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Preface to the 2016 Edition

The Notion of Elementary Mathematics

This is the first volume of the three-volume-series of Felix Klein’s “Elementar-
mathematik vom hoheren Standpunkte aus”, the first two volumes now in revised
and completed editions and the third volume the first time in English translation.
This translation is based on the last German edition of volume I, the fourth of 1933;
the English translation of 1931, which was used for this new revised version, had
the third edition of 1924 as its master copy. The third and the fourth German edition
are basically identical, except the three paragraphs on pp. 296-297, which replace
pp- 297-303 of the 3rd edition.

The volumes are lectures notes of courses, which Klein offered often to future
secondary school mathematics teachers at Gottingen university, and published be-
tween 1902 and 1908, proposing and realizing a new form of teacher training, which
became a model for many mathematicians and which remained valid and effective
until today. Jeremy Kilpatrick emphasized the importance of these volumes thus:

In print for a century, the volumes of Klein’s textbook have been used in
countless courses for prospective and practicing teachers. They provide ex-
cellent early examples of what today is termed mathematical knowledge for
teaching. Klein’s courses for teachers were part of his reform efforts to
improve secondary mathematics by improving the preparation of teachers.
Despite the many setbacks he encountered, no mathematician has had a more
profound influence on mathematics education as a field of scholarship and
practice (Kilpatrick 2008, p. 27).!

It was Kilpatrick, too, who as the first called attention to the misleading trans-
lation of the term “hoher” in that English translation of the 1930’s. While all the

T am quoting from Kilpatrick’s lecture at ICME 11 in Mexico. Unfortunately, the Proceedings of
this Congress were never published. The ICMI Executive Committee decided therefore, to make
the lectures delivered there accessible online at the ICMI site.
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other translations had given the “hoher” correctly, it became “advanced” instead of
“higher” — and was received thus over so many decades as the English version:

When it came time for the American translators of Klein’s Elementarmathe-
matik to render the title in English, they chose to translate vom hoheren
Standpunkte aus as from an advanced standpoint. The term higher is not
only a more literal translation of hoheren than advanced is, but it also cap-
tures better the image Klein had for his work. Advanced can mean higher,
but its connotation is more like ‘more developed’ or ‘further along in space
and time’. Klein wanted to emphasize that his courses would give prospective
teachers a better, more panoramic view of the landscape of mathematics. As
noted above, he wanted those teachers to ‘stand above’ their subject. (ibid.,
p. 40)

In fact, the term “advanced” implies a fundamental misunderstanding of Klein’s
notion of elementary and of Elementarmathematik. The term “advanced” implies
that elementary mathematics is somewhat delayed, lagging behind, of another na-
ture. It means exactly the contrary of what Klein was intending. By contrasting
two poles, “elementary” versus “advanced”, one would admit just that discontinu-
ity between school mathematics and academic mathematics, which Klein wanted to
eliminate.

For Klein, there was no separation between an elementary mathematics and an
academic mathematics. His conception for training teachers in higher education
departed from a holistic vision of mathematics: mathematics, steadily developing
and reforming itself within this process, leading to ever new restructured elements,
provides therefore new accesses to the elements. There is a widespread under-
standing of the term “elementary”, meaning it something “simple” and not loaded
with conceptual dimension — even somehow approaching “trivial”. Connected, in
contrast, with the notion of element, “elementary” means for Klein to unravel the
fundamental conception. What is at stake, hence, is the notion of elements.

Beyond mere factual information, with his lecture notes Klein leads the stu-
dents to gain a more comprehensive and methodological point of view on school
mathematics. The three volumes thus enable us to understand Klein’s far-reaching
conception of elementarisation, of the “elementary from a higher standpoint”, in its
implementation for school mathematics: The elements are understood as the funda-
mental concepts of mathematics, related to the whole of mathematics — according
to its restructured architecture.

This notion of elements corresponds neatly to the first reflections on the na-
ture of elements undertaken in the wake of Enlightenment how to make knowledge
teachable and how to disseminate knowledge thus in society to ensure its general
understanding. One has to name in particular Jean le Rond d’Alembert (1717-
1783) who conceptualized in a profound manner what he called to “elementarise”
the sciences. It was his seminal and extensive entry “élémens des sciences” in the
Encyclopédie, the key work of the Enlightenment, where he gave this analysis and
reflection how to elementarise a science, that is how to connect the elements with
the whole of that science. This procedure is to be able to identify the elements of
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a science, or in other words, have rebuilt it in a new coherent way all parts of a
science that may have accumulated independently and not methodically:

On appelle en général élémens d’un tout, les parties primitives & originaires
dont on peut supposer que ce tout est formé (d’ Alembert 1755, 491 1).

In this sense, there is no qualitative difference between the elementary parts and
the higher parts. The elements are considered as the “germs” of the higher parts:

Ces propositions réunies en un corps, formeront, a proprement parler, les
élémens de la science, puisque ces élémens seront comme un germe qu’il
suffiroit de développer pour connoitre les objets de la science fort en détail
(d’Alembert 1755, 491 r).

An extensive part of the entry is dedicated to the reflection on elementary books,
such as schoolbooks, which are essential, on the one hand, to disseminate the sci-
ences and, second, to make progress in the sciences, that is, to obtain new truths. In
his reflection on elementary books, d’ Alembert emphasised another aspect of great
importance regarding the relationship between the elementary and the higher: he
underlined that the key issue for the composition of good elementary books con-
sists in investigating the “metaphysics” of propositions — or in terms of today: the
epistemology of science.

In fact, Klein’s work can be understood exactly as providing such an epistemo-
logical, or methodological access to mathematics. It was not to provide factual
knowledge:

I shall by no means address myself to beginners, but I shall take for granted
that you are all acquainted with the main features of the most important dis-
ciplines of mathematics (Klein, this volume, p. [1] et seq.).

Whereas he outlined as his goal:

And it is precisely in such summarising lecture courses as I am about to de-
liver to you that I see one of the most important tools (ibid., p. [1]).

Indeed, Klein explicitly exposed the epistemological aspect of his work: explain-
ing the connections, the connections between subdisciplines, which normally are
treated separately and pointing out the links of particular mathematical issues and
questions with a synthetic view of the whole of mathematics. Thus, future teachers
would achieve to deepen their understanding of the basic concepts of mathematics
and appreciate the nature of mathematical concepts:

My task will always be to show you the mutual connection between prob-
lems in the various disciplines, these connections use not to be sufficiently
considered in the specialised lecture courses, and I want more especially to
emphasize the relation of these problems to those of school mathematics. In
this way I hope to make it easier for you to acquire that ability which I look
upon as the real goal of your academic study: the ability to draw (in ample
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measure) from the great body of knowledge taught to you here vivid stimuli
for your teaching (ibid., p. [2]).

There is a decisive difference between d’ Alembert’s and Klein’s notion of ele-
mentarisation. D’ Alembert’s notion basically was not a historical one; he did not
reflect the effect of scientific progress on the elements. But this was exactly Klein’s
notion. He emphasised:

The normal process of development [. .. ] of a science is the following: higher
and more complicated parts become gradually more elementary, due to the
increase in the capacity to understand the concepts and to the simplification
of their exposition (“law of historical shifting”). It constitutes the task of the
school to verify, in view of the requirements of general education, whether
the introduction of elementarised concepts into the syllabus is necessary or
not (Klein & Schimmack 1907, p. 90).

The historical evolution of mathematics entails therefore a process od restruc-
turation of mathematics where new theories, which at first might have ranged some-
what isolated and not well integrated, turn well connected to other branches of
mathematics and effect a new architecture of mathematics, based on re-conceived
elements, thus on a new set of elementarised concepts.

Set theory was a case for Klein where this theoretical development was too fresh
and even not yet accomplished and even more far from having matured in a manner
to having induced an intra-disciplinary process of integration and restructuration.
The concepts of set theory did not (yet) provide new elements for mathematics —
therefore Klein’s polemic against Friedrich Meyer’s schoolbook of 1885 who’s in-
tention had been, in fact, to use set theory as new elements for teaching arithmetic
and algebra (see the note on p. [289]). In Klein’s times, mathematics had not
achieved the level of the architecture established by Bourbaki — and hence not of
“modern math”.

This volume I is devoted to what Klein calls the three big “A’s”: arithmetic,
algebra and analysis. They are presented and discussed always together with a
dimension of geometric interpretation and visualisation — given his epistemological
viewpoint of mathematics being based in space intuition. A particularly revealing
example for elementarisation is his chapter on the transcendence of e and 7, where
he succeeds in giving a concise, well accessible proof for the transcendence of these
two numbers.

The Use of History of Mathematics

A particularly characteristic feature of Klein’s lecture courses and of his approach
of “Elementary Mathematics from a Higher Standpoint” is the important role at-
tributed to the history of mathematics. Klein explains various times his conviction
that exposing key features of the historical development of concepts will support
his methodological orientation to lead to a deeper understanding of the fundaments
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of mathematics. Klein thus reveals himself as a probably first and staunch supporter
of the use of history for the teaching of mathematics — what thus became since 1976
the international movement, well known as HPM.2

Yet, one has to admit that at his time there was only one conception available
for the use of mathematics history in teaching: the so-called biogenetic law, affirm-
ing a recapitulation of the historical development by the individual. There was a
widespread conviction of the validity of this “law” for biology; and its applicability
for education belonged to the dominant mentalities of the epoch, though with some
more reservations. As quickly as the biogenetic law had spread after Haeckel’s
propagation, as quickly it disappeared from public discourses in education, in the
inter-war period, and seemingly completely. It was mentioned for the first time,
after this falling into oblivion, in 1962, in the memorandum of 65 mathematicians
against “new math”. What is the most astonishing, however, is the revival of this
conception — reputed to be dead, and this exactly with more work done on the use
of the history of mathematics in teaching: since about the 1990s. It seems that there
are still no other well-developed or known conceptions how to relate history with
teaching (see Schubring 2006). Therefore, one cannot blame Klein to have referred
often to this conception.

A further issue in this regard is which historiography of mathematics is adapted
to be used for the context of teaching. Felix Klein was not only highly interested
in the history of mathematics; he promoted strongly research into the history. For
instance, he initiated research into the manuscripts of Gaufl and he organised the
publication of Collected Works of several mathematicians. Thus, he was com-
pletely aware of the results of historical research into the history of mathematics
as achieved until his times. And this knowledge was the basis for his historical
annotations and affirmations in the three volumes. Clearly, as historiographical re-
search has progressed since then, not all his information is today still the state of
the art.

Why a Revised Translation of Volume I?

This edition is the first complete English translation of Klein’s first volume of the
Elementarmathematik. In fact, the original volume contains, at its end, two appen-
dices, of 14 pages: one on the efforts to reform mathematics teaching, while the
other gives complementary information on mathematical and pedagogical literature
— thus revealing sections for complementing to understand Klein’s views on teach-
ing mathematics. The translators were aware of these two appendices: they are
mentioned in their version of 1931, in the footnote 1 on p. 1, added by themselves.
However, they omitted these two sections without any comment or justification.

2 The International Study Group on the relations between the HISTORY and PEDAGOGY of
MATHEMATICS, founded in 1976, an affiliated Group of ICMI.
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Moreover, the misleading translation of the title for the entire series had already
to be outlined. One is therefore led to ask who were the two American translators.
Their biography shows them to have been well-qualified mathematicians. Both
translators, Earle Raymond Hedrick and Charles Albert Noble studied in Gottin-
gen, then the internationally leading centre of mathematics, with Klein and with
Hilbert. Both obtained their PhD as doctoral students of Hilbert, in 1901. After
their return to the States, they played an important role in building up the country’s
mathematical institutions. Hedrick, first mathematics professor at the University of
Missouri, was called in 1924 to the University of California at Los Angeles. He
served as first President of the Mathematical Association of America in 1916, and
later as President of the American Mathematical Society (1929-1930). Noble, at
first a mathematics teacher at colleges, became a mathematics professor at the Uni-
versity of California at Berkeley (Parshall & Rowe 1994, p. 410 and 440 et seq.).
One is therefore struck to remark their translation being marred by numerous ter-
minological and textual faults.

What catches the eye immediately, besides the “advanced” issue, is their trans-
lation for Mengenlehre. Although Mengenlehre was a major issue of discussion
during the time of their studies in Gottingen, they are not familiar with the English
term. In the first part, they use persistently “theory of point sets”. In the spe-
cial section on set theory, they give as title “Theory of assemblages” and use here
“assemblage” for set, but not consistently — they also use “aggregate”. One might
infer that set theory had not yet really arrived in the States by the 1930s.

Actually, the two translators have qualified, in their preface, their work as “a
rather free translation”. That would be admissible, but this is not the case. At
too many places, the text gives not the intended meaning, but rather erroneous and
misleading translations, in particular with regard to mathematics, not only with
regard to the general style.

Surely, a problem might have arisen by the character of Klein’s text as lecture
notes — taken during his courses by students. Thus, the text represents oral teaching,
and not a text intentionally composed for printing. The lecture notes are therefore
written quite often in a rather colloquial style — and the specifity of translating con-
sists in rendering well the meaning of such idioms. Not being aware of this textual
style is already a first reason for misleading translations. Surely, both translators
did not acquire such an intimate knowledge of the German language during their
stay in Germany. Noble, for instance, gave his presentations in Klein’s seminar in
English (Parshall & Rowe 1994, p. 257).

But even Klein’s famous statement about the double discontinuity between sec-
ondary schools and university studies is rendered in a misleading way: while Klein
is complaining about this discontinuity as a persistent problem, including his own
times, the translators transformed this into past tense — as if the problem had al-
ready been overcome! This introductory passage of the book, on p. [1], contains no
colloquial terms at all.

A problem pervading both volumes I and II consists in not being aware of one of
the most basic concepts of Klein: of Anschauung — for him the fundament of con-
ceptual development of mathematics. And, as it is well know, Anschauung presents
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since the times of Immanuel Kant, a key notion of German philosophy. Hedrick
and Noble did not attempt to take the complexity of this notion into account. Thus,
Raum-Anschauung becomes simply “space perception”, and anschaulich is gener-
ally translated as “graphical”, thus entirely misleading.

Of the countless cases of translation errors, I should just mention a few types:

e missing care of mathematical statements. On p. [55], discussing the polygons,
which can be constructed with ruler and compass, the correct translation says:
“It was known to the ancients, too, that this construction was possible for the
number of vertices n = 2",3,5 (h an arbitrary integer), and likewise for the
composite values n = 2h 3 p=20.5n=2".3.5”

Their text says, however: ... for the numbers n = 2",3,5 (h an arbitrary inte-
ger), and likewise for the composite values n = 2" - 3.5.”

e changing mathematical statements in Klein’s text. In the section on transforma-
tion of fractions into decimal numbers, Klein had dealt with the “fraction 1/p,
where p is a prime number different from 2 and 5” and wanted to prove “that 1/p
is equal to an infinite periodic decimal fraction”, using the congruence: 10° = 1
(mod p), with § being the number of places in the period. For his proof, Klein
used Fermat’s little theorem:

which states that for every prime number p and for every integer a not
divisible by p:
a’ =1 (mod p).
Hedrick and Noble apparently thought Klein had confused a with 10 and re-
placed Klein’s text by a “proper”” Fermat theorem:

which states that for every prime number p except 2 and 5:
107! = 1 (mod p).

e inconsistent mathematical terminology. When Riemann surfaces are discussed,
they use in many parts as term “leaf/leaves/leaved”. There is one section, how-
ever, where they use “sheet/sheets/sheeted”.

e wrong terms. Discussing the pendulum law, Klein said on p. [202]: “Man
geht hier aus von dem konischen Pendel, das ist ein rdumliches Pendel”. Thus
“konisch” is clearly a mathematical term, more exactly a geometrical one. Yet,
their translation was: “One begins with a canonical pendulum, i.e. a pendulum
in space”. The religious term “canonical” is even repeated on the next page.

One gets the impression that some parts were given to students for translation, and
that the resulting various parts were not coordinated and checked. And there was
no critical reading by a native German.

Information About this Edition

Klein participated, together with Fritz Seyfarth, in the whole project of re-editing
the three volumes on Elementary mathematics from a higher standpoint. He suc-
ceeded, in fact, to finish the third edition of the first two volumes.



Xii Preface to the 2016 Edition

In the text the reader will find, in square brackets and in bold, the page number-
ing of the original edition. Cross references in notes and in the text refer to this
numbering, as well as the name index and the subject index (that is, the original text
has not been changed to this respect). Moreover, I left, as in the German edition,
the comma to separate the integer part from the fractional part of a decimal number.

In the present translation I have added, when possible, the first names of the
persons mentioned. In the German edition, as it was customary at that time, the
first names were indicated only with the initials. The bibliographic references in
the notes have also been completed, when needed.

In the English version of 1932, Hedrick and Noble had sometimes added in
the notes references for recent pertinent American publications; these have been
maintained; their notes are marked with asterisks. Several additional notes have
been introduced; they are marked by square brackets.

I am thanking Leo Rogers for his careful re-reading of the book, and the many
colleagues whom I asked advice, in particular Geoffrey Howson.

These three volumes will be produced by the same file for the print version and
for the parallel ebook version. Since the present technology for ebooks does not
allow the wrapping of figures within the text as it did in the traditional practice of
printing, we have to live with this restriction for the type face.

We are grateful to Dover Publication to have authorised the use their book “Ele-
mentary Mathematics from an Advanced Standpoint”, translated by E. R. Hedrick
and C. A. Noble, for a revised new edition.
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Preface to the First Edition

The new lithographed volume which I herewith offer to the mathematical public,
and especially to the teachers of mathematics in our secondary schools, is to be
looked upon as a first continuation of the lectures Uber den mathematischen Un-
terricht an den hoheren Schulen™, in particular, of those on Die Organisation des
mathematischen Unterrichts** by Schimmack and me, which were published last
year by Teubner. At that time our concern was with the different ways in which
the problem of instruction can be presented to the mathematician. At present my
concern is with developments in the subject matter of instruction. I shall endeavor
to put before the teacher, as well as the maturing student, from the view-point of
modern science, but in a manner as simple, stimulating, and convincing as possible,
both the content and the foundations of the topics of instruction, with due regard
for the current methods of teaching. I shall not follow a systematically ordered
presentation, as do, for example, Weber and Wellstein, but I shall allow myself
free excursions as the changing stimulus of surroundings may lead me to do in the
course of the actual lectures.

The program thus indicated, which for the present is to be carried out only for the
fields of Arithmetic, Algebra, and Analysis, was indicated in the preface to Klein-
Schimmack (April 1907). I had hoped then that Mr. Schimmack, in spite of many
obstacles, would still find the time to put my lectures into form suitable for printing.
But I myself, in a way, prevented his doing this by continuously claiming his time
for work in another direction upon pedagogical questions that interested us both.
It soon became clear that the original plan could not be carried out, particularly
if the work was to be finished in a short time, which seemed desirable if it was
to have any real influence upon those problems of instruction which are just now
in the foreground. As in previous years, then, I had recourse to the more conve-
nient method of lithographing my lectures, especially since my present assistant,
Dr. Ernst Hellinger, showed himself especially well qualified for this work. One
should not underestimate the service which Dr. Hellinger rendered. For it is a far

* On the teaching of mathematics in the secondary schools.
** The organization of mathematical instruction.

Xiii
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cry from the spoken word of the teacher, influenced as it is by accidental conditions,
to the subsequently polished and readable record.

In precision of statement and in uniformity of explanations, the lecturer stops
short of what we are accustomed to consider necessary for a printed publication.

I hesitate to commit myself to still further publications on the teaching of math-
ematics, at least for the field of geometry. 1 prefer to close with the wish that the
present lithographed volume may prove useful by inducing many of the teachers of
our higher schools to renewed use of independent thought in determining the best
way of presenting the material of instruction. This book is designed solely as such a
mental spur, not as a detailed handbook. The preparation of the latter I leave to those
actively engaged in the schools. It is an error to assume, as some appear to have
done, that my activity has ever had any other purpose. In particular, the Lehrplan
der Unterrichtskommission der Gesellschaft Deutscher Naturforscher und Arzte***
(the so-called “Meraner” Lehrplan) is not mine, but was prepared, merely with my
cooperation, by distinguished representatives of school mathematics.

Finally, with regard to the method of presentation in what follows, it will suffice
if I say that I have endeavored here, as always, to combine geometric intuition with
the precision of arithmetic formulas, and that it has given me especial pleasure to
follow the historical development of the various theories in order to understand
the striking differences in methods of presentation which parallel each other in the
instruction of today.

Gottingen, June, 1908

Klein.

*** Curriculum prepared by the commission on instruction of the Society of German Natural Sci-
entists and Physicians.
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After the firm of Julius Springer had completed so creditably the publication of my
collected scientific works, it offered, at the suggestion of Professor Courant, to bring
out in book form those of my lecture courses which, from 1890 on, had appeared in
lithographed form and which were out of print except for a small reserve stock.

These volumes, whose distribution had been taken over by Teubner, during the
last decades were, in the main, the manuscript notes of my various assistants. It was
clear to me, at the outset, that I could not undertake a new revision of them without
again seeking the help of younger men. In fact I long ago expressed the belief that,
beyond a certain age, one ought not publish independently. One is still qualified,
perhaps, to direct in general the preparation of an edition, but is not able to put the
details into the proper order and to take into proper account recent advances in the
literature. Consequently I accepted the offer of Springer only after I was assured
that liberal help in this respect would be provided.

These lithographed volumes of lectures fall into two series. The older ones are
of special lectures which I gave from time to time, and were prepared solely in
order that the students of the following semester might have at hand, the material
which I had already treated and upon which I proposed to base further work. These
are the volumes on Non-Euclidean Geometry, Higher Geometry, Hyper geometric
Functions, Linear Differential Equations, Riemann Surfaces, and Number Theory.
In contrast to these, I have published several lithographed volumes of lectures which
were intended, from the first, for a larger circle of readers. These are:

a) The volume on Applications of Differential and Integral Calculus to Geo-
metry, which was worked up from his manuscript notes by C. H. Miiller. This was
designed to bridge the gap between the needs of applied mathematics and the more
recent investigations of pure mathematicians.

b) and c¢) Two volumes on Elementary Mathematics from a Higher Standpoint,
prepared from his manuscript notes by Ernst Hellinger. These two were to bring to
the attention of secondary school teachers of mathematics and science the signifi-
cance for their professional work of their academic studies, especially their studies
in pure mathematics.

XV
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A thoroughgoing revision of the volumes of the second series seemed unnec-
essary. A smoothing out, in places, together with the addition of supplementary
notes, was thought sufficient. With their publication therefore, the initial step is
taken. Volumes b), c), a) (in this order) will appear as Parts I, I, III of a single pub-
lication bearing the title Elementary Mathematics from a Higher Standpoint. The
combining, in this way, of volume a) with volumes b) and c) will meet the approval
of all who appreciate the growing significances of applied mathematics for modern
school teaching.

Meantime the revision of the volumes of the first series has begun, starting with
the volume on Non-Euclidean Geometry. But a more drastic recasting of the mate-
rial will be necessary here if the book is to be a well-rounded presentation, and is
to take account of the recent advances of science. So much as to the general plan.
Now a few words as to the first part of the Elementary Mathematics.

I have reprinted the preface to the 1908 edition of b) because it shows most
clearly how the volume came into existence’. The second edition (1911), also
lithographed, contained no essential changes, and the minor notes which were ap-
pended to it are now incorporated into the text without special mention. The present
edition retains*, in the main, the text of the first edition, including such peculiarities
as were incident to the time of its origin. Otherwise it would have been necessary
to change the entire articulation, with a loss of homogeneity. But during the sixteen
years which have elapsed since the first publication, science has advanced, and great
changes have taken place in our school system, changes which are still in progress.
This fact is provided for in the appendices which have been prepared, in collabora-
tion with me, by Dr. Seyfarth (Studienrat at the local Oberrealschule). Dr. Seyfarth
also made the necessary stylistic changes in the text, and has looked after the print-
ing, including the illustrations, so that I feel sincerely grateful to him. My former
co-workers, Messrs. Hellinger and Vermeil, as well as Mr. Alwin Walther of Got-
tingen, have made many useful suggestions during the proof reading. In particular,
I am indebted to Messrs. Vermeil and C. Billig for preparing the list of names and
the index. The publisher, Julius Springer has again given notable evidence of his
readiness to print mathematical works in the face of great difficulties.

Gottingen, Easter, 1924

Klein.

3 My co-worker, R. Schimmack, who is mentioned there, died in 1912 at the age of thirty-one
years, from a heart attack with which he was seized suddenly, as he sat at his desk.
4 New comments are placed in brackets.
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Introduction

The Aim of this Lecture Course

In recent years’, a far reaching interest has arisen among university teachers of
mathematics and natural sciences directed toward an appropriate training of future
teachers at secondary schools, satisfying all desirable needs. This is really quite
a new phenomenon. For a long time prior to its appearance, university men were
practicing exclusively research of optimal quality, without giving a thought to the
needs of the schools, without even caring to establish a connection with school
mathematics. What is the result of this practice? The young university student finds
himself, at the outset, confronted with problems, which do not remember, in any
particular, the things with which he had been concerned at school. Naturally he
forgets all these things quickly and thoroughly. When, after finishing his course of
study, he becomes a teacher, he suddenly finds himself expected to teach the tradi-
tional elementary mathematics according to school practice; and, since he will be
scarcely able, unaided, to discern any connection between this task and his univer-
sity mathematics, he will soon fell in with the time honoured way of teaching, and
his university studies remain only a more or less pleasant memory which has no
influence upon his teaching.

There is now a movement to abolish this double discontinuity, never having been
helpful either to the school or to the university. On the one hand, there is an effort
to impregnate the subject matter, which the schools teach with new ideas derived
from modern developments of science and in accord with modern culture. We shall
often have occasion to go into this. On the other hand, the attempt is made to take
into account, in university teaching, the needs of the school teacher. And it is pre-
cisely in such summarising lecture courses as I am about to deliver to you that I see
one of the most important tools. I shall by no means address myself to beginners,
but I shall take for granted that you are all acquainted with the main features of the
most important disciplines of mathematics. I shall often have to talk of problems of

3 [Attention is again drawn to the fact that the wording of the text is, almost throughout, that of the
lithographed volume of 1908 and that comments which refer to later years have been put into the
footnotes and appendices.]
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algebra, of number theory, of function theory, etc., without being able to go into
details. You must, therefore, be moderately familiar with these fields, in order to
follow me. My task will always be to show you the mutual connection between
problems in the various disciplines, these connections use not to be sufficiently
considered in the specialised lecture courses, and I want more especially to empha-
size the relation of these problems to those of school mathematics. In this way 1
hope to make it easier for you to acquire that ability which I look upon as the real
goal of your academic study: the ability to draw (in ample measure) from the great
body of knowledge taught to you here as vivid stimuli for your teaching.

Let me now put before you some documents of recent date which give evidence
of widespread interest in the training of teachers and which contain valuable mate-
rial for us. Above all I think here of the talks given at the last Meeting of Naturalists
held September 16, 1907, in Dresden, to which body we submitted the “Proposals
for the Scientific Training of Prospective Teachers of Mathematics and Science” of
the Committee on Instruction of the Society of German Naturalists and Physicians.
You will find these Proposals as the last section in the Complete Report of this
Committee® which, since 1904, has been considering the entire complex of ques-
tions concerning teaching of mathematics and natural sciences and has now ended
its activity; I urge you to take notice, not only of these Proposals, but also of the
other parts of this very interesting report. Shortly after the Dresden meeting there
occurred a similar debate at the Meeting of German Philologists and Schoolmen
in Basel, September 25, in which, to be sure, the mathematical-scientific reform
movement was discussed only as one link in the chain of parallel movements oc-
curring in the spheres of philologists. After a report by me concerning our aims in
mathematical-natural science reform there were talks by Paul Wendland (Breslau)
on questions in classical and ancient studies, Almut Brandl (Berlin) on modern
languages and, finally, Adolf Harnack (Berlin) on History and religion. These four
talks appeared together in one brochure’ to which I particularly refer you. I appreci-
ate the thus initiated joint proceeding of our sciences with the philologists as highly
fruitful, since it will bring about friendly feeling and mutual understanding between
two groups who face each other as aliens, or even adversely. Let us endeavour al-
ways to foster such good relations even if we do among ourselves occasionally drop
a critical word about the philologists, just as they may about us. Bear in mind that
you will later be called upon in the schools to work together with the philologists for
the common good and that this requires mutual understanding and appreciation —
always beyond the particularism for the proper discipline.

S Die Titigkeit der Unterrichtskommission der Gesellschaft deutscher Naturforscher und Arzte,
edited by August Gutzmer. Leipzig and Berlin, 1908. [The German title of the last section is:
Vorschldge fiir die wissenschaftliche Ausbildung der Lehramtskandidaten der Mathematik und
Naturwissenschaften.]

7 Universitéit und Schule. Vortrédge ... gehalten von F. Klein, Paul Wendland, Almut Brandl, Adolf
Harnack. Leipzig 1907.
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Relevant Literature

Along with this evidence of efforts which reach beyond the borders of our field, I
should like to mention a few books which aim in the same direction, in particular
in the mathematical field and which will therefore become very important for these
lectures. Three years ago I gave, for the first time, a course of lectures with a sim-
ilar purpose. My assistant at that time, Rudolf Schimmack, worked the material
up and the first part has recently appeared in print®. In it are considered the dif-
ferent kinds of schools, including higher education, the general methods to teach
mathematics in them, their mutual interacting, and other similar matters. In what
follows I shall from time to time refer to things which appear there without repeat-
ing them. The more extensive I will discuss here — somehow as continuation of
those observations on the organisation of mathematics teaching — the mathematical
subject matter, which in whatever way can be relevant for teaching in schools. If
I frequently refer to the actual method of teaching in the schools, my remarks will
be based not merely upon indefinite pictures of how the thing might be done or
even upon dim recollections of my own school days; for I am constantly in touch
with Schimmack, who is now teaching in the Goéttingen Gymnasium and who keeps
me informed as to the present state of teaching, which has, in fact, advanced sub-
stantially beyond what it was in earlier years. During this winter semester I shall
discuss “the three great A’s”, that is arithmetic, algebra, and analysis, withholding
geometry for a continuation of the lecture course during the coming summer term.
Let me remark that, in the language of the secondary schools, these three subjects
are classed together as “arithmetic”, and that we shall more often note deviations
in the mathematical terminology of the schools as compared with that in higher
education. This small illustration shows you, that only vivid interlocking can bring
about agreement.

As a second reference I shall mention the three volume Enzyklopdidie der Ele-
mentarmathematik by Heinrich Weber and Josef Wellstein, the work which, among
recent publications, most nearly accords with my own tendencies. For this semester,
the first volume, Enzyklopddie der elementaren Algebra und Analysis, prepared by
H. Weber?, will be the most important. I shall indicate at once certain differences
between this work and the plan of my lecture course. In Weber-Wellstein, the en-
tire structure of elementary mathematics is built up systematically and logically in
the mature language accessible to the advanced student. No account is taken of
how these things actually may come up in school teaching. The presentation in
the schools, however, should be psychological — to use a ‘catch word’ — and not
systematic. The teacher so to speak, must be a diplomat. He must take account of
the psychic processes in the boy in order to grip his interest; and he will succeed

8 Klein, F., Vortrige iiber den mathematischen Unterricht an hoheren Schulen. Prepared by Rudolf
Schimmack. Part 1. Von der Organisation des mathematischen Unterrichts. Leipzig 1907. This
book is referred to later as “Klein-Schimmack”.

% Second edition. Leipzig 1906. [Fourth edition, 1922, revised by P. Epstein. — Referred to as
“Weber-Wellstein I”].
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only if he presents things in a form intuitively comprehensible. A more abstract
presentation will be possible only in the upper grades. For example: The child can-
not possibly understand if numbers are explained axiomatically as abstract things
devoid of meaning, with which one can operate according to formal rules. On the
contrary, he associates numbers with concrete representations. They are nothing
else than quantities of nuts, apples, and other good things, and in the beginning they
can be and should be put before him only in such tangible form. While this goes
without saying, one should — mutatis mutandis — take it to heart, that in all teaching,
even in higher education, mathematics should be associated with everything that is
seriously interesting to a person at the particular stage of his development and that
can in any way be brought into relation with mathematics. It is just this which is
aimed by the recent efforts to emphasise applied mathematics at the university. This
need has never been overlooked in the schools so much as it has at the university. It
is just this ‘psychological moment’ which I shall try to emphasize especially in my
lectures.

Another difference between Weber-Wellstein and myself has to do with delim-
iting the content of school mathematics. Weber and Wellstein are disposed to be
“conservative”, while I am “progressive”. These things are thoroughly discussed
in Klein-Schimmack. We, who use to be called the “reformers”, would put the

function concept at the very centre of teaching, because, of all the concepts of the

mathematics of the past two centuries, this one plays the leading role wherever
mathematical thought is used. We would introduce it into teaching as early as pos-
sible with constant use of the graphical method, the representation of functional
relations in the x-y-system, which is used today as a matter of course in every
practical application of mathematics. In order to make this innovation possible,
we would abolish much of the traditional subject matters of teaching, topics which
may in themselves be interesting, but which are less essential from the standpoint of
their significance in connection with the entire modern culture. Intense formation
of space intuition, above all, will always be a prime task. In its upper reaches, how-
ever, teaching should enter far enough into the elements of infinitesimal calculus
for the natural scientist or insurance specialist to get at school the tools which will
be indispensable to him. As opposed to these comparatively recent ideas, Weber-
Wellstein adhere essentially to the traditional limitations of the subject matter. In
this lecture course I shall of course be a protagonist of the new conception.

My third reference will be to a very stimulating book: Didaktik und Methodik
des Rechnens und der Mathematik'® by Max Simon, who like Weber and Well-
stein is working at Strassburg. Simon is often in agreement with our views, but
there are also many opposite standpoints; and inasmuch as he is a very subjective,
temperamental, personality he often clothes these contrasting views in vivid words.
To give one example, the proposals of the Committee on Instruction of the Natu-
ral Scientists require one hour of geometric propaedeutic in the second year of the
Gymnasium, whereas at the present time this usually begins only in the third year.

10 Second edition, Miinchen 1908. Separate reprint from Baumeister’s Handbuch der Erziehungs-
und Unterrichtslehre fiir hohere Schulen, first edition, 1895.
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It has long been a matter of discussion which plan is the better; and the custom in
the schools has often changed. But Simon declares the position taken by the Com-
mission, which, mind you, is at worst open to argument, to be “worse than a crime”,
and that without in the least substantiating his judgment. One could find many pas-
sages of this sort. As a precursor of this book I might mention Simon’s Methodik
der elementaren Arithmetik in Verbindung mit algebraischer Analysis''. After this
brief introduction let us go over to the subject proper, which I shall consider under
the three headings, as above indicated. [6]

' Leipzig 1906. [Regarding more recent literature, confer appendices 1 and 2, pp. 2900-303].
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I. Calculating with Natural Numbers

We begin with the foundation of all arithmetic, calculation with positive integers.
Here, as always in the course of these lectures, we first raise the question as to how
these things are handled in the schools; then we shall proceed to the question as to
what they imply when viewed from a higher standpoint.

1. Introduction of Numbers in the Schools

I shall confine myself to brief suggestions. These will enable you to recall how
you yourselves learned your numbers. In such an exposition it is, of course, not
my purpose to induct you into the practice of teaching, as should be done in the
Seminars of the secondary schools. I shall merely exhibit the material upon which
we shall base our critique.

The problem of teaching children the properties of integers and how to reckon
with them, and of leading them on to complete mastery, is very difficult and re-
quires the labour of several years, from the first school year until the first or second
year of the Gymnasium. The manner of teaching as it is carried on in this field in
Germany can perhaps best be designated by the words intuitive and genetic, i.e.,
the entire structure is gradually erected on the basis of familiar, concrete things,
in marked contrast to the customary logical and systematic method in higher edu-
cation.

One usually divides up this topic of teaching roughly as follows: The entire first
year is occupied with reckoning in the number domain from 1 to 20, the first half
being devoted to the range 1 to 10. The integers appear at first as number pictures
of points or as quantities of all sorts of objects familiar to the children. Addition
and multiplication are then presented by intuitional methods, and are fixed in mind.

In the second stage, the number domain from 1 to 100 are taught and the Arabic
numerals, together with the notion of positional value and the decimal system, are
introduced intensely. Let us note, incidentally, that the name “Arabic numerals”,
like so many others in science, is historically wrong. This form of writing was in-
vented by the Hindus, not by the Arabs. Another principal aim of the second stage
is knowledge of the multiplication table. One must know what 5 x 7 or 3 x 8 is
in “one’s sleep”, so to speak. Consequently the pupil must learn the multiplication

© Springer-Verlag Berlin Heidelberg 2016 9
F. Klein, Elementary Mathematics from a Higher Standpoint,
DOI 10.1007/978-3-662-49442-4 2
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table by heart to this degree of thoroughness, to be sure only after it has been made
clear to him visually with concrete objects. To this end the abacus is used to ad-
vantage. It consists, as you all know, of 10 wires stretched one above another, upon
each of which there are strung ten movable beads. By sliding these beads in the
proper way, one can read off the result of multiplication and also its decimal form.

The third stage, finally, teaches calculation with numbers of more than one digit,
based on the known simple rules whose general validity is evident, or should be
evident, to the pupil. To be sure, this evidence does not always enable the pupil to
make the rules completely his own; they are often instilled with the authoritative
dictum: “It is thus and so, and if you don’t know it yet, so much the worse for you!”

I should like to emphasize another point in this teaching, which is usually ne-
glected in higher education. It is that the application of numbers to practical life is
strongly emphasized. From the beginning, the pupil is dealing with numbers taken
from real situations, with coins, measures, and weights; and the question, “What
does it cost?”, which is so important in daily life, forms the pivot of much of the
material of teaching. This plan rises soon to the stage of word problems, when de-
liberate thought is necessary in order to determine what calculation is demanded.
It leads to the problems in regeldetri, alligation, etc. To the words intuitive and
genetic, which we used above to designate the character of this teaching, we can
add a third word, applications.

We might summarize the purpose of the number work by saying: It aims at
reliability in the use of the rules of operation, based on a parallel development of
the intellectual abilities involved, and without special concern for logical relations.

Incidentally, I should like to direct your attention to a contrast which often plays
a mischievous role in the schools, viz., the contrast between the university-trained
teachers and those who have attended normal schools (“Seminar”)'? for the prepa-
ration of elementary school teachers. The former displace the latter, as teachers of
arithmetic, during or after the Quinta (the second year of the Gymnasium), with the
result that a regrettable discontinuity often manifests itself. The poor youngsters
must suddenly make the acquaintance of new expressions, whereas the old ones are
now forbidden. A simple example is the different multiplication signs, the x being
preferred by the elementary teacher, the point by the one who has attended the uni-
versity. Such conflicts can be dispelled, if the more highly trained teacher will give
more heed to his Seminar-trained colleague and will try to meet him on common
ground. That will become easier for you, if you will realize what high regard one
must have for the performance of the elementary school teachers. Imagine what
methodical training is necessary to inculcate over and over again a hundred thou-
sand stupid, unprepared children with the principles of reckoning! Try it with your
university training; you will not have great success!

12 This refers to the “Seminare” for the training of primary school teachers, which have nothing to
do with the before mentioned “Seminare” at secondary schools. [Translator’s note: These served
for giving some practical advise for teaching, for those beginning teachers who had just qualified
at universities.]
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Returning, after this digression, to the subject matter of teaching, we note that
after the Quarta of the Gymnasium™*, and especially in the Tertia, arithmetic begins
to take on the more noble dress of mathematics, for which the transition to opera-
tions with letters is characteristic. One designates by a, b, c, or x, y, z any numbers,
at first only positive integers, and applies the rules and operations of arithmetic to
the numbers thus symbolized by letters, whereby the numbers are devoid of con-
crete intuitive content. This represents such a long step in abstraction that one
may well declare that real mathematics begins with operations with letters. Natu-
rally this transition must not be accomplished suddenly. The pupils must accustom
themselves gradually to such marked abstraction.

It seems unquestionably necessary that, for this teaching, the teacher should
know thoroughly the logical laws and foundations of reckoning and of the theory
of integers — although he evidently will not teach them directly to the pupil. Let us
now study this more in detail.

2. The Fundamental Laws of Reckoning

Addition and multiplication were familiar operations long before any one inquired
as to the fundamental laws governing these operations. It was in the twenties and
thirties of the last century that particularly English and French mathematicians
formulated the fundamental properties of the operations, but I will not enter into
historical details here. If you wish to know more, I recommend to you, as I shall
often do, the great Enzyklopddie der Mathematischen Wissenschaften mit Einschluf3
ihrer Anwendungen'3, and also the French translation: Encyclopédie des Sciences
mathématiques pures et appliquées'* which bears in part the character of a revised
and enlarged edition. If a school library has only one mathematical work, it ought
to be this encyclopedia, for through it the teacher of mathematics would be placed
in position to continue his work in any direction that might interest him. For us, at
this place, the article of interest is the first one in the first volume!® Hermann Schu-
bert: “Grundlagen der Arithmetik”, of which the translation into French is by Jules
Tannery and Jules Molk.

Going back to our theme, I shall enumerate the five fundamental laws upon which
addition depends:

* The German Gymnasium was a nine-year secondary school. Its grades were named: Sexta,
Quinta, Quarta, Unter-Tertia, Ober-Tertia, Unter-Sekunda, Ober-Sekunda, Unter-Prima, Ober-
Prima. Preparatory schooling for those intending to enter the Gymnasium, used to be different
from the Volksschulen for the lower social classes.

13 Leipzig (B. G. Teubner) from 1908 on. Volume I has appeared complete, Volumes II-VI are
nearing completion.

14 Paris (Gauthier-Villars) and Leipzig (Teubner) from 1904 on; unfortunately the undertaking had
to be abandoned after the death of its editor J. Molk (1914).

15 Arithmetik und Algebra, edited by Wilhelm Franz Meyer (1896-1904); in the French edition,
the editor was Jules Molk.

(9]



12 I. Calculating with Natural Numbers

1. a + b is always again a number, i.e., addition is possible without re-
strictions (in contrast to subtraction, which is not always possible in the domain
of positive integers).

2.a+ bis one-valued.

3. The associative law holds:

(a+b)y+c=a+(b+c),

so that one may omit the parentheses entirely.
4. The commutative law holds:

a+b=>b+a.
5. The monotonic law holds:
If b>c, thena+b>a-+c.

These properties are all obvious immediately if one recalls the notion of quantity,

[10] which was deduced directly from intuition; but they must be peeled out formally in
order to support logically the later developments.

For multiplication there are five exactly analogous laws:

1. a - b is always a number.

2. a-bisone-valued.

3. Associative law: a - (b-c) = (a-b)-c=a-b-c.

4. Commutative law: a -b = b - a.

5. Monotonic law: If b > ¢, thena -b > a - c.

A connection of multiplication with addition is given by the following law.

6. Distributive law:

a-b+c)=a-b+a-c.

It is easy to show that all elementary reckoning is based only upon these eleven
laws. It will be sufficient to illustrate this fact by a simple example, say the multi-
plication of 7 and 12. From the distributive law we have:

7-12=7-(10 +2) = 70 + 14,

and if we separate 14 into 10 + 4 (carrying the tens), we have, by the associative
law of addition,

70 + (10 +4) = (70 + 10) + 4 = 80 + 4 = 84.

You will recognize in this procedure the steps of the usual decimal reckoning.
It would be well for you to construct for yourselves more complicated examples.
We might summarize by saying that ordinary reckoning with integers consists in
repeated use of the eleven fundamental laws together with the memorized results of
the addition and multiplication tables.
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But where does one use the monotonic laws? In ordinary formal reckoning, to
be sure, they do not appear, but in certain other problems. Let me remind you of the
process called abridged multiplication and division with decimal numbers'®. That
is a thing of great practical importance which unfortunately is too little known in the
schools, as well as among university students, although it is sometimes mentioned
in the Quinta. As an example, suppose that one wished to compute 567 - 134, and
that the units digit in each number was of questionable accuracy, say as a result of
physical measurement. It would be unnecessary work, then, to determine the pro-
duct exactly, since one could not guarantee an exact result. It is, however, important
to know the order of magnitude of the product, i.e., to know between which tens
or between which hundreds the exact value lies. The monotonic law supplies this
estimate at once; for it follows by that law that the desired value lies between 560 -
134 and 570 - 134 or between 560 - 130 and 570 - 140. I leave to you the carrying
out of the details; at least you see that the monotonic law is continually used in
abridged reckoning.

A systematic exposition of these fundamental laws is, of course, not to be thought
of in the real teaching in schools. Only after the pupils have gained a concrete
understanding and a secure mastery of reckoning with numbers, and are ready for
the transition to operations with letters, the teacher should take the opportunity to
state, at least, the associative, commutative, and distributive laws and to illustrate
them by means of numerous obvious numerical examples.

3. The Logical Foundations of Operations with Integers

While teaching in the schools will naturally not rise to still more difficult questions,
present mathematical investigation really begins with the question: How does one
Justify the above-mentioned fundamental laws, how does one explain the concept of
number at all? 1 shall try to explain this matter in accordance with the announced
purpose of this lecture course to endeavour to get new light upon school topics by
looking at them from a higher point of view. I am all the more willing to do this
because these modern thoughts crowd in upon you from all sides during your aca-
demic years, but not always accompanied by any indication of their psychological
significance.

First of all, so far as the concept of number is concerned, it is very difficult to
discover its origin. Perhaps one is happiest if one decides to ignore these most dif-
ficult questions. For more complete information as to these questions, which are
so earnestly discussed by the philosophers, I must refer you to the article, already
mentioned, in the French Enzyclopdidie, and I shall confine myself to a few remarks.
A widely accepted belief is that the concept of number is closely connected with
the notion of time, with temporal succession. The philosopher Kant and the math-
ematician Hamilton represent this view. Others think that number has more to do

16 The monotonic laws will be used later, in the theory of irrational numbers.
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with space intuition. They base the concept of number upon the simultaneous per-
ception of different objects which are near each other. Still others see, in number
representations, the expression of a peculiar faculty of the mind, which exists inde-
pendently of, and coordinate with, or even above, the intuition of space and time.
I think that this conception would be well characterized by quoting from Faust the
lines, which Minkowski, in the preface of his book on Diophantine Approximation,
applies to numbers:

“Gottinnen thronen hehr in Einsamkeit,
Um sie kein Ort, noch weniger eine Zeit.”

While this problem involves primarily questions of psychology and epistemol-
ogy, the justification of our eleven laws, at least the recent researches regarding
their compatibility, implies questions of logic. We shall distinguish the following
four points of view.

1. According 1to the first of these, best represented perhaps by Kant, the rules
of reckoning are immediate necessary results of Anschauung, whereby this word
is to be understood, in its broadest sense, as “inner perception” or intuition. It is
not to be understood by this that mathematics rests throughout upon experimen-
tally controllable facts of rough external experience. To mention a simple example,
the commutative law is established by examining the accompanying picture, which
consists of two rows of three points each, thatis, 2-3 = 3. 2.

o © »

L > *

If the objection is raised that in the case of only moderately large numbers, this
immediate perception would not suffice, the reply is that we call to our assistance
the theorem of mathematical induction. If a theorem holds for small numbers, and
if an assumption of its validity for a number n always insures its validity for n + 1,
then it holds generally for every number. This theorem, which I consider to be
really of an intuitive origin, carries us over the boundary where sense perception
fails. This standpoint is more or less that of Henri Poincaré in his well-known
philosophical writings.

If we would realize the significance of this question as to the source of the valid-
ity of our eleven fundamental rules of reckoning, we should remember that, along
with arithmetic, mathematics as a whole rests ultimately upon them. Thus it is not
asserting too much to say, that, according to the conception of the rules of reckon-
ing which we have just outlined, the certainty of the entire structure of mathematics
rests upon intuition, where this word is to be understood in its most general sense.

2. The second point of view is a modification of the first. According to it, one
tries to separate the eleven fundamental laws into a larger number of shorter steps
of which one need take only the simplest directly from intuition, while the remain-
der are deduced from these by rules of logic without any further use of intuition.
Whereas, before, the possibility of logical operation began only after the eleven
fundamental laws had been set up, it can start earlier here, after the simpler ones
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have been selected. The boundary between intuition and logic is displaced in favour
of the latter. Hermann Gramann did pioneer work in this direction in his Lehrbuch
der Arithmetik'” in 1861. As an example from it, I mention merely that the com-
mutative law can be derived from the associative law by the aid of the principle of
mathematical induction. — Because of the precision of his presentation, one might
place by the side of this book of GraBmann one by the Italian Giuseppe Peano,
Arithmetices principia nova methodo exposita'®. Do not assume, however, because
of this title, that the book was written in Latin! It is written in a peculiar symbolic
language designed by the author to display each logical step of the proof and em-
phasize it as such. Peano wishes to have a guarantee in this way, that he is making
use only of those principles which he explicitly introduces, while nothing addition-
ally whatever coming from intuition. He wishes to avoid the danger that countless
uncontrollable associations of ideas and reminders of perception might creep in if
he used our ordinary language. Note, too, that Peano is the leader of an exten-
sive Italian school which is trying in a similar way to separate into small groups
the premises of each individual branch of mathematics, and, with the aid of such
a symbolic language, to investigate their exact logical connections.

3. We come now to a modem development of these ideas, which has, moreover,
been influenced by Peano. I refer to that treatment of the foundations of arithmetic
which is based on the concept of set. You will be able to form a notion of the wide
range of the general idea of a set if I tell you that the sequence of all integers, as well
as the totality of all points on a line segment, are special examples of sets. Georg
Cantor, as is generally known, was the first to make this general idea the object of
systematic mathematical speculation.

The theory of sets, which he created, is now claiming the profound attention
of the younger generation of mathematicians. Later I shall endeavour to give you
a cursory view of set theory. For the present, it is sufficient to characterize as follows
the tendency of the new foundation of arithmetic which has been based upon it:
The properties of integers and of operations with them are to be deduced from the
general properties and abstract relations of sets, in order that the foundation may
be as sound and general as possible.

One of the pioneers along this path was Richard Dedekind, who, in his small but
important book Was sind und was sollen die Zahlen?'®, attempted such a foundation
for integers. Heinrich Weber essentially follows this point of view in the first part of
Weber-Wellstein, volume I (See p. 4). To be sure, the deduction is quite abstract and
offers, still, certain grave difficulties, so that Weber, in an Appendix to Volume 120,
gave a more elementary presentation, using only finite sets. In later editions, this

17With the addition to the title “fiir hohere Lehranstalten” (Berlin 1861). The corresponding
chapters are reprinted in H. GraBmann’s Gesammelte mathematische und, physikalische Werke
(edited by Friedrich Engel), Vol. 11, 1, pp. 295-349, Leipzig 1904.

18 Augustae Taurinorum. Torino 1889 — [There is a more comprehensive presentation in Peano’s
Formulaire de Mathématiques (1892—-1899)].

19 Braunschweig 1888; third edition 1911.

20 Angewandte Elementarmathematik. Revised by Heinrich Weber, Josef Wellstein, Rudolf Hein-
rich Weber. Leipzig 1907.
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appendix is incorporated into Volume I. Those of you who are interested in such
questions are especially referred to this presentation.

4. Finally, I shall mention the purely formal theory of numbers, which, indeed,
goes back to Leibniz and which has recently been brought into the foreground again
by Hilbert. His address Uber die Grundlagen der Logik und Arithmetik* at the Hei-
delberg Congress in 1904 is important for arithmetic?'. His fundamental conception
is as follows: Once one has the eleven fundamental rules of reckoning, one can op-
erate with the letters a, b, c, ..., which actually represent arbitrary integers, without
bearing in mind that they have a real meaning as numbers. In other words: let a, b,
c, ..., be things devoid of meaning, or things of whose meaning we know nothing;
let us agree only that one may combine them according to those eleven rules, but
that these combinations need not have any real known meaning. Obviously one can
than operate with a, b, c, ..., precisely as one ordinarily does with actual num-
bers. Only the question arises here whether these operations could lead once to
contradictions. Now ordinarily one says that intuition shows us the existence of
numbers for which these eleven laws hold, and that it is consequently impossible
for contradictions to lurk in these laws. But in the present case, where we are not
thinking of the symbols as having definite meaning, such an appeal to intuition is
not permissible. In fact, there arises the entirely new problem, to prove logically
that no operations with our symbols which are based on the eleven fundamental
laws can ever lead to a contradiction, i.e., that these eleven laws are consistent, or
compatible. While we were discussing the first point of view, we took the position
that the certainty of mathematics rests upon the existence of intuitional things which
fit its theorems. The adherents of this formal standpoint, on the other hand, must
hold that the certainty of mathematics rests upon the possibility of showing that
the fundamental laws considered formally and without reference to their intuitional
content, constitute a logically consistent system.

I shall close this discussion with the following remarks:

a) Hilbert indicated all of these points of view in his Heidelberg address, but he
performed none of them completely. Afterwards he pushed them somewhat farther
in a course of lectures, but then abandoned them. We can thus say that here is
constituted a research programme® .

b) The tendency to crowd intuition completely off the field and to attain to really
pure logical investigations seems to me not completely realisable. It seems to me
that one must retain a remainder, albeit a minimum, of intuition. One must always
tie a certain intuition, even in the most abstract formulation, with the symbols one
uses in operations, in order to be able always to recognise the symbols again, even
if one thinks only about the shape of the letters.

c) Let us even assume that the proposed problem has been solved in a way free
from objection, that the compatibility of the eleven fundamental laws has been

* On the foundations of logic and arithmetic.

2 Verhandlungen des 3. internationalen Mathematikerkongresses in Heidelberg August 8—13.
1904, p. 174 et seq., Leipzig 1905.

22 [These investigations have in the meantime been decisively promoted by Hilbert and his dis-
ciples.]
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proved purely logically. Precisely at this point an opening is offered for a re-
mark which I should like to make with the utmost emphasis. One must namely
become conscious that the proper arithmetic, the theory of actual integers, is
neither established, nor can ever be established, by considerations of this nature.
It is impossible to show in a purely logical way that the laws whose consistency
is established in that manner are actually valid for the numbers with which we
are intuitionally familiar; that the undetermined things, which are referred to, and
the operations which we apply to them, can be identified with the actual pro-
cesses of addition and multiplication in their intuitively clear significance. What
is accomplished is, rather, that the tremendous task of justification of arithmetic,
unassailable in its complexity, is split into two parts, and that the first, the purely
logical problem, the establishing of independent fundamental laws or axioms and
the investigation of them as to independence and consistency has been made avail-
able to study. The second, the more epistemological part of the problem, which
has to do with the justification of the application of these laws to actual condi-
tions, is not even touched, although it must of course be solved also if one will
really perform the justification of arithmetic. This second part presents, in itself, an
extremely profound problem, whose difficulties lie in the general field of epistemol-
ogy. I can characterize its status most clearly perhaps, by the somewhat paradoxical
remark that anyone who accepts only pure logical investigations as pure mathemat-
ics must, to be consistent, ascribe this second part of the problem of the foundation
of arithmetic, and hence arithmetic itself, as belonging to applied mathematics.

I have felt obliged to go into detail here very carefully, in as much as misunder-
standings occur so often at this point, because people simply overlook the existence
of the second problem. This is by no means the case with Hilbert himself, and
neither disagreements nor agreements based on such an assumption can hold. Jo-
hannes Thomae of Jena, coined the neat expression “thoughtless thinkers” for those
persons who confine themselves exclusively to these abstract investigations con-
cerning things that are devoid of meaning, and to theorems that tell nothing, and
who forget not only that second problem but often also all the rest of mathematics.
This facetious term cannot apply, of course, to people who carry on those investi-
gations alongside of many others of a different sort.

In connection with this brief survey of the foundation of arithmetic, I shall bring
to your notice a few general matters. Many have thought that one could, or that one
indeed must, teach all mathematics deductively throughout, by starting with a defi-
nite number of axioms and deducing everything from these by means of logic. This
method, which some seek to maintain upon the authority of Euclid, certainly does
not correspond to the historical development of mathematics. In fact, mathematics
has grown like a tree, which does not start at its tiniest rootlets and grows merely
upward, but rather sends its roots deeper and deeper at the same time and rate that
its branches and leaves are spreading upward. Just so — if we may drop the figure of
speech — mathematics began its development from a certain standpoint correspond-
ing to normal human understanding, and has progressed, from that point, according
to the demands of science itself and of the then prevailing interests, now in the one
direction toward new knowledge, now in the other through the study of fundamental

[16]

(17]



[18]

18 I. Calculating with Natural Numbers

principles. For example, our standpoint today with regard to foundations is different
from that of the researchers of a few decades ago; and what we today would state as
ultimate principles, will certainly be outstripped after a time, in that the latest truths
will be still more meticulously analysed and referred back to something still more
general. We see, then, that as regards the fundamental investigations in mathemat-
ics, there is no final ending, and therefore, on the other hand, no first beginning,
which could offer an absolute basis for teaching.

Still another remark concerning the relation between the logical and the intu-
itional handling of mathematics, between pure and applied mathematics. 1 have
already emphasized the fact that, in the schools, applications accompany arithmetic
from the beginning, that the pupil learns not only to understand the rules, but to do
something with them. And it should always be so in the practice of mathematics!
Of course, the purely logical connections, must remain — one might say — the rigid
skeleton in the mathematical organism, in order to give it its peculiar stability and
trustworthiness. But the living thing in mathematics, its most important stimuli, its
effectiveness outwardly, depend entirely upon the applications, i.e., upon the mu-
tual relations between those purely logical things and all other domains. To banish
applications from mathematics would be comparable to seeking the essence of the
living animal in the skeleton alone, without considering muscles, nerves and tissues,
instincts, in short, the very life of the animal.

In scientific research there will be often, to be sure, a division of labour between
pure and applied science, but provision must be made otherwise for maintaining
their connection if conditions are to remain sound. In any case, and this should
be especially emphasized here, for the school such a division of labour, such a

far reaching specialisation of the individual teacher, is not possible. To put the

matter crassly, imagine that at some school a teacher is appointed who treats num-
bers only as meaningless symbols, a second teacher who knows how to bridge the
gap from these empty symbols to actual numbers, a third, a fourth, a fifth, finally,
who understands the application of these numbers to geometry, to mechanics, and
to physics; and that these different teachers are all assigned the same pupils. You
see that such an organisation of teaching is impossible. In this way, the things could
not be brought to the comprehension of the pupils, neither would the individual
teachers be able even to understand each other. The needs of school teaching itself
require precisely a certain many sidedness of the individual teacher, a comprehen-
sive orientation in the field of pure and applied mathematics, in the broadest sense,
and include thus a desirable remedy against a too extensive splitting up of science.
In order to give a practical turn to the last remarks I refer again to our above men-
tioned Dresden Proposals. There we recommend outright that applied mathematics,
which since 1898 has been a special subject in the examination for prospective
teachers, be made a required part in all normal mathematical training, so that com-
petence to teach pure and applied mathematics should always be combined. In
addition to this, it should be noted that, in the Meran Curriculum?? of the Breslau

23 Reformvorschliige fiir den mathematischen und naturwissenschaftlichen Unterricht, iiberreicht
der Versammlung der Naturforscher und Arzte zu Meran. Leipzig, 1905. — See also a reprint in
the Gesamtbericht der Kommission, p. 93. as well as in Klein-Schimmack, p. 208.
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Commission of Instruction, the following three tasks are announced as the purpose
of mathematics teaching in the last school year (Oberprima):

1. A scientific survey of the systematic structure of mathematics.

2. A certain degree of skill in the complete handling of problems, numerical and
graphical.

3. An appreciation of the significance of mathematical thought for a knowledge
of nature and for modern culture in general.

All these formulations I approve with deep conviction.

4. Practice in Calculating with Integers

Turning from the last discussions which have been chiefly abstract, let us give our
attention to more concrete things by considering the carrying out of numerical
calculation. As suitable literature for collateral reading, I should mention first of
all, the article on Numerisches Rechnen by Rudolf Mehmke®* in the Enzyklopdidie.
I can best give you a general view of the issues that belong here by giving a brief
account of this article. It is divided into two parts: A. Die Lehre vom genauen Rech-
nen*, and B. Die Lehre vom gendiherten Rechnen**. Under A occur all methods for
simplifying exact calculation with large integers. Convenient devices for calculat-
ing, tables of products and squares, and in particular, calculating machines, which
we shall discuss soon. Under B, on the other hand, one finds a discussion of the
methods and devices for all calculating in which only the order of magnitude of [19]
the result is important, especially logarithmic tables and allied devices, the slide
rule, which is only an especially well-arranged graphical logarithmic table; finally,
also, the numerous important graphical methods. In addition to this reference I can
recommend the small book by Jacob Liiroth, Vorlesungen iiber numerisches Rech-
nen®>***_which, written in pleasant form by a master of the subject, gives a rapid
survey of this field.

Description of the Calculating Machine “Brunsviga”

From the many topics that have to do with calculating with integers, I shall present
you more in detail only the calculating machine, which you will find in use, in
a great variety of ingenious forms, in each larger bank and business house, and
which is therefore in fact of the greatest practical significance. We have in our

2 Enzyklopiddie der mathematischen Wissenschaften, Band I, Teil II. See also Horst von Sanden,
Practical Mathematical Analysis (Translation by Levy), Dutton St. Co. — Horsburgh, E. M., Mod-
ern Instruments and Methods of Calculation. Bell & Sons.

* The Theory of Exact Calculation.

** The Theory of Approximate Calculation.

25 Leipzig 1900.

*** Lectures on Numerical Calculation.
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mathematical collection one of the most widely used types, the “Brunsviga”, man-
ufactured by the firm Brunsviga-Maschinenwerke Grimme, Natalis & Co. A.-G. in
Braunschweig. The design originated with the Swedish engineer Odhner, but it has
been much changed and improved. I shall describe the machine here in some detail,
as a typical example. You will find other kinds described in the books mentioned
above?0. My description of course can give you a real understanding of the machine
only if you examine it afterwards personally and if you convince yourself, by actual
use, how it is operated. The machine will be at your disposal, for that purpose, after

the lecture.

Ty
Bl

L G e b B

|

@000 o

®
®
®

Figure 1 Before the first turn.
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Figure 2 After the first turn.

So far as the external appearance of the Brunsviga is concerned, it presents
schematically a picture somewhat as follows (see Fig. 1). There is a fixed frame,
the “drum”, below which and sliding on it, is a smaller longish case, the “slide”.
A handle which projects from the dram on the right, is operated by hand. On the
drum there is a series of parallel slits, each of which carries the digits 0, 1,2,...,9,
read downwards; a peg S projects from each slit and can be set at pleasure at any
one of the ten digits. Corresponding to each of these slits there is an opening on the
slide under which a digit can appear. Figures 3 and 3a, p. [19] give a view of newer
models of the machine.

26 [Concerning other types of calculating machines, see also Andreas Galle, Mathematische
Instrumente, Leipzig 1912.]
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Figure 3

I think that the arrangement of the machine will become clearer if I describe to
you the process of carrying out a definite calculation, and the way in which the
machine brings it about. For this I select multiplication.

The procedure is as follows: One first sets the drum pegs on the multiplicand,
i.e., beginning at the right, one puts the first lever at the one’s digit, the second at
the ten’s digit of the multiplicand, etc. If, for example, the multiplicand is 12, one
sets the first lever at 2, the second lever at 1; all the other levers remain at zero (see
Fig. 1).

Now turn the handle once around, clockwise. The multiplicand appears under
the openings of the slide, in our case a 2 in the first opening from the right, a 1 in the
second, while zeros remain in all the others. Simultaneously, however, in the first
of a series of openings in the slide, at the left, the digit 1 appears to indicate that we
have turned the handle once (Fig. 2). If now one has to do with a multiplier of one
digit, one turns the handle as many times as this digit indicates; the multiplier
will then be exhibited on the slide to the left, while the product will appear on the
slide to the right.

How does the apparatus bring this result about? In the first place there is attached
to the underside of the slide, at the left, a cogwheel which carries, equally spaced
on its rim, the digits 0, 1,2, ...,9. By means of a driver, this cogwheel is rotated
through one tenth of its perimeter with every turn of the handle, so that a digit be-
comes visible through the opening in the slide, which actually indicates the number
of revolutions, in other words the multiplier.

Now as to the obtaining of the product, it is brought about by similar cogwheels,
one under each opening at the right of the slide. But how is it that by one and
the same turning of the handle, one of these wheels, in the above case, moves by
one unit, the other by two? This is where the peculiarity in construction of the
Brunsviga appears. Under each slit of the drum there is a flat wheel-shaped disc
(driver) attached to the axle of the handle, upon which there are nine teeth which
are movable in a radial direction (see Fig. 4). By means of the projecting peg S,
mentioned above, one can turn a ring R which rests upon the periphery of the disc,

[20]
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so that, according to the mark upon which one sets S in the slit, 0, 1, 2, ..., 9 of the
movable teeth spring outward (in Fig. 4, two teeth). These teeth engage the cogs
under the corresponding openings of the slide, so that with one turn of the handle
each driver thrusts forward the corresponding cogwheel by as many units as there
are teeth pushed out, i.e., by as many teeth as one has set with the corresponding
peg S. Accordingly, in the above illustration, when we start at the zero position, and
turn the handle once, the units wheel must jump to 2, the ten’s wheel to 1, so that
12 appears. A second turn of the handle moves the units wheel another 2 and the
tens wheel another 1, so that 24 appears, and similarly, we get, after 3 or 4 times,
3:12 =36 o0r4-12 = 48, respectively.

Driving wheel
Cogwheel

Figure 4

But now turn the handle a fifth time: Again, according to the account above,
the units wheel should jump again by two units, in other words back to 0, the tens
wheel by one, or to 5, and we should have the false result 5 - 12 = 50. In the actual
turning, however, the slide shows 50, to be sure, until just before the completion
of the turn; but at the last instant the 5 changes into 6, so that the correct result
appears. Something has come into action now that we have not yet described, and
which is really the most remarkable point of such machines: the so called carrying
the tens. Its principle is as follows: when one of the number bearing cogwheels
under the slide (e.g., the units wheel) goes through zero, it presses an otherwise
inoperative tooth of the neighbouring driver (for the tens) into position, so that it
engages the corresponding cogwheel (the tens wheel) and pushes this forward one
place farther than it would have gone otherwise. You can understand the details of
this construction only by examining the apparatus itself. There is the less need for
my going into particulars here because it is just the method of carrying the tens that
is worked out in the greatest variety of ways in the different makes of machines,
but I recommend a careful examination of our machine as an example of a most
ingenious model. Our collection contains separately the most important parts of the
Brunsviga — which are for the most part invisible in the assembled machine — so
that you can, by examining them, get a complete picture of its arrangement.

We can best characterize the operation of the machine, so far as we have made its
acquaintance, by the words adding machine, because, with every turn of the handle,
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it adds, once, to the number on the slide at the right, the number which has been

set on the drum.
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Figure 5

Finally, I shall describe in general that arrangement of the machine which per-
mits convenient operation with multipliers of more than one digit. If we wish to
calculate, say, 15 - 12 we should have to turn the handle fifteen times, according
to the procedure already outlined; moreover, if one wished to have the multiplier
indicated by the counter at the left of the slide, it would be necessary to have, there
also, a device for carrying the tens. Both of these difficulties are avoided by the fol-
lowing arrangement®’. We first perform the multiplication by five, so that 5 appears
on the slide at the left and 60 at the right (see Fig. 5). Now we push the slide one
place to the right, so that, as shown in Fig. 5, its units cogwheel is cut out, its tens
cogwheel is moved under the units slit of the drum, its hundreds cogwheel under
the tens slit, etc., while, at the left, this shift brings it about that the tens cogwheel,
instead of the units, is connected with the driver which the handle carries. If we

now turn the handle once, 1 appears at the left, in ten’s place, so that we read 15;
at the right, however, we do not get the addition 60 but or, in other
+12 +12-

words, 60+ 120, since the 2 is “carried over” to the tens wheel, the 1 to the hundreds
wheel. Thus we get correctly 15 - 12 = 180. It is, as you see, the exact mechanical
translation of the customary process of written multiplication, in which one writes
down under one another, the products of the multiplicand by the successive digits of
the multiplier, each product moved to the left one place farther than the preceding,
and then adds. In just the same way one proceeds quite generally when the multi-
plier has three or more digits, that is, after the usual multiplication by the ones, one
moves the slide 1,2, ... places to the right and turns the handle in each place as
many times as the digit in the tens, hundreds, . .. place of the multiplier indicates.
Direct examination of the machine will disclose how one can perform other cal-
culations with it; the remark here will suffice that subtraction and division are
effected by turning the handle in the direction opposite to that employed in addition.
Permit me to summarize by remarking that the theoretical principle of the ma-
chine is quite elementary and represents merely a technical realization of the rules
which one always uses in numerical calculation. That the machine really functions
reliably, that all the parts engage one another with unfailing certainty, so that there

%7 In the newer models also this the cogwheel device realises the complete “carrying over”.
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is no jamming, that the wheels do not turn farther than is necessary, is, of course, the
remarkable accomplishment of the man who made the design, and the mechanician
who carried it out.

Let us consider for a moment the general significance of the fact that there re-
ally are such calculating machines, which relieve the mathematician of the purely
mechanical work of numerical calculation, and which do this work faster, and, to
a higher degree free from error, than he himself could do it, since the errors of
human carelessness do not creep into the machine. In the existence of such a ma-
chine we see an outright confirmation that the rules of operation alone, and not
the meaning of the numbers themselves, are of importance in calculating; for it
is only these that the machine can follow; it is constructed to do just that; it could
not possibly have an intuitive appreciation of the meaning of the numbers. We shall
not, then, wish to consider it as accidental that such a man as Leibniz, who was both
an abstract thinker of first rank and a man of the highest practical gifts, was, at the
same time, both the father of purely formal mathematics and the inventor of a cal-
culating machine. His machine is, to this day, one of the most prized possessions of
the Kistner Museum in Hannover. Although it is not historically authenticated, still
I like to assume that when Leibniz invented the calculating machine, he not only
followed a useful purpose, but that he also wished to exhibit, clearly, the purely
formal character of mathematical calculation.

With the construction of the calculating machine Leibniz certainly did not wish
to minimize the value of mathematical thinking, and yet it is just such conclusions,
which are now sometimes drawn from the existence of the calculating machine. If
the activity of a science can be supplied by a machine, that science cannot amount
to much, so it is said; and hence it deserves a subordinate place. The answer to such
arguments, however, is that the mathematician, even when he is himself operating
with numbers and formulas, is by no means an inferior counterpart of the errorless
machine, and by no means the “thoughtless thinker” of Thomae; but rather, he sets
for himself his problems with definite, interesting, and valuable ends in view, and
carries them to solution in always anew appropriate and original manner. He turns
over to the machine only certain operations which recur frequently in the same way,
and it is precisely the mathematician — one must not forget this — who invented the
machine for his own relief, and who, for his own intelligent ends, designates the
tasks which it shall perform.

Let me close this chapter with the wish that the calculating machine, in view
of its great importance, may become known in wider circles than is now the case.
Above all, every teacher of mathematics should become familiar with it, and it
ought to be possible to have it demonstrated once to each pupil of the last grades
(“Primaner”) of our secondary schools!



II. The First Extension of the Notion of
Number

With the last section we leave operations with integers, and shall treat, in a new
chapter, the extension of the number concept. In the schools it is customary, in this
field, to take in order the following steps:

1. Introduction of fractions and operations with fractions.

2. Treatment of negative numbers, in connection with the beginnings of opera-
tions with letters.

3. More or less complete presentation of the notion of irrational numbers by
examples that arise upon different occasions, which leads, then, gradually, to the
representation of the continuum of real numbers.

It is a matter of indifference in which order we take up the first two points. Let
us discuss negative numbers before fractions.

1. Negative Numbers

Let us first note, as to terminology, that in the schools, one speaks of positive and
negative numbers, inclusively, as relative numbers in distinction from the absolute
(positive) numbers, whereas, in universities this language is not common. More-
over, in the schools one also speaks of “algebraic numbers”?® along with relative
numbers, an expression which we in universities employ, as you know, in quite
another sense.

Now, as to the origin and introduction of negative numbers, I can be brief in my
reference to source material; these things are already familiar to you, I guess, or you
can at least easily make them so with the help the references I shall give. You will
find a complete treatment, for example, in Weber-Wellstein; also, in very readable
form, in Heinrich Burkhardt’s Algebraische Analysis*. This book, moreover, you
might well purchase, as it is of moderate size.

28 See, e.g. Ferdinand Gustav Mehler, Hauptsdtze der Elementarmathematik, Nineteenth edition,
p- 77, Berlin, 1895.

2 Leipzig 1903. [Third edition, revised by G. Faber, 1920.] — See also Fine, H., The Number-
System of Algebra treated Theoretically and Historically, Heath.
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The creation of negative numbers is motivated, as you know, by the demand that
the operation of subtraction shall be possible in all cases. If a < b then a — b
is meaningless in the domain of natural integers; a number ¢ = b — a does exist,
however, and we write

a—b=—c

which we call a negative number. This definition at once justifies the representation
of all integers by means of the scale of equidistant points
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on a straight line the “axis of abscissas” which extends in both directions
from an origin. One may consider this picture as a common possession of all
educated persons today, and one can, perhaps, assume that it owes its general dis-
semination, chiefly, to the thermometer scale. The commercial balance, with its
reckoning in debits and credits, affords likewise a graphic and familiar picture of
negative numbers.

Let us, however, realise at once and emphatically how extraordinarily difficult
in principle is the step, which is taken in school when negative numbers are intro-
duced. Where the pupil before was accustomed to represent visually by concrete
numbers of things the numbers, and, later, the letters, with which he operated, as
well as the results which he obtained by his operations, he finds it now quite dif-
ferent. He has to do with something new, the “negative numbers”, which have,
immediately, nothing in common with his intuitive image of quantities, but he must
operate with them in an analogous manner, although the operations have even less
the old intuitively clear meaning. Here, for the first time, we meet the transition

[from a mathematics with contents to formal mathematics. The complete mastery of

this transition requires a high order of ability in abstraction.

We shall now inquire in detail what happens to the operations of calcu-
lation when negative numbers are introduced. The first thing to notice is that
addition and subtraction coalesce, essentially: The addition of a positive number is
the subtraction of the equal and opposite negative number. In this connection, Max
Simon makes the amusing remark that, whereas negative numbers were created to
make the operation of subtraction possible without any exception, subtraction as
an independent operation ceased to exist by virtue of that creation. For this new
operation of addition (including subtraction) in the domain of positive and negative
numbers the five formal laws stated before hold without change. These are, in brief
(see p. [9] et seq.):

1. Always possible.

2. Unique.

3. Associative law.

4. Commutative law.

5. Monotonic law.

Notice, in connection with 5, that ¢ < b means, now, that a lies to the left of b
in the geometric representation, so that we have, for example —2 < —1, =3 < +2.
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The chief point in the multiplication of positive and negative numbers is the rule
of signs, thata - (—c) = (—¢)-a = —(a - ¢), and (—c)(—c") = +(c - ¢’). Espe-
cially the latter rule: “Minus times minus gives plus” is often a dangerous stumbling
block. We shall return presently to the conceptual significance of these rules; just
now we shall combine them into a statement defining multiplication of a series of
positive and negative numbers: The absolute value of a product is equal to the prod-
uct of the absolute values of the factors; its sign is positive or negative according
as an even or an odd number of factors is negative. With this convention, multi-
plication in the domain of positive and negative numbers has again the following
properties:

1. Always possible.

2. Unique.

3. Associative.

4. Commutative.

5. Distributive with respect to addition.

There is a change only in the monotonic law; in its place one has the following
law:

6.1fa > bthena-c = b -c according as ¢ = 0.

Let us inquire, now, whether these laws, considered again purely formally, are
consistent. We must admit at once, however, that a purely logical proof of con-
sistency is as yet much less possible here than it is in the case of integers. Only
a reduction is possible, in the sense that the present laws are consistent if the laws
for integers are consistent. But until this has been completed by a logical consis-
tency proof for integers, one will have to hold that the consistency of our laws
is based solely on the fact that there are intuitive objects, with intuitive relations,
which obey these laws. We noted above, as such, the series of integer points on the
axis of abscissas and we need only complement what the rules of operation signify
there: The addition x" = x + a, where a is fixed, assigns to each point x a sec-
ond point x’, so that the infinite straight line is simply displaced along itself by an
amount a, to the right or to the left, according as a is positive or negative. In an
analogous manner, the multiplication x' = a - x represents a similarity transforma-
tion of the line into itself, a pure stretching for a > 0, a stretching together with
a reflexion in the origin fora < 0.

On the History of Negative Numbers

Permit me now to explain how, historically, all these things arose. One must
not think that the negative numbers are the invention of some clever man who
manufactured them, together with their consistency perhaps, out of the geomet-
ric representation. Rather, during a long period of development, the use of negative
numbers forced itself, so to speak, upon mathematicians. Only in the nineteenth
century, after men had been operating with them for centuries, was the considera-
tion of their consistency taken up.

[27]
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Let me preface the history of negative numbers with the remark that the ancient
Greeks certainly had no negative numbers, so that one cannot yield them the first
place, in this case, as so many people are otherwise prone to do. One must attribute
this invention to the Hindus, who also created our system of digits and in particular
our zero. In Europe, negative numbers came gradually into use at the time of the
Renaissance, just as the transition to operating with letters had been completed. 1
must not omit to mention here that this completion of operations with letters is said
to have been accomplished by Vieta in his book In Artem Analyticam Isagoge™.

From the present point of view, we have the so called parenthesis rules for
operations with positive numbers, which are, of course, contained in our fundamen-
tal formulas, provided one includes the corresponding laws for subtraction. But I
should like to take them up somewhat in detail, by means of two examples, in or-
der, above all, to show the possibility of extremely simple intuitive proofs for them,
proofs which need consist only of the representation and of the word “Look™!, as
was the custom with the ancient Hindus.

1. Given a > b and ¢ > a, where a, b, ¢ are positive. Then a — b is a positive
number and is smaller than c, that is, ¢ — (a¢ —b) must exist as a positive number. Let
us represent the numbers on the axis of abscissas and note that the segment between
the points b and a has the length a — b.

t - i
L]
0 & a [

a—b

A glance at the figure shows that, if we take away from ¢ the segment a—b, the result
is the same as though we first took away the entire segment a and then restored the
part b, i.e.,

(1) c—(a—b)=c—a+b.

