
IV. Complex Numbers

1. Ordinary Complex Numbers

Let me give, as a preliminary, some historical facts. Imaginary numbers are said
to have been used first, incidentally, to be sure, by Cardan in 1545, in his solu-
tion of the cubic equation. As for the further development, we can make the same
statement as in the case of negative numbers, that imaginary numbers made their
own way into arithmetic calculation without the approval, and even against the
desires of individual mathematicians, as they occurred ever again by themselves
during calculations, and obtained wider circulation only gradually and to the ex-
tent to which they showed themselves useful. Meanwhile the mathematicians were
not altogether happy about it. Imaginary numbers long retained a somewhat mystic
colouring, just as they have today for every pupil who hears for the first time about
that remarkable i D p�1. As evidence, I mention a very significant utterance by
Leibniz in the year 1702, “Imaginary numbers are a fine and wonderful refuge of the
divine spirit, almost an amphibian between being and non-being”. In the eighteenth
century, the notion involved was indeed by no means cleared up, although Euler,
above all, recognized their fundamental significance for the theory of functions. In
1748 Euler set up that remarkable relation:

eix D cosx C i sin x

by means of which one recognizes the fundamental relationship among the kinds
of functions which appear in elementary analysis. The nineteenth century finally
brought the clear understanding of the nature of complex numbers. In the first
place, we must emphasize here the geometric interpretation to which various inves-
tigators were led about the turn of the century, almost simultaneously. It will suffice
if I [62]mention the man who certainly went deepest into the essence of the thing and
who exercised the most lasting influence upon the public, namely Gauß. As his
diary, mentioned above, proves incontrovertibly, he was, in 1797, already in full
possession of that interpretation, although, to be sure, it was published very much
later. The second achievement of the nineteenth century is the creation of a purely
formal foundation for complex numbers, which reduces them to dependence upon
real numbers. This originated with English mathematicians of the thirties, the de-
tails of which I shall omit here, but which you will find in Hankel’s book, mentioned
above.
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60 IV. Complex Numbers

Let me now explain these two prevailing foundation methods. We shall take first
the purely formal standpoint, from which the consistency of the rules of operation
among themselves, rather than the meaning of the objects, guarantees the correct-
ness of the concepts. According to this view, complex numbers are introduced in
the following manner, which precludes every trace of the mysterious.

1. The complex number x + i y is the combination of two real numbers x, y, that
is, a number-pair, concerning which one adopts the conventions which follow.

2. Two complex numbers x C iy; x0 C iy0 are called equalwhen x D x0, y D y0.
3. Addition and subtraction are defined by the relation

.x C iy/ ˙ .x0 C iy0/ D .x ˙ x0/ C i .y ˙ y0/:

All the rules of addition follow from this, as is easily verified. The monotonic
law alone loses its validity in its original form, since complex numbers, by their
nature, do not have the same simple order in which natural or real numbers appear
by virtue of their magnitude. For the sake of brevity I shall not discuss the modified
form which this gives to the monotonic law.

4. We stipulate that inmultiplication one operates as with ordinary letters, except
that one always puts i 2 D �1; in particular, that

.x C iy/.x0 C iy0/ D .xx0 � yy0/ C i.xy0 C x0 y/:

It is easy to see that, with this, all the laws of multiplication hold, with the exception
of the monotonic law, which does not enter into consideration.

5. Division is defined as the inverse of multiplication; in particular, we may
easily verify that

1

x C iy
D x

x2 C y2
� i

y

x2 C y2
:

[63] This number always exists except for x D y D 0, i.e., division by zero has the
same exceptional place here as in the domain of real numbers.

It follows from this that operations with complex numbers cannot lead to con-
tradictions, since they depend exclusively upon real numbers and known operations
with them. We shall assume here that these are devoid of contradiction.

Besides this purely formal treatment, we should of course like to have a geo-
metric, or otherwise visual, interpretation of complex numbers and of operations
with them, in which we might see an intuitive foundation of consistency. This is
supplied by that Gaussian interpretation, which, as you all know and as we have
already mentioned, looks upon the totality of points (x, y) of the plane in an x-y-
coordinate system as representing the totality of complex numbers z D x C iy. The
sum of two numbers z, a follows by means of the familiar parallelogram construc-
tion with the two corresponding points and the origin 0, while the product z � a is
obtained, adding the unit point 1 (x D 1, y D 0), by constructing on the segment
0z a triangle similar to a01 (Fig. 14). In brief, addition z0 D z Ca is represented by
a translation of the plane into itself, multiplication z0 D za by a similarity trans-
formation, i.e., by a turning and a stretching, the origin remaining fixed. From the
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order of the points in the plane, considered as representatives of complex numbers,
one sees at once what takes the place here of the monotonic laws for real numbers.
These suggestions will suffice, I hope, to recall the subject clearly to your memory.

Figure 14

I must call to your attention the place in Gauß in which this foundation of
complex numbers, by means of their geometric interpretation, is set out with full
emphasis, since it was this which first exhibited the general importance of complex
numbers. In a paper published in 1831, Gauß exposed the theory especially of in-
teger complex numbers a C ib, where a, b are real integers, in which he developed
for the new numbers the theorems of ordinary number theory concerning prime fac-
tors, quadratic and biquadratic residues, etc. We mentioned such generalizations of
number theory, in connection with our discussion of Fermat’s theorem. In his own
abstract50 of this paper Gauß expresses [64]himself concerning what he calls the “true
metaphysics of imaginary numbers”. For him, the right to operate with complex
numbers is justified by that intuitive geometric interpretation which one can give
to them and to the operations with them. Thus he takes by no means the formal
standpoint. Moreover, these long, beautifully written expositions of Gauß are ex-
tremely well worth reading. I mention here, also, that Gauß proposes the clearer
word “complex”, instead of “imaginary”, a name that has, in fact, been adopted.

