
III. Concerning Infinitesimal Calculus Proper

Of course I shall assume that you all know how to differentiate and integrate, and
that you have frequently used both processes. We shall be concerned here solely
with more general questions, such as the logical and psychological foundations,
teaching, and the like.

1. General Considerations in Infinitesimal Calculus

I should like to make a general preliminary remark concerning the range of mathe-
matics. You can hear often from non mathematicians, especially from philosophers,
that mathematics consists exclusively in drawing conclusions [224]from clearly stated
premises; and that, in this process, it makes no difference what these premises sig-
nify, whether they are true or false, provided only that they do not contradict one
another. But the researcher who has done productive mathematical work will talk
quite differently. In fact those persons are thinking only of the crystallized form
into which finished mathematical theories are finally cast. The researcher himself,
however, in mathematics, as in every other science, does not work in this rigorous
deductive fashion. On the contrary, he makes essential use of his phantasy and
proceeds inductively, aided by heuristic expedients. One can give numerous exam-
ples of mathematicians who have discovered theorems of the greatest importance,
which they were unable to prove. Should one, then, refuse to recognise this as a
great accomplishment and, in deference to the above definition, insist that this is
not mathematics, and that only the successors who supply polished proofs are do-
ing real mathematics? After all, it is an arbitrary thing how the word is to be used,
but no judgment of value can deny that the inductive work of the person who first
announces the theorem is at least as valuable as the deductive work of the one who
first proves it. For both are equally necessary, and the discovery is the presupposi-
tion of the later conclusion.
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226 III. Concerning Infinitesimal Calculus Proper

Emergence of the Infinitesimal Calculus by the Specificity
of Our Sense Intuition

It is precisely in the discovery and in the development of the infinitesimal calculus
that this inductive process, built up without compelling logical steps, played such a
great role; and the most effective heuristic aid was very often sense intuition. And I
mean here the immediate sense intuition, with all its inexactness, for which a curve
is a stroke of definite width, not the abstract intuition, which postulates a completed
passage to the limit, yielding a one-dimensional line. I should like to corroborate
this statement by outlining to you how the ideas of the infinitesimal calculus were
developed historically.

If we take up first the concept of an integral, we notice that it begins historically
with the problem of measuring areas and volumes (quadrature and cubature). The
abstract logical definition determines the integral

R b
a
f .x/dx, i.e., the area bounded

by the curve y D f .x/, the x-axis, and the ordinates x D a; x D b, as the limit
of the sum of narrow rectangles inscribed in this area when their number increases
and their width decreases without bound. Sense intuition, however, makes it natural
to define this area, not as this exact limit, but simply as the sum of a large number
of quite narrow rectangles. In fact, the necessary inexactness of the drawing would

[225] inevitably set bounds to the further narrowing of the rectangles (see Fig. 94).

Figure 94

This naïve method characterizes, in fact, the thinking of the greatest researchers
in the early period of infinitesimal calculus. Let me mention, first of all, Kepler who
in his Nova stereometria doliorum vinariorum133 was concerned with the volumes
of bodies. His chief interest here was in the measuring of casks, and in determining
their most suitable shape. He took precisely the naïve standpoint indicated above.

He thought of the volume of the barrel, as of every other body (see Fig. 95), as
made up of numerous thin leaves suitably ranged in layers, and considered it as the
sum of the volumes of these leaves, each of which was a cylinder. In a similar way
he calculated the simple geometric bodies, e. g., the sphere. He thought of this as
made up of a great many small pyramids with common vertex at the centre (see
Fig. 96). Then its volume, according to the well-known formula for the pyramid,
would be r=3 times the sum of the bases of all the small pyramids. By writing for

133 Linz on the Danube, 1615. German in Ostwalds Klassikern, No. 165. Leipzig, 1908.
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the sum of these little facets simply the surface of the sphere, or 4�r2, he obtained
4�r3=3, the correct formula for the volume.

Figure 95

Figure 96

Moreover, Kepler emphasizes explicitly the practical heuristic value of such con-
siderations, and refers, so far as rigorous mathematical proofs are concerned, to the
so-calledmethod of exhaustion. This method, which had been used by Archimedes,
determines, for example, the area of the circle by following carefully the approx-
imations to the area by means of inscribed and circumscribed polygons with an
increasing number of sides. The essential difference between it and the modern
method lies in the fact that it tacitly assumes, as self-evident, the existence of a
number which measures the area of the circle, whereas the modern infinitesimal
calculus declines to accept this intuitive evidence, but has recourse to the abstract
concept of limit and defines this number as the limit of the numbers that measure
the areas of the inscribed polygons. Granted, [226]however, the existence of this num-
ber, the method of exhaustion is an exact process for approximating to areas by
means of the known areas of rectilinear figures, one which satisfies rigorous mod-
ern demands. The method is, however, very tedious in many cases, and ill suited
to the discovery of areas and volumes. One of Archimedes writings134, discovered
by Johan Ludvig Heiberg in 1906, shows, in fact, that he did not use the method of
exhaustion at all in his investigations. After he had first obtained his results by some
other method, he developed the proof by exhaustion in order to meet the demands
of that time as to rigour. For the discovery of his theorems he used a method which
included considerations of the centre of gravity and the law of the lever, and also
of intuition, such as, for example, that triangles and parabolic segments consist of
series of parallel chords, or that cylinders, spheres, and cones are made up of series
of parallel circular discs.

134 Already referred to on p. [80].
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Figure 97

Returning now to the seventeenth century, we find considerations analogous to
those of Kepler in the book of the Jesuit Bonaventura Cavalieri: Geometria indivisi-
bilibus continuorum nova quadam ratione promota135 where he sets up the principle
called today by his name: Two bodies have equal volumes if plane sections equidis-
tant from their bases have equal areas. This principle of Cavalieri is, as you know,
much used in our schools. It is believed there that integral calculus can be avoided
in this way, whereas this principle belongs, in fact, entirely to the calculus. Its es-
tablishment by Cavalieri amounts precisely to this, that he thinks of both solids as
built up of layers of thin leaves which, according to the hypothesis, are congruent
in pairs, i.e., one of the bodies could be transformed into the other by translating
its individual leaves (see Fig. 97); but this could not alter the volume, since this
consists of the same summands before and after the translation.

Figure 98

Naïve sense intuition leads in the same way to the derivative of a function, i. e.,
to the tangent to the curve. In this case, one replaces (and this is the way it was
actually done) the curve by a polygonal line (see Fig. 98), which has on the curve a
sufficient number of points, as vertices, taken close together. From the nature of our
sense intuition we can hardly distinguish the curve from this aggregate of points[227] and
still less from the polygonal line. The tangent is now defined outright as the line
joining two successive points, that is, as the prolongation of one of the sides of the
polygon. From the abstract logical standpoint, this line remains only a secant, no
matter how close together the points are taken; and the tangent is only the limiting
position approached by the secant when the distance between the points approaches
zero. Again, from this naïve standpoint, the circle of curvature is thought of as the
circle, which passes through three successive polygon vertices, whereas the exact
procedure defines the circle of curvature as the limiting position of this circle when
the three points approach each other.

135 Bononiae, 1635. First edition, 1653.
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The force of conviction inherent in such naïve guiding reflections is, of course,
different for different individuals. Some – and I include myself here – find them
very satisfying. Others, again, who are gifted only on the purely logical side,
find them thoroughly meaningless and are unable to see how anyone can consider
them as a basis for mathematical thought. Yet considerations of this sort have often
formed the beginnings of new and fruitful approaches.

Moreover, these naïve methods always rise to unconscious importance whenever
in mathematical physic, mechanics, or differential geometry a preliminary theorem
is to be set up. You all know that they are very serviceable then. To be sure, the
pure mathematician is not sparing of his scorn on these occasions. When I was a
student it was said that the differential, for a physicist, was a piece of brass which
he treated as he did the rest of his apparatus.

In this connection, I should like to commend the Leibniz notation, the leading
one today, because it combines with a suitable suggestion of naïve intuition, a cer-
tain reference to the abstract limit process, which is implicit in the concept. Thus,
the Leibniz symbol dy=dx, for the derivative, reminds one, first that it comes from
a quotient; but the d, as opposed to the � which is the usual symbol for finite dif-
ference, indicates that something new has been added, namely, the passage to the
limit. In the same way, the integral symbol

R
ydx suggests the origin of the integral

from a sum of small quantities. However, one does not use the usual sign
P

for a
sum, but rather a conventionalized S�, which indicates here that something new has
entered the process of summation. [228]

The Logical Foundation of Differential and Integral Calculus
by Means of the Limit Concept (Newton and His Successors
up to Cauchy)

We shall now discuss with some detail the logical foundation of differential and
integral calculus, and begin this by considering it in its historical development.