2. Givena > b and ¢ > d;thena — b and ¢ — d are positive integers. We wish
to examine the product (a — b) - (¢ — d); for that purpose
draw the diagonally hatched rectangle (Fig. 6) with sides a — b and ¢ — d whose
area is the number sought, (¢ — b) - (¢ — d), and which is part of the rectangle with
sides a and c. In order to obtain the former rectangle from the latter, we take away
first the horizontally hatched rectangle a - d, then the vertically hatched one b - ¢; in
doing this we have removed twice the double-hatched rectangle b - d, and we must
put it back. But these operations express precisely the known formula

2) (a—b)(c—d)=ac—ad —bc + bd.

As the most important psychological moment to which the introduction of
negative numbers, upon this basis of operations with letters, gave rise, that
general peculiarity of human nature shows itself, by virtue of which we are in-
voluntarily inclined to employ rules under circumstances more general than are

30 Tours 1591.
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Figure 6

warranted by the special cases under which the rules were derived and have
validity. This was first claimed as a guiding principle in arithmetic by Her-
mann Hankel, in his Theorie der komplexen Zahlsysteme*>3', under the name
“Prinzip von der Permanenz der formalen Gesetze”**. [ am
strongly recommending this most interesting book for your attention. For the
particular case before us, of transition to negative numbers, the above principle
would declare that one desired to forget, in formulas like (1) and (2) the expressed
assumptions as to the relative magnitude of a and b and to employ these for-
mulas also in other cases. If one applies (2), for example, to a = ¢ = 0, for
which the formulas were not proved at all, one obtains (—b) - (—c) = +bd,
i.e., the sign rule for multiplication of negative numbers. In this manner we may
derive, in fact almost unconsciously, all the rules, which we must now designate,
following the same line of thought, as almost necessary assumptions, necessary
insofar as one would have validity of the old rules for the new concepts. To be
sure, the old mathematicians were not happy with this abstraction, and their uneasy
consciences found expression in names like invented numbers, false numbers, etc.,
which they gave to the negative numbers on occasion. But in spite of all scruples,
the negative numbers found more and more general recognition in the sixteenth and
seventeenth centuries, because they justified themselves by their usefulness. To this
end, the development of analytic geometry without doubt contributed materially.
Nevertheless the doubts persisted, and were bound to persist, so long as one contin-
ued to seek for a interpretation by the concept of quantity, and had not recognized
the leading role of formal laws when new concepts are set up. In connection with
this stood the continually recurring attempts to prove the rule of signs. The simple
explanation, which was brought out in the nineteenth century only, is that it is idle
to talk of the logical necessity of the entire approach, in other words, the rule
of signs isnot susceptible of proof; rather, one can only be concerned with
recognizing the logical permissibility of the rule, and, at the same time, that it

* Theory of Complex Number Systems.
3 Leipzig 1867.
** Principle of the permanence of formal laws.
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is arbitrary, and regulated by considerations of convenience, such as that principle
of permanence.

In this connection one cannot repress that often recurring thought that things
sometimes seem to be more sensible than human beings. Think of it: one of the
greatest advances in mathematics, the introduction of negative numbers and of
operations with them, was not created by the conscious logical reflection of an in-
dividual. On the contrary, its slow organic growth developed as a result of intensive
occupation with things, so that it almost seems as though men had learned from the
letters. The rational reflection that one devised here something correct, compatible
with strict logic, came at a much later time. And, after all, the function of pure
logic, when it comes to setting up new concepts, is only to regulate and never to
act as the sole guiding principle; for there will always be, of course, many other
conceptual systems which satisfy the single demand of logic, namely, consistency.

If you desire still other literature concerning questions about the history of neg-
ative numbers, let me recommend Johannes Tropfke’s Geschichte der Elementar-
mathematik®>*, as an excellent collection of material containing, in lucid presenta-
tion, a great many details about the development of elementary notions, views, and
names.

If we now look critically at the way in which negative numbers are presented in
the schools, we find frequently the error of trying to prove the logical necessity of
the rule of signs, corresponding to the above noted efforts of the older mathemati-
cians. One frequently likes to present the heuristic derivation of (—b)(—d) = +bd,
from the formula (a — b)(c — d), as a proof, completely ignoring the fact that the
validity of this formula depends on the inequalities @ > b, ¢ > d3*. Thus the
proof is fraudulent, and the psychological consideration which would lead us to the
rule by way of the principle of permanence is confounded with logically proving
considerations. Of course the pupil, to whom it is thus presented for the first time,
cannot possibly comprehend it, but in the end he must nevertheless believe it; and
if, as it often happens, the repetition in a higher grade does not supply the correc-
tive, the conviction may become lodged with some students that the whole thing is
mysterious, incomprehensible.

In opposition to this practice, I should like to urge you, in general, never to
attempt to obtain impossible proofs by fraud. One should convince the pupil by
simple examples, or, if possible, let him find out for himself that, in view of the
actual situation, precisely these conventions, suggested by the principle of perma-
nence, are appropriate in that they yield a uniformly convenient algorithm, whereas
every other convention would always compel the consideration of numerous special
cases. To be sure, one must not be precipitate, but must allow the pupil time for the
revolution in his thinking which this knowledge will provoke. And while it is easy

32 Two volumes, Leipzig 1902/03. [Second edition revised and much enlarged, to appear in seven
volumes, of which six had appeared by 1924.] — See also Florian Cajori, History of Mathematics,
Macmillan.

* History of Elementary Mathematics.

33 See, for example, Eduard Heis, Sammlung von Beispielen und Aufgaben aus der Arithmetik und
Algebra. Edition 1904, p. 46, 106-108.
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to understand that other conventions are not advantageous, one must emphasize to
the pupil how really wonderful the fact is that a general useful convention really
exists; it should become clear to him that this is by no means self-evident.

With this I close my discussion of the theory of negative numbers and invite you
now to give similar consideration to the second extension of the notion of number.

2. Fractions

Let us begin with the treatment of fractions in the schools. There the fraction a/b
has a thoroughly concrete meaning from the start. In contrast to the intuitive picture
of the integer, there has been a change of the substrate: One has passed from the
quantity to its measure, from the consideration of countable objects to measurable
objects. The system of coins, or of weights, affords, with some restriction, and the
system of lengths affords completely, an example of measurable manifolds. These
are the examples with which the idea of the fraction is given to every pupil. No
one has great difficulty in grasping the meaning of !/3 meter or !/2 pound. The
relations =, >, <, between fractions can be immediately developed by means of
the same concrete intuition, and likewise the operations of addition and subtrac-
tion, as well as the multiplication of a fraction by an integer. After this, general
multiplication can easily be made comprehensible: 7o multiply a number by alb
means to multiply it by a and then to divide by b; in other words: the product is
derived from the multiplicand just as a /b is derived from 1. Division by a fraction
is then presented as the operation inverse to multiplication: a divided by 2/3 is the
number which multiplied by 2/3 gives a. These notions of operations with frac-
tions combine with the introduction of negative numbers so that one finally has the
collection (“Inbegriff’) of all “rational numbers”. I cannot enter into
the details of this building-up process, which, in the school, takes, of course, a long
time. Let us rather compare it at once with the perfected presentation of modern
mathematics, using for this purpose the above mentioned books of Weber-Wellstein
and Burkhardt*,

Weber-Wellstein emphasize primarily the formal point of view which, from the
multiplicity of possible interpretations, selects what is of necessity common to all.
According to this view, the fraction a/b is a symbol, a “number-pair’ with
which one can operate according to certain rules. These rules, which in our discus-
sion above arose naturally from the meaning of fraction, have here the character of
arbitrary conventions. For example, that which, to the pupil, is an obvious
theorem concerning the multiplication or division of both terms of a fraction by the
same number, appears here as a definition of equality: two fractions a/b,
c/d are called equal when ad = bc. Similarly, greater than and smaller than
are defined, and one stipulates that the fraction (%) shall be called the sum of
the two fractions a/b, c/d, etc. It is thus proved that the operations, so defined

34 In what follows, the first editions of these books have been used.
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in the new domain of numbers, possess formally exactly the properties of addition
and multiplication for integers, i.e., they satisfy the eleven fundamental laws which
have been repeatedly enumerated.

Burkhardt does not proceed quite so formally as does Weber-Wellstein, whose
presentation we have sketched in its essentials. He looks upon the fraction a/b
as a sequence of two operations in the domain of integers: a multiplication
by a and a division by b, in which the object upon which these operations are
performed is an arbitrarily chosen integer. If one considers successively two such
“pairs of operations” a/b, c/d, then this should correspond to multiplication of
the fractions, and one sees easily that the operation so resulting is none other than
multiplication by a - ¢ and division by b - d, so that the rule for the multiplication of

[fractions, (%) . (5) = (%), is obtained out of the clear meaning of the fractions,

but not determined merely as an arbitrary convention. One can, of course, treat
division in the same way. Addition and subtraction, on the other hand, do not admit

of such a simple explanation with this representation; thus the formula 7 + 5 =

% remains, with Burkhardt also, only a convention for which he adduces only

reasons of plausibility.

Let us now compare the older presentation in the schools, with the modern con-
ception just sketched. According to the latter, in the one book as well as in the
other, we are left really completely in the field of integers, in spite of the extension
of the notion of number. It is merely assumed that the collection of integers is intu-
itively grasped, or that the rules of operation with them are known; the things newly
defined as number-pairs, or as operations with whole numbers, fit completely into
this frame. The school treatment, on the other hand, is based entirely on the newly
acquired intuition of measurable quantities, which supplies an immediate intuitive
picture of fractions. We can best grasp this difference if we imagine a being who
has the notion of integers, but no conception of measurable quantities. For him the
teaching mode at schools would be wholly unintelligible, whereas he could well
comprehend the discussions of either Weber-Wellstein or Burkhardt.

Which of the two methods is the better? What does each accomplish? The
answer to this will be like the one we gave recently when we put the analogous
question concerning the different conceptions of integers. The modern presentation
is surely purer, but it is also less rich. For, of that which the traditional curricu-
lum supplies as a unit, it gives really only one half: the abstract and logically
complete introduction of certain arithmetic concepts, called “fractions”, and of op-
erations with them. But it leaves undiscussed an entirely independent and no less
important question: Can one really apply the theoretical doctrine so derived, to the
concrete measurable quantities about us? Again one could call this a problem of
“applied mathematics”, which admits an entirely independent treatment. To be sure,
it is questionable whether such a separation would be desirable pedagogically. In
Weber-Wellstein, moreover, this splitting of the problem into two parts finds char-
acteristic expression. After the abstract introduction of operations with fractions,
of which alone we have thus far taken account, they devote a special (the fifth) sec-
tion — called “ratios” — to the question of applying rational numbers to the external
world. The presentation is, to be sure, rather abstract than intuitive.
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I shall now close this discussion of fractions with a general remark concerning
the totality of rational numbers, where, for the sake of clearness, I shall make use
of the representation upon a straight line.

Think of all points with rational abscissas marked upon this line; we designate
them briefly as rational points. We say, then, that the totality of these rational points
on the axis of abscissas is “dense”, meaning that in every interval, however small,
there are still infinitely many
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rational points. If we wish to avoid putting anything new into the notion of rational
numbers, we might say, more abstractly, that between any two rational points there
is always another rational point. It follows that one can separate from the totality of
rational points, finite parts which contain neither a smallest nor a largest element.
The totality of all rational points between 0 and 1, these points excluded, is an
example. For, given any number between 0 and 1, there would still be a number
between it and O, i.e., a smaller, and a number between it and 1, i.e., a larger.
In their systematic development, these concepts belong to the set theory of Georg
Cantor. In fact, we shall make use later of the totality of rational numbers, together
with the property just mentioned, as an important example of a set.

I shall pass now to the third extension of the number system: the irrational
numbers.

3. Irrational Numbers

Figure 7

Let us not spend any time in discussing how this field is usually treated in the
schools, for there one does not get much beyond a few examples. Let us rather pro-
ceed at once to the historical development. Historically, the origin of the concept of
irrational numbers lies certainly in geometric intuition and in the requirements of
geometry. If we consider, as we did just now, that the set of rational points is dense
on the axis of abscissas, then there are still other points on it. Pythagoras is said to
have shown this in a manner somewhat as follows [Fig. 7]. Given a right triangle
with each leg of length 1, then the hypotenuse is of length +/2 , and this is certainly
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not a rational number; for if one puts /2 = 5 Where a and b are integers, prime to
each other, one is led easily by the laws of divisibility of integers to a contradiction.
If we now lay off geometrically on the axis of abscissas, beginning at zero, the
segment thus constructed, we obtain a non-rational point which is not one of the
original set that is dense on the axis. Furthermore, the Pythagoreans certainly were
aware that, in most cases, the hypotenuse, +/m? + n2, of a right triangle with legs
m and n, is irrational. The discovery of this extraordinarily essential fact was in-
deed worth the sacrifice of one hundred oxen with which Pythagoras is said to have
celebrated it. We know also that the Pythagorean School was fond of searching out
those special pairs of values for m and n for which the right triangle has three com-
mensurable sides, whose lengths, in an appropriately selected unit of measure, can
be expressed in integers (so called Pythagorean numbers). The simplest example
of one of these number-triples is 3, 4, 5.

Later Greek mathematicians studied, in addition to these simplest irrationalities,
others that were more complicated; thus one finds in Euclid types such as +/a+vb,
and the like. We may say, however, in general, that they confined themselves essen-
tially to such irrationalities as one obtains by repeated extraction of square root, and
which can therefore be constructed geometrically with ruler and compasses. The
general idea of irrational number seems not yet having been known to them.

I must specify this remark somewhat, however, in order to avoid misunder-
standing. The more precise statement is that the Greeks possessed no method for
producing or defining, arithmetically, the general irrational number in terms of ra-
tional numbers. This is a result of modern development and will soon engage our
attention. Nevertheless, from another point of view they were familiar with the
notion of the general real number which was not necessarily rational; but the mat-
ter had an entirely different appearance to them because they did not use letters
for general numbers. In fact they studied, and Euclid developed very systemati-
cally, ratios of two arbitrary segments. They operated with such ratios essentially
in the same manner as we do today with arbitrary real numbers. Indeed we find
in Euclid definitions which actually hint to the modern theory of irrational num-
bers. By the way, the name used is different from that of the natural number; the
latter is called doog, whereas the line ratio, the arbitrary real number, is called
Aéyog.

I should like to add a remark concerning the word “irrational”. It is without
doubt the translation into Latin of the Greek “dAoyoq”. The Greek word, however,
meant presumably “inexpressible” and implied that the new numbers, or line ratios,
could not, like the rational numbers, be expressed by the ratio of two integers® . The
misunderstanding put upon the Latin “ratio”, that it could convey only the meaning
“reason”, gave to “irrational” the meaning “unreasonable”, which seems still to
cling to the term irrational number.

The general idea of the irrational number seems to have appeared first at the end
of the sixteenth century as a consequence of the introduction of decimal fractions,
the use of which became established at that time in connection with the appearance

3 See Tropfke, second edition, Vol. 2, p. 71.
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of logarithmic tables. If we transform a rational number into a decimal fraction,
we may obtain infinite decimal fractions®®, as well as finite decimal fractions, but
they will always be periodic. The simplest example is % = 0,333..., i.e., a decimal
fraction whose period of one digit begins immediately after the decimal point. Now
there is nothing to prevent our thinking of an aperiodic decimal fraction whose
digits proceed according to any definite law whatever, and anyone would instinc-
tively consider it as a definite, and hence a non-rational, number. By this means the
general notion of irrational number is established. It arose to a certain extent au-
tomatically, by the consideration of decimal fractions. Thus, historically, the same
thing happened with irrational numbers that, as we have seen, happened with nega-
tive numbers. Calculation forced the introduction of the new concepts, and without
being concerned much as to their nature or their motivation, one operated with
them, the more particularly since they often proved to be extremely useful.

It was not until the sixth decade of the nineteenth century that the need was felt
for a more precise arithmetic formulation of the foundations of irrational numbers.
This occurred in the lecture courses which Weierstral delivered at about that date.
In 1872, a general foundation was laid simultaneously by Georg Cantor of Halle, the
founder of set theory, and independently by Richard Dedekind of Braunschweig. I
will explain Dedekind’s point of view in a few words. Let us assume a knowledge of
the totality of rational numbers, but let us exclude all space intuition, which would
force upon us forthwith the notion of the continuity of the number series. With this
understanding, in order to attain to a purely arithmetic definition of the irrational
number, Dedekind sets up the notion of a “cuf” in the domain of rational numbers.
If r is any rational number, it separates the totality of rational numbers into two
parts A and B such that every number in A is smaller than any number in B and
every rational number belongs to one of these two classes. A is the totality of all
rational numbers which are smaller than r, B those that are larger, whereby r itself
may be thought of indifferently as belonging to the one or to the other. Besides
these “proper cuts” there are also “improper cuts”, these being separations of all
rational numbers into two classes having the same properties except that they are
not brought about by a rational number, i.e., separations such that there is neither
a smallest rational number in B nor a largest in A. An example of such an improper
cut is supplied by, say, v/2 = 1,414... In fact, every infinite decimal fraction defines
a cut, provided one assigns to B every rational number which is larger than every
approximation to the infinite decimal fraction, and to A every other rational number;
each number in A would thus be equalled or exceeded by at least one approximation
(and hence by infinitely many). One can easily show that this cut is proper if the
decimal fraction is periodic, improper if it is not periodic.

With these considerations as his basis, Dedekind sets up his definition, which,
from a purely logical standpoint, must be looked upon as an arbitrary convention:
A cut in the domain of rational numbers is called a rational number or an irra-
tional number according as the cut is proper or improper. A definition of equality
follows from this at once: Two numbers are said to be equal if they yield the same

36 For complete treatment of this subject see, p. [40] et seq.
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cut in the domain of rational numbers. From this definition we can immediately
prove for example, that, 1/3 is equal to the infinite decimal 0,3333... If we accept
this standpoint, we must demand a proof, i.e., a process of reasoning depending
upon the definition given, although this would appear quite unnecessary to one ap-
proaching the subject naively. Moreover, such a proof is immediate, if one reflects
that every rational number smaller than 1/3 will be exceeded ultimately by the dec-
imal approximations, whereas these are smaller than every rational number which
exceeds % The corresponding definition in the lecture courses of Weierstraf} ap-
pears in the following form: Two numbers are called equal if they differ by less
than any pre-assigned constant, however small. The connection with the preceding
explanation is clear. The last definition becomes striking if one reflects why 0,999
... is equal to 1; the difference is certainly smaller than 0,1, smaller than 0,01, etc.,
that is, it is exactly zero, according to the definition.

If we enquire how it happens that we can admit the irrational numbers into the
system of ordinary numbers and operate with them in just the same way, the answer
is to be found in the validity of the monotonic law for the four fundamental opera-
tions. The principle is as follows: If we wish to perform upon irrational numbers
the operation of addition, multiplication, etc., we can enclose them between ever
narrowing rational limits and perform upon these limits the desired operations;
then, because of the validity of the monotonic law, the result will also be enclosed
between ever narrowing limits.

It is hardly necessary for me to explain these things in greater detail, since very
readable presentations of them are easily available in many books, especially in
Weber-Wellstein and in Burkhardt. I hope that you will read more fully than I could
tell you here in these books, about the definition of irrational numbers.

I should prefer, rather, to talk about something which you will hardly find in the
books, namely, how, after establishing this arithmetic theory, we can pass to the
applications in other fields. This applies in particular, to analytic geometry, which
to the naive perception appears to be (and psychologically really is) the source of
irrational numbers. If we think of the axis of abscissa, with the origin and also
the rational points marked on it, as above, then these applications depend upon
the following fundamental principle: Corresponding to every rational or, irrational
number there is a point which has this number as abscissa and, conversely, corre-
sponding to every point on the line there is a rational or an irrational number, viz.,
its abscissa. Such a fundamental principle, which stands at the head of a branch
of knowledge, and from which all that follows is logically deduced, while it itself
cannot be logically proved, may properly be called an axiom. Such an axiom will
appear intuitively obvious or will be accepted as a more or less arbitrary conven-
tion, by each mathematician according to his disposition. This axiom concerning
the one-to-one correspondence between real numbers on one hand, and the points of
a straight line on the other, is usually called the Cantor axiom because Georg Can-
tor was the first to formulate it specifically (in the Mathematische Annalen, vol. 5,
1872).
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On the Nature of Space Intuition (Precision and Approximation
Mathematics)

This is the proper place to say a word about the nature of space intuition. It is vari-
ously ascribed to two different sources of knowledge. One the sensibly immediate,
the empirical intuition of space, which we can control by means of measurement.
The other is quite different, and consists in a subjective idealizing intuition, one
might say, perhaps, our inherent idea of space, which goes beyond the inexactness
of sense observation. I pointed out to you an analogous difference when we were
discussing the notion of quantity. We may characterize it best as follows: It is imme-
diately clear to us what a small number means, like 2 or 5, or even 7, whereas we do
no longer have such an immediate intuition of a larger number, say 2503. Immedi-
ate intuition is replaced here by the subjective intuition of an ordered number series,
which we derive from the first numbers by mathematical induction. There is a sim-
ilar situation regarding space intuition. Thus, if we think of the distance between
two points, we can estimate or measure it only to a limited degree of exactness, be-
cause our eyes cannot recognize as different two line-segments whose difference in
length lies below a certain limit. This is the concept of the threshold of perception
which plays such an important role in psychology. This phenomenon still persists,
in its essentials, when we aid the eye with instruments of the highest precision;
for there are physical properties which prohibit our exceeding a certain degree of
exactness. For instance, optics teaches that the wave-length of light, which varies
with the colour, is of the order of smallness of 1/1000 mm. (= 1 micron); it shows
also that objects whose dimensions are of this order of smallness cannot be seen
distinctly with the best microscopes because diffraction enters then and hence no
optical image can give exact reproductions of the details. The result of this is the
impossibility, by direct optical means, of getting measures of length that are finer
than to within one micron, so that, when measured lengths are given in millime-
tres, only the first three decimals can have an assured meaning. In the same way,
in all physical observations and measurements, one meets such threshold values
which cannot be passed, which determine the extreme limits of possible exactness
of lengths which have been measured and expressed in millimetres. Statements be-
yond this limit have no meaning, and are an evidence of ignorance or of attempted
deception. One often finds such excessively exact numbers in the advertisements
of spas, where the percentage of salt, which really varies with the time, is given to
a number of decimal places which could not possibly be determined by weighing.

In contrast with this property of empirical space perception which is restricted
by limitations on exactness, abstract, or ideal space perception demands unlimited
exactness, by virtue of which, in view of Cantor’s axiom, it corresponds exactly to
the arithmetic definition of the number concept.

In harmony with this division of our perception, it is natural to divide mathe-
matics also into two parts, which have been called mathematics of approximation
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and the mathematics of precision. If we desire to explain this difference by an
interpretation of the equation f(x) = 0, we may note that, in the mathematics of
approximation, just as in our empirical space perception, one is not concerned that
f(x) should be exactly zero, but merely that its absolute value | f(x)| should remain
below the attainable threshold of exactness . The symbol f(x) = 0 is merely an
abbreviation for the inequality | f(x)| < &, with which one is really concerned. It
is only in the mathematics of precision that one insists that the equation f(x) = 0
be exactly satisfied. Since mathematics of approximation alone plays a role in ap-
plications, one might say, somewhat crassly, that one “needs” only this branch of
mathematics, whereas the mathematics of precision exists only for the intellectual
pleasure of those who busy themselves with it, and to give valuable and indeed
indispensable support for the development of mathematics of approximation.

In order to return to our real subject, I add here the remark that the concept of
irrational number belongs certainly only to mathematics of precision. For, the as-
sertion that two points are separated by an irrational number of millimetres cannot
possibly have a meaning, since, as we saw, when our rigid scales are measured in
meters, all decimal places beyond the sixth are devoid of meaning. Thus in practice
we can, without concern, replace irrational numbers by rational ones. This may
seem, to be sure, to be contradicted by the fact that, in crystallography, one talks
of the law of rational indices, or by the fact that in astronomy, one distinguishes
different cases according as the periods of revolution of two planets have a rational
or an irrational ratio. In reality, however, this form of expression only exhibits the
many-sidedness of language; for one is using here rational and irrational in a sense
entirely different from that hitherto used, namely, in the sense of mathematics of
approximation. In this sense, one says that two magnitudes have a rational ratio
when they are to each other as two small integers, say 3/7; whereas one would call
the ratio 2021/7053 irrational. We cannot say how large numerator and denomi-
nator in this second case must be, in general, since that depends upon the problem
in hand. I discussed all these interesting relations in a course of lectures in the
Summer Semester of 1901, which was lithographed in 1902 and which will con-
stitute the third volume of the present work (see the preface to the third edition,
p. V): Applications of Differential and Integral Calculus to Geometry, a Revision
of Principles [Elaborated by C. H. Miiller].

In conclusion let me say, in a few words, how I would have these matters handled
in the schools. An exact theory of irrational numbers would hardly be adapted either
to the interest or to the power of comprehension of most of the pupils. The pupil
will usually be content with results of limited exactness. He will look with aston-
ished approval upon correctness to within !/1000 mm and will not demand unlimited
exactness. For the average pupil it will be sufficient if one makes the irrational num-
ber intelligible in general by means of examples, and this is what is usually done.
To be sure, especially gifted individual pupils will demand a more complete expla-
nation than this, and it will be a laudable exercise of pedagogical skill on the part
of the teacher to give such students the desired supplementary explanation without
sacrificing the interests of the majority.



III. Concerning Special Properties of Integers

Number Theory in Schools and in Universities

We shall now begin a new chapter which will be devoted to the actual theory of
integers, to the theory of numbers, or arithmetic in its narrower sense. 1 shall first
recall in tabular form the individual questions from this science which appear in the
school curriculum.

1. The first problem of the theory of numbers is that of divisibility: Is one number
divisible by another or not?

2. Simple rules can be given which enable us easily to decide as to the divisibility
of any given number by smaller numbers, such as 2, 3,4,5,9, 11, etc.

3. There are infinitely many prime numbers, that is, numbers which have no
integer divisors except one and themselves): 2,3, 5,7, 11, 13, 17, etc.

4. We are in control of all of the properties of given integers if we know their
decomposition into prime factors.

5. In the transformation of rational fractions into decimal fractions the theory
of numbers plays an important role; it shows why the decimal fraction must be
periodic and how large the period is.

Although such questions may be considered in the Quinta and Quarta of sec-
ondary schools, the theory of numbers comes up only in isolated places during the
later years, and, at most, the following points are considered.

6. Continued fractions are taught occasionally, although not in all schools.

7. Sometimes teaching is given also in Diophantine equations, that is, equations
with several unknowns which can take only integer values. The Pythagorean num-
bers of which we spoke (see p. [32]), furnish an example; here one has to do with
triplets of integers which satisfy the equation

a®+ b = 2.

8. The problem of dividing the circle into equal parts is closely related to the the-
ory of numbers, although the connection is hardly ever worked out in the schools. If
we wish to divide the circle into n equal parts, using, of course, only ruler and com-
passes, it is easy to do it forn = 2, 3,4, 5, 6. It can no longer be done, however, if
n = 7, hence one stops respectfully when one comes to this problem in the school.
To be sure, it is not always stated definitely that this construction is really impossi-
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ble when n = 7 — a fact whose explanation lies somewhat deep in number-theoretic
considerations. In order to forestall misunderstandings, which unfortunately often
arise, let me say, with emphasis, that one is concerned here again with a problem
of mathematics of precision, which is devoid of meaning for the applications. In
practice, even in cases where an “exact” construction is possible, it would not be
used ordinarily; for, in the field of mathematics of approximation, the circle can
be divided into any desired number of equal parts more suitably by simple skil-
ful experiment; and any prescribed, practically possible, degree of exactness can
be attained. Every mechanician who makes instruments that carry divided circles
proceeds in this way.

9. The higher theory of numbers is touched by the school curriculum in one
other place, namely, when 7 is calculated, during the study of the quadrature of the
circle. One usually determines the first decimal places for &, by some method or
other, and mentions incidentally, perhaps, the modern proof of the transcendence
of m which sets at rest the old problem of the quadrature of the circle with ruler
and compasses. At the end of this course I shall consider this proof in detail. For
the present I shall give merely a precise formulation of the fact, namely, that the
number 1 does not satisfy any algebraic equation with integer coefficients:

ar” +br" '+t kn+1=0.

It is especially important that the coefficients be integers, and it is for this reason
that the problem belongs to the theory of numbers. Of course here, again, one is
concerned solely with a problem of the mathematics of precision, because it is only
in this sense that the number-theoretic character of 7= has any significance. The
mathematics of approximation is satisfied with the determination of the first few
decimals, which permit us to effect the quadrature of the circle with any desired
degree of exactness.

I have sketched for you the place of the theory of numbers in the schools. Let
us consider now its proper place in university teaching and in scientific investiga-
tion. In this connection I should like to divide research mathematicians, according
to their attitude toward theory of numbers, into two classes, which I might call the
enthusiastic class and the indifferent class. For the former there is no other sci-
ence so beautiful and so important, none which contains such clear and precise
proofs, theorems of such impeccable rigor, as the theory of numbers. Gaul} said “If
mathematics is the queen of sciences, then the theory of numbers is the queen of
mathematics”. On the other hand, theory of numbers lies remote from those who
are indifferent; they show little interest in its development, indeed they definitely
avoid it. The majority of students might, as regards their attitude, be put into the
second class.

I think that the reason for this remarkable division can be summarized as follows:
On the one hand the theory of numbers is fundamental for all more thoroughgoing
mathematical research; proceeding from entirely different fields, one comes at last,
with extraordinary frequency, upon relatively simple arithmetic facts. On the other
hand, however, the pure theory of numbers is an extremely abstract subject, and
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one does not often find the gift of ability to understand with pleasure anything so
abstract. The fact that most textbooks are at pains to present the subject in the most
abstract way tends to accentuate this unattractiveness of the subject. I believe that
the theory of numbers would be made more accessible, and would awaken more
general interest, if it were presented in connection with intuitive elements and ap-
propriate figures. Although its theorems are logically independent of such aids, still
one’s comprehension would be helped by them. I attempted to do this in my lec-
ture courses in 1895/967 and a similar plan is followed by Hermann Minkowski in
his book on Diophantische Approximationen. My lecture courses were of a more
elementary introductory character, whereas Minkowski considers at an early point
special problems in a detailed manner.

As to textbooks in the theory of numbers, you will often find all you need in
the textbooks on algebra. Among the large number of genuine number-theoretic
books, I would mention especially Paul Bachman’s Grundlehren der neueren

Zahlentheorie™.

Special Discussions of Number-theoretic Issues

In the more special number-theoretic discussions which I shall give here, I shall
keep touch with the points mentioned above and I shall endeavour especially to
present the matter as intuitively as possible. While I shall restrict myself to topics,
which are valuable for the teacher, 1 shall by no means put it into a form suitable
for immediate presentation to the pupils. The necessity for this arises from my
experiences in examinations, which show me that the number-theoretic information
of candidates is often confined to catchwords which have no thorough knowledge
behind of them. Every candidate can tell me that 7 is “transcendental”; but many of
them do not know what that means; I was told, once, that a transcendental number
was neither rational nor irrational. Likewise I often find candidates who tell me that
the number of primes is infinite, but who have no notion as to the proof, although it
is so simple.

Prime Numbers, Decomposition into Prime Factors

I shall start my number-theoretic discussion with this proof, assuming that you are
acquainted with the first two points mentioned in our list. As a matter of history I
remind you that this proof was handed on to us by Euclid, whose “elements” (Greek

37 Ausgewdihlte Kapitel der Zahlentheorie (mimeographed lectures written up by Arnold Sommer-
feld and Philipp Furtwingler). Second printing (already exhausted). Leipzig 1907.

38 With an appendix: Eine Einfiihrung in die Zahlentheorie. Leipzig 1907.

39 Sammlung Schubert No. 53. Leipzig 1907. [Second edition published by R. HauBner 1921.] —
See also Leonard E. Dickson, Introduction to the Theory of Numbers. Wiley.
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ototyeia) contained not only his system of geometry, but also algebraic and arith-
metic subjects in geometric language. Euclid’s transmitted proof of the existence of
infinitely many prime numbers is as follows: Assuming that the sequence of prime
numbers is finite, letitbe 1,2, 3,5, ... p; then the number N = (1-2-3-5... p)+1is
not divisible by any of the numbers 2, 3, 5, . .. p since there is always the remainder
1; hence N must either itself be a prime number or there are prime numbers larger
than p. FEither of these alternatives contradicts the hypothesis, and the proof is
complete.

In connection with the fourth point, the separation into prime factors, 1 should
like to call to your attention one of the older factor tables: Ladislas Chernac,
Cribrum Arithmeticum™, a large, meritorious work which deserves, historically,
all the more attention because it is so reliable. The name of the table suggests the
sieve of Eratosthenes. The idea on which it was based is that we should discard
gradually from the series of all integers those which are divisible by 2, 3, 5, ..., so
that only the prime numbers would remain. Chernac gives the decomposition into
prime factors of all integers up to 1.020.000 which are not divisible by 2, 3, or 5;
all the prime numbers are marked with a bar. It was in the Chernac work that all
the prime numbers lying within the limits stated above were first given. During the
nineteenth century the determination was extended to all prime numbers as far as
nine million.

Transformation of Ordinary Fractions into Decimal Numbers

I turn now to the fifth point, the transformation of ordinary fractions into decimal

fractions. For the complete theory I shall refer you to Weber-Wellstein, and I shall

explain here only the principle of the method by means of a typical example. Let
us consider the fraction 1/p, where p is a prime number different from 2 and 5.
We shall show that 1/ p is equal to an infinite periodic decimal fraction, and that
the number § of places in the period is the smallest exponent for which 10°, when
divided by p, leaves 1 as a remainder, or that, in the language of number theory, §
is the smallest exponent which satisfies the “congruence”:

10° = 1(mod p).

The proof requires, in the first place, the knowledge that this congruence always has
a solution. This is supplied by the little theorem of Fermat, which states that for
every prime number p and for every integer a not divisible by p:

a’! = 1(mod p).

We shall omit here the proof of this fundamental theorem, which is one of the
permanent tools of every mathematician. Secondly, we must borrow from the theory

40 Deventer 1811.
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of numbers the theorem that the smallest exponent in question, 8, is either p — 1
itself or a divisor of p — 1. We can apply the theorem of Fermat to the number 10

and to the given value p — assumed prime to 10 — and find that WT_I is an integer
N so that one has:

100 1
— =—+N.

p p
If we now think of 10°/p, as well as 1/ p, converted into a decimal fraction, the
digits in both of them must be identical, since the difference is an integer. But
since 10%/ p is obtained from 1/p by moving the decimal point § places to the
right, it follows that the digits in the decimal expression of 1/ p are unaltered by
this operation, in other words that the decimal fraction 1/ p consists of continued
repetition of the same “period” of § digits.

In order now to see that there cannot be a smaller period of §' < § digits one
needs only to prove that the digit number &’ of every period must satisfy the con-
gruence 10° = 1; for we know that § was the smallest solution of this congruence.
This proof will result if we pursue the preceding argument in the reverse direction.
It follows from our assumption that 1/ p and 10°/ p coincide in their decimal places,
-
in other words, that in fact 105 = 1(mod p). This completes the proof.

I will give you a few of the simplest instructive examples, which will show that &
can take widely different values, both smaller than and equal to p — 1. Notice first
that for:

hence that “;)—8/ is an integer N’, and therefore that 10% — 1 is divisible by p, or,

1 _
1=0333...

the number of digits in the period is 1, and that in fact, 10! = 1(mod 3). Similarly
we find
L
17 = 0,0909...
whence § = 2, and correspondingly 10" = 10, 10> = 1(mod 11). The maximum
value § = p — 1 appears in the example:

7 =10,142857142857 . ..

Here § = 6 and we have, in fact, 10! = 3, 102 = 2, 10° = 6, 10* = 4, 10° = 5,
and only 10® = 1(mod 7).

Continued Fractions

Now let us take up, in a similar way, the sixth point of my list, continued fractions.
I shall not present this, however, in the usual abstract arithmetic manner, since you
will find it given elsewhere, e.g., in Weber-Wellstein. I shall take this opportunity to
show you how number-theoretic things take on a clear and easily intelligible form
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through geometric and intuitive presentation. In this use of geometric aids in num-
ber theory we are really only retracing the steps followed by Gauf3 and Dirichlet. It
was the later mathematicians, say from 1860 on, who banished geometric methods
from the theory of numbers. Of course, I can give here only the most important
trains of thought and theorems, without proof, and I shall assume that you are not
entire strangers to the elementary theory of continued fractions. My lithographed
lecture notes on number theory*! contain a thoroughgoing account.

You know how the development of a given positive number w into a continued
fraction arises. We separate out the largest positive integer n, contained in @ and
write:

w =ny+ry, where 0 =ry<1,

then, if ry # 0, we treat 1/ry as we did w:
1/ro=ny+r, where 0=r <1,
and continue in the same way:

1/ry =n,+ry,, where 0=r, <1,
1/rp =n34+r;, where 0=r; <1,

The process terminates after a finite number of steps if w is rational, because
a vanishing remainder r, must appear in that case; otherwise the process goes on
indefinitely. In any case, we write, as the development of w into a continued frac-
tion:

1
w = nog+ 1
ni + 1
ny + ———
ns +
As an example, the continued fraction for 7 is
= 3,14159265--- =3 + ! 1
7+ 1
15+ 1
1+
292+ .

If we stop the development after the first, second, third, ... partial denominator,
we obtain rational fractions, called convergents of w:

Do I p
ng=-—, no+—=-—, no+
90 ny 4 ng+ -

2

these give remarkably good approximations to the number w, or, to speak more
exactly, each one of them gives an approximation which is closer than that given

41 See also Felix Klein, Gesammelte Mathematische Abhandlungen, Vol. T1, pp. 209 to 211.
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by any other rational fraction which does not have a larger denominator. Because
of this property, continued fractions are of practical importance where one seeks
the best possible approximation to an irrational number, or to a fraction with a large
denominator (e.g. a many-place decimal) by means of a fraction having the smallest
possible denominator. The following convergents of the continued fraction for
converted into decimal fractions, enable one to see how close the approximations
are to the value m = 3, 14159265....

22
Po_3 PL_ 22 314085,
90 a7

333 355
P2 220 3141509, P2 =222 31415992
¢ 106 g3 113

You will observe, moreover, in this example, that the convergents are alternately
less than and greater than 7. This is true in general, as is well known, that is the
successive convergents of the continued fraction for w are alternately less than and
greater than m, and enclose it between ever narrowing limits.
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Figure 8

Let us now enliven these considerations with geometric pictures. Confining our
attention to positive numbers, let us mark all those points in the positive quadrant of
the x-y-plane (see Fig. 8) which have integer coordinates, forming thus a so called
point lattice. Let us examine this lattice, I am tempted to say this “firmament” of
points, with our point of view at the origin. The radius vector from O to the point
(x = a, y = b) has for its equation
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and conversely, there are upon every suchray, x/y = A, where A = a/b is rational,
infinitely many integer points (ma, mb), where m is an arbitrary integer. Looking
from 0, then, one sees points of the lattice in all rational directions and only in
such directions. The field of view is everywhere “densely” but not completely and
continuously filled with “stars”. One might be inclined to compare this view with
that of the milky way. With the exception of O itself there is not a single integer point
lying upon an irrational ray x|/ y = w, where w is irrational, which is already per se
very remarkable. If we recall Dedekind’s definition of irrational number, it becomes
obvious that such a ray makes a cut in the field of integer points by separating the
points into two point sets, one lying to the right of the ray and one to the left. If we
inquire how these point sets converge toward our ray x/y = w, we shall find a very
simple relation to the continued fraction for w. By marking each point (x = p,,
¥y = ¢,), corresponding to the convergent p, /¢,, we see that the rays to these points
approximate to the ray x/y = w better and better, alternately from the left and
from the right, just as the numbers p, /¢, approximate to the number w. Moreover,
if one makes use of the known number-theoretic properties of p,, ¢,, one finds the
following theorem: Imagine pegs or needles affixed at all the integer points, and
wrap a tightly drawn string about the sets of pegs to the right and to the left of
the w-ray, then the vertices of the two convex string-polygons which bound our two
point sets will be precisely the points (py, q,) whose coordinates are the numerators
and denominators of the successive convergents to o, the left polygon having the
even convergents, the right one the odd. This gives a new, and, one may well say, an
extremely intuitive definition of a continued fraction. The representation in Fig. 8
corresponds to the example

V5—1 1

2 1
=

1+

1+ .

which is the irrationality associated with the regular decagon. In this example, the
first few vertices of the two polygons are

leftt po=0, gqo=1;, pr=1, ¢2=2; ps=3, g4 =5;...
rightt pr=1, qi=1; p3=2, ¢3=3; ps=5, ¢s=238;...

The values p,, g, for 7 grow much more rapidly, so that one could hardly draw the
corresponding representation concretely. The proof of our theorem, which I cannot
give here, can be found in detail of in my lithographed lecture course, mentioned
on p. [43].
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Pythagorean Numbers, Fermat’s Last Theorem

I shall now pass on to the treatment of the seventh point, the Pythagorean numbers,
where we shall use space perception in a somewhat different form. Instead of the
equation:

(1) a’+b* =2,
whose integer solutions are sought, let us set:

2 aje=§, bjc=n
and consider the equation:

A3) E+n =1

Figure 9

with the problem of finding all the rational number-pairs &, n which satisfy it.
Accordingly, we start from the representation of all rational points &, 1 (i.e. all
points with rational coordinates &, n, which will fill the £-n-plane “densely”. &> 4
n> = 1 is the equation of the unit circle about the origin in this plane. It is our task
to see how this circle threads its way through the dense set of rational points, in
particular, to see which of these points it contains. We know a few such points of
old, such as the intercepts with the axes, one of which, S(¢§ = —1,n = 0), we shall
consider (see Fig. 9). All rays through S are given by the equation

4) n=AE+1);

we call such a ray rational or irrational according as the parameter A is rational

or not. We have now the double theorem that every rational point of the circle is
projected from S by a rational ray and that every rational ray (4) meets the circle

in a rational point. The first half of the theorem is obvious, I guess. We prove the
second half by direct calculation, substituting from (4) in (3). This gives for the [50]
abscissas of the points of intersection the equation

E+22E+1D)2=1



[51]
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or
A+ AHE2+22%6+ 12 —1=0.

We know one solution of this equation, § = —1, which corresponds to the intersec-
tion §; for the other, one gets by easy calculation

122

(52) £ = m,

and from (4) the corresponding ordinate

21

b = —:.
o) TTiie

From (5a) and (5b) it follows that the second intersection is a rational point if A is
rational.

Our double theorem, now fully proved, can be stated also as follows. All the
rational points of the circle are represented by formulas (5) if A is an arbitrary
rational number. This solves our problem and we need only to pass to integers. For
this purpose we put

A=n/m,
where n, m are integers and obtain from (5):
£ = m? — n? _ 2mn
Tman 1T

as the totality of rational solutions of (3). All integer solutions of the original equa-
tion (1), i.e., all Pythagorean numbers are therefore given by the equations

a=m*—n% b=2mn, c¢=m*+n>
and one obtains the totality of solutions which have no common divisor if m and
n take all pairs of relatively prime integer values. We have thus a very intuitive
deduction of a result, which usually appears very abstract.

In this connection I should like to discuss the great Fermat theorem. It is quite
after the manner of the geometers of antiquity that one should generalize the ques-
tion regarding Pythagorean numbers, from the plane to space of three and more
dimensions in the following manner. Is it possible that the sum of the cubes of two
integers should be a cube? Or that the sum of two fourth powers should be a fourth
power, etc.? In general, has the equation

xl’l + yn — Zn’

where n is an arbitrary integer, solutions which are integers? To this question
Fermat gave the answer no, in the theorem named after him: The equation x" +
y" = z" has no integer solutions for integer values of n except when n = 1 and
n = 2. Let me begin with a few historical notes. Fermat lived from 1601 to 1665
and was a parliamentary councillor, i.e., a jurist, in Toulouse. He devoted himself,



Special Discussions of Number-theoretic Issues 49

however, extensively and most fruitfully to mathematics so that he may be counted
as one of the greatest mathematicians. Fermat’s name deserves a prominent place
among those of the founders of analytic geometry, of infinitesimal calculus, and
of the theory of probability. Of special significance however, are his achievements
in number theory. All of his results in this field appear as marginal notes on his
copy of Diophantus, the famous ancient master of number theory who lived in
Alexandria probably about 300 A.D., i.e., about 600 years after Euclid. In this
form they were published by his son five years after Fermat’s death. Fermat himself
had published nothing, but he had, by means of voluminous correspondence with
the most significant of his contemporaries, made his discoveries known, although
only in part. It was in that edition of Diophantus that the famous theorem with
which we are now concerned was found. Fermat wrote concerning it that “he had
found a really wonderful proof, but the margin was too narrow to accommodate
it“>. To this day, no one has succeeded in finding a proof of this theorem!

In order to orient ourselves somewhat as to its purport, let us inquire, as in the
case of n = 2, in the first place about the rational solutions of the equation:

40" =1,

i.e., about the shape of the curve which represents this equation to the totality of the
rational points in the £-n-plane. Forn = 3 and n = 4 the curves have approximately

the appearance indicated in Fig. 10 and 11. They contain, at least, the points & = 0,
n=1land & = 1,n = 0 when n = 3, and the points § = 0, n = +1 and [52]
& = £1,n = 0 whenn = 4. The assertion of Fermat means, now, that these curves,
unlike the circle considered above, thread through the dense set of the rational points
without passing through a single one, except those just noted.

A7

Figure 10

2 See the edition issued by the Paris Academy: (Euvres de Fermat, vol. 1, p. 291. Paris 1891, and
vol. ITL, p. 241. Paris 1896.
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Figure 11

The interest in this theorem rests on the fact that all efforts to find a complete
proof of it have been, thus far, in vain. Among those who have attempted proof,
one should, above all, mention Ernst Eduard Kummer, who advanced the problem
materially by bringing it into relation with the theory of algebraic numbers, in
particular with the theory of the n-th roots of unity (cyclotomic numbers). By using
the n-throotof 1, ¢ = e , we can, indeed, separate z" — y" into n linear factors,
and we may write the Fermat equation in the form

XM= (=) z—y) . (z—"y).

The problem is therefore reduced to the separation of the n-th power of the integer
x into n linear factors which shall be built up from two integers z and y and the
number ¢, in the manner indicated. Kummer developed, for such numbers, theo-
ries quite similar to those which have long been known for the case of ordinary
integers, theories, that is, which depend on the notions of divisibility and factoriza-
tion. One speaks, accordingly, of integer algebraic numbers, and here, in particular,
of cyclotomic numbers, because of the relation of the number ¢ to the division of
the circle. Fermat’s theorem is, then, for Kummer, a theorem on factorization in
the domain of algebraic cyclotomic numbers. From this theory he tried to deduce
a proof of the theorem. He succeeded, in fact, for a very large number of values
of n, for example for all values of n below 100. Among the larger numbers, how-
ever, there appeared exceptional values for which no proof has been found, either
by him or by the later mathematicians who continued his investigations. I must
content myself with these remarks. You will find particulars concerning the state of
the problem, and concerning Kummer’s publications in the Enzyclopddie, Vol. 1,
p. 714, at the end of the report by Hilbert, Theorie der Algebraischen Zahlkorper.
Hilbert himself is among those who have continued and extended the investigations

of Kummer™®.

43 | A summarized account of the elementary investigations about Fermat’s theorem is given in Paul
Bachmann, Das Fermatsche Problem. Berlin 1919.]
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It can indeed hardly be assumed that Fermat’s “wonderful proof” lay in this di-
rection. For it is not very likely that he could have operated with algebraic numbers
at a time when one was not even certain about the meaning of the imaginary. At

that time, also number, theory was quite undeveloped. It received at the hands of [53]

Fermat himself far-reaching stimulation. On the other hand, one cannot assume that
a mathematician of Fermat’s rank made an error in his proof, although such errors
have occurred with the greatest mathematicians. Thus we must indeed believe that
he succeeded in his proof by virtue of an especially fortunate simple idea. But as
we have not the slightest indication as to the direction in which one could search
for that idea, we shall probably expect a complete proof of Fermat’s theorem only
through systematic extension of Kummer’s work.

These questions assumed new significance when our Géttingen Science Associ-
ation offered a prize of 100.000 marks for the proof of Fermat’s theorem. This was
a foundation of the mathematician Paul Wolfskehl, who died in 1906. He had proba-
bly been interested all his life in Fermat’s theorem, and he bequeathed from his large
fortune this sum for the fortunate person who should either establish the truth of the
theorem of Fermat, or by means of a single example, exhibit its untruth**. Such
a refutation would be no simple matter, of course, because the theorem is already
proved for exponents below 100 and one would have to start one’s calculations with
very large numbers.

It will be clear, from my foregoing remarks, how difficult the winning of this
prize must seem to the mathematician, who understands the situation and who
knows what efforts have been made by Kummer and his successors to prove the
theorem. But the great public thinks otherwise. Since the summer of 1907, when
the news of the prize was published in the newspapers (without authorization, by the
way) we have received a prodigious heap of alleged “proofs”. People of all walks of
life, engineers, schoolteachers, clergymen, one banker, many women, have shared
in these contributions. The common thing about them all is that they have no idea
of the serious mathematical nature of the problem. Moreover, they have made no
attempt to inform themselves regarding it, but have trusted to finding the solution by
a sudden flash of thought, with the inevitable result that their work is nonsense. One
can see what absurdities are brought forth if one reads the numerous critical discus-
sions of such proofs by Albert Fleck (who is a practicing physician by profession),
Philipp Maennchen, and Oskar Perron, in Archiv fiir Mathematik und Physik® . It
is amusing to read these wholesale slaughterings, sad as it is that they are neces-
sary. I should like to mention one example, which is related to our treatment of the

4 The detailed conditions governing the competition for this prize [long since become val-
ueless] were published in the Nachrichten der Gesellschaft der Wissenschaften zu Gottingen,
Geschiftliche Mitteilungen 1908, p. 103 et seq., and reprinted in many other mathematical journals
(Sec. e.g. Mathematische Annalen vol. 66, p. 143; Journal fiir reine und angewandte Mathematik,
vol. 134, p. 313)

4 [Vols. XTIV, XV, XVI, XVII, XVIII (1901-1911).]
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case x> + y? = z2. The author seeks a rational parameter representation for the
function x" 4+ y" = z" (n > 2), and finds the result, long known from the theory
of algebraic functions, that this, unlike the case n = 2, is not possible. Now this
person overlooks the fact that a non-rational function can very well take on rational
values for single rational values of the argument, and he therefore believes that he
has proved the Fermat theorem.

The Problem of the Division of the Circle

x-plane 4 ,
o
ez
o
Qg A
¥ .
e EF‘

Figure 12

With this I close my remarks about Fermat’s theorem and come to the eighth point of
my list, the problem of the division of the circle. 1 shall make use here of operations
with complex numbers, x + i y, assuming that they are familiar to you, although we
shall consider them systematically later on. The problem is to divide the circle into
n equal parts, or to construct a regular polygon of n sides. We identify the circle
with the unit circle about the origin of the complex x-y-plane and take x 4+ iy = 1
as the first of the n points of division (see Fig. 12, in which n is chosen equal to
five); then the n complex numbers belonging to the n vertices:

2k 2k -
z:x—l—iy:cos—n—i-isin—n:e%’ (k=0,1,....,n—1)
n n

satisfy, according to De Moivre’s theorem, the equation:

and with this the problem of the division of the circle is resolved into the solving
of this simple algebraic equation. Since it has the rational root z = 1, z" — 1 is
divisible by z —1, and there remains for the n — 1 other roots the so called cyclotomic
equation

4224241 =0,

an equation of degree n — 1, all of whose coefficients are +1.
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Since ancient times, interest has centred in the question as to what regular poly-
gons can be constructed with ruler and compass. It was known to the ancients, too,
that this construction was possible for the number of vertices n = 2h 3.5 (h an
arbitrary integer), and likewise for the composite values n = 2h .3 p = 2h.5,
n = 2".3.5. Here the problem rested until the end of the eighteenth century when
the young GauB3 undertook its solution. He found the desired construction was pos-
sible with ruler and compass for all prime numbers of the form p = 2 + 1, but
for no others. For the first values u = 0, 1, 2, 3, 4 this formula yields, in fact, prime
numbers, namely

3,5,17,257, 65537,

of which the first two cases were already known, while the others presented sig-
nificant new results. Of these the regular polygon of seventeen sides is especially
famous. The fact that it can be constructed with ruler and compass was first estab-
lished by Gauf3. Moreover, it is not known for what values of u the above formula
yields prime numbers. It has been known, for example, since Euler’s time, that for
# = 5 the number is composite. I shall not go farther into details, but rather out-
line the general conditions, and the significance of this discovery. You will find in
Weber-Wellstein details concerning the regular polygon of seventeen sides.

I should like to call to your attention especially the reprint of Gaufs’ diary in
the fifty-seventh volume of the Mathematische Annalen (1903) and in Volume X, 1
(1917) of GauB’ Works. Itis a small, insignificant looking booklet, which Gaul3 kept
from 1796 on, beginning shortly before his nineteenth birthday. It was precisely
the first entry which had to do with the possibility of constructing the polygon of
seventeen sides (March 30, 1796); and it was this early important discovery which
led GauB} to decide to devote himself to mathematics. The perusal of this diary is
of the highest interest for every mathematician, since it permits one, farther on, to
follow closely the genesis of Gauf3’ fundamental discoveries in the field of number
theory, of elliptic functions, etc.

The publication of that first great discovery of Gaull appeared as a short com-
munication in the “Jenaer Literaturzeitung” of June 1, 1796, instigated by Gauf}’
teacher and patron, Hofrat Zimmermann, of Braunschweig, and accompanied by
a short personal note by the latter*®. GauB published the proof later in his fun-
damental number-theoretic work, Disquisitiones Arithmeticae*’ in 1801; here one
finds for the first time the negative part of the theorem, which was lacking in his
communication, that the construction with ruler and compass is not possible for
prime numbers other than those of the form 2% + 1, e.g., for p = 7. 1 shall put
before you here an example of this important proof of impossibility — the more
willingly because there is such a lack of understanding for proofs of this sort by
the great public. By means of such proofs of impossibility modern mathematics has
settled an entire series of famous problems, concerning the solution of which many
mathematicians had striven in vain since ancient times. I shall mention, besides the

46 Also reprinted in Mathematische Annalen, vol. 57. P-0 (1903); and in GauB’ Works, vol. 10,
p. 1(1917).
47 Reprinted Works, Vol. 1.
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construction of the polygon of seven sides, only the trisection of an angle and the
quadrature of the circle with ruler and compass. Nevertheless there are surprisingly
many persons who devote themselves to these problems without having a glimmer-
ing of higher mathematics and without even knowing or understanding the nature of
the proof of impossibility. According to their knowledge, which is mostly limited
to elementary geometry, they make trials, by drawing, as a rule, auxiliary lines and
circles, and multiply these finally in such a number that no human being, without
undue expenditure of time, can find his way out of the maze and show the author
the error in his construction. A reference to the arithmetic proof of impossibility
avails little with such persons, since they are amenable, at best, only to a direct
consideration of their own “proof” and a direct demonstration of its falsity. Every
year brings to every even moderately known mathematician a heap of such consign-
ments, and you also, when you are at your posts, will get such proofs. It is well for
you to be prepared in advance for such experiences and to know how to hold your
ground. Perhaps it will be well for you, then, if you are master of a definite proof
of impossibility in its simplest form.

Accordingly, I should like to give you, in detail, the proof that it is impossi-
ble to construct the heptagon with ruler and compass in the sense of geometry of
precision. It is well known that every construction with ruler and compass finds
its arithmetic equivalent in a succession of square roots, placed one above another,
and, conversely, that one can represent geometrically every such square root by the
intersection of lines and circles. This you can easily verify for yourselves. We can
formulate our assertion analytically, then, by saying that the equation of degree six

z6+25+z4+z3+22+z+1=0,

which characterizes the regular heptagon, cannot be solved by a succession of
square roots in finite number. Now this is a so-called reciprocal equation, i.e.,
it has, for every root z, also 1/z as a root. This becomes obvious if we write it in
the form:

1

11
(1) P+ 4z+14+-+ 5+ 5 =0.
z z z

We can reduce by half the degree of such an equation, if we take

I+ -=x
z

as a new unknown. By easy calculation, we obtain for x the cubic equation
() XHxi-—2x—-1=0,

and one sees at once that the equations (1) and (2) are, or are not, both solvable
by square roots. Moreover, we can represent x geometrically in connection with
the construction of the heptagon. For, if we consider the unit circle in the complex
plane, we see easily that the following relations are obvious. If one designates
by ¢ = 27” the central angle of the regular heptagon, and remembers that z =



Special Discussions of Number-theoretic Issues 55

cos @ + i sin g and % = cos ¢ — i sin ¢ are the two vertices of the heptagon nearest
tox = 1,thenx = z + % = 2cos ¢ (Fig. 13). Thus, if one knows x, one can at
once construct the heptagon.

z-plane

Figure 13

‘We must now show that the cubic equation (2) cannot be solved by square roots.
The proof falls into an arithmetic and an algebraic part. We shall start by showing
that the equation (2) is irreducible, i.e. that its left side cannot be separated into
factors whose coefficients are rational numbers. Let us assume that the equation is
reducible. Then its left side must have a linear factor with rational coefficients, and
thus also a rational zero. But this cannot be a rational p, since equation (2) yields:
1 = p(p?> + p —2), thus an equation, which for its part can only be satisfied if its
two factors can assume both the value +1 or both the value —1. This does not occur,
however, and it remains thus only to verify whether the zero is a rational number
p/q, where p and ¢ are integers without a common divisor. But that means that
P>+ p*q —2pg* — q* = 0, or that p3, and therefore p itself, is divisible by ¢. In
the same way it follows that ¢>, and hence ¢, must be divisible by p. Consequently
p = =£q and the equation (2) must have the root x = £1. But inspection shows
that this is not the case.

The second part of the proof consists, in showing that an irreducible cubic
equation with rational coefficients is not solvable by square roots. It is essentially [58]
algebraic in nature, but because of the connection I shall give it here. Let us make
the assertion in positive form. If a cubic equation with rational coefficients A, B, C:

(8) fX)=x*+Ax> +Bx+C =0

can be solved by square roots, it must have a rational root, i.e., it is reducible.
For the existence of a rational root « is equivalent to the existence of a rational
factor x — « of f(x) and thus to reducibility. It is most important that this proof
be preceded by a classification of all expressions that can be built up with square
roots, or, more precisely, of all expressions that can be built up with square roots
and rational numbers, in finite number, by means of rational operations. A concrete
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example of such a number is
Lo Ya+t Vb + e ’
d+ e+ \/7

where a, b, ..., f arerational numbers. Of course we are talking only about square
roots which cannot be extracted rationally. All others we suppose have been defi-
nitely removed.

Every such expression is a rational function of a certain number of square roots.
In our example there are three. We shall first consider a single such square root,
whose radicand, however, may have a form as complicated as one pleases. By its
“order” we shall understand the largest number of root signs which appear in it,
one above another. In the preceding example, «, the roots of the numerator have
the orders 2 and 1, respectively, while that of the denominator has the order 3.

In the case of a general square root expression we examine the orders of the
different “simple square root expressions” of the sort just discussed, out of which
the general expression is rationally constructed, and we designate the largest among
them as the order p of the expression in question. In our example, © = 3. Now
several “simple square root expressions” of order ; might appear in our expression
and we consider their number, n, the “number of terms” of order |, as a second
characteristic. This number is thought of as so determined that no one of the n
simple expressions of order p can be rationally expressed in terms of lower order.
For example, the expression of order 1

V24+ 3+ 6

has only 2, and not 3, as the “number of terms” since \/6 = ﬁ V3. The example
« given above, of third order, has n = 1.

We have thus assigned to every square root expression two finite numbers pu, n
which we combine in the symbol (u, n) as the “characteristic” or “rank” of the
root expression. When two root expressions have different orders we assign a lower
rank to the one of lower order; when the orders are the same, the lower number of
terms determines the lower rank. The terms of the lowest rank are therefore those
of order zero, thus they are the rational numbers.

Now let us suppose that a root x; of the cubic equation (8) is expressible by
means of square roots; and, to be explicit, by means of an expression of rank (i, n).
Selecting one of the n terms ~/R of rank /i, let x be written in the form

. o+ VR
1= —0F=:
Yy + 3R
where «, B, y, § contain at most n — 1 terms of order  and where R is of order

w—1. Here y —8+/R is certainly different from zero; for y —§+/R = 0 would imply
either 6 = y = 0, which is obviously impossible, or VR = y 16, ie., R would
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be rationally expressible by means of the other (n — 1) terms of order w, which
appear in x, and hence it would be rational and thus superfluous. Multiplying nu-
merator and denominator by y — 8@, we find

(oz-!—,B\/E) (y—(?ﬁ)
V2 _82-R

=P+ OVR,

X1 =

where P, Q are rational functions of «, B, y, 8, R, that is, they contain at most
(n — 1) terms of order u, and, besides, only those of order ;& — 1, so that they have
at most the rank (i, n — 1). Substituting this value of x in (8), we get

3 2
fe) = (P+QVER) +4(P+0VR) +B(P+0VR)+C =0,
and when we remove parentheses we obtain a relation of the form
fx1)=M +NVR=0,

where M, N are polynomials in P, Q, R, that is, rational functions of «, 8, y, 8, R.
If N # 0, we should have /R = —M/N , i.e., ~/R would be expressible rationally
in terms of «, B8, ¥, 8, R, that is, by means of the other (n — 1) terms of order u and
others of lower order. But that is impossible, as remarked above, according to the
hypothesis. Thus it follows necessarily that N = 0 and hence also M = 0. From
this we may conclude, that

X2=P—Q\/E

is also a root of the cubic equation (8). For a comparison with the last equations
yields at once

f(x2) =M —N~VR =0.

The proof may now be finished very simply and surprisingly. If x5 is the third root
of our cubic equation, we have

x1+x2+X3=—A,

and hence
X3 = —A—(xl +XZ) =—A-2P

is of the same rank as P and therefore certainly of lower rank than x;.

If x5 is itself rational, our theorem is proved. If not, we can make it the starting
point of the same series of deductions. It appears that, in the case of the other roots,
the higher rank must have been an illusion, so that, in particular, one of them has,
actually, lower rank than x3. If we keep this up, back and forth among the roots,
we see, each time, that the rank is really lower than we had thought. We must,
then, of necessity, come finally to a root with the order u = 0. This demonstrates
the existence of a rational root of the cubic equation. We cannot continue our

[60]
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procedure beyond this point. The two other roots must then be, either themselves
rational, or else of the form P £ Q VR , where P, Q, R are rational numbers. Hence
we have shown that f(x) separates into a quadratic and a linear rational factor
and is therefore reducible. Every irreducible cubic equation, and in particular, our
equation for the regular heptagon, is insoluble by means of square roots. The
proof is therefore complete that the regular heptagon cannot be constructed with
ruler and compass.

You observe how simply and obviously this proof proceeds, and how little
knowledge it really presupposes. For all that, some of the steps, especially the ex-
planation of the classification of square root expressions, demand a certain measure
of mathematical abstraction. Whether the proof is simple enough to convince one
of those mathematical laymen, mentioned above, of the futility of his attempts at an
elementary geometric proof, I do not presume to decide. Nevertheless one should
try to explain the proof slowly and clearly to such a person.

In conclusion, I shall mention some of the literature on the question of regular
polygons together with some, on the broader question of geometric constructibility
in general which we have touched upon on this occasion. First of all, there is again
Weber-Wellstein 1 (Sections 17 and 18 in the fourth edition). Next let me men-
tion the Festschrift Vortrige iiber ausgewdhlte Fragen der Elementargeometrie*®*
which I prepared in 1895, on the occasion of a meeting of secondary school teachers
in Gottingen. I might mention, as a more detailed and comprehensive substitute for
this little book (which is out of print) the German translation, Fragen der Elemen-
targeometrie* **, of a collected edition by Federico Enriques in Bologna, where
you will find information on all pertinent questions.

I leave now the discussion of number theory, reserving the last point, the tran-
scendence of m, for the conclusion of this course of lectures, and turn, in the next
chapter, to the last extensions of the number system to be considered by us.

48 Elaborated by F. Tigert. Leipzig 1895.

* Translation by Beman and Smith: Famous Problem of Geometry. Ginn, reprinted by Stechert,
New York.

49 Teil 1I: Die geometrischen Aufgaben, ihre Losung und Losbarkeit. Deutsch von H. Fleischer.
Leipzig 1907. [2. Aufl. 1923] — See also Jacob W. A. Young, Monographs on Topics in Modern
Mathematics.

** Problems of Elementary Geometry.



IV. Complex Numbers

1. Ordinary Complex Numbers

Let me give, as a preliminary, some historical facts. Imaginary numbers are said
to have been used first, incidentally, to be sure, by Cardan in 1545, in his solu-
tion of the cubic equation. As for the further development, we can make the same
statement as in the case of negative numbers, that imaginary numbers made their
own way into arithmetic calculation without the approval, and even against the
desires of individual mathematicians, as they occurred ever again by themselves
during calculations, and obtained wider circulation only gradually and to the ex-
tent to which they showed themselves useful. Meanwhile the mathematicians were
not altogether happy about it. Imaginary numbers long retained a somewhat mystic
colouring, just as they have today for every pupil who hears for the first time about
that remarkable i = ~/—1. As evidence, I mention a very significant utterance by
Leibniz in the year 1702, “Imaginary numbers are a fine and wonderful refuge of the
divine spirit, almost an amphibian between being and non-being”. In the eighteenth
century, the notion involved was indeed by no means cleared up, although Euler,
above all, recognized their fundamental significance for the theory of functions. In
1748 Euler set up that remarkable relation:
e =cosx +1i sinx

by means of which one recognizes the fundamental relationship among the kinds
of functions which appear in elementary analysis. The nineteenth century finally
brought the clear understanding of the nature of complex numbers. In the first
place, we must emphasize here the geometric interpretation to which various inves-
tigators were led about the turn of the century, almost simultaneously. It will suffice
if I mention the man who certainly went deepest into the essence of the thing and
who exercised the most lasting influence upon the public, namely Gauf3. As his
diary, mentioned above, proves incontrovertibly, he was, in 1797, already in full
possession of that interpretation, although, to be sure, it was published very much
later. The second achievement of the nineteenth century is the creation of a purely
formal foundation for complex numbers, which reduces them to dependence upon
real numbers. This originated with English mathematicians of the thirties, the de-
tails of which I shall omit here, but which you will find in Hankel’s book, mentioned
above.

© Springer-Verlag Berlin Heidelberg 2016 59
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Let me now explain these two prevailing foundation methods. We shall take first
the purely formal standpoint, from which the consistency of the rules of operation
among themselves, rather than the meaning of the objects, guarantees the correct-
ness of the concepts. According to this view, complex numbers are introduced in
the following manner, which precludes every trace of the mysterious.

1. The complex number x + i y is the combination of two real numbers x, y, that
is, a number-pair, concerning which one adopts the conventions which follow.

2. Two complex numbers x + iy, x" + iy’ are called equal when x = x', y = y’.

3. Addition and subtraction are defined by the relation

x+iy) X +iy)=CxExXH+i(yxy).

All the rules of addition follow from this, as is easily verified. The monotonic
law alone loses its validity in its original form, since complex numbers, by their
nature, do not have the same simple order in which natural or real numbers appear
by virtue of their magnitude. For the sake of brevity I shall not discuss the modified
form which this gives to the monotonic law.

4. We stipulate that in multiplication one operates as with ordinary letters, except
that one always puts i> = —1; in particular, that

(x +iy)(x" +iy") = (xx" = yy') +i(xy" +x"y).

Itis easy to see that, with this, all the laws of multiplication hold, with the exception
of the monotonic law, which does not enter into consideration.
5. Division is defined as the inverse of multiplication; in particular, we may
easily verify that
1 X .y

= —i .
x+iy  x24y2 x24y2

This number always exists except for x = y = 0, i.e., division by zero has the
same exceptional place here as in the domain of real numbers.

It follows from this that operations with complex numbers cannot lead to con-
tradictions, since they depend exclusively upon real numbers and known operations
with them. We shall assume here that these are devoid of contradiction.

Besides this purely formal treatment, we should of course like to have a geo-
metric, or otherwise visual, interpretation of complex numbers and of operations
with them, in which we might see an intuitive foundation of consistency. This is
supplied by that Gaussian interpretation, which, as you all know and as we have
already mentioned, looks upon the totality of points (x, y) of the plane in an x-y-
coordinate system as representing the totality of complex numbers z = x +iy. The
sum of two numbers z, a follows by means of the familiar parallelogram construc-
tion with the two corresponding points and the origin 0, while the product z - a is
obtained, adding the unit point 1 (x = 1, y = 0), by constructing on the segment
0z a triangle similar to a01 (Fig. 14). In brief, addition z' = z + a is represented by
a translation of the plane into itself, multiplication z' = za by a similarity trans-
formation, i.e., by a turning and a stretching, the origin remaining fixed. From the
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order of the points in the plane, considered as representatives of complex numbers,
one sees at once what takes the place here of the monotonic laws for real numbers.
These suggestions will suffice, I hope, to recall the subject clearly to your memory.

z-plane

Figure 14

I must call to your attention the place in Gaufl in which this foundation of
complex numbers, by means of their geometric interpretation, is set out with full
emphasis, since it was this which first exhibited the general importance of complex
numbers. In a paper published in 1831, Gaull exposed the theory especially of in-
teger complex numbers a + ib, where a, b are real integers, in which he developed
for the new numbers the theorems of ordinary number theory concerning prime fac-
tors, quadratic and biquadratic residues, etc. We mentioned such generalizations of
number theory, in connection with our discussion of Fermat’s theorem. In his own
abstract™ of this paper GauB expresses himself concerning what he calls the “true [64]
metaphysics of imaginary numbers”. For him, the right to operate with complex
numbers is justified by that intuitive geometric interpretation which one can give
to them and to the operations with them. Thus he takes by no means the formal
standpoint. Moreover, these long, beautifully written expositions of Gauf} are ex-
tremely well worth reading. I mention here, also, that Gaull proposes the clearer
word “complex”, instead of “imaginary”, a name that has, in fact, been adopted.

2. Higher Complex Numbers, Especially Quaternions

It has occurred to everyone who has worked seriously with complex numbers to ask
if we cannot set up other, higher, complex numbers, with more new units than the
one i and if we cannot operate with them reasonably. Positive results in this di-
rection were obtained about 1840 by Hermann Grafimann, in Stettin, and William
R. Hamilton, in Dublin, independently of each other. We shall examine the inven-
tion of Hamilton, the calculus of quaternions, somewhat carefully later on. For the
present let us look at the general problem.

30 For this “Selbstanzeige” see Gaus Werke, vol. II.
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We can look upon the ordinary complex number x + iy as a linear combination
x-14+y-i

formed from two different “units” 1 and i, by means of the real parameters x and
y. Similarly, let us now imagine an arbitrary number, 7, of units ey, ey, ..., e, all
different from one another, and let us call the totality of combinations of the form
X = x1e1 + xpe3 + -+ - + X, e, a higher complex number system formed from them
with n arbitrary real numbers x;, X, ..., x,. If there are given two such numbers,
say x, defined above, and

Yy =yier+ ye2+ ...+ yuey.

It is almost obvious that we should call them equal when, and only when, the coeffi-
cients of the individual units, the so called “components” of the number, are equal
in pairs
X1 =DV, X2=DY2,--sXn = Vn-
The definition of addition and subtraction, which reduces these operations sim-
ply to the addition and subtraction of the components,

xty=M@=xyDer+xaxy)er+--+ X, ya)e,

is equally obvious.

The matter is more difficult and more interesting in the case of multiplication.
To start with, we shall proceed according to the general rule for multiplying letters,
i.e., multiply each i-th term of x by every k-th termof y (i, k = 1,2,...,n). This
gives:

Xy = Z Xi Yk€iC-
(i,k=1,....n)

In order that this expression should be a number in our system, one must have a rule
which represents the products e; -e; as complex numbers of the system, i.e., as linear
combinations of the units. Thus one must have n? equations of the form:

el = Z Cikl " €] (i,k=1,...,n).
(I=1,....n)

Then we may say that the number

Xy = Z Z Xi YkCikl ( €1

(I=1,...,n) \ (,k=1,....,n)

will always belong to our complex number system. The convention of determin-
ing this rule for multiplication, i.e., the table of the coefficients c;i;, provides the
characteristic feature of each particular complex number system.

If one now defines division as the operation inverse to multiplication, it turns out
that, under this general arrangement, division is not always uniquely possible, even
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when the divisor does not vanish. For, the determination of y from x - y = z re-
quires the solution of the » linear equations Zi,k X; Vi Ciki = z; for the n unknowns
Vi, --., Yn, and these would have either no solution, or infinitely many solutions, if
their determinant happened to vanish. Moreover, all the z; may be zero even when
not all the x; or not all the y; vanish, i.e., the product of two numbers can vanish
without either factor being zero. It is only by a skilful special choice of the numbers
cik; that one can bring about accord here with the behaviour of ordinary numbers.
To be sure, a closer investigation shows, when n > 2, that, to attain this, we must
sacrifice one of the other rules of operation. We choose as the rule that fails to be
satisfied, one which appears less important under the circumstances.

Let us now follow up these general explanations by a more detailed discussion
of quaternions as the example which, by reason of its applications in physics and
mathematics, constitutes the most important higher complex number system. As the
name indicates, these are four-term numbers (n = 4); as a subclass, they include
the three-term vectors, which are generally known today, and which are sometimes
discussed in the schools.

As the first of the four units with which we shall construct quaternions, we shall
select the real unit 1, (as in the case of ordinary complex numbers). We ordinarily
denote the other three units, as did Hamilton, by Z, j, k, so that the general form of
the quaternion is

p=d+ia+ jb+kc,

where a, b, ¢, d are real parameters, the coefficients of the quaternion. We call the
first component d, the one which is multiplied by 1, and which corresponds to the
real part of the common complex number, the “scalar part” of the quaternion, the
aggregate ai + bj + ck of the other three terms its “vector part”.

Figure 15

The addition of quaternions follows from the preceding general remarks. I shall
give an obvious geometric interpretation, which goes back to that interpretation
of vectors which is familiar to you. We imagine the segment, corresponding to
the vector part of p, and having the projections a, b, ¢ on the coordinate axes,
as loaded with a weight equal to the scalar part. Then the addition of p and
p =d +ia + jb' + kc’ is accomplished by constructing the resultant of the
two segments, according to the well known parallelogram law of vector addition
(see Fig. 15), and then loading it with the sum of the weights, for this would then
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in fact represent the quaternion:
(1) p+p =Wd+d)+i(a+d)+jb+b)+k(c+c).

We come to specific properties of quaternions only when we turn to multipli-
cation. As we saw in the general case, these properties must be implicit in the
conventions adopted as to the products of the units. To begin with, I shall indi-
cate the quaternions to which Hamilton equated the sixteen products of two units
each. As its symbol indicates, we shall operate with the first unit 1 as with the real
number 1, so that:

(2a) 12=1,i-1=1-i=i, j-1=1-j=j, k-1=1-k =k.

As something essentially new, however, we agree that, for the squares of the other
units:

(2b) i2=jt=k*=-1,

and for their binary products:

(2¢0) jk=+i, ki =+j, ij =+k
whereas one convenes for the inverted position of the factors:
(2d) kj =—i, ik =—j, ji =—k.

One is struck here by the fact that the commutative law for multiplication is not
obeyed. This is the inconvenience in quaternions which one must accept in order
to rescue the uniqueness of division, as well as the theorem that a product should
vanish only when one of the factors vanishes. We shall show at once that not only
this theorem but also all the other laws of addition and multiplication remain valid,
with this one exception, in other words, that these simple agreements are very ex-
pedient.
We construct, first, the product of two general quaternions

p=d+ia+ jb+kc and g =w +ix+ jy+kz.
Let us start from the equation
g =p-gq=Wd+ia+jb+ke)- (w+ix+ jy+kz);
and let us multiply out term by term. In carrying out this multiplication, we must
note the order in the case of the units 7, j, k. We must follow the commutative law

for products composed of the components a, b, ¢, d, and for products of compo-
nents and one unit, we must replace the products of units in accordance with our
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multiplication table, and we must then collect the terms having the same unit. We
then have

g =pg=w+ix"+jy +kz =(dw—ax—by —cz)
+i<aw+dx+bz—cy)
+j(bw+dy+cx—az)
+k(cw+dz+ay—bx).

3)

The components of the product quaternion are thus definite simple, bilinear combi-
nations of the components of the two factors. If we invert the order of the factors,
the six underscored terms change their signs, so that q - p, in general, is different
from p - q, and the difference is more than a change of sign as was the case with
the individual units. Although the commutative law fails for multiplication, the
distributive and associative laws hold without change. For, if we construct on the
one hand p(g + ¢), on the other pg + pg; by multiplying out formally without
replacing the products of the units, we must, of necessity, get identical results, and
no change can be brought about by then using the multiplication table. Further, the
associative law must hold in general, if it holds for the multiplication of the units.
But this follows at once from the multiplication table, as the following example
shows:

(ij)k =i(jk).
In fact, we have:
i)k =k -k =-1,
and
i(k)y=i-i =-1.

We shall now take up division. It will suffice to show that for every quaternion
p=d +ia+ jb+ kc there is a definite second one, q, such that:

p-q=1.

We shall denote ¢ appropriately by 1/ p. Division in general can be reduced easily
to this special case, as we shall show later. In order to determine ¢, let us put, in
equation (3),

¢ =1=140-i4+0-j+0-k,

and obtain, by equating components, the following four equations for four unknown
components x, y,z, w of g:

dw—ax —by —cz =1
aw+dx —cy +bz=0
bw+cx+dy—az=0
cw—bx+ay+dz=0.

[68]



[69]

66 IV.  Complex Numbers

The solvability of such a system of equations depends, as is well known, upon
its determinant, which, in the case before us, is a skew symmetric determinant, in
which all the elements of the principal diagonal are the same, and all the pairs of
elements which are symmetrically placed with respect to that diagonal are equal
and opposite in sign. According to the theory of determinants, such determinants
are easily calculated; and we find

d —a -b —c
a d —c b
b ¢ d -a
c —b a d

— (@40 + A+ d%,

By direct calculation this result can be easily verified. The real elegance of Hamil-
ton’s conventions depends upon this result, that the determinant is a power of the
sum of squares of the four components of p; for it follows that the determinant is
always different from zero except when a = b = ¢ = d = 0. With this one self-
evident exception (p = 0), the equations are uniquely solvable and the reciprocal
quaternion q is uniquely determined.