2. Higher Complex Numbers, Especially Quaternions

It has occurred to everyone who has worked seriously with complex numbers to ask
if we cannot set up other, higher, complex numbers, with more new units than the
one i and if we cannot operate with them reasonably. Positive results in this di-
rection were obtained about 1840 by Hermann Graßmann, in Stettin, and William
R. Hamilton, in Dublin, independently of each other. We shall examine the inven-
tion of Hamilton, the calculus of quaternions, somewhat carefully later on. For the
present let us look at the general problem.

50 For this “Selbstanzeige” see Gauß Werke, vol. II.
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We can look upon the ordinary complex number x C iy as a linear combination

x � 1 C y � i

formed from two different “units” 1 and i , by means of the real parameters x and
y. Similarly, let us now imagine an arbitrary number, n, of units e1; e2; : : : ; en all
different from one another, and let us call the totality of combinations of the form
x D x1e1 C x2e2 C � � � C xnen a higher complex number system formed from them
with n arbitrary real numbers x1, x2; : : : ; xn. If there are given two such numbers,
say x, defined above, and

y D y1e1 C y2e2 C : : : C ynen:

It is almost obvious that we should call them equal when, and only when, the coeffi-
cients of the individual units, the so called “components” of the number, are equal
in pairs

x1 D y1; x2 D y2; : : : ; xn D yn:

The definition of addition and subtraction, which reduces these operations sim-
ply to the addition and subtraction of the components,

x ˙ y D .x1 ˙ y1/ e1 C .x2 ˙ y2/ e2 C � � � C .xn ˙ yn/ en

is equally obvious.
The matter is more difficult and more interesting in the case of multiplication.

To start with, we shall proceed according to the general rule for[65] multiplying letters,
i.e., multiply each i-th term of x by every k-th term of y (i , k D 1; 2; : : : ; n). This
gives:

x � y D
X

.i; kD1; :::; n/

xi ykei ek:

In order that this expression should be a number in our system, one must have a rule
which represents the products ei �ek as complex numbers of the system, i.e., as linear
combinations of the units. Thus one must have n2 equations of the form:

eiek D
X

.lD1; :::; n/

cikl � el .i; k D 1; : : : ; n/ :

Then we may say that the number

x � y D
X

.lD1; :::; n/

8
<

:
X

.i; kD1; :::; n/

xi ykcikl

9
=

; el

will always belong to our complex number system. The convention of determin-
ing this rule for multiplication, i.e., the table of the coefficients cikl , provides the
characteristic feature of each particular complex number system.

If one now defines division as the operation inverse to multiplication, it turns out
that, under this general arrangement, division is not always uniquely possible, even
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when the divisor does not vanish. For, the determination of y from x � y D z re-
quires the solution of the n linear equations

P
i;k xiykcikl D zl for the n unknowns

y1; : : : ; yn, and these would have either no solution, or infinitely many solutions, if
their determinant happened to vanish. Moreover, all the zl may be zero even when
not all the xi or not all the yk vanish, i.e., the product of two numbers can vanish
without either factor being zero. It is only by a skilful special choice of the numbers
cikl that one can bring about accord here with the behaviour of ordinary numbers.
To be sure, a closer investigation shows, when n > 2, that, to attain this, we must
sacrifice one of the other rules of operation. We choose as the rule that fails to be
satisfied, one which appears less important under the circumstances.

Let us now follow up these general explanations by a more detailed discussion
of quaternions as the example which, by reason of its applications in physics and
mathematics, constitutes the most important higher complex number system. As the
name indicates, these are four-term numbers (n D 4); as a subclass, they include
the three-term vectors, which are generally known today, and which are sometimes
discussed in the schools.

As the first of the four units with which we shall construct quaternions, we shall
select the real unit 1, (as in the case of ordinary complex numbers). We ordinarily
denote the other three units, [66]as did Hamilton, by i , j , k, so that the general form of
the quaternion is

p D d C ia C jb C kc;

where a, b, c, d are real parameters, the coefficients of the quaternion. We call the
first component d, the one which is multiplied by 1, and which corresponds to the
real part of the common complex number, the “scalar part” of the quaternion, the
aggregate ai C bj C ck of the other three terms its “vector part”.

Figure 15

The addition of quaternions follows from the preceding general remarks. I shall
give an obvious geometric interpretation, which goes back to that interpretation
of vectors which is familiar to you. We imagine the segment, corresponding to
the vector part of p, and having the projections a; b; c on the coordinate axes,
as loaded with a weight equal to the scalar part. Then the addition of p and
p0 D d 0 C ia0 C jb0 C kc0 is accomplished by constructing the resultant of the
two segments, according to the well known parallelogram law of vector addition
(see Fig. 15), and then loading it with the sum of the weights, for this would then
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in fact represent the quaternion:

(1) p C p0 D .d C d 0/ C i.a C a0/ C j.b C b0/ C k.c C c0/:

We come to specific properties of quaternions only when we turn to multipli-
cation. As we saw in the general case, these properties must be implicit in the
conventions adopted as to the products of the units. To begin with, I shall indi-
cate the quaternions to which Hamilton equated the sixteen products of two units
each. As its symbol indicates, we shall operate with the first unit 1 as with the real
number 1, so that:

12 D 1; i � 1 D 1 � i D i; j � 1 D 1 � j D j; k � 1 D 1 � k D k:(2a)

As something essentially new, however, we agree that, for the squares of the other
units:

(2b) i 2 D j 2 D k2 D �1;

and for their binary products:

(2c) jk D Ci; ki D Cj; ij D Ck

whereas one convenes for the inverted position of the factors:

(2d) kj D �i; ik D �j; j i D �k:

One is struck here by the fact that the commutative law for multiplication is not
obeyed. This is the inconvenience in quaternions which one must accept in order
to rescue the uniqueness of division, as well as the theorem that a product should
vanish only[67] when one of the factors vanishes. We shall show at once that not only
this theorem but also all the other laws of addition and multiplication remain valid,
with this one exception, in other words, that these simple agreements are very ex-
pedient.

