
Functional Big-Step Semantics

Scott Owens1(B), Magnus O. Myreen2, Ramana Kumar3, and Yong Kiam Tan4

1 School of Computing, University of Kent, Canterbury, UK
S.A.Owens@kent.ac.uk

2 CSE Department, Chalmers University of Technology, Gothenburg, Sweden
3 NICTA, Sydney, Australia

4 IHPC, A*STAR, Singapore, Singapore

Abstract. When doing an interactive proof about a piece of software,
it is important that the underlying programming language’s semantics
does not make the proof unnecessarily difficult or unwieldy. Both small-
step and big-step semantics are commonly used, and the latter is typi-
cally given by an inductively defined relation. In this paper, we consider
an alternative: using a recursive function akin to an interpreter for the
language. The advantages include a better induction theorem, less dupli-
cation, accessibility to ordinary functional programmers, and the ease of
doing symbolic simulation in proofs via rewriting. We believe that this
style of semantics is well suited for compiler verification, including proofs
of divergence preservation. We do not claim the invention of this style
of semantics: our contribution here is to clarify its value, and to explain
how it supports several language features that might appear to require
a relational or small-step approach. We illustrate the technique on a
simple imperative language with C-like for-loops and a break statement,
and compare it to a variety of other approaches. We also provide ML
and lambda-calculus based examples to illustrate its generality.

1 Introduction

In the setting of mechanised proof about programming languages, it is often
unclear what kind of operational semantics to use for formalising the language:
common big-step and small-step approaches each have their own strengths and
weaknesses. The choice depends on the size, complexity, and nature of the pro-
gramming language, as well as what is being proved about it. As a rule-of-thumb,
the more complex the language’s features, or the more semantically intricate the
desired theorem, the more likely it is that small-step semantics will be needed.
This is because small-step semantics enable powerful proof techniques, including
syntactic preservation/progress and step-indexed logical relations, by allowing
close observation not only of the result of a program, but also how it got there.
In contrast, big-step’s advantages arise from following the syntactic structure of
the programming language. This means that they can mesh nicely with similarly
structured compilers, type systems, etc. that one is trying to verify, and reduce
the overhead of mechanised proof.

For large projects, a hybrid approach can be adopted. The CompCert [16,17]
verified C compiler uses big-step for some parts of its semantics and small-step for
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others. In the initial version of our own CakeML project [15], we had two differ-
ent semantics for the source language: big-step for the compiler verification and
small-step for the type soundness proof, with an additional proof connecting the
two semantics.

In contrast, this paper advocates functional big-step semantics, which can sup-
port many of the proofs and languages that typically rely on a small-step app-
roach, but with a structure that follows the language’s syntax. A functional big-
step semantics is essentially an interpreter written in a purely functional style and
equipped with a clock to ensure that the function is total, even when run on diverg-
ing programs. Hence the interpreter can be used in a higher-order logic of total
functions – the kind supported by Coq, HOL4, and Isabelle/HOL – as a formal
definition of the semantics. In this way, it harkens back to Reynolds’ idea of defin-
itional interpreters [23] to give a readable account of a semantics. Additionally, by
initialising the clock to a very large number, the same functional big-step semantics
used for proof can also be executed on test programs for exploration and validation.

The idea of using a clock in a semantics is not new;1 our contribution here is to
analyse its advantages, especially in the context of interactive proofs, and to show
how it can be used to support the kinds of proofs that push researchers to small-step
semantics. We argue that:

– Functional semantics are easier to read, have a familiar feel for functional pro-
grammers, and avoid much of the duplication that occurs in big-step semantics
defined with inductive relations, especially for languages with exceptions and
other non-local control-flow (Sect. 2).

– Functional semantics can be used more easily in mechanised proofs based on
rewriting, since functional semantics are stated in terms of equations (Sect. 3.1).

– Functional semantics also produce better induction theorems. Induction theo-
rems for relational big-step semantics frequently force unnecessary case splits in
proofs (Sect. 3.2).

– The clock used to define a functional semantics is convenient both for proofs that
a compiler preserves the diverging behaviour of programs (Sects. 3.3 and 3.4),
and for defining (and using) step-indexed logical relations (Sect. 6).

– Functional semantics can use an oracle in the state to support languages with
I/O and non-determinism (Sect. 4).

There are a variety of advanced techniques for defining big-step semantics that
solve some of these problems. For example, one can use co-induction to precisely
define diverging computations [18,20], or the pretty-big-step approach to reduce
duplication in the definition [10]. Notably, these techniques still define the seman-
tics using inductive (and co-inductive) relations rather than recursive functions,
and we are not aware of any relational approach with all of the advantages listed

1 For example, CakeML initially used a clocked, but relational, semantics for its inter-
mediate languages, and clocked recursive evaluation functions are common in Boyer-
Moore-style provers such as ACL2, where inductive relations are unavailable [8,30].
Leroy and Grall [18] use a clock to define a denotational semantics in Coq. Siek has
also advocated for clocks for proving type soundness [25,26].
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above. However, functional semantics, as advocated in this paper, are not with-
out their limitations. One is that the definition of a functional semantics requires
introduction of a clock which must decrease on certain recursive calls (Sect. 2.3).
Another is that languages with non-determinism require an oracle state compo-
nent to factor out the non-determinism (Sect. 4). Lastly, we have not investigated
languages with unstructured non-determinism, e.g. concurrency.

Our ideas about functional big-step semantics were developed in the context of
the CakeML project (https://cakeml.org, [15]) where the latest version has func-
tional big-step semantics for all of its intermediate languages (see Sect. 8); how-
ever, the bulk of this paper concentrates on a series of smaller examples, start-
ing with a C-like language with for and break statements (Sect. 2). We use it to
explain in detail how the functional approach supports the verification of a simple
compiler (Sect. 3). Then, we present a series of different languages and theorems to
illustrate the breadth of our approach (Sects. 4, 5, and 6). Lastly, we show how to
prove the equivalence of a functional big-step and small-step semantics (Sect. 7).

All of the semantics and theorems in this paper have been formalised and
proved in the HOL4 proof assistant (http://hol-theorem-prover.org). The for-
malisation is available in the HOL4 examples directory (https://github.com/
HOL-Theorem-Prover/HOL/tree/master/examples/fun-op-sem); we encourage
interested readers to consult these sources for the definitions and lemmas that we
lack the space to present here.

2 Example Semantics

In this section, we motivate functional big-step semantics by defining an opera-
tional semantics for a toy language in both relational and functional styles. We
call our toy language FOR, as it includes for loops and break statements that are
familiar from C. We first define the big-step semantics of FOR, informally, as an
interpreter in Standard ML (SML); next we explain why the semantics of FOR
is difficult to capture in a conventional big-step relation, but, using a functional
big-step semantics, can be defined neatly as a function in logic.

