
IV. Supplement

IVa. Transcendence of the Numbers e and �

The first topic which I shall discuss will be the numbers e and � . In particular,
I wish to prove that they are transcendental numbers.

Historical Aspects

Interest in the number � , in geometric form, dates from ancient times. Even then
it was usual to distinguish between the problem of its approximate calculation and
that of its exact theoretical construction; and one had certain approaches for the
solution of both problems. Archimedes made an essential advance, in the first, with
his process of approximating to the circle by means of inscribed and circumscribed
polygons. The second problem soon centred in the question as to whether or not
it was possible to construct � with ruler and compass. This was attempted in all
possible ways with never a suspicion that the reason for continued failure was the
impossibility of the construction. An account of some of the early attempts has
been published by Ferdinand Rudio167. The “quadrature of the circle” still remains
one of the most popular problems, and many persons, as I have already remarked,
seek salvation in its solution, without knowing, or believing, that modern science
has long since settled the question.

In fact, these ancient problems are completely solved today. One is often inclined
to doubt whether human knowledge really can advance, and in some fields the doubt
may be justified. In mathematics, however, there are indeed advances of which we
have here an example.

The foundations upon which the modem solution of these problems rests date
from the period between Newton and Euler. A valuable tool for the approximate
calculation of � was supplied by infinite series, a tool, which made possible an
accuracy adequate for all needs. The most elaborate result obtained was that of the

167 Der Bericht des Simplicius über die Quadraturen des Antiphon und Hippokrates. Leipzig,
1908.
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Englishman Shanks, who calculated � to 707 places168. One can ascribe this feat to
a sportsmanlike interest[257] in making a record, since no applications could ever require
such accuracy.

On the theoretical side, the number e, the base of the system of natural loga-
rithms, intervenes into the investigations during the same period. The wonderful
relation ei� D �1 was discovered and a means was developed, within the integral
calculus, which, as we shall see, was of importance for the final solution of the
question as to the quadrature of the circle. The decisive step in the solution of the
problem was taken by Charles Hermite169 in 1873, when he proved the transcen-
dence of e. He did not succeed in proving the transcendence of � . That was done
by Lindemann170 in 1882.

These results represent at the same time an essential generalization of the clas-
sical problem. That was concerned only with the construction of � by means of
ruler and compass, which amounts, analytically, as we saw (p. [56]) to representing
� by a finite succession of square roots and rational numbers. But the modern re-
sults prove not merely the impossibility of this representation; they show far more,
namely, that � (and likewise e) is transcendental, that is, that it satisfies no algebraic
relation whatever whose coefficients are integers. In other words, neither e nor �

can be the root of an algebraic equation with rational integer coefficients:

a0 C a1x C a2x
2 C � � � C anxn D 0

no matter how large the integers a0; : : : ; an or the degree n. It is essential that
the coefficients be rational integer numbers171. It would suffice however to say
rational, since we could make them integers by multiplying through by a common
denominator.

I pass now to the

Proof of the Transcendence of e,

in which I shall follow the simplified method given by Hilbert in Volume 43172

of the Mathematische Annalen (1893). We shall show that the assumption of an
equation

(1) a0 C a1e C a2e
2 C � � � C anen D 0; where a0 ¤ 0;

168 See Weber-Wellstein, vol. 1, p. 523.
169 Comptes Rendus, vol. 77 (1873), p. 18–24, 74–79, 226–233, 285–293; = Werke III (1912),
p. 150.
170 Sitzungsberichte der Berliner Akademie, 1882, p. 679, and Mathematische Annalen, vol. 20
(1882), p. 213.
171 [Transl. note: In number theory, integer numbers are called rational integer numbers, to distin-
guish them from integer p-adic numbers.]
172 „Über die Transcendenz der Zahlen e und �“, 216–219.
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in which a0; : : : ; an are integers, leads to a contradiction. This will show up by the
simplest properties of integers. We shall need, namely, from the theory of numbers,
only the most elementary theorems on divisibility, in particular, that an integer can
be separated into prime factors in only one way, and, second, that the number of
primes is infinite.

[258]The plan of the proof is as follows. We shall set up a procedure, which en-
ables one to approximate especially well to e and powers of e, by means of rational
numbers, so that we have

(2) e D M1 C "1

M
; e2 D M2 C "2

M
; : : : ; en D Mn C "n

M

whereM; M1; M2; : : : ; Mn are integers, and "1=M; "2=M; : : : ; "n=M are very small
positive fractions. Then the assumed equation (1), after multiplication by M, takes
the form

(3) Œa0M C a1M1 C a2M2 C � � � C anMn� C Œa1"1 C a2"2 C � � � C an"n� D 0

The first parenthesis is an integer, and we shall prove that it with certainty is not
zero. As for the second parenthesis, we shall show that "1; : : : ; "n can be made
so small that it will be a positive proper fraction. Then we shall have the obvious
contradiction that an integer a0M C a1M1 C � � � C anMn which is not zero, in-
creased by a p ro p e r fraction a1"1 C � � � C an"n should be zero. This will show
the impossibility of (1).

An important application will be made there of the deduction that if an integer is
not divisible by a definite number, the integer cannot be zero (for zero is divisible by
every number). We shall show, namely, that M1; : : : ; Mn are divisible by a certain
prime number p, but that a0M with certainty not, and that, therefore, a0M Ca1M1C
� � � C anMn is not divisible by p, and hence is different from zero.

The principal aid in carrying out the indicated idea of a proof comes from the
use of a certain definite integral which was devised by Hermite for this purpose and
which we shall call Hermite’s integral. The key to this proof lies in its structure.
This integral, whose value, as we shall see, is an integer and which we shall use to
defineM, is

(4) M D
1Z

0

zp�1 Œ.z � 1/ .z � 2/ � � � .z � n/�p e�z

.p � 1/Š
dz;

where n is the degree of the assumed equation (1), and p is an odd prime which we
shall determine later. From this integral we shall get the desired approximation (2)
to the powers e�.� D 1; 2; : : : ; n/ by breaking the interval of integration of the
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integral M � e� at the point � and setting

M� D e�

1Z

�

zp�1 Œ.z � 1/ � � � .z � n/�p e�z

.p � 1/Š
dz;(4a)

"� D e�

�Z

0

zp�1 Œ.z � 1/ � � � .z � n/�p e�z

.p � 1/Š
dz:(4b)

[259] Let us now proceed with the proof.
1. We start with the well-known formula from the beginnings of the theory of

the gamma function:
1Z

0

z%�1e�zdz D � .%/ ;

We shall need this formula only for integer values of %, in which case � .%/ D
.% � 1/Š, and I shall deduce it under this restriction. If we integrate by parts we
have, for % > 1:

1Z

0

z%�1e�zdz D ��z%�1e�z
�1

0
C

1Z

0

.% � 1/ z%�2e�zdz

D .% � 1/

1Z

0

z%�2e�zdz:

The integral on the right is of the same form as the one on the left, except that the
exponent of z is reduced. If we apply this process repeatedly we must eventually
come to z0, since % is an integer; and since

R 1
0

e�zdz D 1, we obtain finally

(5)

1Z

0

z%�1e�zdz D .% � 1/ .% � 2/ � � � 3 � 2 � 1 D .% � 1/Š

Thus for integer % the integral is an integer which increases very rapidly when %

increases.
To make this result geometrically intuitive, let us draw, on a z-axis, the curve y D

z%�1e�z for different values of %. The value of the integral will then be represented
by the area under the curve extending to infinity (see Fig. 115). The larger % is the
more closely the curve hugs the z-axis at the origin, but the more rapidly it rises
beyond z D 1. The curve has a maximum at z D % � 1, for all values of %; in
other words the maximum occurs farther and farther to the right as % increases;
and its value also increases with %. To the right of the maximum, the factor e�z

prevails so that the curve falls, and eventually snuggles the z-axis intimately. It is
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thus comprehensible that the area (our integral) always remains finite but increases
strongly with %.

Figure 115

[260]2. With this formula we can now easily evaluate our Hermite integral. Expanding
the integrand by the polynomial theorem

Œ.z � 1/.z � 2/ � � � .z � n/�p D Œzn C � � � � C .�1/nnŠ�p

D znp C � � � � C .�1/n.nŠ/p;

[where always only the terms involving the highest and the lowest powers of z have
to be written down], the integral becomes

M D .�1/n .nŠ/p

.p � 1/Š

1Z

0

zp�1e�zdz C
npCpX

%DpC1

C%

.p � 1/Š

1Z

0

z%�1e�zdz:

The C% are integer constants, by the polynomial theorem. Now we can apply for-
mula (5) to each of these integrals and obtain

M D .�1/n .nŠ/p C
npCpX

%DpC1

C%

.% � 1/Š

.p � 1/Š

The summation index % is always greater than p and consequently .%�1/Š=.p �1/Š

is an integer and one which contains p as a factor, so that we can take p as a factor
out of the entire sum:

M D .�1/n.nŠ/p C pŒCpC1 C CpC2.p C 1/ C CpC3.p C 1/.p C 2/ C � � � �:

Now, so far as divisibility by p is concerned,M must behave like the first summand
.�1/n.nŠ/p . And since p is a prime number it will not be a divisor of this summand
if it is not a divisor of any of its factors 1; 2; : : : ; n, which will certainly be the case if
p > n. But this condition can be satisfied in an unlimited number of ways, since the
number of primes is infinite. Consequently we can bring it about that .�1/n.nŠ/p ,
and henceM, is with certainty not divisible by p.
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Since furthermore a0 ¤ 0, we can see to it, at the same time, that a0 is not
divisible by p by selecting p greater also than ja0j, which is, of course, possible, by
what was said above. But then the product a0 �M will not be divisible by p, and that
is what we wished to show.