1. The principal idea, as the subject is taught, in general, in higher education
(I need only briefly to refresh your memory here) is that infinitesimal calculus is
only an application of the general notion of limit. The derivative is defined as the
limit of the quotient of corresponding finite increments of variable and function

dy

dx
D lim

�x!0

�y

�x
; �x ¤ 0

provided that this limit exists; and not at all as a quotient in which dy and dx have
an independent meaning. In the same way, the integral is defined as the limit of a
sum:

bZ

a

y dx D lim
�xi!0

X

.i/

yi ��xi

� It is remarkable that many are unaware that
R
has this meaning.
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where the �xi are finite parts of the interval a 5 x 5 b, the yi corresponding
arbitrary values of the function in that interval, and all the �xi are to converge
toward zero; but y dx does not have any actual significance as, say, a summand of
a sum. These designations are retained for the reasons of expediency which we
mentioned above.

2. The conception as we have thus characterized it is set forth in precise form
already by Newton himself. I refer you to a place in his principal work, the
Philosophiae Naturalis Principia Mathematica136 of 1687: “Ultimae rationes illae,
quibuscum quantitates evanescunt, revera non sunt rationes quantitatum ultimarum,
sed limites, ad quos quantitatum sine limite descrescentium rationes semper ap-
propinquant, et quos propius assequi possunt, quam pro data quavis differentia,
nunquam vero transgredi neque prius attingere quam quantitates diminuuntur in
infinitum.” Moreover, Newton avoids the infinitesimal calculus, as such, in the
discussions in this work, although he certainly had used it in deriving his results.
For, the fundamental work in which he developed his method of infinitesimal cal-
culus was written in 1671, although it did not appear until 1736. It bears the title
Methodus Fluxionum et Serierum Infinitarum137.

In this, Newton develops the new calculus in numerous examples, without going
into fundamental explanations. He makes connection here with a phenomenon of
daily life, which suggests a passage to a limit. If one considers, namely, a motion
x D f .t/ on the x-axis in[229] the time t, then everyone has a notion as to what is meant
by the velocity of this motion. If we analyse this motion it turns out that we mean
the limiting value of the difference quotient�x=�t . Newton made this velocity of x
with respect to the time the basis of his developments. He called it the “fluxion” of x
and wrote it Px. He considered all the variables x, y as dependent on this fundamental
variable t, the time. Accordingly the derivative dy=dx appears as the quotient of
two fluxions Py= Px which we now should write more fully .dy=dt W dx=dt/.

3. These ideas of Newton were accepted and developed by a long series of
mathematicians of the eighteenth century, who built up the infinitesimal calculus,
with more or less precision, upon the notion of limit. I shall select only a few names:
Colin Maclaurin, in his Treatise of Fluxions138, which as a textbook certainly had
a wide influence; then Jean le Rond d’Alembert, in the great French Encyclopédie
Méthodique; and finally Abraham Gotthelf Kästner139, in Göttingen, in his lecture
courses and books. Euler belongs primarily in this group although, with him, other
tendencies also came to the front.

4. It was necessary to fill out an essential gap in all these developments, be-
fore one could speak of a consistent system of infinitesimal calculus. To be sure,
the derivative was defined as a limit, but there was lacking a method for estimat-
ing, from it, the increment of the function in a finite interval. This was supplied

136 New edition by W. Thomson and H. Blackburn, Glasgow, 1871, p. 38.
137 J. Newtoni, Opuscula Mathematica, philosophica, et philologica. vol. I, p. 29. Lausanne,
1744.
138 Edinburgh, 1742.
139 Abraham G. Kästner, A.G., Anfangsgründe der Analysis des Unendlichen, Göttingen, 1760.
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by the mean value theorem; and it was Cauchy’s great service to have recognized
its fundamental importance and to have made it the starting point accordingly of
differential calculus. And it is not saying too much if, because of this, we adjudge
Cauchy as the founder of exact infinitesimal calculus in the modern sense. The fun-
damental work in this connection, based on his Paris lecture courses, is his Résumé
des Leçons sur le Calcul Infinitésimal140, together with its second edition, of which
only the first part, Leçons sur le Calcul Différentiel141, was published.

Themean value theorem, as you know, may be stated as follows. If a continuous
function f (x) possesses a derivative f 0.x/ everywhere in a given interval, then there
must be a point x C #h between x and x C h such that

f .x C h/ D f .x/C h � f 0.x C #h/; .0 < # < 1/:

[230]Note here the appearance of that # , peculiar to the mean value theorems, and which
to beginners often seems so strange at first. Geometrically, the theorem is fairly
intuitive. It says, merely, that between the points x and x C h on the curve there is
a point x C #h on the curve at which the tangent is parallel to the secant joining
the points x and x C h (see Fig. 99).

Figure 99

5. How can one give an exact arithmetic proof of the mean value theorem, with-
out appealing to geometric intuition? Such a proof could only mean, of course,
throwing the theorem back upon arithmetic definitions of variable, function, conti-
nuity etc., which would have to be set up in advance in abstract, precise form. For
this reason such a rigorous proof had to wait for Weierstraß and his followers, to
whom, also, we owe the spread of the modern arithmetic concept of the number
continuum. I shall try to give you the characteristic points of the argument.

Figure 100

140 Paris, 1823. Œuvres complètes, 2nd series, vol. 4. Paris, 1899.
141 Paris, 1829. Œuvres complètes, 2nd series, vol. 4, Paris, 1899.
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In the first place, it is easy to make this theorem depend on the case where the
secant is horizontal, i.e. f .x/ D f .x C h/ (see Fig. 100). One must then prove
the existence of a place where the tangent is horizontal. To do this we can use the
theorem of Weierstraß that every function, which is continuous throughout a closed
interval, actually reaches a maximum, and also a minimum value, at least once
in that interval. Because of our assumption, one of these extreme values of our
function must lie within the interval .x; xCh/, provided we exclude the trivial case
in which f .x/ is a constant. Let us suppose that there is a maximum (the case of
a minimum is treated in the same way) and that it occurs at the place x C #h. It
follows that f .x/ cannot have larger values, either to the right or to the left, i.e.,
the difference quotient to the right is negative, or zero, and to the left, positive or
zero. Since the derivative exists, by hypothesis, at every point in the interval, its
value at x C #h can be looked upon as the limit of values, which are either not
positive or not negative, according as one thinks of it as limit of a progressive or a
regressive quotient of differences. Therefore it must have the value zero, the tangent
at x D #h is horizontal, and the theorem is proved.

[231] The scientific mathematics of today is built upon the sequence of developments,
which we have been outlining. But an essentially different conception of infinitesi-
mal calculus has been running parallel with this through the centuries.

Construction of the Infinitesimal Calculus Based on
“Differentials” (Leibniz and His Followers)

1. This conception harks back to old metaphysical speculations concerning the
structure of the continuum according to which this is made up of ultimate indivis-
ible “infinitely small” parts. There were already, in ancient times, suggestions of
these indivisibles and they were widely cultivated by the scholastics and still further
by the Jesuit philosophers. As a characteristic example I recall the title of Cava-
lieri’s book, mentioned on p. 226 Geometria Indivisibilibus Continuorum Promota,
which indicates its true nature. As a matter of fact, he considers mathematical ap-
proximation in a secondary way only. He actually considers space as consisting
of ultimate indivisible parts, the “indivisibilia”. In this connection it would be in-
teresting and important to know the various analyses to which the notion of the
continuum has been subjected in the course of centuries (and milleniums).

2. Leibniz, who shares with Newton the distinction of having invented the in-
finitesimal calculus, also made use of such ideas. The primary thing for him was
not the derivative thought of as a limit. The differential dx of the variable x had
for him actual existence as an ultimate indivisible part of the axis of abscissas, as
a quantity smaller than any finite quantity and still not zero (“actually” infinitely
small quantity). In the same way, the differentials of higher order d2x; d3x; : : :
are defined as infinitely small quantities of second, third, : : : order, each of which
is “infinitely small in comparison with the preceding”. Thus one had a series of
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systems of qualitatively different systems of magnitudes. According to the theory
of indivisibles, the area bounded by the curve y D y.x/ and the axis of abscissas is
the direct sum of all the individual ordinates. It is because of this view that Leibniz,
in his first manuscript on integral calculus (1675), writes

R
y and not

R
ydx.

