 the variance of the utility of the
agent is at most

σ2

2k + 2 − 2
2k

2
+ 1 =

σ2

2k+1
+ 1 − 1

2k
+ 1 =

σ2

2k+1
+ 2 − 2

2k+1
.

This completes the induction. The utility of an agent cannot exceed the total
number of vertices. Thus, we have σ2 ≤ n2. If we set k to 2 log(n)+ log(1ε), then
the variance of the utility of each agent in F k is at most

σ2

2k
+ 2 − 2

2k
=

σ2

22log(n)+log(1
ε)

+ 2 − 2
22log(n)+log(1

ε)

=
σ2ε

n2
+ 2 − 2ε

n2
≤ ε + 2 − 2ε

n2
≤ 2 + ε.

We note that the running time is polynomial. Indeed, running F k, combines 2k−i

instances of F 0, mechanisms. Since we set k to 2 log n + log(1ε), F k operates on
n2

ε instances of F 0 and contains n2

ε − 1 combinations of matchings in higher
levels. Since here both F 0 and the combination process runs in polynomial in n,
F k runs polynomial time as well.
�

3 An Almost Truthful Deterministic Mechanism

In some applications, agents may not accept any risk. In this section, we modify
our randomized mechanism to a deterministic one. This deterministic mechanism
is not truthful anymore. However, it is almost truthful i.e., by deviating from the
mechanism, an agent may gain an additive factor of at most 2�log2(m), where
m is the number of agents.

The analysis of the Mix and Match mechanism does not use the property that
the labels of agents are fully independent. It just uses the fact that for every two
fixed agents i and j, with probability 0.5, we assign different labels to agents i
and j. In fact, this holds even if we use m pairwise independent random bits.
We can generate m pairwise independent random bits using �log2(m) fully
independent random bits [8]. We call this modified mechanism that just uses
�log2(m) random bits, Modified Mix and Match.

Proof (of Theorem 2). For simplicity of notation, we replace log2(.) by log(.).
Our deterministic mechanism can be seen as a multi-layered mechanism defined
as follows. In Layer 0, we run the modified Mix and Match mechanism over
all possible values of the �log(m) random bits. The collection of all resulted
matchings is called layer 0 matchings. Note that the number of matchings for
layer 0 is at most 2�log(m)� ≤ 2m. We now describe �log(m) steps to combine
these matchings together, into a single matching. We note that each layer will

A Bounded-Risk Mechanism for the Kidney Exchange Game 427

halve the number of matchings, and so �log(m) applications of the mechanism
give a layer with a single matching and this matching is our output. After the
i-th step we inductively construct the matchings of the i + 1-th layer as follows.
We decompose the matchings in the i-th layer into arbitrary pairs of matchings.
We use the procedure of Lemma 2 on every pair. Unlike the randomized version,
here we always output the matching between N1 and N2 that has the largest
number of edges. Clearly, in each step, the number of matchings in the layer is
halved. Thus, after �log(m) steps we have exactly one matchings. This matching
is the output of our mechanism.

This mechanism contains at most 2 m runs of the modified Mix and Match
mechanism and at most 2 m combinations of such matchings. Both the modified
Mix and Match mechanism and the combination procedure run in polynomial
time. Thus, this mechanism is a polynomial time mechanism.

Note that the average number of edges in the 0-th layer is exactly equal to the
expected social welfare in the modified Mix and Match mechanism. This follows
because every labeling among the 2�log(m)� is equally likely. In each step, we
replace each pair with one of the matching obtained from Lemma2. Selecting
the matching between N1 and N2 that contains the largest number of edges,
combined with the second property of Lemma 2, implies that the average number
of edges cannot decrease when we go to the next layer. Thus, the number of
edges in the last-layer matching is at least that of the modified Mix and Match
mechanism. Thus, this mechanism is a 2-approximation mechanism. We now
discuss individual utilities. The average utility of every agent in layer 0 exactly
equals her expected utility in the modified Mix and Match mechanism. Using
the first property of Lemma 2, it is clear that for a fixed agent, the difference
between its modified Mix and Match utility, and the average of her utilities in
the 1-th layer is at most 1. This holds true each time we go from one layer to
the next. Namely, for every agent, the difference in utility between the modified
Mix and Match strategy and our strategy goes up by at most 1. Thus, in the
i-th layer the difference between the utility in our deterministic mechanism and
the modified Mix and Match mechanism is at most i.

We now inspect how much an agent can gain by deviating from the mech-
anism. Since the modified Mix and Match mechanism is truthful, her utility in
the modified Mix and Match mechanism does not increase with the new strat-
egy. The difference between her expected utility in the modified Mix and Match
mechanism and our mechanism is at most �log(m). A non truthful strategy can
increase the utility by at most an additive factor of 2�log(m).
�

References

1. Ashlagi, I., et al.: Mix and match: a strategyproof mechanism for multi-hospital
kidney exchange. Games Econ. Behav. (2013)

2. Ashlagi, I., Roth, A.: Individual rationality and participation in large scale, multi-
hospital kidney exchange. In: Proceedings of the 12th ACMConference on Electronic
Commerce, pp. 321–322. ACM (2011)

428 H. Esfandiari and G. Kortsarz

3. Bhatia, R., Davis, C.: A better bound on the variance. Am. Math. Mon. 107(4),
353–357 (2000)

4. Caragiannis, I., Filos-Ratsikas, A., Procaccia, A.D.: An improved 2-agent kidney
exchange mechanism. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) WINE 2011.
LNCS, vol. 7090, pp. 37–48. Springer, Heidelberg (2011)

5. Dughmi, S., Roughgarden, T., Vondrák, J., Yan, Q.:An approximately truthful-
in-expectation mechanism for combinatorial auctions using value queries. arXiv
preprint arXiv:1109.1053 (2011)

6. Kothari, A., Parkes, D.C., Suri, S.: Approximately-strategyproof and tractable
multiunit auctions. Decis. Support Syst. 39(1), 105–121 (2005)

7. Lesca, J., Perny, P.: Almost-truthful mechanisms for fair social choice functions. In:
ECAI, pp. 522–527 (2012)

8. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15(4), 1036–1053 (1986)

9. Sonmez, T., Unver, M.U.: Market design for kidney exchange. In: The Handbook of
Market Design, p. 93 (2013)

http://arxiv.org/abs/1109.1053

Tight Approximations of Degeneracy
in Large Graphs

Mart́ın Farach-Colton and Meng-Tsung Tsai(B)

Rutgers University, New Brunswick, NJ 08901, USA
{farach,mtsung.tsai}@cs.rutgers.edu

Abstract. Given an n-node m-edge graph G, the degeneracy of graph
G and the associated node ordering can be computed in linear time in
the RAM model by a greedy algorithm that iteratively removes the node
of min-degree [28]. In the semi-streaming model for large graphs, where
memory is limited to O(n polylog n) and edges can only be accessed
in sequential passes, the greedy algorithm requires too many passes, so
another approach is needed.

In the semi-streaming model, there is a deterministic log-pass algo-
rithm for generating an ordering whose degeneracy approximates the
minimum possible to within a factor of (2+ε) for any constant ε > 0 [12].
In this paper, we propose a randomized algorithm that improves the
approximation factor to (1 + ε) with high probability and needs only a
single pass. Our algorithm can be generalized to the model that allows
edge deletions, but then it requires more computation and space usage.

The generated node ordering not only yields a (1+ ε)-approximation
for the degeneracy but gives constant-factor approximations for arboric-
ity and thickness.

Keywords: Degeneracy · Arboricity · Thickness · Semi-streaming
algorithm · Space lower bound

1 Introduction

Any ordering of the nodes of an n-node, m-edge simple undirected graph G
defines an acyclic orientation of the edges in which each edge is oriented from
the earlier node in the ordering to the latter. The degeneracy of an ordering is
the maximum out-degree it induces. The degeneracy of G, denoted by d(G), is
the smallest degeneracy among all orderings1, and an ordering whose degeneracy

Work supported by CNS-1408782 and IIS-1247750.
1 The degeneracy of a graph was originally defined to be the maximum minimum

degree among all subgraphs [2,5–7,14,28,34]. The definition here is a slight modifi-
cation of the coloring number [5,6,14] of a graph, a dual definition of degeneracy.
The coloring number of a graph was shown to be one larger than the degener-
acy [5,6,14], and our definition yields the same value as the original definition of
degeneracy.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 429–440, 2016.
DOI: 10.1007/978-3-662-49529-2 32

430 M. Farach-Colton and M.-T. Tsai

is d(G) is called a degenerate ordering . An ordering is d-degenerate if it has
degeneracy at most d.

Degenerate orderings have many uses. Given a degenerate ordering, one
can: decompose a graph into at most twice the minimum number of disjoint
forests [2,5]; decompose a graph into at most six times the minimum num-
ber of disjoint planar graphs [5,9]; speed up the counting of the number of
short paths or cycles [2], for example, counting the exact number of 3-cycles in
O̧(md(G)) time; find a component of density at least half the maximum den-
sity of any subgraph, i.e. a 1/2-approximation [7]; identify a dominating set of
cardinality at most O̧(d2(G)) times the cardinality of a minimum dominating
set [26] as well as some variations of dominating sets [10], e.g. k-dominating
sets; etc. Although most of these problems can be solved exactly in polynomial
time [7,15,16,24], the approximation algorithms based on degenerate orderings
are faster, use less space or yield better approximation factors for large graphs.
For example, such orderings yield a better approximation algorithm for decom-
posing a graph into a minimum number of planar subgraphs than other algo-
rithms using O(n) space [22,27]. Although all of the results listed originally
relied on (optimally) degenerate orderings, in [12], we show that orderings that
are nearly degenerate orderings, that is, whose degeneracy approximates rather
than matches the graph degeneracy also yield good approximation algorithms.

The degeneracy of graph G and the associated node ordering can be com-
puted in linear time in the RAM model by a greedy algorithm that iteratively
removes the node of min-degree, as shown by Matula and Beck [28]. However,
iteratively removing a single min-degree node is inefficient when graphs are larger
than memory. Thus, another approach is needed.

We consider algorithms in the semi-streaming model [30,32,33], in which we
are allowed O(n polylog n) working space, and edges can be accessed in sequential
read-only passes through the graph. The goal is then to minimize the number of
passes and the time complexity of the algorithm.

Some graph problems that have similar complexities in the RAM model can
have quite different complexities in the semi-streaming model. Some graph prob-
lems, e.g. connectivity, minimum spanning tree, finding bridges and articulation
points, can be solved optimally [11,13]. Other graph problems, e.g. counting the
number of 3-cycles, maximum matching and graph degeneracy, can be approxi-
mated [1,3,12]. Some fundamental problems, such as breath-first search, depth-
first search, topological sorting, and directed connectivity, are believed to be
difficult to solve in a small number of passes [18,32,33].

In [12], we give a deterministic log-pass algorithm for generating a node order-
ing whose degeneracy approximates the minimum possible to within a factor of
(2 + ε) for any constant ε > 0. In this paper, we propose a randomized algorithm
that improves the approximation factor to (1+ε) and reduces the number of pass
to one but which has a small probability of failure. Theorem 1 is our main result.

Theorem 1. In the semi-streaming model, there exists an O(m)-time 1-pass
randomized algorithm that outputs a node ordering whose degeneracy approxi-
mates the minimum possible to within a factor of (1 + ε) for any constant ε > 0
with probability 1 − 1/nΩ(1) using a space of O(ε−2n log2 n) bits.

Tight Approximations of Degeneracy in Large Graphs 431

Our algorithm can be generalized to the model that allows edge deletions,
known as the dynamic stream [4,8,17,20,21,25,29] or the turnstile model [23,35],
by appealing the Jowhari et al. [19] result on building L0-samplers, which are data
structures that can be updated in the streaming model and can generate a sam-
pled edge once the stream has been processed, and the algorithm that deals with
sets of L0-samplers efficiently, due to McGregor et al. [29]. In our case, we need
O(ε−2n log n) L0-samplers to produce a sampled subgraph with O(ε−2n log n)
edges. The generalization to the turnstile model increases the time- and space-
complexity by polylog n factors. We summarize the result in Theorem 2.

Theorem 2. In the turnstile model, there exists an O(m polylog n)-time 1-pass
randomized algorithm that outputs a node ordering whose degeneracy approxi-
mates the minimum possible to within a factor of (1 + ε) for any constant ε > 0
with probability 1 − 1/nΩ(1) using a space of O(ε−2n log3 n) bits.

In addition to these upper bounds, we also show that computing the degen-
eracy in the semi-streaming model in one pass with constant success rate has
a space lower bound of Ω(n log n) bits. The space lower bound also holds in
the turnstile model, because the turnstile model is a generalization of the semi-
streaming model. We note that our algorithm in the semi-streaming model is
optimal in both time- and pass-complexity and has a nearly-optimal space-
complexity, which is no more log n times optimal.

To illustrate how to apply the low-degeneracy node ordering to other prob-
lems, we also show constant-factor approximations for arboricity and thickness.

Our Techniques. We sample a small random subgraph H ⊆ G such that H fits
in memory. Then, we show that the degenerate ordering of H is a low-degenerate
ordering of G, as follows:

In [12], we show that iteratively removing a node of degree no more than
(1+ε) times the minimum degree generates a node ordering whose degeneracy is
no more than (1+ε) times the graph degeneracy. This fact leaves some flexibility
in picking the next node to remove, rather than always having to pick the min-
degree node, as required in the exact algorithm [28]. Since low degree nodes in
H are likely to be low degree nodes in G, we are about to exploit this flexibility
to minimize the probability of error in the final order.

Organization. We prove that the degenerate ordering of a random subgraph H
is a low-degenerate ordering of graph G in Sect. 2. To obtain a random subgraph
H, in Sect. 3 we devise algorithms to sample an H in the semi-streaming model
and in the turnstile model. In Sect. 4, we show a lower bound on the space needed
to compute a low-degenerate ordering in one pass. Lastly, in Sect. 5, we present
some applications of low-degenerate orderings.

2 Degeneracy and Random Subgraphs

We revisit some properties of degeneracy and, based on those, we show that the
degenerate ordering of H = G(p) is also a low-degenerate ordering of G, where

432 M. Farach-Colton and M.-T. Tsai

G(p) is a random subgraph of G such that every edge in G is included in G(p)
independently with probability p.

To begin, let v (resp. v̂) be the min-degree node of G (resp. H). By dG(v)
we denote the degree of v in G. Intuitively, since H = G(p) is a sketch of G, the
difference between dG(v) and dG(v̂) is likely to be small. We claim that if p is
set to be Ω(ε−2n log n/m),

dG(v̂) ≤ max
{
(1 + ε)dG(v),m/n

}

with probability 1−1/nΩ(1). We prove a stronger form of this claim in Lemma 3,
in which GU denotes the subgraph of G induced by node set U , and δ(GU)
denotes the minimum node degree in GU .

Lemma 3. Let H = G(p) be a random subgraph of an n-node m-edge graph G.
For any node set U , the node v̂ that has minimum degree in HU has degree in
GU bounded by

max
{
(1 + ε)δ(GU),m/n

}
for any constant ε > 0

with probability 1 − 1/nΩ(1) if p = Ω(ε−2n log n/m).

Proof. Let v be the min-degree node in GU , and let Q be the set of bad candidates
of v̂; formally,

Q =
{
x ∈ GU : dGU

(x) > max
{
(1 + ε)dGU

(v),m/n
}}

.

We show that the degree dGU
(v̂) is bounded as required w.h.p. by considering

the two probabilities

Pr [v̂ ∈ Q | C1 : dGU
(v) ≥ m/n] and Pr [v̂ ∈ Q | C2 : dGU

(v) < m/n],

such that dGU
(v̂) is not bounded as required. Here we bound the first probability

by the Chernoff and Union bounds as follows:

Pr [v̂ ∈ Q | C1] ≤
∑

x∈Q

Pr [dHU
(x) ≤ dHU

(v)]

≤
∑

x∈Q

Pr [dHU
(x) ≤ (1 − c)pdGU

(x) ∨ dHU
(v) ≥ (1 + c)pdGU

(v)]

≤
∑

x∈Q

exp
(

−c2

2
pdGU

(x)
)

+ exp
(

− c2

2 + c
pdGU

(v)
)

(1)

≤ n exp (−Ω(log n))

= 1/nΩ(1),

where c = ε/(2 + ε), so that (1 − c)pdGU
(x) ≥ (1 + c)pdGU

(v) if x ∈ Q. The
second probability has the same upper bound as well because Pr [v̂ ∈ Q | C1] ≥
Pr [v̂ ∈ Q | C2]. ��

Tight Approximations of Degeneracy in Large Graphs 433

Lemma 3 implies that the degenerate ordering of H = G(p) is a low-
degeneracy ordering of G w.h.p. Before proceeding to the proof of our main
claim, we observe the following facts about degeneracy:

1. d(G) ≥ m/n: the degeneracy of an n-node m-edge graph is at least m/n,
because the sum of the out-degrees is m for any node ordering, and therefore
the maximum out-degree induced by any ordering is at least m/n;

2. d(G) ≥ d(H): the degeneracy of graph G is no less than the degeneracy of
any subgraph H ⊆ G, because adding edges cannot decrease the degeneracy;

3. d(G) ≥ δ(G): the minimum degree is no more than the degeneracy, because
for any node ordering, the induced out-degree of the first node equals its
degree and of course cannot be less than the minimum.

We are now in a position to show our main claim, as stated in Theorem 4. We
prove this by construction. We obtain the degenerate ordering of H = G(p) by the
greedy algorithm [28] that iteratively removes the min-degree node from H until H
becomes empty. Such a node removal gives a node ordering v̂1, v̂2, . . . , v̂n. Let the
remainder of the graph after the node removal be G0 = G, Gk = Gk−1 \ {v̂k} for
each k > 0. Note that Gk is a subgraph of G induced by the node set {v̂i : i > k}.
By Lemma 3, if p = Ω(ε−2n log n/m), we have that

Pr [dGk−1(v̂k) > max
{
(1 + ε)δ(Gk−1),m/n

}
] < 1/nΩ(1) for each k,

and therefore we have, by the Union bound,

Pr

⎡

⎣
∨

k∈[1,n]

(

dGk−1(v̂k) > max
{
(1 + ε)δ(Gk−1),m/n

}
)

⎤

⎦ < 1/nΩ(1).

In other words, we can say that with probability 1 − 1/nΩ(1) every v̂k has
degree no more than the minimum degree in Gk−1 or the quantity m/n. Hence,
v̂1, v̂2, . . . , v̂k is a low-degeneracy ordering of G whose degeneracy is bounded by

max
{
(1 + ε)δ(Gk−1),m/n, d(Gk−1 \ {v̂k})

}
≤ (1 + ε)d(G)

with probability 1 − 1/nΩ(1), where the inequality immediately follows from the
abovementioned three facts and by induction on k. As a result, we have:

Theorem 4. The degenerate ordering of H = G(p) is a low-degeneracy ordering
of G whose degeneracy approximates the minimum possible to within a factor of
(1 + ε) with probability 1 − 1/nΩ(1) if p = Ω(ε−2n log n/m).

3 Algorithms

We now present how to compute a node ordering in the considered models such
that the computation takes a single pass, and the degeneracy of the ordering is
a (1 + ε)-approximation of the graph degeneracy w.h.p.

434 M. Farach-Colton and M.-T. Tsai

To recap, we propose an algorithm that samples a random subgraph H from
the entire graph G, and then outputs the degenerate ordering of the random
subgraph. We have shown in Theorem 4 that the ordering is a low-degenerate
ordering of the entire graph with a fairly good probability. In particular, we let
H = G(p) for p = Θ(ε−2n log n/m), and thus the output ordering has degeneracy
that approximates the minimum possible to within a factor of (1 + ε) with
probability 1 − 1/nΩ(1).

The sampling procedure is quite different in the semi-streaming and the turn-
stile models. We discuss them separately. In the semi-streaming model, each edge
in the data stream is contained in the final edge set of G. Thus, obtaining a sam-
pled subgraph H is straightforward. To make the algorithm optimal in runtime,
we batch the edges, as described below.

On the other hand, an edge on the data stream might be subsequently deleted
in the turnstile model. This uncertainty makes sampling hard. To handle the
uncertainty we appeal to the L0-sampler construction of Jowhari et al. [19]
and the algorithm for efficiently maintaining sets of such L0-samplers due to
McGregor et al. [29]. In this approach, the sampled subgraph H is an approx-
imate of G(p) that has a small distortion from G(p). We adapt Lemma 3 to
account for this distortion.

3.1 In the Semi-streaming Model

In this model the edge set of G is presented in a read-only stream. We assume
that n, the number of nodes, is known at the beginning of data stream, but m,
the number of edges, is not known until the end of data stream. The desired size
of H is

s = Θ(ε−2n log n).

We note here that s is known at the beginning because it only depends on n
and ε. Our goal is to pick a p so that s = mp, that is, so that H = G(p) has size
O(s), w.h.p. However, m is unknown, and therefore p is also unknown, when we
start sampling. To sample each edge with an unknown probability p, we guess
that m = s and set p = 1. If there are more than s edges, we adjust the guess
to be m = 2s, set p = 1/2, and then kick out some sampled edges to make sure
that all edges were sampled with probability 1/2. We keep adjusting the guess
for m and p and resampling, until we run out of edges. In order to implement
this intuition efficiently, we use the following algorithm.

We allocate a working space of size 2s to hold the sampled edges, and call this
space the pool . If we ever end up selecting more than 2s edges, our algorithm
goes into a low-probability failure mode in which it outputs an arbitrary node
ordering.

Now suppose, for ease of presentation, that m is a multiple of s. The pool is
empty at the beginning. Our algorithm works in rounds: in the k-th round, the
algorithm brings the k-th group of s edges into a buffer. Then, the algorithm
kicks out some of the edges that are already in the pool, if any, each with
probability pk = 1/k, and migrates the edges that are in the buffer to the pool,

Tight Approximations of Degeneracy in Large Graphs 435

each with probability qk = 1/k, discarding those that fails to migrate. At the
end of the (m/s)-th round, the pool contains a randomly sampled subgraph H in
which each edge is sampled independently from G with probability p = s/m even
though m was unknown initially. See Fig. 1 for an illustration of the sampling
procedure.

bufferpool

discarded

pk

1 − pk
qk

1 − qk

Fig. 1. Sampling procedure in the k-th round.

In the case that m is not a multiple of s, then there are αs edges for α ∈ (0, 1)
in the last-round buffer. For this last round, it suffices to set pk = α/(k − 1 + α)
and qk = 1/(k − 1 + α).

To quantify how often the sampling procedure has a pool of size greater than
2s, we give a bound on the probability of such a pool overflows in a round. By
the Chernoff bound, we have

Pr

⎡

⎣
∑

i=[1,m]

Xi > 2mp

⎤

⎦ ≤ exp
(
−Ω(ε−2n log n)

)
≤ 1/nΩ(n),

where Xi is an indicator variable denoting whether the i-th edge of graph G is
included in the random subgraph H. Then, by the Union bound, the probability
that the pool overflows at some point of the entire sampling procedure is 1/nΩ(1),
which is dominated by the claimed failure rate.

Lastly, we analyze the time complexity of the proposed algorithm. The above
sampling procedure has O(m/s) rounds, and in each round it deals with at most
3s edges. Thus, the sampling procedure takes O(m) time. After obtaining the
random sampled subgraph H, the algorithm computes the degenerate ordering of
H using the in-memory algorithm for computing degenerate ordering introduced
by Matula and Beck [28], which takes O(s) = O(mp) time. Hence, the total
runtime is bounded by O(m).

This completes the proof of Theorem 1.

3.2 In the Turnstile Model

In this model a sequence of edge insertions and deletions is presented in a read-
only stream. The procedure described in the Sect. 3.1 does not work in this model

436 M. Farach-Colton and M.-T. Tsai

because the pool in Sect. 3.1 might end up choosing edges that are about to be
deleted, making H = ∅ rather than H = G(p).

Since that the working space cannot keep the entire edge set E (|E| = m),
using an L0-sampler [19] one can sample an edge e from E with success rate at
least 1 − δ using O(log2 n log(1/δ)) bits, such that the probability that an edge
e ∈ E is picked in the sample is

1/m + 1/nΩ(1),

which is roughly the desired 1/m but has a small distortion 1/nΩ(1).
To sample a random subgraph H = G(p), one can use 2s L0-samplers to

sample 2s = 2mp/(1 − δ) = Θ(ε−2n log n) for constant δ < 1 independent edges
from the final edge set E of G. These might be repeated, so pick the first t distinct
edges from the 2s samples, where t is a random variate sampled from Bin(m, p),
the binomial distribution of m trials and success rate p. Note that an L0-sampler
fails to return a sample with probability 1−δ, and so we set 2s = 2mp/(1−δ) to
balance the failure rate. One can assert that there exist t distinct edges among
the 2s samples with probability 1 − 1/nΩ(1) by the Chernoff bound. To handle
the failure case, again, the algorithm outputs an arbitrary node ordering.

It follows from the above sampling procedure, for each edge e ∈ G, that the
probability that H contains e is

Pr [e ∈ H] =
∑

k=[0,m]

Pr [t ∼ Bin(m, p) = k]
(

k/m + k/nΩ(1)
)

= p
(

1 + 1/nΩ(1)
)

.

Hence, H ≈ G(p).
Since H �= G(p), to prove the correctness of Theorem 2, we adapt Lemma 3 to

accommodate the small distortion. The distortion changes the expected values of
dHU

(x) and dHU
(v̂). However the change is so small that the bounds on the tail

probabilities in Eq. 1 still hold. Therefore, Lemma 3 works as well for H ≈ G(p).
A näıve implementation of the above requires O(ε−2nm polylog n) time. We

appeal to the alternative sampling procedure devised by McGregor et al. [29] to
obtain the abovementioned 2s samples in O(m polylog n) time.

This establishes Theorem 2.

4 Space Lower Bounds

In this section, we show that any randomized algorithm in the semi-streaming
model that can approximate degeneracy, arboricity or thickness in one sequential
pass with constant success rate requires a working space of Ω(n log n) bits. Our
proofs rely on the space lower bounds of cycle-freeness [35, Theorem 7] and
planarity testing [35, Corollary 12] shown recently by Sun and Woodruff.

We observe that, combining the space lower bound of cycle-freeness test-
ing [35, Theorem 7] with Lemma 5, the space lower bound for approximating
degeneracy to within a factor of (2−ε) is immediate, summarized in Theorem 6.

Tight Approximations of Degeneracy in Large Graphs 437

Lemma 5. Graph G has degeneracy d(G) = 1 if and only if G is cycle-free.

Proof. If G is cycle-free, then G is a forest and one can make every tree in G
rooted. In this way, let the orientation of the edges in G from the descendant to
the ancestor. Since every node except the roots in such rooted cycle-free graph
has a single parent node. The out-degree of every node is either 0 or 1. In other
words, the degeneracy d(G) = 1.

Otherwise, G contains a cycle C. Since the degeneracy d(C) ≥ δ(C) (Fact 3
in Sect. 2) and δ(C) = 2, then d(C) ≥ 2. Combining that d(G) ≥ d(C) (Fact 2
in Sect. 2), d(G) ≥ 2. ��

Theorem 6. In the semi-streaming model, any randomized algorithm that can
approximate the degeneracy to within a factor of (2 − ε) for any constant ε > 0
with constant success rate has a space lower bound of Ω(n log n) bits.

In addition, we show similar space lower bounds for computing arboricity
and thickness. The proof directly follows from the definition of arboricity and
thickness. Recall that the arboricity (resp. thickness) of graph G is the mini-
mum number of forests (resp. planar subgraphs) whose union forms G. There-
fore, computing the arboricity (resp. thickness) is no easier than cycle-freeness
(resp. planarity) testing. Combining the space lower bounds of cycle-freeness and
planarity testing shown in [35], we have Theorem 7.

Theorem 7. In the semi-streaming model, any randomized algorithm that can
approximate arboricity or thickness to within a factor of (2−ε) for any constant
ε > 0 with constant success rate has a space lower bound of Ω(n log n) bits.

We note that the above space lower bounds also hold in the turnstile model,
because the turnstile model is a generalization of the semi-streaming model.

5 Applications

A low-degeneracy node ordering has many applications. Here we present how
to use the ordering to partition a graph into edge-disjoint forests such that the
number of forests approximates the minimum possible, i.e. the arboricity.

The Nash-William theorem [31] states that if mS (resp. nS) denotes the num-
ber of edges (resp. nodes) in the subgraph S, the arboricity can be stated as

α(G) = max
S⊆G

�mS/(nS − 1),

which has a form similar to that of the density of the densest subgraph. The
algorithm in [29] that approximates the density of the densest subgraph can be
adapted to approximate arboricity to within a factor of (1 + ε).

It is unclear how to exploit the actual value of the arboricity to actually
partition the input graph into a small number of forests, however a d-degenerate
node ordering has a direct application to such a partition. Considering that in
the acyclic orientation induced by the ordering, the out-degree of each node is

438 M. Farach-Colton and M.-T. Tsai

no more than d, and thus one can partition the edge set into d subgraphs, each
of which contains the i-th out-going edge of each node, if any. Note that the
subgraphs are forests because all of them have degeneracy 1 or, equivalently, are
cycle-free due to Lemma 5.

The above procedure has a simple two-pass implementation in the semi-
streaming model. We use the d-degenerate ordering obtained in the first pass to
assign the orientation of the incoming edges in the second pass. Then, maintain-
ing the out-degree of each node suffices to partition the edges as described.

Since the computed d-degenerate ordering has d ≤ (1 + ε)d(G), and each of
the degeneracy, arboricity and thickness approximates each other, we have the
result in Theorem 8. Our result improves the approximation ratio by a factor of
2, compared to that in [12].

Theorem 8. In the semi-streaming model, there exists an O(m)-time 2-pass
randomized algorithm that partition the edges into forests (resp. planar graphs)
such that the number of forests (resp. planar graphs) approximates the minimum
possible to within a factor of (2 + ε) (resp. (6 + ε)) with probability 1 − 1/nΩ(1)

using a space of O(ε−2n log2 n) bits.

References

1. Ahn, K.J., Guha, S.: Linear programming in the semi-streaming model with
application to the maximum matching problem. In: Aceto, L., Henzinger, M.,
Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 526–538. Springer,
Heidelberg (2011)

2. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles.
Algorithmica 17(3), 209–223 (1997)

3. Bar-Yossef, Z., Kumar, R., Sivakumar, D.: Reductions in streaming algo-
rithms, with an application to counting triangles in graphs. In: Proceedings of
the thirteenth annual ACM-SIAM symposium on Discrete algorithms (SODA),
pp. 623–632. SIAM (2002)

4. Bhattacharya, S., Henzinger, M., Nanongkai, D., Tsourakakis, C.E.: Space- and
time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing (STOC), pp. 173–182 (2015)

5. Bollobás, B.: Extremal Graph Theory. Academic Press, London (1978)
6. Bollobás, B.: The evolution of sparse graphs. In: Graph Theory and Combinatorics,

Proceedings of the Cambridge Combinatorial Conference in honor of Paul Erdős,
pp. 35–57. Academic Press (1984)

7. Charikar, M.: Greedy approximation algorithms for finding dense components
in a graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913,
pp. 84–95. Springer, Heidelberg (2000)

8. Chitnis, R.H., Cormode, G., Esfandiari, H., Hajiaghayi, M., McGregor, A.,
Monemizadeh, M., Vorotnikova, S.: Kernelization via sampling with applications
to dynamic graph streams, CoRR abs/1505.01731 (2015)

9. Dean, A.M., Hutchinson, J.P., Scheinerman, E.R.: On the thickness and arboricity
of a graph. J. Comb. Theor. Series B 52(1), 147–151 (1991)

Tight Approximations of Degeneracy in Large Graphs 439

10. Dvor̆ák, Z.: Constant-factor approximation of the domination number in sparse
graphs. Eur. J. Comb. 34(5), 833–840 (2013)

11. Farach-Colton, M., Hsu, T., Li, M., Tsai, M.-T.: Finding articulation points of
large graphs in linear time. In: Dehne, F., Sack, J.-R., Stege, U. (eds.) WADS
2015. LNCS, vol. 9214, pp. 363–372. Springer, Heidelberg (2015)

12. Farach-Colton, M., Tsai, M.-T.: Computing the degeneracy of large graphs.
In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 250–260.
Springer, Heidelberg (2014)

13. Feigenbaum, J., Kannan, S., McGregor, A., Suri, S., Zhang, J.: On graph problems
in a semi-streaming model. Theor. Comput. Sci. 348(2), 207–216 (2005)

14. Frank, A., Gyarfas, A.: How to orient the edges of a graph. In: Proceedings of the
Fifth Hungarian Colloquium on Combinatorics. vol. I, Combinatorics, pp. 353–364
(1976)

15. Gabow, H., Westermann, H.: Forests, frames, and games: algorithms for matroid
sums and applications. In: Proceedings of the twentieth annual ACM Symposium
on Theory of Computing (STOC), pp. 407–421. ACM (1988)

16. Goldberg, A.V.: Finding a maximum density subgraph. Technical report (1984)
17. Guha, S., McGregor, A., Tench, D.: Vertex and hyperedge connectivity in dynamic

graph streams. In: Proceedings of the 34th ACM Symposium on Principles of
Database Systems (PODS), pp. 241–247 (2015)

18. Guruswami, V., Onak, K.: Superlinear lower bounds for multipass graph process-
ing. In: 28th Conference on Computational Complexity (CCC), pp. 287–298. IEEE
(2013)

19. Jowhari, H., Sağlam, M., Tardos, G.: Tight bounds for Lp samplers, finding dupli-
cates in streams, and related problems. In: Proceedings of the 30th ACM Sympo-
sium on Principles of Database Systems (PODS), pp. 49–58. ACM (2011)

20. Kapralov, M., Lee, Y.T., Musco, C., Musco, C., Sidford, A.: Single pass spectral
sparsification in dynamic streams. In: 55th IEEE Annual Symposium on Founda-
tions of Computer Science (FOCS), pp. 561–570 (2014)

21. Kapralov, M., Woodruff, D.P.: Spanners and sparsifiers in dynamic streams. In:
ACM Symposium on Principles of Distributed Computing (PODC), pp. 272–281
(2014)

22. Kawano, S., Yamazaki, K.: Worst case analysis of a greedy algorithm for graph
thickness. Inf. Process. Lett. 85(6), 333–337 (2003)

23. Konrad, C.: Maximum matching in turnstile streams. In: Bansal, N.,
Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 840–852. Springer, Verlag (2015)

24. Kowalik, �L.: Approximation scheme for lowest outdegree orientation and graph
density measures. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 557–566.
Springer, Heidelberg (2006)

25. Kutzkov, K., Pagh, R.: Triangle counting in dynamic graph streams. In: Ravi, R.,
Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 306–318. Springer, Heidelberg
(2014)

26. Lenzen, C., Wattenhofer, R.: Minimum dominating set approximation in graphs of
bounded arboricity. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 510–524. Springer, Heidelberg (2010)

27. Mansfield, A.: Determining the thickness of graphs is NP-hard. Math. Proc.
Cambridge Philos. Soc. 93, 9–23 (1983)

28. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM 30(3), 417–427 (1983)

440 M. Farach-Colton and M.-T. Tsai

29. McGregor, A., Tench, D., Vorotnikova, S., Vu, H.T.: Densest subgraph in dynamic
graph streams. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015.
LNCS, vol. 9235, pp. 472–482. Springer, Heidelberg (2015)

30. Muthukrishnan, S.: Data streams: algorithms and applications. Technical report
(2003)

31. Nash-Williams, C.S.A.: Edge-disjoint spanning trees of finite graphs. J. Lond.
Math. Soc. s1–36(1), 445–450 (1961)

32. O’Connell, T.C.: A survey of graph algorithms under extended streaming models
of computation. In: Ravi, S.S., Shukla, S.K. (eds.) Fundamental Problems in Com-
puting, pp. 455–476. Springer, The Netherlands (2009)

33. Ruhl, J.M.: Efficient algorithms for new computational models. Ph.D. thesis,
Massachusetts Institute of Technology, September 2003

34. Schank, T., Wagner, D.: Finding, counting and listing all triangles in large graphs,
an experimental study. In: Nikoletseas, S.E. (ed.) WEA 2005. LNCS, vol. 3503,
pp. 606–609. Springer, Heidelberg (2005)

35. Sun, X., Woodruff, D.P.: Tight bounds for graph problems in insertion streams.
In: Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM, pp. 435–448 (2015)

Improved Approximation Algorithms
for Capacitated Fault-Tolerant k-Center

Cristina G. Fernandes1, Samuel P. de Paula1, and Lehilton L.C. Pedrosa2(B)

1 Department of Computer Science, University of São Paulo, São Paulo, Brazil
{cris,samuelp}@ime.usp.br

2 Institute of Computing, University of Campinas, Campinas, Brazil
lehilton@ic.unicamp.br

Abstract. In the k-center problem, given a metric space V and a posi-
tive integer k, one wants to select k elements (centers) of V and an assign-
ment from V to centers, minimizing the maximum distance between an
element of V and its assigned center. One of the most general variants
is the capacitated α-fault-tolerant k-center, where centers have a limit
on the number of assigned elements, and, if α centers fail, there is a
reassignment from V to non-faulty centers. In this paper, we present
a new approach to tackle fault tolerance, by selecting and pre-opening
a set of backup centers, then solving the obtained residual instance. For
the {0, L}-capacitated case, we give approximations with factor 6 for the
basic problem, and 7 for the so called conservative variant, when only
clients whose centers failed may be reassigned. Our algorithms improve
on the previously best known factors of 9 and 17, respectively. Moreover,
we consider the case with general capacities. Assuming α is constant, our
method leads to the first approximations for this case.

1 Introduction

The k-center is the minimax problem in which, given a metric space V and a
positive integer k, we want to choose a set of k centers such that the maximum
distance from an element of V to its closest center is minimum. More precisely,
we want to select S ⊆ V with |S| = k that minimizes

max
u∈V

min
v∈S

d(u, v),

where d(u, v) is the distance between u and v. The decision version of the k-
center appears in Garey and Johnson’s list of NP-complete problems, identified
by MS9 [8]. It is well known that k-center has a 2-approximation which is best
possible unless P = NP [7,9,11–13]. The elements of the set S are usually referred
to as centers, and the elements of V as clients.

In a typical application of k-center, set V represents the nodes of a network,
and one may want to install k routers so that the network latency is minimized.

Partially supported by CAPES, CNPq (grants 308523/2012-1, 477203/2012-4, and
456792/2014-7), FAPESP (grants 2013/03447-6 and 2014/14209-1), and MaCLinC.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 441–453, 2016.
DOI: 10.1007/978-3-662-49529-2 33

442 C.G. Fernandes et al.

Other applications have additional constraints, so variants of the k-center have
been considered as well. For example, the number of nodes that a router may
serve might be limited. In the capacitated k-center, in addition to the set of
selected centers, we also want to obtain an assignment from the set of clients to
centers such that at most a number Lu of clients are assigned to each center u.
The value Lu is called the capacity of u. The first approximation for this version
of the problem is due to Bar-Ilan et al. [2], who gave a 10-approximation for
the particular case of uniform capacities, where there is a number L such that
Lu = L for every u in V . This was improved by Khuller and Sussmann [14],
who obtained a 6-approximation, and also considered the soft capacitated case,
in which multiple centers may be opened at the same location, obtaining a 5-
approximation, both for uniform capacities.

Despite the progress in the approximation algorithms for related problems,
such as the metric facility location problem, the first constant approxima-
tion for the (non-uniform) capacitated k-center was obtained only in 2012, by
Cygan et al. [5]. Differently from algorithms for the uniform case, the algorithm
of Cygan et al. is based on the relaxation of a linear programming (LP) formu-
lation. Since the natural formulation for the k-center has unbounded integrality
gap, a preprocessing is used, what allows considering only instances whose LP
has bounded gap. They also presented an 11-approximation for the soft capac-
itated case. Later, An et al. [1] presented a cleaner rounding algorithm, and
obtained an improved approximation with factor 9 (while the previous approx-
imation had a large constant factor, not explicitly calculated). As for negative
results, it has been shown that the capacitated k-center has no approximation
with factor better than 3 unless P = NP [5].

Another natural variant of the k-center comprises the possibility that centers
may fail during operation. This was first discussed by Krumke [16], who con-
sidered the version in which clients must be connected to a minimum number
of centers. In the fault-tolerant k-center, for a given number α, we consider the
possibility that any subset of centers of size at most α may fail. The objective
is to minimize the maximum distance from a client to its α + 1 nearest centers.
For the variant in which selected centers do not need to be served, Krumke [16]
gave a 4-approximation, later improved to a (best possible) 2-approximation by
Chaudhuri et al. [3], and Khuller et al. [15]. For the standard version, when a
client must be served even if a center is installed at client’s location, there is a
3-approximation by Khuller et al. [15], that also gave a 2-approximation for the
particular case of α ≤ 2.

Chechik and Peleg [4] considered a common generalization of the capacitated
k-center and the fault-tolerant k-center, where centers have limited capacity and
may fail during operation. They defined only the uniform capacitated version,
presenting a 9-approximation. Also, they considered the case in which, after
failures, only clients that were assigned to faulty centers may be reassigned. For
this variant, called the conservative fault-tolerant k-center, a 17-approximation
was obtained for the uniform capacitated case. For the special case in which
α < L, the so called large capacities case, they obtained a 13-approximation.

Improved Approximation Algorithms 443

1.1 Our Contributions and Techniques

We consider the capacitated α-fault-tolerant k-center problem. Formally, an
instance for this problem consists of a metric space V with corresponding dis-
tance function d : V × V → Q+, non-negative integers k and α, with α < k,
and a non-negative integer Lv for each v in V . A solution is a subset S of V
with |S| = k, such that, for each F ⊆ S with |F | ≤ α, there exists an assign-
ment φF : V → S \ F with |φ−1

F (v)| ≤ Lv for each v in S \ F . For a given F ,
we denote by φ∗

F an assignment φF with minimum maxu∈V d(u, φF (u)). The
problem’s objective is to find a solution that minimizes

max
u∈V,F⊆V :|F |≤α

d(u, φ∗
F (u)).

We also consider the capacitated conservative α-fault-tolerant k-center. In
this variant, in addition to the set S, a solution comprises an initial assign-
ment φ0. We require that an assignment φF for a failure scenario F differs
from φ0 only for vertices assigned by φ0 to centers in F . Precisely, given F ⊆ S
with |F | ≤ α, we say that an assignment φF is conservative (with respect to φ0)
if φF (u) = φ0(u) for every u ∈ V with φ0(u) /∈ F . A solution for the problem is
a pair (S, φ0) such that, for each F ⊆ S with |F | ≤ α, there exists a conservative
assignment φF . The objective function is defined analogously.

Our major technical contribution is a new strategy to deal with the fault-
tolerant and capacitated problems. Namely, we solve the considered problems in
two phases. In the first phase, we identify clusters of vertices where an optimal
solution must install a minimum of α centers. For each cluster, we carefully
select α of its vertices, and pre-open them as centers. These α centers will have
enough backup capacity so that, in the case of failure events, the unused capacity
of all pre-opened centers will be sufficient to obtain a reassignment for all clients.
While the α guessed centers of a cluster may not correspond to centers in an
optimal solution, we may meticulously modify the instance if necessary, so that
our choice always leads to a good solution. In the second phase, we are left with
a residual instance, where part of a solution is already known. Depending on the
problem, obtaining the remaining centers of a solution may be reduced to the
non-fault-tolerant variant. Otherwise, we can make stronger assumptions over
the input and the solution, so that the task of obtaining a fault-tolerant solution
is simplified.

A good feature of our approach is that it can be used in combination with
different techniques and algorithms (be they well known algorithms, or newly
proposed ones). Indeed, we apply it to obtain approximations for both the conser-
vative and non-conservative variants of the capacitated fault-tolerant k-center.
Moreover, each of the algorithms uses novel and specific techniques that are of
particular interest. For the conservative variant, we present elegant combinato-
rial algorithms that reduce the problem to the non-fault-tolerant case. For the
non-conservative variant, our algorithms are based on the rounding of a new LP
formulation for the problem. Interestingly, we use the set of pre-opened centers
to obtain a partial solution for the LP variables with integral values. We hope
that other problems can benefit from similar techniques.

444 C.G. Fernandes et al.

1.2 Obtained Approximations and Paper Organization

In Sect. 3, we present a 7-approximation for the {0, L}-capacitated conserv-
ative α-fault-tolerant k-center. This is the subset of the problem where the
capacities are either 0 or L, for some L. Notice that this generalizes the uni-
form capacitated case, when all capacities are equal to L. This result improves
on the previously known factors of 17 and 13 by Chechik and Peleg [4], that
apply to particular cases with uniform capacities, and uniform large capacities,
respectively. In Sect. 4, we study the case of general capacities, and present a
(9 + 6α)-approximation when α is constant. To the best of our knowledge, this
is the first approximation for the problem with arbitrary capacities. For the
non-conservative variant, our algorithms are based on the rounding of a new LP
formulation. We present the LP formulation, and give an overview of the algo-
rithms in Section 5. First we consider the case of arbitrary capacities, and present
a 10-approximation when α is constant. Once again, this is the first approx-
imation for the problem with arbitrary capacities. The rounding algorithm is
adapted for the {0, L}-capacitated fault-tolerant k-center, for which we obtain
a 6-approximation with α being part of the input. We remark that this factor
matches the best known factor for the problem without fault tolerance [1,14], and
improves on the best previously known algorithm for the fault-tolerant version,
which achieves factor 9 for the uniform capacitated case [4].

For the problems with arbitrary capacities, we require that α is constant.
We remark that, when α is part of the input, even deciding whether a given set
of vertices S is a feasible solution with a given cost is not trivial. Indeed, while
the capacitated α-fault-tolerant k-center is NP-hard, we do not know whether its
decision version is in NP. Nevertheless, our assumption for this case is consistent
with most of the problem’s applications, as α corresponds to an upper bound
on the number of failing centers. A summary of the results is given in Table 1.

Table 1. Summary of the obtained approximation factors.

Version Capacities Value of α Previous This paper

Conservative uniform given in the input 17 [4] 7

Conservative arbitrary fixed – 9 + 6α

Non-conservative uniform given in the input 9 [4] 6

Non-conservative arbitrary fixed – 10

2 Preliminaries

Let G = (V,E) be an undirected and unweighted graph. We denote by dG the
metric induced by G, that is, for u and v in V , let dG(u, v) be the length of a
shortest path between u and v in G. For given nonempty sets A, B ⊆ V , we
define dG(A,B) = mina∈A,b∈B dG(a, b).

Improved Approximation Algorithms 445

For an integer �, we let N �
G(u) = {v ∈ V : dG(v, u) ≤ �}. For a subset U ⊆ V ,

let N �
G(U) =

⋃
u∈U N �

G(u). We may omit the superscript � when � = 1, and the
subscript G when the graph is clear from the context. For a directed graph G,
we define dG(u, v) as the length of a shortest directed path from u to v in G, and
define N �

G(u) similarly. We also define the (power) graph G� = (V,E�), where
{u, v} ∈ E� if v ∈ N �(u) \ {u}.

2.1 Reduction to the Unweighted Case

As it is standard for the k-center problem, we will use the bottleneck method [12],
so that we can consider the case in which the metric space is induced by an
unweighted undirected graph. Suppose we have an algorithm that, given an
unweighted graph, either gives a distance-r solution for the unweighted problem,
or a certificate that no distance-1 solution exists. We may then use this algorithm
to obtain an r-approximation for the general metric case.

Let V be a metric space with distance c : V × V → R+. For a certain
number τ in R+, we consider the threshold graph defined as G≤τ = (V,E≤τ),
where E≤τ = {{u, v} : c(u, v) ≤ τ}. Next we obtain a sequence of values of c(u, v)
for (u, v) in V 2, in increasing order. For each τ in this ordering, we obtain G≤τ ,
and use the algorithm for the unweighted case; we stop when the algorithm
fails to provide a negative certificate, and return the obtained solution. Notice
that there must be a distance-1 solution for G≤OPT, where OPT denotes the
optimum value for the problem. Since OPT is in the considered ordering for τ ,
the algorithm always stops, and returns a solution for some τ ≤ OPT, so we
obtain a solution for the original problem of cost at most r · τ ≤ r · OPT. So,
from now on, we assume an unweighted graph G = (V,E) is given, and the goal
is to either obtain a certificate that no distance-1 solution exists, or return a
distance-r solution for some constant r.

2.2 Preprocessing and Reduction to the Connected Case

We also may assume without loss of generality that G is connected [4,5,14]. If
this is not the case, we may proceed as follows. Suppose there is an algorithm
that, given a connected graph G̃, and an integer k̃, produces a distance-r solu-
tion with k̃ vertices, or gives a certificate that no distance-1 solution with k̃
vertices exists. Now, consider a given arbitrary unweighted graph G, and a given
integer k. We decompose G into its connected components, say G1, . . . , Gt. For
each connected component Gi, with 1 ≤ i ≤ t, we run the algorithm for each
k̃ = α + 1, . . . , k, and find the minimum value ki, if any, for which the algorithm
obtains a distance-r solution. As the failure set is arbitrary, in the worst case all
faulty centers might be in a component. If there is some Gi for which there is
no distance-1 solution with k centers or if k1 + · · · + kt > k, then clearly there is
no distance-1 solution for G with k centers; otherwise, conjoining the solutions
obtained for each component leads to a distance-r solution for G with no more
than k centers, and this solution is tolerant to the failure of α centers. From now
on, we will assume that G is connected.

446 C.G. Fernandes et al.

3 {0, L}-Capacitated Conservative Fault-Tolerant
k-Center

After a failure, a distance-1 conservative solution has to reassign each unserved
client to an open center in its vicinity with available capacity. This requires some
kind of “local available center capacity”. The next definition describes a set of
vertices that are nice candidates to be open as backup centers. This set can be
partitioned into clusters of at most α vertices, with the clusters sufficiently apart
from each other. The idea is that failures in the vicinity of one of these clusters do
not affect centers in the other clusters. More precisely, the vicinities of different
clusters do not intersect, therefore, in a distance-1 conservative solution, any
client that is assigned to a center in a certain cluster cannot be reassigned to a
center in the vicinity of any of the other clusters.

Definition 1. Consider a graph G = (V,E) and non-negative integers α and �.
A set W of vertices of G is (α, �)-independent if it can be partitioned into sets
C1, . . . , Ct, such that |Ci| ≤ α for 1 ≤ i ≤ t, and d(Ci, Cj) > � for 1 ≤ i < j ≤ t.

In what follows, we denote by (G, k, L, α) an instance of the capacitated con-
servative α-fault-tolerant k-center as obtained by Sect. 2. We say that (G, k, L, α)
is feasible if there exists a distance-1 solution for it.

Lemma 1. Let (G, k, L, α) be a feasible instance for the capacitated conservative
α-fault-tolerant k-center, and let (S∗, φ∗

0) be a corresponding distance-1 solution.
If W ⊆ S∗ is an (α, 4)-independent set in G, then (G, k − |W |, L′) is feasible for
the capacitated k-center, where L′

u = 0 for u in W , and L′
u = Lu otherwise.

Proof. Since W is (α, 4)-independent, there must be a partition C1, . . . , Ct of
W such that d(Ci, Cj) > 4 for any pair i, j, with 1 ≤ i < j ≤ t. Also, each
part Ci has at most α vertices, and thus there exists a conservative assignment
φ∗

Ci
with (φ∗

Ci
)−1(Ci) = ∅. Therefore, φ∗

Ci
is a distance-1 solution for the (G, k −

|Ci|, Li) instance of the capacitated k-center problem, where Li
u = 0 for u in

Ci, and Li
u = Lu otherwise. Moreover, as φ∗

0 is conservative, φ∗
Ci

differs from φ∗
0

only in (φ∗
0)

−1(Ci). So, if a center u in S∗ is such that (φ∗)−1(u) �= (φ∗
Ci

)−1(u),
then u ∈ N2(Ci). As W is (α, 4)-independent, N2(Ci) ∩ N2(Cj) = ∅ for every
j ∈ [t] \ {i}. Let ψ be an assignment such that, for each client v,

ψ(v) =

{
φ∗

Ci
(v) φ∗

0(v) ∈ Ci for some i in [t],
φ∗
0(v) otherwise.

Therefore, set ψ−1(u) is empty if u ∈ W ; is (φ∗
Ci

)−1(u) if there exists i ∈ [t]
such that u ∈ N2(Ci) \ Ci; and is (φ∗)−1(u) otherwise. This means that, for L′

as in the statement of the lemma, |ψ−1(u)| ≤ L′
u for every u, and so (S∗, ψ) is a

solution for the (G, k − |W |, L′) instance of the capacitated k-center problem. 	

A set of vertices A ⊆ V is 7-independent in G if every pair of vertices in A is
at distance at least 7 in G. This definition was also used by Chechik and Peleg [4]
and, as we will show, such a set is useful to obtain an (α, 4)-independent set in G.

Improved Approximation Algorithms 447

Lemma 2. Let A be a 7-independent set in G, for each a in A, let B(a) be any
set of α vertices in N(a), and let B = ∪a∈AB(a). If (G, k, L, α) is feasible for the
capacitated conservative α-fault-tolerant k-center, then (G, k−|B|, L′) is feasible
for the capacitated k-center, where L′

u = 0 for u in B, and L′
u = Lu otherwise.

Proof. Let (S∗, φ∗
0) be a solution for (G, k, L, α). For each a ∈ A, there must

be at least α centers in S∗ ∩ N(a). Let W (a) be the union of S∗ ∩ B(a) and
other α − |S∗ ∩ B(a)| centers in S∗ ∩ N(a). Let W = ∪a∈AW (a). Since A is
7-independent, N3(a) and N3(b) are disjoint for any two a and b in A, and
so N2(W (a)) ∩ N2(W (b)) = ∅. Thus, W is (α, 4)-independent.

Now let L′′ be such that L′′
u = 0 if u /∈ S∗, and L′′

u = Lu otherwise. Observe
that (G, k, L′′, α) is feasible (as we only set to zero the capacities of non-centers).
By Lemma 1, the instance (G, k − |W |, L′′′) is feasible, where L′′′

u = 0 if u ∈ W ,
and L′′′

u = L′′
u otherwise. Notice that L′

u ≥ L′′′
u for every u, and |B| = |W |.

Therefore, since (G, k − |W |, L′′′) is feasible, so is (G, k − |B|, L′). 	

Now we present a 7-approximation for the {0, L}-capacitated conservative
α-fault-tolerant k-center. For this case, rather than using a capacity function, it
is convenient to consider the subset V L of vertices with capacity L. We denote
by (G, k, V L, α) and by (G, k, V L) instances of the fault-tolerant and non-fault-
tolerant versions.

In the following procedure, we denote by alg an approximation algorithm
for the {0, L}-capacitated k-center.

Algorithm 1. {0, L}-capacitated conservative α-fault-tolerant k-center.

Input: connected graph G, k, V L, and α

1 A ← a maximal 7-independent vertex set in G
2 foreach a ∈ A do
3 B(a) ← α vertices chosen arbitrarily in N(a) ∩ V L

4 B ← ∪a∈AB(a)
5 if alg(G, k − |B|, V L \ B) returns failure then
6 return failure

7 else
8 Let (S, φ) be the solution returned by alg(G, k − |B|, V L \ B)
9 return (S ∪ B,φ)

Theorem 1. If alg is a β-approximation for the {0, L}-capacitated k-center,
then Algorithm1 is a max{7, β}-approximation for the {0, L}-capacitated con-
servative α-fault-tolerant k-center.

Proof. Consider an instance (G, k, V L, α) of the {0, L}-capacitated conservative
α-fault-tolerant k-center problem, with G = (V,E). Let A, B(a) for a in A,
and B be as defined in Algorithm 1 with (G, k, V L, α) as input. Assume that
(G, k, V L, α) is feasible. Since A is 7-independent, by Lemma 2, the instance
(G, k − |B|, V L \ B), where we set to zero the capacities of all vertices in B,
is also feasible for the {0, L}-capacitated k-center problem. This means that, if

448 C.G. Fernandes et al.

Algorithm 1 executes Line 6, then the given instance is indeed infeasible. On the
other hand, if alg returns a solution (S, φ), then, since |S| ≤ k − |B|, the size
of S ∪ B is at most k, and φ is a valid initial center assignment. Moreover, φ
is such that: (1) each vertex u is at distance at most β from φ(u); and (2) no
vertex is assigned to B.

Let F ⊆ S ∪B with |F | = α be a failure scenario. We describe a conservative
center reassignment for (S ∪ B,φ). We only need to reassign vertices initially
assigned to centers in F \ B (as no vertex was assigned to a vertex in B).
Thus, at most L|F \ B| vertices need to be reassigned. For each such u, we
can choose a ∈ A at distance at most 6 from u (as A is maximal), and let
φ̃(u) = a. Then, for each a ∈ A, and for each u with φ̃(u) = a, reassign u to
some non-full center of B(a) \ F . Notice that B(a) \ F can absorb all reassigned
vertices. Indeed, the available capacity of B(a) \ F before the failure event is
L|B(a) \ F | = L|F \ B(a)| ≥ L|F \ B|, where we used |B(a)| = |F | = α. Since
for a reassigned vertex u, d(u, φ̃(u)) ≤ 6, and u is reassigned to some center
v ∈ N(φ̃(u)), the distance between u and v is at most 7. Also, if a vertex u was
not reassigned, then the distance to its center is at most β. 	

Now, using the 6-approximation for the {0, L}-capacitated k-center by
An et al. [1], we obtain the following.

Corollary 1. Algorithm1 using the algorithm by An et al. [1] for the {0, L}-
capacitated k-center is a 7-approximation for the {0, L}-capacitated conservative
α-fault-tolerant k-center.

4 Capacitated Conservative Fault-Tolerant k-Center

In this section, we consider the capacitated conservative α-fault-tolerant k-
center. Recall that this is the case in which capacities may be arbitrary. An
instance for this problem is denoted by (G, k, L, α) for some G = (V,E) and
L : V → Z≥0. Under the assumption that α is bounded by a constant, we
present the first approximation for the problem.

In the {0, L}-capacitated case, each vertex assigned to a faulty center could
be reassigned to a non-faulty center in B(a), for an arbitrary nearby element a
of a 7-independent set A. Each B(a) could absorb all reassigned vertices. With
arbitrary capacities, the set B of pre-opened centers must be obtained much more
carefully, as the capacities of non-zero-capacitated vertices are not necessarily all
the same. Once the set B of backup centers is selected, one needs to ensure that
the residual instance for the capacitated k-center problem is feasible. In Sect. 3,
an (α, 4)-independent set is obtained from A, and Lemma 1 is used. This lemma is
valid for arbitrary capacities, and so it is useful here as well. To obtain an (α, 4)-
independent set from B, we make sure that B can be partitioned in such a way
that any two parts are at least at distance 7. This is done by Algorithm2 below.
In the following procedure, alg denotes an approximation for the capacitated
k-center problem.

Improved Approximation Algorithms 449

Algorithm 2. Capacitated conservative α-fault-tolerant k-center, fixed α.

Input: connected graph G = (V,E), k, and L : V → Z≥0

1 foreach u ∈ V do
2 if Lu > |V | then Lu ← |V |
3 B ← ∅
4 while there is a set U ⊆ V with |U | = α and L(U) > L(B ∩ N6(U)) do
5 Let U ⊆ V be such that |U | = α and L(U) > L(B ∩ N6(U))
6 B ← (B \ N6(U)) ∪ U

7 foreach u ∈ V do
8 if u ∈ B then L′

u ← 0 else L′
u ← Lu

9 if alg(G, k − |B|, L′) returns failure then
10 return failure

11 else
12 Let (S, φ) be the solution returned by alg(G, k − |B|, L′)
13 return (S ∪ B,φ)

Algorithm 2 is polynomial on the size of G, k, and L. The test in Line 4
is equivalent to finding a set U ⊆ V with |U | = α that minimizes function
L(B ∩ N6(U)) − L(U) (note that this is a particular case of minimizing a sub-
modular function with cardinality constraint). It would be interesting to settle
the complexity of this subproblem, as an efficient algorithm for it would imply
that Algorithm 2 is polynomial on α. When α is fixed, we may enumerate the
sets U , and so we may obtain the next theorem (due to space restrictions, the
proof is left for the full version of the paper).

Theorem 2. Algorithm2 using the algorithm by An et al. [1] for the capacitated
k-center is a (9 + 6α)-approximation for the capacitated conservative α-fault-
tolerant k-center with fixed α.

5 Capacitated Fault-Tolerant k-Center

5.1 An LP-Formulation

Recall that we are given a connected unweighted graph, and the objective is
to decide whether there is a distance-1 solution (see Sect. 2). As in [6], we use
an integer LP that formulates the problem. If, after relaxing the integrality
constraints, the LP is infeasible, then we know there is no distance-1 solution,
otherwise we round the solution, and obtain an approximate solution.

In the following, variable yu indicates whether a vertex u is chosen as a center.
In the fault-tolerant k-center, for each failure scenario F ⊆ V with |F | ≤ α, we
must have a different assignment from vertices to non-faulty centers opened
by y. For the sake of simplicity, rather than using assignment variables specific
for each F , we will use an equivalent formulation based on Hall’s condition,
which is a necessary and sufficient condition for a bipartite graph to have a

450 C.G. Fernandes et al.

perfect matching [10]. It is simple to verify that the next feasibility integer linear
program, denoted by ILPk,α(G), formulates the problem.

∑
u∈V yu = k

|U | ≤
∑

u∈NG(U)\F yuLu ∀ U ⊆ V, F ⊆ V : |F | = α

yu ∈ {0, 1} ∀ u ∈ V.

While one could try relaxing ILPk,α(G), the induced “integrality gap” is
unbounded, that is, there might be a “fractional” distance-1 solution for some
graph for which the best solution has arbitrary cost s. The reason is that the
opening fraction on y for a failure scenario F of α fractionally opened centers
might be strictly less than α, that is, y(F) < α. Thus, the considered constraints
do not capture the real failure event.

Pre-opening Centers. Suppose that we knew a subset B of the centers of an
optimal solution that might fail. Then we could set yu = 1 for each u in B, that is,
we pre-open u so that, for any failure scenario F ⊆ B, we would have y(F) = |F |.
Obviously, we do not have such B, so we aim at more relaxed goals: (1) we pre-
open centers that are known to be close to centers of an optimal solution; and (2)
we consider that only this selected subset of the centers may fail, and that this
comprises the worst case scenario. To achieve these goals, we first make use of a
standard clustering technique [2,14,16]. In particular, Khuller and Sussmann [14]
obtain:

Lemma 3 ([14]). Given a connected graph G = (V,E), one can obtain a set of
midpoints Γ ⊆ V , and a partition of V into sets {Cv}v∈Γ , such that

– there exists a rooted tree T on Γ , with dG(u, v) = 3 for every edge (u, v);
– NG(v) ⊆ Cv for every v in Γ ; and
– dG(u, v) ≤ 2 for every v in Γ and every u in Cv.

We apply Lemma 3 to G and obtain a clustering of V . Let v in Γ be a cluster
midpoint, and consider any distance-1 solution. Since up to α centers in this
solution may fail, there must be at least α + 1 centers in N(v). Moreover, since
sets N(v) are disjoint, there are at least α+1 centers per cluster in any distance-1
solution. Now we consider a failure event, and reason on the total capacity that
may become unavailable in each cluster. In the worst case, this does not exceed
the accumulated capacity of the α most capacitated vertices in the cluster. This
suggests that we might pre-open such centers. For each v in Γ , let Bv ⊆ Cv be a
set of α elements of Cv with largest capacities. The set of all pre-opened centers
is B = ∪v∈Γ Bv.

When we establish a partial solution, we may turn the original linear formu-
lation infeasible, that is, it is possible that there is no distance-1 solution whose
set of centers contains B. However, since in any distance-1 solution there are at
least α + 1 centers in a given cluster, each center in such distance-1 solution is
within distance 3 to a distinct element of B of non-smaller capacity. To obtain
an LP relaxation that opens all centers in B, we modify the supporting graph G

Improved Approximation Algorithms 451

as follows: we define the directed graph G′ = G′(G, {Cv}v∈Γ) = (V,E′), where
E′ is the set of arcs (u,w) such that {u,w} ∈ E, or there exist v in Γ and t in
N(v) such that {u, t} ∈ E and w ∈ Bv (see Fig. 1). We use a directed graph, as
we only want a reassignment from a client to a center in B.

v

Cv

t

u

The white vertices represent Bv, the most ca-
pacitated vertices in Cv for α = 2. The dashed
lines represent the arcs added to the graph G in
order to obtain G′. Solid lines represent dupli-
cated arcs in opposite directions. Notice that u
is not in Cv in this example.

Fig. 1. The modified graph.

A New Formulation. In the new formulation, we consider only scenarios F ⊆ B
such that we always have y(F) = |F |. Also, for each cluster midpoint v, we
(fractionally) open at least one non-faulty center in N(v) for each failure scenario.
While this is implicit in ILPk,α(G), for fractional y there might be high capacity
centers that satisfy the local demand with less than one open unit. Thus, we have
an additional constraint for each midpoint v. We obtain a new linear program,
denoted by LPk,α(G, {Cv}v∈Γ):

∑
u∈V yu = k

|U | ≤
∑

u∈NG′ (U)\F yuLu ∀ U ⊆ V, F ⊆ B : |F | = α

1 ≤
∑

u∈NG(v)\B yu ∀ v ∈ Γ

yu = 1 ∀ u ∈ B
0 ≤ yu ≤ 1 ∀ u ∈ V.

Note that the new LP depends on the clustering. The next lemma states that
LPk,α(G, {Cv}v∈Γ) is a “relaxation” of ILPk,α(G).

Lemma 4. If ILPk,α(G) is feasible, then LPk,α(G, {Cv}v∈Γ) is feasible.

Though LPk,α(G, {Cv}v∈Γ) has an exponential size, it can be separated by
a min-cut max-flow algorithm, thus the LP is solvable in polynomial-time. For
the {0, L}-capacitated case, we can solve the LP even if α is part of the input.

5.2 The Algorithm

Our algorithm consists of two parts. In the first, we round a fractional solution
y of LPk,α(G, {Cv}v∈Γ), and obtain a set R of k centers. In the second part, for
each failure scenario F ⊆ R with |F | ≤ α, we have to obtain an assignment from
V to R \ F .

452 C.G. Fernandes et al.

Rounding. Our rounding algorithm is based on the concept of distance-r trans-
fers used by An et al. [1]. The main idea is that the fractional opening of centers
can be transferred to other centers at distance up to r, while preserving the
local capacity. If, in the modified solution, all centers are integrally open, then
we obtain a set R of k centers, and may obtain an assignment from V to R. Since,
by the LP constraints, each vertex of V could be (fractionally) assigned to cen-
ters at distance 1 in y, in the modified solution we may transfer the assignment
as well, and obtain an assignment to centers of R at distance r+1. The transfers
are well understood for the capacitated (non-fault-tolerant) k-center [1,6], but
need several new ideas in the case with fault tolerance. The main difference is
that we do not transfer opening from or to vertices in B. Since this would require
several pages of description, we left the complete details to the full version. In
particular, we obtain an integral distance-8 transfer R.

Assignment. After opening centers in R, we get an assignment for each failure
scenario F ⊆ R with |F | = α. First, suppose F is a subset of the pre-opened cen-
ters B. In this case, LPk,α(G, {Cv}v∈Γ) guarantees that each u can be assigned
to a certain set X of (fractionally opened) centers. Consider a v in X to which u
is assigned. Notice that X ⊆ NG′(u)\F , thus either v ∈ NG(u), or v ∈ N4

G(u)∩B
(the latter occurs when u is connected to v through an added arc of the modified
graph). Since R is a distance-8 transfer and we do not transfer opening from B,
if the opening is transfered to some vertex v′, then v, v′ �∈ B and dG(v, v′) ≤ 8.
So each vertex u can be assigned to a center in R \ F at distance at most 9.

Now, we suppose that F is not a subset of B. Let Fv be the set of centers
that failed in a cluster Cv, and F ′

v ⊆ B be the set of |Fv| most capacitated
centers in Cv. In this case, we will first obtain a distance-9 assignment φ′ for
the failure scenario F ′ = ∪v∈Γ F ′

v. Notice that φ′ may assign clients to a faulty
center w ∈ F \ F ′. However, for each such w, by the construction of F ′, there
must be some unused center s(w) ∈ F ′ \ F in the same cluster with non-smaller
capacity. Therefore, we reassign each client u connected to w to center s(w),
obtaining a feasible assignment.

A naive analysis of the preceding algorithm would yield a 13-approximation
(as d(u, s(w)) ≤ d(u,w) + d(w, s(w)) ≤ 9 + 4). Let δ(w) be the midpoint of
the cluster that contains w, that is, δ(w) is the midpoint v such that w ∈ Cv.
To obtain a factor 10, we carefully bound d(u, δ(w)) by 8, so that d(u, s(w)) ≤
d(u, δ(w)) + d(δ(w), s(w)) ≤ 8 + 2. This is formalized next.

Lemma 5. Consider F ⊆ B with |F | = α and let R be the integral transfer
obtained from y. One can find, in polynomial time, an assignment φ : V → R\F
such that dG(u, φ(u)) ≤ 9 and dG(u, δ(φ(u))) ≤ 8 for each u in V .

Corollary 2. For constant α, there is a 10-approximation for the capacitated
α-fault-tolerant k-center.

5.3 The {0, L}-Capacitated Case

We apply our strategy to the {0, L}-capacitated case. As in [1], we further pre-
process the input graph before solving the LP so that a better clustering may be

Improved Approximation Algorithms 453

obtained. Since, in this case, non-zero capacitated centers have the same capac-
ities, the set of pre-opened centers Bv for a cluster Cv can be chosen in N(v).
Moreover, we use the uniformity of capacities of pre-opened centers to simplify
the LP so that it can be solved even if α is part of the input. We obtain the
following result.

Theorem 3. There exists a 6-approximation for the {0, L}-capacitated α-fault-
tolerant k-center (with α as part of the input).

References

1. An, H.-C., Bhaskara, A., Chekuri, C., Gupta, S., Madan, V., Svensson, O.: Cen-
trality of trees for capacitated k -center. In: Lee, J., Vygen, J. (eds.) IPCO 2014.
LNCS, vol. 8494, pp. 52–63. Springer, Heidelberg (2014)

2. Bar-Ilan, J., Kortsarz, G., Peleg, D.: How to allocate network centers. J. Algorithms
15(3), 385–415 (1993)

3. Chaudhuri, S., Garg, N., Ravi, R.: The p-neighbor k-center problem. Inf. Process.
Lett. 65(3), 131–134 (1998)

4. Chechik, S., Peleg, D.: The fault-tolerant capacitated k-center problem. Theor.
Comput. Sci. 566, 12–25 (2015)

5. Cygan, M., Hajiaghayi, M., Khuller, S.: LP rounding for k-centers with non-
uniform hard capacities. In: IEEE 53rd Annual Symposium on Foundations of
Computer Science (FOCS), pp. 273–282 (2012)

6. Cygan, M., Kociumaka, T.: Constant factor approximation for capacitated k-center
with outliers. In: 31st International Symposium on Theoretical Aspects of Com-
puterScience (STACS), vol. 25, pp. 251–262 (2014)

7. Feder, T., Greene, D.: Optimal algorithms for approximate clustering. In: Proceed-
ings of the Twentieth Annual ACM Symposium on Theory of Computing (STOC),
pp. 434–444. ACM, New York (1988)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

9. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

10. Hall, P.: On representatives of subsets. J. London Math. Soc 10(1), 26–30 (1935)
11. Hochbaum, D.S., Shmoys, D.B.: A best possible heuristic for the k-center problem.

Math. Oper. Res. 10(2), 180–184 (1985)
12. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms

for bottleneck problems. J. ACM 33(3), 533–550 (1986)
13. Hsu, W.L., Nemhauser, G.L.: Easy and hard bottleneck location problems. Discrete

Appl. Math. 1(3), 209–215 (1979)
14. Khuller, S., Sussmann, Y.J.: The capacitated k-center problem. SIAM J. Discrete

Math. 13(3), 403–418 (2000)
15. Khuller, S., Pless, R., Sussmann, Y.J.: Fault tolerant k-center problems. Theor.

Comput. Sci. 242(1–2), 237–245 (2000)
16. Krumke, S.: On a generalization of the p-center problem. Inf. Process. Lett. 56(2),

67–71 (1995)

Bundled Crossings in Embedded Graphs

Martin Fink1(B), John Hershberger2, Subhash Suri1, and Kevin Verbeek3

1 Department of Computer Science, University of California,
Santa Barbara, CA, USA

fink@cs.ucsb.edu
2 Mentor Graphics Corporation, Wilsonville, OR, USA

3 Department of Mathematics and Computer Science, TU Eindhoven,
Eindhoven, The Netherlands

Abstract. Edge crossings in a graph drawing are an important factor
in the drawing’s quality. However, it is not just the presence of crossings
that determines the drawing’s quality: any drawing of a nonplanar graph
in the plane necessarily contains crossings, but the geometric structure of
those crossings can have a significant impact on the drawing’s readability.
In particular, the structure of two disjoint groups of locally parallel edges
(bundles) intersecting in a complete crossbar (a bundled crossing) is visu-
ally simpler—even if it involves many individual crossings—than an equal
number of random crossings scattered in the plane.

In this paper, we investigate the complexity of partitioning the
crossings of a given drawing of a graph into a minimum number of
bundled crossings. We show that this problem is NP -hard, propose a
constant-factor approximation scheme for the case of circular embed-
dings, where all vertices lie on the outer face, and show that the bundled
crossings problem in general graphs is related to a minimum dissection
problem.

1 Introduction

We introduce and investigate the problem of minimizing the number of bundled
crossings in a given embedding of a graph, where each bundled crossing is formed
by two groups of edges that cross each other in a local region. See Fig. 1 for an
example. In particular, let G = (V,E) be a simple graph that is drawn in the
plane. The drawing defines a combinatorial embedding E of the graph: the circular
order of edges around each vertex and each crossing, and the relative order of
crossings along each edge. We are free to alter the drawing in any way to improve
its appearance but must adhere to the prescribed combinatorial embedding E .
For ease of reference, we will identify each crossing e1, e2 with a crossing vertex,
labeled with the pair (e1, e2) of edges involved in the crossing. A bundled crossing
in the embedding E is a subset C of the crossing vertices satisfying the following
two conditions:

(i) C contains exactly the crossings of the form (e1, e2) for all e1 ∈ E1, e2 ∈ E2,
where E1, E2 ⊆ E are two disjoint subsets of the edges. (E1 and E2 are the
bundles of the bundled crossing.)

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 454–468, 2016.
DOI: 10.1007/978-3-662-49529-2 34

Bundled Crossings in Embedded Graphs 455

Fig. 1. Two drawings of a graph with the same embedding: a straight-line drawing
with 8 crossings, and a drawing with two bundled crossings (highlighted).

(ii) C can be separated from all remaining crossings of the embedding by a
pseudodisk D—a closed polygonal curve that crosses each edge at most
twice—and no other edge e /∈ E1 ∪ E2 intersects D. This requirement (ii)
ensures that the bundled crossing can be visually separated from the rest of
the drawing.

The bundled crossing number bc(E) of the embedding E is the minimum number
of bundled crossings into which the set of crossings can be partitioned. In this
paper we study the following problem.

Bundled Crossing Number Problem. Given a nonplanar embedding E of a
graph G = (V,E), determine bc(E).

Motivation. We propose the bundled crossing number as a new measure for
the visual quality of a nonplanar drawing. We believe that the number of bun-
dled crossings is a better measure of visual clutter than the number of individual
crossings, because bundled crossings take the structure of crossings into account.
A drawing with few bundled crossings is simpler than one with individual cross-
ings scattered over the drawing in an unstructured way.

Since minimizing the number of bundled crossings may conflict with other
aesthetic criteria and application constraints, we expect bundled crossing min-
imization to be used as a postprocessing step for improving the output of a
separate graph drawing algorithm. Once the embedding is fixed, the crossings
can be partitioned into a small number of bundled crossings. Then, by appro-
priately routing edges, e.g., as splines, we can bring the edges of bundles close
together to emphasize the simple structure of the bundled crossings (see Fig. 1).

Our Contribution. Our first result is that the problem of minimizing the number
of bundled crossings in general is NP -hard. We further show that minimizing bun-
dled crossings is a generalization of the problem of dissecting a rectilinear polygon-
with-holes into a minimum number of rectangles. In particular, the number of
bundled crossings is equal to the number of combinatorial rectangles needed to par-
tition a special combinatorial polygon derived from the input graph embedding.

456 M. Fink et al.

This connection allows us to design a constant-factor approximation for the sim-
pler case of circular embeddings. In a circular embedding, all vertices lie on the
boundary of a topological disk, and the edges are routed inside the disk. Circu-
lar embeddings are often used in applications with dense graphs where vertices
placed in the interior of the drawing can easily be obscured by the crossings.

Related Work. The number of crossings in a graph drawing is perhaps the most
obvious criterion of drawing quality. Computing a drawing with a minimum num-
ber of crossings is therefore a natural optimization problem, but unfortunately
it is NP -hard [5].

The number of crossings is not the only determiner of a drawing’s read-
ability, and many other criteria have been explored. For instance, even if the
combinatorial embeddings of two drawings are the same, one with larger cross-
ing angles is more readable [9], since larger angles make it easier to distinguish
edges. Recently, Hu and Shi [8] considered using different colors for edges; in
their approach, pairs of edges with a small crossing angle should have distinct
colors to make the edges easier to distinguish from each other.

Eppstein et al. [2] suggested another way to evaluate the readability of a
nonplanar drawing. On each crossing they use shading to indicate which of the
crossing edges is on top. They claim that for a single edge it is best to be either
always above or always below other edges that are crossed; their aim is, hence,
to minimize the number of switches of this above-below status for all edges.

Holten and van Wijk introduced edge bundling [6,7]. In bundled drawings,
groups of edges are drawn close together for some time when being routed
through the drawing. While this naturally leads to a bundled crossing when
two edge bundles cross, the existing work on edge bundling does not use the
number of bundled crossings as an optimization criterion. Instead, heuristics
using, e.g., the similarity of edges or their closeness in an initial drawing are
used to compute bundles and output a bundled drawing. In a recent survey,
Schaefer [10] has asked for a crossing number variant making use of bundles,
partially motivated by the work of Fink et al., who introduced a method similar
to bundled crossings, called block crossings, for presenting the crossings of metro
lines in transportation networks of cities [3]. However, the similarity between
our bundled crossing problem and the block crossings in metro line drawings is
only superficial—the block crossing number of an instance says nothing about
its bundled crossing number because the metro lines and block crossings must
be routed along edges of the given graph. While minimizing the number of block
crossings of metro lines is NP -hard, Fink et al. developed approximation algo-
rithms and heuristics for special networks as well as general metro networks.
Due to the similarity between edge bundles and metro lines, these algorithms
can also be applied for the crossings of edges within a bundle in edge bundling.

2 Preliminaries

A drawing of a graph G = (V,E) in the plane imposes a combinatorial struc-
ture, namely, the circular order of edges around each vertex, the order in which

Bundled Crossings in Embedded Graphs 457

crossings occur along each edge, and the order of edges around each crossing.
This combinatorial embedding E contains all the relevant information for the
bundled crossing minimization problem. Therefore, in the following, we use the
combinatorial embedding instead of the actual drawing. Equivalently, E is the
planar combinatorial embedding of the planar drawing resulting from replac-
ing each crossing by a dummy vertex. We assume that in E we can distinguish
between crossing vertices and vertices of G, and we can recognize the edges of
the original graph.

We assume that both the graph and the drawing are simple. This means that
there are no pairs of edges that touch, except in a crossing or vertex, and there
is no vertex contained in the interior of an edge. Furthermore, no three edges
can meet in a point that is not a vertex, no edge crosses itself, no two adjacent
edges cross, and no two edges in E cross more than once. Hence, each crossing
vertex has degree four and there are no faces of degree 2.

For the purpose of minimizing bundled crossings, we can treat the graph as
a matching: since the order of edges around each vertex is fixed, we can remove
a small ε-environment around each vertex from a drawing, that is, a disk of
radius ε centered at the vertex that is so small that it contains only the vertex
and parts of the incident edges, but no other vertices, crossings, or other edges.
After removing the ε-environment we solve the problem, and then reinsert the
removed parts. This is equivalent to replacing each vertex v by (deg v) many
vertices, where each vertex is an endpoint of a single edge. It follows that the
order of crossings along each edge and order of edges around each crossing are
the only relevant input.

Observation. Solving the bundled crossing number problem in general can be
reduced to the special case in which the embedded graph G is a perfect matching.

3 Bundled Crossing Minimization Is NP-Hard

We begin by showing that the bundled crossing number problem is NP -complete.

Theorem 1. Given a nonplanar combinatorial embedding E of a matching
G = (V,E) and a number k, it is NP-complete to decide whether bc(E) ≤ k.

Proof. bc(E) ≤ k would be witnessed by a partition of the crossings into k
subsets. Furthermore, if we take the smallest (combinatorial) pseudodisc around
each set of crossings, it is easy to check whether a partition of the crossings is a
feasible partitioning into bundled crossings. Hence, the problem is in NP.

We show NP -hardness by reduction from Planar 3SAT. Let (X, C) be a
Planar 3SAT instance, where X is a set of variables and C is a set of clauses
on these variables. Each clause C ∈ C contains negated or unnegated variables,
that is, C ⊆ X ∪ {¬x | x ∈ X}, and we know that |C| ∈ {2, 3}. The prob-
lem remains NP -hard even if every variable occurs in only three clauses [1].
The graph GXC = (X ∪ C, EXC) with EXC = {(x,C) | x ∈ C or ¬x ∈ C}
describing the occurrence of variables in clauses has a planar embedding EXC .

458 M. Fink et al.

Based on the input, we create a nonplanar embedding E of a graph G that mod-
els the 3SAT instance. By placing variable and clause gadgets on top of their
vertices in EXC and routing edges accordingly, we ensure that E contains only
crossings that we added intentionally as part of the gadgets.

In our construction no inner face will have degree 4. As a result, all bundled
crossings must be “thin”, that is, consist of a single edge that crosses one or
more other edges. Each edge is part of at most two gadgets, a variable gadget
and a clause gadget. On an edge connecting two gadgets, there can be a bundled
crossing containing crossings of both gadgets, allowing us to save bundled cross-
ings in some cases. Therefore, in such cases, we also say that a bundled crossing
extends from the variable gadget into the clause gadget.

Our basic tool is a hexagon, that is, a hexagonal face bounded by six edges
and six crossings. In any solution, the six crossings of the hexagon are part of at
least three bundled crossings; there are two different solutions with only three
bundled crossings for the hexagon, which we can associate with true and false.

Variable Gadget. For each variable x ∈ X, we place a variable gadget gx

consisting of four hexagons that are connected as shown in Fig. 2. In a solu-
tion with the minimum number of bundled crossings, the central hexagon needs
three bundled crossings; each of the other hexagons can use one bundled crossing
extending from the central hexagon and needs only two additional bundled cross-
ings. Hence, there are only two solutions with 9 bundled crossings for the gadget,
the one indicated in bold—the true state—and the symmetric one (false); all
other solutions have more bundled crossings since each bundled crossing contains
at most three crossings and there can be only three bundled crossings with three
crossings. The marked corners can be used for connecting the variable to clauses.
All three locally have the same status in an optimum solution. For a negated
variable, we take the corner marked by a dashed circle (and the one right of it).

Clause Gadget. For each clause C ∈ C, we build a clause gadget gC and place
it according to EXC . We connect each variable of the clause to the gadget via
two edges coming from the variable gadget; see an example in Fig. 3. Which
hexagon of the variable gadget is used for the connection is determined based
on the clockwise order of edges in the embedding; the same holds for the order
of the literals in the clause. Note that for the middle literal (y) the second
used edge comes from the vertex right of the marked vertex in the literal’s
gadget. By routing the two edges between variable and clause gadget following
the corresponding edge in the embedding EXC we make sure that there are no
crossings except the ones that are part of the gadgets.

For each variable, only one of two edges can extend a bundled crossing into
the gadget—the bold one if the variable is true, the other one if it is false. By
considering the eight possible cases, one can check that if at least one literal is
true, one additional bundled crossing suffices for the gadget (see bold bundled
crossings in Fig. 3). If all literals are false, two additional bundled crossings are
necessary; otherwise, the crossings of the triangular face cannot be covered.

A clause x ∨ y with two literals is modeled as a single crossing between the
positive edges of the literals. If a literal is true, the crossing can be part of an

Bundled Crossings in Embedded Graphs 459

Fig. 2. Variable gadget in true-state.
Vertices marked by circles are used
for connecting to a clause gadget; for
negated occurrences, vertices marked
by dashed circles are used instead.

x y z

Fig. 3. Clause gadget for the clause
x ∨ y ∨ ¬z; by rotating the respective
hexagon by one corner, a variable can
be replaced by its negation (here shown
for z).

existing bundled crossing of the corresponding variable gadget; otherwise, an
additional bundled crossing is necessary.

Let k3 be the number of clauses with three literals and let k = 9|X| + k3.
We now claim that the crossings can be partitioned into at most k = 9|X| + k3
bundled crossings if and only if the 3SAT formula is satisfiable, where k3 is the
number of clauses with three literals.

First assume that we have a satisfying truth assignment. For every variable
x ∈ X, we partition the crossings of the corresponding variable gadget into 9
bundled crossings in one of the two possible ways, depending on the truth assign-
ment for x. Then, since for every clause at least one variable is true, bundled
crossings starting in variable gadgets can be extended in such a way that every
clause gadget with three variables is covered with only one additional bundled
crossing; no additional bundled crossing is necessary for clauses with two liter-
als. Hence, we have partitioned all crossings into only 9|X| + k3 = k bundled
crossings.

Now, assume that we are given a solution with at most k bundled crossings.
We want to construct a satisfying truth assignment. Note that no gadget contains
an inner quadrilateral face bounded by four crossings. Furthermore, edges leaving
a variable gadget either go to the same clause gadget, or they are separated from
each other by several crossings on the boundary of the gadget. Hence, also no
face bounded by edges of different gadgets can be an inner quadrilateral that
may be contained in a bundled crossing. Therefore, all bundled crossings consist
of a single edge that crosses one or more other edges.

We assign each bundled crossing that contains crossings of two gadgets to
the variable gadget. Since each variable gadget needs at least 9 bundled cross-
ings, there can be no more than k3 crossings not assigned to a variable gadget.
Assume that a clause gadget with variables x, y, and z (see Fig. 3) does not

460 M. Fink et al.

have any bundled crossing assigned. This is only possible if both edges com-
ing from y’s variable gadget extend a bundled crossing into the clause gadget.
The connecting hexagon then has at least three bundled crossings not extending
from the variable gadget’s central hexagon, and the variable gadget must have
at least 10 bundled crossings in total. There are several cases that locally are
possible for the connecting hexagon; for each of the cases it is easy to verify that
a local repartitioning is possible such that (i) the number of bundled crossings
does not change, (ii) the hexagon has only two bundled crossing not extending
from the central hexagon, and (iii) the clause gadget has one bundled crossing
not extending from a variable gadget. If we apply this repartitioning step for all
variable gadgets, if necessary, property (ii) will ensure that every variable gadget
has only 9 bundled crossings.

We have seen, that 9 bundled crossings per variable gadget and one bundled
crossing for every clause gadget with three variables are necessary. Therefore,
our solution has exactly this number of bundled crossings for each of the gadget
types. Since there are only two possible solutions with 9 crossings for a variable
gadget, we automatically get a corresponding truth assignment, and we argue
that this truth assignment satisfies all clauses.

For a clause x ∨ y, the corresponding crossing must be part of a bundled
crossing coming from one of the variable gadgets. Hence, the corresponding literal
is true. On the other hand, a clause gadget for x ∨ y ∨ z must have one bundled
crossing coming from the positive edge of one of the literals, which, hence, is
true and satisfies the clause. ��

4 Bundled Crossings via Minimum Dissection

In this section we reduce the problem of computing the bundled crossing num-
ber of a given embedding E to that of dissecting a combinatorial space C(E)
into as few “rectangles” as possible. This latter problem is actually a general-
ization of the minimum dissection problem for rectilinear polygons with holes.
A rectilinear polygon with holes can be dissected into the minimum possible
number of rectangles in polynomial time [11]. As Theorem 1 suggests, this result
cannot be extended to our generalization of the problem, but the insight gained
from reducing the problem, combined with the ideas in [11], allow us to obtain
approximate solutions for the bundled crossing number.

4.1 The Crossing Complex

For a given embedding E we can construct a combinatorial space: the crossing
complex C(E) is a special type of cell complex obtained by gluing together quadri-
lateral cells according to the structure of E . Specifically, C(E) can be obtained
from E using the following three construction rules (see Fig. 4):

1. There is one quadrilateral cell C(v) in C(E) for every crossing vertex v of
E . Since v has degree four, every side of C(v) is associated with one of the
incident edges of v in E .

Bundled Crossings in Embedded Graphs 461

E C(E)

Fig. 4. Embedding E and crossing complex C(E). Black dots represent point holes.

2. If two crossing vertices u and v share an edge in E , then the cells C(u) and
C(v) are glued together along the sides corresponding to the shared edge.

3. If E contains an empty quadrilateral face, then the unique corner shared by
the cells corresponding to the four crossing vertices of the quadrilateral face
is added to C(E).

As the last construction rule already suggests, the cells of C(E) should be consid-
ered as open cells. That is, a corner of a cell is not in C(E) unless it is added due
to Rule 3, and a side is not in C(E) unless it was involved in a gluing operation.
Corners and sides that are in C(E) are referred to as internal. Other corners
and sides belong to the boundary of C(E). Note that corners that correspond to
nonempty quadrilateral faces or other faces of E (not containing vertices of G)
are actually point holes in C(E)—holes consisting of a single point.

4.2 Dissecting the Crossing Complex

Given a crossing complex C(E), the goal is to dissect C(E) into rectangular sub-
complexes. A rectangular subcomplex of a crossing complex consists of a subset
of the cells arranged in a k × � grid (for k, � ≥ 1) without any holes. A chord of
a crossing complex consists of a sequence of internal sides and internal corners
connecting two boundary corners. A chord must be straight, that is, the two
internal sides incident on an internal corner (which must have degree four) must
be opposite to each other (see Fig. 5 left). A crossing complex can be dissected
into rectangular subcomplexes by cutting the crossing complex along internally
disjoint chords (see Fig. 5 right).

Lemma 1. Partitioning the crossing vertices of an embedding E into bundled
crossings is equivalent to dissecting the crossing complex C(E) into rectangular
subcomplexes.

Proof. We show that every bundled crossing of E corresponds to a rectangu-
lar subcomplex of C(E) and vice versa. Assume we have a bundled crossing of
E consisting of all crossings of the edge bundles E1 and E2 (of the original
graph), say with |E1| = k and |E2| = �. Thus, the crossings among these edges

462 M. Fink et al.

Fig. 5. Left: a chord (bold). Right: dissection into rectangular subcomplexes.

must be arranged in a k × � grid, which corresponds to a rectangular subcom-
plex of C(E). Furthermore, the internal faces inside the bundled crossing must
be empty quadrilaterals, so the corresponding rectangular subcomplex does not
have holes due to construction rule 3.

Now assume we have a rectangular subcomplex of C(E) of size k × �. By
construction of C(E), every column (and every row) of the rectangular subcom-
plex corresponds to a sequence of crossing vertices of E that are part of the
same edge. Thus, there is a set E1 of k edges and a set E2 of � edges, and cells
of the rectangular subcomplex correspond to the crossings between all pairs
(e1, e2) ∈ E1 × E2. Since the rectangular subcomplex does not have holes, the
internal quadrilateral faces among these edges in E must be empty, and hence
the crossings between the edges in E1 × E2 can be bundled. ��

Lemma 1 directly implies that the bundled crossing number of an embed-
ding E is exactly the minimum number of rectangular subcomplexes into which
C(E) can be dissected. Extending ideas from [11], we define a measure m(C) for
the “concavity” of a crossing complex C. Let ∂C be the set of boundary corners
of C. For a boundary corner c ∈ ∂ C we define the angle α(c) as the number
of cells in C it bounds. If a cell uses a corner twice (see, e.g., the small hole in
Fig. 4), then this cell must be counted twice toward the angle of this corner. The
measure m(C) can now be defined as follows.

m(C) =
∑

c∈∂C

{

α(c)−1

2 � + 1, if c is a point hole;

α(c)−1

2 �, otherwise.

Note that the measure of a rectangular subcomplex is zero. Furthermore, if
the measure of a crossing complex is nonzero, then it contains a point hole or
a boundary corner of angle at least three, which means it is not a rectangular
subcomplex. Thus, the measure of a crossing complex is zero if and only if it
consists of a set of rectangular subcomplexes. Next we investigate the influence
of cutting along a chord on the measure of a crossing complex.

Lemma 2. Let C′ be the result of cutting a crossing complex C along a chord.
Then m(C′) ≥ m(C) − 2.

Proof. A chord can influence the measure at only two boundary corners of C,
namely the endpoints of the chord. If a boundary corner is a point hole, then the

Bundled Crossings in Embedded Graphs 463

angle of this boundary corner is not changed, but m(C) is reduced by one. Oth-
erwise, a boundary corner with angle k is split into two boundary corners,
one with angle k1 and one with angle k2, where k1 + k2 = k. If k1 or k2 is
odd, then
k1−1

2 � +
k2−1
2 � ≥ k1+k2−3

2 = k−1
2 − 1. Otherwise, k is even and

k1−1
2 �+
k2−1

2 � ≥ k1+k2−4
2 =
k−1

2 �−1. Again, m(C) is reduced by at most one
and the result follows. ��

Lemma 3. If m(C) > 0, then there exists a chord that can be used to reduce
m(C) by one.

Proof. Since m(C) > 0, there must be a boundary corner c with α(c) ≥ 3 (this
must also hold for point holes). If c is a point hole, then we can simply choose
one of the incident internal sides and construct a chord starting from there,
effectively removing the point hole. This chord is uniquely defined and must
reach a boundary corner eventually. This can be seen by observing that internal
corners of the chord in C(E) correspond to a sequence of empty quadrilaterals
in E ; if a chord loops onto itself, then some edges of the original graph must
intersect themselves or make a loop, which is not allowed. If c is not a point
hole, we choose a chord that splits c into two boundary corners with angles 2
and α(c) − 2. This again reduces m(C) by one. ��

We should note that the optimal dissection of a crossing complex can
always be obtained by cutting along chords completely. Following the argu-
ments of Lemma 2, a partial chord can reduce the measure by at most one,
and by Lemma 3 such partial cuts are never needed to obtain an optimal solu-
tion. Lemma 3 directly suggests a simple algorithm to dissect a crossing complex
into rectangular subcomplexes: keep applying Lemma 3 until the measure is zero.
Next we analyze this simple algorithm, which we call RepeatedCut.

For the remainder of this section we assume that we are given an embedding E
and its crossing complex C = C(E), and that C is connected; otherwise we can
run the algorithm on each connected component separately. The number of holes
h(C) of C is the number of connected components of the boundary of C minus the
number of connected components of C. When C is cut along a chord to obtain
C′, one of two things can happen: (1) h(C′) = h(C) − 1, or (2) C′ has exactly one
more connected component than C. In the end m(C) = h(C) = 0 must hold, and
the goal is to minimize the number of connected components.

Let ALG(E) be the number of bundled crossings obtained by algo-
rithm RepeatedCut, using the equivalence of Lemma 1. We obtain the fol-
lowing result.

Theorem 2. For any embedding E we have ALG(E) ≤ 2 bc(E) + h(C(E)) − 1.

Proof. Every time we cut C(E) along a chord and reduce m(C(E)) by at least
one, either the number of holes of C(E) reduces by one, or the number of con-
nected components of C(E) increases by one (starting at one). So we obtain

464 M. Fink et al.

that ALG(E) − 1 + h(C(E)) ≤ m(C(E)). Similarly, from Lemma 2 it follows that
bc(E) − 1 + h(C(E)) ≥ m(C(E))

2 . Thus, we obtain:

ALG(E) ≤ m(C(E)) + 1 − h(C(E)) = 2
m(C(E))

2
+ 1 − h(C(E))

≤ 2 bc(E) + h(C(E)) − 1. ��

The algorithm RepeatedCut can easily be implemented to run in linear
time with respect to the complexity of E : after constructing C(E), Lemma 3 is
repeatedly applied. We maintain a list of holes with positive measure that are
used for starting chords. Since we cut at most once through every side of a cell,
the total length of cuts is linear in the complexity of E , and so is the runtime.