3. Now we must examine the numbers M�.� D 1; 2; : : : ; n/, defined in (4a)
(p. [258]). Putting the factor e� under the sign of integration and introducing the
new variable of integration � D z � �, which varies from 0 to 1 when z runs from
� to 1, we have

M� D
1Z

0

.� C �/p�1 Œ.� C � � 1/ .� C � � 2/ � � � � � � � .� C � � n/�p e��

.p � 1/Š
d�:

[261] This expression has a form entirely analogous to the one considered before for M
and we can treat it in the same way. If we multiply out the factors of the inte-
grand there will result an aggregate of powers with integer coefficients of which
the lowest will be �p. The integral of the numerator will thus be an integer-number
combination of the integrals

1Z

0

�pe��d�;

1Z

0

�pC1e��d�; : : : ;

1Z

0

�.nC1/p�1e��d�;

and since these are, by (5), equal to pŠ; .p C 1/Š; : : : the numerator will be pŠ

multiplied by an integer number A, thus each one is:

M� D pŠA�

.p � 1/Š
D p � A�; .� D 1; 2; : : : ; n/ :

In other words, everyM� is an integer number, which is divisible by p.
This, combined with the result of No. 2, proves the statement made on p. [258]

et seq. that a0M C a1M1 C � � � C anMn is clearly not divisible by p and is therefore
different from zero.

4. The second part of the proof has to do with the sum a1"1 C � � � C an"n, where,
by (4b),

"� D
�Z

0

zp�1 Œ.z � 1/ .z � 2/ � � � .z � n/�p e�zC�

.p � 1/Š
dz:

Wemust show that these "� can be made sufficiently small by an appropriate choice
of p. To this end we use the fact that we can make p as large as we chose; for
the only conditions thus far imposed upon p are that it should be a prime number
greater than n and also greater than ja0j, and these can be still satisfied by arbitrarily
large prime numbers.

Let us study a geometrical image of the shape of the integrand. At z D 0 it will
be tangent to the z-axis, but at z D 1; 2; : : : ; n (in Fig. 116, n D 3) it will be tangent
to the z-axis and also cut it, since p is odd. As we shall see soon, the presence in the
denominator of .p � 1/Š brings it about that for large p the curve departs but little
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from the z-axis in the interval .0; n/, so that it seems plausible that the integrals "�

should be very small. For z > n the curve rises and proceeds asymptotically like
the former [262]curve z%�1e�z [for % D .n C 1/p] and finally approaches indefinitely
the z-axis. It was for this reason that the value M of the integral (when the interval
of integration was from 0 to 1) increased so rapidly with p.

Figure 116

In actually estimating the integrals we can be satisfied with a quite rough ap-
proximation. Let G and g� be the maxima of the absolute values of the functions
z.z � 1/ : : : .z � n/ and .z � 1/.z � 2/ : : : .z � n/e�zC� respectively in the interval
.0; n/:

jz .z � 1/ : : : .z � n/ j 5 G

j .z � 1/ .z � 2/ : : : .z � n/ e�zC� j 5 g�

)
for 0 5 z 5 n:

Since the integral of a function, taken absolutely, is never greater than the integral
of its absolute value, we have, for each "r

(6) j"�j 5
8<
:

�Z

0

Gp�1g�

.p � 1/Š
dz D Gp�1g� � �

.p � 1/Š

9=
; :

Now G, g� , and � are fixed numbers independent of p, but the number .p � 1/Š in
the denominator increases ultimately more rapidly than the power Gp�1, or, more
exactly, the fraction Gp�1=.p � 1/Š becomes, for sufficiently large p, smaller than
any pre-assigned number, however small. Thus, because of (6), we can actually
make each of the n numbers "� arbitrarily small by choosing p sufficiently large.

It follows immediately from this that we can also make the sum of n terms a1"1C
� � � C an"n arbitrarily small. We have, in fact

ja1"1 C a2"2 C � � � C an"nj 5 ja1j j"1j C ja2j j"2j C � � � C janj j"nj
and by (6)

5 .ja1j � 1 � g1 C ja2j � 2 � g2 C � � � C janj � n � gn/ � Gp�1

.p � 1/Š
:
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Since the parenthesis has a value which is independent of p, we can, by virtue of
the factor Gp�1=.p � 1/Š, make the entire right hand side, and hence also a1"1 C
a2"2 C � � � C an"n, as small as we choose, and, in particular, smaller than unity.

With this we have shown, as we agreed to do (p. [258]), that the assumption of
the equation (3)

Œa0M C a1M1 C � � � C anMn� C Œa1"1 C � � � C an"n� D 0

leads to a contradiction, namely that a non-vanishing integer increased by a proper
fraction should give zero. And since this equation cannot exist the transcendence of
e is proved.[263]

Proof of the Transcendence of �

We turn now to the proof of the transcendence of the number � . This proof is
somewhat more difficult than the foregoing, but it is still fairly easy. It is only
necessary to begin at the right end, which is indeed the art of all mathematical
discovery.

The problem, as Ferdinand Lindemann considered it, was the following: It has

been shown thus far that an equation
nP

�D0

a�e� D 0 cannot exist if the coefficients

a� and the exponents � of e are ordinary rational integer numbers. Would it not be
possible to prove a similar thing where a� and � are arbitrary algebraic numbers?
He succeeded in doing this; in fact, his most general theorem concerning the ex-

ponential function is as follows: An equation
nP

�D1

a�eb� D 0 cannot exist if the ar ,

b� are algebraic numbers, whereby the a� are arbitrary, the b� different from one
another. The transcendence of � is then only a corollary to this theorem. For, as is
well known, 1Cei� D 0; and if � were an algebraic number, i� would be also, and
the existence of this equation would contradict the above theorem of Lindemann.

I shall now prove in detail only a certain special case of Lindemann’s theorem,
one which carries with it, however, the transcendence of � . I shall follow again,
in the main, Hilbert’s proof in Volume 43 of the Mathematische Annalen, which is
essentially simpler than Lindemann’s, and which is an exact generalization of the
discussion, which we have given for e.

The starting point is the relation

(1) 1 C ei� D 0:

If, now, � satisfies any algebraic equation with rational integer coefficients then i�

also satisfies such an equation. Let ˛1; ˛2; : : : ; ˛n be all the roots, including i�

itself, of this last equation. Then we must also have, because of (1):

.1 C e˛1 / .1 C e˛2 / � � � .1 C e˛n/ D 0:
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Multiplying out we obtain

(2)

(
1 C �

e˛1 C e˛2 C � � � C e˛n
� C �

e˛1C˛2 C e˛1C˛3 C � � � C e˛n�1C˛n
�

C � � � C �
e˛1C˛2C���C˛n

� D 0:
:

Now some of the exponents, which appear here might, by chance, be zero. Every
time that this occurs the left hand sum has a positive summand 1, and we combine
these, together with the 1 that appears formally, into a positive integer a0, which is
certainly different from zero. The remaining exponents, all different from [264]zero, we
denote by ˇ1; ˇ2; : : : ; ˇN and we write, accordingly, instead of (2),

(3) a0 C eˇ1 C eˇ2 C � � � C eˇN D 0; where a0 > 0:

Now ˇ1; : : : ; ˇN are the roots of an algebraic equation with integer coefficients.
For, from the equation whose roots are ˛1; : : : ; ˛n we can construct one of the
same character whose roots are the two-term sums ˛1 C ˛2; ˛1 C ˛3; : : : , then an-
other for the three-term sums ˛1 C ˛2 C ˛3, ˛1 C ˛2 C ˛4; : : : and so on; finally,
˛1 C ˛2 C � � � C ˛n is itself rational and satisfies therefore a linear integer equation.
By multiplying together all these equations, we obtain again an equation with ra-
tional integer coefficients, which might have some zero roots, and whose remaining
roots are the ˇ1; : : : ; ˇN . Omitting the power of the unknown, which corresponds
to the zero roots, there will remain for the N quantities ˇ an algebraic equation of
degree N with integer coefficients and absolute term different from zero

(4) b0 C b1z C b2z
2 C � � � C bN zN D 0; where b0; bN ¤ 0:

We now have to prove the following special case of Lindemann’s theorem. An
equation of the form (3), with integer non-vanishing a0, cannot exist if ˇ1; : : : ; ˇN

are the roots of an algebraic equation of degree N, with integer coefficients. This
theorem includes the transcendence of � .