This conception, however, is by no means the only one practiced by Leibniz.
Sometimes he uses the notion of mathematical approximation, where, for example,
the differential dx is a finite segment but so small that, for that interval, the curve
is not appreciably different from the tangent. The above metaphysical speculations
are surely only idealizations of this simple psychological fact here implied.

But there is a third direction for the mathematical ideas of Leibniz, one that is
especially characteristic of him. It is his formal conception. I have frequently re-
minded you that we can look upon Leibniz as the founder of formal mathematics.

[232]His thought here is as follows. It makes no difference what meaning we attach to
the differentials, or whether we attach any meaning whatever to them. If we define
appropriate rules of operation for them, and if we employ these rules properly, it is
certain that something reasonable and correct will result. Leibniz refers repeatedly
to the analogy with complex numbers, concerning which he had corresponding no-
tions. As to these rules of operation for differentials he was concerned chiefly with
the formula

f .x C dx/� f .x/ D f 0.x/ � dx:
The mean value theorem shows that this is correct only if one writes f 0.x C # �
dx/ instead of f 0(x); but the error which one commits by writing f 0(x) outright is
infinitely small of higher (second) order, and such quantities should be neglected
(this is the most important formal rule) in operations with differentials.

The most important publications of Leibniz are contained in that famous first
scientific journal, the Acta Eruditorum142; in the years 1684, 1685, and 1712. In
the first volume, you find, under the title Nova methodus pro maximis et minimis
(p. 467 et seq.), the very first publication concerning differential calculus. In this
Leibniz merely develops the rules for differentiation. The later works give also ex-
positions of principles, where preference is given to the formal standpoint. In this
connection, the short article of the year 1712143, one of the last years of his life,
was especially characteristic. In this he speaks outright of theorems and definitions
which are only “toleranter vera” or – in French – “passables”: “Rigorem quidem
non sustinent, habent tamen usum magnum in calculando et ad artem inveniendi
universalesque conceptus valent.” He has reference here to complex numbers as
well as to the infinite. If we speak, perhaps, of the infinitely small, then “commod-
itati expressionis seu breviloquio mentalis inservimus, sed non nisi toleranter vera
loquimur, quae explicatione rigidantur.”

142 Translated, in part, in Ostwalds Klassiker No. 162. Edited by Gerhard Kowalewski, Leipzig,
1908. Also in Leibniz, Mathematische Schriften. Edited by Carl Immanuel Gerhardt, from 1849
on.
143 Observatio . . . ; et de vero sensu Methodi infinitesimalis, p. 167–169.
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3. From Leibniz as centre the new calculus spread rapidly over the continent
and we find each of his three points of view represented. I must mention here the
first textbook of differential calculus that ever appeared, the Analyse des Infiniment
Petits pour l’Intelligence des Courbes144 by Marquis de 1’Hospital, a pupil of
Johann Bernoulli, who for his part, had absorbed the new ideas from Leib-
niz with surprising speed and had himself published the first textbook on the

[233] integral calculus145. Both books represent the conception of approximation math-
ematics. For example, a curve is thought of as a polygon with short sides, a
tangent as the prolongation of one of these sides. In Germany, the differen-
tial calculus according to Leibniz was spread widely by Christian Wolff, of
Halle, who published the contents of his lecture courses in Elementa mathe-
seos universae146. He introduces the differentials of Leibniz immediately, at
the beginning of the differential calculus, although he emphasizes expressly
that they have no real equivalent of any kind. And, indeed, as an aid to our
intuition he develops his views concerning the infinitely small in a manner
which savours thoroughly of mathematics of approximation. Thus he says,
by way of example, that for purposes of practical measurement, the height
of a mountain is not noticeably changed by adding or removing a particle of
dust.

4. You will also frequently find the metaphysical view, which ascribes an actual
existence to the differentials. It has always had supporters, especially on the philo-
sophical side, but also among mathematical physicists. One of the most prominent
here is Simeon-Denis Poisson, who, in the preface to his celebrated Traite de Mé-
canique147, expressed himself in a very crass manner to the effect that the infinitely
small magnitudes are not merely an aid in investigation but that they have a thor-
oughly real existence.

5. Due probably to the philosophic tradition, this conception went over into text-
book literature and plays a marked rôle there even today. As an example, I mention
the textbook by Heinrich Lübsen Einleitung in die Infinitesimalrechnung148, which
appeared first in 1855 and which had for a long time an extraordinary influence
among a large part of the public. Everyone, in my day, certainly had Lübsen’s book
in his hand, either when he was a pupil, or later, and many received from it the
first stimulation to further mathematical study. Lübsen defined the derivative first
by means of the limit notion; but along side of this he placed (since the second edi-
tion) what he considered to be the true infinitesimal calculus – a mystical scheme
of operating with infinitely small quantities. These chapters are marked with an
asterisk to indicate that they bring nothing new in the way of result. There, the
differentials are introduced as ultimate parts which arise, for example, by continued

144 Paris, 1696; second edition, 1715.
145 [Translated in Ostwalds Klassiker No. 194. Edited by Gerhard Kowalewski. Johann Bernoulli’s
Differentialrechnung was discovered and discussed a short time ago by Paul Schafheitlein. Ver-
handlungen der Naturforscher-Gesellschaft in Basel, vol. 32 (1921).]
146 Appeared first in 1710. – Editio nova Hallae, Magdeburgiae, 1742, p. 545.
147 Part I, second edition, p. 14. Paris, 1833.
148 Eighth edition, Leipzig, 1899.
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halving of a finite quantity an infinite, non [234]assignable number of times; and each
of these parts “although different from absolute zero is nevertheless not assignable,
but an infinitesimal magnitude, a breath, an instant”. And then follows an English
quotation: “An infinitesimal is the ghost of a departed quantity” (p. 59, 60)149. Then
in another place (p. 76): “The infinitesimal method is, as you see, very subtle, but
correct. If this is not manifest from what has preceded, together with what follows,
it is the fault only of inadequate exposition.” It is certainly very interesting to read
these passages.

As companion piece to this I put before you the sixth edition of the widely used
Lehrbuch der Experimentalphysik by Adolf Wüllner150. The first volume contains
a brief preliminary exposition of infinitesimal calculus for the benefit of those stu-
dents of natural science or medicine who have not acquired, at the Gymnasium, that
knowledge of calculus, which is indispensable for physics. Wüllner begins (p. 31)
with the explanation of the meaning of the infinitely small quantity dx, later follows
with the explanation for the second differential d2x, which, of course, is more dif-
ficult. I urge you to read this introduction with the eye of the mathematician and
to reflect upon the absurdity of suppressing infinitesimal calculus in the schools be-
cause it is too difficult, and then of expecting a student in his first semester to gain
an understanding of it from this ten page presentation, which is not only far from
satisfying, but very hard to read!

The reason why such reflections could so long hold their place abreast of the
mathematically rigorous method of limits, must be sought probably in the widely
spread need of achieving a deeper feeling, beyond the abstract logical formula-
tion of the method of limits, of the intrinsic nature of continuous magnitudes, and
of forming more definite representations of them than were supplied by empha-
sis solely upon the psychological moment which determined the concept of limit.
There is one formulation, which is characteristic, which is due, I believe, to the
philosopher Georg W. F. Hegel, and which formerly was frequently used in text-
books and lectures. It declares that the function y D f .x/ represents the being,
the derivative dy=dx, however, the becoming of things. There is assuredly some-
thing impressive in this, but one must recognize clearly that such words do not
promote further mathematical development because this must be based upon precise
concepts.

149 Berkeley’s original is (at the end of his section XXXV): “They are neither finite Quantities
nor Quantities infinitely small, nor yet nothing. May we not call them the Ghosts of departed
Quantities?”
150 Leipzig, 1907.
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The Actual Infinitely Small Quantities
in the Axiomatics of Geometry

In the most recent mathematics, “actually” infinitely small quantities have come to
the front again, but in entirely different context, namely in the geometric investiga-
tions of Giuseppe Veronese and also in[235] Hilbert’s Grundlagen der Geometrie151. The
guiding thought of these investigations can be stated briefly as follows: A geometry
is considered in which by indicating x D a (a an ordinary real number) not only
one point on the x-axis is determined, but infinitely many points, whose abscissas
differ by finite multiples of infinitely small quantities of different orders �; �; : : : A
point is thus determined only when one assigns

x D aC b�C c� C � � � ;
where a; b; c; : : : are ordinary real numbers, and the �; �; : : : actually infinitely
small quantities of decreasing orders. Hilbert uses this guiding idea by subjecting
these new quantities �, �, . . . to such axiomatic assumptions as will make it evident
that one can operate with them consistently. To this end it is of chief importance
to determine appropriately the relation as to size between x and a second quantity
x1 D a1Cb1�C c1�C� � � . The first assumption is that x > or< x1 if a > or< a1;
but if a D a1, the determination as to size rests with the second coefficient, so that
x ? x1 according as b ? b1; and if, in addition, b D b1, the decision lies with
the c, etc. These assumptions will be clearer to you if you refrain from attempting
to associate with the letters any sort of concrete representation.