The quantity

T = Va?+ b+ c? + d?

plays an important role in the theory, and is called the tensor of p. It is easy to
show that these unique solutions are

_a B b o _d

ST YT T T T WE
so that we have as the final result

1 1 d—ia—jb—kc

p dtiatjbtkc al+bi+ci+dr
If we introduce the conjugate value of p, as in ordinary complex numbers:
p=d—ia— jb—kc,

we can write the last formula in the form
1 P
p T

or
pp=T>=a"+b+*+d~
These formulas which are immediate generalizations of certain properties of ordi-
nary complex numbers. Since p is also the number conjugate to p, it follows also
that:
ﬁ p = Tzv

so that the commutative law holds in this special case.
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The general problem of division can now be solved. For, from the equation

pa=4d,
it follows, by multiplication by 1/ p, that
q — l . q/ — z . q/
p T2
whereas the equation
q-p=4q.
which one gets by changing the order of the factors, has the solution
q — q/ . l — q/ . z
p T

This solution is different, in general, from the other.

Remarks on Vector Calculus

Now we must inquire whether there is a geometric interpretation of quaternions
in which these operations, together with their laws, appear in a natural form. In
order to arrive at it, we start with the special case in which both factors reduce to
simple vectors, i.e., in which the scalar parts w and d, are zero. The formula (3) for
multiplication then becomes

¢ =p-q=(ia+ jb+kc)ix+jy+kz)
= —(ax + by +cz)+i(bz—cy)+ jlcx —az) + k(ay — bx),

1.e., when each of two quaternions reduces to a vector, their product consists of

a scalar and a vector part. We can easily bring these two parts into relation with

the different kinds of vector multiplication, which are in use with us in Germany.

The notions of vector calculus, which is far more wide spread than quaternion cal-
culus, go back to, although the word vector is of English origin. The two kinds of
vector product with which one usually operates are designated now, mostly, by inner [70]
(scalar) product ax + by + cz (i.e., the scalar part of the above quaternion product,
except for the sign), and outer (vector) product i (bz—cy)+ j(cx—az)+k(ay—bx),

(i.e., the vector part of the quaternion product). We shall give a geometric interpre-
tation of each part separately.

Figure 16



[71]

68 IV.  Complex Numbers

Let us lay off both vectors (a, b, ¢) and (x, y, z), as segments, from the origin O
(Fig. 16). They terminate in the points (a, b, ¢) and (x, y, z) respectively, and have
the lengths | = ~v/a?> + b2 + c?and !’ = /x2 + y% + z2. If ¢ is the angle between
these two segments, then, according to well-known formulas of analytic geometry,
which I do not need to develop here, the inner product is:

ax+by +cz=1-1"-cosg;

and the outer product, on the other hand, is itself a vector, which, as is easily seen,
is perpendicular to the plane of | and I’ and has the length [ - 1’ - sin ¢.

Figure 17

It is essential now to decide as to the direction of the product vector, i.e., toward
which side of the plane determined by / and !’ one is to lay off this vector. This
direction is different according to the coordinate system which one chooses. As you
know, one can choose two rectangular coordinate systems which are not congruent,
1.e., which cannot be made to coincide with one another, by holding, say, the y- and
the z-axis fixed and reversing the direction of the x-axis. These systems are then
symmetric to each other, like the right and the left hand (Fig. 17). The distinction
between them can be borne in mind by the following rule: In the one system, the
X-, ¥-, and z-axis lie like the outstretched thumb, fore finger and middle finger,
respectively, of the right hand; in the other, like the same fingers of the left
hand. These two systems are used confusedly in the literature; different habits
obtain in different countries, in different fields, and, finally, with different writers,
or even with the same writer. Let us now examine the simplest case, where p =i,
q = J, these being the unit lengths laid off on the x- and y-axis. Then, since
i - j = k, the outer vector product is the unit length laid off on the z-axis. (See
Fig. 18.) Now one can transform 7 and j continuously into two arbitrary vectors p
and ¢ so that k transforms continuously into the vector component of p - g without
vanishing during the transition. Consequently the first factor, the second factor, and
the vector product must always lie, with respect to each other, like the x-, y-, and
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z-axis of the system of coordinates, i.e., right-handed (as in Fig. 18) or left-handed
(as in Fig. 16), according to the choice of coordinate system. (In Germany, now,
the choice indicated in Fig. 18 is customary.)

x

Figure 18

I should like to add a few words concerning the much disputed question of nota-
tion in vector analysis. There are, namely, a great many different symbols used for
each of the vector operations, and it has been impossible, thus far, to bring about
a generally accepted notation. At the meeting of natural scientists at Kassel (1903)
a commission was set up for this purpose. Its members, however, were not able
even to come to a complete understanding among themselves. Since their inten-
tions were good, however, each member was willing to meet the others part way,
so that the only result was that about three new notations came into existence! My
experience in such things inclines me to the belief that real agreement could be
brought about only if important material interests stood behind it. It was only after
such pressure that, in 1881, the uniform system of measures according to volts, am-
peres, and ohms was generally adopted in electro-technics and afterward settled by
public legislation, due to the fact that industry was in urgent need of such uniformity
as a basis for all of its calculations. But there are no such strong material interests
behind vector calculus, as yet, and hence one must agree, for better or worse, to let
every mathematician cling to the notation which he finds the most convenient, or —
if he is dogmatically inclined — the only correct one.

3. Quaternion Multiplication — Rotation-Dilation>!

Before we proceed to the consideration of the geometric interpretation of multipli-
cation of general quaternions, let us consider the following question. Let us consider
the product ¢’ = p - ¢ of two quaternions p and ¢, and let us replace p and ¢ by
their conjugates p and g, that is, let us change the signs of a,b,c, x, y,z. Then
the scalar part of the product, as given in (3), p. [67], remains unchanged, and only
those factors of 7, j, k which are nor underscored will change sign. On the other
hand, if we also reverse the order of the factors p and ¢, the factors of i, j, k which
are underscored will change sign. Hence the product ¢’ = 7 - P is precisely the

51 [Translator’s note: In German, there is the more handy term ,,Drehstreckung*.]

[72]
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conjugate of the original product ¢’ = p - ¢; and we have
/ — - —
q9=pr49 49 =49-Pp,

where ¢’ is the conjugate of ¢’. If we multiply these two equations together, we
obtain

q9-9=p-q-9-D
In this equation the order of the factors is essential, since the commutative law does
not hold. We may apply the associative law, however, and we may write

q9-9=p-(q-9-P.
Since we have, by p. [66],
q-q=x*+y*+z+wk
we may write
w? 4 x? 4y 4 2% = p(w2 I +zz)ﬁ

The middle factor on the right is a scalar, and the commutative law does hold for
multiplication of a scalar by a quaternion, since M - p = Md +i(Ma)+ j(Mb) +
k(Mc) = pM . Hence we have

w/z +x/2+y/2+z/2 — pﬁ(w2+x2+y2 _'_ZZ),
and, since p - p is the square of the tensor of p, we find>>
O wrHx?+y? 4+ =(d*+d* + b7+ ) (w4 x7 + )P+ 27,

that is, the tensor of the product of quaternions is equal to the product of the
tensors of the factors. This formula can be obtained also by direct calculation, by
taking the values of w’, x’, ¥', z’ from the formula for a product given on p. [67].

We shall now represent a quaternion ¢ as the segment joining the origin of a four-
dimensional space to the point (x, y, z, w) in it, in a manner exactly analogous to
the representation of a vector in three-dimensional space. It is no longer necessary
to apologize for making use of four-dimensional space, as one always had to do
when I was a student. All of you are fully aware that no metaphysical meaning
is intended, and that higher dimensional space is nothing more than a convenient
mathematical expression which permits us to use terminology analogous to that of
actual spatial perception. If we regard p as a constant, that is, if we regard a, b, ¢, d
as constants, the quaternion equation

9 =p-q

32 The essence of this formula can already be found in Lagrange’s works.
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represents a certain linear transformation of the points (x, y,z, w) of the four-
dimensional space into the points (x’, y’, z’, w’), since the equation assigns to ev-
ery four-dimensional vector ¢ another vector ¢’ linearly. The explicit equations
for this transformation, i.e., the expressions for x’, y’, z’, w’ as linear functions of
X,Y,z,w, may be obtained by comparison of the coefficients of the product for-
mula (3), p. [67]. The tensor equation (I) shows that the distance of any point
from the origin, v/x2 + y2 + z2 + w2, is multiplied by the same constant factor
T = +/a?+ b2+ c% + d2, for all points of the space. Finally, by p. [68], the
determinant of the linear transformation is surely positive.

It is shown in analytic geometry of three-dimensional space that if a linear trans-
formation of the coordinates x, y, z is orthogonal (that is, if it carries the expression
X2+ y2 + z2 into itself), and if the determinant of the transformation is positive, the
transformation represents a rotation about the origin. Conversely, any rotation can
be obtained in this manner. If the linear transformation carries x> 4+ y? + z2 into
the similar expression in x’, y’, z/ multiplied by a constant factor 7', however, and
if the determinant again is positive, the transformation represents a rotation about
the origin combined with an expansion in the ratio T about the origin, or, briefly, a
rotation-dilation.

The facts just mentioned for three-dimensional space may be extended to four-
dimensional space. We shall say that our transformation of four-dimensional space
represents in precisely the same sense a rotation-dilation about the origin. It is easy
to see, however, that in this case we do not obtain the most general rotation-dilation
about the origin. For our transformation contains only four arbitrary constants,
namely, the components a, b, c,d of p, whereas, as we shall show immediately,
the most general rotation-dilation about the origin in the four-dimensional space Ry
contains seven arbitrary constants. Indeed, in order that the general linear transfor-
mation should be a rotation-dilation, we must have

x/2 4 y/2 + 2/2 4 w/2 — TZ(x2 + y2 4 22 + w2)'

By comparing the coefficients this yields 10 conditions, since, on the left side,
one replaces x’,y’,z’,w’ by linear integer functions of x,y,z,w, one obtains
a quadratic form in four variables, which contains (4 - 5)/2 = 10 terms. Since 7T is
still arbitrary, these reduce to nine equations among the sixteen coefficients of the
transformation. Hence there remain 16 — 9 = 7 arbitrary constants.

It is remarkable that in spite of this the most general rotation-dilation can be
obtained by quaternion multiplication. Let 1 = 6 + i + jB + ky be another
constant quaternion. Then we may show, just as before, that the transformation
q' = q - ¥, which differs from the preceding one only in that the order is reversed,
represents a rotation-dilation of R4. Hence the combined transformation

I ¢ =p-q-r=({d+ia+ jb+kc)-q-8+ia+ jB+ky)

also represents such a rotation-dilation. This transformation contains only seven
(not eight) arbitrary constants, for the transformation remains unchanged if we

(73]

[74]
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multiply a, b, ¢, d by any real number and divide «, §, y, § by the same number.
It is therefore plausible that this combined transformation represents the general
rotation-dilation of four-dimensional space. This beautiful result is actually true, as
was shown by Arthur Cayley. I shall restrict myself to the mention of the historical
fact, in order not to be drawn into too great detail of this interpretation. The formula
is given in Cayley’s paper on the homographic transformation of a surface of the
second order into itself>*, in 1854, and also in certain other papers of his>*.

This formula of Cayley’s has the great advantage that it enables us to grasp at
once the combination of two rotation-dilations in a very easy way. Thus, if a second
rotation-dilation be given by the equation

" =w" +ix"+ jy" +kz"=p'-q -7
where p’ and 7" are new given quaternions, we find, by (II) for the value ¢/,
q9"=p-(p-q-m)-7',
whence, by the associative law,
q"=('"p)q-(r-7)

or
q9"=r-q-e

where r = p’- p and ¢ = 7 - ’ are definite new quaternions. We have therefore
obtained an expression for the rotation-dilation that carries ¢ into ¢” in precisely
the old form, and we see that the multipliers, which precede and follow ¢ in the
quaternion product arise, respectively, from the products of the corresponding two
multipliers of ¢ in the separate transformations which were combined, the order of
the factors being necessarily as shown in the formula.

Interpretation in Three-dimensional Space

This four-dimensional representation may seem unsatisfactory, and there may be
a desire for something more tangible, which can be represented in ordinary three-
dimensional space intuition. We shall therefore show that we can obtain similar
formulas for the same three-dimensional operations by simple specialization of
the formulas just given. Indeed the importance of quaternion multiplication for
ordinary physics and mechanics is based upon these very formulas. I have said
“ordinary”, because I do not desire at this point to anticipate generalizations of

33 Journal fiir reine und angewandte Mathematik, 1855. Reprinted in Cayley’s Collected Papers,
vol. 2, p. 133. Cambridge 1889.
54 See, for example, Recherches ultérieures sur les déterminants gauches, loc. cit., p. 214.
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these sciences where the preceding formulas should apply without any modifica-
tion. These generalizations are more immediate, however, than you may suppose.
The new developments of electrodynamics which are associated with the principle
of relativity, are essentially nothing else than the logical use of rotations-dilations
in a four-dimensional space. These ideas have been presented and enlarged upon
recently by Hermann Minkowski>>.

Let us remain, however, in three-dimensional space. In such a space, a rotation-
dilation carries a point (x, y, z) into a point (x’, y’, z’) in such a way that

le 4 y/2 +Z/2 — MZ(x2 4 y2 +22)’

where M denotes the ratio of linear dilation of every length. Since the general
linear transformation of (x, y, z) into (x’, y’, z’) contains 3 - 3 = 9 coefficients, and
since the left-hand side of the preceding equation, after the insertion of the values
of x’, y', z/, becomes a quadratic form in x, y, z with % = 6 terms, the comparison
of coefficients in the preceding equation leads to six equations, which reduce to five
if the value of M is supposed arbitrary. Therefore the nine original coefficients of
the linear transformation, which are subject to these five conditions, are reduced to
four arbitrary parameters. (Compare p. [73].) If such a substitution has a positive
determinant, it represents, as was stated on p. [73], a rotation of space about the
origin, together with an dilation in the ratio 1: M. If the determinant is negative,
however, the substitution represents a rotation-dilation, combined with a reflection
of the space, such as, for example, the reflection defined by the equations x = —x’,
y = —y', z = —z'. Moreover, it can be shown easily that the determinant of the
transformation must have one of the two values = M?3.

In order to represent these relationships by means of quaternions, let us first
reduce the variable quaternions ¢ and ¢’ to their vectorial parts:

g =ix'+jy +kz,g=ix+jy+kz,

which we shall think of as the three-dimensional vectors joining the origin to the
positions of the point before and after the transformation, respectively. We claim
now that the general rotation-dilation of the three-dimensional space is given by
the formula (1) if p and 7 have conjugate values, that is, if we write q' = p-q-p;
or, in expanded form,

ix'+jy +kz

1
M =(d+ia+ jb+ke)ix+ jy+kz)d—ia— jb—kc).

In order to prove this, we must show first that the scalar part of the product on the
right vanishes; that is, that ¢’ is indeed a vector. To do this, we first multiply p by

33 Since this was written, an extensive literature on the special theory of relativity mentioned above
has appeared. Let me mention here my address Uber die geometrischen Grundlagen der Lorentz-
gruppe, Jahresbericht der deutschen Mathematiker-Vereinigung, vol. 19 (1910), p. 299, reprinted
in Klein’s Gesammelte mathematische Abhandlungen, vol. 1, p. 533.
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q according to the rule for quaternion multiplication, and we find

¢ =[—ax—by—cz+i(dz+bz—cy)
+jdy+cx—az)+k(dz+ay—>bx)]-[d —ia— jb—kc].

After another quaternion multiplication, we actually find the scalar part of ¢’ to be
zero, whereas we find for the components of the vector part the expressions

(2)
x'=(d*+a*—b>—c?)x+ 2(ab—cd)y + 2(ac +bd)z
y' =2(bha+cd) x +(d*+ b2 —c*—a?)y+ 2(bc —ad)z
2 =2(ca—bd)x + 2(cb +ad)y+(d* +c*—a*>—b?)z

That these formulas actually represent a rotation-dilation becomes evident if we
write the tensor equation for (1), which, by (D), is

X?4y? 42 = (AP + @+ PP+ ) (P 4y 42 (A + aP + b2+ ),

or
x/2+y/2+2/2=T4-(x2+y2+22),

where T = +/d? + a? + b2 + ¢2 denotes the tensor of p. Hence, our transfor-
mation is precisely a rotation-dilation (see p. [75]), provided the determinant is
positive; otherwise it is such a transformation combined with a reflection. In any
case, the ratio of dilation is M = T2. As remarked above, the determinant must
have one of the two values M3 = +T°. If we consider the transformation for
all possible values of the parameters a, b, ¢, d which correspond to the same tensor
value 7', which must obviously be different from zero, we see that the determi-
nant must always have the value +7° if it has that value for any single system
of values of a, b, c,d; for the determinant is a continuous function of a, b, ¢, d,
and therefore it cannot suddenly change in value from +7°® to —7'¢ without taking
on intermediate values. One set of values for which the determinant is positive is
a=b=c=0,d =T,since, by (2), the value of the determinant for these values
ofa,b,c,d,is

d*, 0, 0
0, d?, 0 |=d®=+T°.
0, 0, d>

It follows that the sign is always positive, and hence (1) always represents a
genuine rotation together with a dilation. It is easy to write down a transfor-
mation which combines a reflection with a rotation-dilation, for we need only to
combine the preceding transformation with the reflection x' = —x, y' = —y,

z' = —z, which is equivalent to writing the quaternion equationg’ = p - ¢ - p.
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If we want to understand that, conversely, every rotation-dilation is contained in
the form (1), or in the equivalent form (2), we have to observe, in the first place,
that this formula in fact contains the four arbitrary parameters, which, according
to the counting made on p. [75], are necessary for the general case. That we can
actually obtain any desired value of the linear dilation-ratio M = T2, any desired
position of the axis of rotation, and any desired angle of rotation, by a suitable
choice of these parameters, can be seen by means of the following formulas. Let
&, n, ¢ denote the direction cosines of the axis of rotation, and let w denote the angle
of rotation (amplitude of rotation). We have, of course, the well known relation

3) £+ 4+ =1
I shall now prove that a, b, ¢, d are given by the equations

d:T-cos%

a=T-§-sing, b=T-n-sing, ¢=T-{-sin%,

“)

which, by (3), obviously satisfy the condition
d*+a*>+b>+c* =T

When these relations have been proved, we can evidently obtain the correct values
of a, b, c,d for any given values of T\, &, 1, {, w.

To prove the relations (4), let us remark first that if a,b,c,d are given, the
quantities w, £, n, ¢ are directly determined, and in such a way that (3) is satisfied.
For, squaring and adding the equations (4), since 7 is the tensor of the quaternion
p=d+ia+ jb+kc,wehave

©0 .,
1:coszg+51n23(§2+7]2+§2),

whence we see that (3) holds. It follows that &, 7, {, are fully determined by the
relations

@) a:b:c=§&:n:¢,

which appear directly from (4). These equations express the fact that the point (a,

b, ¢) lies on the axis of revolution of the transformation. This fact is easy to verify,

forif weputx =a,y = b,z = ¢ in (2), we find
x'=(d*+d*+b*+c*)a=T*a,
y=@d*+a+b*+c*)b=T>b,
Z=(d*+a*+b*+c*)e=T"c,

(771
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that is, the point (@, b, ¢) remains on the same ray through the origin, which iden-
tifies it as a point on the axis of revolution. It remains only to prove that the angle
o defined by (4) is actually the amplitude of rotation. This demonstration requires
extended discussion which I can avoid now by remarking that the transformation

[78] formulas (2) for T = 1 transform — due to (4) — precisely into the formulas given
by Euler established for the rotation of the coordinate system, which has &, n, ¢
as axes and of the angle w. This is to be found more in detail, for example, in
Klein-Sommerfeld, Theorie des Kreisels, volume 1%, where explicit mention of the
theory of quaternions is given, or in Richard Baltzer, Theorie und Anwendung der
Determinanten®’ .

Finally, if we substitute the values given by (4) in the equation (1), we obtain the
very brief and convenient equation in quaternion form for the rotation through an
angle w about an axis whose direction cosines are £, 1, {, combined with a dilation
of ratio T?:

(&)
. . , 2 w . W . . .
ix'+jy +kz=T {COSE+s1n5(z$+]n+k§)}-{lx+]y+kz}

'{cosg —sing(ié + jn—l—ké)}.
2 2
This formula expresses in a form that is easy to remember all of Euler’s formulas for
rotation in one single equation: the multipliers which precede and follow the vector
ix+ jy+kz, are, respectively, the two conjugate quaternions whose tensor is unity
(so-called versor, that is, “rotator”, in contradistinction to tensor, “stretcher”), and
then the whole result is to be multiplied by a scalar factor which is the dilation-ratio.
We shall proceed now to show that when we specialize these formulas still
further to two-dimensions, they become the well-known formulas for the repre-
sentation of a rotation-dilation of the x-y-plane by means of the multiplication of
two complex numbers. (See p. [62].) For this purpose, let us choose the axis of
rotation as the z-axis (§ = n = 0, { = 1). Then the formula (5), forz = z’ = 0,
may be written in the form

ix' 4+ jy =T (cos% + k sin %) (ix+jy) (cos% — k sin %) ,
or, upon multiplication with due regard to the rules for products of the units,
ix'+jy =T {cos %(ix + jy) +sin %(jx — iy)} {cos% — k sin %}

=772 {cos2 %(ix + jy) + 2sin % cos %(jx —iy) —sin’ %(ix + jy)}
=T {(ix + jy)cosw + (jx —iy)sinw}
= T*(cosw + ksinw)(ix + jy).

36 Leipzig 1897; 2nd printing, 1914.
57 Fifth edition, Leipzig 1881.
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If we now multiply both sides by the right-hand factor (—i), we obtain
x +ky = T?*(cosw + k sinw)(x + ky),

which is precisely the rule for multiplying two ordinary complex numbers, and
which can be interpreted as a rotation through an angle w, together with a dilation
in the ratio 72, except that we have used the letter k in place of the usual letter i to
denote the imaginary unit v/—1.

Let us now return to three-dimensional space, and let us modify the formula (1)
so that it shall represent a pure rotation without a dilation. To do so, we must replace
x',y',z' by x'-T?, y'-T?, z'-T?, that is, we must replace ¢’ by ¢’- T>. If we notice
that p~! = 1/p = p/T?, we may write the formula for a pure rotation in the form

(6) ix' +jy +kz =p-(ix+ jy+kz)-pL.

There is no loss of generality if we assume that p is a quaternion whose tensor is
unity, that is,

p= cosE + smE(ZE + jn+ k&), where 2+ +82 =1,
whence we see that (6) results from (5) if 7" is set equal to unity. The formula
was first stated in this form by Cayley in 1845, We may express the composition
of two rotations in a particularly simple form, precisely as we did above for four-
dimensional space. Given a second rotation

l-x// + jy// + kZN — p/(l-x/ + ]y/ 4 kzl)plfl7
where
W'
2

the direction cosines of the axis of rotation being &', 17/, ¢’, and the angle of rotation
being w’, we may write

!
p = cos +sin%(i$/+jn/+k§/)

ix"+ jy' + k" =p'p-(ix+ jy+kz)-ptp!

as the equation for the resultant rotation. Hence the direction cosines of the axis
or rotation, £”, ", ¢”, and the angle of rotation, w”, for the resultant rotation, are
given by the equation

4 1

P’ = cos =+ sin (" + jn + ki) = p' - p.

38 0n certain results relating to quaternions, Collected Mathematical Papers, vol. 1 (1889),
p. 123. — According to Cayley’s own statement (vol. 1, p. 586), however, Hamilton had discovered
the same formula independently.
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We have therefore found a brief and simple expression for the composition of two
rotations about the origin, whereas the ordinary formulas for expressing the resul-
tant rotation appear rather complicated. Since any quaternion may be expressed as
the product of a real number (its tensor) and the versor of a rotation, we have also
found a simple geometric interpretation of quaternion multiplication as the compo-
sition of the rotations. The fact that quaternion multiplication is not commutative
then corresponds to the well-known fact that the order of two rotations about a point
cannot be interchanged, in general, without changing the result.

If you desire to know more about the historical development of the interpreta-
tions and applications of quaternions and on the theory of rotations of a coordinate
system, which we have discussed, I would recommend to you an extremely valu-
able report on dynamics written by Cayley himself: Report on the progress of the
solution of certain special problems of dynamics> .

I shall close with certain general remarks on the value and the dissemination
of quaternions. For such a purpose, one should distinguish between the general
quaternion calculus and quaternion multiplication properly. The latter, at least, is
certainly of very great usefulness, as appears sufficiently from the preceding discus-
sion. The general quaternion calculus, on the other hand, as Hamilton conceived it,
embraced addition, multiplication, and division of quaternions, carried to an arbi-
trary number of steps. Thus Hamilton studied the algebra of quaternions; and, since
he investigated also infinite processes, he can even develop a quaternion theory of
functions. Since the commutative law does not hold, such a theory takes on a to-
tally different aspect from the theory of ordinary complex variables. It is just to say,
however, that these general and far-reaching ideas of Hamilton did not stand the
test of time, for there have not arisen any vital relationships and interdependencies
with other branches of mathematics and its applications. For this reason, the general
theory has aroused little general interest.

It is in mathematics, however, as it is in other human affairs: there are those
whose views are calmly objective; but there are always some who form impassion-
ate personal convictions. Thus the theory of quaternions has enthusiastic supporters
and bitter opponents. The supporters, who are to be found chiefly in England
and in America, adopted in 1907 the modern means to found an “Association for
the Promotion of the Study of Quaternions”. This organization was established
as a thoroughly international institution by the Japanese mathematician Shinkichi
Kimura, who had studied in America. Sir Robert Ball was for some time its pres-
ident. They foresaw great possible developments of mathematics to be secured
through intensive study of quaternions. On the other hand, there are those who
refuse to listen to anything about quaternions, and who go so far as to refuse to
consider the very useful idea of quaternion multiplication. According to the view
of such persons, all computation with quaternions amounts to nothing but computa-

3 Report of the British Association for the Advancement of Science, 1862; reprinted in Cayley’s
Collected Mathematical Papers, Cambridge, vol. 4 (1891), pp. 552ff.
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tion with the four components; the units and the multiplication table appear to them
to be superfluous luxuries. Between these two extremes, there is a mediating ten-
dency who holds that we should always distinguish carefully between scalars and
vectors.

4. Complex Numbers in School Teaching

I shall now leave the theory of quaternions and close this chapter with some remarks
about the role which these concepts play in the curriculum of the schools. No one
would ever think of teaching quaternions in a secondary school, but the common
complex numbers x + iy always come up as teaching subjects. Perhaps it will be
more interesting if, instead of telling you at length how it is done and how it ought
to be done, I exhibit to you, by means of three books from different periods, how its
teaching has developed historically.

I put before you, first, a book by Abraham G. Kistner who had a leading posi-
tion in Gottingen in the second half of the eighteenth century. In those days one
still studied, at the university, those elementary mathematical things which later,
in the thirties of the nineteenth century, went over to the schools. Accordingly,
Kistner also gave lecture courses on elementary mathematics, which were heard by
large numbers of non-mathematical students. His textbook, which formed the basis
of these lecture courses, was called Mathematische Anfangsgriinde*. The portion
which interests us here is the second division of the third, part: Anfangsgriinde der
Analysis endlicher Grofen**®0. The treatment of imaginary quantities begins there
on p. 20 in something like the following words: “Whoever demands the extraction
of an even root of a ‘denied’ quantity (one said ‘denied’, then, instead of ‘nega-
tive’), demands an impossibility, for there is no ‘denied’ quantity which would be
such a power”. This is, in fact, quite correct. But on p. 34 one finds: “Such roots are
called impossible or imaginary”, and, without much investigation as to justification,
one proceeds quietly to operate with them as with ordinary numbers, notwithstand-
ing their existence has just been disputed — as though, so to speak, the meaningless
became suddenly usable through receiving a name. You recognize here a reflex of
Leibniz’s point of view, according to which, imaginary numbers were really some-
thing quite foolish but they led, nevertheless, in some incomprehensible way, to
useful results.

Kistner was, moreover, a stimulating writer; he achieved quite a place in the
literature as a coiner of epigrams. To cite only one of many examples, he expa-
tiates, in the introduction of this textbook mentioned above, on the origin of the
word algebra, which, indeed, as the article “al” indicates, comes from the Arabic.

* Elements of Mathematics.
** Elements of Analysis of Finite Quantities.
0 Third edition. Gottingen 1794.
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According to Késtner, an algebraist is a man who “makes” fractions “whole”, who,
that is, treats rational functions and reduces them to a common denominator, etc. It
is said to have referred, originally, to the practice of a surgeon in mending broken
bones. Kistner then cites Don Quixote, who went to an algebraist to get his broken
ribs set. Of course, I shall leave undecided, whether Cervantes really adopted this
form of expression or whether this is only a lampoon.

The second work which I put before you is more recent, by a couple of years,
and comes from the Berlin professor Martin Ohm: Versuch eines vollstindig kon-
sequenten Systems der Mathematik***-%'; a book with a purpose similar to that of
Kastner and at one time widely used. But Ohm is much nearer the modern point of
view, in that he speaks clearly of the principle of the extension of the number sys-
tem. He says, for example, that, just like negative numbers, so ~/—1 must be added
to the real numbers as a new thing. But even his book lacks a geometric interpreta-
tion, since it appeared before the epoch-making publication by Gauf} (1831).

Finally, I lay before you, out of the long list of modern school books, one that
is widely used: Bardeys Aufgabensammiung®®. The principle of extension comes
to the fore here, and, in due course, the geometric interpretation is explained. This
may be taken as the general position of school teaching today, even if, at isolated
places, the development has remained at the earlier level. The point of view adopted
in this book seems to me to yield the treatment best adapted to the schools. Without
tiring the pupil with a systematic development, and without, of course, going into
logically abstract explanations, one should explain complex numbers as an exten-
sion of the familiar number concept, and should avoid any touch of mystery. Above
all, one should accustom the pupil, at once, to the intuitive geometric interpretation
in the complex plane!

With this, we come to the end of the first main part of the course, which was
dedicated to arithmetic. Before going over to similar discussions of algebra and
analysis, I should like to insert a somewhat extended historical appendix in order
to throw new light upon the general conduct of teaching at present, and upon those
features of it which we would improve.

% An Attempt to Construct a Consistent System of Mathematics.

6! Nine volumes. Berlin 1828. Vol. I: Arithmetik und Algebra, p. 276.

2 [See also the Reformausgabe of Bardeys Aufgabensammlung, revised by Walther Lietzmann
and Paul Ziihlke. Oberstufe. Verlag Teubner. Leipzig.] — See also H. Fine The Number-System in
Algebra. Heath; H. Fine, College Algebra. Ginn.



Concerning the Modern Development and the
General Structure of Mathematics

The Structure of Elementary Analysis According to
Two Parallel Processes of Development of Differing Character

Let me proceed from the remark that, in the history of the development of mathe-
matics up to the present time, we can distinguish clearly two different processes of [83]
growth, which now change places, now run side by side independent of one another,
now finally mingle. It is difficult to put into vivid language the difference which I
have in mind, because none of the current divisions fits the case. You will, however,
understand from a concrete example, namely, if I show how one would compile
the elementary chapters of the system of analysis in the sense of each of these two
processes of development.

If we follow the one process, which we will call briefly Plan A, the following
system presents itself, the one which is most widespread in the schools and in ele-
mentary textbooks.

1. At the head stands the formal theory of equations, that is to say, the operating
with rational integer functions and the handling of the cases in which algebraic
equations can be solved by radicals.

2. The systematic pursuit of the idea of power and its inverses yields logarithms,
which prove to be so useful in numerical calculation.

3. Whereas (up to this point) the analytic development is kept quite separate
from geometry, one now borrows from this field, which yields the definitions of a
second kind of transcendental functions, the trigonometric functions, the further
theory of which is built up as a new separate subject.

4. Then follows the so called “algebraic analysis”, which teaches the expansion
of the simplest functions into infinite series. One considers the general binomial, the
logarithm and its inverse, the exponential function, together with the trigonometric
functions. Similarly, the general theory of infinite series and of operations with
them belongs here. It is here that the surprising relations between the elementary
transcendentals appear, in particular the famous Euler formula

e = cosx + isinx.
Such relations seem the more remarkable because the functions which occur in them
had been originally defined in entirely separate fields.
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5. The consistent continuation of this structure, beyond school mathematics, is
the Weierstraf3 theory of functions of a complex variable, which begins with the
properties of power series.

Let us now set over against this, in condensed form the schema of the second
process of development, which I shall call Plan B. Here the predominant thought is
that of analytic geometry, which seeks a fusion of the intuition of number with that
of space.

1. We begin with the graphical representation of the simplest functions, of poly-
nomials, and rational functions of one variable. The point in which the curves
so obtained meet the axis of abscissas put in evidence the zeros of the polynomi-
als, and this leads naturally to the theory of the approximate numerical solution of
equations.

2. The geometric picture of the curve supplies naturally the intuitive source both
for the idea of the differential quotient and that of the integral. One is led to the
former by the slope of the curve, to the latter by the area which is bounded by the
curve and the axis of abscissas;

3. In all those cases in which the integration process (or the process of quadra-
ture, in the proper sense of that word) cannot be carried out explicitly with rational
and algebraic functions; the process itself gives rise to new functions, which are
thus introduced in a thoroughly natural arid uniform manner. Thus, the quadrature
of the hyperbola defines the logarithm

X
!/’dt )
— = log x,
p g
1

while the quadrature of the circle can easily be reduced to the integral

[x di arcsin x

) V11 ’

that is, to the inverses of the trigonometric functions. You know that the same line
of thought, pursued farther, leads to new classes of functions of higher order, in
particular to elliptic functions.

4. The expansion into infinite power series of the functions thus introduced is
obtained by means of a uniform principle, namely Taylor’s theorem.

5. This method carried higher, yields the Cauchy-Riemann theory of analytic
functions of a complex variable, which is built upon the Cauchy-Riemann differen-
tial equations and the Cauchy integral theorem. If we try to put the result of this
survey into definite words, we might say that Plan A is based upon a more particu-
laristic conception of science which divides the total field into a series of mutually
separated parts and attempts to develop each part for itself, with a minimum of
resources and with all possible avoidance of borrowing from neighbouring fields.
Its ideal is to crystallize out each of the partial fields into a logically closed system.
On the contrary, the supporter of Plan B lays the chief stress upon the organic com-
bination of the partial fields, and upon the stimulation which these exert one upon
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another. He prefers, therefore, the methods which open for him an understanding
of several fields under a uniform point of view. His ideal isthe comprehension
of the entire mathematical science as a great connected whole.

One cannot well be in doubt as to which of these two methods has more life in it,
as to which would grip the pupil more, in so far as he is not endowed with a specific
abstract mathematical gift. In order to bring this home, think only of the example
of the functions e* and sin x, about which we shall later have much to say along
just this line! In Plan A, which the schools, unfortunately, follow almost exclusively
both functions come up in thoroughly heterogeneous fashion: e* or, as the case may
be, the logarithm, is introduced as a convenient aid in numerical calculation, but
sin x arises in the geometry of the triangle. How can one understand, thus, that the
two are so simply connected, and, more, that the two appear again and again in the
most widely differing fields which have not the least to do, either with the technique
of numerical calculation or with geometry, and always of their own accord, as the
natural expression of the laws that govern the subject under discussion? How far
these possibilities of application go is shown by the names compound interest lain
or law of organic growth, which have been applied to e*, and likewise by the fact
that sinx plays a central role wherever one has to do with vibrations. But in Plan B
these connections make their appearance quite intelligibly, and in accord with the
significance of the functions, which is emphasized from the start. The functions e*
and sin x arise here, indeed, from the same source, the quadrature of simple curves,
and one is soon led from there, as we shall see later on, to the differential equations
of simplest type

de*  d’sinx
I = e, pr sin x,
respectively, which lie naturally at the basis of all those applications.

For a complete understanding of the development of mathematics we must, how-
ever, think of still a third Plan C, which, alongside of and within the processes of
development A and B, often plays an important role. It has to do with a method
which one denotes by the word algorithm, derived from a mutilated form of the
name of an Arabian mathematician. All ordered formal calculation is, at bottom,
algorithmic, in particular, the calculation with letters is an algorithm. We have re-
peatedly emphasized what an important part in the development of the science has
been played by the algorithmic process, as a quasi-independent, onward-driving
force, inherent in the formulas, operating apart from the intention and insight of the
mathematician, at the time, often indeed in opposition to them. In the beginnings
of the infinitesimal calculus, as we shall see later on, the algorithm has often forced
new notions and operations, even before one could justify their admissibility. Even
at higher levels of the development, these algorithmic considerations can be, and
actually have been, very fruitful, so that one can justly call them the groundwork
of mathematical development. It means to think in non-historic terms, if, as is
sometimes done today, we cast these circumstances contemptuously aside as mere
“formal” developments.
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Overview of the History of Mathematics

Let me now follow more carefully through the history of mathematics the contrast of
these different directions of work, confining myself of course to the most important
features of the development. The thoroughgoing difference between A and B, within
the whole field of mathematics, will appear here more clearly than it did above,
where our thoughts were directed only to analysis.

With the ancient Greeks we find a sharp separation between pure and
applied mathematics, which goes back to Plato and Aristotle. Above all, the well-
known Euclidean structure of geometry belongs to pure mathematics. In the applied
field they developed, especially, numerical calculation, the so called logistics (AJ-
yog = general number, see p. [32]). To be sure, the logistics was not highly regarded,
and you know that this prejudice has, to a considerable extent, maintained itself to
this day — mainly, it is true, with only those persons who themselves cannot calcu-
late numerically. The slight esteem for logistics may have been due in particular to
its having been developed in connection with trigonometry and the needs of practi-
cal surveying, which to some does not seem sufficiently noble. In spite of this fact,
it may have been raised somewhat in general esteem by its application in astron-
omy, which, although related to geodesy, always has been considered one of the
most noble fields. You see, even with these few remarks, that the Greek cultiva-
tion of science, with its sharp separation of the different fields, each of which was
represented with its rigid logical articulation, belonged entirely in the plan of devel-
opment A. Nevertheless the Greeks were not strangers to reflections in the sense of
Plan B, and these may have served them for heuristic purposes, and for a first com-
munication of their discoveries, even if the form A appeared to them indispensable
for the final presentation. This is indicated quite pointedly in the recently discov-
ered manuscript of Archimedes®, in which he exhibits his calculations of volume
through mechanical considerations, in a thoroughly modern, pleasing way, which
has nothing to do with the rigid Euclidean system.

Besides the Greeks, in ancient times, the Hindus, especially, played a mathemat-
ical role as creators of our modern system of numerals, and later the Arabs, as its
transmitters. The first beginnings of operating with letters were made also by the
Hindus. These advances belong obviously to the algorithmic course of develop-
ment C.

Coming now to modern times, we can, first of all, date the mathematical renais-
sance from about 1500, which produced an entire series of great discoveries. As an
example, I mention the formal solution of the cubic equation (Cardan’s formula),
which was contained in the “Ars Magna” of Girolamo Cardano, published in 1545,
in Niirnberg. This was a most significant work, which holds the germs of the mo-
dern algebra, reaching out beyond the scheme of ancient mathematics. To be sure,

63 Cf. Johan Ludwig Heiberg & Hieronymus Georg Zeutben, Eine neue Schrift des Archimedes.
Leipzig 1907. Reprint from Bibliotheca Mathematica. Third series, vol. VIIL. See also Thomas L.
Heath, The Works of Archimedes. Cambridge University Press.
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this work is not Cardano’s own, for he is said to have taken from other authors not
merely his famous formula but other things as well.

After 1550 trigonometric calculation was in the foreground. The first great
trigonometric tables appeared in response to the needs of astronomy, in connec-
tion with which I will mention only the name of Copernicus. From about 1600
on, the invention of logarithms continued this development. The first logarithmic
tables, which the Scotsman John Napier (or Neper) compiled, contained, in fact,
only the logarithms of trigonometric functions. Thus we see, during these hundred
years, a path of development which corresponds to the Plan A.

We come now, inthe seventeenth century, tothe modern era proper,
in which the Plan B comes distinctly into the foreground. In 1637 appeared the
analytic geometry of René Descartes, which supplies the fundamental connec-
tion between number and space for all that follows. A reprint®* makes this work
conveniently accessible. Now come, in close sequence with this, the two great
problems of the seventeenth century, the problem of the tangent, and the problem
of quadrature, in other words, the problems of differentiating and integrating. For
the development of differential and integral calculus, in a proper sense, there was
lacking only the knowledge that these two problems are closely connected, that one
is the inverse of the other. A recognition of this fact was the principal item in the
great advance which was made at the end of the seventeenth century.

But before this, in the course of the century, the theory of infinite series, in
particular, of power series, made its appearance, and not, indeed, as an independent
subject, in the sense of the algebraic analysis of today, but in closest connection with
the problem of quadrature. Nicolaus Mercator (the German name “Kaufmann”
latinised; 1620-1687), not the inventor of the Mercator projection, was a pioneer
here. He had the keen idea of converting the fraction 1/(1 + x) into a series, by
dividing out, and of integrating this series term by term, in order to get the series
expansion for log(1 + x):

log(1+x) = At :[(1—z+t2—+m)dt VR S
141
0 0
That is the substance of his procedure, although he did not, of course, use our sim-
ple symbols f ,dx, ..., but rather a much more clumsy form of expression. In the
sixties, Isaac Newton (1643—-1727) took over this process, to apply it to the series
for the general binomial, which he had set up. In this process he drew his conclu-
sions only by analogy, basing them on the known simplest cases, without having
a rigorous proof and without knowing the limits within which the series expansion

was valid. We observe here, again, the intervention of the algorithmic process C.

By applying the binomial series to ——4— = (1 - xz)fl/ ? and using Mercator’s

1—x
process, he gets the series for fdx \/f[T = arcsin x. By a very skilful inversion of

]

4 René Descartes, La Géométrie. Nouvelle Edition. Paris 1886. Translation by David Eugene
Smith, & M. L. Latham, 1925. Open Court.
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this series, and also of the one for logx, he finds the series for sin x and for e*.
The conclusion of this chain of discoveries is due to Brook Taylor (1685-1731)
who, in 1715, published his general principle for expanding functions into power
series.

As is indicated above, the origin of infinitesimal calculus, at the end of the
seventeenth century, was due to Georg Wilhelm Leibniz (1646-1716) and Isaac
Newton. The fundamental idea with Newton is the notion of flowing. Both variables
x, y, are thought of as functions, ¢(f), ¥ (¢), of the time #, and as the time “flows”,
they flow also. Newton, accordingly, calls the variable fluens and designates as
Sfluxion x, y, that which we call differential coefficient. You see how everything
here is based firmly on intuition.

It was much the same with the representation of Leibniz, whose first publication
appeared in 1684. He himself declares that his greatest discovery was the principle
of continuity in all natural phenomena, that “Natura non facit saltum”. He bases
his mathematical developments upon this concept, another typical trait of the Plan
B. However, the influence of the algorithm C is very strong, also, with Leibniz. We
get from him the algorithmically valuable symbols dy/dx and [ f(x)dx.

The sum total, however, of this cursory view is that the great discoveries of the
seventeenth century belong primarily to the plan of development B.

Inthe eighteenth century, this period of discovery continues at first in the
same direction. The most distinguished names to be mentioned here are Leonhard
Euler (1707-1783) and Joesph Louis Lagrange (1736-1813). Thus the theory of
differential equations, in the most general sense, including the calculus of vari-
ations, were developed, and analytical geometry and analytical mechanics were
extended. Everywhere there was a gratifying advance, just as in geography, after
the discovery of America, the new countries were first traversed and explored in all
directions. But just as there was, as yet, no thought of exact surveys, just as at first
one had entirely false notions as to the location of these new places (Columbus,
indeed, thought at first, that he had reached Eastern Asia!), just so, in the newly
conquered region of mathematics, that of infinitesimal calculus, one was, at first,
far removed from a reliable logical orientation. Indeed one even cherished illu-
sions concerning the relation of the calculus to the older familiar fields, in that one
looked upon infinitesimal calculus as something mystical that in no way submitted
to a logical analysis.

Just how untrustworthy the ground was on which the theory stood, became man-
ifest only when it was attempted to prepare textbooks which should present the new
subject in an intelligible way. Then it became evident that the method of procedure
B was no longer adequate, and it was Euler who first abandoned it. He had, to
be sure, no serious doubts concerning infinitesimal calculus, but he thought that it
caused too many difficulties and misgivings for the beginner. For this pedagogical
reason he thought it advisable to give a preparatory course, such as he provided in
his textbook Introductio in analysin infinitorum (1748), and which we call today
algebraic analysis. To this he relegated, in particular, the theory of infinite series
and other infinite processes, which he then afterwards used as a foundation in con-
structing the infinitesimal calculus.
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Lagrange took a much more radical course, nearly fifty years later, in his Théorie
des fonctions analytiques, in 1797. He could overcome his scruples as to the cur-
rent foundations of infinitesimal calculus only by discarding it entirely, as a general
branch of knowledge, and by considering it as an aggregate of formal rules apply-
ing to certain special classes of functions. Indeed, he considers exclusively such
functions as can be expressed by means of power series:

fx) = ag + arx + ax® + az’ + -

He calls these analytic functions, meaning thereby functions which appear in
analysis and with which one can reasonably hope to do something. The differential
quotient of such a function, f(x), is then defined, purely formally, by means of a
second power series, as we shall see later. Differential and integral calculus was
concerned, then, with the mutual relations of power series. This restriction to formal
consideration obviated, for a time, of course, a number of difficulties.

As you see, the turn which Euler gave, and still more, the entire method of
Lagrange, belongs strictly to the direction A, in that the perceptual genetic develop-
ment is replaced by a rigorous closed circle of reasoning. These two investigators
have had a profound influence upon teaching in the secondary schools, and when
the schools today study infinite series, or solve equations by means of power se-
ries according to the so called method of indeterminate coefficients, but decline to
take up differential and integral calculus proper, they are exhibiting precisely the
aftereffect of Euler’s “introductio” and of Lagrange’s thought.

The nineteenth century, to which we come now, begins primarily with a
more secure foundation of higher analysis, by means of criteria of convergence,
about which one had hitherto thought but little. The eighteenth century was the
“blissful” period, during which one did not distinguish between good and bad,
convergent and divergent. Even in Euler’s Introductio, divergent and convergent
series appear peaceably side by side. But, at the beginning of the new century
GauB (1777-1855) and Niels Henrik Abel (1802—-1829) made the first rigorous in-
vestigations regarding convergence; and in the twenties Augustin-Louis Cauchy
(1789-1857) developed, in lecture courses and in books, the first rigorous founding
of infinitesimal calculus in the modem sense. He not only gives an exact definition
of the differential quotient, and of the integral, by means of the limit of a finite quo-
tient and of a finite sum, respectively, as had previously been done, at times; but,
by means of the mean value theorem he erects upon this, for the first time, a consis-
tent structure for the infinitesimal calculus. We shall come back to this fully later
on. These theories also partake of the nature of Plan A, since they work over the
field in a logical systematic way, quite isolated from other branches of knowledge.
Meanwhile they had no influence upon the schools, although they were thoroughly
adapted to dispel the old prejudice against differential and integral calculus.

I shall now emphasize only a very little of the further development of the nine-
teenth century. In the first place, I shall speak of a few advances which lie in the
direction B: modern geometry, mathematical physics, along with theory of func-
tions of a complex variable, according to Cauchy and Bernhard Riemann. The

[90]
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leaders, in the first elaboration of these three great fields, were the French. This is
the place to say a word, also, about the style of mathematical presentation. In Eu-
clid, one finds everything according to the scheme “hypothesis, conclusion, proof”,
to which is added, sometimes, the “discussion”, i.e., the determination of the lim-
its which the considerations are valid. The belief is widespread that mathematics
always moves thus four steps at a time. But just in the period of which we are
speaking, there arose, especially among the French, a new art form in mathematical
presentation, which might be called artistically articulated deduction. The works
of Gaspard Monge or, to mention a more recent book, the Traité d’Analyse, by
Emile Picard, read just like a well written gripping novel. This is the style which fits
the method of thought B, whereas the Euclidean presentation is related, in essence,
to the method A.

Of Germans who achieved distinction in these fields I should mention Carl Gus-
tav Jacob Jacobi (1804-1851), Riemann (1826-1866), and, coming to a some-
what later time, Rudolph Clebsch (1833-1872), and the Norwegian Sophus Lie
(1842-1899).These all belong essentially to the direction B, except that occasion-
ally an algorithmic touch is noticeable with them.

From the middle of the century on, the method of thought A comes again to the
front with Carl Weierstraf3 (1815-1897). His activity, as teacher in Berlin, began in
1856. I have already instanced Weierstraf3’ function theory as an example of A. The
more recent investigations concerning the axioms of geometry belong, likewise, to
the type A. One is concerned here with studies entirely in the Euclidean direction,
which approach it, also, in the manner of presentation.

With this I bring our brief historical resume to an end. Many points of view
which could only be alluded to here will be brought up later for more complete
discussion. As a summary, we might say that, in the history of mathematics during
the last centuries, both of our chief methods of investigation were of importance;
that each of them, and sometimes the two in succession, have resulted in important
advances of the science. It is certain that mathematics will be able to advance
uniformly in all directions, only if neither of the two methods of investigation is
neglected. May each mathematician work in the direction which appeals to him
most strongly.

Teaching in the secondary schools, however, as I have already indicated, has long
been under the one-sided domination of the Plan A. Any movement toward reform
of mathematical teaching must, therefore, press for more emphasis upon direction
B. In this connection I am thinking, above all, of an impregnation with the genetic
method of teaching, of a stronger emphasis upon space intuition, as such, and,
particularly, of giving prominence to the notion of function, under fusion of spatial
perception and number perception! It is my aim that this lecture course shall serve
this tendency, especially since those elementary mathematical books to which we
are in the habit of going for advice, e.g., those of Weber-Wellstein, Tropfke, Max
Simon, represent the direction A almost exclusively. I called your attention, in the
introduction, to this one-sidedness.

And now, gentlemen, enough of these incidental remarks; let us pass to the next
main subdivision of this lecture course.



Second Part: Algebra (3

Textbooks

Let me commence by mentioning a few textbooks of algebra, in order to intro-
duce you somewhat to a very extensive literature. I suggest, first, Serret’s cours
d’algebre® which was much used in Germany, formerly, and had great merit. Now,
however, we have two great widely used German textbooks: H. Weber’s Lehrbuch
der Algebra®® and E. Netto’s Vorlesungen iiber Algebra® , each in two volumes;
both treat with great fullness the most difficult parts of algebra and are well adapted
for extensive special study; they seem to me to be too comprehensive for the aver-
age needs of prospective teachers and also too expensive. More fitting in the latter
respect is the handy Vorlesungen iiber Algebra®® by G. Bauer, which hardly goes
beyond what the teacher should master®®. On the practical side, for the numeri-
cal solution of equations, this book is supplemented by the little book Praxis der
Gleichungen by C. Runge’®, which I can highly recommend.

65 Third edition. Paris 1866 [sixth edition, 1910].

% Second edition. Braunschweig 1898/99. [New revision by R. Fricke, Vol. 1. 1924.]

67 Leipzig 1896/99. See also: Chrystal, Textbook in Algebra (2 volumes). Macmillan. Bocher, M.,
Introduction to Higher Algebra. Macmillan.

%8 [Second edition. Leipzig 1910. Published in a fourth, extended edition by Ludwig Bieberbach,
Leipzig, 1928.]

% See also: Netto, E., Elementare Algebra, akademische Vorlesungen fiir Studierende der ersten
Semester. [Second edition. Leipzig 1913, and H. Weber, Lehrbuch der Algebra. Small edition in
one volume. Second printing. Braunschweig 1921.] See also: Fine, H., College Algebra. Ginn.
Hall und Knight, Higher Algebra. Macmilian.

70 [Second edition. Leipzig 1921.] See also: v. Sanden, H., Practical Mathematical Analysis.
Dutton & Co.
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Our Specific Goal: Application of Geometrically Intuitive Methods
to the Solution of Equations

Turning now to the narrower subject, let me remark that I cannot, in the limits of
this course of lectures, give a systematic presentation of algebra; 1 can give, rather,
only a one sided selection, and it will be most fitting if I emphasize those things
which are, unfortunately, neglected elsewhere, and which are calculated neverthe-
less to throw light upon school instruction. All of my algebraic developments will
group themselves about one point, namely, about the application to the solution of
equations of graphical and, generally speaking, of geometrically perceptual meth-
ods. This field alone is a very extensive and widely related chapter of algebra. Even
from it, it is obviously possible to select only the most important and interesting
things; in doing this we shall come into organic relation with the most widely dif-
fering fields, so that we shall be studying mathematics quite in the spirit of our
system B, In the first place, we shall treat equations in real unknowns in order that
we may follow, later, with the consideration of complex quantities.



I. Real Equations with Real Unknowns

1. Equations with One Parameter

We begin with a preferably simple case, which is susceptible of geometric treat-
ment, namely with a real algebraic equation for the unknown x, in which a param-
eter A appears:

f(x,A) =0.

We shall obtain a geometric representation most simply if we replace A by a second
variable y and think of

S, y)=0
as a curve in the x-y-plane (see Fig. 19). The points of intersection of this curve
with the line y = A, parallel to the x-axis, give the real roots of the equation

f(x,A) = 0. When we have drawn the curve approximately, as we can easily do
if f is not too complicated, we can see at a glance by displacing the parallels, how
the number of real roots changes as A varies. This approach is especially effective
when f is linear in A, i.e. with equations of the form

p(x) =AY (x) = 0.

yor

Figure 19

If ¢ and ¢ are rational, the curve y = ¢(x)/v (x) will also be rational, and is easy
to construct. In these cases one can often use this method to advantage in calcu-
lating approximately the roots of equations. As an example consider the quadratic
equation

x?4+ax—A=0.

© Springer-Verlag Berlin Heidelberg 2016 91
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The curve y = x? + ax is a parabola, and one can see at once for what values
of A the equations has two, one, or no real roots according as the horizontal line
cuts the parabola in two, one, or no points (see Fig. 20). It seems to me that the
presentation of such a simple and obvious construction would be very appropriate
in the last school grades. As a second example let us take the cubic equation

X +ax?+bx—1=0,

which gives us the cubical parabola y = x3+ax*+bx, whose appearance is differ-
ent according to the values of a, b. In Fig. 21, it is assumed that x> +ax + b = 0
has two real roots. It is easy to see how the parallels group themselves into those
which intersect the curve in one point and those which meet it in three; there can be
two limiting positions which yield double roots.

Ay

I © A

> X

Figure 20

I N

Figure 21

2. Equations with Two Parameters

When several parameters, let us say two, appear in an equation, more skill is re-
quired to handle the problem graphically, but the results are more far-reaching and
interesting. We shall limit ourselves to the case where the two parameters A, i ap-
pear linearly, and we shall write ¢ for the unknown in the equation. The problem is
to determine the real roots of the equation

(D p) +A-x(@O) +p-v() =0,
where @, x, ¥ are polynomials in 7.
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If x, y are ordinary rectangular point-coordinates, every straight line in the x-y-
plane will be given by an equation of the form

2) y4+ux+v=0.

We may call u, v the coordinates of the straight line. Then (—u) is the trigono-
metric tangent of the angle which the line makes with the x-axis, and (—v) is the
y-intercept (see Fig. 22). Let us think of points and lines as of equal importance;
and let us give equal attention to point coordinates and line coordinates. This will
be especially important later on. Then we may say that the equation y +ux+v = 0
indicates the united position of the line (u, v) and of the point (x, y), i.e., that the
point lies on the given line, and the line goes through the given point.

¥

(—v)
¥

1 >
/ 1Rl g - —y

Figure 22

In order now to interpret the equation (1) geometrically, let us identify it with (2). [96]
This can be done in two essentially different ways which we shall consider, sepa-
rately.

A. Let us consider the equations

@) x()
3 =, x=L
G Y=o T v
(3b) u=A, v =

If ¢ is variable, the equations (3a) represent a well determined rational curve of the
x-y-plane, which is called the normal curve of equation (1). Since every point on it
corresponds to a definite value of ¢, a certain scale of values of ¢ is defined upon it.
By means of (3a) we can calculate as many points as we please; and hence we can
draw the normal curve, with its scale, as accurately as we please, say on millimetre
paper. For every definite pair of values of A and p (3b) represents a straight line of
the plane. From what has been said, it follow that (1) shows, that the point 7 of the
normal curve lies upon this straight line. Thus we obtain all the real roots of (1)
if we find all the real intersections of the normal curve with this line and read
off their parameter values on the curve scale. The normal curve is determined,
once for all, by the form of equation (1), regardless of the special values which the
parameters A, ;. may have. For every equation with definite A, u there is, then, one
straight line which represents it, in the manner described above, so that, in general,
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all the straight lines in the plane come into play, whereas before (pp. [87]-[88])
only horizontal lines were used.
As an illustration, let us take the quadratic equation

A 4+pu=0.

The normal curve here is given by the equations

y:tz, X=1 or y:xz,

i.e., the normal curve is the parabola shown in Fig. 23, with the scale there indicated.
We can at once read off the real roots of our equation as the intersections with the
line y + Ax + u = 0. In particular, the figure shows that the two roots of the
equation t> — ¢ — 1 = 0 lie between % and 2, and between —% and —1, respectively.
The essential advantage of this method, over that given on pp. [94]-[95], is that we
can now solve all quadratic equations with one and the same parabola, if we make
use of all the straight lines in the plane. Thus, if we wish to solve, approximately,

a considerable number of equations, one can apply this method very effectively.

Figure 23

In a similar way one can treat the totality of cubic equations, all of which can,
by a linear transformation, be thrown into the reduced form

A+ p=0.
The normal curve here is the cubical parabola
y=t, x=t or y=x>

sketched in Fig. 24. This method also seems to me to be usable in the schools. The
pupils would certainly derive pleasure from drawing such curves.
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Figure 24

B. The second method of interpreting (1) is got from the first by applying the
principle of duality, i.e., by interchanging point and line coordinates. To that end,
let us write the terms of (2) in reverse order:

v4+xu+y=0

and identify it, in this form, with (1) by setting

@(1) x(@)
4 = —, = —,
) USye T yo
(4b) x=A2, y = U.

If ¢ is variable, the equation (4a) represents a family of straight lines which will
envelope a definite curve, the normal curve of (1), in the new interpretation. It
is a rational class curve, since it is represented, in line coordinates, by rational
functions of a parameter. Every tangent, and hence the corresponding point of
tangency, is determined by a definite value of #, so that one gets again a scale on
the normal curve. By drawing a sufficient number of tangents according to (4a),
we may draw both curve and scale with any desired degree of exactness. Each
parameter-pair A, i determines, by virtue of (4b), a point in the x-y-plane, through
which, by virtue of (1), the tangent ¢ of the normal curve (4a) must pass. We obtain,
therefore, all the real roots of (1) by reading off the parameter values t belonging
to all the tangents to the normal curve which go through the point x = A, y = [.
As before, the normal curve is completely determined by the form of equation (1).
Every equation of this form will be represented, for given values of the parameters
A, 1, by a certain point in the plane, or, if we wish, by its position with respect to
the curve.
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Let us illustrate by means of the same examples as before. Corresponding to the
quadratic equation
P HA4+pu=0

[98] the normal curve will be the envelope of the straight lines

This envelope, again, is a parabola with its vertex at the origin. The graph, drawn
evidently again on millimetre paper, exhibits immediately the real roots of >+ At +
@ = 0 as parameters ¢ of the tangents drawn to the parabola from the point A,
(see Fig. 25). For the cubic equation

B HA+pu=0

the normal curve

Figure 25

Figure 26
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We can present this method somewhat differently. If we examine the so-called
trinomial equation
"+ A"+ pu =0,

we may represent the system of tangents to the normal curve by means of the pa-
rameter equation
f@)=t"+xt"+y=0.

The equation of the normal curve in point coordinates may be found, as usual, by
coupling the last equation and the equation obtained by differentiation with respect
to t:

/@)y =mt" ' 4+ nxt" ' =0

and eliminating #; for the normal curve, as the envelope of the system of straight
lines, is the locus of the intersection of each of these lines with the neighbouring
line (for ¢ and ¢ + dt). If, instead of eliminating ¢, we express x and y as functions
of ¢ from these two equations, we find

(5a) X = —ﬁtm’", y = ",

which are the point equations of the normal curve.
As normal curves for the quadratic and the cubic equations which were selected
above as examples, one finds in this way, respectively,

xX=-2t y= 2
x = —3¢2, y = 283,

These are the curves which are sketched in Figs. 25 and 26.

Let me emphasize the fact that this method is put to practical use by Carl Runge,
in his lecture courses and exercises, and that it has proved itself especially appro-
priate for the actual solution of equations. We might profitably use one or the other
of these graphical methods in school teaching.

Classification According to the Number of Real Roots

If we now compare with each other the two methods which we have developed,
we find that, for at least one definite and very important purpose, the second offers
a distinct advantage, namely, when one seeks an intuitive representation of all the
equations of a definite type which have a given number of real roots. Such totalities
are represented, according to the first method, by systems of straight lines; accord-
ing to the second, however, by regions of points. But because of the peculiar nature
of our geometric perception, or of our habit, the latter are essentially easier to grasp
than are the former.

[99]
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Figure 27

I shall show at once, by means of the example of the quadratic equation, what
can be done in this direction (see Fig. 27). From all points outside of the parabola
two tangents can be drawn to the curve; from points within, none. Hence these two
regions represent the manifolds of all equations with two roots and with no roots,
respectively. For all points of the parabola itself there is only a single tangent,
which can be counted twice. The normal curve itself is, then, in the general case,
the locus of those points whose coordinates A, | yield equations with two equal
roots, so that we may call it the discriminant curve.

Figure 28

In the case of the reduced cubic equation, (Fig. 28) we see that from a point
inside the hook of the normal curve one can draw three tangents to the curve. This is
obvious for points on the median line, because of symmetry; and the number cannot
change when the point varies, provided it does not cross the curve. If the point (x, y)
moves to the curve, two of the tangents coincide; if it moves into the region outside
the curve, both of these tangents become imaginary and there remains but one real
tangent. Accordingly, the region inside the hook of the normal curve represents
the totality of cubic equations with three different real roots; the region outside,
equations with only one real root; while to the points on the curve itself correspond
the equations with one simple and one double real root. Finally, a triple tangent
goes through the cusp, corresponding to the single equation t3 = 0, with a single
triple root. Figure 28 makes this obvious at a glance.

The pictures become much more interesting and yield much more, if, as is cus-
tomary in algebra, we impose definite restrictions upon the roots, in particular, if
we inquire about all the real roots lying within a given interval t{ = t = t,.
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As you know, the general answer to this question is furnished by Sturm’s theorem.
We can, however, easily complete our drawings so that they will give a satisfying
and clearly arranged solution of this general question also. For this purpose we sim-
ply add to the normal curve the tangents to it determined by the parameter values
11, 1, and consider the division of the plane into regions which these tangents bring
about.

To carry through these considerations at first again for the quadratic equation, we
must determine the number of tangents which touch the parabolic arc between t,
and t. Through every point of the triangle (see Fig. 29) bounded by the parabolic
arc and these two tangents there are obviously two tangents. If the point crosses
either of the tangents ¢, t,, one of the tangents through it will touch the parabola
beyond the arc (¢, t;), and so will be lost for our purpose. Tangents from points
which lie within the two crescent shaped areas bounded by the parabola and the
tangents 71, t, touch the parabola outside the arc (¢, t;); and from points within the
parabola there are no real tangents at all. The two parabolic arcs ¢ = ¢; and t = 1,
are thus of no significance in effecting the desired subdivision of the plane. There
remain, then, only those lines in the figure which are drawn full; these, together with
the numbers assigned to them, give an glance exact information as to the manifolds
of quadratic equations which have 2, 1, or 0 real roots between t| and t,.

Figure 29

Figure 30

We may proceed similarly with the cubic equation (see Fig. 30). Let us take,
say, t; > 0, 1, < 0. Again we draw the tangents with these parameter values and [101]
examine the subdivisions of the plane brought about by them and the arc of the nor-
mal curve which lies between ¢#; and #,. Through every point in the four-cornered
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region at the cusp there will be three real tangents which touch the arc between ?,
and 1,. If point crosses either of the tangents 7}, t,, there is a loss of one tangent of
this character. When it crosses the normal curve two are lost. From these consid-
erations we obtain the picture, shown in Fig. 30, of the regions of the plane which
correspond to equations with three, two, one, or no roots lying between t| and t,.
In order to see the great usefulness of the graphical method, one need only make
a single attempt to describe abstractly this classification of cubic equations, without
making any appeal whatever to space intuition; it will require a disproportionately
great amount of time. And the proof, which here becomes evident by a glance at
the figure, will not be at all easy.

Now as to the relation of this geometric method to the well-known algebraic
criteria of Jacques Sturm, Cartesius’', and Budan-Fourier 1 remark, merely, that
the geometric method includes them all, for equations of the types which we have
considered. You will find these relations carried out more fully in my article’?
“Geometrisches zur Abzdhlung der Wurzeln algebraischer Gleichungen” and in
Walther van Dyck’s “Katalog mathematischer Modelle””. 1 am glad to take this
occasion to refer you to this catalogue. It was published on the occasion of the
exposition, in Munich, in 1893, by the German Mathematical Society, and remains
today the best means of orientation in the field of mathematical models.

3. Equations with Three Parameters A, j, v

Finally, I shall also show you that one can apply analogous considerations to equa-
tions with three parameters. We shall need to use the space of three dimensions,
instead of the plane. It will suffice if I consider the special equation of four terms

P+ A"+ pt" +v=0.

The method of procedure can be applied immediately to equations of other forms.

In addition to this equation, we shall use the condition, from space geometry,
that a point (x, y, z) and a plane with the plane coordinates (u, v, w) shall be “in
united position”, i.e., that the plane (u, v, w) shall contain the point (x, y, z). This
condition is

) z4ux+vy4+w=0
or
3) w+xu+yv+z=0.

71 [Translator’s note: Klein used here the latinised form of Descartes. ]

72 [Reprinted in F. Klein, Gesammelte Mathematische Abhandlungen, vol. II, pp. 198-208.]

73 A catalogue of mathematical and mathematical-physical models, apparatus, and instruments
(Munich, 1892), also a supplement to this (Munich, 1893).
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We now identify this equation, written in the one form or the other, with (1) and we
obtain, exactly as before, two mutually dual interpretations.
Let us then set

(2a) z=t", x=1", y=1".

These equations determine a certain space curve, the normal curve of the four-term
equation (1), together with a scale of the values t. Then we consider the plane
which is determined by the coefficients A, i, v, of (1):

(2b) U=A, v=pu, wW=v.

Then equation (1) says that the real roots of the proposed equation are identical
with the parameter values t of the real intersections of the normal curve (2a) with
the plane (2b).

If we choose the method dual to the preceding, we must put

(3a) w=t’ u=1t", v=t".

These equations represent, for variable ¢, a “one-fold” infinity of planes, which
we can look upon as the osculating planes of a definite space curve associated,
as before, with a scale of parameter values t. This will be a normal “class curve”,
being expressed in plane coordinates, in distinction from the previous normal “order
curve”, which was given in point coordinates. If we now consider, in conjunction
with the first curve, also the point

(3b) X=A, y=u, z=v,

it follows that the real roots of (1) are identical with the parameter values t of those
osculating planes of the normal class curve (3a) which pass through the point (3b).

Let us next illustrate these two interpretations by concrete examples. We have,
in our collection, models for both of them, which I shall now put before you.

An Apparatus for the Numerical Solution of Equations

The first method was used by Rudolf Mehmke, in Stuttgart, in the construction of
an apparatus for the numerical solution of equations. His model is a brass frame
(see Fig. 31) in which you will notice three vertical rods carrying scales, and into
which one can fit curved templates, or stencils, of the normal curves of equations
of degree three, four, or five, (after these have been reduced to four terms). Note,
however, that while our exposition presupposed the ordinary rectangular coordi-
nate system, Mehmke has so determined his coordinate system that the appropriate
plane coordinates, i.e., the coefficients u, v, w of the equation of the plane (2),
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are precisely the intercepts which this plane makes on the scales of the three ver-
tical rods and which one can read off there. In order, now, to make possible the
fixation of a definite plane ¥ = A, v = u, w = v, a peephole is provided on the
w-rod, which one sets at the reading v of that scale, while one joins by a stretched
string the readings, of the scales on the u- and v-rods, respectively. The rays joining
the peephole with this string make our plane, and by looking through the peephole
one can observe directly the intersections of this plane with the normal curve as
the apparent intersections of the string with the template. Their parameter values,
the desired roots of the equation, are read at the same time on the scale of the
normal curve, which is affixed to the template. The practical usefulness of this ap-
paratus depends, of course, upon the carefulness of its mechanical construction, but

the limited power of accommodation of the human eye would, at best, make it very
doubtful.

-‘
- —
ny " P
» —3
e >
a o
E? )
4 =
- =
2 :
™ s
Y
v ﬂ- 3
v -
2 =
C T ITLI 52 #
fiizigac ae |
[t teScale -
-3 -
gy B
-5 »
o -
-7 -
i o
F-': g
P‘ :’“
- 2
Y L':
-

$

ﬁ“(;

Figure 31

The Discriminant Surface of the Biquadratic Equation

For the second method, a model was prepared by Mr. R. Hartenstein in connection
with his state examination. It has to do with the so-called reduced form of the
equation of degree four, that is,

tY A+ ut v =0,
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to which every biquadratic equation can be reduced. I shall present this method in
a form somewhat different from the one I used for the two-parameter equation above
(p- [98]). In the present case we have to consider a simple infinity of planes whose
plane coordinates are given in (3a) and whose point equations would be written as
follows:

4) fO)=t*+xt>+yt+2z=0.

The envelope of these planes is the system of the straight lines in which each plane
f(t) = 0 meets the neighbouring plane f(¢ +dt) = 0, i.e., the developable surface
whose equation is obtained by eliminating t between f(t) = 0 and f'(¢t) = 0. But
in order to obtain the normal curve we must seek the osculating configuration of
the system of planes, i.e., the locus of the points of intersection of three successive
planes. This locus is, as you know, the cuspidal edge of that developable surface
and its coordinates are found, as functions of t, from the three equations f(t) = 0,
f'(t) =0, f”(¢t) = 0. In our case these three equations are:

- xt’+yr+z=0

43 4+ x -2t +y =0
122+ x-2 =0,
and one finds from them:
3) x=—6t>, y=28t, z=-3t%

These expressions represent the point equation of the normal class curve of (4)
whose plane equation, by (3a), may be written in the form

(6) w=rt* u=1> v=r1.

Both forms are of degree four in . Hence the normal curve is both of order four
and of class four.

In order to study it more in detail, let us consider a few simple surfaces which
pass through it. In the first place, the expressions (5) satisfy identically in ¢ the

equation
%2
z+ T 0.
Hence our normal curve lies upon a parabolic cylinder of order two whose gener-
ators are parallel to the y-axis. Likewise, we have the relation

+_

2 3
A
8 27

so that this cubic cylinder, whose generators are parallel to the z-axis, also goes
through our normal curve. Moreover, the normal curve is the entire intersection —
lying in the finite region — of these two cylinders. With these facts in mind, one can
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form an approximate picture of the course of the normal curve. It is a skew curve,
symmetric to the x-z-plane, having a cusp at the origin (see Fig. 32).

-

Figure 32

[105]  Again the quadric surface

x-z 3y

=0,
6 64
goes through our normal curve; for, by (5), this equation is also satisfied identically
in 7. From it, and the equation of the cubic cylinder, we find another linear combi-
nation which represents an especially important surface of the third degree passing
through the normal curve:

Let us now consider the developable surface whose cuspidal edge is the normal
curve, and which we can define as the totality of the tangents to the normal curve.
The tangent at the point ¢ to any space curve

x=¢@t), y=v@®), z=x@)

is given by the equations

x=9@) +09' (1), y=v@)+ov'(®), z=x) +ox ),

in which o is a parameter. For the direction cosines of the tangents to the curve are
to each other as the derivatives of the coordinates with respect to ¢. If ¢ is thought of
as variable, we have in these equations, with two parameters ¢, o, the representation
of the developable surface. All this follows from well-known theorems of space
geometry. For our curve (5) we get, in particular, the following equations for the
developable surface. If we call the coordinates of its points (X, Y, Z) to distinguish
them from the coordinates of the curve, the equations of the developable are

X = —6(t2 + 201)

@) Y = 8(¢3 + 30t?)
Z = =3(t* + 4013).
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Now this surface is the basis of Mr. Hartenstein’s model, its straight lines being
represented by stretched threads (see Fig. 33).

A

Figure 33

The parameter representation offers the best starting point for the discussion and
the actual construction of the surface. Indeed, it is only from force of habit that we
inquire about the equation of the surface itself. We can obtain it by eliminating o
and ¢ from (7). I shall give you the simplest procedure for this without giving the
details and what is the inner meaning of the several steps. From (7) we form the
combination

X2
7+ — = 120%,

12
xX-z v? x3 s 3
=389,
6 16 216

both of which vanish on the curve itself (for o = 0). If we equate these to zero, we
obtain two of the surfaces mentioned above which pass through the curve. Elimi-
nating the product ot from these equations, we find the equation of the developable

surface
X2\’ X-Z v: x3\
Z+) 7522 ) =0
12 6 16 216
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The surface is thus of order six; it is composed of the plane at infinity and a surface
of order five.

As to the meaning of this formula, I make the following remark for those who
are acquainted with the subject. The expressions in the two parentheses are the
invariants of the biquadratic equation

X2 +Yt+Z=0,

with which we started. These play an important role in the theory of elliptic func-
tions and they are designated there, in general, by g, and g3. The left side of the
equation of our surface, A = g3 —27g3, is, as you know, the discriminant of the bi-
quadratic equation, which indicates, by its vanishing, the presence of a double root.
Our developable surface is therefore the discriminant surface of the biquadratic
equation, i.e., the totality of the points for which it has a double root.

After these theoretical explanations, the construction of a thread model for our
surface offers no essential difficulty. By means of the parameter equations (7) we
may determine, say, the points in which those tangents which we wish to represent
intersect certain fixed planes. We then stretch threads between these planes, which
are made out of wood or cardboard. But it requires long trial and great skill to make
the model really beautiful and usable, and to bring out the entire interesting course
of the surface and of its cuspidal edge, as in the model before us. The sketch on
p- [105] (see Fig. 33) shows the surface with its straight lines; AOB is the cuspidal
edge [see the figure p. [104]74].

You notice on the model a double curve (COD) along which two sheets of the
surface intersect. This curve is simply the following parabola of the X -Z-plane:

X2
Y=0 Z—-—=0.
4

Only one half (CO) of this parabola, namely that for X < 0, appears, however, as
the intersection of real sheets, while the other half lies isolated in space. This phe-
nomenon is by no means surprising to those who are accustomed to accompany the
theory of algebraic surfaces with concrete geometric representations. It is a com-
mon thing, there, for real branches of double curves to appear both as intersections
of real sheets and also in part isolated. In the latter case we regard them as real
intersections of imaginary sheets of the surface. The corresponding phenomenon
in the plane is more generally known. In that case, in addition to the ordinary dou-
ble points of algebraic curves, which appear as intersections of real branches of the
curve, there are also the apparently isolated double points, which may be regarded
as the intersections of imaginary branches.

Let us now make clear in detail, what this surface with its cuspidal edge, the
normal curve, can do for us. We think of the normal curve with its associated

74 The Hartenstein string model was put upon the market by the firm of M. Schilling in Leipzig.
A dissertation by R. Hartenstein entitled: Die Discriminantenfliiche der Gleichung vierten Grades
goes with the model Leipzig, Schilling, 1909.
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scale, or, better, we affix to each tangent its parameter value ¢, which also belongs
to the point of tangency. If, now, someone gives us a biquadratic equation with
definite coefficients (x, y, z), we need only to pass through the corresponding point
(x,y,z) of the osculating plane to the normal curve, or, what would be the same
thing, the tangent plane to the discriminant surface, to obtain the real roots as the
parameter values of the points of contact with the curve, or the parameter values
of the corresponding tangents, as the case may be. Since the osculating plane cuts
the curve where it touches it, every point of contact of an osculating plane with the
curve is projected from the point (x, y, z) as an apparent point of inflexion on the
curve, and conversely. Consequently, the real roots of the biquadratic equation are,
finally, the parameter values t of the apparent inflexion points of the normal curve,
viewed from the point (x,y, z) in space.

Now it is, of course, quite difficult for the unpractised eye to determine with
certainty from the model either the planes of osculation or the apparent inflexions
of the curve. But the model exhibits with immediate clearness the next important
thing, the classification of all biquadratic equations according to the number of
their real roots. Let us see, by an abstract examination of equations, just what cases
one might expect. If «, B, y, § are the four roots of the real biquadratic equation (4),
thena + B + y + 8 = 0, because of the vanishing of the coefficient of #*. So far as
the reality of the roots is concerned, the following three principal cases are possible:

L. Four real roots.
II. Two real, and two conjugate complex roots.

III. No real, and two pairs of conjugate complex roots.

If, now, two equations of the type I are proposed, with roots «, 8,7y, and
o', B,y 8, respectively, then one certainly could transform o, 8, y, § continuously
into o', B, y’, &, respectively, through systems of values whose sum is always zero.
At the same time, the one equation would transform continuously into the other,
through equations always of the same type, i.c., all equations of type I make up
a connected continuum, and the same is true for the other two types. Our model
must therefore exhibit space partitioned into three connected parts such that the
points in each part correspond to equations of one type.

Let us now consider the transition cases between these three sorts. Type I goes
over into II through equations which have two different real roots and one double
(i.e. two coincident) real root, which we shall indicate symbolically by 2 + (2);
similarly we have between II and III the transition case of one real double root and
two complex roots, which may be indicated by (2). To both of these sorts there
must correspond, in our model, regions of the discriminant surface, which, indeed,
pictures all equations with coincident roots. Considerations similar to those above
would show that to each type there must correspond a connected region of this
surface. Now, again, these two groups, 2 + (2) and (2), go over into each other by
means of cases with rwo real double roots, symbolically: (2) + (2); the points for
which two pairs of roots move thus into coincidence must belong simultaneously
to two sheets of the discriminant surface, that is, to the non-isolated branch of the
double curve. Accordingly, the discriminant surface falls into two parts, separated
by a branch of the double curve; one of these parts, 2 + (2), separates the space
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regions I and II, the other, (2), the space regions Il and III. In order to see, now,
how the normal curve lies, we notice that, because of its property as a cuspidal
edge, three tangent planes must merge into one (the osculating plane) at each point
on it, so that we have the case of one triple and one simple real root: 1 + (3).
This can arise only from 2 + (2) when one of the simple roots becomes equal to
the double root. Consequently, the cuspidal edge must lie entirely on the first part,
2 + (2), of the surface. Only in the cusp of the cuspidal edge (x = y = z = 0)
we have a quadruple real root, which can arise from the case (2) + (2) through the
coincidence of the two double roots. In fact, the cusp, O, of the cuspidal edge lies
also on the double curve. Finally, as to the isolated branch of the double curve, it
lies entirely in the space region III and is characterized by the fact that on it the rwo
pairs of conjugate complex roots merge into one complex double root. Both double
roots are, of course, conjugate to each other.