The proof involves the same steps as the one already given for the transcendence
of e. Just as we could there approximate closely to the powers e1; e2; : : : ; en by
means of rational numbers, so we shall be concerned here with the best possible
approximation to the powers of e which appear in (3), and we shall write, in the old
notation,

(5) eˇ1 D M1 C "1

M
; eˇ2 D M2 C "2

M
; � � � ; eˇN D MN C "N

M
I

where the denominator M is again an ordinary rational integer number, but the
M1; : : : ; MN are no longer rational integer numbers as formerly, but are integer
a l g e b ra i c numbers, and the ˇ1; : : : ; ˇN , which in general can now be complex,
are in absolute value very small. It is here that the difficulty in this proof lies, as
compared to the earlier one. The sum of all the M1; : : : ; MN will again, however,
be an rational integer number, and we shall be able to arrange it so that the first
summand in the equation:

(6) Œa0M C M1 C M2 C � � � C MN � C Œ"1 C "2 C � � � C "N � D 0:
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[265] into which (3) goes over when we multiply by M and use (5)] will be a non-
vanishing rational integer number, while the second summand will be, in absolute
value, smaller than unity. Essentially, this will be the same type of contradiction,
which we used before. It will show the impossibility of (6) and (3) and so complete
our proof. As to detail, we shall again show that M1 C M2 C � � � C MN is divis-
ible by a certain prime number p, but that a0M is not, which will show that the
first summand in (6) cannot vanish; then we shall choose p so large that the second
summand will be arbitrarily small.

1. Our first concern is to defineM by a suitable generalization of Hermite’s inte-
gral. A hint here lies in the fact that the zeros of the factor .z � 1/.z � 2/ : : : .z � n/

in Hermite’s integral were the exponents in the powers of e in the hypothetical al-
gebraic equation. Hence we now replace that factor by the product made by using
the exponents in (3), i.e., the solutions in (4):

(7) .z � ˇ1/ .z � ˇ2/ ::: .z � ˇN / D 1

bN

�
b0 C b1z C � � � C bN zN

�
:

It turns out to be essential here to put in a suitable power of bN as factor, which
was unnecessary before because .z � 1/ : : : .z � n/ was integer. We set then finally

(8) M D
1Z

0

e�zzp�1dz

.p � 1/Š

�
b0 C b1z C � � � C bN zN

�p
b

.N �1/p�1
N :

2. Just as before, we now expand the integrand of M according to powers of z.
The lowest power, that belonging to zp�1, gives then:

1Z

0

e�zzp�1dz

.p � 1/Š
b

p
0 b

.N �1/p�1
N D b

p
0 b

.N �1/p�1
N ;

where the integral has been evaluated by means of the gamma-formula (p. [239]).
The remaining summands in the integrand contain either zp or still higher powers,
so that the integrals contain the factor pŠ=.p � 1/Š, multiplied by integers, and are
thus all divisible by p. Consequently M is an integer which is certainly not divisible
by p, i.e., provided the prime number p is not a divisor of either b0 or bN . But since
these two numbers are both different from zero, we can bring this about by choosing
p so that p > jb0j and also p > jbN j.

[266] Since a0 > 0 it follows that a0M is not divisible by p if we impose the additional
condition p > a0. Inasmuch as the number of primes is infinite we can satisfy all
these conditions in an unlimited number of ways.

3. We must now approach to construct M� and e� . Here we must modify our
earlier plan because the ˇ� which now take the place of the former �, can be com-
plex; in fact one of them is i� . If we are to split the integer M as we did before we
must first determine the path of integration in the complex plane. Fortunately the
integrand of our integral is a finite univocal function of the integration variable z,
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regular everywhere except at z D 1, where it has an essential singularity. Instead
of integrating from 0 to 1 along the real axis we can choose any other path from
0 to 1, provided it ultimately runs asymptotically parallel to the positive real half-
axis. This is necessary if the integral is to have a meaning at all, in view of the
behaviour of e�z in the complex plane.

Figure 117

Let us nowmark the N points ˇ1; ˇ2; : : : ; ˇN in the plane and recall that we shall
obtain the same value for M if we first integrate rectilinearly from 0 to one of the
points ˇN and then to 1 along a parallel to the real axis (see Fig. 117). Along this
path we can separate M into the two characteristic parts: The rectilinear path from
0 to ˇN supplies the "� which will become arbitrarily small with increasing p; the
parallel from ˇN to 1 will supply the integral algebraic number MN :

"� D eˇ�

ˇ�Z

0

e�zzp�1dz

.p � 1/Š

�
b0 C b1z C � � � C bN zN

�p
b

.N �1/p�1
N ;(8a)

.� D l; 2; : : : ; N /;

M� D eˇ�

1Z

ˇ�

e�zzp�1dz

.p � 1/Š

�
b0 C b1z C � � � C bN zN

�p
b

.N �1/p�1
N :

(8b)

These assumptions satisfy (5). Our choice of a rectilinear path of integration was
made solely for convenience; any curvilinear path from 0 to ˇ� would, of course,
yield the same value for "� , but one achieves the best estimation for the integral
when the path is straight. Similarly, [267]we might choose, instead of the horizontal path
from ˇ� to 1, an arbitrary curve provided only that it approached the horizontal
asymptotically; but that would be unnecessarily inconvenient.

4. I will discuss first the estimation of the e� , because this involves nothing new
if we only recall that the absolute value of a complex integral cannot be larger than
the maximum of the absolute value of the integrand, multiplied by the length of the
path of integration, which, in our case, is jˇ� j. The upper limit for "� would be,
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then, the product of Gp�1=.p � 1/Š by factors which are independent of p, where
G denotes the maximum of

ˇ̌
z

�
b0 C b1z C � � � C bN zN

�
bN �1

N

ˇ̌
in a region which

contains all the segments joining 0 with the points ˇ� . From this one may infer, as
we did before, (p. [262]), that, by sufficiently increasing p, the value of each "� and,
therefore, the value of "1 C � � � C "N can be made as small as we please and, in
particular, smaller than unity.

5. It is only in the investigation of the M� that essentially new considerations are
necessary, and these are, to be sure, only generalisations of our former reasoning,
due to the fact that integer algebraic numbers take the place now of what were then
rational integer numbers. We shall consider, as a whole, the sum:

NX
�D1

M� D
NX

�D1

eˇ�

1Z

ˇ�

e�zzp�1dz

.p � 1/Š

�
b0 C b1z C � � � C bN zN

�p
b

.N �1/p�1
N :

If we make use of (7) (p. [265]) and replace, in each summand of the above sum-
mation, the polynomial in z by the product of the factors .z � ˇ1/ � � � .z � ˇN / and
introduce the new variable of integration � D z � ˇ� , which will run through real
values from 0 to 1, we obtain
(9)8̂
ˆ̂̂<
ˆ̂̂̂
:

NP
�D1

M� D
NP

�D1

R 1
0

e��d�

.p�1/Š
.�Cˇ�/p�1 .�Cˇ� �ˇ1/p � � � �p � � � .�Cˇ� �ˇN /p b

Np�1
N

which may be written D
1Z

0

e��d�

.p � 1/Š
�p � ˚ .�/

;

where we use the abbreviation

(90)

8̂
<
:̂

˚.�/ D
NX

�D1

b
Np�1
N .� C ˇ�/p�1 .� C ˇ� � ˇ1/

p � � �

.� C ˇ� � ˇ��1/
p .� C ˇ� � ˇ�C1/

p � � � .� C ˇ� � ˇN /p

:

This sum ˚.�/, like each of its N summands, is a polynomial in �. In each of the
summands, one of the N quantities ˇ1; : : : ; ˇN plays a marked role; but if we con-
sider the polynomial[268] in � obtained by multiplying out in ˚.�/, we see that these N
quantities appear, without preference, in the coefficients of the different powers of
�. In other words, each of these coefficients is a symmetric function of ˇ1; : : : ; ˇN .
The multiplying out of the individual factors by the multinomial theorem permits
the further inference that these functions ˇ1; : : : ; ˇN are rational integer functions
with rational integer coefficients. But according to a well-known theorem in al-
gebra, rational symmetric functions, with rational coefficients of all the roots of a
rational integer equation are always rational numbers; and since the ˇ1; : : : ; ˇN

are all the roots of equation (4), the coefficients of ˚.�/ are actually rational
numbers.
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But, more than this, we need rational integer numbers. These are supplied by the
power of bN which occurs as a factor of ˚.�/. We can, in fact, distribute this power
among all the linear factors, which occur there and write
(900)8<
:

˚.�/ D
NP

�D1

.bN �CbN ˇ�/p�1.bN �CbN ˇ� �bN ˇ1/p � � � .bN �CbN ˇ� �bN ˇ��1/p

.bN � C bN ˇ� � bN ˇ�C1/p � � � .bN � C bN ˇ� � bN ˇN /p

In analogy with what we had earlier, the coefficients of �, when this poly-
nomial is calculated, are rational integer symmetric functions of the products
bN ˇ1; bN ˇ2; : : : ; bN ˇN , with rational integer coefficients. But these N products
are roots of the equation into which (4) transforms if we replace z by z=bN :

b0 C b1

z

bN

C � � � C bN �1

�
z

bN

�N �1

C bN

�
z

bN

�N

D 0:

If we multiply through by bN �1
N this equation goes over into:

(10) b0bN �1
N C b1b

N �2
N � z C � � � C bN �2bN zN �2 C bN �1z

N �1 C zN D 0;

that is, an equation with integral coefficients throughout and where the coefficient
of the highest power is unity. Algebraic numbers which satisfy such an equation are
called integer algebraic numbers, and we have the following refinement of the the-
orem mentioned above: Rational integer symmetric functions, with rational integer
coefficients of all the roots of an integer equation whose highest coefficient is unity
(i.e., of integer algebraic numbers) are themselves rational integer numbers. You
will find this theorem in textbooks on algebra; and if it is not always enunciated in
this precise form you can, nevertheless, by following the proof, convince yourselves
of its correctness.