Now it turns out that, after imposing upon these new quantities these rules, to-
gether with certain others, it is possible to operate with them as with finite numbers.
One essential theorem, however, which holds in the system of ordinary real num-
bers, now loses its validity, namely the theorem: Given two positive numbers e, a,
it is always possible to find a finite integer n such that n � e > a, no matter how
small e is nor how large a may be. In fact, it follows immediately from the above
definition that an arbitrary finite multiple n �� of � is smaller than any positive finite
number a, and it is precisely this property that characterizes the � as an infinitely
small quantity. In the same way n � � < �, that is, � is an infinitely small quantity of
higher order than �.

This number system is called non-Archimedean. The above theorem concerning
finite numbers is called, namely, the axiom of Archimedes, because he emphasised
it as an unprovable assumption, or as a fundamental one which did not need proof,
in connection with the numbers which he used. The denial of this axiom charac-
terises the possibility of actually infinitely small quantities. The name Archimedean
axiom, however, like most personal designations, is historically inexact. Euclid
gave prominence to this axiom more than half a century before Archimedes; and it
is said not to have been invented by Euclid, either, but, like so many of his[236] theorems,
to have been taken over from Eudoxus of Knidos. The study of non-Archimedean

151 Fifth edition, Leipzig, 1922.
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quantities152, which have been used especially as coordinates in setting up a non-
Archimedean geometry, aims at deeper knowledge of the nature of continuity and
belongs to the large group of investigations concerning the logical dependence of
different axioms of ordinary geometry and arithmetic. For this purpose, the method
is always to set up artificial number systems for which only a part of the axioms
hold, and to infer the logical independence of the remaining axioms from these.

The question naturally arises whether, starting from such number systems, it
would be possible to modify the traditional foundations of infinitesimal calculus, so
as to include actually infinitely small quantities in a way that would satisfy modern
demands as to rigour; in other words, to construct a non-Archimedean analysis.
The first and chief problem of this analysis would be to prove the mean value
theorem

f .x C h/ � f .x/ D h � f 0.x C #h/

from the assumed axioms. I will not say that progress in this direction is impossible,
but it is true that none of the many researchers who have busied themselves with
actually infinitely small quantities have achieved anything positive.

I remark for your orientation that, since Cauchy’s time, the words infinitely small
are used in modern textbooks in another sense. One never says, namely, that a
quantity is infinitely small, but rather that it becomes infinitely small; which is only
a convenient expression implying that the quantity decreases without bound toward
zero.

We must bear in mind the reaction, which was evoked by the use of infinitely
small quantities in infinitesimal calculus. People soon sensed the mystical, the un-
proven, in these ideas, and there arose often a prejudice, as though the differential
calculus were a particular philosophical system which could not be proved, which
could only be believed or, to put it bluntly, a fraud. One of the keenest critics, in this
sense, was the philosopher Bishop George Berkeley, who in the little book The An-
alyst153 assailed in an amusing manner the lack of clearness which prevailed in the
mathematics of his time. Claiming the privilege of exercising the same freedom in
criticizing the principles and methods of mathematics, “which the mathematicians
employed with respect to the [237]mysteries of religion”, he launched a violent attack
upon all the methods of the new analysis, the calculus with fluxions as well as the
operation with differentials. He came to the conclusion that the entire structure of
analysis was obscure and thoroughly unintelligible.

Similar views have often maintained themselves even up to the present time,
especially on the philosophical side. This is due, perhaps, to the fact that acquain-
tance here is confined to the operation with differentials; the rigorous method of
limits, a rather recent development, has not been comprehended. As an example,
let me quote from Johann Julius Baumann’s Raum, Zeit und Mathematik154 which

152 [The so-called horn-shaped angles, known already to Euclid, are examples of non-Archimedean
quantities. Compare also the excursus, in the second volume of this work, after the critique of
Euclid’s Elements.]
153 London, 1734.
154 Vol. 2, p. 55, Berlin, 1869.
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appeared in the sixties: “Thus we discard the logical and metaphysical justification,
which Leibniz gave to calculus, but we decline to touch this calculus itself. We look
upon it as an ingenious invention, which has turned out well in practice; as an art
rather than a science. It cannot be constructed logically. It does not follow from the
elements of ordinary mathematics. . . ”

The Reaction: the Derivative Calculus of Lagrange

This reaction against differentials accounts also for the attempt by Lagrange, al-
ready mentioned, but appearing now in a new light, in his Théorie des Fonctions
Analytiques, published in 1797, to eliminate from the theory not only infinitely
small quantities, but also every passage to the limit. He confined himself, namely,
to those functions, which are defined by power series

f .x/ D a0 C a1x C a2x
2 C a3x

3 C � � � ;
and he defines formally the “derived function f 0.x/” (he avoids characteristically
the expression derivative and the sign dy=dx) by means of a new power series

f 0.x/ D a1 C 2a2x C 3a3x
2 C � � � :

Consequently he talks of derivative calculus instead of differential calculus.
This presentation, of course, could not be permanently satisfactory. In the first

place, the concept of function used here is, as we have shown, much too limited.
More than that, however, such thoroughly formal definitions make a deeper compre-
hension of the nature of the differential coefficient impossible, and take no account
of what we called the psychological moment – they leave entirely unexplained just
why one should be interested in a series obtained in such a peculiar way. Finally,
one can get along without giving any thought to a limit process only by disregarding
entirely the convergence of these series[238] and the question within what limits of error
they can be replaced by finite partial sums. As soon as one begins a consideration
of these problems, which is essential, of course, for any actual use of the series,
it is necessary to have recourse precisely to that concept of limit, the avoidance of
which was the purpose of inventing the system.

It would be fitting, perhaps, to say a few words about the differences of opin-
ion concerning the foundations of calculus, as these come up, even today, beyond
the narrow circle of professional mathematicians. I believe that we can often find
here the preliminary conditions for an agreement, in considerations very similar to
those, which we set forth respecting the foundations of arithmetic (p. [15] et seq.).
In every discipline of mathematics one must separate sharply the question as to the
inner logical consistency of its structure from that as to the justification for applying
its axiomatically and (so to speak) arbitrarily formulated concepts and theorems to
objects of our external or internal perception. Georg Cantor155 makes the distinc-
tion, with reference to integer numbers, between immanent reality, which belongs

155 Mathematische Annalen, vol. 21 (1883), p. 562.
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to them by virtue of their logical definability, and transient reality, which they pos-
sess by virtue of their applicability to concrete things. In the case of infinitesimal
calculus, the first problem is completely solved by means of those theories, which
the science of mathematics has developed in logically complete manner (through
the use of the limit concept). The second question belongs entirely to the theory
of knowledge, and the mathematician contributes only to its precise formulation by
separating the first part and solving it. No pure mathematical work can, from its
very nature, supply any immediate contribution to the solution of the epistemolog-
ical part. (See the analogous remarks on arithmetic, p. [15] et seq.) All disputes
concerning the foundations of infinitesimal calculus labour under the disadvantage
that these two entirely different phases of the problem have not been sharply enough
separated. In fact, the first, the purely mathematical part, is established here pre-
cisely as in all other branches of mathematics, and the difficulties lie in the second,
the philosophical part. The value of investigations which press forward in this sec-
ond direction take on especial importance in view of these considerations; but it
becomes imperative to make them depend upon exact knowledge of the results of
the purely mathematical work upon the first problem.

I am concluding with this excursus of our short historical sketch of the develop-
ment of infinitesimal calculus. In it I was obliged of course to [239]confine myself to an
emphasis of the most important guiding ideas. It should be extended, naturally, by
a thorough-going study of the entire literature of that period. You will find many
interesting references in the lecture given by Max Simon at the Frankfurt meeting
of the natural scientists of 1896: Zur Geschichte und Philosophie der Differential-
rechnung.