4.3 Effective Chords

Unlike the algorithm for dissecting rectilinear polygons with holes [11], our algo-
rithm is unable to compute the minimum dissection of crossing complexes effi-
ciently. This is unsurprising, given the hardness result (Theorem 1), but in this
section we explore the reasons behind this discrepancy.

The algorithm in [11] relies on so-called effective chords that reduce the
measure by two. Unlike our chords, these can contain boundary corners in their
interior. If a chord cuts an even angle into two odd angles, then the measure does
not change at the corner. In that case boundary corners can be in the interior
of the chord. Note that effective chords cannot be used simultaneously if they
intersect or meet at a boundary corner. As a result, the maximum independent
set of effective chords must be found, but since the crossing graph is bipartite
for axis-aligned chords, this can be computed efficiently.

In our case, the crossing graph of effective chords is not bipartite, since we
do not have horizontal and vertical edges, and we cannot compute the maximum
independent set efficiently. However, even if this were the case, there is another
problem to deal with: the angle of a boundary corner may be larger than four and
an effective chord passing through a boundary corner is not uniquely defined.
Furthermore, multiple chords can meet at the same boundary corner, and their
effectiveness at this corner may depend on each other’s presence in the final
solution. Unfortunately, finding the largest set of effective chords seems very
hard. Finally, note that even an approximation of the maximum set of effective
chords cannot guarantee an approximation of the bundled crossing number.

5 Circular Embeddings

We now consider circular embeddings, in which all vertices lie on the outer face.
Such embeddings occur in several applications and have also been used in the
context of edge bundling [6].

We will show that the algorithm RepeatedCut developed in the previous
section yields a constant-factor approximation for the bundled crossing number

Bundled Crossings in Embedded Graphs 465

of circular embeddings. The reason is that for circular embeddings there is a
linear lower bound for the bundled crossing number in terms of the number of
holes, that is, the number of inner faces that cannot be contained completely in a
single bundled crossing. We first relate the number of triangular faces in circular
embeddings to the number of faces of higher degree. We then prove a lower
bound for the bundled crossing number in terms of the number of triangles.
Using the bound and the insight on face-degrees, we can then show that the
algorithm yields a constant-factor approximation.

Faces in Circular Embeddings. Let V = {v1, v2, . . . , vn} be the clockwise order of
the vertices on the outer face (i.e., on the circle). To aid our analysis, we modify
the graph (and the embedding) and assume that the cycle (v1, v2, . . . , vn, v1)
is contained in G; in the embedding E this cycle forms the outer face. Let
G = (V ′, E′) be the planar graph of the embedding E whose vertices are vertices
of G and crossing vertices.

V contains n vertices and a number nc of crossing vertices. The vertices of V
lie on the outer face; all crossing vertices are inner vertices. For k ≥ 3 let fk be
the number of inner faces of degree k. Since there is an outer face of degree n,
the total number of faces in E is f = 1+

∑
k≥3 fk. We relate the number of faces

of degree three to the total complexity of faces of degree five and more.

Lemma 4.
f3 = 4 +

∑

k≥5

fk · (k − 4)

Proof. Every vertex v ∈ V has degree 3 and every crossing vertex has degree 4.
We express the number of edges in E′ in two ways: (1) |E′| = 3n/2 + 2nc by
counting the vertex-degrees and (2) |E′| = n/2 + 1/2

∑
k≥3 fk · k by counting

the face-degrees. By Euler’s formula |V ′|− |E′|+ f = 2, that is, |E′|− |V ′|+2 =
1+

∑
k≥3 fk. Hence, we can determine the number of triangles in the embedding

as follows.

f3 = 4f3 − 3f3 = 4

⎛

⎝1 +
1
2
|E′| +

1
2
|E′| − |V ′| −

∑

k≥4

fk

⎞

⎠ − 3f3

= 4

⎛

⎝1 +
1
2

(
3
2
n + 2nc

)

+
1
2

⎛

⎝n

2
+

1
2

∑

k≥3

fk · k

⎞

⎠ − (n + nc) −
∑

k≥4

fk

⎞

⎠ − 3f3

= 4

⎛

⎝1 +
1
4
3f3 +

1
4

∑

k≥4

fk · (k − 4)

⎞

⎠ − 3f3 = 4 +
∑

k≥5

fk · (k − 4) ��

Hence, the number of triangles is directly correlated to the additional com-
plexity of faces more complex than quadrilaterals.

466 M. Fink et al.

Lower Bound. We will now develop a lower bound on the bundled crossing
number in terms of the numbers of triangles in the embedding E .

Lemma 5.
bc(E) ≥ 1

4
f3

Proof. Assume that we are given an optimum solution that partitions all cross-
ings into bc(E) bundled crossings. Faces for which all crossings are part of a
bundled crossing must be quadrilaterals. Hence, a bundled crossing can only
contain one or two crossings of a given triangle. Furthermore, for every triangle
there must be a bundled crossing that contains exactly one of its crossings, since
a triangle has either three crossings or—if it is adjacent to the outer cycle—one
crossing.

Consider a bundled crossing C of bundles E1 and E2 enclosed by a
pseudodisk D. If a triangle contains two edges from E1 (or two from E2), two
crossings of the triangle are part of C. If we follow the edges of E1 ∪ E2 as they
cross the boundary of D in clockwise order (each edge twice), a triangle with
one crossing as part of the bundled crossing must lie on the transition between
E1 and E2. However, there are exactly four such transitions. Since every triangle
must occur in at least one transition of a bundled crossing, we get f3 ≤ 4 bc(E). ��

By using the relation between triangles and other faces, we get the alternative
bound bc(E) ≥ f3

4 = 1
4

(
4 +

∑
k≥5 fk · (k − 4)

)
≥ 1 +

∑
k≥5 fk · k−4

4 .
We get a combined bound by taking the average of the two.

Lemma 6.
bc(E) ≥ 1

2
+

1
8
f3 +

∑

k≥5

fk · k − 4
8

There exist embeddings with Θ(m2) triangles, since there are arrangements
of m straight lines with Θ(m2) triangles [4]. Such an embedding has an (optimal)
bundled crossing number of Θ(m2). The approximation algorithm described next
can be used to detect such “bad” circular embeddings, i.e., ones whose bundled
crossing number is large with respect to m.

Approximation. Using the lower bound of Lemma 6 we can show that for a cir-
cular embedding, the algorithm RepeatedCut yields a constant-factor approx-
imation. Here, every face of degree other than four is a (point) hole unless it
is adjacent to a vertex on the circle. Hence we have h(C(E)) ≤ f3 +

∑
k≥5 fk.

Let ALG(E) be the number of bundled crossings that the algorithm creates. By
Theorem 2 we have ALG(E) ≤ 2 bc(E)+h(C(E))− 1. On the other hand, we get
h(C(E)) ≤ f3 +

∑
k≥5 fk ≤ 8 ·

(
1/2 + f3/8 +

∑
k≥5 fk(k − 4)/8

)
≤ 8 bc(E) using

Lemma 6. Hence, ALG(E) ≤ 10 bc(E).

Theorem 3. Algorithm RepeatedCut yields a 10-approximation for the bun-
dled crossing number of circular embeddings.

Bundled Crossings in Embedded Graphs 467

We can also formulate the algorithm RepeatedCut directly in terms of
the embedding (with the same runtime). We consider the embedding E with
the outer cycle added. An inner face (bounded only by crossing vertices) with
degree other than four corresponds to a (concave) point hole. Similarly, a face
of degree k ≥ 5 adjacent to the outer cycle corresponds to a concave boundary
corner of angle k − 2. Finally, cutting along a chord corresponds to breaking
edges into two parts while following two parallel edges.

6 Conclusion and Open Problems

We have introduced the bundled crossing number, which takes not only the
number of crossings but also their structure into account. We showed that com-
puting the bundled crossing number of an embedding is NP -hard. Furthermore,
we observed that this problem generalizes the dissection of a rectilinear polygon
into rectangles. This insight allowed us to obtain an easy-to-implement algorithm
that yields a constant-factor approximation for circular embeddings.

There are some interesting open questions for the bundled crossing num-
ber. Most importantly, is there an approximation for general embeddings? The
related dissection problem could provide helpful ideas for this case. Furthermore,
is computing the bundled crossing number NP -hard even for circular embed-
dings?

Another direction for future research is to find an embedding with small
bundled crossing number for a given graph. We conjecture that this new version
of the crossing number of a graph is NP -hard.

Acknowledgments. The research of Martin Fink was partially supported by a fellow-
ship within the Postdoc-Program of the German Academic Exchange Service (DAAD),
and by NSF grants CCF-1161495 and CCF-1525817. The research of Subhash Suri was
partially supported by NSF grants CCF-1161495 and CCF-1525817.

References

1. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. Comput. 23(4), 864–894 (1994).
http://dx.doi.org/10.1137/S0097539792225297

2. Eppstein, D., van Kreveld, M.J., Mumford, E., Speckmann, B.: Edges
and switches, tunnels and bridges. Comput. Geom. 42(8), 790–802 (2009).
http://dx.doi.org/10.1016/j.comgeo.2008.05.005

3. Fink, M., Pupyrev, S., Wolff, A.: Ordering metro lines by block crossings. J. Graph
Algorithms Appl. 19(1), 111–153 (2015). http://dx.doi.org/10.7155/jgaa.00351

4. Füredi, Z., Palásti, I.: Arrangements of lines with a large number of trian-
gles. Proc. Am. Math. Soc. 92(4), 561–566 (1984). http://dx.doi.org/10.1090/
S0002-9939-1984-0760946-2

5. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Alge-
braic Discrete Methods 4(3), 312–316 (1983). http://epubs.siam.org/doi/abs/
10.1137/0604033

http://dx.doi.org/10.1137/S0097539792225297
http://dx.doi.org/10.1016/j.comgeo.2008.05.005
http://dx.doi.org/10.7155/jgaa.00351
http://dx.doi.org/10.1090/S0002-9939-1984-0760946-2
http://dx.doi.org/10.1090/S0002-9939-1984-0760946-2
http://epubs.siam.org/doi/abs/10.1137/0604033
http://epubs.siam.org/doi/abs/10.1137/0604033

468 M. Fink et al.

6. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in
hierarchical data. IEEE Trans. Vis. Comput. Graph. 12(5), 741–748 (2006).
http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.147

7. Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualiza-
tion. Comput. Graph. Forum 28(3), 983–990 (2009). http://dx.doi.org/10.1111/
j.1467-8659.2009.01450.x

8. Hu, Y., Shi, L.: A coloring algorithm for disambiguating graph and map draw-
ings. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 89–100.
Springer, Heidelberg (2014). http://dx.doi.org/10.1007/978-3-662-45803-7 8

9. Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: Proceedings of 7th
International IEEE Asia-Pacific Symposium Information Visualisation (PacificVIS
2008), pp. 41–46 (2008). http://dx.doi.org/10.1109/PACIFICVIS.2008.4475457

10. Schaefer, M.: The graph crossing number and its variants: asurvey. Elec-
tron. J. Comb. Dyn. Surv. 21, 1–100 (2013). http://www.combinatorics.org/ojs/
index.php/eljc/article/view/DS21

11. Soltan, V., Gorpinevich, A.: Minimum dissection of a rectilinear polygon with
arbitrary holes into rectangles. Discrete Comp. Geom. 9(1), 57–79 (1993).
http://dx.doi.org/10.1007/BF02189307

http://doi.ieeecomputersociety.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1111/j.1467-8659.2009.01450.x
http://dx.doi.org/10.1111/j.1467-8659.2009.01450.x
http://dx.doi.org/10.1007/978-3-662-45803-7_8
http://dx.doi.org/10.1109/PACIFICVIS.2008.4475457
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
http://www.combinatorics.org/ojs/index.php/eljc/article/view/DS21
http://dx.doi.org/10.1007/BF02189307

Probabilistic Analysis of the Dual Next-Fit
Algorithm for Bin Covering

Carsten Fischer(B) and Heiko Röglin

Department of Computer Science, University of Bonn, Bonn, Germany
carsten.fischer@uni-bonn.de, roeglin@cs.uni-bonn.de

Abstract. In the bin covering problem, the goal is to fill as many bins as
possible up to a certain minimal level with a given set of items of different
sizes. Online variants, in which the items arrive one after another and
have to be packed immediately on their arrival without knowledge about
the future items, have been studied extensively in the literature. We
study the simplest possible online algorithm Dual Next-Fit, which packs
all arriving items into the same bin until it is filled and then proceeds
with the next bin in the same manner. The competitive ratio of this and
any other reasonable online algorithm is 1/2.

We study Dual Next-Fit in a probabilistic setting where the item sizes
are chosen i.i.d. according to a discrete distribution and we prove that,
for every distribution, its expected competitive ratio is at least 1/2 + ε
for a constant ε > 0 independent of the distribution. We also prove
an upper bound of 2/3 and better lower bounds for certain restricted
classes of distributions. Finally, we prove that the expected competitive
ratio equals, for a large class of distributions, the random-order ratio,
which is the expected competitive ratio when adversarially chosen items
arrive in uniformly random order.

1 Introduction

In the bin covering problem one is given a set of items with sizes s1, . . . , sn ∈ [0, 1]
and the goal is to fill as many bins as possible with these items, where a bin
is counted as filled if it contains items with a total size of at least 1. More
precisely, we are interested in finding the maximal number � of pairwise disjoint
sets X1, . . . , X� ⊆ {1, . . . , n} such that

∑
i∈Xj

si ≥ 1 for every j. We call the
sets Xj bins and we say that a bin is filled or covered if the total size of the items
it contains is at least 1. Variants of the bin covering problem occur frequently
in industrial applications, e.g., when packing food items with different weights
into boxes that each need to have at least the advertised weight.

Bin covering is a well-studied NP-hard optimization problem. A straightfor-
ward reduction from the partition problem shows that it cannot be approximated
within a factor of 1/2 + ε for any ε > 0. On the positive side, Jansen and Solis-
Oba [10] presented an asymptotic fully polynomial-time approximation scheme.

This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 469–482, 2016.
DOI: 10.1007/978-3-662-49529-2 35

470 C. Fischer and H. Röglin

In many applications, it is natural to study online variants, in which items arrive
one after another and have to be packed directly into one of the bins without
knowing the future items. It is also often natural to restrict the number of open
bins, i.e., bins that contain at least one item but are not yet covered, that an
online algorithm may use.

We study the simple online algorithm Dual Next-Fit (DNF) that packs all
arriving items into the same bin until it is filled. Then the next items are packed
into a new bin until it is filled, and so on. The (asymptotic) competitive ratio of
DNF is 1/2 [2], which is best possible for deterministic online algorithms [7]. In
fact, all deterministic online algorithms that do not add items to a bin that is
already covered and have at most a constant number of open bins at any point
in time have a competitive ratio of exactly 1/2 [3]. Since competitive analysis
does not yield much insight for bin covering, alternative measures have been
suggested. Most notably are probabilistic models in which the item sizes are
drawn at random from a fixed distribution [5] or in which the item sizes are
adversarial but the items arrive in random order [3].

In this article, we study the asymptotic average performance ratio and the
asymptotic random-order ratio of DNF. We give now an intuitive explanation
of these measures (formal definitions are given in Sect. 1.1). In order to define
the former, we allow an adversary to choose an arbitrary distribution F on [0, 1]
with finite support. The asymptotic average performance ratio AAPR(DNF, F)
of DNF with respect to the distribution F is then defined as the expected compet-
itive ratio of DNF on instances with n → ∞ items whose sizes are independently
drawn according to F . Furthermore, let AAPR(DNF) = infF AAPR(DNF, F).
In order to define the latter, we allow an adversary to choose n → ∞ item
sizes s1, . . . , sn ∈ [0, 1]. The asymptotic random-order ratio RR(DNF) is then
defined as the expected competitive ratio of DNF on instances in which these
items arrive in uniformly random order. It is assumed that the adversary chooses
item sizes that minimize this expected value.

We prove several new results on the asymptotic average performance ratio
and the asymptotic random-order ratio of DNF and the relation between these
two measures. First of all, observe that both RR(DNF) and AAPR(DNF) lie
between 1/2 and 1 because even in the worst case DNF has a competitive ratio
of 1/2. Using ideas of Kenyon [12], it follows that AAPR(DNF) ≥ RR(DNF). We
show that RR(DNF) ≤ AAPR(DNF) ≤ 2/3, which improves a result by Christ
et al. [3] who proved that RR(DNF) ≤ 4/5. To the best of our knowledge the
bound by Christ et al. is the only non-trivial result about the random-order ratio
of DNF in the literature.

Csirik et al. [5] have proved that AAPR(DNF, F) = 2/e if F is the uni-
form distribution on [0, 1]. We are not aware, however, of any lower bound
for AAPR(DNF, F) that holds for any discrete distribution F , except for the triv-
ial bound of 1/2. We obtain the first such bound and prove that AAPR(DNF) ≥
1/2 + ε for a small but constant ε > 0. We prove even better lower bounds
for certain classes of distributions that we will describe in detail in Sect. 1.4.
Finally we study the connection between the performance measures and prove

Probabilistic Analysis of the Dual Next-Fit Algorithm for Bin Covering 471

that AAPR(DNF) = RR(DNF) if the adversary in the random-order model is
restricted to inputs s1, . . . , sn with

∑
i si = ω(n2/3).

1.1 Performance Measures

Before we discuss our results in more detail and mention further related work,
let us formally introduce the performance measures that we employ.

Definition 1. A discrete distribution F is defined by a vector s = (s1, . . . , sm)
of non-negative rational item sizes and an associated vector p = (p1, . . . , pm) of
positive rational probabilities such that

∑m
i=1 pi = 1.

We denote by In(F) = (X1, . . . , Xn) a list of n items, where the Xi are drawn
i.i.d. according to F . For an algorithm A and a list of item sizes L we denote
by A(L) the number of bins that A fills on input L.

Definition 2. Let A be an algorithm for the bin covering problem, and let F be
a discrete distribution. We define the asymptotic average performance ratio as

AAPR(A,F) = lim inf
n→∞ E

[
A(In(F))

OPT(In(F))

]

and the asymptotic expected competitive ratio as

AECR(A,F) = lim inf
n→∞

E [A(In(F))]
E [OPT(In(F))]

.

For a set F of discrete distributions, we define

AAPR(A,F) = inf
F∈F

AAPR(A,F) and AECR(A,F) = inf
F∈F

AECR(A,F).

We denote by D the set of all discrete distributions and we define

AAPR(A) = AAPR(A,D) and AECR(A) = AECR(A,D).

Both the asymptotic average performance ratio and the asymptotic expected
competitive ratio have been studied in the literature (sometimes under different
names). We will see later that for our purposes there is no need to distinguish
between them because they coincide for DNF.

Let L = (a1, . . . , aN) be a list of length N , and let σ ∈ SN be a permutation
of N elements (SN denotes the symmetric group of order N). Then σ(L) denotes
a permutation of L.

Definition 3. In bin covering, the asymptotic random-order ratio for an algo-
rithm A is defined as

RR(A) = lim inf
OPT(L)→∞

Eσ[A(σ(L))]
OPT(L)

,

where σ is drawn uniformly from S|L|.

The asymptotic random-order ratio for bin covering and bin packing has been
introduced in [3] and [12], respectively. All definitions above can also be adapted
to the bin packing problem; we only have to replace inf and lim inf by sup and
lim sup, respectively.

472 C. Fischer and H. Röglin

1.2 Related Work

Csirik et al. [6] presented an algorithm (which requires an unlimited number
of open bins) whose asymptotic average performance ratio is 1 for all discrete
distributions. Csirik et al. [5] have proved that the asymptotic expected compet-
itive ratio of DNF is 2/e if F is the uniform distribution on [0, 1]. Kenyon [12]
introduced the notion of asymptotic random-order ratio for bin packing and
proved that the asymptotic random-order ratio of the best-fit algorithm lies
between 1.08 and 1.5. Coffman et al. [11] showed that the random-order ratio of
the next-fit algorithm is 2. Christ et al. [3] adapted the asymptotic random-oder
ratio to bin covering and proved that RR(DNF) ≤ 4/5. The article of Kenyon [12]
contains in Sect. 3 an argument for AECR(DNF) ≥ RR(DNF) (even though this
is not stated explicitly). Asgeirsson and Stein [1] developed a heuristic for online
bin covering based on Markov chains and demonstrated its good performance in
experiments.

1.3 Definitions and Notation

Let L = (a1, . . . , aN) ∈ [0, 1]N be a list of items. We denote by s(L) :=
∑N

i=1 ai

the total size of the items in L and by N(L) := N the length of L. For an
algorithm A, we define WA(L) := s(L) − A(L) as the waste of algorithm A on
list L. We denote by OPT an optimal offline algorithm. Of particular interest are
distributions that an optimal offline algorithm can pack with sublinear waste.

Definition 4. We say that a discrete distribution F is a perfect-packing distri-
bution, if it satisfies the perfect-packing property, i.e.,

E
[
WOPT(In(F))

]
= o(n).

We denote the set of all perfect-packing distributions by P.

Let F be a discrete distribution with associated item sizes s = (s1, . . . , sm) and
probabilities p = (p1, . . . , pm). We say that b = (b1, . . . , bm) ∈ Nm

0 is a perfect-
packing configuration, if

∑m
i=1 bisi = 1. Let ΛF denote the closure under convex

combinations and positive scalar multiplication of the set of perfect-packing con-
figurations. Courcoubetis and Weber [4] found out, that F is a perfect-packing
distribution if and only if p ∈ ΛF .

Let L = (a1, . . . , aN) be a list. We say that a discrete distribution F is
induced by L, if the vector of item sizes (s1, . . . , sm) contains exactly all the
item sizes arising in L, and the vector of probabilities p is given by pi := p(si) =
|{1 ≤ j ≤ N : aj = si}|/N . Vice versa we can find for every discrete distribution
F a list L, such that F is induced by L.

1.4 Outline and Our Results

In Sect. 2 we discuss how DNF can be interpreted as a Markov chain and we
prove some properties using this interpretation. We investigate how the different

Probabilistic Analysis of the Dual Next-Fit Algorithm for Bin Covering 473

performance measures are related and we point out that AECR(DNF, F) =
AAPR(DNF, F) for any discrete distribution F . Since the asymptotic expected
competitive ratio and the asymptotic average performance ratio coincide for
all discrete distributions, we will only consider the former in the following even
though all mentioned results are also true for the latter. The main result of Sect. 3
is a proof that AECR(DNF) = RR(DNF) if the adversary in the random-order
model is restricted to inputs s1, . . . , sn with

∑
i si = ω(n2/3).

We start Sect. 4 by showing that perfect-packing distributions are the worst
distributions for the considered measures, i.e., AECR(DNF,P) = AECR(DNF).
Similarly we show that for proving a lower bound on the random order ratio
of DNF it suffices to consider sequences of items that can be packed with waste
zero. Then we show that AECR(DNF) ≤ 2/3, which implies RR(DNF) ≤ 2/3.
The main contribution of Sect. 4 are various new lower bounds on the asymptotic
expected competitive ratio of DNF. We first prove that AECR(DNF) ≥ 1/2 + ε
for a small but constant ε > 0. Then we consider the following special cases for
which we show better lower bounds.

– Let Px be the set of all perfect packing distributions, where the maximum item
size is bounded from above by x. For x ∈ [1/2, 1], we prove by an application
of Lorden’s inequality for the overshoot of a stopped sum of random variables
that AECR(DNF,Px) ≥ 1

1+x2+(1−x)2 .
– Let F be a discrete perfect-packing distribution with associated item sizes s =

(s1, . . . , sm) and probabilities p = (p1, . . . , pm). According to our discussion
after Definition 4, the vector p lies in ΛF . Hence, there exist perfect-packing
configurations b1, . . . , bN and coefficients α1, . . . , αN ≥ 0 with p = α1b

1+ . . .+
αNbN . We denote the smallest N for which such bi and αi exist the degree
of p. Let P(N) denote all discrete perfect-packing distributions with degree N .
We prove that

2
3

≤ AECR(DNF,P(1)) ≤
(∞∑

i=1

(i − 1)!
ii

)−1

≈ 0.736.

If the maximum item size is greater than or equal to 1
2 the lower bound can

be improved to
(
1 +

∑∞
i=2

1
i2 ·

(
1 − 1

i

)i−2
)−1

≈ 0.686.
– Let F be a discrete perfect-packing distribution with items s = (s1, . . . , sm)

and probabilities p = (p1, . . . , pm) and let p = α1b
1 + . . . + αNbN for perfect-

packing configurations b1, . . . , bN and coefficients α1, . . . , αN ≥ 0. Let Ptwo

denote all discrete perfect-packing distributions for which there exists such
a representation in which every perfect-packing configuration bi contains at
most two non-zero entries. We show that AECR(DNF,Ptwo) = 2/3.

In Sect. 5 we give some conclusions and present open problems. Due to space lim-
itations, some of the proofs and basics about Markov chains, which are relevant
for this paper, are deferred to the full version [9].

474 C. Fischer and H. Röglin

2 Basic Statements

Let L1 and L2 be two lists and let L1L2 denote the concatenation of them.
At first, we want to point out that OPT as well as DNF are superadditive,
i.e., it holds OPT(L1) + OPT(L2) ≤ OPT(L1L2) and DNF(L1) + DNF(L2) ≤
DNF(L1L2). Now let F be a fixed discrete distribution. The limits γ(F) :=
limn→∞ E [OPT(In(F))] /n and limn→∞ E [DNF(In(F))] /n exist due to Fekete’s
lemma. This guarantees that the lim inf in the definition of AECR(DNF, F) is
in fact a limit.

Furthermore, the performance measures mentioned in Definition 2 coincide
in our case:

Lemma 5. Let F be a discrete distribution. It holds

AAPR(DNF, F) = AECR(DNF, F).

A proof of a similar statement can be found in the extended version of [15]. For
our purposes it is easier to deal with AECR(DNF, F), so we will only mention
this measure in the following.

In order to study E [DNF(In(F))], it will be useful to think of DNF(In(F))
as a Markov chain. We will give a brief introduction to Markov chains in the full
version of the paper. A comprehensive overview can be found in [13]. The state
space is given by the possible arising bin levels, where we subsume all bin levels
greater than or equal to 1 and the bin level 0 to a special state, which we call
the closed state. This Markov chain is irreducible.

Sometimes it will be necessary that the Markov chain does not start in the
closed state, but with bin level �. DNF(�, L) denotes the number of bins that DNF
closes on input L, starting with bin level �. We set DNF(L) := DNF(c, L), where
c denotes the closed state.

A first important observation is that we can restrict ourselves to discrete
distributions F , such that the Markov chain induced by F and DNF is aperiodic.

Lemma 6. Let F be a discrete distribution and d ∈ N≥2. If the Markov chain
induced by F and DNF is d-periodic then AECR(DNF, F) = 1.

Therefore, we will assume in the following that the Markov chain induced by
a discrete distribution F and DNF is aperiodic, and so it converges to a unique
stationary distribution πF . It holds πF (c) = E

[
TF
DNF

]−1, where TF
DNF denotes

the number of items we need to close a bin, starting with bin level zero.

Lemma 7. Let F be a perfect-packing distribution and X be distributed accord-
ing to F . Then

lim
n→∞

E [OPT(In(F))]
n

= E [X] .

For every discrete distribution F , it holds

lim
n→∞

E [DNF(In(F))]
n

=
1

E
[
TF
DNF

] .

Probabilistic Analysis of the Dual Next-Fit Algorithm for Bin Covering 475

So, if F is a perfect-packing distribution, it holds

AECR(DNF, F) =
1

E [X] · E
[
TF
DNF

] . (1)

3 Connection Between Asymptotic Expected
Competitive Ratio and Random-Order Ratio

In this section we want to examine the connection between the asymptotic
expected competitive ratio and the random-order ratio. At first we want to
mention a result, which follows from [12].

Lemma 8. It holds

RR(DNF) ≤ AECR(DNF).

Proof. Let Ln = {L = (a1, . . . , an) : P [In(F) = L] > 0}. Then there exists a
set of lists Ln, such that Ln =

⋃̇
H∈Ln

{L : ∃σ ∈ Sn s.t. L = σ(H)}. Using the
inequality (

∑n
i=1 bi)/(

∑n
i=1 ci) ≥ min1≤i≤n bi/ci, it follows

E [DNF(In(F))]
E [OPT(In(F))]

≥ min
H∈Ln

Eσ [DNF(σ(H))]
Eσ [OPT(σ(H))]

= min
H∈Ln

Eσ [DNF(σ(H))]
OPT(H)

.

�

We will show that the performance measures coincide if the sum of the items
increases fast enough in terms of the number of items. A side product of the
results of this section is the following: In [8] the authors noted that in bin packing
for the algorithm Next-fit and a certain list L, the following relationship holds:

lim
j→∞

Eσ

[
NF(σ(Lj))

]

OPT(Lj)
= AECR(NF, F), (2)

where Lj denotes the concatenation of j copies of L and F is the discrete dis-
tribution induced by L. They asked if this result holds for arbitrary lists L. We
can show that the answer is true in the context of DNF.

In the following let K denote a universal constant, which does not depend
on the considered list L. We establish the following two bounds:

Theorem 9. Let L be an arbitrary instance and let F be the induced discrete
distribution. Then it holds

|OPT(L) − N(L) · γ(F)| ≤ K · N(L)2/3.

Theorem 10. Let L be an arbitrary instance and let F be the induced discrete
distribution. We assume that the Markov chain induced by DNF and F possesses
a unique stationary measure πF . Then it holds

|Eσ [DNF(σ(L))] − N(L) · πF (c)| ≤ K · N(L)2/3.

476 C. Fischer and H. Röglin

The first step of the proofs is to split up IN(L)(F) or σ(L) into smaller
sublists, an idea which was brought up in [8]. The following lemma shows that
the difference between sampling with and without replacement can be controlled
if the length of the sublists is sufficiently small compared to N(L).

Lemma 11. Let L = (a1, . . . , aN), F be the corresponding induced discrete dis-
tribution, and b ∈ N. We set σ(L)[1:b] = (aσ(1), . . . , aσ(b)), where σ is an arbitrary
permutation of L. Then for A ∈ {DNF,OPT} it holds

∣
∣E

[
A(σ(L)[1:b])

]
− E [A(Ib(F))]

∣
∣ ≤ b3

N
.

The proof of the lemma is based on estimates of the total variation distance. In
the remaining parts of the proofs of the theorems we have to show that we also
can control other errors, e.g., stemming from beginning with different bin levels
in the case of DNF.

Theorem 12. If there exists a sequence of lists L(i) such that

lim
i→∞

Eσ

[
DNF(σ(L(i)))

]

OPT(L(i))
= RR(DNF),

and s(L(i)) ∈ ω(N(L(i))2/3), then RR(DNF) = AECR(DNF).

Proof. Let ε > 0 be arbitrary. Since s(L(i)) ≥ OPT(L(i)) ≥ DNF(L(i)) ≥
s(L(i))/2, it also holds OPT(L(i)) ∈ ω(N(L(i))2/3). Let F i denote the discrete
distribution induced by L(i). Using that AECR(DNF, F i) = πF i(c)/γ(F i) and
the basic inequality |a/b − a′/b′| ≤ |(a − a′)/b| + |a′/b′| · |(b − b′)/b|, we obtain

∣
∣
∣
∣
∣

Eσ

[
DNF(L(i))

]

OPT(L(i))
− AECR(DNF, F i)

∣
∣
∣
∣
∣
≤ K · N(L(i))2/3

OPT(L(i))
.

Hence, if we choose i large enough, we can find a distribution F i, such that
AECR(DNF, F i) ≤ RR(DNF) + ε. Then

RR(DNF) + ε ≥ AECR(DNF, F i) ≥ AECR(DNF) ≥ RR(DNF),

i.e., both performance measures would coincide.
�

The following corollary follows from the proof of Theorem 12.

Corollary 13. Let RR′(DNF) denote the random-order ratio of DNF restricted
to instances L with s(L) ∈ ω(N(L)2/3). It holds RR′(DNF) = AECR(DNF).

Using the same method as in the proof we can also show that (2) holds true
for the dual next-fit algorithm.

Probabilistic Analysis of the Dual Next-Fit Algorithm for Bin Covering 477

4 Upper and Lower Bounds for Dual Next-Fit on
Perfect-Packing Distributions

At first we show that we can restrict ourselves to studying perfect-packing dis-
tributions. They represent the worst-case with respect to the investigated per-
formance measures.

Lemma 14. Let L = (a1, . . . , aN) be a list for bin covering. Then there exists
a list H that can be packed perfectly, i.e., WOPT(H) = 0, such that

Eσ [DNF(σ(L))]
OPT(L)

≥ Eσ [DNF(σ(H))]
OPT(H)

.

Furthermore, for each distribution F there exists a perfect-packing distribu-
tion G such that

lim
n→∞

E [DNF(In(F))]
E [OPT(In(F))]

≥ lim
n→∞

E [DNF(In(G))]
E [OPT(In(G))]

.

4.1 Upper and Lower Bounds for Arbitrary Perfect-Packing
Distributions

We begin presenting an upper bound for the considered performance measures,
which improves a result in [3].

Theorem 15. It holds

RR(DNF) ≤ AECR(DNF) ≤ 2
3
.

Proof. Let F (m, k) be the uniform distribution on the item sizes
(

1
k

, 1 − 1
k

,

(
1
k

)2

, 1 −
(

1
k

)2

, . . . ,

(
1
k

)m

, 1 −
(

1
k

)m
)

.

It is clear, that F (m, k) is a perfect-packing distribution. We show that for every
ε > 0 there are parameters m and k, such that E

[
T

F (m,k)
DNF

]
≥ 3 − ε.

It holds

E

[
T

F (m,k)
DNF

]
=

∞∑

i=0

P

[
T

F (m,k)
DNF > i

]
≥ 2 +

k−1∑

i=2

P

[
T

F (m,k)
DNF > i

]
.

Simple counting yields for i ≥ 2

P

[
T

F (m,k)
DNF > i

]
=

mi

(2m)i
+

1
(2m)i

m∑

j=2

i · (j − 1)i−1 =
1
2i

+
i

2imi

m−1∑

j=1

ji−1

≥ 1
2i

+
i

2imi
·
∫ m−1

0

xi−1 dx =
1
2i

·
[

1 +
(

1 − 1
m

)i
]

.

478 C. Fischer and H. Röglin

Therefore, if we choose at first k, and then m large enough

E

[
T

F (m,k)
DNF

]
≥ 2 +

k−1∑

i=2

1
2i

·
[

1 +
(

1 − 1
m

)i
]

≥ 3 − ε.

Using Lemma 7 the statement follows.
�

Now we show, that in a probabilistic setting, we behave better than in the
worst-case.

Theorem 16. There exists an ε > 0 such that

AECR(DNF) ≥ 1
2

+ ε.

We want to give here the idea of the proof: Let X1,X2, . . . denote i.i.d.
random variables distributed according to F , and Sn =

∑n
i=1 Xi. The waste,

which occurs closing the bin, is given by R = STF
DNF

− 1. We will denote R also

as overshoot. Due to Wald’s equation it holds that 1 + E [R] = E

[
STF

DNF

]
=

E
[
TF
DNF

]
· E [X]. From (1) it follows that AECR(DNF, F) = (1 + E [R])−1. We

show that there exists an ε > 0, independent of the perfect-packing distribution
F , such that E [R] ≤ 1 − ε.

We assume that F is induced by �� perfectly packed bins and a uniform
distribution on the items. Otherwise we could copy bins to achieve such a setting.
We call an item large if it is strictly larger than 1/2. Otherwise we call the item
small. Our goal is to show that we will close a bin with a small item with a
constant probability, independent of F .

We denote by � ≤ �� the number of large items and by n the number of small
items. We assume that n ≥ � and that n is a multiple of �. If this is not the
case, we add an appropriate number of items of size 0. This will not change the
probability of closing a bin with a small item.

Let b1, . . . , b� denote the large items and assume that b1 ≥ b2 ≥ . . . ≥ b� >
1/2. Let b� := b	�/2
 and s� = 1 − b�.

Let T denote the time step at which we draw for the first time a large item,
and let E denote the event {T ≥ 15n/�+1}∩{

∑15n/�
i=1 Xi ≥ s�}. We can show that

this event happens with positive probability, independent of the distribution F .

Lemma 17. It holds

P [E] ≥ 1.1 · 10−12.

Proof. Using that n ≥ �, and so �/(n + �) ≤ 1/2, we obtain

P

[

T ≥ 15n

�
+ 1

]

=
(

1 − �

n + �

)15n/�

≥
(

1 − �

n + �

)15(n+�)/�

≥ 1
415

.

Probabilistic Analysis of the Dual Next-Fit Algorithm for Bin Covering 479

Let us condition in the following on the event that T ≥ 15n
� +1. We now want

to show, that the event, that the sum of the first 15n/� small items is at least s�,
occurs with positive probability independent of F . To prove this, we reduce the
summation to a kind of coupon-collectors problem. We assume that the coupons
have numbers from 1 to n, and we can use for a coupon with number i, also a
coupon with a higher number. Let m ≥ n and v ∈ {1, . . . , n}m. We denote by
v� the vector with the same entries as v except that the entries are ordered in
non-increasing order. We say that v covers the vector (n, . . . , 1) if v�

i ≥ n− i+1
for all i ∈ [n].

We partition the small items according to their size into n/� groups with �
items each. The � smallest items are in the first group and so on. We denote
by h the total size of items in the last group and Z the total size of all small
items. Let v = (m1, . . . , m15n/�), where mi denotes the number of the group
the i-th drawn item belongs to. We say that v covers all groups three times, if
there exists a permutation vσ of v s.t. (vσ

1 , . . . , vσ
5n/�), (vσ

5n/�+1, . . . , v
σ
10n/�) and

(vσ
10n/�+1, . . . , v

σ
15n/�) cover (n, . . . , 1) respectively. We can show that under the

condition that T ≥ 15n/� + 1, v covers all groups three times with probability
at least 0.9563. The proof of this statement is deferred to the full version. For
i ∈ [n/�] let gi denote the largest item in group i. If all groups are covered three
times, the sum of the small items drawn is at least

3
n/�−1∑

i=1

gi ≥ 3(Z − h)
�

.

Furthermore, the total weight of all small items is at least

Z ≥ (� − [�/2] + 1)s� ≥ �s�/2.

For the following argument we can assume w.l.o.g. that there is no small item
with size larger than s� because we are only interested in the probability that
the small items drawn add up to at least s�. If all groups are covered three times,
the sum of the small items is at least

3
n/�−1∑

i=1

gi ≥ 3(Z − h)
�

≥ 3(�s�/2 − h)
�

= 3s�/2 − 3h/�.

If h ≤ �s�/6, then the sum of the small items drawn is at least s�. Hence, in this
case

P [E] ≥ 0.873 · 1
415

≥ 8 · 10−10.

If h > �s�/6 then at least �/11 small items have size at least s�/12. We can
see this as follows: Let x denote the number of items in group 1, which have
size at least s�/12. Then h is bounded from above by xs� + (� − x)s�/12. Since
h > �s∗/6, it follows

(�s�)/6 < h ≤ xs� + (� − x)s�/12.

480 C. Fischer and H. Röglin

A simple computation then yields x > �/11. The probability that exactly 12 of
these items are drawn under the condition T ≥ 15n/� + 1 is at least

(
15n/�

12

)

·
(

1 − �/11
n

)15n/�−12

·
(

�/11
n

)12

≥
(

15n

12�

)12

·
(

1 − �

11n

)15n/�

·
(

�

11n

)12

≥
(

15
11 · 12

)12

· 0.239 ≥ 1.1 · 10−12.

�
We now show that from this it follows that the overshoot is strictly less

than 1. Let A := {
∑T−1

i=1 Xi < 1/2}. We set q := P [Ec], p1 := P [E ∩ A], and
p2 := P [E ∩ Ac]. Then, the following inequalities hold:

E [R] ≤ (1/2) · p22 + 1 · (1 − p22) = 1 − p22/2
E [R] ≤ (1/2) · p1/2 + 1 · (p1/2 + p2 + q) = 1 − p1/4.

The first inequality follows from the observation that P [Ac]2 ≥ p22 is a lower
bound on the probability that the bin gets filled with only small items, in which
case the waste is at most 1/2. The second inequality follows because if the
event E ∩ A occurs then the small items that arrive before the first large item
have a total size of at least s� and at most 1/2. If the first large item has size at
least b�, which happens with probability at least 1/2, then it closes the bin with
waste at most 1/2. Since p1 + p2 ≥ 1.1 · 10−12, it follows that E [R] < 1.

4.2 Improved Lower Bounds for Certain Classes of Perfect-Packing
Distributions

At first we look at the case that the maximum item size in the perfect-packing
distribution is bounded from above by x. Let Px denote the set of all such
distributions.

Theorem 18. If x ≥ 1
2 , then

AECR(DNF,Px) ≥ 1
1 + x2 + (1 − x)2

.

The given lower bound slightly improves the worst-case bound (1 + x)−1 in
the case that the maximum item size is greater than 1

2 . Csirik et al. pointed out
in [5] that in the case of DNF there is a connection between the bin covering
problem and renewal theory, and so it is obvious to use tools from this field. The
proof is based on an estimate of the overshoot, given by Lorden:

Lemma 19. (Lorden’s inequality,[14]). Suppose X1,X2, . . . are non-negative
i.i.d. random variables with E [X1] > 0 and E

[
X2

1

]
< ∞. Let Sn = X1+. . .+Xn,

T = inf{n ∈ N : Sn ≥ 1}, and R = ST − 1. Then

E [R] ≤ E
[
X2

1

]
/E [X1] .

Probabilistic Analysis of the Dual Next-Fit Algorithm for Bin Covering 481

Now we want to look at the case F ∈ P(1), i.e., we have a vector of item
sizes s, and the vector of probabilities pF is given by pF = b/|b|1, where b is a
perfect-packing configuration.

Theorem 20. It holds

2
3

≤ AECR(DNF,P(1)) ≤
(∞∑

i=1

(i − 1)!
ii

)−1

≈ 0.736.

If the maximum item size is greater than or equal to 1
2 the lower bound can be

improved to
(
1 +

∑∞
i=2

1
i2 ·

(
1 − 1

i

)i−2
)−1

≈ 0.686.

We see that even in the analysis of this simple case there is room for improve-
ment. Based on simulations, we suppose that the upper bound represents the
truth. Furthermore we were not able to improve the worst-case bound (1+x)−1

in the case that the maximum item size is bounded from above by 1
2 .

Finally, let Ptwo denote all discrete perfect-packing distributions for which
there exists a representation in which every perfect-packing configuration bi con-
tains at most two non-zero entries.

Theorem 21. Let F ∈ Ptwo, then

AECR(DNF, F) ≥ 2/3.

Combining this with the proof of Theorem15, we obtain AECR(DNF,Ptwo) =
2/3.

5 Conclusions and Further Research

We have proven the first lower bound better than 1/2 for the asymptotic expected
competitive ratio of DNF that holds for any discrete distribution. Our lower
bound is only slightly better than 1/2 and there is still a considerable gap to the
best known upper bound of 2/3, which we also proved in this article. It is an
interesting problem to close the gap between the lower and the upper bound. We
conjecture that the lower bound can be improved to 2/3. Furthermore, we have
shown that the asymptotic random-order ratio coincides with the asymptotic
expected competitive ratio under the mild assumption that the adversary is not
allowed to add too many too small items. We believe that this assumption is not
needed and we conjecture that also for arbitrary inputs the asymptotic random-
order ratio coincides with the asymptotic expected competitive ratio for DNF.

Our analysis in Sect. 3 that shows the connection between the asymptotic
random-order ratio and the asymptotic expected competitive ratio under the
previously mentioned assumption can easily be adapted to the next-fit algorithm
for bin packing. We expect that it can also be generalized to more sophisticated
algorithms for bin packing (e.g., to all bounded-space algorithms with only a
constant number of open bins).

482 C. Fischer and H. Röglin

References

1. Asgeirsson, E.I., Stein, C.: Bounded-space online bin cover. J. Sched. 12(5),
461–474 (2009)

2. Assmann, S.F., Johnson, D.S., Kleitman, D.J., Leung, J.Y.-T.: On a dual version
of the one-dimensional bin packing problem. J. Algorithms 5(4), 502–525 (1984)

3. Christ, M.G., Favrholdt, L.M., Larsen, K.S.: Online bin covering: expectations vs.
guarantees. Theor. Comput. Sci. 556, 71–84 (2014)

4. Courcoubetis, C., Weber, R.R.: Stability of on-line bin packing with random
arrivals and long-run average constraints. Probab. Eng. Informational Sci. 4(4),
447–460 (1990)

5. Csirik, J., Frenk, J.B.G., Galambos, G., Kan, A.H.G.R.: Probabilistic analysis of
algorithms for dual bin packing problems. J. Algorithms 12(2), 189–203 (1991)

6. Csirik, J., Johnson, D.S., Kenyon, C.: Better approximation algorithms for bin cov-
ering. In: Proceedings of the 12th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 557–566 (2001)

7. Csirik, J., Totik, V.: Online algorithms for a dual version of bin packing. Discrete
Appl. Math. 21(2), 163–167 (1988)

8. Coffman Jr., E.G., Csirik, J., Rónyai, L., Zsbán, A.: Random-order bin packing.
Discrete Appl. Math. 156(6), 2810–2816 (2008)

9. Fischer, C., Röglin, H.: Probabilistic analysis of the dual next-fit algorithm for bin
covering, December 2015. http://arxiv.org/abs/1512.04719

10. Jansen, K., Solis-Oba, R.: An asymptotic fully polynomial time approximation
scheme for bin covering. Theor. Comput. Sci. 306(1–3), 543–551 (2003)

11. Coffman Jr., E.G., Csirik, J., Rónyai, L., Zsbán, A.: Random-order bin packing.
Discrete Appl. Math. 156(14), 2810–2816 (2008)

12. Kenyon, C.: Best-fit bin-packing with random order. In: Proceedings of the 17th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 359–364 (1996)

13. Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. AMS
(2009)

14. Lorden, G.: On excess over the boundary. Ann. Math. Stat. 41(2), 520–527 (1970)
15. Naaman, N., Rom, R.: Average case analysis of bounded space bin packing algo-

rithms. Algorithmica 50, 72–97 (2008)

http://arxiv.org/abs/1512.04719

Deterministic Sparse Suffix Sorting
on Rewritable Texts

Johannes Fischer, Tomohiro I., and Dominik Köppl(B)

Department of Computer Science, TU Dortmund, Dortmund, Germany
johannes.fischer@cs.tu-dortmund.de, tomohiro@ai.kyutech.ac.jp,

dominik.koeppl@tu-dortmund.de

Abstract. Given a rewritable text T of length n on an alphabet of
size σ, we propose an online algorithm computing the sparse suffix
array and the sparse longest common prefix array of T in O(c√lg n +
m lg m lg n lg∗ n) time by using the text space and O(m) additional work-
ing space, where m ≤ n is the number of suffixes to be sorted (provided
online and arbitrarily), and c ≥ m is the number of characters that must
be compared for distinguishing the designated suffixes.

1 Introduction

Sorting suffixes of a long text lexicographically is an important first step for
many text processing algorithms [15]. The complexity of the problem is quite
well understood, as for integer alphabets suffix sorting can be done in optimal
linear time [10], and also almost in-place [14]. In this article, we consider a variant
of the problem: instead of computing the order of every suffix, we address the
sparse suffix sorting problem . Given a text T [1..n] of length n and a set
P ⊆ [1..n] of m arbitrary positions in T , the problem asks for the (lexicographic)
order of the suffixes starting at the positions in P. The answer is encoded by a
permutation of P, which is called the sparse suffix array (SSA) of T (with
respect to P).

Like the “full” suffix arrays, we can enhance SSA(T, P) by the length of the
longest common prefix (LCP) between adjacent suffixes in SSA(T, P), which
we call the sparse longest common prefix array (SLCP). In combination,
SSA(T,P) and SLCP(T,P) store the same information as the sparse suffix
tree , i.e., they implicitly represent a compacted trie over all suffixes starting at
the positions in P. This allows us to use the SSA as an efficient index for pattern
matching, for example.

Based on classic suffix array construction algorithms [10,14], sparse suffix
sorting is easily conducted in O(n) time if O(n) additional working space is
available. For m = o(n), however, the needed working space may be too large,
compared to the final space requirement of SSA(T). Although some special
choices of P admit space-optimal O(m) construction algorithms (see [2]), the
problem of sorting arbitrary choices of suffixes in small space seems to be much
harder. We are aware of the following results: As a deterministic algorithm,
c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 483–496, 2016.
DOI: 10.1007/978-3-662-49529-2 36

484 J. Fischer et al.

Kärkkäinen et al. [10] gave a trade-off using O(τm + n
√

τ) time and
O(m + n/

√
τ) working space with a parameter τ ∈ [1..

√
n]. If randomization

is allowed, there is a technique based on Karp-Rabin fingerprints, first proposed
by Bille et al. [2] and later improved by I et al. [8]. The latest one works in
O(n lg n) expected time and O(m) additional space.

1.1 Computational Model

We assume that the text of length n is loaded into RAM. Our algorithms are
allowed to overwrite parts of the text, as long as they can restore the text into
its original form at termination. Apart from this space, we are only allowed
to use O(m) additional words. The positions in P are assumed to arrive on-
line, implying in particular that they need not be sorted. We aim at worst-case
efficient deterministic algorithms.

Our computational model is the word RAM model with word size Ω(lg n).
Here, characters use �log σ� bits, where σ is the alphabet size; hence, lgσ n charac-
ters can be packed into one word. Comparing two strings X and Y therefore takes
O(lcp(X,Y)/ lgσ n) time, where lcp(X,Y) denotes the length of the longest com-
mon prefix of X and Y .

1.2 Algorithm Outline and Our Results

Our main algorithmic idea is to insert the suffixes starting at positions of P
into a self-balancing binary search tree [9]; since each insertion invokes O(lg m)
suffix-to-suffix comparisons, the time complexity is O(tSm lg m), where tS is the
cost for each suffix-to-suffix comparison. If all suffix-to-suffix comparisons are
conducted by naively comparing the characters, the resulting worst case time
complexity is O(nm lg m). In order to speed this up, our algorithm identifies
large identical substrings at different positions during different suffix-to-suffix
comparisons. Instead of performing naive comparisons on identical parts over
and over again, we build a data structure (stored in redundant text space) that
will be used to accelerate subsequent suffix-to-suffix comparisons. Informally,
when two (possibly overlapping) substrings in the text are detected to be the
same, one of them can be overwritten.

To accelerate suffix-to-suffix comparisons, we focus on a data structure called
edit sensitive parsing (ESP) tree [5]. The ESP tree supports longest com-
mon extension (LCE) queries. An LCE query on an ESP tree asks for the
length of the longest common prefix of two suffixes of the string on which the tree
is built. Besides answering LCE queries, ESP trees are mergeable, allowing us to
build a dynamically growing LCE index on substrings read in the process of the
sparse suffix sorting. Consequently, comparing two already indexed substrings is
done by a single LCE query.

In their plain form, ESP trees need more space than the text itself; to over-
come this space problem, we devise a truncated version of the ESP tree, yielding a
trade-off parameter between space consumption and LCE query time. By choos-
ing this parameter appropriately, the truncated ESP tree fits into the text space.

Deterministic Sparse Suffix Sorting on Rewritable Texts 485

However, the need for merging still causes a problem due to the fact that leaves of
an ESP tree point to substrings of the text. Although we can prohibit overwrit-
ing those referred substrings, a merging may create a new leaf whose substring
is already overwritten by the in-text construction of a different ESP tree. To
cope with this situation, we propose a new variant of ESP, called hierarchical
stable parsing (HSP), allowing us to quickly find a surrogate substring. With
a text space management specialized on the properties of the HSP, we achieve
the result of Theorem 1 below.

We make the following definition that allows us to analyze the running time
more accurately. Define C :=

⋃
p,p′∈P,p�=p′ [p..p + lcp(T [p..], T [p′..])] as the set of

positions that must be compared for distinguishing the suffixes from P. Then
sparse suffix sorting is trivially lower bounded by Ω(|C| / lgσ n) time.

We now state the main result of this article as follows:

Theorem 1. Given a text T of length n that is loaded into RAM, the SSA and
SLCP of T for a set of m arbitrary positions can be computed deterministically
in O

(
|C|

√
lg n + m lg m lg n lg∗ n

)
time, using O(m) additional working space.

1.3 Relationship Between Suffix Sorting and LCE Queries

The LCE-problem is to preprocess a text T such that subsequent LCE-queries
lce(i, j) := lcp(T [i..], T [j..]) giving the length of the longest common prefix of the
suffixes starting at positions i and j can be answered efficiently. Data structures
for LCE and sparse suffix sorting are closely related, as shown in the following
observation:

Observation 1. Given a data structure that computes LCE in O(τ) time for
τ > 0, we can compute sparse suffix sorting for m positions in O(τm lg m) time
by inserting suffixes in a balanced binary search tree.

Conversely, given an algorithm computing the SSA and the SLCP of a text T
of length n for m positions in O(m) space and O(f(n,m)) time for some f , we
can construct a data structure in O(f(n,m)) time and O(m) space, answering
LCE queries on T in O

(
n2/m2

)
time [4], (using a difference cover sampling

modulo n/m [10]).

The currently best deterministic data structure for LCE we are aware of is
due to Bille et al. [3], using O(n/τ) space and answering LCE queries in O(τ)
time, for any 1 ≤ τ ≤ n. However, this data structure has a preprocessing time
of Ω

(
n2

)
, and is thus not helpful for sparse suffix sorting. We develop a new data

structure for LCE with the following properties.

Theorem 2. There is a data structure using O(n/τ) space that answers LCE
queries in O

(
lg∗ n

(
lg (n/τ) + τ lg 3/ lgσ n

))
time, where 1 ≤ τ ≤ n. We can build

the data structure in O(n (lg∗ n + (lg n)/τ + (lg τ)/ lgσ n)) time with additional
O

(
τ lg 3 lg∗ n

)
words during construction.

An advantage of our data structure against the deterministic data structures
in [3] is its faster construction time, which is upper bounded by O(n lg n).

486 J. Fischer et al.

1.4 Outline of this Article

The first part of the paper (Sect. 2) is dedicated to answering LCE queries (The-
orem 2) with the (truncated) ESP tree. In Sect. 3 we describe our algorithm for
the sparse suffix sorting problem with the abstract data type dynLCE that sup-
ports LCE queries and a merging operation. In Sect. 4 we study how the text
space can be exploited to lower the memory footprint. To this end, we develop
(truncated) HSP trees. By the properties of the HSP tree, we finally solve the
sparse suffix sorting problem (Theorem1) in the claimed time and space.

1.5 Preliminaries

Let Σ be an ordered alphabet of size σ. We assume that a character in Σ is
represented by an integer. For a string X ∈ Σ∗, let |X| denote the length of X.
For a position i in X, let X[i] denote the i-th character of X. For positions i
and j, let X[i..j] = X[i]X[i + 1] · · · X[j]. For W = XY Z with X,Y,Z ∈ Σ∗, we
call X, Y and Z a prefix, substring, suffix of W , respectively. In particular, the
suffix beginning at position i is denoted by W [i..].

An interval I = [b..e] is the set of consecutive integers from b to e, for b ≤ e.
For an interval I, we use the notations b(I) and e(I) to denote the beginning
and end of I; i.e., I = [b(I)..e(I)]. We write |I| to denote the length of I; i.e.,
|I| = e(I) − b(I) + 1.

2 Answering LCE Queries with ESP Trees

Edit sensitive parsing (ESP) and ESP trees were proposed by Cormode and
Muthukrishnan [5] to approximate the edit distance with moves efficiently. A
similar technique is signature encoding [12]. Based on signature encoding, Alstru-
pet et al. [1] and Nishimoto et al. [13] derive new data structures for supporting
LCE queries. For several reasons, these data structures cannot be used in our
context; we therefore show in this section that ESP trees can also be used to
answer LCE queries.

2.1 Edit Sensitive Parsing

The aim of the ESP technique is to decompose a string Y ∈ Σ∗ into substrings
of length 2 or 3 such that each substring of this decomposition is determined
uniquely by its neighboring characters. To this end, it first identifies so-called
meta-blocks in Y , and then further refines these meta-blocks into blocks of
length 2 or 3.

The meta-blocks are created in the following 3-stage process:

(1) Identify maximal regions of repeated symbols (i.e., maximal substrings of the
form c� for c ∈ Σ and � ≥ 2). Such substrings form the type 1 meta-blocks.

(2) Identify remaining substrings of length at least 2 (which must lie between
two type 1 meta-blocks). Such substrings form the type 2 meta-blocks.

Deterministic Sparse Suffix Sorting on Rewritable Texts 487

(3) Any substring not yet covered by a meta-block consists of a single charac-
ter and cannot have type 2 meta-blocks as its neighbors. Such characters
Y [i] are fused with the type 1 meta-block to their right1, or, if Y [i] is the
last character in Y , with the type 1 meta-block to its left. The meta-blocks
emerging from this are called type M (mixed).

Meta-blocks of type 1 and type M are collectively called repeating meta-
blocks.

Although meta-blocks are defined by the comprising characters, we treat
them as intervals on the text range.

Meta-blocks are further partitioned into blocks, each containing two or three
characters from Σ. Blocks inherit the type of the meta-block they are contained
in. How the blocks are partitioned depends on the type of the meta-block:

Repeating meta-blocks. A repeating meta-block is partitioned greedily: create
blocks of length three until there are at most four, but at least two characters
left. If possible, create a single block of length 2 or 3; otherwise create two
blocks, each containing two characters.

Type-2 meta-blocks. A type 2 meta-block μ is processed in O(|μ| lg∗ σ) time
by a technique called alphabet reduction [5]. The first lg∗ σ characters are
blocked in the same way as repeating meta-blocks. Any remaining block β is
formed such that β’s interval boundaries are determined by Y [max(b(β) −
ΔL, b(μ))..min(e(β) + ΔR, e(μ))], where ΔL := �lg∗ σ� + 5 and ΔR := 5 (see
[5, Lemma 8]).

We call the substring Y [b(β)−ΔL..e(β)+ΔR] the local surrounding of β,
if it exists. Blocks whose local surroundings exist are also called surrounded .

Let Σ̃ ⊆ Σ2 ∪ Σ3 denote the set of blocks resulting from ESP (the “new
alphabet”). We use esp: Σ∗ → Σ̃∗ to denote the function that parses a string
by ESP and returns a string in Σ̃∗.

2.2 Edit Sensitive Parsing Trees

Applying esp recursively on its output generates a context free grammar (CFG)
as follows. Let Y0 := Y be a string on an alphabet Σ0 := Σ with σ0 = |Σ0|. The
output of Yh := esph(Y) = esp(esph−1(Y)) is a sequence of blocks, which belong
to a new alphabet Σh (h > 0). A block b ∈ Σh contains a string b ∈ Σ∗

h−1 of
length two or three. Since each application of esp reduces the string length by
at least 1/2, there is a k = O(lg |Y |) such that esp(Yk) returns a single block τ .
We write V :=

⋃
1≤h≤k Σh for the set of all blocks in Y1, Y2, . . . , Yk.

We use a (deterministic) dictionary D : Σh → Σ2
h−1∪Σ3

h−1 to map a block to
its characters, for each 1 ≤ h ≤ k. The dictionary entries are of the form b → xy
or b → xyz, where b ∈ Σh and x, y, z ∈ Σh−1. The CFG for Y is represented by
1 The original version prefers the left meta-block, but we change it for a more stable

behavior.

488 J. Fischer et al.

the non-terminals V, the terminals Σ0, the dictionary D, and the start symbol τ .
This grammar exactly derives Y .

Our representation differs from that of Cormode and Muthukrishnan [5]
because it does not use hash tables.

Definition 1. The ESP tree ET(Y) of a string Y is a slightly modified deriva-
tion tree of the CFG defined above. The internal nodes are elements of V \ Σ1,
and the leaves are from Σ1. Each leaf refers to a substring in Σ2

0 or Σ3
0 . Its root

node is the start symbol τ .

For convenience, we count the height of nodes from 1, so that the sequence
of nodes on height h, denoted by 〈Y 〉h, is corresponding to Yh. The generated
substring of a node 〈Y 〉h[i] is the substring of Y generated by the symbol
Yh[i] (applying D recursively on Yh[i]). Each node v represents a block that is
contained in a meta-block μ, for which we say that μ builds v. More precisely, a
node v := 〈Y 〉h[i] is said to be built on a meta-block represented by 〈Y 〉h−1[b..e]
iff 〈Y 〉h−1[b..e] contains the children of v. Like with blocks, nodes inherit the
type of the meta-block on which they are built.

Surrounded Nodes. A leaf is called surrounded iff its representing block on
text-level is surrounded. Given an internal node v on height h+1 (h ≥ 1) whose
children are 〈Y 〉h[β], we say that v is surrounded iff the nodes 〈Y 〉h[b(β) −
ΔL..e(β) + ΔR] are surrounded.

2.3 Tree Representation

We store the ESP tree as a CFG. Every non-terminal is represented by a name .
The name is a pointer to a data-field, which is composed differently for leaves
and internal nodes:

Leaves. A leaf stores a position i and a length l ∈ {2, 3} such that Y [i..i+ l −1]
is the generated substring.

Internal Nodes. An internal node stores the length of its generated substring,
and the names of its children. If it has only two children, we use a special,
invalid name 0 for the non-existing third child such that all data fields are
of the same length.

This representation allows us to navigate top-down in the ESP tree by tra-
versing the tree from the root, in time linear in the height of the tree.

We keep the invariant that the roots of isomorphic subtrees have the same
names. In other words, before creating a new name for the rule b → xyz, we have
to check whether there already exists a name for xyz. To perform this look-up
efficiently, we need also the reverse dictionary of D, with the right hand side of
the rules as search keys. We use a dictionary of size O(|Y |), supporting lookup
and insert in O(tλ) time.

More precisely, we assume there is a dictionary data structure, storing n
elements in O(n) space, supporting lookup and insert in O(tλ + l/ lgσ n) time
for a key of length l, where tλ = tλ(n) depends on n. For instance, Franceschini
and Grossi’s data structure [7] with word-packing supports tλ = O(lg n).

Deterministic Sparse Suffix Sorting on Rewritable Texts 489

Lemma 1. An ESP tree of a string of length n can be built in O(n (lg∗ n + tλ))
time. It consumes O(n) space.

2.4 LCE Queries in ESP Trees

ESP trees are fairly stable against edit operations: The number of nodes that are
differently parsed after prepending or appending a string to the input is upper
bounded by O(lg n lg∗ n) [5, Lemma 11]. To use this property in our context of
LCE queries, we consider nodes of ET(Y) that are still present in ET(XY Z); a
node v in ET(Y) generating Y [i0..j0] is said to be stable iff, for all strings X and
Z, there exists a node in ET(XY Z) that has the same name as v and generates
(XY Z)[|X| + i0..|X| + j0]. We also consider repeating nodes that are present
with slight shifts; a non-stable repeating node v in ET(Y) generating Y [i0..j0]
is said to be semi-stable iff, for all strings X and Z, there exists a node in
ET(XY Z) that has the same name as v and generates a substring intersecting
with (XY Z)[|X| + i0..|X| + j0]. Then, the proof of Lemma 9 of [5] says that, for
each height, ET(Y) contains O(lg∗ n) nodes that are not (semi-)stable, which we
call fragile . Since the children of the (semi-)stable nodes are also (semi-)stable,
there is a border in ET(Y) separating the (semi-)stable nodes from the fragile
ones.

In order to use semi-stable nodes to answer LCE queries efficiently, we let
each node have an additional property, called surname . A node v := 〈Y 〉h[i]
is said to be repetitive iff there exists 〈Y 〉h′ [I] at some height h′ < h with
Yh′ [I] = d|I|, where 〈Y 〉h′ [I] is the sequence of nodes on height h′ in the subtree
rooted at 〈Y 〉h[i] and d ∈ Σh′ . The surname of a repetitive node v := 〈Y 〉h[i]
is the name of a highest non-repetitive node in the subtree rooted at v. The
surname of a non-repetitive node is the name of the node itself. It is easy to
compute and store the surnames while constructing ESP trees.

The connection between semi-stable nodes and the surnames is based on the
fact that a semi-stable node is repetitive: Let u be the node whose name is the
surname of a semi-stable node v. If u is on height h, v’s subtree consists of a
repeat of u’s on height h. A shift of v can only be caused by adding u’s. So the
shift is always a multiple of the length of the generated substring of u.

We now state a lemma that shows how ESP trees can be used for LCE
queries; the proof (as well as all other missing proofs) can be found in the full
version [6].

Lemma 2. Let X and Y be strings with |X| ≤ |Y | ≤ n. Given ET(X) and
ET(Y) built with the same dictionary and two text-positions 1 ≤ iX ≤ |X| , 1 ≤
iY ≤ |Y |, we can compute l := lcp(X[iX ..], Y [iY ..]) in O(lg |Y | + lg l lg∗ n) time.

2.5 Truncated ESP Trees

Building an ESP tree over a string Y requires O(|Y |) words of space, which might
be too much in some scenarios. Our idea is to truncate the ESP tree at some fixed
height, discarding the nodes in the lower part. The truncated version stores just

490 J. Fischer et al.

the upper part, while its (new) leaves refer to (possibly long) substrings of Y .
The resulting tree is called the truncated ET (tET). More precisely, we define
a height η and delete all nodes at height less than η, which we call lower nodes.
A node higher than η is called an upper node . The nodes at height η form the
new leaves and are called η-nodes. Similar to the former leaves, their names are
pointers to their generated substrings appearing in Y . Remembering that each
internal node has two or three children, an η-node generates a string of length
at least 2η and at most 3η. So the maximum number of nodes in a truncated
ESP tree of a string of length n is n/2η.

Similar to leaves, we use the generated substring X of an η-node v for storing
and looking up v: It can be looked up or inserted in O(|X| / lgσ n + tλ) time.

Lemma 3. We can build a truncated ESP tree of a string Y of length n in
O(n(lg∗ n + η/ lgσ n + tλ/2η) time, using O(3η lg∗ n) words of working space.
The tree consumes O(n/2η) space.

Lemma 4. Let X and Y be strings with |X| , |Y | ≤ n. Given ET(X) and ET(Y)
built with the same dictionary and two text-positions 1 ≤ iX ≤ |X| , 1 ≤ iY ≤
|Y |, we can compute lcp(X[iX ..], Y [iY ..]) in O(lg∗ n(lg(n/2η) + 3η/ lgσ n)) time.

With τ := 2η we get Theorem 2.

3 Sparse Suffix Sorting

Borrowing the technique of Irving and Love [9], an AVL tree on a set of strings S
can be augmented with LCP values so that we can compute l := max{lcp(X,Y) |
X ∈ S} for a string Y in O(l/ lgσ n + lg |S|) time. Inserting a new string into
the tree is supported in the same time complexity. Irving and Love [9] called this
data structure the suffix AVL tree on S; we denote it by SAVL(S).

Given a text T of length n, we will use SAVL(Suf (P)) as a representation
for SSA(T,P) and SLCP(T,P). Our goal is to build SAVL(Suf (P)) efficiently.
However, inserting suffixes naively suffers from the lower bound Ω(n |P| / lgσ n)
on time. How to speed up the comparisons by exploiting a data structure for
LCE queries is topic of this section.

3.1 Abstract Algorithm

Our idea is that creating a mergeable LCE data structure on the read sub-
strings may be helpful for later queries. We call this abstract data type dynamic
LCE (dynLCE); it supports the following operations:

– dynLCE(Y) constructs a dynLCE data structure M on a substring Y of T .
Let M.text denote the string Y on which M is constructed.

– LCE(M1,M2, p1, p2) computes lcp(M1.text[p1..],M2.text[p2..]), where pi ∈
[1.. |Mi.text|] for i = 1, 2.

– merge(M1,M2) merges two dynLCEs M1 and M2 such that the output is a
dynLCE on the concatenation of M1.text and M2.text.

Deterministic Sparse Suffix Sorting on Rewritable Texts 491

We use the expression tC(|Y |) to denote the construction time of such a data
structure on a string Y . Further, tL(|X| + |Y |) and tM(|X| + |Y |) denote the
LCE query time and the time for merging two such data structures on strings
X and Y , respectively. Querying a dynLCE built on a string of length � is
faster than the word-packed character comparison iff � = Ω(tL(�) lg n/ lg σ).
Hence, there is no point in building a dynLCE on a text smaller than
g := Θ(tL(g) lg n/ lg σ).

We store the text intervals covered by the dynLCEs such that we know the
text-positions where querying a dynLCE is possible. Such an interval is called
an LCE interval . An LCE interval I stores a pointer to its dynLCE data
structure M , and an integer i such that M.text[i..i + |I| − 1] = T [I]. The LCE
intervals themselves are maintained in a self-balancing binary search tree of size
O(|P|), storing their starting positions as keys.

For a new position 1 ≤ p̂ ≤ |T | , p̂ ∈ P, updating SAVL(Suf (P)) to
SAVL(Suf (P ∪ {p̂})) involves two parts: first locating the insertion node for p̂ in
SAVL(Suf (P)), and then updating the set of LCE intervals.

Locating. The suffix AVL tree performs an LCE computation for each node
encountered while locating the insertion point of p̂. Assume that the task is
to compare the suffixes T [i..] and T [j..] for some 1 ≤ i, j ≤ |T |. First check
whether the positions i and j are contained in an LCE interval, in O(lg m)
time. If both positions are covered by LCE intervals, then query the respec-
tive dynLCEs. Otherwise, look up the position where the next LCE interval
starts. Up to that position, naively compare both substrings. Finally, repeat
the above check again at the new positions, until finding a mismatch. After
locating the insertion point of p̂ in SAVL(Suf (P)), we obtain p̄ := mlcpargp̂ and
l := mlcpp̂ as a byproduct, where mlcpargp := argmaxp′∈P,p�=p′ lcp(T [p..], T [p′..])
and mlcpp := lcp(T [p..], T [mlcpargp..]) for 1 ≤ p ≤ |T |.
Updating. The LCE intervals are updated dynamically, subject to the following
constraints:

C1: The length of each LCE interval is at least g.
C2: For every p ∈ P the interval [p..p+mlcpp −1] is covered by an LCE interval

except at most g positions at its left and right ends.
C3: There is a gap of at least g positions between every pair of LCE intervals.

These constraints guarantee that there is at most one LCE interval that inter-
sects with [p..p + mlcpp − 1] for a p ∈ P.

The following instructions will satisfy the constraints: If l < g, we do nothing.
Otherwise, we have to care about C2. Fortunately, there is at most one position
in P that possibly invalidates C2 after adding p̂, and this is p̄; otherwise, by
transitivity, we would have created some larger LCE interval previously. Let
U ⊂ [1..n] be the positions that belong to an LCE interval. The set [p̂..p̂+l−1]\U
can be represented as a set of disjoint intervals of maximal length. For each
interval I := [p̂ + i..p̂ + j] ⊂ [p̂..p̂ + l − 1] of that set (for some 0 ≤ i ≤ j < l),
apply the following rules with J := [p̄ + i..p̄ + j] sequentially:

492 J. Fischer et al.

R1: If J is a sub-interval of an LCE interval, then declare I as an LCE interval
and let it refer to the dynLCE of the larger LCE interval.

R2: If J intersects with an LCE interval K, enlarge K to K ∪ J , enlarging
its corresponding dynLCE (We can enlarge an dynLCE by creating a new
instance and merge both instances). Apply R1.

R3: Otherwise, create a dynLCE on I, and make I to an LCE interval.
R4: If C3 is violated, then a newly created or enlarged LCE interval is adjacent

to another LCE interval. Merge those LCE intervals and their dynLCEs.

We also need to satisfy C2 on [p̄..p̄ + l − 1]. To this end, update U , compute the
set of disjoint intervals [p̄..p̄ + l − 1] \ U and apply the same rules on it.

Although we might create some LCE intervals covering less than g characters,
we will restore C1 by merging them with a larger LCE interval in R4. In fact,
we introduce at most two new LCE intervals. C1 is easily maintained, since we
will never shrink an LCE interval.

Lemma 5. Given a text T of length n that is loaded into RAM, the SSA and
SLCP of T for a set of m arbitrary positions can be computed deterministically
in O(tC(|C|) + tL(|C|)m lg m + mtM(|C|)) time.

3.2 Sparse Suffix Sorting with ESP Trees

We will show that the ESP tree is a suitable data structure for dynLCE. In order
to merge two ESP trees, we use a common dictionary D that is stored globally.
Fortunately, it is easy to combine two ESP trees by updating just a handful of
nodes, which are fragile.

Lemma 6. Assume that we have already created ET(X) and ET(Y) on two
strings X,Y ∈ Σ∗. Merging both trees into ET(XY) takes O(tλ(ΔL lg |Y | +
ΔR lg |X|)) time.

The following theorem combines the results of Lemmas 5 and 6.

Theorem 3. Given a text T of length n and a set of m text positions P, SSA(T, P)
and SLCP(T,P) can be computed in O(|C| (lg∗ n + tλ) + m lg m lg n lg∗ n) time.

4 Hierarchical Stable Parsing

Remembering the outline in the introduction, the key idea is to solve the limited
space problem by storing dynLCEs in text space. Taking two LCE intervals on
the text containing the same substring, we overwrite one part while marking the
other part as a reference. By choosing a suitably large η, we can overwrite the
text of one LCE interval with a truncated ESP tree (tET) whose η-nodes refer to
substrings of the other LCE interval. Merging two tETs involves a reparsing of
some η-nodes. Assume that we want to reparse an η-node v, and that its gener-
ated substring gets enlarged due to the parsing. We have to locate a substring in
the text that contains its new generated substring X. Although we can create a

Deterministic Sparse Suffix Sorting on Rewritable Texts 493

suitably large string containing X by concatenating the generated substrings of
its preceding and succeeding siblings, these η-nodes may point to text intervals
that may not be consecutive. Since the name of an η-node is the representation
of a single substring, we have to search for a substring equal to X in the text.
Because this would be too inefficient, we will show a slight modification of the
ESP technique that circumvents this problem.

4.1 Hierarchical Stable Parse Trees

Our modification, which we call hierarchical stable parse trees or HSP trees,
affects only the definition of meta-blocks. The factorization of meta-blocks is
done by relaxing the check whether two characters are equal; instead of compar-
ing names we compare by surname.2 A more detailed study of HTs can be read
in the full version of the paper [6].

Lemma 7. An HSP tree on an interval of length l can be built in
O(l (lg∗ n + tλ)) time. It consumes O(l) space.

The modified parsing allows us to claim the following lemma:

Lemma 8. If a surrounded node is neither stable nor semi-stable, it can only be
changed to a node whose generated substring is a prefix of the generated substring
of an already existing node.

4.2 Sparse Suffix Sorting in Text Space

The truncated HSP tree (tHT) is the truncated version of the HSP tree. It is
defined analogously as the truncated ESP tree (see Sect. 2.5), with the exception
of the surnames: For each repetitive node,wemarkwhether its surname is the name
of an upper node, of an η-node, or of a lower node. Therefore, we need to save the
names of certain lower nodes in the reverse dictionary of D. This is only necessary
when an upper node or an η-node v has a surname that is the name of a lower node.
If v is an upper node having a surname equal to the name of a lower node, the η-
nodes in the subtree rooted at v have the same surname, too. So the number of lower
node entries in the reverse dictionary is upper bounded by the number of η-nodes,
and each lower node generates a substring of length less than 3η. We conclude that
the results of Lemmas 3 and 4 apply to the tHT, too.

Assume that we want to store tHT(T [I]) on some text interval I. Since
tHT(T [I]) could contain nodes with |I| distinct names, it requires O(|I|) words,
i.e., O(|I| lg n) bits of space that do not fit in the |I| lg σ bits of T [I]. Taking
some constant α (independent of n and σ, but dependent of the size of a single
node), we can solve this space issue by setting η := log3(α lg2 n/ lg σ):

Lemma 9. With η as defined above, the number of nodes in a truncated HSP
tree is bounded by O

(
l(lg σ)0.7/(lg n)1.2

)
. Further, an η-node generates a sub-

string containing at most
⌈
α(lg n)2/(lg σ)

⌉
characters.

2 The check is relaxed since nodes with different surnames cannot have the same name.

494 J. Fischer et al.

Applying Lemma 9 to the results elaborated in Sect. 2.5 for the tETs yields.

Corollary 1. We can compute a tHT on a substring of length l in O(l lg∗ n+
tλl/2η + l lg lg n) time. The tree takes O(l/2η) space. We need a working space
of O

(
lg2 n lg∗ n/ lg σ

)
characters.

Corollary 2. An LCE query on two tHTs can be answered in O(lg∗ n lg n) time.

We analyze the merging when applied by the sparse suffix sorting algorithm
in Sect. 3.1. Assume that our algorithm found two intervals [i..i + l − 1] and
[j..j + l − 1] with T [i..i + l − 1] = T [j..j + l − 1]. Ideally, we want to construct
tHT(T [i..i + l − 1]) in the text space [j..j+ l−1], leaving T [i..i+ l−1] untouched
so that parts of this substring can be referenced by the η-nodes. Unfortunately,
there are two situations that make the life of a tHT complicated: the need for
merging tHTs, and possible overlapping of the intervals [i..i+l−1] and [j..j+l−1].

Partitioning of LCE Intervals. In order to merge trees, we have to take
special care of those η-nodes that are fragile, because their names may have to
be recomputed during a merge. In order to recompute the name of an η-node v,
consisting of a pointer and a length, we have to find a substring that consists of
v’s generated substring and some adjacent characters with respect to the original
substring in the text. That is because the parsing may assign a new pointer and
a new length to an η-node, possibly enlarging the generated substring, or letting
the pointer refer to a different substring.

The name for a surrounded fragile η-nodes v is easily recomputable thanks
to Lemma 8: Since the new generated substring of v is a prefix of the generated
substring of an already existing η-node w, which is found in the reverse dictionary
for η-nodes, we can create a new name for v from the generated substring of w.

Unfortunately, the same approach does not work with the non-surrounded
η-nodes. Those nodes have a generated substring that is found on the border
area of T [j..j + l − 1]. If we leave this area untouched, we can use it for creating
names of a non-surrounded η-node during a reparsing. Therefore, we mark those
parts of the interval [j..j+ l−1] as read-only. Conceptually, we partition an LCE
interval into subintervals of green and red intervals; we free the text of a green
interval for overwriting, while prohibiting write-access on a red interval . The
green intervals are managed in a dynamic, global list. We keep the invariant that

Invariant 1: f :=
⌈
2α lg2 nΔL/ lg σ

⌉
= Θ(g) positions of the left and right ends

of each LCE interval are red.

This invariant solves the problem for the non-surrounded nodes.

Allocating Space. We can store the upper part of the tHT in a green interval,
since l/2η lg n ≤ lα0.6(lg σ)0.7/(lg n)0.2 = o(l lg σ) holds. By choosing g and
α properly, we can always leave f lg σ/ lg n = O(lg∗ n lg n) words on a green
interval untouched, sufficiently large for the working space needed by Corollary 1.
Therefore, we pre-compute α and g based on the input T , and set both as global
constants. Since the same amount of free space is needed during a later merging
when reparsing an η-node, we add the invariant that

Deterministic Sparse Suffix Sorting on Rewritable Texts 495

text

η-nodes

η-nodes

text

bridging nodes

f ≥ g f ≤ g f ≥ g f

I J
[e(I) − f..b(J) + f]

merging

Fig. 1. The merging is performed only if the gap between both trees is less than g.
The substring T [e(I) − f..b(J) + f] is marked red for the sake of the bridging nodes
(Color figure online).

Invariant 2: Each LCE interval has f lg σ/ lg n free space left on a green interval.

For the merging, we need a more sophisticated approach that respects both
invariants:

Merging. We introduce a merge operation that allows the merge of two tHTs
whose LCE intervals have a gap of less than g characters. The merge operation
builds new η-nodes on the gap. The η-nodes whose generated substrings intersect
with the gap are called bridging nodes. The bridging nodes have the same
problem as the non-surrounded η-nodes, since the gap may be a unique substring
of T .

Let I and J be two LCE intervals with 0 ≤ b(J) − e(I) ≤ g, where on
each interval a tHT has been computed. We compute tHT(T [b(I)..e(J)]) by
merging both trees. By Lemma 6, at most O(ΔL + ΔR) nodes at every height on
each tree have to be reprocessed, and some bridging nodes connecting both trees
have to be built. Unfortunately, the text may not contain another occurrence
of T [e(I) − f..b(J) + f] such that we could overwrite T [e(I) − f..b(J) + f].
Therefore, we mark this interval as red. So we can use the characters contained
in T [e(I)−f..b(J)+f] for creating the bridging η-nodes, and for modifying the
non-surrounded nodes of both trees (Fig. 1). Since the gap consists of less than
g characters, the bridging nodes need at most O(lg n lg∗ n) additional space. By
choosing g and α sufficiently large, we can maintain Invariant 2 for the merged
LCE interval.

Interval Overlapping. Assume that the LCE intervals [i..i + l − 1] and
[j..j + l − 1] overlap, without loss of generality j > i. Our goal is to cre-
ate tHT(T [i..i + l − 1]). First, we compute the smallest period d ≤ j − i of
T [i..j + l − 1] in O(l) time [11]. The substring T [i..i + d + f − 1] is used
as a reference and therefore marked red. Keeping the original characters in

496 J. Fischer et al.

T [i..i + d + f − 1], we can restore the generated substrings of every η-node
by an arithmetic progression.

Hence, we can mark the interval [i + d + f..j + l − 1 − f] green.
Finally, the time bound for the above merging strategy is given by

Corollary 3. Given two LCE intervals I and J with 0 ≤ b(J)− e(I) ≤ g. We
can build tHT(T [b(I)..e(J)]) in O(g lg∗ n + tλg/2η + gη/ lgσ n + tλ lg∗ n lg n)
time.

It is now easy to modify our sparse suffix sorting algorithm of Sect. 3.1 for
tHT on text space, yielding the result of Theorem1.

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In:
SODA, pp. 819–828 (2000)

2. Bille, P., Fischer, J., Gørtz, I.L., Kopelowitz, T., Sach, B., Vildhøj, H.W.: Sparse
suffix tree construction in small space. In: Fomin, F.V., Freivalds, R., Kwiatkowska,
M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 148–159. Springer,
Heidelberg (2013)

3. Bille, P., Gørtz, I.L., Knudsen, M.B.T., Lewenstein, M., Vildhøj, H.W.: Longest
common extensions in sublinear space. In: Cicalese, F., Porat, E., Vaccaro, U.
(eds.) CPM 2015. LNCS, vol. 9133, pp. 65–76. Springer, Heidelberg (2015)

4. Bille, P., Gørtz, I.L., Sach, B., Vildhøj, H.W.: Time-space trade-offs for longest
common extensions. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol.
7354, pp. 293–305. Springer, Heidelberg (2012)

5. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. ACM Trans. Algorithms 3(1), 2 (2007)

6. Fischer, J., I, T., Köppl, D.: Deterministic sparse suffix sorting on rewritable texts.
arXiv:1509.07417 (2015)

7. Franceschini, G., Grossi, R.: No sorting? better searching! In: Foundations of Com-
puter Science, pp. 491–498, October 2004

8. I, T., Kärkkäinen, J., Kempa, D.: Faster sparse suffix sorting. In: STACS, pp.
386–396 (2014)

9. Irving, R.W., Love, L.: The suffix binary search tree and suffix AVL tree. J. Discrete
Algorithms 1(5–6), 387–408 (2003)

10. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006)

11. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: Foundations of Computer Science, FOCS, pp. 596–604 (1999)

12. Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under
equality-tests in polylogarithmic time. In: SODA, pp. 213–222. SIAM (1994)

13. Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Dynamic index, LZ
factorization, and LCE queries in compressed space. arXiv:1504.06954 (2015)

14. Nong, G., Zhang, S., Chan, W.H.: Two efficient algorithms for linear time suffix
array construction. IEEE Trans. Comput. 60(10), 1471–1484 (2011)

15. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction
algorithms. ACM Comput. Surv. 39(2), 4 (2007)

http://arxiv.org/abs/1509.07417
http://arxiv.org/abs/1504.06954

Minimizing the Number of Opinions
for Fault-Tolerant Distributed Decision

Using Well-Quasi Orderings

Pierre Fraigniaud1, Sergio Rajsbaum2(B), and Corentin Travers3

1 University Paris Diderot and CRNS, Paris, France
pierre.fraigniaud@liafa.univ-paris-diderot.fr

2 Instituto de Matemáticas, UNAM, Mexico City, Mexico
rajsbaum@im.unam.mx

3 University of Bordeaux, Talence, France
travers@labri.fr

Abstract. The notion of deciding a distributed language L is of grow-
ing interest in various distributed computing settings. Each process pi

is given an input value xi, and the processes should collectively decide
whether their set of input values x = (xi)i is a valid state of the system
w.r.t. to some specification, i.e., if x ∈ L. In non-deterministic distrib-
uted decision each process pi gets a local certificate ci in addition to its
input xi. If the input x ∈ L then there exists a certificate c = (ci)i such
that the processes collectively accept x, and if x �∈ L, then for every c, the
processes should collectively reject x. The collective decision is expressed
by the set of opinions emitted by the processes.

In this paper we study non-deterministic distributed decision in sys-
tems where asynchronous processes may crash. It is known that the num-
ber of opinions needed to deterministically decide a language can grow
with n, the number of processes in the system. We prove that every
distributed language L can be non-deterministically decided using only
three opinions, with certificates of size �logα(n)�+1 bits, where α grows
at least as slowly as the inverse of the Ackerman function. The result is
optimal, as we show that there are distributed languages that cannot be
decided using just two opinions, even with arbitrarily large certificates.

To prove our upper bound, we introduce the notion of distributed
encoding of the integers, that provides an explicit construction of a long
bad sequence in the well-quasi-ordering ({0, 1}∗, ≤∗) controlled by the
successor function. Thus, we provide a new class of applications for well-
quasi-orderings that lies outside logic and complexity theory. For the
lower bound we use combinatorial topology techniques.

Keywords: Runtime verification · Distributed decision · Distributed
verification · Well-quasi-ordering · Wait-free computing · Combinatorial
topology

Supported by ECOS-CONACYT Nord grant M12A01, ANR project DISPLEXITY,
INRIA project GANG and UNAM-PAPIIT grant.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 497–508, 2016.
DOI: 10.1007/978-3-662-49529-2 37

498 P. Fraigniaud et al.

1 Introduction

In distributed decision each process has only a local perspective of the system,
and collectively the processes have to decide if some predicate about the global
system state is valid. Recent work in this area includes but is not limited to,
deciding locally whether the nodes of a network are properly colored, check-
ing the results obtained from the execution of a distributed program [11,14],
designing time lower bounds on the hardness of distributed approximation [7],
estimating the complexity of logics required for distributed run-time verifica-
tion [13], and elaborating a distributed computing complexity theory [10,15].

The predicate to be decided in a distributed decision problem is specified as
the set of all valid input vectors, called a distributed language L. Each process pi
is given an input value xi, and should produce an output value oi ∈ U , where U
is the set of possible opinions. The processes should collectively decide whether
their vector of input values x = (xi)i represents a valid state of the system w.r.t.
to the specification, i.e., if x ∈ L. The collective decision is expressed by the
vector of opinions o = (oi)i emitted by the processes.

In a distributed system where n processes are unable to agree on what the
global system state is (e.g. due to failures, communication delays, locality, etc.),
it is unavoidable that processes have different opinions about the validity of the
predicate at any given moment (a consequence of consensus impossibility [9]).
Often processes emit two possible opinions, U = {true, false}, and the collective
opinion is interpreted as the conjunction of the emitted values. Some languages
L may be decided by emitting only two opinions, but not all. In fact, it is known
that up to n different opinions may be necessary to decide some languages [13],
irrespectively of how the opinions are interpreted. For example, for the k-set
agreement language, specifying that at most k leaders are elected, a set U of
min{2k, n} + 1 opinions is necessary and sufficient in a system where n asyn-
chronous processes may crash [14]. A measure of the complexity of L is the
minimum number of opinions needed to decide it.

Non-deterministic Distributed Decision. In non-deterministic distributed
decision, each process pi gets a local certificate ci in addition to its input xi. If
the input vector x is in L then there exists a certificate c = (ci)i such that the
processes collectively accept x, and if x �∈ L, then for every c, the processes should
collectively reject x (i.e., the protocol cannot be fooled by “fake” certificates on
illegal instances). Notice that as for the input, the certificate is also distributed;
each process only knows its local part of the certificate. As in the deterministic
case, the collective decision is expressed by the opinions emitted by the processes.

This non-deterministic framework is inspired by classical complexity theory,
but it has been used before also in various distributed settings, e.g. in distributed
complexity [10], in silent self-stabilization [4] (as captured by the concept of
proof-labeling schemes [19]), as well as failure detectors [5] where an underlying
layer produces certificates giving information about process failures — the failure
detector should provide certificates giving sufficient information about process

Minimizing the Number of Opinions for Fault-Tolerant Distributed Decision 499

failures to solve e.g. consensus, but an incorrect certificate should not lead to an
invalid consensus solution.

In several of these contexts, it is natural to seek certificates that are as small
as possible, perhaps for information theoretic purposes, privacy purposes, or
because certificates have to be exchanged among processes [4,19]. As we shall
prove in this paper, it is possible to use small certificates to enable the num-
ber of opinions to be drastically reduced. We do so in the standard framework
of asynchronous crash-prone processes communicating by writing and reading
shared variables1.

Our Contribution. We show that, for every distributed language L, it is pos-
sible to design a non-deterministic protocol using very small certificates, while
using a small set U of opinions. Our solution is based on a combinatorial con-
struction called a distributed encoding.

We define a distributed encoding of the (natural) integers as a collection of
code-words providing every integer n with a code w = (wi)i=1,...,n in Σn, where
Σ is a (possibly infinite) alphabet, such that, for any k ∈ [1, n), no subwords2

w′ ∈ Σk of w is encoding k. Trivially, every integer n ≥ 1 can be (distributedly)
encoded by the word w = (bin(n), . . . ,bin(n)) ∈ Σn with Σ = {0, 1}∗, where
bin(n) is the binary representation of n. Hence, to encode the first n integers,
one can use words on an alphabet with n symbols, encoded on O(log n) bits.

Our first result is a constructive proof that there is a distributed encoding of
the integers which encodes the first n integers using words on an alphabet with
symbols of �log α(n)�+1 bits, where α is a function growing at least as slowly as
the inverse-Ackerman function. This first result is obtained by considering the
well-quasi-ordering (Λ,=) where Λ = {0, 1} is composed of two incomparable
elements 0 and 1, and by constructing long (so-called) bad sequences of words
over (Λ∗,≤∗) starting from any word a ∈ Λ∗, and controlled by the successor
function g(x) = x + 1. (See Sect. 2 for the formal definitions of these concepts,
and for the definition of the relation ≤∗ over Λ∗).

Our second result is an application of distributed encoding of the integers to
distributed computing. This is a novel use of well-quasi-orderings, that lies out-
side the traditional applications to logic and complexity theory. Specifically, we
prove that any distributed language L can be non-deterministically decided with
certificates of �log α(n)�+1 bits, and a set U of only three opinions. Each opinion
provides an estimation of the correctness of the execution from the perspective
of one process. Moreover, using arguments from combinatorial topology, we show
that the result is best possible. Namely, there are distributed languages for which
two opinions are insufficient, even with only three processes, and regardless of
the size of the certificates.

This motivates a new line of research in distributed computing, consisting
in designing distributed algorithms producing certified outputs, i.e., outputs

1 The theory of read/write wait-free computation is of considerable significance,
because results in this model can be transferred to other message-passing and
f -resilient models e.g. [2,17].

2 Such a subword is of the form w′ = (wij)j=1,...,k with ij < ij+1 for j ∈ [1, k).

500 P. Fraigniaud et al.

that can be verified afterward by another algorithm. This can be achieved in
the framework of asynchronous systems with transient failures [4]. Our results
demonstrate that, conceptually, this can also be achieved in asynchronous sys-
tems with crash failures, at low costs, in term of both certificate size and number
of opinions.

Due to space limitations, proofs and additional material can be found in a
companion technical report [12].

Related Work. The area of decentralized runtime verification is concerned with
a set of failure-free monitors observing the behavior of system executions with
respect to some correctness property, specified in some form of temporal logic.
It is known, for instance, that linear temporal logic (LTL) is not sufficient to
handle all system executions, some of them requiring multi-valued logics [3].
Further references to this area appear in the recent work [22], where 3-valued
semantics of LTL specifications are considered.

Deterministic distributed decision in the context of asynchronous, crash-
prone distributed computing was introduced in [11] with the name checking,
where a characterization of the tasks that are and-checkable is provided. The
results where later on extended in [14] to the set agreement task and in [13]
proving nearly tight bounds on the number of opinions required to check any
distributed language. In [10,15] the context of local distributed network comput-
ing is considered. It was shown that not all network decision tasks can be solved
locally by a non-deterministic algorithm. On the other hand, every languages
can be locally decided non-deterministically if one allows the verifier to err with
some probability.

Our construction of distributed encoding of the integers relies very much
on the notion of well-quasi-ordering (wqo) [20]. This important tool in logic
and computability has a wide variety of applications — see [21] for a survey.
One important application is providing termination arguments in decidability
results [6]. Indeed, thirteen years after publishing his undecidability result, Tur-
ing [27] proposed the now classic method of proving program termination using
so-called bad sequences, with respect to a wqo. In this setting, the problem of
bounding the length of bad sequences is of utmost interest as it yields upper
bounds on terminating program executions. Hence, the interest in algorithmic
aspects of wqos has grown recently [8,23], as witnessed by the amount of work
collected in [24]. Our paper is tackling the study of wqos, from a distributed algo-
rithm perspective. Also, lower bounds showing Ackermanian termination growth
have been identified in several applications, including lossy counter machines
and reset Petri nets [24,26]. For more applications and related work on wqos,
including rewriting systems, tree embeddings, lossy channel systems, and graph
minors, see recent work [16,24].

2 Distributed Encoding of the Integers

Given a finite or infinite alphabet Σ, a word of size n on Σ is an ordered sequence
w = w1, w2, . . . , wn of symbols wi ∈ Σ. The set of all finite words over Σ

Minimizing the Number of Opinions for Fault-Tolerant Distributed Decision 501

is Σ∗, and the set of all words of size n is Σn. A sub-word of w is a word
w′ ∈ Σ∗, which is sub-sequence of w, w′ = wi1 , wi2 , . . . , wik with k < n and
1 ≤ i1 < i2 < · · · < ik ≤ n.

Definition 1. A distributed encoding of the positive integers is a pair (Σ, f)
where Σ is a (possibly infinite) alphabet, and f : Σ∗ → {true, false} satisfying
that, for every integer n ≥ 1, there exists a word w ∈ Σn with f(w) = true,
such that for every sub-word w′ of w, f(w′) = false. The word w is called the
distributed code of n.

A trivial distributed encoding of the integers can be obtained using the infi-
nite alphabet Σ = {0, 1}∗ (each symbol is a sequence of 0’s and 1’s). The dis-
tributed code of n consists in repeating n times the binary encoding of n, for
each positive integer n, w = bin(n), . . . ,bin(n). For every integer n ≥ 1 and
every word w ∈ Σn, we set f(w) = true if and only if wi = bin(n) for every
i ∈ {1, . . . , n}. However, this encoding is quite redundant, and consumes an
alphabet of n symbols to encode the first n positive integers (i.e., O(log n) bits
per symbol).

A far more compact distributed encoding of the integers can be obtained,
using a variant of the Ackermann function. Given a function f : N → N, we
denote by f (n) the nth iterate of f , with f (0) the identity function. Let Ak :
N → N, k ≥ 1 be the family of functions defined recursively as follows:

Ak(n) =
{

2n + 2 if k = 1
Ak−1(. . . Ak−1(0)) = A

(n+1)
k−1 (0) otherwise.

(1)

Hence Ak(0) = 2 for every k ≥ 1, and, for n ≥ 0, A2(n) = 2n+2 − 2, and

A3(n) = 22
···2 − 2, where the tower is of height n + 2. (Many versions of the

Ackerman function exist, and a possible definition [25] is Ack(n) = An(1)). Let
F : N → N be the function: F (k) = A1(A2(. . . (Ak−1(Ak(0))))) + 1. Finally, let
α : N → N be the function:

α(k) = min{i ≥ 1 : F (i)(1) > k}. (2)

Hence, α grows extremely slowly. In addition, note that F (n)(1) > n for every
n ≥ 1. Hence, a crude lower bound of F (n)(1) is F (n)(1) ≥ Ack(n−1). Therefore
the function α grows at least as slowly as the inverse-Ackerman function.