We construct, first, the product of two general quaternions

p D d C ia C jb C kc and q D w C ix C jy C kz:

Let us start from the equation

q0 D p � q D .d C ia C jb C kc/ � .w C ix C jy C kz/I

and let us multiply out term by term. In carrying out this multiplication, we must
note the order in the case of the units i; j; k. We must follow the commutative law
for products composed of the components a; b; c; d , and for products of compo-
nents and one unit, we must replace the products of units in accordance with our
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multiplication table, and we must then collect the terms having the same unit. We
then have

(3)

q0 D pq D w0 C ix0 C jy0 C kz0 D .dw � ax � by � cz/

C i
�
aw C dx C bz � cy

�

C j
�
bw C dy C cx � az

�

C k
�
cw C dz C ay � bx

�
:

9
>>>>=

>>>>;

The components of the product quaternion are thus definite simple, bilinear combi-
nations of the components of the two factors. If we invert the order of the factors,
the six underscored terms change their signs, so that q � p, in general, is different
from p � q, and the difference is more than a change of sign as was the case with
the individual units. Although the commutative law fails for multiplication, the
distributive and associative laws hold without change. For, if we construct on the
one hand p.q C q1), on the other pq C pq1 by multiplying out formally without
replacing the products of the units, we must, of necessity, get identical results, and
no change can be brought about by then using the multiplication table. Further, the
associative law must hold in general, if it holds for the multiplication of the units.
But this follows at once from the multiplication table, as the following example
shows:

.ij /k D i.jk/:

In fact, we have:
.ij /k D k � k D �1;

and
i.jk/ D i � i D �1:

We shall now take up division. It will suffice to show that for every quaternion
p D d C ia C jb C kc there is a definite second one, q, such that:

p � q D 1:

[68]We shall denote q appropriately by 1=p. Division in general can be reduced easily
to this special case, as we shall show later. In order to determine q, let us put, in
equation (3),

q0 D 1 D 1 C 0 � i C 0 � j C 0 � k;

and obtain, by equating components, the following four equations for four unknown
components x; y; z; w of q:

dw � ax � by � cz D 1

aw C dx � cy C bz D 0

bw C cx C dy � az D 0

cw � bx C ay C dz D 0:
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The solvability of such a system of equations depends, as is well known, upon
its determinant, which, in the case before us, is a skew symmetric determinant, in
which all the elements of the principal diagonal are the same, and all the pairs of
elements which are symmetrically placed with respect to that diagonal are equal
and opposite in sign. According to the theory of determinants, such determinants
are easily calculated; and we find

ˇ̌
ˇ̌
ˇ̌
ˇ̌

d �a �b �c

a d �c b

b c d �a

c �b a d

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D �
a2 C b2 C c2 C d 2

�2
;

By direct calculation this result can be easily verified. The real elegance of Hamil-
ton’s conventions depends upon this result, that the determinant is a power of the
sum of squares of the four components of p; for it follows that the determinant is
always different from zero except when a D b D c D d D 0. With this one self-
evident exception (p D 0), the equations are uniquely solvable and the reciprocal
quaternion q is uniquely determined.

The quantity

T D
p

a2 C b2 C c2 C d 2

plays an important role in the theory, and is called the tensor of p. It is easy to
show that these unique solutions are

x D � a

T 2
; y D � b

T 2
; z D � c

T 2
; w D d

T 2

so that we have as the final result

1

p
D 1

d C ia C jb C kc
D d � ia � jb � kc

a2 C b2 C c2 C d 2
:

[69] If we introduce the conjugate value of p, as in ordinary complex numbers:

p D d � ia � jb � kc;

we can write the last formula in the form

1

p
D p

T 2

or
p � p D T 2 D a2 C b2 C c2 C d 2:

These formulas which are immediate generalizations of certain properties of ordi-
nary complex numbers. Since p is also the number conjugate to p, it follows also
that:

p � p D T 2;

so that the commutative law holds in this special case.
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The general problem of division can now be solved. For, from the equation

p � q D q0;

it follows, by multiplication by 1=p, that

q D 1

p
� q0 D p

T 2
� q0;

whereas the equation
q � p D q0;

which one gets by changing the order of the factors, has the solution

q D q0 � 1

p
D q0 � p

T 2
:

This solution is different, in general, from the other.

Remarks on Vector Calculus

Now we must inquire whether there is a geometric interpretation of quaternions
in which these operations, together with their laws, appear in a natural form. In
order to arrive at it, we start with the special case in which both factors reduce to
simple vectors, i.e., in which the scalar parts w and d , are zero. The formula (3) for
multiplication then becomes

q0 D p � q D .ia C jb C kc/.ix C jy C kz/

D �.ax C by C cz/ C i.bz � cy/ C j.cx � az/ C k.ay � bx/;

i.e., when each of two quaternions reduces to a vector, their product consists of
a scalar and a vector part. We can easily bring these two parts into relation with
the different kinds of vector multiplication, which are in use with us in Germany.
The notions of vector calculus, which is far more wide spread than quaternion cal-
culus, go back to, although the word vector is of English origin. The two kinds of
vector product with [70]which one usually operates are designated now, mostly, by inner
(scalar) product ax Cby C cz (i.e., the scalar part of the above quaternion product,
except for the sign), and outer (vector) product i.bz�cy/Cj.cx�az/Ck.ay�bx/,
(i.e., the vector part of the quaternion product). We shall give a geometric interpre-
tation of each part separately.

Figure 16
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Let us lay off both vectors (a; b; c) and (x; y; z), as segments, from the origin O
(Fig. 16). They terminate in the points (a; b; c) and (x; y; z) respectively, and have
the lengths l D p

a2 C b2 C c2 and l 0 D p
x2 C y2 C z2. If ' is the angle between

these two segments, then, according to well-known formulas of analytic geometry,
which I do not need to develop here, the inner product is:

ax C by C cz D l � l 0 � cos'I
and the outer product, on the other hand, is itself a vector, which, as is easily seen,
is perpendicular to the plane of l and l 0 and has the length l � l 0 � sin '.