Form and Importance of the Infinitesimal Calculus
in the Present State of Teaching

If we now examine, finally, the attitude towards infinitesimal calculus in school
teaching, we shall see that the entire course of its historical development is mirrored
there to a certain extent. In earlier times, when infinitesimal calculus was taught in
the schools, there existed by no means a clear notion of its exact scientific structure
as based on the method of limits. At least this was manifest in the textbooks, and it
was doubtless the same in teaching itself. This method cropped up in a vague way
at most, whereas operations with infinitely small quantities and sometimes also
derivative calculus, in the sense of Lagrange, came to the front. Such instruction,
of course, lacked not only rigour but intelligibility as well, and it is easy to see
why a marked aversion arose to the treatment of infinitesimal calculus at all in the
schools. This culminated in the seventies and eighties in an official order forbidding
this instruction even in the “realist” school types.

To be sure this did not entirely prevent (as I indicated earlier) the use of the limit
method in the schools, where it was necessary – one merely avoided that name, or
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one even thought sometimes that something else was being taught. I shall mention
here only three examples, which most of you will recall from your school days.

a) The well-known calculation of the perimeter and the area of the circle by
an approximation, which uses the inscribed and circumscribed regular polygons is
obviously nothing but an integration. It was employed, even in ancient times, and
was used particularly by Archimedes; in fact, it is owing to this classical heritage
that is has been retained in the schools.

b) Instruction in physics, and particularly in mechanics, necessarily involves the
notions of velocity and acceleration, and their use in various deductions, including
the laws of falling bodies. But the derivation of these laws is essentially identical
with the integration of the differential equation z00 D g by means of the function
z D 1

2
gt2 Cat C b, where a, b are constants of integration. The schools must solve

this problem, under pressure of the demands of physics, and the means, which they
employ are more or less exact methods of integration, of course disguised.

[240] c) In many North German schools the theory of maxima and minima was taught
according to a method which bore the name ofKarl Heinrich Schellbach, the promi-
nent mathematical pedagogue of whom you all must have heard. According to this
method one puts

lim
x!x1

�
f .x/ � f .x1/

x � x1
�

D 0

in order to obtain the extremes of the function y D f .x/. But that is precisely
the method of differential calculus, only that the word “Differentialquotient” is not
used. It is certain that Schellbach used the above expression only because differen-
tial calculus was prohibited in the schools and he nevertheless did not want to miss
these important notions. His disciples, however, took it over unchanged, called it by
his name, and so it came about that methods, which Fermat, Leibniz, and Newton
had possessed were put before the pupils under the name of Schellbach!

Let me now indicate, finally, the attitude toward these things of our reform
tendency, which is now gaining ground more and more in Germany, as well as
elsewhere, especially in France, and which we hope will dominate the mathemati-
cal teaching of the next decades. We desire that the concepts which are expressed
by the symbols y D f .x/; dy=dx;

R
ydx be made familiar to pupils, under these

designations; not, indeed, as a new abstract discipline, but as an organic part of the
total teaching; and that one advance slowly, beginning with the simplest examples.
Thus one might begin, with pupils of the age of fourteen and fifteen (Obertertia and
Untersekunda), by treating extensively the functions y D axCb (a, b definite num-
bers) and y D x2, drawing them on millimetre paper, and letting the concepts slope
and area arise slowly by these means. But one should hold to concrete examples.
During the last three years (Oberstufe of the Gymnasia) this knowledge could be
systematised, the result being that the pupils would come into complete possession
of the elements of infinitesimal calculus. It is essential here to make it clear to the
pupil that he is dealing, not with something mystical, but with simple things that
anyone can understand.

The irrefutable necessity of such reforms lies in the fact that they are concerned
with those mathematical notions, which govern completely the applications of
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mathematics today in every possible field, and without which all studies in higher
education, even the simplest studies in experimental physics, are suspended in mid
air. I can be content with these few hints, chiefly because this subject is fully
discussed in Klein-Schimmack (referred to on p. [3]).

[241]In order to supplement these general considerations with something, which again
is concrete I shall now discuss in some detail an especially important subject in
infinitesimal calculus.

2. Taylor’s Theorem

I shall proceed here in a manner analogous to the plan I followed with trigono-
metric series. I shall depart, namely, from the usual treatment in the textbooks by
bringing to the foreground the finite series, so important in practice, and by aiding
the intuitive grasp of the situation by means of graphs. In this way it will all seem
elementary and easily comprehensible.

The First Parabolas of Osculation

Figure 101

We begin with the question whether we can make a suitable approximation to the
shape of an arbitrary curve y D f .x/, for a short part of it, by means of curves of the
simplest kind. The most obvious thing is to replace the curve in the neighbourhood
of a point x D a by its rectilinear tangent

y D AC Bx;

just as in physics and in other applications, we often discard the higher powers of
the independent variable in a series expansion (see Fig. 101). In a similar man-
ner we can obtain better approximations by making use of parabolas of second,
third, . . . order

y D AC Bx C Cx2; y D AC Bx C Cx2 CDx3; : : :

or, in analytic terms, by using polynomials of higher degree. Polynomials are espe-
cially suitable because they are so easy to calculate. We shall give all these curves
a special position, so that at the point x D a they snuggle as close as possible to
the curve, i.e., so that they shall be parabolas of osculation. Thus the quadratic
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parabola will coincide with y D f .x/ not only in its ordinate but also in its first
and second derivatives (i.e., it will “osculate”). A simple calculation shows that the
analytic expression for the parabola having osculation of order n will be

y D f .a/C f 0.a/
1

.x � a/C f 00.a/
1 � 2 .x � a/2 C � � � C f .n/.a/

1 � 2 � : : : � n .x � a/n ;
.n D 1; 2; 3; : : : /

and these are precisely the first nC 1 terms of Taylor’s series.
The investigation as to whether and how far these polynomials represent usable

curves of approximation will be started by a[242] somewhat experimental method, such
as we used in the case (p. [209]) of the trigonometric series. I shall show you a few
drawings of the first osculating parabolas of simple curves, which were made156 by
Schimmack. The first are the four following functions, all having a singularity at
x D �1, drawn with their parabolas of osculation at x D 0 (see Figs. 102, 103,
104, 105).

Figure 102

Figure 103

156 Four of these drawings accompanied Schimmack’s report on the Göttingen vacation course,
Easter, 1908: Über die Gestaltung des mathematischen Unterrichts im Sinne der neueren Re-
formideen, Zeitschrift für den mathematischen und naturwissenschaftlichen Unterricht, vol. 39
(1908), p. 513; also separate reprints. Leipzig, 1908.
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Figure 104

Figure 105

[243]

log.1C x/ � x � x2

2
C x3

3
� C � � � ;1.

.1C x/
1
2 � 1C x

2
� x2

8
C x3

16
� C � � � ;2.

.1C x/�1 � 1 � x C x2 � x3 C � � � � ;3.

.1C x/�2 � 1 � 2x C 3x2 � 4x3 C � � � � :4.
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In the interval .�1;C1/ the osculating parabolas approach the original curve more
and more as the order increases; but to the right of x D C1 they deviate from it
increasingly, now above, now below, in a striking way.

At the singular point x D �1, in cases 1, 3, 4, where the original function
becomes infinite, the ordinates of the successive parabolas assume always greater
values. In case 2, where the branch of the original curve which appears in the
drawing, ends in x D �1 at a vertical tangent, all the parabolas extend beyond this
point but approach the original curve more and more at x D �1, by becoming ever
steeper. At the point x D C1, symmetrical to x D �1, the parabolas in the first two
cases approach the original curve more and more closely. In case 3, their ordinates
are alternately equal to 1 and 0, while that of the original curve has the value 1

2
.

In case 4, finally, the ordinates increase indefinitely with the order, and alternate in
sign.

We shall examine, now, sketches of the osculating parabolas of two integer tran-
scendental functions (see Fig. 106, 107)

ex � 1C x

1Š
C x2

2Š
C x3

3Š
C � � � ;5.

sin x � x � x3

3Š
C x5

5Š
� x7

7Š
C � � � :6.

[244] You notice that as their order increases, the parabolas give usable approximations
to the original curve for a greater and greater interval. It is especially striking in the
case of sin x how the parabolas make the effort to share more and more oscillations
with the sine curve.

I call your attention to the fact that the drawing of such curves in simple cases
is perhaps a suitable topic even for the schools. After we have thus assembled our
experimental material we must consider it mathematically.

Figure 106
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Figure 107

Increasing the Order: Questions of Convergence

After having thus collected material from experience we have now to approach the
mathematical investigation. The first question here is the extremely important one
in practice as to the exactness with which the n-th parabola of osculation represents
the original curve. This implies an estimate of the remainder for the values of the
ordinate, and is connected naturally with the passage of n to infinity. Can the curve
be represented exactly, at least for a part of its course, by an infinite power series?