Theorem 1. There is a distributed encoding (Σ, f) of the positive integers
which encodes the first n integers using words on an alphabet with symbols on
�log α(n)� + 1 bits, where α is defined in Eq. (2).

The proof of Theorem 1 heavily relies on the notion of well-quasi-ordering.
Recall that a well-quasi-ordering (wqo) is a quasi-ordering that is well-founded
and has finite antichains. That is, a wqo is a pair (A,≤), where ≤ is a reflexive
and transitive relation over a set A, such that every infinite sequence of elements
a(0), a(1), a(2), · · · from A contains an increasing pair, i.e., a pair (a(i), a(j)) with

502 P. Fraigniaud et al.

i < j and a(i) ≤ a(j). Sequences (finite or infinite) with an increasing pair of
elements are called good sequences. Instead, sequences where no such increasing
pair can be found are called bad. Therefore, every infinite sequence over a wqo
A is good, and, as a consequence, bad sequences over a wqo A are finite. Often,
a ∈ A is a finite word over some domain Λ, i.e., a ∈ Λ∗. Assuming (Λ, ≤) itself
is a wqo, then Higman’s Lemma says that (Λ∗,≤∗) is a wqo, where ≤∗ is the
subword ordering defined as follows. For any a = a1, a2, . . . , an ∈ Λ∗, and any
b = b1, b2, . . . , bm ∈ Λ∗,

a ≤∗ b ⇐⇒ ∃ 1 ≤ i1 < i2 < · · · < in ≤ m : (a1 ≤ bi1) ∧ · · · ∧ (an ≤ bin).

As said before, the longest bad sequence starting on any a ∈ Λ∗ is of interest for
practical applications (e.g., to obtain upper bounds on the termination time of
a program). This length is strongly related to the growth of the words’ length in
Λ∗. More generally, let |·| be a norm on a wqo A that defines the size |a| of each
a ∈ A. For any a ∈ A, there is a longest bad sequence a(0), a(1), a(2), . . . , a(k)

starting on a(0) = a, provided that, for every i ≥ 0, the size of a(i+1) does not
grow unboundedly with respect to the size of the previous element a(i). Given
an increasing function g, the length function Lg(n) is defined as the length of
the longest sequence over all sequences controlled by g, starting in an element a
with |a| ≤ n. The function g controls the sequence in the sense that it bounds
the growth of elements as we iterate through the sequence. That is, Lg(n) is
the length of the longest sequence a(0), a(1), . . . such that |a(0)| ≤ n, and, for
any i ≥ 0, |a(i+1)| ≤ g(|a(i)|). The Length Function Theorem of [23] provides an
upper bound on bad sequences parametrized by a control function g and by the
size p = |Λ| of the alphabet.

Proof (Theorem 1). Consider the well-quasi-ordering (Λ, =) where Λ = {0, 1} is
composed of two incomparable elements 0 and 1. We construct a bad sequence
B(a) of words over (Λ∗,≤∗) starting from any words a ∈ Λ∗, and controlled by
the successor function g(x) = x + 1. That is, the difference between the length
of two consecutive words in the bad sequence B(a) must be at most 1. We
obtain an infinite sequence S = S(1),S(2), . . . of words over Λ∗ by concatenating
bad sequences. See Fig. 1. More specifically, S = B(S(0))|B(S(t1))|B(S(t2))| . . .
where “|” denotes the concatenation of sequences, S(0) = 0, and, for k ≥ 1,
S(tk) = (0, . . . , 0), where the number of 0 s is equal to the length of the last word
of the bad sequence B(S(tk−1)), plus 1. For further references, we call these long
bad multi-diagonal sequences. An example is in Fig. 2.

Given the infinite sequence S, we construct our distributed encoding (Σ, f)
of the integers as follows. We set Σ = {0, 1}∗ × Λ, and the distributed code of
n ≥ 1 is w = w1w2 . . . wn ∈ Σn with wi = (bin(k),S(n)

i) where k ≥ 1 is such that
the nth word S(n) in the sequence S belongs to the kth multi-diagonal sequence
B(S(tk)), and S(n)

i ∈ Λ is the ith bit of S(n), i = 1, . . . , n. For each integer n ≥ 1
and every word w ∈ Σn, we set:

f(w) = true ⇐⇒ ∀i ∈ {1, . . . , n}, wi = (bin(k),S(n)
i) with S(n) ∈ B(S(tk)).

Minimizing the Number of Opinions for Fault-Tolerant Distributed Decision 503

S(1) = 0 (1st bad sequence starts)

S(2) = 11 (1st bad sequence ends)

S(3) = 000 (2nd bad sequence starts)

S(4) = 0110

S(5) = 11010

S(6) = 101011

S(7) = 0101111

S(8) = 11111100

S(9) = 111110011

S(10) = 1111001111

S(11) = 11100111111

S(12) = 110011111111

S(13) = 1001111111111

S(14) = 00111111111111

S(15) = 111111111111110

S(16) = 1111111111111011

S(17) = 11111111111101111

S(18) = 111111111110111111
...

...
...

S(29) = 01111111111111111111111111111

S(30) = 111111111111111111111111111111 (2nd bad sequence ends)

S(31) = 0000000000000000000000000000000 (3rd bad sequence starts)

S(32) = 00000000000000000000000000000110

S(33) = 000000000000000000000000000011010

S(34) = 0000000000000000000000000001101010
...
...

...

Fig. 1. The beginning of the infinite sequence S.

This is a correct distributed encoding since, for every integer n ≥ 1, there
exists a word w ∈ Σn such that f(w) = true, and, for every subword w′ of
w, f(w′) = false. The latter holds because every subword w′ must be of the
form w′ = (wij)j=1,...,m with ij < ij+1 for j ∈ [1,m), and if the mth element
S(m) in the sequence S satisfies S(m) ≤∗ S(n), then it cannot be the case that
S(m) ∈ B(S(tk)) too. Indeed, by construction, B(S(tk)) is a bad sequence. See
[12] for a complete proof and more details on the construction of S.

504 P. Fraigniaud et al.

(x(i)), µi

M (1) = 0000 (0, 0, 0, 0), 0

M (2) = 00110 (0, 0, 2), 0

M (3) = 011010 (0, 2, 1), 0

M (4) = 1101010 (2, 1, 1), 0

M (5) = 10101011 (1, 1, 1), 2

M (6) = 010101111 (0, 1, 1), 4

M (7) = 1111110010 (6, 0, 1), 0

M (8) = 11111001011 (5, 0, 1), 2

M (9) = 111100101111 (4, 0, 1), 4

M (10) = 1110010111111 (3, 0, 1), 6

M (11) = 11001011111111 (2, 0, 1), 8

M (12) = 100101111111111 (1, 0, 1), 10

M (13) = 0010111111111111 (0, 0, 1), 12

M (14) = 01111111111111100 (0, 14, 0), 0

M (15) = 110111111111111100 (2, 13, 0), 0
...

...
...

...

M (24) = 011111111111100111111111111 (0, 12, 0), 12

M (25) = 1111111111111101111111111100 (14, 11, 0), 0
...

...
...

...
(0, 0, 0), A3(2) − 2
(0, A3(2)), 0

...
...

...
...

(0, 0), A2(A3(2)) − 2
(A2(A3(2))), 0

...
...

...
...

M (F (4)−5) = 01111111111 111111111111111111 (0), A1(A2(A3(2))) − 2

M (F (4)−4) = 11111111111 1111111111111111111 (), A1(A2(A3(2)))

Fig. 2. The beginning of a long bad (multi-diagonal) sequence starting at 0000. Note
that A4(0) = 2, and thus A1(A2(A3(2))) = F (4) − 1.

3 Distributed Decision

In this section, we present the application of distributed encoding of the integers
to distributed decision. First, we describe the computational model (more details
can be found in e.g. [2,17]), and then we formally define the notions of distributed
languages and decision (based on the framework of [10,11,13]).

Computational Model. We consider the standard asynchronous wait-free
read/write shared memory model. Each process runs at its own speed, that
may vary along with time, and the processes may fail by crashing (i.e., halt
and never recover). We consider the wait-free model [2] in which any number
of processes may crash in an execution. The processes communicate through a
shared memory composed of atomic registers. We associate each process p to a
positive integer, its identity id(p), and the registers are organized as an array
of single-writer/multiple-reader (SWMR) registers, one per process. A register

Minimizing the Number of Opinions for Fault-Tolerant Distributed Decision 505

i supports two operations: read() that returns the value stored in the register,
and can be executed by any process, and write(x) that writes the value x in the
register, and can be executed only by process with ID i. For simplicity, we use a
snapshot operation by which a process can read all registers, in such a way that
a snapshot returns a copy of all the values that were simultaneously present in
the shared memory at some point during the execution of the operation. We may
assume snapshots are available because they can be implemented by a wait-free
algorithm using only the array of SWMR registers [1].

Distributed Languages. A correctness specification that is to be moni-
tored is stated in terms of a distributed language. Suppose a set of processes
{id1, . . . , idk} ⊆ [n] observe the system, and get samples {a1, . . . , ak}, respec-
tively, over a domain A. A distributed language L specifies whether s =
{(id1, a1), . . . , (idk, ak)} corresponds to a legal or an illegal system behavior.
Such a set s consisting of pairs of processes and samples is called an instance,
and a distributed language L is simply the set of all legal instances of the under-
lying system, over a domain A of possible samples. Given a language L, we say
that an instance s is legal if s ∈ L and illegal otherwise. Given an instance
s = {(id1, a1), . . . , (idk, ak)} let ID(s) = {id1, . . . , idk} the set of identities in s
and val(s) the multiset of values in s.

Each process i ∈ [n] has a read-only variable, inputi, initially equal to a
symbol ⊥ (not in A), and where the process sample ai is deposited. We consider
only the simplest scenario, where these variables change only once, from the
value ⊥, to a value in A, and this is the first thing that happens when the
process starts running. The goal is for the processes to decide that, collectively,
the values deposited in these variables are correct: after communicating with
each other, processes output opinions. Each process i eventually deposits its
opinion in its write-once variable outputi. Due to failures, it may be the case
that only a subset of processes P ⊆ [n] participate. The instance of such an
execution is s = {(idi, ai) | idi ∈ P} and we consider only all executions where
all processes in P run to completion (the others do not take any steps), and each
one produces an opinion ui ∈ U , where U is a set of possible opinions.

Deciding a Distributed Language. Deciding a language L involves two com-
ponents: an opinion-maker M , and an interpretation μ. The opinion-maker is
the distributed algorithm executed by the processes. Each process produces an
individual opinion in U about the legality of the global instance. The inter-
pretation μ specifies the way one should interpret the collection of individual
opinions produced by the processes. It guarantees the minimal requirement that
the opinions of the processes should be able to distinguish legal instances from
illegal ones according to L. Consider the set of all multi-sets over U , each one
with at most n elements. Then μ = (Y,N) is a partition of this set. Y is called
the “yes” set, and N is called the “no” set.

For instance, when U = {0, 1}, process may produce as an opinion either 0
or 1. Together, the monitors produce a multi-set of at most n boolean values.
We do not consider which process produce which opinion, but we do consider
how many processes produce a given opinion. The partition produced by the

506 P. Fraigniaud et al.

and-operator [11] is as follows. For every multi-set of opinions S, set S ∈ Y if
every opinion in S is 1, otherwise, S ∈ N.

Given a language L over an alphabet A, a distributed monitor for L is a pair
(M,μ), an opinion maker M and an interpretation μ, satisfying the following, for
every execution E of M starting with instance s = {(idi, ai) | idi ∈ P}, P ⊆ [n].

Definition 2. The pair (M,μ) decides L with opinions U if every execution E
on instance s = {(idi, ai) | idi ∈ P, ai ∈ A} satisfies

– The input of process i is ai, and the opinion-maker M outputs on execution
E an opinion ui ∈ U .

– The instance s ∈ L if and only if the processes produce a multiset of opinions
S ∈ Y. Given that (Y,N) is a partition of the multisets over U , s �∈ L if and
only S �∈ Y.

Non-deterministic Distributed Decision. Similarly to the way NP extends
P, we extend the notion of distributed decision to distributed verification. In
addition to its input xi, process idi receives a string ci ∈ {0, 1}∗. The set c =
{(idi, ci) | idi ∈ P} is called a distributed certificate for processes P . The pair
(M,μ) is a distributed verifier for L with opinions U if for any s = {(idi, ai) | idi ∈
P, ai ∈ A}, the following hold

1. For any certificate c = {(idi, ci) | idi ∈ P}, the input of process i is the pair
(ai, ci), and the opinion-maker M outputs on every execution E an opinion
ui ∈ U .

2. (a) If instance s ∈ L then there exists a certificate c such that in every
execution the processes produce a multiset of opinions S ∈ Y.
(b) If instance s �∈ L then for any certificate c the processes produce a multiset

of opinions S ∈ N.

Note that we do not enforce any constraints on the running time of the
opinion maker M . Nevertheless, M must be wait-free, and must not be fooled
by any “fake” certificate c for an instance s /∈ L.

4 Efficient Non-deterministic Decision

We show that it is possible to verify every distributed language using three
opinions, with small size certificates. Then we show that with constant size
certificates, almost constant size number of opinions are sufficient.

Verification with a Constant Number of Opinions. Ideally, we would like
to deal with opinion-makers using very few opinions (e.g., just true or false), and
with simple interpreters (e.g., the boolean and operator). However, the following
result shows that even very classical languages like consensus cannot be verified
with such simple verifiers.

Theorem 2. There are languages that cannot be verified using only two opin-
ions, even restricted to instances of dimension at most 2 (i.e., 3 processes), and
regardless of the size of the certificates.

Minimizing the Number of Opinions for Fault-Tolerant Distributed Decision 507

The proof of Theorem 2 uses arguments from combinatorial topology. Indeed,
it is known (see e.g., [17]) that, roughly, a task is wait-free solvable if and only
if there is a simplicial map from a subdivision of its input complex to its output
complex. For instance, consensus is not wait-free solvable because any subdivision
preserves the connectivity of the consensus input complex, while the consensus
output complex is disconnected, from which it follows that a simplicial map
between the two complexes cannot exist. We use a similar style argument to
show that binary consensus among three processes is not wait-free verifiable
with only two opinions.

On the other hand, it was proved in [18] that every distributed language can
be verified using only three opinions (true, false, undetermined). However, the
verifier in [18] exhibited to establish this result uses certificates of size O(log n)
bits for n-dimensional instances. The following shows how to improve this bound
using distributed encodings and function α (Eq. (2)).

Theorem 3. Every distributed language can be verified using three opinions,
with certificates of size �log α(n)� + 1 bits for n-process instances.

Verification with Constant-Size Certificates. We can reduce the size of the
certificates even further, at the cost of slightly increasing the number of opinions.

Theorem 4. Every language can be verified with 1-bit certificates, using
2 α(n) + 1 opinions for n-dimensional instances.

Acknowledgment. The third author is thankful to Philippe Duchon and Patrick
Dehornoy for fruitful discussions on wqos.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots
of shared memory. J. ACM 40(4), 873–890 (1993)

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. Wiley, Chichester (2004)

3. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime
verification. J. Log. Comput. 20(3), 651–674 (2010)

4. Blin, L., Fraigniaud, P., Patt-Shamir, B.: On proof-labeling schemes versus silent
self-stabilizing algorithms. In: Felber, P., Garg, V. (eds.) SSS 2014. LNCS, vol.
8756, pp. 18–32. Springer, Heidelberg (2014)

5. Chandra, T., Toueg, S.: Unreliable failure detectors for reliable distributed systems.
J. ACM 43(2), 225–267 (1996)

6. Cook, B., Podelski, A., Rybalchenko, A.: Proving program termination. Commun.
ACM 54(5), 88–98 (2011)

7. Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. SIAM J. Comput. 41(5), 1235–1265 (2012)

508 P. Fraigniaud et al.

8. Figueira, D., Figueira, S., Schmitz, S., Schnoebelen, P.: Ackermannian and
primitive-recursive bounds with dickson’s lemma. In: Proceedings of 26th IEEE
Symposium on Logic in Computer Science (LICS), pp. 269–278 (2011)

9. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with
one faulty process. J. ACM 32(2), 374–382 (1985)

10. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35 (2013)

11. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and checkability in wait-free
computing. Distrib. Comput. 26(4), 223–242 (2013)

12. Fraigniaud, P., Rajsbaum, S., Travers, C.: Minimizing the Number of Opinions for
Fault-Tolerant Distributed Decision Using Well-Quasi Orderings Technical report
#hal-01237873 (2015). https://hal.archives-ouvertes.fr/hal-01237873v1

13. Fraigniaud, P., Rajsbaum, S., Travers, C.: On the number of opinions needed for
fault-tolerant run-time monitoring in distributed systems. In: Bonakdarpour, B.,
Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 92–107. Springer, Heidelberg
(2014)

14. Fraigniaud, P., Rajsbaum, S., Roy, M., Travers, C.: The opinion number of set-
agreement. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014.
LNCS, vol. 8878, pp. 155–170. Springer, Heidelberg (2014)

15. Göös, M., Suomela, J.: Locally checkable proofs. In: Proceedings of 30th ACM
Symposium on Principles of Distributed Computing (PODC), pp. 159–168 (2011)

16. Haase, C., Schmitz, S., Schnoebelen, P.: The power of priority channel systems.
In: D’Argenio, P.R., Melgratti, H. (eds.) CONCUR 2013 – Concurrency Theory.
LNCS, vol. 8052, pp. 319–333. Springer, Heidelberg (2013)

17. Herlihy, M., Kozlov, D., Rajsbaum, S.: Distributed Computing Through Combi-
natorial Topology. Morgan Kaufmann (2013)

18. Jeanmougin, M.: Checkability in Asynchronous Error-Prone Distributed Comput-
ing Using Few Values. Master Thesis Report, University Paris Diderot (2013)

19. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010)

20. Kruskal, J.: The theory of well-quasi-ordering: a frequently discovered concept. J.
Comb. Theor. A 13(3), 297–305 (1972)

21. Milner, E.: Basic WQO- and BQO-theory. In: Rival, I. (ed.) The Role of Graphs
in the Theory of Ordered Sets and Its Applications. NATO ASI Series, vol. 147,
pp. 487–502. Springer, Netherlands (1985)

22. Mostafa, M., Bonakdarpour, B.: Decentralized runtime verification of LTL speci-
fications in distributed systems. In: Proceedings of IEEE Parallel and Distributed
Processing Symposium (IPDPS), pp. 494–503 (2015)

23. Schmitz, S., Schnoebelen, P.: Multiply-recursive upper bounds with higman’s
lemma. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 441–452. Springer, Heidelberg (2011)

24. Schmitz, S., Schnoebelen, P.: Algorithmic Aspects of WQO Theory. Technical
report Hal#cel-00727025 (2013). https://cel.archives-ouvertes.fr/cel-00727025v2

25. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-
plexity. Inf. Process. Lett. 83(5), 251–261 (2002)

26. Schnoebelen, P.: Revisiting ackermann-hardness for lossy counter machines and
reset petri nets. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281,
pp. 616–628. Springer, Heidelberg (2010)

27. Turing, A.: Checking a large routine. In: Report of a Conference on High Speed
Automatic Calculating Machines, pp. 67–69 (1949)

https://hal.archives-ouvertes.fr/hal-01237873v1
https://cel.archives-ouvertes.fr/cel-00727025v2

Unshuffling Permutations

Samuele Giraudo(B) and Stéphane Vialette

Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC,
77454 Marne-la-Vallée, France

{samuele.giraudo,vialette}@univ-mlv.fr

Abstract. A permutation is said to be a square if it can be obtained by
shuffling two order-isomorphic patterns. The definition is intended to be
the natural counterpart to the ordinary shuffle of words and languages.
In this paper, we tackle the problem of recognizing square permuta-
tions from both the point of view of algebra and algorithms. On the
one hand, we present some algebraic and combinatorial properties of the
shuffle product of permutations. We follow an unusual line consisting in
defining the shuffle of permutations by means of an unshuffling opera-
tor, known as a coproduct. This strategy allows to obtain easy proofs for
algebraic and combinatorial properties of our shuffle product. We besides
exhibit a bijection between square (213, 231)-avoiding permutations and
square binary words. On the other hand, by using a pattern avoidance
criterion on oriented perfect matchings, we prove that recognizing square
permutations is NP-complete.

1 Introduction

The shuffle product, denoted �, is a well-known operation on words first defined
by Eilenberg and Mac Lane [6]. Given three words u, v1, and v2, u is said to be a
shuffle of v1 and v2 if it can be formed by interleaving the letters from v1 and v2
in a way that maintains the left-to-right ordering of the letters from each word.
Besides purely combinatorial questions, the shuffle product of words naturally
leads to the following computational problems:

1. Given two words v1 and v2, compute the set v1 � v2.
2. Given three words u, v1, and v2, decide if u is a shuffle of v1 and v2.
3. Given words u, v1, . . . , vk, decide if u is in v1 � · · ·� vk.
4. Given a word u, decide if there is a word v such that u is in v� v.

Even if these problems seem similar, they radically differ in terms of time com-
plexity. Let us now review some facts about these. In what follows, n denotes
the size of u and mi denotes the size of each vi. A solution to Problem 1
can be computed in O

(
(m1 + m2)

(
m1+m2

m1

))
time [14]. An improvement and

a generalization of Problem 1 has been proposed in [1], where it is proved that
given words v1, . . . , vk, the iterated shuffle v1 � · · ·� vk can be computed in
O

((
m1+···+mk

m1,...,mk

))
time. Problem 2 is in P; it is indeed a classical textbook exercise

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 509–521, 2016.
DOI: 10.1007/978-3-662-49529-2 38

510 S. Giraudo and S. Vialette

to design an efficient dynamic programming algorithm solving it. It can be tested
in O

(
n2/ log(n)

)
time [15]. To the best of our knowledge, the first O(n2) time

algorithm for this problem appeared in [9]. This algorithm can easily be extended
to check in polynomial-time whether or not a word is in the shuffle of any fixed
number of given words. Nevertheless, Problem 3 is NP-complete [9,17]. This
remains true even if the ground alphabet has size 3 [17]. Of particular interest,
it is shown in [17] that Problem 3 remains NP-complete even if all the words
vi, i ∈ [k], are identical, thereby proving that, for two words u and v, it is
NP-complete to decide whether or not u is in the iterated shuffle of v. Again,
this remains true even if the ground alphabet has size 3. Let us now finally focus
on Problem 4. It is shown in [3,11] that it is NP-complete to decide if a word
u is a square (w.r.t. the shuffle), that is a word u with the property that there
exists a word v such that u is a shuffle of v with itself. Hence, Problem 4 is
NP-complete.

This paper is intended to study a natural generalization of �, denoted by •,
as a shuffle of permutations. Roughly speaking, given three permutations π, σ1,
and σ2, π is said to be a shuffle of σ1 and σ2 if π (viewed as a word) is a shuffle
of two words that are order-isomorphic to σ1 and σ2. This shuffle product was
first introduced by Vargas [16] under the name of supershuffle. Our intention
in this paper is to study this shuffle product of permutations • both from a
combinatorial and from a computational point of view by focusing on square
permutations, that are permutations π being in the shuffle of a permutation σ
with itself. Many other shuffle products on permutations appear in the literature.
For instance, in [5], the authors define the convolution product and the shifted
shuffle product. For this last product, π is a shuffle of σ1 and σ2 if π is in the
shuffle, as words, of σ1 and the word obtained by incrementing all the letters of
σ2 by the size of σ1. It is a simple exercise to prove that, given three permutations
π, σ1, and σ2, deciding if π is in the shifted shuffle of σ1 and σ2 is in P.

This paper is organized as follows. In Sect. 3 we provide a precise definition
of •. This definition passes through the preliminary definition of an operator Δ,
allowing to unshuffle permutations. This operator is in fact a coproduct, endow-
ing the linear span of all permutations with a coalgebra structure (see [8] or [7] for
the definition of these algebraic structures). By duality, the unshuffling operator
Δ leads to the definition of our shuffle operation on permutations. This approach
has many advantages. First, some combinatorial properties of • depend on prop-
erties of Δ and are more easy to prove on the coproduct side. Second, this way
of doing allows to obtain a clear description of the multiplicities of the elements
appearing in the shuffle of two permutations, which are worthy of interest from
a combinatorial point of view. Section 4 is devoted to showing that the prob-
lems related to the shuffle of words has links with the shuffle of permutations.
In particular, we show that binary words that are square are in one-to-one cor-
respondence with square permutations avoiding some patterns (Proposition 1).
Next, Sect. 5 presents some algebraic and combinatorial properties of •. We show
that • is associative and commutative (Proposition 2), and that if a permutation
is a square, its mirror, complement, and inverse are also squares (Proposition 3).

Unshuffling Permutations 511

Finally, Sect. 6 presents the most important result of this paper: the fact that
deciding if a permutation is a square is NP-complete (Proposition 4). This result
is obtained by exhibiting a reduction from the pattern involvement problem [2]
which is NP-complete.

2 Notations

If S is a finite set, the cardinality of S is denoted by |S|, and if P and Q are two
disjoint sets, P � Q denotes the disjoint union of P and Q. For any nonnegative
integer n, [n] is the set {1, . . . , n}.

We follow the usual terminology on words [4]. Let us recall here the most
important ones. Let u be a word. The length of u is denoted by |u|. The empty
word, the only word of null length, is denoted by ε. We denote by ũ the mirror
image of u, that is the word u|u|u|u|−1 . . . u1. If P is a subset of [|u|], u|P is
the subword of u consisting in the letters of u at the positions specified by
the elements of P . If u is a word of integers and k is an integer, we denote
by u[k] the word obtained by incrementing by k all letters of u. The shuffle of
two words u and v is the set recursively defined by u� ε = {u} = ε� u and
ua� vb = (u� vb)a ∪ (ua� v)b, were a and b are letters. A word u is a square
if there exists a word v such that u belongs to v� v.

We denote by Sn the set of permutations of size n and by S the set of all
permutations. In this paper, permutations of a size n are specified by words of
length n on the alphabet [n] and without multiple occurrence of a letter, so
that all above definitions about words remain valid on permutations. The only
difference lies on the fact that we shall denote by π(i) (instead of πi) the i-th
letter of any permutation π. For any nonnegative integer n, we write ↗n (resp.
↘n) for the permutation 12 . . . n (resp. n (n − 1) . . . 1). If π is a permutation
of Sn, we denote by π̄ the complement of π, that is the permutation satisfying
π̄(i) = n − π(i) + 1 for all i ∈ [n]. The inverse of π is denoted by π−1.

If u is a word of integers without multiple occurrences of a same letter, s(u) is
the standardized of u, that is the unique permutation of the same size as u such
that for all i, j ∈ [|u|], ui < uj if and only if s(u)(i) < s(u)(j). In particular, the
image of the map s is the set S of all permutations. Two words u and v having
the same standardized are order-isomorphic. If σ is a permutation, there is an
occurrence of (the pattern) σ in π if there is a set P of indexes of letters of π such
that σ and π|P are order-isomorphic. When π does not admit any occurrence of
σ, π avoids σ. The set of permutations of size n avoiding σ is denoted by Sn(σ).

Let us now provide some definitions about graphs and oriented perfect match-
ings that are used in the sequel. If G is an oriented graph without loops, two
different edges of G are independent if they do not share any common vertex. We
say that G is an oriented matching if all edges of G are pairwise independent.
Moreover, G is perfect if any vertex of G belongs to at least one arc. For any
permutation π of Sn, an oriented perfect matching on π is an oriented perfect
matching M on the set of vertices [n]. In the sequel, we shall consider a nat-
ural notion of pattern avoidance in oriented perfect matchings on permutations.

512 S. Giraudo and S. Vialette

For instance, an oriented perfect matching M on a permutation π admits an
occurrence of the pattern if there are four positions i < j < k < � in π
such that (π(k), π(i)) and (π(j), π(�)) are arcs of M. When M does not admit
any occurrence of a pattern P, we say that M avoids P. The definition naturally
extends to sets of patterns: M avoids P = {Pi : 1 ≤ i ≤ k} if it avoids every
pattern Pi.

3 Shuffle Product on Permutations

The purpose of this section is to define a shuffle product • on permutations.
Recall that a first definition of this product was provided by Vargas [16]. To
present an alternative definition of this product adapted to our study, we shall
first define a coproduct denoted by Δ, enabling to unshuffle permutations. By
duality, Δ implies the definition of •. The reason why we need to pass by the
definition of Δ to define • is justified by the fact that a lot of properties of •
depend of properties of Δ, and that this strategy allows to write concise and clear
proofs of them. We invite the reader unfamiliar with the concepts of coproduct
and duality to consult [8] or [7].

Let us denote by Q[S] the linear span of all permutations. We define a linear
coproduct Δ on Q[S] in the following way. For any permutation π, we set

Δ(π) =
∑

P1�P2=[|π|]
s
(
π|P1

)
⊗ s

(
π|P2

)
. (1)

We call Δ the unshuffling coproduct of permutations. For instance,

Δ(213) = ε ⊗ 213 + 2 · 1 ⊗ 12 + 1 ⊗ 21 + 2 · 12 ⊗ 1 + 21 ⊗ 1 + 213 ⊗ ε, (2)

Δ(1234) = ε ⊗ 1234 + 4 · 1 ⊗ 123 + 6 · 12 ⊗ 12 + 4 · 123 ⊗ 1 + 1234 ⊗ ε, (3)

Δ(1432) = ε ⊗ 1432 + 3 · 1 ⊗ 132 + 1 ⊗ 321 + 3 · 12 ⊗ 21
+ 3 · 21 ⊗ 12 + 3 · 132 ⊗ 1 + 321 ⊗ 1 + 1432 ⊗ ε.

(4)

Observe that the coefficient of the tensor 1 ⊗ 132 is 3 in (4) because there are
exactly three ways to extract from the permutation 1432 two disjoint subwords
respectively order-isomorphic to the permutations 1 and 132.

As announced, let us now use Δ to define a shuffle product on permutations.
As any coproduct, Δ leads to the definition of a product obtained by duality in
the following way. From (1), for any permutation π, we have

Δ(π) =
∑

σ,ν∈S

λπ
σ,ν σ ⊗ ν, (5)

where the λπ
σ,ν are nonnegative integers. Now, by definition of duality, the dual

product of Δ, denoted by •, is a linear binary product on Q[S]. It satisfies, for
any permutations σ and ν,

σ • ν =
∑

π∈S

λπ
σ,ν π, (6)

Unshuffling Permutations 513

where the coefficients λπ
σ,ν are the ones of (5). We call • the shuffle product of

permutations. For instance,

12 • 21 = 1243 + 1324 + 2 · 1342 + 2 · 1423 + 3 · 1432 + 2134 + 2 · 2314
+ 3 · 2341 + 2413 + 2 · 2431 + 2 · 3124 + 3142 + 3 · 3214 + 2 · 3241 (7)
+ 3421 + 3 · 4123 + 2 · 4132 + 2 · 4213 + 4231 + 4312.

Observe that the coefficient 3 of the permutation 1432 in (7) comes from the
fact that the coefficient of the tensor 12 ⊗ 21 is 3 in (4).

Intuitively, this product shuffles the values and the positions of the letters
of the permutations. One can observe that the empty permutation ε is a unit
for • and that this product is graded by the sizes of the permutations (i.e., the
product of a permutation of size n with a permutation of size m produces a sum
of permutations of size n + m).

We say that a permutation π appears in the shuffle σ • ν of two permutations
σ and ν if the coefficient λπ

σ,ν defined above is different from zero. In a more
combinatorial way, this is equivalent to say that there are two sets P1 and P2 of
disjoints indexes of letters of π satisfying P1 � P2 = [|π|] such that the subword
π|P1 is order-isomorphic to σ and the subword π|P2 is order-isomorphic to ν.

A permutation π is a square if there is a permutation σ such that π appears
in σ • σ. In this case, we say that σ is a square root of π. Equivalently, π is a
square with σ as square root if and only if in the expansion of Δ(π), there is
a tensor σ ⊗ σ with a nonzero coefficient. In a more combinatorial way, this
is equivalent to saying that there are two sets P1 and P2 of disjoints indexes
of letters of π satisfying P1 � P2 = [|π|] such that the subwords π|P1 and π|P2

are order-isomorphic. Computer experiments give us the first numbers of square
permutations with respects to their size, which are, from size 0 to 10,

1, 0, 2, 0, 20, 0, 504, 0, 21032, 0, 1293418. (8)

This sequence (and its subsequence obtained by removing the 0’s) is for the time
being not listed in [13]. The square permutations of sizes 0 to 4 are

Size 0 Size 2 Size 4

ε 12, 21 1234, 1243, 1423, 1324, 1342, 4132, 3124, 3142, 3412, 4312,

2134, 2143, 2413, 4213, 2314, 2431, 4231, 3241, 3421, 4321

4 Binary Square Words and Permutations

In this section, we shall show that the square binary words are in one-to-one
correspondence with square permutations avoiding some patterns. This prop-
erty establishes a link between the shuffle of binary words and our shuffle of
permutations and allows to obtain a new description of square binary words.

514 S. Giraudo and S. Vialette

Let u be a binary word of length n with k occurrences of 0. We denote by
btp (Binary word To Permutation) the map sending any such word u to the
permutation obtained by replacing from left to right each occurrence of 0 in u
by 1, 2, . . . , k, and from right to left each occurrence of 1 in u by k + 1, k + 2,
. . . , n. For instance,

btp(100101101000) = C12B3A948567, (9)

where A, B, and C respectively stand for 10, 11, and 12. Observe that for any
nonempty permutation π in the image of btp, there is exactly one binary word
u such that btp(u0) = btp(u1) = π. In support of this observation, when π has
an even size, we denote by ptb(π) (Permutation To Binary word) the word ua
such that |ua|0 and |ua|1 are both even, where a ∈ {0, 1}.

Proposition 1. For any n ≥ 0, the map btp restricted to the set of square
binary words of length 2n is a bijection between this last set and the set of square
permutations of size 2n avoiding the patterns 213 and 231.

Proof (of Proposition 1). The statement of the proposition is a consequence of
the following claims implying that ptb is the inverse map of btp over the set of
square binary words.

Claim 1. The image of btp is the set of all permutations avoiding 213 and 231.

Proof (of Claim 1). Let us first show that the image of btp contains only per-
mutations avoiding 213 and 231. Let u be a binary word, π = btp(u), and P0

(resp. P1) be the set of the positions of the occurrences of 0 (resp. 1) in u. By
definition of btp, from left to right, the subword v = π|P0 is increasing and the
subword w = π|P1 is decreasing, and all letters of w are greater than those of v.
Now, assume that π admits an occurrence of 213. Then, since v is increasing
and w is decreasing, there is an occurrence of 3 (resp. 13, 23) in v and a rela-
tive occurrence of 21 (resp. 2, 1). All these three cases contradict the fact that
all letters of w are greater than those of v. A similar argument shows that π
avoids 231 as well.

Finally, observe that any permutation π avoiding 213 and 231 necessarily
starts by the smallest possible letter or the greatest possible letter. This property
is then true for the suffix of π obtained by deleting its first letter, and so on for
all of its suffixes. Thus, by replacing each letter a of π by 0 (resp. 1) if a has
the role of a smallest (resp. greatest) letter, one obtains a binary word u such
that btp(u) = π. Hence, all permutations avoiding 213 and 231 are in the image
of btp.
�
Claim 2. If u is a square binary word, btp(u) is a square permutation.

Proof (of Claim 2). Since u is a square binary word, there is a binary word v
such that u ∈ v � v. Then, there are two disjoint sets P and Q of positions
of letters of u such that u|P = v = u|Q. Now, by definition of btp, the words
btp(u)|P and btp(u)|Q have the same standardized σ. Hence, and by definition
of the shuffle product of permutations, btp(u) appears in σ • σ, showing that
btp(u) is a square permutation.
�

Unshuffling Permutations 515

Claim 3. If π is a square permutation avoiding 213 and 231, ptb(π) is a square
binary word.

Proof (of Claim 3). Let π be a square permutation avoiding 213 and 231. By
Claim 1, π is in the image of btp and hence, u = ptb(π) is a well-defined binary
word. Since π is a square permutation, there are two disjoint sets P1 and P2 of
indexes of letters of π such that π|P1 and π|P2 are order-isomorphic. This implies,
by the definitions of btp and ptb, that u|P1 = u|P2 , showing that u is a square
binary word.
�

�
The number of square binary words is Sequence A191755 of [13] beginning by

1, 0, 2, 0, 6, 0, 22, 0, 82, 0, 320, 0, 1268, 0, 5102, 0, 020632. (10)

According to Proposition 1, this is also the sequence enumerating square per-
mutations avoiding 213 and 231.

5 Algebraic Issues

The aim of this section is to establish some of properties of the shuffle product of
permutations •. It is worth to note that, as we will see, algebraic properties of the
unshuffling coproduct Δ of permutations defined in Sect. 3 lead to combinatorial
properties of •.

Proposition 2. The shuffle product • of permutations is associative and com-
mutative.

Proof (of Proposition 2). To prove the associativity of •, it is convenient to show
that its dual coproduct Δ is coassociative, that is

(Δ ⊗ I)Δ = (I ⊗ Δ)Δ, (11)

where I denotes the identity map. This strategy relies on the fact that a product
is associative if and only if its dual coproduct is coassociative. For any permu-
tation π, we have

(Δ ⊗ I)Δ(π) = (Δ ⊗ I)
∑

P1�P2=[|π|]
s
(
π|P1

)
⊗ s

(
π|P2

)

=
∑

P1�P2=[|π|]
Δ

(
s
(
π|P1

))
⊗ I

(
s
(
π|P2

))

=
∑

P1�P2=[|π|]

∑

Q1�Q2=[|P1|]
s
(
s
(
π|P1

)
|Q1

)
⊗s

(
s
(
π|P1

)
|Q2

)
⊗s

(
π|P2

)

=
∑

P1�P2�P3=[|π|]
s
(
π|P1

)
⊗ s

(
π|P2

)
⊗ s

(
π|P3

)
. (12)

516 S. Giraudo and S. Vialette

An analogous computation shows that (I ⊗ Δ)Δ(π) is equal to the last member
of (12), whence the associativity of •.

Finally, to prove the commutativity of •, we shall show that Δ is cocom-
mutative, that is for any permutation π, if in the expansion of Δ(π) there is
a tensor σ ⊗ ν with a coefficient λ, there is in the same expansion the tensor
ν ⊗ σ with the same coefficient λ. Clearly, a product is commutative if and
only if its dual coproduct is cocommutative. Now, from the definition (1) of
Δ, one observes that if the pair (P1, P2) of subsets of [|π|] contributes to the
coefficient of s

(
π|P1

)
⊗ s

(
π|P2

)
, the pair (P2, P1) contributes to the coefficient

of s
(
π|P2

)
⊗ s

(
π|P1

)
. This shows that Δ is cocommutative and hence, that • is

commutative.
�
Proposition 2 implies that Q[S] endowed with the unshuffling coproduct Δ

is a coassociative cocommutative coalgebra, or in an equivalent way, that Q[S]
endowed with the shuffle product • is an associative commutative algebra.

Lemma 1. The three linear maps

φ1, φ2, φ3 : Q[S] → Q[S] (13)

linearly sending a permutation π to, respectively, π̃, π̄, and π−1 are endomor-
phims of associative algebras.

We now use the algebraic properties of • exhibited by Lemma 1 to obtain
combinatorial properties of square permutations.

Proposition 3. Let π be a square permutation and σ be a square root of π.
Then,

(i) the permutation π̃ is a square and σ̃ is one of its square roots;
(ii) the permutation π̄ is a square and σ̄ is one of its square roots;
(iii) the permutation π−1 is a square and σ−1 is one of its square roots.

Proof (of Proposition 3). All statements (i), (ii), and (iii) are consequences of
Lemma 1. Indeed, since π is a square permutation and σ is a square root of π, by
definition, π appears in the product σ • σ. Now, by Lemma 1, for any j = 1, 2, 3,
since φj is a morphism of associative algebras from Q[S] to Q[S], φj commutes
with the shuffle product of permutations •. Hence, in particular, one has

φj(σ • σ) = φj(σ) • φj(σ). (14)

Then, since π appears in σ • σ, φj(π) appears in φj(σ • σ) and appears also in
φj(σ) • φj(σ). This shows that φj(σ) is a square root of φj(π) and implies (i),
(ii), and (iii).
�

Let us make an observation about Wilf-equivalence classes of permutations
restrained on square permutations. Recall that two permutations σ and ν of
the same size are Wilf equivalent if #Sn(σ) = #Sn(ν) for all n ≥ 0. The well-
known [12] fact that there is a single Wilf-equivalence class of permutations of

Unshuffling Permutations 517

size 3 together with Proposition 3 imply that 123 and 321 are in the same Wilf-
equivalence class of square permutations, and that 132, 213, 231, and 312 are in
the same Wilf-equivalence class of square permutations. Computer experiments
show us that there are two Wilf-equivalence classes of square permutations of
size 3. Indeed, the number of square permutations avoiding 123 begins by

1, 0, 2, 0, 12, 0, 118, 0, 1218, 0, 14272, (15)

while the number of square permutations avoiding 132 begins by

1, 0, 2, 0, 11, 0, 84, 0, 743, 0, 7108. (16)

Besides, an other consequence of Proposition 3 is that its makes sense to
enumerate the sets of square permutations quotiented by the operations of mirror
image, complement, and inverse. The sequence enumerating these sets begins by

1, 0, 1, 0, 6, 0, 81, 0, 2774, 0, 162945. (17)

All Sequences (15), (16), and (17) (and their subsequences obtained by
removing the 0s) are for the time being not listed in [13].

6 Algorithmic Issues

This section is devoted to proving hardness of recognizing square permutations.
In the same way as happens with words, we shall use a linear graph framework
where deciding whether a permutation is a square reduces to computing some
specific matching in the associated linear graph [3,11]. We have, however, to
deal with oriented perfect matchings. The needed properties read as follows (see
Fig. 1).

1 8 3 9 2 7 B 5 C 6 A 4

Fig. 1. An oriented perfect matching M on the permutation π = 183927B5C6A4
satisfying the properties P1 and P2. From M, it follows that π is a square as it
appears in the shuffle of 1892A4 and 37B5C6, both being order-isomorphic to 145263.

Definition 1 (Property P1). Let π be a permutation. An oriented perfect
matching M on π is said to have property P1 if it avoids all the six patterns

, , , , , and .

Definition 2 (Property P2). Let π be a permutation. An oriented perfect
matching M on π is said to have property P2 if, for any two distinct arcs
(π(a), π(a′)) and (π(b), π(b′)) in M, we have π(a) < π(b) if and only if π(a′) <
π(b′).

518 S. Giraudo and S. Vialette

The rationale for introducing properties P1 and P2 stems from the following
lemma.

Lemma 2. Let π be a permutation. The following statements are equivalent:

1. The permutation π is a square.
2. There exists an oriented perfect matching M on π satisfying P1 and P2.

Let π be a permutation. For the sake of clarity, we will say that a bunch
of consecutive positions P of π is above (resp. below) above another bunch of
consecutive positions P ′ in π if π(i) > π(j) (resp. π(i) < π(j)) for every i ∈ P
and every j ∈ P ′. For example, σ1 is above σ2 (in an equivalent manner, σ2 is
below σ1) in Fig. 2(a), whereas σ1 is below σ2 (in an equivalent manner, σ2 is
above σ1) in Fig. 2(b).

a b

a′ b′

σ1

σ2

a′ b′

a b

σ1

σ2

(a) An increasing pattern before
and above a decreasing pattern.

a b

a′ b′

σ1

σ2

a′ b′

a b

σ1

σ2

(b) A decreasing pattern before and
below an increasing pattern.

Fig. 2. Illustration of Lemma 3.

Before proving hardness, we give an easy lemma that will prove extremely
useful for simplifying the proof of upcoming Proposition 4.

Lemma 3. Let π = π1 σ1 π2 σ2 π3 be a permutation with |σ1| ≥ 2 and |σ2| ≥ 2,
and M be an oriented perfect matching on π satisfying P1 and P2. The following
assertions hold:

1. If σ1 is increasing, σ2 is decreasing, and σ1 is above σ2 (see Fig. 2(a)), then
there is at most one arc between σ1 and σ2 in M (this arc can be a (σ1, σ2)-arc
or a (σ2, σ1)-arc).

2. If σ1 is decreasing, σ2 is increasing, and σ1 is below σ2 (see Fig. 2(b)), then
there is at most one arc between σ1 and σ2 in M (this arc can be a (σ1, σ2)-arc
or a (σ2, σ1)-arc).

Unshuffling Permutations 519

ν1

ν′
1

ν2

ν′
2

ν3

ν′
3

ν4

ν′
4

σ′

π′

π′′

σ′′

N2

N2

N4

k

n

n + 2

k + 2

N4

N3

N3

N1

N1

N1 N2 N1 N3 k + 2 N4 N2 N3 n + 2 N4 n k

Fig. 3. Schematic representation of the permutation μ used in Proposition 4. Black
arcs denote the presence of at least one arc between two bunches of positions in μ.
Grey arcs denote edges that are only considered in the forward direction of the proof.

Proposition 4. Deciding whether a permutation is a square is NP-complete.

Proof (of Proposition 4). The problem is certainly in NP. We propose a reduction
from the pattern involvement problem which is known to be NP-complete [2]:
Given two permutations π and σ, decide whether σ occurs in π (as an order-
isomorphic pattern).

Let π ∈ Sn and σ ∈ Sk be two arbitrary permutations. Define

N4 = 2(2n + 2k + 4) + 1 = 4n + 4k + 9
N3 = 2(2N4 + 2n + 2k + 4) + 1 = 20n + 20k + 45
N2 = 2(2N3 + 2N4 + 2n + 2k + 4) + 1 = 100n + 100k + 225
N1 = 2(2N2 + 2N3 + 2N4 + 2n + 2k + 4) + 1 = 1000n + 1000k + 1325.

520 S. Giraudo and S. Vialette

Notice that N1, N2, N3 and N4 are polynomial in n. The crucial properties are
that (i) N1, N2, N3 and N4 are odd integers and (ii) Ni >

(∑
i<j≤4 2Nj

)
+2n+

2k + k for every 1 ≤ i ≤ 4.
We now turn to defining various gadgets (sequences of integers) that act as

building blocks in our construction of a new permutation μ:

σ′ = ((k + 1) σ (k + 2)) [2N2 + N4 + 2n + k + 2]
π′ = ((n + 1) π (n + 2)) [2N2 + N4 + n + k]
σ′′ = σ [2N2 + N4]
π′′ = π [2N2 + N4 + k]
ν1 =↗N1 [2N2 + 2N3 + 2N4 + 2n + 2k + 4]
ν′
1 =↗N1 [N1 + 2N2 + 2N3 + 2N4 + 2n + 2k + 4]

ν2 =↗N2 [N2]
ν′
2 =↘N2

ν3 =↗N3 [2N2 + 2N4 + 2n + 2k + 4]
ν′
3 =↗N3 [2N2 + N3 + 2N4 + 2n + 2k + 4]

ν4 =↘N4 [2N2 + N4 + 2n + 2k + 4]
ν′
4 =↘N4 [2N2].

We are now in position to define our target permutation μ (see Fig. 3 for an
illustration):

μ = ν1 ν2 ν′
1 ν3 σ′ ν4 ν′

2 ν′
3 π′ ν′

4 π′′ σ′′.

It is immediate that μ can be constructed in polynomial-time in n and k. It
can be shown that σ occurs in π if and only if there exists an oriented perfect
matching M on μ satisfying P1 and P2.
�

7 Conclusion

There are a number of further directions of investigation in this general sub-
ject. They cover several areas: algorithmic, combinatorics, and algebra. Let us
mention several - not necessarily new - open problems that are, in our opinion,
the most interesting. How many permutations of S2n are squares? How many
(213, 231)-avoiding permutations of S2n are squares? (Equivalently, by Proposi-
tion 1, how many binary strings of length 2n are squares; see also Problem 4 in
[10])? How hard is the problem of deciding whether a (213, 231)-avoiding permu-
tation is a square (Problem 4 in [10], see also [3,11])? Given two permutations
π and σ, how hard is the problem of deciding whether σ is a square root of π?
As for algebra, one can ask for a complete algebraic study of Q[S] as a graded
associative algebra for the shuffle product •. Describing a generating family for
Q[S], defining multiplicative bases of Q[S], and determining whether Q[S] is free
as an associative algebra are worthwhile questions.

Unshuffling Permutations 521

References

1. Allauzen, C.: Calcul efficace du shuffle de k mots. Technical report, Institut Gas-
pard Monge, Université Marne-la-Vallée (2000)

2. Bose, P., Buss, J.F., Lubiw, A.: Pattern matching for permutations. Inf. Process.
Lett. 65(5), 277–283 (1998)

3. Buss, S., Soltys, M.: Unshuffling a square is NP-hard. J. Comput. Syst. Sci. 80(4),
766–776 (2014)

4. Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa,
A. (eds.) Handbook of Formal Languages. Springer, Heidelberg (1997)

5. Duchamp, G., Hivert, F., Thibon, J.-Y.: Noncommutative symmetric functions.
VI. Free quasi-symmetric functions and related algebras. Int. J. Algebr. Comput.
12(5), 671–717 (2002)

6. Eilenberg, S., Mac Lane, S.: On the groups of H(Π, n). I. Ann. of Math. 58(2),
58:55–58:106 (1953)

7. Grinberg, D., Reiner, V.: Hopf Algebras in Combinatorics (2014). arxiv:1409.8356
8. Joni, S.A., Rota, G.-C.: Coalgebras and bialgebras in combinatorics. Stud. Appl.

Math. 61(2), 93–139 (1979)
9. Mansfield, A.: On the computational complexity of a merge recognition problem.

Discrete Appl. Math. 5, 119–122 (1983)
10. Henshall, D., Rampersad, N., Shallit, J.: Shuffling and unshuffling (2011). http://

arxiv.org/abs/1106.5767
11. Rizzi, R., Vialette, S.: On recognizing words that are squares for the shuffle product.

In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 235–245.
Springer, Heidelberg (2013)

12. Simion, R., Schmidt, F.W.: Restricted permutations. Eur. J. Comb. 6(4), 383–406
(1985)

13. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences. https://oeis.org/
14. Spehner, J.-C.: Le calcul rapide des melanges de deux mots. Theoret. Comput. Sci.

47, 181–203 (1986)
15. van Leeuwen, J., Nivat, M.: Efficient recognition of rational relations. Inf. Process.

Lett. 14(1), 34–38 (1982)
16. Y. Vargas. Hopf algebra of permutation pattern functions. In: 26th International

Conference on Formal Power Series and Algebraic Combinatorics, pp. 839–850
(2014)

17. Warmuth, M.K., Haussler, D.: On the complexity of iterated shuffle. J. Comput.
Syst. Sci. 28(3), 345–358 (1984)

http://arxiv.org/abs/1409.8356
http://arxiv.org/abs/1106.5767
http://arxiv.org/abs/1106.5767
https://oeis.org/

Generating Random Spanning Trees via Fast
Matrix Multiplication

Nicholas J.A. Harvey and Keyulu Xu(B)

University of British Columbia, Vancouver, BC, Canada
nickhar@cs.ubc.ca, keyulu.x@gmail.com

Abstract. We consider the problem of sampling a uniformly random
spanning tree of a graph. This is a classic algorithmic problem for which
several exact and approximate algorithms are known. Random spanning
trees have several connections to Laplacian matrices; this leads to algo-
rithms based on fast matrix multiplication. The best algorithm for dense
graphs can produce a uniformly random spanning tree of an n-vertex
graph in time O(n2.38). This algorithm is intricate and requires explic-
itly computing the LU-decomposition of the Laplacian.

We present a new algorithm that also runs in time O(n2.38) but has
several conceptual advantages. First, whereas previous algorithms need
to introduce directed graphs, our algorithm works only with undirected
graphs. Second, our algorithm uses fast matrix inversion as a black-box,
thereby avoiding the intricate details of the LU-decomposition.

Keywords: Uniform spanning trees · Spectral graph theory · Fast
matrix multiplication · Laplacian matrices

1 Introduction

Enumerating and sampling spanning trees of a graph is a classic problem in
combinatorics dating back to Kirchhoff’s celebrated matrix-tree theorem [16]
from 1847. From this result, one can fairly easily derive a polynomial-time algo-
rithm to generate a uniformly random spanning tree. Over the past few decades,
researchers have developed several startling algorithms for this problem with
improved running times.

The existing algorithms fall into three broad classes.

Laplacian-Based Algorithms. Properties of the graph’s Laplacian matrix
allow one to compute the number of spanning trees in the graph. Similarly,
one can compute the probability that a given edge is in a uniformly ran-
dom spanning tree. A sequence of papers [8,9,12,18] developed improved
algorithms following this approach. This culminated in the algorithm of Col-
bourn, Myrvold and Neufeld which has running time O(nω), where ω < 2.373
is the best-known exponent for matrix multiplication. These algorithms are
most efficient on dense graphs.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 522–535, 2016.
DOI: 10.1007/978-3-662-49529-2 39

Generating Random Spanning Trees via Fast Matrix Multiplication 523

Random Walks. Aldous [1], Broder [3] and Wilson [21] showed that
remarkably simple algorithms using random walks can be used to gener-
ate a uniformly random spanning tree. These algorithms are particularly
efficient on graphs whose cover time or mean hitting time is small.
Approximate Algorithms. Recent advances in algorithmic spectral graph
theory have led to nearly-linear time algorithms for approximately solving
linear systems involving Laplacian matrices [17]. These methods can be used
to accelerate the random walk algorithms by identifying regions of the graph
where the random walk will be slow [15,20]. These algorithms are most
efficient on sparse graphs.

Applications. The interest in enumerating and sampling spanning trees is not
only due to its origins as a foundational problem in combinatorics. Random
spanning trees have also turned out to be useful in many other contexts in com-
binatorics and computer science. For example, Colbourn et al. [7] showed how the
coefficients of the reliability polynomial can be estimated using random spanning
trees. Goyal, Rademacher and Vempala [11] have used random spanning trees
to generate expander graphs. Recent breakthroughs on the traveling salesman
problem [2,10] involve so-called “λ-random spanning trees”, which are essen-
tially uniformly random spanning trees in multigraphs. Other distributions on
spanning trees have been used to show results in spectral graph theory [14]. More
generally, random distributions on matroid bases have had interesting applica-
tions in submodular optimization [6].

1.1 Related Work

Consider the following algorithm for sampling any subgraph [18, Algorithm A].
Consider the edges in order; for each edge, decide if it is in the subgraph or not
with probability conditioned on the previous decisions. It is a trivial consequence
of the chain rule for conditional probabilities that this generates a random sub-
graph according to the desired distribution.

This algorithm can be used to generate uniformly random spanning trees if
one can determine the probability of an edge being in the tree, conditioned on
all previous decisions. It turns out that conditioning on an edge not being in the
tree is the same as deleting the edge, whereas conditioning on an edge being in
the tree is the same as contracting the edge. Thus, we may use the matrix-tree
theorem to determine the sampling probability for each edge, by considering
the graph with all the necessary deletions and contractions. Guenoche [12] and
Kulkarni [18] discussed this method and showed that it can be implemented in
time O(n3m). A more detailed discussion of this method is given in Sect. 3.

Colbourn, Day and Nel [8] showed that the runtime of this method can be
improved to O(n3). Their algorithm is recursive and applies partial Gaussian
elimination. Colbourn, Myrvold and Neufeld [9] presented a different algorithm
that also has runtime O(n3). Their first observation is that the desired sam-
pling probabilities can be determined in constant time from the inverse of the
(modified) Laplacian matrix (which they call the Kirchhoff matrix). Then, they

524 N.J.A. Harvey and K. Xu

observe that, after contracting an edge, the new inverse of the Laplacian matrix
can be computed in O(n2) time by the Sherman-Morrison formula. Since the
algorithm performs n − 1 contractions, the total runtime is O(n3).

The best running time for dense graphs is obtained by another algorithm of
Colbourn, Myrvold and Neufeld (CMN) [9]. They show that fast matrix multipli-
cation can be used to give an algorithm with runtime O(nω). This algorithm aban-
dons the Sherman-Morrison formula and instead computes the LU-decomposition
of the Laplacian matrix via a “six-way divide-and-conquer algorithm”. The rather
intricate details of this approach are strongly reminiscent of the Bunch-Hopcroft
algorithm [4] for fast matrix inversion.

1.2 Our Techniques

In this paper, we present a new algorithm for sampling a uniformly random
spanning tree in O(nω) time. Our approach is different from, and arguably sim-
pler than, the CMN algorithm. We recursively enumerate all edges in the graph,
and lazily update the inverse of the Laplacian matrix as edges are chosen to be
added to the tree or not. The updates are determined by an extension of the
Sherman-Morrison formula and can be performed using fast matrix inversion as
a black box. This avoids many of the intricacies of the approach based on LU-
decomposition. Our idea for this approach originates from a similar algorithm
for non-bipartite matching that also uses fast matrix inversion [13].

Nevertheless, there are numerous challenges that must be addressed in the
present work. One challenge is that the Laplacian matrix is not invertible. Previ-
ous algorithms dealt with that by deleting the row and column associated with
an arbitrary vertex and inverting the resulting matrix instead. We avoid this
issue by working with the Moore-Penrose pseudoinverse of the Laplacian, which
always exists. We must then derive a new extension of the Sherman-Morrison
formula for updating the pseudoinverse. Such formulas are known, but quite
complicated in general — a standard reference [5, §3.1] describes an algorithm
that involves six different cases! Our formulas are much simpler.

Another challenge relates to the contraction of edges. Normally contracting
an edge involves decreasing the number of vertices by one. Performing the corre-
sponding operation to the Laplacian and its pseudoinverse is quite cumbersome.
The CMN algorithm avoids this issue by working with directed graphs and sam-
pling arboresences. In a directed graph, the analog of this contraction operation
is to delete all-but-one incoming arc to a vertex; this does not affect the number
of vertices. We adopt a different approach that avoids unnecessarily resorting to
directed graphs. We effectively contract an edge by increasing its weight to be
a large value k. In the limit k → ∞, this is equivalent to contracting the edge,
from the point of view of electrical networks and spanning trees.

2 Preliminaries

The graph G is assumed to be undirected, simple, connected and unweighted.

Generating Random Spanning Trees via Fast Matrix Multiplication 525

2.1 Notations

In this section, we explain the notations that we use in the algorithms and
theorems.

Definition 1. Given an unweighted graph G = (VG, EG) with |VG| = n, its
Laplacian matrix LG = (li,j)n×n is defined as LG = D − A, where D is the
degree matrix and A is the adjacency matrix, i.e.

li,j =

⎧
⎪⎨

⎪⎩

deg(vi) (if i = j)
−1 (if i �= j and vivj ∈ EG)
0 otherwise

.

Given any set E ⊆ EG, we may define its Laplacian LE to be the Laplacian of
the subgraph (VG, E).

We also define the Laplacian of a graph with finite weights. Suppose that
w : E → R≥0 assigns weights to the edges of G. Then the weighted Laplacian is
Lw = (li,j)n×n where

li,j =

⎧
⎪⎨

⎪⎩

∑
e incident on i we (if i = j)

−we (if e = {i, j} ∈ E)
0 (otherwise)

Definition 2. Let A be a matrix. A submatrix containing rows S and columns
T is denoted AS,T . A submatrix containing all rows (resp., columns) is denoted
A∗,T (resp., AS,∗).

Remark 1. Throughout this paper we will use the notation of Definition 2 for
matrices such as LG whose notation already involves a subscript. Mathemati-
cal correctness would suggest using the notation (LG)S,T but for typographical
clarity we will instead use the notation LGS,T

.

Definition 3. Let A ∈ Mm×n, a pseudoinverse of A is defined as A+ ∈ Mn×m

satisfying all of the following criteria: AA+A = A, A+AA+ = A+, (AA+)T =
AA+, (A+A)T = A+A.

Definition 4. Define ω ∈ R as the infimum over all c ∈ R such that multiplying
two n × n matrices takes O (nc) time. Matrix inverse of an n × n matrix can
also be computed in O(nω) time.

2.2 Facts

We will use the following basic facts. Proofs of these facts can be found in books
on linear algebra and spectral graph theory.

Fact 1 (Sherman-Morrison-Woodbury formula). Let M ∈ Mn×n, U ∈
Mn×k, V ∈ Mn×k. Suppose M is non-singular. Then M + UV T is non-singular
if and only if I + V T M−1U is non-singular. If M + UV T is non-singular, then

(M + UV T)−1 = M−1 − M−1U(I + V T M−1U)−1V T M−1

526 N.J.A. Harvey and K. Xu

Fact 2. For any L ∈ Mn×n with kernel span(1), we have LL+ = I − 11T

n . We
call I − 11T

n the projection matrix P .1

Fact 3 (Facts about Submatrices)

1. For any A,B ∈ Mm×n and index set S, (A + B)S,S = AS,S + BS,S.
2. For any matrices C,D,E, F and index set S, if C = DEF , then CS,S =

DS,∗EF∗,S.
3. For any A ∈ Mm×n, B ∈ Mn×l and index set S, if A or B is only non-zero

in S, S, then (AB)S,S = AS,S × BS,S.
4. For any matrices C = DEF and index set S. If D∗,Sc = 0 and FSc,∗ = 0,

then C = D∗,SES,SFS,∗.
5. Suppose D = [M 0

0 0] and E = [A B
X Y] where M,A are n-by-n and MA − I is

non-singular. Then we have

(DE − I)−1 =
[
(MA − I)−1 (MA − I)−1MB

0 −I

]

Fact 4. Let A,B ∈ Mn×n with B symmetric positive semi-definite. Suppose
x is an eigenvector of AB corresponding to eigenvalue λ. Then B1/2x is an
eigenvector of B1/2AB1/2 corresponding to eigenvalue λ.

Fact 5. Let G be a graph with n vertices. Let λ1 ≤ · · · ≤ λn be the eigenvalues
of LG with the corresponding eigenvectors v1, · · · , vn. Then LG is symmetric
positive semi-definite. λ1 = 0 and v1 = 1. Moreover, λ2 > 0 if and only if G is
connected, i.e. G is disconnected if and only if ∃z with zT1 = 0 and zT LGz = 0.
Everything above holds for L+

G as well.

3 The Chain-Rule Algorithm

Given a simple undirected connected graph G = (VG, EG), let T be the set of
all spanning trees of G. We want to sample a uniformly random spanning tree
T̂ ⊆ EG such that for any T ∈ T , P(T̂ = T) = 1/|T |.

As described in Sect. 1.1, there is a simple algorithm for generating uniformly
random spanning trees based on the chain-rule for conditional probabilities [12]
[18, Algorithm A8] [19, §4.2]. The algorithm traverses the graph and samples an
edge with the conditional probability of it belonging to the tree. Fact 6 below
shows that this conditional probability is determined by effective resistances in
the graph where edges are contracted or deleted in accordance with the algo-
rithm’s previous decisions. This algorithm is shown in Algorithm1.

Fact 6. Given an graph G = (VG, EG) with Laplacian LG, the effective resis-
tance of an edge e = {u, v} ∈ EG is defined as

Reff
e = (Xu − Xv)T L+

G(Xu − Xv).

1 P := I − 11T /n

Generating Random Spanning Trees via Fast Matrix Multiplication 527

Algorithm 1. Sampling a uniformly random spanning tree using the chain-rule.
1: function SampleSpanningTree(G = (V,E))
2: for e = {u, v} ∈ E do
3: Reff

e ← (Xu − Xv)
TL+

G(Xu − Xv)
4: Flip a biased coin that turns head with probability Reff

e

5: if head then
6: Add e to the spanning tree
7: Contract e from G and update L+

G

8: else
9: Delete e from G and update L+

G

where Xu is a unit vector of size |VG| with Xu(u) = 1 and 0 otherwise. Let T̂ be
a random variable denoting a uniformly random spanning tree, i.e. P(T̂ = T) =
1/|T | for any T ∈ T , where T is the set of all spanning trees of G. Then for
any e ∈ EG, we have P(e ∈ T̂) = Reff

e .

The algorithm involves three key properties that guarantee correctness.

– P1: It visits every edge of EG exactly once.
– P2: It examines L+

G to compute the correct conditional probability of sampling
an edge.

– P3: It updates L+
G to incorporate the contraction or deletion of that edge.

The naive method to update L+
G is to recompute it from scratch, which would

require O(n3) time. There are at most n2 edges, so overall the algorithm runs in
O(n5) time.

4 A Recursive Algorithm with Lazy Updates

In this section, we present Algorithm 2, which, based on Algorithm 1, provides
a faster way to update the Laplacian pseudoinverse and reduces the runtime to
O(nω). The only difference between Algorithm 2 and Algorithm 1 is that Algo-
rithm2 visits the edges in a specific order to exploit lazy updates to L+

G.

4.1 Update Formulas

In this subsection, we present our update formulas for L+
G. We first observe that

the effective resistance of any edge only depends on four entries of L+
G. To see

that, for any edge {u, v}, it follows from Fact 3.4 that

Reff
e = (Xu − Xv)T L+

G(Xu − Xv) = [1, −1]L+
G{u,v},{u,v}

[
1

−1

]

Therefore, when we are deciding whether to sample an edge, all we need to
ensure is that the value of the corresponding entries in the Laplacian pseudoin-
verse is correct, which makes lazy updates desirable. Suppose we have made

528 N.J.A. Harvey and K. Xu

sampling decisions for some edges of a graph G but have not changed L+
G to

reflect these decisions. Let F be the set of edges sampled and D be the set of
edges discarded. We want to (partially) update L+

G to the Laplacian pseudoin-
verse of the graph obtained by contracting edges in F and deleting edges in D
from G.

Because the order of updates does not matter, we make the deletion updates
all together before making the contraction updates. Theorem1 and Corollary 1
give update formulas for deletion. Lemma1 states that these formulas are well-
defined.

Lemma 1. Let G = (VG, EG) be a connected graph and D ⊆ EG. I − LDL+
G is

non-singular iff G \ D contains at least one spanning tree.

Proof. I − LDL+
G is singular iff 1 ∈ eig(LDL+

G) because I only has eigenvalue 1.
eig(LDL+

G) = eig((LG−LG\D)L+
G). By Fact 5, 1 lies in the kernel of L+

G. Suppose
1 ∈ eig(LDL+

G). Let x ⊥ 1 be an eigenvector of (LG − LG\D)L+
G corresponding

to eigenvalue 1. Let y = (L+
G)1/2x/‖(L+

G)1/2x‖. By Fact 4, y is an eigenvector of
(L+

G)1/2(LG − LG\D)(L+
G)1/2 corresponding to eigenvalue 1. We have

yT (L+
G)1/2(LG − LG\D)(L+

G)1/2y = 1

Also, it is clear that

yT (L+
G)1/2LG(L+

G)1/2y = yT L+
GLGy = yT Py = yT (I − 1T1/n)y = yT y = 1

It follows that yT (L+
G)1/2LG\D(L+

G)1/2y = 0. Also, yT (L+
G)1/21 = xT L+

G1 = 0.
By Fact 5, G \ D is disconnected. Hence LDL+

G is non-singular if G \ D contains
at least one spanning tree.

Conversely, suppose G \ D is disconnected. Then by Facts 5 and 4, there
exists y ⊥ 1 of length 1 such that yT (L+

G)1/2LG\D(L+
G)1/2y = 0. Also,

yT (L+
G)1/2LG(L+

G)1/2y = yT y = 1. Hence yT (L+
G)1/2(LG − LG\D)(L+

G)1/2y = 1.
It follows that 1 ∈ eig(LDL+

G) and I − LDL+
G is singular.

(LG −LD)+ is the Laplacian pseudoinverse of the graph obtained by deleting
edges in D from G. The runtime of each update in Theorem 1 is O(|VG|ω).

Theorem 1. Let G = (VG, EG) be a connected graph and D ⊆ EG. If G \ D
contains at least one spanning tree, then

(LG − LD)+ = L+
G − L+

G

(
LDL+

G − I
)−1

LDL+
G

Proof. By Lemma 1, (LDL+
G − I)−1 is well-defined. Since G and G \ D are con-

nected, by Facts 5 and 2, (LG − LD)(LG − LD)+ = P . We have

(LG − LD)(L+
G − L+

G(LDL+
G − I)−1LDL+

G)

=LGL+
G − LDL+

G − ((LGL+
G − LDL+

G)(LDL+
G − I)−1LDL+

G)

=P − LDL+
G + ((LDL+

G − I + 1 · 1T /n)(LDL+
G − I)−1LDL+

G)

=P − LDL+
G + LDL+

G + 1 · 1T /n(LDL+
G − I)−1LDL+

G

Generating Random Spanning Trees via Fast Matrix Multiplication 529

We claim 1T (LDL+
G − I)−1 = −1T . To see that,

−1T (LDL+
G − I) = 1T (I − LDL+

G)

= 1T (I − LGL+
G + LG\DL+

G)

= 1T (1 · 1T /n + LG\DL+
G)

= 1T + 1T (LG\DL+
G) = 1T

It follows from the claim that 1 ·1T /n(LDL+
G −I)−1LDL+

G = 0 because 1T LD =
0. Hence (LG − LD)(L+

G − L+
G(LDL+

G − I)−1LDL+
G) = P .

The formula in Theorem 1 updates the entire L+
G, which is unnecessary

because we will not be using most entries of L+
G immediately. Corollary 1 gives a

formula that updates a submatrix of L+
G, using only the values of that submatrix.

The updated submatrix has the same value as the submatrix of the Laplacian
pseudoinverse of the graph obtained by deleting edges in D from G. The runtime
of each update is improved to O(|S|ω).

Corollary 1. Let G = (VG, EG) be a connected graph and D ⊆ G. Let S ⊆ VG.
Define E[S] as the set of edges whose vertices are in S. Suppose D ⊆ E[S] and
G \ D contains at least one spanning tree, then

(LG − LD)+S,S = L+
GS,S

− L+
GS,S

(LDS,S
L+

GS,S
− I)−1LDS,S

L+
GS,S

.

Proof. LD is only non-zero on the rows and columns indexed by S, since D ⊆
E[S]. Fact 3.5 implies that

(LDL+
G − I)−1 =

[
(LDS,S

L+
GS,S

−I)−1 (LDS,S
L+

GS,S
−I)−1LDS,S

LGS,Sc

0 −I

]

(1)

and in particular that

(LDL+
G − I)−1

S,S = (LDS,S
L+

GS,S
− I)−1. (2)

Combining Theorem 1, Facts 3.1 and 3.3 gives

(LG − LD)+S,S = L+
GS,S

− L+
GS,S

(LDL+
G − I)−1

S,SLDS,S
L+

GS,S
.

The result now follows from (2).

We present similar update formulas for contraction. As mentioned in Sect. 1.2,
algorithms for generating random spanning trees must contract edges but some-
how avoid the cumbersome updates to the Laplacian that result from decreasing
the number of vertices. Our approach is to increase the edge’s weight to a large
value k. By Fact 7 below, this is equivalent to contracting the edge in the limit
as k → ∞. One must be careful to specify formally what this means, because
we have only defined the Laplacian of a weighted graph when the weights are
finite. However, this does not matter. The main object of interest to us is L+

G,
and this does have a finite limit as k → ∞.

To emphasize the graph under consideration, we use the following notation:
Reff

e [H] denotes the effective resistance of edge e in the graph H.

530 N.J.A. Harvey and K. Xu

Fact 7. Let G be a weighted graph. Let e, f be distinct edges in G. Let G/e
be the graph obtained by contracting edge e. Let G + ke be the weighted graph
obtained by increasing e’s weight by k. Then

Reff
f [G/e] = lim

k→∞
Reff

f [G + ke].

Let us make explicit the dependence on k in the graphs and matrices used by
the algorithm. For any finite k, define G(k) := G \ D + kF, the graph obtained
by deleting the edges D then increasing the weight of edges in F by k. For any
edge e = {u, v}, we have

Reff
e [G \ D/F] = lim

k→∞
Reff

e [G(k)] (by Fact 7)

= lim
k→∞

(Xu − Xv)T L+
G(k)(Xu − Xv) (by Fact 6)

= (Xu − Xv)T lim
k→∞

L+
G(k)(Xu − Xv)

Thus, if the Laplacian pseudoinverse is updated to limk→∞ L+
G(k), then the algo-

rithm will sample edges with the correct probability. The next few theorems give
the update formulas. Let us first give a definition of incidence matrices.

Definition 5. Let G = (VG, EG) be a graph with n vertices. Given an edge
e = {u, v} ∈ EG, we define the incidence vector of e as ve = (Xu − Xv). Given
a set of edges E = {e1, e2, · · · , em} ⊆ EG, we define the incidence matrix of E
as VE = [ve1 |ve2 | · · · |vem

] .

By the definition of the weighted Laplacian, LG+kF = LG + kVF V T
F . The next

two lemmas state that our contraction update formulas are well-defined.

Lemma 2. Let G = (VG, EG) be a connected graph. Given F ⊆ EG with |F | =
r, let V be the incidence matrix of F . V T L+

GV is non-singular iff F is a forest.

Proof. Suppose F is a forest. For any x ∈ Rr, x �= 0, let y = V x. Since F is a
forest, V has full column rank. Therefore y �= 0. Clearly yT1 = xT (V T1) = 0.
By Fact 5, L+

G is PSD and ker(L+
G) = 1. Thus y ⊥ ker(L+

G). We have

xT V T L+
GV x = yT L+

Gy > 0

Hence V T L+
GV is positive definite and thus non-singular. The converse is trivial.

Lemma 3. Let G be a connected graph. Given F ⊆ EG, let V be the incidence
matrix of F . If F is a forest, then I/k + V T L+

GV is non-singular for any k > 0.

Proof. By Lemma 2, V T L+
GV is positive definite. Since k > 0, I/k is also positive

definite. The lemma follows from the sum of two positive definite matrices is
positive definite.

Theorem 2 and Corollary 2 give contraction update formulas for a finite k.
Corollary 2 improves on Theorem 2 by only updating a submatrix. The runtime
of each update in Corollary 2 is O(|S|ω).

Generating Random Spanning Trees via Fast Matrix Multiplication 531

Theorem 2. Let G = (VG, EG) be a connected graph. Given a forest F ⊆ EG,
let V be the incidence matrix of F . For any k > 0,

(LG + k · LF)+ = L+
G − L+

GV (I/k + V T L+
GV)−1V T L+

G

Proof. Let Mk = LG + k · LF = LG + k · V V T and Nk = L+
G − L+

GV (I/k +
V T L+

GV)−1V T L+
G. By Lemma 3, Nk is well-defined. By Fact 5, ker(L+

G) =
span(1). By Fact 2, LGL+

G = P = I − 1 · 1T /|VE |. We have

MkNk = (LG + kV V T)(L+
G − L+

GV (I/k + V T L+
GV)−1V T L+

G)

= P + kV V T L+
G − (LGL+

GV + kV V T L+
GV)(I/k + V T L+

GV)−1V T L+
G

= P + kV V T L+
G − kV (I/k + V T L+

GV)(I/k + V T L+
GV)−1V T L+

G (3)

= P + kV V T L+
G − kV V T L+

G = P

where (3) follows from the sum of any column of an incidence matrix is 0. Since
G + kF is connected, we have M+

k = Nk.

Corollary 2. Let G = (VG, EG) be a connected graph. Given a forest F ⊆ EG,
let V be the incidence matrix of F . Suppose F ⊆ E[S], where S ⊆ VG. Then for
any k > 0,

(LG + k · LF)+S,S = L+
GS,S

− L+
GS,S

VS,∗(I/k + V T
S,∗L

+
GS,S

VS,∗)−1V T
S,∗L

+
GS,S

Proof. V is only non-zero in rows in S. By Fact 3.4 V T
S,∗L

+
GS,S

VS,∗ = V T L+
GV .

The corollary then follows from Facts 3.1, 3.2 and 3.3.

Remark 2. Because the set of sampled edges, i.e. contracted edges F is a forest,
V has at most |S| columns.

The following theorem extends the result in Theorem2 to k = ∞ and gives
a contraction update formula that we use in Algorithm2.

Theorem 3. Let G be a graph with finite weights. Let G(k) = G + kF1 for a
forest F1 ⊆ EG. Let F2 ⊆ EG be disjoint from F1 such that F1 ∪ F2 is a forest.
Let V be the incidence matrix of F2. For k > 0, define N = limk→∞ L+

G(k). Then

lim
k→∞

L+
G(k)+kF2

= N − NV (V T NV)−1V T N.

Furthermore ker(limk→∞ L+
G(k)+kF2

) = span(VF1∪F2 ∪ 1).

Proof. We first show that limk→∞ L+
G+kF = L+

G − L+
GV (V T L+

GV)−1V T L+
G,

where V is the incidence matrix of F . By Lemma 2, V T L+
GV is invertible so

the RHS of the formula above is well-defined. Let Nk = (LG + k · LF)+ =
L+

G − L+
GV (I/k + V T L+

GV)−1V T L+
G and N = L+

G − L+
GV (V T L+

GV)−1V T L+
G.

We show as k → ∞, Nk converges to N with respect to any matrix norm. Let
A = V T L+

GV . We have

‖Nk − N‖ = ‖L+
GV ((I/k + A)−1 − A−1)V T L+

G‖
≤ ‖L+

G‖2 · ‖V ‖ · ‖V T ‖ · ‖(I/k + A)−1 − A−1‖ (4)

532 N.J.A. Harvey and K. Xu

By the Sherman-Morrison-Woodbury formula (Fact 1),

‖(I/k + A)−1 − A−1‖ = ‖A−1 − A−1(I + A−1/k)−1A−1/k − A−1‖
= ‖A−1(I + A−1/k)−1A−1/k‖
≤ ‖A−1‖2 · ‖(I + A−1/k)−1‖/k

→ ‖A−1‖2‖I‖/k (5)
→ 0 (6)

where (5) follows from the fact that I + A−1/k → I uniformly as k → ∞, and
the facts that matrix norm and matrix inverse are continuous functions for non-
singular matrices. Hence, combining (4) and (6), ‖Nk − N‖ → 0 as k → ∞.
The theorem then follows from the fact that the order of applying the update
formulas does not matter and that applying the formula for F1 and F2 is the
same as for F1 ∪ F2.

A similar argument as Corollary 1 can show that the submatrix version of
Theorem 3 holds as well. The only remaining detail is to establish that V T NV
is non-singular. This follows by the same argument as Lemma 2 because the
columns of VF2 are not spanned by the columns of VF1 , since F1 ∪ F2 is a forest.

4.2 The Recursive Algorithm

We say an edge {u, v} is in a submatrix if entries (u, v) and (v, u) are inside
the submatrix. Corollarys 1 and 2 say that if we have only made sampling deci-
sions for edges in a submatrix, then we can update the submatrix of the Lapla-
cian pseudoinverse with a small cost, using only the values of that submatrix.
Algorithm 2 samples the edges in a matrix by diving the matrix into submatrices
and recursively samples the edges in each submatrix. Whenever the algorithm
returns from a recursive call to a submatrix, it updates the current matrix with
the formulas given by Corollary 1 and Theorem 3 to ensure that the next subma-
trix it enters has been updated, which is enough for the algorithm to correctly
sample the edges in that submatrix. Let us formally define the way we recurse
on the edges.

Definition 6. Let G = (VG, EG) be an graph and S,R be disjoint sets of VG.
We define the following subsets of edges.

E[S] = {{u, v} ∈ EG : u, v ∈ S}
E[R,S] = {{u, v} ∈ EG : u ∈ R, v ∈ S}

Remark 3. Suppose that R = R1 ∪ R2 and S = S1 ∪ S2. Then

E[S] = E[S1] ∪ E[S2] ∪ E[S1, S2]
E[R,S] = E[R1, S1] ∪ E[R1, S2] ∪ E[R2, S1] ∪ E[R2, S2]

Generating Random Spanning Trees via Fast Matrix Multiplication 533

Algorithm 2. A Recursive Algorithm
1: function SampleSpanningTree(G = (VG, EG))
2: N ← L+

G

3: SampleEdgesWithin(VG)
4: return the uniform spanning tree T

5: function SampleEdgesWithin(S)
6: if |S| = 1 then return

7: Divide S in half: S = S1 ∪ S2

8: for i ∈ {1, 2} do
9: SampleEdgesWithin(Si)

10: Restore NSi,Si to its value before entering the recursion
11: F ← the set of edges contracted in SampleEdgesWithin(Si)
12: D ← the set of edges deleted in SampleEdgesWithin(Si)
13: Update(S, F,D)

14: SampleEdgesCrossing(S1, S2)

15: function SampleEdgesCrossing(R,S)
16: if |R| = 1 then
17: Let r ∈ R and s ∈ S, Reff ← (Xr − Xs)

TN(Xr − Xs)
18: Flip a biased coin that turns head with probability Reff

19: if head then
20: Add er,s to the uniform spanning tree T and the set of contracted edges
21: else
22: Add er,s to the set of deleted edges

23: else
24: Divide R and S each in half: R = R1 ∪ R2 and S = S1 ∪ S2

25: for i ∈ {1, 2} and j ∈ {1, 2} do
26: SampleEdgesCrossing(Ri, Sj)
27: Restore NRi∪Sj ,Ri∪Sj to its value before entering the recursion
28: F ← the set of edges contracted in SampleEdgesCrossing(Ri, Sj)
29: D ← the set of edges deleted in SampleEdgesCrossing(Ri, Sj)
30: Update(R ∪ S, F,D)

31: procedure Update(S, F,D)
32: Let V be the incidence matrix for F
33: Let LD be the Laplacian matrix for D
34: NS,S ← NS,S − NS,SVS,∗(V T

S,∗NS,SVS,∗)−1V T
S,∗NS,S

35: NS,S ← NS,S − NS,S(LDS,SNS,S − I)−1LDS,SNS,S

The formulas in Remark 3 give a recursive way to traverse the graph, visit-
ing each edge exactly once. This is the approach adopted by Algorithm2. The
algorithm samples the edges in E[S] with SampleEdgesWithin(S), where
we partition the current vertex set S into S = S1 ∪ S2 and then recurse to
visit edges in E[S1], E[S2] and E[S1, S2], calling SampleEdgesWithin(S1)
and SampleEdgesWithin(S2) respectively on E[S1], E[S2] and calling Sam-

pleEdgesCrossing(S1, S2) on E[S1, S2]. In SampleEdgesCrossing(S1, S2)
We do a similar splitting and recursion. So, Algorithm2 satisfies the property
P1 mentioned in Sect. 3.

534 N.J.A. Harvey and K. Xu

Because Algorithm 2 does lazy updates, in order not to confuse with the
true L+

G, we denote the matrix that Algorithm2 maintains by N . The way N is
updated ensures that the following invariants are satisfied.

Invariant 1: SampleEdgesWithin(S) initially has NS,S = L+
GS,S

. The
algorithm restores this property after each recursive call to the functions
SampleEdgesWithin(Si) and SampleEdgesCrossing(Si, Sj).
Invariant 2: SampleEdgesCrossing(R,S) initially has NR∪S,R∪S =
L+

GR∪S,R∪S
. The algorithm restores this property after each recursive call

to the function SampleEdgesCrossing(Ri, Sj).

Since the two invariants guarantee that for any edge {r, s}, N{r,s},{r,s} is
equal to L+

G{r,s},{r,s} when we are deciding whether to keep the edge, the values
of the effective resistances are correct for all edges. So, Algorithm 2 satisfies the
properties P2 and P3.

4.3 Analysis of Runtime

Let f(n) and g(n) respectively denote the runtime of SampleEdgesWithin(S)
and SampleEdgesCrossing(R,S), where n = |R| = |S|. Updating N requires
O(|S|ω) time. Therefore, we have

f(n) = 2f(n/2) + g(n) + O(nω)
g(n) = 4g(n/2) + O(nω)

By standard theorems on recurrence relations, the solutions of these recurrences
are g(n) = O(nω) and f(n) = O(nω). Thus, the runtime of Algorithm2 is O(nω).

5 Conclusions

In this paper, we have shown a new algorithm for sampling random spanning
trees, which is arguably simpler and cleaner than the algorithm of Colbourn,
Myrvold and Neufeld (CMN) [9]. Our algorithm uses a similar framework as the
algorithm for non-bipartite matching of Harvey [13]. Some open questions are
whether the same type of framework can be applied to other graph-theoretic
problems, and whether it is possible to bring this line of work and the recent
results on the sparse graph case of random spanning trees generation closer
together.

References

1. Aldous, D.: The random walk construction of uniform spanning trees and uniform
labelled trees. SIAM J. Discrete Math. 3, 450–465 (1990)

2. Asadpour, A., Goemans, M., Madry, A., Gharan, S.O., Saberi, A.: An O(log n/log
log n)-approximation algorithm for the asymmetric traveling salesman problem.
In: Proceedings of SODA (2010)

Generating Random Spanning Trees via Fast Matrix Multiplication 535

3. Broder, A.: Generating random spanning trees. In: Proceedings of FOCS, pp. 442–
447 (1989)

4. Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix
multiplication. Math. Comput. 28, 231–236 (1974)

5. Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations.
SIAM (1973)

6. Chekuri, C., Vondrak, J., Zenklusen, R.: Dependent randomized rounding via
exchange properties of combinatorial structures. In: Proceedings of FOCS (2010)

7. Colbourn, C.J., Debroni, B.M., Myrvold, W.J.: Estimating the coefficients of the
reliability polynomial. Congr. Numer. 62, 217–223 (1988)

8. Colbourn, C.J., Day, R.P.J., Nel, L.D.: Unranking and ranking spanning trees of
a graph. J. Algor. 10, 271–286 (1989)

9. Colbourn, C.J., Myrvold, W.J., Neufeld, E.: Two algorithms for unranking arbores-
cences. J. Algor. 20, 268–281 (1996)

10. Gharan, S.O., Saberi, A., Singh, M.: A randomized rounding approach to the
traveling salesman problem. In: Proceedings of FOCS (2011)

11. Goyal, N., Rademacher, L., Vempala, S.: Expanders via random spanning trees.
In: Proceedings of SODA (2009)

12. Guénoche, A.: Random spanning tree. J. Algor. 4, 214–220 (1983)
13. Harvey, N.J.A.: Algebraic algorithms for matching and matroid problems. SIAM

J. Comput. 39, 679–702 (2009)
14. Harvey, N.J.A., Olver, N.: Pipage rounding, pessimistic estimators and matrix

concentration. In: Proceedings of SODA (2014)
15. Kelner, J.A., Madry, A.: Faster generation of random spanning trees. In: Proceed-

ings of FOCS (2009)
16. Kirchhoff, G.: Über die Auflösung der Gleichungen, auf welche man bei der Unter-

suchung der linearen Vertheilung galvanischer Ströme geführt wird. Ann. Phys.
und Chem. 72, 497–508 (1847)

17. Koutis, I., Miller, G.L., Peng, R.: A fast solver for a class of linear systems. Com-
mun. ACM 55(10), 99–107 (2012)

18. Kulkarni, V.G.: Generating random combinatorial objects. J. Algor. 11(2), 185–
207 (1990)

19. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge University
Press (in preparation). Current version available at http://pages.iu.edu/∼rdlyons/

20. Madry, A., Straszak, D., Tarnawski, J.: Fast generation of random spanning trees
and the effective resistance metric. In: Proceedings of SODA (2015)

21. Wilson, D.B.: Generating random spanning trees more quickly than the cover time.
In: Proceedings of STOC (1996)

http://pages.iu.edu/~rdlyons/

Routing in Unit Disk Graphs

Haim Kaplan1, Wolfgang Mulzer2 , Liam Roditty3, and Paul Seiferth2(B)

1 School of Computer Science, Tel Aviv University, Tel Aviv, Israel
haimk@post.tau.ac.il

2 Institut Für Informatik, Freie Universität Berlin, Berlin, Germany
{mulzer,pseiferth}@inf.fu-berlin.de

3 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
liamr@macs.biu.ac.il

Abstract. Let S ⊂ R2 be a set of n sites. The unit disk graph UD(S)
on S has vertex set S and an edge between two distinct sites s, t ∈ S if
and only if s and t have Euclidean distance |st| ≤ 1.

A routing scheme R for UD(S) assigns to each site s ∈ S a label �(s)
and a routing table ρ(s). For any two sites s, t ∈ S, the scheme R must
be able to route a packet from s to t in the following way: given a current
site r (initially, r = s), a header h (initially empty), and the target label
�(t), the scheme R may consult the current routing table ρ(r) to compute
a new site r′ and a new header h′, where r′ is a neighbor of r. The packet
is then routed to r′, and the process is repeated until the packet reaches
t. The resulting sequence of sites is called the routing path. The stretch
of R is the maximum ratio of the (Euclidean) length of the routing path
of R and the shortest path in UD(S), over all pairs of sites in S.

For any given ε > 0, we show how to construct a routing scheme
for UD(S) with stretch 1 + ε using labels of O(log n) bits and routing
tables of O(ε−5 log2 n log2 D) bits, where D is the (Euclidean) diameter
of UD(S). The header size is O(log n log D) bits.

1 Introduction

Routing in graphs constitutes a fundamental problem in distributed graph algo-
rithms [7,10]. Given a graph G, we would like to be able to route a packet from
any node in G to any other node. The routing algorithm should be local, meaning
that it uses only information stored with the packet and with the current node,
and it should be efficient, meaning that the packet does not travel much longer
than necessary. There is an obvious solution to this problem: with each node s of
G, we store the shortest path tree for s. Then it is easy to route a packet along
the shortest path to its destination. However, this solution is very inefficient: we
need to store the complete topology of G with each node, leading to quadratic
space usage. Thus, the goal of a routing scheme is to store as little information
as possible with each node of the graph, while still guaranteeing a routing path
that is not too far from optimal.

This work is supported by GIF project 1161 & DFG project MU/3501/1.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 536–548, 2016.
DOI: 10.1007/978-3-662-49529-2 40

Routing in Unit Disk Graphs 537

For general graphs a plethora of results is available, reflecting the work of
almost three decades (see, e.g., [3,11] and the references therein). However, for
general graphs, any efficient routing scheme needs to store Ω(nα) bits per node,
for some α > 0 [10]. Thus, it is natural to ask whether improved results are
possible for specialized graph classes. For example, for trees it is known how
to obtain a routing scheme that follows a shortest path and requires O(log n)
bits of information at each node [5,12,14]. In planar graphs, for any ε > 0 it is
possible to store a polylogarithmic number of bits at each node in order to route
a packet along a path of length at most 1 + ε times the length of the shortest
path [13].

A graph class that is of particular interest for routing problems comes from
the study of mobile and wireless networks. Such networks are traditionally mod-
eled as unit disk graphs [4]. The nodes are represented as points in the plane, and
two nodes are connected if and only if the distance between the corresponding
points is at most one. Even though unit disk graphs may be dense, they share
many properties with planar graphs, in particular with respect to algorithmic
problems. There exists a vast literature on routing in unit disk graphs (cf. [7]),
but most known schemes cannot ensure a short routing path in the worst case.
Yan, Xiang, and Dragan [15] present a scheme with provable worst case guar-
antees. They extend a scheme by Gupta et al. [8] for planar graphs to unit disk
graphs by using a delicate planarization argument to obtain small-sized bal-
anced separators. Even though the scheme by Yan et al. is conceptually simple,
it requires a detailed analysis with an extensive case distinction.

We propose an alternative approach to routing in unit disk graphs. Our
scheme is based on the well-separated pair decomposition for unit disk graphs [6].
It stores a polylogarithmic number of bits with each node of the graph, and it
constructs a routing path that can be made arbitrarily close to a shortest path
(see Sect. 2 for a precise statement of our results). This compares favorably with
the scheme by Yan et al. [15] which achieves only a constant factor approxima-
tion. Moreover, our scheme is arguably simpler to analyze. However, unlike the
algorithm by Yan et al., we require that the packet contain a modifiable header
with a polylogarithmic number of bits. It is an interesting question whether this
header can be removed.

2 The Model and Our Results

Let S ⊂ R2 be a set of n sites in the plane. We say that S has density δ if every
unit disk contains at most δ points from S. The density δ of S is bounded if
δ = O(1). The unit disk graph for S is the graph UD(S) with vertex set S and
an edge st between two distinct sites s, t ∈ S if and only if |st| ≤ 1, where | · |
denotes the Euclidean distance. We define the weight of the edge st to be its
Euclidean length and use d(·, ·) to denote the shortest path distance in UD(S).

We would like to obtain a routing scheme for UD(S) with small stretch and
compact routing tables. Formally, this is defined as follows: we can preprocess
UD(S) to obtain for each site s ∈ S (i) a label �(s) ∈ {0, 1}∗, and (ii) a routing

538 H. Kaplan et al.

table ρ(s) ∈ {0, 1}∗. Furthermore, we need to define a routing function f :
S × {0, 1}∗ × {0, 1}∗ → S × {0, 1}∗ × {0, 1}∗. The function f takes as input a
current site s, the label �(t) of a target site t, and a header h ∈ {0, 1}∗. The
routing function may use its input and the routing table ρ(s) of s to compute a
new site s′, a modified header h′, and the label of an intermediate target �(t′).
The new site s′ may be either s or a neighbor of s in UD(S). Even though the
eventual goal of the packet is the target t, we introduce the intermediate target t′

into the notation, since it allows for better presentation of the routing algorithm.
The routing scheme is correct if the following holds: let h0 be the empty

header. For any two sites s, t ∈ S, consider the sequence of triples given by
(s0, �0, h0) = (s, �(t), h0) and (si, �i, hi) = f(si−1, �i−1, hi−1) for i ≥ 1. Then
there exists a k = k(s, t) ≥ 0 such that sk = t and si �= t for i < k, i.e., the
routing scheme reaches t after k steps. We call s0, s1, . . . , sk the routing path
between s and t, and we define the routing distance dρ(s, t) between s and t

as dρ(s, t) =
∑k

i=1 |si−1si|. The quality of the routing scheme is measured by
several parameters:

– the label size L(n) = max|S|=n maxs∈S |�(s)|,
– the table size T (n) = max|S|=n maxs∈S |ρ(s)|,
– the header size H(n) = max|S|=n maxs �=t∈S maxi=1,...,k(s,t) |hi|,
– and the stretch ϕ(n) = max|S|=n maxs �=t∈S dρ(s, t)/d(s, t).

We show that for any S ⊂ R2, |S| = n, and any ε > 0 we can construct a
routing scheme with ϕ(n) = 1+ε, L(n) = O(log n), T (n) = O(ε−5 log2 n log2 D),
and H(n) = O(log n log D), where D is the weighted diameter of UD(S), i.e.,
the maximum length of a shortest path between two sites in UD(S).

3 The Well-Separated Pair Decomposition for UD(S)

Our routing scheme uses the well-separated pair decomposition (WSPD) for the
unit disk graph metric given by Gao and Zhang [6]. WSPDs provide a compact
way to efficiently encode the approximate pairwise distances in a metric space.
Originally, WSPDs were introduced by Callahan and Kosaraju [2] in the context
of the Euclidean metric, and they have found numerous applications since then
(see, e.g., [6,9] and the references therein).

Since our routing scheme relies crucially on the specific structure of the
WSPD described by Gao and Zhang, we remind the reader of the main steps of
their algorithm and analysis.

First, Gao and Zhang assume that S has bounded density and that UD(S)
is connected. They construct the Euclidean minimum spanning tree T for S.
It is easy to see that T is a spanning tree for UD(S) with maximum degree 6.
Furthermore, T can be constructed in O(n log n) time [1]. Since T has maximum
degree 6, there exists an edge e in T such that T\e consists of two trees with
at least �(n − 1)/6	 vertices each. By applying this observation recursively, we
obtain a hierarchical decomposition H of T . The decomposition H is a binary

Routing in Unit Disk Graphs 539

tree. Each node v of H represents a subtree Tv of T with vertex set Sv ⊆ S such
that (i) the root of H corresponds to T ; (ii) the leaves of H are in one-to-one
correspondence with the sites in S; and (iii) let v be an inner node of H with
children u and w. Then v has an associated edge ev ∈ Tv such that removing ev

from Tv yields the two subtrees Tu and Tw represented by u and w (see Fig. 1).
Furthermore, we have |Su|, |Sw| ≥ �(|Sv| − 1)/6	.

h,0
j,1

d,1

k,2

f,2
b,2

l,2i,3

m,3

a,3

c,3
e,3

g,3

n,4

h

jd

k l

m

n

b f

a c e g i

Fig. 1. An EMST of UD(S) (left) where the edges are annotated with their level in
the hierarchical decomposition (right).

It follows that H has height O(log n). The depth δ(v) of a node v ∈ H is
defined as the number of edges on the path from v to the root of H. The level of
the associated edge ev of v is the depth of v in H. This uniquely defines a level
for each edge in T . Now, for each node v ∈ H, the subtree Tv is a connected
component in the forest that is induced in T by the edges of level at least δ(v).

