
II. Equations in the Field of Complex
Quantities

We shall now remove the restriction to real quantities and shall operate in the field
of complex quantities. Of course, we shall endeavour again only to emphasise
those things which are susceptible of geometric representation to an extent greater
than one finds elsewhere. Let us begin at once with the most important theorem of
algebra.

A. The Fundamental Theorem of Algebra

This is, as you know, the theorem that every algebraic equation of degree n in the
field of complex numbers has, in general, n roots, or, more accurately, that every
polynomial f .z/, of degree n, can be separated into n linear factors.

[110]All proofs of this theorem basically make use of the geometric interpretation of
the complex quantity x C iy in the x-y-plane. I shall give you the train of thought
of Gauß’ first proof (1799), which can be presented quite intuitively. To be sure,
the original exposition of Gauß was somewhat different from mine.

Given the polynomial

f .z/ D zn C a1z
n�1 C � � � C an;

we may write
f .x C iy/ D u.x; y/C i � v.x; y/;

where u; v are real polynomials in the two real variables x; y. The leading thought
of Gauß’ proof lies now in considering the two curves

u.x; x/ D 0 and v.x; y/ D 0

in the x-y-plane, and in showing that they must have one point, at least, in common.
For this point one would then have f .x C iy/ D 0, that is, the existence of a first
“ro o t” of the equation f D 0 would be proved. For this purpose, it turns out to be
sufficient, to investigate the behaviour of both curves at infinity, i.e., at a distance
from the origin which is arbitrarily great.
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110 II. Equations in the Field of Complex Quantities

If r , the absolute value of z, becomes very large, we may neglect the lower
powers of z in f .z/, in comparison with zn. If we introduce polar coordinates r; '
into the x-y-plane, i.e., if we set

z D r.cos' C i sin '/;

we have, by De Moivre’s formula

zn D rn.cosn' C i sin n'/:

This expression is approached asymptotically by f .z/, as z increases in absolute
value. It follows at once that u and v approach, respectively; asymptotically the
functions

rn cosn'; rn sin n':

Figure 34

Consequently the ultimate course of the curves u D 0, v D 0, at infinity, respec-
tively, will be given approximately by the equations

cosn' D 0; sin n' D 0:

Now the curve sin n' D 0 consists of those n straight lines which go through the
origin and make with the x-axis the angles 0; �=n; 2�=n; : : : ; .n�1/�=n, whereas
cosn' D 0 consists of the n rays through the origin which bisect these angles
(Fig. 34 is drawn for n D 3). In the central part of the figure, the true curves u D 0,
v D 0 can, of course, be essentially different from these straight lines;[111] but they must
approach the straight lines asymptotically towards outside as the lines recede from
the origin. We can indicate their course schematically by retaining the straight tines
outside of a large circle and replacing them by anything we please, inside the circle
(see Fig. 35). But no matter what the behaviour of the curves may be inside the
circle, it is certain that, if one makes the circle about the origin sufficiently large,
the branches u; v, outside the circle extending to infinity, must alternate, fromwhich
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it is intuitively clear that these branches must cross one another inside the circle.
In fact, we can give a rigorous75 proof of this assertion – and this is the substance
of Gauß’ proof – if we use the continuity properties of the curves. The preceding

[112]argument, however, gives the essentials of the train of thought. If one such root has
been found, we can divide out a linear factor, and we can then repeat the reasoning
for the polynomial factor of degree (n� 1) arising. Continuing in this way, we may
finally break up f .z/ into n linear factors, i.e., we may prove the existence of n
zeros.

Figure 35

This method of reasoning will be much clearer if you carry through the con-
struction for special cases. A simple example would be

f .z/ D z3 � 1 D 0:

In this case we obviously obtain

u D r3 cos 3' � 1; v D r3 sin 3';

so that v D 0 consists simply of three straight lines, while u D 0 has three
hyperbola-like branches. Figure 36 shows the three intersections of the two curves,

75 It should be said here that Gauß did not go entirely without geometric considerations. The
arithmetization of the proof which he contemplated in his dissertation was first given by Alexander
Ostrowski (Göttinger Nachrichten, 1920. or vol. VIII of the materials for a scientific biography
of Gauß, 1920). Regarding the history of the Fundamental theorem I want to mention that its first
proof was given by D’Alembert. To be sure, there was a gap in his proof, to which Gauß called
attention. D’Alembert, namely, failed to distinguish between the upper limit of a function and
its maximum, and he made use of the assumption, which in general is false, that a function of
a complex variable actually attains its upper limit when this limit exists.
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which give the three roots of our equation. I recommend strongly that you work
through other and more complicated examples.

Figure 36

These brief remarks about the fundamental theorem will suffice here, since I am
not giving a course of lectures on algebra. Let me close by pointing out that the
significance of the admission of complex numbers into algebra lies in the fact that
it permits a general statement of the fundamental theorem. With the restriction to
real quantities one can only say that the equation of degree n has n roots, or fewer,
or perhaps none at all.

B. Equations with a Complex Parameter

The remainder of the time which I have set aside for algebra I shall devote to the
discussion, by intuitive methods, of all the roots (including the complex ones) of
complex equations, as was done earlier for the real roots of real equations. We shall
limit ourselves, however, to equations with o n e complex parameter and we shall
assume, furthermore, that this occurs only linearly. The study of a simple conformal
representation will then give us all that is required.

Let z D x C iy be the unknown, and w D uC iv the parameter. Then the type
of the equation to be considered has the form

(1) '.z/� w �  .z/ D 0;

where '; , are polynomials in z. Let n be the highest power of z that occurs.
According to the fundamental theorem, this equation has for each definite value of
w exactly n roots z which, in general, are different. Conversely, however, it follows
from (1) that

(2) w D '.z/

 .z/
;
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[113]i.e., w is a single-valued rational function of z, and it is said to be of degree n.
If we should use, as geometric equivalent of equation (1), simply the conformal
representation which this function sets up between the z-plane and the w-plane,
the many-valuedness of z as function of w would be disturbing the facility of in-
spection. We may help ourselves here, as is always the case in function theory,
by thinking of the w-plane as consisting of n sheets, one over another, which are
connected in an appropriate manner, by means of branch cuts, into an n - s h e e t e d
R i emann su r f a c e. Such surfaces are familiar to you all from the theory of alge-
braic functions. Then our function establishes, between the points of the n-sheeted
Riemann’s surface in thew-plane and the points of the simple z-plane, a one-to-one
relation which is, in general, conformal.

Figure 37

Before we begin a detailed study of this representation, it will be helpful if we
set up certain conventions, which will do away with the exceptional role played by
infinite values of w and z, a role not justified by the nature of the case, and which
will enable us to state theorems in general form. Inasmuch as these conventions
are not so widely employed as they should be, you will permit me to say a word
or two more about them than I otherwise should. We cannot be satisfied here when
one speaks merely symbolically of an infinitely distant point of the complex plane,
since such a conception gives no adequate concrete perception, so that one must
have recourse to special considerations or stipulations, in order to find out what
corresponds, for an infinitely distant point, to a definite property of a finite point.
But we can secure all that is desired, if we replace the Gaussian plane, as support
of the complex numbers, once for all, by the Riemannian sphere. For this purpose,
we think simply of a sphere of diameter one, tangent to the x-y-plane, its south pole
S being at the origin, and from its north pole N we project the plane stereograph-
ically upon the sphere (see Fig. 37). To every point Q D .x; y/ of the plane there
corresponds uniquely the second intersection P of the ray NQ with the sphere;
and, conversely, to every point P of the sphere, with the exception ofN itself, there
corresponds a unique point Q with definite coordinate (x; y). Hence we can con-
sider P as representing the number x C iy. Now if P approaches the [114]north pole
N , in any manner, Q moves to infinity; conversely, if Q recedes to infinity in any
manner, the corresponding point P approaches the single definite pointN . It seems
natural, then, to look upon this point N , which does not correspond to any finite
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complex number, as the unique representative of all infinitely large x C iy, i.e., as
the concrete picture of the infinitely distant point of the plane, which is otherwise
introduced only symbolically, and to affix to it outright the mark 1. In this way
we bring about, in the geometric picture, complete equality between all finite points
and the infinitely distant point.

In order to return now to the geometric interpretation of the algebraic relation (1),
we shall replace the w-plane also by a w-sphere. Then our function will be rep-
resented by a mapping of the z-sphere upon the w-sphere, and, just as in the case
of the mapping of the two planes, this is also conformal, since the stereographic
mapping of the plane upon the sphere is, according to a well-known theorem, con-
formal. To a single point on the w-sphere, there will then correspond, in general, n
different points on the z-sphere. In order to get a one-to-one relation we imagine,
again, n sheets on the w-sphere, lying one above another, and connected, in appro-
priate manner, by means of branch cuts, so as to form an n-sheeted Riemann surface
over the w-sphere. This picture presents no greater difficulty than that of the Rie-
mann surface over the plane. Thus, finally, the algebraic equation (1) is interpreted
as a one-to-one relation, conformal in general, between the Riemann surface over
the w-sphere and the simple surface of the z-sphere. This interpretation obviously
takes into account, also, infinite values of z and w which may correspond to each
other or to finite values.

In order to make the greatest possible use of this geometric device, we must take
a corresponding step in algebra, one which shall do away with the exceptional role
which infinity plays in the formulas, and this step is the introduction of homoge-
neous variables. We set, namely,

z D z1

z2

and consider z1, z2 as two independent complex variables, both of which remain
finite, and which cannot both vanish simultaneously. Each definite value of z will
then be given by infinitely many systems of values (cz1, cz2), where c is an arbitrary
constant factor. We shall look upon all such systems of values (cz1, cz2) which dif-
fer only by such a factor, as the same “position” in the field of the two homogeneous
variables. Conversely, for every such position there will be a definite[115] value of z,
with one exception: to the position (z1 arbitrary, z2 D 0) there will correspond no
finite z; but if one approaches it from other points, the corresponding z becomes in-
finite itself. This one point is thus to be looked upon as the arithmetic equivalent of
the one infinitely distant point of the z-plane or, as the case may be, of the z-sphere,
and as carrying the mark z D 1.

In the same way, of course, we put also w D w1=w2. We shall now set up the
“homogeneous” equation between the “homogeneous” variables z1, z2 and w1, w2,
which corresponds to equation (2). Multiplying by zn2 in order to clear of fractions,
we may write the equation in the form

(3)
w1

w2
D
zn2'

�
z1

z2

�

zn2 

�
z1

z2

� D '.z1; z2/

 .z1; z2/
:
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In this equation, '.z1; z2/ and  .z1; z2/ are rational i n t eg e r functions of z1 and
z2, since '.z/ and  .z/ contain at most the n-th power of z D z1=z2. Moreover
they are homogeneous polynomials (forms) of dimension n. For each term zi of
'.z/ or  .z/ is transformed into the term zn2 .z1=z2/

i D zn�i
2 zi1, of dimension n, by

clearing of fractions.
We come now to the detailed study of the functional dependence which our equa-

tion (1) or, as the case may be, (3) establishes between z and w. We shall apply
consistently our two new aids, mapping upon the complex sphere and homogeneous
variables. We shall have solved this problem when we achieve a complete percep-
tion of the conformal relation between the z-sphere and the Riemann surface over
the w-sphere.