It will be sufficient to state the commonest of the theorems concerning the re-
mainder:

Rn.x/ D f .x/ �
(

f .a/C x � a
1Š

f 0.a/C � � � C .x � a/n�1

.n � 1/Š f
.n�1/.a/

)

:

The proof of the theorem is given in all the books and I shall revert to it later,
anyway, from amore general standpoint. The theorem is: There is a value � between
a and x such that Rn can be represented in the form

Rn.x/ D .x � a/n
nŠ

f .n/ .�/ ; .a < � < x/:

The question as to the justification of the transition to an infinite series is now re-
duced to that as to whether thisRn.x/ has the limit 0 or not when n becomes infinite.

Returning to our examples, it appears, as you can verify by reading in any text-
book, that in cases 5 and 6 the infinite series converges for all values of x. In cases
1 to 4, it turns out that the series converges, between �1 and C1, to the original
function, but that it diverges outside this interval. For x D �1 we have, in case 2,
convergence to the function value; in cases 1; 3; 4, the limiting value of the series
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as well as that of the function is infinite, so that one could speak of convergence
here also, but it is not customary to use this word with a series that has a definitely
infinite limit. For x D C1, finally, we have convergence in the first two examples,
divergence in the last two. All this is in fullest agreement with our figures.

We may now raise the question, as we did with the trigonometric series, as to
the limit values toward which the approximating parabolas converge, thought of as
complete curves. They cannot, of course, break off suddenly at x D ˙1.[245] For the
case of log.1C x/ I have sketched for you the limit curve (Fig. 108). The even and
odd parabolas have different limiting positions, (indicated in the figure by dashes
and dots) which consist of the logarithm curve between �1 and C1 together with
the lower and upper portions, respectively, of the vertical line x D C1. The other
three cases are similar.

Figure 108

The theoretical consideration of Taylor’s series cannot be made complete with-
out going over to the complex variable. It is only then that one can understand the
sudden ceasing of the power series to converge at points where the function is en-
tirely regular. To be sure, one might be satisfied, in the case of our examples, by
saying that the series cannot converge any farther to the right than to the left, and
that the convergence must cease at the left because of the singularity at x D �1.
But such reasoning would no more fit a case like the following. The Taylor’s series
expansion for the branch of tan�1 x, which is regular for all real x

tan�1 x � x � x3

3
C x5

5
� C � � �

converges only in the interval .�1;C1/, and the parabolas of osculation converge
alternately to two different limiting positions (see Fig. 109). The first consists, in
the figure, of the long dotted parts of the vertical lines x D C1, x D �1 together
with the portion of the inverse tangent157 curve lying between these verticals. The

157 [Translator’s note: Inverse tangent also called arc tangent. See Klein’s explanation in the part
on trigonometric functions.]
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second limiting position is obtained from the first by taking the short dotted parts of
the vertical lines instead of the long dotted parts. The convergence is toward the first
of these limit curves when we take an odd number of terms in the series, toward the
second when we take an even number. In the figure, the long dotted curve represents
y D x�x3=3Cx5=5, the short dotted curve is [246]y D x�x3=3. The sudden cessation
of convergence at the thoroughly regular points x D ˙1 is incomprehensible if
we limit ourselves to real values of x regarding the behaviour of the function. The
explanation is to be found in the important theorem on the circle of convergence, the
most beautiful of Cauchy’s function-theoretic achievements, which can be stated as
follows. If one marks on the complex x-plane all the singular points of the analytic
function f .x/, when f .x/ is single-valued, and on the Riemann surface belonging
to f .x/ when f .x/ is many-valued, then the Taylor’s series corresponding to a
regular point x D a converges inside the largest circle, which one can place on the
respective sheet of the Riemann surface in such a manner about a that no singular
point lies in its interior (i.e., so that at least one singular point lies on its periphery).
The series converges for no point outside this circle (see Fig. 110).

Figure 109

Figure 110
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Now our example tan�1 x has, as you know, singularities at x D ˙i , and the
circle of convergence of the expansion in powers of x is consequently the unit circle
about x D 0. The convergence must cease therefore at x D ˙1, since the real axis
leaves the circle of convergence at these points (see Fig. 111).

Figure 111

Finally, as to the convergence of the series on the unit circle itself, I shall give you
the reference, which came up when we were talking about the connection between
power series and trigonometric series. The convergence depends upon whether or
not the real and the imaginary part of the function, in view of the singularities that
must necessarily exist on the circle of convergence, can be expanded there into a
convergent trigonometric series or not.

Generalising Taylor’s Theorem to a Theorem of Finite Differences

I should like now to enliven the discussion of Taylor’s theorem by showing its re-
lations to the problems of interpolation and of finite differences. There, also, we
are concerned with the approximation to a given curve by means of a parabola.
But instead of trying to make the parabola snuggle as closely as possible at one
point, we require it to cut the given curve in a number of pre-assigned points; and
the question is, again, as to how far this “interpolation parabola” gives a reason-
able approximation. In the simplest case, this amounts to replacing the curve by a
secant instead of the tangent (see Fig. 112). Similarly[247] one passes a quadratic
parabola through three points of the given curve, then a cubic parabola through
four points, and so on.

Figure 112

This is a natural way of approaching interpolation, one that is very often em-
ployed, e.g., in the use of logarithmic tables. There we assume that the logarithmic
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curve runs rectilinearly between two given tabular values and we interpolate “lin-
early” in the well known way, which is facilitated by the “difference tables”. If this
approximation is not close enough, we apply quadratic interpolation.

From this broad statement of the general problem, we get a determination of the
osculating parabolas in Taylor’s theorem as a special case, that is, when we simply
allow the intersections with the interpolation parabolas to coincide in one point. To
be sure, the replacing of the curve by these osculating parabolas is not properly
expressed by the word “interpolation”, except that one includes “extrapolation” in
the problem of interpolation. For example, the curve is compared not only with
the part of the secant lying between its points of intersection, but also with the part
beyond. For the entire process the comprehensive word approximation seems more
suitable.

Figure 113

I shall now give the most important formulas of interpolation. Let us first deter-
mine the parabolas of order n � 1 which cut the given function in the points x D
a1; a2; : : : ; an, that is, whose ordinates in these points are f .a1/; f .a2/; : : : ; f .an/,
(see Fig. 113). This problem, as you know, is solved by Lagrange’s interpolation
formula

(1)

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

yD .x � a2/ .x � a3/ � � � .x � an/
.a1 � a2/ .a1 � a3/ � � � .a1 � an/ � f .a1/

C .x � a1/ .x � a3/ � � � .x � an/
.a2 � a1/ .a2 � a3/ � � � .a2 � an/ � f .a2/

C � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

It contains n terms with the factors f .a1/; f .a2/; : : : ; f .an/. The numerators lack
in succession the factors .x � a1/; .x � a2/; : : : ; .x � an/. It is easy to verify the
correctness of the formula. For, each summand of y, and hence y itself, is a poly-
nomial in x of degree n � 1. If we put x D a1 all the fractions vanish except the
first, which reduces to 1, so that we get y D f .a1/. Similarly we get y D f .a2/

for x D a2, etc.
From this formula it is easy to derive, by specialization, one that is often called

Newton’s formula. This has to do with the case [248]where the abscissas a1, . . . , an are
equidistant (see Fig. 114). As the notation of the calculus of finite differences is
advantageous here we shall first introduce it.
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Figure 114

Let �x be any increment of x and let �f.x/ be the corresponding increment of
f .x/ so that

f .x C�x/ D f .x/C�f.x/.

Now�f.x/ is also a function of xwhich, if we change x by�x, will have a definite
difference called the second difference,�2f (x), so that

�f.x C�x/ D �f.x/C�2f .x/:

In the same way we have

�2f .x C�x/ D �2f .x/C�3f .x/; etc.

This notation is precisely analogous to that of differential calculus, except that one
is concerned here with finite quantities and there is no passing to the limit.

From the above definitions of differences there follows at once for the values of
f at the successive equidistant places

(2)

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

f .x C�x/ D f .x/C�f.x/;

f .x C 2�x/D f .x C�x/C�f .x C�x/

D f .x/C 2�f .x/C�2f .x/;

f .x C 3�x/D f .x C 2�x/C�f .x C 2�x/

D f .x/C 3�f .x/C 3�2f .x/C�3f .x/;

f .x C 4�x/D f .x/C 4�f .x/C 6�2f .x/C 4�3f .x/C�4f .x/

:

This table could be continued, the values at equidistant points being expressed by
means of successive differences taken at the initial point x and involving the bino-
mial coefficients as factors.