2.1 An Interpreter in SML

The FOR language has expressions e and statements t. Like C, we allow expression
evaluation to have side effects (namely, assignment).

datatype t = Dec of string * t datatype e = Var of string
| Exp of e | Num of int
| Break | Add of e * e
| Seq of t * t | Assign of string * e
| If of e * t * t datatype r = Rval of int
| For of e * e * t | Rbreak | Rfail

We sketch the semantics for this language by defining functions that evalu-
ate expressions and statements, run_e and run_t respectively. Each evaluation

https://cakeml.org
http://hol-theorem-prover.org
https://github.com/HOL-Theorem-Prover/HOL/tree/master/examples/fun-op-sem
https://github.com/HOL-Theorem-Prover/HOL/tree/master/examples/fun-op-sem
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returns an integer wrapped in Rval, signals a break Rbreak, or fails Rfail. Expres-
sion evaluation fails on an attempt to read the value of an uninitialised variable.

fun lookup y [] = NONE

| lookup y ((x,v)::xs) = if y = x then SOME v else lookup y xs

fun run_e s (Var x) =

(case lookup x s of

NONE => (Rfail,s)

| SOME v => (Rval v,s))

| run_e s (Num i) = (Rval i,s)

| run_e s (Add (e1, e2)) =

(case run_e s e1 of

(Rval n1, s1) =>

(case run_e s1 e2 of

(Rval n2, s2) => (Rval (n1+n2), s2)

| r => r)

| r => r)

| run_e s (Assign (x, e)) =

(case run_e s e of

(Rval n1, s1) => (Rval n1, (x,n1)::s1)

| r => r)

Below, evaluation of a Break statement returns Rbreak, which is propagated to
the enclosing For loop. A For loop returns a normal Rval result if the body of the
loop returns Rbreak.

fun run_t s (Exp e) = run_e s e

| run_t s (Dec (x, t)) = run_t ((x,0)::s) t

| run_t s Break = (Rbreak, s)

| run_t s (Seq (t1, t2)) =

(case run_t s t1 of

(Rval _, s1) => run_t s1 t2

| r => r)

| run_t s (If (e, t1, t2)) =

(case run_e s e of

(Rval n1, s1) => run_t s1 (if n1 = 0 then t2 else t1)

| r => r)

| run_t s (For (e1, e2, t)) =

(case run_e s e1 of

(Rval n1, s1) =>

if n1 = 0 then (Rval 0, s1) else

(case run_t s1 t of

(Rval _, s2) =>

(case run_e s2 e2 of

(Rval _, s3) => run_t s3 (For (e1, e2, t))

| r => r)

| (Rbreak, s2) => (Rval 0, s2)

| r => r)

| r => r)
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These SML functions make use of catch-all patterns in case-expressions in order to
conveniently propagate non-Rval results. We use the same approach in our func-
tional semantics (Sect. 2.3) to keep them concise. The case expressions above are
idiomatic for SML, but in a language with syntactic support for monadic compu-
tations, such as Haskell with do-notation, one would package the propagation of
exceptional results inside a monadic bind operator.

2.2 Relational Big-Step Semantics

The definition above is a good way to describe the semantics of FOR to a pro-
grammer familiar with SML. It is, however, not directly usable as an operational
semantics for interactive proofs. Next, we outline how a big-step semantics can be
defined for the FOR language using conventional inductively defined relations.

Relational big-step semantics are built up from evaluation rules for an evalu-
ation relation, typically written ⇓. Each rule states how execution of a program
expression evaluates to a result. The evaluation relation for the FOR language
takes as input a state and a statement; it then relates these inputs to the result
pair (r and new state) just as the interpreter above does.

We give a flavour of the evaluation rules next. The simplest rule in the FOR
language is evaluation of Break: evaluation always produces Rbreak and the state
s is returned unchanged. We call this rule (B).

(B)
(Break,s) ⇓t (Rbreak,s)

The semantics of Seq is defined by two evaluation rules. We need two rules
because evaluation of t2 only happens if evaluation of t1 leads to Rval. The first
rule for Seq (S1) states: if t1 evaluates according to (t1 ,s) ⇓t (Rval n1,s1) and t2
evaluates as (t2,s1) ⇓t r , then (Seq t1 t2,s) ⇓t r , i.e. Seq t1 t2 evaluates state s
to result r . The second rule (S2) states that a non-Rval result in t1 is the result
for evaluation of Seq t1 t2.

(S1)

(t1,s) ⇓t (Rval n1,s1)
(t2,s1) ⇓t r

(Seq t1 t2,s) ⇓t r
(S2)

(t1,s) ⇓t (r,s1)
¬is_Rval r

(Seq t1 t2,s) ⇓t (r,s1)

Defining these evaluation rules is straightforward, if the language is simple
enough. We include the For statement in our example language in order to show
how this conventional approach to big-step evaluation rules becomes awkward and
repetitive. The For statement’s semantics is defined by six rules. The first rule
captures the case when the loop is not executed, i.e. when the guard expression
evaluates to zero. The second rule states that errors in the evaluation of the guard
are propagated.

(F1)
(e1,s) ⇓e (Rval 0,s1)

(For e1 e2 t,s) ⇓t (Rval 0,s1)
(F2)

(e1,s) ⇓e (r,s1)
¬is_Rval r

(For e1 e2 t,s) ⇓t (r,s1)
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Execution of the body of the For statement is described by the following four rules.
The first of the following rules (F3) specifies the behaviour of an evaluation where
the guard e1, the body t , and the increment expression e2 each return some Rval.
The second rule (F4) defines the semantics for the case where evaluation of the
body t signals Rbreak. The third rule (F5) states that errors in the increment
expression e2 propagate. Similarly, the fourth rule (F6) states that errors that
occur in evaluation of the body propagate.

(F3)

(e1,s) ⇓e (Rval n1, s1)
n1 �= 0

(t,s1) ⇓t (Rval n2,s2)
(e2,s2) ⇓e (Rval n3,s3)
(For e1 e2 t,s3) ⇓t r

(For e1 e2 t,s) ⇓t r
(F4)

(e1,s) ⇓e (Rval n1,s1)
n1 �= 0

(t,s1) ⇓t (Rbreak,s2)

(For e1 e2 t,s) ⇓t (Rval 0,s2)

(F5)

(e1,s) ⇓e (Rval n1,s1)
n1 �= 0

(t,s1) ⇓t (Rval n2,s2)
(e2,s2) ⇓e (r,s3)

¬is_Rval r

(For e1 e2 t,s) ⇓t (r, s3)
(F6)

(e1,s) ⇓e (Rval n1,s1)
n1 �= 0

(t,s1) ⇓t (r,s2)
¬is_Rval r
r �= Rbreak

(For e1 e2 t,s) ⇓t (r,s2)

Once one has become accustomed to this style of definition, these rules are
quite easy to read. However, even an experienced semanticist may find it difficult
to immediately see whether these rules cover all the cases. Maybe the last two rules
above were surprising? Worse, these rules only provide semantics for terminating
executions, i.e. if we want to reason about the behaviour of diverging evaluations,
then these (inductive) rules are not enough as stated.

Another drawback is the duplication that rules for complex languages (even for
our toy FOR language) contain. In each of the four rules above, the first three lines
are almost the same. This duplication might seem innocent but it has knock-on
effects on interactive proofs: the generated induction theorem also contains dupli-
cation, and from there it leaks into proof scripts. In particular, users are forced to
establish the same inductive hypothesis many times (Sect. 3.4).

The rules (F2), (F5) and (F6) ensure that the Rfail value is always propagated
to the top, preventing the big-step relation from doing the moral equivalent of
getting ‘stuck’ in the small-step sense. Thus, we know that a program diverges iff
it is not related to anything. We could omit these rules if we do not need or want
to distinguish divergence from getting stuck, and this is often done with big-step
semantics.2 However, for the purposes of this paper, we are primarily interested
in the (many) situations where the distinction is important – that is where the
functional big-step approach has the largest benefit.

2 If we had another mode of failure, e.g., from a raise expression, then these rules would
still be needed to propagate that.
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The above ‘not related’ characterisation of divergence does not yield a useful
principle for reasoning about diverging programs: the relation’s induction prin-
ciple only applies when a program is related to something, not when we know it
is not related to anything. To define divergence with a relation [18], one adds to
the existing inductive evaluation relation ⇓t a co-inductively defined divergence
relation ⇑t, which provides a useful co-induction principle.

The rules for Seq and For are given below. (S1′) states that a sequence diverges
if its first sub-statement does. (S2′) says that the sequence diverges if the first sub-
statement returns a value, using the ⇓t relation, and the second sub-statement
diverges. Notice the duplication between the definitions of ⇓t and ⇑t: both must
allow the evaluation to progress normally up to a particular sub-statement, and
then ⇓t requires it to terminate, while ⇑t requires it to diverge. This corresponds
to the duplication internal to ⇓t for propagating Rbreak and other exceptional
results.

