
MSDN-TE: Multipath Based Traffic
Engineering for SDN

Khoa Truong Dinh1(&), Sławomir Kukliński1,2,
Wiktor Kujawa1, and Michał Ulaski1

1 Warsaw University of Technology, Warsaw, Poland
k.truongdinh@stud.elka.pw.edu.pl,

slawomir.kuklinski@tele.pw.edu.pl,

wkujawa@mion.elka.pw.edu.pl, michal.ulaski@gmail.com
2 Orange Polska, Warsaw, Poland

Abstract. Software-Defined Networking is a new networking paradigm that
has recently gained a lot of attention in the networking community. Its funda-
mental idea lies on the separation of the centralized control plane and the
distributed forwarding plane. Due to global network view and the pro-
grammability, SDN is a better tool for solving traffic engineering problems than
mechanisms, which exist in classical IP networks. In this paper a simple
approach to SDN traffic engineering based on multipath forwarding is presented.
The approach lies on dynamic selecting of the best path among several paths for
forwarding of an incoming flow. The concept has been simulated using the
OpenDaylight controller and Mininet simulator. Simulations have confirmed
advantages of the proposed concept over the Shortest Path First (built-in the
OpenDaylight controller) and Spanning Tree Protocol (Mininet simple for-
warding techniques) approaches.

Keywords: SDN � Traffic engineering � Multipath � OpenDaylight

1 Introduction

In classical IP networks, IP packets are forwarded using the least (shortest) cost paths
toward the destination. The shortest cost path algorithms (implemented as a part of
IS-IS, CSPF or OSPF protocols) are usually based on simple, static metrics such as link
weight or number of hops. The cost for the path is the sum of the weights of all the
links belonged to this path. The available path bandwidth is typically not taken into
account – even if taken, the time required to update or to gather the entire network state
information is typically too long for fast network reaction. In case when the network
has spare links, if a failure happens, the routers will compete for the best new path,
which will likely be the shortest path. The moved traffic therefore will be forwarded
through the new shortest path causing this path to become congested, whereas links on
other paths remain under-utilized. This example shows the importance of traffic load
balancing among multiple paths. It is worth to mention that the load balancing
mechanism contributes to increased network efficiency (ability to handle more inten-
sive traffic) and increased QoS for the best effort service by reduction of network
congestion and packet loss rate.

© Springer-Verlag Berlin Heidelberg 2016
N.T. Nguyen et al. (Eds.): ACIIDS 2016, Part II, LNAI 9622, pp. 630–639, 2016.
DOI: 10.1007/978-3-662-49390-8_61



There are already existing some approaches dealing with Traffic Engineering
problem in the networks such as MPLS-TE, RSVP-TE, ECMP, etc. RSVP-TE extends
RSVP with many features (such as LSP set up, Fast Reroute, GMPLS extension) in
order to provide traffic engineering mechanisms [2]. MPLS-TE control plane is seen to
be complex and makes dynamic operation difficult and expensive. Another traffic
engineering solution, ECMP (Equal Cost Multipath) has some limitations, it cannot be
used to split traffic between parallel paths with different capacities [3].

The creation of Software Defined Networking (SDN) that is based on the Open-
Flow [7] protocol, used for controlling flows forwarding has recently gained enormous
interest. SDN [8] decouples the programmable control plane from network forwarding
plane. SDN consists of the forwarding plane, the control plane and the application
plane [9]. SDN approach comes with multiple benefits. It has been proved that such
centralized approach provides much shorter time of paths setup than using existing,
distributed routing protocols [1]. Moreover, by limiting the number of control plane
devices and simplifying data plane device architecture, the complexity and cost of the
network can be significantly reduced. In addition, the traffic engineering (TE) mecha-
nisms don’t have to be implemented in every network element. The programmability of
SDN, easy interface to applications and flow oriented operations are also important in
the context of TE and creation of application-aware networks. The centralized con-
troller becomes the brain of the entire network, and with network global overview, it
can efficiently decide where to forward flows in order to fulfil application (end-user)
demands and at the same time to optimize the forwarding plane resource utilization.
The following properties of SDN show that an efficient TE based can be implemented:

• The whole network topology is known to the SDN controller, therefore all existing
paths and their actual load can be easily identified and more than a single route can
be used for traffic forwarding between any source-destination pair.