[269]Now the coefficients of the polynomial ˚.�/ actually satisfied the assumptions
of this theorem so that they are rational integer numbers, which we shall denote by
A0; A1; : : : ; ANp�1. We have, then according to (9),

NX
�D1

M� D
1Z

0

e���pd�

.p � 1/Š

�
A0 C A1� C � � � C ANp�1�Np�1

�
:

With this we have essentially reached our goal. For, if we carry out the integrations
in the numerator, using our gamma formula (p. [259]), we obtain factors pŠ; .p C
1/Š; .p C 2/Š : : : , since each term contains as factor a power of � of degree p or
higher; and after division by .p � 1/Š there remains everywhere a factor p, while

the other factors are rational integer numbers (the A0; A1; A2; : : : ). Thus
NP

�D1

M� is

certainly a rational integer number divisible by p.
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We saw (p. [266]) that a0 � M was not divisible by p, so that

a0M C
NX

�D1

M�

is necessarily a rational integer number which is not divisible by p and hence, in
particular, different from zero. Therefore the equation (6):

(
a0M C

NX
�D1

M�

)
C

(
NX

�D1

"�

)
D 0

cannot exist, for a non-vanishing integer added to
NP

�D1

"� , which was shown in

No. 4 (p. [267]) to be smaller than unity in absolute value, cannot yield zero. But
this proves the special case of Lindemann’s theorem which we enunciated above
(p. [264]) and which carries with it the transcendence of � .

More on Transcendent and Algebraic Numbers

I should like to emphasise here another interesting special case of the general Lin-
demann theorem, namely, that in the equation eˇ D b the numbers b; ˇ cannot
both be algebraic, with the trivial exception ˇ D 0, b D 1. In other words, the
exponential function of an algebraic argument ˇ as well as the natural logarithm
of an algebraic number b is, with this one exception, always transcendental. This
statement includes the transcendence of both e and � , the former for ˇ D 1; the
latter for b D �1 (because ei� D �1). The proof of this theorem can be effected by
an exact generalisation of the last discussion. One would start from b � eˇ instead
of from 1 C e˛ as before. It would be necessary to take into account not only all
the roots of the algebraic equation for ˇ, but also all the roots of the equation for
b, in order to arrive at an equation analogous to (3), so that one would need more
notation[270] and the proof would be apparently less perspicuous; but it would require
no essentially new ideas. The proof of the most general Lindemann theorem can be
realised in an entirely analogous manner.

I shall not go farther into these proofs, but I should like to make you appreciate
the significance of the last theorem concerning the exponential function as intu-
itively as possible. Let us think of all points with an algebraic abscissa as marked
off on the x-axis.

We know that even the rational numbers, and hence, with greater reason, the alge-
braic numbers lie everywhere dense on the x-axis. One might think at first that at
least the algebraic numbers would exhaust all the real numbers. But our theorem
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yields that this is not the case; that between the algebraic numbers on the x-axis
there are infinitely many other numbers, viz. the transcendental numbers; and that
we have examples of them in unlimited quantity in ealgbr. no., in log.algebr. no./, and
in every algebraic function of these transcendental numbers. It will even be more
obvious, perhaps, if we write the equation in the form y D ex and interpret it as
curve in an x-y-plane (see Fig. 118). If we now mark all the algebraic numbers on
the x-axis and on the y-axis and consider all the points in the plane that have both
an algebraic x and an algebraic y, the x-y-plane will be densely covered with these
“algebraic points”. In spite of this dense distribution, the exponential curve y = ex

does not contain a single algebraic point except the one x D 0, y D 1. Of all the
other number pairs x, y which satisfy y D ex , one, at least, is transcendental. This
shape of the exponential curve is certainly a most remarkable fact!

Figure 118

The theoretical significance of these theorems which reveal the existence in great
quantity of numbers which are not only not rational but which cannot be represented
by algebraic operations upon numbers representable by integer numbers – their sig-
nificance for our representations of the number continuum is tremendous. What
would Pythagoras have sacrificed after such a discovery if the irrational seemed to
him to merit a hecatomb!

It is remarkable how little in general these questions of transcendence are
grasped and assimilated, although they are so simple when one has once thought
them through. I continually have the experience, in an examination, that the candi-
date cannot even explain the notion “transcendence”. I often get the answer that a
transcendental number satisfies no algebraic equation, which, of course, is entirely
false, as the example x � e D 0 [271]shows. The essential thing, that the coefficients in
the equation must be rational, is overlooked.

If you will think our transcendence proofs through again you will be able to
grasp these simple elementary steps as a whole, and to make them permanently
your own. You need to impress upon your memory only the Hermite integral; then
everything develops itself naturally. I should like to emphasise the fact that in these
proofs we have used the integral concept (or, speaking geometrically, the idea of
area) as something in its essence thoroughly elementary, and I believe that this
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has contributed markedly to the clearness of the proof. Compare in this respect,
the presentation in Volume I of Weber-Wellstein, or in my own little book, Vorträge
über ausgewählte Fragen der Elementargeometrie173, where, as in the older school-
books, the integral sign is avoided and its use replaced by approximate calculation
of series developments. I think that you will admit that the proofs there are far less
clear and easy to grasp.

These discussions concerning the distribution of the algebraic numbers within
the realm of real numbers lead us naturally to that second modern field to which I
have already often referred during these lectures, and which I shall now consider in
some detail.

IVb. Set Theory

The investigations of George Cantor, the founder of this theory, had their beginning
precisely in considerations concerning the existence of transcendental numbers174.
They permit one to view this matter in an entirely new light.

If the brief survey of set theory, which I shall give you, has any special character,
it is this, that I shall bring the treatment of concrete examples more into the fore-
ground than is usually done in those very general abstract presentations, which too
often give this subject a form that is hard to grasp and even discouraging.

1. The Potency of Sets

With this end in view, let me remind you that in our earlier discussions we have
often had to do with different characteristic totalities of numbers, which we can
now call[272] sets of numbers. If I confine myself to real numbers, these assemblages
are

1. The positive integers.
2. The rational numbers.
3. The algebraic numbers.
4. All real numbers.
Each of these sets contains infinitely many numbers. Our first question is

whether, in spite of this, we cannot compare the magnitude or the range of these
sets in a definite sense, i.e., whether we cannot call the “infinity” of one greater
than, equal to, or less than that of another. It is the great achievement of Cantor
to have cleared up and answered this at first quite indefinite question, by setting

173 Referred to p. [135].
174 See: „Über eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen.“, Journal für
reine und angewandte Mathematik, vol. 77 (1873). p. 258.
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up precise concepts. Above all we have to consider his concept of “potency” or
“cardinal number”: Two sets have “equal potency” (are “equivalent”) when their
elements can be put into one-to-one correspondence, i.e., when the two sets can be
so related to each other that to each element of the one there corresponds one ele-
ment of the other, and conversely. If such a mutual correspondence is not possible
the two assemblages are of “different potency”; if it turns out that, no matter how
one tries to set up a correspondence, there are always elements of one of the sets
left over, this one has the “greater potency”.

Let us now apply this principle to the four examples given above. It might
seem, at first, that the potency of the integers would be smaller than that of the
rational numbers, the potency of these smaller than that of the algebraic numbers,
and this finally smaller than that of all real numbers; for each of these sets arises
from the preceding by the addition of new elements. But such a conclusion would
be too hasty. For although the potency of a fi n i t e set is always greater than
the potency of a part of it, this theorem is by no means transferable to infinite
sets. This discrepancy, after all, need not cause surprise, since we are concerned
in the two cases with entirely different fields. Let us examine a simple example,
which will show clearly that an infinite set and a part of it can actually have the
same potency, the set, namely, of all positive integers and that of all positive even
integers

The correspondence indicated by the double arrows is obviously of the sort pre-
scribed above, in that each element of one set corresponds to one and only one of
the other. Therefore, by Cantor’s definition, [273]the set of the positive integers and its
subset of the even integers have the same potency.