(S1′)
(t1,s) ⇑t

(Seq t1 t2,s) ⇑t

(S2′)

(t1,s) ⇓t (Rval n1,s1)
(t2,s1) ⇑t

(Seq t1 t2,s) ⇑t

(F1′)

(e1,s) ⇓e (Rval n1,s1)
n1 �= 0

(t,s1) ⇑t

(For e1 e2 t,s) ⇑t

(F2′)

(e1, s) ⇓e (Rval n1, s1)
n1 �= 0

(t, s1) ⇓t (Rval n2, s2)
(e2, s2) ⇓e (Rval n3, s3)

(For e1 e2 t,s3) ⇑t

(For e1 e2 t, s) ⇑t

2.3 Functional Big-Step Semantics

The interpreter written in SML, given in Sect. 2.1, avoids the irritating duplication
of the conventional big-step semantics. It is also arguably easier to read and clearly
gives some semantics to all cases. So why can we not just take the SML code and
define it as a function in logic? The answer is that the SML code does not terminate
for all inputs, e.g., run_t [] (For (Num 1, Num 1, Exp (Num 1))).

In order to define run_t as a function in logic, we need to make it total somehow.
A technique for doing this is to add a clock to the function: on each recursive call
for which termination is non-obvious, one adds a clock decrement. The clock is a
natural number, so when it hits zero, execution is aborted with a special time-out
signal.

A very simple implementation of the clocked-function solution is to add a
check-and-decrement on every recursive call. The termination proof becomes triv-
ial, but the function is cluttered with the clock mechanism.

Instead of inserting the clock on every recursive call, we suggest that the clock
should only be decremented on recursive function calls for which the currently
evaluated expressions does not decrease in size. For the FOR language, this means
adding a clock-check-and-decrement only on the looping call in the For case. In the
SML code, this recursive call is performed here:
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| run_t s (For (e1, e2, t)) =

...

(Rval _, s3) => run_t s3 (For (e1, e2, t))

In our functional big-step semantics for the FOR language, called sem_t, we write
the line above as follows. Here dec_clock decrements the clock that is stored in
the state.
sem_t s (For e1 e2 t) =

...

(Rval _,s3) ⇒
if s3.clock �= 0 then
sem_t (dec_clock s3) (For e1 e2 t)

else (Rtimeout,s3)

All other parts of the SML code are directly translated from SML into HOL4’s
logic. The complete definition of sem_t is given below. Because run_e is a pure
total function, it can be translated directly into the HOL4 logic as sem_e with-
out adding a clock. Here store_var x 0 s is state s updated to have value 0 in
variable x .
sem_t s (Exp e) = sem_e s e
sem_t s (Dec x t) = sem_t (store_var x 0 s) t
sem_t s Break = (Rbreak,s)
sem_t s (Seq t1 t2) =

case sem_t s t1 of
(Rval _,s1) ⇒ sem_t s1 t2

| r ⇒ r
sem_t s (If e t1 t2) =

case sem_e s e of
(Rval n1,s1) ⇒ sem_t s1 (if n1 = 0 then t2 else t1)

| r ⇒ r
sem_t s (For e1 e2 t) =

case sem_e s e1 of
(Rval 0,s1) ⇒ (Rval 0,s1)

| (Rval _,s1) ⇒
(case sem_t s1 t of
(Rval _,s2) ⇒
(case sem_e s2 e2 of
(Rval _,s3) ⇒
if s3.clock �= 0 then
sem_t (dec_clock s3) (For e1 e2 t)

else (Rtimeout,s3)
| r ⇒ r)

| (Rbreak,s2) ⇒ (Rval 0,s2)
| r ⇒ r)

| r ⇒ r

Note that, in our logic version of the semantics, we have introduced a new kind
of return value called Rtimeout. This return value is used only to signal that the
clock has aborted evaluation. It always propagates to the top, and can be used for
reasoning about divergence preservation (Sect. 3.3).
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Termination Proof. We prove termination of sem_t by providing a well-founded
measure: the lexicographic ordering on the clock value and the size of the statement
that is being evaluated. This measure works because the value of the clock is never
increased, and, on every recursive call where the clock is not decremented, the size
of the statement that is being evaluated decreases.3

No termination proof is required for relational big-step semantics. This require-
ment is, therefore, a drawback for the functional version. However, the functional
representation brings some immediate benefits that are not immediate for rela-
tional definitions. The functional representation means that the semantics is total
(by definition) and that the semantics is deterministic (see Sect. 4 for an account of
non-deterministic languages). These are properties that can require tedious proof
for relational definitions.

Semantics of Terminating and Non-terminating Evaluations. The sem_t function
terminates for all inputs. However, at the same time, it gives semantics to both ter-
minating and non-terminating (diverging) evaluations. We say that evaluation ter-
minates, if there exists some initial value of the clock for which the sem_t returns
Rval. An evaluation is non-terminating if sem_t returns Rtimeout for all initial
values of the clock. In all other cases, the semantics fails. The top-level semantics
is defined formally as follows. There are three observable outcomes: Terminate,
Diverge, and Crash.

semantics t =
if ∃ c v s. sem_t (s_with_clock c) t = (Rval v,s) then Terminate

else if ∀ c. ∃ s. sem_t (s_with_clock c) t = (Rtimeout,s) then Diverge

else Crash

Section 3.3 verifies a compiler that preserves this semantics, and Sect. 4 extends
the FOR language with input, output, and internal non-determinism.

3 Using Functional Semantics

The previous section showed how big-step semantics can be defined as functions
in logic, and how they avoid the duplication that occurs in conventional big-step
semantics. In this section, we highlight how the change in style of definition affects
proofs that use the semantics. We compare proofs based on the functional seman-
tics with corresponding proofs based on the relational semantics.

3.1 Rewriting with the Semantics

Since the functional semantics is defined as a function, it can be used for evaluation
in the logic and used directly for proofs by rewriting. As a simple example, we can
easily show that the Dec statement is an abbreviation for a longer program. This
proof is just a simple call to the automatic rewriter in HOL4.
3 HOL4’s current definition package requires some help to prove and use the fact that

the clock never increases.
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� sem_t s (Dec v t) = sem_t s (Seq (Exp (Assign v (Num 0))) t)

This ability to perform symbolic evaluation within the logic is a handy tool, as any
ACL2 expert will attest [19].

Sometimes rewriting with a functional semantics can get stuck in an infinite
loop. This happens when the left-hand side of the definition, e.g. in our exam-
ple sem_t s (For e1 e2 t), matches a subexpression on the right-hand side of the
equation, e.g. sem_t (dec_clock s3) (For e1 e2 t). We use a simple work-around
for this: we define STOP x = x and prove an equation where the right-hand side is
sem_t (dec_clock s3) (STOP (For e1e2 t)). We ensure that the automatic simpli-
fier cannot remove STOP and thus cannot apply the rewrite beyond the potentially
diverging recursive call.

Rewriting is possible but often more cumbersome with relational big-step
semantics. In HOL4, every definition of an inductive relation produces a rewrite
theorem of the following form. We only show the cases relating to Seq, eliding oth-
ers with ellipses.

� (t,s) ⇓t res ⇐⇒
. . . ∨ . . . ∨ . . . ∨
(∃ s1 t1 t2 n1.

(t = Seq t1 t2) ∧ (t1,s) ⇓t (Rval n1,s1) ∧
(t2,s1) ⇓t res) ∨

(∃ s1 t1 t2 r.
(t = Seq t1 t2) ∧ (res = (r,s1)) ∧ (t1,s) ⇓t (r,s1) ∧
¬is_Rval r) ∨ . . . ∨ . . . ∨ . . . ∨ . . . ∨ . . . ∨ . . . ∨ . . . ∨ . . . ∨ . . .

Such theorems have unrestricted left-hand sides, which easily cause HOL4’s
rewriter to diverge, and right-hand sides that introduce a large number of dis-
junctions. One can often avoid divergence by providing the rewriter with manually
proved theorems with specialised left-hand sides, e.g. (Seq t1 t2,s) ⇓t res. Func-
tional semantics require less work for use in proofs by rewriting.