Figure 17

It is essential now to decide as to the direction of the product vector, i.e., toward
which side of the plane determined by l and l 0 one is to lay off this vector. This
direction is different according to the coordinate system which one chooses. As you
know, one can choose two rectangular coordinate systems which are not congruent,
i.e., which cannot be made to coincide with one another, by holding, say, the y- and
the z-axis fixed and reversing the direction of the x-axis. These systems are then
symmetric to each other, like the right and the left hand (Fig. 17). The distinction
between them can be borne in mind by the following rule: In the one system, the
x-, y-, and z-axis lie like the outstretched thumb, fore finger and middle finger,
respectively, of the r i g h t hand; in the other, like the same fingers of the l e f t
hand. These two systems are used confusedly in the literature; different habits
obtain in different countries, in different fields, and, finally, with different writers,
or even with the same writer. Let us now examine the simplest case, where p D i ,
q D j , these being the unit lengths laid off on the x- and[71] y-axis. Then, since
i � j D k, the outer vector product is the unit length laid off on the z-axis. (See
Fig. 18.) Now one can transform i and j continuously into two arbitrary vectors p

and q so that k transforms continuously into the vector component of p � q without
vanishing during the transition. Consequently the first factor, the second factor, and
the vector product must always lie, with respect to each other, like the x-, y-, and
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z-axis of the system of coordinates, i.e., right-handed (as in Fig. 18) or left-handed
(as in Fig. 16), according to the choice of coordinate system. (In Germany, now,
the choice indicated in Fig. 18 is customary.)

Figure 18

I should like to add a few words concerning the much disputed question of nota-
tion in vector analysis. There are, namely, a great many different symbols used for
each of the vector operations, and it has been impossible, thus far, to bring about
a generally accepted notation. At the meeting of natural scientists at Kassel (1903)
a commission was set up for this purpose. Its members, however, were not able
even to come to a complete understanding among themselves. Since their inten-
tions were good, however, each member was willing to meet the others part way,
so that the only result was that about three new notations came into existence! My
experience in such things inclines me to the belief that real agreement could be
brought about only if important material interests stood behind it. It was only after
such pressure that, in 1881, the uniform system of measures according to volts, am-
peres, and ohms was generally adopted in electro-technics and afterward settled by
public legislation, due to the fact that industry was in urgent need of such uniformity
as a basis for all of its calculations. But there are no such strong material interests
behind vector calculus, as yet, and hence one must agree, for better or worse, to let
every mathematician cling to the notation which he finds the most convenient, or –
if he is dogmatically inclined – the only correct one.

3. Quaternion Multiplication – Rotation-Dilation51

Before we proceed to the consideration of the geometric interpretation of multipli-
cation of general quaternions, let us consider the following question. Let us consider
the product q0 D p � q of two quaternions p and q, and let us replace p and q by
their conjugates p and q, that is, let us change the signs of a; b; c; x; y; z. Then
the [72]scalar part of the product, as given in (3), p. [67], remains unchanged, and only
those factors of i; j; k which are not underscored will change sign. On the other
hand, if we also reverse the order of the factors p and q, the factors of i; j; k which
are underscored will change sign. Hence the product q 0 D q � p is precisely the

51 [Translator’s note: In German, there is the more handy term „Drehstreckung“.]
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conjugate of the original product q0 D p � q; and we have

q0 D p � q; q 0 D q � p;

where q0 is the conjugate of q0. If we multiply these two equations together, we
obtain

q0 � q0 D p � q � q � p:

In this equation the order of the factors is essential, since the commutative law does
not hold. We may apply the associative law, however, and we may write

q0 � q0 D p � .q � q/ � p:

Since we have, by p. [66],

q � q D x2 C y2 C z2 C w2;

we may write

w02 C x02 C y02 C z02 D p
�
w2 C x2 C y2 C z2

�
p:

The middle factor on the right is a scalar, and the commutative law does hold for
multiplication of a scalar by a quaternion, since M �p D Md C i.Ma/Cj.M b/C
k.Mc/ D pM . Hence we have

w02 C x02 C y02 C z02 D pp
�
w2 C x2 C y2 C z2

�
;

and, since p � p is the square of the tensor of p, we find52

(I) w02 C x02 C y02 C z02 D �
d 2 C a2 C b2 C c2

� �
w2 C x2 C y2 C z2

�
;

that is, the tensor of the product of quaternions is equal to the product of the
tensors of the factors. This formula can be obtained also by direct calculation, by
taking the values of w0; x0; y0; z0 from the formula for a product given on p. [67].

We shall now represent a quaternion q as the segment joining the origin of a four-
dimensional space to the point (x; y; z; w) in it, in a manner exactly analogous to
the representation of a vector in three-dimensional space. It is no longer necessary
to apologize for making use of four-dimensional space, as one always had to do
when I was a student. All of you are fully aware that no metaphysical meaning
is intended, and that higher dimensional space is nothing more than a convenient
mathematical expression which permits us to use terminology analogous to that of
actual spatial perception. If we regard p as a constant, that is, if we regard a; b; c; d

as constants, the quaternion equation

q0 D p � q

52 The essence of this formula can already be found in Lagrange’s works.
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[73]represents a certain linear transformation of the points (x; y; z; w) of the four-
dimensional space into the points (x0; y0; z0; w0), since the equation assigns to ev-
ery four-dimensional vector q another vector q0 linearly. The explicit equations
for this transformation, i.e., the expressions for x0; y0; z0; w0 as linear functions of
x; y; z; w, may be obtained by comparison of the coefficients of the product for-
mula (3), p. [67]. The tensor equation (I) shows that the distance of any point
from the origin,

p
x2 C y2 C z2 C w2, is multiplied by the same constant factor

T D p
a2 C b2 C c2 C d 2, for all points of the space. Finally, by p. [68], the

determinant of the linear transformation is surely positive.
It is shown in analytic geometry of three-dimensional space that if a linear trans-

formation of the coordinates x; y; z is orthogonal (that is, if it carries the expression
x2 Cy2 Cz2 into itself), and if the determinant of the transformation is positive, the
transformation represents a rotation about the origin. Conversely, any rotation can
be obtained in this manner. If the linear transformation carries x2 C y2 C z2 into
the similar expression in x0; y0; z0 multiplied by a constant factor T 2, however, and
if the determinant again is positive, the transformation represents a rotation about
the origin combined with an expansion in the ratio T about the origin, or, briefly, a
rotation-dilation.