First of all we must inquire as to the nature and the position of the branch points
of the Riemann surface. I remind you here that a �-fold branch point is one in
which � C 1 sheets are connected. Since w is a single-valued function of z, we
know the branch points when we know the points of the z-sphere which correspond
to them, which I am in the habit of calling the critical or noteworthy points of the z-
sphere. To each of these there corresponds a certain multiplicity equal to that of the
corresponding branch point. I shall now give, without detailed proof, the theorems
which make possible the determination of these points. I assume that the rather
simple function theoretic facts, which enter into consideration here, are in general
familiar to you, though they may not be in the homogeneous form which I prefer to
use. I shall illustrate in concrete intuitive form [116]the abstract considerations which I
shall present to you, in this connection, by a series of examples.

A little calculation is necessary in order to obtain the analogue, in homogeneous
coordinates, of the differential coefficient dw=dz. Differentiating equation (3) and
omitting the bars over ' and  , we obtain

(30)
w2dw1 � w1dw2

w22
D  d' � ' d 

 2
:

We have also

d' D '1 dz1 C '2 dz2;

d D  1 dz1 C  2 dz2;

where

'1 D @'.z1; z2/

@z1
; '2 D @'.z1; z2/

@z2
;

 1 D @ .z1; z2/

@z1
;  2 D @ .z1; z2/

@z2
:

On the other hand, from Euler’s theorem for homogeneous functions of degree n,
we have

'1 � z1 C '2 � z2 D n � '
 1 � z1 C  2 � z2 D n �  I
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consequently the numerator on the right side of (30) may be written in the form

 d' � ' d D
ˇ̌̌
ˇ d'; d '; 

ˇ̌̌
ˇ D 1

n

ˇ̌̌
ˇ '1dz1 C '2dz2;  1dz1 C  2dz2
'1z1 C '2z2;  1z1 C  2z2

ˇ̌̌
ˇ :

This expression, by the multiplication theorem for determinants, becomes

D 1

n

ˇ̌̌
ˇ '1; '2 1;  2

ˇ̌̌
ˇ �
ˇ̌̌
ˇ dz1; dz2z1; z2

ˇ̌̌
ˇ :

Thus (30) goes over into the equation

w2dw1 � w1dw2
w22

D z2dz1 � z1dz2
n �  2

.'1 2 �  1'2/:

This constitutes the basal formula of the homogeneous theory of our equation, and
the functional determinant '1 2 � '2 1, of the forms '; appears as a crucial ex-
pression for all that follows. Except for it and for the factor z22=.n 

2/, one has on
the right the differential of z D z1=z2, on the left that of w D w1=w2. Since for
finite z and w the critical points are given by dw=dz D 0, as is well known, the
following theorem appears plausible, but I shall here omit the proof: Each �-fold
zero of the functional determinant is a critical[117] point of multiplicity �, i.e., there cor-
responds to it a �-fold branch point of the Riemann surface over the w-sphere. The
chief advantage of this rule, as compared with those which are otherwise given, lies
in the fact that it contains in one statement both finite and infinite values of z and
w. It enables us also to make a precise statement concerning the number of remark-
able points. The four derivatives, namely, are forms of dimension n � 1, and the
functional determinant is therefore a form of dimension 2n� 2. Such a polynomial
always has exactly 2n � 2 zeros, if one takes into account their multiplicity. Thus,
˛1; ˛2; : : : ; ˛v being the remarkable points of the z-sphere (i.e., if '1 2�'2 1 D 0

for z1: z2 D ˛1; ˛2; : : : ; ˛v) and if �1, �2, . . . ,�r are their respective multiplicities,
then their sum is

�1 C �2 C � � � C �v D 2n � 2:
By virtue of the conformal mapping, to these points there correspond the v branch
points

a1; a2; : : : ; av

on the Riemann surface over the w-sphere, which must necessarily lie separated on
the surface, and about which �1 C 1; �2 C 1; : : : ; �v C 1 sheets, respectively, must
be cyclically connected. It should be noted, however, that different ones of these
branch points may lie over the same position on the w-sphere, since w D '.z/ .z/

for z D ˛1; ˛2; : : : ; ˛v , may give the same value for w more than once. Over such
a point, there would be two or more separate series of sheets, each series being in
itself connected. Every such position on the w-sphere is called a branch po s i t i o n;
we shall denote them, in order, by A;B;C; : : : It should be noted that their number
can be smaller than v.
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The statements thus far made furnish only a hazy picture of the Riemann surface.
We shall now build it up so that it can assume a gestalt better to be grasped. For
this purpose, let us draw on thew-sphere through the branch positions A;B;C; : : :
an arbitrary closed curve C not percolating itself and of the simplest possible form
(see Fig. 38), and distinguish the two spherical caps thus formed as the upper cap
and the lower cap. In all of the examples which we shall discuss later the points
A;B;C , . . . will all be real and we shall then naturally select as the curve C the
meridian great circle of real numbers, so that each of our two partial regions will
be a hemisphere.

Figure 38

[118]Returning to the general case we see that each pair of sheets of the Riemann
surface which are connected, percolate along a branch cut, which joins two branch
points. As you know, the Riemann surface remains unchanged in essence if we
move these cuts, leaving the end points fixed, that is, if we think of the same sheets
as being connected along other curves, provided these join the same branch points.
It is in just this variability that the great generality and also the great difficulty of the
idea of the Riemann surface lies. In order to give the surface a definite form, which
shall be susceptible to concrete perception, we move all the branch cuts so that all
of them lie over the curve C, which passes through all the branch points. It may be
that several branch cuts lie over the same part of C, and none at all over other parts.

Now let us cut this entire complex of sheets, i.e., each individual sheet, along
the curve C. Since we had already moved all the branch cuts into a position over
C, the incision just made passes along all of them, so that our Riemann surface
separates into 2n “half-sheets” entirely free from branches, n of them over each of
the two spherical caps. If we think of the half-sheets corresponding to the upper
cap as being shaded, and those corresponding to the lower as not shaded, we can
distinguish briefly, n shaded and n unshaded half-sheets. We can now describe
the original Riemann surface as follows. On it each shaded half-sheet meets only
unshaded half-sheets, those with which it is connected along segments of the curve
C lying over AB;BC; : : : ; and, similarly, each unshaded half-sheet is connected
along such segments of C only to shaded half-sheets. However, more than two half-
sheets may meet only at a branch point; and in fact around any�-fold branch point,
�C 1 shaded half-sheets would alternate with �C 1 unshades ones.
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Since the mapping by means of our function w.z/ of the z-sphere upon the
Riemann surface over the w-sphere is a one-to-one correspondence, we can imme-
diately transfer to the z-sphere the above conditions of connectivity. Because of
continuity, the 2n half-sheets of the Riemann surface must correspond to 2n con-
nected z regions, which we may call the shaded and the unshaded half-regions.
These will be separated from one another by the n images of each of the segments
AB;BC; : : : of the curve C which the n-valued function z.w/ represents upon
the z-sphere. Each shaded half-region meets only shaded half-regions along these
image-curves, and each unshaded half-region meets only shaded ones. It is only in
a ��fold critical point that more than two half-regions can meet. At such a point
�C 1 shaded and �C 1 unshaded half-regions come together.

[119] This division of the z-sphere into partial regions will help us to follow in detail
the course of the function z.w/ for a few simple characteristic examples. I shall
begin with a preferably simple one.

1. The “Pure” Equation

We shall call the well known equation

(1) zn D w

a pure equation. Its solution is given formally by introducing the radical z D n
p
w.

This gives us no information, however, regarding the functional relation between z
and w. We shall proceed according to the general plan by introducing the homoge-
neous variables

w1

w2
D zn1
zn2
;

and we shall consider the functional determinant of the numerator and denominator
of the right side ˇ̌̌

ˇ nz
n�1
1 ; 0

0; nzn�1
2

ˇ̌̌
ˇ D n2zn�1

1 � zn�1
2 :

This expression obviously has the (n � 1) fold zeros z1 D 0 and z2 D 0, or (in
non-homogeneous form) z D 0 and z D 1. These are the only critical points and
they are of total multiplicity 2n � 2. By our general theorem, therefore, the only
branch points of the Riemann surface over the w-sphere are at the positions w D 0

and w D 1. By the equation w D zn these correspond to the two points z D 0

and z D 1. Each of these two points has the multiplicity n � 1, so that n leaves
are cyclically connected at each of them. Let us now mark on the w-sphere the
meridian of real numbers as the curve C and let us cut all the sheets of the Riemann
surface along this meridian, after having appropriately displaced all of the branch
cuts. Of the 2n hemispheres into which the surface separates we think of those
over the rear half of the w-sphere, that is, those which correspond to w-values with
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positive imaginary parts, as shaded. Upon the meridian itself, we shall distinguish
between the half-meridian of positive real numbers (drawn full in Fig. 39) and that
of the negative real numbers (dotted).

Figure 39

Now we must examine themappings of this meridian C curve upon the z-sphere,
where they bring about the characteristic division into half-regions. Upon the posi-
tive half-meridian w D r , [120]where r ranges through positive real values from 0 to 1;
for these values we have by a well known formula of complex numbers,

z D n
p
w D ˇ̌

n
p
r
ˇ̌ �

cos
2k�

n
C i sin

2k�

n

�
; where k D 0; 1; : : : ; n � 1:

For the different values of k, this expression gives those n half-meridians of the
z-sphere which make with the half-meridian of positive real numbers the angles
0; 2�=n; 4�=n, . . . , 2.n � 1/�=n. Thus these curves correspond to the full drawn
half of C. On the negative half-meridian of the w-sphere we must set w D �r D
r � ei� , where again 0 5 r 5 1. This gives

z D n
p
w D ˇ̌

n
p
r
ˇ̌ �

cos
.2k C 1/�

n
C i sin

.2k C 1/�

n

�
;

where k D 0; 1; : : : ; n � 1:

Corresponding to this we have, on the z-sphere, those n half-meridians which have
the “longitude” �=n; 3�=n; : : : ; 2.n�1/�=n, which thus bisect the angles between
the others. Accordingly, the z-sphere is divided into 2n congruent bi-angular pieces
reaching from the north pole to the south pole, similar to the natural divisions of an
orange. This division is exactly in accord with the general theory. In particular, it is
only at the remarkable points, the two poles, that more than two half-regions meet.
At each of these points 2n half-regions meet, corresponding to the multiplicity n�1.

As for the shading of the regions, we need to fix it for one region only. The
remainder are then alternately shaded and unshaded. Now note that when we look
at the shaded half of the w-sphere (the rear) from the point w D 0, the full drawn
part of the boundary lies to the left, the dotted part to the right. Since we are
concerned with a conformal mapping, in which angles are not reversed, each shaded
region of the z-sphere, looked at from the corresponding point z D 0, must have the
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same property as to position, that is, it must have a full drawn boundary to the
left, and a dotted one to the right. With this we control completely the division of
the z-sphere into regions. Moreover, one notices a characteristic difference in the
distribution of the regions upon two z-hemispheres, according as n is even or odd,
as can be clearly seen in Figs. 40 and 41 on p. [121] for the first cases n D 3, n D 4.
Let me emphasize how necessary it was to go over to the complex sphere in order
to get a full understanding of the situation. In the complex z-plane, one would have
a division into angular sectors by straight lines radiating from z D 0, and it would
not be at all so obvious that z D 1 andw D 1 have equal significance with z D 0

and w D 0, as critical point and branch point, respectively.
[121] This furnished us with the essentials for exact knowledge of the functional re-

lation between z and w. We need now study only the conformal mapping of each
of the 2n spherical sectors upon one or the other of the two w-hemispheres. But I
shall not go into the details here. This case, as one of the simplest and most obvious
illustrations, will be familiar ground to anyone who has had to do with conformal
representation. We shall see later (see p. [141]) how to deduce from this methods
for the numerical calculation of z.