You can recognize on our model all of the possible cases enumerated above. In
the sketch (Fig. 33, p. [105]), the interior of the surface to the right of the double
curve is region I, to the left, region III; the exterior is region II. You will be able
easily to become fully oriented by means of the following tabulation, which exhibits
the number and the multiplicity of the real roots which correspond to the points of
the several space, surface, and curvilinear regions. In this scheme, the digits not in
parentheses denote the number of simple real roots, the others, as before, denote the
multiplicity of repeated roots:

I. II. III.
Region: 4 2 0
Discrim. surface: 2+ (2) (2)
Normal curve: 1+ (3)
Double curve Wimag- double roots).

Cusp: (4)



II. Equations in the Field of Complex
Quantities

We shall now remove the restriction to real quantities and shall operate in the field
of complex quantities. Of course, we shall endeavour again only to emphasise
those things which are susceptible of geometric representation to an extent greater
than one finds elsewhere. Let us begin at once with the most important theorem of
algebra.

A. The Fundamental Theorem of Algebra

This is, as you know, the theorem that every algebraic equation of degree n in the
field of complex numbers has, in general, n roots, or, more accurately, that every
polynomial f(z), of degree n, can be separated into n linear factors.

All proofs of this theorem basically make use of the geometric interpretation of
the complex quantity x + iy in the x-y-plane. I shall give you the train of thought
of Gauf’ first proof (1799), which can be presented quite intuitively. To be sure,
the original exposition of Gaufl was somewhat different from mine.

Given the polynomial

f@=z2"+a "+ +ay,

we may write
f(x +iy) =ulx,y)+i-v(x,y),

where u, v are real polynomials in the two real variables x, y. The leading thought
of Gauf3’ proof lies now in considering the two curves

u(x,x)=0 and v(x,y)=0

in the x-y-plane, and in showing that they must have one point, at least, in common.
For this point one would then have f(x + iy) = 0, that is, the existence of a first
“root” of the equation f = 0 would be proved. For this purpose, it turns out to be
sufficient, to investigate the behaviour of both curves at infinity, i.e., at a distance
from the origin which is arbitrarily great.

© Springer-Verlag Berlin Heidelberg 2016 109
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If r, the absolute value of z, becomes very large, we may neglect the lower

powers of z in f(z), in comparison with z". If we introduce polar coordinates r, ¢
into the x-y-plane, i.e., if we set

z =r(cosg +ising),
we have, by De Moivre’s formula
z" =r"(cosng + isinng).
This expression is approached asymptotically by f(z), as z increases in absolute

value. It follows at once that u and v approach, respectively; asymptotically the
functions

r'"cosng, r'sinng.
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Figure 34

Consequently the ultimate course of the curves u = 0, v = 0, at infinity, respec-
tively, will be given approximately by the equations

cosng =0, sinng =0.

Now the curve sinng = 0 consists of those n straight lines which go through the
origin and make with the x-axis the angles 0, w/n,27/n, ..., (n — 1) /n, whereas
cosng = 0 consists of the n rays through the origin which bisect these angles
(Fig. 34 is drawn for n = 3). In the central part of the figure, the true curves u = 0,
v = 0 can, of course, be essentially different from these straight lines; but they must
approach the straight lines asymptotically towards outside as the lines recede from
the origin. We can indicate their course schematically by retaining the straight tines
outside of a large circle and replacing them by anything we please, inside the circle
(see Fig. 35). But no matter what the behaviour of the curves may be inside the
circle, it is certain that, if one makes the circle about the origin sufficiently large,
the branches u, v, outside the circle extending to infinity, must alternate, from which
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it is intuitively clear that these branches must cross one another inside the circle.
In fact, we can give a rigorous’> proof of this assertion — and this is the substance
of Gaul}’ proof — if we use the continuity properties of the curves. The preceding
argument, however, gives the essentials of the train of thought. If one such root has
been found, we can divide out a linear factor, and we can then repeat the reasoning
for the polynomial factor of degree (n — 1) arising. Continuing in this way, we may
finally break up f(z) into n linear factors, i.e., we may prove the existence of n
zeros.

Figure 35

This method of reasoning will be much clearer if you carry through the con-
struction for special cases. A simple example would be

fzy=22—-1=0.
In this case we obviously obtain
u = r3cos3(p -1, v= 3 sin 3¢,

so that v = O consists simply of three straight lines, while ¥ = 0 has three
hyperbola-like branches. Figure 36 shows the three intersections of the two curves,

731t should be said here that GauB did not go entirely without geometric considerations. The
arithmetization of the proof which he contemplated in his dissertation was first given by Alexander
Ostrowski (Gottinger Nachrichten, 1920. or vol. VIII of the materials for a scientific biography
of GauB, 1920). Regarding the history of the Fundamental theorem I want to mention that its first
proof was given by D’Alembert. To be sure, there was a gap in his proof, to which Gauf} called
attention. D’Alembert, namely, failed to distinguish between the upper limit of a function and
its maximum, and he made use of the assumption, which in general is false, that a function of
a complex variable actually attains its upper limit when this limit exists.
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which give the three roots of our equation. I recommend strongly that you work
through other and more complicated examples.

1
|
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!

Figure 36

These brief remarks about the fundamental theorem will suffice here, since I am
not giving a course of lectures on algebra. Let me close by pointing out that the
significance of the admission of complex numbers into algebra lies in the fact that
it permits a general statement of the fundamental theorem. With the restriction to
real quantities one can only say that the equation of degree n has n roots, or fewer,
or perhaps none at all.

B. Equations with a Complex Parameter

The remainder of the time which I have set aside for algebra I shall devote to the
discussion, by intuitive methods, of all the roots (including the complex ones) of
complex equations, as was done earlier for the real roots of real equations. We shall
limit ourselves, however, to equations with one complex parameter and we shall
assume, furthermore, that this occurs only linearly. The study of a simple conformal
representation will then give us all that is required.

Let z = x + iy be the unknown, and w = u + iv the parameter. Then the type
of the equation to be considered has the form

M p(z) —w-y(z2) =0,

where ¢, ¥, are polynomials in z. Let n be the highest power of z that occurs.
According to the fundamental theorem, this equation has for each definite value of
w exactly n roots z which, in general, are different. Conversely, however, it follows
from (1) that

_p(2)

2 = s
@ =00
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i.e., w is a single-valued rational function of z, and it is said to be of degree n.
If we should use, as geometric equivalent of equation (1), simply the conformal
representation which this function sets up between the z-plane and the w-plane,
the many-valuedness of z as function of w would be disturbing the facility of in-
spection. We may help ourselves here, as is always the case in function theory,
by thinking of the w-plane as consisting of n sheets, one over another, which are
connected in an appropriate manner, by means of branch cuts, into an n-sheeted
Riemann surface. Such surfaces are familiar to you all from the theory of alge-
braic functions. Then our function establishes, between the points of the n-sheeted
Riemann’s surface in the w-plane and the points of the simple z-plane, a one-to-one
relation which is, in general, conformal.

Figure 37

Before we begin a detailed study of this representation, it will be helpful if we
set up certain conventions, which will do away with the exceptional role played by
infinite values of w and z, a role not justified by the nature of the case, and which
will enable us to state theorems in general form. Inasmuch as these conventions
are not so widely employed as they should be, you will permit me to say a word
or two more about them than I otherwise should. We cannot be satisfied here when
one speaks merely symbolically of an infinitely distant point of the complex plane,
since such a conception gives no adequate concrete perception, so that one must
have recourse to special considerations or stipulations, in order to find out what
corresponds, for an infinitely distant point, to a definite property of a finite point.
But we can secure all that is desired, if we replace the Gaussian plane, as support
of the complex numbers, once for all, by the Riemannian sphere. For this purpose,
we think simply of a sphere of diameter one, tangent to the x-y-plane, its south pole
S being at the origin, and from its north pole N we project the plane stereograph-
ically upon the sphere (see Fig. 37). To every point Q = (x, y) of the plane there
corresponds uniquely the second intersection P of the ray NQ with the sphere;
and, conversely, to every point P of the sphere, with the exception of N itself, there
corresponds a unique point Q with definite coordinate (x, y). Hence we can con-
sider P as representing the number x + iy. Now if P approaches the north pole
N, in any manner, Q moves to infinity; conversely, if O recedes to infinity in any
manner, the corresponding point P approaches the single definite point N. It seems
natural, then, to look upon this point N, which does not correspond to any finite

[113]

[114]



[115]

114 II. Equations in the Field of Complex Quantities

complex number, as the unique representative of all infinitely large x + iy, i.e., as
the concrete picture of the infinitely distant point of the plane, which is otherwise
introduced only symbolically, and to affix to it outright the mark co. In this way
we bring about, in the geometric picture, complete equality between all finite points
and the infinitely distant point.

In order to return now to the geometric interpretation of the algebraic relation (1),
we shall replace the w-plane also by a w-sphere. Then our function will be rep-
resented by a mapping of the z-sphere upon the w-sphere, and, just as in the case
of the mapping of the two planes, this is also conformal, since the stereographic
mapping of the plane upon the sphere is, according to a well-known theorem, con-
formal. To a single point on the w-sphere, there will then correspond, in general, n
different points on the z-sphere. In order to get a one-fo-one relation we imagine,
again, n sheets on the w-sphere, lying one above another, and connected, in appro-
priate manner, by means of branch cuts, so as to form an n-sheeted Riemann surface
over the w-sphere. This picture presents no greater difficulty than that of the Rie-
mann surface over the plane. Thus, finally, the algebraic equation (1) is interpreted
as a one-to-one relation, conformal in general, between the Riemann surface over
the w-sphere and the simple surface of the z-sphere. This interpretation obviously
takes into account, also, infinite values of z and w which may correspond to each
other or to finite values.

In order to make the greatest possible use of this geometric device, we must take
a corresponding step in algebra, one which shall do away with the exceptional role
which infinity plays in the formulas, and this step is the introduction of homoge-
neous variables. We set, namely,

L_a
22
and consider z, z, as two independent complex variables, both of which remain
finite, and which cannot both vanish simultaneously. Each definite value of z will
then be given by infinitely many systems of values (czi, cz,), where c is an arbitrary
constant factor. We shall look upon all such systems of values (cz;, cz,) which dif-
fer only by such a factor, as the same “position” in the field of the two homogeneous
variables. Conversely, for every such position there will be a definite value of z,
with one exception: to the position (z; arbitrary, z; = 0) there will correspond no
finite z; but if one approaches it from other points, the corresponding z becomes in-
finite itself. This one point is thus to be looked upon as the arithmetic equivalent of
the one infinitely distant point of the z-plane or, as the case may be, of the z-sphere,
and as carrying the mark z = oco.

In the same way, of course, we put also w = w;/w,. We shall now set up the
“homogeneous” equation between the ‘“homogeneous” variables z,, z, and wy, wy,
which corresponds to equation (2). Multiplying by z/ in order to clear of fractions,
we may write the equation in the form

z1 o
wi_ 2% Z 25(21,22)
o () Ve
2

22

3)
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In this equation, @(z,, z,) and ¥ (z1, z,) are rational integer functions of z, and
Zy, since ¢(z) and v (z) contain at most the n-th power of z = z;/z,. Moreover
they are homogeneous polynomials (forms) of dimension n. For each term z' of
©(2) or Y (z) is transformed into the term 2 (z,/z,)" = z47'z!, of dimension n, by
clearing of fractions.

We come now to the detailed study of the functional dependence which our equa-
tion (1) or, as the case may be, (3) establishes between z and w. We shall apply
consistently our two new aids, mapping upon the complex sphere and homogeneous
variables. We shall have solved this problem when we achieve a complete percep-
tion of the conformal relation between the z-sphere and the Riemann surface over
the w-sphere.

First of all we must inquire as to the nature and the position of the branch points
of the Riemann surface. 1 remind you here that a u-fold branch point is one in
which o + 1 sheets are connected. Since w is a single-valued function of z, we
know the branch points when we know the points of the z-sphere which correspond
to them, which I am in the habit of calling the critical or noteworthy points of the z-
sphere. To each of these there corresponds a certain multiplicity equal to that of the
corresponding branch point. I shall now give, without detailed proof, the theorems
which make possible the determination of these points. I assume that the rather
simple function theoretic facts, which enter into consideration here, are in general
familiar to you, though they may not be in the homogeneous form which I prefer to
use. I shall illustrate in concrete intuitive form the abstract considerations which I [116]
shall present to you, in this connection, by a series of examples.

A little calculation is necessary in order to obtain the analogue, in homogeneous
coordinates, of the differential coefficient dw/dz. Differentiating equation (3) and
omitting the bars over ¢ and 1, we obtain

wrdw; —widw,  Yde —edy

3) o =

We have also

do = @1dzy + ¢y dz,,
di/f = 1//1 le + 1/f2d22,

where
_ dp(z1,22) _ 0¢(z1, 22)
821 ’ 322 ’
_0Y(z1,20) 0y (21, 22)
= TRy, =
821 822

On the other hand, from Euler’s theorem for homogeneous functions of degree n,
we have

Y1 zZit @z =n-¢
Yi-zZi+ Yoz =n-Y;
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consequently the numerator on the right side of (3") may be written in the form

Vdp—pdy = ‘ de.dy | _ 1| gdzi + ¢odzy, Y1dzi + Yodz,
0. n| ¢iz1+ ¢aza, Viz1 + Y222
This expression, by the multiplication theorem for determinants, becomes
_1l one | | dzidzn
n| v Z1, I

Thus (3') goes over into the equation

U)zdwl — wlde 22d21 — Zlez
w3 n-y?

(@1¥2 — ¥192).

This constitutes the basal formula of the homogeneous theory of our equation, and
the functional determinant @1y, — @211, of the forms @, appears as a crucial ex-
pression for all that follows. Except for it and for the factor zZ/(ny?), one has on
the right the differential of z = z/z;, on the left that of w = w;/w,. Since for
finite z and w the critical points are given by dw/dz = 0, as is well known, the
following theorem appears plausible, but I shall here omit the proof: Each u-fold
zero of the functional determinant is a critical point of multiplicity |, i.e., there cor-
responds to it a ji-fold branch point of the Riemann surface over the w-sphere. The
chief advantage of this rule, as compared with those which are otherwise given, lies
in the fact that it contains in one statement both finite and infinite values of z and
w. It enables us also to make a precise statement concerning the number of remark-
able points. The four derivatives, namely, are forms of dimension n — 1, and the
functional determinant is therefore a form of dimension 2n — 2. Such a polynomial
always has exactly 2n — 2 zeros, if one takes into account their multiplicity. Thus,
oy, oy, ..., oy being the remarkable points of the z-sphere (i.e., if 1Y —@29; =0

forziizp = oy, 00, ..., 0y) and if Ly, o, ..., 4y are their respective multiplicities,

then their sum is
I’L1+I’L2++H’U :2]’[—2

By virtue of the conformal mapping, to these points there correspond the v branch
points
ap, da,...,dy

on the Riemann surface over the w-sphere, which must necessarily lie separated on
the surface, and about which p; + 1, uy + 1, ..., i, + 1 sheets, respectively, must
be cyclically connected. It should be noted, however, that different ones of these
branch points may lie over the same position on the w-sphere, since w = ¢(z)¥(z)
for z = oy, @y, ..., 0, may give the same value for w more than once. Over such
a point, there would be two or more separate series of sheets, each series being in
itself connected. Every such position on the w-sphere is called a branch position;
we shall denote them, in order, by 4, B, C, ... It should be noted that their number
can be smaller than v.
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The statements thus far made furnish only a hazy picture of the Riemann surface.
We shall now build it up so that it can assume a gestalt better to be grasped. For
this purpose, let us draw on the w-sphere through the branch positions A, B, C, . ..
an arbitrary closed curve € not percolating itself and of the simplest possible form
(see Fig. 38), and distinguish the two spherical caps thus formed as the upper cap
and the lower cap. In all of the examples which we shall discuss later the points
A, B,C, ...will all be real and we shall then naturally select as the curve € the
meridian great circle of real numbers, so that each of our two partial regions will
be a hemisphere.

Figure 38

Returning to the general case we see that each pair of sheets of the Riemann
surface which are connected, percolate along a branch cut, which joins two branch
points. As you know, the Riemann surface remains unchanged in essence if we
move these cuts, leaving the end points fixed, that is, if we think of the same sheets
as being connected along other curves, provided these join the same branch points.
It is in just this variability that the great generality and also the great difficulty of the
idea of the Riemann surface lies. In order to give the surface a definite form, which
shall be susceptible to concrete perception, we move all the branch cuts so that all
of them lie over the curve €, which passes through all the branch points. It may be
that several branch cuts lie over the same part of €, and none at all over other parts.

Now let us cut this entire complex of sheets, i.e., each individual sheet, along
the curve €. Since we had already moved all the branch cuts into a position over
€, the incision just made passes along all of them, so that our Riemann surface
separates into 2n “half-sheets” entirely free from branches, n of them over each of
the two spherical caps. If we think of the half-sheets corresponding to the upper
cap as being shaded, and those corresponding to the lower as not shaded, we can
distinguish briefly, n shaded and n unshaded half-sheets. We can now describe
the original Riemann surface as follows. On it each shaded half-sheet meets only
unshaded half-sheets, those with which it is connected along segments of the curve
€ lying over AB, BC, ..., and, similarly, each unshaded half-sheet is connected
along such segments of € only to shaded half-sheets. However, more than two half-
sheets may meet only at a branch point; and in fact around any [-fold branch point,
W + 1 shaded half-sheets would alternate with u + 1 unshades ones.

[118]
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Since the mapping by means of our function w(z) of the z-sphere upon the
Riemann surface over the w-sphere is a one-to-one correspondence, we can imme-
diately transfer to the z-sphere the above conditions of connectivity. Because of
continuity, the 2n half-sheets of the Riemann surface must correspond to 2n con-
nected z regions, which we may call the shaded and the unshaded half-regions.
These will be separated from one another by the n images of each of the segments
AB,BC,... of the curve € which the n-valued function z(w) represents upon
the z-sphere. Each shaded half-region meets only shaded half-regions along these
image-curves, and each unshaded half-region meets only shaded ones. It is only in
a pu—fold critical point that more than two half-regions can meet. At such a point
w + 1 shaded and . + 1 unshaded half-regions come together.

This division of the z-sphere into partial regions will help us to follow in detail
the course of the function z(w) for a few simple characteristic examples. I shall
begin with a preferably simple one.

1. The “Pure” Equation

We shall call the well known equation
(1) ZT=w

a pure equation. Its solution is given formally by introducing the radical z = Y/w.
This gives us no information, however, regarding the functional relation between z
and w. We shall proceed according to the general plan by introducing the homoge-
neous variables

w;  zf

wy 2}
and we shall consider the functional determinant of the numerator and denominator
of the right side

n—1
nzy 00 o a1 a1
0 nznfl =n Zl 22 .
’ 2

This expression obviously has the (n — 1) fold zeros z; = 0 and z; = 0, or (in
non-homogeneous form) z = 0 and z = oo. These are the only critical points and
they are of total multiplicity 2n — 2. By our general theorem, therefore, the only
branch points of the Riemann surface over the w-sphere are at the positions w = 0
and w = oo. By the equation w = z” these correspond to the two points z = 0
and z = oo. Each of these two points has the multiplicity n — 1, so that n leaves
are cyclically connected at each of them. Let us now mark on the w-sphere the
meridian of real numbers as the curve € and let us cut all the sheets of the Riemann
surface along this meridian, after having appropriately displaced all of the branch
cuts. Of the 2n hemispheres into which the surface separates we think of those
over the rear half of the w-sphere, that is, those which correspond to w-values with
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positive imaginary parts, as shaded. Upon the meridian itself, we shall distinguish
between the half-meridian of positive real numbers (drawn full in Fig. 39) and that
of the negative real numbers (dotted).

w-Sphere:
oo

-
-
e

s

T

Figure 39

Now we must examine the mappings of this meridian € curve upon the z-sphere,
where they bring about the characteristic division into half-regions. Upon the posi-
tive half-meridian w = r, where r ranges through positive real values from 0 to co; [120]
for these values we have by a well known formula of complex numbers,

2k 2k

z=Yw= {/ﬂ(cos—+isin—), where £k =0,1,...,n—1.
n n

For the different values of k, this expression gives those n half-meridians of the
z-sphere which make with the half-meridian of positive real numbers the angles
0,2m/n,4m/n,...,2(n — 1)x/n. Thus these curves correspond to the full drawn
half of €. On the negative half-meridian of the w-sphere we must set w = —r =
r - e'™, where again 0 < r < co. This gives

o (COS Kk +Dm Ok 1)71) |
n n

s= Yw=
where Kk =0,1,...,n—1.

Corresponding to this we have, on the z-sphere, those n half-meridians which have
the “longitude” w/n,3m/n,...,2(n—1)x/n, which thus bisect the angles between
the others. Accordingly, the z-sphere is divided into 2n congruent bi-angular pieces
reaching from the north pole to the south pole, similar to the natural divisions of an
orange. This division is exactly in accord with the general theory. In particular, it is
only at the remarkable points, the two poles, that more than two half-regions meet.
At each of these points 2 half-regions meet, corresponding to the multiplicity n—1.

As for the shading of the regions, we need to fix it for one region only. The
remainder are then alternately shaded and unshaded. Now note that when we look
at the shaded half of the w-sphere (the rear) from the point w = 0, the full drawn
part of the boundary lies to the left, the dotted part to the right. Since we are
concerned with a conformal mapping, in which angles are not reversed, each shaded
region of the z-sphere, looked at from the corresponding point z = 0, must have the
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same property as to position, that is, it must have a full drawn boundary to the
left, and a dotted one to the right. With this we control completely the division of
the z-sphere into regions. Moreover, one notices a characteristic difference in the
distribution of the regions upon two z-hemispheres, according as n is even or odd,
as can be clearly seen in Figs. 40 and 41 on p. [121] for the first cases n = 3,n = 4.
Let me emphasize how necessary it was to go over to the complex sphere in order
to get a full understanding of the situation. In the complex z-plane, one would have
a division into angular sectors by straight lines radiating from z = 0, and it would
not be at all so obvious that z = oo and w = oo have equal significance with z = 0
and w = 0, as critical point and branch point, respectively.

[121] This furnished us with the essentials for exact knowledge of the functional re-
lation between z and w. We need now study only the conformal mapping of each
of the 2n spherical sectors upon one or the other of the two w-hemispheres. But I
shall not go into the details here. This case, as one of the simplest and most obvious
illustrations, will be familiar ground to anyone who has had to do with conformal
representation. We shall see later (see p. [141]) how to deduce from this methods
for the numerical calculation of z.

z-Sphere:

Figure 40

Figure 41

Let us, however, settle here the important question as to the mutual relation
among the various congruent regions of the z-sphere. Speaking more exactly,
w = z" takes on the same value at each point in every of the n shaded regions.
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Can the corresponding values of z be expressed in terms of one another? We no-
tice, in fact, that for z’ = z-& (where ¢ is any one of the n-th roots of unity) z” = z",
that is w = z” takes the same value at all the n points

2) Z=¢&"-z=en -z (v=0,1,2,....,n—1).

These n values of z’ must therefore be distributed so that just one of them lies in
each of the n shaded regions of the z-sphere, if z is taken in one of the shaded re-
gions and each of them must traverse one of these regions as z traverses its region.
The same thing is true of the unshaded regions. Each of the substitutions (2) is
represented geometrically by a rotation of the z-sphere through an angle v - 27 /n
about the vertical axis 0, co since, as is well known, multiplication in the complex
plane by e™i" denotes a rotation through that angle about the origin. Thus corre-
sponding points of our spherical regions, as well as the regions themselves, go over
into one another by means of these n rotations about the vertical axis.

If, then, we had determined at the start only one shaded partial region of the
sphere, this remark would have furnished all the similar partial regions. In this
we have made use only of the property of the substitutions (2) that they transform
equation (1) into itself (i.e., z" = w into z™ = w) and that their number is equal
to the degree. In the examples that follow, we shall always be able to give such
linear substitutions at the outset, and by means of them to simplify considerably the
determination of the division into subregions.

Irreducibility; “Impossibility” of Trisecting the Angle

By using the present example I should like to clarify an important general no-
tion, namely, the notion of irreducibility for equations which contain a parameter
w rationally. We have already discussed irreducibility of equations with rational
numerical coefficients in connection with the construction of the regular heptagon
(p. [55] et seq.). An equation f(z,w) = 0 (e.g., our equation z" — w = 0),
where f(z,w) is a polynomial in z, whose coefficients are rational functions of w,
is called reducible with respect to the parameter w, when f can be split into the
product of two polynomials of the same sort, in each of which z really appears

f(Z,U)) = fl(Z,U)) : fZ(va);

otherwise the equation is called irreducible with respect to w. The entire general-
isation, in comparison with the earlier conception, lies in the fact that the “domain
of rationality” in which we operate and in which the coefficients of the admissible
polynomials are to lie, consists of the fotality of rational functions of the parame-
ter w instead of the totality of rational numbers, in other words, that we pass from
a number-theoretic to a function-theoretic conception.

If we illustrate us this, for each equation f(z, w) = 0, by means of its Riemann
surface, we can set up a simple criterion for reducibility in this new sense. If the

[122]
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equation, namely, is reducible, every system of the values z, w, which satisfies it,
satisfies either fi(z,w) = 0 or f>(z,w) = 0; now the solutions of f; = 0 and
Jf> = 0 are represented by means of their Riemann surfaces, which have nothing
to do with each other, and, in particular, cannot be connected. Thus, the Riemann
surface which belongs to a reducible equation f(z,w) = 0 must break down into
at least two separates pieces.

According to this, we can now assert that the equation z" — w = 0 is certainly
irreducible in the function theoretic sense. For, on its Riemann surface, which we
know exactly, all the n sheets are cyclically connected at each of its branch points.
Moreover, the entire surface is mapped upon the unpartitioned z-sphere. Hence
such a breaking down cannot occur.

In connection with this, we can answer one of the popular problems of math-
ematics which we touched earlier (p. [56]), namely, that of the possibility of
dividing an arbitrary angle ¢ into n equal parts, in particular, for n = 3, the
possibility of trisecting an angle. The problem is to give an exact construc-
tion with ruler and compass for dividing into three equal parts any angle ¢
whatever. (It is easy, of course, to give a construction for a series of special
values of ¢). 1 shall give you the train of thought for the proof of the im-
possibility of trisecting an angle in the sense just mentioned, and I shall ask
you to recall, in this connection, the proof of the impossibility of construct-
ing the regular heptagon with ruler and compass (see p. [56] et seq.). Just as
at that time, we shall reduce the problem to that of the solution of an irre-
ducible cubic equation, and we shall then show that this equation cannot be
solved by a series of square roots; except that, now, the equation will con-
tain a parameter (the angle ¢), whereas, before, the coefficients were integers.
Accordingly, function-theoretic irreducibility must replace number-theoretic irre-
ducibility.

Figure 42

In order to set up the equation of the problem let us think of the angle ¢ as laid
off from the positive real half-axis in the w-plane (see Fig. 42). Then its free arm
will cut the unit circle in the point

w=e¢e'"Y =cosp+ising.

Our problem consists in finding, independently of special values of the parameter ¢,
a construction, involving a finite number of applications of the ruler and compass,
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which shall give the point of intersection with the unit circle of the arm of the
angle ¢/3, i.e., the point

ip
zZ = 3

o

e ..9
=CcOos— +1Ismn—.
3 3
This value of z satisfies the equation:
3) 23 =cosg +ising,

and the analytic equivalent of our geometric problem consists in solving this equa-
tion (see p. [56]) by means of a finite number of square roots, one over another, of
rational functions of sin ¢ and cos ¢, since these quantities are the coordinates of
the point w with which we start the construction.

We must show, first, that the equation (3) is irreducible in the function-theoretic
sense. To be sure, this equation does not have just the form we assumed while
explaining the notion, since, instead of the a complex parameter w that enters ra-
tionally, we have now two functions cos and sin of a real parameter ¢, both of [124]
which appear rationally. As a natural extension here of our notion, we shall call
the polynomial z3 — (cos ¢ + i sing) reducible if it can be split into polynomi-
als whose coefficients are likewise rational functions of cos ¢ and sin ¢; and we
can, as before, assign a criterion for this. If we let ¢ assume all real values in (3),
w = e'¥ = cos ¢ + i sin ¢ will describe the unit circle of the w-plane, to which the
equation of the w-sphere corresponds by stereographic projection. The curve which
lies over this, on the Riemann surface of the equation z3 = w, and which describes,
in one stroke, all three sheets, is mapped by equation (3) uniquely upon the unit
circle of the z-sphere. Hence it can be regarded, in a sense as its “one dimensional
Riemann image”. In the same way, we can obviously assign such a Riemann im-
age to every equation of the form f(z,cos ¢, sin @) = 0 by taking as many copies
of the unit circle with arc length ¢ as the equation has roots, and stapling them
together according to the connectivity of the roots. It follows, just as before, that
the equation (3) can be reducible only when its one-dimensional Riemann image
breaks down into separate parts, and this is obviously not the case. This proves the
function-theoretic irreducibility of our equation (3).

Now, however, the former proof of the theorem, that a cubic equation with ratio-
nal numerical coefficients is reducible if it can be solved by a series of square roots,
can be applied literally to the present case of the function-theoretically irreducible
equation (3) (see p. [57] et seq.). We need only to replace “rational numbers” there
by “rational functions of cos ¢ and sin ¢”. This proves our assertion that the trisec-
tion of an arbitrary angle cannot be accomplished by a finite number of applications
of ruler and compass. Hence the endeavours of angle-trisection zealots must always
be fruitless!

I pass on now to the treatment of a somewhat more complicated example.
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2. The Dihedral Equation

The equation

1 S P
(1) w—z(z Z—n).

is called the dihedral equation, for reasons that will appear later. Clearing of frac-
tions, we see that its degree is 2. Introducing homogeneous variables we get

wy 212" + z%"

n n’
Wy 2z7 - z3

in which, in fact, forms of dimension 2n appear in numerator and denominator. The
functional determinant of these forms is

2nz3"7t, 2nz3n!

2n—1

=4n22n—12n—1 ZZn_ZZn .
2nzin 1z, 2nzizy! IEACEED)

It has an (n — 1)-fold zero at z; = 0 and at z, = 0; the other 2n zeros are given by

z
Z"—z23" =0 or (Z—;) ==*I

If in addition to the n-th root of unity
E=en

which we have already used, we introduce also the primitive 7-th root of —1:

21
—=¢ and —=¢-¢", (v=0,1,...,n—1).
22 %)

Since the values of z = z;/z, corresponding to them all have the absolute value
one, they all lie therefore on the equator of the z-sphere (corresponding to the unit
circle of the z-plane), at equal angular distances of w/n. We have therefore as
critical points on the z-sphere:

(a) the south pole z = 0 and the north pole z = o0, each of multiplicity n = 1;

(b) the 2n equatorial points z = &, &' - €', each of multiplicity one.

The sum of all the multiplicities is 2+ (n — 1) +2n - 1 = 4n — 2, as is demanded
by the general theorem on p. [117] for the degree 2n. By virtue of equation (1)
there will correspond to the remarkable points z = 0, z = oo of the z-sphere, the
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position w = oo on the w-sphere. Moreover, to all the points z = &, corresponds
the position w = +1; and, to all the points z = & - ¢” the position w = —1. There
are, accordingly, only three branch points oo, +1,—1 on the w-sphere. These will
lie as follows:

w =00 two branch points of multiplicity n — 1,

w = +1 n branch points of multiplicity 1,

w = —1 n branch points of multiplicity 1.

The 2n sheets of the Riemann surface group themselves therefore over the point
w = o0 in two separate series, each of n cyclically connected sheets; over w = +1
and w = —1 in n series, each of two sheets. The disposition of the sheets will
become clear when we study the corresponding subdivision of the z-sphere into
half-regions.

To this end it will be well, as we remarked above, to know the linear substitutions
which transform equation (1) into itself. As in the case of the pure equation, it is
unchanged by the n substitutions

2im

(2a) Z=¢"-zv=0,1,...,n—1), where e=¢e7n,

since for these z” = z". Likewise, however, it is unchanged by the n additional
substitutions

v
(2b) d=Sw=0,1,....n-1),
VA

since these only change z” into 1/z".

We have therefore 27 linear substitutions of equation (1) into itself, exactly as
many as its degree indicates. Thus, if we know for a given value wy of w one
root z, of the equation, we know immediately 2n roots &" - zg and €"/zp (v =
0,1,2,...,n — 1), in general all different, for which w has the same value wy,
i.e., we know all the roots of the equation when we have obtained the n-th root of
unity e.

Let us now proceed to examine the subdivision of the z-sphere corresponding to
cuts along the real meridian of the Riemann surface over the w-sphere. In this, as in
the previous example, we distinguish on the real meridian of the w-sphere the three
segments made by the branch points: that from +1 to oo (drawn full), that from oo
to —1 (short dotted), and that from —1 to +1 (long dotted) (see Fig. 43). To each
of these three segments there correspond on the z-sphere 2n different curvilinear
segments which can be derived from any one of them by means of the 2n linear
substitutions (2). It will always suffice, therefore, to find one of them. Moreover
all these segments must connect the critical points z = 0, oo, €”, & - ", which
we therefore mark on the z-sphere. Just as in the previous case, their form is of
a somewhat different type according as » is even or odd. It will suffice if we exhibit
a definite case, say for n = 6. Fig. 43 shows the front half of the z-sphere in
orthogonal projection. One sees, on the equator, from left to right with distances of
60°, &3 = —1, &%, &, % = 1; and of those lying midway between the others, & - ",

are visible &’ - &3, &’ - &* = —i,and &’ - &°.

[126]
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Figure 43

Now we shall see that the quadrant +1 < z < o0 of the meridian of real z
corresponds to the part of the real w-meridian +1 < w < oo (full drawn). In
fact, if we put z = r and let r range through real values from 1 to oo, then w =
%(z” +1/z") = %(r” + 1/r") will vary also through real values that are always
increasing, from 1 to co. We obtain n other full drawn curves on the z-sphere, from
this one, by means of the n linear substitutions (2a). But, as we saw in the previous
example, these substitutions mean rotations of the sphere about the vertical axis
(0, 0o) through the angles 2 /n, 4 /n, ..., 2(n — 1) /n. We get in this way the n
quarter-meridians from the north pole oo to the points €' on the equator. We get an
additional full drawn curve if we apply the substitution z’ = 1/z, which transforms
the meridian quadrant from 41 to oo into the lower real meridian quadrant from 41
to 0. If we subject this quadrant to the n rotations (2a), the composition of which
with z’ = 1/z gives the n substitutions (2b), we obtain, in addition, the n meridian
quadrants which join the south pole with the equatorial points €”. We have now in
fact, as researched, the 2n full drawn curves which correspond to the full drawn w-
meridian quadrant. In particular, for n = 6, they make up the three entire meridians
into which the real meridian is transformed by rotations of 0°, 60°, 120°.

We can now also understand that the totality of the values z = ¢’ - r, where r
again ranges through real values from +1 to oo, corresponds to the dotted part of
the real w-meridian; for the equation (1) yields then:

1 men 1 1 n+1
w=—-\|&"r =——\r — ),
2 gnpn 2 r

and this expression actually always actually decreases from —1 to —oo, Butz = &’-r
represents the meridian quadrant from oo to the equatorial point £'. If we now
apply to it the substitutions (2a), (2b), we find, as before, that to the dotted part of
the real w-meridian there correspond all the meridian quadrants joining the poles
to the equatorial points €' - €', which thus bisect the angles between the meridian
quadrants which we obtained before. In particular, for n = 6, they make up the
three entire meridians into which the real meridian is transformed by rotations of
30°, 90°, 150°.
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There remain to be found the 2n curvilinear segments which correspond to the
long-dotted half-meridian —1 < w < +1. I shall prove that they are the segments
of the equator of the z-sphere determined by the points ¢” and €' - ¢”. In fact, the
equator represents the points of absolute value one and is given therefore by z = e'¢
where ¢ is real and ranges from O to 2y, Hence we have

1 1 1 . .
w= = (z” + —) =3 (e"¢ 4+ e™"?) = cosng.
Zn

This expression is always real, and its absolute value is not greater than 1. In fact,
it assumes once every value between +1 and —1 as ¢ varies from one multiple of
7 /n to the next one, i.e., when z traverses one of the segments of which we are
speaking.

The curves determined in this manner divide the z-sphere into 2 - 2n triangular
half-regions which are bounded by one curve of each of the three sorts, and each
half-region corresponds to a half-sheet of the Riemann surface. Several regions can
meet only at the critical points, and then in accordance with the table of multiplici-
ties (p. [116]), namely, 2n at the north pole, and at the south pole, and 2 - 2 at each
of the points " and €' - ¢”. In order to determine which of these regions are to be
shaded, we notice that when w traverses, in order, the full-drawn, the long-dotted,
and the short dotted parts of the real w-meridian, the rear half of the w-sphere lies
at its left. Since the mapping is conformal with preservation of angles, we should
shade those half-regions whose boundaries follow one another in this same sense,
and we should leave the others unshaded.

Figure 44

\\\\\\\\\\\\\\\\\\\\\\\:_.r._

Figure 45
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We have now obtained a complete geometric picture of the mutual dependence
between z and w which is set up by our equation. We might follow it out in greater
detail by examining more closely the conformal mapping of the single triangular
regions upon the w-hemisphere, but we shall forego this. I shall describe only, and
briefly, the case n = 6, to which I have already given special attention. The z-
sphere is then divided into twelve shaded and twelve unshaded triangles of which
six of each sort are visible in Fig. 44. Six of each sort meet at each pole, and two
of each sort at each of twelve equidistant points of the equator. Each triangle is
mapped conformally upon a w half-sheet of the same sort. Of the half-sheets of
the Riemann surface, six of each sort are connected at the branch point co, and two
of each sort at each of the branch points £1, corresponding to the grouping of the
half-regions on the z-sphere.

We may obtain a convenient picture of the division of the z-sphere, and one
which is especially valuable because of its analogy with pictures soon to come, as
follows. If we join the n equidistant points on the equator (e.g., all the &”) with
one another in order by straight lines, and also join each of them to the two poles,
one obtains a double pyramid, with 2n faces, inscribed in the sphere (in Fig. 44, six
faces). If we now project, from the centre, the subdivision of the z-sphere upon this
double pyramid, every pyramid face is divided into a shaded and an unshaded half
by the altitude of that face dropped from the pole. If we represent the division of
the z-sphere, and consequently our function, by means of this double pyramid, the
latter will render a service quite analogous to that which we shall get in the coming
examples from the regular polyhedra. We obtain a complete analogy if we think
of the double pyramid as collapsed into its base, and consider the double regular
n-gon (hexagon) which results whose two faces (upper and lower) are divided each
into 2n triangles by the straight lines which join the centre with the vertices and
the middle points of the sides (see Fig. 45). I have been in the habit of calling this
figure a dihedron and of classing it with the five regular polyhedra which have been
studied since Plato’s time. It fulfils, in fact, all the conditions by means of which
a regular polyhedron is usually defined, since its faces (the two faces of the n-gon)
are congruent regular polygons, and since it has congruent edges (the sides of the
n-gon) and congruent vertices (the vertices of the n-gon). The only difference is
that it does not bound a proper solid body but encloses the volume zero. Thus the
theorem of Plato, that there are only five regular solids, is correct only when one
includes in the definition the requirement of a proper solid, which is always tacitly
assumed in the proof

If we start with the dihedron, we obtain our subdivision of the z-sphere by pro-
Jecting upon that sphere not only its vertices but also the centres of its edges and
its faces, the projecting rays for the latter being perpendicular to the plane of the
dihedron. Thus the dihedron can also be looked upon as representing the functional
relation which our equation sets up between w and z. Hence the brief name which
we have already used, dihedral equation, is appropriate.

In addition, we shall now consider those equations which, as already indicated,
are closely related to the platonic regular solids.
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3. The Tetrahedral, the Octahedral, and the Icosahedral
Equations

We shall see that the last two could, with equal right, be called the cubic and the
dodecahedral equations, so that all five regular bodies will have been covered. We
shall follow here a route that is the reverse of the one we followed in the preced-
ing example. Starting from the regular body, we shall first deduce a division of the
sphere into regions, and we shall then set up the appropriate algebraic equation,
for which that figure is the proper geometric visualisation. 1 shall have to confine
myself frequently to suggestions, however, and I therefore refer you at once to my
book: Vorlesungen iiber das Ikosaeder und die Auflosung der Gleichungen vom fiin-
ften Grade’®, in which you will find a systematic presentation of the entire extensive
theory with its numerous relations to allied fields.

Moreover, I shall give a parallel treatment of all three cases and I shall begin by
deducing the subdivision of the sphere for the tetrahedron.

Face Triangle (actual size), Tetrahedron,

Figure 46

1. The tetrahedron (see Fig. 46). We divide each of the four equilateral face-
triangles of the tetrahedron, by means of the three altitudes into six partial triangles.
These are congruent in two groups of three each, while any two non-congruent ones
are symmetric. We obtain thus a division of the entire surface of the tetrahedron into
twenty-four triangles, which fall into two groups, each containing twelve congruent
triangles, while any triangle of one group is symmetric to every triangle of the
other group. We shall shade the triangles of one group. Among the vertices of these
twenty-four triangles we can distinguish three sorts, such that each triangle has one
vertex of each sort:

a) the four vertices of the initial tetrahedron, at each of which three shaded and
three unshaded triangles meet;

76 Leipzig 1884; referred to hereafter as “Ikosaeder”. Translation into English by G. C. Morrice:
Lectures on the Icosahedron by Klein. Revised Edition, 1911, Kegan Paul & Co.
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b) the four centres of gravity of the faces, which determine again another regular
tetrahedron (the co-tetrahedron); at each of these, three triangles of each kind meet;

¢) the six middle points of the edges, which determine a regular octahedron; at
each of these, two triangles of each kind meet.

If from the centre of gravity of the tetrahedron we project this subdivision into
triangles upon the circumscribed sphere, the latter will be subdivided into 2 - 12
triangles, which are bounded by arcs of great circles and are mutually congruent
or symmetric. About each vertex of the sort a), b), c), there will be respectively 6,
6, 4 equal angles, and since the sum of the angles about a point on a sphere is 27,
each of the spherical triangles will have an angle 1 /3 at a vertex of the sort a or b
and an angle 7 /2 at a vertex of the sort c.

It is a characteristic property of this division of the sphere that it, as well as the
tetrahedron itself, is transformed into itself by a number of rotations of the sphere
about its centre. This will be clear to you in detail if you examine a model of the
tetrahedron with its divisions, like the one in our collection. For the lecture, it will
suffice if I indicate the number of possible rotations (whereby the position of rest
is included as the identical rotation. If we select a definite vertex of the original
tetrahedron, we can, by means of a rotation, transform it into every vertex of the
tetrahedron (including itself), which gives four possibilities. If we keep this vertex
fixed in any one of these four positions, we can still achieve the tetrahedron to cover
itself, in three different ways, namely by rotating the line connecting the centre
with that vertex as axis through an angle of 0°, 120° or 240°. This gives altogether
4.3 = 12 rotations which transform the tetrahedron, or the corresponding triangular
division of the circumscribed sphere, into itself. By means of these rotations we
can transform a pre-assigned shaded (or unshaded) triangle into every other shaded
(or unshaded) triangle, and the particular rotation is determined when that latter
triangle is given. These twelve rotations form obviously what one calls a group G,
of twelve operations, i.e., if one performs two of them in succession, the result is
one of the twelve rotations.

If we think of this sphere as the z-sphere, each of these twelve rotations will be
represented by a linear transformations of z, and the twelve linear transformations
which arise in this manner will transform into itself the equation which corresponds
to the tetrahedron. For purposes of comparison, I remark that one can interpret the
2n linear substitutions of the dihedral equation as the totality of the rotations of the
dihedron into itself.

2. We shall now treat the octahedron similarly (see Fig. 47) and we may be some-
what briefer. We divide each of the eight faces, just as before, into six partial
triangles and obtain a division of the entire surface of the octahedron into twenty-
four congruent shaded triangles, and twenty-four unshaded triangles which are
congruent among themselves but symmetric to the other twenty-four. We can again
distinguish three sorts of vertices:

a) the six vertices of the octahedron, at each of which four triangles of each kind
meet;

b) the eight centres of gravity of the faces, which form the vertices of a cube; at
each of these, three triangles of each kind meet;
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¢) the twelve midpoints of the edges, at each of which are situated two triangles
of each kind.

Figure 47

If we pass now to the circumscribed sphere, by means of central projection,
we obtain a division into 2 - 24 spherical triangles, which are either congruent or
symmetric, and each of which has an angle 7 /4 at the vertex a, 7/3 at the vertex
b, and /2 at the vertex c. Since the vertices b form a cube, it is easy to see
that one would have obtained the same division on the sphere if one had started
with a cube and had projected its vertices, and the centres of its faces and edges,
upon the sphere. In other words, we do not need to give special attention to the
cube.

Just as in the previous case, it is easy to see that the octahedron, as well as this
division of the sphere, is transformed into itself by twenty-four rotations which form
a group Goy; again each rotation is determined in that it transforms a pre-assigned
shaded triangle into another definite shaded triangle.

3. We come finally to the icosahedron (see Fig. 48). Here, also, we start with
the same subdivision of each of the twenty-four triangular faces and obtain alto-
gether sixty shaded and sixty unshaded partial triangles. The three sorts of vertices
are:

a) the twelve vertices of the icosahedron, at each of which are situated five
triangles of each kind;

b) the twenty centres of gravity of the faces, which are the vertices of a regular
dodecahedron, at each of them are situated three triangles of each kind;

c) the thirty midpoints of the edges, at each of which two triangles of each sort
meet.

When this is carried over to the sphere each spherical triangle has at the vertices
a, b, c the angles /5, /3, /2, respectively. From the property of the vertices b
one can conclude, as before, that the same division of the sphere would have re-
sulted if one had considered the dodecahedron.

Finally, the icosahedron, as well as the corresponding division of the sphere,
is transformed into itself by a group Ggy of sixty rotations of the sphere about its
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centre. These rotations, as well as those for the octahedron, will become clear to
you upon examination of a model.

Figure 48

Let me make a list of the angles of the spherical triangles, which have appeared
in the three cases, which we have considered, to which I shall add the dihedron also
(n > 3); they are

Dihedron:  7/2,7/n, /2,
Tetrahedron: 7 /3, /3, w/2;
Octahedron: /4, 7/3, 7/2;
Icosahedron: 7 /5, /3, /2

As a variation of a joke of Kummer’s I might suggest that the natural scientist
would at once conclude from this, that there were additional subdivisions of the
sphere, having analogous properties, and with angles such as /6, 7/3, 7 /2; /7,
/3, /2. The mathematician, to be sure, does not risk making such inferences by
analogy, and his cautiousness justifies itself here, for the series of possible spherical
subdivisions of this sort ends, in fact, with our list. Of course this is connected with
the fact that there are no more regular polyhedra. We can see its ultimate reason in
a property of whole numbers, which does not admit a reduction to simpler reasons.
It appears, namely, that the angles of each of our triangles must be aliquot parts of
7, say w/m, 7w/n, /r, such that the denominators satisfy the inequality

I/m+1/n+1/r > 1.

This inequality has the property of existing only for the integer solutions given
above. Moreover, we can understand it readily, since it only expresses the fact that
the sum of the angles of a spherical triangle exceeds 7.
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I should like to mention that, as some of you doubtless know, an appropriate
generalisation of the theory does carry one beyond these apparently too narrow
bounds: The theory of automorphic functions involves subdividing the sphere into
infinitely many triangles whose angle sum is less than or equal to 7.

4. Continuation: Setting up the Normal Equation

We come now to the second part of our problem, fo set up that equation of the form

wo @
¥ (2),

which belongs to a definite one of our three spherical subdivisions, that is, which
maps the two hemispheres of the w-sphere upon the 2 - 12, or the 2 - 24, or the 2 - 60
partial triangles of the z-sphere. To each value of w there must correspond then, in
general, 12, 24, 60 values, respectively, of z, each one in a partial triangle of the
right kind. Hence the desired equation must have the degree 12, 24, 60 in the three
cases respectively, for which we shall write N in general. Now each partial region
touches three critical points; hence there must be, in every case, three branch points
on the w-sphere. We assign these, as is customary, to w = 0, 1, co; and we choose
again the meridian of real numbers as the section curve € through these three points,
whose three segments shall correspond to the boundaries of the z triangles.

(1) 9(z) —wy(z) =0, or

w-Sphere:

Figure 49

We shall assume moreover (see Fig. 49) that in each of the three cases the centres
of gravity of the faces (vertices b in the former notation) correspond, to the point
w = 0, the midpoint of the edges (vertices ¢) to the point w = 1, and the vertices
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of the polyhedron (vertices a) to the point w = oo. The sides of the triangles will
then correspond to the three segments of the w-meridian in the manner indicated by
the mapping, and the shaded triangles will correspond to the rear w-hemisphere, the
unshaded to the front w-hemisphere. By virtue of these correspondences, the equa-
tion (1) is to effect a unique mapping of the z-sphere upon an N-sheeted Riemann
surface over the w-sphere with branch points at 0, 1, co.

We might deduce, a priori, a proof for the existence of this equation by means
of general function-theoretic theorems. However, I prefer not to presuppose the
knowledge which this method would require, but to construct the various equations
empirically. This method will give us perhaps a more vivid perception of the indi-
vidual cases.

Let us think of equation (1) written in homogeneous variables

wi _ Dy (21, 22)
w, Wy (z1,22)°

where @y, Wy are homogeneous polynomials of dimension N in zj,z,(N =
12,24, or 60). In this form of the equation, the points w; = 0,w, = 0 (i.e.,
w = 0, 00) on the w-sphere seem to be favoured more than the third branch point
w = 1 (in homogeneous form, w; — w, = 0). Since, however, the three branch
points are, for our purpose, of equal importance, it is expedient to consider also the
following form of the equation:

w—wy Xy (z1,22)

wy Wy (z1,20)]

where Xy = &y — ¥y denotes also a form of dimension N. Both forms are em-
braced in the continued proportion

2 wy (W) —wp) twy = Py (21,22) 1 Xy (21, 22) 1 Wy (21, 22) .

This furnishes us with a completely homogeneous form of equation (1) which gives
the same consideration to all the three branch points.

Our problem now is fo set up the forms @y, Xy, ¥y . For this purpose, we shall
bring them into relation to our subdivision of the z-sphere. From equation (2) we
see that the form @y (zy, z;) = 0 for w; = 0, i.e., that w = 0 corresponds to the N
zeros of @y on the z-sphere. On the other hand, one sees directly from equation (2)
that the midpoints of the faces of the polyhedron (vertices b in the subdivision), of
which there are N/3 in every case, must, according to our assumptions, correspond
to the branch point w = 0. But every one of these centres must be a triple root
of our equation, since in each of them there meet three shaded and three unshaded
triangles of the z-sphere. Thus these points, each with multiplicity three, supply all
the positions which correspond to w = 0, and consequently all the zeros of Py .
Hence @y has only triple zeros and must, therefore, be the third power of a form
on(z1, z3) of degree N/3:

Dy = [ons3 (21722)]3-
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In the same way, it follows that the zeros of Xy = 0 correspond to the position
w = 1 (i.e., w; — w, = 0), and that these are identical with the N/2 midpoints,
each counted twice, of the edges of the polyhedron (vertices ¢ of our subdivision).
Consequently Xy must be the square of a form of dimension N/2:

Xy = [xnp2 (21722)]2-

Finally the zeros of ¥y are to correspond to the point w = oo, so that they must be
identical with the vertices of the polyhedron (vertices a of the subdivision); but at
these vertices 3, 4, or 5 triangles meet, in the several cases, so that we get

Uy = [Vnyw(z1,22)]", where v = 3,4 or 5.
Our equation (2) must then necessarily have the form
3) wi (wp —wy) twr = @(z1.22)° 1 x(21.22)° 1 Y (21, 22)",
where the degrees and powers of ¢, y, ¥, and the values of the degree N of the

equation are exhibited in the following table:

Tetrahedron: (pi, X%’ 1//5’; N =12.
Octahedron: (pg, X%zv wé;N = 24.
Icosahedron: (pgo, X%m 1//152; N = 60.

I shall now show briefly that the dihedral equation which we discussed, fits also
into the scheme (8). We need only to recall that in that case we chose —1, 41, co as
the branch points on the w-sphere instead of 0, 41, co which we selected later. We
shall, then, obtain actual analogy with (8) only if we throw the dihedral equation
into the form

(W +wy) (W —wp) tw, =@ : X : .

Now from the dihedral equation (p. [115]) which we used:
ﬂ _ len + Z%n
wy,  2-z0z0
we get by simple reduction
(w1 +w2) (W —w2) t wy
= (1" 4+ 23" + 22028« (27" + 23" — 220 25) « (22725)
n n 2 n n 2
=z +25) (z) —25) :2(ziz)" .
Thus we can, in fact, add to the above table:

Dihedron: go,%, Xﬁ, ¥y N =2n.

[137]
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The critical points together with their multiplicities which can at once be read off
from this form of the equation are in full agreement with those which we found
above (see p. [125]).

Figure 50

We come now to the actual setting up of the forms @, x, ¥ in the three new cases.
I shall give details here only for the octahedron, for which the relations turn out to
be the simplest. But even here I shall, at times, give only suggestions or results, in
order to remain within the confines of a brief survey. For those who desire more,
there is easily accessible the detailed exposition in my book on the icosahedron. For
the sake of simplicity we think of the octahedron as so inscribed in the z-sphere that
the six vertices fall on (see Fig. 50):

z=0,00,+1, +i,—1,—i.

It will then be a simple matter to give the twenty-four linear substitutions of z which
represent the rotations of the octahedron, i.e., which permute these six points. We
begin with the four rotations in which the vertices 0 and co remain fixed

(4a) 7 =ik z,
k =0,1,2,3).

Then we can interchange the points 0, co by means of the substitution z’ = 1/z (i.e.,
a rotation through 180° about the horizontal axis (41, —1) which transforms every
point of the octahedron into another one. If we now apply the four rotations (4a),
we get four new substitutions:
k
,
(4b) = —

VA
(k =0,1,2,3).

In the same way, we now throw in succession the four remaining vertices z =
1,7, —1, —i to co by means of the substitutions
, z+1 z+i z—-1 z-—i
Z - ki . b .
z—1 z—i z+1 z+4i
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which obviously permute the six vertices of the octahedron, and again apply, each
time, the four rotations (4a). Thus we get 4 - 4 = 16 additional substitutions for the
octahedron

+1 -1
Z/:ikz 1’ Z/:ikz+1,
z— z
(4¢) ) o (k=0,1,2,3)
, ,kz+l , Gk Z
z' =1 -, zZ' =1 -.
z—1 zZ 41

We have therefore found all the desired twenty-four substitutions, and we can easily [138]
confirm, by calculation, that they really permute the six vertices of the octahedron
and that they form a group G, i.e., that the successive application of any two of
them gives again one of the substitutions in (4).

I shall now construct the form ¢ which vanishes in each of the vertices of the
octahedron. The point z = 0 gives the factor z|, the point z = oo the factor zy;
the form zf — zg‘ has a simple zero at each of the points +1, + i, so that we obtain

finally
(5a) Ve =1z1-22 (2} — 23) -
It is more difficult to construct the forms ¢g and y;, which have as zeros the mid-

points of the faces and the midpoints of the edges. Without deducing them, I may
state that they are”’

5 @y =28+ 14z1z5 + 28
X2 = 22 —332823 — 332728 + )2

It goes without saying that there is an undetermined constant multiplier in each of

these three forms. If ¢g, ¥¢, 12 stand for the normal forms (5), we must insert, in
the octahedral equation (3), two undetermined constants ¢y, ¢, and we must write

. . 3. 2 . 4
wy (W) —wa) D Wy = @5 1 CIX L V-

The constants ¢ are now to be so determined that these two equations give actually
only one equation between z and w. This is possible when and only when

3 4_ 0
Y —CYg = C1xn

is an identity in z; and z,. Now this relation can be satisfied by definite constants
c1 and ¢;,. A brief calculation shows that the identity

¢i — 108y = xi

77 See Ikosaeder; p. [54].
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must hold, so that the octahedral equation (3) becomes:

. . _ 3.2 . 4
(6) wy (W —wp) twy = @5t Xy, - 108y

This equation surely maps the points 0, 1, co respectively upon the midpoints of
the faces, the midpoints of the edges, and the vertices of the octahedron, with, the
proper multiplicity, because the forms ¢, y, ¥, were so constructed. Furthermore,
the twenty-four octahedron substitutions (4) transform it into itself, for they trans-
form the zeros of each of the forms ¢, y, ¥ into themselves and at the same time
change each of the forms by a multiplicative factor. And calculation shows that
these factors cancel when the quotients are formed.

It only remains to show that equation (6) really maps each shaded or unshaded
triangle of the z-sphere conformally upon the rear or front w-hemisphere. We know
that the points 0, 1, co of the real w-meridian correspond to the three vertices of each
of the triangles; but the equation has, moreover, twenty-four roots z for each value
of w. Since these must distribute themselves among the twenty-four triangles, w can
take a given value but once, at most, within a triangle. If we could only show that
w remains real on the three sides of a triangle, we could then easily show that there
is a one-to-one mapping of each side upon a segment of the real w-meridian, and
also a similar mapping of the entire interior of the triangle upon the corresponding
hemisphere, one, which is conformal without reversal of angles. You will be able to
make these deductions yourselves by making use of the continuity and the analytic
character of the function w(z). I shall indicate the only noteworthy step of the proof,
that of showing the reality of w upon the sides of the triangle.

It is more convenient to prove this by showing that w is real upon all the great
circles that arise in the octahedral subdivision. These are, first, the three mutu-
ally perpendicular circles which pass each through four of the six vertices of the
octahedron (principal circles; full drawn in Fig. 50, p. [137] ) and, second, the six
circles, corresponding to the altitudes of the faces, which bisect the angles of the
principal circles (auxiliary circles; long dotted in Fig. 50). By means of the octahe-
dron substitutions, one can transform every principal circle into any other and every
auxiliary circle into any other. Hence it will suffice to show that the function w is
real at every point on one principal and one auxiliary circle, since it must take
the same values on the other circles. Now the meridian of real numbers z is one of
the principal circles. By (6), the values on this circle are

w98
wy 108y

which are, of course, real, since ¢ and ¥ are real polynomials in z; and z,. Of the
auxiliary circles let us prefer the one through 0 and oo which makes an angle of 45°
with the real meridian and on which z takes the values z = e - r, where r ranges
through real values from —oo to +o0. On this circle z* = ™ - r* = —r* s real.
Since by (5) only the fourth powers of z; and z; occur in @g and in the fourth power

of Y, the last formula shows that w is real.
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This concludes the proof: Equation (6), in fact, maps the w-hemisphere, or the
Riemann surface over it, conformally upon that triangular subdivision of the z-
sphere which corresponds to the octahedron, and conversely we have in this case,
as completely as in the earlier examples, a geometric control of the dependence
which this equation sets up between z and w.

The treatment of the tetrahedron and of the icosahedron proceeds according to
the same plan. I shall give only the results. As before, these results are those
obtained when the subdivision of the z-sphere has the simplest possible position.
The tetrahedral equation’® is

wy (W —wy) : wy = {zi4 — 2\/—_3sz§ + 23}3
: —12«/—_3{2122 (zi1 - zé‘)}2
: {Zf + Zx/—_32122§ + 23}3
and the icosahedral equation™ is
wy : (W) —wy) : ws
= (- (04 =) + 228 (272 — 21) — 04zl
D= {(zfo + zgo) + 522 (212523 - 215255) — 10005 (21202210 + 2110250)}2
1728 {z125 ({0 + 11z{z3 — zéo)}s,

i.e., these equations map the w-hemispheres conformally upon the shaded and the
unshaded triangles of that subdivision of the z-sphere, which belongs to the tetra-
hedron and to the icosahedron respectively.

5. Concerning the Solution of the Normal Equations

Let us now consider somewhat the common properties of the equations which we
have been discussing up to now as examples of a general theory developed in ad-
vance and which we shall call the normal equations. Here, too, I will restrict myself
to the simplest cases. For in-depth studies, I am referring to my lkosaeder book.
Note, first of all, that the extremely simple nature of all our normal equations is
due to the fact that they have exactly the same number of linear substitutions into
themselves as is indicated by the degree, i.e., that all their roots are linear functions
of a single one; and, further, that we have, in the divisions of the sphere, a very
obvious geometric picture of all the relations that come up for consideration. Just

8 See Ikosaeder; p. [51], [60].
7 Loc. cit., p. [56], [60].
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how simple many things appear which are ordinarily quite complicated with equa-
tions of such high degree will be evident if I raise a certain question in connection
with the icosahedral equation.
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Figure 51

Let a real value wy be given, say on the segment (1, co) of the real w-meridian
(see Fig. 51). Let us inquire about the sixty roots z of the icosahedral equation
when w = wy. Our theory of the mapping tells us at once that one of them must lie
on a side of each of the sixty triangles on the z-sphere, which arise in the case of
the icosahedron (drawn full in Fig. 49, p. [135]). This supplies what one calls, in
the theory of equations, the separation of the roots, usually a laborious task, which
must precede the numerical calculation of the roots. The task is, namely, that of
assigning separated intervals in each of which but one root lies. But we can also
tell at once how many of the roots are real. If we take into account, namely, that
the form of the icosahedral equation given above implies such a placing®® of the
icosahedron in the z-sphere that the real meridian contains four vertices of each of
the three sorts a, b, c, then it follows (see Fig. 48, p. [133], and Fig. 49, p. [135])
that four full-drawn triangle sides lie on the real meridian, so that there are just four
real roots. The same is true if w lies in one of the other two segments of the real
w-meridian, so that for every real w different from 0, 1, oo the icosahedral equation
has four real and fifty-six imaginary roots; for w = 0,1, oo there are also four
different real roots, but they are multiple roots.

I shall now say something about the actual numerical calculation of the roots
of our normal equations. We have here again the great advantage that we need to
calculate but one root, because the others follow by linear substitutions. Let me
remind you, however, that the numerical calculation of a root is actually a problem
of analysis, not of algebra, since it requires necessarily the application of infinite
processes when the root to which one is approximating is irrational, as is the case
in general.

I shall go into details only for the simplest example of all, the pure equation

w=2z.

Here I come again into immediate touch with school mathematics. For this equation,
i.e., the calculation of ¥/w, at least for the small values of n and for real values of

80 See Tkosaeder, p. [55].
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w = r, is treated there also. The method of calculating square and cube root, as
you learned it in school, depends, in essence, upon the following procedure. One
determines the position which the radicand w = r has in the series of the squares
or cubes, respectively, of the natural numbers 1, 2, 3, ... Then, using the decimal
notation, one makes the same trial with the tenths of the interval concerned, then
with the hundredths, and so on. In this way one can, of course, approximate with
any desired degree of closeness.

Figure 52
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Figure 53

I should like to apply a more rational procedure, one in which we can admit [142]

not only arbitrary integer values of n but also arbitrary complex values of w. Since
we need to determine only one solution of the equation, we shall seek, in particu-
lar, that value z = {/w, which lies within the angle 27/ n laid off on the axis of
real numbers. Generalising the elementary method mentioned above, we begin by
dividing this angular space into v equal parts (v = 5 in Fig. 52), and by drawing
circles intersecting the dividing rays by circles which have the origin as common
centre and whose radii are measured by the numbers r = 1,2,3,... In this way,
after choosing v, we find all the points

vz k [ k=0,1,2,...,v—1
Z =r-.-en v
r=1,2,3,..,

marked within the angular space, and we can at once mark in the w-plane the cor-
responding w-values

ik
w=z"=r"e’"v,
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These will be the corners of a corresponding network (see Fig. 53) covering the
entire w-plane and consisting of circles with radii 17, 2",3",... together with rays
inclined to the real axis at angles of 0, 27t /v, 47 /v, ..., (v —1)27/v. Let the given
value of w lie either within or on the contour of one of the meshes of this lattice,
and suppose that wy is the lattice corner nearest to it. We know a value z, of {/wqy
is a corner of the original lattice in the z-plane; hence the value we are seeking will
be

1
/ w—w w—wo\”"
Z:«”/w:\”/wo+(w—wo)=«/"w0"1+w—0=20(1+w—0) .
0 0

We expand the right side by the binomial theorem, which we may consider known,
inasmuch as we are now, in reality, in the domain of analysis

1 w—wy l—n fw—wy 2
Z =zpql +—- + + -
n Wy 2n? wo

We can decide at once as to the convergence of this series if we look upon it as
the Taylor’s expansion of the analytic function {/w and apply the theorem that
it converges within the circle which has w, as centre and which passes through
the nearest singular point. Since &/w has only 0 and oo as singular points, our
expansion will converge if, and only if, w lies within that circle about wy which
passes through the origin, and we can always bring this about by starting, in the
z-plane, with a similar lattice which may have smaller meshes, if necessary. But
in order that the convergence should be really good, i.e., in order that the series
should be adapted to numerical calculation, (W — wy)/wo must — additionally — be
sufficiently small. This can always be effected by a further reduction of the lattice.
This is really a very usable method for the actual calculation of numerical roots.

Now is it worthy of remark that the numerical solution of the remaining normal
equations of the regular solids is not essentially more difficult, but I shall omit the
proof. If we apply, namely, the same method to our normal equations, starting from
the mapping upon the w-sphere of two neighbouring triangles, there will appear, in
place of the binomial series, certain other series that are well known in analysis and
are well adapted to practical use, called the hypergeometric series. In the year 1877
I set up®! this series numerically.

6. Uniformisation of the Normal Irrationalities by Means of
Transcendental Functions

I shall now discuss another method of solving our normal equations which is char-
acterized by the systematic employment of transcendental functions. Instead of
proceeding, in each individual case, with series expansions in the neighbourhood

81 [Weitere Untersuchungen iiber das Ikosaeder, Mathematische Annalen, vol. 12, p. 515. See also
F. Klein, Gesammelte Mathematische Abhandlungen, vol. 2, p. 331 et seq.]
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of a known solution, we try to represent, once for all, the whole set of number pairs
(w, z) which satisfy the equation, as single-valued analytic functions of an auxiliary
variable: or, as we say, to uniformise the irrationalities defined by the equation. If
we can succeed by using only functions which can easily be tabulated, or of which
one already has, perhaps, numerical tables, one can obtain the numerical solution of
the equation without farther calculation. 1 am the more willing to discuss this con-
nection with transcendental functions because it sometimes plays a part in school
teaching, where it still often has a hazy, almost mysterious, aspect. The reason for
this is that one is still clinging to traditional imperfect conceptions, although the
modern theory of functions of a complex variable has provided perfect clarity.

I shall apply these general suggestions first to the pure equation. Even in schools,
one always uses logarithms in calculating the positive solution of z" = r, for real
positive values of r. We write the equation in the form z = ¢'°¢”/" where log r
stands for the positive principal value. The logarithmic tables supply first log r, and
then, conversely, z is the number that corresponds to k’%. Moreover, we ordinarily
use 10 as base instead of e. This solution can be extended immediately to complex
values. We satisfy the equation

" =w,

by putting x equal to the general complex logarithm, log w, after which we obtain
w and z actually as single-valued analytic functions of x:

w=¢e ,z=c¢

S=

In view of the many-valuedness of x = log w, which we shall study later in detail,
one obtains here for the same w precisely n values of z. We call x the uniformising
variable.

Since the tables contain only the real logarithms of real numbers, one is appar-
ently unable to use immediately the given solution numerically. But by the aid of
a simple property of logarithms, we can reduce the calculation to the use of trigono-
metric tables which are accessible to everybody. If we put

= i = 2 2 u i v
w=u-+1Iiv ‘\/u +v‘(im|+z|mi),

then the first factor, as a positive real number, has a real logarithm, the second, as
a number of absolute value 1, a pure imaginary logarithm i (i.e., the second factor
is equal to e’%), and we obtain ¢ from the equation

(@)

= cos ¢, = sing.

u v
Vu? +v? Vu? + 0?2
This gives x = logw = log \«/uz + v2| + i@, and the root of the equation is

therefore
1 /u2 2 1.
Z:ef_’ :e”lOg‘ u+v|'e;,(p,
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i.e., we have
1
(b) = Yudiv= et Vi (cosf +isin f) .
n n

Since ¢ is determined only to within multiples of 27, this formula supplies all
the n roots. With the aid of ordinary logarithmic and trigonometric tables, we can
now get first ¢ from (a) und then z from (b). We have obtained this “trigonometric
solution” from the logarithms of complex numbers in an entirely natural way. How-
ever, if we assume that these are not known and try to develop this trigonometric
solution, as is done in the schools, it must appear as something entirely foreign and
unintelligible.

The “Casus Irreducibilis” and the Trigonometric Solution
of the Cubic Equation

It is in particular one topic of school mathematics where it becomes necessary to
find roots of numbers that are not real. Thus, in school teaching, such roots must be
found in the so called Cardan’s solution of the cubic equation about which I should
like to interpolate here a few remarks. If this equation is given in the reduced form

(1) X'+ px—gq =0,

then the formula of Cardan states that its three roots x;, x,, x3 are contained in the
expression

3[q 9> P 3q 9>  p?
2 SRRy I YN Oy < S oy
@ x \/2+ 4+27+\/2 T

Since every cube root is three valued, this expression has, all told, nine values,
in general all different; among these, x|, x,, x3 are determined by the condition
that the product of the two cube roots employed each time is —%. If we replace
the coefficients p, ¢ in the well-known manner by their expressions as symmetric
functions of x1, x», X3, and if we note that the coefficient of x> vanishes, that is,
X1+ x3 + x3 =0, we get

7 n P - x2)* (2 = x3)° (o3 — 1)
4 27 108 '

that is, the radicand of the square root is, to within a negative factor, the dis-
criminant of the equation. This shows at once that it is negative when all three roots
are real, but positive when one root is real and the other two conjugate imaginary.
It is precisely in the apparently simplest case of the cubic equation, namely when
all the roots are real, that the formula of Cardan requires the extraction of the square
root of a negative number, and hence of the cube root of an imaginary number.
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This passage through the complex must have seemed something quite impossible
to the mediaeval algebraists at a time when one was still far removed from a theory
of complex numbers, 250 years before Gauf3 gave his interpretation of them in the
plane! One talked of the “Casus irreducibilis” of the cubic equation and said that
the Cardan formula failed here to give a reasonable usable solution. When it was
discovered later that it was possible, precisely in this case, to establish a simple
relation between the cubic equation and the trisection of an angle, and to get in this
way a real “trigonometric solution” in place of the defective Cardan formula, it was
believed that something new had been discovered which had no connection with
the old formula. Unfortunately this is the position taken occasionally even today in
elementary teaching!

In opposition to this view, I should like to insist here emphatically that this
trigonometric solution is nothing else than the application, in calculating the roots
of complex radicands, of the process which we have just discussed. It is obtained
therefore in a perfectly natural way in this case, where the cube root has a com-
plex radicand, if we transform the Cardan formula, for numerical calculation, in the
same convenient way that one pursues in school for the case of the real radicand. In
fact, let us suppose

¢ P
1 + 77 <0,
where p must be negative if ¢ is real. If we then write the first cube root in (2) in
the form

We note that its absolute value (as positive cube root of the value /—p3/27 of the
radicand) is equal to | ,/—p/3|; but since the product of this by the second cube root
is equal to — p/3, that second cube root must be the conjugate complex of this, and
the sum of the two, i.e., the solution of the cubic equation, is simply twice the real
part, that is,

3

xl,xz,x3:25R %—f‘l

Now let us apply the general procedure of p. [144]. We write the radicand of the
cube root, after separating out its absolute value, in the form

I

¢

27

Iz

q

2
|_r
27

+1i

[146]



[147]

[148]

146 II.  Equations in the Field of Complex Quantities

and determine an angle ¢ from the equations

q _ﬁ_li'
5 ) 4 27
cosg = osing = e
_r [_P~
' 27 ‘ 27

Then, since the positive cube root of \ V=pr3/ 27\ is |\/—p/3|, our cube root takes

the form

p o ..

3 (0053 —i—lsm3),

and hence, remembering that ¢ is determinate only to within multiples of 27, we

obtain

p ¢+ 2kn

Xp =2|4/—=|-cos ——

3 3

But this is the usual form of the trigonometric solution.

I should like to take this opportunity to make a remark about the expression
“casus irreducibilis”. “Irreducible” is used here in a sense entirely different from
the one in use today and which we shall often use in this lecture course. In the sense
here used it implies that the solution of the cubic equation cannot be reduced to the
cube roots of real numbers. This is not in the least the modern meaning of the word.
You see how the unfortunate use of words, together with the general fear of complex
numbers, has created at least the possibility for a good deal of misunderstanding in
just this field. I hope that my words may serve as a preventive, at least among you.

Let us now inquire briefly about uniformisation by means of transcendental func-
tions in the case of the remaining normal irrationalities. In the dihedral equation

(k =0,1,2).

"+ — =2w

ZVI
we put simply
w = coS ¢.
De Moivre’s formula shows that the equation is then satisfied by

% ..
Z =CO0S— +1S8In—.
n n

Since all values of ¢ + 2km and of 2k — ¢ give the same value w, this formula
gives, in fact, for every w, 2n values of z, which we can write

¢ + 2kn _nqo—|—2kn

z = cos —— £ isi k=0,1,2,....n—1)
n

In the case of the equations of the octahedron, tetrahedron, and icosahedron these
“elementary” transcendental functions do not suffice. However, we can obtain the
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corresponding solution by means of elliptic modular functions. Although one may
not consider this solution as belonging to elementary mathematics, I should, nev-
ertheless, like to give, at least, the formulas®? which relate to the icosahedron.
They are, namely, closely related to the solution of the general equation of degree
five by means of elliptic functions, to which allusion is always made in textbooks
and about which I give later some explanation. The icosahedral equation had the
form (see pp. [136], [140])
w = p0(2)?
Y12(2)>

Now we identify w with the absolute invariant J from the theory of elliptic functions
and think of J as a function of the period quotient w = w;/w; (in Jacobi’s notation
iK'/K),i.e., we set

83 (@1.@2)

A (o, w)’

where g, and A are certain transcendental forms of dimension —4 and —12, re-

spectively, in w; and w,, which play an important role. If we introduce the usual
abbreviation of Jacobi

w=J(w)=

q = eina) — 7 KT/
the roots z of the icosahedral equation will be given by the following quotients of ¢
functions
3 h (27w),q5)'

0 (rw.q°)

If we take into account that a) as a function of w, coming from the first equa-
tion, is infinitely many-valued, then this formula yields in fact all sixty roots of the
icosahedral equation for a given w.

z=—

7. Solvability in Terms of Radical Signs

There is one question in the theory of the normal equations which I have not yet
touched, namely, whether or not our normal equations yield algebraically anything
that is essentially new; and whether or not they can be resolved into one another
or, in particular, into a sequence of pure equations. In other words, is it possible to
build up the solution z of these equations in terms of w by means of a finite number
of radical signs, one above another?

So far as the equations of the dihedron, tetrahedron, and octahedron are con-
cerned, it is easy to show, by means of algebraic theory, that they can be reduced, in

82 See ,,Uber die Transformation der elliptischen Functionen und die Auflésung der Gleichungen
fiinften Grades*, Mathematische Annalen, vol. 14 (1878/79), p. 111 et seq., or Klein, Gesammelte
Abhandlungen, vol. 3, p. 13 et seq., also lkosaeder, p. 131.]
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fact, to pure equations. It will be sufficient if I give the details here for the dihedral
equation only:

If we set:

the equation goes over into
F—2wl+1=0.

It follows from this that

(=w+vw?-1,
and consequently
z = ”w:I:\/wz—l,

which is the desired solution by means of radical signs.

On the other hand, however, the icosahedral equation does not admit such a so-
Iution by means of radical signs, so that this equation defines an essentially new
algebraic function. I am going to give you a particularly intuitive proof of this,
which I have recently published (Mathematische Annalen, Vol. 61 [1905])% , and
which follows from consideration of the familiar function-theoretic construction of
the icosahedral function z(w). For this purpose I shall need the following lemma,
due to Abel, a proof of which you will find in every textbook of algebra: If the
solution of an algebraic equation can be expressed as a sequence of radical signs,
then every radical of the sequence can be expressed as a rational function of the n
roots of the given equation.

Let us now apply this lemma to the icosahedral equation. If we assume its root
z can be expressed as a sequence of radical signs of rational functions of the coeffi-
cients, i.e., of rational functions of w, then every radical in the sequence is a rational
function of the sixty roots:

R(Z], Z2y e, 260)-

(We shall show that this leads to a contradiction.) In the first place, we can replace
this expression by a rational function R(z) of z alone since all the roots can be de-
rived from any one of them by a linear substitution. Let us now convert this R(z)
into a function of w by writing for z the sixty-valued icosahedral function z(w),
and consider the result. Since every circuit in the w-plane, which returns z to its
initial value, must of necessity return R(z) also to its initial value, it follows that
+ R[z (w)] can have branch points only at the points w = 0, 1, co (where z (w) has
branch points), and the number of sheets of the Riemann surface for R[z (w)], which
are cyclically connected at each of these points must be a divisor of the correspond-
ing number belonging to z(w). We know that this number is 3,2, 5 at the three
points, respectively. Hence every rational function R(z) of an icosahedral root, and

83 Beweis fiir die Nichtauflosbarkeit der Tkosaedergleichung durch Wurzelzeichen®, pp. 369-371
[see also: Felix Klein: Gesammelte mathematische Abhandlungen, vol. II, p. 385].
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consequently every radical which appears in the assumed solution, considered as
function of w, can have branch points, if at all, only at w = 0, w = 1, w = oo.
If branching occurs, then there must be three sheets connected at w = 0, two at
w = 1, and five at w = oo, since 3, 2, 5 have no divisor other than 1.