The facts just mentioned for three-dimensional space may be extended to four-
dimensional space. We shall say that our transformation of four-dimensional space
represents in precisely the same sense a rotation-dilation about the origin. It is easy
to see, however, that in this case we do not obtain the most general rotation-dilation
about the origin. For our transformation contains only four arbitrary constants,
namely, the components a; b; c; d of p, whereas, as we shall show immediately,
the most general rotation-dilation about the origin in the four-dimensional space R4

contains seven arbitrary constants. Indeed, in order that the general linear transfor-
mation should be a rotation-dilation, we must have

x02 C y02 C z02 C w02 D T 2.x2 C y2 C z2 C w2/:

By comparing the coefficients this yields 10 conditions, since, on the left side,
one replaces x0; y0; z0; w0 by linear integer functions of x; y; z; w, one obtains
a quadratic form in four variables, which contains .4 � 5/=2 D 10 terms. Since T is
still arbitrary, these reduce to nine equations among the sixteen coefficients of the
transformation. Hence there remain 16 � 9 D 7 arbitrary constants.

It is remarkable that in spite of this the most general rotation-dilation can be
obtained by quaternion multiplication. [74]Let � D ı C i˛ C jˇ C k� be another
constant quaternion. Then we may show, just as before, that the transformation
q0 D q �  , which differs from the preceding one only in that the order is reversed,
represents a rotation-dilation of R4. Hence the combined transformation

q0 D p � q � � D .d C ia C jb C kc/ � q � .ı C i˛ C jˇ C k�/(II)

also represents such a rotation-dilation. This transformation contains only seven
(not eight) arbitrary constants, for the transformation remains unchanged if we
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multiply a; b; c; d by any real number and divide ˛; ˇ; �; ı by the same number.
It is therefore plausible that this combined transformation represents the general
rotation-dilation of four-dimensional space. This beautiful result is actually true, as
was shown by Arthur Cayley. I shall restrict myself to the mention of the historical
fact, in order not to be drawn into too great detail of this interpretation. The formula
is given in Cayley’s paper on the homographic transformation of a surface of the
second order into itself 53, in 1854, and also in certain other papers of his54.

This formula of Cayley’s has the great advantage that it enables us to grasp at
once the combination of two rotation-dilations in a very easy way. Thus, if a second
rotation-dilation be given by the equation

q00 D w00 C ix00 C jy00 C kz00 D p0 � q0 � � 0;

where p0 and � 0 are new given quaternions, we find, by (II) for the value q0,

q00 D p0 � .p � q � �/ � � 0;

whence, by the associative law,

q00 D .p0 � p/ � q � .� � � 0/

or
q00 D r � q � %;

where r D p0 � p and % D � � � 0 are definite new quaternions. We have therefore
obtained an expression for the rotation-dilation that carries q into q00 in precisely
the old form, and we see that the multipliers, which precede and follow q in the
quaternion product arise, respectively, from the products of the corresponding two
multipliers of q in the separate transformations which were combined, the order of
the factors being necessarily as shown in the formula.

Interpretation in Three-dimensional Space

This four-dimensional representation may seem unsatisfactory, and there may be
a desire for something more tangible, which can be represented in ordinary three-
dimensional space intuition. We shall therefore show that we can obtain similar
formulas for the same three-dimensional operations by simple specialization of
the formulas just given. Indeed the importance of quaternion multiplication[75] for
ordinary physics and mechanics is based upon these very formulas. I have said
“ordinary”, because I do not desire at this point to anticipate generalizations of

53 Journal für reine und angewandte Mathematik, 1855. Reprinted in Cayley’s Collected Papers,
vol. 2, p. 133. Cambridge 1889.
54 See, for example, Recherches ultérieures sur les déterminants gauches, loc. cit., p. 214.
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these sciences where the preceding formulas should apply without any modifica-
tion. These generalizations are more immediate, however, than you may suppose.
The new developments of electrodynamics which are associated with the principle
of relativity, are essentially nothing else than the logical use of rotations-dilations
in a four-dimensional space. These ideas have been presented and enlarged upon
recently by Hermann Minkowski55.

Let us remain, however, in three-dimensional space. In such a space, a rotation-
dilation carries a point (x; y; z) into a point (x0; y0; z0) in such a way that

x02 C y02 C z02 D M 2.x2 C y2 C z2/;

where M denotes the ratio of linear dilation of every length. Since the general
linear transformation of (x; y; z) into (x0; y0; z0) contains 3 � 3 D 9 coefficients, and
since the left-hand side of the preceding equation, after the insertion of the values
of x0; y0; z0, becomes a quadratic form in x; y; z with 3�4

2
D 6 terms, the comparison

of coefficients in the preceding equation leads to six equations, which reduce to five
if the value of M is supposed arbitrary. Therefore the nine original coefficients of
the linear transformation, which are subject to these five conditions, are reduced to
four arbitrary parameters. (Compare p. [73].) If such a substitution has a positive
determinant, it represents, as was stated on p. [73], a rotation of space about the
origin, together with an dilation in the ratio 1 W M . If the determinant is negative,
however, the substitution represents a rotation-dilation, combined with a reflection
of the space, such as, for example, the reflection defined by the equations x D �x0,
y D �y0, z D �z0. Moreover, it can be shown easily that the determinant of the
transformation must have one of the two values ˙M 3.