3.2 Induction Theorem

The ability to rewrite with the functional semantics helps improve the details of
interactive proofs. Surprisingly, the use of functional semantics also improves the
overall structure of many proofs. The reason for this is that the induction theo-
rems produced by functional semantics avoid the duplication that comes from the
relational semantics.

The induction theorems for the FOR language are shown in Figs. 1 and 2.
The induction theorem for sem_t only has one case for the For loop. In contrast, the
induction theorem for the relational semantics has six cases for the For loop. The
duplication in the relation semantics carries over to duplication in the induction
theorem and, hence, to the structure of interactive proofs, making them longer and
more repetitive. This difference is significant for languages with complex program
constructs.
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� (∀ s e. P s (Exp e)) ∧
(∀ s x t. P (store_var x 0 s) t ⇒ P s (Dec x t)) ∧
(∀ s. P s Break) ∧
(∀ s t1 t2.

(∀ v2 s1 v5.
(sem_t s t1 = (v2,s1)) ∧ (v2 = Rval v5) ⇒ P s1 t2) ∧

P s t1 ⇒
P s (Seq t1 t2)) ∧

(∀ s e t1 t2.
(∀ v2 s1 n1.

(sem_e s e = (v2,s1)) ∧ (v2 = Rval n1) ⇒
P s1 (if n1 = 0 then t2 else t1)) ⇒

P s (If e t1 t2)) ∧
(∀ s e1 e2 t.

(∀ v2 s1 n1 v ′
2 s2 n ′

1 v ′′
2 s3 n ′′

1 .

(sem_e s e1 = (v2,s1)) ∧ (v2 = Rval n1) ∧ n1 �= 0 ∧
(sem_t s1 t = (v ′

2,s2)) ∧ (v ′
2 = Rval n ′

1) ∧
(sem_e s2 e2 = (v ′′

2 ,s3)) ∧ (v ′′
2 = Rval n ′′

1 ) ∧
s3.clock �= 0 ⇒
P (dec_clock s3) (For e1 e2 t)) ∧

(∀ v2 s1 n1.

(sem_e s e1 = (v2,s1)) ∧ (v2 = Rval n1) ∧ n1 �= 0 ⇒
P s1 t) ⇒

P s (For e1 e2 t)) ⇒
∀ v v1. P v v1

Fig. 1. Induction theorem for functional big-step semantics.

AvoidingDuplication inRelations. Theduplicationproblemcanbeavoided in rela-
tional big-step semantics.A trick is to define the evaluation rules such that program
constructs are described by only one rule each. Below is an example of how one can
package up all of the rules about For into one giant rule.

(e1,s) ⇓e (r1,s1) ∧
(if (r1 = Rval n1) ∧ n1 �= 0 then

(t,s1) ⇓t (r2,s2) ∧
if r2 = Rval n2 then
(e2,s2) ⇓e (r3,s3) ∧
if r3 = Rval n3 then (For e1 e2 t,s3) ⇓t result
else result = (r3,s3)
else result = (r2,s2)
else (result = (r1,s1)))

(For e1 e2 t,s) ⇓t result

Byavoidingtheduplication intherules, the inductiontheoremalsoavoids thedupli-
cation.Writingpackagedrules,asshownabove, isunusualandcertainlynotaesthet-
icallypleasing.However, if relationaldefinitionsaretobeused,packagingevaluation
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� . . . ∧ . . . ∧ . . . ∧ . . . ∧ . . . ∧ . . . ∧ . . . ∧ . . . ∧
(∀ s s1 e1 e2 t.

(e1,s) ⇓e (Rval 0,s1) ⇒ P (For e1 e2 t,s) (Rval 0,s1)) ∧
(∀ s s1 e1 e2 t r.

(e1,s) ⇓e (r,s1) ∧ ¬is_Rval r ⇒ P (For e1 e2 t,s) (r,s1)) ∧
(∀ s s1 s2 s3 e1 e2 t n1 n2 n3 r.

(e1,s) ⇓e (Rval n1,s1) ∧ n1 �= 0 ∧ P (t,s1) (Rval n2,s2) ∧
(e2,s2) ⇓e (Rval n3,s3) ∧ P (For e1 e2 t,s3) r ⇒
P (For e1 e2 t,s) r) ∧

(∀ s s1 s2 e1 e2 t n1.

(e1,s) ⇓e (Rval n1,s1) ∧ n1 �= 0 ∧ P (t,s1) (Rbreak,s2) ⇒
P (For e1 e2 t,s) (Rval 0,s2)) ∧

(∀ s s1 s2 s3 e1 e2 t n1 n2 r.
(e1,s) ⇓e (Rval n1,s1) ∧ n1 �= 0 ∧ P (t,s1) (Rval n2,s2) ∧
(e2,s2) ⇓e (r,s3) ∧ ¬is_Rval r ⇒
P (For e1 e2 t,s) (r,s3)) ∧

(∀ s s1 s2 e1 e2 t n1 r.
(e1,s) ⇓e (Rval n1,s1) ∧ n1 �= 0 ∧ P (t,s1) (r,s2) ∧ ¬is_Rval r ∧
r �= Rbreak ⇒
P (For e1 e2 t,s) (r,s2)) ⇒

∀ ts rs. ts ⇓t rs ⇒ P ts rs

Fig. 2. Induction theorem for relational big-step semantics. Parts omitted with ‘. . . ’.

rules as above is potentially less intrusive to proofs than use of the pretty-big-step
approach, since it does not introduce new data constructors.4

3.3 ExampleCompilerVerification

Next, we outline how functional big-step semantics support compiler verification,
proving that a compiler preserves the observable behaviour. Our compiler targets a
simple assembly-like language, where the code is a list of instructions (instr).

instr = Add reg reg reg | Int reg int | Jmp num | JmpIf reg num

Thecompiler,compile, isacompositionofthreephases.Thefirstphase,phase1,
simplifiesForandDec;phase2splitsassignmentsintosimpleinstruction-likeassign-
ments,but stayswithin the source language; andphase3 reduces the remaining sub-
set of the source language into a list of target instructions. The first two parameters
to phase3 accumulate code location information.

compile t = phase3 0 0 (phase2 (phase1 t))

The first phase is a source-to-source transformation that simplifies For and Dec
as follows. Here Loop is an abbreviation: Loop t = For (Num 1) (Num 1) t .
4 Note that suchpackagedbig-step rules are easy to define inHOL4.However, theydonot

fit well with Coq’s default mechanism for defining inductive relations. Charguéraud’s
pretty-big-step approach was developed in the context of Coq.
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phase1 (For g e t) = Loop (If g (Seq (phase1 t) (Exp e)) Break)
phase1 (Dec x t) = Seq (Exp (Assign x (Num 0))) (phase1 t)

The compilation function phase1 has a simple correctness theorem that can be
proved in less than 20 lines of HOL4 script using the induction from Fig. 1.

� ∀ s t. sem_t s (phase1 t) = sem_t s t

We also prove that phase1 preserves the observable semantics:

� ∀ t. semantics (phase1 t) = semantics t

Subsequent phases assume that For statements have been simplified to Loop.
The verification of the second phase, phase2, is almost as simple but a little longer
because phase2 invents variable names to hold temporary results.

The third phase compiles the resulting subset of the FOR language into a list of
instructions in the assembly-like target language. The crucial lemma, stated below,
wasprovedby inductionusing the theoremshown inFig. 1.This lemma’s statement
can informally be read as: if the source semantics sem_t dictates that program t
successfully evaluates state s1 to state s2, the source program t is within the allowed
syntactic subset, and the compiled code for t is installed in a store-related target
state x ; then the target semantics sem_a evaluates x to a new target state x ′ that is
store-related to s2. Below, sem_a is the functional big-step semantics for the target
assembly language. The sem_a function executes one instruction at a time and is
tail-recursive; its lengthydefinitionisomitted.phase3_subsetdefinesthesyntactic
restrictions thatprogramsmust followafterphases1and2.Theellipses elide several
detailed parts of the conclusion that are only necessary to make the induction go
through: in particular, where the program counter will point at exit based on the
result res.