After computing the hierarchical decomposition, the algorithm of Gao and
Zhang essentially uses the greedy algorithm of Callahan and Kosaraju to con-
struct a WSPD, with H in place of the quadtree (or the fair split tree). Let c ≥ 1
be a separation parameter. The algorithm traverses H and produces a sequence
Ξ = (u1, v1), (u2, v2), . . . , (um, vm) of pairs of nodes of H, with the following
properties:

1. The sets Su1 × Sv1 , Su2 × Sv2 , . . . , Sum
× Svm

constitute a partition of S × S.
This means that for each ordered pair of sites (s, t) ∈ S × S, there is exactly
one pair (u, v) ∈ Ξ with (s, t) ∈ Su × Sv. We say that (u, v) represents (s, t).

2. Each pair (u, v) ∈ Ξ is c-well-separated, i.e., we have

(c + 2)max{|Su| − 1, |Sv| − 1} ≤ |σ(u)σ(v)|, (1)

where σ(u), σ(v) are arbitrary sites in Su and Sv chosen by the algorithm.

Since in the unit distance graph metric the diameter diam(Su) is at most |Su|−1
and since |σ(u)σ(v)| ≤ d(σ(u), σ(v)), (1) implies that

(c + 2)max{diam(Su),diam(Sv)} ≤ d(σ(u), σ(v)), (2)

540 H. Kaplan et al.

which is the traditional well-separation condition. However, (1) is easier to check
algorithmically and has additional advantages that we will exploit in our routing
scheme below.

Gao and Zhang show that their algorithm produces a c-WSPD with m =
O(δc2n log n) pairs, where δ is the density of S. More precisely, they prove the
following lemma:

Lemma 3.1 (Lemma 4.3 and Corollary 4.6 in [6]). For each node u ∈ H,
the WSPD Ξ has O(δc2|Su|) pairs that contain u. ��

4 Preliminary Lemmas

We begin with two technical lemmas on WSPDs that will be useful later on. The
proofs can be found in the full version. The first lemma shows that the choice
of the sites σ(u) for the nodes u ∈ H is essentially arbitrary.

Lemma 4.1. Let Ξ be a c-WSPD for S and let s, t be two sites such that the
pair (u, v) ∈ Ξ represents (s, t). Then c diam(Su) ≤ c(|Su| − 1) ≤ d(s, t).

The next lemma is a direct consequence of Lemma 4.1 and shows that short
distances are represented by singletons.

Lemma 4.2. Let Ξ be a c-WSPD for S and let s, t ∈ S be two sites with
d(s, t) < c. If (u, v) ∈ Ξ represents (s, t), then Su = {s} and Sv = {t}.

5 The Routing Scheme

Let δ be the density of S. First we describe a routing scheme whose parameters
depend on δ. Then we show how to remove this dependency and extend the
scheme to work with arbitrary density. Our routing scheme uses the WSPD
described in Sect. 3, and it is based on the following idea: let Ξ be the c-WSPD
for UD(S) and let T be the EMST for S used to compute it. We distribute the
information about the pairs in Ξ among the sites in S (in a way described later)
such that each site stores O(δc2 log n) pairs in its routing table. To route from s
to t, we explore T , starting from s, until we find the site r with the pair (u, v)
representing (s, t). Our scheme will guarantee that s and r are sites in Su, and
therefore it suffices to walk along Tu to find r (see Fig. 2). This is called the local
routing. With (u, v), we store in ρ(r) the middle site m on the shortest path from
r to σ(v), i.e., the vertex “halfway” between r and σ(v). We recursively route
from r to m and when reaching m from m to t. To keep track of intermediate
targets during the recursion, we store a stack in the header. This second step,
the recursive routing through the middle site, we call the global routing. We now
describe our routing scheme in detail. Let 1 + ε, ε > 0, be the desired stretch
factor.

Routing in Unit Disk Graphs 541

Tu Tv
m

≈ 1
cd(s, t)

≈ d(s, t)/2 ≈ d(s, t)/2

t

s

r
σ(v)

Fig. 2. To route a packet from s to t, we first walk along Tu until we find r. Then we
recursively route from r to m and from m to t.

5.1 Preprocessing

The preprocessing phase works as follows. We set c = (α/ε) log D, where D is
the Euclidean diameter of UD(S) and α is a sufficiently large constant we will
fix later. Then we compute a c-WSPD for UD(S). As explained in Sect. 3, the
WSPD consists of a bounded degree spanning tree T of UD(S), a hierarchical
balanced decomposition H of T whose nodes u ∈ H correspond to subtrees Tu

of T , and a sequence Ξ = (u1, v1), (u2, v2), . . . , (um, vm) of m = O(δc2n log n) =
O(δε−2n log n log2 D) well-separated pairs that represent a partition of S × S.

First, we determine the labeling � for the sites in S. For this, we perform a
postorder traversal of H. Let l be a counter which is initialized to 1. Whenever
we encounter a leaf of H, we set the label �(s) of the corresponding site s ∈ S to
l, and we increment l by 1. Whenever we visit an internal node u of H for the
last time, we annotate it with the interval Iu of the labels in Tu. Thus, a site
s ∈ S lies in a subtree Tu if and only if �(s) ∈ Iu. Each label has O(log n) bits.

Next, we describe the routing tables. Each routing table consists of two parts,
the local routing table and the global routing table. The local routing table ρL(s)
of a site s stores the neighbors of s in T , in counterclockwise order, together with
the levels in H of the corresponding edges (cf. Sect. 3). Since T has degree at
most 6, each local routing table consists of O(log n) bits. The global routing
table ρG(s) of a site s is obtained as follows: we go through all O(log n) nodes
u of H that contain s in their subtree Tu. By Lemma 3.1, Ξ contains at most
O(δc2|Su|) well-separated pairs in which u represents one of the sets. We assign
O(δc2) = O(δε−2 log2 D) of these pairs to s, such that each pair is assigned to
exactly one site in Su. For each pair (u, v) assigned to s, we store the interval
Iv corresponding to Sv. Furthermore, if σ(v) is not a neighbor of s, we store the
label �(m) of the middle site m of a shortest path π from s to σ(v). Here, m
is a site on π that minimizes the maximum distance, max{d(s,m), d(m,σ(v))},
to the endpoints of π. A site s lies in O(log n) different sets Su, at most one for
each level of H. For each such set, we store O(δε−2 log2 D) pairs in ρG(s), each
of which requires O(log n) bits. Thus, ρG has O(δε−2 log2 n log2 D) bits.

Finally, we argue that the routing scheme can be computed efficiently. See
the full version for a proof.

542 H. Kaplan et al.

Lemma 5.1. The preprocessing time for the routing scheme described above is
O(n2 log n + δn2 + δε−2n log n log2 D).

5.2 Routing a Packet

Suppose we are given two sites s and t, and we would like to route a packet from
s to t. Recall our overall strategy: we first perform a local exploration of UD(S)
in order to discover a site r that stores a pair (u, v) ∈ Ξ representing (s, t) in its
global routing table ρG(r). To find r, we consider the subtrees of T that contain
s by increasing size, and we perform an Euler tour in each subtree until we find
r. In ρG(r) we have stored the middle site m of a shortest path from r to σ(v).
We put t into the header, and we recursively route the packet from r to m. Once
we reach m, we retrieve the original target t from the header and recursively
route from m to t, see Algorithm 1 for pseudo-code.

Local Routing: The Euler-Tour. We start at s, and we would like to find the
site r that stores the pair (u, v) representing (s, t). By construction, both s and r
are contained in Su, and it suffices to perform an Euler tour on Tu to discover r.
Since we do not know u in advance, we begin with the leaf in H that contains s,
and we explore all nodes on the path to the root until we find u (see Fig. 3).

s9 9

87
867

8
9

5

8
9

TwTw′

Fig. 3. To find r we do an Euler Tour on Tu, the subtree that contains s whose edges
have level at least 7. Since we do not find r, we search the next larger subtree Tu′ ,
where u′ is the parent of u in H by decreasing the search level to 6.

We store s as the start site in the header h. Let w ∈ H be the node to be
explored, and let l = δ(w) be the depth of w in H. We store l in h. Recall that Tw

is a connected component of the forest induced by all edges of level at least l. We
perform an Euler tour on Tw using the local routing tables as follows: starting
at s, we follow the first edge in ρL(s) that has level at least l. Every time we
visit a site r, we check for all WSPD-pairs (u, v) in ρG(r) whether �(t) ∈ Iv,
i.e., whether t ∈ Sv. If so, we clear the local routing information from h, and we
proceed with the global routing. If not, we scan ρL(r) for the next edge in ρL(r)
that has level at least l, going back to the beginning of ρL(r) if necessary, and
we follow this edge. For this, we must remember in h the edge through which
we last entered r (note that we must store only the last edge of the tour). Once

Routing in Unit Disk Graphs 543

we reach s for the last time (i.e., through the last edge in ρL(s) with level at
least l), we decrease l by one and restart the process. Decreasing l corresponds
to proceeding with the parent of w in H.

Global Routing: The WSPD. Suppose we are at a site s such that ρG(s) contains
the pair (u, v) with the target t being in Sv. If t is not a neighbor of s, then
ρG(s) also contains the label of a middle site m for (u, v). We push (the label of)
t onto the header stack, and we use �(m) as the new target. Then we perform a
local routing, starting at s, in order to find a pair (u′, v′) with m ∈ Sv′ . If t is
a neighbor of s, we go directly to t. Since t may be an intermediate target, we
pop the next element from the header stack and set it as the new target label.
If the header stack is empty, t is our final destination.

Input: currentSite s, targetLabel �(t), header h
Output: nextSite, nextTargetLabel, header

1 if �(s) = �(t) then /* intermediate target reached? */

2 if h.stack = ∅ then /* final target? */

3 return (s, ⊥, ⊥)
4 else
5 return (s, h.stack.pop(), h)

6 else if ρ(s) stores a WSPD-pair (u, v) with t ∈ Sv then /* global routing */

7 h.startSite ← ∅
8 if s and t are neighbors in UD(S) then
9 return (t, �(t), h)

10 else
11 nextTargetLabel ← label of middle site for (u, v)
12 h.stack.push(�(t))
13 return (s, nextTargetLabel, h)

14 else /* local routing */

15 if h.startSite = ∅ then
16 h.startSite ← s
17 h.level ← δ(s)

18 r ← next clockwise neighbor of s with level of edge sr ≥ h.level
19 if r =⊥ then /* Euler tour is finished */

20 h.level ← h.level − 1
21 return (s, �(t), h)

22 else
23 return (r, �(t), h)

Algorithm 1. The routing algorithm.

5.3 Analysis of the Routing Scheme

We now prove that the described routing scheme is correct and has low stretch,
i.e., that for any two sites s and t, it produces a routing path s = s0, . . . , sk = t
of length at most (1 + ε)d(s, t).

544 H. Kaplan et al.

Correctness. First, we consider only small distances and show that in this case
our routing scheme produces an actual shortest path.

Lemma 5.2. Let s, t be two sites in S with d(s, t) < c. Then, the routing scheme
produces a routing path s0, s1, . . . , sk with the following properties

(i) s0 = s and sk = t,
(ii) dρ(s, t) = d(s, t), and
(iii) the header stack is in the same state at the beginning and at the end of the

routing path.

Proof. We prove that our routing scheme has properties (i)–(iii) by induction on
the rank of d(s, t) in the sorted list of the pairwise distances in UD(S).

For the base case, consider the edges st in UD(G), i.e., d(s, t) = |st| ≤ 1.
By Lemma 4.2, there exists a pair (u, v) with Su = {s} and Sv = {t}. Thus,
Algorithm 1 correctly routes to t in one step and does not manipulate the header
stack. All properties are fulfilled.

Now, consider an arbitrary pair s, t with 1 < d(s, t) < c. By Lemma 4.2, there
is a pair (u, v) with Su = {s} and Sv = {t}. By construction, (u, v) is stored in
ρG(s) and the routing algorithm directly proceeds to the global routing phase.
Since d(s, t) > 1, the routing table contains a middle site m and since Su and
Sv are singletons, m is a middle site on a shortest path from s to t. Algorithm 1
pushes �(t) onto the stack and sets m as the new target. By induction, the
routing scheme now routes the packet along a shortest path from s to m (i,
ii), and when the packet arrives at m, the target label �(t) is at the top of the
stack (iii). Thus, Algorithm 1 executes line 5, and routes the packet from m to
t. Again by induction, the packet now follows a shortest path from m to t (i, ii),
and when the packet arrives at t, the stack is in the same state a before pushing
�(t) (iii). The claim follows. ��

Building on Lemma 5.2, we can now prove that our scheme is correct.

Lemma 5.3. Let s, t be two sites in S. Then, the routing scheme produces a
routing path s0, s1, . . . , sk with the following properties

(i) s0 = s and sk = t, and
(ii) the header stack is in the same state at the beginning and at the end of the

routing path.

Proof. Again, we use induction on the rank of d(s, t) in the sorted list of pairwise
distances in UD(S). If d(s, t) < c, the claim is immediate by Lemma 5.2.

Now, consider an arbitrary pair s, t ∈ S. By construction, our routing scheme
will eventually find a site r ∈ S whose global routing table stores a WSPD-pair
(u, v) that represents (s, t), together with a middle site m (m exists for d(s, t) ≥ c
large enough). So far, the stack remains unchanged. Algorithm 1 pushes �(t) onto
the stack and sets m as the new target. By induction, the routing scheme routes
the packet correctly from s to m (i), and when the packet arrives at m, the
target label �(t) is at the top of the stack (ii). Thus, Algorithm 1 executes line 5,
and routes the packet from m to t. Again by induction, the packet arrives at t,
with the stack in the same state as before pushing �(t) (i, ii). ��

Routing in Unit Disk Graphs 545

Stretch Factor. The analysis of the stretch factor requires some more technical
work. For space reasons, we omit the proofs of Lemmas 5.4 and 5.6 and refer
the reader to the full version. We begin with a lemma that justifies the term
“middle site”.

Lemma 5.4. Let s, t be two sites in S with d(s, t) ≥ c ≥ 14 and let (u, v) ∈ Ξ
be the WSPD-pair that represents (s, t). If m is a middle site of a shortest path
from s to σ(v) in UD(S), then

(i) d(s,m) + d(m, t) ≤ (1 + 2/c)d(s, t), and
(ii) d(s,m), d(m, t) ≤ (5/8)d(s, t).

In the next lemma, we bound the distance traveled during the local routing.

Lemma 5.5. Let s, t be two sites in S with d(s, t) ≥ c. Then, the total dis-
tance traveled by the packet during the local routing phase before the WSPD-pair
representing (s, t) is discovered is at most (48/c)d(s, t).

Proof. Let (u, v) be the WSPD-pair representing (s, t), and let u0, u1, . . . , uk = u
be the path in H from the leaf u0 for s to u. Let T0, T1, . . . , Tk and S0, S1, . . . , Sk

be the corresponding subtrees of T and sites of S. The local routing algorithm
iteratively performs an Euler tour of T0, T1, . . . , Tk (the tour of Tk may stop
early). An Euler tour in Ti takes 2|Si| − 2 steps, and each edge has length at
most 1. As described in Sect. 3, for i = 0. . . . , k − 1, the WSPD ensures that

|Si| ≤ |Si+1| − �(|Si+1| − 1)/6	 ≤ (5/6)|Si+1| + 1/6 ≤ (11/12)|Si+1|,

since |Si+1| ≥ 2. It follows that the total distance for the local routing is at most

k∑

i=0

(2|Si| − 2) ≤ 2|Sk|
k∑

i=0

(11/12)i ≤ 24|Sk|.

By Lemma 4.1, we have d(s, t) ≥ c(|Su|−1) and since Sk = Su the total distance
is bounded by 24|Su| ≤ 24(d(s, t)/c+1) ≤ (48/c)d(s, t), where the last inequality
is true for d(s, t) ≥ c. ��

Finally, we can bound the stretch factor:

Lemma 5.6. For any two sites s and t, we have dρ(s, t) ≤
(
1 + ε)d(s, t).

Combining Lemmas 5.1 and 5.6 we obtain the following theorem.

Theorem 5.7. Let S be a set of n sites in the plane with density δ. For any
ε > 0, we can preprocess S into a routing scheme for UD(S) with labels of size
O(log n) bits and routing tables of size O(δε−2 log2 n log2 D), where D is the
diameter of UD(S). For any two sites s,t, the scheme produces a routing path
with dρ(s, t) ≤ (1 + ε)d(s, t) and during the routing the maximum header size is
O(log n log D). The preprocessing time is O(n2 log n+ δn2 + δε−2n log n log2 D).

546 H. Kaplan et al.

5.4 Extension to Arbitrary Density

Let 1 + ε, ε > 0, be the desired stretch factor. To extend the routing scheme
to point sets of unbounded density, we follow a strategy similar to Gao and
Zhang [6, Sect. 4.2]: we first pick an appropriate ε1 > 0, and we compute an
ε1-net R ⊆ S, i.e., a subset of sites such that each site in S has distance at
most ε1 to the closest site in R and such that any two sites in R have distance
at least ε1. It is easy to see that R has density O(ε−2

1), and we would like to
represent each site in S by the closest site in R. However, the connectivity in
UD(R) might differ from UD(S). To rectify this, we add additional sites to R.
This is done as follows: two sites s, t ∈ R are called neighbors if |st| > 1, but
there are p, q ∈ S such that s, p, q, t is a path in UD(S) and such that |sp| ≤ ε1
and |qt| ≤ ε1 (possibly, s = p or q = t). In this case, p and q are called a bridge
for s, t. Let R′ be a point set that contains an arbitrary bridge for each pair of
neighbors in R. Set Z = R ∪ R′. A simple volume argument shows that Z has
density δ = O(ε−3

1). Furthermore, Gao and Zhang show the following:

Lemma 5.8 (Lemmas 4.8 and 4.9 in [6]). We can compute Z in
O((n/ε21) log n) time, and if dZ(·, ·) denotes the shortest path distance in UD(Z),
then, for any s, t ∈ R, we have dZ(s, t) ≤ (1 + 12ε1)d(s, t) + 12ε1.

Now, our extended routing scheme proceeds as follows: first, we compute R
and Z as described above, and we perform the preprocessing algorithm for Z
with ε1 as stretch parameter. We assign arbitrary new labels to the sites in S\Z.
Then, we extend the label �(s) of each site s ∈ S, such that it also contains the
label of a site in R closest to s. The label size remains O(log n).

To route between two sites s, t ∈ S, we first check whether we can go from
s to t in one step (we assume that this can be checked locally in the routing
function). If so, we route the packet directly. Otherwise, we have d(s, t) > 1.
Let s′, t′ ∈ R be the closest sites in R to s and to t. By construction, we can
obtain s′ and t′ from �(s) and �(t). Now, we first go from s to s′. Then, we use
the low-density algorithm to route from s′ to t′ in UD(Z), and finally we go
from t′ to t in one step. Using the discussion above, the total routing distance
is bounded by

dρ(s, t) ≤ |ss′| + dZ
ρ (s′, t′) + |t′t|,

where dZ
ρ (·, ·) is the routing distance in UD(Z). By Lemmas 5.6 and 5.8, this is

≤ ε1 + (1 + ε1)dZ(s′, t′) + ε1

≤ 2ε1 + (1 + ε1)
(
(1 + 12ε1)d(s′, t′) + 12ε1

)
,

and by using the triangle inequality twice this is

≤ 2ε1 + (1 + ε1)
(
(1 + 12ε1)(d(s, t) + 2ε1) + 12ε1

)
.

Routing in Unit Disk Graphs 547

Rearranging and using d(s, t) > 1 yields

≤ (1 + 29ε1 + 50ε21 + 24ε31)d(s, t) ≤ (1 + ε)d(s, t),

where the last inequality holds for ε1 ≤ ε/103. This establishes our main theo-
rem:

Theorem 5.9. Let S be a set of n sites in the plane. For any ε > 0, we can
preprocess S into a routing scheme for UD(S) with labels of O(log n) bits and
routing tables of size O(ε−5 log2 n log2 D), where D is the diameter of UD(S).
For any two sites s,t, the scheme produces a routing path with dρ(s, t) ≤ (1 +
ε)d(s, t) and during the routing the maximum header size is O(log n log D). The
preprocessing time is O(n2 log n + ε−3n2 + ε−5n log n log2 D).

Proof. The theorem follows from the above discussion and from the fact that
the set Z has density O(ε−3), by our choice of ε1. ��

References

1. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

2. Callahan, P., Kosaraju, S.: A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. J. ACM 42(1),
67–90 (1995)

3. Chechik, S.: Compact routing schemes with improved stretch. In: Proceedings of
32nd ACM Symposium on Principles of Distributed Computing (PODC), pp. 33–
41 (2013)

4. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–
3), 165–177 (1990)

5. Fraigniaud, Pierre, Gavoille, Cyril: Routing in trees. In: Orejas, F., Spirakis, Paul
G., van Leeuwen, Jan (eds.) ICALP 2001. LNCS, vol. 2076, p. 757. Springer, Hei-
delberg (2001)

6. Gao, J., Zhang, L.: Well-separated pair decomposition for the unit-disk graph met-
ric and its applications. SIAM J. Comput. 35(1), 151–169 (2005)

7. Giordano, S., Stojmenovic, I.: Position based routing algorithms for ad hoc net-
works: a taxonomy. In: Cheng, X., Huang, X., Du, D.-Z. (eds.) Ad Hoc Wireless
Networking. Network Theory and Applications, vol. 14, pp. 103–136. Springer, New
York (2004)

8. Gupta, A., Kumar, A., Rastogi, R.: Traveling with a Pez dispenser (or, routing
issues in MPLS). SIAM J. Comput. 34(2), 453–474 (2004)

9. Narasimhan, G., Smid, M.H.M.: Geometric Spanner Networks. Cambridge Univer-
sity Press, Cambridge (2007)

10. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J.
ACM 36(3), 510–530 (1989)

11. Roditty, L., Tov, R.: New routing techniques and their applications. In: Proceedings
of 34th ACM Symposium on Principles of Distributed Computing (PODC), pp.
23–32 (2015)

12. Santoro, N., Khatib, R.: Labelling and implicit routing in networks. Comput. J.
28(1), 5–8 (1985)

548 H. Kaplan et al.

13. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. J. ACM 51(6), 993–1024 (2004)

14. Thorup, M., Zwick, U.: Compact routing schemes. In: Proceedings of 13th ACM
Symposium on Parallel Algorithms and Architectures (SPAA), pp. 1–10 (2001)

15. Yan, C., Xiang, Y., Dragan, F.F.: Compact and low delay routing labeling scheme
for unit disk graphs. Comput. Geom. 45(7), 305–325 (2012)

Graph Drawings with One Bend and Few Slopes

Kolja Knauer1(B) and Bartosz Walczak2

1 Aix-Marseille Université, CNRS, LIF UMR 7279, Marseille, France
kolja.knauer@lif.univ-mrs.fr

2 Theoretical Computer Science Department, Faculty of Mathematics
and Computer Science, Jagiellonian University, Kraków, Poland

walczak@tcs.uj.edu.pl

Abstract. We consider drawings of graphs in the plane in which edges
are represented by polygonal paths with at most one bend and the num-
ber of different slopes used by all segments of these paths is small. We
prove that �Δ

2
� edge slopes suffice for outerplanar drawings of outerpla-

nar graphs with maximum degree Δ � 3. This matches the obvious lower
bound. We also show that �Δ

2
� + 1 edge slopes suffice for drawings of

general graphs, improving on the previous bound of Δ+1. Furthermore,
we improve previous upper bounds on the number of slopes needed for
planar drawings of planar and bipartite planar graphs.

1 Introduction

A one-bend drawing of a graph G is a mapping of the vertices of G into distinct
points of the plane and of the edges of G into polygonal paths each consisting
of at most two segments joined at the bend of the path, such that the polygonal
paths connect the points representing their end-vertices and pass through no
other points representing vertices nor bends of other paths. If it leads to no
confusion, in notation and terminology, we make no distinction between a vertex
and the corresponding point, and between an edge and the corresponding path.
The slope of a segment is the family of all straight lines parallel to this segment.
The one-bend slope number of a graph G is the smallest number s such that
there is a one-bend drawing of G using s slopes. Similarly, one defines the planar
one-bend slope number and the outerplanar one-bend slope number of a planar
and respectively outerplanar graphs if the drawing additionally has to be planar
and respectively outerplanar. Since at most two segments at each vertex can use
the same slope, �Δ

2 � is a lower bound on the one-bend slope number. Here and
further on, Δ denotes the maximum degree of the graph considered.

1.1 Results

Our main contribution (Theorem1) is that the outerplanar one-bend slope num-
ber of every outerplanar graph is equal to the above-mentioned obvious lower

K. Knauer—Supported by ANR EGOS grant ANR-12-JS02-002-01 and PEPS grant
EROS.
B. Walczak—Supported by MNiSW grant 911/MOB/2012/0.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 549–561, 2016.
DOI: 10.1007/978-3-662-49529-2 41

550 K. Knauer and B. Walczak

bound of �Δ
2 � except for graphs with Δ = 2 that contain cycles, which need 2

slopes. For general graphs, we show that every graph admits a one-bend drawing
using at most �Δ

2 � + 1 slopes (Theorem 7), which improves on the upper bound
of Δ + 1 by Dujmović et al. [7].

For planar graphs, it was shown by Keszegh et al. [14] that the planar one-
bend slope number is always at most 2Δ. In the same paper, it was shown that
sometimes 3

4 (Δ − 1) slopes are necessary. We improve the upper bound to 3
2Δ

(Proposition 4) and bound the planar one-bend slope number of planar bipartite
graphs by Δ + 1 (Proposition 5). We also show that there are planar bipartite
graphs requiring 2

3 (Δ−1) slopes in any planar one-bend drawing (Proposition 6).
Furthermore, Keszegh et al. [14] showed that every planar graph admits a planar
2-bend drawing with �Δ

2 � slopes.
Apart from improving upon earlier results, one of our motivations for study-

ing the one-bend slope number is that it arises as a relaxation of the slope
number, a measure of “geometric complexity” of a graph studied quite exten-
sively since the 1990s. The one-bend slope number also naturally generalizes
problems concerning one-bend orthogonal drawings, which have been of interest
in the graph drawing community over the past years. We continue with a short
overview of these studies. In addition to that, drawings with few slopes are moti-
vated by the real-world need for maps and diagrams of large networks that are
well-understandable for the human eye.

1.2 Related Results: Slope Number

The slope number of a graph G, introduced by Wade and Chu [25], is the smallest
number s such that there is a straight-line drawing of G using s slopes. As for
the one-bend slope number, �Δ

2 � is an obvious lower bound on the slope number.
Dujmović and Wood [8] asked whether the slope number can be bounded from
above by a function of the maximum degree. This was answered independently
by Barát et al. [1] and by Pach and Pálvölgyi [23] in the negative: graphs with
maximum degree 5 can have arbitrarily large slope number. Dujmović et al. [7]
further showed that for all Δ � 5 and sufficiently large n, there exists an n-vertex
graph with maximum degree Δ and slope number at least n

1
2− 1

Δ−2−o(1). On the
other hand, Mukkamala and Pálvölgyi [20] proved that graphs with maximum
degree 3 have slope number at most 4, improving earlier results of Keszegh et
al. [15] and of Mukkamala and Szegedy [21]. The question whether graphs with
maximum degree 4 have slope number bounded by a constant remains open.

The situation is different for planar straight-line drawings. It is well known
that every planar graph admits a planar straight-line drawing. The planar slope
number of a planar graph G is the smallest number s such that there is a planar
straight-line drawing of G using s slopes. This parameter was first studied by
Dujmović et al. [6] in relation to the number of vertices. They also asked whether
the planar slope number of a planar graph is bounded in terms of its maximum
degree. Jeĺınek et al. [12] gave an upper bound of O(Δ5) for planar graphs of

Graph Drawings with One Bend and Few Slopes 551

treewidth at most 3. Lenhart et al. [17] showed that the maximum planar slope
number of a graph of treewidth at most 2 lies between Δ and 2Δ. Di Giacomo
et al. [5] showed that subcubic planar graphs with at least 5 vertices have planar
slope number at most 4. The problem has been solved in full generality by
Keszegh et al. [14], who showed (with a non-constructive proof) that the planar
slope number is bounded from above by an exponential function of the maximum
degree. It is still an open problem whether this can be improved to a polynomial
upper bound.

Knauer et al. [16] showed that every outerplanar graph with Δ � 4 has an
outerplanar straight-line drawing using at most Δ − 1 slopes and this bound is
best possible. For outerplanar graphs with Δ = 2 or Δ = 3, the optimal upper
bound is 3.

1.3 Related Results: Orthogonal Drawings

Drawings of graphs that use only the horizontal and the vertical slopes are
called orthogonal. Every drawing with two slopes can be made orthogonal by a
simple affine transformation of the plane. Felsner et al. [9] proved that a graph G
with Δ � 4 admits a one-bend orthogonal drawing if and only if every induced
subgraph H of G satisfies E(H) � 2V (H) − 2. Since outerplanar graphs satisfy
the latter condition, it follows that every outerplanar graph with Δ � 4 admits
a one-bend orthogonal drawing (our Theorem1 gives an outerplanar one-bend
orthogonal drawing). Biedl and Kant [2] and Liu et al. [18] showed that every
planar graph with Δ � 4 has a planar 2-bend orthogonal drawing with the only
exception of the octahedron, which has a planar 3-bend orthogonal drawing.
Kant [13] showed that every planar graph with Δ � 3 has a planar one-bend
orthogonal drawing with the only exception of K4. Nomura et al. [22] proved that
every triangle-free outerplanar graph with Δ � 3 has an outerplanar straight-line
orthogonal drawing.

1.4 Related Results: Upward Drawings

Another setting in which one-bend drawings have been considered are upward
one-bend drawings of diagrams of posets. Here an edge from a smaller to a larger
element of the poset has to be represented by a y-monotone path with at most
one bend. Czyzowicz et al. [4] showed that diagrams with maximum degree Δ
have an upward one-bend drawing using at most Δ slopes. On the other hand,
Czyzowicz [3] constructed examples showing that in the straight-line setting the
number of slopes cannot be bounded by the maximum downward or upward
degree (whichever is larger) even in the case of lattices. To our knowledge, it is
open whether there exists a function f such that the upward slope number of
diagrams of maximum degree Δ is bounded from above by f(Δ).

552 K. Knauer and B. Walczak

2 Outerplanar Graphs

The main contribution of this section is to show the following:

Theorem 1. Every outerplanar graph with maximum degree Δ admits an out-
erplanar one-bend drawing using at most max{�Δ

2 �, 2} slopes. Furthermore, the
set of slopes can be prescribed arbitrarily.

The structure of the proof of Theorem1 will follow the same recursive decom-
position of an outerplanar graph into bubbles that was used in [16] in the proof
that every outerplanar graph has a straight-line outerplanar drawing using at
most Δ−1 slopes. Although this decomposition is very natural, for completeness
we present it in detail recalling definitions and lemmas from [16].

Let G be an outerplanar graph provided together with its arbitrary outerpla-
nar drawing in the plane. The drawing determines the cyclic order of edges at
each vertex and identifies the outer face (which is unbounded and contains all
vertices on its boundary) and the inner faces of G. The edges on the boundary
of the outer face are outer edges, and all remaining ones are inner edges. A snip
is a simple closed counterclockwise-oriented curve γ which

– passes through some pair of vertices u and v of G (possibly being the same
vertex) and through no other vertex of G,

– on the way from v to u goes entirely through the outer face of G and crosses
no edge of G,

– on the way from u to v (considered only when u �= v) goes through inner faces
of G possibly crossing some inner edges of G that are not incident to u or v,
each at most once,

– crosses no edge of G incident to u or v at a point other than u or v.

Every snip γ defines a bubble H in G as the subgraph of G induced by the
vertices lying on or inside γ. Since γ crosses no outer edges, H is a connected
induced subgraph of G. The roots of H are the vertices u and v together with
all vertices of H adjacent to G−H. The snip γ breaks the cyclic clockwise order
of the edges of H around each root of H making it a linear order, which we
envision as going from left to right. We call the first edge in this order leftmost
and the last one rightmost. The root-path of H is the simple oriented path P in
H that starts at u with the rightmost edge, continues counterclockwise along the
boundary of the outer face of H, and ends at v with the leftmost edge. If u = v,
then the root-path consists of that single vertex only. All roots of H lie on the
root-path—their sequence in the order along the root-path is the root-sequence
of H. A k-bubble is a bubble with k roots. See Fig. 1 for an illustration.

Except at the very end of the proof where we regard the entire G as a bubble,
we deal with bubbles H whose first root u and last root v are adjacent to G−H.
For such bubbles H, all the roots, the root-path, the root-sequence and the left-
to-right order of edges at every root do not depend on the particular snip γ used

Graph Drawings with One Bend and Few Slopes 553

u

H1

H2

H3

H4

H5

H6 H8
H9

H10

w

v

H7

Fig. 1. A 3-bubble H with root-path drawn thick, root-sequence (u, w, v) (connected to
the remaining graph by dashed edges), and splitting sequence (H1, . . . , H10), in which
H1, H3, H5, H6, H9 are v-bubbles and H2, H4, H7, H8, H10 are e-bubbles.

to define H. Specifically, for such bubbles H, the roots are exactly the vertices
adjacent to G − H, while the root-path consists of the edges of H incident to
inner faces of G that are contained in the outer face of H. From now on, we will
refer to the roots, the root-path, the root-sequence and the left-to-right order of
edges at every root of a bubble H without specifying the snip γ explicitly.

Lemma 2 ([16, Lemma 1]). Let H be a bubble with root-path v1 . . . vk. Every
component of H −{v1, . . . , vk} is adjacent to either one vertex among v1, . . . , vk

or two consecutive vertices from v1, . . . , vk. Moreover, there is at most one com-
ponent adjacent to vi and vi+1 for 1 � i < k.

Lemma 2 allows us to assign each component of H − {v1, . . . , vk} to a vertex
of P or an edge of P so that every edge is assigned at most one component. For
a component C assigned to a vertex vi, the graph induced by C ∪{vi} is called a
v-bubble. Such a v-bubble is a 1-bubble with root vi. For a component C assigned
to an edge vivi+1, the graph induced by C ∪{vi, vi+1} is called an e-bubble. Such
an e-bubble is a 2-bubble with roots vi and vi+1. If no component is assigned
to an edge of P , then we let that edge alone be a trivial e-bubble. All v-bubbles
of vi in H are naturally ordered by their clockwise arrangement around vi in
the drawing. All this leads to a decomposition of the bubble H into a sequence
(H1, . . . , Hb) of v- and e-bubbles such that the naturally ordered v-bubbles of v1
precede the e-bubble of v1v2, which precedes the naturally ordered v-bubbles of
v2, and so on. We call it the splitting sequence of H. The splitting sequence of a
single-vertex 1-bubble is empty. Every 1-bubble with more than one vertex is a
v-bubble or a bouquet of several v-bubbles. The splitting sequence of a 2-bubble
may consist of several v- and e-bubbles. Again, see Fig. 1 for an illustration.

The following lemma provides the base for the recursive structure of the proof
of Theorem 1. See Fig. 2 for an illustration.

Lemma 3 ([16, Lemma 2, statements 2.1 and 2.3]).

1. Let H be a v-bubble rooted at u. Let u1, . . . , uk be the neighbors of u in H
from left to right. Then H − {u} is a bubble with root-sequence (u1, . . . , uk).

554 K. Knauer and B. Walczak

u vu u v

u1 u1 u1uk v� v�

uk v1

uk = v1

Fig. 2. Various ways of obtaining smaller bubbles from v- and e-bubbles described in
Lemma 3. The new bubbles are grayed, and the new root-paths are drawn thick.

2. Let H be an e-bubble with roots u and v. Let u1, . . . , uk, v and u, v1, . . . , v�

be respectively the neighbors of u and v in H from left to right. Then H −
{u, v} is a bubble with root-sequence (u1, . . . , uk, v1, . . . , v�) in which uk and
v1 coincide if the inner face of H containing uv is a triangle.

Proof (Theorem 1). We fix s � 2, assume to be given an outerplanar graph G
with maximum degree Δ � 2s, and construct an outerplanar one-bend drawing
of G with a prescribed set of s slopes. Actually, for most of the proof, we assume
s � 3. The case s = 2 is sketched at the very end of the proof.

Let D denote the set of 2s directions, that is, oriented slopes from the pre-
scribed set of s slopes. For a direction d ∈ D, let d− and d+ denote respectively
the previous and the next directions in the clockwise cyclic order on D.

We can assume without loss of generality that every vertex of G has degree
either 1 or 2s. Indeed, we can raise the degree of any vertex by connecting it to
new vertices of degree 1 placed in the outer face. With this assumption, at each
vertex u, the direction in which one edge leaves u determines the directions of
the other edges at u. When a vertex u has all edge directions determined, we
write d(uv) to denote the direction determined for an edge uv at u.

For an edge uv drawn as a union of two segments ux and xv and for two
directions dv, du ∈ D consecutive in the clockwise order on D, let Q(uv, du, dv)
denote the quadrilateral uxvy, where y is the intersection point of the rays going
out of u and v in directions du and dv, respectively. We express the condition
that the point y exists saying that the quadrilateral is well defined.

First, consider the setting of Lemma 3 statement 2. Assume that the edge
uv is the only predrawn part of H. Assume further that two leading directions
dv, du ∈ D that are consecutive in the clockwise order on D and have the fol-
lowing properties are provided:

a. −du /∈ {d(uu1), . . . , d(uuk)} and −dv /∈ {d(vv1), . . . , d(vv�)},
b. no part of the graph other than the edge uv and some short initial parts of

other edges at u and v is predrawn in the ε-neighborhood Qε of the quadri-
lateral Q = Q(uv, du, dv), for some sufficiently small ε > 0.

Graph Drawings with One Bend and Few Slopes 555

dv du

u v

ε

Fig. 3. Drawing bubbles: a v-bubble of Case 3 (left), an e-bubble (middle), and
a v-bubble of Case 2 (right). The directions du and dv used to draw the e-bubble
are also shown. The target quadrilaterals for e-bubbles are grayed.

We call Q the target quadrilateral for H. We will draw H in Qε in a way that will
guarantee that H does not cross the predrawn parts of the graph. To this end, we
need to draw the edges uu1, . . . , uuk, vv1, . . . , vv� and the bubble H ′ = H−{u, v}
obtained in the conclusion of Lemma3 statement 2.

The edges uu1, . . . , uuk, vv1, . . . , vv� and the root-path P of H ′ are drawn in
Qε in such a way that the following conditions are satisfied:

– each edge uui leaves u in direction d(uui), bends shortly after (but far enough
to avoid crossing other edges at u), and continues to ui in direction du,

– each edge vvi leaves v in direction d(vvi), bends shortly after (but far enough
to avoid crossing other edges at v), and continues to vi in direction dv,

– each edge xy of P leaves x in direction −d−
v if x ∈ {v1, . . . , v�−1} or −dv

otherwise, and leaves y in direction −d+u if y ∈ {u2, . . . , uk} or −du otherwise,
– for every edge xy of P , the quadrilateral Q(xy, du, dv) is well defined.

Figure 3 illustrates how to achieve such a drawing. As a consequence, dv and du

can be assigned as leading directions to the e-bubbles of the splitting sequence
of H ′, because (a) at their roots, the directions −dv and −du are occupied by
edges of the root-path of H ′ or by edges going to u and v, and (b) their target
quadrilaterals are pairwise disjoint except at their common vertices and are
contained in Qε far enough from u and v. The drawing of H is completed by
drawing all bubbles of the splitting sequence of H ′ recursively.

556 K. Knauer and B. Walczak

Now, consider the setting of Lemma 3 statement 1. Assume that the vertex
u is the only predrawn part of H. For ε > 0 as small as necessary, we will
draw H in the ε-neighborhood of the cone at u spanned clockwise between the
rays in directions d(uu1) and d(uuk). To this end, we need to draw the edges
uu1, . . . , uuk and the bubble H ′ = H−{u} obtained in the conclusion of Lemma3
statement 1. Then, the drawing of H can be scaled down towards u so as to avoid
crossing the other predrawn parts of the graph. We distinguish three cases:
Case 1: k = 1. The edge uu1 is drawn as a straight-line segment in direction
d(uu1), and the v-bubbles of the splitting sequence of H ′ are drawn recursively.
Case 2: k = 2. The edges uu1 and uu2 and the root-path P of H ′ are drawn
in such a way that the following conditions are satisfied:

– the edge uu1 leaves u in direction d(uu1), bends, and continues to u1 in direc-
tion d(uu2),

– the edge uu2 leaves u in direction d(uu2), bends, and continues to u2 in direc-
tion d(uu1),

– each edge xy of P leaves x in direction −d(uu1) and y in direction −d(uu2),
– for every edge xy of P , the quadrilateral Q(xy, d(uu2), d(uu1)) is well defined.

Figure 3 illustrates how to achieve such a drawing. As a consequence, d(uu1)
and d(uu2) can be assigned as leading directions to the e-bubbles of the splitting
sequence of H ′. The drawing of H is completed by drawing all bubbles of the
splitting sequence of H ′ recursively.
Case 3: k � 3. Let P denote the root-path of H and uk−1x1 . . . xmuk denote the
part of P between uk−1 and uk. Choose a direction d ∈ {d(uu1), . . . , d(uuk)} so
that −d /∈ {d(uu1), . . . , d(uuk)}. The edges uu1, . . . , uuk and the root-path P
are drawn in such a way that the following conditions are satisfied:

– each edge uui leaves u in direction d(uui), bends shortly after, and continues
to ui in direction d,

– each edge xy of P leaves x in direction −d if x ∈ {x1, . . . , xm} or −d− oth-
erwise, and leaves y in direction −d+ if y ∈ {u2, . . . , uk−1, x1, . . . , xm, uk} or
−d otherwise.

– for every edge xy of P , the quadrilateral Q(xy, dxy
x , dxy

y) is well defined, where

(dxy
x , dxy

y) =

{
(d, d−) if x, y ∈ {uk−1, x1,. . . , xm, uk},

(d+, d) otherwise.

Again, Fig. 3 illustrates how to achieve such a drawing. As a consequence, dxy
y

and dxy
x can be assigned as leading directions to every e-bubble of the splitting

sequence of H ′, where x and y are the roots of the e-bubble (case distinction in
the definition of (dxy

x , dxy
y) is needed to ensure property a). The drawing of H is

completed by drawing all bubbles of the splitting sequence of H ′ recursively.
To complete the proof for s � 3, pick any vertex u of G of degree 1, assign

an arbitrary direction to the edge at u, and continue the drawing as in Case 1.
The proof for s = 2 keeps the same general recursive scheme following from

Lemma 3. As before, all e-bubbles are drawn in ε-neighborhoods of their target

Graph Drawings with One Bend and Few Slopes 557

u v

u v v

u u

u

Fig. 4. Various ways of drawing v- and e-bubbles when s = 2. The target quadrilaterals
for recursive e-bubbles are grayed. The edges of the root-path of H ′ that form trivial
e-bubbles do not have target quadrilaterals.

quadrilaterals, which are always parallelograms when s = 2. The details of the
drawing algorithm for various possible cases should be clear from Fig. 4. ��

3 Planar Graphs and Planar Bipartite Graphs

Using contact representations as in [14, Theorem 2], where the upper bound of
2Δ on the planar one-bend slope number is shown for planar graphs, we improve
the upper bounds on this parameter for planar and bipartite planar graphs.

Proposition 4. Every planar graph with maximum degree Δ admits a planar
one-bend drawing using at most Δ + �Δ

2 � − 1 slopes.

Proof. Let G be a graph as in the statement. By [11, Theorem 4.1], G can be
represented as a contact graph of T-shapes in the plane. Every T-shape consists
of a horizontal segment and a vertical segment touching at the upper endpoint
of the vertical one. That point, called the center of the T-shape, splits the
horizontal segment into the left segment and the right segment of the T-shape.
The T-shapes of the contact representation are modified as follows: for each
T-shape, considered one by one in the top-down order of horizontal segments,
move its vertical segment horizontally so as to make its left segment and its
right segment contain at most �Δ

2 � contact points with other T-shapes, and
scale accordingly the two bottomless rectangular stripes going down from the
left and the right segment. This keeps the contact graph unchanged.

We construct a one-bend drawing of G using a set SH of �Δ
2 � almost horizon-

tal slopes and a set SV of Δ−1 almost vertical slopes. We place each vertex v at
the center of the T-shape representing v unless all contact points of the T-shape

558 K. Knauer and B. Walczak

lie on the vertical segment. In the latter case, we put v on the vertical segment
of the T-shape so that it splits the segment into two parts containing at most
�Δ
2 � contact points. A vertex placed at the center of a T-shape emits at most

�Δ
2 � rays with slopes from SH towards the contact points on the left segment,

at most �Δ
2 � rays with slopes from SH towards the contact points on the right

segment, and at most Δ−1 rays with slopes from SV towards the contact points
on the vertical segment. A vertex placed on the vertical segment of a T-shape
emits at most �Δ

2 � rays with slopes from SV towards the contact points on either
of the two parts of the segment. For every edge of G, two appropriately chosen
rays, one with slope from SH and one with slope from SV , are joined near the
corresponding contact point to form a representation of that edge in the claimed
planar one-bend drawing of G, see Fig. 5(a). ��

(a) (b) (c)

Fig. 5. (a) One-bend drawing of a planar graph (b) One-bend drawing of a bipartite
planar graph (c) Graph G5 constructed in the proof of Proposition 6

Proposition 5. Every bipartite planar graph with maximum degree Δ admits a
planar one-bend drawing using at most 2�Δ

2 � slopes.

Proof. Let G be a graph as in the statement. By [10, Theorem 1.5], G can be
represented as a contact graph of horizontal and vertical segments in the plane.
We construct a one-bend drawing of G using a set SH of �Δ

2 � almost horizontal
slopes and a set SV of �Δ

2 � almost vertical slopes. We place every vertex v of
G on the segment representing v so that it splits the segment into two parts
containing at most �Δ

2 � contact points with other segments. A vertex placed
on a horizontal segment emits at most �Δ

2 � rays with slopes from SH towards
the contact points on either of the two parts of the segment. Similarly, a vertex
placed on a vertical segment emits at most �Δ

2 � rays with slopes from SV towards
the contact points on either of the two parts of the segment. For every edge of G,
two appropriately chosen rays, one with slope from SH and one with slope from
SV , are joined near the corresponding contact point to form a representation of
that edge in the claimed planar one-bend drawing of G, see Fig. 5(b). ��

The following is a straightforward adaptation of [14, Theorem 4], where pla-
nar graphs with planar one-bend slope number at least 3

4 (Δ−1) are constructed.

Graph Drawings with One Bend and Few Slopes 559

Proposition 6. For every Δ � 3, there is a planar bipartite graph with maxi-
mum degree Δ and with planar one-bend slope number at least 2

3 (Δ − 1).

Proof. A graph GΔ of maximum degree Δ is constructed starting from a plane
drawing of the 3-dimensional cube. Two opposite faces of the cube are chosen,
say, the outer and the central. In either of them, a cycle of 8Δ−28 new vertices is
drawn; then, each boundary vertex of the face picks a subpath of 2Δ−7 vertices
of the cycle and connects to the Δ− 3 odd vertices of the subpath, see Fig. 5(c).

It is well known that the measures of the interior angles of a simple k-gon
sum up to (k − 2)π. This is a consequence of a more general observation: if P is
a simple k-gon (with angles of measure π allowed), then every slope is covered
exactly k − 2 times by interior angles of P . For the purpose of this statement, at
each vertex of P , either of the two directions of a slope is counted separately—
once if it points towards the interior of P and 1

2 times if it points towards the
boundary of P . Therefore, if S is a set of slopes and P is a simple k-gon drawn
using slopes from S, then every slope from S can be used by at most k − 2
segments that are sides of P or go from a vertex of P towards the interior of P .

Suppose we are given a planar one-bend drawing of GΔ using a set of slopes
S. The restriction of the drawing to the starting cube must have one of the
two selected faces, call it F , as an inner face. The face F is drawn as a simple
octagon (with angles of measure π allowed), and each of the four vertices of the
cube that lie on the boundary of F emits Δ − 3 edges towards the interior of
F . By the observation above, every slope from S can be used by at most 6 of
the 8 + 4(Δ − 3) segments that are sides of the octagon or initial parts of the
edges going from the four vertices towards the interior of F . We conclude that
8 + 4(Δ − 3) � 6|S|, which yields |S| � 2

3 (Δ − 1). ��

4 General Graphs

The main contribution of this section is to show the following:

Theorem 7. Every graph with maximum degree Δ admits a one-bend drawing
using at most �Δ

2 � + 1 slopes. Such a drawing exists with all vertices placed on
a common line. Furthermore, the set of slopes can be prescribed arbitrarily.

Proof. Let G be a graph with maximum degree Δ. By Vizing’s theorem [24],
G has a proper edge-coloring using at most Δ + 1 colors, and moreover, such a
coloring can be obtained in polynomial time [19]. This yields a partition of the
edge set of G into Δ+1 matchings M1, . . . , MΔ+1. Let n = |V (G)|−|MΔ+1|, and
let f : V (G) → {1, . . . , n} be such that f(u) = f(v) if and only if uv ∈ MΔ+1.

Let S be a set of k = �Δ
2 � + 1 slopes and � be a line with slope not in

S. Without loss of generality, we can assume that � is horizontal. Order S as
{s1, . . . , sk} clockwise starting from the horizontal slope (that is, if i < j, then
si occurs before sj when rotating a line clockwise starting from the horizontal
position). Fix n pairwise disjoint segments I1, . . . , In in this order on �.

560 K. Knauer and B. Walczak

Each vertex v of G is placed on the segment If(v). Each edge uv ∈ Mi with
1 � i � k−1 and f(u) < f(v) is drawn above � so that its slope at v is si and its
slope at u is sj , where j is the least index in {i+1, . . . , k−1} for which there is no
edge u′u ∈ Mj with f(u′) < f(u), or j = k if such an index does not exist. This
way, since M1, . . . , Mk−1 are matchings, no two edges of M1, . . . , Mk−1 use the
same slope at any vertex. The edges of Mk, . . . , MΔ are drawn in an analogous
way below �. At least one slope above � and at least one below � are left free at
every vertex.

Now, consider an edge uv ∈ MΔ+1. In the drawing presented above, u and v
have degree at most Δ − 1, so either of them has an additional free slope above
or below �. Therefore, either above or below �, there are two distinct slopes, one
free at u and the other free at v. They can be used to draw the edge uv if u and
v are placed in an appropriate order within If(u) = If(v). Occurrence of bend
points of some edges on other edges can be fixed by perturbing vertices slightly
within their segments on �. ��

5 Problems

Apart from determining precisely the planar one-bend slope number of planar
and planar bipartite graphs, it would be interesting to drop the restriction to
the very particular set of slopes in the constructions in Propositions 4 and 5. Are
there planar one-bend drawings of planar graphs that work for any given set of
few slopes (like all the other constructions in the present paper)?

The second problem concerns one-bend drawings of general graphs. The
results of [9] directly yield a characterization of the graphs that require �Δ

2 � + 1
slopes for a one-bend drawing when Δ � 4. Are there graphs with Δ � 5 that
require �Δ

2 � + 1 slopes for a one-bend drawing?

Acknowledgment. We are grateful to Piotr Micek for fruitful discussions.

References

1. Barát, J., Matoušek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily large
geometric thickness. Electron. J. Combin. 13(1), #R3, 14 pp. (2006)

2. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.
Geom. 9(3), 159–180 (1994)

3. Czyzowicz, J.: Lattice diagrams with few slopes. J. Combin. Theory, Ser. A 56(1),
96–108 (1991)

4. Czyzowicz, J., Pelc, A., Rival, I., Urrutia, J.: Crooked diagrams with few slopes.
Order 7(2), 133–143 (1990)

5. Di Giacomo, E., Liotta, G., Montecchiani, F.: The planar slope number of subcubic
graphs. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 132–143.
Springer, Heidelberg (2014)

6. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007)

Graph Drawings with One Bend and Few Slopes 561

7. Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Com-
put. Geom. 38(3), 181–193 (2007)

8. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theor.
Comput. Sci. 6(2), 339–358 (2004)

9. Felsner, S., Kaufmann, M., Valtr, P.: Bend-optimal orthogonal graph drawing in
the general position model. Comput. Geom. 47(3), 460–468 (2014)

10. de Fraysseix, H., de Mendez, P.O., Pach, J.: A left-first search algorithm for planar
graphs. Discrete Comput. Geom. 13(3–4), 459–468 (1995)

11. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs.
Combin. Prob. Comput. 3(2), 233–246 (1994)

12. Jeĺınek, V., Jeĺınková, E., Kratochv́ıl, J., Lidický, B., Tesař, M., Vyskočil, T.: The
planar slope number of planar partial 3-trees of bounded degree. Graphs Combin.
29(4), 981–1005 (2013)

13. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),
4–32 (1996)

14. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree
with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)

15. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most
five slopes. Comput. Geom. 40(2), 138–147 (2008)

16. Knauer, K., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes.
Comput. Geom. 47(5), 614–624 (2014)

17. Lenhart, W., Liotta, G., Mondal, D., Nishat, R.I.: Planar and plane slope number
of partial 2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp.
412–423. Springer, Heidelberg (2013)

18. Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of
planar graphs in the two-dimensional grid. Discrete Appl. Math. 81(1–3), 69–91
(1998)

19. Misra, J., Gries, D.: A constructive proof of Vizing’s theorem. Inform. Process.
Lett. 41(3), 131–133 (1992)

20. Mukkamala, P., Pálvölgyi, D.: Drawing cubic graphs with the four basic slopes. In:
van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 254–265.
Springer, Heidelberg (2012)

21. Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four
directions. Comput. Geom. 42(9), 842–851 (2009)

22. Nomura, K., Tayu, S., Ueno, S.: On the orthogonal drawing of outerplanar graphs.
In: Chwa, K.-Y., Munro, J.I. (eds.) COCOON 2004. LNCS, vol. 3106, pp. 300–308.
Springer, Heidelberg (2004)

23. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope
numbers. Electron. J. Combin. 13(1), #N1, 4 pp. (2006)

24. Vizing, V.G.: Ob otsenke khromaticheskogo klassa p-grafa (On an estimate of the
chromatic class of a p-graph). Diskret. Analiz 3, 25–30 (1964)

25. Wade, G.A., Chu, J.H.: Drawability of complete graphs using a minimal slope set.
Comput. J. 37(2), 139–142 (1994)

Edge-Editing to a Dense
and a Sparse Graph Class

Michal Kotrbč́ık1, Rastislav Královič2, and Sebastian Ordyniak3(B)

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
kotrbcik@fi.muni.cz

2 Department of Computer Science, Comenius University, Bratislava, Slovakia
kralovic@dcs.fmph.uniba.sk

3 Institute of Information Systems, TU Wien, Vienna, Austria
sordyniak@gmail.com

Abstract. We consider a graph edge-editing problem, where the goal
is to transform a given graph G into a disjoint union of two graphs
from a pair of given graph classes, investigating what properties of the
classes make the problem fixed-parameter tractable. We focus on the
case when the first class is dense, i.e. every such graph G has minimum
degree at least |V (G)| − δ for a constant δ, and assume that the cost of
editing to this class is fixed-parameter tractable parameterized by the
cost. Under the assumptions that the second class either has bounded
maximum degree, or is edge-monotone, can be defined in MSO2, and
has bounded treewidth, we prove that the problem is fixed-parameter
tractable parameterized by the cost. We also show that the problem
is fixed-parameter tractable parameterized by degeneracy if the second
class consists of independent sets and Subgraph Isomorphism is fixed-
parameter tractable for the input graphs. On the other hand, we prove
that parameterization by degeneracy is in general W[1]-hard even for
editing to cliques and independent sets.

Keywords: Graph modification problems · Clique-editing ·
Degeneracy · Parameterized complexity · Treewidth

1 Introduction

Graph editing problems ask for modifying an input graph to a graph with a given
property using at most k operations, where the allowed operations are usually
edge addition, edge deletion, vertex deletion, or their combinations. Variants
of graph editing problems received significant attention ever since the seminal
Yannakakis’s paper [23], and have found use in many application areas including
machine learning [2], and social networks [13,18]. Graph editing is similarly

M. Kotrbč́ık and S. Ordyniak—Research funded by the Employment of Newly Grad-
uated Doctors of Science for Scientific Excellence (CZ.1.07/2.3.00/30.0009) and the
Austrian Science Fund (FWF, project P26696).

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 562–575, 2016.
DOI: 10.1007/978-3-662-49529-2 42

Edge-Editing to a Dense and a Sparse Graph Class 563

interesting from the algorithm design point of view and a considerable effort
was invested into determining the (parameterized) complexity of editing into
particular graph classes, for example, Eulerian graphs [7,11], regular graphs
[16,17], or hereditary classes [6]; for a recent survey we refer to Bodlaender
et al. [3].

Recently, variants of graph editing involving two classes were considered. The
goal in these problems is to change a given graph into a disjoint union of two
graphs, one from each class, using as few edge insertions and deletions as possi-
ble. A particular instance of editing to two classes, the CliqueEditing problem,
asks for editing into a disjoint union of a clique and an independent set and arises
as a clustering problem in noisy data sets [8]. CliqueEditing is fixed-parameter
tractable (and solvable in subexponential time) parameterized by the number of
edge modifications [8]. Only later it was shown that CliqueEditing is NP-hard,
both in the general case and in the class of bipartite graphs [15]. On the other hand,
CliqueEditing is solvable in polynomial-time on planar graphs [15], admits a
PTAS on bipartite graphs [15], and there is a 3-approximation algorithm on gen-
eral graphs [14]. A different case of editing to two classes considers editing to a
disjoint union of a balanced biclique (Kn,n) and an independent set [14] — the
problem admits a kernelization scheme that for any positive ε yields a kernel of
size εk, where k is the cost of editing.

Our Results. We consider the problem of (C1, C2)-Editing, where the goal is
to transform an input graph G into a disjoint union of two graphs, one from C1

and the other from C2, using as few edge insertions and deletions as possible.
Editing to two classes is a quite general problem, for example, one can imagine
a scenario as follows. A bus network, represented by a graph, is going to be split
and sold to two interested parties. The parties are interested only in networks
with certain topology, and the network may need to be changed to accommodate
the supported topologies. The cost of edge modifications then represents the
inherent cost of changing the infrastructure accordingly. The cost of editing to
two classes corresponds to the minimum cost of infrastructure changes required
to transfer the network to parties (or one of them) while still serving all the
nodes in the network.

In this paper we focus on the theoretical aspects of the problem and pursue
the question when is editing to two classes tractable. In line with the existing
research, we focus on the case where C1 is a dense and C2 is a sparse class.
Technically, we achieve this by requiring all graphs G from C1 to have mini-
mum degree at least |V (G)| − δ for some constant δ and requiring C2 to have
bounded either maximum degree, or treewidth. Our main contribution is a gen-
eral approach which allows us to treat many cases in a unified fashion, using
very little class-specific structural information. First, we introduce novel notions
of weakly-hereditary and weakly anti-hereditary classes. These properties guar-
antee that the cost of editing to a graph in C does not change enormously by
omitting only one vertex from the graph, respectively by adding an isolated
vertex to a graph, see Sect. 4 for details. Second, we make use of a separation

564 M. Kotrbč́ık et al.

property between dense weakly hereditary and weakly-anti hereditary classes,
which implies that the degrees of the induced subgraph that is being edited to
the dense class are large in terms of the size of the subgraph. Finally, to obtain
a solution, at some point it is necessary to perform computations for individ-
ual classes. This is achieved by assuming that the cost of single-class editing is
either decidable or fixed-parameter tractable, or by assuming that the class can
be defined in MSO2 logic. In particular, we show that for bounded degree sparse
classes (C1, C2)-Editing is fixed-parameter tractable parameterized by the cost
of the editing as long as costC1(G) and costC2(G) are fixed-parameter tractable.
For bounded treewidth sparse classes, the problem is fixed-parameter tractable
parameterized by the cost whenever costC1(G) is fixed-parameter tractable and
C2 is an edge-monotone and MSO2-definable class. Our assumptions, in particu-
lar on the sparse classes, are weak, since our results hold for example for regular
graphs, acyclic graphs, bounded degree trees, and k-colorable or bounded genus
graphs with bounded treewidth.

For parameterization by degeneracy we prove that the problem is fixed-
parameter tractable assuming only computability of costC1(G), the tradeoff is
that the input graphs have to belong to a class for which Subgraph Iso-

morphism is fixed-parameter tractable, and that C2 contains only independent
sets. Since graphs with bounded expansion have bounded degeneracy and admit
Subgraph Isomorphism in FPT, we obtain a linear-time algorithm for (C, I)-
Editing when the input graphs have bounded expansion, where I is the class
of all independent sets, which is a great improvement over the existing O(n11)
algorithm for CliqueEditing on planar graphs. On the other hand, we prove
that the parameterization by degeneracy is in general W[1]-hard already for
CliqueEditing. Finally, we obtain a kernel if costC1(G) is computable in poly-
nomial time and the class C2 contains all graphs with maximum degree Δ. With-
out the second condition, or a similarly strong assumption about the structure
of the graphs in the second class, it would not be possible to guarantee that the
instance constructed as a kernel has the desired cost.

2 Preliminaries

We assume that the reader is familiar with the basic concepts and definitions of
parameterized complexity; for details we refer to the standard texts on parame-
terized complexity [9,10,20].

2.1 Graphs

We use standard graph-theoretic notation and terminology and consider only
finite, undirected, and simple graphs. For disjoint sets of vertices A and B of
a graph G, by EG(A,B) we denote the set of edges of G with one endpoint in
A and the other in B; if the graph G is clear from the context we omit the
subscript G. For a graph G, by |G| we denote the number of vertices of G and
by degG(v) the degree of a vertex v in G. For a set of vertices X and a set of

Edge-Editing to a Dense and a Sparse Graph Class 565

edges Y of a graph G, we denote by G[X] the subgraph of G induced by X, by
G\X the subgraph of G induced by V (G)\X, and by G\Y the subgraph of G
with vertices V (G) and edges E(G)\Y . The degeneracy of a graph G is defined
as the minimum integer r such that every subgraph of G has minimum degree at
most r and is denoted by degen(G). Finally, the isomorphism relation between
graphs is denoted by ∼=.

2.2 Treewidth

A tree-decomposition T of a graph G is a pair (T, χ), where T is a tree and χ is a
function that assigns each tree node t a set χ(t) ⊆ V (G) of vertices such that the
following conditions hold: (T1) For every vertex v ∈ V (G), there is a tree node t
such that v ∈ χ(t), (T2) For every edge {u, v} ∈ E(G) there is a tree node t such
that u, v ∈ χ(t), (T3) For every vertex v ∈ V (G), the set of tree nodes t with v ∈
χ(t) forms a subtree of T . The sets χ(t) are called bags of the decomposition T and
χ(t) is the bag associated with the tree node t. The width of a tree-decomposition
(T, χ) is the size of a largest bag minus 1. A tree-decomposition of minimum width
is called optimal. The treewidth of a graph G, denoted by tw(G), is the width of
an optimal tree decomposition of G.

Proposition 1. Let G be a graph and let G′ be a graph obtained from G by
applying at most k edge-modifications to G. Then tw(G) ≤ tw(G′) + k.

Proposition 2 [4]. Let G be a graph and ω a natural number. Then the prob-
lems of deciding whether G has a tree-decomposition of width at most ω and
if yes, constructing such a tree-decomposition, are linear time fixed-parameter
tractable parameterized by ω.

2.3 Monadic Second Order Logic and Monotone Classes

We consider Monadic Second Order (MSO2) logic on graphs in terms of their
incidence structure whose universe contains vertices and edges; the incidence
between vertices and edges is represented by a binary relation. We assume an infi-
nite supply of individual variables x, x1, x2, . . . and of set variables X,X1,X2, . . .
The atomic formulas are Ixy (“vertex x is incident with edge y”), x = y (equal-
ity), x �= y (inequality), and Xx (“vertex or edge x is an element of set X”).
MSO formulas are built up from atomic formulas using the usual Boolean con-
nectives (¬,∧,∨,→,↔), quantification over individual variables (∀x, ∃x), and
quantification over set variables (∀X, ∃X).

Let Φ(X) be an MSO2 formula with a free set variable X. For a graph G and
a set S ⊆ E(G) we write G |= Φ(S) if the formula Φ holds true on G whenever
X is instantiated with S.

The following theorem shows that if G has bounded treewidth, then in linear-
time we can verify whether there is an S with G |= Φ(S) and |S| ≤ �.

Theorem 3 [1]. Let Φ(X) be an MSO2 formula with a free set variable X and
let ω be a constant. Then there is a linear-time algorithm that, given a graph G

566 M. Kotrbč́ık et al.

of treewidth at most ω, and an integer �, decides whether there is a set S ⊆ E(G)
with |S| ≤ � such that G |= Φ(S).

While the original version of Theorem3 [1] requires a tree-decomposition of
width at most w to be provided with the input, for a graph of treewidth at most
w such a tree decomposition can be found in linear time (Proposition 2) and thus
the assumption is not necessary.

To employ Theorem 3, we utilize MSO2-definable graph classes. A class C is
MSO2-definable if there is an MSO2 formula ΦC(X) such that for any graph G,
the formula ΦC(X) is satisfiable on G if and only if G belongs to C. The vast
majority of well studied graph classes are MSO2-definable, examples include all
graphs with bounded treewidth or bounded genus, bipartite, chordal, and perfect
graphs, r-degenerate graphs for any r, trees, cliques, and many others. For our
approach we additionally need the graph class to be monotone (with respect
to edge deletion), that is, if G belongs to the class, then every subgraph of G
on V (G) also belongs to the class. Monotone classes are well studied (see for
example Rivest and Vuillemin [22]) and examples of monotone MSO2-definable
graph classes include acyclic graphs, bipartite graphs, r-degenerate graphs for
any r, or the class of all graphs with genus at most g.

3 Problem Definition

We consider the problem of edge-editing a graph to a disjoint union of two
graphs, one from C1 and the other from C2. More formally, for a graph class C
and a graph G, by costC(G) we denote the minimum number of edge additions
and edge removals required to modify G to a graph in C. In other words, costC(G)
is the minimum size of a set of edges F such that the graph with vertex set V (G)
and edge set E(G)F belongs to C, where denotes the symmetric difference.
Note that costC(G) = 0 if and only if G belongs to C. If C does not contain
a graph on |V (G)| vertices, then we let costC(G) = ∞. Let C1 and C2 be two
graph classes. Let G be a graph and D and S two induced subgraphs of G whose
vertex sets partition V (G). We define costG

C1,C2
(D,S) to be the minimum number

of edge additions and edge removals required to modify D to a graph in C1,
modify S to a graph in C2, and to remove all edges between D and S. Formally,
costG

C1,C2
(D,S) = costC1(D) + costC2(S) + |EG(D,S)|. For a graph G, any pair

(D,S) of vertex-disjoint induced subgraphs of G such that V (D)∪V (S) = V (G)
is called a solution of (C1, C2)-Editing. The cost of editing of G to (C1, C2)
is defined by costC1,C2(G) = min(D,S) costG

C1,C2
(D,S), where the minimum is

taken over all solutions. A solution (D,S) of (C1, C2)-Editing is optimum if
costG

C1,C2
(D,S) = costC1,C2(G). These definitions lead to the following problem.

(C1, C2)-Editing
Input: Graph G and a natural number k.
Question: Is costC1,C2(G) ≤ k?

Edge-Editing to a Dense and a Sparse Graph Class 567

We denote the class of all edgeless graphs by I and the class of all cliques
by K. If (C1, C2) = (K, I), then we call (C1, C2)-Editing problem CliqueEdit-

ing and omit (C1, C2) from the cost functions.
Consider the special case of (C, I)-Editing. Clearly, for any solution (D,S)

we have costG
C,I(D,S) = costC(D)+|E(D,S)|+|E(S)|. Since |E(D)|+|E(D,S)|+

|E(S)| = |E(G)|, we have

costG
C,I(D,S) = costC(D) + |E(G)| − |E(D)|. (1)

For a class of graphs C, the C-Cost problem asks whether, given a graph G
and a natural number k, it holds that costC(G) ≤ k. For the remainder of the
paper, we implicitly assume that the problems (C1, C2)-Editing and C-Cost

are parameterized by the cost of editing unless stated otherwise.

4 Graph Classes

In general, we are concerned with editing a given graph to a disjoint union of a
dense and a sparse graph; in this section we make the technical requirements on
the classes precise.

A class of graphs D is called a D(d, δ)-class, or a dense class, denoted by
D ∈ D(d, δ), if each graph G from D satisfies the following two conditions:

(D1) For each vertex v of G, the degree of v is at least |V (G)| − δ;
(D2) For each vertex v of G we have costD(G − v) ≤ d.

In the absence of significant structural information about the class, the condi-
tion (D2) or a similar one seems to be necessary for our approach. In particular,
without condition (D2), it would be possible that C contains a graph H with n
vertices, but does not contain any graph on n − 1 vertices (or all graphs from
C on n − 1 vertices are very far from H in terms of editing cost). In such cases,
an optimum solution might be forced to include a costly vertex just to raise the
number of vertices in the dense part to n. Consequently, it would not be possible
to prove a separation property analogous to the one we will prove in Lemma7,
which is crucial for our results.

On the other hand, the condition (D2) is not particularly restrictive. Indeed,
all hereditary graph classes (and in particular all minor-closed graph classes)
satisfy (D2) with d = 0, which leads us to call classes satisfying (D2) weakly
hereditary. The common property shared by the sparse classes considered in this
paper is the following property, which is in a sense complementary to (D2). A
class of graphs S is called weakly anti-hereditary if there is an integer s such that
for each graph G from S and for a vertex v not in G we have costS(G + v) ≤ s,
where G + v is the disjoint union of G and the single-vertex graph {v}. We call
a class S s-weakly anti-hereditary to indicate the smallest integer s for which S
satisfies the definition of weakly anti-hereditary class. Again, being weakly anti-
hereditary is not particularly restrictive, since many well studied graph classes
are weakly anti-hereditary. Examples include connected, bipartite, r-regular for
any r, k-colorable for any k, chordal, perfect, and bounded-genus graphs.

568 M. Kotrbč́ık et al.

Informally, to guarantee that a weakly anti-hereditary class is indeed sparse,
we additionally require either bounded maximum degree, or bounded treewidth
(graphs with treewidth ω have at most ωn edges). Specific basic examples of
weakly anti-hereditary classes of bounded degree Δ include independent sets
(Δ = 0, s = 0), matchings covering all but at most one vertex (Δ = 1, s = 1),
paths (Δ = 2, s = 1), cycles (Δ = 2, s = 3), disjoint unions of paths (Δ = 2,
s = 0), disjoint unions of cycles (Δ = 2, s = 3), forests with bounded maximum
degree Δ (s = 0), trees with bounded maximum degree Δ (s = 1), and r-regular
graphs for any even r (Δ = r, s = 2r).1 Further examples of sparse classes may
be obtained by considering any weakly anti-hereditary class and restricting it to
graphs with maximum degree Δ for suitably chosen Δ. Similarly, examples of
weakly anti-hereditary classes of bounded treewidth include acyclic graphs and
any weakly anti-hereditary class restricted to graphs with treewidth at most ω.
Examples of dense classes may be obtained by taking complements of bounded
degree sparse classes (see the next section for the precise definition). While we
postpone verification of the fact that these classes have all the required properties
to Sect. 7, the preceding classes can be used by the reader as specific illustrative
examples of classes covered by our main theorems in Sect. 6.

5 Editing to a Single Class

To design parameterized algorithms for editing to two graph classes, it is neces-
sary to assume that the cost of single-class editing can be determined efficiently.
In this section we introduce the notation for the complexity of single-class edit-
ing and present several tools assuring efficient computation of the cost of single-
class editing. These results are then used in Sect. 7 to establish the required
complexity of editing to the basic examples of graph classes from the previous
section. Except for the introduction of our notation in the following paragraph,
the reader interested only in the framework for editing into two classes may skip
the remainder of this section.

To discriminate among the complexity classes of the cost of single-class edit-
ing, we introduce additional notation as follows. By DP(d, δ) we denote the
set of all D(d, δ) classes C such that C-Cost can be computed in polyno-
mial time. Similarly, by DFPT(d, δ) we denote the set of all D(d, δ) classes C
such that C-Cost is fixed-parameter tractable. Finally, by DC(d, δ) we denote
the set of all D(d, δ) classes C such that C-Cost is computable. Observe that
DP(d, δ) ⊆ DFPT(d, δ) ⊆ DC(d, δ) and that if C ∈ DFPT(d, δ), then it is possible
to decide the membership in C in polynomial time.

The following lemma allows us to considerably weaken the requirements on
the complexity of computation of the single-class editing cost function, and thus
it may be interesting on its own.

1 Note that in the case of r-regular graphs the smallest graph in the class has r + 1
vertices.

Edge-Editing to a Dense and a Sparse Graph Class 569

Lemma 4. Let C be a class of graphs with maximum degree at most Δ such that
C-Cost is fixed-parameter tractable when the input is restricted to graphs with
maximum degree at most Δ. Then C-Cost is fixed-parameter tractable.

In particular, we use the preceding lemma to prove Theorem 16 that estab-
lishes the complexity of single-class editing of several of the examples given in
Sect. 4. While the proof of Theorem16 treats each class separately and it is
rather difficult to envision a general proof, we are able to show in a uniform way
that S-Cost is fixed-parameter tractable for MSO2-definable sparse classes of
bounded treewidth

Theorem 5. Let S be a monotone, MSO2-definable class of bounded treewidth.
Then S-Cost is fixed-parameter tractable.

We say that a class C1 is complement of a class C2 if a graph G lies in C1 if
and only if the complement of G lies in C2.

Proposition 6. Let S be a weakly hereditary class of bounded maximum degree.
Then the complement D of S is a D(d, δ) class for some d and δ. Furthermore, if
S-Cost is computable in polynomial time, fixed-parameter tractable, respectively
computable, then so is D-Cost.

6 Editing to Two Classes

In this section we give our fixed-parameter (in-)tractability results for variants
of the (C1, C2)-Editing problem parameterized by treewidth, the cost of editing,
respectively the degeneracy of the input graph.

We make use of the following separation lemma, which provides a lower
bound on the minimum degree in the dense part of any optimal solution. While
the lemma may seem intuitively clear, it is not necessarily the case. For instance,
it is not immediately obvious why the bound should not be a function of degrees
in S. However, even for weakly anti-hereditary classes of bounded degree Δ the
lemma would be false with the bound degD(v) ≥ (|D| + Δ − δ − d − s)/2.

Lemma 7. Assume that D ∈ D(d, δ), S is an s-weakly anti-hereditary class,
and let (D,S) be an optimum solution of (D, S)-Editing on a graph G. Then
degD(v) ≥ (|D| − δ − d − s)/2 for each vertex v of D.

6.1 Parameterization by Treewidth

Theorem 8. Let D ∈ DC(d, δ) and let S be a weakly anti-hereditary class. If
S is monotone and MSO2-definable, then (D, S)-Editing is fixed-parameter
tractable parameterized by treewidth.

Let (G, k) be an instance of (D, S)-Editing satisfying the assumptions of
Theorem 8 and let (D,S) be an optimum solution of (G, k). To prove the theorem
we first use Lemma 7 and the fact that a graph with treewidth ω has degeneracy

570 M. Kotrbč́ık et al.

at most ω to show that |D| ≤ 2ω + d + δ + s. Since S is monotone, no edge
is added to S. Therefore, to prove the theorem it is sufficient to show that the
problem of finding the dense part D with at most 2ω +d+ δ + s vertices and the
set of edges to be deleted from S is fixed-parameter tractable parameterized by
treewidth. The proof is concluded by constructing an MSO2-formula deciding
the last problem and using Theorem3.

6.2 Parameterization by Editing Cost

In this section we show that (D,S)-Editing is fixed-parameter tractable para-
meterized by the cost of editing for every D ∈ DFPT(d, δ) provided that S is
weakly anti-hereditary and either has bounded maximum degree, or is monotone,
MSO2-definable, and has bounded treewidth. We also obtain polynomial kernels
for several cases if D ∈ DP(d, δ) and S contains all graphs with maximum
degree at most Δ. Our starting point is the following result for sparse classes
with bounded treewidth.

Theorem 9. Let D ∈ DFPT(d, δ) and let S be a weakly anti-hereditary class.
If S is monotone, MSO2-definable, and has bounded treewidth, then (D, S)-
Editing is fixed-parameter tractable.

The proof of Theorem9 proceeds as follows. Let D and S be classes satisfying
the assumptions of the theorem, let (G, k) be an instance of (D, S)-Editing
and let (D,S) be an optimum solution of (G, k). We separately treat two cases,
namely |D| ≥ 2k+δ+d+s+1 and |D| ≤ 2k+δ+d+s. In the first case we construct
the largest set of vertices X such that the minimum degree of the subgraph of
G induced by X is more than k. We further show that V (D) ⊆ X and that
|X\V (D)| is constant (with respect to D and S). It follows that there are only
polynomially many choices for the dense part D and because D ∈ DFPT(d, δ)
and Theorem 5, we can compute the cost for each of them in fpt-time.

In the second case, we show that the treewidth of any YES-instance with
|D| ≤ 2k + δ +d+ s is at most 3k + δ +d+ s+ωS , where ωS is the bound on the
treewidth of graphs in S. To see this, let (D′, S′) be a pair of graphs on V (D),
respectively V (S), such that there is a set of costD,S(G) edge modifications that
turn G into disjoint union of D′ and S′. Observe that treewidth of D′ is at most
2k + δ + d + s, the treewidth of S′ is at most ωS , and G differs from the disjoint
union of D′ and S′ by at most k edges. Using Proposition 1 we obtain that the
treewidth of G is at most 3k + δ + d + s + ωS and we can solve (D, S)-Editing
with the help of Theorem8.

Theorem 9 implies fixed-parameter tractability of (D, S)-Editing for sparse
classes such as acyclic graphs and series-parallel graphs, as well as for k-colorable
graphs and bounded genus graphs of bounded treewidth.

The following theorem, which is our main result for sparse classes of bounded
maximum degree, is proved directly by first decomposing the graph according to
degrees, using Lemma 7 to restrict the dense part, and then employing the fact
that the cost of editing to the sparse class is fixed-parameter tractable.

Edge-Editing to a Dense and a Sparse Graph Class 571

Theorem 10. Assume that D ∈ DFPT(d, δ) and S is a weakly anti-hereditary
class. If S has bounded maximum degree and S-Cost is fixed-parameter
tractable, then (D, S)-Editing is fixed-parameter tractable.

In a more restricted setting, we are able to obtain polynomial kernels, as
shown by the following theorem.

Theorem 11. Let D ∈ DP(d, δ) and let SΔ be the class containing all graphs
with maximum degree at most Δ. If Δ = 0, then (D, SΔ)-Editing admits a
kernel with O(k) vertices and O(k2) edges. If Δ ≤ 1 or Δ ≥ max{δ, 2d + 1, 6},
then (D, SΔ)-Editing admits a kernel with O(k2) vertices and O(k3) edges.

6.3 Parameterization by Degeneracy

In this section we consider (C, I)-Editing parameterized by the degeneracy
of the input graph. Before we can state our results, we need to introduce the
Subgraph Isomorphism problem, where given two graphs G and H, one asks
whether G contains a subgraph isomorphic to H. In the following we will assume
that Subgraph Isomorphism is parameterized by the size of H. We will denote
by SI-FPT the set of all classes of graphs such that Subgraph Isomorphism is
fixed-parameter tractable whenever the graph G is restricted to come from some
class in SI-FPT. We will show that (C, I)-Editing is fixed-parameter tractable
parameterized by degeneracy if the input graph comes from some class in SI-FPT
and also if the input graph is bipartite. We also show that already CliqueEd-

iting is W[1]-hard parameterized by degeneracy on general graphs.

Theorem 12. For any DC(d, δ)-class D, (D, I)-Editing is fixed-parameter
tractable parameterized by the degeneracy for input graphs restricted to a class
in SI-FPT.

We want to note here that the above theorem is obtained via a linear time
fpt-reduction from (D, I)-Editing parameterized by degeneracy to Subgraph

Isomorphism. This, in particular, implies that if the Subgraph Isomorphism

is linear time fixed-parameter tractable, then so is the (D, I)-Editing problem.
Note that restricting the input graphs to a class in SI-FPT is not particu-

larly restrictive. Indeed, it is known that the Subgraph Isomorphism prob-
lem is fpt-equivalent to the model checking problem of existential first-order
logic parameterized by the length of the formula [5, Proposition 1]. Therefore,
SI-FPT contains also all classes for which the first-order model checking prob-
lem parameterized by the length of the formula is fixed-parameter tractable and,
in particular, the very general class of nowhere-dense graphs [12]. A particular
example of a nowhere-dense class is formed by graphs with bounded expansion,
which contain for example all planar graphs, all classes with bounded treewidth,
and all classes defined by a finite set of forbidden minors. Since we do not
need the precise definition of bounded expansion, which is rather lengthy and
technical, we only collect the following two results about classes with bounded
expansion: (i) they belong to SI-FPT, and (ii) they have bounded degeneracy.

572 M. Kotrbč́ık et al.

We refer to a book by Nešetřil and Ossona de Mendez [19] for more details on
classes with bounded expansion and related classes in the context of nowhere-
dense/somewhere-dense dichotomy. In the light of the preceding discussion, it
follows that if input graphs are restricted to any class with bounded expansion,
both conditions in Theorem12 are satisfied, and since Subgraph Isomorphism

is linear-time fixed-parameter tractable on graphs of bounded expansion [12], we
obtain that (D, I)-Editing is solvable in linear time.

Corollary 13. For any class C of graphs of bounded expansion and any D ∈
DC(d, δ), (D, I)-Editing can be solved in linear time for input graphs restricted
to C.

While on bipartite graphs CliqueEditing is still NP-hard, it appears that
requiring the input graphs to be bipartite leads to a somewhat simpler prob-
lem, as there is a polynomial-time approximation scheme [15]. We observe a
similar behavior also with respect to parameterization — we prove that while
CliqueEditing parameterized by degeneracy is in general W[1]-hard, it is fixed-
parameter tractable when the input graphs are bipartite.

Theorem 14. CliqueEditing is linear-time fixed-parameter tractable parame-
terized by the degeneracy for input graphs restricted to being bipartite.

Our final result, proved by a reduction from Clique, which is W[1]-hard [21],
is that editing to two classes is W[1]-hard parameterized by the degeneracy even
for the case of cliques and independent sets.

Theorem 15. CliqueEditing is W[1]-hard parameterized by the degeneracy.

Proof. To show W[1]-hardness for CliqueEditing parameterized the degen-
eracy of the input graph, we use a parameterized reduction from the Clique

problem, which is well-known to be W[1]-complete [21].

Clique Parameter: k
Input: A graph G and a natural number k.
Question: Does G have a clique of size at least k?

Given G and k we construct a graph H with degen(H) ≤ 1 + 3
(
k
2

)
+ k

such that G has a clique of size at least k if and only if cost(H) ≤ b, where
b = |E(H)| − (3

(
k
2

)
+ k − 1) − 8

(
k
2

)
.

Let G′ be the graph obtained from G after subdividing every edge of G three
times, i.e., replacing every edge of G by a path consisting of three novel internal
vertices. Then the graph H consists of a copy of G′ together with a set I of
3
(
k
2

)
+ k − 1 vertices, which are completely connected to all vertices in the copy

of G′. Then degen(H) ≤ 1+3
(
k
2

)
+k and it remains to show that G has a clique

of size at least k if and only if cost(H) ≤ b, the proof of which can be found in
the full version of the paper.

Edge-Editing to a Dense and a Sparse Graph Class 573

7 Applications

In this section we outline applications of our results by showing that our exam-
ples of sparse and dense classes have the properties required to employ Theo-
rems 8 and 10. Let G be the set of the following graph classes: independent sets,
matchings covering all but at most one vertex, paths, cycles, disjoint unions of
paths, disjoint unions of cycles, forests with bounded maximum degree, trees
with bounded maximum degree, and r-regular graphs for any even r.

The cost function costC(G) is computable in polynomial time for the class of
independent sets, the class of matchings covering all but at most one vertex, and
the class of graphs with bounded maximum degree [24]. It is also known that
computing costC(G) is fixed-parameter tractable if C is the class of all r-regular
graphs [16]. To show that the same holds also for the remaining classes in G, we
employ Lemma 4.

Theorem 16. Let C be a class in G. Then C-Cost is fixed-parameter tractable.

Proof. It is easy to see that all the classes given in G have bounded maximum
degree and are weakly anti-hereditary. It hence remains to show that for all
these classes computing the cost of editing is fixed-parameter tractable w.r.t.
the editing cost. Because of Lemma 4 it is sufficient to show that for all these
classes (having maximum degree at most Δ) computing the cost of editing is
fixed-parameter tractable w.r.t. the editing cost if the input graph has maximum
degree at most Δ.

Here we only show that this is indeed the case if C is the class of all connected
graphs of maximum degree at most d = Δ. The proofs for other cases are similar
and can be found in the full version of the paper. Let c1 be the number of
components of G with minimum degree less than Δ and c2 be the number of
components of G with minimum degree at least Δ. Since the maximum degree
of G is Δ, each component that is contributing to c2 is a Δ-regular graph. To edit
a graph with c1+c2 components into a connected graph c1+c2−1 edge additions
are necessary and sufficient, and to maintain maximum degree Δ it is necessary
and sufficient to delete one edge from each component that is contributing to
c2. Therefore, the cost of editing into C is costC(G) = c1 + c2 − 1 + c2 = c1+
2c2 − 1. ��

To the best of our knowledge, the exact (parameterized) complexity status of
computing the cost for the classes in G is not known. In particular, none of the
classes in G fall into the general setting of classes characterized by finitely many
forbidden induced subgraphs considered previously [6]. However, at least for the
class of all paths and the class of all cycles there is a straightforward reduction
from the Hamiltonian Path or Hamiltonian Cycle problem, respectively,
which shows NP-completeness of computing the cost of editing to these classes.

Recall that a class C1 is the complement of a class C2 if a graph G lies in
C1 if and only if the complement of G lies in C2. Let G′ be the set G without
the classes of regular graphs, cycles, and disjoint unions of cycles. Since all
the examples of weakly anti-hereditary classes in G′ are also weakly hereditary,

574 M. Kotrbč́ık et al.

Proposition 6 yields that their complements are examples of dense classes. For
the complementary classes of 2r-regular graphs, cycles, or disjoint unions of
cycles to be weakly hereditary, they would need to contain at least one graph
on n vertices for each integer n. It is easy to see that if we add to the class of
2r-regular graphs any graph on n vertices for each n ≤ 2r, the class becomes
weakly hereditary and thus its complement is a dense class. Similarly, if we add
to the classes of cycles and disjoint union of cycles a graph with one vertex and
a graph with two vertices, then the resulting classes are weakly hereditary and
its complement is a D(d, δ) class.

Finally, since S-Cost is fixed-parameter tractable for each class S in G by
Theorem 16, Proposition 6 yields that CS -Cost is fixed-parameter tractable for
the complement CS of each such class S. Therefore, Theorem 8 holds with any
class from G in the role of sparse class and the complement of any class from
G’ (resp. complements of the extended classes of 2r-regular graphs, cycles, or
disjoint unions of cycles) in the role of dense class. Similarly, Theorem10 also
holds for the same set of complements in the role of dense class.

8 Conclusion

This paper introduces the (C1, C2)-Editing problem, where the goal is to edit
an input graph into a disjoint union of two graphs, one from each class. We
investigate for which classes the problem is fixed-parameterized tractable using
only limited class-specific structural information. This is achieved by focusing
on novel relevant properties, weakly hereditary and weakly anti-hereditary, and
a separation property between such classes. While as far as we know weakly
hereditary classes were not considered before, they may prove to be an useful
concept also for other editing problems, extending the results from hereditary
classes. Our results allow us to prove fixed-parameter tractability for a number
of interesting sparse classes such as acyclic graphs, bounded degree trees or
forests, series-parallel graphs, or k-colorable graphs of bounded treewidth, for
instance, bipartite graphs of bounded treewidth. Since this is the first attempt
to solve the problem in general, there are many open problems, including other
conceivable approaches to choosing the technical requirements on the dense class.
Another particular problem left is extending our results for parameterization by
the degeneracy beyond independent sets. Our approach uses the equality in
Eq. (1) in an essential way, and it seems to be very difficult, and necessary, to
calculate the cost of editing to the class exactly when the class is different from
independent sets.

References

1. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs.
J. Algorithms 12(2), 308–340 (1991)

2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3),
89–113 (2004)

Edge-Editing to a Dense and a Sparse Graph Class 575

3. Bodlaender, H., Heggernes, P., Lokshtanov, D.: Graph modification problems
(Dagstuhl seminar 14071). Dagstuhl Rep. 4(2), 38–59 (2014)

4. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

5. Bova, S., Ganian, R., Szeider, S.: Model checking existential logic on partially
ordered sets. In: CSL-LICS. ACM (2014)

6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inform. Process. Lett. 58(4), 171–176 (1996)

7. Cygan, M., Marx, D., Pilipczuk, M., Pilipczuk, M., Schlotter, I.: Parameterized
complexity of eulerian deletion problems. Algorithmica 68(1), 41–61 (2014)

8. Damaschke, P., Mogren, O.: Editing simple graphs. J. Graph Algorithms Appl.
18(4), 557–576 (2014)

9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series, vol. 41. Springer, Heidelberg (2006)

11. Fomin, F., Golovach, P.: Long circuits and large euler subgraphs. SIAM J. Discrete
Math. 28(2), 878–892 (2014)

12. Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere
dense graphs. In: STOC. ACM (2014)

13. Hartung, S., Nichterlein, A., Niedermeier, R., Suchý, O.: A refined complex-
ity analysis of degree anonymization in graphs. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part II. LNCS, vol. 7966, pp.
594–606. Springer, Heidelberg (2013)

14. Hüffner, F., Komusiewicz, C., Nichterlein, A.: Editing graphs into few cliques:
complexity, approximation, and kernelization schemes. In: Dehne, F., Sack, J.-R.,
Stege, U. (eds.) WADS 2015. LNCS, vol. 9214, pp. 410–421. Springer, Heidelberg
(2015)

15. Kováč, I., Selečéniová, I., Steinová, M.: On the clique editing problem. In: Csuhaj-
Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part II. LNCS, vol. 8635,
pp. 469–480. Springer, Heidelberg (2014)

16. Mathieson, L., Szeider, S.: Editing graphs to satisfy degree constraints: a parame-
terized approach. J. Comput. Syst. Sci. 78(1), 179–191 (2012)

17. Moser, H., Thilikos, D.M.: Parameterized complexity of finding regular induced
subgraphs. J. Discrete Algorithms 7(2), 181–190 (2009)

18. Nastos, J., Gao, Y.: Familial groups in social networks. Soc. Netw. 35(3), 439–450
(2013)

19. Nešetřil, J., de Mendez, P.O.: Sparsity: Graphs, Structures, and Algorithms. Algo-
rithms and Combinatorics, vol. 28. Springer, Heidelberg (2012)

20. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

21. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest com-
mon supersequence and longest common subsequence problems. J. Comput. Syst.
Sci. 67(4), 757–771 (2003)

22. Rivest, R.L., Vuillemin, J.: On recognizing graph properties from adjacency matri-
ces. Theor. Comput. Sci. 3(3), 371–384 (1976)

23. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: STOC, pp.
253–264. ACM (1978)

24. Yannakakis, M.: Edge-deletion problems. SIAM J. Comput. 10(2), 297–309 (1981)

Containment and Evasion
in Stochastic Point Data

Nirman Kumar(B) and Subhash Suri

Department of Computer Science, University of California, Santa-Barbara, USA
{nirman,suri}@cs.ucsb.edu

Abstract. Given two disjoint and finite point sets A and B in IRd, we
say that B is contained in A if all the points of B lie within the convex
hull of A, and that B evades A if no point of B lies inside the convex
hull of A. We investigate the containment and evasion problems of this
type when the set A is stochastic, meaning each of its points ai is present
with an independent probability π(ai). Our model is motivated by sit-
uations in which there is uncertainty about the set A, for instance, due
to randomized strategy of an adversarial agent or scheduling of monitor-
ing sensors. Our main results include the following: (1) we can compute
the exact probability of containment or evasion in two dimensions in
worst-case O(n4 + m2) time and O(n2 + m2) space, where n = |A| and
m = |B|, and (2) we prove that these problems are #P-hard in 3 or
higher dimensions.

1 Introduction

Geometric containment and evasion problems are useful abstractions for a variety
of applications, including robotics, pursuit evasion, computer vision and graph-
ics, and security and anomaly detection among others [9,11,13,23]. In the con-
tainment problem, we are interested in ensuring that a target set B is contained
within the convex hull of another point set A, while the evasion problem models
the situation from the target’s perspective—how to exclude all members of B
from the convex hull of A. In pursuit evasion or security-related applications, for
instance, B might represent a set of valuable assets that require monitoring, and
A represents the positions of guarding agents tasked to ensure that all points
of B remain surrounded. Conversely, in evasion problems, the goal is to ensure
that no member of B is captured or surrounded.

In this paper, we explore the containment and evasion problems of this type
when the containing set A is stochastic, meaning each of its points exists with
an arbitrary but known probability. Formally, we are given two sets of points
A = {a1, . . . , an} and B = {b1, . . . , bm} in a d-dimensional space. The set B is
deterministic, but A is stochastic, meaning that each of its points ai is associated
with an existence probability π(ai). (The probabilities of different points are

This research was partially supported by NSF grants CCF-1161495 and CCF-
1525817.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 576–589, 2016.
DOI: 10.1007/978-3-662-49529-2 43

Containment and Evasion in Stochastic Point Data 577

independent, but otherwise arbitrary valued.) We can interpret the stochasticity
of A as a randomized strategy of the monitoring agents or, from B’s perspective,
a probabilistic belief about A’s planned deployment. With this input, we want
to evaluate the probability of B’s containment or evasion. In other words, what
is the probability that B evades the convex hull of A, or the probability that the
convex hull of A contains B?

If B were a singleton point {b}, then the stochastic containment measures
the probability that b lies in the convex hull of the stochastic set A. We recently
showed that this membership probability can be computed exactly in time
O(n log n) when d = 2 and in time O(nd) when d ≥ 3 [17]. Unfortunately,
the containment probabilities for different points of B are not independent, and
so we cannot solve the set containment problem by solving multiple instances of
point containment. In fact, as our results below show, the complexity of the set
containment (or evasion) differs sharply from the point containment.

Our Results. We show that the stochastic set containment and set evasion
problems are both #P-hard in dimensions d ≥ 3. In two dimensions, however,
we show that both problems admit a polynomial-time algorithm. In particular,
we present a dynamic programming algorithm that runs in O(n4+m2) worst-case
time and uses O(n2 + m2) space.

Related Work. The set containment and disjointness problems are well-studied
in computational geometry [9,10,22,23]. When A and B are deterministic sets,
these problems can be solved trivially by performing |B| membership queries in
the convex hull of A, where each query takes O(|A|) time using fixed-dimensional
linear programming algorithm of Megiddo or Clarkson [12,21], although more
specialized algorithms are known in 2 or 3 dimensions.

Our work is a contribution to the growing body of research dealing with
uncertain data, which has received a great deal of attention in recent years in
the research communities of databases, machine learning, AI, algorithms and
computational geometry. While much of the research in the database com-
munity primarily focuses on models, schema, and query evaluation [7,14,24],
there is significant algorithmic overlap as well, especially on problems such as
indexing, clustering, range searching and skyline computation over uncertain
data [2,3,7,8]. Within computational geometry, a number of problems have been
addressed, including convex hulls, range searching, skylines, Voronoi diagrams,
nearest neighbor searching, and minimum spanning trees [1–5,18–20,25,26].

The work most closely related to the present paper is the problem of comput-
ing the probability that a point lies in the convex hull of uncertain points [6,17].
The main result of these papers is that the point-membership probability can
be computed in polynomial time O(nd), in any fixed dimension d. As mentioned
earlier, however, the membership probabilities of different points of B being
contained in the convex hull of A are not independent and therefore these result
cannot be applied to our set containment or set disjointness problem. Indeed, as
our results show these problems are #P-hard, for d ≥ 3.

578 N. Kumar and S. Suri

Paper Organization. In Sect. 2 we present our dynamic programming algo-
rithm for 2 dimensions. In Sect. 3 we present our hardness results. In Sect. 4 we
present a simple Monte-Carlo sampling scheme for estimating the containment
and evasion probabilities. We conclude in Sect. 5.