• The controller, using OpenFlow, can change the configuration of Flow Switching
Tables (FST) of all switches in real-time.

A hybrid attempt based on MPLS and SDN has been already proposed in [4],
which uses the standard MPLS data plane and an OpenFlow based control plane. This
is seen as one of the first step to use SDN to handle the problem of TE, despite the fact
that only bandwidth reservation mechanism combined with the shortest path algorithm
in this approach was proposed. In the B4 solution [10], Google deployed TE in a
hybrid, commercial network that includes SDN switches and classical IP routers. It has
been claimed that the B4 approach drives most of links (ca. 70 %) to near 100 %
utilization, providing 14 % increase in average network throughput due to forwarding
the data flows among multiple paths in comparison to previous, MPLS based solution.
In B4 the splitting of the traffic applies to new coming flows only, for the on-going
flows no actions are taken. In [11] it has been shown that SDN network significantly
outperforms OSPF routing in terms of network throughput, delay and packet loss ratio.

The goal of this paper is to exploit and evaluate the properties of SDN and the
ability to manipulate flows in real-time for TE. Section 1 (this section) introduces TE
issues in IP networks and benefits of SDN in that context. Section 2 presents multipath

MSDN-TE: Multipath Based Traffic Engineering for SDN 631



routing and dynamic routing issues. The proposed MSDN-TE approach is described in
Sect. 3. The simulation environment and results of MSDN-TE approach are included in
Sect. 4. Finally, Sect. 5 summarizes the paper.

2 Traffic Engineering Overview

The main goal of TE is to use effectively network resources and to avoid congestion of
links or paths, while serving multiple network users. In order to achieve a high level of
users’ satisfaction, all CBR (constant bitrate) flows should obtain sufficient average
bitrate in a short-term whereas the TCP traffic can adapt to changing network condi-
tions and if source or destination provides high capacity a TCP section can saturate an
existing path. The traffic properties between two end-devices in most cases are
asymmetrical. In case of the dynamic routing, the routing decision can be taken
according to path’s cost that is based on the actual path’s metric. In order to achieve
that goal, the state of all network paths has to be evaluated and the information about
the overall network’s load and other statistics need to be collected.

In case when multiple paths are found, there are two different possibilities of traffic
forwarding:

• The best path can be selected and only this path is used for traffic forwarding
whereas the second path serves as a backup and is used in case of network failure.
Most IP networks TE nowadays are applying this approach.

• The traffic can be distributed among the existing paths. There are several possi-
bilities of such distribution, e.g. per packet or per flow basis. The first approach
provides higher granularity of traffic distribution for the sake of packets disordering,
whereas the second one is simpler, but less flexible.

The main problems with dynamic routing lies on:

• Incorrect decision related to path swapping, which may lead to the ping-pong effect
due to increased load of the switched paths. As a result, routing instability can be
observed.

• Unpredictable traffic volume in the switched paths caused by intrinsic TCP
mechanism that can grab all the available bitrate therefore leading to the new path
congestion.

• In case of per packet splitting there is a need to reorder packet at the destination.
Such operation has to be supported by appropriate receiver buffer used for restoring
the proper order of packets, which introduces additional transmission delay.

• In case of per flow traffic splitting, the granularity of switched traffic is potentially
low, and the knowledge about the flow properties can be beneficial for this process.
However, not much information about incoming flow can be obtained until it
actually occurs.

632 K.T. Dinh et al.



3 MSDN-TE Description

In this paper, the multipath traffic engineering approach for SDN (MSDN-TE) is
proposed. This approach is based on the usage of multiple paths to forward flows
taking into account the actual path’s load for the forwarding decisions. The approach
relies on computing k-paths available to forward flows between any Source-Destination
pair (S-D) and to select the least loaded path to handle an incoming flow. The main
goal of the MSDN-TE algorithm is to avoid congested points in the network, moreover
more distributed traffic among the existing paths contributes to easier handling of faults.