� ∀ s1 t res s2 x xs ys b.
(sem_t s1 t = (res,s2)) ∧ phase3_subset t ∧ (x.store = s1) ∧
(x.pc = LENGTH xs) ∧
(x.instrs = xs ++ phase3 (LENGTH xs) b t ++ ys) ∧ res �= Rfail ∧
((res = Rbreak) ⇒ LENGTH (xs ++ phase3 (LENGTH xs) b t) ≤ b) ⇒
∃ x ′. (sem_a x = sem_a x ′) ∧ (x ′.store = s2) ∧ . . .

From the lemmaabove, it is easy to prove that phase3 0 0 t preserves the observable
semantics, if t is in the subset expected by the third phase and t does not Crash in
the source semantics.

� ∀ t.
semantics t �= Crash ∧ phase3_subset t ⇒
(asm_semantics (phase3 0 0 t) = semantics t)

Here asm_semantics is the observable semantics of the target assembly language.

asm_semantics code =

if ∃ c s. sem_a (a_state code c) = (Rval 0,s) then Terminate

else if ∀ c. ∃ s. sem_a (a_state code c) = (Rtimeout,s) then Diverge

else Crash
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The following top-level compiler correctness theorem is produced by combining
the semanticspreservation theorems fromall threephases.Theassumption that the
source semantics does not Crash is implied by a simple syntactic check syntax_ok,
which checks that all variables been declared (Dec) and that all Break statements
are contained within For loops.

� ∀ t. syntax_ok t ⇒ (asm_semantics (compile t) = semantics t)

3.4 ComparisonwithProof inRelational Semantics

Weprovide a correspondingproof of correctness forphase1 in the relational seman-
tics. As a rough point of comparison, our relational proof required 43 lines while the
functional big-stepproof required just 18 lines.Theproof is split into twoparts, cor-
responding to the relations defining our big-step semantics:

� ∀ s t res. (t,s) ⇓t res ⇒ (phase1 t,s) ⇓t res
� ∀ s t. (t,s) ⇑t ⇒ (phase1 t,s) ⇑t

The advantage of (non-looping) functional rewriting is apparent in our proofs: we
often had to manually control where rewrites were applied in the relational proof.
Additionally, we had to deal with significantly more cases in the relational proofs;
these extra cases came fromtwosources, namely, theones arising fromanadditional
co-inductiveproof fordivergingprograms, andextra (similar) cases in the induction
theorems.

The additional co-inductive proof is a good point of comparison, since our tech-
nique of decrementing the clock only on recursive calls in the functional big-step
semantics gives us divergence preservation for free in compilation steps that do not
causeadditional clock ticks.Thecasesarising inourco-inductiveproofalso required
a different form of reasoning from the inductive proof; this naturally arises from
the difference between induction and co-induction but it meant that we could not
directly adapt similar cases across both proofs.

The top-level observable semantics can be similarly defined for relational
semantics:

rel_semantics t =
if ∃ v s. (t,init_store) ⇓t (Rval v,s) then Terminate

else if (t,init_store) ⇑t then Diverge

else Crash

So we can prove the correctness of phase1with respect to rel_semantics:

� ∀ t.
rel_semantics t �= Crash ⇒
(rel_semantics (phase1 t) = rel_semantics t)

This proof requires proving that the relations (⇓t, ⇑t) are disjoint:

� ∀ s t res. (t,s) ⇓t res ⇒ ¬(t,s) ⇑t
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We also attempted a proof of phase1 with a relational pretty-big-step seman-
tics; we found this semantics surprisingly difficult to use in HOL4. Pretty-big-step
semantics requires the introduction of additional intermediate terms to factorise
evaluation of sub-terms. Hence, the generated induction theorem requires reason-
ing over these intermediate terms.However, in our compiler proofs, we are typically
concerned with the original syntactic terms – those are the only ones mentioned by
the compiler – so this induction theorem cannot be applied directly, unlike in the
other twosemantics.Therearewaysaroundthis: one can, for example, usean induc-
tion theorem that only concerns the original syntactic terms or induct on the size of
derivations.Neither of these approaches are automatically supported inHOL4, and
our proof of phase1 semantics preservation using the latter approach took 81 lines.
Some of Charguéraud’s big-step and pretty-big-step equivalence proofs in Coq also
needed tomanually prove anduse induction onderivation sizes.Additionally, a sep-
arate proof is still required for divergence preservation in the co-inductive interpre-
tation of these rules; this requires the use of its co-induction theorem,which also has
similar issues with intermediate terms.

To furthervalidate the functionalbig-stepapproach,weprove the equivalenceof
the functionalbig-stepsemantics (sem_t)andtherelational semantics (⇓t,⇑t). (We
alsoprove the equivalencewitha small-step semantics inSect. 7).Theequivalence is
separated into two theorems: the first shows equivalence for terminating programs
while the latter shows equivalence on diverging programs.

� ∀ s t r s ′.
(t,s) ⇓t (r,s

′ with clock := s.clock) ⇐⇒
∃ c′. (sem_t (s with clock := c′) t = (r,s ′)) ∧ r �= Rtimeout

� ∀ s t.
(∀ c. FST (sem_t (s with clock := c) t) = Rtimeout) ⇐⇒ (t,s) ⇑t

The proofs rely on the disjointness lemma above and a determinism lemma for
the relational semantics:

� ∀ s t res. (t,s) ⇓t res ⇒ ∀ res ′. (t,s) ⇓t res
′ ⇒ (res = res ′)

They also rely on an analogue of determinism for the functional big-step seman-
tics: if a program does not time out for a given clock, then every increment to the
clock gives the same result5.

� ∀ s t r s ′.
(sem_t s t = (r,s ′)) ∧ r �= Rtimeout ⇒
∀ k.

sem_t (s with clock := s.clock + k) t =
(r,s ′ with clock := s ′.clock + k)

These lemmasareeasy toprovecomparedto themainbodyof theequivalenceproof,
and our examples above demonstrate that the number of such lemmas required is
comparable between the two semantics.

5 This lemma also implies that if a program times out for a given clock, then it times out
for all smaller clocks.
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4 Non-determinism

We now add non-deterministic evaluation order and input/output expressions to
the FOR language. The only syntactic change is the addition of two expressions:
Getchar and Putchar e. However, the observable behaviours of programs have
changed significantly. Instead of doing exactly one of terminating, diverging, or
crashing, a program can now exhibit a set of those behaviours. Furthermore, both
termination and divergence results now include the I/O stream that the program
consumed/produced.For technical reasons, it also contains the choicesmadeby the
non-deterministic evaluation order (see Sect. 7). In the type of observation, the
llist type is the lazy list type that contains both finite and infinite lists, and + is
the type constructor for disjoint unions.

observation =

Terminate ((io_tag + bool) list)

| Diverge ((io_tag + bool) llist)

| Crash

Asafunction,sem_tseemstobe inherentlydeterministic:wecannotsimplyhave
it internallyknowwhatthenextinputcharacteris,orchoosewhichsub-expressionto
evaluatefirst.Weare leftwithtwooptions:wecan factorout the input streamandall
choices into the state argument of sem_t and then existentially quantify them in the
top-level semantic function to build a set of results; or alternatively, we can change
the type of sem_t to return sets of results (alongside partial I/O traces). Here we
take the first approachwhich leads to onlyminor changes in the definition of sem_t.