2 The 2-Dimensional Case

In this section we present a polynomial time algorithm to evaluate the evasion
and containment probabilities in two dimensions. Since the algorithms for the
two problems are quite similar, we focus mainly on the evasion problem, with
only a brief discussion of the modifications needed for the containment problem.
For ease of presentation, we assume the input points A∪B are in general position,
meaning that no 3 are collinear, but our results hold for the degenerate case as
well, with some additional technical details. Without loss of generality, we also
assume that no two points have the same x or y coordinates—otherwise, we can
rotate the coordinate axes to achieve this.

2.1 Algorithm for the Evasion Problem

Consider a random outcome S of the stochastic point set A. The probability of
this outcome is Pr[S] =

∏
a∈S π(a)

∏
a′ /∈S(1−π(a′)). For this outcome, it is easy

to decide whether any point of B lies inside the convex hull of A. Unfortunately
though, there are an exponential number of outcomes, so we cannot afford to
enumerate them all, to compute the total probability of B’s evasion. As a first
simplification, we observe that all the outcomes with the same convex hull P
are essentially the same for our purpose—if P does not intersect B then all
these outcomes are favorable outcomes, while if P does intersect B, none of
these outcomes are favorable. Although we still cannot afford to enumerate all
different convex hulls, since their number may be exponential, the idea helps us
explain the basic structure of our polynomial time algorithm.

The convex hull of any non-empty outcome is a convex polygon P with
vertices among A. Throughout, we let P denote a convex polygon with vertices
in A. In order to group over all samples that have a given P as their convex hull,
we define the realization probability of a polygon P , denoted h(P), as the sum
of the probability Pr[S] of all samples S with convex hull P :

h(P) =
∑

S s.t. CH(S)=P

Pr[S].

In general, there can be an exponential number of samples S that satisfy CH(S) =
P but fortunately there is a simple way to compute h(P). Suppose that the
vertices of P are a1, . . . , ar. The necessary and sufficient condition for S to
satisfy CH(S) = P is the following:

The set S includes all the vertices of P , namely, a1, . . . , ar, and none of
the points in A lying outside P .

Containment and Evasion in Stochastic Point Data 579

We can use this observation to write our probability as

h(P) = φ
(
P

) r∏

i=1

π(ai).

where P is the shorthand for the region of the plane outside P , and φ
(
P

)
is

probability that no point of A lies in it. Throughout the paper, we will use the
notation φ (R) for the probability that no point of A contained in region R is
present, with the convention that φ (∅) = 1.

The quantity that we wish to compute is the sum of h(P) over all polygons P
that do not intersect B, plus the probability of the empty sample—because in the
latter case the hull trivially evades B. This motivates us to define the likelihood
of evasion of a polygon P , denote L(P), as h(P) if P does not intersect B and
0 otherwise. Then, the desired probability is given by the following equation,
where the first term accounts for the sample S being empty:

n∏

i=1

(1 − π(ai)) +
∑

P

L(P).

Evasion Probabilities. We show that L(P) can be expressed as the product
of certain probabilities associated with the edges of P such that these probabil-
ities are independent of the polygon composed from these edges, subject to the
condition that the lowest vertex of P is fixed. We call these the evasion probabil-
ities. In order to keep the notation simple, we assume without loss of generality
that a1 is the lowest point and a2, a3, . . . , an, are the points above a1, sorted in
counter-clockwise order around a1. We precede this sequence by a1 and add a
new point an+1 which is a copy of a1 but is considered “ahead” of the other ai in
counter-clockwise order. Given a polygon P , we first show how to decompose the
space outside it, namely, P , into regions that only depend on the lowest vertex
a1, and the edges. See Fig. 1 for illustration. Consider a polygon P with the low-
est vertex a1. Any edge of P has endpoints ai and aj , for some i < j. We denote
such an edge by the simpler notation i → j. For such an edge, consider the
wedge shaped region Zj

i as shown in Fig. 1. The wedge Zj
i is a half open wedge

defined as follows. It is the polygonal region to the left of the half ray −−→a1ai not
including its boundary, to the right of the half ray −−→a1aj including its boundary,
and beyond the polygon boundary, i.e., the segment aiaj but excluding it. The
bounding ray −−→a1ai precedes −−→a1aj in the counter-clockwise order around a1, and
so we can define such a half open wedge by requiring its earlier bounding ray to
be excluded, its second bounding ray to be included, and the part on P to be
excluded. The same definition extends in fact to the regions Z1

1 , Zj
1 or Zn+1

i . For
example the region Z1

1 associated with the bottom vertex a1 is the region below
a1 which excludes the horizontal half ray, left of a1, includes the half ray right
of a1 and excludes a1. All these regions are disjoint, and Zj

i only depends on the
edge i → j and the bottom vertex a1. We, therefore, have the decomposition:

P = Z1
1 ∪

⋃

i→j edge of P

Zj
i .

580 N. Kumar and S. Suri

a1

aiaj

Z1
1

Zj
i

Fig. 1. The regions Zj
i for a polygon P . For the shaded regions, the excluded boundary

portions are shown dashed.

If R1, R2 are disjoint regions, then their emptiness probability are independent,
meaning that φ (R1 ∪ R2) = φ (R1) φ (R2). We, therefore, have the emptiness
probability for P :

φ
(
P

)
= φ

(
Z1
1

)
×

∏

i→j edge of P

φ
(
Zj

i

)
. (1)

Let us denote the triangle formed by the vertices a1, ai, aj as T(i, j). A necessary
and sufficient condition that i → j occurs as an edge of a polygon P evading
B is that (1) T(i, j) does not contain any points from B, and, (2) the region
Zj

i does not contain any points from A. Indeed, the first condition is necessary
if the polygon P is disjoint from B, and the second condition certifies that no
points outside of the triangle can exist if i → j bounds the convex hull P .
The sufficiency is trivial as the triangle T(i, j) is itself a convex polytope. This
observation motivates us to define the evasion probability L(i, j), of the edge
i → j as,

L(i, j) =

{
π(ai) × φ

(
Zj

i

)
if T(i, j) ∩ B = ∅

0 otherwise.

This definition is valid for 2 ≤ i < j ≤ n, but requires a minor modification
when the endpoints include either the index 1 or n + 1. In particular, L(1, j) =
π(a1)φ

(
Zj
1

)
and L(i, n + 1) = π(ai)φ

(
Zn+1

i

)
, because there are no triangles

involved here. (Notice that L(1, j) and L(i, n + 1) are never 0.) The evasion
probabilities can be used to compute the likelihood of P as the following lemma
shows. We assume that P is non-degenerate, meaning that it has at least three
vertices. The degenerate case when P consists of two or fewer vertices is easier
to handle, and is discussed in the algorithm.

Lemma 1. Let P be a convex polygon with vertices aα(1), aα(2), . . . , aα(r), for
r ≥ 3, in counter-clockwise order around a1 = aα(1), and write aα(r+1) = an+1

Containment and Evasion in Stochastic Point Data 581

which is a copy of a1. Then, the likelihood L(P) equals the product of the evasion
probabilities of its edges and φ

(
Z1
1

)
:

L(P) = φ
(
Z1
1

)
×

r∏

i=1

L(α(i), α(i + 1)).

Proof. First suppose that P intersects B. Since P can be decomposed via
the bottom-vertex triangulation into the triangles, T(α(2), α(3)), . . . ,T(α(r −
1), α(r)), at least one of them must contain a point of B, say T(α(j), α(j + 1)).
By definition, the evasion probability of this edge α(j) → α(j + 1) is 0,
which renders the entire product φ

(
Z1
1

)
×

∏r
i=1 L(α(i), α(i + 1)) to zero. On

the other hand, if P does not intersect B, then the evasion probabilities
of the edges are π(aα(j)) × φ

(
Z

α(j+1)
α(j)

)
for j = 1 . . . r. Thus, the product

φ
(
Z1
1

)
×

∏r
i=1 L(α(i), α(i + 1)) evaluates to

φ
(
Z1
1

)
×

r∏

i=1

π(aα(i)) ×
r∏

i=1

φ
(
Z

α(i+1)
α(i)

)
.

By Eq. 1 this product equals φ
(
P

) ∏r
i=1 π(aα(i)), which is equal to h(P) = L(P).

This completes the proof. �	

The Algorithm. Let �(P) denote the lowest vertex of a polygon. The probability
of evasion that we want to compute is equal to the value of the expression,

n∏

i=1

(1 − π(ai)) +
∑

P

L(P) =
n∏

i=1

(1 − π(ai)) +
∑

ai∈A

⎛

⎝
∑

�(P)=ai

L(P)

⎞

⎠ ,

where the first term is to account for the empty sample which trivially evades
B. The algorithm evaluates the inner sum,

∑

�(P)=ai

L(P),

for each point ai as the lowest point, which we now show. For notational sim-
plicity, we use a1 as the lowest point, with all the remaining points a2, . . . , an

lying above it. We first observe that
∑

P
�(P)=a1

L(P) =
∑

degenerate P
�(P)=a1

L(P) +
∑

non-degenerate P
�(P)=a1

L(P).

To evaluate the first term we notice that it is equal to the probability of all 1
point and 2 point subsets that include a1—by our general position assumptions
the convex hull of any such subset always evade B. Thus we have

582 N. Kumar and S. Suri

∑

degenerate P
�(P)=a1

L(P) = φ
(

Z1
1

)

⎛

⎜

⎜

⎝

π(a1)

n
∏

i=2

(1 − π(ai)) +

n
∑

i=2

π(a1)π(ai)

n
∏

j=2
j �=i

(1 − π(aj))

⎞

⎟

⎟

⎠

,

where the outer φ
(
Z1
1

)
is to account for the fact that no points below a1 can

exist in the sample. We now turn to evaluating the sum over the non-degenerate
polygons P . In this case, by Lemma 1, the likelihood L(P) is the product of the
evasion probabilities of all the edges and φ

(
Z1
1

)
. The term φ

(
Z1
1

)
is computed

easily in O(n log n) time using plane sweep. The main part of the algorithm is to
compute the sum over all non-degenerate polygons, with lowest vertex a1, the
product of edge evasion probabilities, for which we use a dynamic programming
algorithm. Assume that the evasion probabilities of all the edges i → j for
1 ≤ i < j ≤ n + 1 have been computed. For a non-degenerate polygon P we
can order the triangles of its bottom-vertex triangulation counter-clockwise in a
natural fashion. We define the function F (i, j), for 2 ≤ i < j ≤ n, as follows,

F (i, j) = the sum of L(P) over all polygons P with last triangle T(i, j).

We now set up a recursive definition for this function. Suppose first that i = 2,
i.e., the last triangle has as a vertex the point a2, which is first in the counter-
clockwise order around a1. In this case, it is easy to see that the only such
polygon is itself the triangle T(i, j), and so we have

F (2, j) = L(T(2, j)) = φ
(
Z1
1

)
× L(1, 2) × L(2, j) × L(j, n + 1).

a1

ai

aj

ak

T(i, j) P ′

For other i, consider any polygon P with last trian-
gle T(i, j). Either the entire polygon is just this trian-
gle, i.e., P = T(i, j), or else, such a polygon is made up
of a polygon P ′ suffixed with the last triangle T(i, j).
See Figure on the right. Indeed, given such a P , we can
let P ′ be the (convex) polygon without the last trian-
gle T(i, j). Observe that in this case, the triangle T(k, i)
that precedes T(i, j), must be such that the edge k → i
makes a left turn into the edge i → j. Conversely, given any polygon P ′ with
last triangle T(k, i), such that k → i turns left into i → j, we can suffix the
triangle T(i, j) to make up a polygon P with last triangle T(i, j). Thus, there
is a one-to-one correspondence between polygons P with last two triangles as
T(i, j) and T(k, i), and polygons P ′ with last triangle T(k, i), whenever k → i
turns left into i → j. Observe that the edge i → (n+1) is the last edge of P ′ but
this is not present in P , which has two additional edges i → j and j → (n + 1).
By using Lemma 1 on P and P ′ we observe that,

L(P) =
L(P ′)

L(k, n + 1)
× L(i, j) × L(j, n + 1).

It follows that when i > 2 we have the following recursive definition for F (i, j).

F (i, j) = L(T(i, j)) + L(j, n+1)×L(i, j) ×
∑

k→i→j is a left turn

F (k, i)
L(k, n + 1)

.

Containment and Evasion in Stochastic Point Data 583

The function F (i, j) can be evaluated using dynamic programming if we consider
edges successively in the order where edges with smaller i occur earlier—for a
fixed i they can be ordered arbitrarily. We omit the routine technical details. The
evaluation of L(T(i, j)) can be done using Lemma 1. Summing over all possible
last triangles of non-degenerate polygons P , we have the desired sum:

∑

non-degenerate P
�(P)=a1

L(P) =
∑

2≤i<j≤n

F (i, j).

Finally, we now show how to compute the edge evasion probabilities. In order to
compute φ

(
Zj

i

)
, essentially we need to be able to answer queries of the following

type: given a triangle (with vertices among the points of A), find the product
of (1 − π(a)) for all points a inside the triangle. This follows because because
the regions Zj

i can be decomposed into a constant number of such triangles

and we can compute φ
(
Zj

i

)
by taking the product of the numbers obtained

for the corresponding triangles. The half openness of the edges does not really
present us with problems as there are no points of A on these edges (except those
belonging to the edge i → j, and these points are known—ai and aj), so we might
as well consider them as closed edges for our purposes. We can compute all these
quantities in O(1) time per triangle after a one-time O(n2) preprocessing using
ideas from [16,26]. To determine which edges have evasion probability 0 we use
triangle emptiness queries, for triangles T(i, j) and for points of B. Each query
takes O(1) time, after a one-time O((n + m)2) = O(n2 + m2) preprocessing,
using the data structure of [16].

Complexity Analysis. The computation of the φ
(
Zi

i

)
can be done by first

sorting the set A by the x2 coordinate, and then performing a linear scan. Con-
sider a fixed lowest point ai, and the computation of the evasion probabilities of
the edges among points above ai. For each such edge, we require O(1) queries on
the data structure [16,26] and 1 query to the triangle emptiness data structure
from [16]; in total O(1) per edge . Thus, in O(n2) total time we can determine
all the edge evasion probabilities. The dynamic programming algorithm then
takes O(n3) time. Thus for a fixed lowest point ai, our algorithm takes O(n3)
time, and so the overall time over all choices of the lowest point is O(n4 + m2).
The total space requirement is O(n2 + m2), dominated by the data structures
from [16], which need to be prepared only once. In each iteration with a fixed
lowest point ai we need O(n2) space to store the evasion probabilities of the
edges, which is reused for different ai.

We have established the following result.

Theorem 1. Given a set A of n stochastic points, and a set B of m points
in the plane, all in general position, we can compute in O(n4 + m2) time and
O(n2 + m2) space the probability that A evades B.

584 N. Kumar and S. Suri

2.2 The Containment Problem

The algorithm for the containment problem is similar but some key concepts
need to be redefined. Specifically,

(I) the region Zi
i needs to be empty of points in B. Otherwise, we may ignore

the point ai and any higher points in the overall summation.
(II) the “containment probability” of an edge i → j is set to 0 if the region

Zj
i contains a point of B. This ensures that P is disjoint from B, which is

equivalent to B ⊆ P .

Our result on the stochastic containment can be stated as follows.

Theorem 2. Given a set A of n stochastic points and a set B of m points
in the plane, all in general position, we can compute in O(n4 + m2) time and
O(n2 + m2) space the probability that A contains B.

3 Hardness in Higher Dimensions

In this section, we show that the evasion problem is #P-hard in three or higher
dimensions. The stochastic set containment problem is also hard, as shown in
Appendix A.

Our reduction is from the #P-hard problem of counting independent sets
in planar graphs [27]. Let G = (V,E) be an instance of the independent set
problem, with V = [n] and m = |E|. Corresponding to each vertex i ∈ [n], we
create a point ai ∈ A, with associated probability π(ai) = 1/2, and for each edge
(i, j) ∈ E, we create a a corresponding point bij ∈ B. For a subset V ′ ⊆ V , we
let A′ ⊆ A denote the corresponding set of points. The crucial property of the
reduction is that V ′ is an independent set in G if and only if CH(A′) ∩ B = ∅.

Suppose for now that the point set A can be constructed in such a way that
all the points ai are vertices of their convex hull P (as such all of them are also
in general position), and that for each (i, j) ∈ E, the segment aiaj is an edge
of P . (In other words, the polytope P is an embedding of G.) If we choose the
points of B as bij = (ai + aj)/2, then we can prove the following result.

Lemma 2. A subset V ′ ⊆ V is an independent set of G iff the corresponding
set of points A′ satisfies CH(A′) ∩ B = ∅.

Proof. If CH(A′) ∩ B = ∅, then clearly both ai, aj cannot be in A′ for any edge
(i, j) of G—otherwise the midpoint bij = (ai + aj)/2 will lie inside CH(A′).
Conversely, let V ′ be an independent set in G, with A′ the corresponding subset
of points in A. We show that any point bij ∈ B must lie outside CH(A′). Since
aiaj is an edge of the polytope P there is a hyperplane H, that is a supporting
hyperplane of CH(A′) and intersects CH(A′) in the edge aiaj , i.e., P ∩H = aiaj ,
and all other vertices lie in one of the open halfspaces of H. Suppose both i and
j are not in V ′. Then, H shifted slightly towards CH(A′) will act as a separating
hyperplane, separating bij from CH(A′). If V ′ includes one of them, say i, then H

Containment and Evasion in Stochastic Point Data 585

rotated slightly (while still containing bij), so that i, j remain on the appropriate
sides (i.e., i on the same side as P , and j on the other side), and then shifted
towards CH(A′) will act as a separating hyperplane. �	

Constructing the Polytope. We now discuss how to construct the desired set
of points A. In 4 dimensions, this is possible for any graph G—simply choose the
points ai on the moment curve (γ, γ2, γ3, γ4), for γ = 1, 2, . . . , n, and verify that
every pair is an edge of the convex hull [28]. In 3 dimensions, such a construction
is not feasible for an arbitrary graph G, but can be achieved when G is planar. In
particular, we can assume that G is maximally planar–otherwise add edges until
it becomes maximal—and then use the well-known theorem of Steinitz to realize
a 3-dimensional embedding of this 3-connected graph [28]. Furthermore, using a
result of [15], we can also construct such a 3-dimensional polytope in polynomial
time because our graph is a triangulation (maximally planar). Moreover, in this
construction, there is a one-to-one correspondence between vertices of G and the
constructed polytope.

Since each point of A occurs with probability 1/2, the probability of any
sample S is precisely 1/2n. Therefore, we now have a one-to-one correspondence
between independent sets in G and samples A′ with CH(A′) ∩ B = ∅. We can
therefore count the number of independent sets in G, as follows:

Pr[CH(A′) ∩ B = ∅] =
1
2n

× (Number of independent sets in G).

We have established the following result.

Theorem 3. Given a stochastic point set A in IRd, for d ≥ 3, the problem of
computing the evasion probability of another (deterministic) point set B ⊂ IRd

is #P-hard.

Remark 1. The point sets constructed in our hardness proof are not in general
position (for example the point bij is collinear with ai and aj), but they can
be modified to achieve non-degeneracy. The details are mostly technical, and
omitted from this abstract.

4 Approximation

Given the #P-hardness of both the containment and the evasion problems, it is
natural to explore efficient approximation schemes. In the following we briefly
discuss a Monte-Carlo algorithm for approximating the probabilities of the com-
plement of the evasion problem and that of the containment problem, under the
assumption that the the probabilities of the stochastic points are not too small,
namely, each point occurs with probability at least α, for some α > 0.

Lemma 3. Let A = {a1, . . . , an} be a set of n stochastic points, and B be a
set of m points. Let p denote the probability of the complement of the evasion
problem (resp. the containment problem) , i.e., p = Pr[B ∩ CH(S) = ∅] (resp.,

586 N. Kumar and S. Suri

p = Pr[B ⊆ CH(S)]), for a random sample S of A. Suppose, π(ai) ≥ α for some
constant α > 0, for every 1 ≤ i ≤ n. Then, for 0 < ε ≤ 1, 0 < δ ≤ 1 we can
compute in time O(1/ε2 log(1/δ)mnM), a number q, such that (1 − ε)p ≤ q ≤
(1 + ε)p with probability at least 1 − δ, where M = O(1/αd+1) for the evasion
problem and M = O(1/αm(d+1)) for the containment problem.

Proof. The algorithm generates O(1/ε2 log(1/δ)M) samples independently,
where in a sample S we choose the ai ∈ A independently with probability π(ai),
and for each of these samples S, tests in time O(mn) whether B∩CH(S) = ∅, for
the complement of the evasion (resp. B ⊆ CH(S), for the containment) problem.
These tests are easy to do as one can test each point b of B for containment in
the convex hull CH(S) by using a O(n) time algorithm for fixed dimension linear
programming [12,21]. Consider the indicator random variable X which assumes
1 if the relevant condition for the evasion (resp. the containment) problem holds,
and 0 otherwise, and we output the mean over all our samples as our estimate.
If p = 0, clearly we output 0, as all tests will have X = 0. On the other hand if
p = 0, then observe that for the complement of the evasion problem, the proba-
bility that CH(S) ∩ B = ∅ is at least the (nonzero) probability that for some i,
ai ∈ CH(S). This probability is at least μ ≥ αd+1 as a successful draw consists
of choosing all the points in some simplex containing ai (such a simplex must
exist). Similarly, for the containment problem there must be m such simplices,
one for each of the m points, and the probability of a successful draw is at least
μ ≥ αm(d+1). In each draw, we have E[X] = μ. Finally, by an application of
Chernoff bound we have the result. �	

5 Conclusions

An immediate open problem is to improve the running time and space require-
ments of our algorithms in 2 dimensions. Another open problem is to achieve
an efficient multiplicative factor approximation for the containment or evasion
probabilities in dimensions d ≥ 3.

A The Containment Problem Is #P-hard for d ≥ 3

Theorem 4. Given a stochastic point set A, and another point set B, in IRd for
d ≥ 3, the problem of computing the probability that A contains B is #P-hard.

Proof. We reduce from the #P-hard problem of counting vertex covers in planar
graphs. In any graph, a subset of vertices is a vertex cover iff its complement is
an independent set. As such the problem of counting vertex covers is equivalent
to counting independent sets, and moreover, the problem is hard on any class of
graphs on which the problem of counting independent sets is hard. In particular,
it is hard on planar graphs. We use the transformation used in the proof of
Theorem 3. More specifically, given a planar graph G = (V,E) on V = [n],
it constructs a graph G = (V,E′) where E ⊆ E′ and a set A of n points

Containment and Evasion in Stochastic Point Data 587

{a1, . . . , an}, which are the vertices of a convex body, such that every edge (i, j)
in E′ corresponds to an edge (ai, aj) of the polytope. We assign the probability
1/2 to each of these stochastic points. Let P = CH(A) denote the polytope.
We now construct a new polytope P ′ ⊆ P , where each edge e of P will have
a corresponding (2 dimensional) facet fe in P ′ “close” to e, i.e., lying inside P
and in the close vicinity of e. To this end, we consider a supporting plane He

such that He ∩ P = e. We now move all such planes He, for each edge e slightly,
shifting it parallel to itself, inside the polytope by a distance that is smaller than
1/2 of the minimum nonzero distance of any vertex of P to any of the planes He.
Let H ′

e denote the shifted plane. As a result, we get a new polytope,
⋂

H ′
e which

lies inside P and where now for each edge e of P , the portion of H ′
e lying inside

P ′ is a facet. This is the facet fe corresponding to e. Clearly, P ′ as defined, can
be computed in polynomial time given P .

Consider an edge (i, j) ∈ E, and the corresponding edge (ai, aj) of P . We
now add 3 points to A and one point to B, for each such edge, as follows. Choose
3 points b′

ij , b
′′
ij , b

′′′
ij in general position on the facet fe of P ′.

ai

aj

H ′
e

b′′
ij

b′
ij

bij

We add them to A and assign them the probability
1 each. The simplices b′

ijb
′′
ijb

′′′
ijai, and b′

ijb
′′
ijb

′′′
ijaj share

a base, and are on the same side of it, and therefore
they share a point that is interior to both of them. We
choose such a point bij and include it in B. See Figure
on the right for an example of this construction in 2
dimensions.

It is clear that if A′ ⊆ A excludes both ai, aj , then
H ′

e is a hyperplane that separates bij from CH(A′). Conversely, if at least one
of ai, aj are included, then bij must be in CH(A′). Therefore, if CH(A′) contains
all such points bij , the corresponding vertices forms a vertex cover in G. It may
be observed that since all the new points added in A have probability 1 they do
not affect our counting argument. �	

References

1. Abdullah, A., Daruki, S., Phillips, J.M.: Range counting coresets for uncertain
data. In: Proceedings of the 29th Annual Symposium Computational Geometry,
pp. 223–232. ACM (2013)

2. Afshani, P., Agarwal, P.K., Arge, L., Larsen, K.G., Phillips, J.M.: (Approximate)
uncertain skylines. Theory Comput. Syst. 52(3), 342–366 (2013)

3. Agarwal, P.K., Aronov, B., Har-Peled, S., Phillips, J.M., Yi, K., Zhang, W.: Near-
est neighbor searching under uncertainty II. In: Proceedings of the 32nd ACM
Symposium Principles Database Systems, pp. 115–126 (2013)

4. Agarwal, P.K., Cheng, S.W., Yi, K.: Range searching on uncertain data. ACM
Trans. Algorithms 8(4), 43:1–43:17 (2012)

5. Agarwal, P.K., Efrat, A., Sankararaman, S., Zhang, W.: Nearest-neighbor search-
ing under uncertainty. In: Proceedings of the 31st ACM Symposium Principles
Database Systems, pp. 225–236. ACM (2012)

588 N. Kumar and S. Suri

6. Agarwal, P.K., Har-Peled, S., Suri, S., Yıldız, H., Zhang, W.: Convex hulls under
uncertainty. In: Proceedings of the 22nd Annual European Symposium on Algo-
rithms, pp. 37–48 (2014)

7. Aggarwal, C.C.: Managing and Mining Uncertain Data. Springer, US (2009)
8. Aggarwal, C.C., Yu, P.S.: A survey of uncertain data algorithms and applications.

IEEE Trans. Knowl. Data Eng. 21(5), 609–623 (2009)
9. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-

try: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)
10. Chazelle, B.: The polygon containment problem. In: Preparata, F.P. (ed.) Advances

in Computing Research, vol. 1, pp. 1–33. JAI Press (1983)
11. Chung, T.H., Hollinger, G.A., Isler, V.: Search and pursuit-evasion in mobile

robotics-A survey. Auton. Robots 31(4), 299–316 (2011)

12. Clarkson, K.L.: Linear programming in o(n3d2
) time. Inform. Process. Lett. 22,

21–24 (1986)
13. Costa, G.B.P., Ponti, M., Frery, A.C.: Partially supervised anomaly detection using

convex hulls on a 2D parameter space. In: Zhou, Z.-H., Schwenker, F. (eds.) PSL
2013. LNCS, vol. 8183, pp. 1–8. Springer, Heidelberg (2013)

14. Dalvi, N., Ré, C., Suciu, D.: Probabilistic databases: diamonds in the dirt. Com-
mun. ACM 52(7), 86–94 (2009)

15. Das, G., Goodrich, M.T.: On the complexity of optimization problems for 3-
dimensional convex polyhedra and decision trees. Comput. Geom. Theory Appl.
8(3), 123–137 (1997)

16. Eppstein, D., Overmars, M., Rote, G., Woeginger, G.: Finding minimum area k-
gons. Discrete Comput. Geom. 7(1), 45–58 (1992)

17. Fink, M., Hershberger, J., Kumar, N., Suri, S.: Hyperplane separability and con-
vexity of probabilistic points (2015) (unpublished manuscript)

18. Jørgensen, A., Löffler, M., Phillips, J.M.: Geometric computations on indecisive
and uncertain points. CoRR abs/1205.0273 (2012)

19. Kamousi, P., Chan, T.M., Suri, S.: Stochastic minimum spanning trees in Euclidean
spaces. In: Proceedings of the 27th Annual Symposium Computational Geometry,
pp. 65–74 (2011)

20. Kamousi, P., Chan, T.M., Suri, S.: Closest pair and the post office problem for
stochastic points. Comput. Geom. Theory Appl. 47(2), 214–223 (2014)

21. Megiddo, N.: Linear programming in linear time when the dimension is fixed. J.
ACM 31(1), 114–127 (1984)

22. Milenkovic, V.J.: Translational polygon containment and minimal enclosure using
linear programming based restriction. In: Proceedings of the 28th Annual ACM
Symposium on Theory of Computing, pp. 109–118. ACM (1996)

23. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer, New York (1985)

24. Sarma, A.D., Benjelloun, O., Halevy, A.Y., Nabar, S.U., Widom, J.: Represent-
ing uncertain data: models, properties, and algorithms. VLDB J. 18(5), 989–1019
(2009)

25. Suri, S., Verbeek, K.: On the most likely voronoi diagram and nearest neighbor
searching. In: Ahn, H.-K., Shin, C.-S. (eds.) ISAAC 2014. LNCS, vol. 8889, pp.
338–350. Springer, Heidelberg (2014)

26. Suri, S., Verbeek, K., Yıldız, H.: On the most likely convex hull of uncertain points.
In: Bodlaender, H.L., Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 791–802.
Springer, Heidelberg (2013)

Containment and Evasion in Stochastic Point Data 589

27. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs.
SIAM J. Comput. 31(2), 398–427 (2001)

28. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics. Springer,
New York (1995)

Tree Compression Using String Grammars

Moses Ganardi(B), Danny Hucke, Markus Lohrey, and Eric Noeth

University of Siegen, Siegen, Germany
{ganardi,hucke,lohrey,eric.noeth}@eti.uni-siegen.de

Abstract. We study the compressed representation of a ranked tree by a
straight-line program (SLP) for its preorder traversal string, and compare
it with the previously studied representation by straight-line context-free
tree grammars (also known as tree straight-line programs or TSLPs).
Although SLPs may be exponentially more succinct than TSLPs, we
show that many simple tree queries can still be performed efficiently
on SLPs, such as computing the height of a tree, tree navigation, or
evaluation of Boolean expressions. Other problems like pattern matching
and evaluation of tree automata become intractable.

1 Introduction

The idea of grammar-based compression is to represent a given string s by a
small context-free grammar that generates only s; such a grammar is also called
a straight-line program (SLP) for s. By repeated doubling, it is easy to produce a
string of length 2n by an SLP of size n (measured as the total length of all right-
hand sides of the productions), i.e., exponential compression can be achieved in
the best case. The goal of grammar-based compression is to construct from a
given string s a small SLP for s. Whereas computing a smallest SLP for a given
string is not possible in polynomial time unless P = NP [9,28], there exist several
linear time algorithms that produce grammars that are at worst O(log(N/g))
larger than the size of a smallest SLP, where N is the length of the input string
s and g is the size of a smallest SLP for s [9,18,26].

Motivated by applications like XML processing, where large tree-structured
data occur, grammar-based compression has been extended to trees, see [24] for a
survey. Unless otherwise specified, a tree in this paper is always a rooted ordered
tree over a ranked alphabet, i.e., every node is labelled with a symbol and the
rank of this symbol is equal to the number of children of the node. This class of
trees occurs in many different contexts like term rewriting, expression evaluation
and tree automata. A tree over a ranked alphabet is uniquely represented by its
preorder traversal. For instance, the preorder traversal of the tree f(g(a), f(a, b))
is the string fgafab. It is now a natural idea to apply a string compressor to
this preorder traversal. In this paper we study the compression of ranked trees
by SLPs for their preorder traversals. This idea is very similar to [6], where
unranked unlabelled trees are compressed by SLPs for their balanced parenthesis
representations.

The third and fourth author are supported by the DFG-project LO 748/10-1.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 590–604, 2016.
DOI: 10.1007/978-3-662-49529-2 44

Tree Compression Using String Grammars 591

In Sect. 3 we compare the size of SLPs for preorder traversals with other
grammar-based compressed tree representations. SLPs for strings can also be
generalized directly to trees, using context-free tree grammars that produce a
single tree (so called tree straight-line programs, briefly TSLPs). TSLPs gener-
alize dags (directed acyclic graphs), which are widely used as a compact tree
representation. Whereas dags only allow to share repeated subtrees, TSLPs can
also share repeated internal tree patterns. The algorithm from [13] produces
for every tree over a fixed ranked alphabet a TSLP of size O(N/ log N), which
is worst-case optimal. A grammar-based tree compressor using TSLPs with an
approximation ratio of O(log N) can be found in [19]. It was shown in [7] that
from a given TSLP A of size m for a tree t one can efficiently construct an SLP
of size O(m · r) for the preorder traversal of t, where r is the maximal rank
occurring in t (i.e. the maximal number of children of a node). Hence a smallest
SLP for the traversal of t cannot be much larger than a smallest TSLP for t.
Our first main result shows that SLPs can be exponentially more succinct than
TSLPs: We construct a family of binary trees tn (n ≥ 0) such that the size of a
smallest SLP for the traversal of tn is polynomial in n but the size of a smallest
TSLP for tn is Ω(2n/2). Moreover, we also construct a family of binary trees
tn (n ≥ 0) such that the size of a smallest SLP for the preorder traversal of tn
is polynomial in n but the size of a smallest SLP for the balanced parenthesis
representation is Ω(2n/2). It remains open whether a family of trees with the
opposite behavior exists.

We also study algorithmic problems for SLP-compressed trees. We extend
some of the results from [6] on querying SLP-compressed balanced parenthesis
representations to our context. Specifically, we show that after a linear time
preprocessing we can navigate (i.e., move to the parent node and to the kth

child), compute lowest common ancestors and subtree sizes in time O(log N),
where N is the size of the tree represented by the SLP. For a couple of other
problems (computation of the tree’s height, the depth of a node and evaluation
of Boolean expressions) we provide polynomial time algorithms for the case that
the input tree is given by an SLP for the preorder traversal. On the other hand,
there exist problems that are polynomial time solvable for TSLP-compressed
trees but intractable for SLP-compressed trees: examples for such problems are
pattern matching, evaluation of max-plus expressions, and membership for tree
automata. Looking at tree automata is also interesting when compared with
the situation for explicitly given (i.e., uncompressed) preorder traversals. For
these, evaluating Boolean expressions (which is the membership problem for a
particular tree automaton) is NC1-complete by a famous result of Buss [8], and
the NC1 upper bound was generalized to every fixed tree automaton [21]. If
we compress the preorder traversal by an SLP, the problem is still solvable in
polynomial time for Boolean expressions (Theorem 13), but there is a fixed tree
automaton with a PSPACE-complete evaluation problem (Theorem 16).

Missing proofs can be found in the long version [14].

592 M. Ganardi et al.

Related Work on Tree Compression. There are also tree compressors based
on other grammar formalisms. In [1] so called elementary ordered tree grammars
are used, and a polynomial time compressor with an approximation ratio of
O(N5/6) is presented. Also the top dags from [5] can be seen as a variation of
TSLPs for unranked trees. Recently, in [15] it was shown that for every tree of
size N with σ many node labels, the top dag has size O(N · log logσ N/ logσ N),
which improved the bound from [5]. An extension of TSLPs to higher order tree
grammars was proposed in [20].

Another class of tree compressors use succinct data structures for trees. Here,
the goal is to represent a tree in a number of bits that asymptotically matches
the information theoretic lower bound, and at the same have efficient querying.
For unlabelled (resp., node-labelled) unranked trees of size N there exist repre-
sentations with 2N + o(N) bits (resp., (2+ log σ) ·N + o(N) bits, where σ is the
number of node labels) that support navigation and some other tree queries in
time O(1) [3,12,16,17,25].

2 Preliminaries

Let Σ be a finite alphabet. For a string w = a1 · · · aN ∈ Σ∗ we define |w| = N ,
w[i] = ai and w[i : j] = ai · · · aj where w[i : j] = ε, if i > j. Let w[: i] = w[1 : i]
and w[i :] = w[i : |w|]. With rev(w) = aN · · · a1 we denote w reversed. For
u, v ∈ Σ∗, the convolution u ⊗ v ∈ (Σ × Σ)∗ is the string of length min{|u|, |v|}
defined by (u ⊗ v)[i] = (u[i], v[i]) for 1 ≤ i ≤ min{|u|, |v|}.

We assume familiarity with basic complexity classes like P, NP and PSPACE.
The counting class #P contains all functions f : Σ∗ → N for which there is a
nondeterministic polynomial time machine M such that for all x ∈ Σ∗, f(x)
is the number of accepting computation paths of M on input x. The class PP
contains all problems A for which there is a nondeterministic polynomial time
machine M such that for all inputs x: x ∈ A iff more than half of all computation
paths of M on input x are accepting. When referring to linear time algorithms,
we assume the standard RAM model of computation, where registers can hold
numbers with O(log n) bits for n the input size, and arithmetic operations on
register values can be done in constant time.

A ranked alphabet F is a finite set of symbols, where every f ∈ F has a
rank rank(f) ∈ N. By Fn we denote the symbols of F of rank n. We assume
that F0 �= ∅. Later we will also allow ranked alphabets where F0 is infinite. For
the purpose of this paper, it is convenient to define trees as particular strings
over the alphabet F (namely as preorder traversals). The set T (F) of all trees
over F is the subset of F∗ defined inductively as follows: If f ∈ Fn with n ≥ 0
and t1, . . . , tn ∈ T (F), then also ft1 · · · tn ∈ T (F) (we denote this tree also with
f(t1, . . . , tn), which corresponds to the standard term notation). A string s ∈ F∗

is a fragment if there exist a tree t ∈ T (F) and a non-empty string x ∈ F+ such
that sx = t. Note that the empty string ε is a fragment. Intuitively, a fragment is
a tree with gaps. For every non-empty fragment s ∈ F+ there is a unique n ≥ 1
such that {x ∈ F∗ | sx ∈ T (F)} = (T (F))n; this n is denoted with gaps(s). We
set gaps(ε) = 0. Since T (F) is prefix-free we have:

Tree Compression Using String Grammars 593

f

f
a a

f

f

f
a a

a

a

f

f
a a

f

f

f

Fig. 1. The tree t from Example 2 and the tree fragment corresponding to ffaafff .

Lemma 1. For every w ∈ F∗ there exist unique n ≥ 0, t1, . . . , tn ∈ T (F) and
a unique fragment s ∈ F∗ such that w = t1 · · · tns.

Let w ∈ F∗ and let w = t1 · · · tns as in Lemma 1. We define c(w) = (n, gaps(s)).
The number n counts the number of full trees in w and gaps(s) is the number
of trees that are missing in order to make the fragment s a tree.

We also consider trees in their graph-theoretic interpretation where the set of
nodes of a tree t is the set of positions {1, . . . , |t|} of the string t. The root node
is 1. If t factorizes as uft1 · · · tnv for u, v ∈ F∗, f ∈ Fn, and t1, . . . , tn ∈ T (F),
then the n children of node |u| + 1 are |u| + 2 +

∑k
i=1 |ti| for 0 ≤ k ≤ n − 1.

We define the depth of a node in t (number of edges from the root to the node)
and the height of t (maximal depth of a node) as usual. Note that the tree t as
a string is simply the preorder traversal of the tree t seen in its standard graph-
theoretic interpretation. Since for a ranked tree the number of children of a node
is uniquely determined by the node label, a tree (in the above graph-theoretic
interpretation) is uniquely determined by its preorder traversal and vice versa.

Example 2. Let t = ffaafffaaaa = f(f(a, a), f(f(f(a, a), a), a)) be the tree
depicted in Fig. 1 with f ∈ F2 and a ∈ F0. Its height is 4. All prefixes (including
the empty word, excluding the full word) of t are fragments. The fragment s =
ffaafff is also depicted in Fig. 1 in a graphical way. The dashed edges visualize
the gaps. We have gaps(s) = 4. For the factor u = aafffa of t we have c(u) =
(2, 3). The children of node 5 (the third f -labelled node) are 6 and 11.

A straight-line program, briefly SLP, is a context-free grammar that produces a
single string. Formally, it is a tuple A = (N,Σ,P, S), where N is a finite set
of nonterminals, Σ is a finite set of terminals such that Σ ∩ N = ∅, S ∈ N
is the start nonterminal, and P is a finite set of productions (or rules) of the
form A → w for A ∈ N , w ∈ (N ∪ Σ)∗ such that: (i) For every A ∈ N ,
there exists exactly one production of the form A → w, and (ii) the binary
relation {(A,B) ∈ N × N | (A → w) ∈ P, B occurs in w} is acyclic. Every
nonterminal A ∈ N produces a unique string valA(A) ∈ Σ∗. The string defined
by A is val(A) = valA(S). We omit the subscript A when it is clear from the
context. The size of the SLP A is |A| =

∑
(A→w)∈P |w|. An SLP for a nonempty

word can be transformed in linear time into Chomsky normal form, i.e., for each
production A → w, either w ∈ Σ or w = BC where B,C ∈ N . The following
lemma summarizes known results about SLPs which we will use throughout the
paper, see e.g. [23].

594 M. Ganardi et al.

Lemma 3. Let A be an SLP. There are algorithms running in time O(|A|) for
the following problems (the numbers i and j are given in binary encoding):

1. Compute the set of symbols occurring in val(A).
2. Let Σ be the terminal set of A and let Γ ⊆ Σ. Compute the number of

occurrences of symbols from Γ in val(A).
3. Let Σ be the terminal set of A and let Γ ⊆ Σ. Given a number i, compute

the position of the ith occurrence of a symbol from Γ in val(A) (if it exists).
4. Given 1 ≤ i, j ≤ |val(A)|, compute an SLP of size O(|A|) for val(A)[i : j].

We want to compress trees (viewed as particular strings) by SLPs. This leads to
the question whether a given SLP produces a tree, which is also known as the
compressed membership problem for the language T (F) ⊆ F∗. By computing
bottom-up for each nonterminal A the pair c(val(A)), we can show:

Theorem 4. Given an SLP A, one can check in time O(|A|) whether val(A) ∈
T (F).

Note that T (F) is context-free. In general the compressed membership prob-
lem for context-free languages belongs to PSPACE and there is a deterministic
context-free language with a PSPACE-complete compressed membership prob-
lem [22].

Tree straight-line programs (briefly TSLPs) generalize SLPs to trees [13,19].
In addition to terminals and nonterminals, the productions of a TSLP also con-
tain so called parameters x1, x2, x3, . . ., which are treated as symbols of rank
zero (i.e., they only label leaves). Formally, a TSLP is a tuple A = (V,F , P, S),
where V (resp., F) is a ranked alphabet of nonterminals (resp., terminals),
S ∈ V0 is the start nonterminal and P is a finite set of productions of the
form A(x1, . . . , xn) → t (which is also briefly written as A → t), where n ≥ 0,
A ∈ Vn and t ∈ T (F ∪ V ∪ {x1, . . . , xn}) is a tree in which every parameter xi

(1 ≤ i ≤ n) occurs at most once, such that: (i) For every A ∈ Vn there exists
exactly one production of the form A(x1, . . . , xn) → t, and (ii) the binary rela-
tion {(A,B) ∈ V×V | (A → t) ∈ P,B is a label in t} is acyclic. These conditions
ensure that exactly one tree valA(A) ∈ T (F ∪{x1, . . . , xn}) is derived from every
nonterminal A ∈ Vn by using the rules as rewriting rules in the usual sense. As
for SLPs, we omit the subscript A when the context is clear. The tree defined
by A is val(A) = valA(S). The size |A| of a TSLP is the total number of non-
parameter nodes in all right-hand sides of productions; see [13] for a justification
of this. TSLPs in which every nonterminal has rank 0 correspond to dags (the
nodes of the dag are the nonterminals of the TSLP).

3 Relative Succinctness of SLP-Compressed Trees

In [7] it is shown that a TSLP A for a tree t can be transformed into an SLP of
size O(|A| · r) for (the traversal of) t, where r is the maximal rank of a label in
t. In this section we discuss the other direction, i.e., transforming an SLP into a

Tree Compression Using String Grammars 595

TSLP. For tree families of unbounded maximal rank, SLPs can trivially achieve
exponentially better compression: The size of the smallest TSLP for tn = fnan

(with fn ∈ Fn) is n+1, whereas the size of the smallest SLP for tn is in O(log n).
Note that this does not contradict the O(n

log n) bound from [13] since the trees
tn have unbounded rank. It is less obvious that such an exponential gap can also
occur with trees of bounded rank. To show this, we use the following result:

Theorem 5. ([4, Theorem 2]). For every n > 0, there exist words un, vn ∈
{0, 1}∗ with |un| = |vn| such that un and vn have SLPs of size nO(1), but the
smallest SLP for the convolution un ⊗ vn has size Ω(2n/2).

For two words u = i1 · · · in ∈ {0, 1}∗ and v = j1 · · · jn ∈ {0, 1}∗ we define
the comb tree t(u, v) = fi1(fi2(. . . fin($, jn) . . . j2), j1) over the ranked alphabet
{f0, f1, 0, 1, $} where f0, f1 have rank 2 and 0, 1, $ have rank 0.

Theorem 6. For every n > 0 there exists a tree tn such that the size of a
smallest SLP for tn is polynomial in n, but the size of a smallest TSLP for tn
is in Ω(2n/2).

Proof sketch. Let tn = t(un, vn) be the comb tree, where un, vn are from The-
orem 5. These words have SLPs of size nO(1), which yield an SLP of size nO(1)

for tn. On the other hand, one can transform a TSLP for tn of size m into an
SLP of size O(m) for un ⊗ vn, which implies the result. �
Note that the height of the tree tn in Theorem 6 is linear in the size of tn. By the
following result, large height and rank are always responsible for the exponential
succinctness gap between SLPs and TSLPs.

Theorem 7. Let t ∈ T (F) be a tree of height h and maximal rank r, and let
A be an SLP for t. Then there exists a TSLP B with val(B) = t such that
|B| ∈ O(|A| · h · r), which can be constructed in time O(|A| · h · r).

Proof sketch. Without loss of generality we assume that A is in Chomsky normal
form. Consider a nonterminal A of A with c(A) = (a1, a2). This means that
val(A) = t1 · · · ta1s, where the ti is a full tree and s is a fragment with a2 many
gaps. For the TSLP B, we introduce (i) a1 nonterminals A1, . . . , Aa1 of rank 0,
which produce the trees t1, . . . , ta1 , and (ii), if a2 > 0, one nonterminal A′ of
rank a2 for the fragment s. For every rule of the form A → f with f ∈ Fn we
add to B the TSLP-rule A1 → f if n = 0 or A′(x1, . . . , xn) → f(x1, . . . , xn) if
n ≥ 1. For a rule of the form A → BC with c(B) = (b1, b2) and c(C) = (c1, c2),
one has to distinguish the cases b2 = 0, 0 < b2 ≤ c1, and b2 > c1. In each of
these cases it is straightforward to define the rules in such a way that Ai derives
ti and, in case a2 > 0), A′ produces the fragment s. Finally, it is easy to achieve
the size bound O(|A| · h · r) in the construction for B. �
Balanced parenthesis sequences are widely used as a succinct representation of
ordered unranked unlabelled trees [25]. One defines the balanced parenthesis
sequence bp(t) of such a tree t inductively as follows. If t consists of a single

596 M. Ganardi et al.

node, then bp(t) = (). If the root of t has n children in which the subtrees
t1, . . . , tn are rooted (from left to right), then bp(t) = (bp(t1) · · · bp(tn)). Using
a construction similar to the proof of Theorem6 we can show:

Theorem 8. For every n > 0 there exists a binary tree tn ∈ T ({a, f}) (where
f has rank 2 and a has rank 0) such that the size of a smallest SLP for tn is
polynomial in n, but the size of a smallest SLP for bp(tn) is in Ω(2n/2).

It remains open whether there is also a family of trees where the opposite situ-
ation arises, i.e., where a smallest SLP for the balanced parenthesis sequence is
exponentially smaller than a smallest SLP for the preorder traversal.

4 Algorithmic Problems on SLP-Compressed Trees

For trees given by TSLPs or other compressed representations, various algorith-
mic questions have been studied in the literature [5,15,24,27]. Here, we study the
complexity of several basic algorithmic problems on trees that are represented
by SLPs. In this context the main difficulty for SLPs in contrast to TSLPs is
that the tree structure is only given implicitly by the ranked alphabet.

4.1 Tree Navigation and Pattern Matching

In [6] it is shown that from an SLP of size n that produces the balanced parenthe-
sis representation of an unranked tree t of size N , one can compute in time O(n)
a data structure of size O(n) that supports navigation as well as other impor-
tant computations (e.g. lowest common ancestors) in time O(log N). Here, the
word RAM model is used, where memory cells can store numbers with log N bits
and arithmetic operations on log N -bit numbers can be carried out in constant
time. An analogous result was shown in [5] for top dags. Here, we show the same
result for SLPs that produce (preorder traversals of) ranked trees. Recall that
we identify the nodes of a tree t with the positions 1, . . . , |t| in the string t. The
proof of the following result combines results from [3,6,17] and uses a correspon-
dence between preorder traversals of ranked trees and the DFUDS (depth-first
unary-degree sequence) representation of unranked trees from [3].

Theorem 9. Given an SLP of size n for a tree t of size N , one can produce in
time O(n) a data structure of size O(n) that allows to do the following compu-
tations in time O(log N) ≤ O(n), where i, j, k ∈ N with 1 ≤ i, j ≤ N are given
in binary notation:

(a) Compute the parent node of node i > 1 in t.
(b) Compute the kth child of node i in t, if it exists.
(c) Compute the number k such that i > 1 is the kth child of its parent node.
(d) Compute the size of the subtree rooted at node i.
(e) Compute the lowest common ancestor of node i and j in t.

Tree Compression Using String Grammars 597

The data structure of [6] allows to compute the height and the depth of a given
tree node in time O(log N) as well. It is not clear to us whether this result also
can be extended to our setting. On the other hand, in Sect. 4.2, we show that
the height and the depth of a given node of an SLP-compressed tree can be
computed in polynomial time.

In contrast to navigation, simple pattern matching problems are intractable
for SLP-compressed trees. The pattern matching problem for SLP-compressed
trees is defined as follows: Given a tree s ∈ T (F ∪ X) (the pattern), where every
variable x ∈ X (a symbol of rank zero) occurs at most once, and an SLP A

producing a tree t ∈ T (F), is there a substitution σ : X → T (F) such that
σ(s) is a subtree of t? Here, σ(s) ∈ T (F) denotes the tree obtained from s
by substituting each variable x ∈ X by σ(x). Note that the pattern is given
uncompressed. If the tree t is given by a TSLP, the corresponding problem can
be solved in polynomial time [27].1 For SLP-compressed trees we have:

Theorem 10. The pattern matching problem for SLP-compressed trees is NP-
complete. Moreover, NP-hardness holds for a fixed pattern of the form f(x, a).

NP-hardness is shown by a reduction from the question whether (1, 1) appears
in the convolution of two SLP-compressed strings over {0, 1} [23, Theorem 3.13].

4.2 Tree Evaluation Problems

The algorithmic difficulty of SLP-compressed trees already becomes clear when
computing the height. For TSLPs it is easy to see that the height of the produced
tree can be computed in linear time: Compute bottom-up for each nonterminal
the height of the produced tree and the depths of the parameter nodes. However,
this direct approach fails for SLPs since each nonterminal encodes a possibly
exponential number of trees. The crucial observation to solve this problem is
that one can store and compute the required information for each nonterminal
in a compressed form.

In the following we present a general framework to define and solve evaluation
problems on SLP-compressed trees. We assign to each alphabet symbol of rank
n an n-ary operator which defines the value of a tree by evaluating it bottom-up.
This approach includes natural tree problems like computing the height of a tree,
evaluating a Boolean expression or determining whether a fixed tree automaton
accepts a given tree. We only consider operators on Z but other domains with
an appropriate encoding of the elements are also possible. To be able to consider
arbitrary arithmetic expressions properly, it is necessary to allow the set F0 ⊆ F
of constants to be an infinite subset of Z. If such a constant a ∈ F0 appears in
an SLP for a tree, then its contribution to the SLP size is the number of bits of
the binary representation of a.
1 In fact, there is a polynomial time algorithm that checks whether a TSLP-compressed

pattern tree s occurs in a TSLP-compressed tree t [27]. But for this, it is important
that every variable x occurs at most once in the pattern s. For the case that variables
are allowed to occur repeatedly in the pattern, the precise complexity is open.

598 M. Ganardi et al.

Let D ⊆ Z be a possibly infinite set of integers and let F be a ranked alphabet
with F0 = D. An interpretation I of F over D assigns to each symbol f ∈ Fn an
n-ary function fI : Dn → D with the restriction that aI = a for all a ∈ D. We lift
the definition of I to T (F) inductively by (f t1 · · · tn)I = fI(tI1 , . . . , tIn), where
f ∈ Fn and t1, . . . , tn ∈ T (F). The problem I-evaluation for SLP-compressed
trees is: Given an SLP A over F with val(A) ∈ T (F), compute val(A)I .

In a first step, we reduce I-evaluation for SLP-compressed trees to the corre-
sponding problem for SLP-compressed caterpillar trees. A tree t ∈ T (F) is called
a caterpillar tree if every node has at most one child which is not a leaf. Let
s ∈ F∗ be an arbitrary string. Then sI ∈ F∗ denotes the unique string obtained
from s by replacing every maximal substring t ∈ T (F) of s by its value tI . By
Lemma 1 we can factorize s uniquely as s = t1 · · · tnu where t1, . . . , tn ∈ T (F)
and u is a fragment. Hence sI = m1 · · · mnuI with m1, . . . , mn ∈ D. Since u is
a fragment, the string uI is the fragment of a caterpillar tree (briefly, caterpillar
fragment). For instance, with the standard interpretation of + and × on integers,
we have (0, 2,+, 2,+,+,×, 2,+, 2, 1,+,×)I = 0, 2,+, 2,+,+, 6,+,× (commas
are added for better readability).

Our reduction to caterpillar trees only works for interpretations I that are
polynomially bounded in the following sense: There exist constants α, β ≥ 0 such
that for every tree t ∈ T (F), abs(tI) ≤

(
β · |t| +

∑
i∈L abs(t[i])

)α, where abs(z)
is the absolute value of z ∈ Z (we write abs(z) instead of |z| in order to not get
confused with the size |t| of a tree) and L ⊆ {1, . . . , |t|} is the set of leaves of
t. The purpose of this definition is to ensure that for every SLP A for a tree t,
the length of the binary encoding of tI is polynomially bounded in |A| and the
binary lengths of the integer constants that appear in A.

Theorem 11. Let I be a polynomially bounded interpretation. Then the
I-evaluation for SLP-compressed trees is polynomial time Turing-reducible to
the I-evaluation for SLP-compressed caterpillar trees.

Proof. In the proof we use an extension of SLPs by the cut-operator, called
composition systems. A composition system A = (N,Σ,P, S) is an SLP where P
may also contain rules of the form A → B[i : j] where A,B ∈ N and i, j ≥ 0. Here
we let val(A) = val(B)[i : j]. It is known (see e.g. [23]) that a given composition
system can be transformed in polynomial time into an SLP with the same value.
We may also use more complex rules like for instance A → B[i : j]C[k : l]. Such
rules can be easily reduced to the above format.

Let A = (N, F , P, S) be the input SLP in Chomsky normal form. We compute
a composition system, which contains for each nonterminal A ∈ N two nonter-
minals A1 and A2 such that the following holds: Assume that val(A) = t1 · · · tn s,
where t1, . . . , tn ∈ T (F) and s is a fragment (hence c(val(A)) = (n, gaps(s))).
Then we will have val(A1) = tI1 · · · tIn ∈ D∗ and val(A2) = sI . In particular,
val(A1)val(A2) = val(A)I and val(A)I is given by a single number in val(S1).
The fact that I is polynomially bounded ensures that all numbers tIi as well as
all numbers that appear in the caterpillar tree sI have polynomially many bits
in the input length |A|.

Tree Compression Using String Grammars 599

+

+

8 +

+p

5 +

val(B2)

4 2

val(C1)

+

3

val(C2)

+

+

8 +

+

5 +

4 2

+

3

tIcat

+

+

8 +

11 +

3

val(A2)

Fig. 2. An example for the case b2 > c1 in the proof of Theorem 11 (+ is interpreted
as addition). Inserting the values from val(C1) = 4 2 into the caterpillar fragment
val(B2) = + + 8 + + 5 + produces a caterpillar subtree tcat, which evaluates to 11.
Then, the fragment val(C2) = + 3 is appended, which yields val(A2) = + + 8 + 11 + 3.

The computation is straightforward for rules A → f with A ∈ N and f ∈ F :
If rank(f) = 0, then val(A1) = f and val(A2) = ε. If rank(f) > 0, then val(A1) =
ε and val(A2) = f . For a nonterminal A ∈ N with the rule A → BC we make a
case distinction depending on c(val(B)) = (b1, b2) and c(val(C)) = (c1, c2).
Case b2 ≤ c1: Then concatenating val(B) and val(C) yields a new tree tnew (or ε
if b2 = 0) in val(A). Notice that tInew is the value of the tree val(B2) val(C1)[: b2].
Hence we can compute tInew in polynomial time by computing an SLP that
produces val(B2) val(C1)[: b2] and querying the oracle for caterpillar trees. We
add the rules A1 → B1 tInew C1[b2 + 1 : c1], A2 → C2 to the composition system.
Case b2 > c1: Then all trees and the fragment produced by C are inserted into
the gaps of the fragment encoded by B. If c1 = 0 (i.e., val(C1) = ε), then we add
the productions A1 → B1 and A2 → B2C2. Now assume that c1 > 0. Consider
the fragment s = val(B2) val(C1) val(C2). Intuitively, this fragment s is obtained
by taking the caterpillar fragment val(B2), where the first c1 many gaps are
replaced by the constants from the sequence val(C1) and the (c1 + 1)st gap is
replaced by the caterpillar fragment val(C2), see Fig. 2 for an example. If s is
not already a caterpillar fragment, then we have to replace the (unique) largest
factor of s which belongs to T (F) by its value under I to get sI . To do so we
proceed as follows: Consider the tree t′ = val(B2) val(C1) �b2−c1 , where � is an
arbitrary symbol of rank 0, and let r = |val(B2)| + c1 + 1 (the position of the
first � in t′). Let q be the parent node of r, which can be computed in polyno-
mial time by Theorem 9. Using Lemma 3 we compute the position p (which is
marked in the left tree in Fig. 2) of the first occurrence of a symbol in t′[q + 1 :]
with rank > 0. If no such symbol exists, then s is already a caterpillar fragment
and we add the rules A1 → B1 and A2 → B2C1C2 to the composition sys-
tem. Otherwise p is the first symbol of the largest factor from T (F) described
above. Using Theorem 9(d), we can compute in polynomial time the last posi-
tion p′ of the subtree of t′ that is rooted in p. Note that the position p must
belong to val(B2) and that p′ must belong to val(C1) (since c1 > 0). The string

600 M. Ganardi et al.

tcat = (val(B2) val(C1))[p : p′] is a caterpillar tree for which we can compute an
SLP in polynomial time by the above remark on composition systems. Hence,
using the oracle we can compute the value tIcat. We then add the rules A1 → B1,
A′ → B2C1, and A2 → A′[: p − 1] tIcat A′[p′ + 1 :]C2 to the composition system.
This completes the proof. �

Polynomial Time Solvable Evaluation Problems. Next, we present several
applications of Theorem11. We start with the height of a tree.

Theorem 12. The height of a tree t ∈ T (F) given by an SLP and the depth of
a given node in t can be computed in polynomial time.

Proof. We can assume that t is not a single constant. We replace every symbol
in F0 by the integer 0. Then the height of t is given by its value under the
interpretation I with fI(a1, . . . , an) = 1 + max{a1, . . . , an} for symbols f ∈ Fn

with n > 0. Clearly I is polynomially bounded. By Theorem11 it is enough to
show how to evaluate a caterpillar tree t given by an SLP A in polynomial time
under the interpretation I. But note that arbitrary natural numbers may occur
at leaf positions in this caterpillar tree.

Let Dt = {d ∈ N | d labels a leaf of t}. The size of this set is bounded by |A|.
For d ∈ Dt let vd be the deepest node such that d is the label of a child of node
vd (in particular, vd is not a leaf). Let us first argue that vd can be computed
in polynomial time: Let k be the maximal position in t where a symbol of rank
larger than zero occurs. The number k is computable in polynomial time by
Lemma 3 (point 2 and 3). Again using Lemma3 we compute the position of d’s
last (resp., first) occurrence in t[: k] (resp., t[k + 1 :]). Then using Theorem9 we
compute the parent nodes of those two nodes. The larger (i.e., deeper one) is vd.

Assume that Dt = {d1, . . . , dm}, where w.l.o.g. vd1 < vd2 < · · · < vdm
(if

vdi
= vdj

for di < dj , then we simply ignore di in the following consideration).
Note that vdm

is the maximal position in t where a symbol of rank at least one
occurs (called k above) and that all children of vdm

are labelled with dm. Let
ti be the subtree rooted at vdi

. Then tIm = dm + 1. We claim that from the
value tIi+1 we can compute in polynomial time the value tIi . The crucial point
is that all constants that appear in the interval [vdi

+ 1, vdi+1 − 1] except for
di have a deeper occurrence in the tree and therefore can be ignored for the
evaluation under I. More precisely, if a is the number of occurrences of symbols
of rank at least one in the interval [vdi

+ 1, vdi+1 − 1] (which can be computed
in polynomial time by Lemma 3), then tIi = 1+max{tIi+1 +a, di}. Finally, using
the same argument, we can compute tI from tI1 .

For the second part of the theorem, the computation of the depth of a given
node can be easily reduced to a height computation. �

In the full version [14], we show with similar arguments that also the Horton-
Strahler number [11] of an SLP-compressed tree can be computed in polyno-
mial time. It can be defined as the value tI under the interpretation I over N

which interprets constant symbols a ∈ F0 by aI = 0 and each symbol f ∈ Fn

Tree Compression Using String Grammars 601

with n > 0 as follows: Let a1, . . . , an ∈ N and a = max{a1, . . . , an}. We set
fI(a1, . . . , an) = a if exactly one of a1, . . . , an is equal to a, and otherwise
fI(a1, . . . , an) = a + 1.

If the interpretation I is clear from the context, we also speak of the problem
of evaluating SLP-compressed F-trees. In the following theorem the interpreta-
tion is given by the Boolean operations ∧ and ∨ over {0, 1}.

Theorem 13. SLP-compressed {∧,∨, 0, 1}-trees can be evaluated in polynomial
time.

Difficult Arithmetical Evaluation Problems. Assume that I is the inter-
pretation that assigns to the binary symbols max, +, and × their standard mean-
ings over Z. We consider the problem of evaluating SLP-compressed expressions
over {max,+} or {+,×}. For circuits, these problems are well-studied. Circuits
over max and + can be evaluated bottom-up in polynomial time, since all values
that arise in the circuit only need polynomially many bits. Circuits are dags, and
the latter correspond to TSLPs where all nonterminals have rank 0. Moreover,
it was shown in [13] that a TSLP that evaluates to an expression over a semiring
can be transformed in polynomial time into an equivalent circuit over the same
semiring. Hence, TSLPs over max and + can be evaluated in polynomial time.
In contrast, for SLP-compressed expressions we can show the following result.
The counting hierarchy CH is a hierarchy of complexity classes within PSPACE,
and it is conjectured that CH � PSPACE, see [2] for more details.

Theorem 14. The evaluation of SLP-compressed ({max,+} ∪ Z)-trees belongs
to CH and is #P-hard (even for SLP-compressed ({max,+} ∪ N)-trees).

For expressions over + and × the situation is more difficult. Clearly a circuit
of size O(n) can produce the number 22n

which has 2n bits. Hence, we cannot
evaluate a circuit over + and × in polynomial time. In [2] it was shown that the
problem BitSLP of computing the kth bit (k is given in binary) of the number
to which a given arithmetic circuit evaluates to belongs to CH and is #P-hard.
By [13] these results also hold for TSLPs. For the related problem PosSLP of
deciding, whether a given arithmetic circuit computes a positive number, no
non-trivial lower bound is known, see also [2]. For SLP-compressed expressions
over + and × we can show the following:

Theorem 15. The problem of computing for a given binary encoded number k
and an SLP A over {+,×} ∪ Z the kth bit of val(A)I belongs to CH. Moreover,
the problem of checking val(A)I ≥ 0 is PP-hard.

Tree Automata. A (deterministic) tree automaton A = (Q,F ,Δ, F) consists
of a finite set of states Q, a ranked alphabet F , a set of final states F ⊆ Q and
a set Δ of transition rules, which contains for all f ∈ Fn, q1, . . . , qn ∈ Q exactly
one rule f(q1, . . . , qn) → q. A tree t ∈ T (F) is accepted by A if t

∗→Δ q for some
q ∈ F where →Δ is the rewriting relation defined by Δ as usual. See [10] for more

602 M. Ganardi et al.

details on tree automata. One can also define nondeterministic tree automata,
but the above deterministic model fits better into our framework: A tree automa-
ton as defined above can be seen as a finite algebra (i.e., an interpretation I,
where the domain D is finite): The domain of the algebra is the set of states,
and the operations of the algebra correspond to the transitions of the automa-
ton. Then, the membership problem for the tree automaton corresponds to the
evaluation problem in the finite algebra. The uniform membership problem for
tree automata asks whether a given tree automaton accepts a given tree. In [21]
it was shown that this problem belongs to LogDCFL ⊆ P (for nondeterministic
tree automata it becomes LogCFL-complete). For every fixed tree automaton,
the membership problem belongs to NC1 [21] if the tree is represented by its
traversal string. If the input tree is given by a TSLP, the uniform membership
problem becomes P-complete [24]. For SLP-compressed trees we have:

Theorem 16. Uniform membership for tree automata is PSPACE-complete if
the input tree is given by an SLP. Moreover, PSPACE-hardness holds for a fixed
tree automaton.

Proof Sketch. For the upper bound one uses the fact that the uniform member-
ship problem for explicitly given trees is in LogDCFL ⊆ DSPACE(log2(n)). Given
an SLP A for the tree t = val(A), one can run the DSPACE(log2(n))-algorithm on
the tree t without producing the whole tree t (which does not fit into polynomial
space) before. This leads to a polynomial space algorithm.

For the lower bound we use a fixed regular language L ⊆ ({0, 1}2)∗ from [22]
such that the following problem is PSPACE-complete: Given SLPs A and B over
{0, 1} with |val(A)| = |val(B)|, is val(A) ⊗ val(B) ∈ L? It is straightforward to
transform a finite automaton for the fixed language L into a tree automaton
A such that A accepts the comb tree t(rev(u), rev(v)) with u = val(A) and
v = val(B) iff u ⊗ u ∈ L. �
Theorem 16 implies that there exists a fixed finite algebra for which the evalua-
tion problem for SLP-compressed trees is PSPACE-complete. This is somewhat
surprising if we compare the situation with dags or TSLP-compressed trees.
For these, membership for tree automata is still doable in polynomial time [24],
whereas the evaluation problem of arithmetic expressions (in the sense of com-
puting a certain bit of the output number) belongs to the counting hierarchy
and is #P-hard. In contrast, for SLP-compressed trees, the evaluation problem
for finite algebras (i.e., tree automata) is harder than the evaluation problem for
arithmetic expressions (PSPACE versus the counting hierarchy).

References

1. Akutsu, T.: A bisection algorithm for grammar-based compression of ordered trees.
Inf. Process. Lett. 110(18–19), 815–820 (2010)

2. Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the com-
plexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)

Tree Compression Using String Grammars 603

3. Benoit, D., Demaine, E.D., Munro, J.I., Raman, R., Raman, V., Rao, S.S.: Repre-
senting trees of higher degree. Algorithmica 43(4), 275–292 (2005)

4. Bertoni, A., Choffrut, C., Radicioni, R.: Literal shuffle of compressed words. In:
Ausiello, G., Karhumäki, J., Mauri, G., Ong, L. (eds.) Fifth IFIP International
Conference on Theoretical Computer Scienc – TCS 2008. IFIP, vol. 273, pp. 87–
100. Springer, Boston (2008)

5. Bille, P., Gørtz, I.L., Landau, G.M., Weimann, O.: Tree compression with top trees.
Inform. Comput. 243, 166–177 (2015)

6. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015)

7. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML
document trees. Inform. Syst. 33(4–5), 456–474 (2008)

8. Buss, S.R.: The boolean formula value problem is in ALOGTIME. In: Proceedings
of STOC 1987, pp. 123–131. ACM Press (1987)

9. Charikar, M., Lehman, E., Lehman, A., Liu, D., Panigrahy, R., Prabhakaran, M.,
Sahai, A., Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

10. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding,
C., Tison, S., Tommasi, M.: Tree automata techniques and applications.
tata.gforge.inria.fr/

11. Esparza, J., Luttenberger, M., Schlund, M.: A brief history of strahler numbers.
In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B. (eds.) LATA
2014. LNCS, vol. 8370, pp. 1–13. Springer, Heidelberg (2014)

12. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57(1), 4 (2009)

13. Ganardi, M., Hucke, D., Jeż, A., Lohrey, M., Noeth, E.: Constructing
small tree grammars and small circuits for formulas. arXiv.org (2014).
arxiv.org/abs/1407.4286

14. Ganardi, M., Hucke, D., Lohrey, M., Noeth, E.: Tree compression using string
grammars. arXiv.org (2014). arxiv.org/abs/1504.05535

15. Hübschle-Schneider, L., Raman, R.: Tree compression with top trees revisited. In:
Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 15–27. Springer, Heidelberg
(2015)

16. Jacobson, G.: Space-efficient static trees and graphs. In: Proceedings of FOCS
1989, pp. 549–554. IEEE Computer Society (1989)

17. Jansson, J., Sadakane, K., Sung, W.-K.: Ultra-succinct representation of ordered
trees with applications. J. Comput. Syst. Sci. 78(2), 619–631 (2012)

18. Jeż, A.: Approximation of grammar-based compression via recompression. In: Fis-
cher, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 165–176. Springer,
Heidelberg (2013)

19. Jeż, A., Lohrey, M.: Approximation of smallest linear tree grammars. In: Proceed-
ings of STACS 2014. LIPIcs, vol. 25, pp. 445–457. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2014)

20. Kobayashi, N., Matsuda, K., Shinohara, A.: Functional programs as compressed
data. In: Proceedings of PEPM 2012, pp. 121–130. ACM Press (2012)

21. Lohrey, M.: On the parallel complexity of tree automata. In: Middeldorp, A. (ed.)
RTA 2001. LNCS, vol. 2051, pp. 201–215. Springer, Heidelberg (2001)

22. Lohrey, M.: Leaf languages and string compression. Inform. Comput. 209(6), 951–
965 (2011)

http://tata.gforge.inria.fr/
http://arxiv.org/abs/1407.4286
http://arxiv.org/abs/1504.05535

604 M. Ganardi et al.

23. Lohrey, M.: The Compressed Word Problem for Groups. Springer, New York (2014)
24. Lohrey, M.: Grammar-based tree compression. In: Potapov, I. (ed.) DLT 2015.

LNCS, vol. 9168, pp. 46–57. Springer, Heidelberg (2015)
25. Munro, J.I., Raman, V.: Succinct representation of balanced parentheses and static

trees. SIAM J. Comput. 31(3), 762–776 (2001)
26. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of

grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003)
27. Schmidt-Schauß, M.: Linear compressed pattern matching for polynomial rewrit-

ing. In: Proceedings of TERMGRAPH 2013. EPTCS, vol. 110, pp. 29–40 (2013)
28. Storer, J.A., Szymanski, T.G.: The macro model for data compression. In: Pro-

ceedings of STOC 1978, pp. 30–39. ACM (1978)

Trees and Languages with Periodic Signature

Victor Marsault1(B) and Jacques Sakarovitch2

1 LIAFA, Université Denis Diderot, 8 place Aurélie Nemours, 75013 Paris, France
Victor.Marsault@liafa.univ-paris-diderot.fr

2 Telecom-ParisTech and CNRS, 46 rue Barrault, 75013 Paris, France

Abstract. The signature of a labelled tree (and hence of its prefix-closed
branch language) is the sequence of the degrees of the nodes of the tree
in the breadth-first traversal. In a previous work, we have characterised
the signatures of the regular languages. Here, the trees and languages
that have the simplest possible signatures, namely the periodic ones, are
characterised as the sets of representations of the integers in rational
base numeration systems.

1 Introduction

Rational base numeration systems were defined in a joint work of the second
author with S. Akiyama and Ch. Frougny [1] and allowed to make some progress
in a number theoretic problem, by means of automata theory and combinatorics
of words. At the same time, it raised the problem of understanding the structure
of the sets of the representations of the integers in these systems from the point
of view of formal language theory.

At first sight, these sets look rather chaotic and do not fit in the classical
Chomsky hierarchy of languages. They all enjoy a property that makes them
defeat, so to speak, any kind of iteration lemma. On the other hand, the most
common example given by the set of representations in the base 3

2 exhibits a
remarkable regularity. The set L 3

2
of representations, which are words written

with the three digits {0, 1, 2}, is prefix-closed and thus naturally represented
as a subtree of the full ternary tree which is shown in Fig. 1. It is then easily
observed that the breadth-first traversal of that tree yields an infinite periodic
sequence of degrees: 2, 1, 2, 1, 2, 1, . . . = (2 1)ω. Moreover, the sequence of labels
of the arcs in the same breadth-first search is also a purely periodic sequence
0, 2, 1, 0, 2, 1, . . . = (0 2 1)ω .1

Let us call signature of a tree (or of the corresponding prefix-closed language)
the sequence of degrees in a breadth-first traversal of the tree. With this example,
we are confronted with a situation where a regular process, a periodic signature,
give birth to the highly non regular language, L 3

2
. This paradox was the incentive

to look at the breadth-first traversal description of languages in general. We have

1 The sequence of degrees observed on the tree in the figure begins indeed with a 1
instead of a 2, the sequence of labels begins at the second term. These discrepancies
will be explained later.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 605–618, 2016.
DOI: 10.1007/978-3-662-49529-2 45

606 V. Marsault and J. Sakarovitch

0 1 2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

2 1

0

2

1

0

2

1

0

2

1

0
2

1

0
2

1

0
2

1

0
2

1

0
2

1

Fig. 1. The tree T 3
2
, representation of the language L 3

2

shown in [11] that regular languages are characterised by signatures belonging
to a special class of morphic words. The purpose of this paper is to establish
that a periodic signature is characteristic of the languages of representations of
the integers in rational base numeration systems (roughly speaking and up to
very simple and rational transformations).

Let us be more specific in order to state more precisely the characterisa-
tion results. An ordered tree of finite degree T is characterised by the infinite
sequence of the degrees of its nodes visited in the order given by the breadth-first
search, which we call the signature s of T . Such a signature s, together with an
infinite sequence λλλ of letters taken in an ordered alphabet form a labelled sig-
nature (s,λλλ) and characterises then a labelled tree T . The breadth-first search
of T corresponds to the enumeration in the radix order of the prefix-closed lan-
guage LT of branches of T .

We call rhythm of directing parameter (q, p) a q-tuple r of integers whose
sum is p: r = (r0, r1, . . . , rq−1) and p = r0 + r1 + · · · + rq−1. With r, we asso-
ciate sequences γγγ of p letters that meet some consistency conditions. And we
consider the languages that are determined by the labelled signature (rω, γγγω).
The characterisation announced above splits in two parts.

We first determine (Theorem 1) the remarkable labelled signature (rω
p
q
, γγγω

p
q
)

of the languages L p
q
. The rhythm r p

q
of L p

q
corresponds roughly to the most

equitable way of partitioning p objects into q parts. We call it the Christoffel
rhythm associated with p

q , as it can be derived from the more classical notion of
Christoffel word of slope p

q (cf. [2]), that is, the canonical way to approximate the
line of slope p

q on a Z×Z lattice. The labelling γγγ p
q

is induced by the generation
of Z/pZ by q.

The converse is more convoluted but its complexity is confined in the defin-
ition of a special labelling γγγr associated with every rhythm r (Definition 5). It
is then established (Theorem 2) that the language Lr generated by the labelled
signature (rω, γγγω

r) is a non-canonical representation of the integers in the base

Trees and Languages with Periodic Signature 607

which is the growth ratio of the rhythm r. The properties of alphabet conversion
in rational base numeration systems (cf. [1] or [5]) allow to conclude that for
every rhythm r, the language Lr is as complicated (or as simple, in the degener-
ate case where the growth ratio happens to be an integer) as these languages L p

q
.

The same techniques allow to treat the generalisation to ultimately periodic
which raises no special difficulties and the results readily extend.

The languages with periodic labelled signature keep most of their mystery.
But we have at least established that they are all alike, essentially similar to the
representation languages of rational base numeration systems, and that varia-
tions in the rhythm and labelling do not really matter.

Due to space constraints, some proofs are only sketched and some figures
have been removed. A complete version may be found on arXiv [9].

2 Rythmic Trees and Languages

Trees and I-trees. Classically, a tree is an undirected graph in which any two
vertices are connected by exactly one path (cf. [3], for instance). Our point of
view differs in two respects (as already discussed in [11]).

First, a tree is a directed graph T = (V, Γ) such that there exists a unique
vertex, called root, which has no incoming arc, and there is a unique (oriented)
path from the root to every other vertex. In the figures, we draw trees with the
root on the left, and arcs rightwards.

Second, our trees are ordered, that is, the set of children of every node is
totally ordered. The order will be implicit in the figures, with the convention
that lower children are smaller (according to this order).

It will prove to be convenient to have a slightly different look at trees and to
consider that the root of a tree is also a child of itself, that is, bears a loop onto
itself. We call such a structure an i-tree. It is so close to a tree that we pass from
one to the other with no further ado. Nevertheless, some definitions or results are
easier or more straightforward when stated for i-trees, and others when stated
for trees: it is then handy to have both available. A tree will usually be denoted
by Tx for some index x and the associated i-tree by Ix. Figure 1 shows a tree
and Fig. 2a shows an i-tree.

The degree of a node is the number of its children. In the sequel, we consider
infinite (i-)trees of finite degree, that is, all nodes of which have finite degree.
The breadth-first traversal of such a tree defines a total ordering of its nodes. We
then consider that the set of nodes of an (i-)tree is always the set of integers N.
The root is 0 and n is the (n+1)-th node visited by the search. We write n −→

T
m

if and only if m is a child of n in T .
Let I be an (infinite) i-tree (of finite degree). The sequence s of the degrees of

the nodes of I visited in the breadth-first search of I is called the signature of I
and is characteristic of I, that is, one can compute I from s (cf. Proposition 1).
By convention, the signature of a tree T is always that of the corresponding
i-tree I.

608 V. Marsault and J. Sakarovitch

In this paper, we are interested in signatures that are purely periodic. We
call the period of a periodic signature a rhythm.

Rhythms. Given two integers n and m such that m > 0, we denote by n
m their

division in Q; by n ÷ m and n%m respectively the quotient and the remainder
of the Euclidean division of n by m, that is verifying n = (n ÷ m)m + (n%m)
and 0 � (n%m) < m. We also denote the integer interval {n, (n + 1), . . . , m}
by �n,m�.

Definition 1. Let p and q be two integers with p > q � 1.

(i) We call rhythm of directing parameter (q, p), a q-tuple r of non-negative
integers whose sum is p:

r = (r0, r1, . . . , rq−1) and
q−1∑

i=0

ri = p.

(ii) We say that a rhythm r is valid if it satisfies the following equation:

∀j ∈ �0, q − 1�

j∑

i=0

ri > j + 1. (1)

(iii) We call growth ratio of r the rational number z = p
q , also written z = p′

q′

where p′ and q′ are coprime; it is always greater than 1.

Examples of rhythms of growth ratio 5
3 are (2, 2, 1), (3, 1, 1), (1, 2, 2), (3, 0, 2),

(2, 1, 3, 0, 0, 4); all but the third one are valid; the directing parameter is (3,5)
for the first four, and (6,10) for the last one.

In the following, whenever the reference to a rhythm r = (r0, r1, . . . , rq−1) is
clear, we denote simply by Rj the partial sum of the first j components of rω:

∀j ∈ N Rj =
j−1∑

i=0

ri% q

(
= Rj−1 + r(j−1)% q if j > 0

)
.

Generating Trees by Rhythm. An (i-)tree can be ‘reconstructed’ from its
signature s (cf. [11]), hence in the present case, from its rhythm.

Proposition 1. Let r = (r0, r1, . . . , rq−1) be a (valid) rhythm. Then, there exists
a unique i-tree Ir whose signature is rω.

Proof (Sketch). The i-tree Ir is built from r by a kind of procedure which main-
tains two integers, n and m, both initialised to 0: n is the node to be processed
and m is the next node to be created. At every step of the procedure, r(n% q) nodes
are created: the nodes m, (m + 1), . . . , (m + r(n% q) − 1), and the corresponding
arcs from n to every new node are created. Then n is incremented by 1, and m
by r(n% q). It is verified by induction that at every step, m is equal to Rn. In
particular, since R0 is an empty sum hence equal to 0, the root 0 of Ir is a child
of itself. The next equation then gives an explicit definition of Ir:

∀n,m ∈ N n −→
Ir

m ⇐⇒ Rn � m < Rn+1. (2)

Trees and Languages with Periodic Signature 609

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) The i-tree I(3,1,1)

0 1

2
6
3

0

34

42

5

6

7

0
3
6

8
4

9
2

10

11

12

0
3
6

13
4

14
2

(b) The padded language 0∗L(3,1,1)

Fig. 2. Tree and language generated by the rhythm (3, 1, 1)

We denote by Tr the tree resulting from the removal from Ir of the loop
on its root and call respectively Tr and Ir the tree and i-tree generated by r.
Figure 2a shows I(3,1,1) and Fig. 1 shows T(2,1) (if one forgets the labels on the
arcs).

The validity of the rhythm is the necessary and sufficient condition for m to
always be greater than n in the course of the execution of the procedure, that
is, a node is always ‘created’ before being ‘processed’, or, equivalently, for the
i-tree described in Proposition 1 be infinite.

A direct consequence of the proof is that q consecutive nodes of Ir (in the
breadth-first traversal) have p (consecutive) children, hence the name growth
ratio given to the number p

q . More precisely, the following holds.

Lemma 1. Let Ir be the i-tree generated by the rhythm r of directing parame-
ter (q, p). Then, for all n, m in N: n −−→

Ir

m ⇐⇒ (n + q)−−→
Ir

(m + p).

Generating Languages by Rhythm and Labelling. If the arcs of an i-tree I
are labelled then I also defines the sequence λλλ of the labels of the arcs as they are
visited in the breadth-first search; conversely, I as well as its branch language,
will be determined by the pair (s,λλλ). In this paper, labels are digits, that is,
integers, hence naturally ordered. The labelling of I has to be consistent with
the order of I, that is, the children of every node are in the same order as the
labels of their incoming arcs.

We consider here periodic signatures s = rω where r is a rhythm of directing
parameter (q, p). We then will consider pairs (s,λλλ) with λλλ = γγγω where γγγ is a
sequence of letters (digits) of length p.

It follows from Lemma 1 that the labelling is consistent on the whole tree
if and only if it is consistent on the first q nodes, hence on the first p arcs.
Let γγγ = u0 u1 · · · uq−1 be the factorisation of γγγ induced by r, that is, satisfy-
ing |ui| = ri for every i, 0 � i < q. Note that ui = ε if ri = 0. The labelling γγγ is

610 V. Marsault and J. Sakarovitch

then consistent with r if and only if each ui is increasing2 and the pair (r, γγγ) is
valid if in addition r is valid.

For instance, the labelling γγγ = (0, 3, 6, 4, 2) is consistent with the rhythm
r = (3, 1, 1) since u0 = (0, 3, 6), u1 = (4) and u2 = (2) are all increasing
and u0 u1 u2 is the factorisation of γγγ induced by r.

We denote by I(r,γγγ) the labelled i-tree generated by a rhythm r of directing
parameter (q, p) and a labelling γγγ = (γ0, γ1, . . . , γp−1) consistent with r. The
labels of the arcs of I(r,γγγ) are determined by

∀n,m ∈ N n
a

−−−→
Ir

m implies a = γ(m% p) which belongs to u(n% q). (3)

By convention, we denote by L(r,γγγ) the branch language of the tree T(r,γγγ)

rather than the one of i-tree I(r,γγγ), and we call it the language generated by (r, γγγ).
The branch language of I(r,γγγ) is thus z∗L(r,γγγ) where z = γ0 is the label of the
loop 0 −→ 0 in I(r,γγγ) and we call it the padded language generated by (r, γγγ).

For instance, the language generated by r = (2, 1) and γγγ = (0, 2, 1) is shown
in Fig. 1 and the padded language generated by r = (3, 1, 1) and γγγ = (0, 3, 6, 4, 2)
in Fig. 2b.

Let L be a prefix-closed language over an ordered alphabet A and TL its
associated labelled tree (whose set of nodes is then N). The enumeration of L
in the radix order is then equivalent to the breadth-first traversal of TL. This
ordering of L is precisely the idea underlying the notion of Abstract Numera-
tion System (ANS) as defined by Lecomte and Rigo (cf. [7,8]). An ANS is a
language L over an ordered alphabet and in this system every integer n is rep-
resented by the (n + 1)-th word of L in the radix order; this word is denoted
by 〈n〉L. The integer representations in the ANS L and the nodes of the tree TL

are thus linked by: 〈0〉L = ε and

∀n ∈ N , ∀m ∈ N+ , ∀a ∈ A 〈n〉L a = 〈m〉L ⇐⇒ n
a

−−−→
TL

m. (4)

3 From Rational Base Numeration Systems to Rhythms

Integer and Rational Base Numeration Systems. Let p be an integer,
p � 2, and Ap = �0, p − 1� the alphabet of the first p digits. Every word w =
an an−1 · · · a0 of A ∗

p is given a value n in N by the evaluation function πp:
πp(an an−1 · · · a0) =

∑n
i=0 ai pi , and w is a p-development of n. Every n

in N has a unique p-development without leading 0’s in A ∗
p : it is called the

p-representation of n and is denoted by 〈n〉p. The p-representation of n can be
computed from left-to-right by a greedy algorithm, and also from right-to-left
by iterating the Euclidean division of n by p, the digits ai being the successive
remainders. The language of the p-representations of the integers is the regular
language Lp = {〈n〉p | n ∈ N} = (Ap \ 0) A ∗

p .

2 A word a0 a1 a2 · · · an is increasing if a0 < a1 < a2 < · · · < an.

Trees and Languages with Periodic Signature 611

Let p and q be two co-prime integers, p > q > 1. In [1], these classical
statements have been generalised to the case of numeration system with rational
base p

q . The p
q -evaluation function π p

q
is defined by:

∀an an−1 · · · a0 ∈ A ∗
p π p

q
(an an−1 · · · a0) =

n∑

i=0

ai

q

(
p

q

)i

,

and it is shown that every integer n has a unique p
q -representation 〈n〉 p

q
, that is,

a word of A ∗
p such that π p

q

(
〈n〉 p

q

)
= n . This representation is computed (from

right to left) by the modified Euclidean division algorithm as follows: let N0 = n
and, for all i > 0,

q Ni = p N(i+1) + ai, (5)

where ai is the remainder of the Euclidean division of q Ni by p, hence belongs
to Ap = �0, p − 1�. Since p > q, the sequence (Ni)i∈N is strictly decreasing and
eventually stops at Nk+1 = 0. The p

q -representation of n is then the word 〈n〉 p
q

=
ak ak−1 · · · a0 of A ∗

p .
The set L p

q
= {〈n〉 p

q
| n ∈ N} of p

q -representations of integers is ‘far’ from
being a regular language. It has a property that we have later called FLIP3 (for
Finite Left Iteration Property, cf. [10]) and which is equivalent (for prefix-closed
languages) to the fact that it contains no infinite regular subsets (IRS condition
of [6]). This implies that L p

q
does not meet any kind of iteration lemma and in

particular that it is not context-free. It is also shown in [1] that the numeration
system with rational base p

q coincide with the ANS L p
q
.

In many respects, the case of integer base can be seen as a special case of
rational base numeration system. The definitions of π p

q
, 〈n〉 p

q
and L p

q
coincide

with those of πp, 〈n〉p and Lp respectively, when q = 1. In the sequel, we consider
the base p

q where p and q are two coprime integers verifying p > q � 1, that
is, indifferently one numeration system or the other. In particular, the following
holds in both integer or rational cases:

∀n ∈ N , ∀m ∈ N+ , ∀a ∈ Ap 〈m〉 p
q

= 〈n〉 p
q

a ⇐⇒ a = q m − p n. (6)

Geometric Representations of Rhythms. Rhythms are given a very useful
geometric representation as paths in the (Z×Z)-lattice and such paths are coded
by words of {x, y}∗ where x denotes an horizontal unit segment and y a vertical
unit segment. Hence the name path given to a word associated with a rhythm.

Definition 2. Let r = (r0, r1, . . . , rq−1) be a rhythm of directing parame-
ter (q, p). With r, we associate the word path(r) of {x, y}∗:

path(r) = yr0x yr1x yr2 · · · x yrq−1x

which corresponds to a path from (0, 0) to (q, p) in the (Z × Z)-lattice.
3 This property was introduced in [10] under the unproper name of Bounded Left
Iteration Property, or BLIP for short.

612 V. Marsault and J. Sakarovitch

Figure 3 shows the paths associated with three rhythms of directing para-
meter (3, 5). It then appears clearly that Definition 1 (ii) can be restated as ‘a
rhythm is valid if and only if the associated path is strictly above the line of
slope 1 passing through the origin’.

slope:53

slope:1

y

y

y x

y x

y x

(a) rhythm (3,1,1)

y

y x

y

y x

y x

(b) rhythm (2,2,1)

slope:53

slope:1

forbidden
y

y

y

x

y x

(c) rhythm (1,2,2)

Fig. 3. Words and paths associated with rhythms of directing parameter (3, 5)

Rhythm and Labelling of Rational Base. We introduce r p
q
, a particular

rhythm of directing parameter (q, p) associated with a canonical labelling γγγ p
q
.

The former relates to the classical notion of Christoffel words while the later
results from the generation of Z/pZ by q. The remarkable fact is then that the
representation language in the p

q -numeration system is generated by (r p
q
, γγγ p

q
).

Christoffel words code the ‘best (upper) approximation’ of segments the Z×
Z-lattice and have been studied in the field of combinatorics of words (cf. [2]).

Definition 3 ([2]). The (upper) Christoffel word of slope p
q , denoted by w p

q
,

is the label of the path from (0, 0) to (q, p) on the (Z × Z)-lattice, such that

– the path is above the line of slope p
q passing through the origin;

– the region enclosed by the path and the line contains no point of Z × Z.

We translate then Christoffel words into rhythms.

Definition 4. The Christoffel rhythm associated with p
q , and denoted by r p

q
, is

the rhythm whose path is w p
q
: path(r p

q
) = w p

q
, hence its directing parameter

is (q, p).

Figure 3b shows the path of w 5
3

= y y x y y x y x , the Christoffel word
associated with 5

3 ; then, r 5
3

= (2, 2, 1). Other instances of Christoffel rhythms
are r 3

2
= (2, 1), r 4

3
= (2, 1, 1) and r 12

5
= (3, 2, 3, 2, 2). The definition of Christoffel

words yields the following proposition on rhythms.

Trees and Languages with Periodic Signature 613

0 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0

3

1

4

2

0

3

1
4

2

0
3

1
4

2

0
3

1
4

2

Fig. 4. The padded language 0∗L 5
3

of the representation of integers in base 5
3

Proposition 2. Given a base p
q of rhythm r p

q
= (r0, r1, · · · , rq−1), for every

integer k � q, the partial sum Rk of the first k components of r is equal to the
smallest integer greater than k p

q .

Since p and q are coprime integers, q is a generator of the group Z/pZ (addi-
tive). We denote by γγγ p

q
the sequence induced by this generation process:

γγγ p
q

= (0, (q % p), (2 q % p), . . . , ((p − 1) q % p)). (7)

Theorem 1. Let p and q be two coprime integers, p > q � 1. The language L p
q

of the p
q -representations of the integers is generated by the rhythm r p

q
and the

labelling γγγ p
q
.

For instance, L 3
2
, shown in Fig. 1, is built with the rhythm r 3

2
= (2, 1) and

the labelling γγγ 3
2

= (0, 2, 1) while the padded language 0∗L 5
3
, shown in Fig. 4, is

built with the rhythm r 5
3

= (2, 2, 1) and the labelling γγγ 5
3

= (0, 3, 1, 4, 2).
The proof of Theorem 1 requires additional definitions and statements. We

define the sequence of integers e0, e1, . . . , eq−1 such that ej is the difference
between the approximation Rk = (r0 + r1 + · · · + rk−1) and the point of the
associated line of the respective abscissa, that is (k p

q). This difference is a ratio-
nal number smaller than 1 and whose denominator is q, in order to obtain an
integer we multiply it by q:

∀k ∈ �0, q − 1� ek = q Rk − k p. (8)

Below are compiled basic properties of the rj ’s and ej ’s that follow directly
from Proposition 2 and Equation (8).

Property 1. Let r p
q

= (r0, r1, . . . , rq−1) be the Christoffel rhythm of slope p
q . For

every integer k in �0, q − 1�, it holds:

(a) ek belongs to �0, q − 1�;

614 V. Marsault and J. Sakarovitch

(b) rk is the smallest integer such that q rk + ek � p ;
(c) ek+1 = ek + q rk − p.

Lemma 2. For every integer n > 0 (resp. n = 0), the smallest letter a of Ap

such that 〈n〉 p
q

a is in L p
q

is e(n% q) (resp. e0 + q).

Proof. Let n be positive integer and k its congruence class modulo q. Letters a
such that 〈n〉 p

q
a belongs to L p

q
are congruent modulo q (cf. Equation (6)). Since

ek is in �0, q − 1� (Property 1a), it is enough to prove that ek is an outgoing
label of n. From Equation (6), it is the case if (n p + ek) is a multiple of q or,
equivalently if (k p+ek) is a multiple of q, which follows from the definition of ek

(Equation (8)).
For n = 0, e0 = 0 and although the equation e0 = q m − p n is verified

for some integer m, that integer is m = 0. It then follows from Equation (6)
that 〈0〉 p

q
e0 does not belong to L p

q
(since m is not positive). The reasoning of

the previous paragraph then works for (e0 + q).

Proposition 3. For every integer n > 0 (resp. n = 0), there are exactly r(n% q)

(resp. (r0 − 1)) letters a of Ap such that 〈n〉 p
q

a belongs to L p
q
.

Proof. Let n be positive integer and k its congruence class modulo q. From
Property 1b, rk is the smallest integer such that q rk + ek > p. It follows that
for all k in �0, rk − 1� (ek + q k) < p and that ek + q rk > p.

The set S = {ek, (ek + q), . . . , (ek + q (rk − 1))} contains all the letters of Ap

that are congruent to ek modulo q. Since 〈n〉 p
q

ek belongs to L p
q

(Lemma 2), it
follows from Equation (6) that

S = { a ∈ Ap | 〈n〉 p
q

a ∈ L p
q

}.

The set S is of cardinal rk, concluding the case n > 0.
The proof is similar in the case where n = 0, except that the smallest letter

is (e0 + q) instead of e0 (Lemma 2).

The next proposition follows directly from Equation (6).

Proposition 4. For every positive integer m, the rightmost letter of 〈m〉 p
q

is
equal to (q m)% p.

Proposition 3 yields that the rhythm of L p
q

is indeed r p
q

and Proposition 4
that its labelling is γγγ p

q
, hence concluding the proof of Theorem 1.

The next statement gives a different way to compute γγγ p
q
; its generalisation

in the next section (Definition 5) to arbitrary rhythms will be instrumental in
the proof of Theorem 2.

Proposition 5. Let r p
q

be a Christoffel rhythm and γγγ p
q

= γ0γ1 · · · γ(p−1) the
associated labelling. We denote by γγγ p

q
= u0 u1 · · · uq−1 the factorisation of γγγ p

q

induced by r p
q
. Then, γ0 = 0 and, for all integer i, 0 � i < (p − 1),

Trees and Languages with Periodic Signature 615

– if the letters γi and γ(i+1) belong to the same factor uj then γ(i+1) = γi + q;
– otherwise, γ(i+1) = γi + q − p.

Proof. We denote by c0 c1 · · · cp−1 the integers computed by the recursive algo-
rithm of the proposition, that is:

∀i , 0 � i < q ci = q i − p j if γi is a letter of the factor uj .

It should be noted that ci ≡ i q [p], hence that ci ≡ γi [p] from Equation (7); it
is then enough to show that 0 � ci < p for every integer i < p.