We shall now see that this result leads to a contradiction. To this end let us exam-
ine the innermost radical, which appears in our hypothetically assumed expression
for z(w). Its radicand must be a rational function P(w). We can assume that the
index of the radical is a prime number p, since we could otherwise build it up out of
radicals with prime indices. Moreover P(w) cannot be the p-th power of a rational
function o(w) of w. for if it were, our radical would be superfluous, and we could
direct our attention to the next really essential radical.

Let us now see what kind of branching the function {/P(w) can have. For this
purpose it will be convenient to write it in the homogeneous form

g (wr, w)

) = o w)

where g and % are forms of the same dimension in the variables wi, w, (w =
w1 /w,). According to the fundamental theorem of algebra we can separate g and h
into linear factors and write

1%-mb.nv. ..

PO = F

where
a+p+y+-=d +p +y +--

since the numerator and the denominator are of the same degree. Not all the expo-
nents o, B, ...,a, B’ ... can be divisible by p, since P would then be a perfect p-th
power. On the other hand, « + B +---—a’—f'—. .. is equal to zero, and is therefore
divisible by p. Consequently at least two of these numbers are not divisible by p, and
not just one. It follows that the zeros of both the corresponding linear factors must

be branch points of {/P(w), at each of which p sheets are cyclically connected.
But herein lies the contradiction of the previous theorem, which, of course, must
be equally valid for {/P(w). For we enumerated at that time all possible branch
points, and we found among them no two at which the same number of sheets were
connected. Our assumption is therefore not tenable, and the icosahedral equation
cannot be solved by radical signs.

This proof depends essentially upon the fact that the numbers 3,2, 5 which are
characteristic for the icosahedron have no common divisor. When such a common
divisor appears, as in the case of the numbers 1,2, 4 of the octahedron, it is at
once possible to have rational functions R[z(w)] which exhibit the same kind of
branching at two points, e.g., one in which two sheets are connected at 1 and at
0o, and these can then be really represented as roots of a rational function P(w). It
is in this way that the solution by means of radical signs comes about in the case
of the octahedron and tetrahedron (with the numbers 3,2, 3), and of the dihedron
(2,2,n).
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I should like to show you here how slightly the language used in wide mathe-
matical circles keeps pace with knowledge. The word “root” is used today nearly
everywhere in two senses: once for the solution of any algebraic equation, and, sec-
ondly, in particular, for the solution of a pure equation. The latter use, of course,
dates from a time when only pure equations were studied. Today it is, if not ac-
tually harmful, at least rather inconvenient. Think only of the formulation that the
“roots” of an equation cannot be expressed by means of “radical signs”. But there
is another form of expression which has lingered on from the beginnings of alge-
bra and which is a more serious source of misunderstanding, namely, that algebraic
equations are said to be “not algebraically solvable”, if they cannot be solved in
terms of radical signs, i.e. if they cannot be reduced to pure equations. This use is
in immediate contradiction with the modern meaning of the word “algebraic”. To-
day we say that an equation can be solved algebraically when we can reduce it to
a chain of simplest algebraic equations in which one controls the dependence of the
solutions upon the parameters, the relation of the different roots to one another, etc.
as completely as one does in the case of the pure equation. It is not at all necessary
that these equations should be pure equations. In this sense we may say that the
icosahedral equation can be solved algebraically, for our discussion shows that we
can construct its theory in a manner that meets all the demands mentioned above.
The fact that this equation cannot be solved by radical signs rather lends it special
interest by suggesting it as an appropriate normal equation to which one might try
to reduce, (i.e., completely solve) still other equations which are in the old sense
algebraically unsolvable.

The last remark leads us to the last section of this chapter, in which we shall try
to get a general view of such reductions.

8. Reduction of General Equations to Normal Equations

It turns out, namely, that the following reductions are possible:

The most general equation of the third degree to the dihedral equation forn = 3;

The general equation of the fourth degree to the tetrahedral or to the octahedral
equation;

The general equation of the fifth degree to the icosahedral equation.

This result is the most recent triumph of the theory of the regular bodies, which
have always played such an important role since the beginning of mathematical
history, and which have a decisive influence in the most widely separated fields of
modern mathematics.

In order to show you the meaning of my general assertion I shall go somewhat
more into details for the equation of degree three, without, however, fully proving
the formulas. We again take the cubic equation in the reduced form

(1) X3+ px—q=0.
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Denoting solutions by x;, x,, x3, we try to set up a rational function z of them
which undergoes the six linear substitutions of the dihedron for n = 3 when we
interchange the x; in all six possible ways. The values that z should take on are

2

1 ¢ 2in
z,82,8z,—, —, wheree = e 3 ).
z z

SN

It is easily seen that

X1 4 &xy + €2x3
X1 + &2xy + ex3

)

satisfies these conditions. The dihedral function z3 + 1/z3 of this quantity must
remain unaltered by all the interchanges of the xj, since the six linear substitutions
of z leave it unchanged. Hence, by a well-known theorem of algebra, it must be
a rational function of the coefficients of (1). A calculation shows that
2
3) B4 % — 7L >
z p

Conversely, if we solve this dihedral equation, and if z is one of its roots, we can [153]
express the three values x|, x;, x3 rationally in terms of z, p, and g by means of (3)
and the well-known relations

X1+ X2+ x3 =0,x1X2 + XoX3 + X3X] = p, X1 X2X3 = (.

Doing this, we find

3g z(1+2)
Xp=——

p 1+z3

3g ez (1l +ez)

) 2= P 1+ 23

3g &z (1 +¢&%2)
X3 =—-—— —

p 1+ z3

Thus, as soon as the dihedral equation (3) has been solved, the formulas (4) give at
once the solution of the cubic (1).

In the same way we may reduce the general equations of the fourth and fifth
degrees. The equations would be, of course, somewhat longer, but not more difficult
in principle. The only new thing would be that the parameter w of the normal
equation, which was expressed above rationally in the coefficients of the equation

2
(2w — 7L 2)
P
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would now contain square roots. You will find this theory for the equation of degree
five given fully in the second part of my lectures on the icosahedron. Not only are
the formulas calculated, but also the essential reasons for the appearance of the
equations are explained.

Finally, let me say a word about the relation of this development to the usual
presentation of the theory of equations of the third, fourth, and fifth degree. In
the first place, we can obtain the usual solutions of the cubic and biquadratic from
our formulas by appropriate reductions, if we use the solutions of the equations of
the dihedron, octahedron, and tetrahedron in terms of radical signs. In the case of
equations of degree five, most of the textbooks confine themselves unfortunately to
the establishment of the negative result that the equation cannot be solved by radical
signs, to which is then added the vague hint that the solution is possible by elliptic
functions, to be exact one should say elliptic modular functions. I take exception
to this procedure because it exhibits a one-sided contrast and hinders rather than
promotes a real understanding of the situation. In view of the preceding survey,
distinguishing an algebraic and an analytic part, we may say:

1. The general equation of the fifth degree cannot be reduced, indeed, to pure
equations, but it is possible to reduce it to the icosahedral equation as the simplest
normal equation. This is the real problem of its algebraic solution.

2. The icosahedral equation, on the other hand, can be solved by elliptic modular

functions. For purposes of numerical calculation, this is the full analogue of the

solution of pure equations by means of logarithms.

This supplies the complete solution of the problem of the equation of fifth degree.
Remember that when the usual road does not lead to success, one should not be
content with this determination of impossibility, but should bestir oneself to find
a new and more promising route. Mathematical thought, as such, does never end. If
someone says to you that mathematical reasoning cannot be carried beyond a certain
point, you may be sure that the really interesting problem begins precisely there.

In conclusion, it might be remarked that these theories do not stop with equa-
tions of degree five. On the contrary, one can set up analogous developments for
equations of the sixth and higher degrees if one will only make use of the higher-
dimensional analogues of the regular bodies. If you are interested in this, you
might read my article® Uber die Auflésung der allgemeinen Gleichung fiinften und
sechsten Grades*. In connection with this article the problem was successfully at-
tacked by Paul Gordan® and Arthur Byron Coble®®. The investigation is somewhat

simplified in the latter memoir®’.

84 Journal fiir reine und angewandte Mathematik, vol. 129 (1905), p. 151; and Mathematische
Annalen, vol. 61 (1905), p. 50.

* Concerning the solution of the general equation of fifth and of sixth degree.

85 Mathematische Annalen, vol. 61 (1905), p. 50; and vol.68 (1910), p. 1.

86 Mathematische Annalen, vol. 70 (1911), p- 337.

87 See also F. Klein, Gesammelte Mathematische Abhandlungen, vol. 2, p. 502-503.



Third Part: Analysis [ss

During this second half of the semester we shall select certain chapters in analy-
sis which are important from our standpoint and we shall discuss them as we did
arithmetic and algebra. The most important thing for us to discuss will be the el-
ementary transcendental functions, i.e. logarithmic and exponential functions and
trigonometric functions, since they play an important part in school instruction. Let
us begin with the first.



I. Logarithmic and Exponential Functions

Let me recall briefly the familiar curriculum of the school, and the continuation of
it to the point at which the so called algebraic analysis begins.

1. Systematic Account of Algebraic Analysis

One starts with powers of the form a = b¢, where the exponent c is a positive
integer, and extends the notion step by step for negative integer values of c, then for
fractional values of ¢, and finally, if circumstances warrant it, to irrational values of
c. In this process the concept of root becomes subordinated to the general concept
of power. Without going into the details of involution, I will only recall the rule for

multiplication
be . bc’ — bc+c’

which reduces the multiplication of two numbers to the addition of exponents. The
possibility of this reduction, which, as you know, is fundamental for logarithmic
calculation, lies in the fact that the fundamental laws for multiplication and addi-
tion are so largely identical, that both operations, namely, are commutative as well
associative. The operation inverse to that of raising to a power yields the logarithm.
The quantity c is called the logarithm of a to the base b:

¢ =loga.
(b)

At this point a number of essential difficulties already appear which are usually
passed over without any attempt at explanation. For this reason I shall try to be
especially clear at this point. For the sake of convenience we shall write x and y
instead of @ and ¢, inasmuch as we wish to study the mutual dependence of these
two variables. Our fundamental equations then become

x=b", y=logx.
(b)

Let us first of all notice that b is always assumed to be positive. If b were negative,
x would be alternately positive and negative for integer values of y, and would even

© Springer-Verlag Berlin Heidelberg 2016 155
F. Klein, Elementary Mathematics from a Higher Standpoint,
DOI 10.1007/978-3-662-49442-4 9

[156]



[157]

156 I.  Logarithmic and Exponential Functions

include imaginary values for fractional values of y, so that the fotality of number
pairs (x, y) would not give a continuous curve. But even with b > 0 one cannot
get along without making stipulations that appear to be quite arbitrary. For if y is
rational, say y = m/n, where m and n are integers prime to each other, x = pmin
is, as you know, defined to be Vb and it has accordingly n values, of which, for
even values of n, we should have two to deal with even if we confined ourselves to
real numbers. It is customary to stipulate that x shall always be the positive root,
the so-called principal root.

Y )

Figure 54

If you will permit me to use, somewhat prematurely, the familiar graph of the
logarithm curve y = log x (Fig. 54), you will see that neither the above stipulation
nor its suitableness is by any means self-evident. If y traverses the dense set of
rational values, the corresponding points whose abscissas are the positive principal
values x = b” constitute a dense set on our curve. If, now, when the denominator
n of y is even, we should mark the points which correspond to negative values of
x, we have a set of points which would be, one might say, only half so dense, but
nevertheless still “everywhere dense” on the curve, which is the reflection in the y
axis of our curve [y = log(—x)]. If we now admit all real, including irrational,
values of y, it is certainly not immediately clear why the principal values which
we have been marking on the right now constitute a continuous curve and whether
or not the set of negative values which we have marked on the left do similarly
permit such a completion. We shall see later that this can be made clear only with
the profounder resources of function theory, an aid which is not at the command
of school teaching. For this reason, one does desist in the schools to strive for a
conceptual understanding. One adopts rather an authoritative convention, which is
quite convincing to the pupils, namely that one must take b > 0 and must select the
positive principal values of x, that everything else is prohibited. Then the theorem
follows, of course, that the logarithm is a single-valued function defined only for a
positive argument.

Once the theory is carried to this point, the logarithmic tables are put into the
hands of the pupil and he must learn to use them in practical calculation. There
may still be some schools — in my school days this was the rule — where little or
nothing is said as to how these tables are made. That was despicable utilitarianism
which is scornful of every higher principle of teaching, and which we must surely
and severely condemn. Today, however, the calculation of logarithms is probably
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discussed in the majority of cases, and in many schools indeed the theory of natural
logarithms and the expansion into series is taught for this purpose.

As for the first of these, the base of the system of natural logarithms is, as you
know, the number

n
e = lim (1 + l) =2,7182818....
n—o00 n
This definition of e is usually, in imitation of the French models, placed at the very
beginning in the great text books of analysis, and entirely unmotivated, whereby
the really valuable element is missed, the one which mediates the understanding,
namely, an explanation why precisely this remarkable limit is used as base and why
the resulting logarithms are called natural. Likewise the expansion into series
is often introduced with equal abruptness. There is a formal assumption of the
expansion

log(1 + x) =ag+ ajx + ax> +---,
the coefficients ag, aj, ..., are calculated by means of the known properties of
logarithms, and perhaps the convergence is shown for —1 < x < 1. But again there
is no explanation as fo why one would ever even suspect the possibility of a series
expansion in the case of a function of such arbitrary composition as is the logarithm
according to the school definition.

2. The Historical Development of the Theory

If we wish to find all the conceptual connections, whose absence we have noted, and
to ascertain the deeper reasons why those apparently arbitrary conventions must
lead to a reasonable result, in short, if we wish really to press forward to a full
understanding of the theory of logarithms, it will be best to follow the historical
development in its broad outlines. You will see that it by no means corresponds to
the school practice mentioned above, but rather that this practice is, so to speak,
a projection of that development from a most unfavourable standpoint.

We shall mention first a German mathematician of the sixteenth century, the
Swabian, Michael Stifel, whose Arithmetica Integra appeared in Niirnberg in 1544.
This was the time of the first beginnings of our present algebra, a year before the ap-
pearance, also in Niirnberg, of the book by Cardanus, which we have mentioned. I
can show you this book, as well as most of those which I shall mention later, thanks
to our unusually complete university library. You will find that it uses, for the first
time, operations with powers where the exponents are any rational numbers, and, in
particular, emphasizes the rule for multiplication. Indeed, Stifel gives, in a sense,
the very first logarithmic table (on p. [250]) which, to be sure, is quite rudimentary.
It contains only the integers from —3 to 6 as exponents of 2, along with the corre-
sponding powers é to 64. Stifel appears to have appreciated the significance of the
development of which we have here the beginning. He declares, namely, that one
might devote an entire book to these remarkable number relations.

[158]
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Neper and Biirgi

But in order to make logarithms really available for practical calculation Stifel
lacked still an important device, namely, decimal fractions; and it was only when
these became common property, after 1600, that the possibility arose of construct-
ing real logarithmic tables. The first tables were due to the Scotsman Napier (or
Neper), who lived 1550-1617. They appeared in 1614, in Edinburgh, under the title
Mirifici logarithmorum canonis descriptio, and the enthusiasm which they aroused
is evidenced by the verses with which different authors in its preface sang the virtues
of logarithms. However, Napier’s method for calculating logarithms was not pub-
lished until 1619, after his death, as Mirifici logarithmorum canonis constructio®s.

The Swiss, Jobst Biirgi (1552-1632), had calculated a table independently of
Napier, which did not appear, however, until 1620, in Prag, under the title Arith-
metische und geometrische Progresstabuln. We, in Gottingen, should have a pe-
culiar interest in Biirgi, as one of our countrymen, since he lived for a long time
in Kassel. In general, Kassel, particularly the old observatory there, has been of
importance for the development of arithmetic, astronomy, and of optics prior to the
discovery of infinitesimal calculus, just as Hannover became important later as the
home of Leibniz. Thus our immediate neighbourhood was historically significant
for our science long before this university was founded.

It is very instructive to follow the train of thought of Napier and Biirgi. Both start
from values of x = b” for integer values of y and seek an arrangement whereby the
numbers x shall be as close together as possible. Their object was to find for every
number x, as nearly as possible, a logarithm y. This is achieved today, in school, by
considering fractional values of y, as we saw before. But Napier and Biirgi, with
the intuition of genius, avoided the difficulties which thus present themselves by
grasping the thing by the smooth handle. They had, namely, the simple and happy
thought of choosing the base b close to one, when, in fact, the successive integer
powers of b are close to one another. Biirgi takes

b = 1,0001,
while Napier selects a value less than one, but still closer to it:
b =1-0,0000001 = 0,9999999.

The reason for this departure by Napier from the method of today is that he had
in mind from the first the application to trigonometric calculation, where one has
to do primarily with logarithms of proper fractions (sine and cosine) and these are
negative for b > 1 but positive for b < 1. But with both investigators the chief
thing was that they made use only of integer powers of this b and so avoided,
completely, the many-valuedness which embarrassed us above.

8 Lugduni 1620. There is a later edition in phototype. (Paris 1895)
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Let us now calculate, in the system of Biirgi, the powers for two neighbouring
exponents, y and y + 1:

x = (1,0001)”, x + Ax = (1,0001)”*".

By subtraction, then, we have

X
Ax = (1,0001)7(1,0001 — 1) = —
x = (1.0001)( )= 1o

or, writing Ay for the differences, 1, of the values of the exponent:

] Ay 10*
(12) Ax  x

We have thus obtained a difference equation for the Biirgi logarithms, one which
Biirgi himself used directly in the calculation of his tables. After he had determined
the x corresponding to a y he obtained the following x belonging to y + 1 by the
addition of x/10*. In the same way it follows that the logarithms of Napier satisfy
the difference equation

;
(1b) 4y = —li.
Ax by

In order to see the close relationship between the two systems, we need only
write for y on the one hand y/10%, on the other hand y/107, i.e., we need only [160]
displace the decimal point in the logarithm. If we denote the new numbers so ob-
tained simply by y, we shall have in each case a series of numbers, which satisfy
the difference equation

Ay_

(2) !
Ax X

and in which the values of y proceed by steps of 0,0001 in the one case and of
—0,0000001 in the other.

.

Figure 55

If, for the sake of convenience, we now make use of the graph of the continu-
ous exponential curve (we ought really to obtain it as the result of our discussion)



[161]

160 I.  Logarithmic and Exponential Functions

we shall have a tangible representation of the points which correspond to the num-
ber series of Napier and of Biirgi. These points will be the corners of a stairway
inscribed in one of the two exponential curves

©) x = (1,0001)"7% and x = (0,9999999)"° %0

respectively, where the risers have the constant value Ay = 0,0001 and Ay =
0,0000001 in the two systems, respectively (see Fig. 55).%

We can get another geometric interpretation in which we do not need to presup-
pose the exponential curve, which will rather point out the natural way to obtain
that curve, if w replace the difference equation (2) by a summation equation (that

is, so to speak, if we “integrate” it):

@) 1=y

During this summation £ increases discontinuously, from unity on, by such steps
that the corresponding An = A£/£ is always constant and equal to 10~ and —10~7
respectively, so that Af = £/10* and —£/107, in the two cases. With the last step
& attains the value x. One can easily give a geometric expression to this procedure.
For this purpose let us draw the hyperbola n = 1/ in an &-n-plane (see Fig. 56)
and, beginning at §¢ = 1, construct successively on the &-axis all the points that
are given by the law of progression A& = &/10* (confining ourselves to the Biirgi
formulation). The rectangle of altitude 1/& erected upon each of the intervals so
obtained will have the constant area A§ - 1/ = 1/10*. The Biirgi logarithm will
then be, according to (4), the 10*-fold sum of all these rectangles inscribed in the
hyperbola and lying between 1 and x. A similar result is obtained for the logarithm
of Napier.

Dol

%’/W/

Figure 56

89 [According to Klein, the determination of logarithms by Biirgi and by Neper are based on the
same procedure. As a matter of fact, this is not the case. Only in the first stage of his consid-
erations, Neper’s approach coincides with that of Biirgi. In order to calculate the logarithms in
a tolerably period of time with the accuracy aspired by Napier, new and much deeper thoughts
were necessary than those by Biirgi. See: I) Conrad Miiller: John Napier, Laird of Merchiston und
die Entdeckungsgeschichte seiner Logarithmen, Naturwissenschaften 1914, Heft 28 and 2) Lord
Moulton: The invention of logarithms, its genesis and growth (in the “Napier Memoria Volume”,
London 1915).]
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Proceeding from this last interpretation, one is led immediately to the natural
logarithm if, instead of the sum of the rectangles, one takes the area under the
hyperbola itself between the ordinates &€ = 1 and § = x (shaded in the figure). This
finds expression in the well-known formula

X

dé§
lognatx = | —.

§
1
This was, in fact, the historical way, and the decisive step was taken about 1650,
when analytic geometry had become the common possession of mathematicians
and when infinitesimal calculus originated with efforts to achieve the quadrature of
known curves.

If we desire to use this definition of the natural logarithm as our starting point,
we must, of course, convince ourselves that it possesses the fundamental property of
replacing the multiplication of numbers by the addition of logarithms; or, in modern
terms, we must show that the function

_[d
f(x)—1 ;

defined thus by means of the area under the hyperbola, has the simple addition
theorem

Sx1) + f(x2) = f(x1-x2).

In fact, if we vary x; and x;, then, according to the definition of an integral, the
increments of the two sides dx; /x| + dx,/x; and d (x| - x3)/(x; - x») are equal.
Consequently f(x;) + f(xz) and f(x; - xp) can differ only by a constant, and this
turns out to be zero when we put x; = 1 (since f(1) = 0).

If we wish to determine, eventually, the “base” of the logarithms obtained in
this way, we need only notice that one can realise the transition from the series
of rectangles to the area under the hyperbola by progressing on the x-axis not by
A = £/10* but by Af = £/n and allowing n to become infinite. This is the same
thing as replacing the Biirgi sequence x = (1,0001)'9%0 by x = (141/n)", where
n'y passes through all integer values. According to the general definition of a power,
this amounts to saying that x is the y-th power of (1 + 1/n)". Accordingly it seems
plausible to say that — after passing to the limit — the base becomes nli_)ngo 1+1/n)",

the very limit which is ordinarily assumed at the start as the definition of e. It is
interesting to note, moreover, that Biirgi’s base (1,0001)'°%%° = 2 718146 coincides
with e to three decimal places.””

%0 Extensive analyses of the basis of the logarithms with Biirgi and with Napier can be found in:
Otto Mautz, Zur Basisbestimmung der Napierschen und Biirgischen Logarithmen, Jahresbericht
des Gymnasiums, Basel 1919, and Otto Mautz, Zur Stellung des Dezimalkommas in der Biirgis-
chen Logarithmentafel, Basel 1921.]
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The 17th Century: The Area of the Hyperbola

Let us now examine the historical development of the theory of the logarithm after
Napier and Biirgi. First of all I have to mention:

1. Mercator, whom we have already met in these pages (see p. [88]), was one
of the first to make use of the definition of the logarithm by means of the area of
the hyperbola. In his book Logarithmotechnica of 1668, as well as in memoirs in
the Philosophical Transactions of the London Royal Society in 1667 and 1668, he
shows, by means of the same argument which I have just given you in modern terms,
that f(x) = |, lx d§ /& differs from the common logarithm with the base 10, which
was already the base used in calculations, only by a constant factor, the so called
modulus of the system of logarithms. Moreover he had already introduced®' the
name “natural logarithm” or “hyperbolic logarithm”. But the greatest achievement
of Mercator was the setting up of the power series for the logarithm, which he
obtained (essentially, at least) from the integral representation by dividing out and
integrating term by term. I mentioned this to you (p. [88]) as an epoch-making
advance in mathematics.

2. In that same connection, I told you also that Newton had taken up these ideas
of Mercator’s and had enriched them with two important results, namely, the gen-
eral binomial theorem and the method for the reversion of series. This last was
established in a work of Newton’s youth De analyst per aequationes numero termi-
norum infinitas which appeared late in print but which from 1669 on was distributed
in manuscript form®2. In this®> Newton derives the exponential series
y ¥,

x=1+ﬁ+i+§+"'
for the first time by reverting Mercator’s series for y = log x. This yields, as the
number whose natural logarithm is y = 1:

1 1 1
€=1+ﬁ+5+§+“‘,
and it is now easy, with the aid of the functional equation for the logarithm, to derive
that, for every real rational y, x is one of the values of ¢”, and in fact the positive
value, in the sense of the customary definition of power. We shall go into this more
in detail later on. The function y = log natx thus turns out to be precisely what one
would call the logarithm of x to the base e, according to the ordinary definition, in
which e is defined by means of the series and not as nlglolo (14 1/n)".

3. Brook Taylor could follow a more convenient path in deriving the exponential
series, after he had devised the general series-expansion, which bears his name,

°1 Philosophical Transactions of the Royal Society of London, vol. 3 (1668), p. 761.
92 Igaac Newton: Opuscula, Tome 1, op. 1, Lausanne 1744. First published in 1711.
% Loc. cit., p. [20].
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which appeared in his work Methodus Incrementorum®* and of which we shall have
much to say later on. He could then use the relation

dlogx 1

dx x’

which is implied in the integral definition of the logarithm, infer from it the inverse
relation
de”
dy
and so write down at once the exponential series as a special case of his general
series.

We have already seen (p. [89]) how this productive period was followed by the
period of criticism, 1 should almost like to say the period of moral despair, in which
every effort was directed toward placing the new results upon a sound basis and in
separating out what was maybe false.

= ¢

Euler and Lagrange: Algebraic Analysis

Let us now see what attitude was taken toward the exponential function and the
logarithm in the books of Euler and Lagrange, which tended in this new direction.
We shall begin with Euler’s Introductio in analysin infinitorum®>. Let me, first
of all, praise the extraordinary and admirable analytic skill, which Euler shows in
all his developments, noting, however, at the same time, that he shows no trace of
the rigour which is demanded today.
At the head of his developments Euler places the binomial theorem

10=1),, 1(0-1)(1-2),,
k K4,
2 St T +

in which the exponent / is assumed to be an integer. Non-integer exponents are not
considered in the Introductio. This development is specialized for the expression

1\"
(1 + _) )
n

in which n y is integer. He then allows n to become infinite, applies this limit process
to each term of the series, thinks of e as defined by lim (1 4+ 1/n)", and so obtains
n—o0

I
U+kﬂ:1+Tk+

the exponential series

2 3
: Y Y

L i e
e—1+y+2!+3!+ .

94 L ondon, 1715.
%3 Lausanne, 1748, Caput VII, p. 85 et seq. Translation by Maser, Berlin 1885, p. 70. [See also vol.
VIII (1923) of Euler’s Opera Omnia, edited by Ferdinand Rudio, Adolf Krazer, and Paul Stéckel.]
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To be sure, Euler is not in the least concerned here as to whether or not the individual
steps in this process are rigorous, in the modern sense; in particular, whether the
sum of the limits of the separate terms of the series is really the limit of the sum of
the terms, or not. Now this derivation of the exponential has been, as you know, a
model for numerous textbooks on infinitesimal calculus, although, as time went on,
the different steps have been more and more elaborated and their legitimacy put to
the test of rigour. You will see how influential Euler’s work has been for the entire
course of these things if you recall that the use of the letter e for that important
number is due to him. “Ponamus autem brevitatis gratia pro numero hoc 2.71828. ..
constanter litteram e”, as he writes on p. 90.

I might add that Euler immediately follows this with an entirely analogous
derivation of the series for the sine and cosine. For this purpose he starts with the
expansion of sin ¢ in powers of sin (¢/n) and lets n converge towards co. This is
nothing else than a limit process applied to the binomial theorem, as is evident if
one obtains the power series in question from De Moivre’s formula:

n n n
cos<p+isin<p:<cos£+isin£) :<cos£) ~(1+itgg) .
n n n n

Let us now consider Lagrange’s Théorie des fonctions analytiques®®. Again it
is to be noted that questions of convergence are treated, at most, only incidentally.
I have already stated (p 83) that Lagrange considers only those functions that are
given by power series, and defines their derivatives formally by means of the derived
power series. Consequently the Taylor’s series

/’12
fx+h) = fx)+hf'(x)+ 2—!f”(X)+~‘

is for him simply the result of a formal reordering of the series for f(x + h) pro-
ceeding originally according to powers of x + h. Of course, if one wishes then to
apply this series to a given function, one ought really to show in advance that this
function is analytic, i.e., that it can be developed into a power series.

Lagrange begins with the investigation of the function f(x) = x", for rational
n, and determines f’(x) as the coefficient of / in the expansion of (x + /)", the first
two terms of which he thinks of as really calculated. Then, by the same law, he ob-
tains at once f”(x), f’(x), ..., and the binomial expansion of (x + h)" appears as
a special case of Taylor’s series for f(x + h). Moreover, let me note expressly that
Lagrange does not give special consideration to the case of irrational exponents, but
rather looks upon it as obviously settled when he has considered all rational values.
It is interesting to contemplate this fact, since it is upon the rigorous justification of
precisely this sort of transition that the greatest importance is laid today.

Lagrange uses these results in a similar treatment of the function f(x) = (1+b)*.
By recording the binomial series for (1 4+ »)**" he finds, namely, f’(x) as the

% Paris, 1797, Reprinted in Lagrange, (Euvres, vol. 4. Paris 1881. Compare especially chapter 3,
p- 34 et seq.
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coefficient of &, then determines f”(x), f"(x), ... according to the same law, and
forms, finally, the Taylor series for f(x+h) = (1+b)**". He is then in possession,
for h = 0, of the desired exponential series. [166]

The 19th Century: Functions of Complex Variables

I should like now to finish this brief historical sketch, in which I have, of course,
mentioned only names of the very first rank, by indicating what essentially new
turns came with the nineteenth century.

1. At the head of this list I should place the precise conceptual developments con-
cerning the convergence of infinite series and other infinite processes. Gaul} takes
precedence here with his Abhandlung iiber die hypergeometrische Reihe* in 1812
(Disquisitiones generales circa seriem infinitam 1 + [(a-b)/(1-c)]x +---)°7. After
him comes Niels Henrik Abel with his memoir on the binomial series in 1826 (Un-
tersuchungen iiber die Reihe 1+ (m/1)x +---°%), while Augustin-Louis Cauchy, in
the early twenties in his Cours d’Analyse®® undertook, for the first time, a general
discussion of the convergence of series. The result of these investigations, for the
series which we have under consideration, is that all the earlier developments are
sometimes correct, although the rigorous proofs are very complicated. For the de-
tailed consideration of such proofs, in modern form, I refer you again to Burkhardt’s
Algebraische Analysis or to Weber-Wellstein.

2. Although we shall have occasion to talk about it in detail later, I must mention
already here the final foundation by Cauchy of the infinitesimal calculus. By means
of it the theory of the logarithm, which we discussed above as taking its start at
the hands of Biirgi and Napier in the seventeenth century, was established with full
mathematical exactness.

3. Finally, we must mention the rise of that theory which is indispensable to a
complete understanding of the logarithmic and exponential functions, namely, the
theory of functions of a complex argument, often called, briefly, “function theory”.
Gauf} was the first, again, to have a complete view of the foundations of this theory,
even though he published little or nothing concerning it. In a letter to Friedrich
Wilhelm Bessel, dated December 18, 1811, but published much later'®, he sketches
and explains with admirable clearness the significance of the integral |, IZ d¢/¢ in
the complex plane, in so far as it is an infinitely many-valued function. The fame of [167]

* Memoir on the hypergeometric series.

97 Commentationes societatis regiae Gottingiensis recentiores, vol. 11 (1813), No. 1, pp. 1-46.
Werke, vol. 3, pp. 123-162. German translation by Max Simon, Berlin 1888.

9B Journal fiir reine und angewandte Mathematik, vol. 1 (1826), pp. 311-339 = Ostwalds Klas-
siker No. 71.

9 Premiére Partie, Analyse Algébrique. Paris 1821. = (Euvres, 2nd series, vol. 3, Paris, 1897.
German translation by Carl Itzigsohn. Berlin 1885.

100 Briefwechsel zwischen Gauf3 und Bessel, edited by Arthur Auwers. Berlin 1880; or GauB,
Werke, vol. 8 (1900), p. 90.



[168]

166 I. Logarithmic and Exponential Functions

having also created independently the complex function theory and of having made
it known to the mathematical world belongs, however, again to Cauchy.

The result of these developments implemented at the beginning of the nineteenth
century, insofar as it concerns our special subject, might be briefly stated as follows:
The introduction of the logarithm by means of the quadrature of the hyperbola is
the equal in rigour of any other method, whereas it surpasses all others, as we have
seen, in simplicity and clarity.

3. Remarks about Teaching in Schools

It is remarkable that this modern development has passed over the schools without
having, for the most part, the slightest effect on the teaching, an evil to which I have
often alluded. The teacher manages to get along still with the cumbersome alge-
braic analysis, in spite of its difficulties and imperfections, and avoids any smooth
infinitesimal calculus, although the eighteenth century shyness toward it has long
lost all point. The reason for this probably lies in the fact that mathematical teach-
ing in the schools and the advance of research lost all touch with each other after
the beginning of the nineteenth century. And this is the more strange since the spe-
cific training of future teachers of mathematics dates from the early decades of that
century. I called attention in the preface to this discontinuity, which was of long
standing, and which impeded every reform of the school tradition: In the schools,
namely, one cared little whether and how the approaches taught might be extended
within higher education and one was therefore satisfied often with definitions which
were perhaps sufficient for the present, but which failed to meet more far-reaching
demands. In a word, Euler remained the standard for the secondary schools. And
conversely, the university frequently takes little trouble to make connection with
what has been taught in the schools, but builds up its own system, sometimes dis-
missing this or that with brief consideration and with the sometimes inappropriate
remark: ““You had this at school”.

In view of this, it is interesting to note that those university teachers who give lec-
tures to wider circles, e.g. to students of natural science and engineers, have, of their
own accord, adopted a method of introducing the logarithm, which is quite similar
to the one which I am recommending. Let me mention here, in particular, Georg
Scheffers’ Lehrbuch der Mathematik fiir Studierende der Naturwissenschaften und
Technik*'°'. You will find there in chapters six and seven a very detailed theory of
the logarithm and the exponential function, which coincides entirely with our plan
and which is followed in chapter eight by a similar theory of the trigonometric func-
tions. I urge you to make the acquaintance of this book. It is very appropriate for
teachers, for whom it is designed, in that the material is presented fully, in readable
form, and adapted to the comprehension even of the less gifted. Note, too, the great
pedagogic skill of Scheffers when he (to cite one example) continually draws atten-

* Textbook of Mathematics for Students of Natural Science and Technology.
1011 eipzig, 1905;[Seventh edition 1932.]
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tion to the small number of formulas in the theory of logarithms that one needs to
know by heart, provided the subject is once understood; for one can then easily look
them up when they are needed. In this way he encourages the reader to persevere
in face of the great mass of new material. I call your attention also to the fact that
although Scheffers takes it for granted that the subject has been studied in school,
he nevertheless develops it here in detail, on the assumption that most of what was
learned in school has been forgotten. In spite of this, it does not occur to Scheffers
to make proposals for a reform of instruction in the schools, as I am doing.

Figure 57

I should like to outline briefly once more my plan for introducing the logarithm
into the schools in this simple and natural way. The first principle is that the proper
source from which to bring in new functions is the quadrature of known curves.
This corresponds, as I have shown, not only to the historical situation but also to the
procedure in the higher fields of mathematics, e.g., in elliptic functions. Following
this principle one would start with the hyperbola n = 1/& and define the logarithm
of x as the area under this curve between the ordinates ¢ = 1 and &€ = x (see
Fig. 57). If the final ordinate is allowed to vary, it is easy to see how the area
changes with £ and hence to draw approximately the curve = log&.

In order now to obtain the functional equation of the logarithm in the most simple
manner we can start with the relation

/ dg _ dg

which is obtained by applying the transformation c§ = &’ to the variable of inte-
gration. This means that the area between the ordinates 1 and x is the same as that
between the ordinates ¢ and ¢ x which are ¢ times as far from the origin. We can
make this clear geometrically by observing that the area remains the same when we
slide it along the &-axis under the curve provided we stretch the width in the same
ratio as we shrink the height. From this the addition theorem follows at once:

I/dE /ds /ds Y dé 1%

[169]
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I wish very much that someone would give this plan a practical test in the
schools. Just how it should be carried out in detail must, of course, be decided
by the experienced school man. In the Meran school curriculum we did not quite
venture to propose this as the standard method.

4. The Standpoint of Function Theory

Let us, finally, see how the modern theory of functions disposes of the logarithm.
We shall find that all the difficulties which we met in our earlier discussion will
be fully cleared away. From now on we shall use, instead of y and x, the complex
variables w = u +iv and z = x 4+ iy. Then

1. The logarithm is defined by means of the integral

w = Z ds
K 9
1
where the path of integration (Fig. 58) is any curve in the {-plane joining { = 1 to
{=z.

M

Figure 58

2. The integral has infinitely many values according as the path of integration
traverses around the origin 0, 1, 2, ... times, so that log z is an infinitely-many-
valued function. One definite value, the principal value [log z], is determined if we
slit the plane along the negative real axis and agree that the path of integration shall
not cross this cut. It still remains arbitrary, of course, whether we shall choose to
reach the negative real values from above or from below. According to the decision
on this point the logarithm has +mi or —mi for its imaginary part. The general
value of the logarithm is obtained from the principal value by the addition of an
arbitrary multiple of 2im:

2) logz = [logz] + 2kmi, (k =0,+£1,£2,...).

3. It follows from the integral definition of w = log z that the inverse function
z = f(w) satisfies the differential equation

i _

3) 0=
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From this we can at once write down the power series for f

w o w w
Z=f(w)=1+ﬁ+i+¥+'”.
Since this series converges for every finite w, we can infer that the inverse function
is a single-valued function which can be singular only for w = oo, i.e., that it is an
“integer” transcendental function.
4. The addition theorem for the logarithm is derived from the integral definition,
just as for real variables. From it we obtain for the inverse function the equation

4) S i) - f(w) = f (wr +w).
Similarly, it follows from (2) that
5) f(w+2kni)= f(w),(k=0,%1,%£2,...)

i.e.,, f(w) is a simply periodic function with the period 27i.
5. If we put f(1) = e, it follows from (3) that for every rational value m/n of w
the function f(w) will be one of the n values of +/e”, as this expression is usually

defined; that is "
f (—) = «”/em = 6%.
n

We shall adopt the customary notation, and denote this one value of f(w) by e¥ =
e, so that e" is a well-defined single-valued function, and indeed, the one given
by equation (3).

6. What sort of a function, then, shall we understand, in the most general sense,
by the power b™ with a non-zero, but otherwise arbitrary base b? We must adopt
such conventions, of course, that the formal rules for exponents remain valid. In
order then to reduce b" to the function e” , which we have just defined, let us put b
equal to e'°2”, where log b has the infinitely many values

logh = [logh] + 2kmi, (k =0,£1,+2,...)
It follow then necessarily that
pY — (elogb)w _ ew.logb — ew[logb] .eka'w’ (k =0,+1,42,.. ')’

and this expression represents, for the values of k different from each other, func-
tions different from each other and definitely unconnected. We have thus the re- [171]
markable result that the values of the general exponential expression b%, as these
are obtained by the processes of raising to a power and extracting a root, do not
belong at all to one coherent analytic function, but to infinitely many different func-
tions of w, each of which is by all means single-valued.
The values of these functions are, to be sure, related to each other in various
ways. In particular they are all equal when w is an integer; and there are only a
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finite number of different ones among them (namely, n) when w is a fraction m/n
in its lowest terms. These 7 values are ¢/Mlogbl. p2knitm/n) for o — 0.1, ..., n—1,
that is, the n values of Upm , as we should expect.

7. It is only now that we can appreciate the inappropriateness of the traditional
systematics which wants to ascend from involution and evolution to the single-
valued exponential function. It finds itself in an outright labyrinth in which it cannot
possibly find its way by so called “elementary” means, especially since it restricts
itself to real quantities. You will see this clearly if you will consider the situation
when b is negative, with the aid of the illuminating results which we have just
obtained. In this connection I merely remind you that we are only now in a position
to understand the suitableness of the definition of the principal value (b > 0 and
b™/" > 0; see p. [156]) which at the time seemed arbitrary. It yields the values of
one only of our infinitely many functions, namely those of the function

[bw] — ew[log b]'

On the other hand, if n is even, the negative real values of b™/" will constitute
a set which is everywhere dense, but they belong to an entirely different one of
our infinitely many functions, and cannot possibly combine to form a continuous
analytic curve.

I should now like to add a few remarks of a more profound kind concerning the
function-theoretic nature of the logarithm. Since w = log z suffers an increment of
2mi every time z makes a circuit about z = 0, the corresponding Riemann surface
of infinitely many sheets must have at z = 0 a branch point of infinitely high order
so that each circuit means a passage from one sheet into the next one. If one goes
over to the Riemann sphere it is easy to see that z = oo is a second branch point
of the same order and that there are no others. We can now make clear what one
calls the uniformising power of the logarithm of which we have already spoken in
connection with the solution of certain algebraic equations (see p. [143] et sq.). To

fix ideas let us consider a rational power, z”/". By reason of the relation

Z% — e% log z

this power will be a single-valued function of w = log z. This is expressed by saying
that it is uniformised by means of the logarithm. In order to understand this, let us
think of the Riemann surface of z”/” as well as that of the logarithm, both spread
over the z-plane. This will have n sheets and its branch points will alsobe at z = 0
and z = oo, at each of which all the n sheets will be cyclically connected. If we
now think of any closed path in the z-plane (see Fig. 59) along which the logarithm
returns to its initial value, which implies that its path on the infinitely many-sheeted
surface is also closed, it is easy to see that the image of this path will likewise be
closed when it is mapped upon the n-sheeted surface of z”/". We infer from this
geometric consideration that z"/" will always return to its initial value when log z
does, and hence that it is a single-valued function of log z. I am the more willing to
give this brief explanation because we have here the simplest case of the principle
of uniformisation, which plays such an important part in modern function theory.
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Figure 59

We shall now try to make clearer the nature of the functional relation w = log z
by considering the conformal mapping upon the w-plane of the z-plane and of the
Riemann surface spread upon it. In order not to be obliged to go back too far,
let us refrain from including the corresponding spheres within the scope of our
deliberations, in spite of the fact that it would be preferable to do so. As before,
we divide the z-plane along the axis of real numbers into a shaded (upper) and an
unshaded (lower) half-plane. Each of these must have infinitely many images in the
w-plane, since log z is infinitely many-valued, and all these images must lie simply
side by side with one another since the inverse function z = e is single-valued.
This means that the w-plane is divided into parallel stripes of width » separated
from one another by parallels to the real z-axis (see Fig. 60). These stripes are to
be alternately shaded and left blank (the first one above the real axis is shaded) and
they represent, accordingly, alternate conformal maps of the upper and lower z-half-
planes while the limiting parallels correspond to the parts of the real z-axis. As to
the correspondence in detail, I shall remark only that z always approaches 0 when
w, within a stripe, tends to the left toward infinity, that z becomes infinite when w [173]
approaches infinity to the right, and that the inverse function e has an essential
singularity at w = oo.

2-Plane:
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Figure 60

I must not omit here to draw attention to the connection between this represen-
tation and the theorem of Emile Picard, since that is one of the most interesting
theorems of the recent function theory. Let z(w) be an integer transcendental func-
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tion, that is, a function which has an essential singularity only at w = oo (e.g. e").
The question is whether there can be values z, and how many of them, which cannot
be taken at any finite value of w, but which are approached as a limit when w be-
comes infinite in an appropriate way. The theorem of Picard states that a function in
the neighbourhood of an essential singularity can omit at most two different values;
that an integer transcendental function, therefore, can omit, besides z = oo, (which
it of necessity omits), at most one other value. e is an example of a function which
really omits one other value besides co, namely z = 0. In each of the parallel
stripes of our division e" approaches each of these values but it assumes neither
of them for any finite value of w. The function sin w is an example of a function
which omits no value except z = co.

The Passage to the Limit from the Power to the Exponential
Function

I should like to conclude this discussion by bringing up again a point, which we have
repeatedly touched by applying to it these geometric aids. I refer to the passage to
the limit from the power to the exponential function, which is given by the formula

» ) 1 nw
eV =1m (1+ — .
n—o00 n

If we put n - w = v this takes the form

V—=>00

v
e’ = lim (1—1—2) .
v
Let us, before passing to the limit, consider the function
w v
fow) = (1+=) .

whose function-theoretic behaviour, as a power, is known to us. It has as critical
points w = —v and w = oo, where the base becomes 0 and oo respectively, and
it maps the f,-half-planes conformally upon sectors of the w-plane which have
w = —v as common vertex and an angular opening of 7 /v each (see Fig. 61). If
v is not an integer this series of sectors can cover the w-plane a finite or even an
infinite number of times, corresponding to the then occurring many-valuedness of
fv. If now v becomes infinite, the vertex, —v, of the sectors moves off without
limit to the left and it is clear that these sectors lying to the right of —v go over
into the parallel stripes of the w-plane, which belong to the limit function e™. This
explains geometrically that limit definition of ¢*. One can verify by calculation that
the width of the sectors at the point w = 0 goes over into the stripe width 7 of the
parallel division.
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Figure 61

But a doubt arises here. If v becomes infinite continuously, it passes through
not only integer but also rational and irrational values, for which the f, will be
many-valued and will correspond to many-sheeted surfaces. How can these go over
into the simple plane, which corresponds to the single-valued function e™? If, for
example, we allow v to approach infinity only through rational values having & for
a denominator, converging towards the infinite, each f,(w) will have an n-sheeted
Riemann surface. In order to study the limit process, let us, for a moment, consider
the w-sphere. It is covered for each f,(w) with n sheets which are connected at
the branch points —v and co. Let the branch cut lie along the minor meridian
segment joining these points, as shown in Fig. 62. If now v approaches co the
branch points coincide and the branch cut disappears. Thus the bridge is destroyed
that supplied the connection between the sheets, there emerge n separate sheets and,
corresponding to them, n single-valued functions, of which only one is our e”. If
we now allow v to vary through all real values, we shall have, in general, surfaces
with infinitely many sheets whose connection is broken in the limit. The values on
one sheet of each of these surfaces converge toward the single-valued function e®,
which is spread over the simple sphere, while the sequences of values on the other
sheets have, in general, no limit whatever. We thus have a complete explanation
of the surely quite complicated and wonderful passage to the limit from the many-
valued power to the single-valued exponential function.

w-Sphere :

oo

4

Figure 62

As a general moral of these last considerations we might say that a complete
conceptual understanding of such problems is possible only when they are taken
into the field of complex numbers. Is this, then, not a sufficient reason for teaching
complex function theory in the schools? Max Simon, for one, has in fact supported

[175]
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similar demands. I hardly believe, however, that the average pupils, even in the
Prima, can be carried so far, and I think, therefore, that we should abandon the
method of algebraic analysis in the schools which leads toward such considerations,
in favour of the simple and natural way, which we have developed above. I am, to
be sure, all the more desirous that the teacher shall be in full possession of all
the function-theoretic connections that come up here; for the teacher’s knowledge
should be far greater than that which he presents to his pupils. He must be familiar
with the cliffs and the whirlpools in order to guide his pupils safely past them.

After these detailed discussions we can now be briefer in the corresponding con-
sideration of the goniometric functions.



II. The Goniometric Functions

Let me say, before beginning, that the name goniometric functions seems prefer-
able to the customary name “trigonometric functions”, since trigonometry is but
a particular application of these functions, which are of the greatest importance
for mathematics as a whole. Their inverse functions are analogous to the logarithm,
while they themselves are analogous to the exponential function. We shall call these
inverse functions the cyclometric functions.

1. Theory of the Goniometric Functions

As a starting point for our theoretical considerations let me suggest the question as
to the most appropriate way of introducing the goniometric functions in the schools.
I think that here also it would be best to make use of our general principle of quadra-
ture of surfaces. The customary procedure, which begins with the measurement of
the circular arc, does not seem to me to be so very intuitive, and it lacks, above all,
the advantage of affording a simple and coherent control both of elementary and
advanced fields.

Again I shall make immediate use of analytic geometry.

1. Let us start with the unit circle

4yri=1

and consider the sector formed by the radii from O to the points A(x = 1,y = 0)
and P(x,y) (see Fig. 63). In order to be in agreement with the usual notation, I
shall denote the area of this sector by ¢ /2. (Then the arc in the customary notation
will be ¢.)

© Springer-Verlag Berlin Heidelberg 2016 175
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Figure 63

2. I shall define the goniometric functions sine and cosine of ¢ as the lengths of
the coordinates x and y of the limiting point P of the sector ¢/2:

X =cosg, y =sing.

The origin of this notation is not clear. The word “sinus” probably arose through
an erroneous translation of an Arabic word into Latin. Since we did not start from
the arc we cannot well designate the inverse functions, i.e., the double sector, as a
function of the coordinates, by using the customary terms arc sine and arc cosine,
but it is natural by analogy to call ¢/2 the “area” of the sine (or cosine) and to
write

¢ = 2 areasin y = arcsin y,

Y = 2 areacos X = arccos X.

The following notation, used in England and in America is also quite appropri-

ate:

p=cos 'x, @=sin"!y.

3. The further goniometric functions:
ing cos ¢

S
tang = , Cing = —
Ccos @ sin @

(in the older trigonometry also secant and cosecant) are defined as simple ratio-
nal combinations of the two fundamental functions. They are introduced only with
a view to brevity in practical calculation and have for us no theoretical signifi-
cance.

4. If we follow the coordinates of P with increasing ¢ we can at once obtain
qualitatively a representation of the cosine and sine curves in a rectangular coor-
dinate system. They are the well-known wave lines with a certain period 2w (see
Fig. 64), where the number \ is defined as the area of the entire unit circle, instead
of as usual, the length of the semi-circle.
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S

Figure 64

Exact Comparison with the Theory of Logarithms

Let us now compare once more our introduction of the logarithm and the expo-
nential function with these definitions. You will recall that our point of departure
was:

1. a rectangular hyperbola referred to its asymptotes as axes: [177]

E-n=1.

The semi-axis of this hyperbola is OA = +/2 (see Fig. 65), whereas before the
circle had the radius 1. Let us now consider the area of the stripe between the fixed
ordinate AA'(§ = 1) and the variable ordinate PP'. 1f this is called @, we may put
@ = log £, and the coordinates of P are expressed in terms of @ in the form
f=e® n=e?.

You notice a certain analogy with the preceding discussion, but that the analogy
fails in two respects. In the first place, @ is not a sector as it was before, and fur-
thermore the two coordinates are now expressed rationally in terms of one function
e?®, whereas, in the case of the circle, we had to introduce two functions, sine and
cosine, to secure rational expressions. We shall see however that this divergence
can be easily resolved.

Figure 65

2. Notice, in the first place, that the area of the triangle OP' P, namely %E -n = %
is independent of the position of P. In particular, then, it is the same as that of OA’A.
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Therefore, if we add the latter triangle to @ and then subtract the former triangle
from this sum, we see that @ can be defined as the area of a hyperbolic sector OAP
lying between a radius vector to the vertex A and one to a variable point P, just as in
the case of the circle. There is still a difference in sign. Before, the arc AP, looked
at from O, was counter clockwise, whereas now it is clockwise. We can remove this
difference by reflecting the hyperbola in OA, i.e., by interchanging £ and 7. We get
then as coordinates of P

Figure 66

3. Finally let us introduce the principal axes of the hyperbola in place of the
asymptotes as axes of reference, by turning Fig. 65 through 45° (after reflection
in OA; see Fig. 66). If we call the new coordinates (X, Y), the equations of this
transformation are

§+n =5+

=5 Y=

The equation of the hyperbola then becomes

X?-y*=2,

and the sector @ now has precisely the same position that sector ¢/2 had in the
circle. The new coordinates of P as functions of @ may be written in the form
@ — o _ -0
e’ te e’ —e
X=——F7—— Y=——-—.

V2 V2
4. Tt remains only to reduce the entire figure in the ratio 1: /2 in order to make
the semi-axis of the hyperbola 1 instead of the +/2, as it was in the case of the
circle. Then the sector in question has the area @ /2, in complete accord with the
preceding. If we call the new coordinates (x,y) again, they will be the following

functions of @

e® +e?
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which satisfy the relation
2oy =,

which is the equation of a hyperbola. These functions are called hyperbolic cosine
and sine and are written in the form.
@ — & _ -
X =cosh® = ﬁ, y =sinh® = ¢ ¢
2 2

The final result, then, is that if we treat the circle and the rectangular hyperbola,
each with semi-axis one, in literally the same way we obtain on the one hand the
ordinary goniometric functions, on the other the hyperbolic functions, so that these
functions correspond fully to one another.

You know that these functions cosh and sinh can be used to advantage in many
cases. Nevertheless we have really taken a step backward here, so far as the treat-
ment of the hyperbola is concerned. Whereas at first, the coordinates (£, 1) could
be rationally expressed in terms of a single function e®, it now requires two func-
tions, which are connected by an algebraic relation (the equation of the hyperbola).
It is natural, therefore to attempt a converse treatment for the goniometric functions,
analogous to the original developments for the hyperbola. This is, in fact, quite easy
if one does not object to the use of complex quantities, and it leads to the setting up
of a single fundamental function in terms of which cos ¢ and sin ¢ can be expressed
rationally, just as cosh® and sinh @ are in terms of e®, and which is therefore
entitled to play the chief role in the theory of the goniometric functions.

1. To this end we first introduce into the equation of the circle x* + y> = 1
(where x = cos ¢, y = sin ¢) the new coordinates

x—iy=§&x+iy=n,

which gives
E-n=1.
2. The desired central function is now the second coordinate 7, just as it was [179]

above (2.) in the case of the hyperbola. If we denote it by f(¢) we have, by virtue
of the equations of transformation:

1
n=f(p)=cosgp+ising, §=——=cosp—ising.
/()

3. From the last equations we get

E+n _ S @+ /@]

—£+n _ f@-1f @]
2 2 9 . - . 9

2i 2i

cosp = sing =
where we have complete analogy with the earlier relations between cosh @, sinh @,
and e®. If prominence is thus given, from the start, to the analogy between the
circular and the hyperbolic functions, the great discovery of Euler that f(¢) = €'
is divested of the surprising effect that usually attaches to it.
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The question now arises whether we cannot effect a similar reduction of cos w
and sinw to a single fundamental function, without leaving the real field. This is
indeed possible if we look at our figures in the light of projective geometry. In the
case of the hyperbola, in fact, we could define the coordinate 7, which supplied
the fundamental function, as parameter in a family of parallels n = constant. This
means, projectively, so far as the hyperbola is concerned, that we have a family of
rays with its vertex on the hyperbola (in particular, here, at one of the infinitely
distant points). If, now, in the case of either circle or hyperbola we think of the
parameter of any such family as a function of the area, we obtain likewise a funda-
mental function and one which involves only real quantities.

Its

Figure 67

Let us think now of the circle (Fig. 67) and the family through the point S(—1, 0)
y=Ax+1),

where A is the parameter. On a former occasion (p. [45]), we found as the coordi-
nates of the intersection P of the circle and the ray corresponding to A,

1—A2 . 2A
X = CcosSQp = , =sing = ,
¢ 1+ A2 Y ¢ 14+ A2
so that y
A=A =
(p) T

is, in fact, an appropriate real fundamental function. Moreover, since Z PSO =
%POA, and POA = g, it follows at once that A = tan(g/2). This univocal repre-
sentation of sin ¢ and cos ¢ in terms of tan(¢/2) which appears in this way is often
used in trigonometric calculations.

The connection between A and the earlier fundamental function f(¢) appears
from the last formula in the form

y _1 f=f" _1I fi-1 _1fp-1
x+1 if+f1'+2 ifr+142f if(e+1
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or conversely,

1—A24+2i0 140}
1+A2 1 —i)l’

f@)=x+iy=

The introduction of A amounts, then, simply to the determination of a linear frac-
tional function of f (@) which is real along the real periphery of the unit circle. In
this way the formulas turn out to be real but somewhat more complicated than by
the immediate use of f(¢).

Whether one is willing to give up the advantage of reality in the face of this dis-
advantage, depends, of course, upon how well the person concerned knows how to
deal with complex quantities. It is noteworthy, in this connection, that physicists
have long since gone over to the use of complex quantities, especially in optics, for
example, as soon as they have to do with equations of oscillation. Engineers, in
particular electrical engineers with their vector diagrams, have recently been using
complex quantities advantageously. We can say then that the use of complex quan-
tities is at last beginning to spread, even though at present the great majority still
prefer the restriction to real numbers.

Passing on to a brief survey of the farther development of the theory of the go-
niometric functions, let us next consider certain fundamental laws.

1. The addition theorem for sin ¢ is

sin (¢ + ) = sing cos ¥ + cos ¢ sin Y

and there is a corresponding formula for cos(¢ + ). These formulas appear to
be more difficult than those for the exponential function, due, of course, to the fact
that we are not dealing here with the true elementary function. This function, our
f(@) = cos @ + i sin ¢, satisfies the very simple relation

flo+¥v)=rf()- - f{@),

which is precisely the formula for e?.
2. It is easy now to obtain expressions for the functions of multiples of an angle
and of parts of an angle. Of these I shall mention only the two formulas

L@ 1 —cosg 0 1+ cosg
sin - = /| ————, co8 = =4/ ———
2 2 2 2

because they were of such importance in constructing the first trigonometric tables. [181]
An elegant expression for all these relations is given by De Moivre’s formula

fn-9)=1[f(]". where f(p)=cosg+ising.

De Moivre, who was a Frenchman, but who lived in London, and was in touch with
Newton, published this formula in 1730 in his book Miscellanea analytica.
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Figure 68

3. From our original definition of y = sin ¢, we can of course easily derive an
integral representation for the inverse ¢ = sin~!' y. The area in Fig. 68, consisting
of the sector ¢/2 (AOP) of the unit circle, together with the horizontally shaded
triangle OP’P, is bounded by the axes, a parallel to the x-axis at the distance y away,

and the curve x = /1 — y2. Its area is therefore foy /1 — y2dy. Since the triangle

has the area . |
EOP/'P/P = Ey\/l—yz
we have

y

1 1
[\/l—yzdyzzy\/l—y2+§<p.
0

From this it follows by a simple transformation that

y
. [ dz
p=sin"'y=| ———.

J V1 —z2

We could proceed now just as in the case of the logarithm, namely to expand the
integrand by the binomial theorem, and then to integrate term by term, following
Mercator. This would give us the power series for sin~! y, from which one can
obtain, by the method of series inversion, the sine series itself. This is the plan that
Newton himself employed, as we have seen (p. [88]).

4. 1 prefer, however, to take the shorter way, which Taylor’s great discovery
made possible. According to it one obtains first from the above integral formula the
derivative for the sine itself

dsing _ dy — JT=y7 = cosg.

do do

from which it follows analogously that

d cos ¢ .
= —sing.
do ¢
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Taylor’s theorem now gives

3 5

=Y _¢ ¥ _ . .
sm(p—l! 3!—1-5! + ,
2 4
1.
cosp=l-Srta—+

It is easy to see that these series converge for every finite ¢, including complex val- [182]
ues, and that sin ¢ and cos ¢ are therefore defined as univocal integer transcendental
functions in the entire complex plane.

5. If we compare these series with the series for e? we see that the fundamental
function f(¢) satisfies the relation

f(p) =cosp +ising =e'?.

This result is unambiguous because sin ¢ and cos ¢ as well as e? are univocal integer
functions.

2-Plane:

+7
w-Plane: (x = cosw)

Figure 69

6. It remains only to describe the shape of the complex functions sin w, and
cosw. We notice first that each of the inverse functions w = sin™'z and w =
cos™! z yields one Riemann surface with an infinite number of sheets and with
branch points at +1,—1,00. In fact, infinitely many branch points of the first
order lie over z = 41 and z = —I1, while two branch points of infinitely high
order lie over z = oo. In order to follow better the course of the sheets in detail
let us consider the division of the w-plane into regions which correspond to the
upper (shaded) and the lower (unshaded) z-half-planes. For z = cosw this divi-
sion is brought about by the real axis and by the parallels to the imaginary axis
through the points w = 0, 7, +2mn, ..., so that the resulting triangular regions
(see Fig. 69), all extending to infinity, should be alternately shaded and unshaded.
At the points w = 0, +2m, £4m, ... (corresponding to z = +1), and at the points
w = =+, +3m,... (corresponding to z = —1), four of the triangles meet. These
correspond to the four half-sheets of the Riemann surface, which are connected at
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each of the corresponding branch points lying above z = 1. If w becomes infinite
within any triangle, cos w approaches the value z = oo. The fact that there are two
separate sets of infinitely many triangles each, all extending to infinity, corresponds
to the situation that on the Riemann surface there are two separate sets of infinitely
many sheets connected at z = oo. For z = sin w the situation is analogous, except
that the representation in the w-plane is moved to the right by 7 /2. In these rep-
resentations we find confirmation of my earlier remarks (p. [173]) concerning the
nature of the essential singularity at w = oo in its relation to the theorem of Picard.

2. Trigonometric Tables

After this brief survey of the theory of goniometric functions, I wish to discuss
something that is of prime importance in practical work, namely trigonometric ta-
bles. At the same time I shall talk about logarithmic tables, which I have thus far
left in the background, for the reason that from the beginning up to the present
time the tabulation of logarithms has gone hand in hand with that of trigonometric
values. The way in which logarithmic tables have reached their present form is of
extraordinary importance and interest for the mathematician in the schools as well
as in the university. I cannot describe in detail here, of course, the long history of
the development of such tables, but I shall endeavour, by citing a few of the most
significant works, to give you a rough historical survey. Concerning other works,
some of them of equally great importance, which would round out the story, I refer
you to Johannes Tropfke or, so far as logarithmic tables are concerned, to the ex-
haustive account in Rudolf Mehmke’s Enzyclopdidie report on numerisches Rechnen
(Enzyklopidie, 1. F.), as well as to the French revision!?? of this report by Maurice
d’Ocagne.
I shall mention first the group of

A. Purely Trigonometric Tables

as they were developed before the invention of logarithms. Such tables existed in
ancient times, the first of which follows.

1. The table of chords, by Ptolemy, which he compiled for astronomical pur-
poses about 150 A.D. This is to be found in his work Megale Syntaxis, in which he
developed the astronomical system bearing his name, and of which we have here
a modern edition'?. This work has come to us, by way of the Arabs, under the
much used title Almagest, which is probably a combination of the Arabic article

102 Encyclopédie des Sciences Mathématiques, édition frangaise, I, 23. See also Florian Cajori,
History of Mathematics, 1919. Macmillan; and David Eugen Smith, History of Mathematics,
1925. Ginn.

103 Edited by Heiberg. 1898-1903. Leipzig.
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“al” with a mutilated form of the Greek title. The table is constructed with thirty-
minute intervals. It does not give directly the sine of the angle «, but the chord of
its arc (i.e. 2 sin/2). The values of the chords are given in three place sexagesimal
fractions, that is in the form a /60 4 /3600 4 ¢ /216000, where a, b, ¢ are integers
between 0 and 59. The difficult thing for us, however, is that these a, b, ¢ are writ-
ten, of course, in Greek number-symbols, that is in combinations of Greek letters.
The tables give also the values of the differences, which permit one to interpolate
for minutes. In the calculation of his table, Ptolemy used, above all, the addition
theorem for trigonometric functions, in the form of the theorem on the inscribed
quadrilateral (Ptolemy’s theorem). He used also the preceding formula for sin o/2
(i.e., the extraction of square root, in addition to the rational operations), and he
employed furthermore a process of interpolation.

2. We advance now more than 1000 years to the time when trigonometric tables
were first made in Europe. The first person who deserves mention is Regiomontanus
(1436-1476), whose name was really Johannes Miiller, but who changed it into the
latinised form of Konigsberg, his birthplace in Oberfranken. He calculated several
trigonometric tables, in which one sees distinctly the transition from the sexagesi-
mal to the pure decimal system. At that time no one thought of the trigonometric
lines as fractions corresponding to the radius one, as we do now. The values were
calculated for circles with very large radii, so that they appeared as integers. To be
sure, these large numbers were themselves written as decimals, but in the choice of
the radius one finds a persistent suggestion of the sexagesimal system. Thus, in the
first table of Regiomontanus the radius is taken as 6 000 000, and not until he makes
the second table does he choose a pure decimal 10 000 000 and establish complete
accord with the decimal system. By the simple insertion of a decimal comma,
the numbers of this table become decimal fractions of today. These tables of Re-
giomontanus were first published long after his death, in the work of his teacher
Georg Peurbach: Tractatus super propositiones Ptolemaei de sinubus et chordis'™.
Notice that this work, like so many other fundamental works in mathematics*, was
printed in Niirnberg in the forties of the sixteenth century. Regiomontanus himself
lived mostly in Niirnberg.

3. I place before you now a work of the greatest general significance: De revo-
lutionibus orbium coelestium'® by Nicolaus Copernicus, the book in which the
Copernican astronomical system is developed. Copernicus lived from 1473 to 1543
in Thorn, but this work appeared likewise in Niirnberg, two years after the publi-
cation of Regiomontanus’ tables. Inasmuch as Copernicus had no access to these
tables, he was obliged to compute for himself the little table of sines which you find
in his book and which was needed to work out his theory.

4. These tables by no means met the needs of the astronomers, so that we see a
pupil and friend of Copernicus attempting soon a much larger work. His name was
Georg Joachim Rhiticus, which again is a latinised form of the name of his birth-

104 Norimbergae, 1541.
* I have already mentioned Cardanus and Stifel and shall soon mention others.
105 Norimbergae, 1543.
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place (Vorarlberg). He lived from 1514 to 1576, and was professor at Wittenberg.
You must relate all these things to the general historical background of the time.
Thus we are in the age of the Reformation when, as you know, Wittenberg and the
free city Niirnberg were centres of intellectual life. Gradually, however, during the
struggles of the Reformation, the centre of gravity of the political and intellectual
life moved away from the cities and toward the courts of the princes. Thus while
everything heretofore had been printed in Niirnberg, the great tables of Rhiticus
now appeared under the patronage of the Elector Palatine and bore therefore his
name Opus Palatinum'®. They were printed shortly after the death of Rhiiticus.
They were much more complete than the preceding tables, containing the values of
the trigonometric lines to fen places at intervals of ten minutes, with, to be sure, a
good many errors.

5. A new edition of this table, very much improved, was published by Bartholo-
maéus Pitiscus of Griinberg in Silesia (1561-1613), chaplain of the Elector Palatine.
This Thesaurus Mathematicus'”’, again printed under princely subsidy, contained
the trigonometric numbers to fifteen places, at intervals of ten minutes. The work
was essentially freer from errors than that of Rhiticus, and was more compendious.

We must bear in mind that all these tables were constructed, in the main, with
the aid solely of the half-angle formula, together with interpolation, for at that time
the infinite series for sinx and cos x did not exist. We can appreciate, then, the
prodigious diligence and labour which is represented in these great works.

B. Logarithmic-Trigonometric Tables

These tables were succeeded immediately by the development of the second group,
the logarithmic-trigonometric tables, and it is a remarkable coincidence, the irony
of history, one might say, that a year after the tables of trigonometric lines had
attained, with Pitiscus, a certain completeness, the first logarithms appeared and
rendered these tables basically superfluous, in that from then on, instead of sine and
cosine, one used their logarithms. I have already mentioned the first logarithmic
tables, those of Napier.

1. Mirifici Logarithmorum Canonis Descriptio of John Napier, in 1614. Napier
had in mind, primarily, the facilitating of trigonometric calculation. Consequently
he did not give the logarithms of the natural numbers, but only the seven-place
logarithms of the trigonometric lines, at intervals of one minute.

2. The actual construction of logarithmic tables in their present form is due main-
ly to the Englishman Henry Briggs (1556—1630) who was in touch with Napier. He
recognized the great advantage that logarithms with base ten would have for prac-
tical calculation, since they would fit our decimal system better, and he introduced

106 Heidelbergae, 1596.
107 Erancofurtii, 1613.
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this base instead of that of Napier as early as 1617 in his Logarithmorum Chilias
Prima, giving us the “artificial” or common logarithms which bear his name. In
order to calculate these logarithms, Briggs devised a series of interesting methods
which permitted the determination of each logarithm as accurately as one chose.
Briggs’ second considerable book bore the title Arithmetica logarithmica'®. In it
he tabulates the logarithms of the natural numbers themselves instead of those of the
angle ratios, as Napier had done. To be sure, Briggs never finished his calculations.
He gave the logarithms of the integers only from 1 to 20 000 and 90 000 to 100 000,
but to fourteen places. It is remarkable that precisely the oldest tables give the
most places, whereas now we are content, for most purposes, with very few places.
I shall come back to this later. Briggs also compiled the common logarithms of
the trigonometric lines to ten places with ten minute intervals in his Trigonometria
Britannica'®.

3. The gap in Briggs’ table was filled by the Dutchman Adrian Vlacq, mathema-
tician, printer, and dealer in books, who lived in Gouda near Leyden. He issued a
second edition of Briggs’ book!!?, which contained the logarithms of all integers
from 1 to 100000 but only to ten places. We may consider this as the source of all
our current tables of logarithms of natural numbers.

Concerning the further development of tables, I can mention here only in a gen-
eral way the points in which advances were made in later years as compared with
the above mentioned early beginnings.

a) The first essential advance was in the theory. The logarithmic series furnished,
namely, an extremely useful new method for the calculation of logarithms. The
compilers of the first tables knew nothing about these series. As we have seen,
Napier calculated his logarithms by means of the difference equation, that is, by
successive addition of Ax/x, with the further aid of interpolation. The important
device of square root extraction appeared with Briggs. He made use of the fact,
which was mentioned moreover by Napier in his Constructio (see p. [158]), that
one knows log va - b = %(loga + log b) as soon as one knows the logarithms of a
and b. It is probable that Vlacq also calculated in this way.

b) Essential progress was made by a more suitable arrangement in printing the
tables, whereby it was made possible to combine more material, in a clearer way, in
a smaller space.

c¢) Above all, the correctness of the tables was considerably increased by a careful
check of the older ones, thereby eliminating numerous errors, especially in the last
figures.

Among the large number of tables which thus appeared, I shall mention only the
most famous one.

108 1 ondini, 1624.
109 Goudae, 1633.
110 Henri Briggs, Arithmetica Logarithmica. Editio secunda aucta per Adr. Vlacq, Goudae, 1628.
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4. This is the Thesaurus Logarithmorum Completus (Vollstindige Sammlung
grosserer logarithmisch-trigonometrischer Tafeln*), by the Austrian artillery officer
Georg Freiherr von Vega, which appeared in Leipzig in 1794. The original is rare,
but a photo-static reprint appeared in Florence in 1896. The Thesaurus contains
ten-digit logarithms of the natural numbers, and of the trigonometric lines, in an
arrangement that has since become typical. Thus you find there, e.g., the small
difference tables for facilitating interpolation.

If we come down now to the nineteenth century, we notice a far reaching pop-
ularization of logarithms, due partly to the fact that they were introduced into the
schools in the twenties, but also to the fact that they found more and more appli-
cation in physical and technical practice. At the same time we find a considerable
reduction in the number of places. For the needs of the schools, as well as those
of technical practice, were better met by tables which were not too bulky, espe-
cially since three or four places were sufficient for the requisite accuracy in nearly
all practical cases. To be sure, we still had, in my school days, seven-place tables,
the reason assigned being that the pupils would obtain in this way an impression
of the “majesty of numbers”. Our minds today are in general more utilitarian, and
we use throughout two, three, or at most five-place tables. 1 shall show you today
three modern tables, selected at random. One is a handy little four-place table by
Hermann Schubert''!. In it you will find all manner of devices, such as printing in
two colours, repetition above and below, on every page, of subtitles, and the like,
in order to exclude misunderstanding. The second is a modern American table by
Huntington''?, which is still more cunningly arranged, where, e.g., the sheets are
provided with projections and indentations to enable one to turn up at once the de-
sired page. Finally, I am showing you a slide-rule, which, as you know, is nothing
else than a three-place logarithmic table in the very convenient form of a mechan-
ical calculator. You are all familiar, certainly, with this instrument, which every
engineer nowadays has with him constantly.

We have not yet reached the end of the development, but we can see pretty clearly
what its further direction will be. Of late, the calculating machine, of which I talked
earlier (see p. [19] et seq.), has been coming into extensive use, and it makes log-
arithmic tables superfluous, since it permits a much more rapid and reliable direct
multiplication. At present, however, this machine is so expensive that only large
offices can afford it. When it has become considerably cheaper, a new phase of
numerical calculation will be inaugurated. So far as goniometry is concerned, the
old tables of Pitiscus, which became old fashioned so soon after birth, will then
come into their own; for they supply directly the trigonometric values with which
the calculating machine can operate at once, thus avoiding the detour via the loga-
rithms.

* Complete collection of larger logarithmic trigonometric tables.

1 Now Schubert-HauBner, Vierstellige Tafeln und Gegentafeln, Sammlung Goschen, Leipzig,
1917.]

112 C. V. Huntington, Four-Place Tables. Abridged edition, Cambridge, Massachusetts. 1907.
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3. Applications of Goniometric Functions

It remains for me now to give you a survey of the application of goniometric func-
tions. I shall consider three fields

A. Trigonometry, which, indeed, furnished the occasion for inventing the gonio-
metric functions.

B. Mechanics, where, in particular, the theory of small oscillations offers a wide
field for applications.

C. Representation of periodic functions by means of trigonometric series,
which, as is well known, plays an important part in the greatest variety of problems.

Let us turn at once to the first subject.

A. Trigonometry, in Particular, Spherical Trigonometry

We are in the presence here of a very old science, which was in full flower already
in ancient Egypt, where it was encouraged by the needs of two important sciences.
Geodesy required the theory of the plane triangle, and astronomy needed that of the
spherical triangle. For the history of astronomy we have the voluminous monograph
in Anton von Braunmiihl’s Vorlesungen iiber Geschichte der Trigonometrie''3. On
the practical side of trigonometry the most informative book is Ernst Hammer’s:
Lehrbuch der ebenen und sphdrischen Trigonometrie““; on the theoretical side,
the second volume of the work I have often mentioned, the Enzyklopddie der Ele-
mentarmathematik of Weber-Wellstein.

Within the limits of this lecture course I cannot, of course, develop systemati-
cally the whole subject of trigonometry. That would be a matter for special study.
Furthermore, practical trigonometry is given full consideration here in Gottingen in
the regular lecture courses on geodesy and spherical astronomy. I should prefer to
talk to you exclusively about a very interesting chapter of theoretical trigonom-
etry which, in spite of its great age, cannot be regarded as closed, and which,
on the contrary, contains many still unsolved problems and questions, of rela-
tively elementary character, whose study would, I think, be rewarding. I refer to
spherical trigonometry. You will find this subject very fully considered in
Weber-Wellstein, where importance is given to the thoughts which Eduard Study
developed in his fundamental work Sphdrische Trigonometrie, orthogonale Sub-
stitutionen und elliptische Funktionen''. 1 shall try to give you a survey of all
the pertinent theories and to call your attention to the questions which are still un-
answered.

13 Two volumes. Leipzig, 1900 and 1903.

114 Stuttgart, 1906. [Fifth edition, 1923.]

115 Abhandlungen der Mathematisch-physikalischen Klasse der Koniglich Sichsischen Gesell-
schaft der Wissenschaften, vol. 20, No. 2. Leipzig, 1893.
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Figure 70

The elementary notion of a spherical triangle hardly needs explanation. Three
points on a sphere, no two of which are diametrially opposite, determine uniquely
a triangle in which each angle and each side lies between 0 and m (see Fig. 70).
Further investigation discloses that it is desirable to think of the sides and of the
angles as unrestricted variables, which can thus also become greater than 7 or 27,
or multiples of these values. One has to do then with sides that overlap and with
angles which wind multiply around their vertices. It becomes necessary therefore
to adopt conventions concerning the signs of these quantities as well as the sense
in which they are measured. It is the merit of August Ferdinand Mobius, the great
geometer of Leipzig, that the importance of the principle of signs was consistently
established, and the way opened for the general investigation of unrestrictedly vari-
able quantities. The part of his work which is of particular significance here is the
Entwicklung der Grundformeln der sphdrischen Trigonometrie in grosstmoglicher
Allgemeinheit'®.

Figure 71

These rules for signs begin with the assumption of a definite sense of rotation
about any arbitrary point A on a sphere in which the angle shall be measured posi-
tively (see Fig. 71). If this sense is settled for one point, the same sense is transferred
to every other point on the sphere due to continuity. It is customary to select the
counter-clockwise rotation as positive, whereby we think of ourselves as looking
at the sphere from the outside. Secondly, we must assign a sense of direction to
each great circle on the sphere. We cannot be satisfied with an initial determination

116 Berichte iiber die Verhandlungen der Koniglich Sichsischen Gesellschaft der Wissenschaften,
mathematisch-physikalische Klasse, vol. 12 (1860). Reprinted in August Ferdinand Mobius, Ge-
sammelte Werke, vol. 2, pp. 71 seq. Leipzig, 1886.
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for one great circle and the continuous moving of it into coincidence with any sec-
ond great circle, because this coincidence can be effected in two essentially distinct
ways. On this account, we shall assign a sense of direction separately to each great
circle which we consider, and we shall look upon one and the same circle as, in a
sense, two different configurations according as we have assigned to it the one or
the other direction. With this understanding, each directed great circle a can be
uniquely related to a pole P, namely to that one of its two poles, in the elementary
sense, from which its sense of direction would appear positive. Conversely, every
point on the sphere has a unique “polar circle” with a definite direction. With these
considerations, the “polarizing process”, so important in trigonometry, is uniquely
determined.

Figure 72

If now three points 4, B, C on the sphere are given, we must still make certain
agreements, before a spherical triangle with these vertices is uniquely determined.
In the first place, the direction of each of the three great circles through A, B, C
must be assigned, and we must know how many revolutions are necessary in order
to bring a point from B to C, from C to A, and from A to B. The lengths a, b, c,
determined in this way, which may be arbitrary real quantities, are called sides
of the spherical triangle. Of course they are thought of as drawn on a sphere of
radius one. The angles are then defined as follows: « is that rotation, about A
in positive sense, which would bring the direction CA into coincidence with the
direction AB, to which arbitrary multiples of £27 may be added. The other angles
are defined analogously. If we now examine an ordinary elementary triangle, as
shown in Fig. 72, and determine the directions of the sides so that a, b, ¢ are less
than 7, we find that the angles «, B,y are, according to our new definition, the
exterior angles instead of the interior angles as in the usual consideration of the
elementary triangle.