Figure 40

Figure 41

Let us, however, settle here the important question as to the mutual relation
among the various congruent regions of the z-sphere. Speaking more exactly,
w D zn takes on the same value at each point in every of the n shaded regions.
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Can the corresponding values of z be expressed in terms of one another? We no-
tice, in fact, that for z0 D z �" (where " is any one of the n-th roots of unity) z0n D zn,
that is w D zn takes the same value at all the n points

(2) z0 D "� � z D e
2�i�
n � z .� D 0; 1; 2; : : : ; n � 1/:

These n values of z0 must therefore be distributed so that just one of them lies in
each of the n shaded regions of the z-sphere, if z is taken in one of the shaded re-
gions and each of them must traverse one of these regions as z traverses its region.
The same thing is true of the unshaded regions. Each of the substitutions (2) is
represented geometrically by a rotation of the z-sphere through an angle � � 2�=n
about the vertical axis 0, 1 since, as is well known, multiplication in the complex
plane by e

2�i�
n denotes a rotation through that angle about the origin. Thus corre-

sponding points of our spherical regions, as well as the regions themselves, go over
into one another by means of these n rotations about the vertical axis.

[122]If, then, we had determined at the start only one shaded partial region of the
sphere, this remark would have furnished all the similar partial regions. In this
we have made use only of the property of the substitutions (2) that they transform
equation (1) into itself (i.e., zn D w into z0n D w) and that their number is equal
to the degree. In the examples that follow, we shall always be able to give such
linear substitutions at the outset, and by means of them to simplify considerably the
determination of the division into subregions.

Irreducibility; “Impossibility” of Trisecting the Angle

By using the present example I should like to clarify an important general no-
tion, namely, the notion of irreducibility for equations which contain a parameter
w rationally. We have already discussed irreducibility of equations with rational
numerical coefficients in connection with the construction of the regular heptagon
(p. [55] et seq.). An equation f .z;w/ D 0 (e.g., our equation zn � w D 0),
where f .z;w/ is a polynomial in z, whose coefficients are rational functions of w,
is called reducible with respect to the parameter w, when f can be split into the
product of two polynomials of the same sort, in each of which z really appears

f .z;w/ D f1.z;w/ � f2.z;w/I

otherwise the equation is called irreducible with respect to w. The entire general-
isation, in comparison with the earlier conception, lies in the fact that the “domain
of rationality” in which we operate and in which the coefficients of the admissible
polynomials are to lie, consists of the totality of rational functions of the parame-
ter w instead of the totality of rational numbers, in other words, that we pass from
a number-theoretic to a function-theoretic conception.

If we illustrate us this, for each equation f .z;w/ D 0, by means of its Riemann
surface, we can set up a simple criterion for reducibility in this new sense. If the
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equation, namely, is reducible, every system of the values z;w, which satisfies it,
satisfies either f1.z;w/ D 0 or f2.z;w/ D 0; now the solutions of f1 D 0 and
f2 D 0 are represented by means of their Riemann surfaces, which have nothing
to do with each other, and, in particular, cannot be connected. Thus, the Riemann
surface which belongs to a reducible equation f .z;w/ D 0 must break down into
at least two separates pieces.

According to this, we can now assert that the equation zn � w D 0 is certainly
irreducible in the function theoretic sense. For, on its Riemann surface, which we
know exactly, all the n sheets are cyclically connected at each of its branch points.
Moreover, the entire surface is mapped upon the unpartitioned z-sphere. Hence
such a breaking down cannot occur.

In connection with this, we can answer one of the popular problems of math-
ematics which we touched earlier (p. [56]), namely, that of the[123] possibility of
dividing an arbitrary angle ' into n equal parts, in particular, for n D 3, the
possibility of trisecting an angle. The problem is to give an exact construc-
tion with ruler and compass for dividing into three equal parts any angle '
whatever. (It is easy, of course, to give a construction for a series of special
values of '). I shall give you the train of thought for the proof of the im-
possibility of trisecting an angle in the sense just mentioned, and I shall ask
you to recall, in this connection, the proof of the impossibility of construct-
ing the regular heptagon with ruler and compass (see p. [56] et seq.). Just as
at that time, we shall reduce the problem to that of the solution of an irre-
ducible cubic equation, and we shall then show that this equation cannot be
solved by a series of square roots; except that, now, the equation will con-
tain a parameter (the angle '), whereas, before, the coefficients were integers.
Accordingly, function-theoretic irreducibility must replace number-theoretic irre-
ducibility.

Figure 42

In order to set up the equation of the problem let us think of the angle ' as laid
off from the positive real half-axis in the w-plane (see Fig. 42). Then its free arm
will cut the unit circle in the point

w D ei' D cos' C i sin ':

Our problem consists in finding, independently of special values of the parameter ',
a construction, involving a finite number of applications of the ruler and compass,
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which shall give the point of intersection with the unit circle of the arm of the
angle '=3, i.e., the point

z D e
i'
3 D cos

'

3
C i sin

'

3
:

This value of z satisfies the equation:

(3) z3 D cos' C i sin ';

and the analytic equivalent of our geometric problem consists in solving this equa-
tion (see p. [56]) by means of a finite number of square roots, one over another, of
rational functions of sin ' and cos', since these quantities are the coordinates of
the point w with which we start the construction.

We must show, first, that the equation (3) is irreducible in the function-theoretic
sense. To be sure, this equation does not have just the form we assumed while
explaining the notion, since, instead of the a complex parameter w that enters ra-
tionally, we have [124]now two functions cos and sin of a real parameter ', both of
which appear rationally. As a natural extension here of our notion, we shall call
the polynomial z3 � .cos' C i sin '/ reducible if it can be split into polynomi-
als whose coefficients are likewise rational functions of cos' and sin '; and we
can, as before, assign a criterion for this. If we let ' assume all real values in (3),
w D ei' D cos'C i sin ' will describe the unit circle of the w-plane, to which the
equation of thew-sphere corresponds by stereographic projection. The curve which
lies over this, on the Riemann surface of the equation z3 D w, and which describes,
in one stroke, all three sheets, is mapped by equation (3) uniquely upon the unit
circle of the z-sphere. Hence it can be regarded, in a sense as its “one dimensional
Riemann image”. In the same way, we can obviously assign such a Riemann im-
age to every equation of the form f .z; cos'; sin '/ D 0 by taking as many copies
of the unit circle with arc length ' as the equation has roots, and stapling them
together according to the connectivity of the roots. It follows, just as before, that
the equation (3) can be reducible only when its one-dimensional Riemann image
breaks down into separate parts, and this is obviously not the case. This proves the
function-theoretic irreducibility of our equation (3).

Now, however, the former proof of the theorem, that a cubic equation with ratio-
nal numerical coefficients is reducible if it can be solved by a series of square roots,
can be applied literally to the present case of the function-theoretically irreducible
equation (3) (see p. [57] et seq.). We need only to replace “rational numbers” there
by “rational functions of cos' and sin '”. This proves our assertion that the trisec-
tion of an arbitrary angle cannot be accomplished by a finite number of applications
of ruler and compass. Hence the endeavours of angle-trisection zealots must always
be fruitless!

I pass on now to the treatment of a somewhat more complicated example.
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2. The Dihedral Equation

The equation

(1) w D 1

2

�
zn C 1

zn

�
:

is called the dihedral equation, for reasons that will appear later. Clearing of frac-
tions, we see that its degree is 2n. Introducing homogeneous variables we get

w1

w2
D z2n1 C z2n2

2zn1 � zn2
;

[125] in which, in fact, forms of dimension 2n appear in numerator and denominator. The
functional determinant of these forms is

ˇ̌̌
ˇ 2nz2n�1

1 ; 2nz2n�1
2

2nz2n�1
1 zn2 ; 2nzn1 z

n�1
2

ˇ̌̌
ˇ D 4n2zn�1

1 zn�1
2

�
z2n1 � z2n2

�
:

It has an (n � 1)-fold zero at z1 D 0 and at z2 D 0; the other 2n zeros are given by

z2n1 � z2n2 D 0 or

�
z1

z2

�
D ˙1:

If in addition to the n-th root of unity

" D e
2i�
n

which we have already used, we introduce also the primitive n-th root of �1:

"0 D e
i�
n

the last 2n zeros are given by the equations

z1

z2
D "� and

z1

z2
D "0 � "�; .� D 0; 1; : : : ; n � 1/:

Since the values of z D zl=z2 corresponding to them all have the absolute value
one, they all lie therefore on the equator of the z-sphere (corresponding to the unit
circle of the z-plane), at equal angular distances of �=n. We have therefore as
critical points on the z-sphere:

(a) the south pole z D 0 and the north pole z D 1, each of multiplicity n D 1;
(b) the 2n equatorial points z D "� , "0 � "� , each of multiplicity one.
The sum of all the multiplicities is 2 � .n� 1/C 2n � 1 D 4n� 2, as is demanded

by the general theorem on p. [117] for the degree 2n. By virtue of equation (1)
there will correspond to the remarkable points z D 0, z D 1 of the z-sphere, the
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position w D 1 on the w-sphere. Moreover, to all the points z D "� , corresponds
the position w D C1; and, to all the points z D "0 � "� the position w D �1. There
are, accordingly, only three branch points 1;C1;�1 on the w-sphere. These will
lie as follows:
w D 1 two branch points of multiplicity n � 1;
w D C1 n branch points of multiplicity 1;
w D �1 n branch points of multiplicity 1.
The 2n sheets of the Riemann surface group themselves therefore over the point

w D 1 in two separate series, each of n cyclically connected sheets; over w D C1
and w D �1 in n [126]series, each of two sheets. The disposition of the sheets will
become clear when we study the corresponding subdivision of the z-sphere into
half-regions.

To this end it will be well, as we remarked above, to know the linear substitutions
which transform equation (1) into itself. As in the case of the pure equation, it is
unchanged by the n substitutions

(2a) z0 D "� � z.� D 0; 1; : : : ; n � 1/; where " D e
2i�
n ;

since for these z0n D zn. Likewise, however, it is unchanged by the n additional
substitutions

(2b) z0 D "�

z
.� D 0; 1; : : : ; n � 1/;

since these only change zn into 1=zn.
We have therefore 2n linear substitutions of equation (1) into itself, exactly as

many as its degree indicates. Thus, if we know for a given value w0 of w one
root z0 of the equation, we know immediately 2n roots "� � z0 and "�=z0 (� D
0; 1; 2; : : : ; n � 1), in general all different, for which w has the same value w0,
i.e., we know all the roots of the equation when we have obtained the n-th root of
unity ".