First, the state argument of sem_t gets three new fields: io_trace to record the
characters readandwritten;input to represent the (possibly infinite) input stream;
and non_det_owhich represents an infinite stream of decisions that determine the
subexpression evaluation ordering. We include the inputs in the io_trace to accu-
rately model the order in which the I/O operations happened.

io_tag = Itag int | Otag int

state =

<| store : (string 
→ int);

clock : num;
io_trace : ((io_tag + bool) list);

input : (char llist);
non_det_o : (num -> bool) |>

Because all of our changes are limited to the expression language, and encapsu-
lated in the extended state argument, which sem_tdoes not access, the definition of
sem_t looks identical to the previous one. The changes to sem_e are limited to the
Add case (where a non-deterministic choice is made), and two new cases for the new
expressions.

sem_e s (Putchar e) =
case sem_e s e of
(Rval n1,s1) ⇒
(Rval n1,s1 with io_trace := s1.io_trace ++ [INL (Otag n1)])

| r ⇒ r
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sem_e s Getchar =
(let (v,rest) = getchar s.input in

(Rval v,
s with <|input := rest; io_trace := s.io_trace ++ [INL (Itag v)]|>))

sem_e s (Add e1 e2) =
(let ((fst_e,snd_e),nd_o,switch) = permute_pair s.non_det_o (e1,e2) in
case
sem_e

(s with
<|non_det_o := nd_o; io_trace := s.io_trace ++ [INR switch]|>)
fst_e

of
(Rval fst_n,s1) ⇒
(case sem_e s1 snd_e of
(Rval snd_n,s2) ⇒
(let (n1,n2) = unpermute_pair (fst_n,snd_n) switch in
(Rval (n1 + n2),s2))

| r ⇒ r)
| r ⇒ r)

TheAddcase is similar tobefore,butusesthepermute_pair functiontoswapthe
sub-expressions ornot, dependingon theoracle. It also returns aneworacle ready to
get the next choice, and whether or not it switched the sub-expressions. The latter
is used to un-permute the values to apply the primitive + in the right order (which
would matter for a non-commutative operator). Getchar similarly consumes one
input and updates the state. Putchar adds to the I/O trace.

Critically, the above modifications are orthogonal to the clock, and do not affect
the termination proof, or the usefulness of the induction theorems and rewriting
equations. The changes to the semantics function are explained next.6

semantics t input (Terminate io_trace) ⇐⇒
∃ c nd i s.
(sem_t (init_st c nd input) t = (Rval i,s)) ∧
(FILTER ISL s.io trace = io_trace)
semantics t input Crash ⇐⇒
∃ c nd r s.
(sem_t (init_st c nd input) t = (r,s)) ∧
((r = Rbreak) ∨ (r = Rfail))

semantics t input (Diverge io_trace) ⇐⇒
∃nd.
(∀ c. ∃ s. sem_t (init_st c nd input) t = (Rtimeout,s)) ∧
(io_trace =∨
c.
fromList

(FILTER ISL (SND (sem_t (init_st c nd input) t)).io trace))

6 Here FILTER is ordinary filtering over a list, and ISL is the predicate for the left injection
of a sum (disjoint union), so the FILTER ISL applications get the I/Oactions anddiscard
the evaluation ordering choices.
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Firstly, semantics is now a predicate7 over programs, inputs, and observation.
Terminationandcrashingare still straightforward: thenon-determinismoracle and
input are quantified along with the clock, and the resulting I/O trace is read out of
the result state. We filter the trace so it only contains the I/O actions and not the
record of the non-determinism oracle. Some choices of oracles might lead to a crash
whereas others might lead to different terminating results.

Divergence is more subtle. First, note that a program can both terminate and
diverge depending on evaluation order. For example, in the following x can be
assigned either 1 or 0, depending on which sub-expression is evaluated first.

Seq (Exp (Add (Assign "x" 1) (Assign "x" 0)))

(For (Var "x") (Num 1) (Exp (Num 1)))

Thus, in the definition of semantics, we first existentially quantify the non-
determinism, then check that it results in a timeout for all clock values given that
particular oracle. To ensure that the resulting I/O trace is correct, we consider the
set of all I/O traces for every possible clock in the complete partial order of lazy lists
orderedby theprefix relation.This set forms a chain, becauseweprove that increas-
ing the input clock does not alter the I/O already performed. Hence, the resulting
I/O behaviour is the least upper bound, which can be either a finite or infinite lazy
list. Operationally, as we increase the clock, we potentially see more I/O behaviour,
and the least upper bound defines the lazy list that incorporates all of these. (Nota-
tion: the

∨
binder takes lubs in this PO.)

Adapting the Compiler Verification. Adapting the compiler verification to the I/O
and non-determinism extension is an almost trivial exercise. The I/O streams were
modelled in the same way in the assembly language, which we kept deterministic.
The new proof engineering work stems mostly from the substantial change to the
definition of the top-level semantics function semantics. Due to non-determinism,
which the compiler removes, the correctness theorem is now stated as a subset rela-
tion: everybehaviourof thegenerated (deterministic)assemblycode is alsoabehav-
iour of the (non-deterministic) source program.

� ∀ t inp. syntax_ok t ⇒ asm_semantics (compile t) inp ⊆ semantics t inp

Unclocked Relational Big-step. Non-determinism can be handled naturally with
two big-step rules for Add, although that does introduce duplication. A big-step
relation can also be used to collect I/O traces [10,17,20]. However, this requires a
mixed co-inductive/inductive approach for non-terminating programs, and we can
no longer choose to equate divergence with a failure to relate the program to any-
thing.

Concurrency. The techniques described in this section can support functional big-
step semantics for a large variety of practical languages, but they do share a sig-
nificant limitationwith other big-step approaches: concurrency.Concurrent execu-
tion would require interleaving the evaluation of multiple expressions, whereas the

7 Note that HOL4 identifies the types α -> bool and α set.
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main principle of a big-step semantics (ours included) is to evaluate an expression
to a value in one step. Our non-determinism merely selects which to do first. Work-
arounds, suchashavingsem_t return sets of traces of inter-thread communications,
might sometimes be possible, but would significantly affect the shape of the defini-
tion of the semantics.

5 TypeSoundness

Whereasbig-stepsemanticsarecommonincompilerverification, small-stepseman-
tics enable the standard approach to type soundness by preservation and progress
lemmas [29].A type soundness theoremsays thatwell-typedprogramsdonot crash;
they either terminate normally or diverge. As Siek notes [25], a critical thing a
semantics must provide is a good separation between divergence and crashing, and
a clocked big-step semantics does this naturally. We have experimented with two
type systems and found that functional big-step semanticsworks verywell for prov-
ing type soundness.

Our first example is for the FOR language. We prove that syntax_ok programs
do not evaluate to Rfail. The key is to use the induction theorem associated with
the functional semantics, rather than rule induction derived from the type system.

We carry the same approach to a language with more interesting type systems:
the Core ML language from Wright and Felleisen [29] equipped with a functional
big-step semantics closely resembling an ML interpreter. The type system is more
complex than the FOR language’s, supporting references, exceptions, higher-order
functionsandHindley-Milnerpolymorphism.However, this extracomplexity in the
type system factors out neatly, and does not disrupt the proof outline.

Our approach is similar to the one described by Siek [26] (followed by Rompf
and Amin [24]) who uses a clocked functional big-step semantics and demonstrates
the utility of the induction theorem arising from the clocked semantics. As a result,
ourmain type soundness proof, which interactswith the big-step semantics, is easy.
Siek’s example type system is simpler than Core ML’s: it has no references or poly-
morphism; but these difficult aspects can be isolated. The most difficult lemmas in
our proof are about the type system, and rely on α-equivalence reasoning over type
schemes.Similarlemmas,concerningthetypesystemonly,wereprovedbyTofte[27].