Newton’s formula for the interpolation parabola of order .n � 1/ belonging to
the n equidistant points of the x-axis,

a1 D a; a2 D aC�x; : : : ; an D aC .n � 1/�x;
that is, which has at these points the same ordinates as f (x), will be

(3)

8
ˆ̂
<̂

ˆ̂
:̂

y D f .a/C .x � a/
1Š

�f .a/

�x
C .x � a/ .x � a ��x/

2Š

�2f .a/

.�x/2
C � � �

C .x � a/ .x � a ��x/ � � � .x � a � .n � 2/�x/
.n � 1/Š

�n�1f .a/
.�x/n�1

:

This is, in fact, a polynomial in x of order n � 1. For x D a it reduces to f .a/;
for x D a C�x all the terms, except the first two, become zero and there remains
y D f .a/ C �f.a/, which by (2) is equal to f .a C �x/; and so on.[249] Thus the
table (2) yields a polynomial, which assumes the correct values at all the n points.
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Cauchy’s Estimate of the Error

If we wish to use this interpolation formula to real advantage, however, we must
know something as to the correctness with which it represents f (x), that is, we must
be able to estimate the remainder. Cauchy gave158 the formula for this in 1840, and
I should like to derive it. I shall start from the more general Lagrange formula. Let
x be any value between the values a1, a2, . . . , an, or beyond them (interpolation or
extrapolation). We denote by P(x) the ordinate of the interpolation parabola given
by the formula and by R(x) the remainder

(4) f .x/ D P.x/CR.x/:

According to the definition of P(x) the remainder R vanishes for x D a1, a2, . . . , an
and we therefore set

R.x/ D .x � a1/ .x � a2/ � � � .x � an/
nŠ

 .x/:

It is convenient to take out the factor n! Then it turns out, in complete analogy with
the remainder term of Taylor’s series, that  .x/ is equal to the n-th derivative of
f .x/ taken for a value x D � lying between the n� 1 points a1, a2, . . . , an, x. This
assertion that the deviation of f (x) from the polynomial of order n�1 depends upon
the entire course of the function f .n/.x/ seems entirely plausible, if we reflect that
f .x/ is equal to that polynomial when f .n/.x/ vanishes.

As to the proof of the remainder formula, we derive it by the following device.
Let us set up, as a function of a new variable z, the expression

F.z/ D f .z/ � P.z/� .z � a1/ .z � a2/ � � � .z � an/
nŠ

 .x/;

where the variable x remains as a parameter in  .x/. Now F.a1/ D F.a2/ D
� � � D F.an/ D 0, since P.a1/ D f .a1/; P.a2/ D f .a2/; : : : ; P.an/ D f .an/ by
definition. Furthermore F.x/ D 0 because the last summand goes over into R.x/,
for z D x, so that the right side vanishes by (4). We know, therefore, nC 1 zeros
z D a1; a2; : : : ; an, x, of F.z/. Now apply the extended mean value theorem, which
one gets by repeated application of the ordinary theorem (p. [230]), namely: If a
continuous function, together with its first n derivatives, vanishes at n C 1 points,
then the n-th derivative vanishes at one point, at least, which lies in the interval
containing all the zeros. Hence if f .z/, and therefore also F.z/, [250]has n continuous
derivatives, there must be a value � between the extremes of the values a1, a2, . . . ,
an, x for which

F .n/.�/ D 0:

But we have
F .n/.z/ D f .n/.z/ �  .x/;

158 Comptes Rendus, vol. 11, pp. 775–789. – Œuvres, 1st series, vol. 5, pp. 409 to 424, Paris,
1885.
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since the polynomialP.z/ of degree n�1 has 0 for its n-th derivative and since only
zn �  .x/=nŠ, the highest term of the last summand, has an n-th derivative which
does not vanish. Therefore we have, finally

F .n/.�/ D f .n/.�/ �  .x/ D 0; or  .x/ D f .n/.�/;

which we wished to prove.
I shall write down Newton’s interpolation formula with its remainder term

(5)

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

f .x/ D f .a/C x � a
1Š

�f .a/

�x
C .x � a/ .x � a ��x/

2Š

�2f .a/

.�x/2
C � � �

C .x � a/ � � � Œx � a � .n � 2/�x�
.n � 1/Š

�.n�1/f .a/
.�x/n�1

C .x � a/ � � � Œx � a � .n � 1/�x�
nŠ

f .n/ .�/

;

where � is a mean value in the interval containing the n C 1 points a; a C �x,
a C 2�x; : : : ; a C .n � 1/�x; x. The formula (5) is, in fact, indispensable in the
applications. I have already alluded to linear interpolation when logarithmic tables
are used. If f .x/ D log x and n D 2, we find, from (5)

log x D logaC x � a
1Š

� loga

�x
� .x � a/ .x � a ��x/

2Š

M

�2
:

Since d2 logx=dx2 D �M=x2 where M is the modulus of the logarithmic system.
Hence we have an expression for the error, which we commit when we interpolate
linearly between the tabular logarithms for a and a C �x. This error has different
signs according as x lies between a and a C �x or outside this interval. Everyone
who has to do with logarithmic tables should really know this formula.

I shall not devote any more attention to applications, but shall now draw your
attention to the marked analogy between the interpolation formula of Newton and
the formula of Taylor. There is a substantial reason for this analogy. It is easy to give
an exact deduction of Taylor’s theorem from the Newtonian formula, corresponding
to the passage to the limit from interpolation parabolas to osculating parabolas.
Thus, if we keep x, a, and n fixed[251] and let �x converge to zero, then, since f .x/ has
n derivatives, the n � 1 difference quotients in (5) go over into the derivatives

lim
�x!0

�f .a/

�x
D f 0.a/; lim

�x!0

�2f .a/

�x2
D f 00.a/; : : :

In the last term of (5), the value of � can change with decreasing �x. Since all the
other terms on the right have definite limits, however, and the left side has the fixed
value f .x/ during the entire limit process, it follows that the values of f .n/.�/must
converge to a definite value, too, and that this value, furthermore, must, because of
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the continuity of f .n/, be a value of this function for some point between a and x.
If we denote this again by � we have

f .a/ D f .a/C x � a
1Š

f 0.a/C � � � C .x � a/n�1

.n � 1/Š f
.n�1/.a/C .x � a/n

nŠ
f .n/ .�/ ;

.a < � < x/

Thus we have obtained a complete proof of Taylor’s theorem with the remainder
term and at the same time have given it an ordered place in the theory of interpola-
tion.

It seems to me that this proof of Taylor’s theorem, which brings it into wider
relation with very simple questions and which provides such a smooth passage to
the limit, is the very best possible one. But not all the mathematicians to whom
these things are familiar (it is remarkable that they are unknown to many, including
perhaps even some authors of textbooks) do think so. They are accustomed to con-
front a passage to a limit with a very grave face and would therefore prefer a direct
proof of Taylor’s theorem to one linking it with the calculus of finite differences.

Historical Remarks About Taylor and Maclaurin

I must emphasize however that the historical source for the discovery of Taylor’s
theorem is actually the calculus of finite differences. I have already mentioned that
Brook Taylor first published it in hisMethodus incrementorum159. He first deduces
there Newton’s formula, evidently without the remainder, of course, and then lets
pass in it simultaneously �x to 0 and n to 1. He thus gets correctly from the first
terms of Newton’s formula the first terms of his new series:

f .a/ D f .a/C x � a
1Š

df .a/

da
C .x � a/2

2Š

d2f .a/

da2
C � � �

The continuation of this series, according to the same law, seems to him self-
evident, and he gives no thought either to a remainder term or to convergence. We
have here, in fact, a passage to the limit of unexampled audacity. The first terms,

[252]in which x � a � �x; x � a � 2�x; : : : appear, offer no difficulty, because these
finite multiples of �x approach zero with �x; but with increasing n there appear
terms in ever increasing number, presenting more factors x � a � k�x with larger
and larger k, and one is not justified in treating these forthwith in the same way and
in assuming that they go over into a convergent series.

Taylor really operates here with infinitely small quantities (differentials) in the
same unquestioning way as the Leibnizians. It is interesting to reflect that although,

159 Londini, 1715, p. 21–23.
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as a young man of twenty-nine, he was under the eye of Newton, he departed from
the latter’s method of limits. Yet, he succeeded thus in achieving this discovery.