In order to represent these relationships by means of quaternions, let us first
reduce the variable quaternions q and q0 to their vectorial parts:

q0 D ix0 C jy0 C kz0; q D ix C jy C kz;

which we shall think of as the three-dimensional vectors joining the origin to the
positions of the point before and after the transformation, respectively. We claim
now that the general rotation-dilation of the three-dimensional space is given by
the formula (II) if p and � have conjugate values, that is, if we write q0 D p � q � p;
or, in expanded form,

(1)

(
ix0 C jy0 C kz0

D .d C ia C jb C kc/.ix C jy C kz/.d � ia � jb � kc/:

[76]In order to prove this, we must show first that the scalar part of the product on the
right vanishes; that is, that q0 is indeed a vector. To do this, we first multiply p by

55 Since this was written, an extensive literature on the special theory of relativity mentioned above
has appeared. Let me mention here my address Über die geometrischen Grundlagen der Lorentz-
gruppe, Jahresbericht der deutschen Mathematiker-Vereinigung, vol. 19 (1910), p. 299, reprinted
in Klein’s Gesammelte mathematische Abhandlungen, vol. 1, p. 533.
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q according to the rule for quaternion multiplication, and we find

q0 D Œ � a x � by � cz C i.dz C bz � cy/

C j.dy C cx � a z/ C k.dz C a y � bx/� � Œd � ia � jb � kc�:

After another quaternion multiplication, we actually find the scalar part of q’ to be
zero, whereas we find for the components of the vector part the expressions

8
<

:

x0 D �
d 2 C a2 � b2 � c2

�
x C 2 .ab � cd/ y C 2 .ac C bd/ z

y0 D 2 .ba C cd/ x C �
d 2 C b2 � c2 � a2

�
y C 2 .bc � ad/ z

z0 D 2 .ca � bd/ x C 2 .cb C ad/ y C �
d 2 C c2 � a2 � b2

�
z

(2)

That these formulas actually represent a rotation-dilation becomes evident if we
write the tensor equation for (1), which, by (I), is

x02 C y02 C z02 D �
d 2 C a2 C b2 C c2

� �
x2 C y2 C z2

� �
d 2 C a2 C b2 C c2

�
;

or
x02 C y02 C z02 D T 4 � �

x2 C y2 C z2
�

;

where T D p
d 2 C a2 C b2 C c2 denotes the tensor of p. Hence, our transfor-

mation is precisely a rotation-dilation (see p. [75]), provided the determinant is
positive; otherwise it is such a transformation combined with a reflection. In any
case, the ratio of dilation is M D T 2. As remarked above, the determinant must
have one of the two values ˙M 3 D ˙T 6. If we consider the transformation for
all possible values of the parameters a; b; c; d which correspond to the same tensor
value T , which must obviously be different from zero, we see that the determi-
nant must always have the value CT 6 if it has that value for any single system
of values of a; b; c; d ; for the determinant is a continuous function of a; b; c; d ,
and therefore it cannot suddenly change in value from CT 6 to �T 6 without taking
on intermediate values. One set of values for which the determinant is positive is
a D b D c D 0, d D T , since, by (2), the value of the determinant for these values
of a; b; c; d , is ˇ̌

ˇ̌
ˇ̌

d 2; 0; 0

0; d 2; 0

0; 0; d 2

ˇ̌
ˇ̌
ˇ̌ D d 6 D CT 6:

It follows that the sign is always positive, and hence (1) always represents a
ge n u i n e rotation together with a dilation. It is easy to write down a transfor-
mation which combines a reflection with a rotation-dilation, for we need only to
combine the preceding transformation with the reflection x0 D �x, y0 D �y,
z0 D �z, which is equivalent to writing the quaternion equation q 0 D p � q � p.
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If we want to understand that, conversely, every rotation-dilation is contained in
the form (1), or in the equivalent form (2), we have to observe, in the first place,
that this formula in fact contains the four arbitrary parameters, which, according
to the counting made on p. [75], [77]are necessary for the general case. That we can
actually obtain any desired value of the linear dilation-ratio M D T 2, any desired
position of the axis of rotation, and any desired angle of rotation, by a suitable
choice of these parameters, can be seen by means of the following formulas. Let
�; �; � denote the direction cosines of the axis of rotation, and let ! denote the angle
of rotation (amplitude of rotation). We have, of course, the well known relation

(3) �2 C �2 C �2 D 1:

I shall now prove that a; b; c; d are given by the equations

(
d D T � cos !

2

a D T � � � sin !
2
; b D T � � � sin !

2
; c D T � � � sin !

2
;

(4)

which, by (3), obviously satisfy the condition

d 2 C a2 C b2 C c2 D T 2:

When these relations have been proved, we can evidently obtain the correct values
of a; b; c; d for any given values of T; �; �; �; !.

To prove the relations (4), let us remark first that if a; b; c; d are given, the
quantities !; �; �; � are directly determined, and in such a way that (3) is satisfied.
For, squaring and adding the equations (4), since T is the tensor of the quaternion
p D d C ia C jb C kc, we have

1 D cos2 !

2
C sin2 !

2

�
�2 C �2 C �2

�
;

whence we see that (3) holds. It follows that �; �; �, are fully determined by the
relations

(40) a W b W c D � W � W �;

which appear directly from (4). These equations express the fact that the point (a,
b, c) lies on the axis of revolution of the transformation. This fact is easy to verify,
for if we put x D a, y D b, z D c in (2), we find

x0 D �
d 2 C a2 C b2 C c2

�
a D T 2 � a;

y0 D �
d 2 C a2 C b2 C c2

�
b D T 2 � b;

z0 D �
d 2 C a2 C b2 C c2

�
c D T 2 � c;
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that is, the point (a; b; c) remains on the same ray through the origin, which iden-
tifies it as a point on the axis of revolution. It remains only to prove that the angle
! defined by (4) is actually the amplitude of rotation. This demonstration requires
extended discussion which I can avoid now by remarking that the transformation
formulas (2) for T D 1 transform –[78] due to (4) – precisely into the formulas given
by Euler established for the rotation of the coordinate system, which has � , �, �

as axes and of the angle !. This is to be found more in detail, for example, in
Klein-Sommerfeld, Theorie des Kreisels, volume 156, where explicit mention of the
theory of quaternions is given, or in Richard Baltzer, Theorie und Anwendung der
Determinanten57.