Our statement of type soundness forCoreML is: if a program iswell-typed, then
for all clocks, the semantics of the program is either Rtimeout, an exception, or a
value of the correct type –neverRfail.Theuniversal quantificationof clocksmakes
this a strong statement, since it implies diverging well-typed programs also cannot
fail. For contrast, we have also written un-clocked big-step semantics for Core ML
andproveda similar theorem: if a program iswell-typedand converges to r , then r is
an exception or value of the correct type, but neverRfail. The proof by induction is
essentiallythesameas fortheclockedsemantics,andall thetype-systemlemmascan
be re-used exactly, but the conclusion is much weaker because diverging programs
do not satisfy the assumption. The proof is also longer (330 lines vs. 200) because of
the duplication in the relational semantics.
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6 LogicalRelations

The technique of step-indexed logical relations [2] supports reasoning about pro-
grams thathave recursive types, higher-order state, or other features that introduce
aspects of circularity intoa language’s semantics [1,12].The soundnessof these rela-
tions is usually proved with respect to a small-step semantics, because the length of
a small-step trace can be used to make the relation well-founded when following the
structure of the language’s cyclic constructs (e.g., when following a pointer cycle in
the heap or unfolding a recursive type). Here we show that the clock in a functional
big-step semantics can serve the same purpose.

Because our main purpose here is to illustrate functional big-step semantics, we
first present the relation and defer its motivation to the end of this section. For now,
it suffices to say that it has some significant differences from the existing literature,
because it is designed to validate compiler optimisations in an untyped setting.

We start with an untyped lambda calculus with literals, variables (using de
Bruijn indices), functions, and a tick expression that decrements the clock. The
semantics will also use closure values, and a state with a clock.

exp = Lit lit | Var num | App exp exp | Fun exp | Tick exp

v = Litv lit | Clos env exp

env = v list

state = <| clock : num; store : env |>

Wecan thendefine the functionsem, which implements call-by-value evaluation
and decrements the clock on every function call. EL gets the nth element of a list.

sem env s (Lit i) = (Rval (Litv i),s)
sem env s (Var n) =
if n < LENGTH env then (Rval (EL n env),s) else (Rfail,s)
sem env s (App e1 e2) =
case sem env s e1 of
(Rval v1,s1) ⇒
(case sem env s1 e2 of
(Rval v2,s2) ⇒
if s2.clock �= 0 then
case v1 of
Litv v4 ⇒ (Rfail,s2)
| Clos env ′ e ⇒ sem (v2::env

′) (dec_clock s2) e
else (Rtimeout,s2)

| r ⇒ r)
| r ⇒ r
sem env s (Fun e) = (Rval (Clos env e),s)
sem env s (Tick e) =
if s.clock �= 0 then sem env (dec_clock s) e else (Rtimeout,s)

The top-level semantic function’s definition is similar to the FOR language’s
(Sect. 2).

We then define the relations val_rel, which relates two values; exec_rel,
whichrelates twoenvironment/store/expressiontriples (i.e., the inputs tosem);and
state_rel, which relates two stores; all at a given index.
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val_rel i (Litv l) (Litv l ′) ⇐⇒ (l = l ′)
val_rel i (Clos env e) (Clos env ′ e ′) ⇐⇒
∀ i ′ a a ′ s s ′.
i ′ < i ⇒
state_rel i ′ s s ′ ∧ val_rel i ′ a a ′ ⇒
exec_rel i ′ (a::env,s,e) (a ′::env ′,s ′,e ′)

val_rel i (Litv l) (Clos env e) ⇐⇒ F

val_rel i (Clos env e) (Litv l) ⇐⇒ F

exec_rel i (env,s,e) (env ′,s ′,e ′) ⇐⇒
∀ i ′. i ′ ≤ i ⇒
(let (res1,s1) = sem env (s with clock := i ′) e in
let (res2,s2) = sem env

′ (s ′ with clock := i ′) e ′ in
case (res1,res2) of
(Rval v1,Rval v2) ⇒
(s1.clock = s2.clock) ∧ state_rel s1.clock s1 s2 ∧
val_rel s1.clock v1 v2

| (Rtimeout,Rtimeout) ⇒ state_rel s1.clock s1 s2
| (Rfail,_) ⇒ T

| r ⇒ F)

state_rel i s s ′ ⇐⇒
LIST_REL (λ a ′ a. val_rel i a ′ a) s.store s ′.store

The definitions of val_rel and state_rel are typical of a logical relation;
exec_rel is where the relation interacts with the functional big-step semantics. In
the small-step setting, exec_rel would say that the two triples are related if they
remain related for i steps of the small-step semantics. With the functional big-step
semantics, we instead check that the results of the sem function are related when we
set the clock to a value less than i .

From here we prove that the relation is compatible with the language’s syntax,
that it is reflexive and transitive, that it is sound with respect to contextual approx-
imation, and finally that β-value conversion is in the relation, and hence a sound
optimisation for the language at any subexpression. Most of the proof is related to
thesemanticworkathand,ratherthanthedetailsof thesemantics,butwedoneedto
rely on several easy-to-prove lemmas about the clock that capture intuitive aspects
of what it means to be a clocked evaluation function. They correspond to the last
lemma from Sect. 3.4.

Motivation. The language and relation are designed as aprototype of an intermedi-
ate language forCakeMLthat is similar to the clambda intermediate language in the
OCaml compiler [9]. Because this is an untyped intermediate language for a typed
source language, the compiler shouldbe able to change a failing expression into any-
thing at all. We know that we will never try to compile an expression that fails, and
this design allows us to omit run-time checks that would otherwise be needed to sig-
nal failure. This is why exec_rel relates Rfail to anything, and why our relation is
not an equivalence, but an approximation: the compiler must never convert a good
expression into one that fails.

Furthermore, the compiler must not convert a diverging program into one that
converges (or vice-versa).This iswhy Rtimeout is only related to itself, andwhy the
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clocks are both set to the same i ′ when running the expressions. In a typed setting,
the clock for the right-hand argument is existentially quantified, thereby allowing
a diverging expression to be related to a converging one, and if one wants to show
equivalence, one proves the approximation both ways. Because of our treatment of
failure, that is not an option here. The drawback is that we cannot support trans-
formations that increase thenumber of clock ticks needed.For transformations that
might reduce thenumber of ticks, includingourβ-value conversion, the transforma-
tion just needs to introduce extra Tick instructions.

All of the above applies in a small-step setting too. However, the functional big-
step approach automatically has some flexibility for changing the amount of com-
putation done. For example, both 1 + 2 and 3 evaluate with the same clock, and so
this type of logical relation could be used to show that constant folding is a sound
optimisation without added Tick instructions.

7 EquivalencewithSmall-StepSemantics

We build a straightforward small-step semantics for the FOR language by adding
a Handle statement to the language, to stop the propagation of Break statements
upward, and implement For as follows (we write Seq as an infix ;):

(For e1 e2 t, s) →t (Handle (If e1 (t;Exp e2;For e1 e2 t) (Exp (Num 0))),s)

To prove the equivalence of the functional big-step and small-step, we need two
lemmas. First, that the functional semantics only gives Rtimeout with a clock of 0
(which is trivial to prove). Second, that any result of the functional semantics has
a corresponding trace through the small-step semantics that is long enough. In the
theorem below, we represent the small-step trace with a list so that we can check its
length. The check_trace predicate checks that it is indeed a trace of →t steps. The
length check ensures that if the functional big-step diverges, then we will be able to
build a small-step trace of arbitrary length, and so it diverges too. The subtraction
calculates how many clock ticks the evaluation actually used.

� (sem_t s t = r) ⇒
∃ tr.
tr �= [] ∧ s.clock − (SND r).clock ≤ LENGTH tr ∧
check_trace (λ st. some st ′. st →t st

′) tr ∧
(HD tr = (s.store,t_to_small_t t)) ∧ res_rel_t r (LAST tr)

One would expect such a theorem building small-step traces from big-step exe-
cutions to show up in any big-step/small-step equivalence proof. The extra length
checkaddsvery littledifficultytotheproof,butensuresthatwedonotneedtoexplic-
itly prove anything about divergence, or additionally reason going from small-step
traces tobig-stepexecutions.Similar totypesoundness (Sect. 5),weprovethisusing
the induction principle of sem_t.