You will find an excellent critical presentation of the entire development of Tay-
lor’s theorem in Alfred Pringsheim’s memoir: Zur Geschichte des Taylorschen
Lehrsatzes160. Furthermore, I should like to speak here about the customary dis-
tinction between Taylor’s series and that of Maclaurin. As is well known, many
textbooks make a point of putting a = 0 and of calling the obvious special case of
Taylor’s series which thus arises:

f .x/ D f .0/C x

1Š
f 0.0/C x2

2Š
f 00.0/C � � �

the series of Maclaurin; and many persons may think that this distinction is impor-
tant. Anybody who understands the situation, however, sees that it is comparatively
unimportant mathematically. But it is not so well known that, considered histor-
ically, it is pure nonsense. For Taylor had undoubted priority with his general
theorem, deduced in the way indicated above. More than this, he emphasises at
a later place in his book (p. 27) the special form of the series for a D 0 and re-
marks that it could be derived directly by the method which is called today that of
undetermined coefficients. Furthermore, Maclaurin took over161 this deduction in
1742 in his Treatise of Fluxions (which we mentioned on p. [229]) where he quoted
Taylor expressly and made no claim whatever of offering anything new. But the
quotation seems to have been disregarded and the author of the book seems to have
been looked upon as the discoverer of the theorem. Errors of this sort are common.
It was only later that people went back to Taylor and named the general theorem,
at least, after him. It is difficult, if not impossible, to overcome such deep-rooted
absurdities.[253] At best, one can only spread the truth in the small circle of those who
have historical interests.

I shall now supplement our discussion of infinitesimal calculus with some re-
marks of a general nature.

3. Historical and Pedagogical Considerations

Remarks About Textbooks for the Infinitesimal Calculus

I should like to mention, first of all, that the bond which Taylor established be-
tween difference calculus and differential calculus held for a long time. These two
branches always went hand in hand, still in the analytic developments of Euler,
and the formulas of differential calculus appeared as limiting cases of elementary
relations that occur in the difference calculus. This natural connection was first

160 Bibliotheca Mathematica, 3rd series, vol. I (1900), p. 433–479.
161 Edinburgh, 1742, vol.11, p. 610.
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broken by the often mentioned formal definitions of Lagrange’s derivative calcu-
lus. I should like to show you a compilation from the end of the eighteenth century
which, closely following Lagrange, brings together all the facts then known about
infinitesimal calculus, namely the Traité du Calcul Différentiel et du Calcul Inté-
gral of Sylvestre-François Lacroix162. As a characteristic sample from this work,
consider the definition of the derivative (vol. I, p. 145): A function f .x/ is defined
by means of a power series. By using the binomial theorem (and rearranging the
terms) one has

f .x C h/ D f .x/C hf 0.x/C 1

2
h2f 00.x/C � � � :

Lacroix now denotes the term of this series, which is linear in h by d f (x), and,
writing dx for h itself, he has for the derivative, which he calls differential coefficient

df .x/

dx
D f 0.x/:

Thus this formula is deduced in a manner thoroughly superficial even if unassail-
able. Within the range of these thoughts, Lacroix could no longer, of course, use
the calculus of differences as a starting point. However, since this branch seemed to
him too important in practice to be omitted, he adopted the expedient of developing
it independently, which he did very thoroughly in a third volume, but without any
connecting bridge between it and differential calculus.

This “large Lacroix” is historically significant as the proper source of the many
[254]textbooks of infinitesimal calculus which appeared in the nineteenth century. In the

first rank of these I should mention his own textbook, the “small Lacroix”163.
Since the twenties of the last century the textbooks have been strongly influ-

enced also by the method of limits which Cauchy raised to such an honourable
place. Here we should first think of the many French textbooks, most of which,
as Cours d’Analyse de l’Ecole Polytechnique, were prepared expressly for higher
education. Directly or indirectly, German textbooks also have depended on them,
with the single exception, perhaps, of the one by Oscar Schlömilch. From the long
list of books, I shall single out only Joseph Alfred Serret’s Cours de Calcul Dif-
férentiel et Intégral, which appeared first in 1869 in Paris. It was translated into
German in 1884 by Axel Harnack and has been since then one of our most widely
used textbooks. Due to a succession of various revisers, it suffered of some inco-
herent parts. The editions,164 which have appeared since 1906, however, have been
subjected to a thoroughgoing revision by Georg Scheffers of Charlottenburg, the
result being an again homogeneous work. I am glad to mention also an entirely new

162 Three volumes, Paris, 1797 – 1800, with many later editions.
163 Traitié Elémentaire du Calcul Différentiel et Intégral., Paris, 1802.
164 Since 1906: Joseph Alfred Serret, & Georg Scheffers, Lehrbuch der Differential- und Inte-
gralrechnung, vol. I, sixth edition. Leipzig 1915; vol. II, 6 – 7 edition; vol. III, fifth edition,
1914.
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French book, the Cours d 0 Analyse Mathématique by Édouard Goursat165 in three
volumes, which is fuller in many ways than Serret and contains, in particular, a long
series of entirely modern developments. Furthermore it is a very readable book.

In all these recent books, the derivative and the integral are based entirely upon
the concept of limit. There is never any question as to difference calculus or in-
terpolation. One sees the things in a clearer light, perhaps, in this way, but, on
the other hand, the field of view is considerably narrowed – as it is when we use
a microscope. Difference calculus is now left entirely to the practical calculators,
who are obliged to use it, especially the astronomers; and the mathematician hears
nothing of it. We may hope that the future will bring a change166 here.[255]

Characterising Our Proper Presentation

As a conclusion of my discussion of infinitesimal calculus I should like to bring up
again for emphasis four points, in which my exposition differs especially from the
customary presentation in the textbooks:

1. Visualisation of abstract considerations by means of figures (curves of ap-
proximation, in the case of Fourier’s and Taylor’s series).

2. Emphasis upon its relation to neighbouring fields, such as calculus of differ-
ences and of interpolation, and finally to philosophical investigations.

3. Emphasis upon historical growth.
4. Exhibition of samples of popular literature to mark the deviation of the thus

induced view points in the public at large from those of the professional mathemati-
cian.

It seems to me extremely important that precisely the prospective teacher should
take account of all of these. As soon as you begin teaching you will be confronted
with the popular views. If you lack orientation, if you are not well informed con-

165 Paris 1902 – 1907, vol. I, third edition. 1917; vol. II, third edition. 1918; vol. III, second
edition. 1915. (Translated into English: vol. I by Earle Raymond Hedrick, 1904, Ginn and
Co.; vol. II by Earle Raymond Hedrick and Otto Dunkel, 1916, Ginn and Co.). [Of the most
recent German calculus textbooks should be mentioned: I) “Vorlesungen über Differential- und
Integralrechnung” by Richard Courant, in two volumes (second edition 1930/31). 2) “Einführung
in die mathematische Behandlung naturwissenschaftlicher Fragen” by Alwin Watther (1928). Both
textbooks are following Felix Klein’s pedagogical conceptions]
166 [In order to make a beginning here, Klein had then induced Friesendorff and Prüm to translate
Markoff’s Differenzenrechnung into German (Leipzig, 1896). There is a series of articles in the
Enzyklopädie. A work on Differenzenrechnung by Niels Erik Nörlund has just appeared (Berlin,
Julius Springer, 1924) which exhibits the subject in new light. AlwinWalther, who had cooperated
in Nörlund’s textbook, gave a lecture, at the summer vacation course on mathematics and physics
in Göttingen in 1926 on issues of the calculus of finite differences, which are important for teach-
ing the calculus. Unfortunately, this lecture is not yet published. A second lecture by Walther
at the same course, dealt with „Begriff und Anwendungen des Differentials“. It was published
as Beiheft 14 (Berlin 1929, B. G. Teubner) of the Zeitschrift für den mathematischen und natur-
wissenschaftlichen Unterricht. The explanations given in this lecture complement in a precious
manner what is given here on the pp. [223] to [255].]
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cerning the intuitive elements of mathematics as well as the vital relations with
neighbouring fields, if, above all, you do not know the historical development, your
footing will be very insecure. You will then either withdraw to the ground of the
most modern pure mathematics, and fail to be understood in the school, or you will
succumb to the assault, give up what you learned in higher education, and even
in your teaching allow yourself to be buried in the traditional routine. The dis-
continuity between school and university, of which I have often spoken, is greatest
precisely in the field of infinitesimal calculus. I hope that my words may contribute
to its removal and that they may provide you with useful armour in your teaching.

This brings me to the end of the conventional analysis. By way of supplement I
shall discuss a few theories of modern mathematics to which I have referred occa-
sionally and with which I think the teacher should have some acquaintance. [256]
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