Finally, if we substitute the values given by (4) in the equation (1), we obtain the
very brief and convenient equation in quaternion form for the rotation through an
angle ! about an axis whose direction cosines are �; �; �, combined with a dilation
of ratio T 2:

8
<̂

:̂

ix0 C jy0 C kz0 D T 2
n
cos

!

2
C sin

!

2
.i� C j� C k�/

o
� fix C jy C kzg

�
n
cos

!

2
� sin

!

2
.i� C j� C k�/

o
:

(5)

This formula expresses in a form that is easy to remember all of Euler’s formulas for
rotation in one single equation: the multipliers which precede and follow the vector
ix Cjy Ckz, are, respectively, the two conjugate quaternions whose tensor is unity
(so-called versor, that is, “rotator”, in contradistinction to tensor, “stretcher”), and
then the whole result is to be multiplied by a scalar factor which is the dilation-ratio.

We shall proceed now to show that when we specialize these formulas still
further to two-dimensions, they become the well-known formulas for the repre-
sentation of a rotation-dilation of the x-y-plane by means of the multiplication of
two complex numbers. (See p. [62].) For this purpose, let us choose the axis of
rotation as the z-axis (� D � D 0, � D 1). Then the formula (5), for z D z0 D 0,
may be written in the form

ix0 C jy0 D T 2
�
cos

!

2
C k sin

!

2

�
.ix C jy/

�
cos

!

2
� k sin

!

2

�
;

or, upon multiplication with due regard to the rules for products of the units,

ix0 C jy0 D T 2
n
cos

!

2
.ix C jy/ C sin

!

2
.jx � iy/

o n
cos

!

2
� k sin

!

2

o

D T 2
n
cos2 !

2
.ix C jy/ C 2 sin

!

2
cos

!

2
.jx � iy/ � sin2 !

2
.ix C jy/

o

D T 2 f.ix C jy/ cos! C .jx � iy/ sin!g
D T 2.cos! C k sin!/.ix C jy/:

56 Leipzig 1897; 2nd printing, 1914.
57 Fifth edition, Leipzig 1881.
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If we now multiply both sides by the right-hand factor (�i), we obtain

x0 C ky0 D T 2.cos! C k sin!/.x C ky/;

[79]which is precisely the rule for multiplying two ordinary complex numbers, and
which can be interpreted as a rotation through an angle !, together with a dilation
in the ratio T 2, except that we have used the letter k in place of the usual letter i to
denote the imaginary unit

p�1.
Let us now return to three-dimensional space, and let us modify the formula (1)

so that it shall represent a pure rotation without a dilation. To do so, we must replace
x0; y0; z0 by x0 �T 2, y0 �T 2, z0 �T 2, that is, we must replace q0 by q0 �T 2. If we notice
that p�1 D 1=p D p=T 2, we may write the formula for a pure rotation in the form

(6) ix0 C jy0 C kz0 D p � .ix C jy C kz/ � p�1:

There is no loss of generality if we assume that p is a quaternion whose tensor is
unity, that is,

p D cos
!

2
C sin

!

2
.i� C j� C k�/; where �2 C �2 C �2 D 1;

whence we see that (6) results from (5) if T is set equal to unity. The formula
was first stated in this form by Cayley in 184558. We may express the composition
of two rotations in a particularly simple form, precisely as we did above for four-
dimensional space. Given a second rotation

ix00 C jy00 C kz00 D p0.ix0 C jy0 C kz0/p0�1;

where

p0 D cos
! 0

2
C sin

! 0

2
.i� 0 C j�0 C k� 0/

the direction cosines of the axis of rotation being � 0; �0; � 0, and the angle of rotation
being ! 0, we may write

ix00 C jy00 C kz00 D p0 � p � .ix C jy C kz/ � p�1 � p0�1

as the equation for the resultant rotation. Hence the direction cosines of the axis
or rotation, � 00, �00, � 00, and the angle of rotation, ! 00, for the resultant rotation, are
given by the equation

p00 D cos
! 00

2
C sin

! 00

2
.i� 00 C j�00 C k� 00/ D p0 � p:

58 On certain results relating to quaternions, Collected Mathematical Papers, vol. 1 (1889),
p. 123. – According to Cayley’s own statement (vol. 1, p. 586), however, Hamilton had discovered
the same formula independently.
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We have therefore found a brief and simple expression for the composition of two
rotations about the origin, whereas the ordinary formulas for expressing the resul-
tant rotation appear rather complicated. Since any quaternion may be expressed as
the product of a real number (its tensor) and the versor of a rotation, we have also
found a simple geometric interpretation of quaternion multiplication as the compo-
sition of the rotations. The fact that quaternion multiplication is not commutative
then corresponds to the well-known fact that the order of two rotations[80] about a point
cannot be interchanged, in general, without changing the result.

If you desire to know more about the historical development of the interpreta-
tions and applications of quaternions and on the theory of rotations of a coordinate
system, which we have discussed, I would recommend to you an extremely valu-
able report on dynamics written by Cayley himself: Report on the progress of the
solution of certain special problems of dynamics59.

I shall close with certain general remarks on the value and the dissemination
of quaternions. For such a purpose, one should distinguish between the general
quaternion calculus and quaternion multiplication properly. The latter, at least, is
certainly of very great usefulness, as appears sufficiently from the preceding discus-
sion. The general quaternion calculus, on the other hand, as Hamilton conceived it,
embraced addition, multiplication, and division of quaternions, carried to an arbi-
trary number of steps. Thus Hamilton studied the algebra of quaternions; and, since
he investigated also infinite processes, he can even develop a quaternion theory of
functions. Since the commutative law does not hold, such a theory takes on a to-
tally different aspect from the theory of ordinary complex variables. It is just to say,
however, that these general and far-reaching ideas of Hamilton did not stand the
test of time, for there have not arisen any vital relationships and interdependencies
with other branches of mathematics and its applications. For this reason, the general
theory has aroused little general interest.