Let us take i, j > 0 such that γ0γ1 · · · γi−1 = u0u1 · · · uj−1, a word of
length i = Rj . It follows from Proposition 2 that i =
j p

q �, or, in other word,
that j p − q � q (i − 1) < j p. Since γi−1 is the last letter of uj−1

ci−1 = q (i − 1) − p (j − 1) hence (p − q) � c(i−1) < p,

and since γi is the first letter of uj

ci = (c(i−1) + q − p) hence 0 � ci < (q − 1).

We have just shown that the first letter of every factor uk is non-negative
and that its last letter is strictly smaller than p. Since every factor is increasing
(each letter being equal to the previous letter plus q), every letter a of every
factor satisfies 0 � a < p.

4 From Rhythms Back to Rational Bases

We now establish a kind of converse of Theorem 1. With an arbitrary rhythm is
associated a rational base (its growth ratio) and a special labelling. We consider
the language generated by this rhythm and labelling as an abstract numeration
system and show that it features a rule much like Equation (6). We finally show
that this abstract numeration system is simply a rational base on a non-canonical
alphabet (Theorem 2).

In this section, p and q are two integers, p > q � 1, not necessarily coprime,
and r is a rhythm of directing parameter (q, p). As in Definition 1, we denote
by p′ and q′ their respective quotient by their gcd.

Special Labelling. The next definition is a generalisation of the labelling of
rational base for arbitrary rhythms; it is based on the characterisation given by
Proposition 5 but is more complicated in order to take into accounts the possible
components equal to 0 appearing in the rhythm.

Definition 5. We call special labelling (associated with r), and denote by
γγγr = (γ0, γ1, . . . , γp−1), the sequence of digits of length p defined as follows.
First γ0 = 0. Second, we denote by γγγr = u0 u1 · · · uq−1 the factorisation of γγγr

induced by r (for all i, 0 � i < p, |ui| = ri). Then, for every i, 0 � i < p − 1,
if k and j are the indices such that γi belongs to uk and γi+1 belongs to uk+j,
then γi+1 = γi + q′ − j p′.

616 V. Marsault and J. Sakarovitch

Example 1. Let r = (3, 1, 1); its directing parameter is (3, 5), hence p = p′ = 5,
q = q′ = 3 and the computation of γγγr is given below, on the left. Within a fac-
tor ui, the difference between two consecutive digits is 3(= q′), otherwise it
is −2 (= q′ − p′).

r = (3, 1, 1) (4, 0, 0, 2)

γγγr = (
u0︷ ︸︸ ︷

0 , 3 , 6 ,

u1︷︸︸︷
4 ,

u2︷︸︸︷
2) (

u0︷ ︸︸ ︷
0 , 2 , 4, 6 ,

u1︷︸︸︷
3

u2︷︸︸︷
3

u3︷ ︸︸ ︷
−1 , 1)

Let now r = (4, 0, 0, 2); its directing parameter is (4, 6), p′ = 3, q′ = 2 and the
computation of γγγr is given above, on the right. Within a factor ui, the difference
between two consecutive digits is +2(= +q′); the fourth digit belongs to u0 and
the fifth to u3: the difference between the two is −7(= +q′ − 3 p′).

It directly follows from Definition 5 that γγγr is always consistent with r.
Notation. We denote by Lr the language generated by a rhythm r and the
associated special labelling γγγr, that is, Lr = L(r,γγγr)

.

Non-canonical Representation of Integers. If r happens to be a Christoffel
rhythm, then, by Theorem 1, Lr is equal to L p′

q′
(which, in this case, is also L p

q
).

The key result of this work is that Lr and L p′
q′

are indeed of the same kind.

Theorem 2. Let r be a rhythm of directing parameter (q, p) and p′

q′ the reduced
fraction of p

q . Then, the language Lr is a set of representations of the integers

in the rational base p′

q′ using a non-canonical set of digits.

The proof of Theorem 2 is sketched below. Let us call r-representation of an
integer n, and denote it by 〈n〉r, the representation of n in the abstract numer-
ation system Lr. We know from Equation (4) that 〈n〉r labels the path from
the root 0 to the node n in the labelled tree defined by Lr. First we show
that the existence of arcs in Lr has a necessary condition similar to those of
L p′

q′
(cf. Equation (6)).

Lemma 3. Let r be a rhythm of directing parameter (q, p) and p′

q′ the reduced
fraction of p

q . Then, for every integers n and m > 0, it holds:
〈n〉r a = 〈m〉r =⇒ a = q′ m − p′ n.

The converse of Lemma 3 does not hold in general; it holds only for rhythms
(of directing parameter (q, p)) such that p and q are coprime, and for powers of
such rhythms. Otherwise, the alphabet of the letters appearing in γγγr contains at
least two different digits congruent modulo p′; the incoming arc of a given node
then depends on its congruence class modulo p (and not only modulo p′).

Theorem 2 is then equivalent to the following statement.

Proposition 6. Let r be a rhythm of directing parameter (q, p), p′

q′ the reduced

fraction of p
q and π p′

q′
the evaluation function in the p′

q′ -numeration system. Then,

for every integer n, π p′
q′

(〈n〉r) = n holds.

Trees and Languages with Periodic Signature 617

Proof. By induction on the length of 〈n〉r. The equality is obviously verified
for 〈0〉r = ε. Let m be a positive integer and 〈m〉r = ak+1 ak ak−1 · · · a1 a0

its r-representation, that is, a word of Lr. The word ak+1 ak ak−1 · · · a1 is also
in Lr; it is the r-representation of an integer n strictly smaller than m, verifying
〈n〉r a0 = 〈m〉r, hence n

a0−−→
Lr

m. On the right hand, by induction hypothesis,

n = π p′
q′

(〈n〉r) and on the other hand, it follows from the previous Lemma 3

that a0 = q′m − p′n , or, equivalently, that m = np′+a0
q′ , hence

m =
p′

q′ π p′
q′

(〈n〉r) +
a0

q
= π p

q
(〈n〉r a0) = π p′

q′
(〈m〉r).

It is shown in [1] that in spite of this ‘complexity’ of L p
q
, the conversion

from any digit-alphabet B into the canonical alphabet Ap is realised by a finite
transducer exactly as in the case of an integer numeration system (cf. also [5]).
More precisely:

Theorem 3 ([1]). For all digit alphabets B, the function χ : B∗ → A ∗
p′ which

maps every word w of B∗ onto the word of A ∗
p′ which has the same value in the

p′

q′ -numeration system — hence π p′
q′

(w) = π p′
q′

(χ(w)) — is a (right sequential)

rational function.

If we write B for the set of digits appearing in γγγr, Theorem 3 implies in
particular that χ(Lr) = L p′

q′
. Hence, that the complexity of L p′

q′
extends to Lr.

Corollary 1. Let r be a rhythm of directing parameter (q, p) and Lr the lan-
guage generated by the pair (r, γγγr). If p

q is an integer, then Lr is a regular lan-
guage, otherwise, Lr is a FLIP language.

Example 2. Given a directing parameter (q, p), let r be the extreme rhythm
where all components are 0 but one which is p. The validity condition implies that
the positive digit is necessarily the first one: r = (p, 0, . . . , 0) and the associated
special labelling is then γγγr = (0, q, (2 q), . . . , (p − 1) q). Since every letter of γγγr

is a multiple of q, we perform a component-wise division of γγγr by q and obtain
γγγ = (0, 1, 2, . . . , (p − 1)).

The language L(r,γγγ) generated by (r, γγγ) is then the language of the rep-
resentations of the integers in a variant (that we call FK after its authors) of
p
q -numeration systems considered in [4]. In the variant FK, the value of a word u,
denoted by πFK(u), is q times its standard evaluation: πFK (u) = q×π p

q
(u). This

is exactly the behaviour described by Proposition 6, since all digits have been
divided by q. This example highlights the soundness of the relationship between
rational base numeration system and periodic signature.

5 Extension, Future Work and Conclusion

For sake of simplicity, we have considered here purely periodic signatures and the
periodic labellings that go with them. The same techniques as the ones developed

618 V. Marsault and J. Sakarovitch

in Sect. 4 allow to treat the generalisation to ultimately periodic which raises no
special difficulties and the results established here readily extend. One may even
generalise these results to every aperiodic signature whose path (as defined in
Sect. 2) is confined to a strip between two parallel lines of slope p

q .
Using rhythm often sheds light on problems related to rational base. It is the

case for the question of representation of the negative integers, tackled in [4], that
may be given a new approach in terms of Christoffel words and their properties.

There is certainly still much to be understood on the relationship between the
‘high regularity’ of periodic signatures and the apparent disorder or complexity
of trees that are generated by these periodic signatures. Some questions, such
as statistics of labels along infinite branches, are indeed related to identified
problems in number theory that are recognised as very difficult.

We have established in this paper that the infinite trees or languages gener-
ated by periodic signatures are completely determined (up to very simple trans-
formations — that is, rational sequential functions) by the growth ratio of the
period only and independent of the actual components of the period. This first
step was somehow unexpected. It makes the scenery simpler but the call for
further investigations on the subject even stronger.

References

1. Akiyama, S., Frougny, C., Sakarovitch, J.: Powers of rationals modulo 1 and ratio-
nal base number systems. Isr. J. Math. 168, 53–91 (2008)

2. Berstel, J., Lauve, A., Reutenauer, C., Saliola, F.: Combinatorics on Words:
Christoffel Words and Repetition in Words, vol. 27 of CRM Monograph Series.
American Math. Soc., Providence, Rhode Island, USA (2008)

3. Diestel, R.: Graph Theory. Springer, New York (1997)
4. Frougny, C., Klouda, K.: Rational base number systems for p-adic numbers.

RAIRO Theor. Inf. Appl. 46(1), 87–106 (2012)
5. Frougny, C., Sakarovitch, J.: Number representation and finite automata. In:

Berthé, V., Rigo, M. (eds.) Combinatorics, Automata and Number Theory. Cam-
bridge University Press, Cambridge (2010)

6. Greibach, S.A.: One counter languages and the IRS condition. J. Comput. Syst.
Sci. 10(2), 237–247 (1975)

7. Lecomte, P., Rigo, M.: Numeration systems on a regular language. Theor. Comput.
Syst. 34, 27–44 (2001)

8. Lecomte, P., Rigo, M.: Abstract numeration systems. In: Berthé, V., Rigo, M.
(eds.) Combinatorics, Automata and Number Theory. Cambridge University Press,
Cambridge (2010)

9. Marsault, V., Sakarovitch, J.: Rhythmic generation of infinite trees, languages (full
version). In preparation. Preprint available at arXiv:1403.5190

10. Marsault, V., Sakarovitch, J.: On sets of numbers rationally represented in a ratio-
nal base number system. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI
2013. LNCS, vol. 8080, pp. 89–100. Springer, Heidelberg (2013)

11. Marsault, V., Sakarovitch, J.: Breadth-first serialisation of trees and rational lan-
guages. In: Shur, A.M., Volkov, M.V. (eds.) DLT 2014. LNCS, vol. 8633, pp. 252–
259. Springer, Heidelberg (2014)

http://arxiv.org/abs/1403.5190

Rank Reduction of Directed Graphs
by Vertex and Edge Deletions

Syed Mohammad Meesum1(B) and Saket Saurabh1,2

1 Institute of Mathematical Sciences, Chennai, India
{meesum,saket}@imsc.res.in

2 University of Bergen, Bergen, Norway

Abstract. In this paper we continue our study of graph modification
problems defined by reducing the rank of the adjacency matrix of the
given graph, and extend our results from undirected graphs to directed
graphs. An instance of a graph modification problem takes as input a
graph G, a positive integer k and the objective is to delete k vertices
(edges) so that the resulting graph belongs to a particular family, F , of
graphs. Given a fixed positive integer r, we define Fr as the family of
directed graphs where for each G ∈ Fr, the rank of the adjacency matrix
of G is at most r. Using the family Fr we do algorithmic study, both in
classical and parameterized complexity, of the following graph modifica-
tion problems: r-Rank Vertex Deletion, r-Rank Edge Deletion.
We first show that both the problems are NP-Complete. Then we show
that these problems are fixed parameter tractable (FPT) by designing an
algorithm with running time 2O(k log r)nO(1) for r-Rank Vertex Dele-

tion, and an algorithm for r-Rank Edge Deletion running in time

2O(f(r)
√
k log k)nO(1). We complement our FPT result by designing poly-

nomial kernels for these problems. Our main structural result, which is
the fulcrum of all our algorithmic results, is that for a fixed integer r the
size of any “reduced graph” in Fr is upper bounded by 3r. This result
is of independent interest and generalizes a similar result of Kotlov and
Lovász regarding reduced undirected graphs of rank r.

1 Introduction

Editing a graph by either deleting vertices or deleting edges or adding edges
such that the resulting graph satisfies certain properties or becomes a member
of some well-understood graph class is one of the basic problems in graph theory
and graph algorithms. These problems are called graph modification problems.
However, most of the graph modification problems are NP-Complete [21,27] and
thus they are subjected to intensive study in algorithmic paradigms that are
meant for coping with NP-completeness [16,18,22,24]. These paradigms among

S. Saurabh—The research leading to these results has received funding from the
European Research Council under the European Union’s Seventh Framework Pro-
gramme (FP7/2007–2013) / ERC grant agreement no. 306992.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 619–633, 2016.
DOI: 10.1007/978-3-662-49529-2 46

620 S.M. Meesum and S. Saurabh

others include applying restrictions on inputs, approximation algorithms and
parameterized complexity.

Graph modification problems have been at forefront of research in parameter-
ized complexity and several interesting and important results have been obtained
recently. In fact, just over the course of the last couple of years there have been
results on parameterized algorithms for Chordal Editing [8], Unit Inter-

val Editing [6], Interval Vertex (Edge) Deletion [7,9], Proper Inter-

val Completion [4], Interval Completion [5], Chordal Completion [17],
Cluster Editing [15], Threshold Editing [12], Chain Editing [12], Triv-

ially Perfect Editing [13,14] and Split Editing [19]. Even more recently, a
theory for lower bounds for these problems has also been proposed [3]. We would
like to mention that the above list is not comprehensive but rather illustrative.

All the articles on graph modification problems in parameterized complexity
(except one) is about modifying the input graph to a graph in a family, F , defined
by either forbidden induced subgraphs or minors. In our earlier paper [25] we
studied graph modification problems on undirected graph defined by reducing
the rank of the adjacency matrix of the input graph. Our main goal of this article
is to continue our study of graph modification problems defined by some alge-
braic properties like rank of a given adjacency matrix. In particular we extend
our results to directed graphs from undirected graphs in the realm of classical
and parameterized complexity. In parameterized complexity, each instance of the
problem is parameterized, i.e. assigned a number k, which is called the parameter,
representing some property of the instance. For example, a typical parameter is
the size of the optimum solution to the instance. The problem is called fixed
parameter tractable (FPT), if a parameterized instance (x, k) of the problem is
solvable in time f(k)nO(1), where n is the size of the instance. A parameter-
ized problem is said to admit a polynomial kernel if there is a polynomial time
algorithm that given an instance of the problem, outputs an equivalent instance
whose size is bounded by a polynomial in the parameter.

Given a fixed positive integer r, we define Fr as the family of directed graphs
where for each G ∈ Fr, the rank of the adjacency matrix of G is at most r. In
particular we study the following problems in this paper.

r-Rank Vertex Deletion Parameter: k
Input: A directed graph D and a positive integer k
Question: Does there exist a set S ⊆ V (D) of size at most k such that
rank(AD\S) ≤ r?

r-Rank Edge Deletion Parameter: k
Input: A directed graph D and a positive integer k
Question: Does there exist a set F ⊆ E(D) of size at most k such that
rank(AD′) ≤ r, where D′ = (V (D), E(D) \ F)?

These problems are also related to some well known problems in graph algorithms.
If rank(AD) = 0, then D is a disjoint union of isolated vertices. So for r = 0,

Rank Reduction of Directed Graphs by Vertex and Edge Deletions 621

r-Rank Vertex Deletion is the well known Vertex Cover problem. Simi-
larly for r = 2, after converting an undirected graph to a directed graph, a solu-
tion to r-Rank Edge Deletion is a complement of a solution to the Maximum

Edge Biclique problem. In the Maximum Edge Biclique problem the goal is
to find a complete bipartite subgraph of the given graph with maximum number
of edges [26] possible. These problems are also related to the concept of “rigidity
of matrices” [23].

Our Results and Methods. In this paper, we obtain the following results
about these problems.

1. We first show that both the problems are NP-Complete.
2. Then we show that these problems are FPT by designing an algorithm with

running time 2O(k log r)nO(1) for r-Rank Vertex Deletion, and an algo-
rithm for r-Rank Edge Deletion running in time 2O(f(r)

√
k log k)nO(1). Note

that the edge deletion problem admits a sub-exponential FPT algorithm.
3. Finally, we design polynomial kernels for these problems.

The main difficulty in extending our result from undirected to directed is
that the entries of an adjacency matrix of an undirected graph are from {0, 1},
while the entries of an adjacency matrix of a directed graph are from {0, 1,−1}.
Also, the adjacency matrix of an undirected graph is symmetric while for a
directed graph it is only skew-symmetric. Our algorithmic results are based on
a structural result regarding directed graphs whose adjacency matrices have
low rank. In particular we define an equivalence relation on the neighborhood
of directed graphs and show that the size of directed graphs, in which each
equivalence class has size one, is upper bounded by a function of the rank of
its adjacency matrix. In case of undirected graphs, such results were proved by
Kotlov and Lovász [20]. In particular they showed that if a graph is reduced
(if no two vertices have the same set of neighbours) and its adjacency matrix
has rank r then its size is upper bounded by 2r/2. See Akbari et al. [2] for
more details. We show that the “reduced” directed graphs of rank r have size
at most 3r. This result could be of independent interest. We use this result
to define a subfamily of Fr (which is sufficient for our purposes) whose size is
upper bounded by a function of r alone. This together with standard methods
in parameterized complexity easily imply FPT and kernel result for r-Rank

Vertex Deletion. To obtain sub-exponential algorithm for r-Rank Edge

Deletion we do a modification to an algorithm of Damaschke et. al. [11] and
use it as a subroutine.

2 Preliminaries

We use R to denote the set of real number. For a positive integer n, [n] denotes
the set of integers {1, . . . , n}. For two sets X and Y , we define X � Y = (X \
Y) ∪ (Y \ X), i.e. the set of elements which belong to X or Y but not both. A
vector v of length n is an ordered sequence of n values from R. A collection of

622 S.M. Meesum and S. Saurabh

vectors {v1, v2, . . . , vk} is said to be linearly dependent if there exist numbers
a1, a2, . . . , ak ∈ R, not all zeros, such that

∑k
i=1 aivi = 0; otherwise these vectors

are called linearly independent. The span of a set of vectors {v1, . . . , vm}, denoted
as span(v1, . . . , vm), is defined as the set {a1v1+ · · ·+amvm : a1, . . . , am ∈ R}. A
matrix A of dimension n × m, is a sequence of values (aij). The i-th row of A is
defined as the vector (ai1, ai2, . . . , aim) and is denoted using Ai. The j-th column
of A is defined as the vector (a1j , a2j , . . . , anj) and is represented using Aj . The
row set and the column set of A are denoted by R(A) and C(A) respectively.
For I ⊆ R(A) and J ⊆ C(A), we define A[I, J] =

(
aij : i ∈ I, j ∈ J

)
, i.e. it

is the submatrix of A with the row set I and the column set J . When I = J ,
the submatrix A[I, I] is called as a principal submatrix of A. The rank of a
matrix is the cardinality of the maximum sized collection of columns which are
linearly independent. Equivalently, the rank of a matrix is the cardinality of the
maximum sized collection of rows which are linearly independent. It is denoted
by rank(A).

For a graph G, we use V (G) and E(G) to denote the vertex set and the edge
set of G. Let the vertex set be ordered as V (G) = {v1, v2, . . . , vn}. We say a
graph G is undirected if whenever (u, v) ∈ E(G) then (v, u) ∈ E(G), otherwise
it will be referred to as a directed graph or a digraph. Whenever we refer to
an edge (u, v) ∈ E(G) of an undirected graph G we mean it to be the pair
(u, v), (v, u) ∈ E(G). The adjacency matrix of an undirected graph G, denoted
by AG, is defined as the n × n symmetric matrix with {0, 1} as entries whose
rows and columns are indexed by V (G) such that AG(i, j) = 1 if and only if
(vi, vj) ∈ E(G).

We use D to denote directed graphs and its edges will be referred as arcs. In
this paper we will be exclusively concerned with loopless directed (or undirected)
graphs (simple graphs) which have at most one arc between any two vertices
i.e. for two vertices u, v ∈ V (D) only one the following conditions holds; (i)
(u, v) ∈ E(D), (ii) (v, u) ∈ E(D) or (iii) there is no arc between u and v. For a
directed graph D, given a vertex v ∈ V (D) we denote the set of vertices with an
outgoing arc to v by N−(v) = {u : (u, v) ∈ E(D)}. Similarly, we define the set
of vertices with an incoming arc from v as N+(v) = {u : (v, u) ∈ E(D)}. The
adjacency matrix of a directed graph D, denoted by AD, is a |V (D)| × |V (D)|
skew-symmetric matrix (A = −AT) with entries from {−1, 0,+1} whose columns
and rows are indexed using vertices and AD(u, v) = −AD(v, u) = 1 if and
only if (u, v) is an arc in D. A directed bi-clique is a directed graph D, where
V (D) = V1 � V2 and for every pair of vertices v1 ∈ V1 and v2 ∈ V2, there is an
arc (v1, v2) ∈ E(G). Note that in a directed bi-clique all the arcs are directed
from one part to the other.

For a vertex v ∈ V (G), we use R(v) to denote the row vector of AG cor-
responding to v. Similarly we use C(v) to denote the column vector of AG

corresponding to v. For X,Y ⊆ V (G), we use AG[X,Y] to denote the submatrix
of AG corresponding to rows in R(X) and columns in C(Y). An independent set
in a graph G is a set of vertices X such that for every pair of vertices u, v ∈ X,

Rank Reduction of Directed Graphs by Vertex and Edge Deletions 623

(u, v) /∈ E(G). For a set of vertices U and a graph G, G[U] denotes the induced
subgraph of G, and G \ U denotes the graph G[V (G) \ U].

3 A Structural Result on Directed Graphs of Rank r

In this section we give our main structural result about directed graphs of low
rank. This result will be exploited heavily in all the algorithms presented here.
We start by defining an equivalence relation on the neighborhoods of directed
graphs. Using this we show that the number of vertices in a digraph of rank
r, where each equivalence class of this relation has size exactly one, is upper
bounded by 3r.

Given a directed graph D we define a relation ∼ on V (D). Two vertices
u, v ∈ V (D) are u ∼ v if they have the same neighborhood. That is, u ∼ v if
and only if N+(u) = N+(v) and N−(u) = N−(v). From the definition of the
equivalence relation ∼ the following properties regarding it easily follow.

Lemma 1. Let D be a digraph and ∼ be the relation as defined above. Then,

(i) u ∼ v if and only if R(u) = R(v).
(ii) ∼ partitions V (D) as V1, , . . . , V� and each Vi is an independent set in D.
(iii) For each pair of distinct Vi and Vj, either there are no edges between Vi

and Vj or D[Vi � Vj] is a directed bi-clique.

When the graph is clear from the context, an equivalence class of ∼ will be
referred to as a module or an equivalence class. Given a directed graph D, we
define D∼ to be the reduced graph of D obtained as follows. Let V1, . . . , V� denote
the equivalence classes of ∼ in D. The vertex set of D∼ is V (D∼) = {Vi : i ∈ [�]}.
The edge set of D∼ is E(D∼) = {(Vi, Vj) : D[Vi�Vj] is a directed bi-clique}. For a
digraph D the operation of obtaining the reduced graph can also be thought of as
selecting one vertex from each equivalence class arbitrarily and then constructing
the induced subgraph of D over them. This gives us the following.

Observation 1. D∼ is an induced subgraph of D and the columns of adjacency
matrix of D∼ are distinct.

The operation of obtaining a reduced graph preserves the rank.

Lemma 2. (�).1 rank(AD) = rank(AD∼).

In the rest of the section we prove that the number of directed graphs whose
adjacency matrix has rank r is bounded by a function of r. Similar result exists
for the case of undirected graphs [20].

Lemma 3. (�). Any skew-symmetric matrix A has a principal submatrix of
rank equal to rank(A).

1 Due to space constraints proofs of results marked � have been omitted. They appear
in the full version of the paper.

624 S.M. Meesum and S. Saurabh

Using the proof above and noting that the determinant of an odd sized skew-
symmetric matrix is zero we can derive the following lemma.

Lemma 4. The rank of a skew-symmetric matrix is an even number.

The following corollary is a consequence of Lemma 3.

Corollary 1. Any rank r skew-symmetric matrix A, with full rank principal
submatrix B = A [[r], [r]], can be written in the following form for an appropriate
sized matrix X,

[
B BX

−XT B −XT BX

]

. (1)

Theorem 2. Any rank r skew-symmetric matrix A with entries from
{−1, 0,+1} has at most 3r distinct columns.

Proof. For an n × n matrix A, let R = [r] and assume without loss of generality
that the principal submatrix B = A[R,R] is of full rank. By Corollary 1, matrix
A can be written in the form as shown in Eq. 1. We prove that no two columns in
the matrix A[R, [n]] are repeated. As B is of full rank it has no repeated columns.
Assume that the columns i and j in BX are repeated. As A is skew-symmetric,
the rows i and j are repeated in −XT B. Therefore, the product (−XT B)X
has rows i and j repeated which again, as A is skew-symmetric, implies that
the columns i and j are repeated in −XT BX. Hence, the columns i and j are
repeated in A. Therefore it suffices to enforce that no column in A[R, [n]] is
repeated. For an upper bound notice that the maximum possible number of
distinct vectors of length r with entries from {−1, 0,+1} is 3r. 	

As a consequence of the theorem above we have the following.

Theorem 3. Let D be a digraph having adjacency matrix A of rank r. Then the
number of vertices in D∼ is at most 3r.

The following lemma provides an operation which does not change the rank
of adjacency matrix of a given graph.

Lemma 5. Given a digraph D and a vertex u ∈ V (D), let D′ be the graph
obtained by adding a new vertex u′ in D which has exactly the same neighborhood
as u. Then rank(AD) = rank(AD′).

Proof. The adjacency matrix of D can be obtained from that of D′ by deleting
the column and row corresponding to u′ from the matrix AD′ which does not
change the rank. 	

4 Reducing Rank by Deleting Vertices

We will be considering r-Rank Vertex Deletion in this section. For a graph
D, we denote the graph obtained after deleting a set of vertices S ⊆ V [D] by
D \ S. We begin with some structural lemma about modules of induced graphs.

Rank Reduction of Directed Graphs by Vertex and Edge Deletions 625

Lemma 6 (�). Let D be a digraph, S ⊆ V (D) and u, v ∈ V (D) \ S. If u and v
have the same neighborhood in D then they have the same neighborhood in D \S
and rank(AD\S) ≤ rank(AD).

We will be working with solutions of a special form, we define S to be a
minimal solution to an instance (D, k) of r-Rank Vertex Deletion if it either
contains all the vertices of an equivalence class defined by ∼ on V (D) or none
of it.

Lemma 7 (�). Let (D, k) be an input instance of r-Rank Vertex Deletion

and ∼ be the equivalence relation on V (D). If S ⊆ V (D) is a solution for the
instance (D, k) then there exists a minimal solution S′ such that S′ ⊆ S.

As an immediate consequence of the lemma above, we have the following.

Corollary 2. Any minimal solution S for an instance (D, k) of r-Rank Ver-

tex Deletion is disjoint from a ∼-module of size strictly more than k.

4.1 Complexity of r-Rank Vertex Deletion

The r-Rank Vertex Deletion problem generalizes Vertex Cover. In this
section we give a reduction from Vertex Cover to r-Rank Vertex Dele-

tion which also proves that no parameterized algorithm is possible for r-Rank

Vertex Deletion which uses rank alone as the parameter.

Theorem 4 (�). r-Rank Vertex Deletion is NP-Complete.

4.2 A Parameterized Algorithm for r-Rank Vertex Deletion

We start by recalling that the rank of any skew-symmetric matrix is always even.
In the rest of the paper we always assume that rank is even. We will be using
the following result that characterizes skew-symmetric matrices that have rank
less than or equal to r.

Theorem 5 (�). For an even positive integer r, a skew-symmetric matrix A has
rank less than or equal to r if and only if all it’s submatrices of size (r+2)×(r+2)
have rank less than or equal to r.

We obtain an algorithm and a kernel by reducing r-Rank Vertex Deletion to
(2r + 4)−Hitting Set, which has a parameterized algorithm and a polynomial
kernel [1]. Given a set family F over a universe U , a set S is said to be a hitting
set of F if S∩F �= ∅, ∀F ∈ F . An input to d−Hitting Set consists of (U,F , k)
where F is a family of subsets of U of size at most d and the objective is to check
if there exists a set S ⊆ U of size at most k which is a hitting set of F . Given a
graph D with adjacency matrix AD, define the set family Hr(D) as follows,

Hr(D) � {X ∪ Y : X,Y ⊆ V (D), |Y | = |X| = rank(AD[X,Y]) = r + 2} (2)

626 S.M. Meesum and S. Saurabh

Lemma 8 (�). An input instance (D, k) is a yes instance of r-Rank Vertex

Deletion if and only if (Hr(D), k) is a yes instance of (2r +4)-Hitting Set.

Lemma 8 allows us to reformulate our problem as (2r +4)-Hitting Set and
thus using the known algorithm and kernel for the problem we get the following
result [1,10]. Also see Theorems 6 and 7 in [25].

Theorem 6. r-Rank Vertex Deletion admits a kernel of size O(k2r+4) and
an algorithm with running time 2O(k log r)nO(1).

5 Deleting Arcs to Reduce Rank

This section considers the problem of rank reduction of the adjacency matrix
of a directed graph D by deletion of arcs. We prove several properties for the
general case of editing arcs. In the case of editing a graph, a solution F is a subset
of V (D) × V (D). Note that deletion corresponds to the case when F ⊆ E(D).
Let the modules of ∼ in D be V1, . . . , Vt. We call F a minimal edit if it either
contains all the arcs in Vi ×Vj or none of them, for all i, j ∈ [t]. We call a vertex
v ∈ V (D) an affected vertex if it receives an edit i.e. there exists an e ∈ F such
that v is contained in the arc e. For simplicity we use D�F to denote the graph
obtained after performing edits in F on D. Let F be a set of edits on D, we use
Jin(u) = {w : w ∈ V (D), (w, u) ∈ F} and Jout(u) = {w : w ∈ V (D), (u,w) ∈ F}
to denote the set of affected vertices due to edits on arcs incident on u ∈ V (D).

Lemma 9. Let the equivalence classes of ∼ in D be V1, . . . , Vt, and the equiva-
lence classes of ∼ in D′ = D�F be U1, . . . , Us, for some set F ⊆ V (D)×V (D).
F is a minimal edit of D if and only if for all i ∈ [t] there exists a unique j ∈ [s]
such that Vi ⊆ Uj.

Proof. For the forward implication, if |Vi| = 1 then it is true, otherwise let
u, v ∈ Vi be any two vertices. If F does not affect u or v then they both go in the
same module in D′ as they have the same neighborhood. If F affects u but it does
not affect v then there is an element e ∈ F such that u is adjacent to e, without
loss of generality let e = (u,w). Since v is not affected, (v, w) is not present in F ,
a contradiction. In the case that F affects both u and v, let Jin[u] and Jout[u]
be the set of affected vertices having edited arcs to and from u as defined earlier.
If Jx[u] = Jx[v] for x ∈ {in, out} then both u and v recieve same edits and
have the same neighborhood in D′. Otherwise, suppose Jx[u] �= Jx[v] for some
x ∈ {in, out}. Both Jx[u] \ Jx[v] and Jx[v] \ Jx[u] cannot be empty, assume that
Jx[u] \ Jx[v] is non-empty and let x = in, other cases can be handled similarly.
Let w ∈ Jx[u] \ Jx[v], since (w, v) /∈ F , F is not minimal, a contradiction. Since
u and v are arbitrary, the statements above hold for all vertices in Vi therefore
all the vertices of Vi have the same neighborhood in D′ and hence belong to the
same module in D′. Moreover the proof holds for all i ∈ [t].

For the reverse direction, we construct a set of minimal edits which results in
the graph D′. Pick any two modules Vi and Vj which have arcs between them,

Rank Reduction of Directed Graphs by Vertex and Edge Deletions 627

note that all directed arcs are present between them, for clarity assume the set
of arcs is Vi × Vj . If Vi and Vj are in the same module of D′ then all the arcs in
Vi × Vj get deleted, hence Vi × Vj ⊆ F . If Vi and Vj are in different modules of
D′ which have an arc then no arc gets deleted; if they do not have arcs then all
the arcs in Vi × Vj ⊆ F get deleted. Similar argument can be made for the case
when Vi and Vj do not have any arcs between them. This proves that F is a set
of minimal edits. 	

Lemma 10. Let D be a digraph with V1, . . . , Vt as modules of ∼ in D. For any
vertex v ∈ Vi, let Dv

i,j be the graph obtained by moving vertex v from module Vi

to any other module Vj and performing necessary edits to make its neighborhood
same as any other vertex in Vj. Then rank(ADv

i,j
) ≤ rank(AD).

Proof. The operation of moving a vertex consists of three operations, deleting
vertex v from D, copying a vertex u ∈ Vj and relabeling the copy as v. Relabeling
a vertex does not change the rank, using Lemma 6 and 5, the result follows. 	

Lemma 11. Any set of edits F on a graph D can be transformed into a minimal
set of edits F ′ of D such that |F ′| ≤ |F | and rank(AD�F ′) ≤ rank(AD�F).

Proof. Let the modules of ∼ in D be V1, . . . , Vt. Denote the modules of ∼ in
D′ = D�F by U1, . . . , Us. Suppose F is not a minimal edit. By Lemma 9, there
exists a Vi such that Vi ∩ Uh �= ∅ and Vi ∩ Uj �= ∅ for some h �= j, h, j ∈ [s]. Let
v ∈ Vi be a vertex receiving minimum number of edits i.e. |Jin(x) ∪ Jout(x)| is
minimum for x = v among all the vertices x ∈ Vi. Suppose v ∈ Uh, pick a vertex
w ∈ Uj ∩Vi. Obtain a new graph D′′ by moving the vertex w from module Uj to
Uh. Let F ′′ be the new set of edits required to get D′′ from D, clearly |F ′′| ≤ |F |
by the minimality of edits performed on v and observing that if u ends up in the
same module as v then same number of edits as v have been performed on u in
D. Also, by Lemma 10, rank(AD′′) ≤ rank(AD′).

We reuse the names U1, . . . , Us for the modules of D′′, only two modules get
affected, one of them possibly becoming empty due to moving. Apply the above
procedure for every vertex in Vi but not in Uh. Inductively, the rank and the
number of edits performed on D never increase. The process stops when there
are no such vertices, when this happens Vi ⊆ Uh.

Apply the procedure above for all i ∈ [t] violating the condition of F being
minimal. Finally all the modules satisfy the condition that there exists a unique
j ∈ [s] such that Vi ⊆ Uj , by the reverse direction of Lemma 9 we get that the
set of edits performed on D is minimal. 	

Using Lemma 11 we get the following.

Corollary 3. Any minimal solution F of an instance (D, k) of r-Rank Edge

Deletion is disjoint from the arcs incident on any module having more than k
vertices.

628 S.M. Meesum and S. Saurabh

5.1 NP Completeness

In this section we prove the hardness result for the arc deletion problem r-Rank

Edge Deletion. The problem of r-Rank Edge Deletion is NP-Complete for
r ≥ 2. We will first prove a lemma which characterises “bipartite” digraphs of
rank 2.

Definition 1. A bi-digraph is a digraph D whose vertex set consists of two
disjoint sets V1 and V2 and its arc set E(D) is a subset of (V1 × V2) � (V2 × V1).
A simple-digraph is a bi-digraph such that for i ∈ [2] and any two non-isolated
vertices a, b ∈ Vi, exactly one of the following conditions holds,

1. N−(a) = N−(b) and N+(a) = N+(b).
2. N−(a) = N+(b) and N+(a) = N−(b).

Note that a directed bi-clique is a bi-digraph as well as a simple-digraph.

Lemma 12. A bi-digraph is a simple-digraph if and only if the rank of it’s
adjacency matrix is 2. In addition, a simple-digraph is the disjoint union of
isolated vertices and a directed graph D such that the underlying undirected graph
of D is a complete bi-partite graph.

Proof. A bi-digraph D, by construction, has an adjacency matrix of the following
form

AD =
[

0 A
−AT 0

]

, (3)

where A is a matrix whose upper half of rows are indexed by V1 and the lower
half by V2 and 0 is the all zeroes matrix of appropriate size.

For the forward implication, observe that rank(AD) = 2× rank(A). Therefore
it suffices to prove that rank(A) = 1. By Definition 1, for any two non-isolated
vertices a, b ∈ V2, the columns Aa and Ab are related as Aa = ±Ab. Therefore,
a column of A is either all-zero or one of ±Aa, which implies that rank(A) = 1.

For the backward implication, suppose D is a bi-digraph with rank(AD) = 2,
which implies that rank(A) = 1. Therefore, there exists a non-zero column Aj

such that every column of A is contained in its span. As the entries of A are
restricted to take values from {−1, 0, 1}, each column of A is equal to one of Aj ,
−Aj or the all-zero column. Thus D is a simple-digraph.

To prove the last property, observe that deleting the all-zero columns and
rows (which correspond to isolated vertices) from A results in a matrix which
consists exclusively of +1 or −1. The adjacency matrix of the underlying undi-
rected graph is obtained by mapping each −1 to +1 in the adjacency matrix of
a directed graph, in this case it results in the adjacency matrix of an undirected
complete bi-partite graph. 	

The problem r-Rank Edge Deletion is polynomial time solvable for r = 0
as the solution consists of deleting all the arcs. We prove that r-Rank Edge

Deletion is NP-Complete for any r ≥ 2.

Rank Reduction of Directed Graphs by Vertex and Edge Deletions 629

Theorem 7. r-Rank Edge Deletion is NP-Complete for r ≥ 2.

Proof. We give a reduction from the Maximum Bi-Clique problem which was
shown to be NP-Complete by Peeters [26]. The Maximum Bi-Clique problem
takes an undirected graph G and a positive integer K as input and outputs “yes”
if and only if there exists a bi-clique (a complete bi-partite graph) on vertex sets
A,B ⊆ V (G) such that |A| × |B| ≥ K.

Given an undirected graph G construct the bi-digraph D as follows; the vertex
set V (D) = {ui : u ∈ V (G), i ∈ [2]} and arc set E(D) = {(u1, v2) : (u, v) ∈
E(G)}. For any ai ∈ Vi for i ∈ [2], we use the un-subscripted symbol a to denote
the corresponding vertex in the undirected graph G. Denote the number of arcs
in D by m = 2×|E(G)|. Let (G,K) be an instance of the Maximum Bi-Clique

problem then (D,m − K) is the input instance of 2-Rank arc Deletion.
For the forward implication, assume (G,K) has a bi-clique on the sets A,B ⊂

V (G). Let S = {(a1, b2) : a ∈ A, b ∈ B} be a set of arcs; since (A,B) is a solution,
|S| ≥ K. Now S′ = E(D)\S is a solution of (D,m−K) as D\S′ is a directed bi-
clique from A1 = {a1 : a ∈ A} to B2 = {b2 : b ∈ B} and is also a simple-digraph,
by Lemma 12 rank of its adjacency matrix is 2.

For the backward implication, let S be a solution for (D,m−K). By construc-
tion, the remaining number of arcs in D\S is more than K. Since rank(AD\S) = 2
and D \ S is a bi-digraph, by Lemma 12 it is a simple-digraph and consists of
disjoint union of isolated vertices and a directed bi-clique over sets A1 ⊆ V1 and
B2 ⊆ V2. Let A = {a : a1 ∈ A1} and B = {b : b2 ∈ B2} be subsets of V (G). We
claim that (A,B) is a solution of (G,K). Observe that A ∩ B = ∅, otherwise let
x ∈ A∩B. As A1 and B2 induce a directed bi-clique in D, (x1, x2) is an arc in D
which is not possible as that implies (x, x) is an edge in G which contradicts the
assumption that G is a simple undirected graph. Therefore, (A,B) is a solution
of (G,K).

The statements above prove that r-Rank Edge Deletion is NP-Complete
for r = 2. To prove it NP-Complete for arbitrary r, a trick similar to Theorem 4
can be employed. 	

5.2 A Parameterized Algorithm for r-Rank Edge Deletion

In this section we design a polynomial kernel and a sub-exponential parameter-
ized algorithm for r-Rank Edge Deletion.

Lemma 13. For any instance (D, k) of the r-Rank Edge Deletion problem.
If D∼ has more than 3r + 2k vertices then (D, k) is a no instance.

Proof. Let (D, k) be a yes instance and D′ be the graph obtained from D after
deleting a minimal solution having at most k arcs. The graph D′ has rank r, by
Theorem 3 it has at most 3r modules. Any minimal solution having size at most
k can affect at most 2k modules of D. If two distinct modules of D end up in the
same module of D′ then at least one of them must be affected. Every module of
D ends up in some module of D′, therefore there can be at most 3r +2k modules
in D. 	

630 S.M. Meesum and S. Saurabh

An application of Lemma 13 and Corollary 3 results in the following kernel for
r-Rank Edge Deletion.

Theorem 8. r-Rank Editing admits a kernel with O((3r + 2k) · (k + 1)) ver-
tices.

Proof. Let (D, k) be an input instance of r-Rank Edge Deletion. If D has
more than 3r + 2k modules then by Lemma 13 it is a no instance. Otherwise,
construct the graph D′ by removing all but k + 1 vertices from each module of
D. We will show that the instances (D, k) and (D′, k) are equivalent.

Let F be a minimal solution of (D′, k). Let D′
k+1 and Dk+1 be the graphs

obtained after deletion of any module having more than k vertices. Observe
that Dk+1 and D′

k+1 are the same graph (isomorphic) and hence have the same
rank implying rank(ADk+1\F) = rank(AD′

k+1\F). It is also easy to see that both
Dk+1 \F and D′

k+1 \F have the same reduced graph. Let Vi be a module which
was deleted. Now, add |Vi| vertices in Dk+1\F and k+1 vertices in D′

k+1\F such
that they have the same induced neighborhood as any other vertex in Vi; both
the new graphs have the same reduced graph and hence have the same rank. To
simplify presentation we denote the graph obtained by the addition of vertices
as (Dk+1 \F)∪Vi. The graphs (Dk+1 \F)∪Vi and (Dk+1 ∪Vi) \F are the same
graph because F ⊆ E(Dk+1) by Corollary 3. Therefore adding back the deleted
modules keeps the rank of both the graphs equal i.e. rank(AD\F) = rank(AD′\F).
We can repeat this argument with the assumption that F is a minimal solution
of (D, k) to prove the equivalence.

We output (D′, k) as the desired kernel. The instance (D′, k) has at most
3r + 2k equivalence classes and each module has at most k + 1 vertices, so the
claimed bound on the size V (D′) follows. 	

The family of undirected ∼-reduced graphs of rank equal to r can be con-
structed in time which is a function of r alone [2]. With very minor changes in
the algorithm (Sect. 3, [2]), we have the following theorem.

Theorem 9. The family Dr of directed reduced graphs of rank at most r can be
constructed in time which is a function of r alone.

We will be making use of an algorithm for the Directed H-Bag Deletion

problem which is defined as follows.

Directed H-Bag Deletion Parameter: k
Input: Directed graphs D, H and an integer k, where H is a ∼-reduced
graph.
Question: Does there exist a set F having at most k arcs such that the
∼-reduced graph of D′ = (V (D), E(D) \ F) is an induced subgraph of H ?

The rest of the section gives an algorithm for Directed H-Bag Deletion

and shows how to use it for solving r-Rank Edge Deletion. Our algorithm for

Rank Reduction of Directed Graphs by Vertex and Edge Deletions 631

Directed H-Bag Deletion is similar to the bag-editing algorithm of Dam-
aschke et. al. [11] but is novel in the sense that it handles a different equiva-
lence relation and works with directed graphs. We now present the algorithm for
Directed H-Bag Deletion.

Theorem 10 (�). The Directed H-Bag Deletion problem with a fixed
graph H and an input instance (D, k) can be solved in 2O(

√
klogk)nO(1) time.

Making use of the algorithm above we get the algorithm for r-Rank Edge

Deletion.

Theorem 11. An instance (D, k) of r-Rank Edge Deletion can be solved in
2O(

√
k log k)nO(1) time.

Proof. We generate family Dr of ∼-reduced graphs using Theorem 9. For each
graph H ∈ Dr, we check if arc deletions can convert D into a graph having H
as reduced graph using Theorem 10. If the answer is “no” for all H, we output
“no”, otherwise we output “yes”. For the correctness of algorithm observe that
after k deletions the reduced graph of D is a member of Dr if and only if it’s
rank is at most r. 	

6 Conclusion

In this paper we presented algorithms for reducing rank of the adjacency matrix
of a directed graph by vertex and edge deletions. We note that the algorithm
for edge deletion can be modified easily to work for rank reduction by edge
editing as well. This paper leaves several questions open. Can the bound for
maximum number of vertices in a reduced directed graph of rank r be improved?
Is the problem NP-Complete if we allow deletion as well as addition of edges?
We believe that the editing version is NP-Complete for r ≥ 4. Apart from that,
can the algorithms and kernels be improved for these problems. In particular,
is it possible to get rid of the log k factor in the exponent of running time for
r-Rank Edge Deletion?

References

1. Abu-Khzam, F.N.: A kernelization algorithm for d-hitting set. J. Comput. Syst.
Sci. 76(7), 524–531 (2010)

2. Akbari, S., Cameron, P. J., Khosrovshahi, G. B.: Ranks and signatures of adjacency
matrices (2004)

3. Bliznets, I., Cygan, M., Komosa, P., Mach, L., Pilipczuk, M.: Lower bounds for
the parameterized complexity of minimum fill-in and other completion problems.
In: SODA 16 (2016, to appear)

4. Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential para-
meterized algorithm for proper interval completion. In: Schulz, A.S., Wagner, D.
(eds.) ESA 2014. LNCS, vol. 8737, pp. 173–184. Springer, Heidelberg (2014)

632 S.M. Meesum and S. Saurabh

5. Bliznets, I., Fomin, F.V., Pilipczuk, M., Pilipczuk, M.: A subexponential parame-
terized algorithm for interval completion. In: SODA 16 (2016, to appear)

6. Cao, Y.: Unit interval editing is fixed-parameter tractable. In: Halldórsson, M.M.,
Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9134,
pp. 306–317. Springer, Heidelberg (2015)

7. Cao, Y.: Linear recognition of almost interval graphs. In: SODA 16 (2016, to
appear)

8. Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. In: STACS, vol.
25, pp. 214–225. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

9. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans.
Algorithms 11(3), 21:1–21:35 (2015)

10. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk,
M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Switzerland
(2015)

11. Damaschke, P., Mogren, O.: Editing the simplest graphs. In: Pal, S.P., Sadakane,
K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp. 249–260. Springer, Heidelberg
(2014)

12. Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the threshold of
intractability. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9242, pp.
411–423. Springer, Heidelberg (2015)

13. Drange, P.G., Fomin, F.V., Pilipczuk, M., Villanger, Y.: Exploring subexponential
parameterized complexity of completion problems. In: STACS, LIPIcs, vol. 25, pp.
288–299. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

14. Drange, P.G., Pilipczuk, M.: A polynomial kernel for trivially perfect editing. In:
Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 424–436. Springer,
Heidelberg (2015)

15. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds
for parameterized complexity of cluster editing with a small number of clusters. J.
Comput. Syst. Sci. 80(7), 1430–1447 (2014)

16. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S., F-deletion, P.: Approxima-
tion, kernelization and optimal FPT algorithms. In: FOCS (2012)

17. Fomin, F.V., Villanger, Y.: Subexponential parameterized algorithm for minimum
fill-in. SIAM J. Comput. 42(6), 2197–2216 (2013)

18. Fujito, T.: A unified approximation algorithm for node-deletion problems. Discrete
Appl. Math. 86, 213–231 (1998)

19. Ghosh, E., Kolay, S., Kumar, M., Misra, P., Panolan, F., Rai, A., Ramanujan,
M.S.: Faster parameterized algorithms for deletion to split graphs. Algorithmica
71(4), 989–1006 (2015)

20. Kotlov, A., Lovász, L.: The rank and size of graphs. J. Graph Theor. 23(2), 185–
189 (1996)

21. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

22. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. ACM 41, 960–981 (1994)

23. Mahajan, M., Sarma, J.: On the complexity of matrix rank and rigidity. Theory
Comput. Syst. 46(1), 9–26 (2010)

24. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms 9(4), 30 (2013)

25. Meesum, S.M., Misra, P., Saurabh, S.: Reducing rank of the adjacency matrix by
graph modification. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol.
9198, pp. 361–373. Springer, Heidelberg (2015)

Rank Reduction of Directed Graphs by Vertex and Edge Deletions 633

26. Peeters, R.: The maximum edge biclique problem is np-complete. Discrete Appl.
Math. 131(3), 651–654 (2003)

27. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: STOC 1978,
pp. 253–264. ACM, New York (1978)

New Deterministic Algorithms for Solving
Parity Games

Matthias Mnich, Heiko Röglin, and Clemens Rösner(B)

Department of Computer Science, University of Bonn, Bonn, Germany
mmnich@uni-bonn.de, {roeglin,roesner}@cs.uni-bonn.de

Abstract. We study parity games in which one of the two players con-
trols only a small number k of nodes and the other player controls the
n − k other nodes of the game. Our main result is a fixed-parameter

algorithm that solves bipartite parity games in time kO(
√
k) · O(n3) and

general parity games in time (p+ k)O(
√

k) ·O(pnm), where p denotes the
number of distinct priorities and m denotes the number of edges. For all
games with k = o(n) this improves the previously fastest algorithm by
Jurdziński, Paterson, and Zwick (SICOMP 2008).

We also obtain novel kernelization results and an improved determin-
istic algorithm for graphs with small average degree.

1 Introduction

A parity game [4] is a two-player game of perfect information played on a directed
graph G by two players, even and odd, who move a token from node to node
along the edges of G so that an infinite path is formed. The nodes of G are
partitioned into two sets V0 and V1; the even player moves if the token is at a
node in V0 and the odd player moves if the token is at a node in V1. The nodes
of G are labeled by a priority function p : V → N0, and the players compete for
the parity of the highest priority occurring infinitely often on the infinite path
v0, v1, v2 . . . describing a play: the even player wins if lim supi→∞ p(vi) is even,
and the odd player wins if it is odd.

The winner determination problem for parity games is the algorithmic prob-
lem to determine for a given parity game G = (V0 � V1, E, p) and an initial
node v0 ∈ V0 ∪ V1, whether the even player has a winning strategy in the game
if the token is initially placed on node v0. We say that an algorithm for this
problem solves parity games. Parity games have various applications in com-
puter science and the theory of formal languages and automata in particular.
They are closely related to other games of infinite duration, such as mean pay-
off games, discounted payoff games, and stochastic games [9]. Solving parity
games is linear-time equivalent to the model checking problem for the modal
μ-calculus [18]. Hence, any parity game solver is also a model checker for the
μ-calculus (and vice versa).

This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 634–645, 2016.
DOI: 10.1007/978-3-662-49529-2 47

New Deterministic Algorithms for Solving Parity Games 635

Many algorithms have been suggested for solving parity games [3,11,19,20],
yet none of them is known to run in polynomial time. McNaughton [13] showed
that the winner determination problem belongs to the class NP ∩ coNP, and
Jurdziński [9] strengthened this to UP ∩ coUP. It is a long-standing open ques-
tion whether parity games can be solved in polynomial time. The fastest known
deterministic algorithm is due to Jurdziński, Paterson, and Zwick [11] and it
has a run time of nO(

√
n) for general parity games and of nO(

√
n/ log n) for parity

games in which every node has out-degree at most two. The fastest known ran-
domized algorithm for general parity games is due to Björklund et al. [3] and it
has a run time of nO(

√
n/ log n).

As a polynomial-time algorithm for solving parity games has remained elu-
sive, researchers have started to consider which restrictions on the game allow for
polynomial-time algorithms. One such well-studied restriction is the treewidth t
of the underlying undirected graph G of the game. Obdržálek [15] found an
algorithm solving parity games on n nodes in time nO(t2). Later, Fearnley and
Lachish [5] gave an algorithm solving parity games in time nO(t log n). Another
well-studied parameter for parity games is the number p of distinct priorities by
which the nodes of the game are labeled. The progress-measure lifting algorithm
by Jurdziński [10] solves parity games in time O(pm(2n/p)p/2), where m denotes
the number of edges of G. This run time has been improved by Schewe [17] to
O(m((2e)3/2n/p)p/3). Fearnley and Schewe [6] presented an algorithm for solv-
ing parity games with run time O(n(t + 1)t+5(p + 1)3t+5), assuming that a tree
decomposition of G with width t is given.

For a given parameter κ, one usually aims for fixed-parameter algorithm algo-
rithms, i.e., algorithms that run in time f(κ) ·nc for some computable function f
and some constant c that is independent of κ. Such an algorithm can be prac-
tical for large instances if f grows moderately and c is small. From the previ-
ously mentioned algorithms only the algorithm by Fearnley and Schewe [6] is a
fixed-parameter algorithm for the combined parameter (t, p). It is not known if
fixed-parameter algorithms exist for the parameter t or the parameter p alone.

Further parameters for which polynomial-time algorithms for parity games
have been suggested include DAG-width [1], clique-width [16], and entangle-
ment [2]; none of these are fixed-parameter algorithms.

1.1 Our Contributions

We study as parameter the number k of nodes that belong to the player who
controls the smaller number of nodes in the parity game. Our first result is a
subexponential fixed-parameter algorithm for solving general parity games for
parameters p and k and for parameter only k for bipartite parity games (where
players alternate between their moves).

Theorem 1. There is a deterministic algorithm that solves any parity game G

on n nodes and m edges in time (p + k)O(
√

k) · O(pnm), where k denotes the
minimum number of nodes owned by one of the players and p the number of
distinct priorities. If G is bipartite, the algorithm runs in time kO(

√
k) · O(n3).

636 M. Mnich et al.

Thus, our algorithm is particularly efficient if the game is unbalanced, in the
sense that one player owns only k nodes and the other player owns the remaining
n − k � k nodes.

Let us remark that it is not very hard to show fixed-parameter tractability
for parameter p+k; indeed McNaughton’s algorithm [13] can be shown to run in
time pk · nO(1), and this was improved to plog k · 4k · nO(1) by Gajarský et al. [7].
Our key contribution here is to reduce the dependence of k to a subexponential
function. Indeed, this improvement allows us to derive the following immediate
corollary of Theorem1 to expedite the run time for solving general parity games.

Corollary 2. There is a deterministic algorithm that solves parity games in
time nO(

√
k).

Our algorithm is asymptotically always at least as fast as the fastest known
deterministic parity game solver by Jurdziński, Paterson, and Zwick [11], which
runs in time nO(

√
n). For the case k = o(n), our algorithm is asymptotically

faster than theirs and constitutes the fastest known deterministic solver for such
games.

We also prove the existence of a small kernel, as our second result. For a
parameterized problem, a kernelization algorithm takes as input an instance x
with parameter κ and computes in time (|x| + κ)O(1) an equivalent instance x′

with parameter κ′ (a kernel) with size |x′| ≤ g(κ), for some computable func-
tion g; here, equivalent means that an optimal solution for x can be derived in
polynomial time from an optimal solution of x′.

Theorem 3. Parity games can be kernelized in time O(pmn) to at most
(p + 1)k + (p + 1)k nodes, and bipartite parity games can be kernelized in time
O(n3) to at most k + 2k · min{k, p} nodes and at most k2k · min{k, p} edges.

This kernelization result is not only interesting for its own sake, but it is also
an important ingredient in the proof of Theorem1.

As our third result, we generalize the algorithm by Jurdziński, Paterson,
and Zwick [11] for parity games with maximum out-degree 2 to arbitrary out-
degree Δ.

Theorem 4. There is a deterministic algorithm that solves parity games on n
nodes out of which sj nodes have out-degree at most j in time

n
O

(

min1≤j≤n

{√
n−sj+

√
sj

logj sj

})

.

Corollary 5. There is a deterministic algorithm that solves parity games on n

nodes with maximum out-degree Δ in time nO(
√

log(Δ)·n/ log(n)) and parity games
on n nodes with average out-degree Δ in time nO(

√
log(log(n)Δ)·n/ log(n)).

Due to space constraints, all proofs are deferred to the full version [14] of
this paper.

New Deterministic Algorithms for Solving Parity Games 637

1.2 Detailed Comparison with Previous Work

Let us discuss in detail how our results compare to previous work. It is well-
known (cf. [12, Lemma 3.2]) and easy to prove that the treewidth of a complete
bipartite graph equals the size of the smaller side. Since the treewidth of a graph
can only decrease when deleting edges, the graph underlying a bipartite parity
game in which one player owns k nodes has a treewidth of at most k. However,
as it is not known if there exists a fixed-parameter algorithm for parameter
treewidth, the result in Theorem 1 for the bipartite case does not follow from
previous work about parity games with bounded treewidth. As a parity game
in which one player owns k nodes can have up to n different priorities, also the
fixed-parameter algorithm for the combined parameter (t, p) by Fearnley and
Schewe [6] does not imply our result.

The algorithm of Jurdziński, Paterson, and Zwick [11] for parity games with
maximum out-degree two with run time nO(

√
n/ log n) can easily be generalized

to arbitrary parity games at the expense of its run time. For this, one only
needs to observe that every parity game can be transformed into a game with
maximum out-degree two by replacing each node with a higher out-degree by
an appropriate binary tree. This transformation increases the number of nodes
from n to Θ(m) where m denotes the number of edges in the original parity
game. Hence, the run time becomes mO(

√
m/ log m) = nO(

√
m/ log n). For graphs

with average out-degree Δ = ω(log log n) the resulting run time of nO(
√

Δn/ log n)

is asymptotically worse than the run time we obtain in Corollary 5.
For graphs in which the variance of the out-degrees is large, our algorithm

can even be better than stated in Corollary 5. If, for example, there are n1−ε

nodes with an arbitrary out-degree for some ε > 0 and all remaining nodes have
constant out-degree at most c then our algorithm has a run time of nO(

√
n

log n)

(the minimum in Theorem 4 is assumed for j = c). This matches the best known
bound for randomized algorithms.

Gajarský et al. [7] present an algorithm that solves parity games in time
wO(

√
w) · nO(1), where w denotes the modular width of G. Since the modular

width of a bipartite graph can be exponential in the size of the smaller side,
Theorem 1 does not follow from this result.

2 Fundamental Properties of Parity Games

A parity game G = (V0 � V1, E, p) consists of a directed graph (V0 � V1, E),
where V0 is the set of even nodes and V1 is the set of odd nodes, and a priority
function p : V0 ∪V1 → N0. We often abuse notation and also refer to (V0 �V1, E)
as the graph G. For each node v ∈ V (G), we denote by N+

G (v) and N−
G (v) the

set of out-neighbors and in-neighbors of v in G, respectively.
Two standard assumptions about parity games are (1) that G is bipartite

with E ⊆ (V0 × V1) ∪ (V1 × V0), and (2) that each node u ∈ V has at least
one outgoing edge (u, v) ∈ E. The first assumption is often made because it is
easy to transform a non-bipartite instance into a bipartite instance. However,

638 M. Mnich et al.

the usual transformation increases the number of nodes in Vi by an amount of
|{v ∈ V1−i | N−

G (v) ∩ V1−i �= ∅}|, and can therefore increase the parameter k =
min{|V0|, |V1|} significantly. We therefore consider bipartite and non-bipartite
instances separately in Theorem 1.

We write n = |V (G)|, m = |E| and p = |{p(v) | v ∈ V (G)}|. The game
is played by two players, the even player (or player 0) and the odd player (or
player 1). The game starts at some node v0 ∈ V (G). The players construct an
infinite path (a play) as follows. Let u be the last node added so far to the path.
If u ∈ V0, then player 0 chooses an edge (u, v) ∈ E. Otherwise, if u ∈ V1, then
player 1 chooses an edge (u, v) ∈ E. In either case, node v is added to the path
and a new edge is then chosen by either player 0 or player 1. As each node
has at least one outgoing edge, the path constructed can always be continued.
Let v0, v1, v2, . . . be the infinite path constructed by the two players and let
p(v0), p(v1), p(v2), . . . be the sequence of the priorities of the nodes on the path.
Player 0 wins the game if the largest priority seen infinitely often is even, and
player 1 wins if the largest priority seen infinitely often is odd.

We will define p1(v) as p(v) if p(v) is odd and as −p(v) if p(v) is even.
This allows us to say that, in case p1(v) > p1(u) for some v, u ∈ V , player 1
prefers p(v) over p(u). Observe that removing an arbitrary finite prefix of a
play in a parity game does not change the winner; we refer to this property of
parity games as prefix independence. A strategy for player i ∈ {0, 1} in a game G
specifies, for every finite path v0, v1, . . . , vk in G that ends in a node vk ∈ Vi, an
edge (vk, vk+1) ∈ E. A strategy is positional if the edge (vk, vk+1) ∈ E chosen
depends only on the last node vk visited and is independent of the prefix path
v0, v1, . . . , vk−1. A strategy for player i ∈ {0, 1} is winning (for player i) from
a start node v0 if following this strategy ensures that player i wins the game,
regardless of which strategy is used by the other player.

The fundamental determinacy theorem for parity games [4,8] says that for
every parity game G and every start node v0, either player 0 has a winning
strategy or player 1 has a winning strategy. Furthermore, if a player has a win-
ning strategy from some node in a parity game, then she also has a winning
positional strategy from this node. From now on we will therefore, unless stated
differently, assume every strategy to be positional. Given positional strategies s0
on V0 and s1 on V1 and a start node v0 ∈ V the infinite path starting in v0 corre-
sponding to these strategies consists of a finite prefix and an infinite recurrence
of a cycle C = C(s0, s1, v0). We call C the cycle corresponding to s0, s1, v0 and
say that s0 and s1 create C. The parity of the highest priority p(u) of all nodes
u ∈ V (C) in cycle C then determines the winner of the game. The winning set
of player i ∈ {0, 1} is the set wini(G) ⊆ V of nodes of the game G from which
player i has a winning strategy.

For i ∈ {0, 1}, an i-dominion is a set of nodes D ⊆ V so that player i can
win from every node of D, without leaving D and without allowing the other
player to leave D. An example of an i-dominion is the set wini(G), but there
may be smaller subsets of wini(G) that are i-dominions as well. Although finding
i-dominions can be just as hard as finding wini(G), searching only for dominions

New Deterministic Algorithms for Solving Parity Games 639

with certain properties (e.g. small dominions) can be easier. In our algorithm
we will use the fact that once an i-dominion is found, it can easily be removed
from the graph, leaving a smaller game to be solved.

Next, we recall some well-known results about parity games that form
the basis of the algorithms for solving parity games by McNaughton [13] and
Zielonka [20]. We include them here as our algorithm relies on them as well;
for a detailed exposition we refer to Grädel et al. [8]. Fix a parity game
G = (V0 � V1, E, p).

For i ∈ {0, 1}, a set B ⊆ V (G) is i-closed if for every u ∈ B the following
holds (we use the notation ¬i for the element 1 − i ∈ {0, 1}):

– If u ∈ Vi, then there exists some (u, v) ∈ E such that v ∈ B; and
– if u ∈ V¬i, then for every (u, v) ∈ E, we have v ∈ B.

In other words, a set B is i-closed if player i can always choose to stay in B while
simultaneously player ¬i cannot escape from it, i.e., B is a “trap” for player ¬i.

Lemma 6. For each i ∈ {0, 1}, the set wini(G) is i-closed.

Let A ⊆ V (G) be a set of nodes and let i ∈ {0, 1}. The i-reachability set of A
is the set reachi(A) of nodes in A together with all nodes in V (G)\A from which
player i has a strategy σ to enter A at least once (regardless of the strategy of
the other player); we call such a strategy σ an i-reachability strategy to A.

Lemma 7. For A ⊆ V (G) and i ∈ {0, 1}, the set V (G)\reachi(A) is (¬i)-closed.

We will from now on assume that the graph of the parity game we operate
on is encoded as an adjacency list.

Lemma 8. For every set A ⊆ V (G) and i ∈ {0, 1}, the set reachi(A) can be
computed in O(m) time, where m = |E| is the number of edges in the game.

If B ⊆ V (G) is such that for each node u ∈ V (G)\B there is an edge (u, v)
with v ∈ V (G)\B, then the sub-game G − B is the game obtained from G by
removing the nodes of B. We will only be using B’s for which V (G)\B is an
i-closed set for some i. In this case every node in v ∈ V (G)\B has at least one
out-going edge (v, w) with w ∈ V (G)\B and G−B will therefore be well-defined.
The next lemmas show some useful properties of sub-games.

Lemma 9. Let G′ be a sub-game of G and let i ∈ {0, 1}. If the node set of G′

is i-closed in G, then wini(G′) ⊆ wini(G).

The next lemma shows that if we know some non-empty subset U of the
winning set of some player ¬i in a game G, then computing the winning sets of
both players in G can be reduced to computing their winning sets in the smaller
game G − reach¬i(U).

Lemma 10. For any parity game G and i ∈ {0, 1}, if U ⊆ win¬i(G) and U∗ =
reach¬i(U), then win¬i(G) = U∗ ∪ win¬i(G − U∗) and wini(G) = wini(G − U∗).

640 M. Mnich et al.

The next lemma complements Lemma 10 by providing a way to find a non-
empty subset of the winning set of player ¬i in a parity game G or to conclude
that player i can win from every node in G.

Lemma 11. Let G be a parity game with largest priority pmax and let Vpmax ⊆
V (G) be the set of nodes with priority pmax. Let i = pmax (mod 2) and let
G′ = G − reachi(Vpmax). Then win¬i(G′) ⊆ win¬i(G). Also, if win¬i(G′) = ∅,
then wini(G) = V , i.e., player i wins from every node of G.

3 Kernelization of Parity Games

In this section, we describe some reduction rules for parity games. Theses rules
are such that we can efficiently compute the winning sets of the original parity
game once we know the winning sets of the reduced game.

3.1 Non-bipartite Games

Lemma 12. Any parity game G = (V0 � V1, E, p) can be transformed in time
O(pmn) to a parity game G′ = (V ′

0 � V ′
1 , E′, p′) with V ′

1 ⊆ V1 such that

– there are no edges inside V ′
1 , and

– for each node v ∈ V ′
0 either N+

G (v) ⊆ V ′
1 or N−

G (v) ⊆ V ′
1 , and

– |V ′
0 | ≤ min{n + pk, (p + 1)k + pk}, where k = |V1|.

Moreover, G and G′ have the same winning sets on V ′
1 and the winner of the

remaining nodes of G can be computed either during the transformation or from
the winning sets of G′ in linear time.

3.2 Bipartite Games

In this section we give some reduction rules that efficiently reduce any bipartite
game G = (V0 � V1, E, p) to a structurally simpler bipartite game G′ = (V ′

0 �
V ′
1 , E

′, p′), such that the winning sets of G can be efficiently recovered from
the winning sets of G′. After exhaustive application of the reduction rules, the
reduced game G′ will have size bounded by some function of k and p only,
independent of the size of G.

The digraphs of our underlying parity game may have self-loops and bidi-
rected edges, but (without loss of generality) no parallel edges between the same
two nodes. Thus, whenever parallel edges arise during the application of one of
the reduction rules, we remove one of them without explicit mention.

Lemma 13. Let G = (V0�V1, E, p) be a bipartite parity game, and let u, v ∈ V0

be such that N+
G (v) ⊆ N+

G (u) and p1(v) ≥ p1(u). Let G′ be the parity game
obtained from G by deleting the edges {(w, u) ∈ E | (w, v) ∈ E}. Then the
winning sets of G and G′ are equal.

New Deterministic Algorithms for Solving Parity Games 641

Lemma 14. Let G = (V0�V1, E, p) be a bipartite parity game, and let u, v ∈ V0

be nodes with N+
G (u) = N+

G (v) and p(v) = p(u). Let G′ be the parity game
obtained from G by contracting u and v into a new node v′ with priority p(v).
Then u and v belong to the same winning set wini(G) in G and v′ belongs to the
winning set wini(G′) of the same player in G′. For all other nodes the winning
sets of G and G′ coincide.

Lemma 15. Let G = (V0�V1, E, p) be a bipartite parity game, and let v ∈ V (G)
be such that N−

G (v) = ∅. Then for the parity game G′ = G−v and for i ∈ {0, 1},
any node v′ �= v is winning for player i in G if and only if it is winning for
player i in G′.

Lemma 16. Let G = (V0 � V1, E, p) be a parity game with largest priority
pmax = max{p(v) | v ∈ V (G)}. If p−1(z) = ∅ for some z ∈ {1, . . . , pmax}
then let G′ = (V0 � V1, E, p′) be the parity game obtained from G by setting
p′(v) = p(v) − 2 for all v ∈ V with p(v) > z and p′(v) = p(v) for all v ∈ V with
p(v) < z. Then the winning sets of the games G and G′ coincide.

Corollary 17. In any parity game with maximum priority pmax to which the
reduction rule described in Lemma16 cannot be applied anymore, the set of pri-
orities is either {0, 1, . . . , pmax} or {1, . . . , pmax}.

Lemma 18. Let G = (V0 � V1, E, p) be a bipartite parity game with |V1| = k
that is reduced according to Lemmas 13–15. Then |V0| ≤ 2k · min{k, p}.

Lemma 19. There exists a sequence of applications of the reduction rules
described in Lemmas 13–16 with a total run time of O(n3) that leads to a game
in which none of these rules applies anymore.

4 A Simple Exponential-Time Algorithm

A simple algorithm with run time O(2n) for the solution of parity games origi-
nates from the work of McNaughton [13] and was first presented for parity games
by Zielonka [20]; see also Grädel et al. [8]. Algorithm win(G) receives a parity
game G and returns the pair of winning sets (win0(G) = W0,win1(G) = W1).

Algorithm win(G) is based on Lemmas 10 and 11. Let pmax be the largest
priority in G and let Vpmax be the set of nodes with priority pmax. Let i = pmax

(mod 2) be the player who owns the highest priority. The algorithm first finds
the winning sets (W ′

0,W
′
1) of the smaller game G′ = G − reachi(Vpmax) in a first

recursive call. If W ′
¬i = ∅, then by Lemma 11 player i wins from all nodes of G

and we are done. Otherwise, again by Lemma11 we know that W ′
¬i ⊆ win¬i(G).

The algorithm then finds the winning sets (W ′′
0 ,W ′′

1) of the smaller game G′′ =
G − reach¬i(W ′

¬i) by a second recursive call. By Lemma 10, wini(G) = W ′′
i and

win¬i(G) = reach¬i(W ′
¬i) ∪ W ′′

¬i = V (G)\W ′′
i . The pseudocode of win(G) can

be found in the full version [14] of this paper.

642 M. Mnich et al.

5 Overview of the New Algorithms

Before we describe our new algorithms that lead to Theorems 1 and 4 in detail in
Sect. 7 and the full version [14] of this paper, we present an overview of the main
ideas. The algorithm new-win(G) by Jurdziński, Paterson, and Zwick [11] with
run time nO(

√
n) is a slight modification of the just described algorithm win(G).

At the beginning of each recursive call it tests in time O(n�) if the parity game
contains a dominion D of size at most � = �

√
2n�. If this is the case then D is

removed and the remaining game is solved recursively. Else, the parity game is
solved by the algorithm win(G), except that the recursive calls in lines 4 and 8
are made to new-win(G). Since this happens only when G does not contain a
dominion of size at most �, the dominion reachj(W ′

j) that is removed in line 8
has size greater than � and hence, the second recursive call is to a substantially
smaller game. Overall, this leads to the improved run time of nO(

√
n).

Our new algorithms are based on a similar idea. Instead of simply search-
ing for a dominion of size at most �, our algorithm new-win1(G) that leads to
Theorem 1 searches for a dominion that contains at most � = �

√
2k� nodes of

the odd player, assuming without loss of generality that the odd player controls
fewer nodes, i.e., k = |V1|. If such a dominion is found then we remove it from
the game and solve the remaining game recursively. Otherwise, we use the algo-
rithm win(G) to solve the parity game, except that the recursive calls in lines 4
and 8 are made to new-win1(G). It can happen that in the game to which the
first recursive call in line 4 is made, the odd player controls again k nodes. We
will show that in bipartite instances this cannot happen in two consecutive calls.
For general instances we use that the observation that at least the number of
different priorities decreases by one in the recursive call. Searching efficiently for
a dominion that contains at most � = �

√
2k� nodes of the odd player is more

involved than simply searching for dominions whose total size is at most �. We
use multiple recursive calls of new-win1 to test if such a dominion exists, which
makes the recursion of our algorithm and its analysis more complicated.

Our second algorithm leading to Theorem4 is based on the same approach
and inspired by the algorithm of Jurdziński, Paterson, and Zwick [11]. In this case
we let sj , for some j ∈ N, equal the number of vertices with out-degree at most j.
We separate the nodes into sj nodes with out-degree at most j and n− sj nodes
with out-degree larger than j and, at the beginning of each iteration, search
for and remove dominions that contain at most � = �

√
2(n − sj)� nodes with

out-degree larger than j and at most s = �
√

sj · logj sj� nodes with out-degree

at most j. This algorithm has a run time of n
O

(√
n−sj+

√
sj

logj sj

)

, which implies
Theorem 4. Since our second algorithm is very similar to our first algorithm, we
moved the detailed description and analysis to the full version [14] of this paper.

6 Finding Small Dominions

We now describe how dominions with the previously discussed properties can
be found. Let G = (V0 � V1, E, p) be a parity game. Recall that for i ∈ {0, 1},

New Deterministic Algorithms for Solving Parity Games 643

a set D ⊆ V is an i-dominion if player i can win from every node of D without
ever leaving D, regardless of the strategy of player ¬i. Note that any i-dominion
must be i-closed. A set D ⊆ V is a dominion if it is either a 0-dominion or a
1-dominion. By prefix independence of parity games, the winning set wini(G) of
player i is an i-dominion.

For k, p ∈ N, let T (k) denote the maximum number of steps needed to solve
a bipartite parity game G = (V0 � V1, E, p) and let T (k, p) denote the maximum
number of steps needed to solve a general parity game G = (V0 � V1, E, p) with
|V1| = k and p = |{p(v) | v ∈ V }| using some fixed algorithm. For k, p, � ∈ N, let
domk(�) denote the maximum number of steps required to find a dominion D
with |V1∩D| ≤ � in a bipartite parity game G = (V0�V1, E, p) with |V1| = k and
let domk,p(�) denote the maximum number of steps required to find a dominion D
with |V1 ∩ D| ≤ � in a general parity game G = (V0 � V1, E, p) with |V1| = k and
p = |{p(v) | v ∈ V }|, or to determine that no such dominion exists.

We will in the analysis of run times make the assumption that computation
and removal of reachability sets as well as kernelization are elementary operation
and can therefore be performed in time O(1). To obtain the actual run times of
our algorithms we will in the end multiply the computed run times by a factor
corresponding to the time needed for these operations.

Lemma 20. For k ≥ 4, domk(�) = O(k� ·T (�)) and domk,p(�) = O(k� ·T (�, p)).

With the algorithm described in Lemma 20 we can find a dominion D
such that |D ∩ V1| ≤ � if such a dominion exists. We denote this algorithm
by dominion1(G, �) and assume that it returns either the pair (D, i) if an
i-dominion D is found, or (∅,−1) if not.

7 New Algorithms for Solving Parity Games

We present the algorithm new-win1(G) discussed in Sect. 5 in detail. Let G =
(V0 � V1, E, p) with |V1| = k be a parity game with p distinct priorities.

The algorithm new-win1 starts by trying to find a “small” dominion D,
where small means |D ∩ V1| ≤ �, where � = �

√
2k� is a parameter chosen to

minimize the run time of the algorithm. If such an i-dominion is found, then
we remove it together with its i-reachability set from the game and solve the
remaining game recursively. If no small dominion is found, then new-win1 sim-
ply calls algorithm old-win1, which is almost identical to algorithm win. The
only difference between old-win1 and win is that its recursive calls are made
to new-win1 and not to itself.

The recursion stops once the number of odd nodes is at most 4, in which
case we will test each of the at most ((p + 1)4)4 (due to the size of our kernel)
different strategies for player 1 in constant time. We will call this brute force
method solve1(G). We will also kernelize using the reduction rules described in
Sect. 3. We will call the kernelization subroutine kernel(G). The pseudocode of
new-win1(G) can be found in Sect. 8.

644 M. Mnich et al.

The correctness of the algorithm follows analogously to the correctness
of win(G). We analyze the run time of new-win1(G) and prove Theorem 1
in the full version [14] of this paper.

8 Pseudocode for Algorithm new-win

We will now give the pseudocode for algorithm new-win1(G).

Algorithm 1. new-win1(G)
Input: A parity game G = (V0 � V1, E, p).
Output: A partition (W0, W1) of V , where Wi is the winning set of player i ∈ {0, 1}.

1: k ← |V1|; � ←
⌊√

2k
⌋

; G = kernel(G)

2: if k ≤ 4 then return solve1(G)
3: (D, i) ← dominion1(G, �)
4: if D = ∅ then
5: (W0, W1) ← old-win1(G)
6: else
7: (W ′

0, W
′
1) ← new-win1(G − reachi(D))

8: (W¬i, Wi) ← (W ′
¬i, V \ W ′

¬i)
9: return (W0, W1)

Algorithm 2. old-win1(G)
Input: A parity game G = (V0 � V1, E, p).
Output: A partition (W0, W1) of V , where Wi is the winning set of player i ∈ {0, 1}.
1: G = kernel(G)
2: i ← pmax (mod 2)
3: (W ′

0, W
′
1) ← new-win1(G − reachi(Vpmax))

4: if W ′
¬i = ∅ then

5: (Wi, W¬i) ← (V, ∅)
6: else
7: (W ′′

0 , W ′′
1) ← new-win1(G − reach¬i(W

′
¬i))

8: (Wi, W¬i) ← (W ′′
i , V \ W ′′

i)
9: return (W0, W1)

Acknowledgements. M.M. thanks Lászlo Végh for introducing him to parity games,
and the authors of [7] for sending us a preprint.

References

1. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and parity games.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 524–536.
Springer, Heidelberg (2006)

New Deterministic Algorithms for Solving Parity Games 645

2. Berwanger, D., Grädel, E., Kaiser, �L., Rabinovich, R.: Entanglement and the com-
plexity of directed graphs. Theoret. Comput. Sci. 463, 2–25 (2012)

3. Björklund, H., Sandberg, S., Vorobyov, S.: A discrete subexponential algorithm
for parity games. In: Alt, H., Habib, M. (eds.) STACS 2003. LNCS, vol. 2607,
pp. 663–674. Springer, Heidelberg (2003)

4. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy. In: Pro-
ceedings of FOCS 1991, pp. 368–377 (1991)

5. Fearnley, J., Lachish, O.: Parity games on graphs with medium tree-width. In:
Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS, vol. 6907, pp. 303–314.
Springer, Heidelberg (2011)

6. Fearnley, J., Schewe, S.: Time and parallelizability results for parity games with
bounded treewidth. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part II. LNCS, vol. 7392, pp. 189–200. Springer, Heidelberg (2012)

7. Gajarský, J., Lampis, M., Makino, K., Mitsou, V., Ordyniak, S.: Parameterized
algorithms for parity games. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.)
MFCS 2015. LNCS, vol. 9235, pp. 336–347. Springer, Heidelberg (2015)

8. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games:
A Guide to Current Research. LNCS, vol. 2500. Springer, Heidelberg (2002)

9. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inform.
Process. Lett. 68(3), 119–124 (1998)

10. Jurdziński, M.: Small progress measures for solving parity games. In: Reichel, H.,
Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg
(2000)

11. Jurdziński, M., Paterson, M., Zwick, U.: A deterministic subexponential algorithm
for solving parity games. SIAM J. Comput. 38(4), 1519–1532 (2008)

12. Kloks, T., Bodlaender, H.L.: On the treewidth and pathwidth of per-
mutation graphs (1992). http://www.cs.uu.nl/research/techreps/repo/CS-1992/
1992-13.pdf

13. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Logic
65(2), 149–184 (1993)

14. Mnich, M., Röglin, H., Rösner, C.: New deterministic algorithms for solving parity
games. arXiv.org, cs.CC, December 2015. http://arxiv.org/abs/1512.03246

15. Obdržálek, J.: Fast μ-calculus model checking when tree-width is bounded. In:
Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 80–92.
Springer, Heidelberg (2003)

16. Obdržálek, J.: Clique-width and parity games. In: Duparc, J., Henzinger, T.A.
(eds.) CSL 2007. LNCS, vol. 4646, pp. 54–68. Springer, Heidelberg (2007)

17. Schewe, S.: Solving parity games in big steps. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 449–460. Springer, Heidelberg (2007)

18. Stirling, C.: Local model checking games. In: Lee, I., Smolka, S.A. (eds.) CONCUR
1995. LNCS, vol. 962, pp. 1–11. Springer, Heidelberg (1995)

19. Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving
parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855,
pp. 202–215. Springer, Heidelberg (2000)

20. Zielonka, W.: Infinite games on finitely coloured graphs with applications to
automata on infinite trees. Theoret. Comput. Sci. 200(1–2), 135–183 (1998)

http://www.cs.uu.nl/research/techreps/repo/CS-1992/1992-13.pdf
http://www.cs.uu.nl/research/techreps/repo/CS-1992/1992-13.pdf
http://arxiv.org/abs/1512.03246

Computing a Geodesic Two-Center
of Points in a Simple Polygon

Eunjin Oh1(B), Sang Won Bae2, and Hee-Kap Ahn1

1 Department of Computer Science and Engineering,
POSTECH, Pohang, South Korea
{jin9082,heekap}@postech.ac.kr

2 Department of Computer Science, Kyonggi University, Suwon, South Korea
swbae@kgu.ac.kr

Abstract. Given a simple polygon P and a set Q of points contained in
P , we consider the geodesic k-center problem in which we seek to find k
points, called centers, in P to minimize the maximum geodesic distance
of any point of Q to its closest center. In this paper, we focus on the case
for k = 2 and present the first exact algorithm that efficiently computes
an optimal 2-center of Q with respect to the geodesic distance in P .

1 Introduction

Computing the centers of a point set in a metric space is a fundamental algo-
rithmic problem in computational geometry, which has been extensively studied
with numerous applications in science and engineering. This family of problems
is also known as the facility location problem in operations research that asks
an optimal placement of facilities to minimize transportation costs. A historical
example is the Weber problem in which one wants to place one facility to mini-
mize the (weighted) sum of distances from the facility to input points. In cluster
analysis, the objective is to group input points in such a way that the points in
the same group are relatively closer to each other than to those in other groups.
A natural solution finds a few number of centers and assign the points to the
nearest center, which relates to the well known k-center problem.

The k-center problem is formally defined as follows: for a set Q of m points,
find a set C of k points that minimizes maxq∈Q{minc∈C d(q, c)}, where d(x, y)
denotes the distance between x and y. The k-center problem has been inves-
tigated for point sets in two-, three-, or higher dimensional Euclidean spaces.
For the special case where k = 1, the problem is equivalent to finding the
smallest enclosing ball containing all points. It can be solved in O(m) time for
any fixed dimension [5,7,12]. The case of k = 2 can be solved in deterministic

Work by Oh and Ahn was supported by the NRF grant 2011-0030044 (SRC-GAIA)
funded by the government of Korea. Work by S.W. Bae was supported by Basic
Science Research Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Science, ICT & Future Planning (2013R1A1A1A05006927)
and by the Ministry of Education (2015R1D1A1A01057220).

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 646–658, 2016.
DOI: 10.1007/978-3-662-49529-2 48

Computing a Geodesic Two-Center of Points in a Simple Polygon 647

O(m log2 m log2 log m) time [4] in R2. If k > 2 is part of input, it is NP-hard to
approximate the Euclidean k-center within approximation factor 1.822 [8], while
an mO(

√
k)-time exact algorithm is known for points in R2 [11].

There has been studied several variants of the k-center problem. One variant
is the problem for finding k smallest congruent disks in the presence of obstacles.
More specifically, the problem takes a set of pairwise disjoint simple polygons
(obstacles) with a total of n edges in addition to a set S of m points as inputs.
It aims to find k smallest congruent disks whose union contains S and whose
centers do not lie on the interior of the obstacles. Here, the obstacles do not
affect the distance between two points. For k = 2, Halperin et al. [10] gave an
expected O(n log2(mn) + mn log2 m log(mn))-time algorithm for this problem.

In this paper, we consider another variant of the k-center problem in which
the set Q of m points are given in a simple n-gon P and the centers are con-
strained to lie in P . Here the boundary of the polygon P is assumed to act as an
obstacle and the distance between any two points in P is thus measured by the
length of the geodesic (shortest) path connecting them in P in contrast to [10].
We call this constrained version the geodesic k-center problem and its solution a
geodesic k-center or simply an optimal k-center of Q with respect to P .

This problem has been investigated for the simplest case k = 1. The geodesic
one-center of Q with respect to P is proven to coincide with the geodesic one-
center of the geodesic convex hull of Q with respect to P [2], which is the
smallest subset C ⊆ P containing Q such that for any two points p, q ∈ C,
the geodesic path between p and q is also contained in C. Thus, the geodesic
one-center can be computed by first computing the geodesic convex hull of Q
in O((m + n) log(m + n)) time [15] and second finding its geodesic one-center.
The geodesic convex hull of Q forms a (weakly) simple polygon with O(m + n)
vertices. The problem of finding the geodesic one-center of a (weakly) simple
polygon was introduced by Asano and Toussaint [3]. The first algorithm by
Asano and Toussaint takes O(n4 log n) time, where n denotes the number of
vertices of the input polygon. It was improved to O(n log n) in [14] and finally
improved again to O(n) in [1]. Consequently, the geodesic one-center of Q with
respect to P can be computed in O((m + n) log(m + n)) time.

However, even for k = 2, finding a geodesic k-center of Q with respect to
P is not equivalent to finding a geodesic k-center of a (weakly) simple polygon,
which was addressed in [13]. One can easily construct an example of P and Q in
which the two geodesic disks corresponding to a geodesic 2-center of Q do not
contain the geodesic convex hull of Q. See Fig. 1.

In this paper, we consider the geodesic k-center problem for k = 2 and
present the first exact algorithm to compute a geodesic two-center, that is, a pair
(c1, c2) of points in P such that maxq∈Q{min{d(q, c1), d(q, c2)}} is minimized,
where d(x, y) denote the length of the geodesic path connecting x and y in P .
Our algorithm takes O(m(m+n) log3(m+n) log m) time using O(mn) space. A
simple modification of the algorithm allows us to improve the space complexity
by sacrificing the running time. The algorithm takes O(m2(m + n) log3(m + n))
time when only O(m+n) space is allowed. If n and m are asymptotically equal,

648 E. Oh et al.

then our algorithms take O(n2 log4 n) and O(n3 log3 n) time, respectively, using
O(n2) and (n) space, respectively.

All missing proofs can be found in the full version of this paper.

2 Preliminaries

Let P be a simple polygon with n vertices. The geodesic path between x and y
contained in P , denoted by π(x, y), is the unique shortest path between x and y
inside P . We often consider π(x, y) directed from x to y. The length of π(x, y)
is called the geodesic distance between x and y, and we denote it by d(x, y).

A subset A of P is geodesically convex if it holds that π(x, y) ⊆ A for any
x, y ∈ A. For a set Q of m points contained in P , the common intersection
of all the geodesically convex subsets of P that contain Q is also geodesically
convex and it is called the geodesic convex hull of Q. It is already known that
the geodesic convex hull of any set of m points in P is a weakly simple polygon
and can be computed in O((m + n) log(m + n)) time [15].

Note that once the geodesic convex hull of Q is computed, our algorithm
regards the geodesic convex hull as a new polygon and never consider the points
lying outside of the geodesic convex hull. Thus, we simply use CQ to denote the
geodesic convex hull of Q. Each point q ∈ Q lying on the boundary of CQ is
called extreme.

For a set A, we use ∂A to denote the boundary of A. Since the boundary of CQ

is not necessarily simple, the clockwise order of ∂CQ is not defined naturally in
contrast to a simple curve. Aronov et al. [2] presented a way to label the extreme
points of Q with v1, . . . , vk ∈ Q such that the circuit π(v1, v2)π(v2, v3) · · · π(vk, v1)
is a closed walk of the boundary of CQ allowing repetitions only for extreme
points. We use this labeling of extreme points for our problem. The circuit
π(v1, v2)π(v2, v3) · · · π(vk, v1) is called the clockwise traversal of ∂CQ from v1.
The clockwise order follows from the clockwise traversal along ∂CQ.

Let CQ(v, w) denote the portion of ∂CQ from v to w in clockwise order (includ-
ing v and w) for v, w ∈ ∂CQ. For any two extreme points vi and vj , we use
CQ(i, j) to denote the chain CQ(vi, vj) for simplicity. The subpolygon bounded
by π(w, v) and CQ(v, w) is denoted by PQ(v, w). Clearly, PQ(v, w) is a weakly
simple polygon.

The geodesic disk centered at c ∈ P with radius r ∈ R, denoted by Dr(c), is
the set of points whose geodesic distance from c is at most r. We call a connected
set of points of Dr(c) that are at distance exactly r from c an extreme arc of
Dr(c). A set of geodesic disks with the same radius satisfies the pseudo-disk
property. An extended form of the pseudo-disk property of geodesic disks can be
stated as follows.

Lemma 1 ([13, Lemma 8]). Let D = {D1, . . . , Dk} be a set of geodesic disks
with the same radius and let I be the common intersection of all disks in D. Let
S =< s1, . . . , st > be the cyclic sequence of the extreme arcs of geodesic disks
appearing on ∂I along its boundary in clockwise order. For any i ∈ {1, . . . , k},
the extreme arcs in ∂I ∩ ∂Di are consecutive in S.

Computing a Geodesic Two-Center of Points in a Simple Polygon 649

3 Bipartition by Two Centers

We first compute the geodesic convex hull CQ of the point set Q using the
algorithm by Toussaint [15]. Let QB be the set of extreme points in Q and let
QI := Q \ QB . Note that each q ∈ QB lies on ∂CQ while each q′ ∈ QI lies in the
interior of CQ. The points of QB are readily sorted along the boundary of CQ,
being labeled by v1, . . . , vk following the notion of Aronov et al. [2].

c1

CQ

c2

Fig. 1. The gray region is the geodesic convex hull CQ. The center c1 lies outside of
CQ, while the center c2 lies inside CQ.

Note that it is possible that an optimal two-center has one of its two centers
lying outside of CQ (See Fig. 1). However, there always exists an optimal two-
center of Q with respect to P such that both the centers are contained in CQ as
stated in the following lemma. Thus we may search only CQ to find an optimal
two-center of Q with respect to P .

Lemma 2. There is an optimal two-center (c1, c2) of Q with respect to P such
that both c1 and c2 are contained in the geodesic convex hull CQ of Q.

Let c1, c2 ∈ CQ such that Q ⊂ Dr(c1) ∪ Dr(c2). By Lemma 1, the boundaries
of the two geodesic disks cross each other at most twice. If every extreme point
on CQ(j + 1, i) is contained in Dr(c1), so is the whole chain CQ(j + 1, i) since
Dr(c1) is geodesic convex and therefore π(v, v′) ⊂ Dr(c1) for any two extreme
points v, v′ on CQ(j + 1, i). Thus there exists a pair (i, j) of indices such that
CQ(j + 1, i) ⊂ Dr(c1) and CQ(i + 1, j) ⊂ Dr(c2). We call such a pair (i, j) of
indices a partition pair of Dr(c1) and Dr(c2). If (c1, c2) is an optimal two-center
and r = maxq∈Q{min{d(q, c1), d(q, c2)}}, then the partition pair of Dr(c1) and
Dr(c2) is called an optimal partition pair.

For a pair (i, j) of indices, an optimal (i, j)-restricted two-center is defined
as a pair of points (c1, c2) that minimizes r > 0 satisfying CQ(j + 1, i) ⊂ Dr(c1),
CQ(i + 1, j) ⊂ Dr(c2), and Q ⊂ Dr(c1) ∪ Dr(c2). Let r∗

ij denote the radius of an
optimal (i, j)-restricted two-center.

In this paper, we give an algorithm for computing an optimal two-center of
Q with respect to P . The overall algorithm is described in Sect. 6. As subproce-
dures, we use the decision and the optimization algorithms described in Sects. 4
and 5, respectively. The decision algorithm determines whether r ≥ r∗

ij for a
given triple (i, j, r) and the optimization algorithm computes r∗

ij for a given

650 E. Oh et al.

pair (i, j). While executing the whole algorithm, we call the decision and the
optimization algorithms repeatedly with different inputs.

4 Decision Algorithm for a Partition Pair

In this section, we present an algorithm that decides whether or not r ≥ r∗
ij

given a partition pair (i, j) and a radius r ≥ 0.
The shortest path map SPM(q) of q is the decomposition of CQ obtained by

extending the edges of the shortest path tree rooted at q towards opposite to the
root. For every point x in a common cell of SPM(q), the geodesic path π(q, x)
from q to x has the same combinatorial structure. Moreover, each cell of SPM(q)
forms a triangle with at least one side contained in an edge of ∂CQ. Among three
vertices of a cell, the one closest from q is called the apex of the cell. For each
call of our decision algorithm, we assume that the shortest path maps SPM(q) of
q for all q ∈ Q have already been built by a preprocessing. Computing SPM(q)
for all q ∈ Q can be done in O(mn) time [9].

Note that r ≥ r∗
ij if and only if there is a pair (c1, c2) of points in CQ

such that Dr(c1) contains CQ(j + 1, i), Dr(c2) contains CQ(i + 1, j) and Dr(c1)∪
Dr(c2) contains Q. We call such a pair (c1, c2) an (i, j, r)-restricted two-center.
As discussed above, the set QB is partitioned by the partition pair (i, j) into two
subsets, Q1 = QB ∩ CQ(j + 1, i) and Q2 = QB ∩ CQ(i + 1, j).

If r is sufficiently large, the decision can be made relatively easy. If r is at least
the radius of the smallest geodesic disk containing CQ, which can be computed in
time linear to the complexity of CQ, then our decision algorithm surely returns
“yes.” Another easy case is when r is large enough so that at least one of the
four vertices vi, vi+1, vj , vj+1 is contained in both Dr(c1) and Dr(c2) for some
(i, j, r)-restricted two-center (c1, c2). In this case, an (i, j, r)-restricted two-center
can be computed in O((m+n) log2(m+n)) time as follows. Assume without loss
of generality that vi is contained in both Dr(c1) and Dr(c2). Let Q′ := Q \ {vi}.
Then, we observe that Q′ can be bipartitioned into Q′

1 and Q′
2 by a geodesic

path π(vi, w) from vi to some w ∈ ∂CQ such that Q′
1 ∪ {vi} ⊂ Dr(c1) and

Q′
2 ∪ {vi} ⊂ Dr(c2). We thus search the boundary ∂CQ for a w ∈ ∂CQ implying

such an optimal bipartition (Q′
1, Q

′
2) of Q′. For the purpose, we decompose each

cell � of SPM(vi) into smaller triangular cells by the line �q through q and
the apex of � for each q ∈ Q ∩ �. Now, we have O(m + n) triangular cells
in the resulting refined map M. Note that all the vertices of the refined map
M lie on ∂CQ and every q ∈ Q lies on the geodesic π(vi, w) for some vertex w
of M. We sort the vertices of the cells along ∂CQ in clockwise order from vi,
and then apply a binary search on them to find a vertex w that minimizes the
radius of the larger of smallest geodesic disks containing (Q′ ∩ PQ(vi, w)) ∪ {vi}
and (Q′ \ PQ(vi, w)) ∪ {vi}, respectively. And an (i, j, r)-restricted two-center
corresponds to the optimal bipartition obtained in the above binary search.
This takes O((m+n) log2(m+n)) time, and by the same procedure one can also
decide if this is the case where there is an (i, j, r)-restricted two-center (c1, c2)
such that vi ∈ Dr(c1) ∩ Dr(c2).

Computing a Geodesic Two-Center of Points in a Simple Polygon 651

In the following, we thus assume that there is no (i, j, r)-restricted two-center
(c1, c2) such that any of the four vertices vi, vi+1, vj , vj+1 is contained in both
Dr(c1) and Dr(c2). This also means that Dr(c1)∩{vi, vi+1, vj , vj+1} = {vi, vj+1}
and Dr(c2)∩{vi, vi+1, vj , vj+1} = {vi+1, vj} for any (i, j, r)-restricted two-center
(c1, c2).