In the non-deterministic case, we extend the state of the small-step semantics
with the same oracle that the functional big-step semantics uses, and we use the
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oracle to choose which sub-expression of an Add to start evaluating. AddL and AddR
expressions are included to mark which argument is being evaluated, so that we do
not consult the oracle in subsequent steps for the same decision or switch back-and-
forthbetweensubexpressions.Forexample, if theoraclereturns false,westartevalu-
ating the left sub-expression on the updated oracle state. The oracle_upd function
puts the new oracle into s and adds F to its io_trace.

oracle_get s.non det o = (F,o′)

(Add e1 e2, s) →e (AddL e1 e2,oracle_upd s (F,o
′))

Thus, the small-step semantics remains non-deterministic, and we can use the
same approach as above. There are three significant differences. One, we look at the
list of all I/O actions and non-determinism oracle results stored in io_trace instead
of the return value. This is why we need to record the oracle results there. Two,
our trace-building must account for the AddL and AddR expressions. Three, we must
knowthatthe io_trace ismonotonewithrespecttosteppinginthesmall-stepseman-
tics, andwith respect to the clock in the functional big-step semantics. The only dif-
ficulty in this proof, over the deterministic one, was in handling the AddL and AddR
forms, not in dealing with the oracle or trace.

To get an equivalent non-deterministic labelled transition system (LTS) with
I/O actions as labels, one would prove the equivalence entirely in the small-step
world with a simulation between the oracle small-step and the LTS semantics.

In the above, there was nothing special about the FOR language itself, and the
same connection to small-step semantics could be proved for any situation where
the big-step to small-step lemma above holds, along with other basic properties of
the semantics. In fact, our proof for theFOR language is based on a general theorem
that distills the essence of the approach. (We omit the details, which are obscured
by the need to treat the two kinds of semantics abstractly).

8 Discussion andRelatedWork

Logical Foundations. All of our examples are carried out in classical higher-order
logicof thekindsupportedbyHOL4,HOLLight, Isabelle/HOL,etc.However, there
is nothing inherently non-constructive about our techniques, and we expect that
they would carry over to Coq. We rely on the ability to make definitions by well-
founded recursion (usually on the combined structure of the terms, and a natural
number index), derive the corresponding induction principles, and take lubs in the
CPO of lazy lists. Occasionally, we make a non-constructive definition for conve-
nience (e.g., of the top-level semantics in Sect. 2, whereas Sect. 4 has a construc-
tive definition), our proofs do not rely on classical reasoning (other than in HOL4’s
implementation of the features mentioned above).

Testing Semantics. To test a semantics, one must actually use it to evaluate pro-
grams.Functionalbig-step semantics candothisout-of-the-box,as canmanysmall-
step approaches [13,14]. Where semantics are defined in a relational big-step style,
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one needs to build an interpreter that corresponds to the relation and verify that
they are equivalent – essentially, building a functional big-step semantics anyway.
This construction and proof has been done by hand in several projects [6,7,22], and
both Coq and Isabelle have mechanisms for automatically deriving functions from
inductive relations, although under certain restrictions, and not for co-inductive
relations [5,28].

Interpreters and Relational Big-step Semantics. The essence of the functional big-
stepapproach is that the semanticsare justan interpreter for the language,modified
with a clock to make it admissible in higher-order logic. In this sense, we are just fol-
lowing Reynolds’ idea of definitional interpreters [23], but using higher-order logic,
rather thanaprogramming language, as themeta-language.Usinga clock tohandle
potential non-termination keeps the mathematics unsophisticated, and fits in well
with the automation available in HOL4.

Other approaches are possible, such as Danielsson’s use of a co-inductive par-
tiality monad [11] to define functional big-step semantics. He defines a compiler
froma lambdacalculuswithnon-determinismtoastack-basedvirtualmachine,and
verifies it, including divergence preservation, in Agda. The compiler that we verify
here targets a language with lower abstraction. A thorough comparison is difficult
tomakebecause thenecessarymixed recursion/corecursion isnotavailable inHOL.

Nakata and Uustalu [20] give a functional big-step semantics whose co-domain
is (possibly infinite) traces of all states the programhas passed through, rather than
final results. Although their function is recursive, it relies on co-recursive helpers
for sequencing and looping: in this way it looks less like a definitional interpreter.
They prove equivalence between a variety of trace-based semantics, but do not use
the semantics for compiler verification or type soundness. Our FOR language with
I/O also keeps traces – although not of all of the program states passed through –
but they are kept in the state, rather than in the function’s result. Instead of using
co-recursion, we take a least upper bound to build possibly infinite traces of I/O
actions.

Several improvements have been made to traditional inductive relational big-
step semantics. Leroy and Grall show how to use co-inductive definitions to give a
semantics toa lambda-calculusandverify type soundness, andcompiler correctness
(for a compiler to a VM) while properly handling divergence [18].

Charguéraud’s pretty-big-step semantics keeps the co-induction and removes
some of the duplication by representing partial computations with new syntax and
providing rules for completing the evaluation of the partially evaluated syntax [10].
For the FOR language, he introduces new syntax, For1, For2, and For3, that con-
tain semantic contexts for partial evaluations. The evaluation rule for For has a
hypothesis about evaluation of For1, which represents the state of evaluation after
the first expression in For has been evaluated. Similarly, the semantics of For1 is
given semantics in terms of For2, and so forth. The pretty-big-step approach leads
to many rules, but there are fewer than in a conventional big-step definitions, and
the duplication is removed by factoring it out into rules that introduce For1, For2,
and For3.
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Bach Poulsen and Mosses show how to derive a (co-inductive) pretty-big-step
semantics from a certain kind of small-step semantics (MSOS). This allows one to
get the conciseness of a small-step definition and some of the reasoning benefits of a
big-step style [3].They further show that the duplicationbetween the inductive and
co-inductive rules canbe reducedby encoding in the statewhether the computation
is trying to diverge or converge, under certain restrictions [4]. Their approach to
encoding control-flow effects in the state could be applied in the functional big-step
setting. From the point of view of writing an interpreter, this would correspond to
using a state monad to encode an exception monad.

Nipkow and Klein use an inductive big-step semantics for a simple imperative
language, along with a small-step semantics proved equivalent, and show how to
verify a compiler for it [21]. The language cannot have run-time errors, so they do
not have to use co-induction. (When they add a type system and possible runtime
errors, they switch to small-step). However, their compiler correctness proof and
big-step/small-step equivalence proofs each rely on two lemmas. The first assumes
a converging big-step execution andbuilds a small-step trace (their target language
has a small-step semantics), just like our corresponding proofs in Sects. 3.3 and 7.
Their second assumes a small-step trace and shows that the big-step semantics con-
verges to the right thing. With functional big-step semantics, we do not need this
direction because we are in a deterministic setting and we correlate the trace length
with clock in the first lemma. This is significant because the second lemma has the
moredifficultproof: anymachinestateencounteredwhenrunningthecompiledpro-
gram must be related back to some source program.

Functional Big-step in CakeML. At the time of writing, the CakeML compiler has
12 intermediate languages (ILs), totaling ≈ 5, 800 lines. There are about ≈ 40, 000
lines of proof about them. The semantics of each IL is defined in the functional big-
step style,withadded support for I/Ousing the techniques fromSect. 4.The lowest-
level ILs are assembly and machine-code-like languages. Their functional big-step
semantics are formulated as tail-recursive functions.

9 Conclusion

We have shown how to take an easy to understand interpreter and use it as a formal
semantics suitable foruse inan interactive theoremprover.Tomake this possiblewe
added clocks and oracles to the interpreter. Although our example FOR language is
simple, it exhibits a wide range of programming language features including diver-
gence, I/O, exceptions (Break), and stores. We have also shown how the functional
big-step style can support functional language semanticswithCoreMLandcall-by-
value lambda calculus examples.
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