It has been known for a long while that by replacing the customary angles of
a spherical triangle by their supplements, in this manner, the formulas of spher-
ical trigonometry turn out to be more symmetrical and perspicuous. The deeper
reason for this appears from the following consideration. The polarizing process
described above, by virtue of the conventions of Mobius, furnishes uniquely, for
every given triangle, another triangle called the polar triangle of the first; and it is
easy to see that, in view of our new definition, this polar triangle has for its sides
and angles the angles and sides, respectively, of the original triangle. According to
our agreements, then, every formula of spherical trigonometry must still hold if we
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interchange in it a, b, and ¢ with «, B, and y, respectively, so that there must always
be this simple symmetry. If, on the other hand, the sides and angles are measured
in the usual way, this symmetry is lost; for the relation between triangle and polar
triangle depends upon how one chooses the sides and angles in a given case, and
upon how one resolves the ambiguity of the pole in the case of a non-directed given
circle.

It is clear now that, of the six parts determining a spherical triangle defined in
this way, only three can be independent continuous variables, e.g. two sides and
the included angle. The formulas of spherical trigonometry represent a number of
relations between these parts or, to be more exact, of algebraic relations between
their twelve sines and cosines, in which only three of these twelve magnitudes can
be allowed to vary arbitrarily, while the other nine depend algebraically upon them.
If we go over to the sine and cosine, we can relinquish the additive arbitrary multi-
ples of 2. Let us now think of trigonometry as the aggregate of all possible such
algebraic relations of this kind. Then we can state its problem, according to the
modern manner of thinking, as follows. If we interpret the quantities

X]=c0sd, X,=cosbh, X3=c0SCc, X4=cCOS®, X5=c0sfl, Xg=COSY,
y1=sina, y,=sinb, y3=sinc¢, ys=sinw, ys=sinff, ys=siny,

as coordinates in a twelve dimensional space R\, then the totality of those of its
points, which correspond to actually possible spherical triangles a, ..., y, repre-
sents a three-dimensional algebraic manifold M5 of this R, and the problem is to
study this M5 in the Ry,. In this manner spherical trigonometry is integrated into
general analytic geometry of hyperspace.

Now this M3 must have various simple symmetries. Thus the polarizing pro-
cess showed that the interchange of a, b, ¢ with «, 8, y, always yielded a spherical
triangle. Translated into our new language, this states that when one interchanges
X1, X2, X3, Y1, Y2, V3 With x4, X5, X6, V4, Y5, Ve respectively, any point of M3 goes
over into another point belonging to it. Further, corresponding to the division of
space into eight octants by the planes of the three great circles, there exist for any
triangle seven auxiliary triangles whose parts arise from those of the initial triangle
through change of sign and the addition of 7. This yields for every point of Mj
seven further points whose coordinates xi, ..., x¢ arise as a result of sign change.
The totality of these symmetries leads to a certain group of permutations and sign
changes of the coordinates of Ri,, which transforms M3 into itself.

The most important question now is that concerning the algebraic equations,
which are satisfied by the coordinates of M3 and which constitute the totality of
trigonometric formulas. Since it is always cos?a + sin>a = 1, we have, to start
with, the six quadratic relations

(1) xP+yP=1  (i=12,...,6),

or, speaking geometrically, six cylindrical surfaces F® of order two passing
through Mj.
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Six further formulas are supplied by the cosine theorem of spherical trigonome-
try, which in our notation, is

cosa = cosh cosc — sinb sin ¢ cos «,
from which one gets by polarization
cosa = cos B cosy —sin fsiny cosa.

These equations, together with the four others, which arise through cyclic per- [193]
mutation of @, b, ¢ and «, B, y determine, all told, six cubic surfaces F® passing
through Mj5:

(2) X1 = Xx2X3 — y2y3Xs, Xy = X3X| — Y3Y1X5, X3 = X1X2 — y|)2X,

(3) X4 = Xs5X6 — Y5Y6X1, X5 = XeX4— YeVaX2, Xg = X4X5— Y4Y5X3,

Finally, we can make use of the sine theorem, which can be expressed by the van-
ishing of the minors of the following matrix

sina, sinb, sinc | | yi, Y2, »3
sina, sinf, siny | | va, Vs, Ve
or, written at length,
) Y2Y6 = ¥3¥s = Y3Va — Y1V6 = Y1Vs5s — Y2Y4 =0

These expressions represent three quadratic surfaces F®, of which only two, to be
sure, are independent. Thus we have set up altogether fifteen equations for our M3
in R12~

Now, in general, 12—3 = 9 equations do not, by any means, suffice to determine
a three dimensional algebraic configuration in Rj,. Even in the ordinary geometry
of R3, not every space curve can be represented as the complete intersection of two
algebraic surfaces. The simplest example here is the space curve of order three
which requires for its determination at least three equations. It is easy to see that,
in our case also, the nine equations (1) and (2) do not yet determine M3. It is well
known, namely, that the sine theorem can be derived from the cosine theorem only to
within the sign, which one then determines, ordinarily, by geometric considerations.
We should like to know then how many, and which, of the trigonometric equations
really determine our Mz completely. In this connection I should like to formulate
four definite questions to which the literature thus far appears to give no precise
answer. It could be a worthwhile task to investigate them thoroughly. That would
probably not be especially difficult, after one had acquired a certain skill in handling
the formulas of spherical trigonometry. My questions are:

1. What is the order of M3?

2. What are the equations of lowest degree by means of which M5 can be com-
pletely represented’?
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3. What is the complete system of linearly independent equations which
represent M, i.e., of equations f; =0, ..., f, = 0 such that the equation of every
other surface passing through M3 could be written in the form m, fi +...4+m, f, =
0, where m, ..., m, are rational integer factors? It is possible that more equations
may be needed here than in 2.

4. What algebraic identities (so called syzygies) exist between these n formulas
Siooooy fu?

One could gain familiarity with these things by consulting investigations which
have been made in exactly the same direction but in which the questions have been
put only slightly differently. These appear in the Gottingen dissertation'!”, 1894,
of Miss Grace Chisholm (now Mrs. Young), who, by the way, was the first woman
to pass the ordinary examination in Prussia for the doctor’s degree. The most note-
worthy of Miss Chisholm’s various preliminary assumptions is her selection of the
cotangents of the half-angles and -sides as independent coordinates. Since tan(o/2)
and likewise, of course, ctn(c/2), is a fundamental function, in terms of which sin «
and cos can be uniquely expressed, it is possible to write all the trigonometric
equations as algebraic relations between ctn(a/2),...,ctn(y/2). The spherical
triangles constitute now a three-dimensional configuration M3 in a six dimensional
space Rg which has ctn(a/2),...,ctn(c/2),ctn(e/2),...,ctn(y/2), as coordi-
nates. Miss Chisholm shows that this M3 is of order eight and that it can be fully
represented as the complete intersection of three surfaces of degree two (quadratic
equations) of Rg; and she investigates also the questions which arise here, which
are analogous to those stated above.

Formulas of Second Kind: Triangles of First and Second Kind

In my lecture course on the hypergeometric function''®, I called the group of for-
mulas of spherical trigonometry which I have discussed above, and which connect
the sines and the cosines of the sides and angles, formulas of the first kind, in dis-
tinction from an essentially different group of formulas which I called formulas of
the second kind. The latter are algebraic equations between the trigonometric func-
tions of the half-angles and -sides. In studying them it will be best to select the
twelve quantities

a . a .o

cos—, sin—,...; cos—, sin—,...

2 2 2 2
as coordinates in a new rwelve-dimensional space R|,, in which the spherical tri-
angles again constitute a three-dimensional manifold M;. It is here that those
elegant formulas appear which, at the beginning of the last century, were pub-
lished independently and almost simultaneously by Jean-Baptiste Delambre (1807),
Karl Mollweide (1808) and finally Gaull 1809 [in the Theoria motus corporum

7 Algebraisch-gruppentheoretische Untersuchungen zur sphérischen Trigonometrie. Gottingen,
1895.
118 Winter semester 1893—1894. Elaborated by E. Ritter. — Reprinted Leipzig, 1906.
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coelestium, No. 54''°]. These are twelve formulas which arise by cyclic permuta-
tion in:

. Bty b—c . By . b—c
sin 5 cos 5 sin 5 sin 5
T = a — — T —@a
sin — cos — sin — sin —
2 2 2
B+y b+c B—vy  b+c
cos 5 cos 5 cos 5 sin 5
a =T a a =T 7
cos — cos — cos — sin —
2 2 2 2

That which is essential and new in them, as opposed to the formulas of the first
kind, is the double sign, which reveals the following meaning. For one and the
same triangle, the same sign, either the upper or the lower, holds for all twelve
formulas, and there are triangles of both sorts. The M} of spherical triangles in the
above defined R\, satisfies, in other words, two entirely different systems of twelve
cubic equations each, and divides therefore into two separate algebraic manifolds

M3, for which the one sign holds, and M3, for which the other holds. By virtue of
this remarkable fact these formulas take on the greatest significance for the theory
of spherical triangles. They are much more than mere transformations of the old
equations, which might at most serve to facilitate trigonometric calculation. To be
sure, Delambre and Mollweide did consider these formulas only from this practical
standpoint. It was Gaull who had the deeper insight, for he draws attention to the
possibility of a change of sign “if one grasps in its greatest generality the idea of
spherical triangle”. It seems to me proper, therefore, that the formulas should bear
Gaul}’s name, even if he did not have priority of publication.

It was Study who first recognized the full range of this phenomenon, and who
developed it in his memoir of 1893, which I mentioned on p. [175]. His chief result
can be stated most conveniently if we consider the six-dimensional space R¢ which
has for coordinates the quantities a, b, ¢, «, B, y themselves, thought of as unre-
stricted variables. I call them transcendental determination parts of the triangle
in distinction from the algebraic determination parts cosa,..., or cos(a/2),...,
because the former are transcendental functions, while the latter are algebraic func-
tions of the ordinary space coordinates of the vertices of the triangle. In this Ry,
the totality of all spherical triangles appears as the “transcendental manifold” M;t)
whose image in R, is the algebraic M considered above. Since however the latter
split into two parts and the mapping functions cos(a/2), . .. are univocal continuous
functions of the transcendental coordinates, the transcendental M;t) must also split
into at least two separated parts. Study’s theorem is as follows: The transcendental
manifold M3(t) of the values a, b, c,a, B,y, belonging to a spherical triangle of the
most general sort, divides into two separate parts corresponding to the double sign
in the Gaussian formulas, and each of these parts is a connected continuum. The
essential thing here is the exclusion of any farther division. It would not be possi-

119 Reprinted in Werke, Leipzig, 1906, vol. 7, p. 67.
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ble, by farther manipulation of the trigonometric formulas, to bring about similar
and equally significant groupings of spherical triangles. The triangles of the first
of these parts, that corresponding to the upper sign in the Gaussian formulas, are
called proper triangles, those of the other, improper, and we may state Study’s the-
orem briefly as follows: The totality of all spherical triangles divides itself into a
continuum of proper and one of improper triangles. You will find further details,
and a proof of this theorem, in Weber-Wellstein'?’. T am attempting here only to
state the results clearly.

I must now say something further concerning the difference between the two
sorts of triangles. 1If a spherical triangle is given, i.e., an “admissible set of values”
of a,b,c,a, B,y, whose cosines and sines satisfy the formulas of the first sort,
and which therefore represents a point of M (t), how can we decide whether the
triangle is proper or improper? In order to answer this question we first find the
smallest positive residues ag, by, co, @, Bo, Vo of the given numbers, with respect to
the modulus 27:

ap=a(mod2rm),..., oy=a(mod2r),...
O§a0<27t,..., 0§a0<2n,...
Their sines and cosines coincide with those of a,...,,... so that they also

represent a triangle which we shall call the reduced, or the Mobius, triangle cor-
responding to the given one, since Mobius himself did not consider the parts as
varying beyond 2. Then we can determine, by means of a table, whether the
Mobius triangle is proper or improper. You will find this, in a form somewhat less
clear, in Weber-Wellstein (p. 352, 379, 380), as well as figures (p. 348, 349) of the
types of proper and improper triangles. As is usual, I shall call an angle re-entrant
when it lies between 7 and 27 and I shall, for the sake of brevity, apply this term
also to the sides of the spherical triangle. Then there are, altogether, four typical
cases of each sort.

1. Proper Mobius triangles:

1. O sides re-entrant; O angles re-entrant.

2. 1 side re-entrant; 2 adjacent angles re-entrant.

3. 2 sides re-entrant; 1 included angle re-entrant.

4. 3 sides re-entrant; 3 angles re-entrant.

IL. Improper Mobius triangles:

1. 0 sides re-entrant; 3 angles re-entrant.

2. 1 side re-entrant; 1 opposite angle re-entrant.

3. 2 sides re-entrant; 2 opposite angles re-entrant.

4. 3 sides re-entrant; O angles re-entrant.

There are no cases other than these, so that this table enables us actually to
determine the character of each Mobius triangle.

120 yol. 2, second edition (1907), p. 385 (§ 47).
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The transition to the general triangle a, ..., o, ... from the corresponding re-
duced triangle is made, after what was said above, by means of the formulas:

a=ayp+n,-2n, b=by+ny-2m, ¢ =cy+n3-2m,
a=oag+v-2n, B=Po+va-2m, y=yo+v3-2m,

We may then make use of the following theorem The character of the general
triangle is the same as or the reverse of that of the reduced triangle according as
the sum of the six integers ny + n, + nsz + vy + v + v3 is even or odd. Thus the
character of every triangle as proper or improper can be determined.

The Area of Spherical Triangles

I shall conclude this section with a few remarks about the area of spherical trian-
gles. Nothing is said about this in Study or in Weber-Wellstein. It does come up for
consideration in my earlier function-theoretic investigations of spherical triangles.
Up to this point we have considered the triangle merely as the concept determined
by three angles and three sides, which satisfy the sine and cosine laws. In my inves-
tigations I was concerned with definite areas bounded by these sides — in a certain
sense with a membrane stretched between these sides and involving appropriate
angles.

Figure 73

Of course we can now no longer think of «, §, y as the “exterior angles” of the
triangle, as we did before for reasons of symmetry. We shall talk, rather, of those
angles which the membrane itself forms at the vertices, and I shall call them in-
terior angles of the triangle. I shall denote them, as is my habit by An, umw, v
(see Fig. 73). These angles can also be thought of as unrestrictedly variable pos-
itive,quantities since the membrane might wind about the vertices. In accordance
with this, I shall denote the absolute lengths of the sides by I, mm, nw, which are
also unrestrictedly variable positive quantities. But it will be no longer possible for
the sides and the angles to “overlap” independently of one another, i.e., to contain
arbitrary multiples of 27, as they could before, for the fact that a singly-connected
membrane should exist with these sides and angles finds its expression in certain

[198]
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relations between the numbers of these overlappings. In my memoir Uber die Null-
stellen der hypergeometrischen Reihe'*' 1 called these supplementary relations of
spherical trigonometry. If we denote by E(x) the largest positive integer, which x
exceeds, [E(x) < x], these relations are

f()-o (55
E(g):E(—A—HLZ—v—I—I)

E(g):E(—A—MZ—I—v—I—I)

and since E(I/2), for example, gives the multiple of 27 which is contained in the
side I, these relations determine precisely the desired “overlap” numbers of the
sides I, mmw, nw when one knows the angles Aw, um, v together with their
overlap numbers. It is easy to see, in particular, that of the three numbers A — . — v,
—A + u —v, —A — u + v, one at most can be positive when A, p and v are
positive. Consequently only one of the three arguments on the right sides can exceed
unity, and since E(x) = 0 for x = 1, it is possible for only one of the overlap
numbers to be different from zero. In other words only one side, at most, of a
triangular membrane can overlap (be greater than 21/) and that side must be opposite
the largest angle.

For the proof of these supplementary relations I refer you to my lithographed
lecture notes Uber die hypergeometrische Funktion'?* (pp. 384 seq.), although the
edition is long since exhausted. There, as well as in my memoir in volume 37 of
the Mathematische Annalen, the initial assumptions were somewhat broader than
the present ones, in that spherical triangles were considered which are bounded by
arbitrary circles on the sphere, not necessarily by great circles. I shall sketch briefly
the train of thought of the proof. We start with an elementary triangle, in which a
membrane can certainly be stretched, and obtain from it step by step the most gen-
eral admissible triangular membrane by repeatedly attaching circular membranes,
either at the sides, or, with branch points, at the vertices. Fig. 74 shows, as an
example, (in stereographic projection) a triangle ABC which arises from an ele-
mentary triangle by attaching the hemisphere which is bounded by the great circle
AB, whereby the side AB overlaps once as well as the angle C. It is clear that the
supplementary relations continue to hold here, and one sees in the same way that
they retain their validity for the most general triangular membrane, which can be
built up by this process.

121 Mathematische Annalen, vol. 37 (1888). [Reprinted in F. Klein, Gesammelte Mathematische
Abhandlungen, vol. 2 (1921), p. 550.
122 This lecture course was referred to already on p. [194].
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Figure 74

Figure 75

Figure 76

We must now inquire how these triangles, which satisfy the supplementary rela-
tions, fit the general theory which we have discussed already. They are obviously
only special cases, because the overlap numbers of the sides and angles are, in gen-
eral, entirely arbitrary — special cases, which are characterized by the possibility
of framing a stretched membrane in a triangle. At first one can really be puzzled
here, for we have seen that all proper triangles (some of which do not need to sat-
isfy entirely the supplementary relations) constitute a continuum, and that any one
of them could be derived, therefore, from an elementary triangle by a continuous
deformation. One would think, naturally, that it would be impossible, during this
deformation to lose the membrane, which was stretched in the initial elementary
triangle. The explanation of this difficulty appears only if one extends Mobius’
principle of determination of sign to areas; then, by agreeing that an area is to
be called positive or negative according as its boundary is revolved in the positive
(counter-clockwise) or negative sense. Accordingly, when a curve, which perco-
lates itself confines several partial areas, the entire area is the algebraic sum of the
several parts having been revolved, each of these taken with the correct sign. In
Fig. 75 this would be the difference, in Fig. 76, the sum of the parts which are
distinguished by different shading. These conventions are, of course, merely the
geometric expression of that which the analytic definition supplies by itself.

[200]
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If we apply this, in particular, to triangles formed by circular arcs, it turns out, in
fact, that with every proper triangle we can associate an area on the sphere such that,
when one circuit of the triangle is made, different parts of this area are combined
with different signs because the boundaries of these parts are revolved in different
senses. Those triangles for which the supplementary relations hold are special,
then, in that their areas consist of a single piece of membrane confined by a positive
circuit. It is this property which gives them their great significance for the function-
theoretic purposes to which I needed them in my earlier studies.

Figure 77

I will now illustrate this situation by means of an example. Let us consider the
triangle ABC in stereographic projection (Fig. 77) where, of the points of intersec-
tion A, A" of the great circles BA, CA, A is the one more remote from the arc BC.
If one now transfers the general definition of the exterior angles (p. [191]) to their
supplements, the interior angles, one finds that u7 and v measure the rotation of
BC into BA and of CA into CB, respectively, and are, therefore, positive in our case.
Similarly Az measures the rotation of AB into AC and is therefore negative. Put
A = —A/, 1 > 0. Then the triangle A’C is obviously an elementary triangle with
angles ', ur, v, all of which are positive. If we now make a circuit around the
triangle ABC, the boundary of the elementary triangle A’C will be revolved in the
positive sense but that of the spherical sector A’ in the negative, and the area of the
triangle ABC, in the Mobius sense, will be the difference of these two areas. This
breaking up of the triangular membrane into a positive and a negative part can be
visualized, perhaps, by supposing the membrane twisted at A’ so that the rear or
negative side of the sector is brought to the front. It is not hard to construct more
difficult examples after this pattern.

I shall now show, by means of this same example, that with this general concept
of area, the elementary formulas for the area of spherical triangles still remain valid.
As one knows, the area of a spherical triangle with angles A, us, v, on a sphere
with radius one, is given by the so-called “spherical excess” (A + i +v—1)m where
A, p, v > 0. Let us now see that this formula holds also for the above triangle ABC.
It is clear that the area of the elementary triangle A'C is (A’ + ¢ + v — 1)7. From
this we must subtract the area of the bi-angular piece A’ of the sphere whose angle
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is A'7. But this is 217, because the area of such a piece is proportional to its angle;
and it becomes 4 when the angle is 27 (the entire sphere). We get then, as the area
of ABC,

AVN+p+v—1Dr-22Vn=N+pu+v-Dr=A+pu+v-—"m.

It is probable, if we had a general proper triangle with arbitrary sides and angles,
and if we should try to fit into it a multi-parted membrane and determine its area
(which, according to the sign rule, would be the algebraic sum of the parts), that
the result would show the general validity of the formula (A + u + v — 1), where,
of course, Aw, ...are the real angles of the membrane, and not, as before, to be re-
garded as exterior angles. The investigation thus required here has not been carried
out, however. It would certainly not offer great difficulties, and I should be glad if
it were undertaken. At the same time, it would be important to determine, from the
present standpoint, the role of the improper triangles.

With this I shall leave the subject of trigonometry and go over to the second
important application of goniometric functions, one which also falls within the field
of school mathematics.

B. Theory of Small Oscillations, Especially Those of the Pendulum

Figure 78

I shall at first recall briefly the deduction of the law of the pendulum as we are in the
habit of giving it at the university, by means of infinitesimal calculus. A pendulum
(see Fig. 78) of mass m hangs by a thread of length /, its angle of deflection from
the normal being ¢. Since the force of gravity acts vertically downwards with mg,
it follows from the fundamental laws of mechanics that the motion of the pendulum
is determined by the equation

d’¢ g .

W = —7 N

For small amplitudes we may replace sin ¢ by ¢ without serious error. This gives
for so called infinitely small oscillation of the pendulum

M

d’¢ g

(2) T2 =77
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The general integral of this differential equation is given, as you know, by gonio-
metric functions, which are important here, as I said before, precisely by reason of
their differential properties. The general integral is

(p:Asin\/%t+Bcos\/§t

where A, B are arbitrary constants. If we introduce appropriate new constants C, t,
we find

(3) ¢=C-cos\/§(t—to)

where C is called the amplitude and t, the phase of the oscillation. From this we
get, for the duration of a complete oscillation, T = 2w +/1/g.

Teaching in Schools (Hidden Infinitesimal Calculus)

Now these are very simple and clear considerations, and if we went more fully into
the subject they could of course be given in quite intuitive form. But how different
they appear from the so called elementary treatment of the pendulum law, which
is widely used in school teaching. In this, one endeavours, at all costs, to avoid a
consistent use of infinitesimal calculus, although it is precisely here that physics,
by the essential nature of its problems, demands imperatively the application of
infinitesimal methods. Also, one uses methods contrived ad hoc, which involve
infinitesimal notions without calling them by their right name. Such a plan is, of
course, extremely complicated, if it is to be at all exact. Consequently it is often
presented in a manner so incomplete that it cannot be thought of, for a moment, as
a proof of the pendulum law. Then we have the curious phenomenon that one and
the same teacher, during one hour, the one devoted to mathematics, makes the very
highest demands as to the logical exactness of all conclusions. In his judgment, still
steeped in the traditions of the eighteenth century, its demands are not satisfied by
the infinitesimal calculus. In the next hour, however, that devoted to physics, he
accepts the most questionable conclusions and makes the most daring application
of the infinitely small.

To make this clearer, let me give, briefly, the train of thought of such an elemen-
tary deduction of the pendulum law, one which is actually found in textbooks and
used in instruction. One begins with a conic pendulum, i.e. a pendulum in space
whose top moves with uniform velocity v in a circle about the vertical, as axis, so
that the suspending thread describes a circular cone (see Fig. 79). This is the motion
which is called in mechanics regular precession. The possibility of such a motion
is, of course, assumed in the schools as a datum of experience and the question is
asked merely concerning the relation which obtains between the velocity v and the
constant deflection of the pendulum, ¢ = o (angular opening of the cone which is
described by the thread).
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Figure 79

One notices, first, that the top of the pendulum describes a circle of radius r =
[ sin &, for which one may write r = [ - @ when « is sufficiently small. Then one
talks of centrifugal force and reasons that the point, with mass m, revolving with
velocity v, must exert the centrifugal force

v? v?

e T
In order to maintain the motion there must be an equal centripetal force directed
toward the centre of the circular path. This is found by resolving the force of gravity
into two components, one directed along the thread of the pendulum, the other, the
desired force, acting in the plane of the circular path and directed toward its centre,
having the magnitude m - g - tana (see Fig. 79). This can be replaced by mg - o
when « is sufficiently small. We obtain, then, the desired relation in the form

2

m-lv—zmg-a, or v=uag-l.
o

The time of oscillation T of the pendulum, that is, the time in which the entire
periphery of the circle 2z r = 27l is revolved, is then

2nla /
T = =2 —.
v g

In other words, when the angle of oscillation « is sufficiently small, the conic pen-
dulum performs a regular precession in this time, which is independent of «.

To criticize briefly this part of the deduction, we might admit the validity of re-
placing sin« and tan « by « itself, which we did ourselves in our exact deduction
(p- [201]); for this permits the transition from “finite” to “infinitely small” oscilla-
tions. On the other hand, we must call attention to the fact that the formula used
above for centrifugal force can be deduced in “elementary” fashion only by several
neglections; and the exact justification for this is founded precisely in the differ-
ential calculus. The very definition of centrifugal force, for example, requires in
fact even the notion of the second differential coefficient, so that the elementary [204]
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deduction must also smuggle this in. And there arise, since one is unable to say
clearly and precisely what one is dealing about, the greatest obstacles to under-
standing, which are not present at all when the differential calculus is used. I do
not need to go into detail here because I can refer you to some very readable Schul-
programme'??, by the late Realgymnasium director Heinrich Seeger'?*, in Giistrow
and to a very interesting study by Heinrich E. Timerding: Die Mathematik in den
physikalischen Lehrbiichern'® . In Seeger you will find, among other things, an ex-
haustive criticism of the deductions of the formula for centrifugal force, in a manner
corresponding to our standpoint. In Timerding there are extensive studies of the
mathematical methods which are traditionally used in the teaching of physics*. Let
me now continue with the discussion of pendulum oscillations.

/

/[ AW

Figure 80

The considerations set forth above show the possibility of uniform motion in a
circle. If we now set up an x-y-coordinate system (see Fig. 80) in the plane of
this circle (i.e., in view of our approximation, the tangent plane to the sphere), this
motion will, in the language of analytic mechanics, be given by the equations

x:l-a-cosﬁ(t—to)
y:l~a~sin\/§(t—t0).

Translator’s note: ,,Schulprogramme‘* were yearly reports published throughout the 19th cen-
tury in general by each secondary school, to report about the last year. It used to include a
dissertation on some pedagogic or scientific issue by one of its teachers.]

124 Uber die Stellung des hiesigen Realgymnasiums zu einem Beschlusse der letzten Berliner
Schulkonferenz (Giistrow, 1891, Schulprogramm No. 649). Uber die Stellung des hiesigen Real-
gymnasiums zu dem Erlass des preussischen Unterrichtsministeriums von 1892 (1893, No. 653).
Bemerkungen iiber Abgrenzung und Verwertung des Unterrichts in den Elementen der Infinitesi-
malrechnung (1894, No. 658).

125 Bd. 111, Heft 2 der ,~Abhandlungen des deutschen Unterausschusses der Internationalen mathe-
matischen Unterrichtskommission®. Leipzig u. Berlin 1910.

* See also Report on the Correlation of Mathematics and Science Teaching by a joint committee of
the British Mathematical Association and the Science Masters Association 1908. Reprinted 1917.
Bell and Sons, London.

“)
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But we wish to obtain the plane oscillations of the pendulum; that is, the point
of the pendulum in our x-y-plane is to move on a straight line, the x-axis. The
equations of its motion must be

5) x=l-Ccos\/§(t—t0), y=0

in order that the correct equation (3) shall result when ¢ = x//. Thus we must
pass from equations (4) to (5) — note well, without being able making use of the
dynamical differential equations. This is made possible by setting up the principle
of superposition of small oscillations, according to which the motion x + x|, y + y;
is possible when the motions x, y and x, y; are given. We may combine, namely,
the counter-clockwise pendulum motion (4) with the clockwise motion

xlzl'a'cosﬁ(t—to), Vi :—l~a~sin\/§(t—t0)

Then, if we put « = C/2, the motion x + x;,y + y; is precisely the oscillating
motion (5) which was desired.

Regarding the criticism of these approaches, it is essential, above all, how the
principle of superposition is to be established, or at least made plausible, without
the differential calculus. With these elementary presentations there remains always
the doubt as to whether or not our neglections may not finally accumulate to a
noticeable error, even if each is permissible singly. But I do not need to carry this out
in detail, for these questions are so thoroughly elementary that each of you can think
them through when they have once been instigated. Let me, in conclusion, state with
emphasis that we are concerned in this whole discussion with a central point in the
problem of mathematics teaching. First, the need for considering the infinitesimal
calculus is evident. Moreover; it is clear that we need also a general introduction
of the goniometric functions, independently of the geometry of the triangle, as a
preparation for such general applications.

I come now to the last of the applications of the goniometric functions which I
shall mention.

C. Representation of Periodic Functions by Means of Series of
Goniometric Functions (Trigonometric Series)

As you know, there is frequent occasion in astronomy, in mathematical physics,
etc., to consider periodic functions, and employ them in calculation. The method
indicated in the title is the most important and the one most frequently used. For
convenience we shall suppose the unit so chosen that the given periodic function
y = f(x) has the period 27 (see Fig. 81). The question then arises as to whether

[205]

or not we can approximate this function by means of a sum of cosines and sines of [206]

integer multiples of x, from the first, to the second, ..., in general to the n-th, each,
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with a properly chosen constant factor. In other words, can one replace f(x), to
within a sufficiently small error, by an expression of the form

Sh(x) = ‘17°+alcosx+a20052x+...+a,, cosnx

1
M +bysinx +bysin2x +...+ b, sinnx

The factor % is added to the constant term to enable us to give a general expression

for the coefficients.
/\./‘\\ y /\f\ /-x
\V \V

Figure 81

Approximation by Series with a Finite Number of Terms

First I must again complain about the presentation in the textbooks, this time those
of differential and integral calculus. Instead of putting into the foreground the el-
ementary problem which I have outlined above, they often seem to think that the
only problem which is of any interest at all is the theoretical question, connected
with the one we have raised, whether f(x) can be exactly represented by an
infinite series. A notable exception to this is Runge in his Theorie und Praxis
der Reihen'?®. As a matter of fact, that theoretical question is, in itself, thoroughly
uninteresting for practical purposes, since there one is concerned in practice with a
finite number of terms, and not too many at that. Moreover it does not even permit
an inference as to the practical utility of the series. One may by no means conclude
from the convergence of a series that its first few terms afford even a fair approxima-
tion to the sum. Conversely, the first few terms of a divergent series may be useful,
under certain conditions, in representing a function. I am emphasizing these things
because a person who knows only the usual presentation and who wishes then to
use finite trigonometric series in, say, the physical laboratory, is apt to be deceived
and to reach conclusions that are unsatisfactory.

The customary neglect of finite trigonometric sums seems still more remarkable
when one recalls that they have long been completely treated. The astronomer
Bessel gave the authoritative treatment in 1815. You will find details concerning
the history and literature of these questions in the Enzyclopddie report by Burkhardt
on trigonometrische Interpolation (Enzyklopddie I1 A 9, p. 642 et seq.). Moreover,

126 Sammlung Schubert No. 32, Leipzig, 1904. — See also W. E. Byerly, Fourier’s Series and
Spherical Harmonics.
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the formulas that concern us here are essentially the same as those that arise in the
usual convergence proofs. It is only that the thoughts which we shall attach to them
have another shade of meaning and are designed to adapt the material more for
mastery of the practitioner.

I turn now to a detailed consideration of our approach, and 1 shall inquire first
as to the most appropriate determination of the coefficients a,b, ... for a given
number n of terms. Bessel developed an idea here which involves the method of
least squares. The error that is made when, for a particular x, we replace f(x) by the
sum S, (x) of the first 2n + 1 terms of the trigonometric series, is f(x)— .S, (x), and
a measure of the closeness of representation throughout the interval 0 = x = 2w
(the period of f(x)) will be the sum of the squares of all the errors, that is, the
integral

2
(1 J = / [£(x) — Sa(x)]* dx.
0

The most appropriate approximation to f(x) will therefore be supplied by that sum
S, (x) for which this integral J has a minimum. It was from this condition that
Bessel determined the 2n + 1 coefficients ag, a1, ....a,, b1, ..., b,. Since we are
to consider J as a function of the 21 + 1 quantities ao, . . ., b,, we have, as necessary
conditions for a minimum:

by 0w

@ dag T day T day ’
i,

b, U 9b, ’

Since J is an essentially positive quadratic function of ay, . . ., by, it is easy to see
that the values of the variables determined by these 2n + 1 equations really yield a
minimum for J.

If we differentiate under the sign of integration, the equations (2) take the form

@
/ LF(x) = 8o (0)] dx = 0
0

2 2
/[f(x)—Sn(x)]cosxdx =0,..., /[f(x)—Sn(x)]cosnxdx =0
0 0

2 2
/[f(x)—Sn(x)]sinxdx:0,..., /[f(x)—Sn(x)]sinnxdx:O
0 0

[207]
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Now the integrals of the products of S, (x) by a cosine or a sine can be much sim-
plified. We have, namely, forv =0, 1,...,n:

2 2

/Sn(x)cosvx dx = a—;[cosvx dx

0 0
2 2

+a1/cosxcosvxdx+...+an/cosnxcosvxdx

0
2 2

+b1[sinxcosvxdx+...+bn/sinnxcosvxdx
0 0

(=]

[208] According to known elementary integral properties of the goniometric functions,
all the terms on the right vanish, with the exception of the cosine term with index
v, which takes the value a, - 7, so that

2
/Sn(x)cosvxdx =a, -, (v=0,1,...,n).
0

This result holds also for v = 0, by virtue of our having given to a, the factor %
Similarly, we have also

2
/Sn(x)sinvxdx =b,-nr, (v=0,1,...,n).
0

From these simple relations it follows that each of the equations (2’) contains only
one of the 2n 4 1 unknowns. We can therefore write down their solutions immedi-
ately in the form

2
1
avz—/f(x)cosvxdx,(v=O,1,...,n),
7T
G) o
1
bU=—[f(x)sinvxdx,(v:1,...,n).
b4
0

If we make use of these values of the coefficients in S, (x), as we shall from now
on, J actually becomes a minimum, and its value is found to be

2
/ f(x)dx —
0

2 n
a
70 + Z (a} + b})
v=1
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It is important to notice that the values of the coefficients a, b ,which result from
our initially assumed form of S, (x) are completely independent of the special num-
ber n of terms, and that, furthermore, the coefficient belonging to a term cos vx or
sinvx has precisely the same value, whether one uses this term alone or together
with any of the others, in approximating to f(x) according to the same principle. If
we attempt, for instance, to make the best possible approximation to f(x) through
a single cosine term a,, cos x, that is, so that

2
/ [£(x) —a, cos vx]* dx = Minimum
0

we find for a,, the same value that was deduced above. This fact makes this method
of approximation especially convenient in practice. If, for example, one has been
led to represent a function first by a single multiple of sin x, because its behaviour
resembled the sine, and finds that the approximation is not close enough, one can
add on more terms, always according to the principle of least squares, without hav-
ing to alter the first term.

I must now show how the sums S, (x), determined in this way, actually tend
toward the function f(x). For such an inquiry it seems to me desirable to proceed,
in a sense, experimentally, after the method of natural scientists, namely by first
drawing for a few concrete cases the approximating curves S,(x). This gives a
vivid picture of what happens, and, even for persons without special mathematical
gift, it will awaken interest, and will show the need of mathematical explanation.

In a former lecture course (Winter semester 1903—1904) when I discussed these
things in detail, my assistant, Schimmack, made such drawings, some of which I
shall show you in the original and by a projector.

1. We get simple and instructive examples of the desired kind if we take curves
made up of straight line segments. For example, consider the curve y = f(x) as
coinciding with y = x, going upwards from x = 0 to x = /2 in a straight line,
inclined by 45°; with y = 7 — x, then downwards, with the same angle, from
x = m/2to x = 3w /2; and eventually with y = x — 27, upwards inclined by 45°
from x = 37 /2 to x = 2m; and as periodically repeating itself beyond the interval
considered (0, 27). If we calculate the coefficients, we find all the coefficients a,
are zero, since f(x) is an odd function, and there remain only the sine terms. The
desired series has the form

S(x) 4 (sinx  sin3x " sin 5x "
X) = — — —+...).
T 12 32 52

In Fig. 82 the shape of the first and second partial sums is sketched. The partial
sums approach the given curve y = f(x) more and more closely in that the number
of their intersections with it increase continually It should be noticed especially
that the approximating curves crowd more and more into the corners of the curve
at 7/2,3m/2,..., although they themselves, as analytic functions, can have no
corners.

[209]
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Figure 82

2. Let f(x) be defined as x going in straight line upwards, by 45° from x = 0
to x = m, jumping then discontinuously to —z and from there upwards — again
by 45° —to x = 2m. The curve consists, then, of parallel straight line segments
through the points x = 0,27, 47, ... of the x-axis. If at the points of discontinuity
we insert vertical lines joining the ends of the discontinuous segments, the function
will be represented by an unbroken line (see Fig. 83). It looks like the m strokes
which you all practiced when you were learning to write. Again the function is odd,
so that the cosine terms drop out, and the series becomes

S(x):2(

sinx  sin2x n sin3x  sin4x n
1 2 3 4 o
Fig. 83 represents the sums of the first two, three, and four terms. It is especially

interesting here, also, to notice how they try to imitate the discontinuities of f(x),
e.g. by going through zero at x = & with ever increasing steepness.

Figure 83
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Figure 84

3. As a last example (see Fig. 84) I shall take a curve which is equal to /2
between 0 and /2, equal to O between 7/2 and 37/2, and finally equal to —m/2
between 37/2 and 27, and which continues periodically beyond that. If we again
insert vertical segments at the places of discontinuity we get a hook-shaped curve.
Here also only the sine coefficients are different from zero, since we have an odd
function, and the series becomes

sin2x n sin 3x 10+ sin5x 42 sin 6x N sin 7x o+ sin 9x
2 3 5 6 7 9
The law of the coefficients is not so simple here as it was before and hence the

successive approximating curves (Fig. 84 shows the third, fifth and sixth) are not so
clearly comparable as they were in the preceding cases.

S(x) = sinx+2-

Estimation of Errors; Convergence of Infinite Series

We turn now to the question as to how large the error is, in general, when we
replace f(x), at a definite point x, by the sum S,(x). Up to this point we have
been concerned only with the integral of this error, taken for the entire interval.
Let us consider the integrals (3) (p. [193]) for the coefficients a,, b, and denote
the variable of integration by &, to distinguish it from x, which we use to denote a
definite point. Then we can write our finite sum (1) as
2
S, (x) = % /dé . f(é)[% + cos x cos & + cos 2x cos 2§ + ... + cosnx cosné

0
+ sinx sin§ + sin2x sin2§ + ... + sinnxsinn5i|,

[211]
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or, if we combine summands which are in the same column, we have

21

S,(x) = [dé f(é)[ +cos(x —&)+cos2(x—§&)+.. +cosn(x—§):|.
0

The series in the parenthesis can be summed easily, perhaps most-conveniently by

using the complex exponential function. I cannot go into the details here, but we

get, if we also use the fact that the periodicity of the integrand enables us to integrate
from —7m to +7:

+m

$,(x) = / de- f 6>

-7

2n+1 (S _ X)
3 (E—x)

To enable us to judge as to the value of this integral, let us first draw the curves

1 1

é—::tgsin%(é—x)

[212] for the interval x — 7 = § = x + 7 of the §-axis. They obviously have branches

resembling a hyperbola (see Fig. 85), and between these branches the curve

_ lsinz”z—‘H(E—x)_ . 2n
"o sin £ (8 — x) = ¢ sin
2

AT

oscillates back and forth with increasing frequency as n gets larger. For § = x it
has the value n = (2n + 1)/(27) which increases with n.

Figure 85

If we now put f (&) = 1, for the sake of simplicity, then S, (x) = f_tr" n-d§& will
represent simply the area lying between the n-curve and the £-axis (shaded in the
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figure). Now anyone who has a moderate feeling for continuity will see at once that
if n increases sufficiently the oscillation areas to the right, as well as those to the
left, being alternately positive and negative, will compensate each other and that
only the area of the long narrow central arch will remain. But it is easy to see that
with increasing n this approaches the value f(x) = 1, as it should. And, in general,
things turn out in this same way, provided f(x) does not oscillate too strongly at
x =E£.

It is just such considerations, developed to more precise estimates, which form
the basis for Dirichlet’s proof of convergence of the infinite trigonometric series.

This proof was published'?’ for the first time by Dirichlet in 1829 in volume
4 of Crelle’s Journal. Later (1837) he gave a more popular presentation'?® in the
Repertorium der Physik by Dove and Moser. The proof is given nowadays in most
textbooks™, and I do not need to dwell upon it here. But I must mention certain [213]
sufficient conditions, which the function f(x) must satisfy if it is to be represented
by an infinite trigonometric series. Again think of f(x) as given in the interval
0 = x = 2x and as periodically continued beyond. Dirichlet makes, then, the
following two assumptions which are called today simply Dirichlet’s conditions:

a) The given function f(x) is segmentally continuous, i.e., it has in the interval
(0,2m) only a finite number of discontinuities, and is otherwise continuous up to
the points where it jumps.

b) The given function f(x) is segmentally monotone, i.e., one can divide the
interval (0, 27) into a finite number of subintervals, in every one of which f(x)
either does not increase or does not decrease. In other words, f(x) has only a finite
number of maxima and minima. (This would exclude, for example, such a function
as sin 1/x, for which x = 0 is an accumulation point of extremes.)

Dirichlet shows that, under these conditions, the infinite series represents the
function f(x) exactly for all values of x for which f(x) is continuous. That is

Jim S, (x) = f(x)

Moreover Dirichlet proves that, at a point of discontinuity, the series converges
also, but to a value which is the arithmetic mean of the two values which f(x)
approaches when x approaches the discontinuity from the one side or the other.
This fact is usually expressed in the form

Sx+0)+ f(x—=0)
2

lim S, (x) =

Fig. 86 exhibits such discontinuities and the corresponding mean values.

127 Reprinted in Dirichlet, Werke, vol. 1, p. 117, Berlin, 1889.

128 Uber die Darstellung ganz willkiirlicher Funktionen durch Sinus- und Cosinusreihen.
Reprinted, Werke, vol. 1, p. 133-160, and Ostwalds Klassiker No. 116, Leipzig, 1900.

* See Byerly, Fourier’s Series and Spherical Harmonics.
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Figure 86

These conditions of Dirichlet are only sufficient, but by no means necessary, in
order that f(x) may be represented by the series S(x): On the other hand, mere
continuity of f(x) is not sufficient. In fact it is possible to give examples of contin-
uous functions where oscillations cluster so strongly that the series S(x) diverges.

After these theoretical matters I shall now return to the practical side of trigono-
metric series. For a detailed treatment of the questions that arise here I refer you

[214] to the book by Runge which I mentioned before (see p. [206]). You will find there
a full treatment of the question as to the numerical calculation of the coefficients
in the series, i.e., the question as to how, when a function is given, one can rapidly
evaluate the integrals for a,, b, in the most suitable way.

Special mechanical devices called harmonic analysers have been constructed
for calculating these coefficients. This name has reference to the relation which the
expansion of a function f(x) into a trigonometric series has to acoustics. Such an
expansion corresponds to the separation of a given tone y = f(x) (where x is the
time and y the amplitude of the tone vibration) into “pure tones”, that is, into pure
cosine and sine vibrations. In our collection we have an analyser by Gottlieb Coradi
in Zurich, by means of which one can determine the coefficients of six cosine and
sine terms (v = 1,2,...,6), i.e. twelve coefficients in all. The coefficient ay/2
must be separately determined by a planimeter. Albert A. Michelson and Samuel
W. Stratton have made an apparatus with which 160 coefficients (v = 1,2, ..., 80)
can be determined. It is described in Runge’s book. Conversely, this apparatus
can also sum a given trigonometric series of 160 terms, i.e. calculate the function
from the given coefficients a,, b,. This problem also, of course, is of the greatest
practical importance.

The Gibbs Phenomenon

The apparatus of Michelson and Stratton called attention anew to a very interesting
phenomenon, one which had been noticed earlier'?® but which, with the passage of
decades, had, curiously enough, been forgotten. In 1899 Josiah Willard Gibbs again

129 According to Enzyklopddie vol. 2, 12 (Trigonometrische Reihen und Integrale), p. 1048, H.
Wilbraham was already familiar with the phenomenon under discussion here and had treated it
with a view to calculation.
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discussed it in Nature'*°, whence it is called Gibb’s phenomenon. Let me say a few
words about it. The theorem of Dirichlet gives as the value of the infinite series,
for a fixed value x, the expression [ f(x 4+ 0) + f(x — 0)]. In the second example
discussed above (to have a concrete case in mind) the series gives the values at the
isolated points 7z, 37, . . . of the function pictured in Fig. 87.

Figure 87

Now the way in which we explained the matter of trigonometric approximation
was different from the Dirichlet procedure, where x is kept fixed while n becomes
infinite. We thought of n as fixed, considered S, (x) with variable x, and drew
the successive approximating curves S;(x), S2(x), S3(x), ... We may now inquire,
what happens to these curves when n becomes infinite; or, to put it arithmetically,
to which values accumulate the values S, (x) when n becomes infinite, x being vari-
able? 1t is clear, intuitively, that the limit function cannot exhibit isolated points,
as before, but must be represented by a connected curve. It would appear probable
that this limit curve must consist of the continuous branches of y = f(x), together
with the vertical segments which join f(x + 0) and f(x — 0) at the points of dis-
continuity, that is, in our example, the curve would be shaped like a German m, as
is shown in Fig. 83 (p. [210]). The fact is, however, that the vertical part of the limit
curve projects beyond f(x + 0) and f(x — 0), by a finite amount, so that the limit
curve has the remarkable shape sketched in Fig. 88.

&
2x

Figure 88

These little superimposed towers were noticed in the curves, which the Michel-
son machine drew; in other words it was disclosed downright experimentally. At
first it was ascribed to imperfections in the apparatus, but finally Gibbs recognised
it as necessary. If D = | f(x + 0) — f(x — 0)] is, in general, the magnitude of the

130 Vol. 59 (1898-99), p. 200. Scientific papers II, p. 158. New York 1906.
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jump, then the length of the extension is, according to Gibbs:

e8]
D [ sin&
™ §

b

1
d§ ~ —0,28D ~ 0,09D.
b4

As to the proof of this statement, it is sufficient to give it for a single discontinuous
function, e.g., the one in our example, since all other functions with the same spring
can be obtained from it by the addition of continuous functions. This proof is not
very difficult. It results immediately from consideration of the integral formula
for S, (x) (see p. [211]). Furthermore, if one draws a sufficient number of the
approximating curves one sees quite clearly how the Gibbs cusp arises.

It would lead me too far afield if I were to consider further the many interesting
niceties in the behaviour of the approximating curves. I am glad to refer you to the
very readable article by Leopold Fejér, and rich in content in Vol. 64 (1907) of the
Mathematische Annalen.

With this I shall conclude the special discussion of trigonometric series in order
to wander in a field which as to its content and its history is closely related to them.

Excursions Concerning the General Notion of Function

We must be all the more willing, in this lecture course, to deal with the notion
of function, since our school reform movement advocates giving this important
concept a prominent place in teaching.

If we follow again the historical development, we notice first that the older au-
thors, like Leibniz and the brothers Bernoullis — Jakob and Johann — use the function
concept only in isolated examples, such as powers, trigonometric functions, and the
like. A general formulation is met first in the eighteenth century.

1. With Euler, about 1750 (to use only round numbers), we find two different
explanations of the word function.

¥

& x)

Figure 89

a) In his Introductio he defines, as a function y of x, every analytic expression
in x, i.e., every expression which is made up of powers, logarithms, trigonometric
functions, and the like; but he does not indicate precisely what combinations are
to be admitted. Moreover, he had, already, the familiar division into algebraic and
transcendental functions.
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b) At the same time, a function y(x) (see Fig. 89) was defined for him whenever
a curve was arbitrarily drawn (libero manus ductu) in an x-y-coordinate system.
Euler did not establish a connection between the two definitions.

A
§

Figure 90

2. Lagrange, about 1800, in his Théorie des fonctions analytiques restricts the
concept of function, in comparison with Euler’s second definition, by confining it to
so called analytic functions, which are defined by a power series in x. Modern ter-
minology has retained the words analytic functions with this same meaning, where,
of course, one must recognise that this includes only a special class of the functions
that really occur in analysis. Now a power series

y =Px) =ao+ arx +ax*+ -+

defines a function primarily only within the region of its convergence, i.e., in a
certain region around x = 0. A method was soon found, however, for extending
beyond this the region of definition for the function. If, say, x; (see Fig. 90) is
within the region of convergence of P(x), and if P(x) is resolved into a new series

y=Pi(x —xp)

which proceeds according to powers of (x — xy), it is possible that this may con-
verge in a region extending beyond the first one, and so. may define y in a larger
field. A repetition of this process may extend the field still farther. This method
of “analytic continuation” is well known to any one who is familiar with complex [217]
function theory.
Notice, in particular, that every coefficient in the power series L(x), and there-
fore the entire function y is determined when the behaviour of the function y along
an arbitrarily small segment of the x-axis is known, say in the neighbourhood of
x = 0. For then the values of all the derivatives of y are known for x = 0, and we
know that

y(0) =ag, Y (©0)=a;, y'0)=2a,,...

Thus an analytic function, in the Lagrange sense, is determined throughout its entire
course by the shape of an arbitrarily small segment. This property is completely
opposed to the behaviour of a function in the sense of Euler’s second definition.
There, any part of a curve can be continued at will.

3. The further development of the function concept is due to Joseph Fourier, one
of the numerous important mathematicians who worked in Paris at the beginning of
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the nineteenth century. His chief work is the Théorie analytique de la chaleur'®!
which appeared in 1822. Fourier made the first communication, however, concern-
ing his theories, to the Paris Academy already in 1807. This work is the source
of that far reaching method, so much used in mathematical physics today, which
can be characterized as the resolution of all problems to the integration of partial
differential equations with initial conditions, to a so called boundary value problem.

0 degrees

100 degrees

Figure 91

Fourier treated, in particular, the problem of heat conduction, which, for a simple
case, may be stated as follows. The boundary of a circular plane plate is kept
at a constant temperature, e.g., one part at the freezing, the other at the boiling
point (see Fig. 91). What stationary temperature is ultimately brought about by the
resulting flow of heat? Boundary values are introduced here which can be assigned
independently of each other at different parts of the boundary. Thus Euler’s second
definition of function comes appropriately into the foreground, as opposed to that
of Lagrange.

4. This definition is retained essentially by Dirichlet in the works which we
mentioned (p. [212]), except that it is translated into the language of analysis or,
to use a modern term, it is arithmetised. This is in fact, necessary. For no matter
how fine a curve be drawn, it can never define exactly the correspondence between
the values of x and y. The stroke of the pen will always have a certain width, from
which it follows that the lengths x and y, which correspond to one another, can be
measured exactly only to a limited number of decimal figures.

Dirichlet formulated the arithmetic content of Euler’s definition in the following
way. If in any way a definite value of y is correlated to each value of x in a given
interval, then y is called a function of x. Although he thus already had this very gen-
eral concept of a function, nevertheless he always thought primarily of continuous

functions, or of such as were not all too discontinuous, as was done then quite gen-

erally. People considered complicated clusterings of discontinuities as thinkable,
but they hardly believed that they deserved much attention. This standpoint finds
expression when Dirichlet speaks of the expansion into series of “entirely arbitrary
functions” (just as Fourier had said “fonctions enti¢rement arbitraires”) even when
he formulated very precisely his Dirichlet conditions, which must be satisfied by all
the functions he considered (see p. [213]).

131 Reprinted in Fourier, (Euvres, vol. 1. Paris 1888. Translated into German by Max Bernhard
Weinstein. Berlin 1884.
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5. We must now take account of the fact that at about this time, say around
1830, the independent development of the theory of functions of a complex argu-
ment began; and that in the next three decades it became the common property
of mathematicians. This development was connected, above all, with the names
Cauchy, Riemann, and WeierstraB3. The first two start, as you know, from the par-
tial differential equations which bear their names, and which must be satisfied by
the real and imaginary parts u, v of the complex function

f(x+iy)=u+iv,

while Weierstraf3 defines the function by means of a power series and the conception
of its analytic continuations, so that he, in a sense, follows Lagrange.

Now it is remarkable that this passage into the complex domain brings about
an agreement and connection between the two function concepts considered above.
I shall give a brief sketch of this.

Let us put z = x + iy, and consider the power series

M f(Z)=M+iv=CO+clz+c222+...,

as converging for small |z| so that, in the terminology of Weierstraf, it defines an
element of an analytic function. We consider its values on a sufficiently small circle
of radius r, about z = 0, which lies entirely within the region of convergence (see
Fig. 92),i.e., we put z = x + iy = r(cos¢ + i sin ¢) in the power series, and we
get

f(2) = co+ c1r(cos @ + i sing) 4 crr*(cos 2 + i sin2¢) + . ...

2-Plane MY

x

Figure 92

If we separate the coefficients into real and imaginary parts:

oo — 1o ) .
COZT’ co=a—if,co=a,—ips, ...,

we get as the real part of f(z)

(o1 2
u=u(p) = ?+(xlrcos<p+(x2r cos2¢ + ---

(@)
+ Birsing + Bor?sin2¢ + - .

[219]
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The sign of the imaginary part in the ¢ was taken negative in order that all the signs
here should be positive. Thus the power series for f(z) yields for the values, on our
circle, of the real part u, thought of as a function of the angle ¢, a trigonometric
series of exactly the former sort, whose coefficients are o, r’ay, 1’ B,.

Of course, these values u will be analytic functions of ¢, in the sense of La-
grange, as long as the circle (7) lies entirely within the region of convergence of the
power series (1). But if we allow it to coincide with the “circle of convergence” of
the series (1), which bounds its entire region of convergence, then the series (1) and
consequently also the series (2) will not necessarily converge any longer. Meantime
it can happen that the series (2) continues to converge, in which case the boundary
values u (@) cannot be analytic functions in the sense of Dirichlet.

If we proceed conversely and assign to circle (r) an “arbitrary” distribution
of values u(y), which satisfy only the conditions of Dirichlet, then they can
be expanded into a trigonometric series of the form (2), so that the quantities
ag, A1, ..., B1, P2, ... and hence also the coefficients of the power series (1) (to
within an arbitrary additive constant — (i 8y)/2) will be determined. It can be shown
that this power series actually converges within the circle (r) and that the real part
of the analytic function which it determines has the values u(¢) as boundary values
on the circle (r), or, to be more exact, that it approaches the value u(¢) whenever a
point ¢ is approached for which u(¢) is continuous.

The proofs of these facts are all contained in the investigations concerning the
behaviour of power series on the circle of convergence. I cannot, of course, give
them here. But these remarks may serve to show how, in this way, the Fourier-
Dirichlet function concept and that of Lagrange merge into each other in that the
arbitrariness in the behaviour of the trigonometric series u(¢) on the boundary of
the circle is concentrated by the power series into the immediate neighbourhood of
the centre.

6. Modern science has not stopped with the formulation of these concepts. Sci-
ence never rests, even though the individual investigator may become weary. During
the last three decades mathematicians studying real functions, taking a standpoint
quite different from that of Dirichlet, have seized upon functions as much discon-
tinuous as possible, which, in particular, do not satisfy the Dirichlet conditions.
The most remarkable types of functions have been found, which contain the most
disagreeable singularities “balled into horrid lumps”. It becomes a problem then
to determine how far the theorems which hold for “reasonable” functions still have
validity for such abnormities.

7. In connection with this, there has arisen, finally, a still more far-reaching
entirely modern generalisation of the function concept. Up to this time, a function
was thought of as always defined at every point in the continuum made up of all
the real or complex values of x, or at least at every point in an entire interval or
region. But since recently the concept of sets, created by Georg Cantor, has made
its way more and more to the foreground, in which the continuum of all x is only
an obvious example of a “set” of points. From this new standpoint functions are
being considered, which are defined only for the points x of some arbitrary set, so
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that in general y is called a function of x when to every element of a set x of things
(numbers or points) there corresponds an element of a set y.

Let me point out at once a difference between this newest development and the
older one. The concepts considered under headings 1. to 5. have arisen and have
been developed with reference primarily to applications in nature. We need only
think of the title of Fourier’s work! But the newer investigations mentioned in 6.
and 7. are the result purely of the drive for mathematical research, which does not
care for the needs of exploring the laws of nature, and the results have indeed found
as yet no direct application. The optimist will think, of course, that the time for
such application is bound to come.

We shall now put our customary question as to what of all this should be taken
up by the schools. What should the teacher and what should the pupils know?

In this connection I should like to say that it is not only excusable but even de-
sirable that the schools should always lag behind the most recent advances of our
science by a considerable space of time, certainly several decades; that, so to speak,
a certain hysteresis should take place. But the hysteresis which actually exists at
the present time is in some respects unfortunately much greater. It embraces more
than a century, in so far as the schools, for the most part, ignore the entire devel-
opment since the time of Euler. There remains, therefore, a sufficiently large field
for the work of reform. And what we demand in the way of reform is really quite
modest, if you compare it with the present state of the science. We desire merely
that the general concept of function, according to the one or the other of Euler’s
understandings, should permeate as a ferment the entire mathematical teaching in
the secondary schools. It should not, of course, be introduced by means of ab-
stract definitions, but should be transmitted to the student as a living possession,
by means of elementary examples, such as one finds in large number in Euler. For
the teacher of mathematics, however, something more than this seems desirable, at
least a knowledge of the elements of complex function theory; and although I should
not make the same demand regarding the most recent conceptual developments in
the theory of sets, still it seems very desirable that among the many teachers there
should always be at least a small number who devote themselves to these things
with the thought of independent work.

Historical Importance of Trigonometric Series; the Role of Fourier

I should like to add to these last remarks a few words concerning the important role
that has been played in this entire development by the theory of trigonometric series.
You will find extensive references to the literature of the subject in Burkhardt’s
Entwicklungen nach oszillierenden Funktionen (especially in chapters 2, 3, 7), that
“giant report”, as his friends call it, which since 1901 has been appearing serially
in volume 10 of the Jahresbericht der deutschen Mathematikervereinigung'3?. Tt

132 Completed in two half volumes as Heft 2 of volume 10. Leipzig 1908. [A short summary
appeared in the Enzyklopddie der mathematischen Wissenschaften, vol. 2. Burkhardt’s report goes
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combines, in more than 9000 references, an amount of pertinent literature such as
you will hardly find elsewhere.

The first to detect the representation of general functions by means of trigono-
metric series was Daniel Bernoulli, the son of John Bernoulli. He noticed, about
1750, in his study of the acoustic problem of vibrating strings, that the general vi-
bration of a string could be represented by the superposition of those sine vibrations,
which corresponded to the fundamental tone and the pure overtones. That involves
precisely the expansion into a trigonometric series of the function, which represents
the form of the string.

Although advances were soon made in knowledge of these series, still no one
really believed that arbitrary functions graphically given, could be represented by
them. At bottom, here, there was an undefined presentiment of considerations,
which have become quite common to us now through set theory. Perhaps one as-
sumed, without, of course, being able to give precise expression to the feeling, that
the “set” of all arbitrary functions, even if discontinuities are excluded, was greater
than the “set” of all possible systems of numbers ag,ay,as, ..., b1, by, ..., which
represents the totality of trigonometric series.

Figure 93

It is only the precise concepts of the modern set theory that have cleared this
up, and have shown that that prejudice was false. Let me, at this place, elaborate
somewhat this important point. It is. easy to see that the entire shape of a continu-
ous function arbitrarily defined in a given interval, say from 0 to 2w, is completely
known if one knows its values at all the rational points of that interval (see Fig. 93).
For, since the set of these rational points is dense, we can effect an arbitrarily close
approximation for any irrational point, in terms of function values at rational ones,
so that, by virtue of the continuity of the function, the value of f(x) is known as
the limit of the function values at the approximating points. Furthermore, we know
that the set of all rational numbers is denumerable (see appendix II, p. [273]), i.e.,
that they can be arranged in a series, in which a definite first element is followed by
a definite second, this by a definite third, and so on. From this it follows, however,
that the assignment of the arbitrary continuous function means nothing more than
the assignment of an appropriate denumerable set of constants - the function val-
ues at the ordered rational points. But in exactly the same way, namely by means
of the denumerable series of constants ag, ay, by, az, b,, ..., we can assign a defi-

to 1850. The development from 1850 on is sketched by Emil Hilb and Frigyes Riesz in their article
in the Enzyklopddie, vol. 2, C 10.]
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nite trigonometric series, so that the doubt as to whether the totality of continuous
functions was, in the nature of things, essentially greater than that of the series,
is groundless. Similar considerations hold for functions which are discontinuous
but which satisfy the Conditions of Dirichlet. We shall have occasion later to give
detailed consideration to these matters.

The man who abruptly brushed aside all these misgivings was Fourier and it was
just this which made him so significant in the history of trigonometric series. Of
course, he did not base his conclusions on set theory, but he was the first one who
had the courage to believe in the general power of series for purposes of representa-
tion. Fortified by this belief he set up a number of series by actual calculation, using
characteristic examples of discontinuous functions, as we did a short time back. The
proofs of convergence, as we have noted, were first given later, by Dirichlet, who,
moreover, was a pupil of Fourier. This stand of Fourier’s had a revolutionary effect.
That it should be possible to represent by series of analytic functions such arbitrary
functions as these, which obeyed in different intervals such entirely different laws,
this was something quite new and unexpected to the mathematicians of that time.
In recognition of the disclosure of this possibility, the name of Fourier was given
to the trigonometric series which he employed, a name which has persisted to this
day. To be sure every such personal designation implies a marked one-sidedness,
even when it is not outright injustice.

In conclusion, I must mention briefly a second accomplishment of Fourier. He
considered, namely, also the limiting case of the trigonometric series when the pe-
riod of the function to be represented is allowed to become infinite. Since a function
with an infinite period is simply a non-periodic function, arbitrary along the entire
x-axis, this limiting case supplies a means of representing non-periodic functions.
The transition is brought about by introducing a linear transformation of the argu-
ment of the series, which effects a representation of functions with a period [ instead
of 27r, and then letting / become infinite. The series then goes over into the so called
Fourier integral

f(x) = [ [p(v) cosvx + ¥ (v)sinvx]dv,
0

when ¢(v), ¥ (v) are expressed in definite manner as integrals of the function f(x)
from —oo to +00. The new thing here is that the index v takes continuously all
values from O to oo, not merely the values 0, 1,2, ...; and that, correspondingly,
@(v)dv and ¥ (v)dv take the place of the coefficients a,,, b,,.

We shall now leave the elementary transcendental functions, which have hitherto
been our chief concern in our remarks on analysis, and go over to a new concluding
chapter.
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III. Concerning Infinitesimal Calculus Proper

Of course I shall assume that you all know how to differentiate and integrate, and
that you have frequently used both processes. We shall be concerned here solely
with more general questions, such as the logical and psychological foundations,
teaching, and the like.

1. General Considerations in Infinitesimal Calculus

I should like to make a general preliminary remark concerning the range of mathe-
matics. You can hear often from non mathematicians, especially from philosophers,
that mathematics consists exclusively in drawing conclusions from clearly stated
premises; and that, in this process, it makes no difference what these premises sig-
nify, whether they are true or false, provided only that they do not contradict one
another. But the researcher who has done productive mathematical work will talk
quite differently. In fact those persons are thinking only of the crystallized form
into which finished mathematical theories are finally cast. The researcher himself,
however, in mathematics, as in every other science, does not work in this rigorous
deductive fashion. On the contrary, he makes essential use of his phantasy and
proceeds inductively, aided by heuristic expedients. One can give numerous exam-
ples of mathematicians who have discovered theorems of the greatest importance,
which they were unable to prove. Should one, then, refuse to recognise this as a
great accomplishment and, in deference to the above definition, insist that this is
not mathematics, and that only the successors who supply polished proofs are do-
ing real mathematics? After all, it is an arbitrary thing how the word is to be used,
but no judgment of value can deny that the inductive work of the person who first
announces the theorem is at least as valuable as the deductive work of the one who
first proves it. For both are equally necessary, and the discovery is the presupposi-
tion of the later conclusion.

© Springer-Verlag Berlin Heidelberg 2016 225
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Emergence of the Infinitesimal Calculus by the Specificity
of Our Sense Intuition

It is precisely in the discovery and in the development of the infinitesimal calculus
that this inductive process, built up without compelling logical steps, played such a
great role; and the most effective heuristic aid was very often sense intuition. And I
mean here the immediate sense intuition, with all its inexactness, for which a curve
is a stroke of definite width, not the abstract intuition, which postulates a completed
passage to the limit, yielding a one-dimensional line. I should like to corroborate
this statement by outlining to you how the ideas of the infinitesimal calculus were
developed historically.

If we take up first the concept of an integral, we notice that it begins historically
with the problem of measuring areas and volumes (quadrature and cubature). The
abstract logical definition determines the integral fab f(x)dx, i.e., the area bounded
by the curve y = f(x), the x-axis, and the ordinates x = a,x = b, as the limit
of the sum of narrow rectangles inscribed in this area when their number increases
and their width decreases without bound. Sense intuition, however, makes it natural
to define this area, not as this exact limit, but simply as the sum of a large number
of quite narrow rectangles. In fact, the necessary inexactness of the drawing would
inevitably set bounds to the further narrowing of the rectangles (see Fig. 94).

12
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Figure 94

This naive method characterizes, in fact, the thinking of the greatest researchers
in the early period of infinitesimal calculus. Let me mention, first of all, Kepler who
in his Nova stereometria doliorum vinariorum'>* was concerned with the volumes
of bodies. His chief interest here was in the measuring of casks, and in determining
their most suitable shape. He took precisely the naive standpoint indicated above.

He thought of the volume of the barrel, as of every other body (see Fig. 95), as
made up of numerous thin leaves suitably ranged in layers, and considered it as the
sum of the volumes of these leaves, each of which was a cylinder. In a similar way
he calculated the simple geometric bodies, e. g., the sphere. He thought of this as
made up of a great many small pyramids with common vertex at the centre (see
Fig. 96). Then its volume, according to the well-known formula for the pyramid,
would be r/3 times the sum of the bases of all the small pyramids. By writing for

133 Linz on the Danube, 1615. German in Ostwalds Klassikern, No. 165. Leipzig, 1908.
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the sum of these little facets simply the surface of the sphere, or 47772, he obtained
dp3 /3, the correct formula for the volume.

Figure 95

Figure 96

Moreover, Kepler emphasizes explicitly the practical heuristic value of such con-
siderations, and refers, so far as rigorous mathematical proofs are concerned, to the
so-called method of exhaustion. This method, which had been used by Archimedes,
determines, for example, the area of the circle by following carefully the approx-
imations to the area by means of inscribed and circumscribed polygons with an
increasing number of sides. The essential difference between it and the modern
method lies in the fact that it tacitly assumes, as self-evident, the existence of a
number which measures the area of the circle, whereas the modern infinitesimal
calculus declines to accept this intuitive evidence, but has recourse to the abstract
concept of limit and defines this number as the limit of the numbers that measure
the areas of the inscribed polygons. Granted, however, the existence of this num-
ber, the method of exhaustion is an exact process for approximating to areas by
means of the known areas of rectilinear figures, one which satisfies rigorous mod-
ern demands. The method is, however, very tedious in many cases, and ill suited
to the discovery of areas and volumes. One of Archimedes writings'34, discovered
by Johan Ludvig Heiberg in 1906, shows, in fact, that he did not use the method of
exhaustion at all in his investigations. After he had first obtained his results by some
other method, he developed the proof by exhaustion in order to meet the demands
of that time as to rigour. For the discovery of his theorems he used a method which
included considerations of the centre of gravity and the law of the lever, and also
of intuition, such as, for example, that triangles and parabolic segments consist of
series of parallel chords, or that cylinders, spheres, and cones are made up of series
of parallel circular discs.

134 Already referred to on p. [80].
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Figure 97

Returning now to the seventeenth century, we find considerations analogous to
those of Kepler in the book of the Jesuit Bonaventura Cavalieri: Geometria indivisi-
bilibus continuorum nova quadam ratione promota'>> where he sets up the principle
called today by his name: Two bodies have equal volumes if plane sections equidis-
tant from their bases have equal areas. This principle of Cavalieri is, as you know,
much used in our schools. It is believed there that integral calculus can be avoided
in this way, whereas this principle belongs, in fact, entirely to the calculus. Its es-
tablishment by Cavalieri amounts precisely to this, that he thinks of both solids as
built up of layers of thin leaves which, according to the hypothesis, are congruent
in pairs, i.e., one of the bodies could be transformed into the other by translating
its individual leaves (see Fig. 97); but this could not alter the volume, since this
consists of the same summands before and after the translation.

Figure 98

Naive sense intuition leads in the same way to the derivative of a function, i. e.,
to the tangent to the curve. In this case, one replaces (and this is the way it was
actually done) the curve by a polygonal line (see Fig. 98), which has on the curve a
sufficient number of points, as vertices, taken close together. From the nature of our
sense intuition we can hardly distinguish the curve from this aggregate of points and
still less from the polygonal line. The fangent is now defined outright as the line
Jjoining two successive points, that is, as the prolongation of one of the sides of the
polygon. From the abstract logical standpoint, this line remains only a secant, no
matter how close together the points are taken; and the tangent is only the limiting
position approached by the secant when the distance between the points approaches
zero. Again, from this naive standpoint, the circle of curvature is thought of as the
circle, which passes through three successive polygon vertices, whereas the exact
procedure defines the circle of curvature as the limiting position of this circle when
the three points approach each other.

135 Bononiae, 1635. First edition, 1653.
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The force of conviction inherent in such naive guiding reflections is, of course,
different for different individuals. Some — and I include myself here — find them
very satisfying. Others, again, who are gifted only on the purely logical side,
find them thoroughly meaningless and are unable to see how anyone can consider
them as a basis for mathematical thought. Yet considerations of this sort have often
formed the beginnings of new and fruitful approaches.

Moreover, these naive methods always rise to unconscious importance whenever
in mathematical physic, mechanics, or differential geometry a preliminary theorem
is to be set up. You all know that they are very serviceable then. To be sure, the
pure mathematician is not sparing of his scorn on these occasions. When I was a
student it was said that the differential, for a physicist, was a piece of brass which
he treated as he did the rest of his apparatus.

In this connection, I should like to commend the Leibniz notation, the leading
one today, because it combines with a suitable suggestion of naive intuition, a cer-
tain reference to the abstract limit process, which is implicit in the concept. Thus,
the Leibniz symbol dy/dx, for the derivative, reminds one, first that it comes from
a quotient; but the d, as opposed to the A which is the usual symbol for finite dif-
ference, indicates that something new has been added, namely, the passage fo the
limit. In the same way, the integral symbol f ydx suggests the origin of the integral
from a sum of small quantities. However, one does not use the usual sign > for a
sum, but rather a conventionalized S*, which indicates here that something new has
entered the process of summation.

The Logical Foundation of Differential and Integral Calculus
by Means of the Limit Concept (Newton and His Successors
up to Cauchy)

We shall now discuss with some detail the logical foundation of differential and
integral calculus, and begin this by considering it in its historical development.
1. The principal idea, as the subject is taught, in general, in higher education

(I need only briefly to refresh your memory here) is that infinitesimal calculus is
only an application of the general notion of limit. The derivative is defined as the
limit of the quotient of corresponding finite increments of variable and function

dy . Ay

dx ~— AlylcrgoAx’ Ax #0
provided that this limit exists; and not at all as a quotient in which dy and dx have
an independent meaning. In the same way, the integral is defined as the limit of a
sum:

b
dx = li i - Ax;
fyax= jim3 - ax
a !

* It is remarkable that many are unaware that | has this meaning.
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where the Ax; are finite parts of the interval a = x = b, the y; corresponding
arbitrary values of the function in that interval, and all the Ax; are to converge
toward zero; but y dx does not have any actual significance as, say, a summand of
a sum. These designations are retained for the reasons of expediency which we
mentioned above.

2. The conception as we have thus characterized it is set forth in precise form
already by Newton himself. I refer you to a place in his principal work, the
Philosophiae Naturalis Principia Mathematica'3® of 1687: “Ultimae rationes illae,
quibuscum quantitates evanescunt, revera non sunt rationes quantitatum ultimarum,
sed limites, ad quos quantitatum sine limite descrescentium rationes semper ap-
propinquant, et quos propius assequi possunt, quam pro data quavis differentia,
nunquam vero transgredi neque prius attingere quam quantitates diminuuntur in
infinitum.” Moreover, Newton avoids the infinitesimal calculus, as such, in the
discussions in this work, although he certainly had used it in deriving his results.
For, the fundamental work in which he developed his method of infinitesimal cal-
culus was written in 1671, although it did not appear until 1736. It bears the title
Methodus Fluxionum et Serierum Infinitarum'>’.

In this, Newton develops the new calculus in numerous examples, without going
into fundamental explanations. He makes connection here with a phenomenon of
daily life, which suggests a passage to a limit. If one considers, namely, a motion
x = f(t) on the x-axis in the time ¢, then everyone has a notion as to what is meant
by the velocity of this motion. If we analyse this motion it turns out that we mean
the limiting value of the difference quotient Ax /At. Newton made this velocity of x
with respect to the time the basis of his developments. He called it the “fluxion” of x
and wrote it x. He considered all the variables x, y as dependent on this fundamental
variable 7, the time. Accordingly the derivative dy/dx appears as the quotient of
two fluxions y /X which we now should write more fully (dy/dt : dx/dt).

3. These ideas of Newton were accepted and developed by a long series of
mathematicians of the eighteenth century, who built up the infinitesimal calculus,
with more or less precision, upon the notion of limit. I shall select only a few names:
Colin Maclaurin, in his Treatise of Fluxions'*, which as a textbook certainly had
a wide influence; then Jean le Rond d’Alembert, in the great French Encyclopédie
Méthodique; and finally Abraham Gotthelf Kistner'??, in Gottingen, in his lecture
courses and books. Euler belongs primarily in this group although, with him, other
tendencies also came to the front.

4. It was necessary to fill out an essential gap in all these developments, be-
fore one could speak of a consistent system of infinitesimal calculus. To be sure,
the derivative was defined as a limit, but there was lacking a method for estimat-
ing, from it, the increment of the function in a finite interval. This was supplied

136 New edition by W. Thomson and H. Blackburn, Glasgow, 1871, p. 38.

137J. Newtoni, Opuscula Mathematica, philosophica, et philologica. vol. T, p. 29. Lausanne,
1744.

138 Edinburgh, 1742.

139 Abraham G. Kistner, A.G., Anfangsgriinde der Analysis des Unendlichen, Gottingen, 1760.
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by the mean value theorem; and it was Cauchy’s great service to have recognized
its fundamental importance and to have made it the starting point accordingly of
differential calculus. And it is not saying too much if, because of this, we adjudge
Cauchy as the founder of exact infinitesimal calculus in the modern sense. The fun-
damental work in this connection, based on his Paris lecture courses, is his Résumé
des Lecons sur le Calcul Infinitésimal'*, together with its second edition, of which
only the first part, Lecons sur le Calcul Différentiel**', was published.

The mean value theorem, as you know, may be stated as follows. If a continuous
function f(x) possesses a derivative [’(x) everywhere in a given interval, then there
must be a point x + Uh between x and x + h such that

F+h)y= f(x)+h- f(x +0h), 0 <9 <1).

Note here the appearance of that ¢, peculiar to the mean value theorems, and which
to beginners often seems so strange at first. Geometrically, the theorem is fairly
intuitive. It says, merely, that between the points x and x + h on the curve there is
a point x + Uh on the curve at which the tangent is parallel to the secant joining
the points x and x + h (see Fig. 99).

X T+ TR z

Figure 99

5. How can one give an exact arithmetic proof of the mean value theorem, with-
out appealing to geometric intuition? Such a proof could only mean, of course,
throwing the theorem back upon arithmetic definitions of variable, function, conti-
nuity etc., which would have to be set up in advance in abstract, precise form. For
this reason such a rigorous proof had to wait for Weierstraf3 and his followers, to
whom, also, we owe the spread of the modern arithmetic concept of the number
continuum. I shall try to give you the characteristic points of the argument.

xz E ) TR
Figure 100

140 Paris, 1823. Euvres complétes, 2nd series, vol. 4. Paris, 1899.
141 Paris, 1829. (Euvres complétes, 2nd series, vol. 4, Paris, 1899.
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In the first place, it is easy to make this theorem depend on the case where the
secant is horizontal, i.e. f(x) = f(x + h) (see Fig. 100). One must then prove
the existence of a place where the tangent is horizontal. To do this we can use the
theorem of Weierstraf3 that every function, which is continuous throughout a closed
interval, actually reaches a maximum, and also a minimum value, at least once
in that interval. Because of our assumption, one of these extreme values of our
function must lie within the interval (x, x + h), provided we exclude the trivial case
in which f(x) is a constant. Let us suppose that there is a maximum (the case of
a minimum is treated in the same way) and that it occurs at the place x + Jh. It
follows that f(x) cannot have larger values, either to the right or to the left, i.e.,
the difference quotient to the right is negative, or zero, and to the left, positive or
zero. Since the derivative exists, by hypothesis, at every point in the interval, its
value at x + ¥/ can be looked upon as the limit of values, which are either not
positive or not negative, according as one thinks of it as limit of a progressive or a
regressive quotient of differences. Therefore it must have the value zero, the tangent
at x = v'h is horizontal, and the theorem is proved.

The scientific mathematics of today is built upon the sequence of developments,
which we have been outlining. But an essentially different conception of infinitesi-
mal calculus has been running parallel with this through the centuries.

Construction of the Infinitesimal Calculus Based on
“Differentials” (Leibniz and His Followers)

1. This conception harks back to old metaphysical speculations concerning the
structure of the continuum according to which this is made up of ultimate indivis-
ible “infinitely small” parts. There were already, in ancient times, suggestions of
these indivisibles and they were widely cultivated by the scholastics and still further
by the Jesuit philosophers. As a characteristic example I recall the title of Cava-
lieri’s book, mentioned on p. 226 Geometria Indivisibilibus Continuorum Promota,
which indicates its true nature. As a matter of fact, he considers mathematical ap-
proximation in a secondary way only. He actually considers space as consisting
of ultimate indivisible parts, the “indivisibilia”. In this connection it would be in-
teresting and important to know the various analyses to which the notion of the
continuum has been subjected in the course of centuries (and milleniums).