4.1 Intersection of Geodesic Disks and Events

We first compute the common intersection of the geodesic disks of radius r
centered at extreme points on each subchain. Let I1 =

⋂
q∈Q1

Dr(q) and I2 =⋂
q∈Q2

Dr(q). Let t be 1 or 2 in the following. Given the farthest-point geodesic
Voronoi diagram of Qt, It can be computed in O(m + n) time. The boundary
∂It of It consists of points that are at distance at most r from all points Qt.
Recall that each extreme arc in ∂It is from an extreme arc on the boundary
of a geodesic disk centered at a point in Qt. On the other hand, any straight
portion of ∂It is a subset of the polygon boundary ∂P . We denote the union
of the extreme arcs of ∂It by At. Note that r < r∗

ij if I1 = ∅ or I2 = ∅. Our
decision algorithm returns “no” immediately if this is the case. Otherwise, both
A1 and A2 are nonempty because r is smaller than the radius of a smallest disk
containing CQ. Also, if QI = ∅, then our algorithm returns “yes” immediately;
so, in the following, we also assume that QI
= ∅.

Lemma 3. There is an (i, j, r)-restricted two-center (c1, c2) such that c1 ∈ A1

and c2 ∈ A2, provided that r ≥ r∗
ij.

Since the boundary of It is a simple closed curve, we can define the clockwise
and the counterclockwise directions of ∂It. We choose a reference point ot from
∂It such that for all q ∈ QI , either the interior of Dr(q) avoids ot or It ⊆ Dr(q).
Such reference points o1 and o2 can be found easily.

Lemma 4. For each t ∈ {1, 2}, there exists a reference point ot on At, and a
reference point can be found in O(m) time.

Using the reference point ot, we define the ordering ≺t on It. We write x ≺t y
for two points x, y ∈ ∂It if x comes before y as we traverse ∂I1 in clockwise order
from the reference point ot. We also write x �t y if either x = y or x ≺t y. Since
At ⊆ It, the order ≺t on At is naturally inherited.

We then consider the intersection of ∂Dr(q) with At for each q ∈ QI . By
Lemma 1, the intersection ∂Dr(q)∩At consists of at most two points. Moreover,
for each x ∈ ∂Dr(q) ∩ At, there are no two y, y′ ∈ Dr(q) ∩ At such that y ≺t

x ≺t y′ by our choice of the reference points ot on At. We call each intersection
point x ∈ ∂Dr(q) ∩ At an event of q on At. Each event x of q is associated with
its defining point def (x) = q and a boolean value io(x) = In or Out. More
specifically, if there are two events x, x′ of q on At with x ≺t x′, then io(x) = In
and io(x′) = Out; if there is a unique event x of q on At, then Dr(q) is tangent
to It at x, so we regard x as two distinct events x and x′ at a common position
with io(x) = In and io(x′) = Out. Note that if x and x′ are two events of q ∈ QI

652 E. Oh et al.

on At with x �t x′, then we have y ∈ Dr(q) ∩ At for any y with x �t y �t x′.
Let Mt :=

⋃
q∈QI

(∂Dr(q) ∩ At) be the set of events on At. Clearly, the number
of events is |Mt| = O(m).

Lemma 5. Suppose that both M1 and M2 are nonempty. Them, there is an
(i, j, r)-restricted two-center (c1, c2) such that c1 ∈ M1 and c2 ∈ M2, if r ≥ r∗

ij.

If either M1 or M2 is empty, then it becomes easier. If M1 = M2 = ∅, then
no q ∈ QI can be contained in any disk of radius r centered at A1 or A2, so our
decision algorithm returns “no.” If one of them is empty, say M1 = ∅, and (c1, c2)
is an (i, j, r)-restricted two-center, then we must have QI ⊂ Dr(c2). Thus, this
case can be handled by computing the smallest geodesic disk containing Q2 ∪QI

and testing if its radius is at most r.
Hence, we further assume that both M1 and M2 are nonempty. Then, by

Lemma 5, we can decide if r ≥ r∗
ij by finding a pair (c1, c2) of points such that

c1 ∈ M1, c2 ∈ M2 and QI ⊂ Dr(c1) ∪ Dr(c2). For the purpose, we traverse A1

and A2 simultaneously by handling the events in M1 and M2 in order, after
sorting events in M1 and M2 with respect to ≺1 and ≺2, respectively.

Lemma 6. The sets A1, A2, M1, and M2 can be computed in O((m + n)
log2(m + n)) time.

4.2 Traversing A1 and A2 by Scanning Events

We scan M1 once by moving a pointer c1 from the reference point in clockwise
order. We also scan M2 from the reference point o2 of ∂I2 by moving one pointer
cc2 in clockwise order and another pointer ccc2 in counterclockwise order at the
same time. We continue to scan and handle the events until c1 points to the last
event of M1 or cc2 and ccc2 point at the same event of M2. We often regard the
three pointers as events which they point to. For example, we write Dr(cc2) to
indicate the set of points whose geodesic distance from the event in M1 which
cc2 points is at most r.

Whenever we handle an event, we apply two operations, which we call Deci-
sion and Update. We maintain the sets Dr(c1)∩QI , Dr(cc2)∩QI , and Dr(ccc2)∩
QI . Operation Update updates the sets, and operation Decision checks whether
QI ⊂ Dr(c1) ∪ Dr(cc2) or QI ⊂ Dr(c1) ∪ Dr(ccc2).

In the following paragraphs, we describe (1) how to handle the events in
M1 ∪ M2, and (2) how the two operations work.

(1) How to Handle the Events in M1∪M2. We move the three pointers c1, cc2 and
ccc2 as follows. First, we scan M1 until it reaches an event x with io(x) = Out.
If Dr(cc2) does not contain def (x), then we scan M2 from cc2 in clockwise order
until we reach the event y with def (x) = def (y). If Dr(ccc2) does not contain
def (x), then we also scan M2 from ccc2 in counterclockwise order until we reach
the event y with def (x) = def (y). Afterwards, we scan again M1 from c1 in
clockwise order until we reach an event with the attribute Out. Whenever we

Computing a Geodesic Two-Center of Points in a Simple Polygon 653

reach an event in M1∪M2, we check whether QI ⊂ Dr(c1)∪Dr(cs
2) for s = c, cc.

If this test passes at some event, we stop traversing and return a solution (c1, cc2)
or (c1, ccc2) accordingly. If the pointer c1 goes back to the reference point or cc2, c

cc
2

meet each other, our decision algorithm returns “no.” Clearly, this algorithm ter-
minates and we consider O(m) event points in total. If Update and Decision
take constant time, the total running time for this step is O(m).

(2) How the Two Operations Work. To apply Decision and Update in con-
stant time, we use five arrays of points in QI . Each element of the arrays is
a Boolean value corresponding to each point in QI . For the first array, each
element indicates whether Dr(c1) contains its corresponding point in QI . Simi-
larly, the second and the third arrays have Boolean values for Dr(cc2) and Dr(ccc2),
respectively. Each element of the remaining two arrays indicates whether its cor-
responding point in QI is contained in Dr(c1) ∪ Dr(cc2) and Dr(c1) ∪ Dr(ccc2),
respectively. In addition to the five arrays, we also maintain the number of
points of QI contained in each set; Dr(c1), Dr(cc2), Dr(ccc2), Dr(c1) ∪ Dr(cc2),
and Dr(c1) ∪ Dr(ccc2).

At reference points, we initialize the five arrays and the five numbers in O(m)
time. For Decision, we just check whether the number of points contained in
either Dr(c1)∪Dr(cc2) or Dr(c1)∪Dr(ccc2) is equal to the number of points in QI ,
which takes constant time. To apply Update when c1 reaches an event x ∈ M1

with def (x) = q, we first change Boolean values of the elements in the arrays
assigned for Dr(c1), Dr(c1) ∪ Dr(cc2) and Dr(c1) ∪ Dr(ccc2) according to io(x).
When we change Boolean values, we also update the number of points contained
in the sets accordingly. These procedures can be done in constant time.

We are now ready to conclude the following.

Theorem 1. Given a partition pair (i, j) and a nonnegative real r, our decision
algorithm correctly decides in O((m+n) log2(m+n)) time whether or not r ≥ r∗

ij.
If so, it also returns an (i, j, r)-restricted two-center.

5 Optimization Algorithm for a Partition Pair

In this section, we present an optimization algorithm for a given partition pair
(i, j) that computes r∗

ij and an optimal (i, j)-restricted two-center.
Our optimization algorithm will work with an assistant interval [rL, rU]

which will be given also as part of input and satisfy the following condition:
r∗ ∈ [rL, rU] and the combinatorial structure of ∂Dr(q) for each q ∈ Q remains
the same for all r ∈ [rL, rU], where r∗ = mini,j r∗

ij denotes the radius of an
optimal two-center of Q. Also, we assume that the combinatorial structure of
∂Dr(q) for all q ∈ Q has already been computed before the first call of the opti-
mization algorithm. The algorithm will return exactly r∗

ij if r∗
ij ≤ rU ; otherwise,

it just reports that r∗
ij > rU . The latter case means that (i, j) is never an optimal

partition pair, as we have assured that r∗
ij > rU ≥ r∗. Testing whether r∗

ij > rU

or r∗
ij ≤ rU can be done by running the decision algorithm for input (i, j, rU).

654 E. Oh et al.

In the following, we thus assume that r∗
ij ∈ [rL, rU], and search for r∗

ij in the
assistant interval [rL, rU].

As in the decision algorithm, we consider the intersection of geodesic disks
and events on extreme arcs. For each r ∈ [rL, rU] and each t ∈ {1, 2}, let It(r) :=⋂

q∈Qt
Dr(q), and At(r) be the union of extreme arcs of It. Also, let Mt(r) be

the set of events of each q ∈ QI , if any, on At(r), as defined in Sect. 4. Here,
we identify each event x ∈ Mt(r) by as a pair x = (def (x), io(x)), not by its
exact position on At. Note that the set Mt(r) and the combinatorial structure
of ∂It(r) may not be constant over r ∈ [rL, rU]. In order to fix them also, we
narrow the assistant interval [rL, rU] into [ρL, ρU] as follows.

Lemma 7. In O((m+n) log3(m+n)) time, one can find an interval [ρL, ρU] ⊆
[rL, rU] containing r∗

ij such that the combinatorial structure of each of the fol-
lowing remains the same over r ∈ [ρL, ρU]: ∂It(r) and Mt(r) for t = 1, 2.

We proceed with the interval [ρL, ρU] described as in Lemma 7. For any r ∈
[ρL, ρU], M1(r) and M2(r) are fixed, so we write M1 = M1(r) and M2 = M2(r).
The sets M1 and M2 can be computed by Lemma 6. Note that M1 = M1(r∗

ij)
and M2 = M2(r∗

ij) since r∗
ij ∈ [ρL, ρU]. We then pick a reference point ot(r) on

∂It(r) as done in Sect. 4 such that the trace of ot(r) over r ∈ [ρL, ρU] is a simple
curve. This is always possible because the combinatorial structure of ∂It(r) is
constant. (See also the proof of Lemma 4.) Such a choice of references ot(r)
ensures that the order on the events in Mt stays the same as r continuously
increases unless the positions of two distinct events in Mt(r) coincides.

We are now interested in the order ≺∗
t on the events in Mt at r = r∗

ij . In
the following, we obtain a sorted list of events in Mt with respect to ≺∗

t without
knowing the exact value of r∗

ij .

Deciding Whether or Not x �∗
t x′ for x, x′ ∈ Mt. This is a primitive operation

to sort Mt with respect to ≺∗
t . Let q = def (x) and q′ = def (x′). The order of x

and x′ over r ∈ [ρL, ρU] may change only when we have a nonempty intersection
of At(r) ∩ ∂Dr(q) ∩ ∂Dr(q′). Let ρt(q, q′) be such a radius r > 0 that At(r) ∩
∂Dr(q) ∩ ∂Dr(q′) is nonempty for any two distinct q, q′ ∈ QI . Note that the
intersection At(r) ∩ ∂Dr(q) ∩ ∂Dr(q′) at r = ρt(q, q′) forms a single point c and
Dρt(q,q′)(c) is the smallest-radius geodesic disk containing Qt ∪{q, q′}. Thus, the
value ρt(q, q′) is uniquely determined.

Lemma 8. Let q1, q2 ∈ QI be two distinct points. For t ∈ {1, 2}, we can decide
whether or not ρt(q1, q2) ∈ [ρL, ρU] in O(log(m+n)) time. If ρt(q1, q2) ∈ [ρL, ρU],
the value of ρt(q1, q2) can be computed in O(log(m + n) log n) time.

If ρt(q, q′) /∈ [ρL, ρU], then the order of x and x′ can be determined by com-
puting their positions at r = ρL or ρU . Otherwise, we can decide whether or not
x �∗

t x′ by running the decision algorithm for input (i, j, ρt(q, q′)), once we know
the value ρt(q, q′).

Computing a Geodesic Two-Center of Points in a Simple Polygon 655

Sorting the Events in Mt with Respect to ≺∗
t . This can be done in O(Tc ·m log m)

time, where Tc denotes the time needed to compare two events as above. A
more efficient method applies a parallel sorting algorithm due to Cole [6]. They
gave a parallel algorithm for sorting N elements in O(log N) time using O(N)
processors. In Cole’s algorithm, we need to apply O(m) comparisons at each
iteration, while comparisons in each iteration are independent of one another.
For each iteration, we compute the values of ρt(def (x), def (x′)) that are nec-
essary for the O(m) comparisons of x, x′ ∈ Mt, and sort them in increas-
ing order. On the sorted list of the values, we apply binary search using the
decision algorithm. Then we complete the comparisons in each iteration in
time O(m log(m + n) log n + Td log m) by Lemma 8, where Td denotes the time
taken by the decision algorithm. Since Cole’s algorithm requires O(log m) iter-
ations in total, the total running time for sorting the events in Mt is O(m log
(m + n) log m log n + Td log2 m).

Computing r∗
ijand a Corresponding Two-Center. For any two neighboring events

x and x′ in Mt with respect to ≺∗
t , we call the value of ρt(def (x), def (x′)) a

critical radius if it belongs to [ρL, ρU]. Let R be the set of all critical radii,
including ρL and ρU .

Lemma 9. The set R contains r∗
ij.

Hence, r∗
ij is exactly the smallest value ρ ∈ R such that there exists an

(i, j, ρ)-restricted two-center. The last step of our optimization algorithm thus
performs a binary search on R using the decision algorithm.

This completes the description of the optimization algorithm and we conclude
the following.

Theorem 2. Given a partition pair (i, j) and an assistant interval [rL, rU], an
optimal (i, j)-restricted two-center of Q can be computed in O((m + n) log3(m +
n) log m) time, provided that rL ≤ r∗

ij ≤ rU .

6 Computing an Optimal Two-Center of Points

Finally, we present an algorithm that computes an optimal two-center of Q with
respect to P . As the optimization algorithm described in Sect. 5 works with
a fixed partition pair, trying all partition pairs (i, j) already implies such an
algorithm, once an assistant interval [rL, rU] is computed. In the following, we
show how to choose O(m) partition pairs that are guaranteed to include an
optimal pair.

6.1 Finding Candidate Pairs

Let γ(v, w) denote the radius of the smallest geodesic disk containing PQ(v, w)
for v, w ∈ ∂CQ. We define the function f which maps each index i of an extreme
vertex vi of CQ to the index j of the first clockwise extreme vertex vj of CQ from
vi that minimizes max{γ(vi, vj), γ(vj , vi)}.

656 E. Oh et al.

Lemma 10. Let vi be any extreme vertex of CQ and vj be an extreme vertex of
CQ lying on CQ(vi, vf(i)). Then vf(j) ∈ CQ(fcc, vi), where fcc is the neighboring
extreme vertex of vf(i) in counterclockwise order.

An index pair (i, j) is called a candidate pair if (1) j − 1 ≤ f(i + 1) ≤ j + 1,
(2) j − 1 ≤ f(i) ≤ j + 1, or (3) both vj and vj+1 lie on CQ(vf(i)−2, vf(i+1)+2)
when vf(i) appears ahead of vf(i+1) along the boundary in clockwise from vi.

By the definition of candidate pairs, we can bound the number of candidate
pairs as follows.

Lemma 11. The number of candidate pairs is O(m).

The following is the key observation on candidate pairs.

Lemma 12. There exists an optimal partition pair that is a candidate pair.

Now we describe a procedure that finds the set of all candidate pairs. First,
we compute the index f(1) by traversing all extreme vertices of CQ in clockwise
order. Afterwards, we find f(i) for all indices larger than 1. Suppose that we
have already computed f(i − 1) and we want to find f(i). By Lemma 10, we
do not need to consider the vertices lying in the interior of CQ(vi−1, fcc), where
fcc is the neighboring extreme vertex of vf(i−1) in counterclockwise direction.
Thus we traverse the vertices from fcc in clockwise order and check whether
the current vertex is vf(i). To do this, we consider three vertices: the current
vertex vc and two neighbor vertices vk1 , vk2 of vc. If max{γ(vc, vi), γ(vi, vc)} ≤
min{max{γ(vk1 , vi), γ(vi, vk1)},max{γ(vk2 , vi), γ(vi, vk2)}}, the vertex vf(i) is the
current vertex vc by the monotonicity of the functions γ(v, ·) and γ(·, v), where
v is a fixed extreme vertex of CQ. Otherwise, vc is not f(i), so we move to
the extreme vertex next to vc. Hence, we can find f(i) for all indices i by tra-
versing ∂CQ twice. For each vertex we visit during the traversal, we compute
max{γ(v, w), γ(w, v)} for three different pairs (v, w) of extreme vertices of CQ,
each of which takes O(m + n) time by the algorithm in [1].

Afterwards, we compute the set of all candidate pairs based on the infor-
mation we have just computed. For each index i, we traverse the vertices lying
between vf(i)−2 and vf(i+1)+2. It takes time proportional to the number of can-
didate pairs, which is O(m) by Lemma 11.

Thus, we conclude the following lemma.

Lemma 13. The set of all candidate index pairs can be computed in O(m
(m + n)) time.

6.2 Applying the Optimization Algorithm for Candidate Pairs

To compute the optimal radius r∗, we apply the optimization algorithm in
Sect. 5 on the set of all candidate pairs. Let C be the set of candidate pairs. By
Lemma 12, we have r∗ = min(i,j)∈C r∗

ij . To apply the optimization algorithm,
we have to compute an assistant interval [rL, rU] satisfying that r∗ ∈ [rL, rU]
and the combinatorial structure of ∂Dr(q) for each q ∈ Q remains the same for
all r ∈ [rL, rU].

Computing a Geodesic Two-Center of Points in a Simple Polygon 657

Lemma 14. An assistant interval [rL, rU], together with the combinatorial struc-
ture of ∂Dr(q) for all q ∈ Q and any r ∈ [rL, rU], can be computed in O(m
(m + n) log3(m + n)) time.

Now, we are ready to execute our optimization algorithm. We run the opti-
mization algorithm for each (i, j) ∈ C and find the minimum of r∗

ij over
(i, j) ∈ C.

Theorem 3. An optimal two-center of m points with respect to a simple n-gon
can be computed in O(m(m + n) log3(m + n) log m) time using O(mn) space.

We can improve the space complexity by sacrificing the running time. Instead
of building and storing SPM(q) and ∂DrL

(q) for q ∈ QI in the preprocessing step,
we can compute them from scratch whenever necessary. Then the running time
of the algorithm gains into O(m2(m + n) log3(m + n)).

Corollary 1. An optimal two-center of m points with respect to a simple n-gon
can be computed in O(m2(m + n) log3(m + n)) time using O(m + n) space.

References

1. Ahn, H.K., Barba, L., Bose, P., De Carufel, J.L., Korman, M., Oh, E.: A linear-
time algorithm for the geodesic center of a simple polygon. In: Proceedings of the
31st Symposium Computational Geometry (SoCG), vol. 34, pp. 209–223 (2015)

2. Aronov, B., Fortune, S., Wilfong, G.: The furthest-site geodesic voronoi diagram.
Discrete Comput. Geom. 9(1), 217–255 (1993)

3. Asano, T., Toussaint, G.T.: Computing geodesic center of a simple polygon. Tech-
nical report SOCS-85.32, McGill University (1985)

4. Chan, T.M.: More planar two-center algorithms. Comput. Geom. 13(3), 189–198
(1999)

5. Chazelle, B., Matoušek, J.: On linear-time deterministic algorithms for optimiza-
tion problems in fixed dimension. J. Algorithms 21(3), 579–597 (1996)

6. Cole, R.: Parallel merge sort. SIAM J. Comput. 17(4), 770–785 (1988)
7. Dyer, M.E.: On a multidimensional search technique and its application to the

euclidean one-centre problem. SIAM J. Comput. 15(3), 725–738 (1986)
8. Feder, T., Greene, D.H.: Optimal algorithms for approximate clustering. In: Pro-

ceedings of the 20th ACM Symposium Theory Computing (STOC), pp. 434–444
(1988)

9. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algo-
rithms for visibility and shortest path problems inside triangulated simple poly-
gons. Algorithmica 2(1–4), 209–233 (1987)

10. Halperin, D., Sharir, M., Goldberg, K.Y.: The 2-center problem with obstacles. J.
Algorithms 42(1), 109–134 (2002)

11. Hwang, R., Lee, R., Chang, R.: The slab dividing approach to solve the Euclidean
p-center problem. Algorithmica 9(1), 1–22 (1993)

12. Megiddo, N.: Linear-time algorithms for linear programming in R3 and related
problems. SIAM J. Comput. 12(4), 759–776 (1983)

13. Oh, E., De Carufel, J.-L., Ahn, H.-K.: The 2-center problem in a simple polygon.
In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 307–317.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0 27

http://dx.doi.org/10.1007/978-3-662-48971-0_27

658 E. Oh et al.

14. Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple poly-
gon. Discrete Comput. Geom. 4(1), 611–626 (1989)

15. Toussaint, G.T.: Computing geodesic properties inside a simple polygon. Revue
D’Intelligence Artificielle 3, 9–42 (1989)

Simple Approximation Algorithms for Balanced
MAX 2SAT

Alice Paul, Matthias Poloczek(B), and David P. Williamson

School of Operations Research and Information Engineering,
Cornell University, Ithaca, NY 14850, USA

{ajp336,poloczek}@cornell.edu, dpw@cs.cornell.edu

Abstract. We study simple algorithms for the balanced MAX 2SAT
problem, where we are given weighted clauses of length one and two
with the property that for each variable x the total weight of clauses
that x appears in equals the total weight of clauses for x. We show that
such instances have a simple structural property in that any optimal
solution can satisfy at most the total weight of the clauses minus half
the total weight of the unit clauses. Using this property, we are able to
show that a large class of greedy algorithms, including Johnson’s algo-
rithm, gives a 3

4
-approximation algorithm for balanced MAX 2SAT; a

similar statement is false for general MAX 2SAT instances. We further
give a spectral 0.81-approximation algorithm for balanced MAX E2SAT
instances (in which each clause has exactly 2 literals) by a reduction to
a spectral algorithm of Trevisan for the maximum colored cut problem.
We provide experimental results showing that this spectral algorithm
performs well and is slightly better than Johnson’s algorithm and the
Goemans-Williamson semidefinite programming algorithm on balanced
MAX E2SAT instances.

1 Introduction and Overview

In the MAX SAT problem we are given a set of Boolean variables and a set of
clauses. Each clause consists of a disjunction of literals and is associated with a
nonnegative weight. The goal is to find a Boolean assignment to the variables
that maximizes the weight of satisfied clauses. Well-studied special cases include
MAX kSAT, in which each clause has at most k literals, and MAX EkSAT, in
which each clause has exactly k literals. In this paper, we will consider both
MAX 2SAT and MAX E2SAT.

MAX 2SAT is known to be NP-hard, and hence approximation algorithms
have been studied for this problem. We say an efficient algorithm A is an α-
approximation algorithm, if A obtains an assignment that satisfies clauses with a
total weight of at least α times the optimum for every instance; the value α is the

A. Paul—Supported by an NDSEG fellowship.
M. Poloczek—Supported by the Alexander von Humboldt Foundation within the
Feodor Lynen program and by NSF grant CCF-1115256.
D.P. Williamson—Supported in part by NSF grant CCF-1115256.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 659–671, 2016.
DOI: 10.1007/978-3-662-49529-2 49

660 A. Paul et al.

performance guarantee of the algorithm. In the case of a randomized algorithm,
we require the guarantee to hold in expectation. In a seminal paper Goemans
and Williamson [8] used semidefinite programming to give a 0.878-approximation
algorithm for MAX 2SAT. Concluding a series of papers [6,12], the (currently)
best algorithm for MAX 2SAT due to Lewin, Livnat, and Zwick [11] achieves
a 0.94-approximation. Austrin [2] showed that no polynomial-time algorithm
can achieve a better approximation ratio assuming the Unique Games Conjec-
ture. Without using semidefinite programming, the best known approximation
algorithm is a 3

4 -approximation algorithm. Such an algorithm was first given
by Yannakakis [21]; he uses a network flow computation to reduce MAX 2SAT
instances to an equivalent MAX E2SAT instance, then applies a greedy algo-
rithm of Johnson [9], which gives a 3

4 -approximation algorithm for MAX E2SAT
instances. Chan, Lee, Raghavendra, and Steurer [5] have shown that having an
integrality gap larger than 3

4 for MAX 2SAT requires superpolynomially-sized
linear programs, suggesting that something stronger than linear programming is
required to get better than a 3

4 -approximation algorithm for the problem. Note
that their bound holds for balanced MAX E2SAT instances.

One recent theme of work in the area of approximation algorithms has been
that of finding simple approximation algorithms that achieve the same or nearly
the same performance guarantee as complicated or computationally intensive
algorithms currently in the literature. One such stream of work has been for the
MAX SAT problem; in 2011, Poloczek and Schnitger [16] gave a randomized,
greedy 3

4 -approximation algorithm for MAX SAT. Previously, the solution to a
linear program had been needed to achieve such a performance guarantee [7,21].
There were several subsequent variants of this algorithm considered [4,13,18,22];
most recently Poloczek et al. gave a deterministic, two-pass 3

4 -approximation
algorithm [17].

In this paper, we continue the theme of finding simple approximation algo-
rithms for MAX SAT by focusing on balanced MAX 2SAT. A set of clauses is
called balanced if for each Boolean variable x the total weight of clauses con-
taining literal x equals the total weight of all clauses containing literal x. Better
approximation algorithms are known for balanced MAX 2SAT: Khot, Kindler,
Mossel, and O’Donnell [10] showed that the semidefinite programming algorithm
of Goemans and Williamson [8] achieves at least a 0.943-approximation on bal-
anced MAX E2SAT; note that this guarantee is slightly better than the 0.940-
approximation algorithm of Levin, Livnat, and Zwick [11] for MAX 2SAT and
the hardness bound of Austrin [2].

Here we show that a broad class of deterministic and randomized greedy
algorithms, called majority-preserving algorithms by Poloczek [14], achieve a 3

4 -
approximation for balanced MAX 2SAT. This class includes Johnson’s original
greedy algorithm. To achieve this result, we prove a simple but interesting struc-
tural result for balanced MAX 2SAT instances: if W is the total weight of all
clauses, and W1 the total weight of all unit clauses (clauses with just one lit-
eral), then any assignment can satisfy weight at most W − 1

2W1. The existence of
deterministic and greedy 3

4 -approximation algorithms for balanced MAX 2SAT

Simple Approximation Algorithms for Balanced MAX 2SAT 661

stands in contrast to recent work by Poloczek [13], who showed that random-
ness seems to be essential for greedy algorithms for general MAX 2SAT by
giving a 0.729-inapproximability bound for adaptive priority algorithms. Adap-
tive priority algorithms capture the characteristics of deterministic, greedy-like
algorithms. The MAX 2SAT instances used in the inapproximability bound are
intriniscally unbalanced.

We further show that it is possible to do better than a 3
4 -approximation

algorithm for balanced MAX E2SAT without solving a semidefinite program,
by performing an eigenvalue computation; in particular, we are able to achieve
a 0.81-approximation algorithm for balanced MAX E2SAT by using an algorithm
of Trevisan. Trevisan [20] gave a spectral 0.531-approximation algorithm for the
maximum cut problem; Soto [19] generalized and improved Trevisan’s analysis
to a 0.614-approximation algorithm for the maximum colored cut problem. In the
maximum colored cut problem, we are given an undirected graph G = (V,E),
with weights wij ≥ 0 on (i, j) ∈ E, and a partition of the edge set E into R
and B. The goal is to find a subset S of vertices that maximizes the total
weight of edges in R with an odd number of endpoints in S and the weight of
edges in B with an even number of endpoints in S. Trevisan’s algorithm works
by computing an eigenvector for the Laplacian of the graph, then computing a
tripartition of the vertices into those in S, those not in S, and an unassigned set of
vertices; the algorithm then recurses on the unassigned set. We achieve our 0.81-
approximation algorithm by a reduction of the balanced MAX E2SAT problem
to the maximum colored cut problem, and a generalization of the analysis of Soto.

Again, this spectral algorithm stands in contrast to recent work of
Poloczek [14], which shows that one cannot hope to achieve a performance guar-
antee better than 3

4 for MAX SAT via any online priority algorithm; this class
generalizes majority-preserving algorithms and captures a class of deterministic
and randomized greedy algorithms. The instances used to prove this result are
balanced MAX E2SAT instances, and the result implies that no greedy-like algo-
rithm will be able to improve on a performance guarantee of 3

4 even for balanced
MAX E2SAT.

Finally, we perform an empirical evaluation of our algorithms: in particu-
lar, we compare Johnson’s greedy algorithm, the Goemans-Williamson semi-
definite programming algorithm, and our spectral algorithm on 162 balanced
MAX E2SAT instances drawn from the MAX SAT 2014 Competition. All algo-
rithms satisfy about the same fraction of clauses on average, with the spectral
algorithm slightly outperforming the others. In particular, the spectral algo-
rithm really shines on a certain family of instances describing the maximum cut
in random graphs. The average running times of the spectral algorithm and the
SDP-based algorithm are comparable to each other and are orders of magnitude
higher than the greedy algorithm. We propose a variation that speeds up the
spectral algorithm by more than a factor of three, while affecting the quality of
the solution negligibly.

The structure of our paper is as follows. In Sect. 2, we prove our struc-
tural result about balanced MAX 2SAT instances. In Sect. 3, we use this

662 A. Paul et al.

structural result to show that the class of majority-preserving algorithms
are 3

4 -approximation algorithms, including Johnson’s algorithm. In Sect. 4, we
show how to achieve our spectral 0.81-approximation algorithm for balanced
MAX E2SAT via a reduction to the maximum colored cut problem. We discuss
our experimental work in Sect. 5, and conclude in Sect. 6.

2 The Structure of Balanced MAX 2SAT

We begin by proving a lemma about the structure of balanced MAX 2SAT
instances.

Lemma 1. Let C be a balanced clause set with at most two literals per clause.
Furthermore, we denote the total weight of all clauses by W and the total weight
of all unit clauses by W1.

Then any Boolean assignment leaves clauses with a total weight of at least W1
2

unsatisfied on C.

Note that the lemma implies that if there is a Boolean assignment that
satisfies clauses with a total weight of at least (1 − ε) · W , then the total weight
of unit clauses of C is at most 2 · ε ·W . In particular, if C is satisfiable, then the
set contains no unit clauses.
Proof of Lemma 1. Let C be a balanced set of unit clauses and clauses of length
two over the set of variables V . A nonnegative weight wc is associated with each
clause c ∈ C.

Suppose that there is a Boolean assignment b that satisfies clauses with a
total weight larger than W − 1

2W1. For the sake of simplicity, we flip signs of
literals such that b is the all-ones assignment. Note that this does not affect the
balance of C. Then exactly those clauses without a positive literal are those not
satisfied by b, and their total weight is bounded by

∑

x∈V

w(x) +
1
2

∑

x∈V

∑

y∈V, x�=y

w(x∨y) <
1
2

∑

x∈V

(
w(x) + w(x)

)
, (1)

where 1
2

∑
x∈V

(
w(x) + w(x)

)
= 1

2W1 holds by definition. Observe that the coeffi-
cient 1

2 on the LHS compensates for the fact that each 2-clause contributes twice
to the sum. We rewrite Eq. (1) as

∑

x∈V

∑

y∈V, x�=y

w(x∨y) <
∑

x∈V

(
w(x) − w(x)

)
. (2)

The assumption that C is balanced implies

∑

x∈V

⎡

⎣
(
w(x) − w(x)

)
+

∑

y∈V, x�=y

(
w(x∨y) + w(x∨y) − w(x∨y) − w(x∨y)

)
⎤

⎦ = 0.

Simple Approximation Algorithms for Balanced MAX 2SAT 663

Now the heart of the proof is that
∑

x∈V

∑
y∈V, x�=y

[
w(x∨y) − w(x∨y)

]
= 0 holds,

since each of these clauses occurs exactly once with a positive sign and exactly
once with a negative one. Hence, we have

∑

x∈V

⎡

⎣
(
w(x) − w(x)

)
+

∑

y∈V, x�=y

(
w(x∨y) − w(x∨y)

)
⎤

⎦ = 0.

But this contradicts Eq. (2), because
∑

x∈V

∑
y∈V, x�=y w(x∨y) is nonnegative.

Thus, every Boolean assignment to V leaves clauses with a total weight of at
least W1

2 unsatisfied. �
This bound is tight; consider for instance a pair of contradictory unit clauses

of same weight.

3 Majority-Preserving Algorithms for Balanced
MAX 2SAT

In this section, we define a large class of randomized and deterministic greedy
algorithms, called majority-preserving algorithms, and use the structure lemma
of the previous section to prove that they are 3

4 -approximation algorithms for
balanced MAX 2SAT.

In his fundamental work, Johnson [9] presented a greedy algorithm that
processes variables in an arbitrary order. To favor shorter clauses which are
in greater danger of being falsified, the modified weight μ is introduced.

Definition 1 (Modified weight μ). For a clause c we denote its weight by wc

and the number of unfixed literals by |c|. The modified weight, also referred to as
Johnson measure, of a clause c that is not yet satisfied is

μ(c) = wc · 2−|c|.

As a convention we set μ(c) = 0 if c has already been satisfied. Moreover, we
define the modified weight of literal x as

μx =
∑

c, x∈c

μ(c).

Observe that the modified weight of a clause increases in the course of the
computation, as some of its literals evaluate to zero. If x is the currently processed
variable, then Johnson’s algorithm sets x to one iff μx ≥ μx holds.

A majority-preserving algorithm is a randomized algorithm which processes
the variables according to a fixed order, but utilizes randomization to decide the
assignment. In particular, the currently processed variable, say x, is assigned the
value true with probability p

(
μx

μx+μx

)
; we demand the function p : [0, 1] → [0, 1]

to be majority-preserving, i.e. p(z) ≥ 1
2 holds whenever z ≥ 1

2 . In particular, any
monotone increasing function p with p

(
1
2

)
≥ 1

2 is majority-preserving. Thus,

664 A. Paul et al.

we cover a broad class of approaches, including the deterministic algorithm of
Johnson, as well as the natural randomizations that assign one with probabil-
ity p

(
μx

μx+μx

)
= μx

μx+μx
or with probability p

(
μx

μx+μx

)
= 1

2 . Note that we may
assume μx + μx > 0, since the respective variable can be skipped otherwise.

Assume that variable x is to be decided. Then we denote the discrepancy of
the decision for x by its slack

slackx = p

(
μx

μx + μx

)

· (μx − μx) + p

(
μx

μx + μx

)

· (μx − μx) .

In [14] it is shown that the slack is always nonnegative if p is a majority-
preserving function. Let E[slack] be the expected slack accumulated during the
computation. The following result relates the satisfied weight, denoted by Sat,
to the total weight of a CNF formula C and the expected slack. We point out
that the theorem does not require C to be balanced.

Theorem 1 (Chapter 2.3 in [14]). Let Wj denote the total weight of all
clauses of initial length j. Any majority-preserving algorithm satisfies clauses
with an expected weight of

E[Sat] =
∑

j

(
1 − 2−j

)
Wj + E[slack].

We can now prove the following.

Theorem 2. Any majority-preserving algorithm achieves a 3
4 -approximation

(in expectation) when invoked on a balanced MAX 2SAT instance. In particular,
Johnson’s deterministic algorithm guarantees a 3

4 -approximation in this case.

Proof. Given an instance of balanced MAX 2SAT, let W1 be the weight of the
unit clauses and W2 the weight of the length two clauses. Then Lemma 1 shows
that an optimal solution can satisfy at most total weight 1

2W1 + W2. From
Theorem 1, we know that for any majority-preserving algorithm satisfies clauses
with expected weight of at least 1

2W1 + 3
4W2, since E[slack] is nonnegative for a

majority-preserving algorithm. The theorem statement follows. ��

4 Beating 3
4
for Balanced MAX E2SAT

In this section we give an approximation-preserving reduction from balanced
MAX E2SAT to the maximum colored cut problem (MAX CC). Recall that in
the maximum colored cut problem, we are given an undirected graph G = (V,E),
with weights wij ≥ 0 on (i, j) ∈ E, and a partition of the edge set E into R
and B. The goal is to find a subset S of vertices that maximizes the total weight
of edges in R with an odd number of endpoints in S and the weight of edges
in B with an even number of endpoints in S. We combine this reduction with
Trevisan’s algorithm to obtain a 0.81-approximation algorithm.

Simple Approximation Algorithms for Balanced MAX 2SAT 665

We state our reduction in a slightly more general form: consider now any
problem that can be written in the form

max
y∈{−1,1}n

∑

(i,j)∈E+

wij(α + β · yiyj) +
∑

(i,j)∈E−
wij(α − β · yiyj),

where E+ and E− are sets of pairs of n variables with values in {−1,+1},
and α, β ≥ 0 (we assume α + β > 0). Let W =

∑
(i,j)∈E+∪E− wij be the total

weight of pairs. Then we can rewrite the problem as

max
y∈{−1,1}n

(α − β) · W +
∑

(i,j)∈E+

wij(β + β · yiyj) +
∑

(i,j)∈E−
wij(β − β · yiyj)

or equivalently,

max
y∈{−1,1}n

(α − β) · W

+ 2 · β ·

⎛

⎝1
4

∑

(i,j)∈B=E+

wij(yi + yj)2 +
1
4

∑

(i,j)∈R=E−
wij(yi − yj)2

⎞

⎠ .

To see that we have reduced the problem to a MAX CC instance, observe that
a MAX CC instance G = (V,R∪B) with |V | = n can be expressed as quadratic
form by introducing a variable xi ∈ {−1, 1} for all i ∈ V that represents which
side of the cut i lies on. Then the problem of finding a maximum colored cut
can be represented as:

max
x∈{−1,1}n

1
4

∑

(i,j)∈R

wij(xi − xj)2 +
1
4

∑

(i,j)∈B

wij(xi + xj)2. (3)

In a moment, we will show that balanced MAX E2SAT can be expressed
in the quadratic form in 3. Let G be from now on the MAX CC instance that
is created by our reduction. Our proposed algorithm is to run Trevisan’s spec-
tral algorithm [20] on the resulting instance and return the result. Consider an
optimal assignment to the MAX CC instance on G. Suppose this assignment
achieves weight OPTG(ε) = (1 − ε)W for some 0 ≤ ε ≤ 1

2 . Then, an optimal
assignment for the original problem has weight

OPT(ε) = (α − β) · W + 2β · OPTG(ε) = (α − β) · W + 2β(1 − ε) · W.

Let LBG(ε) be a lower bound on the fraction of weight achieved by the
spectral algorithm on G. Then we obtain a lower bound, denoted by ALG(ε),
on the total weight of clauses satisfied by our proposed algorithm by

ALG(ε) = (α − β) · W + 2β · LBG(ε) · W.

Hence its approximation ratio is at least

(α − β) + 2β · LBG(ε)
(α − β) + 2β · (1 − ε)

666 A. Paul et al.

on the instance. To find the overall approximation ratio, we must find the min-
imum of the above expression over 0 ≤ ε ≤ 1

2 . Without loss of generality, we
may assume that α + β = 1 (otherwise divide by α + β > 0 in the objective
function which does not change the approximation ratio). Using the closed form
of LBG(ε) (cp. Sect. A in the appendix) and Matlab’s fminbnd we can plot a
lower bound on the approximation ratio for all (α, β) pairs (see Fig. 1 in Sect. B
in the appendix).

Now suppose we have an instance of balanced MAX E2SAT with clauses C =
{c1, c2, . . . , cm} over Boolean variables V = {x1, x2, . . . , xn}. Each clause ck con-
sists of a disjunction of exactly two literals and is associated with a nonnegative
weight wk (with k = 1, 2, . . . ,m). For each clause ck, let ik and jk be the indices
of the variables in ck and let sgn(�, k) be the sign of variable x� in clause ck.

Let yi ∈ {−1,+1} for 1 ≤ i ≤ n be a variable indicating the assignment
of xi where yi = +1 corresponds to setting xi to one and −1 to zero, then an
instance of balanced MAX E2SAT can be written in the following quadratic
form (see [10]):

max
y∈{−1,+1}n

(∑

k: sgn(ik,k)=sgn(jk,k)

wk

(
3
4

− 1
4
yikyjk

)

+
∑

k: sgn(ik,k) �=sgn(jk,k)

wk

(
3
4

+
1
4
yikyjk

))

Thus, by setting α = 3
4 and β = 1

4 we can see that this yields approximation
ratio at least

H(ε) :=
1
2 + 1

2LBG(ε)
1
2 + 1

2 (1 − ε)
=

1 + LBG(ε)
2 − ε

for all 0 ≤ ε ≤ 1
2 . This function has a unique minimum at ε∗ ≈ 0.0912 with

value H(ε∗) ≈ 0.8173. This yields the following theorem.

Theorem 3. Trevisan’s algorithm is a 0.8173-approximation algorithm for
balanced MAX E2SAT.

5 Experimental Results

In this section, we perform computational experiments in order to study the
performance of our algorithms in practice. In particular, we compare the perfor-
mance of Johnson’s deterministic greedy algorithm [9], the spectral algorithm we
proposed in Sect. 4 that is based on Trevisan’s algorithm [20], and the algorithm
of Goemans and Williamson [8] based on semidefinite programming (SDP). The
testbed is 162 balanced MAX E2SAT instances taken from the MAX SAT 2014
Competition [1]. They all belong to the ms-crafted category: while most sets
encode maximum cut instances, the benchmark also contains instances represent-
ing vertex cover or applications in fault diagnosis, for example. The instances are

Simple Approximation Algorithms for Balanced MAX 2SAT 667

rather small, having less than 150 variables in at most 1500 clauses. All clauses
are unweighted. We remark that the SAT 2014 competition [3] does not contain
any balanced clause sets.

The Setup. The spectral algorithm and the SDP-based algorithm were imple-
mented using julia 0.38. In order to solve the semidefinite programs, we relied
on CSDP (A C Library for Semidefinite Programming) version 6.1.1. The exper-
iments were conducted on a Dell Precision 490 workstation (Intel Xeon 5140
2.33 GHz with 8 GB RAM) under Debian wheezy. Every algorithm was run ten
times on each input instance.

For comparison we present experimental data for Johnson’s algorithm that
is taken from [15]: this implementation was done in C++ using GCC 4.7.2 and
run on the same machine. The performance indicator that we are interested in
is the average fraction of satisfied clauses, since in most cases the value of the
optimum is unknown. Moreover, we also measured the average running time.

Our Findings. The general picture is that all three algorithms satisfy typically a
very similar number of clauses. Looking closer, we see that the average fraction
of satisfied clauses for our spectral algorithm is typically larger by 1.54% than
the average of Johnson’s algorithm, and still better by 0.54% when compared
to the SDP-based algorithm. However, no algorithm strictly dominates another
algorithm on every instance.

Since the SDP-based algorithm performs randomized rounding, it might ben-
efit from multiple iterations on a single instance. Indeed, this is what we observe
in our experiments: the average fraction of satisfied clauses is increased by 0.73%
if we consider the best solution found in ten iterations.

The majority of the testbed clause sets are MAX CUT instances in random
graphs with a high girth; their filenames start with “maxcut”. One hundred
of the 162 instances are of this type. A closer examination reveals that our
spectral algorithm and the SDP-based algorithm perform particularly well on
these instances: here Johnson’s algorithm trails behind the spectral algorithm
by 2.07% and behind the Goemans-Williamson algorithm by 1.44%.

Even more interestingly, when we focus on the remaining instances, then the
differences in the performances of the algorithms become almost negligible: our
spectral method exceeds Johnson’s algorithm by 0.68% and the SDP algorithm
by 0.40% in terms of average satisfied clauses.

Considering the running times, Johnson’s algorithm outperforms the others
by orders of magnitude. On average it is faster by a factor of 105. Comparing
the other algorithms based on more sophisticated techniques, we see that our
implementation of the spectral algorithm in julia is about twice as fast as our
implementation of the Goemans-Williamson algorithm using CSDP. Our findings
are summarized in Table 1.

Improving the Runtime of the Spectral Algorithm. Trevisan’s algorithm repeat-
edly computes a tripartition of variables set to false, to true, and those it recurses

668 A. Paul et al.

Table 1. A summary of the experimental results for different algorithms.

Johnson’s algorithm Spectral algorithm GW algorithm

% sat ∅ time % sat ∅ time % sat ∅ time

All Instances 81.97 4.9·10−5 s 83.51 0.1999 s 82.97 0.5562 s

only MAX CUT 83.63 0.0001 s 85.70 0.2779 s 85.07 0.8401 s

w/o MAX CUT 79.28 0.0000 s 79.96 0.0741 s 79.56 0.0984 s

on in the subsequent iteration. In order to obtain such a tripartition, the algo-
rithm determines a threshold t and considers for each variable xi the correspond-
ing component ei of the principal eigenvector: if ei ≥

√
t then xi is set to true,

and if ei ≤ −
√

t then is fixed to false. Any variable not fixed will be considered
again in subsequent iterations.

Two computational tasks seem to dominate the running time of Trevisan’s
algorithm. The first is the search for the best threshold. The second factor is
the recursion depth: the more variables are set early on, the smaller the overall
work seems to be. Trevisan’s implementation of his algorithm simply tries each
value e2i as threshold t, thereby aiming to minimize the second factor.

We propose a hybrid approach: Instead of evaluating all possible cutoff points,
we sample k values t1, . . . , tk ∈ (0, 1] uniformly at random and try each tj as
threshold. Observe that worst case analyses of [19,20] rely on a randomly chosen
threshold, hence the approximation guarantee is still valid for our variants. We
evaluate experimentally different choices for k. Note that the differences in the
average fraction of satisfied clauses are negligible, but we see a big impact on
the running times. When the number of random thresholds is reduced, the fluc-
tuation of the running times increases significantly: for example, if k = 3 then
the standard deviation in the running times is more than half the average run-
ning time. Therefore, the choice k = |V |/4 seems preferable, since it combines a
low average running time with a small fluctuation. This parameter setting per-
forms 3.4 times faster than the vanilla version of Trevisan’s algorithm, and 9.5
times faster than the Goemans-Williamson algorithm (Table 2).

Table 2. The effects of the number of random thresholds. The first column summarizes
the vanilla version of Trevisan’s algorithm.

vanilla k = |V |/4 k = 20 k = 5 k = 3 k = 1

% sat 0.8351 0.8344 0.8344 0.8331 0.8324 0.8312

∅ time 0.1999 s 0.0588 s 0.0508 s 0.0524 s 0.0716 s 0.1338 s

SD time 0.0026 s 0.0043 s 0.0063 s 0.0372 s 0.0546 s 0.0784 s

Simple Approximation Algorithms for Balanced MAX 2SAT 669

6 Conclusions and Future Work

We have shown that balanced instances of MAX 2SAT allow better approxima-
tion guarantees: on the one hand, a large class of greedy algorithms gives a 3

4 -
approximation, whereas it is known that they do not achieve this performance for
general MAX 2SAT. On the other hand, we can go even beyond the 3

4 -barrier and
obtain a 0.81-approximation using our reduction from balanced MAX E2SAT
to the maximum colored cut problem. We wonder if a similar approach can be
used for the general case of MAX 2SAT, especially since the result of Chan et
al. [5] implies that linear programming alone is not sufficient to get better than
a 3

4 -approximation algorithm. Note that the straightforward reduction applied
to unbalanced sets of 2-clauses yields an approximation guarantee of only 2

3 .
Nevertheless, it would be interesting how this reduction performs in practice.

We are also interested in the approximability of balanced instances that con-
tain clauses of length greater than two. While the statement of Lemma 1 is
not valid for longer clauses, we do not know of any balanced clause set that is
approximated worse than 3

4 by Johnson’s algorithm.
An interesting aspect of our experimental evaluation is that the spectral

algorithm performs better than the Goemans-Williamson algorithm, although
its approximation guarantee is worse. In addition, by sampling a set of ran-
dom thresholds instead of testing all possibilities, we have found a better trade-
off between the two computationally intense tasks for the spectral algorithms.
This allows the hybrid algorithm to run considerably faster than the SDP-based
algorithm. We leave it as future work to explore this connection both from an
experimental and a theoretical point of view.

A Soto’s Bound for MAX CC

Recall from Sect. 4 that LBG(ε) is a lower bound on the fraction of weight
achieved by Trevisan’s spectral algorithm on G, where G is the MAX CC instance
that was created by our reduction on the balanced set of 2-clauses C.

Lemma 2 (Sect. 3.1 in [19]). Let ε0 be the unique solution of the equa-
tion 1

1+2
√

ε(1−ε)
= −1+

√
4ε2−8ε+5

2(1−ε) . Then,

If ε ≥ 1
3 ,

LBG(ε) :=
1
2
.

If ε0 ≤ ε ≤ 1
3 ,

LBG(ε) :=
1
2

·
(

ε − 1 +
√

4ε2 − 8ε + 5 − ε ln

(
1 +

√
4ε2 − 8ε + 5

8ε

)

+
√

5
5

ε ln

(
5 − 4ε +

√
5(4ε2 − 8ε + 5)

(11 + 5
√

5)ε

))

.

670 A. Paul et al.

If ε ≤ ε0,

LBG(ε) :=
1
2

·
(

ε

(

1 − 3
ε0

)

+ 2 +
ε

ε0

√
4ε20 − 8ε0 + 5

− ε ln

(
1 +

√
4ε20 − 8ε0 + 5

8ε0

)

+
√

5
5

ε ln

(
5 − 4ε0 +

√
5(4ε20 − 8ε0 + 5)

(11 + 5
√

5)ε0

)

+ 16ε ln

⎛

⎝
√

ε +
√

1 − ε
√

ε +
√

ε
ε0

− ε

⎞

⎠ + 8ε

√
ε0(1 − ε0) + 1 − 2ε0

ε0 +
√

ε0(1 − ε0)

− 8
√

ε

√
ε(1 − ε) + 1 − 2ε
√

ε +
√

ε(1 − ε)

)

.

B Dependency of the Approximation Ratio on α and β

Fig. 1. Approximation ratio for (α, β) pairs, where β = 1 − α. α is given on the
horizontal axis and the approximation ratio on the vertical axis.

References

1. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MAX-SAT 2014: Ninth Max-SAT
evaluation. www.maxsat.udl.cat/14/. Accessed 9 January 2015

2. Austrin, P.: Balanced MAX 2-SAT might not be the hardest. In: STOC,
pp. 189–197 (2007)

3. Belov, A., Diepold, D., Heule, M.J., Järvisalo, M.: Proceedings of the SAT COM-
PETITION 2014: solver and benchmark descriptions (2014)

4. Buchbinder, N., Feldman, M., Naor, J., Schwartz, R.: A tight linear time
(1/2)-approximation for unconstrained submodular maximization. In: FOCS,
pp. 649–658 (2012)

5. Chan, S.O., Lee, J., Raghavendra, P., Steurer, D.: Approximate constraint satis-
faction requires large LP relaxations. In: FOCS, pp. 350–359 (2013)

6. Feige, U., Goemans, M.X.: Approximating the value of two prover proof systems,
with applications to MAX 2SAT and MAX DICUT. In: ISTCS, pp. 182–189 (1995)

7. Goemans, M.X., Williamson, D.P.: New 3/4-approximation algorithms for the max-
imum satisfiability problem. SIAM J. Discrete Math. 7(4), 656–666 (1994)

8. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (1995)

www.maxsat.udl.cat/14/

Simple Approximation Algorithms for Balanced MAX 2SAT 671

9. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9(3), 256–278 (1974)

10. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37(1), 319–357
(2007)

11. Lewin, M., Livnat, D., Zwick, U.: Improved rounding techniques for the MAX 2-
SAT and MAX DI-CUT problems. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002.
LNCS, vol. 2337, pp. 67–82. Springer, Heidelberg (2002)

12. Matuura, S., Matsui, T.: 0.935-approximation randomized algorithm for MAX-
2SAT and its derandomization. Technical report METR 2001-03, Department of
Mathematical Engineering and Physics, the University of Tokyo, Japan (2001)

13. Poloczek, M.: Bounds on greedy algorithms for MAX SAT. In: Demetrescu,
C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 37–48. Springer,
Heidelberg (2011)

14. Poloczek, M.: Greedy Algorithms for MAX SAT and Maximum Matching: Their
Power and Limitations. Ph.D. thesis, Johann Wolfgang Goethe-Universitaet,
Frankfurt am Main (2012)

15. Poloczek, M.: An experimental evaluation of fast approximation algorithms for the
maximum satisfiability problem (2015) (in preparation)

16. Poloczek, M., Schnitger, G.: Randomized variants of Johnson’s algorithm for MAX
SAT. In: SODA, pp. 656–663 (2011)

17. Poloczek, M., Schnitger, G., Williamson, D.P., van Zuylen, A.: Greedy algorithms
for the maximum satisfiability problem: simple algorithms and inapproximability
bounds (2015) (in preparation)

18. Poloczek, M., Williamson, D.P., van Zuylen, A.: On some recent approximation
algorithms for MAX SAT. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol.
8392, pp. 598–609. Springer, Heidelberg (2014)

19. Soto, J.A.: Improved analysis of a Max-Cut algorithm based on spectral partition-
ing. SIAM J. Discrete Math. 29(1), 259–268 (2015)

20. Trevisan, L.: Max Cut and the smallest eigenvalue. SIAM J. Comput. 41(6),
1769–1786 (2012)

21. Yannakakis, M.: On the approximation of maximum satisfiability. J. Algorithms
17(3), 475–502 (1994)

22. van Zuylen, A.: Simpler 3/4-approximation algorithms for MAX SAT. In: WAOA,
pp. 188–197 (2011)

A Parameterized Algorithm for Mixed-Cut

Ashutosh Rai1(B), M.S. Ramanujan2, and Saket Saurabh1,3

1 The Institute of Mathematical Sciences, Chennai, India
{ashutosh,saket}@imsc.res.in

2 Vienna Institute of Technology, Vienna, Austria
ramanujan@ac.tuwien.ac.at

3 University of Bergen, Bergen, Norway

Abstract. The classical Menger’s theorem states that in any undirected
(or directed) graph G, given a pair of vertices s and t, the maximum num-
ber of vertex (edge) disjoint paths is equal to the minimum number of
vertices (edges) needed to disconnect s from t. This min-max result can
be turned into a polynomial time algorithm to find the maximum num-
ber of vertex (edge) disjoint paths as well as the minimum number of
vertices (edges) needed to disconnect s from t. In this paper we study a
mixed version of this problem, called Mixed-Cut, where we are given
an undirected graph G, vertices s and t, positive integers k and l and the
objective is to test whether there exist a k sized vertex set S ⊆ V (G)
and an l sized edge set F ⊆ E(G) such that deletion of S and F from
G disconnects from s and t. Apart from studying a generalization of
classical problem, one of our main motivations for studying this problem
comes from the fact that this problem naturally arises as a subproblem
in the study of several graph editing (modification) problems. We start
with a small observation that this problem is NP-complete and then
study this problem, in fact a much stronger generalization of this, in the
realm of parameterized complexity. In particular we study the Mixed

Multiway Cut-Uncut problem where along with a set of terminals T ,
we are also given an equivalence relation R on T , and the question is
whether we can delete at most k vertices and at most l edges such that
connectivity of the terminals in the resulting graph respects R. Our main
result is a fixed parameter algorithm for Mixed Multiway Cut-Uncut

using the method of recursive understanding introduced by Chitnis
et al. (FOCS 2012).

1 Introduction

Given a graph, a typical cut problem asks for finding a set of vertices or edges
such that their removal from the graph makes the graph satisfy some separation
property. The most fundamental version of the cut problems is Minimum Cut,
where given a graph and two vertices, called terminals, we are asked to find

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no. 306992.

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 672–685, 2016.
DOI: 10.1007/978-3-662-49529-2 50

A Parameterized Algorithm for Mixed-Cut 673

the minimum sized subset of vertices (or edges) of the graph such that deleting
them separates the terminals. The Minimum Cut problem is known to be poly-
nomial time solvable for both edge and vertex versions and both in undirected
and directed graphs. The core of the polynomial time solvability of the Mini-

mum Cut problem is one of the classical min-max results in graph theory – the
Menger’s theorem. Menger’s theorem states that in any undirected (or directed)
graph G, given a pair of vertices s and t, the maximum number of vertex (edge)
disjoint paths is equal to the minimum number of vertices (edges) needed to be
deleted to disconnect s from t.

While Minimum Cut is polynomial time solvable; even a slight generaliza-
tion becomes NP-hard. Two of the most studied generalizations of Minimum

Cut problem which are NP-hard are Multiway Cut and Multicut. In the
Multiway Cut problem, we are given a set of terminals, and we are asked to
delete minimum number of vertices (or edges) to separate the terminals from
each other. This problem is known to be NP-hard even when the number of ter-
minals is at least three. In the Multicut problem, given pairs of terminals, we
are asked to delete minimum number of vertices (or edges) so that it separates
all the given terminal pairs. The Multicut problem is known to be NP-hard
when the number of pairs of terminals is at least three. The mixed version of
the problem, which is the central topic of this paper, namely Mixed Cut is also
NP-hard. In this problem we are given an undirected graph G, vertices s and t,
positive integers k and l and the objective is to test whether there exist a k sized
vertex set S ⊆ V (G) and an l sized edge set F ⊆ E(G) such that deletion of S
and F from G disconnects from s and t. In this paper we study Mixed Cut, in
fact a stronger generalization of it, in the realm of parameterized complexity.

The field of parameterized complexity tries to provide efficient algorithms for
NP-complete problems by going from the classical view of single-variate measure
of the running time to a multi-variate one. It aims at getting algorithms of run-
ning time f(k)nO(1), where k is an integer measuring some aspect of the problem.
These algorithms are called fixed parameter tractable (FPT) algorithms and the
integer k is called the parameter. In most of the cases, the solution size is taken to
be the parameter, which means that this approach gives faster algorithms when
the solution is of small size. For more background on parameterized complexity,
the reader is referred to the monographs [9,10,18]. In this paper we study the
problem called Mixed Multiway Cut-Uncut (MMCU) where given a graph
G, T ⊆ V (G), and equivalence relation R on T and integers k and l, we are
asked whether there exist X ⊆ (V (G) \ T) and F ⊆ E(G) such that |X| ≤ k,
|F | ≤ l and for all u, v ∈ T , u and v belong to the same connected component
of G − (X,F) if and only if (u, v) ∈ R. We start by giving a brief overview of
related work and then give our results and methods.

Related Works. Multiway Cut was one of the first cut problems to be
explored under the realm of parameterized complexity. It was known to be FPT
using graph minors, but Marx [15] was the first one to give a constructive algo-
rithm to show that Multiway Cut is FPT when parameterized by the solution
size. He also showed that Multicut is FPT when parameterized by the solution

674 A. Rai et al.

size plus the number of terminals. Subsequently, a lot of work has been done
on cut problems in the field of parameterized complexity [3,5,8,13,14,16,17].
Recently, Chitnis et al. [7] introduced the technique of randomized contractions
and used that to solve the Unique Label Cover problem. They also show
that the same techniques can be applied to solve a generalization of Multiway

Cut problem, namely Multiway Cut-Uncut, where an equivalence relation
R is also supplied along with the set of terminals and we are to delete minimum
number of vertices (or edges) such that the terminals lie in the same connected
of the resulting graph if and only if they lie in the same equivalence class of R.
The Multiway Cut-Uncut problem was first shown to FPT by Marx et al.
[16]. It is easy to see that MMCU not only generalized Mixed Cut and Mixed

Multiway Cut, but also both edge and vertex versions of Multiway Cut and
Multiway Cut-Uncut problems. Mixed Cut is studied and mentioned in the
books [2,11] and is also a useful subroutine in parameterized graph editing prob-
lems [4]. Cao and Marx [4] studied this problem during their study on Chordal

Editing problem and gave an algorithm with running time 2O(k+l)nO(1) on
chordal graphs. Algorithms for cut-problems can be applied to several problems,
which at first do not look like cut problems. Examples include well studied prob-
lems such as Feedback Vertex Set [6] and Odd Cycle Transversal [19].
Thus, MMCU is not only an interesting combinatorial problem in itself but it
is also useful in designing other parameterized algorithms (for example in edit-
ing problems, cf. [4]). Hence, it is natural and timely to obtain a parameterized
algorithms for MMCU.

Our Results and Methods. Even though the vertex and edge versions of
Minimum Cut problem are polynomial time solvable, we show that allowing
deletion of both, the vertices and the edges, makes the Mixed Cut problem
NP-hard. To show that, we use a simple reduction from the Bipartite Partial

Vertex Cover problem which was recently shown to be NP-hard [1,12]. Then
we show that MMCU is FPT when parameterized by k + l. In particular we
prove the following theorem.

Theorem 1. Mixed Multiway Cut-Uncut is FPT with an algorithm run-
ning in time 2(k+l)O(1) · nO(1).

There are two ways to approach our problem – one is via treewidth reduction
technique of Marx et al. [16] and the second is via the method of recursive
understanding introduced by Chitnis et al. [7]. However, the method of treewidth
reduction technique would lead to an algorithm for MMCU that has double
exponential dependence on k + l and thus we did not pursue this method. We
use recursive understanding introduced by Chitnis et al. [7] to solve the problem.
The main observation is that if there is a small vertex separation which divides
the graph into big parts, then we can recursively reduce the size of one of the big
parts. Otherwise, the graph is highly connected, and the structure of the graph
can be exploited to obtain a solution. We follow the framework given in [7]
and design our algorithm. In particular we utilise the recursive understanding
technique to first find a small separator in the graph which separates the graph

A Parameterized Algorithm for Mixed-Cut 675

into two parts, each of sufficiently large size and then recursively solve a ‘border’
version of the same problem on one of the two sides. The border version of
the problem is a generalization which also incorporates a special bounded set
of vertices, called border terminals. During the course of our algorithm, we will
attempt to solve the border problem on various subgraphs of the input graph.
The objective in the border problem is to find a bounded set of vertices contained
within a particular subgraph such that any vertex in this subgraph not in the
computed set is not required in any solution for the given instance irrespective
of the vertices chosen outside this subgraph. The algorithm in [7] returns the
minimum solutions in the recursive steps. Since we allow both edge and vertex
deletion, there is no clear ordering on the solutions, and hence we need to look
for solutions of all possible sizes while making the recursive call.

This leaves us with the base case of the recursion, that is when we are unable
to find a separator of the required kind. This is called high connectivity phase and
this is the place where one needs a problem specific algorithm in the framework
given in [7]. Since the solution we are looking for contains both edges and vertices,
we need some additional work, as the good node separation framework gives
bound only for vertices that can be part of the solution. Once we have done
that, the frameworks lends itself for our use, and we can use a separating set
family to get to the solution. This results in an extra factor of k + l in the
exponent as compared to the algorithm in [7], as the separating family needs to
take care of both vertices and edges.

2 Preliminaries

In this section, we first give the notations and definitions which are used in
the paper. Then we state some basic properties of mixed-cuts and some known
results which will be used later in the paper.

Notations and Definitions: A tuple G = (V,E) is a multigraph if V is a set
(called vertices) and E is a multiset of 2-element subsets of V (called edges). For
a multigraph G, we denote the set of vertices of the multigraph by V (G) and the
set of edges of the multigraph by E(G). In slight abuse of terminology, we will be
calling multigraphs also as graphs in the rest of the paper. We denote |V (G)| and
|E(G)| by n and m respectively, where the graph is clear from context. For a set
S ⊆ V (G), the subgraph of G induced by S is denoted by G[S] and it is defined
as the subgraph of G with vertex set S and edge set {(u, v) ∈ E(G) : u, v ∈ S}
and the subgraph obtained after deleting S is denoted as G−S. For F ⊆ E(G),
by V (F) we denote the set {v | ∃u such that uv ∈ F}. For a set Z = V ′ ∪ E′

where V ′ ⊆ V (G) and E′ ⊆ E(G), by G(Z) we denote the subgraph G′ =
(V ′ ∪ V (E′), E′). For a tuple X = (X,F) such that X ⊆ V (G) and F ⊆ E(G),
by G−X we denote the graph G′ = (V (G)\X,E(G)\F) and by V (X) we denote
the vertex set X∪V (F). All vertices adjacent to a vertex v are called neighbours
of v and the set of all such vertices is called open neighbourhood of v, denoted
by NG(v). For a set of vertices S ⊆ V (G), we define NG(S) = (∪v∈SN(v)) \ S.
We drop the subscript G when the graph is clear from the context.

676 A. Rai et al.

We define the Mixed Multiway Cut-Uncut problem as follows.

Mixed Multiway Cut-Uncut (MMCU)

Input: A multigraph G, a set of terminals T ⊆ V (G), an equivalence
relation R on the set T and integers k and l.

Parameters: k, l
Question: Does there exist X ⊆ (V (G) \ T) and F ⊆ E(G) such that

|X| ≤ k, |F | ≤ l and for all u, v ∈ T , u and v belong to the same
connected component of G − (X,F) if and only if (u, v) ∈ R?

We say that a tuple X = (X,F), where X ⊆ V (G) \ T and F ⊆ E(G), is a
solution to an MMCU instance I = (G,T,R, k, l) if |X| ≤ k, |F | ≤ l and for
all u, v ∈ T , u and v belong to the same connected component of G − (X,F) if
and only if (u, v) ∈ R. We define a partial order on the solutions of the instance
I. For two solutions X = (X,F) and X ′ = (X ′, F ′) of an MMCU instance I,
we say that X ′ ≤ X if X ′ ⊆ X and F ′ ⊆ F . We say that a solution X to an
MMCU instance I is minimal if there does not exist another solution X ′ to
I such that X ′ �= X and X ′ ≤ X . For a solution X = (X,F) of an MMCU

instance I = (G,T,R, k, l) and v ⊆ V (G), we say that X affects v if either
v ∈ X or there exists u ∈ V (G) such that uv ∈ F .

Observation 1. If X = (X,F) is a minimal solution to an MMCU
∗ instance

I = (G,T,R, k, l), then none of the edges in F are incident to X.

Now we state the definitions of good node separations and flower separations
from [7]. Then we state the lemmas that state the running time to find such
separations and the properties of the graph if such separations do not exist.

Lemma 2 (1.1 in [7]). Given a set U of size n together with integers 0 ≤ a, b ≤
n, one can in O(2O(min(a,b) log(a+b))n log n) time construct a family F of at most
O(2O(min(a,b) log(a+b)) log n) subsets of U , such that the following holds: for any
sets A,B ⊆ U , A∩B = ∅, |A| ≤ a, |B| ≤ b, there exists a set S ∈ F with A ⊆ S
and B ∩ S = ∅.

Definition 3 (C.1 in [7]). Let G be a connected graph and V ∞ ⊆ V (G) a set
of undeletable vertices. A triple (Z, V1, V2) of subsets of V (G) is called a (q, k)-
good node separation, if |Z| ≤ k, Z ∩ V ∞ = ∅, V1 and V2 are vertex sets of two
different connected components of G − Z and |V1 \ V ∞|, |V2 \ V ∞| > q.

Definition 4 (C.2 in [7]). Let G be a connected graph, V ∞ ⊆ V (G) a set
of undeletable vertices, and Tb ⊆ V (G) a set of border terminals in G. A pair
(Z, (Vi)ri=1) is called a (q, k)-flower separation in G (with regard to border ter-
minals Tb), if the following holds:

– 1 ≤ |Z| ≤ k and Z ∩ V ∞ = ∅; the set Z is the core of the flower separation
(Z, (Vi)ri=1);

– Vi are vertex sets of pairwise different connected components of G − Z, each
set Vi is a petal of the flower separation (Z, (Vi)ri=1);

A Parameterized Algorithm for Mixed-Cut 677

– V (G) \ (Z ∪
⋃r

i=1 Vi), called a stalk, contains more than q vertices of V \V ∞;
– for each petal Vi we have Vi ∩ Tb = ∅, |Vi \ V ∞| ≤ q and NG(Vi) = Z;
– |(

⋃r
i=1 Vi) \ V ∞| > q.

Lemma 5 (C.3 in [7]). Given a connected graph G with undeletable vertices
V ∞ ⊆ V (G) and integers q and k, one may find in O(2O(min(q,k) log(q+k))n3 log n)
time a (q, k)-good node separation of G, or correctly conclude that no such sep-
aration exists.

Lemma 6 (C.4 in [7]). Given a connected graph G with undeletable vertices
V ∞ ⊆ V (G) and border terminals Tb ⊆ V (G) and integers q and k, one may
find in O(2O(min(q,k) log(q+k))n3 log n) time a (q, k)-flower separation in G w.r.t.
Tb, or correctly conclude that no such flower separation exists.

Lemma 7 (C.5 in [7]). If a connected graph G with undeletable vertices V ∞ ⊆
V (G) and border terminals Tb ⊆ V (G) does not contain a (q, k)-good node sep-
aration or a (q, k)-flower separation w.r.t. Tb then, for any Z ⊆ V (G) \ V ∞ of
size at most k, the graph G − Z contains at most (2q + 2)(2k − 1) + |Tb| + 1
connected components containing a vertex of V (G) \ V ∞, out of which at most
one has more than q vertices not in V ∞.

3 NP-Completeness of Mixed Cut

We prove that Mixed Cut in NP-complete by giving a reduction from the
Bipartite Partial Vertex Cover problem which is defines as follows.

Bipartite Partial Vertex Cover (BPVC)

Input: A bipartite graph G = (X
 Y,E), integers p and q.
Output: Does there exist S ⊆ V (G) such that |S| ≤ p and at least q

edges in E are incident on X?

Theorem 8 ([1,12]). BPVC is NP-complete.

For an instance of BPVC, we assume that the given bipartite graph does not
have any isolated vertices, as a reduction rule can be applied in polynomial time
which takes care of isolated vertices and produces an equivalent instance. Given
an instance (G, p, q) of BPVC where G = (X
 Y,E) is a bipartite graph, we
get an instance (G′, s, t, k, l) of Mixed Cut as follows. To get the graph G′, we
introduce two new vertices s and t and add all edges from s to X and t to Y .
More formally, G′ = (V ′, E′) where V ′ = V (G) ∪ {s, t} and E′ = E ∪ {sx | x ∈
X} ∪ {ty | y ∈ Y }. Then we put k = p and l = m− q, where m = |E|. It is easy
to see that (G, p, q) is a Yes instance of BPVC if and only if (G′, s, t, k, l) is a
Yes instance of Mixed Cut, and hence we get the following theorem.

Theorem 9. Mixed Cut is NP-complete even on bipartite graphs.

678 A. Rai et al.

4 An Algorithm for MMCU

In this section, we describe the FPT algorithm for MMCU. In fact, we will give
an algorithm, which when provided with an instance (G,T,R, k, l) of MMCU,
not only decides whether there exists a solution (X,F) such that |X| ≤ k and
|F | ≤ l, but also outputs such a solution that is also minimal. To that end, we
assume that the graph is connected and that the number of equivalence classes
is bounded by (k + l)(k + l + 1).

4.1 Operations on the Graph

Definition 10. Let I = (G,T,R, k, l) be an MMCU instance and let v ∈
V (G) \ T . By bypassing a vertex v we mean the following operation: we delete
the vertex v from the graph and, for any u1, u2 ∈ NG(v), we add an edge (u1, u2)
if it is not already present in G.

Definition 11. Let I = (G,T,R, k, l) be an MMCU instance and let u, v ∈ T
such that (u, v) ∈ R. By identifying vertices u and v in T , we mean the following
operation: we make a new set T ′ = (T \ {u, v}) ∪ {xuv}, for each edge of the
form uw ∈ E(G) or vw ∈ E(G), we add an edge xuvw to E(G) and we put the
new vertex xuv in the same equivalence class as vertices u and v. Observe that
the operation might add parallel edges.

Lemma 12. Let I = (G,T,R, k, l) be an MMCU instance, let v ∈ V (G) \ T
and let I ′ = (G′, T,R, k, l) be the instance I with v bypassed. Then:

– if X = (X,F) is a solution to I ′, then X is a solution to I as well;
– if X = (X,F) is a solution to I and v /∈ X and for all u ∈ N(v) vu /∈ F then

X is a solution to I ′ as well.

Lemma 13. Let I = (G,T,R, k, l) be an MMCU instance and let u, v ∈ T
be two different terminals with (u, v) /∈ R, such that uv ∈ E(G), then for any
solution X = (X,F) of I, we have uv ∈ F .

The proof of the Lemma 13 follows from the fact that any solution must
delete the edge uv to disconnect u from v. The proof of the next lemma follows
by simple observation that u and v have at least k+l+1 internally vertex disjoint
paths or from the fact that (u, v) ∈ R and thus after deleting the solution they
must belong to the same connected component and thus every minimal solution
does not use the edge uv ∈ E(G).

Lemma 14. Let I = (G,T,R, k, l) be an MMCU instance and let u, v ∈ T
be two different terminals with (u, v) ∈ R, such that uv ∈ E(G) or |NG(u) ∩
NG(v)| > k+ l. Let I ′ be instance I with terminals u and v identified. Then the
set of minimal solution of I and I ′ is the same.

A Parameterized Algorithm for Mixed-Cut 679

Lemma 15. Let I = (G,T,R, k, l) be an MMCU instance and let U =
{v1, v2, . . . , vt} ⊆ T be different terminals of the same equivalence class of R,
pairwise nonadjacent and such that NG(u1) = NG(u2) = · · · = NG(ut) ⊆
V (G) \ T and t > l + 2. Let I ′ be obtained from I by deleting all but l + 2
terminals in U (and all pairs that contain the deleted terminals in R). Then the
sets of minimal solutions to I and I ′ are equal.

Lemma 16. Let I = (G,T,R, k, l) be an MMCU instance and let uv ∈ E(G)
be an edge with multiplicity more than l + 1. Then for any minimal solution
X = (X,F) of I, F does not contain any copies of uv.

Proof. If {u, v} ∩ X �= ∅, then by Observation 1, we have that none of the
copies of uv are in F . Otherwise, F contains at most l copies of edge uv. Let
X ′ = (X,F \ {uv}). Then we have that for any two x, y ∈ V (G), x and y are
adjacent in G − X if and only if they are adjacent in G − X ′, contradicting the
minimality of X .

4.2 Borders and Recursive Understanding

In this section, we define the bordered problem and describe the recursive
phase of the algorithm. Let I = (G,T,R, k, l) be an MMCU instance and let
Tb ⊆ V (G) \ T be a set of border terminals, where |Tb| ≤ 2(k + l). Define
Ib = (G,T,R, k, l, Tb) to be an instance of the bordered problem. By P(Ib)
we define the set of all tuples P = (Xb, Eb,Rb, k

′, l′), such that Xb ⊆ Tb,
Eb is an equivalence relation on Tb \ Xb, Rb is an equivalence relation on
T ∪ (Tb \ Xb) such that Eb ⊆ Rb and Rb|T = R, k′ ≤ k and l′ ≤ l. For a
tuple P = (Xb, Eb,Rb, k

′, l′), by GP we denote the graph G ∪ Eb, that is the
graph G with additional edges Eb.

The intuition behind defining the tuple P is as following. The set Xb denotes
the intersection of the solution with the border terminals. The equivalence rela-
tion Eb tells which of the border terminals can be connected from outside the
graph considered. This can be looked at as analogous to torso operation on the
graph. The equivalence relation Rb tells how the terminals and border terminals
are going to get partitioned in different connected components after deleting the
solution. Since deletion of any solution respects the relation R, we have that
Rb|T = R. The numbers k′ and l′ are guesses for how much the smaller graph
is going to contribute to the solution.

We say that a tuple X = (X,F) is a solution to (Ib,P) where P =
(Xb, Eb,Rb, k

′, l′) if |X| ≤ k′, |F | ≤ l′ and for all u, v ∈ T ∪ (Tb \ Xb), u
and v belong to the same connected component of GP − (X,F) if and only if
(u, v) ∈ Rb. We also say that X is a solution to Ib = (G,T,R, k, l, Tb) when-
ever X is a solution to I = (G,T,R, k, l). Now we define the bordered problem
as follows.

680 A. Rai et al.

Border-Mixed Multiway Cut-Uncut(B-MMCU)

Input: An MMCU instance I = (G,T,R, k, l) with G being connected
and a set Tb ⊆ V (G) \ T such that |Tb| ≤ 2(k + l); denote
Ib = (G,T,R, k, l, Tb).

Output: For each P = (Xb, Eb,Rb, k
′, l′) ∈ P(Ib), output a solP = XP

being a minimal solution to (Ib,P), or solP = ⊥ if no solution
exists.

It is easy to see that MMCU reduces to B-MMCU, by putting Tb = ∅. Also,
in this case, any answer to B-MMCU for P = (∅, ∅,R, k, l) returns a solution
for MMCU instance. To bound the size of the solutions returned for an instance
of B-MMCU we observe the following.

|P(Ib)| ≤ (k + 1)(l + 1)(1 + |Tb|(|Tb| + (k + l)(k + l + 1)))|Tb|

≤ (k + 1)(l + 1)(1 + 2(k + l)2(k + l + 3))2(k+l)

= 2O((k+l) log(k+l))

This is true because Rb has at most (k+l)(k+l+1)+|Tb| equivalence classes,
Eb has at most Tb equivalence classes, each v ∈ Tb can either go to Xb or choose
an equivalence class in Rb and Eb, and k′ and l′ have k + 1 and l + 1 possible
values respectively. Let q = (k+2l)(k+1)(l+1)(1+2(k+l)2(k+l+3))2(k+l)+k+l,
then all output solutions to a B-MMCU instance Ib affect at most q − (k + l)
vertices in total. Now we are ready to state the lemma which is central for the
recursive understanding step.

Lemma 17. Assume we are given a B-MMCU instance Ib = (G,T,R, k, l, Tb)
and two disjoint sets of vertices Z, V ∗ ⊆ V (G), such that |Z| ≤ k+ l, Z ∩T = ∅,
ZW := NG(V ∗) ⊆ Z, |V ∗ ∩ Tb| ≤ k + l and the subgraph of G induced by
W := V ∗ ∪ ZW is connected. Denote G∗ = G[W], T ∗

b = (Tb ∪ ZW) ∩ W , T ∗ =
T ∩ W , R∗ = R|T∩W and I∗ = (G∗, T ∗, R∗, k, l, T ∗

b). Then I∗ is a proper B-

MMCU instance. Moreover, if we denote by (sol∗P∗)P∗∈P(I∗
b)

an arbitrary output
to the B-MMCU instance I∗

b and

U(I∗
b) = T ∗

b ∪ {v ∈ V (G) | P∗ ∈ P(I∗
b), sol∗P∗ = X ∗

P∗ �= ⊥ and X ∗
P∗ affects v},

then there exists a correct output (solP)P∈P(Ib) to the B-MMCU instance Ib

such that whenever solP = XP �= ⊥ and XP is a minimal solution to (Ib,P)
then V (XP) ∩ V ∗ ⊆ U(I∗

b).

The proof of lemma basically says that for any solution (X,F) of Ib,P) we
can replace its intersection with the graph G∗ with one of the solutions of the
recursive calls and it still remains a solution. Now we describe the recursive step
of the algorithm.

A Parameterized Algorithm for Mixed-Cut 681

Step 1. Assume we are given a B-MMCU instance Ib = (G,T,R, k, l, Tb).
Invoke first the algorithm of Lemma 5 in a search for (q, k + l)-good node sep-
aration (with V ∞ = T). If it returns a good node separation (Z, V1, V2), let
j ∈ {1, 2} be such that |Vj ∩Tb| ≤ k+ l and denote Z∗ = Z, V ∗ = Vj. Otherwise,
if it returns that no such good node separation exists in G, invoke the algorithm
of Lemma 6 in a search for (q, k + l)-flower separation w.r.t. Tb (with V ∞ = T
again). If it returns that no such flower separation exists in G, pass the instance
Ib to the next step. Otherwise, if it returns a flower separation (Z, (Vi)ri=1),
denote Z∗ = Z and V ∗ =

⋃r
i=1 Vi.

In the case we have obtained Z∗ and V ∗ (either from Lemma 5 or Lemma 6),
invoke the algorithm recursively for the B-MMCU instance I∗

b defined as in
the statement of Lemma 17 for separator Z∗ and set V ∗, obtaining an output
(sol∗P∗)P∗ ∈ P(I∗

b). Compute the set U(I∗
b). Bypass (in an arbitrary order) all

vertices of V ∗ \ (T ∪U(I∗
b)). Recall that T ∗

b ⊆ U(I∗
b), so no border terminal gets

bypassed. After all vertices of V ∗ \ U(I∗
b) are bypassed, perform the following

operations on terminals of V ∗ ∩ T :

1. As long as there exist two different u, v ∈ V ∗ ∩ T such that (u, v) /∈ R, and
uv ∈ E(G), then delete the edge uv and decrease l by 1; if l becomes negative
by this operation, return ⊥ for all P ∈ P(Ib).

2. As long as there exist two different u, v ∈ V ∗ ∩ T such that (u, v) ∈ R and
either uv ∈ E(G) or |NG(u) ∩ NG(v)| > k + l, identify u and v.

3. If the above two rules are not applicable, then, as long as there exist pairwise
distinct terminals u1, u2, . . . , ut ∈ T of the same equivalence class of R that
have the same neighbourhood and t > l + 2, delete ui for i > l + 2 from the
graph (and delete all pairs containing ui from R).

Let I ′
b be the outcome instance.

Finally, restart this step on the new instance I ′
b and obtain a family of solu-

tions (solP)P∈P(I′
b)

and return this family as an output to the instance Ib.

After the bypassing operations, we have that V ∗ contains at most q vertices
that are not terminals (at most k + l border terminals and at most q − (k + l)
vertices which are neither terminals nor border terminals). Let us now bound
the number of terminal vertices once Step 1 is applied. Note that, after Step 1 is
applied, for any v ∈ T ∩V ∗, we have NG(v) ⊆ (V ∗ \T)∪Z and |(V ∗ \T)∪Z| ≤
(q+k+ l). Due to the first and second rule in Step 1, for any set A ⊆ (V ∗ \T)∪Z
of size k + l + 1, at most one terminal of T ∩ V ∗ is adjacent to all vertices of A.
Due to the third rule in Step 1, for any set B ⊆ (V ∗ \ T) ∪ Z of size at most
k + l and for each equivalence class of R, there are at most l + 2 terminals of
this equivalence class with neighbourhood exactly B. Let q′ := |T ∪ V ∗|, then
we have the following.

q′ ≤ (q+ k+ l)k+l+1 + (l+ 2)(k+ l)(k+ l+ 1)
k+l∑

i=1

(q+ k+ l)i = 2O((k+l)2 log(k+l))

682 A. Rai et al.

Lemma 18. Assume that we are given a B-MMCU instance Ib =
(G,T,R, k, l, Tb) on which Step 1 is applied, and let I ′

b be an instance after
Step 1 is applied. Then any correct output to the instance I ′

b is a correct output
to the instance Ib as well. Moreover, if Step 1 outputs ⊥ for all P ∈ P(I ′

b), then
this is a correct output to Ib.

Proof. We first note that by Lemma 17, for all P ∈ P(Ib), for all the vertices
v /∈ U(I∗

b), there exists a minimal solution to (Ib,P) that does not affect v,
hence by Lemma 12, the bypassing operation is justified. The second and third
rules are justified by Lemmas 14 and 15 respectively. The first rule is justified
by Lemma 13, and if application of this rule makes l negative then for any
P ∈ P(Ib), there is no solution to (Ib,P).

A careful running time analysis of Step 1 gives us the following recurrence.

T (n) ≤ max
q+1≤n′≤n−q−1

(
O(2O((k+l)2 log(k+l))n3 log n) + T (n′ + k + l)

+ T (min(n − 1, n − n′ + q + q′))
)

The base case for the recursive calls is the high connectivity phase, which
takes time O(2O((k+l)3 log(k+l))n3 log n) as we will argue later. Solving the recur-
rence for the worst case gives T (n) = O(2O((k+l)3 log(k+l))n4 log n), which is the
desired upper bound for the running time of the algorithm.

4.3 High Connectivity Phase

In this section we describe the high connectivity phase for the algorithm.
Assume we have a B-MMCU instance Ib = (G,T,R, k′, l′, Tb) where Step 1
is not applicable. Let us fix P = (Xb, Eb,Rb, k, l) ∈ P(Ib). We iterate through
all possible values of P and try to find a minimal solution to (Ib,P). Since
|P(Ib)| = 2O((k+l) log(k+l)) it results in a factor of 2O((k+l) log(k+l)) in the running
time. For a graph G, by L(G) we denote the set V (G) ∪ E(G). Similarly, for a
tuple X = (X,F), by L(X) we denote the set X ∪F . We once again need to use
Lemmas 13–15 to bound number of terminals. We also need to apply Lemma 16
to bound the number of edges.

Step 2. Apply Lemmas 13, 14 and 15 exhaustively on the set T of terminals in
the graph (as done in rules 1–3 of Step 1, but doing it for all of T instead of just
T ∩ V ∗). Apply Lemma 16 to reduce multiplicity of all edges in the graph to at
most l + 1.

The running time analysis of applying Lemmas 13–15 in this step is exactly
the same as the one done in Step 1. Also, Lemma 16 can be applied in O(n2l)
time. Hence, the step takes O(n3(k + l + log n)) time. After applying Step 2
exhaustively, we know that no two terminals are adjacent, and hence for any
solution X = (X,F), we have that F ∩ E(G[T]) = ∅.

A Parameterized Algorithm for Mixed-Cut 683

Now we look at what can happen after deleting a set X = (X,F) from the
graph G such that X ⊆ V (G)\T , F ⊆ E(G), |X| ≤ k and |F | ≤ l. Since we have
assumed that Step 1 is not applicable, for any X = (X,F) where X ⊆ V (G)\T ,
F ⊆ E(G), |X| ≤ k and |F | ≤ l, Lemma 7 implies that the graph G−X contains
at most t := (2q+2)(2(k+ l)1)+2(k+ l)+1 connected components containing a
non-terminal out of which at most one can contain more than q vertices outside
T . Let us denote its vertex set by big(X) (observe that this can possibly be the
empty set, in case such a component does not exist). Now we define the notion
of interrogating a solution, which will help us in highlighting the solution.

Definition 19. Let Z = (Z,F ′) where Z ⊆ V (G) \ T , F ′ ⊆ E(G) \ E(G[T]),
|Z| ≤ k and |F ′| ≤ l and let S ⊆ L(G) \ T . We say that S interrogates Z if the
following holds:

– S ∩ L(Z) = ∅;
– for any connected component C of G − Z with at most q vertices outside T ,

all vertices and edges of C belong to S ∪ T .

Lemma 20. Let q′′ = (qt+k+l)k+l+1+(l+2)(k+l)(k+l+1)
∑k+l

i=1(qt+k+l)i. Let
F be a family obtained by the algorithm of Lemma 7 for universe U = L(G) \ T
and constants a = qt + (l + 1)

(
q′′+qt

2

)
and b = k + l, Then, for any Z = (Z,F ′)

where Z ⊆ V (G) \ T , F ′ ⊆ E(G) \ E(G[T]), |Z| ≤ k and |F ′| ≤ l, there exists a
set S ∈ F that interrogates Z.

The proof of this lemma follows from the observation that since we can
bound the number of vertices and edges in the small components, there exists a
set family of desired size.

Step 3. Compute the family F from Lemma 20 and branch into |F| subcases,
indexed by sets S ∈ F . In a branch S we seek for a minimal solution XP to
(Ib,P), which is interrogated by S.

Note that since we have q′′ = 2O((k+l)2 log(k+l)) and q, t = 2O((k+l) log(k+l)),
the family F of Lemma 2 is of size O(2O((k+l)3 log(k+l)) log n) and can be com-
puted in O(2O((k+l)3 log(k+l))n log n) time. The correctness of Step 3 is obvious
from Lemma 20. As discussed, it can be applied in O(2O((k+l)3 log(k+l))n log n)
time and gives rise to O(2O((k+l)3 log(k+l)) log n) subcases. The size of the sep-
arating family here is the reason for the extra factor of k + l in the exponent,
as compared to the algorithm in [7]. There, it was needed to only consider the
vertices of the small connected components while looking for a solution, while
for our problem, we needed to find a separating family for both the vertices and
edges of small components, which has a larger size, and hence a larger separating
family is needed.

Lemma 21. Let XP = (X,F) be a solution to (Ib,P) interrogated by S. Then
there exists a set T big ⊆ T ∪ (Tb \ Xb) that is empty or contains all vertices
of exactly one equivalence class of Rb, such that X ⊆ (Xb ∪ NG(S(T big)) and

684 A. Rai et al.

F = AG,X(S(T big)), where S(T big) is the union of vertex sets of all connected
components of G(S ∪T ∪ (Tb \Xb)) that contain a vertex of (T ∪ (Tb \Xb))\T big

and AG,X(S(T big)) is set of edges in G which have at least one end point in
S(T big) but do not belong to any of the connected components of G[S(T big)] and
are not incident on X.

Step 4. For each branch, where S is the corresponding guess, we do the follow-
ing. For each set T big that is empty or contains all vertices of one equivalence
class of Rb, if |NG(S(T big))| ≤ k + l, then for each X ⊆ Xb ∪NG(S(T big)) such
that |X| ≤ k, and F = AG,X(S(T big)), check whether (X,F) is a solution to
(Ib,P) interrogated by S. For each P, output a minimal solution to (Ib,P) that
is interrogated by S. Output ⊥ if no solution is found for any choice of S, T big

and X.

The correctness of the step follows from Lemma 21 and the fact that if S
interrogates a solution X to (Ib,P), then |NG(S(T big))| ≤ k + l. Note that R
has at most (k+ l)(k+ l+ 1) equivalence classes. As |Tb| ≤ 2(k+ l), we have Rb

has at most (k + l)(k + l + 3) equivalence classes, and hence there are at most
(k+ l)(k+ l+3)+1 choices of the set T big. For each T big, computing NG(S(T big))
and checking whether |NG(S(T big))| ≤ k + l takes O(n2) time. Since Xb ≤ k,
there are at most (k + 1)(2k + l)k choices for X, and then computing F =
AG,X(S(T big)) and checking whether (X,F) is a solution to (Ib,P) interrogated
by S take O(n2) time each. Finally, checking whether the solution is minimal
or not and computing a minimal solution takes additional O((k + l)n2) time.
Therefore Step 4 takes O(2O((k+l)3 log(k+l))n2 log n) time for all subcases.

This finishes the description of fixed-parameter algorithm for MMCU and
we get the following theorem.

Theorem 22. MMCU can be solved in O(2O((k+l)3 log(k+l))n4 log n) time.

References

1. Apollonio, N., Simeone, B.: The maximum vertex coverage problem on bipartite
graphs. Discrete Appl. Math. 165, 37–48 (2014)

2. Beineke, L.W., Wilson, R.J. (eds.): Topics in Structural Graph Theory. Cambridge
University Press, Cambridge (2013)

3. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is FPT. In: Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA,
6–8 June 2011, pp. 459–468 (2011)

4. Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. In: 31st Inter-
national Symposium on Theoretical Aspects of Computer Science, STACS 2014,
Lyon, France, 5–8 March 2014, pp. 214–225 (2014)

5. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum
node multiway cut problem. Algorithmica 55(1), 1–13 (2009)

6. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. J. ACM 55(5), 1–19 (2008)

A Parameterized Algorithm for Mixed-Cut 685

7. Chitnis, R.H., Cygan, M., Hajiaghayi, M., Pilipczuk, M., Pilipczuk, M.: Design-
ing FPT algorithms for cut problems using randomized contractions. In: 53rd
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New
Brunswick, NJ, USA, 20–23 October 2012, pp. 460–469 (2012)

8. Chitnis, R.H., Hajiaghayi, M., Marx, D.: Fixed-parameter tractability of directed
multiway cut parameterized by the size of the cutset. SIAM J. Comput. 42(4),
1674–1696 (2013)

9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, London (2013)

10. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Berlin (2006)

11. Frank, A.: Connections in combinatorial optimization. Discrete Appl. Math.
160(12), 1875 (2012)

12. Joret, G., Vetta, A.: Reducing the rank of a matroid. CoRR, abs/1211.4853 (2012)
13. Kawarabayashi, K., Thorup, M.: The minimum k-way cut of bounded size is fixed-

parameter tractable. In: IEEE 52nd Annual Symposium on Foundations of Com-
puter Science, FOCS 2011, Palm Springs, CA, USA, 22–25 October 2011, pp.
160–169 (2011)

14. Kratsch, S., Pilipczuk, M., Pilipczuk, M., Wahlström, M.: Fixed-parameter
tractability of multicut in directed acyclic graphs. In: Czumaj, A., Mehlhorn, K.,
Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 581–
593. Springer, Heidelberg (2012)

15. Marx, D.: Parameterized graph separation problems. Theor. Comput. Sci. 351(3),
394–406 (2006)

16. Marx, D., O’Sullivan, B., Razgon, I.: Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms 9(4), 30 (2013)

17. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by
the size of the cutset. SIAM J. Comput. 43(2), 355–388 (2014)

18. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series
in Mathematics and Its Applications. Oxford University Press, Oxford (2006)

19. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett.
32(4), 299–301 (2004)

(k, n − k)-Max-Cut: An O∗(2p)-Time Algorithm
and a Polynomial Kernel

Saket Saurabh1,2 and Meirav Zehavi3(B)

1 University of Bergen, Bergen, Norway
saket.saurabh@ii.uib.no

2 The Institute of Mathematical Sciences, Chennai, India
saket@imsc.res.in

3 Tel Aviv University, Tel Aviv, Israel
meizeh@post.tau.ac.il

Abstract. Max-Cut is a well-known classical NP-hard problem. This
problem asks whether the vertex-set of a given graph G = (V,E) can be
partitioned into two disjoint subsets, A and B, such that there exist at
least p edges with one endpoint in A and the other endpoint in B. It is
well known that if p ≤ |E|/2, the answer is necessarily positive. A widely-
studied variant of particular interest to parameterized complexity, called
(k, n − k)-Max-Cut, restricts the size of the subset A to be exactly k.
For the (k, n − k)-Max-Cut problem, we obtain an O∗(2p)-time algo-
rithm, improving upon the previous best O∗(4p+o(p))-time algorithm, as
well as the first polynomial kernel. Our algorithm relies on a delicate
combination of methods and notions, including independent sets, depth-
search trees, bounded search trees, dynamic programming and treewidth,
while our kernel relies on examination of the closed neighborhood of the
neighborhood of a certain independent set of the graph G.

1 Introduction

Max-Cut is a widely-studied classical NP-hard problem. Here, the input con-
sists of a graph G and a positive integer p, and the objective is to check whether
there is a cut of size at least p. A cut of a graph is a partition of the vertices of
the graph into two disjoint subsets. The size of the cut is the number of edges
whose endpoints belong to different subsets of the partition. Max-Cut is NP-
hard and has been the focus of extensive study, from the algorithmic perspective
in computer science as well as the extremal perspective in combinatorics.

A problem is fixed-parameter tractable (FPT) with respect to a parameter t
if it can be solved in time O∗(f(t)) for some function f , where O∗ hides factors
polynomial in the input size. In the context of Max-Cut, it is well known that
if p ≤ |E(G)|/2, the answer is necessarily positive. Indeed, given an arbitrary
partition of the vertex-set of G, by repeatedly moving vertices from one subset
of the partition to the other as long as the size of the cut increases, it is easy
to see that one obtains a cut of size at least |E(G)|/2. A variant of particular
interest to parameterized complexity restricts the size of one of the subsets of

c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 686–699, 2016.
DOI: 10.1007/978-3-662-49529-2 51

(k, n − k)-Max-Cut: An O∗(2p)-Time Algorithm and a Polynomial Kernel 687

the partition to be exactly k. More precisely, the problem we consider in this
paper is as follows.
(k, n − k)-Max-Cut Parameters: k, p
Input: An undirected graph G such that |V (G)| = n, and positive integers
k and p.
Question: Does there exist a subset A ⊆ V (G) of size exactly k such that
E(G) contains at least p edges with exactly one endpoint in A?