Let us now proceed to examine the subdivision of the z-sphere corresponding to
cuts along the real meridian of the Riemann surface over thew-sphere. In this, as in
the previous example, we distinguish on the real meridian of the w-sphere the three
segments made by the branch points: that from C1 to 1 (drawn full), that from 1
to �1 (short dotted), and that from �1 to C1 (long dotted) (see Fig. 43). To each
of these three segments there correspond on the z-sphere 2n different curvilinear
segments which can be derived from any one of them by means of the 2n linear
substitutions (2). It will always suffice, therefore, to find one of them. Moreover
all [127]these segments must connect the critical points z D 0, 1, "� , "0 � "� , which
we therefore mark on the z-sphere. Just as in the previous case, their form is of
a somewhat different type according as n is even or odd. It will suffice if we exhibit
a definite case, say for n D 6. Fig. 43 shows the front half of the z-sphere in
orthogonal projection. One sees, on the equator, from left to right with distances of
60ı, "3 D �1, "4, "5, "6 D 1; and of those lying midway between the others, "0 � "� ,
are visible "0 � "3, "0 � "4 D �i , and "0 � "5.
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Figure 43

Now we shall see that the quadrant C1 < z < 1 of the meridian of real z
corresponds to the part of the real w-meridian C1 < w < 1 (full drawn). In
fact, if we put z D r and let r range through real values from 1 to 1, then w D
1
2
.zn C 1=zn/ D 1

2
.rn C 1=rn/ will vary also through real values that are always

increasing, from 1 to 1. We obtain n other full drawn curves on the z-sphere, from
this one, by means of the n linear substitutions (2a). But, as we saw in the previous
example, these substitutions mean rotations of the sphere about the vertical axis
(0;1) through the angles 2�=n, 4�=n, . . . , 2.n � 1/�=n. We get in this way the n
quarter-meridians from the north pole 1 to the points "� on the equator. We get an
additional full drawn curve if we apply the substitution z0 D 1=z, which transforms
the meridian quadrant from C1 to 1 into the lower real meridian quadrant from C1
to 0. If we subject this quadrant to the n rotations (2a), the composition of which
with z0 D 1=z gives the n substitutions (2b), we obtain, in addition, the n meridian
quadrants which join the south pole with the equatorial points "� . We have now in
fact, as researched, the 2n full drawn curves which correspond to the full drawn w-
meridian quadrant. In particular, for n D 6, they make up the three entire meridians
into which the real meridian is transformed by rotations of 0ı, 60ı, 120ı.

We can now also understand that the totality of the values z D "0 � r , where r
again ranges through real values from C1 to 1, corresponds to the dotted part of
the real w-meridian; for the equation (1) yields then:

w D 1

2

�
"0nrn C 1

"0nrn

�
D �1

2

�
rn C 1

rn

�
;

and this expression actually always actually decreases from�1 to �1, But z D "0�r
represents the meridian quadrant from 1 to the equatorial point "� . If we now
apply to it the substitutions (2a), (2b),[128] we find, as before, that to the dotted part of
the real w-meridian there correspond all the meridian quadrants joining the poles
to the equatorial points "0 � "� , which thus bisect the angles between the meridian
quadrants which we obtained before. In particular, for n D 6, they make up the
three entire meridians into which the real meridian is transformed by rotations of
30ı, 90ı, 150ı.
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There remain to be found the 2n curvilinear segments which correspond to the
long-dotted half-meridian �1 < w < C1. I shall prove that they are the segments
of the equator of the z-sphere determined by the points "� and "0 � e� . In fact, the
equator represents the points of absolute value one and is given therefore by z D ei'

where ' is real and ranges from 0 to 2 , Hence we have

w D 1

2

�
zn C 1

zn

�
D 1

2

�
eni' C e�ni'� D cosn':

This expression is always real, and its absolute value is not greater than 1. In fact,
it assumes once every value between C1 and �1 as ' varies from one multiple of
�=n to the next one, i.e., when z traverses one of the segments of which we are
speaking.

The curves determined in this manner divide the z-sphere into 2 � 2n triangular
half-regions which are bounded by one curve of each of the three sorts, and each
half-region corresponds to a half-sheet of the Riemann surface. Several regions can
meet only at the critical points, and then in accordance with the table of multiplici-
ties (p. [116]), namely, 2n at the north pole, and at the south pole, and 2 � 2 at each
of the points "� and "0 � "� . In order to determine which of these regions are to be
shaded, we notice that when w traverses, in order, the full-drawn, the long-dotted,
and the short dotted parts of the real w-meridian, the rear half of the w-sphere lies
at its left. Since the mapping is conformal with preservation of angles, we should
shade those half-regions whose boundaries follow one another in this same sense,
and we should leave the others unshaded.

Figure 44

Figure 45
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We have now obtained a complete geometric picture of the mutual dependence
between z and w which is set up by our equation. We might follow it out in greater
detail by examining more closely the conformal mapping of the single triangular
regions upon the w-hemisphere, but we shall forego this. I shall describe only, and
briefly, the case n D 6, to which I have already given special attention. The z-
sphere is then divided into twelve shaded and twelve unshaded triangles of which
six of each sort are visible in Fig. 44. Six of each sort meet at each pole, and two
of each sort[129] at each of twelve equidistant points of the equator. Each triangle is
mapped conformally upon a w half-sheet of the same sort. Of the half-sheets of
the Riemann surface, six of each sort are connected at the branch point 1, and two
of each sort at each of the branch points ˙1, corresponding to the grouping of the
half-regions on the z-sphere.

We may obtain a convenient picture of the division of the z-sphere, and one
which is especially valuable because of its analogy with pictures soon to come, as
follows. If we join the n equidistant points on the equator (e.g., all the "�) with
one another in order by straight lines, and also join each of them to the two poles,
one obtains a double pyramid, with 2n faces, inscribed in the sphere (in Fig. 44, six
faces). If we now project, from the centre, the subdivision of the z-sphere upon this
double pyramid, every pyramid face is divided into a shaded and an unshaded half
by the altitude of that face dropped from the pole. If we represent the division of
the z-sphere, and consequently our function, by means of this double pyramid, the
latter will render a service quite analogous to that which we shall get in the coming
examples from the regular polyhedra. We obtain a complete analogy if we think
of the double pyramid as collapsed into its base, and consider the double regular
n-gon (hexagon) which results whose two faces (upper and lower) are divided each
into 2n triangles by the straight lines which join the centre with the vertices and
the middle points of the sides (see Fig. 45). I have been in the habit of calling this
figure a dihedron and of classing it with the five regular polyhedra which have been
studied since Plato’s time. It fulfils, in fact, all the conditions by means of which
a regular polyhedron is usually defined, since its faces (the two faces of the n-gon)
are congruent regular polygons, and since it has congruent edges (the sides of the
n-gon) and congruent vertices (the vertices of the n-gon). The only difference is
that it does not bound a proper solid body but encloses the volume zero. Thus the
theorem of Plato, that there are only five regular solids, is correct only when one
includes in the definition the requirement of a proper solid, which is always tacitly
assumed in the proof

[130] If we start with the dihedron, we obtain our subdivision of the z-sphere by pro-
jecting upon that sphere not only its vertices but also the centres of its edges and
its faces, the projecting rays for the latter being perpendicular to the plane of the
dihedron. Thus the dihedron can also be looked upon as representing the functional
relation which our equation sets up between w and z. Hence the brief name which
we have already used, dihedral equation, is appropriate.

In addition, we shall now consider those equations which, as already indicated,
are closely related to the platonic regular solids.
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3. The Tetrahedral, the Octahedral, and the Icosahedral
Equations

We shall see that the last two could, with equal right, be called the cubic and the
dodecahedral equations, so that all five regular bodies will have been covered. We
shall follow here a route that is the reverse of the one we followed in the preced-
ing example. Starting from the regular body, we shall first deduce a division of the
sphere into regions, and we shall then set up the appropriate algebraic equation,
for which that figure is the proper geometric visualisation. I shall have to confine
myself frequently to suggestions, however, and I therefore refer you at once to my
book: Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fün-
ften Grade76, in which you will find a systematic presentation of the entire extensive
theory with its numerous relations to allied fields.

Moreover, I shall give a parallel treatment of all three cases and I shall begin by
deducing the subdivision of the sphere for the tetrahedron.

Figure 46

1. The tetrahedron (see Fig. 46). We divide each of the four equilateral face-
triangles of the tetrahedron, by means of the three altitudes into six partial triangles.
These are congruent in two groups of three each, while any two non-congruent ones
are symmetric. We obtain thus a division of the entire surface of the tetrahedron into
twenty-four triangles, which fall into two groups, each containing twelve congruent
triangles, [131]while any triangle of one group is symmetric to every triangle of the
other group. We shall shade the triangles of one group. Among the vertices of these
twenty-four triangles we can distinguish three sorts, such that each triangle has one
vertex of each sort:

a) the four vertices of the initial tetrahedron, at each of which three shaded and
three unshaded triangles meet;

76 Leipzig 1884; referred to hereafter as “Ikosaeder”. Translation into English by G. C. Morrice:
Lectures on the Icosahedron by Klein. Revised Edition, 1911, Kegan Paul & Co.
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b) the four centres of gravity of the faces, which determine again another regular
tetrahedron (the co-tetrahedron); at each of these, three triangles of each kind meet;

c) the six middle points of the edges, which determine a regular octahedron; at
each of these, two triangles of each kind meet.

If from the centre of gravity of the tetrahedron we project this subdivision into
triangles upon the circumscribed sphere, the latter will be subdivided into 2 � 12
triangles, which are bounded by arcs of great circles and are mutually congruent
or symmetric. About each vertex of the sort a), b), c), there will be respectively 6,
6, 4 equal angles, and since the sum of the angles about a point on a sphere is 2� ,
each of the spherical triangles will have an angle �=3 at a vertex of the sort a or b
and an angle �=2 at a vertex of the sort c.

It is a characteristic property of this division of the sphere that it, as well as the
tetrahedron itself, is transformed into itself by a number of rotations of the sphere
about its centre. This will be clear to you in detail if you examine a model of the
tetrahedron with its divisions, like the one in our collection. For the lecture, it will
suffice if I indicate the number of possible rotations (whereby the position of rest
is included as the identical rotation. If we select a definite vertex of the original
tetrahedron, we can, by means of a rotation, transform it into every vertex of the
tetrahedron (including itself), which gives four possibilities. If we keep this vertex
fixed in any one of these four positions, we can still achieve the tetrahedron to cover
itself, in three different ways, namely by rotating the line connecting the centre
with that vertex as axis through an angle of 0ı, 120ı or 240ı. This gives altogether
4�3 D 12 rotationswhich transform the tetrahedron, or the corresponding triangular
division of the circumscribed sphere, into itself. By means of these rotations we
can transform a pre-assigned shaded (or unshaded) triangle into every other shaded
(or unshaded) triangle, and the particular rotation is determined when that latter
triangle is given. These twelve rotations form obviously what one calls a group G12
of twelve operations, i.e., if one performs two of them in succession, the result is
one of the twelve rotations.

[132] If we think of this sphere as the z-sphere, each of these twelve rotations will be
represented by a linear transformations of z, and the twelve linear transformations
which arise in this manner will transform into itself the equation which corresponds
to the tetrahedron. For purposes of comparison, I remark that one can interpret the
2n linear substitutions of the dihedral equation as the totality of the rotations of the
dihedron into itself.

2. We shall now treat the octahedron similarly (see Fig. 47) and wemay be some-
what briefer. We divide each of the eight faces, just as before, into six partial
triangles and obtain a division of the entire surface of the octahedron into twenty-
four congruent shaded triangles, and twenty-four unshaded triangles which are
congruent among themselves but symmetric to the other twenty-four. We can again
distinguish three sorts of vertices:

a) the six vertices of the octahedron, at each of which four triangles of each kind
meet;

b) the eight centres of gravity of the faces, which form the vertices of a cube; at
each of these, three triangles of each kind meet;
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c) the twelve midpoints of the edges, at each of which are situated two triangles
of each kind.