For finding multiple paths between the S-D, the k-shortest paths i.e. the Eppstein
algorithm [12] has been used. At present, for the sake of simplicity, only the load of
links contributed to paths is taken into account as a parameter to evaluate the path’s
cost. The number of paths used (k-number) is dependent on the network size. In a small
network used during experiments, all available loop-free paths were used. However, in
big networks, the number of paths can be dependent on network topology and is
expected to be in range 2–5.

The MSDN-TE procedure is following:

1. When new flow is coming the existence of an appropriate path is checked

– If k-path between S-D doesn’t exist such k-path is created

2. The cost of all paths (in this version load only) in k-path set is calculated and the
flow is assigned to the lowest cost path

3. Network overall statistics are read and compared with previous values
4. Users’ resource consumption is recorded (aggregated user’s throughput)
5. All links (and paths) metrics are updated (available bitrate, packet loss rate, cost)
6. Go to 3 (or 1 if a new flow is detected).

3.1 MSDN-TE Implementation

The MSDN-TE approach has been implemented as an additional module (OSGi
bundle) to the OpenDaylight controller. In the implementation MSDN-TE consists of
three main functional blocks: MONFUN, ACTFUN and TE Algorithm. MONFUN is a
set of functions responsible for collecting information about the network. This infor-
mation is input to the TE Algorithm, an algorithm which is responsible for decisions
regarding flow to path assignment. This process is supported by ACTFUN, a block
responsible for taking certain actions based on decision of TE algorithm. The overview
of the MSDN-TE implementation is depicted in Fig. 1.

Monitoring Functions (MONFUN) retrieve monitoring parameters (such as net-
work topology, flow’s statistics, link utilization, etc.) from the underlying network
elements. The set of monitoring data includes: PLR (packet_loss_ratio), link_load,
packet_delay. MONFUN also provides information about flows and their assignments
to paths. The total number of active flows in network is retrieved with their
idle_timeout/hard_timeout (if no packet has matched the rule for such period of time,
since the flow was inserted, the switch removes the entry and sends FLOW_REMOVED

MSDN-TE: Multipath Based Traffic Engineering for SDN 633



message to controller). Besides, the number of flows per host is also obtained to analyse
how much traffic each host generates in the network. The refresh rate of path metrics is
in range 10–15 s and is dependent on the ability of the controller to collect this
information from switches. The network topology update is also retrieved in such time
period. Three synthetic network parameters are collected: the Link_load is an averaged
load of each link over certain period of time; the Average_network_load refers to the
averaged load of all network links; and the total_network_dropped is the number of all
dropped network packets.

The monitoring of links is natively provided by OpenDaylight. On that basis there
is possible to evaluate the path’s quality and calculating quality parameters of all links
constituting the path. The link parameters are link_load, packet_loss_rate and delays.

Actuating Functions (ACTFUN) are used to make changes to the network for-
warding plane in a simple way. Controller using this functions can dynamically adjust
the acting parameters (path_ID and flow_ID) to assign flows to the best available path.
The path_ID is the path where flow is to be assigned and the flow_ID is the identifi-
cation of the flow.

4 Simulation Environment and Results

In order to check the behavior of the proposed approach the testbed and testing sce-
narios have been created. The testbed was composed of:

• OpenFlow network emulator: Mininet (OpenVirtualSwitch with OF v1.0).
• OpenDayLight [13] Hydrogen version based SDN controller, enhanced by addi-

tional OSGi bundles. These new bundles implemented MONFUN, ACTFUN and
the traffic engineering algorithm of MSDN-TE.

• I-DTG (Internet – Distributed Traffic Generator) used to generate network traffic
and to monitor different network parameters (jitter, packet_delay) [14].