Denumerability of Rational and Algebraic Numbers

You see that the question as to the potencies of our four sets is not so easily dis-
posed of. The simple answer, which then appears the more remarkable, consists in
Cantor’s great discovery of 1873: The three sets, the positive integers, the rational,
and the algebraic numbers, have the same potencies; but the set of all real num-
bers has another, namely, a larger potency. A set whose elements can be put into
one-to-one correspondence with the series of positive integers (which has therefore
the same potency) is called d e nume rab l e. The above theorem can therefore be
stated as follows: The set of the rational as well as of the algebraic numbers is
denumerable; that of all real numbers is not denumerable.
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Figure 119

Let us first give the proof for rational numbers, which is no doubt familiar to
some of you. Every rational number (we shall include the negative ones) can be
expressed uniquely in the form p=q, where p and q are integers without a common
divisor, where, say, q is positive, while p may also be zero or negative. In order
to bring all these fractions p=q into a single series, let us mark in a p-q-plane
all points with integer coordinates .p; q/, so that they appear as points on a spiral
path as shown in Fig. 119. Then we can number all these pairs (p, q) so that only
one number will be assigned to each and all integers will be used (see Fig. 119).
Now delete from this succession all the pairs .p; q/, which do not satisfy the above
prescription (p prime to q and q > 0/ and number anew only those, which remain
(indicated in the figure by heavy points). We get thus a series, which begins as
follows:

one in which a positive integer is assigned to each rational number and a rational
number to each positive integer. This shows that the rational numbers are denumer-
able. This arrangement of the rational numbers

Figure 120

into a denumerable series requires, of course, a complete dislocation of their rank
as to size, as is indicated in[274] Fig. 120, where the rational points, laid off on the axis
of abscissas, are marked with the order of their appearance in the artificial series.

We come, secondly, to the algebraic numbers. I shall confine myself here to
real numbers, although the inclusion of complex numbers would not make the
discussion essentially more difficult. Every real algebraic number satisfies a real
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integer equation

a0!
n C a1!

n�1 C � � � C an�1! C an D 0;

which we shall assume to be irreducible, i.e., we shall omit any rational detach-
able factor of the left-hand member, and also any possible common divisors of
a1; a2; : : : ; an. We assume also that a0 is always positive. Then, as is well known,
every algebraic ! satisfies but one irreducible equation with integer coefficients, in
this normal form; and conversely, every such equation has as roots at most n real
algebraic numbers, but perhaps fewer, or none at all. If, now, we could bring all
these algebraic equations into a denumerable series we could obviously infer that
their roots and hence all real algebraic numbers are denumerable.

Cantor succeeded in doing this by assigning to each equation a definite number,
its “index”,

N D n � 1 C a0 C ja1j C � � � C jan�1j C janj;
and by separating all such equations into a denumerable succession of classes, ac-
cording as the index N D 1; 2; 3; : : : In no one of these equations can either the
degree n or the absolute value of any coefficient exceed the finite limit N, so that,
in every class, there can be only a finite number of equations, and hence, in par-
ticular, only a finite number of irreducible equations. One can easily determine the
coefficients by trying out all possible solutions for a given N and can, in fact, write
down at once the beginning of the series of equations for small values of N.

Now let us consider that, for each value of the index N, the real roots of the finite
number of corresponding irreducible equations have been determined, and arranged
according to size. Take first the roots, thus ordered, belonging to index one, then
those belonging to index two, and so on, and number them in that order. In this way
we shall have shown, in fact, that the set of real algebraic numbers is denumerable,
for we come in this way to every real algebraic number and, on the other hand, we
use all the positive integers. In fact one could, with sufficient patience, [275]determine
say the 7563-rd algebraic number of the scheme, or the position of a given algebraic
number, however complicated.

Here, again, our “denumeration” disturbs completely the natural order of the
algebraic numbers, although that order is preserved among the numbers of like
index. For example, two algebraic numbers so nearly equal as 2=5 and 2001=5000

have the widely separated indices 7 and 7001 respectively; whereas
p

5, as root of
x2 � 5 D 0, has the same index, 7, as 2=5.

Before we go over to the last example, I should like to give you a small lemma,
which will supply us with another denumerable set, as well as with a method of
proof that will be useful to us later on. If we have two denumerable sets

a1; a2; a3; : : : and b1; b2; b3; : : : ;

then the set of all a and all b which arises by combining these two is also denumer-
able. For one can write this set as follows:

a1; b1; a2; b2; a3; b3; : : : ;
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and we can at once set this into a one-to-one relation with the series of positive
integers. Similarly, if we combine 3, 4, . . . , or any finite number of denumerable
assemblages, we obtain likewise a denumerable set.

But it does not seem quite so obvious, and this is to be our lemma, that the
combination of a denumerable infinity of denumerable assemblages yields also a
denumerable assemblage. To prove this, let us denote the elements of the first
assemblage by a1; a2; a3; : : : , those of the second by b1; b2; b3; : : : , those of the
third by c1; c2; c3; : : : , and so on, and let us imagine these set written under one
another. Then we need only represent all the elements in the order as indicated by
the successive diagonals, as indicated in the following scheme:

The resulting arrangement

[276] reaches ultimately every one of the numbers a; b; c; : : : and brings it into correspon-
dence with just one definite positive integer, which proves the theorem. In view of
this scheme one could call the process a “counting by diagonals”.

The Continuum Not Being Denumerable

The large variety of denumerable sets, which has thus been brought to our knowl-
edge, might incline us to the belief that all infinite sets are denumerable. To show
that this is not true we shall prove the second part of Cantor’s theorem, namely, that
the continuum of all real numbers is certainly not denumerable. We shall denote it
by C1 because we shall have occasion later to speak of multi-dimensional continua.

C1 is defined as the totality of all finite real values x, where we may think of x as
an abscissa on a horizontal axis. We shall first show that the set of all inner points
on the unit segment 0 < x < 1 has the same power as C1. If we represent the first
set on the x-axis and the second on the y-axis, at right angles to it, then a one-to-one
correspondence between them will be established by a rising monotone curve of the
sort sketched in Fig. 121 (e.g., a branch of the curve y D �.1=�/ � tan�1 x/. It is
permissible, therefore, to think of the assemblage of all real numbers between 0 and
1 as standing for C1 and we shall do this from now on.
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Figure 121

The proof by which I shall show you that C1 is not denumerable is the one
which Cantor gave in 1891 at the meeting of the natural scientists in Halle. It is
clearer and more susceptible of generalization than the one, which he published in
1873. The essential thing in it is the so-called “diagonal process”, by which a real
number is disclosed that cannot possibly be contained in any assumed denumerable
arrangement of all real numbers. This is a contradiction, and C1 cannot, therefore,
be denumerable.

We write all our numbers 0 < x < 1 of C1 as decimal fractions and think of
them as forming a denumerable sequence

[277]where a; b; c are the digits 0; 1; : : : ; 9 in every possible choice and arrangement.
Now we must not forget that our decimal notation is not uniquely definite. In fact
according to our definition of equality we have 0;999 : : : D 1;000 : : : , and we could
write every terminating decimal as a non-terminating one in which all the digits,
after a certain one, would be nines. This is one of the first assumptions in calculating
with decimal fractions (see p. [37]). In order, then, to have a unique notation, let us
assume that we are employing only infinite, non-terminating decimal fractions; that
all terminating ones have been converted into such as have an endless succession of
nines; and that only infinite decimal fractions appear in our scheme above.

In order now to write down a decimal fraction x0 which shall be different from
every real number in the table, we fix our attention on the digits a1; b2; c3; : : : in the
diagonal of the table (hence the name of the procedure). For the first decimal place
of x0 we select a digit a0

1 different from a1; for the second place a digit b0
2 different

from b2; for the third place a digit c0
3 different from c3; and so on:

x0 D 0; a0
1 b0

2 c0
3 : : : :
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These conditions for a0
1; b0

2; c0
3; : : : allow sufficient freedom to insure that x0 is actu-

ally a proper decimal fraction, not, e.g., 0,999. . .D 1, and that it shall not terminate
after a finite number of digits; in fact, we can even select a0

1; b0
2; c0

3; : : : always dif-
ferent from 9 and 0. Then x0 is certainly different from x1 since they are unlike in
the first decimal place/figure?, and two infinite decimal fractions can be equal only
when they coincide in every decimal place?. Similarly x0 ¤ x2, on account of the
second place; x0 ¤ x3 because of the third place; etc. That is, x0 – a proper dec-
imal fraction – is different from all the numbers x1; x2; x3, . . . of the denumerable
tabulation. Thus the promised contradiction is achieved and we have proved that
the continuum C1 is not denumerable.

This theorem assures us, a priori, the existence of transcendental numbers; for
the totality of algebraic numbers was denumerable and could therefore not exhaust
the non-denumerable continuum of all real numbers. But, whereas all the earlier
discussions exhibited only a denumerable infinity of transcendental numbers, it fol-
lows here that the potency of this set is actually greater, so that it is only now that
we get the correct general understanding. To be sure, those special examples are of
service in giving life to an otherwise somewhat abstract picture175.[278]

Potency of Continua of More Dimensions

Now that we have disposed of the one-dimensional continuum it is very natural to
inquire about the two-dimensional continuum. Everybody had supposed that there
were more points in the plane than in the straight line, and it attracted therefore
much attention when Cantor showed176 that the potency of the two-dimensional
continuum C2 was exactly the same as that of the one-dimensional C1. Let us take
forC2 the square with side of unit length, and forC1 the unit segment (see Fig. 122).
We shall show that the points of these two figures can be put into a one-to-one
relation. The fact that this statement seems so paradoxical depends probably on our
difficulty in freeing our mental picture of a certain continuity in the correspondence.
But the relation, which we shall establish, will be as discontinuous or, if you please,
as inorganic as it is possible to be. It will disturb everything which one thinks of
as characteristic for the plane and the linear manifold as such, with the exception of
the “potency”. It will be as though one put all the points of the square into a sack
and shook them up thoroughly.