Figure 47

If we pass now to the circumscribed sphere, by means of central projection,
we obtain a division into 2 � 24 spherical triangles, which are either congruent or
symmetric, and each of which has an angle �=4 at the vertex a, �=3 at the vertex
b, and �=2 at the vertex c. Since the vertices b form a cube, it is easy to see
that one would have obtained the same division on the sphere if one had started
with a cube and had projected its vertices, and the centres of its faces and edges,
upon the sphere. In other words, we do not need to give special attention to the
cube.

Just as in the previous case, it is easy to see that the octahedron, as well as this
division of the sphere, is transformed into itself by twenty-four rotations which form
a group G24; again each rotation is determined in that it transforms a pre-assigned
shaded triangle into another definite shaded triangle.

3. We come finally to the icosahedron (see Fig. 48). Here, also, we start with
the same subdivision of each of the twenty-four triangular faces and obtain alto-
gether sixty shaded and sixty unshaded partial triangles. The three sorts of vertices
are:

[133]a) the twelve vertices of the icosahedron, at each of which are situated five
triangles of each kind;

b) the twenty centres of gravity of the faces, which are the vertices of a regular
dodecahedron; at each of them are situated three triangles of each kind;

c) the thirty midpoints of the edges, at each of which two triangles of each sort
meet.

When this is carried over to the sphere each spherical triangle has at the vertices
a, b, c the angles �=5, �=3, �=2, respectively. From the property of the vertices b
one can conclude, as before, that the same division of the sphere would have re-
sulted if one had considered the dodecahedron.

Finally, the icosahedron, as well as the corresponding division of the sphere,
is transformed into itself by a group G60 of sixty rotations of the sphere about its
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centre. These rotations, as well as those for the octahedron, will become clear to
you upon examination of a model.

Figure 48

Let me make a list of the angles of the spherical triangles, which have appeared
in the three cases, which we have considered, to which I shall add the dihedron also
(n � 3); they are

Dihedron: �=2, �=n; �=2;
Tetrahedron: �=3, �=3, �=2;
Octahedron: �=4, �=3, �=2;
Icosahedron: �=5, �=3, �=2

As a variation of a joke of Kummer’s I might suggest that the natural scientist
would at once conclude from this, that there were additional subdivisions of the
sphere, having analogous properties, and with angles such as �=6, �=3, �=2; �=7,
�=3, �=2. The mathematician, to be sure, does not risk making such inferences by
analogy, and his cautiousness justifies itself here, for the series of possible spherical
subdivisions of this sort[134] ends, in fact, with our list. Of course this is connected with
the fact that there are no more regular polyhedra. We can see its ultimate reason in
a property of whole numbers, which does not admit a reduction to simpler reasons.
It appears, namely, that the angles of each of our triangles must be aliquot parts of
� , say �=m, �=n, �=r , such that the denominators satisfy the inequality

1=mC 1=nC 1=r > 1:

This inequality has the property of existing only for the integer solutions given
above. Moreover, we can understand it readily, since it only expresses the fact that
the sum of the angles of a spherical triangle exceeds � .
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I should like to mention that, as some of you doubtless know, an appropriate
generalisation of the theory does carry one beyond these apparently too narrow
bounds: The theory of automorphic functions involves subdividing the sphere into
infinitely many triangles whose angle sum is less than or equal to � .

4. Continuation: Setting up the Normal Equation

We come now to the second part of our problem, to set up that equation of the form

(1) '.z/ �w .z/ D 0; or w D '.z/

 .z/;

which belongs to a definite one of our three spherical subdivisions, that is, which
maps the two hemispheres of the w-sphere upon the 2 � 12, or the 2 � 24, or the 2 � 60
partial triangles of the z-sphere. To each value of w there must correspond then, in
general, 12, 24, 60 values, respectively, of z, each one in a partial triangle of the
right kind. Hence the desired equation must have the degree 12, 24, 60 in the three
cases respectively, for which we shall write N in general. Now each partial region
touches three critical points; hence there must be, in every case, three branch points
on the w-sphere. We assign these, as is customary, to w D 0; 1;1; and we choose
again themeridian of real numbers as the section curveC through these three points,
whose three segments shall correspond to the boundaries of the z triangles.

Figure 49

We shall assume moreover (see Fig. 49) that in each of the three cases the centres
of gravity of the faces (vertices b in the former notation) correspond, to the point
w D 0, the midpoint of the edges (vertices c) to the point w D 1, and the vertices
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of the polyhedron (vertices a) to the point w D 1. The sides of the triangles will
then correspond to the three segments of the w-meridian in the manner indicated by
the mapping,[135] and the shaded triangles will correspond to the rear w-hemisphere, the
unshaded to the front w-hemisphere. By virtue of these correspondences, the equa-
tion (1) is to effect a unique mapping of the z-sphere upon an N-sheeted Riemann
surface over the w-sphere with branch points at 0; 1;1.

We might deduce, a priori, a proof for the existence of this equation by means
of general function-theoretic theorems. However, I prefer not to presuppose the
knowledge which this method would require, but to construct the various equations
empirically. This method will give us perhaps a more vivid perception of the indi-
vidual cases.

Let us think of equation (1) written in homogeneous variables

w1

w2
D ˚N .z1; z2/

�N .z1; z2/
;

where ˚N , �N are homogeneous polynomials of dimension N in z1; z2.N D
12; 24; or 60/. In this form of the equation, the points w1 D 0;w2 D 0 (i.e.,
w D 0;1) on the w-sphere seem to be favoured more than the third branch point
w D 1 (in homogeneous form, w1 � w2 D 0). Since, however, the three branch
points are, for our purpose, of equal importance, it is expedient to consider also the
following form of the equation:

w1 � w2
w2

D XN .z1; z2/

�N .z1; z2/
;

where XN D ˚N � �N denotes also a form of dimension N. Both forms are em-
braced in the continued proportion

(2) w1 W .w1 � w2/ W w2 D ˚N .z1; z2/ W XN .z1; z2/ W �N .z1; z2/ :
This furnishes us with a completely homogeneous form of equation (1) which gives
the same consideration to all the three branch points.

Our problem now is to set up the forms ˚N , XN , �N . For this purpose, we shall
bring them into relation to our subdivision of the z-sphere. From equation (2) we
see that the form ˚N .z1; z2/ D 0 for w1 D 0, i.e., that w D 0 corresponds to the N
zeros of ˚N on the z-sphere. On the other hand, one sees directly from equation (2)
that the midpoints of the faces of the polyhedron (vertices b in the subdivision), of
which there are N=3 in every case, must, according to our assumptions, correspond
to the branch point w D 0. But every one of these centres must be a triple root
of our equation, since in each of them there meet three shaded and[136] three unshaded
triangles of the z-sphere. Thus these points, each with multiplicity three, supply all
the positions which correspond to w D 0, and consequently all the zeros of ˚N .
Hence ˚N has only triple zeros and must, therefore, be the third power of a form
'N .z1; z2/ of degreeN=3:

˚N D �
'N=3 .z1; z2/

�3
:
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In the same way, it follows that the zeros of XN D 0 correspond to the position
w D 1 (i.e., w1 � w2 D 0), and that these are identical with the N=2 midpoints,
each counted twice, of the edges of the polyhedron (vertices c of our subdivision).
Consequently XN must be the square of a form of dimension N=2:

XN D �
�N=2 .z1; z2/

�2
:

Finally the zeros of �N are to correspond to the point w D 1, so that they must be
identical with the vertices of the polyhedron (vertices a of the subdivision); but at
these vertices 3, 4, or 5 triangles meet, in the several cases, so that we get

�N D Œ N=v.z1; z2/�
v; where v D 3; 4 or 5:

Our equation (2) must then necessarily have the form

(3) w1 W .w1 � w2/ W w2 D '.z1; z2/
3 W �.z1; z2/2 W  .z1; z2/�;

where the degrees and powers of '; �; , and the values of the degree N of the
equation are exhibited in the following table:

Tetrahedron: '34 ; �
2
6;  

3
4 IN D 12:

Octahedron: '38 ; �
2
12;  

4
6 IN D 24:

Icosahedron: '320; �
2
30;  

5
12IN D 60:

I shall now show briefly that the dihedral equation which we discussed, fits also
into the scheme (8). We need only to recall that in that case we chose �1;C1;1 as
the branch points on the w-sphere instead of 0;C1;1 which we selected later. We
shall, then, obtain actual analogy with (8) only if we throw the dihedral equation
into the form

.w1 C w2/ W .w1 � w2/ W w2 D ˚ W X W �:
Now from the dihedral equation (p. [115]) which we used:

w1

w2
D z2n1 C z2n2

2 � zn1 zn2
;

we get by simple reduction

.w1 Cw2/ W .w1 � w2/ W w2
D �

z2n1 C z2n2 C 2zn1 z
n
2

� W �z2n1 C z2n2 � 2zn1 zn2
� W �2zn1 zn2 �

D �
zn1 C zn2

�2 W �zn1 � zn2
�2 W 2 .z1z2/n :

[137]Thus we can, in fact, add to the above table:

Dihedron: '2n; �
2
n;  

n
2 IN D 2n:
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The critical points together with their multiplicities which can at once be read off
from this form of the equation are in full agreement with those which we found
above (see p. [125]).

Figure 50

We come now to the actual setting up of the forms '; �; in the three new cases.
I shall give details here only for the octahedron, for which the relations turn out to
be the simplest. But even here I shall, at times, give only suggestions or results, in
order to remain within the confines of a brief survey. For those who desire more,
there is easily accessible the detailed exposition in my book on the icosahedron. For
the sake of simplicity we think of the octahedron as so inscribed in the z-sphere that
the six vertices fall on (see Fig. 50):

z D 0;1;C1;Ci;�1;�i:
It will then be a simple matter to give the twenty-four linear substitutions of z which
represent the rotations of the octahedron, i.e., which permute these six points. We
begin with the four rotations in which the vertices 0 and 1 remain fixed

z0 D ik � z;(4a)

.k D 0; 1; 2; 3/:

Then we can interchange the points 0;1 by means of the substitution z0 D 1=z (i.e.,
a rotation through 180ı about the horizontal axis (C1;�1) which transforms every
point of the octahedron into another one. If we now apply the four rotations (4a),
we get four new substitutions:

z0 D ik

z
(4b)

.k D 0; 1; 2; 3/:

In the same way, we now throw in succession the four remaining vertices z D
1; i;�1;�i to 1 by means of the substitutions

z0 D z C 1

z � 1 ;
z C i

z � i ;
z � 1
z C 1

;
z � i
z C i

;
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which obviously permute the six vertices of the octahedron, and again apply, each
time, the four rotations (4a). Thus we get 4 � 4 D 16 additional substitutions for the
octahedron

(4c)

8̂̂
<
ˆ̂:
z0 D ik

z C 1

z � 1 ; z0 D ik
z � 1
z C 1

;

z0 D ik
z C i

z � i ; z0 D ik
z � i
z C i

:

.k D 0; 1; 2; 3/

[138]We have therefore found all the desired twenty-four substitutions, and we can easily
confirm, by calculation, that they really permute the six vertices of the octahedron
and that they form a group G24, i.e., that the successive application of any two of
them gives again one of the substitutions in (4).