It is in mathematics, however, as it is in other human affairs: there are those
whose views are calmly objective; but there are always some who form impassion-
ate personal convictions. Thus the theory of quaternions has enthusiastic supporters
and bitter opponents. The supporters, who are to be found chiefly in England
and in America, adopted in 1907 the modern means to found an “Association for
the Promotion of the Study of Quaternions”. This organization was established
as a thoroughly international institution by the Japanese mathematician Shinkichi
Kimura, who had studied in America. Sir Robert Ball was for some time its pres-
ident. They foresaw great possible developments of mathematics to be secured
through intensive study of quaternions. On the other hand, there are those who
refuse to listen to anything about quaternions, and who go so far as to refuse to
consider the very useful idea of quaternion multiplication. According to the view
of such persons, all computation with quaternions amounts to nothing but computa-

59 Report of the British Association for the Advancement of Science, 1862; reprinted in Cayley’s
Collected Mathematical Papers, Cambridge, vol. 4 (1891), pp. 552ff.
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tion with the four components; the units and the multiplication table appear to them
to be superfluous luxuries. Between these two extremes, there is a mediating ten-
dency who holds that we should always distinguish carefully between scalars and
vectors. [81]

4. Complex Numbers in School Teaching

I shall now leave the theory of quaternions and close this chapter with some remarks
about the role which these concepts play in the curriculum of the schools. No one
would ever think of teaching quaternions in a secondary school, but the common
complex numbers x C iy always come up as teaching subjects. Perhaps it will be
more interesting if, instead of telling you at length how it is done and how it ought
to be done, I exhibit to you, by means of three books from different periods, how its
teaching has developed historically.

I put before you, first, a book by Abraham G. Kästner who had a leading posi-
tion in Göttingen in the second half of the eighteenth century. In those days one
still studied, at the university, those elementary mathematical things which later,
in the thirties of the nineteenth century, went over to the schools. Accordingly,
Kästner also gave lecture courses on elementary mathematics, which were heard by
large numbers of non-mathematical students. His textbook, which formed the basis
of these lecture courses, was called Mathematische Anfangsgründe�. The portion
which interests us here is the second division of the third, part: Anfangsgründe der
Analysis endlicher Größen�� ,60. The treatment of imaginary quantities begins there
on p. 20 in something like the following words: “Whoever demands the extraction
of an even root of a ‘denied’ quantity (one said ‘denied’, then, instead of ‘nega-
tive’), demands an impossibility, for there is no ‘denied’ quantity which would be
such a power”. This is, in fact, quite correct. But on p. 34 one finds: “Such roots are
called impossible or imaginary”, and, without much investigation as to justification,
one proceeds quietly to operate with them as with ordinary numbers, notwithstand-
ing their existence has just been disputed – as though, so to speak, the meaningless
became suddenly usable through receiving a name. You recognize here a reflex of
Leibniz’s point of view, according to which, imaginary numbers were really some-
thing quite foolish but they led, nevertheless, in some incomprehensible way, to
useful results.

Kästner was, moreover, a stimulating writer; he achieved quite a place in the
literature as a coiner of epigrams. To cite only one of many examples, he expa-
tiates, in the introduction of this textbook mentioned above, on the origin of the
word algebra, which, indeed, as the article “al” indicates, comes from the Arabic.

� Elements of Mathematics.
�� Elements of Analysis of Finite Quantities.
60 Third edition. Göttingen 1794.
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According to Kästner, an algebraist is a man who “makes” fractions “whole”, who,
that is, treats rational functions and reduces them to a common denominator, etc. It
is said to have referred, originally, to the practice of a surgeon in mending broken
bones. Kästner then cites Don Quixote, who went to an algebraist to[82] get his broken
ribs set. Of course, I shall leave undecided, whether Cervantes really adopted this
form of expression or whether this is only a lampoon.

The second work which I put before you is more recent, by a couple of years,
and comes from the Berlin professor Martin Ohm: Versuch eines vollständig kon-
sequenten Systems der Mathematik��� ,61; a book with a purpose similar to that of
Kästner and at one time widely used. But Ohm is much nearer the modern point of
view, in that he speaks clearly of the principle of the extension of the number sys-
tem. He says, for example, that, just like negative numbers, so

p�1 must be added
to the real numbers as a new thing. But even his book lacks a geometric interpreta-
tion, since it appeared before the epoch-making publication by Gauß (1831).

Finally, I lay before you, out of the long list of modern school books, one that
is widely used: Bardeys Aufgabensammlung62. The principle of extension comes
to the fore here, and, in due course, the geometric interpretation is explained. This
may be taken as the general position of school teaching today, even if, at isolated
places, the development has remained at the earlier level. The point of view adopted
in this book seems to me to yield the treatment best adapted to the schools. Without
tiring the pupil with a systematic development, and without, of course, going into
logically abstract explanations, one should explain complex numbers as an exten-
sion of the familiar number concept, and should avoid any touch of mystery. Above
all, one should accustom the pupil, at once, to the intuitive geometric interpretation
in the complex plane!

With this, we come to the end of the first main part of the course, which was
dedicated to arithmetic. Before going over to similar discussions of algebra and
analysis, I should like to insert a somewhat extended historical appendix in order
to throw new light upon the general conduct of teaching at present, and upon those
features of it which we would improve.

��� An Attempt to Construct a Consistent System of Mathematics.
61 Nine volumes. Berlin 1828. Vol. I: Arithmetik und Algebra, p. 276.
62 [See also the Reformausgabe of Bardeys Aufgabensammlung, revised by Walther Lietzmann
and Paul Zühlke. Oberstufe. Verlag Teubner. Leipzig.] – See also H. Fine The Number-System in
Algebra. Heath; H. Fine, College Algebra. Ginn.
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