175 [The existence of transcendental numbers was first proved by Joseph Liouville; in an article
which appeared in 1851 in vol. 16, series 1, of the Journal des mathématiques pures et appliquées,
he gave entirely elementary methods for constructing such numbers.]
176 „Ein Beitrag zur Mannigfaltigkeitslehre“, Journal für reine und angewandte Mathematik, vol.
84 (1878), 242-.258.
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Figure 122

The set of the points of the square coincides with that of all pairs of decimal
fractions

x D 0; a1a2a3 : : : ; y D 0; b1b2b3 : : : ;

all of which we shall suppose to be non-terminating. We exclude points on the
boundary for which one of the coordinates .x; y/ vanishes, i.e., we exclude the two
sides, which meet at the origin, but we include the other two sides. It is easy to show
that this has no effect on the potency. The fundamental idea of the Cantor proof is
to combine these two decimal fractions into a new decimal fraction z from which
one can obtain .x; y/ again uniquely and which will take just once all the values
0 < z 5 1 when the point .x; y/ traverses the square once. If we then think of z as
an abscissa, we have the desired one-to-one correspondence between the square C2

and the segment C1, whereby the agreement concerning the square carries with it
the inclusion of its end point z D 1 of the segment.

One might try to effect this combination by setting

z D 0; a1b1a2b2a3b3 : : : ;

from which one could in fact determine .x; y/ uniquely by detaching the odd and
even decimal places respectively. But there is an objection to this, due to the am-
biguous notation for decimal fractions. This z, namely, would not traverse thewhole
of C1 when we chose for .x; y/ [279]all possible pairs of non-terminating decimal frac-
tions, that is, when we traversed all the points of C2. For, although z is, to be sure,
always non-terminating, there can be non-terminating values of z, such as

z D 0; c1c20c40c60c8 : : : ;

which correspond only to a terminating x or y, in the present case to the values

x D 0; c1000 : : : ; y D 0; c2c4c6c8 : : :

This difficulty is best overcome by means of a device suggested by Julius König
of Budapest. He thinks of the a; b; c not as individual digits but as complexes of
digits – one might call them “molecules” of the decimal fraction. A “molecule”
consists of a single digit, different from zero, together with all the zeros, which im-
mediately precede it. Thus every non-terminating decimal must contain an infinity
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of molecules, since digits different from zero must always recur; and conversely. As
an example, in

x D 0;320 8007 000 302 405 : : :

we should take as molecules a1 D Œ3�, a2 D Œ2�, a3 D Œ08�, a4 D Œ007�, a5 D
Œ0003�, a6 D Œ02�, a7 D Œ4�, . . .

Now let us suppose, in the above rule for the relation between x; y and z, that the
a; b; c stand for such molecules. Then there will correspond uniquely to every pair
.x; y/ a non-terminating z which would, in its turn, determine x and y. But now ev-
ery z breaks up into an x and a y each with infinity of molecules, and each z appears
therefore just once when .x; y/ run through all possible pairs of non-terminating
decimal fractions. This means, however, that the unit segment and the square have
been put into one-to-one correspondence, i.e., they have the same potency.

In an analogous way, of course, it can be shown that also the continuum of 3,
4, . . . dimensions has the same potency as the one-dimensional segment. It is more
remarkable, however, that the continuum C1, of infinitely many dimensions, or
more exactly, of infinitely denumerable dimensions, has also the same potency.
This infinite-dimensional space is defined as the totality of the systems of values,
which can be assumed by the denumerable infinity of variables

x1; x2; : : : ; xn; : : :

when each, independently of the others, takes on all real values. This is really only
a new form of expression for a concept that has long been in use in mathematics.
When we talk of the totality of all power series or of all trigonometric series, we
have, in the denumerable infinity of coefficients, really[280] nothing but so many inde-
pendent variables, which, to be sure, are for purposes of calculation restricted by
certain requirements to ensure convergence.

Let us again confine ourselves to the “unit cube” of the C1, i.e., to the totality
of points, which are subject to the condition 0 < xn 5 1, and show that they can
be put into one-to-one relation with the points of the unit segment 0 < z 5 1 of
C1. For convenience, we exclude again all boundary points for which one of the
coordinates xn vanishes, as well as the end point z D 0, but admit the others. As
before we start with the decimal fractional representation of the coordinates in C1:

where we assume that the decimal fractions are all written in non-terminating form,
and furthermore that the a, b, c, . . . are “decimal fraction molecules” in the sense
indicated above, i.e., digit complexes which end with a digit, which is different
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from zero, but which is preceded exclusively by zeros. Now we must combine all
these infinitely many decimal fractions into a new one, which will permit recog-
nition of its components; or, if we keep to the chemical figure, we wish to form
such a loose alloy of these molecular aggregates that we can easily separate out the
components. This is possible by means of the “diagonal process” which we applied
before (p. [275] et seq.). From the above table we get, according to that plan

z D 0; a1a2b1a3b2c1a4b3c2d1a5 : : : ;

which relates uniquely a point of C1 to each point of C1. Conversely we get in this
way every point z of C1 for from the non terminating decimal fraction for a given z
we can derive, according to the above given scheme, an infinity of non-terminating
decimals x1; x2; x3; : : : , out of which this z would arise by the method indicated.
We have succeeded therefore in setting up a one-to-one correspondence between
the unit cube in C1 and the unit segment in C1.

Our results thus far show that there are at least two different potencies:
1. That of the denumerable sets.
2. That of all continua (C1;C2;C3; : : : , including C1. [281]

Sets with Higher Potencies

The question naturally arises whether there are still larger potencies. The answer is
that one can exhibit a still higher potency, not merely as a result of abstract reason-
ing, but one lying quite within the range of concepts, which one is anyway using in
mathematics. This set is, namely:

3. that of all possible real functions f .x/ of a real variable x.
It will be sufficient for our purpose to restrict the variable to the interval

0 < x < 1. It is natural to think first of the set of continuous functions f .x/,
but there is a remarkable theorem, which states that the totality of all continuous
functions has the same potency as the continuum, and belongs therefore in group 2.
We can reach a new, a higher potency, only by admitting discontinuous functions
of the most general kind imaginable, i.e., where the function value at any place x is
entirely arbitrary and has no relation to neighbouring values.

I shall first prove the claim concerning the set of continuous functions. This
will involve a repetition and a refinement of the considerations, which we adduced
(p. [222]) in order to make plausible the possibility of expanding “arbitrary” func-
tions into trigonometric series. At that time I remarked:

a) A continuous function f .x/ is determined if one knows the values f .r/ at all
rational values of r.

b) We know now that all rational values r can be brought into a denumerable
series r1; r2; r3; : : :

c) Consequently f .x/ is determined when one knows the denumerable infinity
of quantities f .r1/; f .r2/; f .r3/; : : : Moreover, these values cannot, of course, be
assumed arbitrarily if we are to have a univocal continuous function. The set then of
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all possible systems of values f .r1/; f .r2/; : : : must contain a subset whose potency
is the same as that of the set of all continuous functions (see Fig. 123).

Figure 123

d) Now the magnitudes f1 D f .r1/; f2 D f .r2/; : : : can be considered as the
coordinates of a C1, since they make up a denumerable infinity of continuously
varying magnitudes. Hence, in view of the theorem already proved, the totality of
all their possible systems of values has the potency of the continuum.

e) As a subset of this set, which can be mapped one-to-one to the continuum, the
set of all continuous functions can be mapped to a subset of the continuum.

f) But it is not hard to see that, conversely, the entire continuum can be put
into one-to-one correspondence with a subset of all[282] continuous functions. For this
purpose, we need to consider only the functions defined by f .x/ D k D const.,
where k is a real parameter. If k traverses the continuum C1 then f .x/ will traverse
a subset of all continuous functions, which is in one-to-one correspondence with
C1.

g) Now we must make use of an important general theorem of set theory, the
so-called theorem of equivalence, due to Felix Bernstein177: If each of two sets is
equivalent to a subset of the other then the two sets are equivalent. This theorem is
very plausible. The proof of it would take us too far afield.

h) According to e) and f) the continuumC1 and the set of all continuous functions
satisfy the conditions of the theorem of equivalence. They are therefore of like
potency, and our theorem is proved.

Let us now go over to the proof of our first claim, that the set of all possible
functions that are really “entirely arbitrary” has a potency higher than that of the
continuum. The proof is an immediate application of Cantor’s diagonal procedure:

a) Assume our claim to be false, i.e., that the set of all functions can be put
into one-to-one correspondence with the continuum C1. Suppose now, in this one-
to-one relation, that the function f .x; v/ of x corresponds to each point x D v

in C1, so that, while v traverses the continuum C1; f .x; v/ represents all possible

177 First published in: Émile Borel, Leçons sur la Théorie des Fonctions, Paris, 1898, p. 103 et
seq.
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functions of x. We shall reduce this supposition to an absurdity by actually setting
up a function F.x/, which is different from all such functions f .x; v/.

b) For this purpose we construct the “diagonal function” of the tabulation of the
f .x; v/, i.e., that function which, for every value x D x0, has that value which
the assumed correspondence imposes upon f .x; v/ when the parameter v also has
the value v D x0, namely f .x0; x0/. Written as a function of x, this is simply the
function f .x; x/.

c) Now we construct a function F(x) which for every x is different from this
f .x; x/:

F.x/ ¤ f .x; x/ for every x:

We can do this in the greatest variety of ways, since we definitely admit discontin-
uous functions, whose value at any point can be arbitrarily determined. We might,
for example, put

F.x/ D f .x; x/ C 1:

d) This F.x/ is actually different from every one of the functions f .x; v/. For, if
F.x/ D f .x; v0/ for some v D v0, the equality would hold also [283]for x D v0;
that is, we should have F.v0/ D f .v0; v0/, which contradicts the assumption in c)
concerning F.x/.