I shall now construct the form  6 which vanishes in each of the vertices of the
octahedron. The point z D 0 gives the factor z1, the point z D 1 the factor z2;
the form z41 � z42 has a simple zero at each of the points ˙1, ˙ i, so that we obtain
finally

(5a)  6 D z1 � z2
�
z41 � z42

�
:

It is more difficult to construct the forms '8 and �12 which have as zeros the mid-
points of the faces and the midpoints of the edges. Without deducing them, I may
state that they are77

(5b)

(
'8 D z81 C 14z41z

4
2 C z82

�12 D z121 � 33z81z42 � 33z41z82 C z122 :

It goes without saying that there is an undetermined constant multiplier in each of
these three forms. If '8,  6, �12 stand for the normal forms (5), we must insert, in
the octahedral equation (3), two undetermined constants c1, c2, and we must write

w1 W .w1 � w2/ W w2 D '38 W c1�212 W c2 4
6 :

The constants c are now to be so determined that these two equations give actually
only one equation between z and w. This is possible when and only when

'38 � c2 4
6 D c1�

2
12

is an identity in z1 and z2. Now this relation can be satisfied by definite constants
c1 and c2. A brief calculation shows that the identity

'38 � 108 4
6 D �212

77 See Ikosaeder, p. [54].
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must hold, so that the octahedral equation (3) becomes:

(6) w1 W .w1 � w2/ W w2 D '38 W �212 W 108 4
6 :

This equation surely maps the points 0; 1;1 respectively upon the midpoints of
the faces, the midpoints of the edges, and the vertices of the octahedron, with, the
proper multiplicity, because the forms '; �; , were so constructed. Furthermore,
the twenty-four octahedron substitutions (4) transform it into itself, for they trans-
form the zeros of each of the forms '; �; into themselves and at the same time
change each of the forms by a multiplicative factor. And calculation shows that
these factors cancel when the quotients are formed.

[139] It only remains to show that equation (6) really maps each shaded or unshaded
triangle of the z-sphere conformally upon the rear or front w-hemisphere. We know
that the points 0; 1;1 of the real w-meridian correspond to the three vertices of each
of the triangles; but the equation has, moreover, twenty-four roots z for each value
of w. Since these must distribute themselves among the twenty-four triangles, w can
take a given value but once, at most, within a triangle. If we could only show that
w remains real on the three sides of a triangle, we could then easily show that there
is a one-to-one mapping of each side upon a segment of the real w-meridian, and
also a similar mapping of the entire interior of the triangle upon the corresponding
hemisphere, one, which is conformal without reversal of angles. You will be able to
make these deductions yourselves by making use of the continuity and the analytic
character of the function w(z). I shall indicate the only noteworthy step of the proof,
that of showing the reality of w upon the sides of the triangle.

It is more convenient to prove this by showing that w is real upon all the great
circles that arise in the octahedral subdivision. These are, first, the three mutu-
ally perpendicular circles which pass each through four of the six vertices of the
octahedron (principal circles; full drawn in Fig. 50, p. [137] ) and, second, the six
circles, corresponding to the altitudes of the faces, which bisect the angles of the
principal circles (auxiliary circles; long dotted in Fig. 50). By means of the octahe-
dron substitutions, one can transform every principal circle into any other and every
auxiliary circle into any other. Hence it will suffice to show that the function w is
real at every point on o n e principal and on e auxiliary circle, since it must take
the same values on the other circles. Now the meridian of real numbers z is one of
the principal circles. By (6), the values on this circle are

w D w1

w2
D '38
108 4

6

;

which are, of course, real, since ' and  are real polynomials in z1 and z2. Of the
auxiliary circles let us prefer the one through 0 and 1 which makes an angle of 45ı

with the real meridian and on which z takes the values z D e
i�
4 � r , where r ranges

through real values from �1 to C1. On this circle z4 D ei� � r4 D �r4 is real.
Since by (5) only the fourth powers of z1 and z2 occur in '8 and in the fourth power
of  6, the last formula shows that w is real.
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This concludes the proof: Equation (6), in fact, maps the w-hemisphere, or the
[140]Riemann surface over it, conformally upon that triangular subdivision of the z-

sphere which corresponds to the octahedron, and conversely we have in this case,
as completely as in the earlier examples, a geometric control of the dependence
which this equation sets up between z and w.

The treatment of the tetrahedron and of the icosahedron proceeds according to
the same plan. I shall give only the results. As before, these results are those
obtained when the subdivision of the z-sphere has the simplest possible position.
The tetrahedral equation78 is

w1 W .w1 � w2/ W w2 D
n
z41 � 2p�3z21z22 C z42

o3

W �12p�3 ˚z1z2 �z41 � z42
��2

W
n
z41 C 2

p�3z21z22 C z42

o3

and the icosahedral equation79 is

w1 W .w1 � w2/ W w2
D ˚� �z201 C z202

�C 228
�
z151 z

5
2 � z51z152

� � 494z101 z102
�3

W � ˚�z301 C z302
�C 522

�
z251 z

5
2 � z51z252

� � 10005 �z201 z102 C z101 z
20
2

��2
W 1728 ˚z1z2 �z101 C 11z51z

5
2 � z102

��5
;

i.e., these equations map the w-hemispheres conformally upon the shaded and the
unshaded triangles of that subdivision of the z-sphere, which belongs to the tetra-
hedron and to the icosahedron respectively.

5. Concerning the Solution of the Normal Equations

Let us now consider somewhat the common properties of the equations which we
have been discussing up to now as examples of a general theory developed in ad-
vance and which we shall call the normal equations. Here, too, I will restrict myself
to the simplest cases. For in-depth studies, I am referring to my Ikosaeder book.
Note, first of all, that the extremely simple nature of all our normal equations is
due to the fact that they have exactly the same number of linear substitutions into
themselves as is indicated by the degree, i.e., that all their roots are linear functions
of a single one; and, further, that we have, in the divisions of the sphere, a very
obvious geometric picture of all the relations that come up for consideration. Just

78 See Ikosaeder, p. [51], [60].
79 Loc. cit., p. [56], [60].
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how simple many things appear which are ordinarily quite complicated with equa-
tions of such high degree will be evident if I raise a certain question in connection
with the icosahedral equation.

Figure 51

Let a real value w0 be given, say on the segment (1, 1) of the real w-meridian
(see Fig. 51). Let us inquire about the sixty roots z of the icosahedral equation
when w D w0. Our theory of the mapping[141] tells us at once that one of them must lie
on a side of each of the sixty triangles on the z-sphere, which arise in the case of
the icosahedron (drawn full in Fig. 49, p. [135]). This supplies what one calls, in
the theory of equations, the separation of the roots, usually a laborious task, which
must precede the numerical calculation of the roots. The task is, namely, that of
assigning separated intervals in each of which but one root lies. But we can also
tell at once how many of the roots are real. If we take into account, namely, that
the form of the icosahedral equation given above implies such a placing80 of the
icosahedron in the z-sphere that the real meridian contains four vertices of each of
the three sorts a, b, c, then it follows (see Fig. 48, p. [133], and Fig. 49, p. [135])
that four full-drawn triangle sides lie on the real meridian, so that there are just four
real roots. The same is true if w lies in one of the other two segments of the real
w-meridian, so that for every real w different from 0, 1, 1 the icosahedral equation
has four real and fifty-six imaginary roots; for w D 0; 1;1 there are also four
different real roots, but they are multiple roots.

I shall now say something about the actual numerical calculation of the roots
of our normal equations. We have here again the great advantage that we need to
calculate but one root, because the others follow by linear substitutions. Let me
remind you, however, that the numerical calculation of a root is actually a problem
of analysis, not of algebra, since it requires necessarily the application of infinite
processes when the root to which one is approximating is irrational, as is the case
in general.

I shall go into details only for the simplest example of all, the pure equation

w D zn:

Here I come again into immediate touch with school mathematics. For this equation,
i.e., the calculation of n

p
w, at least for the small values of n and for real values of

80 See Ikosaeder, p. [55].
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w = r, is treated there also. The method of calculating square and cube root, as
you learned it in school, depends, in essence, upon the following procedure. One
determines the position which the radicand w = r has in the series of the squares
or cubes, respectively, of the natural numbers 1, 2, 3, . . . Then, using the decimal
notation, one makes the same trial with the tenths of the interval concerned, then
with the hundredths, and so on. In this way one can, of course, approximate with
any desired degree of closeness.

Figure 52

Figure 53

[142]I should like to apply a more rational procedure, one in which we can admit
not only arbitrary integer values of n but also arbitrary complex values of w. Since
we need to determine only one solution of the equation, we shall seek, in particu-
lar, that value z D n

p
w0 which lies within the angle 2�=n laid off on the axis of

real numbers. Generalising the elementary method mentioned above, we begin by
dividing this angular space into � equal parts (� D 5 in Fig. 52), and by drawing
circles intersecting the dividing rays by circles which have the origin as common
centre and whose radii are measured by the numbers r D 1; 2; 3; : : : In this way,
after choosing v, we find all the points

z D r � e 2i�n � k�
 
kD 0; 1; 2; :::; � � 1
r D 1; 2; 3; :::;

!

marked within the angular space, and we can at once mark in the w-plane the cor-
responding w-values

w D zn D rn � e2i� k
� :
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These will be the corners of a corresponding network (see Fig. 53) covering the
entire w-plane and consisting of circles with radii 1n; 2n; 3n; : : : together with rays
inclined to the real axis at angles of 0; 2�=�; 4�=�; : : : ; .v � 1/2�=�. Let the given
value of w lie either within or on the contour of one of the meshes of this lattice,
and suppose that w0 is the lattice corner nearest to it. We know a value z0 of n

p
w0

is a corner of the original lattice in the z-plane; hence the value we are seeking will
be

Z D n
p
w D n

p
w0 C .w � w0/ D n

p
w0

n

r
1C w � w0

w0
D z0

�
1C w � w0

w0

� 1
n

:

We expand the right side by the binomial theorem, which we may consider known,
inasmuch as we are now, in reality, in the domain of analysis

Z D z0

(
1C 1

n
� w � w0

w0
C 1 � n

2n2

�
w � w0
w0

�2
C � � �

)
:

[143] We can decide at once as to the convergence of this series if we look upon it as
the Taylor’s expansion of the analytic function n

p
w and apply the theorem that

it converges within the circle which has w0 as centre and which passes through
the nearest singular point. Since n

p
w has only 0 and 1 as singular points, our

expansion will converge if, and only if, w lies within that circle about w0 which
passes through the origin, and we can always bring this about by starting, in the
z-plane, with a similar lattice which may have smaller meshes, if necessary. But
in order that the convergence should be really g o od , i.e., in order that the series
should be adapted to numerical calculation, .w �w0/=w0 must – additionally – be
sufficiently sma l l. This can always be effected by a further reduction of the lattice.
This is really a very usable method for the actual calculation of numerical roots.

Now is it worthy of remark that the numerical solution of the remaining normal
equations of the regular solids is not essentially more difficult, but I shall omit the
proof. If we apply, namely, the same method to our normal equations, starting from
the mapping upon the w-sphere of two neighbouring triangles, there will appear, in
place of the binomial series, certain other series that are well known in analysis and
are well adapted to practical use, called the hypergeometric series. In the year 1877
I set up81 this series numerically.