2. Leibniz, who shares with Newton the distinction of having invented the in-
finitesimal calculus, also made use of such ideas. The primary thing for him was
not the derivative thought of as a limit. The differential dx of the variable x had

for him actual existence as an ultimate indivisible part of the axis of abscissas, as

a quantity smaller than any finite quantity and still not zero (“actually” infinitely
small quantity). In the same way, the differentials of higher order d*x,d>x, . ..
are defined as infinitely small quantities of second, third, ... order, each of which
is “infinitely small in comparison with the preceding”. Thus one had a series of



1. General Considerations in Infinitesimal Calculus 233

systems of qualitatively different systems of magnitudes. According to the theory
of indivisibles, the area bounded by the curve y = y(x) and the axis of abscissas is
the direct sum of all the individual ordinates. It is because of this view that Leibniz,
in his first manuscript on integral calculus (1675), writes [ y and not [ ydx.

This conception, however, is by no means the only one practiced by Leibniz.
Sometimes he uses the notion of mathematical approximation, where, for example,
the differential dx is a finite segment but so small that, for that interval, the curve
is not appreciably different from the tangent. The above metaphysical speculations
are surely only idealizations of this simple psychological fact here implied.

But there is a third direction for the mathematical ideas of Leibniz, one that is
especially characteristic of him. It is his formal conception. I have frequently re-
minded you that we can look upon Leibniz as the founder of formal mathematics.
His thought here is as follows. It makes no difference what meaning we attach to
the differentials, or whether we attach any meaning whatever to them. If we define
appropriate rules of operation for them, and if we employ these rules properly, it is
certain that something reasonable and correct will result. Leibniz refers repeatedly
to the analogy with complex numbers, concerning which he had corresponding no-
tions. As to these rules of operation for differentials he was concerned chiefly with
the formula

fx+dx)— f(x) = f'(x) - dx.

The mean value theorem shows that this is correct only if one writes f'(x + 9 -
dx) instead of f”(x); but the error which one commits by writing f’(x) outright is
infinitely small of higher (second) order, and such quantities should be neglected
(this is the most important formal rule) in operations with differentials.

The most important publications of Leibniz are contained in that famous first
scientific journal, the Acta Eruditorum'*?; in the years 1684, 1685, and 1712. In
the first volume, you find, under the title Nova methodus pro maximis et minimis
(p. 467 et seq.), the very first publication concerning differential calculus. In this
Leibniz merely develops the rules for differentiation. The later works give also ex-
positions of principles, where preference is given to the formal standpoint. In this
connection, the short article of the year 1712, one of the last years of his life,
was especially characteristic. In this he speaks outright of theorems and definitions
which are only “foleranter vera” or — in French — “passables”: “Rigorem quidem
non sustinent, habent tamen usum magnum in calculando et ad artem inveniendi
universalesque conceptus valent.” He has reference here to complex numbers as
well as to the infinite. If we speak, perhaps, of the infinitely small, then “commod-
itati expressionis seu breviloquio mentalis inservimus, sed non nisi toleranter vera
loquimur, quae explicatione rigidantur.”

142 Translated, in part, in Ostwalds Klassiker No. 162. Edited by Gerhard Kowalewski, Leipzig,
1908. Also in Leibniz, Mathematische Schriften. Edited by Carl Immanuel Gerhardt, from 1849
on.

143 Observatio . . . ; et de vero sensu Methodi infinitesimalis, p- 167-169.
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3. From Leibniz as centre the new calculus spread rapidly over the continent
and we find each of his three points of view represented. I must mention here the
first textbook of differential calculus that ever appeared, the Analyse des Infiniment
Petits pour I’Intelligence des Courbes'** by Marquis de 1’Hospital, a pupil of
Johann Bernoulli, who for his part, had absorbed the new ideas from Leib-
niz with surprising speed and had himself published the first textbook on the
integral calculus'*. Both books represent the conception of approximation math-
ematics. For example, a curve is thought of as a polygon with short sides, a
tangent as the prolongation of one of these sides. In Germany, the differen-
tial calculus according to Leibniz was spread widely by Christian Wolff, of
Halle, who published the contents of his lecture courses in Elementa mathe-
seos universae'. He introduces the differentials of Leibniz immediately, at
the beginning of the differential calculus, although he emphasizes expressly
that they have no real equivalent of any kind. And, indeed, as an aid to our
intuition he develops his views concerning the infinitely small in a manner
which savours thoroughly of mathematics of approximation. Thus he says,
by way of example, that for purposes of practical measurement, the height
of a mountain is not noticeably changed by adding or removing a particle of
dust.

4. You will also frequently find the metaphysical view, which ascribes an actual
existence to the differentials. It has always had supporters, especially on the philo-
sophical side, but also among mathematical physicists. One of the most prominent
here is Simeon-Denis Poisson, who, in the preface to his celebrated Traite de Mé-
canique'*’, expressed himself in a very crass manner to the effect that the infinitely
small magnitudes are not merely an aid in investigation but that they have a thor-
oughly real existence.

5. Due probably to the philosophic tradition, this conception went over into text-
book literature and plays a marked rdle there even today. As an example, I mention
the textbook by Heinrich Liibsen Einleitung in die Infinitesimalrechnung'*®, which
appeared first in 1855 and which had for a long time an extraordinary influence
among a large part of the public. Everyone, in my day, certainly had Liibsen’s book
in his hand, either when he was a pupil, or later, and many received from it the
first stimulation to further mathematical study. Liibsen defined the derivative first
by means of the limit notion; but along side of this he placed (since the second edi-
tion) what he considered to be the true infinitesimal calculus — a mystical scheme
of operating with infinitely small quantities. These chapters are marked with an
asterisk to indicate that they bring nothing new in the way of result. There, the
differentials are introduced as ultimate parts which arise, for example, by continued

144 paris, 1696; second edition, 1715.

145 [Translated in Ostwalds Klassiker No. 194. Edited by Gerhard Kowalewski. Johann Bernoulli’s
Differentialrechnung was discovered and discussed a short time ago by Paul Schafheitlein. Ver-
handlungen der Naturforscher-Gesellschaft in Basel, vol. 32 (1921).]

146 Appeared first in 1710. — Editio nova Hallae, Magdeburgiae, 1742, p. 545.

147 Part T, second edition, p. 14. Paris, 1833.

148 Eighth edition, Leipzig, 1899.
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halving of a finite quantity an infinite, non assignable number of times; and each
of these parts “although different from absolute zero is nevertheless not assignable,
but an infinitesimal magnitude, a breath, an instant”. And then follows an English
quotation: “An infinitesimal is the ghost of a departed quantity” (p. 59, 60)!*°. Then
in another place (p. 76): “The infinitesimal method is, as you see, very subtle, but
correct. If this is not manifest from what has preceded, together with what follows,
it is the fault only of inadequate exposition.” It is certainly very interesting to read
these passages.

As companion piece to this I put before you the sixth edition of the widely used
Lehrbuch der Experimentalphysik by Adolf Wiillner'>°. The first volume contains
a brief preliminary exposition of infinitesimal calculus for the benefit of those stu-
dents of natural science or medicine who have not acquired, at the Gymnasium, that
knowledge of calculus, which is indispensable for physics. Wiillner begins (p. 31)
with the explanation of the meaning of the infinitely small quantity dx, later follows
with the explanation for the second differential d*x, which, of course, is more dif-
ficult. T urge you to read this introduction with the eye of the mathematician and
to reflect upon the absurdity of suppressing infinitesimal calculus in the schools be-
cause it is too difficult, and then of expecting a student in his first semester to gain
an understanding of it from this ten page presentation, which is not only far from
satisfying, but very hard to read!

The reason why such reflections could so long hold their place abreast of the
mathematically rigorous method of limits, must be sought probably in the widely
spread need of achieving a deeper feeling, beyond the abstract logical formula-
tion of the method of limits, of the intrinsic nature of continuous magnitudes, and
of forming more definite representations of them than were supplied by empha-
sis solely upon the psychological moment which determined the concept of limit.
There is one formulation, which is characteristic, which is due, I believe, to the
philosopher Georg W. F. Hegel, and which formerly was frequently used in text-
books and lectures. It declares that the function y = f(x) represents the being,
the derivative dy [dx, however, the becoming of things. There is assuredly some-
thing impressive in this, but one must recognize clearly that such words do not
promote further mathematical development because this must be based upon precise
concepts.

149 Berkeley’s original is (at the end of his section XXXV): “They are neither finite Quantities
nor Quantities infinitely small, nor yet nothing. May we not call them the Ghosts of departed
Quantities?”

130 Leipzig, 1907.

[234]



[235]

[236]

236 III.  Concerning Infinitesimal Calculus Proper

The Actual Infinitely Small Quantities
in the Axiomatics of Geometry

In the most recent mathematics, “actually” infinitely small quantities have come to
the front again, but in entirely different context, namely in the geometric investiga-
tions of Giuseppe Veronese and also in Hilbert’s Grundlagen der Geometrie'>'. The
guiding thought of these investigations can be stated briefly as follows: A geometry
is considered in which by indicating x = a (a an ordinary real number) not only
one point on the x-axis is determined, but infinitely many points, whose abscissas
differ by finite multiples of infinitely small quantities of different orders 1,¢,... A
point is thus determined only when one assigns

x=a+bn+cl+---,

where a, b, c,... are ordinary real numbers, and the n,,... actually infinitely
small quantities of decreasing orders. Hilbert uses this guiding idea by subjecting
these new quantities 7, ¢, ... to such axiomatic assumptions as will make it evident
that one can operate with them consistently. To this end it is of chief importance
to determine appropriately the relation as to size between x and a second quantity
x1 = a;+bin+ci¢+---. The first assumption is that x > or < x; ifa > or < ay;
but if @ = a,, the determination as to size rests with the second coefficient, so that
X 2 Xy according as b Z by; and if, in addition, b = by, the decision lies with
the c, etc. These assumptions will be clearer to you if you refrain from attempting
to associate with the letters any sort of concrete representation.

Now it turns out that, after imposing upon these new quantities these rules, to-
gether with certain others, it is possible to operate with them as with finite numbers.
One essential theorem, however, which holds in the system of ordinary real num-
bers, now loses its validity, namely the theorem: Given two positive numbers e, a,
it is always possible to find a finite integer n such that n - e > a, no matter how
small e is nor how large a may be. In fact, it follows immediately from the above
definition that an arbitrary finite multiple n-n of n is smaller than any positive finite
number a, and it is precisely this property that characterizes the 1 as an infinitely
small quantity. In the same way n - { < 7, that is, { is an infinitely small quantity of
higher order than 7.

This number system is called non-Archimedean. The above theorem concerning
finite numbers is called, namely, the axiom of Archimedes, because he emphasised
it as an unprovable assumption, or as a fundamental one which did not need proof,
in connection with the numbers which he used. The denial of this axiom charac-
terises the possibility of actually infinitely small quantities. The name Archimedean
axiom, however, like most personal designations, is historically inexact. Euclid
gave prominence to this axiom more than half a century before Archimedes; and it
is said not to have been invented by Euclid, either, but, like so many of his theorems,
to have been taken over from Eudoxus of Knidos. The study of non-Archimedean

5T Fifth edition, Leipzig, 1922.
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quantities'>?, which have been used especially as coordinates in setting up a non-
Archimedean geometry, aims at deeper knowledge of the nature of continuity and
belongs to the large group of investigations concerning the logical dependence of
different axioms of ordinary geometry and arithmetic. For this purpose, the method
is always to set up artificial number systems for which only a part of the axioms
hold, and to infer the logical independence of the remaining axioms from these.

The question naturally arises whether, starting from such number systems, it
would be possible to modify the traditional foundations of infinitesimal calculus, so
as to include actually infinitely small quantities in a way that would satisfy modern
demands as to rigour; in other words, to construct a non-Archimedean analysis.
The first and chief problem of this analysis would be to prove the mean value
theorem

S +h)—f(x)=h-f'(x+0h)

from the assumed axioms. I will not say that progress in this direction is impossible,
but it is true that none of the many researchers who have busied themselves with
actually infinitely small quantities have achieved anything positive.

I remark for your orientation that, since Cauchy’s time, the words infinitely small
are used in modern textbooks in another sense. One never says, namely, that a
quantity is infinitely small, but rather that it becomes infinitely small; which is only
a convenient expression implying that the quantity decreases without bound toward
Zero.

We must bear in mind the reaction, which was evoked by the use of infinitely
small quantities in infinitesimal calculus. People soon sensed the mystical, the un-
proven, in these ideas, and there arose often a prejudice, as though the differential
calculus were a particular philosophical system which could not be proved, which
could only be believed or, to put it bluntly, a fraud. One of the keenest critics, in this
sense, was the philosopher Bishop George Berkeley, who in the little book The An-
alyst'> assailed in an amusing manner the lack of clearness which prevailed in the
mathematics of his time. Claiming the privilege of exercising the same freedom in
criticizing the principles and methods of mathematics, “which the mathematicians
employed with respect to the mysteries of religion”, he launched a violent attack
upon all the methods of the new analysis, the calculus with fluxions as well as the
operation with differentials. He came to the conclusion that the entire structure of
analysis was obscure and thoroughly unintelligible.

Similar views have often maintained themselves even up to the present time,
especially on the philosophical side. This is due, perhaps, to the fact that acquain-
tance here is confined to the operation with differentials; the rigorous method of
limits, a rather recent development, has not been comprehended. As an example,
let me quote from Johann Julius Baumann’s Raum, Zeit und Mathematik>* which

152 [The so-called horn-shaped angles, known already to Euclid, are examples of non-Archimedean

quantities. Compare also the excursus, in the second volume of this work, after the critique of
Euclid’s Elements.]

153 ondon, 1734.

134 Vol. 2, p. 55, Berlin, 1869.
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appeared in the sixties: “Thus we discard the logical and metaphysical justification,
which Leibniz gave to calculus, but we decline to touch this calculus itself. We look
upon it as an ingenious invention, which has turned out well in practice; as an art
rather than a science. It cannot be constructed logically. It does not follow from the
elements of ordinary mathematics...”

The Reaction: the Derivative Calculus of Lagrange

This reaction against differentials accounts also for the attempt by Lagrange, al-
ready mentioned, but appearing now in a new light, in his Théorie des Fonctions
Analytiques, published in 1797, to eliminate from the theory not only infinitely
small quantities, but also every passage to the limit. He confined himself, namely,
to those functions, which are defined by power series

f(X) =ag+aix +ax* +asx® + -+,

and he defines formally the “derived function f”(x)” (he avoids characteristically
the expression derivative and the sign dy/dx) by means of a new power series

f'(x) =ay +2arx +3azx* +--- .

Consequently he talks of derivative calculus instead of differential calculus.

This presentation, of course, could not be permanently satisfactory. In the first
place, the concept of function used here is, as we have shown, much too limited.
More than that, however, such thoroughly formal definitions make a deeper compre-
hension of the nature of the differential coefficient impossible, and take no account
of what we called the psychological moment — they leave entirely unexplained just
why one should be interested in a series obtained in such a peculiar way. Finally,
one can get along without giving any thought to a limit process only by disregarding
entirely the convergence of these series and the question within what limits of error
they can be replaced by finite partial sums. As soon as one begins a consideration
of these problems, which is essential, of course, for any actual use of the series,
it is necessary to have recourse precisely to that concept of limit, the avoidance of
which was the purpose of inventing the system.

It would be fitting, perhaps, to say a few words about the differences of opin-
ion concerning the foundations of calculus, as these come up, even today, beyond
the narrow circle of professional mathematicians. I believe that we can often find
here the preliminary conditions for an agreement, in considerations very similar to
those, which we set forth respecting the foundations of arithmetic (p. [15] et seq.).
In every discipline of mathematics one must separate sharply the question as to the
inner logical consistency of its structure from that as to the justification for applying
its axiomatically and (so to speak) arbitrarily formulated concepts and theorems to
objects of our external or internal perception. Georg Cantor'> makes the distinc-
tion, with reference to integer numbers, between immanent reality, which belongs

155 Mathematische Annalen, vol. 21 (1883), p. 562.
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to them by virtue of their logical definability, and transient reality, which they pos-
sess by virtue of their applicability to concrete things. In the case of infinitesimal
calculus, the first problem is completely solved by means of those theories, which
the science of mathematics has developed in logically complete manner (through
the use of the limit concept). The second question belongs entirely to the theory
of knowledge, and the mathematician contributes only to its precise formulation by
separating the first part and solving it. No pure mathematical work can, from its
very nature, supply any immediate contribution to the solution of the epistemolog-
ical part. (See the analogous remarks on arithmetic, p. [15] et seq.) All disputes
concerning the foundations of infinitesimal calculus labour under the disadvantage
that these two entirely different phases of the problem have not been sharply enough
separated. In fact, the first, the purely mathematical part, is established here pre-
cisely as in all other branches of mathematics, and the difficulties lie in the second,
the philosophical part. The value of investigations which press forward in this sec-
ond direction take on especial importance in view of these considerations; but it
becomes imperative to make them depend upon exact knowledge of the results of
the purely mathematical work upon the first problem.

I am concluding with this excursus of our short historical sketch of the develop-
ment of infinitesimal calculus. In it I was obliged of course to confine myself to an
emphasis of the most important guiding ideas. It should be extended, naturally, by
a thorough-going study of the entire literature of that period. You will find many
interesting references in the lecture given by Max Simon at the Frankfurt meeting
of the natural scientists of 1896: Zur Geschichte und Philosophie der Differential-
rechnung.

Form and Importance of the Infinitesimal Calculus
in the Present State of Teaching

If we now examine, finally, the attitude towards infinitesimal calculus in school
teaching, we shall see that the entire course of its historical development is mirrored
there to a certain extent. In earlier times, when infinitesimal calculus was taught in
the schools, there existed by no means a clear notion of its exact scientific structure
as based on the method of limits. At least this was manifest in the textbooks, and it
was doubtless the same in teaching itself. This method cropped up in a vague way
at most, whereas operations with infinitely small quantities and sometimes also
derivative calculus, in the sense of Lagrange, came to the front. Such instruction,
of course, lacked not only rigour but intelligibility as well, and it is easy to see
why a marked aversion arose to the treatment of infinitesimal calculus at all in the
schools. This culminated in the seventies and eighties in an official order forbidding
this instruction even in the “realist” school types.

To be sure this did not entirely prevent (as I indicated earlier) the use of the limit
method in the schools, where it was necessary — one merely avoided that name, or
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one even thought sometimes that something else was being taught. I shall mention
here only three examples, which most of you will recall from your school days.

a) The well-known calculation of the perimeter and the area of the circle by
an approximation, which uses the inscribed and circumscribed regular polygons is
obviously nothing but an integration. It was employed, even in ancient times, and
was used particularly by Archimedes; in fact, it is owing to this classical heritage
that is has been retained in the schools.

b) Instruction in physics, and particularly in mechanics, necessarily involves the
notions of velocity and acceleration, and their use in various deductions, including
the laws of falling bodies. But the derivation of these laws is essentially identical
with the integration of the differential equation z"” = g by means of the function
z= % gt +at + b, where a, b are constants of integration. The schools must solve
this problem, under pressure of the demands of physics, and the means, which they
employ are more or less exact methods of integration, of course disguised.

¢) In many North German schools the theory of maxima and minima was taught
according to a method which bore the name of Karl Heinrich Schellbach, the promi-
nent mathematical pedagogue of whom you all must have heard. According to this

method one puts
(f(x) - f(xn) i

X — X1

lim

X—X]
in order to obtain the extremes of the function y = f(x). But that is precisely
the method of differential calculus, only that the word “Differentialquotient” is not
used. It is certain that Schellbach used the above expression only because differen-
tial calculus was prohibited in the schools and he nevertheless did not want to miss
these important notions. His disciples, however, took it over unchanged, called it by
his name, and so it came about that methods, which Fermat, Leibniz, and Newton
had possessed were put before the pupils under the name of Schellbach!

Let me now indicate, finally, the attitude toward these things of our reform
tendency, which is now gaining ground more and more in Germany, as well as
elsewhere, especially in France, and which we hope will dominate the mathemati-
cal teaching of the next decades. We desire that the concepts which are expressed
by the symbols y = f(x),dy/dx, [ ydx be made familiar to pupils, under these
designations, not, indeed, as a new abstract discipline, but as an organic part of the
total teaching, and that one advance slowly, beginning with the simplest examples.
Thus one might begin, with pupils of the age of fourteen and fifteen (Obertertia and
Untersekunda), by treating extensively the functions y = ax +b (a, b definite num-
bers) and y = x2, drawing them on millimetre paper, and letting the concepts slope
and area arise slowly by these means. But one should hold to concrete examples.
During the last three years (Oberstufe of the Gymnasia) this knowledge could be
systematised, the result being that the pupils would come into complete possession
of the elements of infinitesimal calculus. Tt is essential here to make it clear to the
pupil that he is dealing, not with something mystical, but with simple things that
anyone can understand.

The irrefutable necessity of such reforms lies in the fact that they are concerned
with those mathematical notions, which govern completely the applications of
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mathematics today in every possible field, and without which all studies in higher
education, even the simplest studies in experimental physics, are suspended in mid
air. I can be content with these few hints, chiefly because this subject is fully
discussed in Klein-Schimmack (referred to on p. [3]).

In order to supplement these general considerations with something, which again
is concrete I shall now discuss in some detail an especially important subject in
infinitesimal calculus.

2. Taylor’s Theorem

I shall proceed here in a manner analogous to the plan I followed with trigono-
metric series. I shall depart, namely, from the usual treatment in the textbooks by
bringing to the foreground the finite series, so important in practice, and by aiding
the intuitive grasp of the situation by means of graphs. In this way it will all seem
elementary and easily comprehensible.

The First Parabolas of Osculation

J*Bf

&y}

> T

Figure 101

We begin with the question whether we can make a suitable approximation to the
shape of an arbitrary curve y = f'(x), for a short part of it, by means of curves of the
simplest kind. The most obvious thing is to replace the curve in the neighbourhood
of a point x = a by its rectilinear tangent

y =A+ Bx,

just as in physics and in other applications, we often discard the higher powers of
the independent variable in a series expansion (see Fig. 101). In a similar man-
ner we can obtain better approximations by making use of parabolas of second,
third, ... order

y=A+Bx—|—Cx2, y=A+Bx+Cx2+Dx3,...

or, in analytic terms, by using polynomials of higher degree. Polynomials are espe-
cially suitable because they are so easy to calculate. We shall give all these curves
a special position, so that at the point x = a they snuggle as close as possible to
the curve, i.e., so that they shall be parabolas of osculation. Thus the quadratic
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parabola will coincide with y = f(x) not only in its ordinate but also in its first
and second derivatives (i.e., it will “osculate”). A simple calculation shows that the
analytic expression for the parabola having osculation of order n will be

y= @+ L

n=12.3,..)

(x—a)+

f"(a)
1-

")

_ n
T2 a9

(x—a)y+--+

and these are precisely the first n + 1 terms of Taylor’s series.
The investigation as to whether and how far these polynomials represent usable
[242] curves of approximation will be started by a somewhat experimental method, such
as we used in the case (p. [209]) of the trigonometric series. I shall show you a few
drawings of the first osculating parabolas of simple curves, which were made'>® by
Schimmack. The first are the four following functions, all having a singularity at
x = —1, drawn with their parabolas of osculation at x = 0 (see Figs. 102, 103,

104, 105).

Figure 102
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Figure 103

156 Four of these drawings accompanied Schimmack’s report on the Gottingen vacation course,
Easter, 1908: Uber die Gestaltung des mathematischen Unterrichts im Sinne der neueren Re-
formideen, Zeitschrift fiir den mathematischen und naturwissenschaftlichen Unterricht, vol. 39
(1908), p. 513; also separate reprints. Leipzig, 1908.
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Figure 104
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Figure 105
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In the interval (—1, +1) the osculating parabolas approach the original curve more
and more as the order increases; but to the right of x = +1 they deviate from it
increasingly, now above, now below, in a striking way.

At the singular point x = —1, in cases 1, 3, 4, where the original function
becomes infinite, the ordinates of the successive parabolas assume always greater
values. In case 2, where the branch of the original curve which appears in the
drawing, ends in x = —1 at a vertical tangent, all the parabolas extend beyond this
point but approach the original curve more and more at x = —1, by becoming ever
steeper. At the point x = +1, symmetrical to x = —1, the parabolas in the first two
cases approach the original curve more and more closely. In case 3, their ordinates
are alternately equal to 1 and 0, while that of the original curve has the value %
In case 4, finally, the ordinates increase indefinitely with the order, and alternate in
sign.

We shall examine, now, sketches of the osculating parabolas of two integer tran-
scendental functions (see Fig. 106, 107)

5 o X X X
e = +1—!+2—!+?+ ,
x3 Xt X7
6 smx%x—y—l-s—! 74—

[244] You notice that as their order increases, the parabolas give usable approximations
to the original curve for a greater and greater interval. It is especially striking in the
case of sin x how the parabolas make the effort to share more and more oscillations
with the sine curve.

I call your attention to the fact that the drawing of such curves in simple cases
is perhaps a suitable topic even for the schools. After we have thus assembled our
experimental material we must consider it mathematically.

x
:_.'! ;’I F

Figure 106
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Increasing the Order: Questions of Convergence

After having thus collected material from experience we have now to approach the
mathematical investigation. The first question here is the extremely important one
in practice as to the exactness with which the n-th parabola of osculation represents
the original curve. This implies an estimate of the remainder for the values of the
ordinate, and is connected naturally with the passage of n to infinity. Can the curve
be represented exactly, at least for a part of its course, by an infinite power series?

It will be sufficient to state the commonest of the theorems concerning the re-
mainder:

(x —

Ry(x) = f(x) - f(a)+—f()+ I 1)

| f(” D)y .

The proof of the theorem is given in all the books and I shall revert to it later,
anyway, from a more general standpoint. The theorem is: There is a value & between
a and x such that R, can be represented in the form

Ryr) = =4 )f(”)(é) @<k <x).

The question as to the justification of the transition to an infinite series is now re-
duced to that as to whether this R, (x) has the limit O or not when n becomes infinite.

Returning to our examples, it appears, as you can verify by reading in any text-
book, that in cases 5 and 6 the infinite series converges for all values of x. In cases
1 to 4, it turns out that the series converges, between —1 and +1, to the original
function, but that it diverges outside this interval. For x = —1 we have, in case 2,
convergence to the function value; in cases 1, 3, 4, the limiting value of the series
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as well as that of the function is infinite, so that one could speak of convergence
here also, but it is not customary to use this word with a series that has a definitely
infinite limit. For x = 41, finally, we have convergence in the first two examples,
divergence in the last two. All this is in fullest agreement with our figures.

We may now raise the question, as we did with the trigonometric series, as to
the limit values toward which the approximating parabolas converge, thought of as
complete curves. They cannot, of course, break off suddenly at x = +1. For the
case of log(1 + x) I have sketched for you the limit curve (Fig. 108). The even and
odd parabolas have different limiting positions, (indicated in the figure by dashes
and dots) which consist of the logarithm curve between —1 and +1 together with
the lower and upper portions, respectively, of the vertical line x = +1. The other
three cases are similar.

e

Figure 108

The theoretical consideration of Taylor’s series cannot be made complete with-
out going over to the complex variable. It is only then that one can understand the
sudden ceasing of the power series to converge at points where the function is en-
tirely regular. To be sure, one might be satisfied, in the case of our examples, by
saying that the series cannot converge any farther to the right than to the left, and
that the convergence must cease at the left because of the singularity at x = —1.
But such reasoning would no more fit a case like the following. The Taylor’s series
expansion for the branch of tan~! x, which is regular for all real x

tan_lx%x—x—g)—l—x—s——i—u'
3 5
converges only in the interval (—1, 41), and the parabolas of osculation converge
alternately to two different limiting positions (see Fig. 109). The first consists, in
the figure, of the long dotted parts of the vertical lines x = +1, x = —1 together
with the portion of the inverse tangent'>” curve lying between these verticals. The

157 [Translator’s note: Inverse tangent also called arc tangent. See Klein’s explanation in the part

on trigonometric functions.]
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second limiting position is obtained from the first by taking the short dotted parts of
the vertical lines instead of the long dotted parts. The convergence is toward the first
of these limit curves when we take an odd number of terms in the series, toward the
second when we take an even number. In the figure, the long dotted curve represents
y = x—x3/3+x%/5, the short dotted curve is y = x —x?/3. The sudden cessation
of convergence at the thoroughly regular points x = =1 is incomprehensible if
we limit ourselves to real values of x regarding the behaviour of the function. The
explanation is to be found in the important theorem on the circle of convergence, the
most beautiful of Cauchy’s function-theoretic achievements, which can be stated as
follows. If one marks on the complex x-plane all the singular points of the analytic
Sfunction f(x), when f(x) is single-valued, and on the Riemann surface belonging
to f(x) when f(x) is many-valued, then the Taylor’s series corresponding to a
regular point x = a converges inside the largest circle, which one can place on the
respective sheet of the Riemann surface in such a manner about a that no singular
point lies in its interior (i.e., so that at least one singular point lies on its periphery).
The series converges for no point outside this circle (see Fig. 110).
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Now our example tan~! x has, as you know, singularities at x = =i, and the
circle of convergence of the expansion in powers of x is consequently the unit circle
about x = 0. The convergence must cease therefore at x = =1, since the real axis
leaves the circle of convergence at these points (see Fig. 111).

*L

Figure 111

Finally, as to the convergence of the series on the unit circle itself, I shall give you
the reference, which came up when we were talking about the connection between
power series and trigonometric series. The convergence depends upon whether or
not the real and the imaginary part of the function, in view of the singularities that
must necessarily exist on the circle of convergence, can be expanded there into a
convergent trigonometric series or not.

Generalising Taylor’s Theorem to a Theorem of Finite Differences

I should like now to enliven the discussion of Taylor’s theorem by showing its re-
lations to the problems of interpolation and of finite differences. There, also, we
are concerned with the approximation to a given curve by means of a parabola.
But instead of trying to make the parabola snuggle as closely as possible at one
point, we require it to cut the given curve in a number of pre-assigned points; and
the question is, again, as to how far this “interpolation parabola” gives a reason-
able approximation. In the simplest case, this amounts to replacing the curve by a
secant instead of the tangent (see Fig. 112). Similarly one passes a quadratic
parabola through three points of the given curve, then a cubic parabola through
four points, and so on.

T

=T

Figure 112

This is a natural way of approaching interpolation, one that is very often em-
ployed, e.g., in the use of logarithmic tables. There we assume that the logarithmic
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curve runs rectilinearly between two given tabular values and we interpolate “lin-
early” in the well known way, which is facilitated by the “difference tables”. If this
approximation is not close enough, we apply quadratic interpolation.

From this broad statement of the general problem, we get a determination of the
osculating parabolas in Taylor’s theorem as a special case, that is, when we simply
allow the intersections with the interpolation parabolas to coincide in one point. To
be sure, the replacing of the curve by these osculating parabolas is not properly
expressed by the word “interpolation”, except that one includes “extrapolation” in
the problem of interpolation. For example, the curve is compared not only with
the part of the secant lying between its points of intersection, but also with the part
beyond. For the entire process the comprehensive word approximation seems more

suitable.
W

[ i Ln

Figure 113

I shall now give the most important formulas of interpolation. Let us first deter-
mine the parabolas of order n — 1 which cut the given function in the points x =
a,day,...,ay, thatis, whose ordinates in these points are f(a;), f(az),..., f(a,),
(see Fig. 113). This problem, as you know, is solved by Lagrange’s interpolation
formula

_ (—ay)(x—a3)---(x —ay)
= - f (@)
(a1 —az) (a1 —az) -+ (a1 —ay)
1 (x —ap) (x —az)---(x —ay,)
M + f (@)
(a2 —ay) (a2 —az) -+~ (ax — ay)
+ ....................................
It contains n terms with the factors f(a,), f(az), ..., f(a,). The numerators lack
in succession the factors (x — ay), (x — a3),...,(x —a,). Itis easy to verify the

correctness of the formula. For, each summand of y, and hence y itself, is a poly-
nomial in x of degree n — 1. If we put x = a; all the fractions vanish except the
first, which reduces to 1, so that we get y = f(a;). Similarly we get y = f(as)
for x = a,, etc.

From this formula it is easy to derive, by specialization, one that is often called
Newton’s formula. This has to do with the case where the abscissas ay, ..., a, are
equidistant (see Fig. 114). As the notation of the calculus of finite differences is
advantageous here we shall first introduce it.
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Figure 114

Let Ax be any increment of x and let A f(x) be the corresponding increment of
f(x) so that

flx+ Ax) = f(x) + Af(x).
Now A f(x) is also a function of x which, if we change x by Ax, will have a definite
difference called the second difference, Azf (x), so that

Af(x + Ax) = Af(x) + A% f(x).
In the same way we have
A’ f(x + Ax) = A’ f(x) + A3 f(x), etc.

This notation is precisely analogous to that of differential calculus, except that one
is concerned here with finite quantities and there is no passing to the limit.

From the above definitions of differences there follows at once for the values of
f at the successive equidistant places

fx+A4x) = f(x) +Af(x),
f(x+24Ax)= f(x + Ax) + Af (x + Ax)
= f(x) +24f(x) + A f(x),
f(x+3Ax)= f(x +2Ax) + Af (x + 2Ax)
= f(x) +3Af(x) +3A%f(x) + AP f(x),
f(x+4Ax)= f(x) +4Af(x) + 6A% f(x) +44°% f(x) + A* f(x)

This table could be continued, the values at equidistant points being expressed by
means of successive differences taken at the initial point x and involving the bino-
mial coefficients as factors.

Newton’s formula for the interpolation parabola of order (n — 1) belonging to
the n equidistant points of the x-axis,

2

ay=a, a=a+ Ax, ..., a,=a+ n—-1)Ax,
that is, which has at these points the same ordinates as f(x), will be
(x—a)Af(a)  (x—a)(x—a—Ax) A*f(a)
y = fla)+ + 5
1! Ax 2! (Ax)
+(x—a)(x—a—Ax)---(x—a —(n—2) Ax) A" f(a)
(n—1)! (Ax)"™!
This is, in fact, a polynomial in x of order n — 1. For x = a it reduces to f(a);
for x = a + Ax all the terms, except the first two, become zero and there remains

y = f(a) + Af(a), which by (2) is equal to f(a + Ax); and so on. Thus the
table (2) yields a polynomial, which assumes the correct values at all the » points.

3)
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Cauchy’s Estimate of the Error

If we wish to use this interpolation formula to real advantage, however, we must
know something as to the correctness with which it represents f(x), that is, we must
be able to estimate the remainder. Cauchy gave'>® the formula for this in 1840, and
I should like to derive it. I shall start from the more general Lagrange formula. Let
x be any value between the values ay, a», ..., a,, or beyond them (interpolation or
extrapolation). We denote by P(x) the ordinate of the interpolation parabola given
by the formula and by R(x) the remainder

“) J(x) = P(x) + R(x).

According to the definition of P(x) the remainder R vanishes for x = ay, as, ..., a,
and we therefore set

—a) (x —ax)---(x —ay)

Rix) = - n!

¥ (x).

It is convenient to take out the factor n! Then it turns out, in complete analogy with
the remainder term of Taylor’s series, that ¥ (x) is equal to the n-th derivative of
[f(x) taken for a value x = & lying between the n — 1 points ay, a,, ..., a,, x. This
assertion that the deviation of f(x) from the polynomial of order n — 1 depends upon
the entire course of the function f”)(x) seems entirely plausible, if we reflect that
f(x) is equal to that polynomial when f)(x) vanishes.

As to the proof of the remainder formula, we derive it by the following device.
Let us set up, as a function of a new variable z, the expression

(z—a)(z—a)) - (z—ay)
n!

F(z) = f(z) = P(2) - v (x),

where the variable x remains as a parameter in ¥ (x). Now F(a;) = F(ay) =
-+ = F(ay) = 0,since P(a1) = f(a1). P(a2) = f(a2)...., P(ay) = f(ay) by
definition. Furthermore F(x) = 0 because the last summand goes over into R(x),
for z = x, so that the right side vanishes by (4). We know, therefore, n 4 1 zeros
Z =ai,da,...,dy,,x,of F(z). Now apply the extended mean value theorem, which
one gets by repeated application of the ordinary theorem (p. [230]), namely: If a
continuous function, together with its first n derivatives, vanishes at n + 1 points,
then the n-th derivative vanishes at one point, at least, which lies in the interval
containing all the zeros. Hence if f(z), and therefore also F(z), has n continuous
derivatives, there must be a value £ between the extremes of the values a, a», ...,
a,, x for which

F™&) =o.

But we have

F(z) = fP(z) =y (x),

158 Comptes Rendus, vol. 11, pp. 775-789. — (Euvres, lst series, vol. 5, pp. 409 to 424, Paris,
1885.
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since the polynomial P (z) of degree n —1 has O for its n-th derivative and since only
z" - (x)/n!, the highest term of the last summand, has an n-th derivative which
does not vanish. Therefore we have, finally

FOE) = fP€) -y () =0, or yx)= /"),

which we wished to prove.
I shall write down Newton’s interpolation formula with its remainder term

B x—aAf(a) (x—a)(x—a— Ax) A’ f(a)
@) = fla+——— -+ 5 G T
) +(x—a)m[x—a—(n—Z)Ax]A(”_l)f(a)
(n—1)! (Ax)"!
+(x—a)...[x—nc!z—(n—l)Ax]f(n)(é)

where & is a mean value in the interval containing the n + 1 points a,a + Ax,
a+2Ax,...,a+ (n — 1)Ax, x. The formula (5) is, in fact, indispensable in the
applications. I have already alluded to linear interpolation when logarithmic tables
are used. If f(x) =logx and n = 2, we find, from (5)

x—aAloga (x—a)(x—a—Ax)M

logx = 1 .
ogx =loga+ 2! g2

Since d?log x/dx?> = —M/x? where M is the modulus of the logarithmic system.
Hence we have an expression for the error, which we commit when we interpolate
linearly between the tabular logarithms for @ and @ + Ax. This error has different
signs according as x lies between a and a + Ax or outside this interval. Everyone
who has to do with logarithmic tables should really know this formula.

I shall not devote any more attention to applications, but shall now draw your
attention to the marked analogy between the interpolation formula of Newton and
the formula of Taylor. There is a substantial reason for this analogy. It is easy to give
an exact deduction of Taylor’s theorem from the Newtonian formula, corresponding
to the passage to the limit from interpolation parabolas to osculating parabolas.
Thus, if we keep x, a, and n fixed and let Ax converge to zero, then, since f(x) has
n derivatives, the n — 1 difference quotients in (5) go over into the derivatives

L Af@)
1m
Ax—0 Ax

- fl@. tim 2@

Ax—0 sz

= f"(),...

In the last term of (5), the value of £ can change with decreasing Ax. Since all the
other terms on the right have definite limits, however, and the left side has the fixed
value f(x) during the entire limit process, it follows that the values of ) (£) must
converge to a definite value, too, and that this value, furthermore, must, because of
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the continuity of £, be a value of this function for some point between a and x.
If we denote this again by £ we have

(x—a)"
(n—1D!

(x — )

fla) = f(” V@) + ——1" ),

(a<.§<x)

Thus we have obtained a complete proof of Taylor’s theorem with the remainder
term and at the same time have given it an ordered place in the theory of interpola-
tion.

It seems to me that this proof of Taylor’s theorem, which brings it into wider
relation with very simple questions and which provides such a smooth passage to
the limit, is the very best possible one. But not all the mathematicians to whom
these things are familiar (it is remarkable that they are unknown to many, including
perhaps even some authors of textbooks) do think so. They are accustomed to con-
front a passage to a limit with a very grave face and would therefore prefer a direct
proof of Taylor’s theorem to one linking it with the calculus of finite differences.

Historical Remarks About Taylor and Maclaurin

I must emphasize however that the historical source for the discovery of Taylor’s
theorem is actually the calculus of finite differences. I have already mentioned that
Brook Taylor first published it in his Methodus incrementorum'>®. He first deduces
there Newton’s formula, evidently without the remainder, of course, and then lets
pass in it simultaneously Ax to 0 and n to co. He thus gets correctly from the first
terms of Newton’s formula the first terms of his new series:

—a df(a) (x—a)’ dzf(a)
1!  da 2! da?

f@) = flay+ >

The continuation of this series, according to the same law, seems to him self-
evident, and he gives no thought either to a remainder term or to convergence. We
have here, in fact, a passage to the limit of unexampled audacity. The first terms,
in which x —a — Ax,x —a — 2Ax, ... appear, offer no difficulty, because these
finite multiples of Ax approach zero with Ax; but with increasing n there appear
terms in ever increasing number, presenting more factors x —a — kAx with larger
and larger k, and one is not justified in treating these forthwith in the same way and
in assuming that they go over into a convergent series.

Taylor really operates here with infinitely small quantities (differentials) in the
same unquestioning way as the Leibnizians. It is interesting to reflect that although,

159 Londini, 1715, p. 21-23.
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as a young man of twenty-nine, he was under the eye of Newton, he departed from
the latter’s method of limits. Yet, he succeeded thus in achieving this discovery.

You will find an excellent critical presentation of the entire development of Tay-
lor’s theorem in Alfred Pringsheim’s memoir: Zur Geschichte des Taylorschen
Lehrsatzes'®. Furthermore, I should like to speak here about the customary dis-
tinction between Taylor’s series and that of Maclaurin. As is well known, many
textbooks make a point of putting a = 0 and of calling the obvious special case of
Taylor’s series which thus arises:

X x2
f(x) = f(0) + 1—!f/(0)+ Z—!f”(o)‘i““

the series of Maclaurin; and many persons may think that this distinction is impor-
tant. Anybody who understands the situation, however, sees that it is comparatively
unimportant mathematically. But it is not so well known that, considered histor-
ically, it is pure nonsense. For Taylor had undoubted priority with his general
theorem, deduced in the way indicated above. More than this, he emphasises at
a later place in his book (p. 27) the special form of the series for ¢ = 0 and re-
marks that it could be derived directly by the method which is called today that of
undetermined coefficients. Furthermore, Maclaurin took over!®! this deduction in
1742 in his Treatise of Fluxions (which we mentioned on p. [229]) where he quoted
Taylor expressly and made no claim whatever of offering anything new. But the
quotation seems to have been disregarded and the author of the book seems to have
been looked upon as the discoverer of the theorem. Errors of this sort are common.
It was only later that people went back to Taylor and named the general theorem,
at least, after him. It is difficult, if not impossible, to overcome such deep-rooted
absurdities. At best, one can only spread the truth in the small circle of those who
have historical interests.

I shall now supplement our discussion of infinitesimal calculus with some re-
marks of a general nature.

3. Historical and Pedagogical Considerations

Remarks About Textbooks for the Infinitesimal Calculus

I should like to mention, first of all, that the bond which Taylor established be-
tween difference calculus and differential calculus held for a long time. These two
branches always went hand in hand, still in the analytic developments of Euler,
and the formulas of differential calculus appeared as limiting cases of elementary
relations that occur in the difference calculus. This natural connection was first

160 Bibliotheca Mathematica, 3rd series, vol. T (1900), p. 433-479.
161 Edinburgh, 1742, vol.11, p. 610.
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broken by the often mentioned formal definitions of Lagrange’s derivative calcu-
lus. I should like to show you a compilation from the end of the eighteenth century
which, closely following Lagrange, brings together all the facts then known about
infinitesimal calculus, namely the Traité du Calcul Différentiel et du Calcul Inté-
gral of Sylvestre-Frangois Lacroix'®>. As a characteristic sample from this work,
consider the definition of the derivative (vol. I, p. 145): A function f(x) is defined
by means of a power series. By using the binomial theorem (and rearranging the
terms) one has

F B = f00) + RFG) + 7)o

Lacroix now denotes the term of this series, which is linear in 4 by d f(x), and,
writing dx for h itself, he has for the derivative, which he calls differential coefficient

e _
T = ).

Thus this formula is deduced in a manner thoroughly superficial even if unassail-
able. Within the range of these thoughts, Lacroix could no longer, of course, use
the calculus of differences as a starting point. However, since this branch seemed to
him too important in practice to be omitted, he adopted the expedient of developing
it independently, which he did very thoroughly in a third volume, but without any
connecting bridge between it and differential calculus.

This “large Lacroix™ is historically significant as the proper source of the many
textbooks of infinitesimal calculus which appeared in the nineteenth century. In the
first rank of these I should mention his own textbook, the “small Lacroix”!.

Since the twenties of the last century the textbooks have been strongly influ-
enced also by the method of limits which Cauchy raised to such an honourable
place. Here we should first think of the many French textbooks, most of which,
as Cours d’Analyse de I’Ecole Polytechnique, were prepared expressly for higher
education. Directly or indirectly, German textbooks also have depended on them,
with the single exception, perhaps, of the one by Oscar Schlomilch. From the long
list of books, I shall single out only Joseph Alfred Serret’s Cours de Calcul Dif-
feérentiel et Intégral, which appeared first in 1869 in Paris. It was translated into
German in 1884 by Axel Harnack and has been since then one of our most widely
used textbooks. Due to a succession of various revisers, it suffered of some inco-
herent parts. The editions,'** which have appeared since 1906, however, have been
subjected to a thoroughgoing revision by Georg Scheffers of Charlottenburg, the
result being an again homogeneous work. I am glad to mention also an entirely new

162 Three volumes, Paris, 1797 — 1800, with many later editions.

163 Traitié Elémentaire du Calcul Différentiel et Intégral., Paris, 1802.

164 Since 1906: Joseph Alfred Serret, & Georg Scheffers, Lehrbuch der Differential- und Inte-
gralrechnung, vol. I, sixth edition. Leipzig 1915; vol. II, 6 — 7 edition; vol. III, fifth edition,
1914.
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French book, the Cours d’ Analyse Mathématique by Edouard Goursat'® in three

volumes, which is fuller in many ways than Serret and contains, in particular, a long
series of entirely modern developments. Furthermore it is a very readable book.

In all these recent books, the derivative and the integral are based entirely upon
the concept of limit. There is never any question as to difference calculus or in-
terpolation. One sees the things in a clearer light, perhaps, in this way, but, on
the other hand, the field of view is considerably narrowed — as it is when we use
a microscope. Difference calculus is now left entirely to the practical calculators,
who are obliged to use it, especially the astronomers; and the mathematician hears
nothing of it. We may hope that the future will bring a change'® here.

Characterising Our Proper Presentation

As a conclusion of my discussion of infinitesimal calculus I should like to bring up
again for emphasis four points, in which my exposition differs especially from the
customary presentation in the textbooks:

1. Visualisation of abstract considerations by means of figures (curves of ap-
proximation, in the case of Fourier’s and Taylor’s series).

2. Emphasis upon its relation to neighbouring fields, such as calculus of differ-
ences and of interpolation, and finally to philosophical investigations.

3. Emphasis upon historical growth.

4. Exhibition of samples of popular literature to mark the deviation of the thus
induced view points in the public at large from those of the professional mathemati-
cian.

It seems to me extremely important that precisely the prospective teacher should
take account of all of these. As soon as you begin teaching you will be confronted
with the popular views. If you lack orientation, if you are not well informed con-

165 Paris 1902 — 1907, vol. I, third edition. 1917; vol. II, third edition. 1918; vol. III, second
edition. 1915. (Translated into English: vol. I by Earle Raymond Hedrick, 1904, Ginn and
Co.; vol. II by Earle Raymond Hedrick and Otto Dunkel, 1916, Ginn and Co.). [Of the most
recent German calculus textbooks should be mentioned: I) “Vorlesungen iiber Differential- und
Integralrechnung” by Richard Courant, in two volumes (second edition 1930/31). 2) “Einfiihrung
in die mathematische Behandlung naturwissenschaftlicher Fragen” by Alwin Watther (1928). Both
textbooks are following Felix Klein’s pedagogical conceptions]

166 [Tn order to make a beginning here, Klein had then induced Friesendorff and Priim to translate
Markoft’s Differenzenrechnung into German (Leipzig, 1896). There is a series of articles in the
Enzyklopidie. A work on Differenzenrechnung by Niels Erik Norlund has just appeared (Berlin,
Julius Springer, 1924) which exhibits the subject in new light. Alwin Walther, who had cooperated
in Norlund’s textbook, gave a lecture, at the summer vacation course on mathematics and physics
in Gottingen in 1926 on issues of the calculus of finite differences, which are important for teach-
ing the calculus. Unfortunately, this lecture is not yet published. A second lecture by Walther
at the same course, dealt with ,,Begriff und Anwendungen des Differentials*. It was published
as Beiheft 14 (Berlin 1929, B. G. Teubner) of the Zeitschrift fiir den mathematischen und natur-
wissenschaftlichen Unterricht. The explanations given in this lecture complement in a precious
manner what is given here on the pp. [223] to [255].]
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cerning the intuitive elements of mathematics as well as the vital relations with
neighbouring fields, if, above all, you do not know the historical development, your
footing will be very insecure. You will then either withdraw to the ground of the
most modern pure mathematics, and fail to be understood in the school, or you will
succumb to the assault, give up what you learned in higher education, and even
in your teaching allow yourself to be buried in the traditional routine. The dis-
continuity between school and university, of which I have often spoken, is greatest
precisely in the field of infinitesimal calculus. I hope that my words may contribute
to its removal and that they may provide you with useful armour in your teaching.
This brings me to the end of the conventional analysis. By way of supplement I
shall discuss a few theories of modern mathematics to which I have referred occa-
sionally and with which I think the teacher should have some acquaintance.
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IV. Supplement

IVa. Transcendence of the Numbers e and =

The first topic which I shall discuss will be the numbers e and 7. In particular,
I wish to prove that they are transcendental numbers.

Historical Aspects

Interest in the number 7, in geometric form, dates from ancient times. Even then
it was usual to distinguish between the problem of its approximate calculation and
that of its exact theoretical construction; and one had certain approaches for the
solution of both problems. Archimedes made an essential advance, in the first, with
his process of approximating to the circle by means of inscribed and circumscribed
polygons. The second problem soon centred in the question as to whether or not
it was possible to construct w with ruler and compass. This was attempted in all
possible ways with never a suspicion that the reason for continued failure was the
impossibility of the construction. An account of some of the early attempts has
been published by Ferdinand Rudio'®’. The “quadrature of the circle” still remains
one of the most popular problems, and many persons, as I have already remarked,
seek salvation in its solution, without knowing, or believing, that modern science
has long since settled the question.

In fact, these ancient problems are completely solved today. One is often inclined
to doubt whether human knowledge really can advance, and in some fields the doubt
may be justified. In mathematics, however, there are indeed advances of which we
have here an example.

The foundations upon which the modem solution of these problems rests date
from the period between Newton and Euler. A valuable tool for the approximate
calculation of 7 was supplied by infinite series, a tool, which made possible an
accuracy adequate for all needs. The most elaborate result obtained was that of the

17 Der Bericht des Simplicius iiber die Quadraturen des Antiphon und Hippokrates. Leipzig,
1908.
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Englishman Shanks, who calculated 7 to 707 places'®®. One can ascribe this feat to
a sportsmanlike interest in making a record, since no applications could ever require
such accuracy.

On the theoretical side, the number e, the base of the system of natural loga-
rithms, intervenes into the investigations during the same period. The wonderful
relation ¢/ = —1 was discovered and a means was developed, within the integral
calculus, which, as we shall see, was of importance for the final solution of the
question as to the quadrature of the circle. The decisive step in the solution of the
problem was taken by Charles Hermite'® in 1873, when he proved the transcen-
dence of e. He did not succeed in proving the transcendence of . That was done
by Lindemann'™ in 1882.

These results represent at the same time an essential generalization of the clas-
sical problem. That was concerned only with the construction of = by means of
ruler and compass, which amounts, analytically, as we saw (p. [56]) to representing
7 by a finite succession of square roots and rational numbers. But the modern re-
sults prove not merely the impossibility of this representation; they show far more,
namely, that 7 (and likewise e) is transcendental, that is, that it satisfies no algebraic
relation whatever whose coefficients are integers. In other words, neither e nor &
can be the root of an algebraic equation with rational integer coefficients:

ag+ayx +ayx* +---+a,x" =0

no matter how large the integers ay, ...,a, or the degree n. It is essential that
the coefficients be rational integer numbers'’!. It would suffice however to say
rational, since we could make them integers by multiplying through by a common
denominator.

I pass now to the

Proof of the Transcendence of e,

in which I shall follow the simplified method given by Hilbert in Volume 43'7?

of the Mathematische Annalen (1893). We shall show that the assumption of an
equation

) ag+aye +are* +---+a,e” =0, whereag # 0,

168 See Weber-Wellstein, vol. 1, p. 523.

199 Comptes Rendus, vol. 77 (1873), p. 18-24, 74-79, 226233, 285-293; = Werke III (1912),
p. 150.

170 Sitzungsberichte der Berliner Akademie, 1882, p. 679, and Mathematische Annalen, vol. 20
(1882), p. 213.

171 [Transl. note: In number theory, integer numbers are called rational integer numbers, to distin-
guish them from integer p-adic numbers. ]

172 (Jber die Transcendenz der Zahlen e und 7, 216-219.
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in which ay, ..., a, are integers, leads to a contradiction. This will show up by the
simplest properties of integers. We shall need, namely, from the theory of numbers,
only the most elementary theorems on divisibility, in particular, that an integer can
be separated into prime factors in only one way, and, second, that the number of
primes is infinite.

The plan of the proof is as follows. We shall set up a procedure, which en-
ables one to approximate especially well to e and powers of e, by means of rational
numbers, so that we have

) e Mitea o _Mte Mt

M M M
where M, My, M;, ..., M, are integers, and e,/ M, e,/ M, ..., &,/ M are very small
positive fractions. Then the assumed equation (1), after multiplication by M, takes
the form

3) [aoM +a My +a My +---+ a,M,]| + [a1e1 + ares + -+ a,e,] =0

The first parenthesis is an integer, and we shall prove that it with certainty is not
zero. As for the second parenthesis, we shall show that e;,...,¢, can be made
so small that it will be a positive proper fraction. Then we shall have the obvious
contradiction that an integer ayM + a, M, + --- + a, M, which is not zero, in-
creased by a proper fraction a\g; + --- + a,e, should be zero. This will show
the impossibility of (1).

An important application will be made there of the deduction that if an integer is
not divisible by a definite number, the integer cannot be zero (for zero is divisible by
every number). We shall show, namely, that M1, ..., M, are divisible by a certain
prime number p, but that ag M with certainty not, and that, therefore, agM +a, M, +
-+ 4 a, M, is not divisible by p, and hence is different from zero.

The principal aid in carrying out the indicated idea of a proof comes from the
use of a certain definite integral which was devised by Hermite for this purpose and
which we shall call Hermite’s integral. The key to this proof lies in its structure.
This integral, whose value, as we shall see, is an integer and which we shall use to
define M, is

dz,

OOZP_l [(Z— 1) (Z—Z)...(Z_n)]pe_Z
" MZ/ (p—1!
0

where n is the degree of the assumed equation (1), and p is an odd prime which we
shall determine later. From this integral we shall get the desired approximation (2)
to the powers e”(v = 1,2,...,n) by breaking the interval of integration of the

[258]
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integral M - eV at the point v and setting

o0 ) .
(4a) M, = e”/ 27z —(11))_1()2'_ n)]? e i
(4b) g, = e’ / 2P [(z _(11)) _ l()z'_ n)]? e~ "

Let us now proceed with the proof.
1. We start with the well-known formula from the beginnings of the theory of
the gamma function:

/zg_le_zdz =T (o),
0

We shall need this formula only for integer values of o, in which case I'(¢) =
(0 — 1)!, and I shall deduce it under this restriction. If we integrate by parts we
have, for o > 1:

o0

/zg‘le‘zdz = [z +/(Q— 1)z92e™?dz
0 0

=@-1) / 297277 dz.
0

The integral on the right is of the same form as the one on the left, except that the
exponent of z is reduced. If we apply this process repeatedly we must eventually
come to z°, since o is an integer; and since f0°° e “dz = 1, we obtain finally

5) /zé’*leﬂdz=(g—1)(g—2)---3-2-1=(Q—1)!
0

Thus for integer o the integral is an integer which increases very rapidly when o
increases.

To make this result geometrically intuitive, let us draw, on a z-axis, the curve y =
z¢~1e~7 for different values of o. The value of the integral will then be represented
by the area under the curve extending to infinity (see Fig. 115). The larger o is the
more closely the curve hugs the z-axis at the origin, but the more rapidly it rises
beyond z = 1. The curve has a maximum at z = ¢ — 1, for all values of g; in
other words the maximum occurs farther and farther to the right as o increases;
and its value also increases with o. To the right of the maximum, the factor e™*
prevails so that the curve falls, and eventually snuggles the z-axis intimately. It is
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thus comprehensible that the area (our integral) always remains finite but increases
strongly with .

Figure 115

2. With this formula we can now easily evaluate our Hermite integral. Expanding [260]

the integrand by the polynomial theorem

[G= D=2 =m) = [" 4=+ (<))
= 27— () (D,

[where always only the terms involving the highest and the lowest powers of z have
to be written down], the integral becomes

oo oo

(AVWV/ T / .
M=-—"——" | zPe?dz + E z8 e dz.
(p—D! ~ (p—D!

0 o=p+l 0

The C, are integer constants, by the polynomial theorem. Now we can apply for-
mula (5) to each of these integrals and obtain

np+p
n (Q_l)'
M = (=1)" (n)” +Q:§1CQ(P— D

The summation index o is always greater than p and consequently (o—1)!/(p—1)!
is an integer and one which contains p as a factor, so that we can take p as a factor
out of the entire sum:

M = (=D)"(n)? + plCpi1 + Cpa(p + 1) + Cus(p + D(p +2) + -]

Now, so far as divisibility by p is concerned, M must behave like the first summand
(—=1)"(n!)?. And since p is a prime number it will not be a divisor of this summand
if it is not a divisor of any of its factors 1,2, .. ., n, which will certainly be the case if
p > n. But this condition can be satisfied in an unlimited number of ways, since the
number of primes is infinite. Consequently we can bring it about that (—1)" (n!)?,
and hence M, is with certainty not divisible by p.
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Since furthermore ay # 0, we can see to it, at the same time, that a is not
divisible by p by selecting p greater also than |ay|, which is, of course, possible, by
what was said above. But then the product ay- M will not be divisible by p, and that
is what we wished to show.

3. Now we must examine the numbers M,(v = 1,2,...,n), defined in (4a)
(p. [258]). Putting the factor e” under the sign of integration and introducing the
new variable of integration { = z — v, which varies from 0 to co when z runs from
v to 0o, we have

de.
1! J

M _/(HV)”‘ (€ +v-DE+v=2) LG +v—n) e’
) =
0

This expression has a form entirely analogous to the one considered before for M
and we can treat it in the same way. If we multiply out the factors of the inte-
grand there will result an aggregate of powers with integer coefficients of which
the lowest will be ¢”. The integral of the numerator will thus be an integer-number
combination of the integrals

o0 o0

/Oogﬂefdg, [;P“e*fd;, /g“’*“ﬁ*le*fd;,
0

0 0

and since these are, by (5), equal to p!,(p + 1)!,... the numerator will be p!
multiplied by an integer number A, thus each one is:

_ A
V]

In other words, every M" is an integer number, which is divisible by p.

This, combined with the result of No. 2, proves the statement made on p. [258]
etseq. thatagM +a M, +---+a, M, is clearly not divisible by p and is therefore
different from zero.

4. The second part of the proof has to do with the sum a;&| + - - - + a,¢,, where,
by (4b),

=p-A, (wv=12,...,n).

v

. _/21"1 (z=1)(z=2)---(z=n)]P et
b (p—1)!

We must show that these &, can be made sufficiently small by an appropriate choice
of p. To this end we use the fact that we can make p as large as we chose; for
the only conditions thus far imposed upon p are that it should be a prime number
greater than n and also greater than |ay|, and these can be still satisfied by arbitrarily
large prime numbers.

Let us study a geometrical image of the shape of the integrand. At z = 0 it will
be tangent to the z-axis, butatz = 1,2, ...,n (in Fig. 116, n = 3) it will be tangent
to the z-axis and also cut it, since p is odd. As we shall see soon, the presence in the
denominator of (p — 1)! brings it about that for large p the curve departs but little

dz.

0
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from the z-axis in the interval (0, ), so that it seems plausible that the integrals ¢,
should be very small. For z > n the curve rises and proceeds asymptotically like
the former curve z¢~ e~ [for o = (n + 1)p] and finally approaches indefinitely
the z-axis. It was for this reason that the value M of the integral (when the interval
of integration was from O to co) increased so rapidly with p.

Y

<

Figure 116

In actually estimating the integrals we can be satisfied with a quite rough ap-
proximation. Let G and g, be the maxima of the absolute values of the functions
z(z—=1)...(z=n)and (z = 1)(z — 2) ... (z — n)e **" respectively in the interval
(0, n):

— — <
lzz—=1)...z=n)| =G ) for 0<z<n.
=D (E=2)...z—n)e" =g,
Since the integral of a function, taken absolutely, is never greater than the integral
of its absolute value, we have, for each ¢,

©) leu] = /GP—IngZ:M
B ) (p—D! (p—D!

Now G, g,, and v are fixed numbers independent of p, but the number (p — 1)! in
the denominator increases ultimately more rapidly than the power G”~!, or, more
exactly, the fraction G”~!/(p — 1)! becomes, for sufficiently large p, smaller than
any pre-assigned number, however small. Thus, because of (6), we can actually
make each of the n numbers &, arbitrarily small by choosing p sufficiently large.

It follows immediately from this that we can also make the sum of n terms a; &, +
-+ 4 aye, arbitrarily small. We have, in fact

larer + azer + -+ anen| = |ar| |e1] + |az| 2] + -+ + an| |€nl
and by (6)
Gr!

= (al-1-gitlao- 2 gkt lanl-n-ga) - 5

[262]
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Since the parenthesis has a value which is independent of p, we can, by virtue of
the factor G?~!/(p — 1)!, make the entire right hand side, and hence also a &, +
aey + -+ + ayé&,, as small as we choose, and, in particular, smaller than unity.

With this we have shown, as we agreed to do (p. [258]), that the assumption of
the equation (3)

[aoM + a\ My + -+ + a,M,] + [are + - + aye,] = 0

leads to a contradiction, namely that a non-vanishing integer increased by a proper
fraction should give zero. And since this equation cannot exist the transcendence of
e is proved.

Proof of the Transcendence of ©

We turn now to the proof of the transcendence of the number 7. This proof is
somewhat more difficult than the foregoing, but it is still fairly easy. It is only
necessary to begin at the right end, which is indeed the art of all mathematical
discovery.

The problem, as Ferdinand Lindemann considered it, was the following: It has

n
been shown thus far that an equation ) a,e” = 0 cannot exist if the coefficients
a, and the exponents v of e are ordinavryorational integer numbers. Would it not be
possible to prove a similar thing where a, and v are arbitrary algebraic numbers?
He succeeded in doing this; in fact, his most general theorem concerning the ex-
n
ponential function is as follows: An equation Y a,e”
v=1
b, are algebraic numbers, whereby the a,, are arbitrary, the b, different from one
another. The transcendence of m is then only a corollary to this theorem. For, as is
well known, 1 +e'™ = 0; and if 7 were an algebraic number, i 7w would be also, and
the existence of this equation would contradict the above theorem of Lindemann.

I shall now prove in detail only a certain special case of Lindemann’s theorem,
one which carries with it, however, the transcendence of w. 1 shall follow again,
in the main, Hilbert’s proof in Volume 43 of the Mathematische Annalen, which is
essentially simpler than Lindemann’s, and which is an exact generalization of the
discussion, which we have given for e.

The starting point is the relation

v = 0 cannot exist if the a,,

(1) 1 +e™ =0.

If, now, 7 satisfies any algebraic equation with rational integer coefficients then i &
also satisfies such an equation. Let «y, s, ..., o, be all the roots, including i
itself, of this last equation. Then we must also have, because of (1):

(I+e")(14e*2)---(1 +e*) =0.
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Multiplying out we obtain

1+ (eal L%t ea,,) + (ealJraz + e tas et ean,lﬂxn)
() o1 Hep e
4+t (e 1o+t n) =0.

Now some of the exponents, which appear here might, by chance, be zero. Every
time that this occurs the left hand sum has a positive summand 1, and we combine
these, together with the 1 that appears formally, into a positive integer a, which is
certainly different from zero. The remaining exponents, all different from zero, we
denote by B1, B2, ..., By and we write, accordingly, instead of (2),

3) ap+efr +ePr ... PV =0, where ay > 0.

Now fBy,...,Bn are the roots of an algebraic equation with integer coefficients.
For, from the equation whose roots are «y,...,®, we can construct one of the
same character whose roots are the two-term sums «; + o, ®; + 3, ..., then an-
other for the three-term sums o + oy + a3, o) + @ + @4, ... and so on; finally,
o) + ay + -+ -+ «, is itself rational and satisfies therefore a linear integer equation.
By multiplying together all these equations, we obtain again an equation with ra-
tional integer coefficients, which might have some zero roots, and whose remaining
roots are the f1,..., By. Omitting the power of the unknown, which corresponds
to the zero roots, there will remain for the N quantities B an algebraic equation of
degree N with integer coefficients and absolute term different from zero

4) bo+ b1z +byz* +---+byz¥ =0, where by, by # 0.

We now have to prove the following special case of Lindemann’s theorem. An
equation of the form (3), with integer non-vanishing ay, cannot exist if i, ..., By
are the roots of an algebraic equation of degree N, with integer coefficients. This
theorem includes the transcendence of .

The proof involves the same steps as the one already given for the transcendence
of e. Just as we could there approximate closely to the powers e',e?,...,e" by
means of rational numbers, so we shall be concerned here with the best possible
approximation to the powers of e which appear in (3), and we shall write, in the old

notation,

eﬂlzm eﬂzzm... eﬂNZMo

M M M
where the denominator M is again an ordinary rational integer number, but the
M, ..., My are no longer rational integer numbers as formerly, but are integer
algebraic numbers, and the By, ..., By, which in general can now be complex,
are in absolute value very small. 1t is here that the difficulty in this proof lies, as
compared to the earlier one. The sum of all the M, ..., My will again, however,
be an rational integer number, and we shall be able to arrange it so that the first
summand in the equation:

)

(6) [aoM + My + My + -+ My] +[e1 +e2+---+en] =0.

[264]
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into which (3) goes over when we multiply by M and use (5)] will be a non-
vanishing rational integer number, while the second summand will be, in absolute
value, smaller than unity. Essentially, this will be the same type of contradiction,
which we used before. It will show the impossibility of (6) and (3) and so complete
our proof. As to detail, we shall again show that M| + M, + --- 4+ My is divis-
ible by a certain prime number p, but that ayM is not, which will show that the
first summand in (6) cannot vanish; then we shall choose p so large that the second
summand will be arbitrarily small.

1. Our first concern is to define M by a suitable generalization of Hermite’s inte-
gral. A hint here lies in the fact that the zeros of the factor (z — 1)(z — 2)...(z — n)
in Hermite’s integral were the exponents in the powers of e in the hypothetical al-
gebraic equation. Hence we now replace that factor by the product made by using
the exponents in (3), i.e., the solutions in (4):

™ (Z—,Bl)(z—ﬂz)m(Z—ﬂN):i[bo+b12+'“+bNZN]-

It turns out to be essential here to put in a suitable power of by as factor, which
was unnecessary before because (z — 1) ... (z — n) was integer. We set then finally

® —z p—ld
@®) M= % [bo +biz + -+ byz¥] b 77

2. Just as before, we now expand the integrand of M according to powers of z.
The lowest power, that belonging to z”~!, gives then:

oo

e*zzpfldz bgbj(VNil)pil _ bgb;vNil)pil ’
(r—=D!
where the integral has been evaluated by means of the gamma-formula (p. [239]).
The remaining summands in the integrand contain either z? or still higher powers,
so that the integrals contain the factor p!/(p — 1)!, multiplied by integers, and are
thus all divisible by p. Consequently M is an integer which is certainly not divisible
by p, i.e., provided the prime number p is not a divisor of either b, or by . But since
these two numbers are both different from zero, we can bring this about by choosing
p sothat p > |by| and also p > |by|.

Since ay > 0 it follows that agM is not divisible by p if we impose the additional
condition p > ay. Inasmuch as the number of primes is infinite we can satisfy all
these conditions in an unlimited number of ways.

3. We must now approach to construct M, and e,. Here we must modify our
earlier plan because the 8, which now take the place of the former v, can be com-
plex; in fact one of them is i . If we are to split the integer M as we did before we
must first determine the path of integration in the complex plane. Fortunately the
integrand of our integral is a finite univocal function of the integration variable z,



IVa. Transcendence of the Numbers e and 269
regular everywhere except at z = oo, where it has an essential singularity. Instead
of integrating from O to oo along the real axis we can choose any other path from
0 to oo, provided it ultimately runs asymptotically parallel to the positive real half-
axis. This is necessary if the integral is to have a meaning at all, in view of the
behaviour of e~ in the complex plane.
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Figure 117

Let us now mark the N points 8, B, ..., By in the plane and recall that we shall
obtain the same value for M if we first integrate rectilinearly from 0 to one of the
points By and then to oo along a parallel to the real axis (see Fig. 117). Along this
path we can separate M into the two characteristic parts: The rectilinear path from
0 to By supplies the ¢, which will become arbitrarily small with increasing p; the
parallel from By to oo will supply the integral algebraic number My :

r=1yg
(8a) &, = ef / o z 1)'2 by + bz + ”_+bNZN]p b](VN—l)p—l’
(U = 1727" '7pv)9
(8b)
- r=lgq
M, = eP ez z [bo Fhizd4eet bNZN]P b;\]N—l)p—l‘

(p—D!
These assumptions satisfy (5). Our choice of a rectilinear path of integration was
made solely for convenience; any curvilinear path from 0 to 8, would, of course,
yield the same value for ¢,, but one achieves the best estimation for the integral
when the path is straight. Similarly, we might choose, instead of the horizontal path
from B, to oo, an arbitrary curve provided only that it approached the horizontal
asymptotically; but that would be unnecessarily inconvenient.

4. I will discuss first the estimation of the e, because this involves nothing new
if we only recall that the absolute value of a complex integral cannot be larger than
the maximum of the absolute value of the integrand, multiplied by the length of the
path of integration, which, in our case, is |B,|. The upper limit for &, would be,

[267]
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then, the product of G?~!/(p — 1)! by factors which are independent of p, where
G denotes the maximum of |z (bg + b1z + -+ + byz") b¥~!| in a region which
contains all the segments joining 0 with the points §,. From this one may infer, as
we did before, (p. [262]), that, by sufficiently increasing p, the value of each ¢, and,
therefore, the value of €, + --- 4+ ey can be made as small as we please and, in
particular, smaller than unity.

5. Itis only in the investigation of the M, that essentially new considerations are
necessary, and these are, to be sure, only generalisations of our former reasoning,
due to the fact that integer algebraic numbers take the place now of what were then
rational integer numbers. We shall consider, as a whole, the sum:

N

e ZP ldz o

ZM Zeﬁ“ 1), [b0+b1z—|—~~+szN]pb1(VN Dp-1
B

If we make use of (7) (p. [265]) and replace, in each summand of the above sum-
mation, the polynomial in z by the product of the factors (z — 81)---(z — By ) and

introduce the new variable of integration { = z — ,,, which will run through real
values from 0 to oo, we obtain

)
y N 00 etdt p-1 p p pNp—1
2 Ef T €8T C+By=B)" 8P (C+Bu—PBNn)" by

tat ,
T URAS

which may be written = /

where we use the abbreviation

N
@) =D by CH BT C BB

v=1

(C + ,311 - ﬂufl)p (C + ,311 - ,Berl)p (C + ﬁv - ﬁN)p

This sum @(¢), like each of its N summands, is a polynomial in {. In each of the
summands, one of the N quantities f1, ..., By plays a marked role; but if we con-
sider the polynomial in ¢ obtained by multiplying out in @(¢), we see that these N
quantities appear, without preference, in the coefficients of the different powers of
. In other words, each of these coefficients is a symmetric function of B1,...,Bn.
The multiplying out of the individual factors by the multinomial theorem permits
the further inference that these functions B, ..., By are rational integer functions
with rational integer coefficients. But according to a well-known theorem in al-
gebra, rational symmetric functions, with rational coefficients of all the roots of a
rational integer equation are always rational numbers; and since the Bi,..., By
are all the roots of equation (4), the coefficients of ®({) are actually rational
numbers.

9)
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But, more than this, we need rational integer numbers. These are supplied by the
power of by which occurs as a factor of @(¢). We can, in fact, distribute this power
among all the linear factors, which occur there and write

9"
D(¢) = é (bNE+DNB) N (DNE+DNBy—bNB1)P -+ (bnE+bn By =Dy Bo-1)?
(ONE +byBy —byByi1)” - (DNE + by By — D BN)P

In analogy with what we had earlier, the coefficients of {, when this poly-
nomial is calculated, are rational integer symmetric functions of the products
bynBi1,bnBas....by BN, with rational integer coefficients. But these N products
are roots of the equation into which (4) transforms if we replace z by z/by:

o\ M- N
b b— b b =0.
0 + 1bN+ -+ bn— l(bzv) + N(bN)

If we multiply through by b¥ ~! this equation goes over into:

10y bobN '+ bibN Pz by abyz¥ P+ by VT + 2V =0,

that is, an equation with integral coefficients throughout and where the coefficient
of the highest power is unity. Algebraic numbers which satisfy such an equation are
called integer algebraic numbers, and we have the following refinement of the the-
orem mentioned above: Rational integer symmetric functions, with rational integer
coefficients of all the roots of an integer equation whose highest coefficient is unity
(i.e., of integer algebraic numbers) are themselves rational integer numbers. You
will find this theorem in textbooks on algebra; and if it is not always enunciated in
this precise form you can, nevertheless, by following the proof, convince yourselves
of its correctness.

Now the coefficients of the polynomial @({) actually satisfied the assumptions
of this theorem so that they are rational integer numbers, which we shall denote by
Ao, Ay, ..., Ayp—1. We have, then according to (9),

N T eterd
ZM” [ il)él‘ A0+A1§+"'+ANP,1CNP_1).
0

v=1

With this we have essentially reached our goal. For, if we carry out the integrations
in the numerator, using our gamma formula (p. [259]), we obtain factors p!, (p +
D! (p + 2)!..., since each term contains as factor a power of ¢ of degree p or
higher; and after division by (p — 1)! there remains everywhere a factor p, while

the other factors are rational integer numbers (the Ay, A1, Ay, ...). Thus Y M, is
v=1
certainly a rational integer number divisible by p.

[269]
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We saw (p. [266]) that a - M was not divisible by p, so that

N
aoM + ZMV

v=1

is necessarily a rational integer number which is not divisible by p and hence, in
particular, different from zero. Therefore the equation (6):

N N
gaoM +> M+ st} =0
v=1 v=1
N
cannot exist, for a non-vanishing integer added to >_ ¢,, which was shown in
v=1

No. 4 (p. [267]) to be smaller than unity in absolute value, cannot yield zero. But
this proves the special case of Lindemann’s theorem which we enunciated above
(p. [264]) and which carries with it the transcendence of .

More on Transcendent and Algebraic Numbers

I should like to emphasise here another interesting special case of the general Lin-
demann theorem, namely, that in the equation e = b the numbers b, B cannot
both be algebraic, with the trivial exception § = 0, b = 1. In other words, the
exponential function of an algebraic argument 8 as well as the natural logarithm
of an algebraic number b is, with this one exception, always transcendental. This
statement includes the transcendence of both e and 7, the former for 8 = 1; the
latter for b = —1 (because ¢'™ = —1). The proof of this theorem can be effected by
an exact generalisation of the last discussion. One would start from b — e” instead
of from 1 + e“ as before. It would be necessary to take into account not only all
the roots of the algebraic equation for §, but also all the roots of the equation for
b, in order to arrive at an equation analogous to (3), so that one would need more
notation and the proof would be apparently less perspicuous; but it would require
no essentially new ideas. The proof of the most general Lindemann theorem can be
realised in an entirely analogous manner.

I shall not go farther into these proofs, but I should like to make you appreciate
the significance of the last theorem concerning the exponential function as intu-
itively as possible. Let us think of all points with an algebraic abscissa as marked
off on the x-axis.

g
[UNETEVSTINIFYRTTNRTIRUERN NN NEURURRNAREREREE— S

We know that even the rational numbers, and hence, with greater reason, the alge-
braic numbers lie everywhere dense on the x-axis. One might think at first that at
least the algebraic numbers would exhaust all the real numbers. But our theorem
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yields that this is not the case; that between the algebraic numbers on the x-axis
there are infinitely many other numbers, viz. the transcendental numbers; and that
we have examples of them in unlimited quantity in e¥'2®" " in log(algebr. no.), and
in every algebraic function of these transcendental numbers. It will even be more
obvious, perhaps, if we write the equation in the form y = e* and interpret it as
curve in an x-y-plane (see Fig. 118). If we now mark all the algebraic numbers on
the x-axis and on the y-axis and consider all the points in the plane that have both
an algebraic x and an algebraic y, the x-y-plane will be densely covered with these
“algebraic points”. In spite of this dense distribution, the exponential curve y = e*
does not contain a single algebraic point except the one x = 0, y = 1. Of all the
other number pairs x, y which satisfy y = e*, one, at least, is transcendental. This
shape of the exponential curve is certainly a most remarkable fact!

¥

y-e*

Figure 118

The theoretical significance of these theorems which reveal the existence in great
quantity of numbers which are not only not rational but which cannot be represented
by algebraic operations upon numbers representable by integer numbers — their sig-
nificance for our representations of the number continuum is tremendous. What
would Pythagoras have sacrificed after such a discovery if the irrational seemed to
him to merit a hecatomb!

It is remarkable how little in general these questions of transcendence are
grasped and assimilated, although they are so simple when one has once thought
them through. I continually have the experience, in an examination, that the candi-
date cannot even explain the notion “transcendence”. I often get the answer that a
transcendental number satisfies no algebraic equation, which, of course, is entirely
false, as the example x — e = 0 shows. The essential thing, that the coefficients in
the equation must be rational, is overlooked.