The assumption a) that the functions f .x; v/ could exhaust all functions is thus
overthrown, and our claim is proved.

It is interesting to compare this proof with the analogous one for the non-
denumerability of the continuum. There we assumed the totality of decimal
fractions arranged in a denumerable schema; here we consider the function scheme
f .x; v/. The singling out there of the diagonal elements corresponds to the con-
struction here of the diagonal function f .x; x/; and in both cases the application
was the same, namely the setting up of something new, i.e., not contained in the
schema – in the one case a decimal fraction, in the other a function.

You can readily imagine that similar considerations could lead us to sets of ever
increasing potency – beyond the three, which we have already discussed. The most
noteworthy thing in all these results is that there remain any abiding distinctions and
gradations at all in the different infinite sets, notwithstanding our having subjected
them to the most drastic treatment imaginable; treatment which deleted all their spe-
cial properties, such as order, and permitted only the ultimate elements, quasi their
atoms, to retain an independent existence as things, which could be tossed about
in the most arbitrary manner. And it is worth noting that three of these gradations,
which we did establish, were among concepts, which have long been familiar in
mathematics – integers, continua, and functions.

With this I shall close this first part of my set-theoretic discussion, which has
been devoted mainly to the concept of potency. In a similar concrete manner, but
with still greater brevity, I shall now tell you something about a farther section of
this theory.
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2. Arrangement of the Elements of a Set

We shall now bring to the front just that thing which we have heretofore purposely
neglected, the question, namely, how individual sets of the same potency differ from
one another by virtue of those relations as to the arrangement of the elements which
are intrinsic to each set. The most general one-to-one representations, which we
have admitted thus far deleted all these relations – think only of the representation
of the square upon the segment. I desire to emphasise, especially, the significance
of precisely this chapter of set theory. It cannot possibly be the purpose of set
theory to banish the differences, which have long been so familiar in mathematics,
by introducing new concepts of a most general kind.[284] On the contrary, this theory
can and should aid us to understand those differences in their deepest essence, by
focussing on their properties from a more general standpoint.

Types of Arrangement of Denumerable Sets

We shall try to make clear the different possible arrangements, by considering def-
inite familiar examples. Beginning with denumerable sets, we note three forms of
fundamentally different arrangement, so different that the equivalence of their po-
tencies was, as we saw, the result of a special and by no means obvious theorem.
These examples are:

1. The set of all positive integers.
2. The set of all (negative and positive) integers.
3. The set of all rational numbers and that of all algebraic numbers.
All these sets have at first the one common property in the arrangement of their

elements, which finds expression in the designation simply ordered, i. e., of two
given elements, it is always known, which precedes the other, or, put algebraically,
which is the smaller and which the greater. Further, if three elements a; b; c are
given, then, if a precedes b and b precedes c, a precedes c (if a < b and b < c then
a < c).

But now as to the characteristic differences. In (1), there is a first element (one)
which precedes all the others, but no last, which follows all the others; in (2), there
is neither a first nor a last element. Both (1) and (2) have this in common, that every
element is followed by another definite one, and also that every element [except the
first in (1)] is preceded by another definite one. In contrast with this, we find in
(3) (as we saw p. [33]) that between any two elements there are always infinitely
many others – the elements are “everywhere dense”, so that among the rational
or the algebraic numbers lying between a and b (a and b themselves not counted)
there is neither a smallest nor a largest. The manner of arrangement in these three
examples, the type of arrangement (Cantor’s term type of order seems to me less
expressive) is different, although the potency is the same. One could raise the ques-
tion here as to all the types of arrangement that are possible in denumerable sets,
and that is what researchers on set theory actually do.
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Let us now consider sets having the potency of the continuum. We know a
simply ordered set, namely the continuum C1 of all real numbers. but in the multi-
dimensional types C2;C3; : : : we have examples of an order no longer simple. In
the case ofC2, for instance, two relations are necessary, instead of one, to determine
the mutual position of two points.

[285]The Continuity of the Continuum

The most important thing here is to analyse the concept of continuity for the one-
dimensional continuum. The recognition of the fact that continuity here depends
on simple properties of the arrangement which is peculiar to C1, is the first great
achievement of set theory toward the clarifying of the traditional mathematical
concepts. It was found, namely, that all the continuity properties of the ordinary
continuum flow from its being a simply-ordered set with the following two proper-
ties:

1. If we separate the set into two parts A, B such that every element belongs to
one of the two parts and all the elements of A precede all those of B, then either
A has a last element or B a first element. If we recall Dedekind’s definition of
irrational number (see p. [36] et seq.) we can express this by saying that every “cut”
in our set is produced by an actual element of the set.

2. Between any two elements of the set there are always infinitely many others.
This second property is common to the continuum and the denumerable set of all

rational numbers. It is the first property however that marks the distinction between
the two. In set theory it is customary to call all simply-ordered sets continuous if
they possess the two preceding properties, for it is actually possible to prove for
them all the theorems which hold for the continuum by virtue of its continuity.

Let me remind you that these properties of continuity can be formulated some-
what differently in terms of Cantor’s fundamental series. A fundamental series is
a simply-ordered denumerable series of elements a1; a2; a3; : : : of a set such that
each element of the series precedes the following or each succeeds it:

a1 < a2 < a3 < : : : or a1 > a2 > a3 > : : :

An element a of the set is called a limit element of the fundamental series if (in
the first sort) every element, which precedes a, but no element which follows a
is ultimately passed by elements of the fundamental series; and similarly for the
second sort. Now if every fundamental series in a set has a limit element, the set
is called closed; if, conversely, every element of the set is a limit element of a
fundamental series, the set is said to be dense in itself. Now continuity, in the case
of sets having the potency of the continuum, consists essentially in the union of
these two properties.

Let me remind you incidentally that when we were discussing the foundations of
the calculus we spoke also of another continuum, the continuum of Veronese, which
arose from the usual one by the addition of actually infinitely small quantities. [286]This
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continuum constitutes a simply-ordered set in as much as the succession of any two
elements is determinate, but it has a type of arrangement entirely different from that
of the customary C1; even the theorem that every fundamental series has a limit
element no longer holds in it.

Invariance of Dimension for Continuous One-to-One Representations

We come now to the important question as to what representations preserve the
distinctions among the continua C1;C2; : : : of different dimensions. We know, in-
deed, that the most general one-to-one representation obliterates every distinction.
We have here the important theorem that the dimension of the continuum is in-
variant with respect to every continuous one-to-one representation, i.e., that it is
impossible to effect a reversibly unique and continuous mapping of a Cm upon a
Cn where m ¤ n. One might be inclined to accept this theorem, without further
ado, as self evident; but we must recall that naïve intuition seemed to exclude the
possibility of a reversibly unique mapping of C2 upon C1, and this should dispose
us to caution in accepting its conclusions.

I shall discuss in detail only the simplest case178, which concerns the relation
between the one-dimensional and the two-dimensional continuum and I shall then
indicate the difficulties in the way of an extension to the most general case. We
shall prove, then, that a reversibly unique, continuous relation between C1 and C2

is not possible. Every word here is essential. We have seen, indeed, that we may
not omit continuity; and that reversible uniqueness may not be omitted is shown by
the example of the “Peano curve” which is doubtless familiar to some of you.

We shall need the following lemma: Given two one-dimensional continuaC1;C
0
1

which are mapped continuously upon each other so that to every element of C0
1

there corresponds one and but one element of C1 and to every element of C1 there
corresponds at most one element of C0

1; if, then, a; b are two elements of C1 to
which two elements a0; b0 in C1 actually correspond, respectively, it follows that to
every element c of C1 lying between a and b there will correspond an element c0
of C0

1 which lies between a0 and b0 (see Fig. 124). This claim is analogous to the
familiar theorem that a continuous function f .x/ which takes two values a, b at the
points x D a0; b0 must take a value c, chosen arbitrarily between a and b, at some
value c0 between a0 and b0; and it could be proved as an exact generalisation of this
theorem, by using only the above definition of continuity. This would require one
also to explain continuous mapping of continuous sets in a manner analogous to
the usual definition of[287] continuous functions, and it can be done with the aid of the
concept of arrangement. But this is not the place to amplify these hints.