6. Uniformisation of the Normal Irrationalities by Means of
Transcendental Functions

I shall now discuss another method of solving our normal equations which is char-
acterized by the systematic employment of transcendental functions. Instead of
proceeding, in each individual case, with series expansions in the neighbourhood

81 [Weitere Untersuchungen über das Ikosaeder, Mathematische Annalen, vol. 12, p. 515. See also
F. Klein, Gesammelte Mathematische Abhandlungen, vol. 2, p. 331 et seq.]
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of a known solution, we try to represent, once for all, the whole set of number pairs
(w, z) which satisfy the equation, as single-valued analytic functions of an auxiliary
variable: or, as we say, to uniformise the irrationalities defined by the equation. If
we can succeed by using only functions which can easily be tabulated, or of which
one already has, perhaps, numerical tables, one can obtain the numerical solution of
the equation without farther calculation. I am the more willing to discuss this con-
nection with transcendental functions [144]because it sometimes plays a part in school
teaching, where it still often has a hazy, almost mysterious, aspect. The reason for
this is that one is still clinging to traditional imperfect conceptions, although the
modern theory of functions of a complex variable has provided perfect clarity.

I shall apply these general suggestions first to the pure equation. Even in schools,
one always uses logarithms in calculating the positive solution of zn D r , for real
positive values of r. We write the equation in the form z D elog r=n, where log r
stands for the positive principal value. The logarithmic tables supply first log r, and
then, conversely, z is the number that corresponds to log r

n
. Moreover, we ordinarily

use 10 as base instead of e. This solution can be extended immediately to complex
values. We satisfy the equation

zn D w;

by putting x equal to the general complex logarithm, log w, after which we obtain
w and z actually as single-valued analytic functions of x:

w D ex; z D e
x
n

In view of the many-valuedness of x = log w, which we shall study later in detail,
one obtains here for the same w precisely n values of z. We call x the uniformising
variable.

Since the tables contain only the real logarithms of real numbers, one is appar-
ently unable to use immediately the given solution numerically. But by the aid of
a simple property of logarithms, we can reduce the calculation to the use of trigono-
metric tables which are accessible to everybody. If we put

w D uC iv D
ˇ̌̌p
u2 C v2

ˇ̌̌  uˇ̌p
u2 C v2

ˇ̌ C i
vˇ̌p

u2 C v2
ˇ̌
!
;

then the first factor, as a positive real number, has a real logarithm, the second, as
a number of absolute value 1, a pure imaginary logarithm i' (i.e., the second factor
is equal to ei'), and we obtain ' from the equation

(a)
up

u2 C v2
D cos';

vp
u2 C v2

D sin ':

This gives x D logw D log
ˇ̌p
u2 C v2

ˇ̌ C i', and the root of the equation is
therefore

z D e
x
n D e

1
n log

ˇ̌̌p
u2Cv2

ˇ̌̌
� e 1n i';
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i.e., we have

(b) z D n
p
uC iv D e

1
n log

ˇ̌̌p
u2Cv2

ˇ̌̌ 	
cos

'

n
C i sin

'

n



:

[145] Since ' is determined only to within multiples of 2n, this formula supplies all
the n roots. With the aid of ordinary logarithmic and trigonometric tables, we can
now get first ' from (a) und then z from (b). We have obtained this “trigonometric
solution” from the logarithms of complex numbers in an entirely natural way. How-
ever, if we assume that these are not known and try to develop this trigonometric
solution, as is done in the schools, it must appear as something entirely foreign and
unintelligible.

The “Casus Irreducibilis” and the Trigonometric Solution
of the Cubic Equation

It is in particular one topic of school mathematics where it becomes necessary to
find roots of numbers that are not real. Thus, in school teaching, such roots must be
found in the so called Cardan’s solution of the cubic equation about which I should
like to interpolate here a few remarks. If this equation is given in the reduced form

(1) x3 C px � q D 0;

then the formula of Cardan states that its three roots xl , x2, x3 are contained in the
expression

(2) x D 3

s
q

2
C
r
q2

4
C p3

27
C 3

s
q

2
�
r
q2

4
C p3

27
:

Since every cube root is three valued, this expression has, all told, nine values,
in general all different; among these, x1, x2, x3 are determined by the condition
that the product of the two cube roots employed each time is �p

3
. If we replace

the coefficients p, q in the well-known manner by their expressions as symmetric
functions of x1, x2, x3, and if we note that the coefficient of x2 vanishes, that is,
x1 C x2 C x3 D 0, we get

q2

4
C p3

27
D � .x1 � x2/2 .x2 � x3/2 .x3 � x1/2

108
;

that is, the radicand of the square root is, to within a n eg a t i v e factor, the dis-
criminant of the equation. This shows at once that it is negative when all three roots
are real, but positive when one root is real and the other two conjugate imaginary.
It is precisely in the apparently simplest case of the cubic equation, namely when
all the roots are real, that the formula of Cardan requires the extraction of the square
root of a negative number, and hence of the cube root of an imaginary number.
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[146]This passage through the complex must have seemed something quite impossible
to the mediaeval algebraists at a time when one was still far removed from a theory
of complex numbers, 250 years before Gauß gave his interpretation of them in the
plane! One talked of the “Casus irreducibilis” of the cubic equation and said that
the Cardan formula failed here to give a reasonable usable solution. When it was
discovered later that it was possible, precisely in this case, to establish a simple
relation between the cubic equation and the trisection of an angle, and to get in this
way a real “trigonometric solution” in place of the defective Cardan formula, it was
believed that something new had been discovered which had no connection with
the old formula. Unfortunately this is the position taken occasionally even today in
elementary teaching!

In opposition to this view, I should like to insist here emphatically that this
trigonometric solution is nothing else than the application, in calculating the roots
of complex radicands, of the process which we have just discussed. It is obtained
therefore in a perfectly natural way in this case, where the cube root has a com-
plex radicand, if we transform the Cardan formula, for numerical calculation, in the
same convenient way that one pursues in school for the case of the real radicand. In
fact, let us suppose

q2

4
C p3

27
< 0;

where p must be negative if q is real. If we then write the first cube root in (2) in
the form

3

vuutq

2
C i

ˇ̌̌
ˇ̌
r

�q
2

4
� p3

27

ˇ̌̌
ˇ̌:

We note that its absolute value (as positive cube root of the value
p�p3=27 of the

radicand) is equal to jp�p=3j; but since the product of this by the second cube root
is equal to �p=3, that second cube root must be the conjugate complex of this, and
the sum of the two, i.e., the solution of the cubic equation, is simply twice the real
part, that is,

x1; x2; x3 D 2<
0
@ 3

vuutq

2
C i

ˇ̌̌
ˇ̌
r

�q
2

4
� p3

27

ˇ̌̌
ˇ̌
1
A :

Now let us apply the general procedure of p. [144]. We write the radicand of the
cube root, after separating out its absolute value, in the form

ˇ̌̌
ˇ̌
r

�p
3

27

ˇ̌̌
ˇ̌

8̂̂
ˆ̂<
ˆ̂̂̂:

q

2ˇ̌̌
ˇ̌
r

�p
3

27

ˇ̌̌
ˇ̌

C i

ˇ̌̌
ˇ̌
r

�q
2

4
� p3

27

ˇ̌̌
ˇ̌

ˇ̌̌
ˇ̌
r

�p
3

27

ˇ̌̌
ˇ̌

9>>>>=
>>>>;
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[147] and determine an angle ' from the equations

cos' D
q

2ˇ̌̌
ˇ̌
r

�p
3

27

ˇ̌̌
ˇ̌
; sin ' D

ˇ̌̌
ˇ̌
r

�q
2

4
� p3

27

ˇ̌̌
ˇ̌

ˇ̌̌
ˇ̌
r

�p
3

27

ˇ̌̌
ˇ̌

:

Then, since the positive cube root of
ˇ̌p�p3=27ˇ̌ is jp�p=3j, our cube root takes

the form ˇ̌̌
ˇ
r

�p
3

ˇ̌̌
ˇ �
	
cos

'

3
C i sin

'

3



;

and hence, remembering that ' is determinate only to within multiples of 2� , we
obtain

xk D 2

ˇ̌̌
ˇ
r

�p
3

ˇ̌̌
ˇ � cos ' C 2k�

3
.k D 0; 1; 2/ :

But this is the usual form of the trigonometric solution.
I should like to take this opportunity to make a remark about the expression

“casus irreducibilis”. “Irreducible” is used here in a sense entirely different from
the one in use today and which we shall often use in this lecture course. In the sense
here used it implies that the solution of the cubic equation cannot be reduced to the
cube roots of real numbers. This is not in the least the modern meaning of the word.
You see how the unfortunate use of words, together with the general fear of complex
numbers, has created at least the possibility for a good deal of misunderstanding in
just this field. I hope that my words may serve as a preventive, at least among you.

Let us now inquire briefly about uniformisation by means of transcendental func-
tions in the case of the remaining normal irrationalities. In the dihedral equation

zn C 1

zn
D 2w

we put simply
w D cos':

De Moivre’s formula shows that the equation is then satisfied by

z D cos
'

n
C i sin

'

n
:

[148] Since all values of ' C 2k� and of 2k� � ' give the same value w, this formula
gives, in fact, for every w; 2n values of z, which we can write

z D cos
' C 2k�

n
˙ i sin

' C 2k�

n
.k D 0; 1; 2; :::; n� 1/

In the case of the equations of the octahedron, tetrahedron, and icosahedron these
“elementary” transcendental functions do not suffice. However, we can obtain the
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corresponding solution by means of elliptic modular functions. Although one may
not consider this solution as belonging to elementary mathematics, I should, nev-
ertheless, like to give, at least, the formulas82 which relate to the icosahedron.
They are, namely, closely related to the solution of the general equation of degree
five by means of elliptic functions, to which allusion is always made in textbooks
and about which I give later some explanation. The icosahedral equation had the
form (see pp. [136], [140])

w D '20.z/
3

 12.z/5
:

Nowwe identify wwith the absolute invariant J from the theory of elliptic functions
and think of J as a function of the period quotient ¨ = ¨1/¨2 (in Jacobi’s notation
iK 0=K), i.e., we set

w D J .!/ D g32 .!1; !2/

	 .!1; !2/
;

where g2 and 	 are certain transcendental forms of dimension �4 and �12, re-
spectively, in ¨1 and ¨2, which play an important role. If we introduce the usual
abbreviation of Jacobi

q D ei�! D e�� K0
K

the roots z of the icosahedral equation will be given by the following quotients of #
functions

z D �q 3
5
#1
�
2�!; q5

�
#1 .�!; q5/

:

If we take into account that a) as a function of w, coming from the first equa-
tion, is infinitely many-valued, then this formula yields in fact all sixty roots of the
icosahedral equation for a given w.

7. Solvability in Terms of Radical Signs

There is one question in the theory of the normal equations which I have not yet
touched, namely, whether or not our normal equations yield algebraically anything
that is essentially new; and whether or not they can be resolved into one another

[149]or, in particular, into a sequence of pure equations. In other words, is it possible to
build up the solution z of these equations in terms of w by means of a finite number
of radical signs, one above another?