Related Work. It is well known that Max-Cut is APX-hard [14], and that one
can always obtain a cut of size at least |E(G)|/2 in polynomial time. A break-
through result by Goemans and Williamson [11] gave a 0.878-approximation
algorithm, which is optimal under the Unique Games Conjecture [12]. There
has been extensive study of Max-Cut from the viewpoint of parameterized
complexity [6,7,13,15]. A notable one is the parameterized algorithm for an
above-guarantee version of Max-Cut [7].

The (k, n − k)-Max-Cut problem is a well-known adaptation of Max-Cut
to the realm of parameterized complexity. For this specific variant, there exists a
0.5-approximation algorithm [1], which has been slightly improved in [10], as well
as a parameterized approximation scheme with respect to the parameter k [3].
Note that, with respect to the parameter k, Cai [4] proved that (k, n− k)-Max-
Cut is W[1]-hard. With respect to the parameter p, Bonnet et al. [3] showed
that (k, n − k)-Max-Cut is solvable in time O∗(pp), to which end they first
showed that it is solvable in time O∗(Δk), where Δ is the maximum degree of a
vertex in G. Bonnet et al. [3] also gave an algorithm that solves (k, n−k)-Max-
Cut in time O∗(2tw), where tw is the treewidth of G. Recently, by relying on
a derandomization of the method of random separation [5], Shachnai et al. [16]
showed that (k, n − k)-Max-Cut is solvable in time O∗(

(
p+k

p

)
2o(p)), which, in

particular, implies that it is solvable in time O∗(4p+o(p)).

Our Contribution. Our contribution is twofold. First, we obtain a fast algo-
rithm for (k, n − k)-Max-Cut, which runs in time O∗(2p), thus significantly
improving upon the previous best O∗(4p+o(p))-time algorithm for (k, n − k)-
Max-Cut. Second, we show that (k, n − k)-Max-Cut admits an O(p3

k2)-vertex
kernel, thus obtaining the first polynomial kernel for this problem (with respect
to the parameter p). That is, we present a polynomial-time algorithm that given
an instance (G, k, p) of (k, n − k)-Max-Cut, constructs an equivalent instance
(G′, k, p) of (k, n′−k)-Max-Cut where n′ = O(p3

k2). We note that the analysis of
the kernel is quite intuitive, relying on examination of the closed neighborhood
of the neighborhood of a certain independent set of the graph G (see Sect. 4).

Our O∗(2p)-time algorithm relies on a delicate combination of methods and
notions, including independent sets, depth-search trees, bounded search trees,
dynamic programming and treewidth (see Sect. 3). In case k ≤ p/4, we solve

688 S. Saurabh and M. Zehavi

(k, n − k)-Max-Cut by calling the above mentioned O∗(
(
p+k

p

)
2o(p))-time algo-

rithm, while in case k > p/2, we show that the problem can be solved in an
elegant manner by using a depth-search tree as well as the above mentioned
O∗(2tw)-time algorithm. Then, in case p/4 < k ≤ p/2, we turn to compute a
certain independent set I. In case the size of the neighborhood of I is small,
we show that we can again rely on the O∗(2tw)-time algorithm. Otherwise, we
further distinguish between two cases, which require more careful analysis. First,
if |I| is small, we turn to compute yet another independent set. Otherwise, we
take a divide-and-conquer approach. We partition V (G) into four subsets, A∗,
B∗, C∗ and D∗, where the most “difficult” set among these subsets is A∗, and
the subset that “connects” A∗ to the rest of the graph is B∗. We handle the sub-
set B∗ by using an exhaustive search, thus isolating the subset A∗. Afterwards,
we can handle A∗, C∗ and D∗ by using a somewhat technical procedure that is
based on the method of bounded search trees as well as dynamic programming.

2 Preliminaries

Standard Notation. Given a graph G, let V (G) and E(G) denote its vertex
set and edge set, respectively. Given a vertex v ∈ V (G), let NG(v) and NG[v]
denote the open and closed neighborhoods of v, respectively. Let ΔG denote
the maximum degree of a vertex in G. Given a set U ⊆ V (G), let NG(U) and
NG[U] denote the open and closed neighborhoods of U , respectively. That is,
NG(U) = (

⋃
v∈U NG(v)) \ U and NG[U] = NG(U) ∪ U . Moreover, let G[U]

denote the subgraph of G induced by U . Given a partition (A,B) of V (G), let
EG(A,B) = {{v, u} ∈ E(G) : v ∈ A, u ∈ B}. We omit the subscript G when it
is clear from the context. The definition of treewidth is given in the appendix
(we only use known results that rely on this concept).

Bounded Search Trees: The bounded search trees method is fundamental in
the design of recursive FPT algorithms (see, e.g., [8,9]). In applying this method,
one defines a list of rules. Each rule is of the form Rule X. [condition] action, where
X is the number of the rule in the list. At each recursive call (i.e., a node in the
search tree), the algorithm performs the action of the first rule whose condition
is satisfied. If, by performing an action, the algorithm recursively calls itself at
least twice, the rule is a branching rule; otherwise, it is a reduction rule. We
only consider polynomial-time actions that increase neither the parameter nor
the size of the instance, and decrease at least one of them.

The running time of an algorithm that uses bounded search trees can be ana-
lyzed as follows (see, e.g., [2]). Suppose that the algorithm executes a branching
rule which has � branching options (each leading to a recursive call with the
corresponding parameter value), such that, in the ith branch option, the cur-
rent value of the parameter decreases by bi. Then, (b1, b2, . . . , b�) is called the
branching vector of this rule. We say that α is the root of (b1, b2, . . . , b�) if it is
the (unique) positive real root of xb∗

= xb∗−b1 + xb∗−b2 + · · · + xb∗−b� , where
b∗ = max{b1, b2, . . . , b�}. If r > 0 is the initial value of the parameter, and the

(k, n − k)-Max-Cut: An O∗(2p)-Time Algorithm and a Polynomial Kernel 689

algorithm (a) returns a result when (or before) the parameter is negative, and
(b) only executes branching rules whose roots are bounded by a constant c > 0,
then its running time is bounded by O∗(cr).

Known Results and Simple Observations: Next, we restate known results
and present simple observations relevant to the following sections.

Lemma 1 [3]. (k, n − k)-Max-Cut is solvable in time O∗(2tw).

Given a vertex cover of size vc, it is well known that one can compute (in
polynomial time) a tree decomposition of width at most vc (see, e.g., [9]). Thus,
we obtain the following result.

Corollary 1. Given a vertex cover U of G, (k, n − k)-Max-Cut is solvable in
time O∗(2|U |).

Lemma 2 [16]. (k, n − k)-Max-Cut is solvable in time O∗(
(
p+k

p

)
2o(p)).

In case k ≤ p/4, it holds that O∗(
(
p+k

p

)
2o(p)) = O∗(2p). Thus, we have the

following result.

Corollary 2. In case k ≤ p/4, (k, n− k)-Max-Cut is solvable in time O∗(2p).

Now, observe that to solve (k, n − k)-Max-Cut, one can actually solve (n −
k, k)-Max-Cut. Thus, we can assume that 2k ≤ n. Moreover, if p ≤ Δ and
p + k ≤ n, the input instance is a yes-instance (simply let v denote a vertex
of degree at least p in G, and define the solution A as an arbitrary set of k
vertices that contains v and excludes at least p vertices in N(v)). Thus, we can
also assume that either Δ < p or n < p + k. Lemma 3 in [3] shows that if G
does not contain isolated vertices and p ≤ min{k, n − k}, the input instance is
a yes-instance. Now, let U be the set of isolated vertices in G, and note that
(G, k, p) is a yes-instance if and only if there exists k′ ∈ {k − |U |, . . . , k} such
that (G′ = (V (G)\U,E(G)), k′, p) is a yes-instance. Clearly, we can assume that
|U | < k. Thus, in Sect. 3, at a cost of a factor of O(k) in the running time, we
can assume that k < p. We also get that if there exists k′ ∈ {k − |U |, . . . , k}
such that p ≤ min{k′, n − |U | − k′}, the input instance is a yes-instance. In
particular, if either p ≤ min{k

2 , n − 3k
2 } ≤ min{k − |U |

2 , n − |U | − (k − |U |
2)} or

p ≤ min{k, n − 2k}, the input instance is a yes-instance. The first case allows
us to assume that p > k

2 . Now, if n < 3k, then n < 6p, and no computation
is necessary to obtain the kernel we desire. Thus, the second case allows us to
assume, also in Sect. 4, that k < p. Thus, we have the following assumption.

Assumption 3. From now on, we can assume that 2k ≤ n, either Δ < p or
n < p + k, and k < p.

Finally, observe that if n < p + k, then n < 2p, and no computation is
necessary to obtain a kernel of the size we desire. Thus, we further have the
following assumption.

Assumption 4. In Sect. 4, we can assume that max{k,Δ} < p.

690 S. Saurabh and M. Zehavi

3 An Algorithm for (k, n − k)-Max-Cut

In this section, we prove the following result.

Theorem 5. (k, n − k)-Max-Cut is solvable in time O(2p · poly(p) + pn).

To obtain this result, we first apply the kernelization algorithm in Sect. 4,
which runs in time O(pn), after which we have that O∗(2p) = O(2p · poly(p)).
Thus, it is next sufficient to show that (k, n − k)-Max-Cut is solvable in time
O∗(2p), to which end we follow the overview given in the introduction. We start
by handling the case where k > p/2 via examination of a depth-first spanning
tree (Lemma 6).

Lemma 6. The (k, n − k)-Max-Cut problem, restricted to instances where
k > p/2, is solvable in time O∗(2p).

Proof. Compute a depth-first spanning tree for each connected component of G.
It is well known that if there is a back edge that “stretches” a distance greater
than p, we can compute (in polynomial time) a path P in G on p+1 vertices, and
otherwise we can compute (in polynomial time) a tree decomposition of width
at most p (see, e.g., [9]). By Lemma 1, (k, n − k)-Max-Cut is solvable in time
O∗(2tw). Thus, we can next focus on the case where we have a path P on p + 1
vertices.

Denote V (P) = {v1, v2 . . . , vp+1}, where {vi−1, vi} ∈ E(P) for all 2 ≤ i ≤ p.
If p is an even number, let UA = {v2, v4, . . . , vp} and UB = {v1, v3, . . . , vp+1},
and otherwise let UA = {v2, v4, . . . , vp+1} and UB = {v1, v3, . . . , vp}. Note that
k ≥ �p+1

2 � (since k > p/2), as well as n ≥ 2k (Assumption 3). Therefore,
|V (G) \ V (P)| = n − |UA| − |UB | ≥ 2k − |UA| − �p+1

2 � ≥ k − |UA|. Moreover,
|UA| = �p

2� ≤ k. Thus, we can choose an arbitrary set, S, of k − |UA| elements
from V (G)\V (P). Denote A = UA∪S. Observe that A is computed in polynomial
time. Moreover, |A| = k, and every edge in E(P) connects a vertex in UA ⊆ A
to a vertex in UB ⊆ V (G) \ A. Since |E(P)| = p, set A is a solution. 	

Thus, by Corollary 2 and Lemma 6, we can next focus on the case where
p/4 < k ≤ p/2, as stated in the following assumption.

Assumption 7. From now on, we can assume that p/4 < k ≤ p/2.

To handle this case, we rely on the following construction of an independent
set I. Initially, let I be an empty set. Then, as long as there is a vertex in
V (G) without any neighbor in I, insert into I such a vertex of maximum degree.
Clearly, at the end of this process, I is a maximal independent set (in particular,
V (G) = N [I]). We consider three subcases that cover the case where p/4 < k ≤
p/2, and prove that each of them is solvable in time O∗(2p). Thus, we overall
conclude that Theorem 5 is correct. For the sake of clarity of presentation, each
subcase is presented in a separate subsection.

(k, n − k)-Max-Cut: An O∗(2p)-Time Algorithm and a Polynomial Kernel 691

3.1 The Subcase where |N(I)| ≤ p

Since I is a maximal independent set, N(I) is a vertex cover. Thus, by Corol-
lary 1, (k, n − k)-Max-Cut is solvable in time O∗(2|N(I)|). In this subcase,
|N(I)| ≤ p, and thus we have that (k, n − k)-Max-Cut is solvable in time
O∗(2p).

3.2 The Subcase where |N(I)| > p and |I| ≤ k

Since |N(I)| > p, there are more than p edges in E(I,N(I)). As long as |I| < k
and there is a vertex that can be added to I such that |E(I,N(I))| remains
greater than or equal to p, we add such a vertex. Let U be the set obtained at
the end of this process. If |U | = k, we are done (U is a solution). Thus, we next
assume that |U | < k. Observe that V (G) = N [U].

If every vertex in N(U) has at least four neighbors in U , then we can
choose an arbitrary set, S, of k vertices from N(U), and S will be a solution
(since |E(S,N(S))| ≥ 4|S| = 4k and, by Assumption 7, 4k > p). Therefore,
we next assume that there is a vertex in N(U) with at most three neighbors
in U . Since the above process did not insert this vertex into U , we have that
p ≤ |E(U,N(U))| ≤ p + 2.

Compute (in polynomial time) a maximal independent set, I∗, of G[N(U)].
Note that U ∪ (N(U) \ I∗) is a vertex cover. Thus, if |U ∪ (N(U) \ I∗)| ≤ p, we
can solve the problem in time O∗(2p) by using the idea described in Sect. 3.1.
Now, assume that |U ∪ (N(U) \ I∗)| ≥ p + 1. Since I∗ is a maximal independent
set of G[N(U)], every vertex in N(U) \ I∗ has at least one neighbor in I∗.
Therefore, since every vertex in N(U) \ I∗ could not have been added to U ,
we have that every vertex in N(U) \ I∗ has at least two neighbors in U . This

implies that |N(U) \ I∗| ≤ |E(U,N(U))|
2

≤ p + 2
2

, which, in turn, implies that

|U ∪ (N(U) \ I∗)| ≤ (k − 1) + p+2
2 . Since k ≤ p/2 (Assumption 7), we get that

|U ∪ (N(U) \ I∗)| ≤ p, which is a contradiction.

3.3 The Subcase where |N(I)| > p and |I| > k

To handle this subcase, we take a divide-and-conquer approach. Let A∗ be the
set that contains the first k vertices that were inserted into I, B∗ = N(A∗),
C∗ = I \ A∗, and D∗ = N(C∗) \ B∗. Clearly, (A∗, B∗, C∗,D∗) is a partition of
V (G). If the set A∗ is a solution, we are done. Thus, we can next assume that
|E(A∗, B∗)| < p, which implies that |B∗| < p and that there is a vertex in A∗

of degree smaller than p/k. By the construction of I, we have that the degree of
each vertex in C∗ ∪ D∗ is smaller than p/k. A rough sketch of this situation is
illustrated in Fig. 1.

Now, in a sense, we would like to “isolate” A∗ from C∗ ∪ D∗ by deciding
the “roles” of all of the vertices in B∗ (i.e., for each vertex in B∗, we would
like to know whether we should insert it into the solution we shall attempt to
construct). To this end, we iterate over every subset of B∗ of size at most k.

692 S. Saurabh and M. Zehavi

Fig. 1. The partition (A∗, B∗, C∗, D∗) of V (G).

Next, consider some iteration, corresponding to a subset B′ ⊆ B∗. Informally,
B′ aims to capture exactly the vertices in B∗ that should be inserted into the
desired solution.

We concisely present the bounded search tree-based procedure we use to solve
the subcase (recall that the method of bounded search trees was explained in
Sect. 2). We first give a subroutine based on dynamic programming that is used
by this procedure. The subroutine is summarized in the following result.

Lemma 8. Let UA and UB be disjoint subsets of A∗ ∪ C∗ ∪ D∗ such that
G[V (G) \ (B∗ ∪ UA ∪ UB)] is a graph of maximum degree at most 2. Denote
X = B′ ∪ UA. Then, there is a polynomial-time subroutine that accepts the
input if and only if there exists a solution that contains X and is disjoint from
(B∗ \ B′) ∪ UB.

Proof. Observe that the set of connected components of G[V (G) \ (B∗ ∪ UA ∪
UB)], C = {C1, C2, . . . , C|C|}, consists only of simple cycles and paths (an
isolated vertex is treated as a simple path). For each component Ci ∈ C,
denote V (Ci) = {vi

1, v
i
2, . . . , v

i
|V (Ci)|} such that {vi

j−1, v
i
j} ∈ E(Ci) for all

j ∈ {2, . . . , |V (Ci)|}. Furthermore, let V (C>i) = V (Ci+1) ∪ · · · ∪ V (C|C|), and
given j ∈ {1, . . . , |V (Ci)|}, denote V (C>j

i) = {vi
j+1, v

i
j+2, . . . , v

i
|V (Ci)|}

We use a matrix M with an entry [k′, i, j, bfirst , bnext] for all k′ ∈ {0, . . . , k −
|X|}, i ∈ {1, . . . , |C|}, j ∈ {1, . . . , |V (Ci)|}, and bfirst , bnext ∈ {0, 1} such that if
j = |V (Ci)|, then bnext = 0. Such an entry should store the maximum value
|E(A,B)| of a cut (A,B) that satisfies the following conditions, where an unde-
fined entry has value −∞.

• |A| = |X| + k′.
• X ⊆ A, and (B∗ \ B′) ∪ UB ∪ V (C>i) ∪ V (C>j+1

i) ⊆ B.
• vi

1 ∈ A ⇔ bfirst = 1, and vi
j+1 ∈ A ⇔ bnext = 1.

The computation of the matrix M is straightforward. For the sake of complete-
ness, we present the formulas below; correctness can be verified by standard

(k, n − k)-Max-Cut: An O∗(2p)-Time Algorithm and a Polynomial Kernel 693

induction on the order of computation. Having computed M, the subroutine
accepts if and only if p ≤ max

bfirst ,bnext∈{0,1}
{M[k − |X|, |C|, |V (C|C|)|, bf , bn]}.

Base Cases: i = j = 1.

• M[0, 1, 1, 0, 0] ← |E(X,V (G) \ X)|.
• M[1, 1, 1, 1, 0] ← |E(X ∪ {v1

1}, V (G) \ (X ∪ {v1
1}))|.

• |V (C1)| ≥ 2: M[1, 1, 1, 0, 1] ← |E(X ∪ {v1
2}, V (G) \ (X ∪ {v1

2}))|.
• |V (C1)|, k−|X|≥2: M[2, 1, 1, 1, 1] ← |E(X∪{v1

1 , v
1
2}, V (G)\(X∪{v1

1 , v
1
2}))|.

• Otherwise: M[k′, 1, 1, bf , bn] ← −∞.

Next, we denote w(v, Y) = |N(v)\(X∪Y)|−|N(v)∩(X∪Y)| and w(v) = w(v, ∅).

Steps: i > 1 or j > 1.

• j = 1: M[k′, i, 1, bf , bn] ←
max

b∈{0,1}
{M[k′ − bf − bn, i − 1, |V (Ci−1)|, b, 0] + t}, where

– bf = bn = 0: t = 0.
– bf = 1 and bn = 0: t = w(vi

1).
– |V (Ci)| ≥ 2, bf = 0 and bn = 1: t = w(vi

2).
– |V (Ci)| ≥ 2 and bf = bn = 1: t = w(vi

1) + w(vi
2) − 2.

– Otherwise: t = −∞.
• j ≥ 2:

– M[k′, i, j, bf , 0] ← max{M[k′, i, j − 1, bf , 0],M[k′, i, j − 1, bf , 1]}.
– |V (Ci)| ≥ j + 1: M[k′, i, j, 0, 1] ←

max{M[k′−1, i, j−1, 0, 0]+w(vi
j+1),M[k′−1, i, j−1, 0, 1]+w(vi

j+1, {vi
j})}.

– |V (Ci)| ≥ j + 1: M[k′, i, j, 1, 1] ←
max{M[k′−1, i, j−1, 1, 0]+w(vi

j+1,{vi
1}),M[k′−1, i, j−1, 1, 1]+w(vi

j+1,{vi
1,v

i
j})}.

Observe that the decision of the subroutine is computed in polynomial time by
calculating the entries of M in lexicographic order of the pair (i, j). 	

We proceed by developing MaxCut(G, k, p,A∗, B∗, C∗,D∗, B′, UA, UB), our
bounded search tree-based procedure, where UA and UB are disjoint subsets of
A∗ ∪C∗ ∪D∗. Recall that X = B′∪UA. Since UA and UB are the only arguments
changed during the execution, we use the abbreviation MaxCut(UA, UB). At the
first call, UA = UB = ∅. The measure is k − |X|. We will ensure that once the
measure drops to a non-positive value, MaxCut returns a decision in polynomial
time (see Rule 1), and that the following claim is correct.

Lemma 3. MaxCut accepts if and only if there is a solution that contains X
and is disjoint from (B∗ \B′)∪UB. Moreover, if k ≥ p/3, MaxCut performs only
reduction rules; otherwise, MaxCut performs either reduction rules or branching
rules associated with roots smaller than 2.31.

694 S. Saurabh and M. Zehavi

In case k ≥ p/3, for each subset of B∗, we perform a polynomial-time com-
putation (see Lemma 3). Recall that |B∗| < p. Thus, in case k ≥ p/3, the
overall running time is bounded by O∗(2|B∗|) = O∗(2p). Otherwise, for each
subset B′ ⊆ B∗ such that |B′| ≤ k, Lemma 3 and the discussion in Sect. 2 imply
the the running time is bounded by 2.31k−|B′| (since, initially, the measure is
k−|B′|). Thus, in case k < p/3, we get that the overall running time is bounded
by the following expression:

O∗(
∑

B′⊆B∗ s.t. |B′|≤k

2.31k−|B′|)

= O∗(
p/3∑

t=0

(
p

t

)

· 2.31p/3−t)

= O∗
(

max
0≤α≤1/3

{
(

p

αp

)

· 2.31(1/3−α)p}
)

= O∗
(

(max
0≤α≤1/3

{ 2.311/3−α

αα · (1 − α)1−α
})p

)

= O∗(2p).

Observe that the first equality follows from the fact that k < p/3, and the
third equality follows from Stirling’s formula. Now, at the fourth formula, the
maximum is obtained at α ∼= 0.3021, where the value of the expression is bounded
by O∗(1.8942p); for our purpose, it is sufficient to state that the expression is
bounded by O∗(2p).

Thus, it remains to give the list of rules of MaxCut(UA, UB), and prove that
they indeed satisfy the properties mentioned in Lemma 3.

Reduction Rule 1 [|X| ≥ k]
If |X| = k and |E(X,V (G) \ X)| ≥ p, accept; otherwise, reject.

If |X| ≥ k, then if there exists a solution that contains X, it is necessarily
X (since the size of a solution is exactly k), which means that |X| = k and
|E(X,V (G) \ X)| ≥ p. Moreover, the rule is performed in polynomial time.
Thus, we preserve the correctness of Lemma 3. Note that this rule ensures that
once the measure drops to (or below) 0, MaxCut returns an answer.

Reduction Rule 2 [V (G) = B∗ ∪ UA ∪ UB]
Reject.

Since Rule 1 was not applied, |X| < k. Thus, by the condition of this rule, there
is no solution that contains X and is disjoint from (B∗ \ B′) ∪ UB (there are
simply no vertices outside X ∪ B∗ ∪ UB that can be added to X to obtain a
solution). The rule is performed in polynomial time, and thuse it preserves the
correctness of Lemma 3.

(k, n − k)-Max-Cut: An O∗(2p)-Time Algorithm and a Polynomial Kernel 695

Reduction Rule 3 [G[V (G) \ (B∗ ∪ UA ∪ UB)] is a graph of maximum degree
at most 2]
Use the subroutine in Lemma 8 to decide whether to accept or reject.

In the context of this rule, the preservation of the correctness of Lemma 3 follows
directly from Lemma 8.

Recall that we have shown that the degree of each vertex in C∗ ∪ D∗ is smaller
than p/k, which implies that, if k ≥ p/3, the degree of each vertex in C∗ ∪ D∗

is at most 2. Therefore, if k ≥ p/3, the condition of Rule 3 is necessarily
true. That is, for the following rules, it is sufficient to preserve the correctness
of the following claim.

Lemma 4. MaxCut accepts if and only if there is a solution that contains X and
is disjoint from (B∗ \ B′) ∪ UB. Moreover, besides Rules 1–3, MaxCut consists
only of reduction rules and branching rules associated with roots smaller than
2.31.

Define w(v) = |N(v)\X|−|N(v)∩X| for each vertex v ∈ V (G) \ (B∗ ∪ UA ∪ UB).
Let v∗ be a vertex that maximizes w(v∗). Recall that B∗ = N(A∗) and k ≥ p/4
(Assumption 7), and that the degree of each vertex in C∗ ∪ D∗ is smaller than
p/k. Therefore, |N(v∗) \ (B∗ ∪ UA ∪ UB)| ≤ 3.

Reduction Rule 4 [N(v∗) \ (B∗ ∪ UA ∪ UB) = ∅]
Return MaxCut(UA ∪ {v∗}, UB).

To prove the correctness of Lemma 4, we need to show that if there is a solution
A that contains X and is disjoint from (B∗ \ B′) ∪ UB ∪ {v∗}, then there is a
solution A′ that contains X ∪ {v∗} and is disjoint from (B∗ \ B′) ∪ UB. Now,
suppose that such a solution A exists. Let x be a vertex in A \ X (since Rule 1
was not applied, A\X �= ∅). Denote A′ = (A\{x})∪{v∗}. Due to the condition
of this rule, |E(A′, V (G) \ A′)| ≥ |E(A, V (G) \ A)| + w(v∗) − w(x). Thus, by the
choice of v∗, |E(A′, V (G) \ A′)| ≥ p.

Branching Rule 5. [N(v∗) \ (B∗ ∪ UA ∪ UB) = {v}]
Accept if and only if at least one of the following branches accepts.

1. MaxCut(UA ∪ {v∗}, UB).
2. MaxCut(UA ∪ {v}, UB ∪ {v∗}).

The branching vector is (1, 1) (in each branch, |UA| increases by 1), whose root is
2. By the definition of the branches, if there is a solution A that contains X∪{v∗}
(resp. X ∪{v}) and is disjoint from (B∗ \B′)∪UB (resp. (B∗ \B′)∪UB ∪{v∗}),
it is examined in the first (resp. second) branch. Thus, to prove the correctness
of Lemma 4, it is sufficient to show that if there is a solution A that contains
X and is disjoint from (B∗ \ B′) ∪ UB ∪ {v∗, v}, then there is a solution A′ that
contains X ∪{v∗} and is disjoint from (B∗ \B′)∪UB . By letting x be a vertex in
A \ X, the correctness of this claim follows from the arguments given in Rule 4.

696 S. Saurabh and M. Zehavi

Branching Rule 6. [N(v∗) \ (B∗ ∪ UA ∪ UB) = {v, u}]
Accept if and only if at least one of the following branches accepts.

1. MaxCut(UA ∪ {v∗}, UB).
2. MaxCut(UA ∪ {v, u}, UB ∪ {v∗}).

The branching vector is (1, 2) (in the first branch, |UA| increases by 1, and in the
second branch, it increases by 2), whose root is smaller than 2. By the definition
of the branches, to prove the correctness of Lemma 4, it is sufficient to show that
if there is a solution A that contains X and at most one vertex from {v, u}, and
is disjoint from (B∗ \ B′) ∪ UB ∪ {v∗}, then there is a solution A′ that contains
X ∪{v∗} and is disjoint from (B∗ \B′)∪UB . Now, suppose that such a solution
A exists. If A ∩ {v, u} �= ∅, let x be the vertex in A ∩ {v, u}, and otherwise let
x be a vertex in A \ X. Observe that A \ {x} does not contain any vertex from
N(v∗) \ (B∗ ∪ UA ∪ UB)). Thus, the correctness of the claim follows from the
arguments given in Rule 4.

Branching Rule 7. [N(v∗) \ (B∗ ∪ UA ∪ UB) = {v, u, r}]
Accept if and only if at least one of the following branches accepts.

1. MaxCut(UA ∪ {v∗}, UB).
2. MaxCut(UA ∪ {v, u}, UB ∪ {v∗}).
3. MaxCut(UA ∪ {v, r}, UB ∪ {v∗}).
4. MaxCut(UA ∪ {u, r}, UB ∪ {v∗}).

Recall that |N(v∗) \ (B∗ ∪ UA ∪ UB)| ≤ 3, and therefore this rule handles all
of the cases that were not handled by previous rules. The branching vector is
(1, 2, 2, 2) (in the first branch, |UA| increases by 1, and in each of the other three
branches, it increases by 2), whose root is smaller than 2.31. By the definition of
the branches, to prove the correctness of Lemma 4, it is sufficient to show that if
there is a solution A that contains X and at most one vertex from {v, u, r}, and
is disjoint from (B∗ \ B′) ∪ UB ∪ {v∗}, then there is a solution A′ that contains
X ∪{v∗} and is disjoint from (B∗ \B′)∪UB . Now, suppose that such a solution
A exists. If A ∩ {v, u, r} �= ∅, let x be the vertex in A ∩ {v, u, r}, and otherwise
let x be a vertex in A \ X. Again, A \ {x} does not contain any vertex from
N(v∗) \ (B∗ ∪ UA ∪ UB)). Thus, the correctness of the claim follows from the
arguments given in Rule 4.

4 Kernel

In this section, we prove that (k, n − k)-Max-Cut admits a polynomial kernel.
To this end, let I be the empty set. As long as both |I| < p and there is a vertex in
V (G) without any neighbor in I, insert into I such a vertex of maximum degree.
Clearly, at the end of this process, which can be performed in time O(pn), I
is an independent set of size at most p. We denote I = {v1, v2, . . . , v|I|}, such
that for all 2 ≤ i ≤ |I|, vi−1 was inserted before vi into I. Moreover, we denote

M = p + � p
k � · p + �

� p
k � · p

k
� · p, and proceed by proving two claims. Recall that

in this section, we rely on Assumption 4 (i.e., max{k,Δ} < p).

(k, n − k)-Max-Cut: An O∗(2p)-Time Algorithm and a Polynomial Kernel 697

Observation 9. If n > M , then either |I| = p or the input is solvable in time
O(pn).

Proof. Recall that |I| ≤ p, and suppose that n > M . If |I| < p, then the
construction of I implies that V (G) = N [I]. First, suppose that |I| < k. Then,
let Ĩ denote the set I to which we add k − |I| vertices arbitrarily chosen from
N(I). If |N(Ĩ)| ≥ p, then the set Ĩ is a solution, and we are done. Thus, next
suppose that this is not the case. Then, n = |N [I]| < |Ĩ| + |N(Ĩ)| < k + p < M ,
which is a contradiction. Now, suppose that k ≤ |I| < p. If

∑k
i=1 |N(vi)| ≥ p,

then the set {v1, v2, . . . , vk} is a solution, and we are done. Thus, next suppose
that

∑k
i=1 |N(vi)| ≤ p−1. The construction of I implies that |N(vi−1)| ≥ |N(vi)|

for every i ∈ {2, 3, . . . , |I|}. Therefore, |N(vi)| < p/k for every i ∈ {k, . . . , p}.
We get that n = |N [I]| ≤ |I| +

∑k
i=1 |N(vi)| +

∑p
i=k+1 |N(vi)| < (p − 1) + (p −

1) + (p/k)(p − k) < M , which is a contradiction. 	

Lemma 10. If |N [N [I]]| > M , then the input is solvable in time O(pn).

Proof. By Observation 9, |I| = p. Let Ĩ denote an arbitrary subset of � p
k �k

vertices from I, and let I1, I2, . . . , I� p
k 	 be a partition of Ĩ into subsets of k

vertices. Moreover, if � p
k � �= � p

k �, let I
 p
k � be the set of vertices in I \ Ĩ to which

we add k − |I \ Ĩ| other vertices arbitrarily chosen from I (since |I| = p > k,
I
 p

k � is well-defined). If there exists i ∈ {1, 2, . . . , � p
k �} such that |N(Ii)| ≥ p, we

are done (the set Ii is a solution). Therefore, we next assume that this is not the
case, which implies that |N(I)| ≤

∑
 p
k �

i=1 |N(Ii)| < � p
k �p.

Next, let Ñ denote an arbitrary subset of � |N(I)|
k �k vertices from N(I), and

let N1, N2, . . . , N� p
k 	 be a partition of Ñ into subsets of k vertices. Moreover,

if � |N(I)|
k � �= � |N(I)|

k �, let N
 |N(I)|
k � be the set of vertices in N(I) \ Ñ to which

we add k − |N(I) \ Ñ | other vertices arbitrarily chosen from I. If there exists
i ∈ {1, 2, . . . , � |N(I)|

k �} such that |N(Ni)| ≥ p, we are done (the set Ni is a
solution). Therefore, we next assume that this is not the case, which implies

that |N(N(I))| ≤
∑
 |N(I)|

k �
i=1 |N(Ni)| < � |N(I)|

k �p = �
� p

k �p
k

�p.

Overall, we have that |N [N [I]]| ≤ |I| + |N(I)| + |N(N(I))| < p + � p
k �p +

�
� p

k �p
k

�p = M , which concludes the correctness of the lemma. 	

We are now ready to compute the kernel.

Theorem 11. (k, n − k)-Max-Cut admits an O(
p3

k2
)-vertex kernel, which can

be computed in time O(pn).

Proof. Assume that n > M , since otherwise we can just return the input
instance. By Observation 9 and Lemma 10, we can further assume that |I| = p
and |N [N [I]]| ≤ M . If |N [N [I]]| ≥ k + p, let S = N [N [I]], and otherwise let

698 S. Saurabh and M. Zehavi

S = N [N [I]] ∪ X, where X is an arbitrary set of k + p − |N [N [I]]| vertices from
V (G) \ N [N [I]] (since n > M > 2p ≥ k + p, such a choice is possible). Since

|S| ≤ M = O(
p3

k2
), it is sufficient to show that (G[S], k, p) is a yes-instance if

and only if (G, k, p) is a yes-instance. Clearly, since G[S] is a subgraph of G, the
forward direction is correct.

Now, we prove the reverse direction. We can assume that there is no isolated
vertex in I, else it is immediate that the claim holds (by the choice of I). Suppose
that (G, k, p) has a solution, and let A be a solution that maximizes A ∩ N [I].
If |A ∩ N [I]| = k (i.e., A ⊆ N [I]), then A is a solution for (G[S], k, p) (since
N [A] ⊆ S), and we are done. Thus, we next suppose that |A ∩ N [I]| < k,
and show that this supposition leads to a contradiction. First, this supposition
implies that there is a vertex v in A\N [I]. By our choice of A, we cannot replace
v by a vertex in N [I] \ A and obtain a solution for (G, k, p). However, by the
construction of I, the degree of every vertex in I is at least as large as the degree
of every vertex in V (G) \ N [I]. Therefore, every vertex in I either belongs to A
or has at least one neighbor that belongs to A. That is, I ⊆ N [A].

Initialize A∗ to be A∩N(I) (note that I\A ⊆ N(A∗)). Then, |A∗| < k−|A∩I|.
As long as |A∗| < k and there is a vertex u ∈ I without a neighbor in A∗, add
to A∗ a vertex from N(u). At the end of this process, every vertex in I has a
neighbor that belongs to A∗ (since initially it was true that |A∗| < k − |A ∩ I|).
Moreover, by the construction of A∗, A∗ ∩ I = ∅. If at the end of this process
|A∗| < k, insert k − |A∗| additional vertices arbitrarily chosen from S \ I into
A∗ (since |S| ≥ k + p, this is possible). Thus, |A∗| = k and |N(A∗)| ≥ |I| = p.
Observe that A∗ ⊆ N [I], while A \ N [I] �= ∅. We get that A∗ is a solution for
(G[S], k, p) (and therefore it is a solution for (G, k, p)) such that |A ∩ N [I]| <
|A∗ ∩ N [I]|. This is a contradiction to the choice of A. 	

Appendix

Treewidth: A tree decomposition of a graph G is a pair (D,β), where D is a
rooted tree and β : V (D) → 2V (G) is a mapping that satisfies the following
conditions.

• For each vertex v ∈ V (G), the set {d ∈ V (D) : v ∈ β(d)} induces a nonempty
and connected subtree of D.

• For each edge {v, u} ∈ E(G), there exists d ∈ V (D) such that {v, u} ⊆ β(d).

The set β(d) is called the bag at d, and the width of (D,β) is the size of the
largest bag minus one (i.e., maxd∈V (D) |β(d)| − 1). The treewidth of G, twG, is
the minimum width among all possible tree decompositions of G.

(k, n − k)-Max-Cut: An O∗(2p)-Time Algorithm and a Polynomial Kernel 699

References

1. Ageev, A.A., Sviridenko, M.: Approximation algorithms for maximum coverage
and max cutwith given sizes of parts. In: IPCO, pp. 17–30 (1999)

2. Binkele-Raible, D.: Amortized analysis of exponential time and parameterized algo-
rithms: Measure & conquer and reference search trees. Ph.D. thesis, Universität
Trier (2010)

3. Bonnet, E., Escoffier, B., Paschos, V.T., Tourniaire, E.: Multi-parameter analy-
sis for local graph partitioning problems: using greediness for parameterization.
Algorithmica 71(3), 566–580 (2015)

4. Cai, L.: Parameter complexity of cardinality constrained optimization problems.
Comput. J. 51(1), 102–121 (2008)

5. Cai, L., Chan, S.M., Chan, S.O.: Random separation: a new method for solv-
ing fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A.
(eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

6. Crowston, R., Gutin, G., Jones, M., Muciaccia, G.: Maximum balanced subgraph
problem parameterized above lower bound. Theor. Comput. Sci. 513, 53–64 (2013)

7. Crowston, R., Jones, M., Mnich, M.: Max-cut parameterized above the Edwards-
Erdős bound. Algorithmica 72(3), 734–757 (2015)

8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Saurabh, S.: Parameterized Algorithms. Springer, Switzerland (2015)

9. Downey, R.G., Fellows, M.: Fundamentals of Parameterized Complexity. Springer,
London (2013)

10. Feige, U., Langberg, M.: Approximation algorithms for maximization problems
arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
42(6), 1115–1145 (1995)

12. Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs? SICOMP 37(1), 319–357 (2007)

13. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999)

14. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)

15. Raman, V., Saurabh, S.: Improved fixed parameter tractable algorithms for two
“edge” problems: MAXCUT and MAXDAG. Inf. Process. Lett. 104(2), 65–72
(2007)

16. Shachnai, H., Zehavi, M.: Parameterized algorithms for graph partitioning prob-
lems. In: WG, pp. 384–395 (2014)

Independent Set of Convex Polygons:
From nε to 1 + ε via Shrinking

Andreas Wiese(B)

Max Planck Institute for Computer Science, Saarbrücken, Germany
awiese@mpi-inf.mpg.de

Abstract. In the Independent Set of Convex Polygons problem we are
given a set of weighted convex polygons in the plane and we want to
compute a maximum weight subset of non-overlapping polygons. This is
a very natural and well-studied problem with applications in many dif-
ferent areas. Unfortunately, there is a very large gap between the known
upper and lower bounds for this problem. The best polynomial time
algorithm we know has an approximation ratio of nε and the best known
lower bound shows only strong NP-hardness.

In this paper we close this gap completely, assuming that we are
allowed to shrink the polygons a little bit, by a factor 1 − δ for an
arbitrarily small constant δ > 0, while the compared optimal solution
cannot do this (resource augmentation). In this setting, we improve the
approximation ratio from nε to 1 + ε which matches the above lower
bound that still holds if we can shrink the polygons.

1 Introduction

Maximum Weight Independent Set of Convex Polygons (MWISCP) is a natural
but algorithmically very challenging problem. We are given a set of weighted
convex polygons P in the plane and our goal is to select a subset P ′ ⊆ P
such that the polygons in P ′ are pairwise non-overlapping. The objective is to
maximize the total weight of the selected polygons. The problem and its special
cases arise in many settings such as map labeling [5,12,23], cellular networks [11],
unsplittable flow [6,8], chip manufacturing [18], or data mining [16,20,21].

On the one hand, the best known polynomial time approximation algorithm
for the problem has an approximation ratio of nε [15]. On the other hand, the
best complexity result shows only strong NP-hardness [14,19] which leaves an
enormous gap. Even more, there is a QPTAS [3,17] which suggests that much
better polynomial time approximation results are possible.

When dealing with a very difficult problem it is useful to first study simplified
settings or relaxations of the original question in order to gain understanding.
In this paper, we consider a relaxation of MWISCP in which we are allowed to
shrink the input polygons slightly while the compared optimal solution cannot
do this: we assume that there is a small constant δ > 0 such that we can shrink
each polygon by a factor 1 − δ and the new polygon lies in the center of the
original one (see Fig. 1). The reader may think of editing the polygons in a
c© Springer-Verlag Berlin Heidelberg 2016
E. Kranakis et al. (Eds.): LATIN 2016, LNCS 9644, pp. 700–711, 2016.
DOI: 10.1007/978-3-662-49529-2 52

Independent Set of Convex Polygons: From nε to 1 + ε via Shrinking 701

vector graphics program like Adobe InDesign or Inkscape and shrinking them
by dragging two opposite corners of their respective bounding boxes slightly
towards the center point. This yields the Maximum Weight Independent Set of
δ-Shrinkable Convex Polygons problem (δ-MWISCP).

We believe that allowing to shrink the input polygons does not change the
nature of the problem very much and, thus, insights for δ-MWISCP can be useful
for the general case as well. Also, in many applications it is justified to shrink
the input objects slightly without losing much benefit, e.g., in map labeling.

1.1 Our Contribution

We present a (1 + ε)-approximation algorithm for δ-MWISCP. This generalizes
a previous result for the special case of axis-parallel rectangles [1] to the much
larger class of arbitrary convex polygons. Thus, we show that if we are allowed
to shrink the input polygons by a little bit then we can improve the best known
approximation ratio from nε to 1 + ε. This is the best possible result since
δ-MWISCP is NP-hard, even for unit squares [1].

Core of our reasoning is that there exists a (1 + ε)-approximative shrunk
solution for which there is a special cut sequence. This sequence recursively cuts
the input plane into smaller and smaller pieces until each piece either coincides
with a polygon from the solution (i.e., the polygon is “cut out”) or it has empty
intersection with all polygons from this solution. Importantly, each piece aris-
ing in this sequence and each recursive cut has only constant complexity, i.e.,
a constant number of vertices and edges. This allows us to design a dynamic
program that recursively guesses the above cut sequence and then outputs the
corresponding (1 + ε)-approximative shrunk solution.

A key difficulty when approximating independent set in the geometric setting
is that the input objects can have very different angles. Note that for indepen-
dent set of axis-parallel rectangles there is a polynomial time O(log n/ log log n)-
approximation algorithm [10] but for straight line segments (with possibly very
different angles) we know only an nε-approximation [15]. Also in our argumenta-
tion we need to control the angles of the polygons, or more precisely the angles
of the polygon’s edges with an underlying grid that guides the construction of
our cut sequence. We need that these angles are bounded away from π/2. To
achieve this we give our grid a random rotation. We are not aware of any prior
work in which a randomly rotated grid was used and in our setting it turns out
to be exactly the right tool to address one of our key difficulties.

1.2 Other Related Work

Many cases of geometric independent set have been studied, being distin-
guished by the types of the arising input objects. For axis-parallel squares of
arbitrary sizes there is a PTAS due to Erlebach et al. [13]. For axis-parallel
rectangles Chan and Har-Peled presented a O(log n/ log log n)-approximation
algorithm [10], improving on several previously known O(log n)-approximation

702 A. Wiese

sr(P)

width(P)

(1 − δ)width(P)
width(P ′)

(1 − δ)width(P ′)

P
P ′

sr(P ′)
mid(P) mid(P ′)

Fig. 1. The outer black lines denote the boundaries of the input polygons P and P ′.
The gray areas denote their shrunk counterparts sr(P) and sr(P ′). The dashed lines
denote the rectangular bounding box of P ′ (for P the polygon and its rectangular
bounding box coincide).

algorithms [5,7,20,22]. In the unweighted case there is even a O(log log n)-
approximation by Chalermsook and Chuzhoy [9]. For arbitrary curves in the
plane Fox and Pach give an nε-approximation, assuming that any two curves
intersect only O(1) times [15]. This improves and generalizes an earlier n1/2+o(1)-
approximation due to Agarwal and Mustafa for straight line segments [4].

Going beyond polynomial time results, for independent set of arbitrary poly-
gons there is a QPTAS [3,17], i.e., a (1+ε)-approximation with a running time of
n(log n)Oε(1)

, building on an earlier QPTAS for axis-parallel rectangles [2]. This
implies that all the above problems are not APX-hard, unless it is true that
NP ⊆ DTIME(npoly(log n)).

2 Shrinking Model and Preliminaries

We assume that there is a value N ∈ N such that each of the n given input
polygons Pi ∈ P is specified by vertices vi,1, vi,2, ... ∈ {0, ..., N}2 and a weight
wi ∈ N. For each polygon P ∈ P we define its midpoint mid(P) to be the centroid
of its rectangular bounding box, see Fig. 1. For any two points p, p′ we define
by �(p, p′) the line segment connecting p and p′ and we define dist(p, p′) :=
‖�(p, p′)‖2. In our shrinking model for each polygon Pi ∈ P we define a new
polygon sr(Pi) defined by vertices v′

i,1, v
′
i,2, ... such that v′

i,k ∈ �(vi,k,mid(P))
for each k and such that dist(mid(P), v′

i,k) = (1 − δ)dist(mid(P), vi,k). Observe
that if P is convex then sr(P) ⊆ P and also sr(P) is convex.

In δ-MWISCP our task is to compute a set of polygons P ′ ⊆ P such that
for any two polygons P, P ′ ∈ P ′ we have that sr(P) and sr(P ′) are disjoint. We
compare the value of our (almost feasible) solution to the value of an optimal
feasible solution OPT(P) ⊆ P which can not shrink the polygons, i.e., with the
property that P ∩ P ′ = ∅ for any two polygons P, P ′ ∈ OPT(P). Thus, an α-
approximation algorithm for δ-MWISCP computes a solution P ′ ⊆ P such that
w(P ′) ≥ α−1 · w(OPT(P)) and sr(P) ∩ sr(P ′) = ∅ for all P, P ′ ∈ P ′, where for
any set of polygons P ′′ we define w(P ′′) :=

∑
Pi∈P′′ wi.

Independent Set of Convex Polygons: From nε to 1 + ε via Shrinking 703

Note that for a non-convex polygon P we cannot guarantee that sr(P) ⊆ P .
Thus, for arbitrary polygons we no longer obtain a relaxation to the original
problem. In particular, the optimal solution for the shrunk polygons might be
worse than the optimal solution for the original polygons. Therefore, in this
paper we allow only convex polygons.

For technical reasons we assume w.l.o.g. that the width of the rectangular
bounding box of each input polygon is larger than its height. This can be ensured
by stretching the input plane horizontally. Note that also in our shrinking model
this yields an equivalent instance.

3 Preprocessing and Shrinking

In this section we describe preprocessing steps in which we remove some of the
input polygons and shrink the remaining ones. While doing this, we lose at
most a factor 1 + ε in our approximation ratio. Also, we ensure that the shrunk
polygons are “well-behaved” so that our main algorithm (described in the next
section) has an easier task.

Let ε > 0 and δ > 0. First, we ensure that each polygon has only few, i.e.,
constantly many vertices (and thus also constantly many edges).

Lemma 1. There exists a constant K = Oδ(1) such that for each polygon P we
can compute a polygon P ′ with at most K vertices such that sr(P) ⊆ P ′ ⊆ P .

We group the polygons according to their diameters. For each polygon P
denote by diam(P) its diameter, i.e., the largest distances between two vertices
of P . We do our grouping to achieve two goals: we want that within each group
the diameters of the polygons differ by at most a factor Oδ,ε(1) and for two
different groups they differ by at least a factor sin(ε/K2) 1

εδ .

Lemma 2. By losing a factor of 1 + ε in the value of the optimal solution, we
can assume that there is a partition of the polygons P into Oδ,ε(log N) groups
Pi and values μ′

i, μi ∈ N for each group Pi such that

– μ′
i ≤ diam(P) < μi for each P ∈ Pi and

– δε · sin(ε/K2) · μ′
i = μi+1 and μi/μ′

i =
(

1
δε·sin(ε/K2)

)
1/ε for each i.

3.1 Hierarchical Grids

We define a family of vertical grids G0, G1, ..., Gm with m = O(log N). They
are used in a similar way as in [1]. For each i ∈ {0, ...,m} we define Gi :=
{{x} × R|∃k ∈ N s.t. x = k · gi} with gi := δ

4 · sin(ε/K2) · μ′
i. Observe that the

grids are hierarchical, i.e., each grid line of Gi is also grid line of Gi′ for each
i′ > i. We give these grids a random rotation such that the lines of all grids have
exactly the same angle. This angle is drawn uniformly at random from the range
[π/4, π/2], measured with respect to the x-axis. Let � be a line of the grids. We
are interested in the angle between � and the edges of the polygons. We say that

704 A. Wiese

� and a line segment �′ have a good angle if the angle between � and the line
containing �′ have an angle of at least ε/K2 and at most π

2 − ε/K2, otherwise
we say that they have a bad angle.

Lemma 3. Let P ∈ P. With probability at least 1 − O(ε) all line segments
connecting two vertices of P and all line segments connecting mid(P) with a
vertex of P have a good angle with all grid lines.

We delete each polygon P that has two vertices v, v′ such that �(v, v′) or
�(v,mid(P)) has a bad angle with the grid lines. By Lemma 3 this costs only a
factor 1+O(ε) in the objective. Next, we give the grids a random shift upwards,
drawn uniformly at random from the range [0, g0), without changing their angles.

Lemma 4. Let P ∈ Pi+1. Then P intersects a grid line of Gi with probability
at most 2ε.

For each i ∈ N we delete all polygons P ∈ Pi+1 that intersect a grid line of
Gi. Due to Lemma 4 this costs at most a factor of 1 + O(ε) in the objective.
Since the grids are hierarchical, if a polygon P ∈ Pi+1 does not intersect a grid
line of Gi then it does not intersect a grid line of Gi′ for any i′ ≥ i.

3.2 Shrinking

Next, we want to shrink the polygons. For each polygon P ∈ Pi let v↑(P) and
v↓(P) denote top-most and bottom-most vertices “relative to the grid lines”.
Formally, we define v↑(P) and v↓(P) to be two vertices of P for which there exists
a line � with the same angle as the grid lines that intersects v↑(P) (intersects
v↓(P)) and no point in the interior of P .

We shrink P to a polygon P ′ such that v↑(P ′) and v↓(P ′) lie on grid lines
of Gi. The next lemma shows that this is indeed possible by shrinking P by at
most a factor 1−δ. Heart of this reasoning is that there are at least 1/δ grid lines
of Gi between v↑(P) and v↓(P). We do this operation with all input polygons.

Lemma 5. Let P ∈ Pi. In polynomial time we can compute a polygon P ′ with
at most K +2 edges such that sr(P) ⊆ P ′ ⊆ P and v↑(P ′) and v↓(P ′) lie on grid
lines of Gi. Furthermore, all edges of P ′ crossing a grid line of Gi in a non-zero
angle have a good angle with this grid line.

3.3 Horizontal Grids

From now on we do not shrink the polygons any further. Let us assume
w.l.o.g. that the grid lines are exactly vertical and that there is an integer
N ′ such that the input polygons are contained in the area [0, N ′] × [0, N ′]
for some integer N ′ = O(N). We add a hierarchical family of horizontal grids
Ḡ0, Ḡ1, ..., Ḡm to the vertical grids G0, G1, ..., Gm. For each i ∈ {0, ...,m} we
define Ḡi := {R×{y}|∃k ∈ N s.t. y = k ·gi} with as before gi = δ

2 · sin(ε/K2) ·μ′
i.

Thus, for each i the grid Ḡi has exactly the same spacing as Gi. We give the

Independent Set of Convex Polygons: From nε to 1 + ε via Shrinking 705

horizontal grids Ḡi a random shift upwards, drawn uniformly at random from
the range [0, g0). Then, for each i ∈ {0, ...,m} we delete all remaining polygons
from ∪j>i+1Pi that intersect a grid line in Ḡi. The following lemma can be
proven similarly as Lemma 4.

Lemma 6. Let P ∈ Pi+1. Then P intersects a grid line of Ḡi with probability
at most 2ε.

Denote by P ′ the resulting set of shrunk polygons. For each integer i we
define P ′

i to be the sets of polygons that we obtain when we shrink each polygon
in Pi. Note that we lost only a factor of (1 + O(ε)) in our approximation ratio
(see Lemmas 2, 4 and 6).

4 Dynamic Program

Our algorithm is a geometric divide-and-conquer algorithm similar to the algo-
rithm used in [1,3]. It recursively divides the area containing the input poly-
gons into smaller and smaller pieces. When it makes a recursive call for a piece
A ⊆ [0, N ′]2 then it computes a (near-optimal) solution to the subproblem given
by all input polygons that are contained in A. To do this, it tries all possibilities
to partition A into at most k = Oδ,ε(1) subpieces such that the boundary of
each of them consists of at most k line segments out of a suitable set L defined
below. Then, it makes a recursive call on each of these subpieces and obtains a
(near-optimal) solution for each of those. By putting them together, it obtains a
candidate solution for the original piece A. Additionally, it checks what profit it
can obtain by selecting only one polygon that is contained in A. Eventually, it
returns the best solution out of all candidate solutions stemming from all par-
titions of A and all single polygons contained in A. We will show that if the
parameter k is sufficiently large then our algorithm will output a set that is at
least as profitable as the optimal solution for P ′.

We embed the whole procedure into a dynamic program (DP). Let
k = Oδ,ε(1) be a parameter to be defined later. Our DP table has one cell
for each (not necessarily convex) piece A ⊆ [0, N ′]2 whose boundary consists of
at most k lines segments such that

– each line segment is a subset of an edge of a polygon in P ′ or a subset of a
grid line in G := ∪m

i=0Gi ∪ Ḡi and
– the endpoint of each line segment is

• the vertex of a polygon in P ′, or
• the intersection of an edge of a polygon in P ′ with a grid line in G, or
• the intersection of two grid lines in G.

Denote by L the set of all line segments that arise on the boundaries of the
pieces defined above, see Fig. 2 for an example. Denote by GEO-DP our overall
algorithm. As the following lemma shows, it has pseudo-polynomial running
time. We will explain later how to improve this to polynomial time.

706 A. Wiese

Fig. 2. An instance of δ-MWISCP. The black circles denote the endpoints of the line
segments according to our definition. The bold lines denote the lines in L resulting
from them.

Lemma 7. The number of DP-cells is bounded by (n+N)Oδ,ε(k). If k = Oε,δ(1)
then the overall running time of GEO-DP is bounded by (n + N)Oδ,ε(1).

There is a piece containing all input polygons whose subproblem corresponds
to the original problem we want to solve. We want to show that GEO-DP outputs
a solution that is at least as profitable as the optimal solution for P ′. In order
to show this we can assume w.l.o.g. that the input to GEO-DP consists only of
this optimal solution. We denote it by P ′′. We define P ′′

i := P ′
i ∩ P ′′ for each i.

4.1 Cutting Sequence

We describe a sequence of cuts that recursively subdivides the whole area
[0, N ′] × [0, N ′] and “cuts out” all polygons in P ′′. Also for the algorithm in
[1] for easier case of shrinkable rectangles such a sequence is used in the analy-
sis. Our construction ensures that for each piece arising in the sequence there
exists a DP-cell according to the above definition and that each cut for such a
piece partitions it into at most k smaller pieces. Formally, we describe the above
sequence of cuts by a tree T where each node v is associated with a piece Av in
the plane. We say that a tree T is a (k,P ′′)-region decomposition if the following
holds:

– For each node v in T and each polygon P ∈ P ′′ we have that if P does not
coincide with Av, i.e., P �= Av, then either P is contained in Av or P is disjoint
from Av.

– For tree nodes u and v such that v is a parent of u we have that Au ⊆ Av. Each
node v ∈ T has at most k′ ≤ k children u1, ..., uk′ in T and

⋃k′

i=1 Aui
= Av.

– For each leaf node v of T the piece Av contains at most one polygon in P ′′

and it has empty intersection with all other polygons in P ′′.
– For each node v in T the area Av is connected and its boundary can be

described by at most k line segments from L.

Lemma 8. If there exists a (k,P ′′)-region decomposition then GEO-DP will
output a solution of weight at least w(P ′′) when it is parametrized by k.

Independent Set of Convex Polygons: From nε to 1 + ε via Shrinking 707

4.2 Existence of Region Decomposition

We prove now that a (k,P ′′)-region decomposition exists for some k = Oδ,ε(1).
Our argumentation proceeds in levels with one level for each grid Gi ∪ Ḡi. We
describe it inductively. Our induction hypothesis is that we are given a vertex
v ∈ T whose piece Av is described as follows: there is a cell C of the grid
Gi−1 ∪ Ḡi−1 and up to two polygons P1, P2 ∈ ∪i−1

j=0P ′′
j such that each of them

intersects both the left and the right grid line of C. Then, Av is the connected
component of C \{P1, P2} that is adjacent to P1 and P2 (see Fig. 3 for a sketch).
Note that there exists a DP-cell for Av. Assume w.l.o.g. that P1 crosses the left
and right grid lines of C below P2. One or both polygons P1 and P2 might be
undefined and in this case the bottom and/or the top boundary of C takes the
role of P1 and/or P2. For the base case, we can assume that there is one cell of
an (artificial) grid G−1 ∪ Ḡ−1 that contains all input polygons. We assume by
induction that Av does not intersect any polygon in ∪i−1

j=0P ′′
j .

P1

P2

C

p

p′
p′′

�1

P

Q

Av

e

�′

Q1

P1

P2

Q2

�(1) �(2)

p1
p2

p′
1

p′
2

P ′
1

A1

A2

p

Fig. 3. Left: The first cut Q that separates the piece Av (given by the area in the cell
C between the polygons P1 and P2) into two smaller pieces. The point p is defined as
the bottom-most point of �1 ∩ Av and �1 intersects the boundary of P1 on p. Right: a
piece (consisting of A1 ∪ P ∪ A2) for which there is no grid line that intersects P1 on
the boundary of the piece (first case in the proof of Lemma 10).

Suppose now that we are given a piece Av as defined above. We define a cut
through Av. Let �1 be a grid line of Gi such that �1 intersects the interior of Av.
Let p be the bottom-most point of �1 ∩ Av. Note that at this point �1 intersects
the boundary of P1. Our cut starts in p and moves up along �1. If we do not hit
any polygon of P ′′ contained in Av on the way up then we are done with our
cut. Otherwise, suppose that we hit an edge e of a polygon P . Let p′ denote the
point on e that is hit by �1. Due to Lemma 3 we know that e has a good angle
with �1. Also, P ∈ P ′′

i since otherwise it would have been deleted before as it
intersects a grid line of Gi. Our cut moves along e in the direction that goes
up. We continue along the boundary of P in the same direction until we arrive
at a leftmost or rightmost vertex of P . Let p′′ denote this point. Due to our

708 A. Wiese

shrinking, p′′ lies on a grid line �′ of Gi. See Fig. 3 for a sketch. Since all edges
of P have a good angle with the grid, we can prove the following lemma.

Lemma 9. When moving from p′ to p′′ along the edge of P , we move up by at
least sin(ε2/K) · gi = Ωδ,ε(1) · gi units.

Proof. Since all edges of P have a good angle with the grid lines, each of these
angles is at least ε2/K. Therefore, when we move from p′ to p′′ we move up by
at least dist(p′, p′′) · sin(ε2/K) ≥ sin(ε2/K) · gi units. �

Note that the constructed path from p via p′ to p′′ consists of at most
K + 1 ≤ Oδ,ε(1) line segments. We continue iteratively where now p′′ takes
the role of p. We stop when we hit the upper boundary of Av (defined by P2 or
the top boundary of C). Denote by Q the constructed path. The height of C is
bounded by gi−1 = Oδ,ε(gi). In every iteration we move up by at least Ωδ,ε(1) ·gi

units. Thus, there are at most Oδ,ε(1) iterations and Q can be described with
Oδ,ε(1) · (K +1) line segments. Observe that we cut only along edges of polygons
and along grid lines of Gi. Thus, we did not intersect any polygon from P ′′.

Our path Q splits Av into two smaller pieces. Each of the two sides of Av \Q
defines a piece and for each of them we append a child node ui to v such that
Aui

equals this piece. Importantly, each such piece is described by only P1, P2

and Q and thus its boundary has only Oδ,ε(1) line segments.
We continue with each component Aui

. Assume that there is a grid line �2
of Gi such that �2 intersects the boundary of P1 at a point p̄ that lies on the
boundary of Aui

. Then p̄ takes the role of p above and we find a path Q′ that
split Aui

into two pieces. We append these pieces in T as child nodes of ui. Each
such piece is then described by P1, P2, Q and Q′ and thus its boundary has at
most Oδ,ε(1) edges.

Consider a child node ūj of ui. Similarly as before, assume that there is a
grid line �3 of Gi such that �3 intersects the boundary of P1 at a point that
lies on the boundary of Aūj

. We compute a path Q′′ through Aūj
as above.

Now, each connected component of Aūj
\ Q′′ can be described by P1, P2 and at

most two of the paths Q,Q′, Q′′. Similarly, when we continue further like above
in the recursion each resulting piece can be described by P1, P2 and two paths
Q1, Q2 through Av where each of the latter can be described with only Oδ,ε(1)
line segments.

We can apply the above reasoning as long as there is a grid line �k of Gi

such that the boundary of P1 intersects �k at a point that lies on the boundary
of the considered piece. Suppose now that this is not possible, i.e., we have a
piece Aṽ ⊆ Av such that at the boundary of Aṽ there is no grid line of Gi that
intersects P1. As the next lemma shows, this piece Aṽ can then be partitioned
into two smaller pieces A1, A2 and one polygon P ′

1, see Fig. 3. When we continue,
for the piece A1 the polygon P ′

1 takes the role of P2, and for the piece A2 the
polygon P ′

1 takes the role of P1.

Lemma 10. Assume that in the above construction we obtain a piece Aṽ such
that on the boundary of Aṽ there is no point where a grid line of Gi intersects

Independent Set of Convex Polygons: From nε to 1 + ε via Shrinking 709

the boundary of P1. Then either Aṽ is contained in a grid column of Gi or Aṽ

can be partitioned into two pieces A1, A2 and one polygon P ′
1 such that

– the boundary of A1 consists of two upward monotone paths Q
(1)
1 , Q

(2)
1 with at

most Oδ,ε(1) edges each that both connect P1 and P ′
1, and

– the boundary of A2 consists of two upward monotone paths Q
(1)
2 , Q

(2)
2 with at

most Oδ,ε(1) edges each that both connect P ′
1 and P2.

Proof. Assume that Aṽ is not contained in a grid column of Gi since otherwise
there is nothing to show. By construction Aṽ is described by two paths Q1, Q2

that both connect P1 and P2. There is no point on the boundary of Aṽ in which
a grid line of Gi intersects P1. Thus, for the points p1 and p2 on which the paths
Q1 and Q2 start, there must be two consecutive grid lines �(1), �(2) of Gi such
that �(1) intersects P1 on p1 and �(2) intersects P1 on p2, see Fig. 3. Assume that
�(1) is on the left of �(2). Since Aṽ is not contained in a grid column of Gi one of
the paths Q1, Q2 is not completely vertical.

Assume that both paths are not completely vertical (the other case can be
proven with similar arguments). Let p′

1, p
′
2 be the points on which Q1 and Q2

deviate from being only vertical. Assume w.l.o.g. that the y-coordinate of p′
1 is

not larger than the y-coordinate of p′
2.

Assume that on p′
1 the path Q1 turns left. Then on p′

1 the path Q1 hits a
polygon P ∈ P ′′

i . Thus, the boundary of P must intersect �(2) at a point p.
Then the y-coordinate of this point p must be lower than the y-coordinate of p′

2

(since Q1 goes monotonously upwards). Then we set P ′
1 := P and A1 consists

of the quadrilateral described by p1, p
′
1, p, p2, and A2 = Aṽ \ {A1, P}. The paths

Q
(1)
1 , Q

(2)
1 , Q

(1)
2 , Q

(2)
2 consist of the parts of Q1 and Q2 surrounding A1 and A2,

respectively.
Assume now that on p′

1 the path Q1 turns right after hitting a polygon P ′.
Then Q1 must cross �(2) at a point p′. If the y-coordinate of p′ is smaller than
the y-coordinate of p′

2 then we define P ′
1 := P ′ and we define the pieces A1, A2

and the paths Q
(1)
1 , Q

(2)
1 , Q

(1)
2 , Q

(2)
2 similarly as in the previous case. Finally,

suppose that the y-coordinate of p′ is not smaller than the y-coordinate of p′
2.

Then on p′
2 the path Q2 hits a polygon P ′′ and it must turn right (since oth-

erwise P ′ ∩ P ′′ �= ∅). Then the polygon P ′′ must cross �(1) underneath p′
1 and

we define P ′
1 := P ′′ and the pieces A1, A2 and the paths Q

(1)
1 , Q

(2)
1 , Q

(1)
2 , Q

(2)
2

accordingly. �

We continue until we obtain pieces that are contained in a grid column of Gi.
Let Av′ be such a piece. It might not fulfill the induction hypothesis yet since it
might still span many grid cells of Gi ∪ Ḡi. We know that each polygon P ∈ P ′′

i

intersects at least two grid columns of Gi. Thus, there can be no polygon P ∈ P ′′
i

with P ⊆ Av′ . Thus, the boundary of Av′ consists of two consecutive grid lines
in Gi and (parts of) the boundary edges of at most two polygons of ∪i

j=0P ′′
j ,

defining the upper and lower boundary of Av′ .
As long as Av′ is not contained in a grid cell of Gi ∪ Ḡi there must be a

grid row r of Ḡi such that r has non-empty intersection with the interior of Av′ .

710 A. Wiese

Note that r does not intersect any of the remaining polygons in ∪j≥i+1P ′′
j since we

have removed such polygons before already. We split Av′ along r into two pieces
Av′′ , Av′′′ and add the corresponding vertices v′′ and v′′′ to T as children of v′. We
continue this process until each piece is contained in a grid cell of Gi. Thus, our
resulting pieces fulfill the induction hypothesis. The above reasoning proves the
following lemma.

Lemma 11. There exists a universal constant k = Oδ,ε(1) such that a (k,P ′′)-
region decomposition exists.

For our main result we parametrize GEO-DP by the constant k = Oδ,ε(1) due
to Lemma 11. Then together with Lemma 8 this implies that GEO-DP outputs
a solution of weight at least w(P ′′). Due to our reasoning in Sect. 3 we have that
w(P ′′) ≥ (1 − O(ε)) · OPT(P).

It remains to address the fact that in the above form our algorithm has a
running time that might be exponential in the input size (since N might be expo-
nential). We argue similarly as in [1]. First observe that there are only O(log N)
recursion levels, which is polynomial in the length of the input encoding. In each
level of the grids, it suffices to introduce only grid cells C for which there exists
a polygon P ∈ P ′ with P ⊆ C. There can be only n such grid cells for each grid
Gi ∪ Ḡi and thus in total there are only O(n · log N) such cells. Hence, the total
number of grid lines is also bounded by O(n · log N). This reduces our running
time to (n + log N)Oδ,ε(1).

Theorem 1. For any constants ε, δ > 0 there is a polynomial time (1 + ε)-
approximation algorithm for the maximum independent set of δ-shrinkable con-
vex polygons problem.

Acknowledgments. The author would like to thank Parinya Chalermsook for helpful
discussions on the topic of this paper.

References

1. Adamaszek, A., Chalermsook, P., Wiese, A.: How to tame rectangles: solving
independent set and coloring of rectangles via shrinking. In: Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 40, pp. 43–60. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl
(2015)

2. Adamaszek, A., Wiese, A.: Approximation schemes for maximum weight indepen-
dent set of rectangles. In: Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pp. 400–409. IEEE (2013)

3. Adamaszek, A., Wiese, A.: A QPTAS for maximum weight independent set of poly-
gons with polylogarithmically many vertices. In: Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 645–656.
SIAM (2014)

Independent Set of Convex Polygons: From nε to 1 + ε via Shrinking 711

4. Agarwal, P.K., Mustafa, N.H.: Independent set of intersection graphs of convex
objects in 2D. Comput. Geom. 34(2), 83–95 (2006)

5. Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum indepen-
dent set in rectangles. Comput. Geom. 11, 209–218 (1998)

6. Anagnostopoulos, A., Grandoni, F., Leonardi, S., Wiese, A.: Constant integrality
gap LP formulations of unsplittable flow on a path. In: Goemans, M., Correa, J.
(eds.) IPCO 2013. LNCS, vol. 7801, pp. 25–36. Springer, Heidelberg (2013)

7. Berman, P., DasGupta, B., Muthukrishnan, S., Ramaswami, S.: Efficient approxi-
mation algorithms for tiling and packing problems with rectangles. J. Algor. 41(2),
443–470 (2001)

8. Bonsma, P., Schulz, J., Wiese, A.: A constant factor approximation algorithm for
unsplittable flow on paths. In: Proceedings of the 52th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pp. 47–56 (2011)

9. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Pro-
ceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2009), pp. 892–901. SIAM (2009)

10. Chan, T.M., Har-Peled, S.: Approximation algorithms for maximum independent
set of pseudo-disks. Discrete & Comput. Geom. 48(2), 373–392 (2012)

11. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1),
165–177 (1990)

12. de Floriani, L., Magillo, P., Puppo, E.: Applications of computational geometry to
geographic information systems. In: Handbook of Computational Geometry, pp.
333–388. North Holland (2000)

13. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric intersection graphs. SIAM J. Comput. 34(6), 1302–1323 (2005)

14. Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the
plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)

15. Fox, J., Pach, J.: Computing the independence number of intersection graphs. In:
Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 1161–1165. SIAM (2011)

16. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining with opti-
mized two-dimensional association rules. ACM Trans. Database Syst. (TODS)
26(2), 179–213 (2001)

17. Har-Peled, S.: Quasi-polynomial time approximation scheme for sparse subsets of
polygons. In: Proceedings of the Thirtieth Annual Symposium on Computational
Geometry (SoCG), pp. 120–129. ACM (2014)

18. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM 32, 130–136 (1985)

19. Imai, H., Asano, T.: Finding the connected components and a maximum clique of
an intersection graph of rectangles in the plane. J. Algor. 4(4), 310–323 (1983)

20. Khanna, S., Muthukrishnan, S., Paterson, M.: On approximating rectangle tiling
and packing. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 384–393. SIAM (1998)

21. Lent, B., Swami, A., Widom, J.: Clustering association rules. In: Proceedings of
the 13th International Conference on Data Engineering, pp. 220–231. IEEE (1997)

22. Nielsen, F.: Fast stabbing of boxes in high dimensions. Theor. Comp. Sc. 246,
53–72 (2000)

23. Verweij, B., Aardal, K.: An optimisation algorithm for maximum independent set
with applications in map labelling. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643,
pp. 426–437. Springer, Heidelberg (1999)

Author Index

Agrawal, Akanksha 1
Ahn, Hee-Kap 14, 646
Al-Bawani, Kamal 27
Albers, Susanne 41
Alt, Helmut 14
Amir, Amihood 55
Amit, Mika 55
Antoniadis, Antonios 68
Aravind, N.R. 82
Ashok, Pradeesha 96

Bae, Sang Won 110, 646
Bampas, Evangelos 123
Bampis, Evripidis 41
Banerjee, Indranil 138
Barcelo, Neal 68
Bekos, Michael A. 152
Belazzougui, Djamal 164
Benavides, Fernando 179
Bender, Michael A. 192
Bodini, Olivier 207
Böhmová, Kateřina 220
Bonnet, Édouard 235
Bose, Prosenjit 249
Buchin, Maike 14

Chowdhury, Iffat 263
Chowdhury, Rezaul 192
Chrobak, Marek 275
Claverol, Mercè 290
Cochefert, Manfred 306
Conte, Alessio 319
Conway, Alexander 192
Costello, Kevin P. 275
Couturier, Jean-François 306
Crochemore, Maxime 334

de Paula, Samuel P. 441
Dien, Matthieu 207
Disser, Yann 220
Dragon, Patrick Baxter 347
Drange, Pål Grønås 362
Dregi, Markus 362
Duch, A. 376

Englert, Matthias 27
Eppstein, David 390, 403
Escoffier, Bruno 235
Esfandiari, Hossein 416

Farach-Colton, Martín 192, 429
Fernandes, Cristina G. 441
Fici, Gabriele 334
Fink, Martin 454
Fischer, Carsten 469
Fischer, Johannes 483
Fontaine, Xavier 207
Fraigniaud, Pierre 497

Gagie, Travis 164
Ganapathi, Pramod 192
Ganardi, Moses 590
Gaspers, Serge 306
Genitrini, Antoine 207
Gibson, Matt 263
Giraudo, Samuele 509
Grossi, Roberto 319

Harvey, Nicholas J.A. 522
Hernandez, Oscar I. 347
Hershberger, John 454
Hill, Darryl 249
Hirschberg, Daniel S. 390
Hucke, Danny 590
Hwang, Hsien-Kuei 207

I., Tomohiro 483
Ilcinkas, David 123

Johnson, Rob 192

Kaplan, Haim 536
Kaufmann, Michael 152
Khramtcova, Elena 290
Kindermann, Philipp 403
Knauer, Kolja 549
Kobourov, Stephen 403
Kolay, Sudeshna 1, 96

Köppl, Dominik 483
Kortsarz, Guy 416
Kotrbčík, Michal 562
Královič, Rastislav 562
Kratsch, Dieter 306
Krug, Robert 152
Kumar, Nirman 576

Landau, Gad M. 55
Lau, G. 376
Letsios, Dimitrios 41
Liotta, Giuseppe 403
Lohrey, Markus 590
Lokshtanov, Daniel 1
Lubiw, Anna 403
Lucarelli, Giorgio 41

Maignan, Aude 403
Mäkinen, Veli 164
Marino, Andrea 319
Marsault, Victor 605
Martínez, C. 376
McCauley, Samuel 192
Meesum, Syed Mohammad 619
Mercaş, Robert 334
Mihalák, Matúš 220
Mnich, Matthias 634
Mondal, Debajyoti 403
Mulzer, Wolfgang 536

Noeth, Eric 590
Nugent, Michael 68

Oh, Eunjin 14, 646
Ordyniak, Sebastian 562

Papadopoulou, Evanthia 290
Paschos, Vangelis Th. 235
Paul, Alice 659
Pedrosa, Lehilton L.C. 441
Pissis, Solon P. 334
Poloczek, Matthias 659
Previtali, Marco 164
Pruhs, Kirk 68
Puglisi, Simon J. 164

Rai, Ashutosh 672
Rajsbaum, Sergio 179, 497

Ramanujan, M.S. 672
Richards, Dana 138
Rizzi, Romeo 319
Roditty, Liam 536
Röglin, Heiko 469, 634
Rösner, Clemens 634

Sakarovitch, Jacques 605
Sandeep, R.B. 82, 362
Saumell, Maria 290
Saurabh, Saket 1, 96, 619, 672, 686
Scharf, Ludmila 14
Schewior, Kevin 68
Scquizzato, Michele 68
Seara, Carlos 290
Seiferth, Paul 536
Shin, Chan-Su 110
Simon, Bertrand 192
Singh, Shikha 192
Sivadasan, Naveen 82
Smid, Michiel 249
Sokol, Dina 55
Šrámek, Rastislav 220
Stamoulis, Georgios 235
Stotz, Richard 41
Suri, Subhash 454, 576

Travers, Corentin 497
Tsai, Meng-Tsung 429

Verbeek, Kevin 454
Vialette, Stéphane 509
Vigneron, Antoine 110
Vosoughpour, Hamideh 403

Walczak, Bartosz 549
Wenk, Carola 14
Westermann, Matthias 27
Whitesides, Sue 403
Wiese, Andreas 700
Williams, Aaron 347
Williamson, David P. 659
Wismath, Stephen 403

Xu, Keyulu 522

Zehavi, Meirav 686

714 Author Index

	Preface
	The Imre Simon Test-of-Time Award
	Organization
	Abstracts
	Reversible Figures and Solids
	Simplicity Is in Vogue (again)
	Subgame Perfect Equilibrium: Computation and Efficiency
	Buying Stuff Online
	Data Crowdsourcing: Is It for Real?

	Contents
	A Faster FPT Algorithm and a Smaller Kernel for Block Graph Vertex Deletion
	1 Introduction
	2 Preliminaries
	3 FPT Algorithm for Block Graph Vertex Deletion
	3.1 Restricted BGVD
	3.2 Block Graph Vertex Deletion

	4 An Approximation Algorithm for BGVD
	5 Improved Kernel for Block Graph Vertex Deletion
	5.1 Bounding the Number of Blocks in G A
	5.2 Bounding the Number of Internal Vertices in a Maximal Clique of the Block Graph

	References

	A Middle Curve Based on Discrete Fréchet Distance
	1 Introduction
	2 Algorithm for the Ordered Case
	3 Algorithm for the Restricted Case
	4 Algorithm for the Unordered Case
	4.1 Algorithm for the Decision Problem
	4.2 Algorithm for the Optimization Problem

	References

	Comparison-Based FIFO Buffer Management in QoS Switches
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Model and Notations

	2 Lower Bound
	3 Algorithm cpg
	3.1 Monotonic Sequences
	3.2 General Sequences

	4 Conclusions
	References

	Scheduling on Power-Heterogeneous Processors
	1 Introduction
	2 Problem Definition and Notations
	3 LP-Based Algorithm for Generalized Power Functions
	4 Flow-Based Algorithm for Standard Power Functions
	4.1 Structure of an Optimal Schedule
	4.2 Presentation and Analysis of the Algorithm

	5 Online Scheduling with Heterogeneous AVR
	References

	Period Recovery over the Hamming and Edit Distances
	1 Introduction
	2 Period Recovery over the Hamming Distance
	2.1 Step 1: Finding a Candidate Substring of Length p
	2.2 Step 2: Compute the Hamming Distance
	2.3 Step 3: Primitivity Check
	2.4 Time Complexity

	3 Period Recovery over the Edit Distance
	3.1 Reducing the Number of Candidates
	3.2 Algorithm Outline
	3.3 Finding the Candidate Substrings
	3.4 Verification of Short Candidates
	3.5 Verification of Long Candidates
	3.6 Time Complexity

	References

	Chasing Convex Bodies and Functions
	1 Introduction
	1.1 The History
	1.2 Our Results

	2 Reductions
	3 Subspace Chasing
	4 Line Chasing
	References

	Parameterized Lower Bounds and Dichotomy Results for the NP-completeness of H-free Edge Modification Problems
	1 Introduction
	2 Preliminaries and Basic Tools
	2.1 Basic Tools

	3 H-free Edge Editing
	4 H-free Edge Deletion
	4.1 t-diamond-free Edge Deletion
	4.2 Handling Sparse (,h)-degree Graphs
	4.3 Dichotomy Results

	5 Concluding Remarks
	References

	Parameterized Complexity of Red Blue Set Cover for Lines
	1 Introduction
	2 Preliminaries
	3 Hardness When Parameterized by kr and by k
	4 FPT Algorithm When Parematerized by k+kr
	4.1 Kernelization for GEN-RBSC-LINES Parameterized by k+kr

	5 Hardness in Higher Dimensions When Parameterized by k+kr
	References

	Tight Bounds for Beacon-Based Coverage in Simple Rectilinear Polygons
	1 Introduction
	2 Preliminaries
	3 The Beacon Kernel
	4 Beacon-Based Coverage
	4.1 Proof of the Lower Bound
	4.2 Monotone Polygons

	5 Concluding Remarks
	References

	On Mobile Agent Verifiable Problems
	1 Introduction
	1.1 Context and Motivation
	1.2 Related Work
	1.3 Our Contributions

	2 Preliminaries
	2.1 Mobile Agent Computations
	2.2 Mobile Agent Decision Problems

	3 Mobile Agent Decidability Classes
	4 Interleaving Multiple Mobile Agent Protocols
	4.1 Ingredients of the Meta-Protocol
	4.2 Description of the Meta-Protocol
	4.3 Application of the Meta-Protocol

	5 Mobile Agent Verifiability Classes
	References

	Computing Maximal Layers of Points in Ef(n)
	1 Introduction
	2 Preliminaries
	3 The Iterative Algorithm
	3.1 Data Structures
	3.2 MaxPartition(P)
	3.3 Runtime Analysis

	4 Realization of L Using Half-Space Trees
	4.1 Half-Space Tree
	4.2 Runtime Analysis

	5 Extension to Arbitrary P
	5.1 A Summary of Results

	References

	On the Total Number of Bends for Planar Octilinear Drawings
	1 Motivation and Background
	2 Preliminaries
	3 Upper Bounds
	3.1 Triconnected 4-Planar Graphs
	3.2 Triconnected 5-Planar Graphs
	3.3 Triconnected 6-Planar Graphs

	4 Lower Bounds
	4.1 4-Planar Graphs
	4.2 5- and 6-Planar Graphs

	5 Conclusions
	References

	Bidirectional Variable-Order de Bruijn Graphs
	1 Introduction
	2 Preliminaries
	2.1 De Bruijn Graphs
	2.2 BOSS Representation
	2.3 Variable-Order BOSS
	2.4 Bidirectional BWT

	3 Bidirectional BOSS
	4 Updating the Graph
	References

	The Read/Write Protocol Complex Is Collapsible
	1 Introduction
	2 Preliminaries
	2.1 Distributed Computing Model
	2.2 Algorithm IS

	3 Definition and Properties of the Protocol Complex
	3.1 Additional Properties About Executions
	3.2 Topological Definitions
	3.3 Protocol Complex

	4 Collapsibility
	References

	The I/O Complexity of Computing Prime Tables
	1 Introduction
	1.1 Computational Model
	1.2 Sieving to Optimize both I/Os and Operations
	1.3 Our Contributions

	2 Background and Related Work
	3 Sieve of Eratosthenes
	4 Linear Sieve of Gries and Misra
	5 Sieve of Atkin
	6 Sieve of Sorenson
	References

	Increasing Diamonds
	1 Introduction
	2 Exact Enumeration and Asymptotics
	2.1 General Solution of f''=G(f)
	2.2 Non-plane (Unordered) Increasing Diamonds
	2.3 m-ary Increasing Diamonds
	2.4 Plane Increasing Diamonds

	3 Random Generation via Boltzmann Samplers
	3.1 Boltzmann Samplers for the Differential Classes
	3.2 Boltzmann Samplers for Second-Order Differential Classes

	References

	Scheduling Transfers of Resources over Time: Towards Car-Sharing with Flexible Drop-Offs
	1 Introduction
	1.1 Formal Problem Description and Outline of the Paper
	1.2 Related Work

	2 Resource Transfers with One Demand per User
	3 Resource Transfers with Two Demands per User
	3.1 Resource Transfers with Two Demands and Zero Transfer Times

	4 Further Notes
	References

	A 0.821-Ratio Purely Combinatorial Algorithm for Maximum k-vertex Cover in Bipartite Graphs
	1 Introduction
	2 Preliminaries
	3 A 0.821-Approximation for the Bipartite Max k-vertex Cover
	4 Results and Discussion
	References

	Improved Spanning Ratio for Low Degree Plane Spanners
	1 Introduction
	2 Building D8(P)
	3 D8(P) has Maximum Degree 8
	4 D8(P) is a Spanner
	References

	Constructing Consistent Digital Line Segments
	1 Introduction
	2 Preliminaries
	3 Constructing Segments
	References

	Faster Information Gathering in Ad-Hoc Radio Tree Networks
	1 Introduction
	2 Preliminaries
	3 An O(nlogn)-Time Protocol
	4 A Protocol with Running Time O(nloglogn)
	5 An O(n)-time Protocol with Acknowledgments
	References

	Stabbing Circles for Sets of Segments in the Plane
	1 Introduction
	2 Preliminaries and Definitions
	3 Properties of FCVD*(S)
	4 Computing FCVD*(S)
	4.1 General Algorithm
	4.2 Searching in a Pure Edge of HVD(S)
	4.3 Running Time

	5 Parallel Segments
	References

	Faster Algorithms to Enumerate Hypergraph Transversals
	1 Introduction
	2 Preliminaries
	3 Hypergraphs of Rank 3
	3.1 Measure
	3.2 Algorithm

	4 Hypergraphs of Rank 4
	5 Hypergraphs of Rank at Least 5
	6 Lower Bounds
	References

	Listing Acyclic Orientations of Graphs with Single and Multiple Sources
	1 Introduction
	2 Preliminaries
	3 Single Source Acyclic Orientations (SSAO)
	3.1 Iterating Over Valid Direction Assignments

	4 Acyclic Orientations (AO)
	4.1 Iterating Over Valid Direction Assignments

	5 Reducing to Single Source Acyclic Orientations
	6 Conclusions
	References

	Linear-Time Sequence Comparison Using Minimal Absent Words & Applications
	1 Introduction
	2 Definitions and Notation
	3 Sequence Comparison
	4 Circular Sequence Comparison
	5 Implementation and Applications
	6 Final Remarks
	References

	The Grandmama de Bruijn Sequence for Binary Strings
	1 Introduction
	2 The Granddaddy de Bruijn Sequence
	2.1 Necklaces and Lyndon Words
	2.2 FKM Construction

	3 Co-lexicographic Order of Necklaces
	3.1 Co-lex vs. Lex
	3.2 Necklaces in Co-lex Order

	4 The Grandmama de Bruijn Sequence
	4.1 Definition
	4.2 Verification

	5 Originality of the Grandmama Sequence
	5.1 Distinctness
	5.2 Lyndon Words in Co-lex Order

	6 Open Problems and Additional Results
	6.1 Efficient Generation
	6.2 Properties of the Grandmama Sequence
	6.3 Generalization to Larger Alphabets

	References

	Compressing Bounded Degree Graphs
	1 Introduction
	2 Graph Modification on Bounded Degree Graphs
	2.1 Cores and Layers
	2.2 Solutions are Shallow
	2.3 Obtaining the Kernels

	3 Conclusion
	References

	Random Partial Match in Quad-K-d Trees
	1 Introduction
	2 Random Quad-K-d Trees
	3 Partial Match in Quad-K-d Trees
	3.1 Analysis
	3.2 Implementation and Experiments

	4 Conclusions and Further Work
	References

	From Discrepancy to Majority
	1 Introduction
	1.1 Notational Conventions and Problem Statement
	1.2 New Results

	2 Upper Bounds for Counting
	2.1 Finding an Unbalanced Query
	2.2 Finding a Homogeneous Query
	2.3 Finding the Count
	2.4 Finding the Majority
	2.5 Counting Analysis

	3 Lower Bounds
	4 Conclusions
	References

	On the Planar Split Thickness of Graphs
	1 Introduction
	2 Planar Split Thickness of Kn and Km,n
	2.1 Complete Graphs
	2.2 Complete Bipartite Graphs
	2.3 Graphs with Maximum Degree

	3 NP-Hardness and Approximation
	3.1 NP-Hardness of 2-Splittability
	3.2 Approximating Split Thickness
	3.3 Fixed-Parameter Tractability

	4 Conclusion
	References

	A Bounded-Risk Mechanism for the Kidney Exchange Game
	1 Introduction
	1.1 Notations and Definitions
	1.2 Related Work
	1.3 Our Results

	2 A Truthful Mechanism with Small Utility Variance
	3 An Almost Truthful Deterministic Mechanism
	References

	Tight Approximations of Degeneracy in Large Graphs
	1 Introduction
	2 Degeneracy and Random Subgraphs
	3 Algorithms
	3.1 In the Semi-streaming Model
	3.2 In the Turnstile Model

	4 Space Lower Bounds
	5 Applications
	References

	Improved Approximation Algorithms for Capacitated Fault-Tolerant k-Center
	1 Introduction
	1.1 Our Contributions and Techniques
	1.2 Obtained Approximations and Paper Organization

	2 Preliminaries
	2.1 Reduction to the Unweighted Case
	2.2 Preprocessing and Reduction to the Connected Case

	3 {0,L}-Capacitated Conservative Fault-Tolerant k-Center
	4 Capacitated Conservative Fault-Tolerant k-Center
	5 Capacitated Fault-Tolerant k-Center
	5.1 An LP-Formulation
	5.2 The Algorithm
	5.3 The {0,L}-Capacitated Case

	References

	Bundled Crossings in Embedded Graphs
	1 Introduction
	2 Preliminaries
	3 Bundled Crossing Minimization Is NP-Hard
	4 Bundled Crossings via Minimum Dissection
	4.1 The Crossing Complex
	4.2 Dissecting the Crossing Complex
	4.3 Effective Chords

	5 Circular Embeddings
	6 Conclusion and Open Problems
	References

	Probabilistic Analysis of the Dual Next-Fit Algorithm for Bin Covering
	1 Introduction
	1.1 Performance Measures
	1.2 Related Work
	1.3 Definitions and Notation
	1.4 Outline and Our Results

	2 Basic Statements
	3 Connection Between Asymptotic Expected Competitive Ratio and Random-Order Ratio
	4 Upper and Lower Bounds for Dual Next-Fit on Perfect-Packing Distributions
	4.1 Upper and Lower Bounds for Arbitrary Perfect-Packing Distributions
	4.2 Improved Lower Bounds for Certain Classes of Perfect-Packing Distributions

	5 Conclusions and Further Research
	References

	Deterministic Sparse Suffix Sorting on Rewritable Texts
	1 Introduction
	1.1 Computational Model
	1.2 Algorithm Outline and Our Results
	1.3 Relationship Between Suffix Sorting and LCE Queries
	1.4 Outline of this Article
	1.5 Preliminaries

	2 Answering LCE Queries with ESP Trees
	2.1 Edit Sensitive Parsing
	2.2 Edit Sensitive Parsing Trees
	2.3 Tree Representation
	2.4 LCE Queries in ESP Trees
	2.5 Truncated ESP Trees

	3 Sparse Suffix Sorting
	3.1 Abstract Algorithm
	3.2 Sparse Suffix Sorting with ESP Trees

	4 Hierarchical Stable Parsing
	4.1 Hierarchical Stable Parse Trees
	4.2 Sparse Suffix Sorting in Text Space

	References

	Minimizing the Number of Opinions for Fault-Tolerant Distributed Decision Using Well-Quasi Orderings
	1 Introduction
	2 Distributed Encoding of the Integers
	3 Distributed Decision
	4 Efficient Non-deterministic Decision
	References

	Unshuffling Permutations
	1 Introduction
	2 Notations
	3 Shuffle Product on Permutations
	4 Binary Square Words and Permutations
	5 Algebraic Issues
	6 Algorithmic Issues
	7 Conclusion
	References

	Generating Random Spanning Trees via Fast Matrix Multiplication
	1 Introduction
	1.1 Related Work
	1.2 Our Techniques

	2 Preliminaries
	2.1 Notations
	2.2 Facts

	3 The Chain-Rule Algorithm
	4 A Recursive Algorithm with Lazy Updates
	4.1 Update Formulas
	4.2 The Recursive Algorithm
	4.3 Analysis of Runtime

	5 Conclusions
	References

	Routing in Unit Disk Graphs
	1 Introduction
	2 The Model and Our Results
	3 The Well-Separated Pair Decomposition for `39`42`"613A``45`47`"603AUD(S)
	4 Preliminary Lemmas
	5 The Routing Scheme
	5.1 Preprocessing
	5.2 Routing a Packet
	5.3 Analysis of the Routing Scheme
	5.4 Extension to Arbitrary Density

	References

	Graph Drawings with One Bend and Few Slopes
	1 Introduction
	1.1 Results
	1.2 Related Results: Slope Number
	1.3 Related Results: Orthogonal Drawings
	1.4 Related Results: Upward Drawings

	2 Outerplanar Graphs
	3 Planar Graphs and Planar Bipartite Graphs
	4 General Graphs
	5 Problems
	References

	Edge-Editing to a Dense and a Sparse Graph Class
	1 Introduction
	2 Preliminaries
	2.1 Graphs
	2.2 Treewidth
	2.3 Monadic Second Order Logic and Monotone Classes

	3 Problem Definition
	4 Graph Classes
	5 Editing to a Single Class
	6 Editing to Two Classes
	6.1 Parameterization by Treewidth
	6.2 Parameterization by Editing Cost
	6.3 Parameterization by Degeneracy

	7 Applications
	8 Conclusion
	References

	Containment and Evasion in Stochastic Point Data
	1 Introduction
	2 The 2-Dimensional Case
	2.1 Algorithm for the Evasion Problem
	2.2 The Containment Problem

	3 Hardness in Higher Dimensions
	4 Approximation
	5 Conclusions
	A The Containment Problem Is #P-hard for d 3
	References

	Tree Compression Using String Grammars
	1 Introduction
	2 Preliminaries
	3 Relative Succinctness of SLP-Compressed Trees
	4 Algorithmic Problems on SLP-Compressed Trees
	4.1 Tree Navigation and Pattern Matching
	4.2 Tree Evaluation Problems

	References

	Trees and Languages with Periodic Signature
	1 Introduction
	2 Rythmic Trees and Languages
	3 From Rational Base Numeration Systems to Rhythms
	4 From Rhythms Back to Rational Bases
	5 Extension, Future Work and Conclusion
	References

	Rank Reduction of Directed Graphs by Vertex and Edge Deletions
	1 Introduction
	2 Preliminaries
	3 A Structural Result on Directed Graphs of Rank r
	4 Reducing Rank by Deleting Vertices
	4.1 Complexity of r-Rank Vertex Deletion
	4.2 A Parameterized Algorithm for r-Rank Vertex Deletion

	5 Deleting Arcs to Reduce Rank
	5.1 NP Completeness
	5.2 A Parameterized Algorithm for r-Rank Edge Deletion

	6 Conclusion
	References

	New Deterministic Algorithms for Solving Parity Games
	1 Introduction
	1.1 Our Contributions
	1.2 Detailed Comparison with Previous Work

	2 Fundamental Properties of Parity Games
	3 Kernelization of Parity Games
	3.1 Non-bipartite Games
	3.2 Bipartite Games

	4 A Simple Exponential-Time Algorithm
	5 Overview of the New Algorithms
	6 Finding Small Dominions
	7 New Algorithms for Solving Parity Games
	8 Pseudocode for Algorithm new-win
	References

	Computing a Geodesic Two-Center of Points in a Simple Polygon
	1 Introduction
	2 Preliminaries
	3 Bipartition by Two Centers
	4 Decision Algorithm for a Partition Pair
	4.1 Intersection of Geodesic Disks and Events
	4.2 Traversing A1 and A2 by Scanning Events

	5 Optimization Algorithm for a Partition Pair
	6 Computing an Optimal Two-Center of Points
	6.1 Finding Candidate Pairs
	6.2 Applying the Optimization Algorithm for Candidate Pairs

	References

	Simple Approximation Algorithms for Balanced MAX 2SAT
	1 Introduction and Overview
	2 The Structure of Balanced MAX 2SAT
	3 Majority-Preserving Algorithms for Balanced MAX 2SAT
	4 Beating 34 for Balanced MAX E2SAT
	5 Experimental Results
	6 Conclusions and Future Work
	A Soto's Bound for MAX CC
	B Dependency of the Approximation Ratio on and
	References

	A Parameterized Algorithm for Mixed-Cut
	1 Introduction
	2 Preliminaries
	3 NP-Completeness of Mixed Cut
	4 An Algorithm for MMCU
	4.1 Operations on the Graph
	4.2 Borders and Recursive Understanding
	4.3 High Connectivity Phase

	References

	(k,n-k)-Max-Cut: An O*(2p)-Time Algorithm and a Polynomial Kernel
	1 Introduction
	2 Preliminaries
	3 An Algorithm for (k,n-k)-Max-Cut
	3.1 The Subcase where |N(I)|p
	3.2 The Subcase where |N(I)| > p and |I|k
	3.3 The Subcase where |N(I)| > p and |I| > k

	4 Kernel
	References

	Independent Set of Convex Polygons: From n to 1+ via Shrinking
	1 Introduction
	1.1 Our Contribution
	1.2 Other Related Work

	2 Shrinking Model and Preliminaries
	3 Preprocessing and Shrinking
	3.1 Hierarchical Grids
	3.2 Shrinking
	3.3 Horizontal Grids

	4 Dynamic Program
	4.1 Cutting Sequence
	4.2 Existence of Region Decomposition

	References

	Author Index