178 Luitzen Egbertus Jan Brouwer gave a proof for the general case in 1911, in volume 71, of the
general case: “Über Abbildung von Mannigfaltigkeiten”, 97–115.
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Figure 124

We shall give our proof as follows. We assume that a continuous reversibly
unique mapping of the one-dimensional segment C1 upon the square C2 has been
effected (see Fig. 125). Hence two elements a; b on C1 should correspond to the
elements A; B , respectively, of C2. Now we can join these elements A; B by two
different paths within C1, e.g., by the stepped path C0

1;C0
1 drawn in the figure. To

do this, it is not necessary to presuppose any special properties of C2, such as the
determination of a coordinate system; we need merely use the concept of double
order. Each of the paths C0

1 and C0
1 will be a simply-ordered one-dimensional con-

tinuum like C1, and because of the continuous reversibly unique relation between
C1 andC2 there must correspond just one point onC1 to each element ofC0

1 andC
0
1;

but to-each element of C1 there must correspond at most one on C0
1 or C

0
1. In other

words, we have precisely the conditions of the above lemma, and it follows that to
every point c in C1 between a and b there corresponds not only a point c0 of C1 but
also a point c0 of C0

1. But this contradicts the assumed reversible uniqueness of the
mapping fromC1 to C2. Consequently this mapping is not possible and the theorem
is proved.

Figure 125

If one wished to extend these considerations to two arbitrary continua Cm;Cn,
it would be necessary to know in advance something about the constitution of con-
tinua of general nature and of dimension 1; 2; 3; : : : ; m�1, which can be embedded
in Cm. As soon as m; n = 2, one cannot get along merely with the concept
“between” as we could in the simplest case above. On the contrary, one is led
to very difficult investigations, which include, among the earliest cases, the overly
difficult questions, fundamental for geometry, concerning the most general contin-
uous one-dimensional points sets in the plane, questions which only recently have
been somewhat cleared up. One of these interesting questions is as to when such a
point set should be considered as a curve.
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Closing Remarks

Importance and Goals of Set Theory

I shall close with this my very special discussion of set theory, in order to add a few
remarks of a general nature. First, a word as to the general notions, which Cantor
had developed concerning the position of set theory with reference to geometry and
analysis. These notions exhibit set theory in a special light. The difference between
the discrete magnitudes of arithmetic and the continuous magnitudes of geometry
has always had a prominent place in history and in[288] philosophical speculations. In
recent times the discrete magnitude, as conceptually the easiest to be grasped, has
come into the foreground. According to this tendency we look upon natural num-
bers, integers, as the simplest given concepts; we derive from them in the familiar
way, rational and irrational numbers, and we construct the complete apparatus for
the control of geometry by means of analysis, namely, analytic geometry. This ten-
dency of modern development can be called that of arithmetising geometry. The
geometric idea of continuity is reduced to the idea of whole numbers. This lecture
course has, in the main, held to this direction.

Now, as opposed to this one-sided preference for integers, Cantor would (as he
himself told me in 1903 at the meeting of the natural scientists in Cassel) achieve,
by set theory, “the genuine fusion of arithmetic and geometry”. Thus the theory of
integer numbers, on one hand, as well as the theory of different point continua, on
the other, and much more, would constitute parallel chapters on an equal footing of
a general theory of sets.

I shall add a few general remarks concerning the relation of set theory to geo-
metry. In our discussion of set theory we have considered:

1. The potency of a set as something that is unchanged by any reversibly unique
mapping.

2. Types of order of sets, which take account of the relations among the elements
as to order. We were able here to characterise the concept of continuity, the different
multiple arrangements or multidimensional continua, etc., so that the invariants of
continuous mappings found their place here. When carried over to geometry, this
gives the branch which, since Riemann, has been called analysis situs, that most
abstract chapter of geometry, which treats those properties of geometric configu-
rations, which are invariant under the most general reversibly unique continuous
mappings. Riemann had used the word manifold (Mannigfaltigkeit) in a very gen-
eral sense. Cantor used it also, at first, but replaced it later by the more convenient
word set (Menge).

3. If we go over to concrete geometry we come to such differences as that be-
tween metric and projective geometry. It is not enough here to know, say, that the
straight line is one-dimensional and the plane two-dimensional. We desire rather
to construct or to compare figures, for which we have to dispose of a fixed unit of
measure or at least construct a line in the plane, or a plane[289] in space. In each of
these concrete domains it is necessary, of course, to add a special axiomatics to the
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general properties of arrangement. This implies, of course, a further development
of the theory of simply-ordered, doubly-ordered, . . . . n-tuply-ordered, continuous
sets.

This is not the place for me to go into these things in detail, especially since they
must be taken up anyway in the following volumes of the present work.179 I shall
merely mention literature in which you can inform yourselves farther. Here, above
all, I should speak of the reports in the Mathematische Enzyklopädie: Federico
Enriques, Prinzipien der Geometrie (III. A. B. 1) and Hans von Mangoldt, Die
Begriffe „Linie“ und „Fläche“ (III. A. B. 2), which treat mainly the subject of
axioms; also Max Dehn-Poul Heegaard, Analysis situs (III. A. B. 3). The last article
is written in rather abstract form. It begins with the most general formulation of the
concepts and fundamental facts of analysis situs, as these were set up by Dehn
himself, from which everything else is deduced then by pure logic. This is in direct
opposition to the inductive method of presentation, which I always recommend.
The article can be fully understood only by an advanced reader who has already
thoroughly worked the subject through inductively.

As to literature concerning set theory, I should mention, first of all, the report
made by Arthur Schoenflies to the Deutsche Mathematikervereinigung, entitled:
Die Entwickelung der Lehre von den Punktmannigfaltigkeiten180. The first part ap-
peared in volume 8 of the Jahresbericht der deutschen Mathematikervereinigung;
the second appeared recently as a second supplementary volume to the Jahres-
bericht. This work is really a report on the entire set theory, in which you will
find information concerning numerous details. Alongside of this, I would mention
the first systematic textbook on set theory: The Theory of Sets of Points, by William
Henry Young and his wife, Grace Chisholm Young (whom we mentioned p. [194]).

In concluding this discussion of the theory of assemblages we must again put
the question, which accompanies our entire lecture course: What of this can one
use in the schools? From the standpoint of mathematical pedagogy, we must of
course protest against putting such abstract and difficult things before the pupils
too early.181 In order to give precise expression to my own view on this point,

179 [Transl. note: The following two paragraphs are contained in the thirs edition of 1924 but no
longer in the fourth of 1933. It is reasonable to maintain these two paragraphs, which had been
included in the American translation.]
180 2 parts, Leipzig 1900 and 1908, A revision of the first half appeared in 1913 under the title:
Entwickelung der Mengenlehre und ihrer Anwendungen; as a continuation of this, see H. Hahn:
Theorie der reellen Funktionen, vol. I, Berlin, 1921.
181 [Translator’s note: Klein changed this part considerably over the various editions. In the first
edition, of 1908, Klein had sharply criticised the first schoolbook ever published including set
theory: it was „Elemente der Arithmetik and Algebra“, by Friedrich Meyer, published in Halle
in 1885, even before Cantor’s complete publication of his new theory. Meyer, a friend of Cantor
and teacher at a Gymnasium in Halle, was criticised for developing school mathematics deduc-
tively, and for starting from set theory, and arriving at the first concrete mathematical issues, only
after many pages of deductive reasoning, (Klein 1908, 599). Since various readers had protested
against Klein’s verdict on Meyer – in particular Wilhelm Lorey who cooperated strongly with
Klein – Klein introduced an addendum in the second edition: he gave credit to the high teaching
qualities of Meyer as had been reported to him (Klein 1911, p. 613 et seq.). See: Gert Schubring,
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I should like to bring forward the biogenetic fundamental law, according to which
the individual in his development goes through, in an abridged series, all the stages
in the development of the species. Such thoughts have become today part and parcel
of the general[290] culture of everybody. Now, I think that instruction in mathematics,
as well as in everything else, should follow this law, at least in general. Taking
into account the native ability of youth, instruction should guide it slowly to higher
things, and finally to abstract formulations; and in doing this it should follow the
same road along which the human race has striven from its naïve original state to
higher forms of knowledge. It is necessary to formulate this principle frequently,
for there are always people who, after the fashion of the mediaeval scholastics,
begin their instruction with the most general ideas, defending this method as the
“only scientific one”. And yet this justification is based on anything but truth. To
instruct scientifically can only mean to induce the person to think scientifically, but
by no means to confront him, from the beginning, with cold, scientifically polished
systematics.

An essential obstacle to the spreading of such a natural and truly scientific
method of teaching is the lack of historical knowledge, which so often makes itself
felt. In order to combat this, I have made a point of introducing historical remarks
into my presentation. By doing this I trust I have made it clear to you how slowly all
mathematical ideas have come into being; how they have nearly always appeared
first in rather prophetic form, and only after long development have crystallized
into the rigid form so familiar in systematic presentation! It is my earnest hope that
this knowledge („Erkenntnis“) may exert a lasting influence upon the character of
your own teaching.

„Historische Begriffsentwicklung und Lernprozeß aus der Sicht neuerer mathematik-didaktischer
Konzeptionen (Fehler, “Obstacles”, Transposition)“, Zentralblatt für Didaktik der Mathematik,
1988, 20, 138–148. In the third edition however, Klein had deleted the names and publications
mentioning the position he had criticised.]
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