If you will think our transcendence proofs through again you will be able to
grasp these simple elementary steps as a whole, and to make them permanently
your own. You need to impress upon your memory only the Hermite integral; then
everything develops itself naturally. I should like to emphasise the fact that in these
proofs we have used the integral concept (or, speaking geometrically, the idea of
area) as something in its essence thoroughly elementary, and I believe that this
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has contributed markedly to the clearness of the proof. Compare in this respect,
the presentation in Volume I of Weber-Wellstein, or in my own little book, Vortrige
iiber ausgewdihlte Fragen der Elementargeometrie'’®, where, as in the older school-
books, the integral sign is avoided and its use replaced by approximate calculation
of series developments. I think that you will admit that the proofs there are far less
clear and easy to grasp.

These discussions concerning the distribution of the algebraic numbers within
the realm of real numbers lead us naturally to that second modern field to which 1
have already often referred during these lectures, and which I shall now consider in
some detail.

IVDb. Set Theory

The investigations of George Cantor, the founder of this theory, had their beginning
precisely in considerations concerning the existence of transcendental numbers'’*.
They permit one to view this matter in an entirely new light.

If the brief survey of set theory, which I shall give you, has any special character,
it is this, that I shall bring the treatment of concrete examples more into the fore-
ground than is usually done in those very general abstract presentations, which too
often give this subject a form that is hard to grasp and even discouraging.

1. The Potency of Sets

With this end in view, let me remind you that in our earlier discussions we have
often had to do with different characteristic totalities of numbers, which we can
now call sets of numbers. If I confine myself to real numbers, these assemblages
are

1. The positive integers.

2. The rational numbers.

3. The algebraic numbers.

4. All real numbers.

Each of these sets contains infinitely many numbers. Our first question is
whether, in spite of this, we cannot compare the magnitude or the range of these
sets in a definite sense, i.e., whether we cannot call the “infinity” of one greater
than, equal to, or less than that of another. It is the great achievement of Cantor
to have cleared up and answered this at first quite indefinite question, by setting

173 Referred to p. [135].
174 See: ,,Uber eine Eigenschaft des Inbegriffs aller reellen algebraischen Zahlen.“, Journal fiir
reine und angewandte Mathematik, vol. 77 (1873). p. 258.
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up precise concepts. Above all we have to consider his concept of “potency” or
“cardinal number”: Two sets have “equal potency” (are “equivalent’) when their
elements can be put into one-to-one correspondence, i.e., when the two sets can be
so related to each other that to each element of the one there corresponds one ele-
ment of the other, and conversely. If such a mutual correspondence is not possible
the two assemblages are of “different potency”; if it turns out that, no matter how
one tries to set up a correspondence, there are always elements of one of the sets
left over, this one has the “greater potency”.

Let us now apply this principle to the four examples given above. It might
seem, at first, that the potency of the integers would be smaller than that of the
rational numbers, the potency of these smaller than that of the algebraic numbers,
and this finally smaller than that of all real numbers; for each of these sets arises
from the preceding by the addition of new elements. But such a conclusion would
be too hasty. For although the potency of a finite set is always greater than
the potency of a part of it, this theorem is by no means transferable to infinite
sets. This discrepancy, after all, need not cause surprise, since we are concerned
in the two cases with entirely different fields. Let us examine a simple example,
which will show clearly that an infinite set and a part of it can actually have the
same potency, the set, namely, of all positive integers and that of all positive even
integers

The correspondence indicated by the double arrows is obviously of the sort pre-
scribed above, in that each element of one set corresponds to one and only one of
the other. Therefore, by Cantor’s definition, the set of the positive integers and its
subset of the even integers have the same potency.

Denumerability of Rational and Algebraic Numbers

You see that the question as to the potencies of our four sets is not so easily dis-
posed of. The simple answer, which then appears the more remarkable, consists in
Cantor’s great discovery of 1873: The three sets, the positive integers, the rational,
and the algebraic numbers, have the same potencies; but the set of all real num-
bers has another, namely, a larger potency. A set whose elements can be put into
one-to-one correspondence with the series of positive integers (which has therefore
the same potency) is called denumerable. The above theorem can therefore be
stated as follows: The set of the rational as well as of the algebraic numbers is
denumerable; that of all real numbers is not denumerable.
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Figure 119

Let us first give the proof for rational numbers, which is no doubt familiar to
some of you. Every rational number (we shall include the negative ones) can be
expressed uniquely in the form p/gq, where p and ¢ are integers without a common
divisor, where, say, g is positive, while p may also be zero or negative. In order
to bring all these fractions p/q into a single series, let us mark in a p-g-plane
all points with integer coordinates (p, ¢), so that they appear as points on a spiral
path as shown in Fig. 119. Then we can number all these pairs (p, ¢) so that only
one number will be assigned to each and all integers will be used (see Fig. 119).
Now delete from this succession all the pairs (p, g), which do not satisfy the above
prescription (p prime to ¢ and g > 0) and number anew only those, which remain
(indicated in the figure by heavy points). We get thus a series, which begins as
follows:
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one in which a positive integer is assigned to each rational number and a rational
number to each positive integer. This shows that the rational numbers are denumer-
able. This arrangement of the rational numbers
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Figure 120

into a denumerable series requires, of course, a complete dislocation of their rank
as to size, as is indicated in Fig. 120, where the rational points, laid off on the axis
of abscissas, are marked with the order of their appearance in the artificial series.
We come, secondly, to the algebraic numbers. 1 shall confine myself here to
real numbers, although the inclusion of complex numbers would not make the
discussion essentially more difficult. Every real algebraic number satisfies a real
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integer equation
apw" +a10" '+ -+ a,_ 0 +a, =0,

which we shall assume to be irreducible, i.e., we shall omit any rational detach-
able factor of the left-hand member, and also any possible common divisors of
ay,a,,...,a,. We assume also that a is always positive. Then, as is well known,
every algebraic w satisfies but one irreducible equation with integer coefficients, in
this normal form; and conversely, every such equation has as roots at most n real
algebraic numbers, but perhaps fewer, or none at all. If, now, we could bring all
these algebraic equations into a denumerable series we could obviously infer that
their roots and hence all real algebraic numbers are denumerable.

Cantor succeeded in doing this by assigning to each equation a definite number,
its “index”,

N=n—1+ao+|ai|+-+ |an-1]| + |an.

and by separating all such equations into a denumerable succession of classes, ac-
cording as the index N = 1,2,3,... In no one of these equations can either the
degree n or the absolute value of any coefficient exceed the finite limit N, so that,
in every class, there can be only a finite number of equations, and hence, in par-
ticular, only a finite number of irreducible equations. One can easily determine the
coefficients by trying out all possible solutions for a given N and can, in fact, write
down at once the beginning of the series of equations for small values of N.

Now let us consider that, for each value of the index N, the real roots of the finite
number of corresponding irreducible equations have been determined, and arranged
according to size. Take first the roots, thus ordered, belonging to index one, then
those belonging to index two, and so on, and number them in that order. In this way
we shall have shown, in fact, that the set of real algebraic numbers is denumerable,
for we come in this way to every real algebraic number and, on the other hand, we
use all the positive integers. In fact one could, with sufficient patience, determine
say the 7563-rd algebraic number of the scheme, or the position of a given algebraic
number, however complicated.

Here, again, our “denumeration” disturbs completely the natural order of the
algebraic numbers, although that order is preserved among the numbers of like
index. For example, two algebraic numbers so nearly equal as 2/5 and 2001/5000
have the widely separated indices 7 and 7001 respectively; whereas /5, as root of
x2 — 5 = 0, has the same index, 7, as 2/5.

Before we go over to the last example, I should like to give you a small lemma,
which will supply us with another denumerable set, as well as with a method of
proof that will be useful to us later on. If we have rwo denumerable sets

ay,a,as,... and by, by, bs,. ..,

then the set of all a and all » which arises by combining these two is also denumer-
able. For one can write this set as follows:

a17b17a25b27a35b37"'7
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and we can at once set this into a one-to-one relation with the series of positive
integers. Similarly, if we combine 3, 4, ..., or any finite number of denumerable
assemblages, we obtain likewise a denumerable set.

But it does not seem quite so obvious, and this is to be our lemma, that the
combination of a denumerable infinity of denumerable assemblages vyields also a
denumerable assemblage. To prove this, let us denote the elements of the first
assemblage by ay,a;,as, ..., those of the second by by, by, b3, ..., those of the
third by ¢y, ¢3,¢3,..., and so on, and let us imagine these set written under one
another. Then we need only represent all the elements in the order as indicated by
the successive diagonals, as indicated in the following scheme:

/ S S/
'4/////
i
df d/ds/. . % : .
A

1 2 3 45 6 7 8 9 10 1

— — e e e e —

a ay by ag by ¢ ay by ¢y dy a

reaches ultimately every one of the numbers a, b, ¢, ... and brings it into correspon-
dence with just one definite positive integer, which proves the theorem. In view of
this scheme one could call the process a “counting by diagonals”.

The Continuum Not Being Denumerable

The large variety of denumerable sets, which has thus been brought to our knowl-
edge, might incline us to the belief that all infinite sets are denumerable. To show
that this is not true we shall prove the second part of Cantor’s theorem, namely, that
the continuum of all real numbers is certainly not denumerable. We shall denote it
by €, because we shall have occasion later to speak of multi-dimensional continua.

€, is defined as the totality of all finite real values x, where we may think of x as
an abscissa on a horizontal axis. We shall first show that the set of all inner points
on the unit segment 0 < x < 1 has the same power as €. If we represent the first
set on the x-axis and the second on the y-axis, at right angles to it, then a one-to-one
correspondence between them will be established by a rising monotone curve of the
sort sketched in Fig. 121 (e.g., a branch of the curve y = —(1/7) - tan™! x). It is
permissible, therefore, to think of the assemblage of all real numbers between 0 and
1 as standing for €, and we shall do this from now on.
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Figure 121

The proof by which I shall show you that €; is not denumerable is the one
which Cantor gave in 1891 at the meeting of the natural scientists in Halle. It is
clearer and more susceptible of generalization than the one, which he published in
1873. The essential thing in it is the so-called “diagonal process”, by which a real
number is disclosed that cannot possibly be contained in any assumed denumerable
arrangement of all real numbers. This is a contradiction, and ¢ cannot, therefore,
be denumerable.

We write all our numbers 0 < x < 1 of €, as decimal fractions and think of
them as forming a denumerable sequence

= ‘ / /

X = 0, /,z by /

13 = 0,
where a, b, ¢ are the digits 0, 1,...,9 in every possible choice and arrangement.
Now we must not forget that our decimal notation is not uniquely definite. In fact
according to our definition of equality we have 0,999... = 1,000. .., and we could

write every terminating decimal as a non-terminating one in which all the digits,
after a certain one, would be nines. This is one of the first assumptions in calculating
with decimal fractions (see p. [37]). In order, then, to have a unique notation, let us
assume that we are employing only infinite, non-terminating decimal fractions; that
all terminating ones have been converted into such as have an endless succession of
nines; and that only infinite decimal fractions appear in our scheme above.

In order now to write down a decimal fraction x” which shall be different from
every real number in the table, we fix our attention on the digits ay, b,, c3, ... in the
diagonal of the table (hence the name of the procedure). For the first decimal place
of x” we select a digit a| different from a;; for the second place a digit b/, different
from b,; for the third place a digit ¢} different from c3; and so on:

x'=0,da\bych....
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These conditions for a}, by, ¢}, . . . allow sufficient freedom to insure that x’ is actu-
ally a proper decimal fraction, not, e.g., 0,999. .. = 1, and that it shall not terminate
after a finite number of digits; in fact, we can even select a}, b}, 3, . . . always dif-
ferent from 9 and 0. Then x’ is certainly different from x| since they are unlike in
the first decimal place/figure?, and two infinite decimal fractions can be equal only
when they coincide in every decimal place?. Similarly x’ # x,, on account of the
second place; x" # x3 because of the third place; etc. That is, x' — a proper dec-
imal fraction — is different from all the numbers X1, X2, X3, ... of the denumerable
tabulation. Thus the promised contradiction is achieved and we have proved that
the continuum € is not denumerable.

This theorem assures us, a priori, the existence of transcendental numbers; for
the totality of algebraic numbers was denumerable and could therefore not exhaust
the non-denumerable continuum of all real numbers. But, whereas all the earlier
discussions exhibited only a denumerable infinity of transcendental numbers, it fol-
lows here that the potency of this set is actually greater, so that it is only now that
we get the correct general understanding. To be sure, those special examples are of
service in giving life to an otherwise somewhat abstract picture!”.

Potency of Continua of More Dimensions

Now that we have disposed of the one-dimensional continuum it is very natural to
inquire about the two-dimensional continuum. Everybody had supposed that there
were more points in the plane than in the straight line, and it attracted therefore
much attention when Cantor showed!”® that the potency of the two-dimensional
continuum €, was exactly the same as that of the one-dimensional €;. Let us take
for €, the square with side of unit length, and for €, the unit segment (see Fig. 122).
We shall show that the points of these two figures can be put into a one-to-one
relation. The fact that this statement seems so paradoxical depends probably on our
difficulty in freeing our mental picture of a certain continuity in the correspondence.
But the relation, which we shall establish, will be as discontinuous or, if you please,
as inorganic as it is possible to be. It will disturb everything which one thinks of
as characteristic for the plane and the linear manifold as such, with the exception of
the “potency”. It will be as though one put all the points of the square into a sack
and shook them up thoroughly.

175 [The existence of transcendental numbers was first proved by Joseph Liouville; in an article

which appeared in 1851 in vol. 16, series 1, of the Journal des mathématiques pures et appliquées,
he gave entirely elementary methods for constructing such numbers.]

176 Ein Beitrag zur Mannigfaltigkeitslehre®, Journal fiir reine und angewandte Mathematik, vol.
84 (1878), 242-.258.
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The set of the points of the square coincides with that of all pairs of decimal
fractions
x:O,a1a2a3..., y:O,b1b2b3...,

all of which we shall suppose to be non-terminating. We exclude points on the
boundary for which one of the coordinates (x, y) vanishes, i.e., we exclude the two
sides, which meet at the origin, but we include the other two sides. It is easy to show
that this has no effect on the potency. The fundamental idea of the Cantor proof is
to combine these two decimal fractions into a new decimal fraction z from which
one can obtain (x, y) again uniquely and which will take just once all the values
0 < z = 1 when the point (x, y) traverses the square once. If we then think of z as
an abscissa, we have the desired one-to-one correspondence between the square €,
and the segment €, whereby the agreement concerning the square carries with it
the inclusion of its end point z = 1 of the segment.
One might try to effect this combination by setting

zZ = 0,a1b1a2b2a3b3 ey

from which one could in fact determine (x, y) uniquely by detaching the odd and
even decimal places respectively. But there is an objection to this, due to the am-
biguous notation for decimal fractions. This z, namely, would not traverse the whole
of €; when we chose for (x, y) all possible pairs of non-terminating decimal frac-
tions, that is, when we traversed all the points of €,. For, although z is, to be sure,
always non-terminating, there can be non-terminating values of z, such as

z = 0,c1¢20¢40¢60cs . . .,
which correspond only to a terminating x or y, in the present case to the values
x =0,c,000..., y=0,crcqcecs ...

This difficulty is best overcome by means of a device suggested by Julius Konig
of Budapest. He thinks of the a, b, ¢ not as individual digits but as complexes of
digits — one might call them “molecules” of the decimal fraction. A “molecule”
consists of a single digit, different from zero, together with all the zeros, which im-
mediately precede it. Thus every non-terminating decimal must contain an infinity
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of molecules, since digits different from zero must always recur; and conversely. As
an example, in
x = 0,3208007 000302 405. ..

we should take as molecules a; = [3], a» = [2], a3 = [08], a4 = [007], a5 =
[0003], ag = [02], a; = [4], ...

Now let us suppose, in the above rule for the relation between x, y and z, that the
a, b, c stand for such molecules. Then there will correspond uniquely to every pair
(x, y) anon-terminating z which would, in its turn, determine x and y. But now ev-
ery z breaks up into an x and a y each with infinity of molecules, and each z appears
therefore just once when (x, y) run through all possible pairs of non-terminating
decimal fractions. This means, however, that the unit segment and the square have
been put into one-to-one correspondence, i.e., they have the same potency.

In an analogous way, of course, it can be shown that also the continuum of 3,
4, ...dimensions has the same potency as the one-dimensional segment. It is more
remarkable, however, that the continuum €, of infinitely many dimensions, or
more exactly, of infinitely denumerable dimensions, has also the same potency.
This infinite-dimensional space is defined as the totality of the systems of values,
which can be assumed by the denumerable infinity of variables

X1, X2, ey Xpyenn

when each, independently of the others, takes on all real values. This is really only
a new form of expression for a concept that has long been in use in mathematics.
When we talk of the totality of all power series or of all trigonometric series, we

[280] have, in the denumerable infinity of coefficients, really nothing but so many inde-
pendent variables, which, to be sure, are for purposes of calculation restricted by
certain requirements to ensure convergence.

Let us again confine ourselves to the “unit cube” of the €, i.e., to the totality
of points, which are subject to the condition 0 < x,, = 1, and show that they can
be put into one-to-one relation with the points of the unit segment 0 < z = 1 of
€. For convenience, we exclude again all boundary points for which one of the
coordinates x, vanishes, as well as the end point z = 0, but admit the others. As
before we start with the decimal fractional representation of the coordinates in €:

X =0 a4 a a
% =0 b by B . . . .

Xy = 0, €, € €3 .. . . .

where we assume that the decimal fractions are all written in non-terminating form,
and furthermore that the a, b, c, ...are “decimal fraction molecules” in the sense
indicated above, i.e., digit complexes which end with a digit, which is different
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from zero, but which is preceded exclusively by zeros. Now we must combine all
these infinitely many decimal fractions into a new one, which will permit recog-
nition of its components; or, if we keep to the chemical figure, we wish to form
such a loose alloy of these molecular aggregates that we can easily separate out the
components. This is possible by means of the “diagonal process” which we applied
before (p. [275] et seq.). From the above table we get, according to that plan

zZ = O, a1a2b1a3b2c1a4b3czd1a5 ey

which relates uniquely a point of €, to each point of €,. Conversely we get in this
way every point z of €; for from the non terminating decimal fraction for a given z
we can derive, according to the above given scheme, an infinity of non-terminating
decimals xi, x3, X3, ..., out of which this z would arise by the method indicated.
We have succeeded therefore in setting up a one-to-one correspondence between
the unit cube in Co, and the unit segment in €.

Our results thus far show that there are at least two different potencies:

1. That of the denumerable sets.

2. That of all continua (€, €,, €5, ..., including €.

Sets with Higher Potencies

The question naturally arises whether there are still larger potencies. The answer is
that one can exhibit a still higher potency, not merely as a result of abstract reason-
ing, but one lying quite within the range of concepts, which one is anyway using in
mathematics. This set is, namely:

3. that of all possible real functions f(x) of a real variable x.

It will be sufficient for our purpose to restrict the variable to the interval
0 < x < 1. It is natural to think first of the set of continuous functions f(x),
but there is a remarkable theorem, which states that the totality of all continuous
functions has the same potency as the continuum, and belongs therefore in group 2.
We can reach a new, a higher potency, only by admitting discontinuous functions
of the most general kind imaginable, i.e., where the function value at any place x is
entirely arbitrary and has no relation to neighbouring values.

I shall first prove the claim concerning the set of continuous functions. This
will involve a repetition and a refinement of the considerations, which we adduced
(p- [222]) in order to make plausible the possibility of expanding “arbitrary” func-
tions into trigonometric series. At that time I remarked:

a) A continuous function f(x) is determined if one knows the values f(r) at all
rational values of r.

b) We know now that all rational values r can be brought into a denumerable
series 11,712,713, ...

c¢) Consequently f(x) is determined when one knows the denumerable infinity
of quantities f(ry), f(r2), f(r3),... Moreover, these values cannot, of course, be
assumed arbitrarily if we are to have a univocal continuous function. The set then of
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all possible systems of values f(ry), f(r2), ... must contain a subset whose potency
is the same as that of the set of all continuous functions (see Fig. 123).

Y

Figure 123

d) Now the magnitudes f; = f(r1), f» = f(rz),... can be considered as the
coordinates of a €, since they make up a denumerable infinity of continuously
varying magnitudes. Hence, in view of the theorem already proved, the totality of
all their possible systems of values has the potency of the continuum.

e) As a subset of this set, which can be mapped one-to-one to the continuum, the
set of all continuous functions can be mapped to a subset of the continuum.

f) But it is not hard to see that, conversely, the entire continuum can be put

[282] into one-to-one correspondence with a subset of all continuous functions. For this
purpose, we need to consider only the functions defined by f(x) = k = const.,
where k is a real parameter. If k traverses the continuum €; then f(x) will traverse
a subset of all continuous functions, which is in one-to-one correspondence with
¢.

g) Now we must make use of an important general theorem of set theory, the
so-called theorem of equivalence, due to Felix Bernstein'”’: If each of two sets is
equivalent to a subset of the other then the two sets are equivalent. This theorem is
very plausible. The proof of it would take us too far afield.

h) According to e) and f) the continuum €, and the set of all continuous functions
satisfy the conditions of the theorem of equivalence. They are therefore of like
potency, and our theorem is proved.

Let us now go over to the proof of our first claim, that the set of all possible
functions that are really “entirely arbitrary” has a potency higher than that of the
continuum. The proof is an immediate application of Cantor’s diagonal procedure:

a) Assume our claim to be false, i.e., that the set of all functions can be put
into one-to-one correspondence with the continuum €;. Suppose now, in this one-
to-one relation, that the function f(x,v) of x corresponds to each point x = v
in €4, so that, while v traverses the continuum €, f(x, v) represents all possible

177 First published in: Emile Borel, Lecons sur la Théorie des Fonctions, Paris, 1898, p. 103 et
seq.
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functions of x. We shall reduce this supposition to an absurdity by actually setting
up a function F(x), which is different from all such functions f(x,v).

b) For this purpose we construct the “diagonal function” of the tabulation of the
f(x,v), i.e., that function which, for every value x = xy, has that value which
the assumed correspondence imposes upon f(x, v) when the parameter v also has
the value v = xo, namely f(xg, xo). Written as a function of x, this is simply the
function f(x, x).

¢) Now we construct a function F(x) which for every x is different from this
f(x,x):

F(x) # f(x,x) forevery x.

We can do this in the greatest variety of ways, since we definitely admit discontin-
uous functions, whose value at any point can be arbitrarily determined. We might,
for example, put

F(x)= f(x,x)+ 1.

d) This F(x) is actually different from every one of the functions f(x,v). For, if
F(x) = f(x,vp) for some v = vy, the equality would hold also for x = wvy;
that is, we should have F(vg) = f(vg, vo), which contradicts the assumption in c)
concerning F(x).

The assumption a) that the functions f(x, v) could exhaust all functions is thus
overthrown, and our claim is proved.

It is interesting to compare this proof with the analogous one for the non-
denumerability of the continuum. There we assumed the totality of decimal
fractions arranged in a denumerable schema; here we consider the function scheme
f(x,v). The singling out there of the diagonal elements corresponds to the con-
struction here of the diagonal function f(x,x); and in both cases the application
was the same, namely the setting up of something new, i.e., not contained in the
schema — in the one case a decimal fraction, in the other a function.

You can readily imagine that similar considerations could lead us to sets of ever
increasing potency — beyond the three, which we have already discussed. The most
noteworthy thing in all these results is that there remain any abiding distinctions and
gradations at all in the different infinite sets, notwithstanding our having subjected
them to the most drastic treatment imaginable; treatment which deleted all their spe-
cial properties, such as order, and permitted only the ultimate elements, quasi their
atoms, to retain an independent existence as things, which could be tossed about
in the most arbitrary manner. And it is worth noting that three of these gradations,
which we did establish, were among concepts, which have long been familiar in
mathematics — integers, continua, and functions.

With this I shall close this first part of my set-theoretic discussion, which has
been devoted mainly to the concept of potency. In a similar concrete manner, but
with still greater brevity, I shall now tell you something about a farther section of
this theory.
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2. Arrangement of the Elements of a Set

We shall now bring to the front just that thing which we have heretofore purposely
neglected, the question, namely, how individual sets of the same potency differ from
one another by virtue of those relations as to the arrangement of the elements which
are intrinsic to each set. The most general one-to-one representations, which we
have admitted thus far deleted all these relations — think only of the representation
of the square upon the segment. I desire to emphasise, especially, the significance
of precisely this chapter of set theory. It cannot possibly be the purpose of set
theory to banish the differences, which have long been so familiar in mathematics,
by introducing new concepts of a most general kind. On the contrary, this theory
can and should aid us to understand those differences in their deepest essence, by
focussing on their properties from a more general standpoint.

Types of Arrangement of Denumerable Sets

We shall try to make clear the different possible arrangements, by considering def-
inite familiar examples. Beginning with denumerable sets, we note three forms of
fundamentally different arrangement, so different that the equivalence of their po-
tencies was, as we saw, the result of a special and by no means obvious theorem.
These examples are:

1. The set of all positive integers.

2. The set of all (negative and positive) integers.

3. The set of all rational numbers and that of all algebraic numbers.

All these sets have at first the one common property in the arrangement of their
elements, which finds expression in the designation simply ordered, i. e., of two
given elements, it is always known, which precedes the other, or, put algebraically,
which is the smaller and which the greater. Further, if three elements a, b, ¢ are
given, then, if a precedes b and b precedes c, a precedes ¢ (if a < b and b < ¢ then
a<c).

But now as to the characteristic differences. In (1), there is a first element (one)
which precedes all the others, but no last, which follows all the others; in (2), there
is neither a first nor a last element. Both (1) and (2) have this in common, that every
element is followed by another definite one, and also that every element [except the
first in (1)] is preceded by another definite one. In contrast with this, we find in
(3) (as we saw p. [33]) that between any two elements there are always infinitely
many others — the elements are “everywhere dense”, so that among the rational
or the algebraic numbers lying between a and b (a and b themselves not counted)
there is neither a smallest nor a largest. The manner of arrangement in these three
examples, the fype of arrangement (Cantor’s term type of order seems to me less
expressive) is different, although the potency is the same. One could raise the ques-
tion here as to all the types of arrangement that are possible in denumerable sets,
and that is what researchers on set theory actually do.
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Let us now consider sets having the potency of the continuum. We know a
simply ordered set, namely the continuum €, of all real numbers. but in the multi-
dimensional types €,, €5, ... we have examples of an order no longer simple. In
the case of €, for instance, two relations are necessary, instead of one, to determine
the mutual position of two points.

The Continuity of the Continuum

The most important thing here is to analyse the concept of continuity for the one-
dimensional continuum. The recognition of the fact that continuity here depends
on simple properties of the arrangement which is peculiar to €4, is the first great
achievement of set theory toward the clarifying of the traditional mathematical
concepts. It was found, namely, that all the continuity properties of the ordinary
continuum flow from its being a simply-ordered set with the following two proper-
ties:

1. If we separate the set into two parts A, B such that every element belongs to
one of the two parts and all the elements of A precede all those of B, then either
A has a last element or B a first element. If we recall Dedekind’s definition of
irrational number (see p. [36] et seq.) we can express this by saying that every “cut”
in our set is produced by an actual element of the set.

2. Between any two elements of the set there are always infinitely many others.

This second property is common to the continuum and the denumerable set of all
rational numbers. It is the first property however that marks the distinction between
the two. In set theory it is customary to call all simply-ordered sets continuous if
they possess the two preceding properties, for it is actually possible to prove for
them all the theorems which hold for the continuum by virtue of its continuity.

Let me remind you that these properties of continuity can be formulated some-
what differently in terms of Cantor’s fundamental series. A fundamental series is
a simply-ordered denumerable series of elements a;,a;,as, ... of a set such that
each element of the series precedes the following or each succeeds it:

ap<a<az<... Or ayp>ap;>dasz>...

An element a of the set is called a limit element of the fundamental series if (in
the first sort) every element, which precedes a, but no element which follows a
is ultimately passed by elements of the fundamental series; and similarly for the
second sort. Now if every fundamental series in a set has a limit element, the set
is called closed; if, conversely, every element of the set is a limit element of a
fundamental series, the set is said to be dense in itself. Now continuity, in the case
of sets having the potency of the continuum, consists essentially in the union of
these two properties.

Let me remind you incidentally that when we were discussing the foundations of
the calculus we spoke also of another continuum, the continuum of Veronese, which
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continuum constitutes a simply-ordered set in as much as the succession of any two
elements is determinate, but it has a type of arrangement entirely different from that
of the customary €;; even the theorem that every fundamental series has a limit
element no longer holds in it.

Invariance of Dimension for Continuous One-to-One Representations

We come now to the important question as to what representations preserve the
distinctions among the continua €, €,, ... of different dimensions. We know, in-
deed, that the most general one-to-one representation obliterates every distinction.
We have here the important theorem that the dimension of the continuum is in-
variant with respect to every continuous one-to-one representation, i.e., that it is
impossible to effect a reversibly unique and continuous mapping of a €,, upon a
€, where m # n. One might be inclined to accept this theorem, without further
ado, as self evident; but we must recall that naive intuition seemed to exclude the
possibility of a reversibly unique mapping of €, upon €, and this should dispose
us to caution in accepting its conclusions.

I shall discuss in detail only the simplest case'’®, which concerns the relation
between the one-dimensional and the two-dimensional continuum and I shall then
indicate the difficulties in the way of an extension to the most general case. We
shall prove, then, that a reversibly unique, continuous relation between €, and &,
is not possible. Every word here is essential. We have seen, indeed, that we may
not omit continuity; and that reversible uniqueness may not be omitted is shown by
the example of the “Peano curve” which is doubtless familiar to some of you.

We shall need the following lemma: Given two one-dimensional continua €1, @1
which are mapped continuously upon each other so that to every element of €
there corresponds one and but one element of €1 and to every element of € there
corresponds at most one element of €; if, then, a, b are two elements of €; to
which two elements a’, »” in € actually correspond, respectively, it follows that to
every element ¢ of €; lying between a and b there will correspond an element ¢’
of €/ which lies between a’ and b" (see Fig. 124). This claim is analogous to the
familiar theorem that a continuous function f(x) which takes two values a, b at the
points x = a’, b’ must take a value ¢, chosen arbitrarily between a and b, at some
value ¢’ between a’ and b’; and it could be proved as an exact generalisation of this
theorem, by using only the above definition of continuity. This would require one
also to explain continuous mapping of continuous sets in a manner analogous to
the usual definition of continuous functions, and it can be done with the aid of the
concept of arrangement. But this is not the place to amplify these hints.

178 Luitzen Egbertus Jan Brouwer gave a proof for the general case in 1911, in volume 71, of the
general case: “Uber Abbildung von Mannigfaltigkeiten”, 97—115.
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We shall give our proof as follows. We assume that a continuous reversibly
unique mapping of the one-dimensional segment €; upon the square €, has been
effected (see Fig. 125). Hence two elements @, b on €; should correspond to the
elements A, B, respectively, of €,. Now we can join t@e elements A, B by two
different paths within €y, e.g., by the stepped path €}, €| drawn in the figure. To
do this, it is not necessary to presuppose any special properties of €,, such as the
determination of a coordinate system; we need merely use the concept of double
order. Each of the paths €} and €/ will be a simply-ordered one-dimensional con-
tinuum like €, and because of the continuous reversibly unique relation between
€, and €, there must correspond just one point on €, to each element of € and €/;
but to-each element of €, there must correspond at most one on ¢/ or €/ . In other
words, we have precisely the conditions of the above lemma, and it follows that to
every point ¢ in €; between a and b there corresponds not only a point ¢" of €; but
also a point ¢’ of ¢ But this contradicts the assumed reversible uniqueness of the
mapping from € to €,. Consequently this mapping is not possible and the theorem
is proved.
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If one wished to extend these considerations to two arbitrary continua €,,, €,
it would be necessary to know in advance something about the constitution of con-
tinua of general nature and of dimension 1,2, 3, ..., m—1, which can be embedded
in €,. As soon as m,n = 2, one cannot get along merely with the concept
“between” as we could in the simplest case above. On the contrary, one is led
to very difficult investigations, which include, among the earliest cases, the overly
difficult questions, fundamental for geometry, concerning the most general contin-
uous one-dimensional points sets in the plane, questions which only recently have
been somewhat cleared up. One of these interesting questions is as to when such a
point set should be considered as a curve.
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Closing Remarks

Importance and Goals of Set Theory

I shall close with this my very special discussion of set theory, in order to add a few
remarks of a general nature. First, a word as to the general notions, which Cantor
had developed concerning the position of set theory with reference to geometry and
analysis. These notions exhibit set theory in a special light. The difference between
the discrete magnitudes of arithmetic and the continuous magnitudes of geometry
has always had a prominent place in history and in philosophical speculations. In
recent times the discrete magnitude, as conceptually the easiest to be grasped, has
come into the foreground. According to this tendency we look upon natural num-
bers, integers, as the simplest given concepts; we derive from them in the familiar
way, rational and irrational numbers, and we construct the complete apparatus for
the control of geometry by means of analysis, namely, analytic geometry. This ten-
dency of modern development can be called that of arithmetising geometry. The
geometric idea of continuity is reduced to the idea of whole numbers. This lecture
course has, in the main, held to this direction.

Now, as opposed to this one-sided preference for integers, Cantor would (as he
himself told me in 1903 at the meeting of the natural scientists in Cassel) achieve,
by set theory, “the genuine fusion of arithmetic and geometry”. Thus the theory of
integer numbers, on one hand, as well as the theory of different point continua, on
the other, and much more, would constitute parallel chapters on an equal footing of
a general theory of sets.

I shall add a few general remarks concerning the relation of set theory to geo-
metry. In our discussion of set theory we have considered:

1. The potency of a set as something that is unchanged by any reversibly unique
mapping.

2. Types of order of sets, which take account of the relations among the elements
as to order. We were able here to characterise the concept of continuity, the different
multiple arrangements or multidimensional continua, etc., so that the invariants of
continuous mappings found their place here. When carried over to geometry, this
gives the branch which, since Riemann, has been called analysis situs, that most
abstract chapter of geometry, which treats those properties of geometric configu-
rations, which are invariant under the most general reversibly unique continuous
mappings. Riemann had used the word manifold (Mannigfaltigkeit) in a very gen-
eral sense. Cantor used it also, at first, but replaced it later by the more convenient
word set (Menge).

3. If we go over to concrete geometry we come to such differences as that be-
tween metric and projective geometry. It is not enough here to know, say, that the
straight line is one-dimensional and the plane two-dimensional. We desire rather
to construct or to compare figures, for which we have to dispose of a fixed unit of
measure or at least construct a line in the plane, or a plane in space. In each of
these concrete domains it is necessary, of course, to add a special axiomatics to the
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general properties of arrangement. This implies, of course, a further development
of the theory of simply-ordered, doubly-ordered, .... n-tuply-ordered, continuous
sets.

This is not the place for me to go into these things in detail, especially since they
must be taken up anyway in the following volumes of the present work.!” T shall
merely mention literature in which you can inform yourselves farther. Here, above
all, T should speak of the reports in the Mathematische Enzyklopddie: Federico
Enriques, Prinzipien der Geometrie (III. A. B. 1) and Hans von Mangoldt, Die
Begriffe ,,Linie“ und , Fldche* (II. A. B. 2), which treat mainly the subject of
axioms; also Max Dehn-Poul Heegaard, Analysis situs (III. A. B. 3). The last article
is written in rather abstract form. It begins with the most general formulation of the
concepts and fundamental facts of analysis situs, as these were set up by Dehn
himself, from which everything else is deduced then by pure logic. This is in direct
opposition to the inductive method of presentation, which I always recommend.
The article can be fully understood only by an advanced reader who has already
thoroughly worked the subject through inductively.

As to literature concerning set theory, I should mention, first of all, the report
made by Arthur Schoenflies to the Deutsche Mathematikervereinigung, entitled:
Die Entwickelung der Lehre von den Punktmannigfaltigkeiten'’. The first part ap-
peared in volume 8 of the Jahresbericht der deutschen Mathematikervereinigung;
the second appeared recently as a second supplementary volume to the Jahres-
bericht. This work is really a report on the entire set theory, in which you will
find information concerning numerous details. Alongside of this, I would mention
the first systematic textbook on set theory: The Theory of Sets of Points, by William
Henry Young and his wife, Grace Chisholm Young (whom we mentioned p. [194]).

In concluding this discussion of the theory of assemblages we must again put
the question, which accompanies our entire lecture course: What of this can one
use in the schools? From the standpoint of mathematical pedagogy, we must of
course protest against putting such abstract and difficult things before the pupils
too early.'®! In order to give precise expression to my own view on this point,

179 [Transl. note: The following two paragraphs are contained in the thirs edition of 1924 but no

longer in the fourth of 1933. It is reasonable to maintain these two paragraphs, which had been
included in the American translation. ]

1892 parts, Leipzig 1900 and 1908, A revision of the first half appeared in 1913 under the title:
Entwickelung der Mengenlehre und ihrer Anwendungen; as a continuation of this, see H. Hahn:
Theorie der reellen Funktionen, vol. I, Berlin, 1921.

181 [Translator’s note: Klein changed this part considerably over the various editions. In the first
edition, of 1908, Klein had sharply criticised the first schoolbook ever published including set
theory: it was ,,Elemente der Arithmetik and Algebra®, by Friedrich Meyer, published in Halle
in 1885, even before Cantor’s complete publication of his new theory. Meyer, a friend of Cantor
and teacher at a Gymnasium in Halle, was criticised for developing school mathematics deduc-
tively, and for starting from set theory, and arriving at the first concrete mathematical issues, only
after many pages of deductive reasoning, (Klein 1908, 599). Since various readers had protested
against Klein’s verdict on Meyer — in particular Wilhelm Lorey who cooperated strongly with
Klein — Klein introduced an addendum in the second edition: he gave credit to the high teaching
qualities of Meyer as had been reported to him (Klein 1911, p. 613 et seq.). See: Gert Schubring,
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I should like to bring forward the biogenetic fundamental law, according to which
the individual in his development goes through, in an abridged series, all the stages
in the development of the species. Such thoughts have become today part and parcel
of the general culture of everybody. Now, I think that instruction in mathematics,
as well as in everything else, should follow this law, at least in general. Taking
into account the native ability of youth, instruction should guide it slowly to higher
things, and finally to abstract formulations, and in doing this it should follow the
same road along which the human race has striven from its naive original state to
higher forms of knowledge. 1t is necessary to formulate this principle frequently,
for there are always people who, after the fashion of the mediaeval scholastics,
begin their instruction with the most general ideas, defending this method as the
“only scientific one”. And yet this justification is based on anything but truth. To
instruct scientifically can only mean to induce the person to think scientifically, but
by no means to confront him, from the beginning, with cold, scientifically polished
systematics.

An essential obstacle to the spreading of such a natural and truly scientific
method of teaching is the lack of historical knowledge, which so often makes itself
felt. In order to combat this, I have made a point of introducing historical remarks
into my presentation. By doing this I trust I have made it clear to you how slowly all
mathematical ideas have come into being; how they have nearly always appeared
first in rather prophetic form, and only after long development have crystallized
into the rigid form so familiar in systematic presentation! It is my earnest hope that
this knowledge (,,Erkenntnis*) may exert a lasting influence upon the character of
your own teaching.

,-Historische Begriffsentwicklung und Lernprozef3 aus der Sicht neuerer mathematik-didaktischer
Konzeptionen (Fehler, “Obstacles”, Transposition)*, Zentralblatt fiir Didaktik der Mathematik,
1988, 20, 138-148. In the third edition however, Klein had deleted the names and publications
mentioning the position he had criticised.]



Appendix 1: On the Efforts to Reform
Mathematics Teaching

More than two decades have passed since the present work was given its sub-
stantially final form. The educational ideas, on which it takes sides, have in this
time generated a vast literature on the organisation of the school system and on
the methodology of mathematical teaching; they have effected an influence on re-
forming public education in many ways. One summarises the efforts made for the
practical realisation of those ideas under the name, “reform of mathematics teach-
ing”. The pre-history of this reform movement, its gradual initiation by means of
occasional suggestions, its eventual organisational aggregation and then more vig-
orous development is analysed for the period until about 1910, in detail in the IMUK
report! by Rudolf Schimmack: ,,Die Entwicklung der mathematischen Unterricht-
sreform in Deutschland“?. A second IMUK report by Heinrich Weinreich gives an
overview of the progress made during the years 1911-1913%; the development dur-
ing the later years still lacks appropriate analysis. The main lines of development
of the reform movement until today are outlined here.

In the introduction of the present lecture course reference was already made to
the Teaching Commission, established in 1904 by the Society of German Natu-
ral Scientists and Physicians (Gesellschaft deutscher Naturforscher und Arzte) at
their meeting in Breslau: called in short the ,,Breslauer Commission®. Its founding
brought about the union of two powerful currents, both of which strived for a reform
of secundary education. One came from the mathematical side, the other from the
biological. The mathematical side was supported by the Association of German En-
gineers (Verein deutscher Ingenieure), the German association for the promotion of
teaching mathematics and the sciences (Deutschen Verein zur Forderung des math-
ematischen und naturwissenschaftlichen Unterrichts) and professors at universities

I“Imuk” is the abbreviation for ,Internationale mathematische Unterrichtskommission®. See
p- [293].

2 “The development of mathematical teaching reform in Germany”. Heft 1 des ITI. Bandes der
Abhandlungen iiber den mathematischen Unterricht in Deutschland, veranlat durch die Interna-
tionale mathematische Unterrichtskommission. Leipzig 1911.

3 Die Fortschritte der mathematischen Unterrichtsreform seit 1910. Berichte und Mitteilungen,
veranlaft durch die Internationale mathematische Unterrichtskommission, Heft 10. Leipzig 1915.
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and technical colleges under F. Klein’s leadership. These three groups worked until
about 1895 separately from each other, but from then on were increasingly cooper-
ating and mutually supportive to produce a reform of mathematics teaching in the
sense that within it the applications and ideas underlying the great progress of math-
ematics during the 18th and 19th centuries should achieve the status corresponding
to their cultural significance. The biological movement started with great emphasis
in 1901, at a meeting of the Society of German Natural Scientists and Physicians,
in Hamburg, when the teaching of biology had been forbidden for 21 years, at the
Oberstufe of the Prussian secondary schools. At that time, the biologists formu-
lated their pressing necessities in a series of memoirs that were the subject of lively
discussions during the following meetings of the Society of German Scientists.

At the 1903 meeting, held in Kassel, Felix Klein proposed that the biological
and mathematical demands should be made the subject of joint deliberations. This
was realised in 1904, in Breslau, and led to the founding of the Breslau Commis-
sion. It was given the task to elaborate proposals for the renovation of teaching
mathematics, and the exact and descriptive natural sciences — which should be
practically feasible and sufficiently detailed. It was explicitly required that the oft-
conflicting interests of the representatives of the various school disciplines should
be brought to a consensus within the Commission. Moreover, “the agreed pro-
posals [should] be submitted for as unanimous acceptance as possible” to a later
meeting.

The intensive working Commission succeeded in meeting the expectations in an
extensive and rapid manner. It submitted proposals to the very next meeting of the
Natural Scientists, held in 1905 in Meran: the already mentioned curriculum pro-
posals for Gymnasia, Realgymnasia and Oberrealschulen. At the 1906 meeting in
Stuttgart, those for secondary schools with six grades and for reform schools fol-
lowed; in 1907, in Dresden, one was eventually able to report on the core problem
of every educational reform, the issue of teacher training. Admittedly, the Commis-
sion confined in this issue, as indeed in all the deliberated issues, its proposals to the
secondary education system. The Meran curricula®, in particular, are of high sig-
nificance for the reform movement. They constitute already well established norms
according to which the progress of reform movements for all changes occurring
in secondary education can be assessed. Their main demands are, as has already
been explained in various sections, a psychologically correct method of teaching,
the penetration of the entire syllabus with the concept of function, understood geo-
metrically, and the emphasis on applications. In organizational terms, they require
four mathematics lessons weekly throughout all the grades for the gymnasia. This
meant that the Prussian schools required two more weekly hours for the benefit of
the two Tertia grades. For since 1892, the number of mathematics lessons has been
reduced, in favour of Greek, from four to three. The elimination of this reduction of
mathematics teaching in the two Tertia grades, when the geometry and arithmetic

4 Although Meran, then in Austria, and nowadays in Italy, is named Merano in English, we main-
tain here its German name, since the 1905 curriculum is always known as the Meran curriculum
proposal.
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lessons must be given in sufficiently time, in order not to become too difficult and
not to alienate many students forever from mathematics, has always been an impor-
tant goal of the reform movement. In many respects, however, the Meran curricula
can and should be regarded merely as preliminary suggestions capable of being
complemented. They propose a fully elaborated curriculum only for the Gymna-
sium The Commission could not reach a consensus about the curriculum for the
Oberrealschulen, since their status was not fully settled then being still in develop-
ment. The mathematics proposals for the Realgymnasium were to apply the same
curriculum as for the Gymnasium — thus a limitation of its mathematics teaching,
as an interim measure, in order to gain more weekly hours for the natural sciences.
With regard to the question whether or not the calculus should be included in the
curriculum of the gymnasia, also no consensus could be achieved. Eventually, this
question was left open, by agreeing to a formulation that enabled, to a certain extent,
arbitrary interpretations, namely that teaching “should advance until the entrance to
calculus”.

With the elaboration of the Dresden proposals, which were, in fact, already men-
tioned on p. [2], the Breslau Commission was entitled to understand its task as
essentially achieved and therefore to apply for its dissolution. A complete report
on its activities and a documentation of its expert opinions was published by its
chairman, August Gutzmer, as also already mentioned on p. [2]. Due to its efforts,
many associations that were interested in the improvement of mathematics and sci-
ence teaching, have joined the reform activities. Instead of the Breslau Commission
the Deutsche Ausschuf fiir den mathematischen und naturwissenschaftlichen Unter-
richt (German Committee for mathematics and science teaching) was formed, on
a much broader basis. Its task was to clarify theoretically some teaching issues,
which were still pending, but above all to ensure the reform proposals becom-
ing reality in public education. The supporters of this new Committee, called in
short Damnu, were 16 associations: mathematical, physical, zoological, botani-
cal, chemical, medical and technical societies. The inaugural meeting of Damnu
took place in 1908, in Cologne. It does not restrict its activities to the secondary
schools, but is dedicated also, and especially, to the vast and important field of
primary schooling. From the beginning, it directed its attention especially to the
question of the quality of teacher training. An extensive report on its activities,
during the years 1908-1913, was published, again by August Gutzmer: “The ac-
tivities of the German Committee for mathematics and science education in the
years 1908-1913",3 Leipzig 1914. Moreover, one finds regular information on
Damnu in the journals Unterrichtsblitter of the Deutscher Verein zur Forderung
des mathematischen und naturwissenschaftlichen Unterrichts, the Zeitschrift fiir
mathematischen und naturwissenschaftlichen Unterricht, and the Jahresbericht der
deutschen Mathematikervereinigung. In 1922, Damnu took a step forward with an
important publication: namely “New Syllabi” for mathematics and science teach-
ing at the institutions of secondary education, edited by Teubner. This presented a

3 Die Titigkeit des Deutschen Ausschusses fiir den mathematischen und naturwissenschaftlichen
Unterricht in den Jahren 1908 bis 1913.
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revision of and a supplement to the Meran proposals, which had become necessary
due to the aforementioned reasons and to others explained in that text. Alongside
Damnu is working another organisation, founded also in 1908, under the leader-
ship of the Association of German Engineers and focussing mainly on the system
of technical education. This is the German Committee for Technical Education:
Deutsche Ausschuf3 fiir technisches Schulwesen (Datsch). The two committees are
working in the best agreement; their consistent approach being already guaranteed
by the fact that several members belong to both committees.

The year 1908 is in yet other respects of extreme importance for mathemat-
ics teaching. It brought the decision of the International Congress of Mathemati-
cians in Rome to establish an Internationale mathematische Unterrichtskommission
(Imuk).® That decision, which was suggested by the American mathematician,
David Eugene Smith, was instigated by the fact that at that time efforts to reform
mathematics teaching were already on-going in all civilised countries; in addition
to Germany, especially in France, England, Italy and the United States of Amer-
ica. A comparative analysis of all these efforts, as well as a systematic study of
the actual state of mathematics teaching in each country, should induce strong and
valuable impact upon their educational systems. A Central Committee consisting
of three members was entrusted with the formation of the /muk and the organization
of its work; Felix Klein was elected as its President, George Greenhill (London) as
Vice-President, and Henri Fehr (Geneva) as Secretary-General. Klein’s election was
decisively influenced by his activity since 1893 for the reform of mathematics teach-
ing and his numerous relevant publications, in particular the publication mentioned
on p. [3] as ,,Klein-Schimmack I*“. Originally, only questions regarding teaching at
secondary schools were intended to constitute the field of work for IMUK. But since
the systems of public education reveal very great differences from one country to
another, it soon turned out to be necessary to study mathematics teaching at all other
types of schools. The entire field of mathematics teaching, from the beginnings in
kindergarten up to higher education, had to be investigated. The reports, which the
Central Committee initially asked the delegates of each country to elaborate, had to
answer the following questions:

1. What is the present state of mathematics teaching in terms of its organisation,
its goals and its methods?

2. What modern tendencies are becoming influential in mathematics teaching?

It was suggested that the members of ICMI should form subcommittees in their
various countries in order to prepare reports on these questions. The German sub-
committee, presided over by Klein succeeded, after most strenuous work lasting
eight years, in providing a complete presentation, by means of a long series of
treatises, of the organisation and method of mathematics teaching of the German
school system: an initiative never before attempted for any other school discipline.
These essays are organised in 5 volumes, which in turn are divided into 9 exten-

SIMUK (here also abbreviated as Imuk) was the acronym for the Internationale Mathema-
tische Unterrichtskommission, also named in French CIEM (Commission Internationale de
I’Enseignement Mathématique) and renamed in English ICMI (International Commission on
Mathematics Instruction) during the 1950s.
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sive sections, and are called ,,Abhandlungen iiber den mathematischen Unterricht
in Deutschland, veranlaf3t durch die Internationale mathematische Unterrichtskom-
mission.“” Another volume, edited by Walther Lietzmann, is entitled ,,Berichte
und Mitteilungen, veranlaf3t durch die Internationale mathematische Unterrichts-
kommission.*® In the latter one finds, among other issues, a series of circulars of
the Central Commitee, detailed reports on the congresses which were organised
by IMUK: 1910 in Brussels, 1911 in Milan, 1912 in Cambridge, 1914 in Paris,
and two single treatises, we shall return to these two. The first three volumes of
treatises of the German subcommittee give an overview of the mathematics teach-
ing at the secondary schools in Germany and the academic training of its teachers.
The first volume is devoted to northern Germany, the second to southern Germany.
The third volume studies a number of specific issues. One finds there, amongst
other things, the treatise already mentioned on p. [204] by Heinrich Emil Timerd-
ing about mathematics in physics textbooks, a treatise on teaching linear drawing
as well as treatises about the role of astronomy, of commercial calculations, the his-
tory of mathematics and on philosophical propaedeutics in mathematics teaching.
The psychological foundations of mathematics teaching are treated in a monograph
by David Katz, titled “Psychology and mathematics teaching”. In the latter half
of the third volume of the Abhandlungen, Wilhelm Lorey presents the history of
mathematics teaching at universities since the beginning of the 19th century. The
fourth volume reports on technical schools, the fifth on the teaching of elementary
mathematics in the primary schools and on mathematics at the teacher training col-
leges. A detailed complete index of the publications of the German subcommittee
was constructed by E. and K. Korner and can be found in the volume ,,Berichte und
Mitteilungen®.

In addition to the presentation concerning the German school system, the Ger-
man subcommittee undertook a second extensive task. It soon became apparent
that the IMUK reports of other countries often did not allow us in Germany to get
a clear insight, due to the great intricacy and strangeness of the school systems on
which they were reporting. To become stimulating for us they needed to be sup-
plemented by reports which assessed the foreign school systems from the German
points of view. To obtain such representations, study travels abroad were required.
Unfortunately, because of the war, so far only two such reports were published,
one by Albert Rohrberg about Denmark and a very thorough report, of 207 pages,
by Georg Wolff about England.® The war put an end to this second task. This
war, which shattered exceptionally severely most international organisations, which
served scientific and cultural purposes, seemed finally to cause IMUK to fall its vic-
tim, too. In 1920, the Central Committee declared the Commission to be dissolved.
The national subcommissions were of course left to exist and to continue to devote
themselves to their duties. Henri Fehr offered the journal “L’Enseignement mathe-

7 Treatises on the teaching of mathematics in Germany, occasioned by the International Mathe-
matical Teaching Commission.

8 Reports and information, occasioned by the International Mathematical Teaching Commission.
9 Albert Rohrberg: Der mathematische Unterricht in Danemark. Leipzig 1915. Georg Wolff: Der
mathematische Unterricht an den hoheren Knabenschulen Englands. Beide Abhandlungen sind
im Band ,,Mitteilungen und Berichte® erschienen, aber auch einzeln erhiltlich. Leipzig 1915.
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matique” which he edited and which until then had been the official organ of IMUK,
to the subcommissions for the propagation of their work. In 1920 he himself pub-
lished in it a final report on the IMUK and a complete list of the publications by the
IMUK and by its subcommissions. From this report, we learn that, by then, a total
of 294 treatises had been completed; 53 of them by the German subcommission.

Fortunately, the decision of 1920 was reversed in 1928, at the International
Congress of Mathematicians in Bologna, which approved the continuation of
IMUK. At the IMUK meeting that took place in 1932 at the International Congress
of Mathematicians in Ziirich, Gino Loria (Italy) presented the general report on
the training of mathematics teachers in 14 different countries. The findings of the
report, which were to be published in “L’Enseignement mathematique”, were based
on a questionnaire that had been prepared in 1914 by F. Klein, H. Fehr and G. Loria.
IMUK chose as the theme for its next meeting the development of mathematics
teaching in the post-war period in the various countries.

Of the German states, Wiirttemberg, Baden and Bavaria had already begun be-
fore the war to reform their mathematics education. Prussia followed in 1923,
when it regulated its system of girls’ schools, and in 1925 there followed a pro-
found reform of its boys’ school system, which in turn led to such reforms in
almost all German states. In summary, one can say that what the Meran curricu-
lum had proposed regarding methods and topics of instruction, constitutes today the
mathematics teaching which is to be commonly found in all secondary schools in
Germany: certainly a great success for Klein’s efforts. The battle for the status of
mathematics in the entire educational system, however, is not yet ended by these
decisions. On the contrary, it is more necessary than ever to continue it. Supported
by strong forces, educational trends hostile to mathematics are from year to year
increasingly more active; they confirm Klein’s view that the German society seems
unable to develop a unified conception of culture in which the exact scientific ele-
ment is seen and valued as a characteristic and self-evident component. It becomes
more and more urgent that mathematicians devote themselves to the task that Klein
had formulated thus in a lecture on the training of future mathematics teachers:'°
“We should strive to establish a really positive relation between theoretical science
and everything that induces modern life. In this regard, it seems to me, that now a
particularly important task falls to the mathematician. Our science is not founded
— contrary to others — on a single period of human history, but it has accompanied
the development of culture at all its stages. Mathematics is as cognate with Greek
culture as with the most advanced tasks of engineering activities. It does not only
support the advancing natural sciences, but it participates simultaneously within the
abstract investigations of logicians and philosophers. Our specific task should here-
after be, to assert our influence to bring the conviction of the solidarity of all higher
intellectual interests.” (S.)

10 Die Anforderungen der Ingenieure und die Ausbildung der mathematischen Lehramtskandi-
daten”, Lecture, given in the Hannoverscher mathematischer Verein, on 20. April 1896. Printed
in: F. Klein und E. Riecke, Uber angewandte Mathematik und Physik in ihrer Bedeutung fiir den
Unterricht an den hoheren Schulen. (Teubner, Leipzig 1900.) pp. 222-228.
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Let us now give a concise overview of literature not yet mentioned in the lecture
course, which corresponds to the pedagogical intentions of the present book. Com-
pleteness is intended in no way, but rather attention shall be called to such books
that makes literature on a larger scale accessible to the reader.

The most extensive and wideranging work, which displays the historical devel-
opment of mathematical science up to the year 1800 in its entire breadth is the
four-volume ,, Geschichte der Mathematik ! by Moritz Cantor. Recent historical
research, especially the critical studies by the Swedish historian and mathematician
Gustaf Enestrom, whose results can be found documented in the journal “Biblio-
theca Mathematica”, have indeed shown that Cantor’s expositions need corrections
in many details. “BibliothecaMathematica” was a journal for the history of math-
ematics. It was founded by G. Enestrom in 1884 and was edited by him until
it was brought to an end by the war.”> Enestrom’s critical work has been fully
implemented in the second edition of ,,Geschichte der Elementarmathematik® by
Johannes Tropfke,? to which frequent reference has already often been made in this
book. Tropfke, however, understands as elementary mathematics only the tradi-
tional mathematical curriculum of secondary schools; he does not deal with the
historical development of the ideas which pervade the teaching matter of the reform
movement. Max Simon emphasises more the great tendencies of development and
the connection of mathematics with general culture in his ,,Geschichte der Mathe-
matik der Antike in Verbindung with antiker Kulturgeschichte* (Berlin: B. Cassirer
1909). As one of the most reliable boooks of this kind one can appreciate the history
of ,,Mathematik im Altertum und im Mittelalter” by Hieronymus Georg Zeuthen
published, in 1912, in the collective work ,,Kultur der Gegenwart* (Leipzig: Teub-
ner). Zeuthen is the author also of numerous monographs and other publications on

1'Vol. I, 3rd edition, 1907; Vol. II, 2nd edition, new printing 1913; vol. III, 2nd edition, 1901; vol.
1V, anastatic reprint 1924. Leipzig: Teubner.

2 Since 1929, a new journal is published by Springer, dedicated to the history of mathematics,
edited by Otto Neugebauer, |. Stenzel and Otto Toeplitz ,,Quellen und Studien zur Geschichte der
Mathematik®.

3 Third edition, forthcoming since 1930.
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the same subject. Paul Stéckel should have written the history of mathematics for
the 16th to the 18th centuries in the same series. However, unfortunately he died
too early. A replacement for him could not be found. The corresponding presen-
tation for the 19th century was prepared by F. Klein in lecture courses which he
delivered to a small group during the war years. These lectures were published by
Richard Courant, Otto Neugebauer and Stephan Cohn-Vossen after Klein’s death.*
The books by Aurel Voss: ., Uber das Wesen der Mathematik* (3rd edition, Leipzig
1923), and ,,Uber mathematische Erkenntnis* (Leipzig 1914) address more mathe-
matical and philosophical interests. The last book was also published in the series
Kultur der Gegenwart“. Two further parts of this series aim at awakening in the
general public an understanding of the position occupied by mathematics in the
foundations of our culture. One is by Aurel Voss who deals with the relationship of
mathematics to general culture and the other a study by Heinrich Emil Timerding
about the history of mathematics education.’

A rich source for the history, especially of the mathematics of the 19th century, is
the ,,Enzyklopédie der mathematischen Wissenschaften® (Leipzig: Teubner), whose
reports are appearing since 1898. The idea for this great and important undertaking
arose in 1894, on the occasion of a hike in the Harz mountains taken by F. Klein,
Heinrich Weber and Franz Meyer. Its realisation became possible when the support
of the German Academies was obtained. In seven volumes, which in turn are di-
vided into many subvolumes, the encyclopedia should provide — in a concise form,
enabling a rapid orientation, but at the same time with the greatest possible com-
pleteness — a presentation of the mathematical sciences and their applications and
at the same time reveal, by careful references, the historical development of math-
ematical methods since the beginning 19th century. General information about the
development of the undertaking can be found in the introductory report given by
Walter van Dyck as a preface to the first volume (1904) of the Encyclopedia. The
fields of algebra, arithmetic and analysis, discussed in the present lecture course,
are dealt with in the first two volumes. In this book, various reports in these vol-
umes have often served as references. Again, it is mentioned that it is expedient to
consult the French editon in addition to the German one, for some of their reports
were written a considerable time after the German version so that they are some-
times more complete. The seventh volume of the Enzyklopddie should have been
devoted to the history, philosophy and didactics of the mathematical sciences. Its
publication was made impossible by the unfavorable circumstances.

While elementary geometry received a special presentation in three reports by
Julius Sommer, Max Zacharias and Gustav Berkhan in volume III of the Enzyklo-
pddie, nothing corresponding exists for the three big “A”s. They are represented
in the first volume of the Encyclopedia of Elementary Mathematics by Weber-
Wellstein, to which reference was made repeatedly in the book. In 1922, the fourth

# Felix Klein: Vorlesungen iiber die Entwicklung der Mathematik im 19. Jahrhundert, 2 volumes,
Berlin 1926 und 1927.

3 Aurel Voss: Die Beziehungen der Mathematik zur Kultur der Gegenwart; Heinrich Emil Timer-
ding: Die Verbreitung mathematischen Wissens und mathematischer Auffassung, Leipzig 1914.
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edition of this volume appeared. It was edited by Paul Epstein and considerably re-
vised and enlarged. Its character differs perhaps even more from the present lecture
notes than the earlier editions. It presents a systematic structure of elementary math-
ematics while discussing in a detailed manner the basic concepts. But Epstein’s
notion of elementary mathematics does not coincide with what one understands by
this in schools. ‘Elementary’ means for him not simple and easily understandable,
but fundamental for higher mathematics. Thus we find in his book detailed and
abstract discussions of the concept of number, limit concept, number theoretic is-
sues, etc., while the elements of calculus remain disregarded, although the author
supports their teaching in schools.

Let us now turn to those works, which present elementary mathematics from
the didactic point of view; there, one has to name above all as an “Encyclope-
dia of mathematics education” all the publications of IMUK and their national
subcommissions. In these IMUK publications, an enormous stock of educational
experience and didactic knowledge is available. In the 10 subvolumes, containing
the treatises and communications of the German subcommittee, an easy and reliable
orientation has been made possible by means of the already above mentioned com-
plete index, constructed by E. and K. Korner. In addition to the pedagogical book
by Max Simon, mentioned already on p. [5] of the present book, one has to add the
,.Didaktik* by Alois Hofler® (Leipzig 1910), and the most comprehensive among the
newer methodologies, the ,,Methodik des mathematischen Unterrichts* by Walther
Lietzmann (vol. I, 2nd edition 1926; vol 11, 2nd edition 1923: vol. III, 1924). Liet-
zmann’s Methodik takes account of the entire work of IMUK and Damnu. The first
volume deals with organisation and technology, the second the didactic of math-
ematics teaching, while the third volume methodically treats applied mathematics
and philosophical aspects. Sufficient information about the numerous schoolbooks
for mathematics teaching at secondary schools, which have adopted the ideas of the
reform movement, are to be found in the first volume of the Lietzmann’s work and
the recent volumes of the pertinent professional journals.

In this appendix, it is not intended to report about the very extensive literature
that has appeared in the last few decades and especially following the beginning
of the Prussian educational reform concerning particular questions regarding the
teaching of the three big “A“s. The reader may consult for this the respective profes-
sional journals. But one fundamental question should be discussed here the correct
answer to which was always very dear to Klein, namely the question of rigour in
teaching mathematics. The core of Klein’s efforts is the requirement that teach-
ing should be psychologically adapted. The issue of rigour arises from the fact
that in addition to this psychological requirement it is accompanied by this second
one, which is likewise irrefutable, namely the conceptual truthfulness of teaching.
Both demands often seem difficult to reconcile. But one has to avoid here first and
foremost the confusion between knowledge and scientific form of knowledge. Cer-
tainly, we want to achieve true knowledge in schools. Perfect unanimity should

6 [Translator’s note: Alois Hofler, Didaktik des mathematischn Unterrichts. Leipzig: Teubner,
1910.]
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reign about this. Another question is, however, how far we can advance in connect-
ing knowledge systematically, in the reduction of concepts to fundamental concepts
and of relations to basic relations. It is no contradiction that teaching has to be con-
ceptually correct: yet, in approaching the ideal of systematic rigour that requires
one to operate with as few basic concepts and axioms as possible, yet one should
only proceed — in the relevant areas of school mathematics — as far as it corresponds
to the capacity of the students. The dangers which “rigorous” teaching entails for
the students have been described sufficiently often. The student, who becomes too
abruptly confronted with refined mathematical conceptualisations, does not under-
stand the meaning of these concepts; he does not connect a thought with the word
denoting the notion. The consequence of such education will be the opposite of
what we have to call the goal of mathematics teaching. Mathematics teaching is, by
virtue of the nature of mathematical knowledge, when properly handled, a means
for the maturation of the spirit hardly surpassable if it succeds. But we can, like-
wise, just with mathematics, if we teach it in a rigorous way, do all to destroy the
self-confidence of the student, and thus produce those persons about whom Ernst
Mach says: “I know nothing more terrible than these persons. Instead of healthy
and sound judgment, which they would probably have achieved if they had learned
nothing, their thoughts sneak about some words, sentences and formulas in an an-
xious and hypothetical manner, always on the same paths.”

Of works that fight pedagogical logicism, which aim to mould mathematics
teaching systematically, and rather attempt to explain and characterise the psycho-
logical attitude of the teacher, one might mention:

1. The Imuk-treatise already mentioned by David Katz: ,Psychologie und
mathematischer Unterricht*.

2. Benchara Branford: ““A study of mathematical education, including the teach-
ing of arithmetic” (German translation by Rudolf Schimmack and Hermann Wein-
reich. Leipzig 1913).

3. Gustav Rose: ,,Die Schulung des Geistes durch den Mathematik- und Rechen-
unterricht®. Leipzig 1928.

4. Gustav Rose: ,Rechnen und Raumlehre. Frankfurt 1932.

With respect to geometry the question of rigour was dealt with comprehen-
sively at the IMUK Congress in Milan, in 1911. The issue of calculus was dis-
cussed, in 1914, at the Paris IMUK Congress. Reports on these congresses can be
found in L’Enseignement mathématique, vol. 13 (1911) and vol. 16 (1914); partic-
ularly important is Emanuel Beke’s report in Volume 16: “Sur les résultats obtenus
par I'introduction du calcul différentiel et intégral dans les classes supérieures de
I’enseignement secondaire” and in the volume mentioned on p. 294 ,,Berichte und
Mitteilungen, veranlaBt durch die internationale Unterrichtskommission®.

One should still heed today Ernst Study’s advice. Study, at first known as a strong
opponent to the introduction of calculus in schools, expressed himself finally thus
(cf. Zeitschrift fiir mathematischen und naturwissenschaftlichen Unterricht, 1909,
p. 68 et seq.): “...I have thereafter come to the view that the good experience
that one claims to have achieved in general with this teaching is based on a self-
deception of not sufficiently critical teachers. I must therefore reject a systematic
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teaching of differential and integral calculus; this does not mean, however, that
such things should not be taught at all. The reform efforts do seem to have a very
healthy core, and they would be welcomed joyfully, if they would not, as probably
always happens in such cases, too far outrun the goal. Schools are not primarily
training institutions for specialised teachers, and the students have a good right to
learn as much of the most important results and applications of our science, as their
capacity and the amount of teaching time allotted to mathematics allows us to teach
them. If for instance in analytic geometry, upon teaching the laws of gravitation
and otherwise in as simple manner and using concrete examples as far as possible
and in excluding incorrect and for the student not understandable generalisations,
the fundamental concepts of calculus are explained in careful correct representation
and along with the associated notational language — wherever suitable occasions for
this offer themselves in the lessons, one will thus — to my mind — not anticipate
university teaching in an inconvenient manner. On the contrary, the interest of the
student will be directed to these important conceptions in an effective way. Much of
practical use will be learned particularly by graphical representations of functional
dependencies.”

In recent times, numerous efforts have been made by school teachers as also by
university professors to develop a psychologically and didactically sound presenta-
tion of the infintesimal calculus. We have mentioned already among others (p. [254]
et seq.) publications by Richard Courant and Alwin Walther and mention the talks
given by Otto Toeplitz at the meetings of the natural scientists in Diisseldorf (1926)
and Hamburg (1928). In these talks, Toeplitz depicts vividly the dangers that en-
tail, on one side, a mere reduction of the infinitesimal calculus to an operational
technique, and, on the other hand, the tendency to transfer the rigorous teaching
of the university to the schools. By taking the biogenetic law as lodestar, he pro-
poses to detect, by historical analyses, the path by which mathematical mankind
has achieved these insights that we call calculus in its entirety, and thus to obtain a
sufficiently finely graded course for the individual. (S.)

7 .Das Problem der Universititsvorlesungen iiber Infinitesimalrechnung und ihre Abgrenzung
gegeniiber der Infinitesimalrechnung an hoheren Schulen® (Jahresbericht der deutschen Mathe-
matiker Vereinigung, vol. 36, 1927) and the first of the talks in ,,Spannung zwischen den Aufgaben
und Zielen des Hochschulunterrichts und des Unterrichts an hoheren Schulen in der Mathematik
und den Naturwissenschaften* (Schriften des Damnu, 11. Folge, Heft 10. Leipzig 1929). This
publication of Damnu contains 6 talks, given at the Hamburg Naturforschertagung on the sub-
ject indicated in the title. Besides Otto Toeplitz, the presenters were Lony, Konen, Hillers, Ernst
Hiickel and Mannheimer.
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of infinitesimal calculus [238]
of the theory of fractions [33]
complex numbers [61]-[64]
irrational numbers [37]
natural numbers [15]-[16]
negative numbers [25]
Constructions with ruler and compass [56]
Continued fractions [45]-[49]
Continuity, analysis of, based on set theory
[285]-[287]
Curriculum proposals, the Meran [18],
[291]-[292]
Cut, after Dedekind [36]-[37]
Cyclometric functions:
definition of, by means of quadrature of the
circle [176], [181]
Cyclotomic numbers [52]

D
Damnu [293]-[294]
Datsch [294]
decimal system [7], [10], [22]
Dense [33], [270], [284]-[285]
Denumerability of algebraic numbers [274]
rational numbers [273]
a denumerable infinity of denumerable sets
[257]-[258]
Derivative calculus [237], [253]
Diagonal process [276], [282]
Differences, calculus of [246], [248]-[250]
Differentials, calculation with:
naive intuitional direction [224]-[227]
direction of mathematics of approximation
[231], [233]
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formal direction [231]-[232]
speculative direction [230], [233]-[234]
Dimension, invariance of the — of a continuum
by reversibly unique mapping
[286]-[287]
Discriminant curve of the quadratic and cubic
equation [99]-[100]
surface of the biquadratic equation
[105]-[109]

E
Equations:
biquadratic [103]-[108]
cyclotomic [54]
pure [119]-[124], [141]-[145]
reciprocal [56]-[57]
of fifth degree [153]-[154]
the dihedral — [124]-[130], [132]-[136]
the tetrahedral — [130]-[140]
the octahedral — [130]-[140]
the icosahedral — [130]-[140]
Equivalence, of sets [272]-[283]
, theorem of [282]
Exhaustion, method of [225]
Exponential function:
definition by quadrature of hyperbola
[161]-[162], [168]-[169]
general —, and e* [170]-[171], [173]-[174]
series for e* [163]-[164]
function-theoretic discussion of [169]

F
Fermat, great theorem of [50]-[54]
Formal mathematics [26], [29], [31], [36], [62]
Foundations of arithmetic:
by means of intuition [12]
formalism [14]
logic [13]
set theory [13]
Foundations of infinitesimal calculus
[227]-[230]
Fourier’s series, see trigonometric series.
integral [223]
Function, notion of:
analytic function [216]
arbitrary function [217]
relation of the two in complex region
[218]-[219]
discontinuous real functions [220]
Functions, set of continuous and real [222],
[281]-[283]
Fundamental laws of addition and
multiplication [9]-[10]
logical foundation [10]-[16]

Subject Index

consistency [13 et seq.]
regions on the sphere [111]-[114],
[117]-[120]
series. Cantor’s [264]
theorem of algebra [101]-[104]
Fractions, changing common into decimal

[44]-[45]

G

Gamma function [259]

German commission for mathematics and
science teaching [292]-[293]

German commission for technical education
[293]

Graphical methods for determining the real
solutions of equations [94]-[109]

H
Historical excursus on:
relations between differential calculus and
the calculus of finite differences
[251]-[254]
exponential function and logarithm
[157]-[167]
the notion of function [215]-[223]
infinitesimal calculus [224]-[239]
imaginary numbers [61]-[62], [81]—[82]
irrational numbers [34]-[37]
negative numbers [27]-[30]
Taylor’s theorem [251]—[253]
transcendence of e and 7 [256]-[257]
trigonometric series [221]-[223]
trigonometric tables and logarithmic tables
[183]-[188]
the modern development and the general
structure of mathematics [82]-[92]
Homogeneous variables in function theory
[114]-[117]
Hyperbolic functions [177]-[178]
analogy with circular functions [178]
fundamental function for [178]

I
Impossibility, proofs of:
general [56]
construction of regular heptagon with ruler
and compass [56]-[60]
trisection of an angle [123]-[124]
IMUK [293]-{296]
Induction, mathematical [12]
Infinitesimal calculus, invention and
development of [224]-[225]



Subject Index

Interpolation:
by means of polynomials after Lagrange
[247]
Newton [247]-[250]
trigonometric [206]-[208]
Interpolation parabolas [246]
Intuition, inner [12]
and logic [13]
Intuitive methods for equations in the complex
field [112]-[154]
Irreducibility:
function-theoretic [122]
number-theoretic [57]

L
Lagrange’s interpolation formula [247]
Limit, method of [227]-[230]
Logarithm:
base of the natural [162]
calculation of [159]-[160], [186]-[187]
definition of the natural — by means of
quadrature of the hyperbola [161],
[168]-[169]
difference equation for the — [159]
function-theoretic discussion of —
[169]-[175]
uniformisation by means of — [144]-[145],
[172]

M
Mean value theorem of differential calculus
[229]-[230];
extension of same [249]-[250]

N
Newton’s interpolation formula [247]-[250]
Nomographic scales for:

order curves [96], [102]

class curves [97]-[99], [102], [104]
Non-denumerability of the continuum [276]
Non-Archimedean number system [235]-[236]
Normal equations of the regular bodies:

solution by separation and series

[140]-[143]

uniformisation [143]-[148]

root signs [148]-[152]

reduction of general equations to normal

equations [152]-[153]
Number, set of continuous and real numbers
[270], [273]-[275]

, notion of [11]

, transition from, to measure [31]

pair [31], [62]

scale [25], [27], [33]
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(0}

Order, types of [284]

Osculating parabolas [241]-[244]
limiting form of [244]-[245]

P

Peano curve [286]

Philologists, relation to [2]—[3]

Picard’s theorem [173]

Point, the infinitely distant — of the complex
plane [113]-[114]

Point lattice [47]

Potency of the continuum of a denumerable
infinity of dimensions [279]-[280]

of a finite number of dimensions
[278]-[279]

of a set [272]-[283]

the set of all real functions [282]-[283]

the set continuous functions [281]-[282]

Precision, mathematics of [39]

Prime numbers, existence of infinitely many
[43]

factor tables [44]

Principle of permanence [28]-[29]

Process of growth of mathematics:

Plan A. Separating methods and
disciplines; logical direction [83]

Plan B. Fusing methods and disciplines;
intuitive direction [84]

Plan C. Algorithmic process; formal
direction [85]

Psychologic moments in teaching [4], [6]-[7],
[11], [17], [301, [33], [37], [289],
[301]-[302]

Pythagorean numbers [49]—[50]

Q

Quaternion [65]-[80]
scalar part of — [66]
vector part of — [66]
tensor of — [68], [72], [78]
versor of — [78]

R
Rational, in the sense of mathematics of
approximation [39]-[40]
Reform, the objectives of Basel for [2]
movement:
the elements of infinitesimal calculus in
schools [240], [302]-[303];
see also curriculum proposals and reform
in instruction.
proposals:
of Dresden — for teacher training [2], [292]
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Regular bodies, groups of [130]-[134]
Research, mathematical [224]
Rieman surfaces [113]-[118]

sphere [113]-[118]
Rotation of space [79]

dilation of space [73]-[79]

S
School teaching:
treatment of fractions [31]-[32]
irrational numbers [40]
complex numbers [81]-[82]
the pendulum [202]-[205]
exposition of the formal rules of operation
[11]
introduction of negative numbers [25], [30]
notion of function [220]-[221]
infinitesimal calculus [239]-[240],
[302]-[303]
exponent and logarithm [155]-[157],
[167]-[169]
operations with natural numbers [6]—[7]
trigonometric solution of cubic equation
[145]-[147]
transition to operations with letters [8]
uniformisation of the pure equation by
means of the logarithm [144]-[145]
number-theoretic considerations [40]-[42]
mathematics, contents of [4]
Set of continuous and real functions [222],
[281]-[283]
of algebraic and transcendental numbers
[270], [273]-[275]
Signs, rule of [26]
quasi proof for [30]
Space intuition [38]
Square root expressions:
significance of for constructions with ruler
and compass [56]
classification of [58]
Sturm’s theorem, geometrical equivalent of
[100]
Style of mathematical presentation [91]

T
Taylor’s formula [241], [251]
analogy with Newton’s interpolation
formula [250]-[251]
remainder term [244], [251]
Teachers, academic training of [1], [293],
[298]
, academic and normal school training of
[8]
Teaching, reform of [5], [290]-[297]
Tensor [68], [72], [78]

Subject Index

Terminology, different — in the schools:
algebraic numbers [25]
arithmetic [3]
relative numbers [24]
, misleading in:
algebraically soluble [151]
irreducible [147]
root [151]
Maclaurin’s series [252]
Threshold of perception [38]-[39]
Transcendence of e [257]-[262]
of 7 [263]-[270]
Triangle, notion of in spherical trigonometry:
elementary [189]
proper and improper [196]-[197]
with Mobius [190], [196]-[197]
with Study [190]
triangular membranes [197]
Trigonometry, spherical [189]-[201]
its place in n-dimensional geometry
[192]-[197]
supplementary relations of [198]-[201]
Trigonometric functions, see circular
functions.
Trigonometric functions:
calculation of [181], [184]
definition by means of quadrature of circle
[175]-[176]
complex fundamental function for
[178]-[179]
real fundamental function for [179]-[180]
function — theoretic discussion of
[180]-[182]
application of to spherical trigonometry
[189]-[201]
application of to oscillations of pendulum
[201]-[205]
application of to representation of periodic
functions [205]-[215];
see also trigonometric series.
series [205]-[215]
Gibbs’ phenomenon [214]-[215]
approximating curves [209]-[211]
convergence, proof of [211]-[213]
trigonometric interpolation [206]-[208]
behaviour at discontinuities [213]—-[215]

U
Uniformisation [143]-[148]
by means of logarithm [144]-[145], [172]

\%
Vector [65], [69]-[71]
Versor [78]
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