So far as the equations of the dihedron, tetrahedron, and octahedron are con-
cerned, it is easy to show, by means of algebraic theory, that they can be reduced, in

82 See „Über die Transformation der elliptischen Functionen und die Auflösung der Gleichungen
fünften Grades“, Mathematische Annalen, vol. 14 (1878/79), p. 111 et seq., or Klein, Gesammelte
Abhandlungen, vol. 3, p. 13 et seq., also Ikosaeder, p. 131.]
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fact, to pure equations. It will be sufficient if I give the details here for the dihedral
equation only:

zn C 1

zn
D 2w:

If we set:
zn D 
;

the equation goes over into


2 � 2w
 C 1 D 0:

It follows from this that

 D w ˙

p
w2 � 1;

and consequently

z D n

q
w ˙

p
w2 � 1;

which is the desired solution by means of radical signs.
On the other hand, however, the icosahedral equation does not admit such a so-

lution by means of radical signs, so that this equation defines an essentially new
algebraic function. I am going to give you a particularly intuitive proof of this,
which I have recently published (Mathematische Annalen, Vol. 61 [1905])83 , and
which follows from consideration of the familiar function-theoretic construction of
the icosahedral function z.w/. For this purpose I shall need the following lemma,
due to Abel, a proof of which you will find in every textbook of algebra: If the
solution of an algebraic equation can be expressed as a sequence of radical signs,
then every radical of the sequence can be expressed as a rational function of the n
roots of the given equation.

Let us now apply this lemma to the icosahedral equation. If we assume its root
z can be expressed as a sequence of radical signs of rational functions of the coeffi-
cients, i.e., of rational functions of w, then every radical in the sequence is a rational
function of the sixty roots:

R.z1; z2; : : : ; z60/:

(We shall show that this leads to a contradiction.) In the first place, we can replace
this expression by a rational function R.z/ of z alone since all the roots can be de-
rived from any one of them by a linear substitution. Let us now convert this R.z/
into a function of w by writing for z the[150] sixty-valued icosahedral function z.w/,
and consider the result. Since every circuit in the w-plane, which returns z to its
initial value, must of necessity return R.z/ also to its initial value, it follows that
CRŒz.w/� can have branch points only at the points w D 0; 1;1 (where z.w) has
branch points), and the number of sheets of the Riemann surface forRŒz.w/�, which
are cyclically connected at each of these points must be a divisor of the correspond-
ing number belonging to z.w/. We know that this number is 3; 2; 5 at the three
points, respectively. Hence every rational function R.z/ of an icosahedral root, and

83 „Beweis für die Nichtauflösbarkeit der Ikosaedergleichung durch Wurzelzeichen“, pp. 369–371
[see also: Felix Klein: Gesammelte mathematische Abhandlungen, vol. II, p. 385].
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consequently every radical which appears in the assumed solution, considered as
function of w, can have branch points, if at all, only at w D 0;w D 1;w D 1.
If branching occurs, then there must be three sheets connected at w D 0, two at
w D 1, and five at w D 1, since 3; 2; 5 have no divisor other than 1.

We shall now see that this result leads to a contradiction. To this end let us exam-
ine the innermost radical, which appears in our hypothetically assumed expression
for z.w/. Its radicand must be a rational function P.w/. We can assume that the
index of the radical is a prime number p, since we could otherwise build it up out of
radicals with prime indices. Moreover P.w/ cannot be the p-th power of a rational
function %.w/ of w. for if it were, our radical would be superfluous, and we could
direct our attention to the next really essential radical.

Let us now see what kind of branching the function p
p
P.w/ can have. For this

purpose it will be convenient to write it in the homogeneous form

P.w/ D g .w1;w2/

h .w1;w2/
;

where g and h are forms of the same dimension in the variables w1, w2 (w D
w1=w2). According to the fundamental theorem of algebra we can separate g and h
into linear factors and write

P.w/ D l˛ �mˇ � n� : : :
l 0˛0 �m0ˇ0 � n0� 0

: : :
:

where
˛ C ˇ C � C � � � D ˛0 C ˇ0 C � 0 C � � �

since the numerator and the denominator are of the same degree. Not all the expo-
nents ˛; ˇ; : : : ; ˛0; ˇ0 : : : can be divisible by p, since P would then be a perfect p-th
power. On the other hand, ˛CˇC� � ��˛0 �ˇ0 �: : : is equal to zero, and is therefore
divisible by p. Consequently at least two of these numbers are not divisible by p, and
not just one. It follows [151]that the zeros of both the corresponding linear factors must

be branch points of p
p
P.w/, at each of which p sheets are cyclically connected.

But herein lies the contradiction of the previous theorem, which, of course, must
be equally valid for p

p
P.w/. For we enumerated at that time all possible branch

points, and we found among them no two at which the same number of sheets were
connected. Our assumption is therefore not tenable, and the icosahedral equation
cannot be solved by radical signs.

This proof depends essentially upon the fact that the numbers 3; 2; 5 which are
characteristic for the icosahedron have no common divisor. When such a common
divisor appears, as in the case of the numbers 1; 2; 4 of the octahedron, it is at
once possible to have rational functions RŒz.w/� which exhibit the same kind of
branching at two points, e.g., one in which two sheets are connected at 1 and at
1, and these can then be really represented as roots of a rational function P.w/. It
is in this way that the solution by means of radical signs comes about in the case
of the octahedron and tetrahedron (with the numbers 3; 2; 3), and of the dihedron
(2; 2; n).
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I should like to show you here how slightly the language used in wide mathe-
matical circles keeps pace with knowledge. The word “root” is used today nearly
everywhere in two senses: once for the solution of any algebraic equation, and, sec-
ondly, in particular, for the solution of a pure equation. The latter use, of course,
dates from a time when only pure equations were studied. Today it is, if not ac-
tually harmful, at least rather inconvenient. Think only of the formulation that the
“roots” of an equation cannot be expressed by means of “radical signs”. But there
is another form of expression which has lingered on from the beginnings of alge-
bra and which is a more serious source of misunderstanding, namely, that algebraic
equations are said to be “not algebraically solvable”, if they cannot be solved in
terms of radical signs, i.e. if they cannot be reduced to pure equations. This use is
in immediate contradiction with the modern meaning of the word “algebraic”. To-
day we say that an equation can be solved algebraically when we can reduce it to
a chain of simplest algebraic equations in which one controls the dependence of the
solutions upon the parameters, the relation of the different roots to one another, etc.
as completely as one does in the case of the pure equation. It is not at all necessary
that these equations should be pure equations. In this sense we may say that the
icosahedral equation can be solved algebraically, for our discussion shows that we
can construct its theory in a manner[152] that meets all the demands mentioned above.
The fact that this equation cannot be solved by radical signs rather lends it special
interest by suggesting it as an appropriate normal equation to which one might try
to reduce, (i.e., completely solve) still other equations which are in the old sense
algebraically unsolvable.

The last remark leads us to the last section of this chapter, in which we shall try
to get a general view of such reductions.

8. Reduction of General Equations to Normal Equations

It turns out, namely, that the following reductions are possible:
The most general equation of the third degree to the dihedral equation for n D 3;
The general equation of the fourth degree to the tetrahedral or to the octahedral

equation;
The general equation of the fifth degree to the icosahedral equation.
This result is the most recent triumph of the theory of the regular bodies, which

have always played such an important role since the beginning of mathematical
history, and which have a decisive influence in the most widely separated fields of
modern mathematics.

In order to show you the meaning of my general assertion I shall go somewhat
more into details for the equation of degree three, without, however, fully proving
the formulas. We again take the cubic equation in the reduced form

(1) x3 C px � q D 0:
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Denoting solutions by x1, x2, x3, we try to set up a rational function z of them
which undergoes the six linear substitutions of the dihedron for n D 3 when we
interchange the xi in all six possible ways. The values that z should take on are

z; "z; "2z;
1

z
;
"

z
;
"2

z

	
where " D e

2i�
3



:

It is easily seen that

(2) z D x1 C "x2 C "2x3

x1 C "2x2 C "x3

satisfies these conditions. The dihedral function z3 C 1=z3 of this quantity must
remain unaltered by all the interchanges of the xk, since the six linear substitutions
of z leave it unchanged. Hence, by a well-known theorem of algebra, it must be
a rational function of the coefficients of (1). A calculation shows that

(3) z3 C 1

z3
D �27 q

2

p3
� 2:

[153]Conversely, if we solve this dihedral equation, and if z is one of its roots, we can
express the three values x1, x2, x3 rationally in terms of z, p, and q by means of (3)
and the well-known relations

x1 C x2 C x3 D 0; x1x2 C x2x3 C x3x1 D p; x1x2x3 D q:

Doing this, we find

(4)

8̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂:

x1 D �3q
p

� z .1C z/

1C z3
;

x2 D �3q
p

� "z .1C "z/

1C z3
;

x3 D �3q
p

� "
2z
�
1C "2z

�
1C z3

:

Thus, as soon as the dihedral equation (3) has been solved, the formulas (4) give at
once the solution of the cubic (1).

In the same way we may reduce the general equations of the fourth and fifth
degrees. The equations would be, of course, somewhat longer, but not more difficult
in principle. The only new thing would be that the parameter w of the normal
equation, which was expressed above rationally in the coefficients of the equation

�
2w D �27 q

2

p2
� 2

�



152 II. Equations in the Field of Complex Quantities

would now contain square roots. You will find this theory for the equation of degree
five given fully in the second part of my lectures on the icosahedron. Not only are
the formulas calculated, but also the essential reasons for the appearance of the
equations are explained.

Finally, let me say a word about the relation of this development to the usual
presentation of the theory of equations of the third, fourth, and fifth degree. In
the first place, we can obtain the usual solutions of the cubic and biquadratic from
our formulas by appropriate reductions, if we use the solutions of the equations of
the dihedron, octahedron, and tetrahedron in terms of radical signs. In the case of
equations of degree five, most of the textbooks confine themselves unfortunately to
the establishment of the negative result that the equation cannot be solved by radical
signs, to which is then added the vague hint that the solution is possible by elliptic
functions, to be exact one should say elliptic modular functions. I take exception
to this procedure because it exhibits a one-sided contrast and hinders rather than
promotes a real understanding of the situation. In view of the preceding survey,

[154] distinguishing an algebraic and an analytic part, we may say:
1. The general equation of the fifth degree cannot be reduced, indeed, to p u re

equations, but it is possible to reduce it to the icosahedral equation as the simplest
normal equation. This is the real problem of its algebraic solution.

2. The icosahedral equation, on the other hand, can be solved by elliptic modular
functions. For purposes of numerical calculation, this is the full analogue of the
solution of pure equations by means of logarithms.

This supplies the complete solution of the problem of the equation of fifth degree.
Remember that when the usual road does not lead to success, one should not be
content with this determination of impossibility, but should bestir oneself to find
a new and more promising route. Mathematical thought, as such, does never end. If
someone says to you that mathematical reasoning cannot be carried beyond a certain
point, you may be sure that the really interesting problem begins precisely there.

In conclusion, it might be remarked that these theories do not stop with equa-
tions of degree five. On the contrary, one can set up analogous developments for
equations of the sixth and higher degrees if one will only make use of the higher-
dimensional analogues of the regular bodies. If you are interested in this, you
might read my article84 Über die Auflösung der allgemeinen Gleichung fünften und
sechsten Grades�. In connection with this article the problem was successfully at-
tacked by Paul Gordan85 and Arthur Byron Coble86. The investigation is somewhat
simplified in the latter memoir87.

84 Journal für reine und angewandte Mathematik, vol. 129 (1905), p. 151; and Mathematische
Annalen, vol. 61 (1905), p. 50.
� Concerning the solution of the general equation of fifth and of sixth degree.
85 Mathematische Annalen, vol. 61 (1905), p. 50; and vol.68 (1910), p. 1.
86 Mathematische Annalen, vol. 70 (1911), p. 337.
87 See also F. Klein, Gesammelte Mathematische Abhandlungen, vol. 2, p. 502–503.
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