Fig. 1. Overview of MSDN-TE architecture

634 K.T. Dinh et al.



4.1 Testing Scenarios

Two kinds of benchmarks of different network topology types were used. The first one
(Benchmark 1) is applied to simple network topologies (ring topology and small mesh
network) in order to validate proper behaviour of the implemented functions. The
second one (Benchmark 2) is using more realistic network topologies, i.e. network
topologies taken from the Internet Topology Zoo database (AGIS and Abilene topol-
ogy as shown in Figs. 5 and 6 respectively) [15]. In order to evaluate the efficiency of
the MSDN-TE algorithm different testing scenarios have been performed for each
benchmark.

Fig. 2. Scenario 1: Ring topology Fig. 3. Scenario 2: Traffic distribution in case
of MSDN-TE (k = 5)

Fig. 4. Scenario 2: Traffic distribution in
case of SPF Fig. 6. Abilene topology

Fig. 5. AGIS topology

MSDN-TE: Multipath Based Traffic Engineering for SDN 635



Benchmark 1. The description of testing scenarios is given below:

• Scenario 1: a ring network topology as shown in Fig. 2. Hosts are downloading a
100 Mb files from other hosts using the HTTP protocol.

• Scenario 2: mesh network (9 nodes, see Figs. 3 and 4), no background traffic
provided. Hosts are downloading a 100 Mb files from other hosts using the HTTP
protocol.

• Scenario 3: a modified Scenario 2 with the background traffic added.

Three data forwarding mechanisms were compared in Benchmark 1:

• the spanning tree protocol (STP) built-in natively in OpenVirtualSwitch;
• the shortest path first (SPF) protocol built-in OpenDaylight (ODL);
• multipath forwarding provided by MSDN-TE, implemented as an extension to

OpenDaylight controller, with one and five paths used for data forwarding.

Benchmark 2. In this benchmark the MSDN-TE algorithm is compared with the STP
protocol in terms of average delay and number of packet dropped. AGIS and Abilene
topologies are used. The traffic is generated by I-DTG for the duration of 4 min. In case
of Abilene topology, 7 hosts generate randomly 18 flows while in AGIS case, 25 hosts
generate randomly 70 flows to different destination hosts.

4.2 Simulation Results

Figure 7 shows the comparison of downloading time of different scenarios in case of
Benchmark 1. In this case the MSDN-TE algorithm with k = 5 in comparison to STP
reduces significantly the downloading time: by more than 56 % in Scenario 1, about
33 % in Scenario 2 and more than 55 % in Scenario 3. In Scenario 1, due to the limited
paths between every source-destination pair as a result of ring topology, the down-
loading times observed in case of SPF, MSDN-TE (k = 1) and MSDN-TE (k = 5) are
similar. Even in Scenario 2, the MSDN-TE algorithm with k = 1 provides similar result
in comparison with SPF, because only one shortest path is used to forward the traffic.

Fig. 7. Time of downloading files (using HTTP)

636 K.T. Dinh et al.



Figures 3 and 4 show that MSDN-TE is able to increase more than two times total
network throughput in comparison to SPF (400 Mbps vs. 184 Mbps for mesh
topology).

Figures 8 and 9 present the average network delay and the total number of dropped
packets for STP and MSDN-TE algorithm in case of the Abilene topology whereas
Figs. 10 and 11 present the same results but for the AGIS topology (Benchmark 2). For
such networks, MSDN-TE reduces remarkably the average network delay and the
number of dropped packets in comparison to STP. Table 1 shows that the overall delay
was reduced by 35 % for the AGIS topology and 65 % for the Abilene topology;
whereas the total number of dropped packets was reduced by 72.9 % in case of AGIS
and more than 90 % in Abilene case.

Fig. 8. Number of dropped packets in case of Abilene

Fig. 9. Average network delay in case of Abilene

MSDN-TE: Multipath Based Traffic Engineering for SDN 637



5 Conclusions

In this paper a simple concept of multipath based forwarding approach for SDN net-
works has been described and evaluated. By taking advantage of SDN properties
(global view of all links load), this approach, i.e. MSDN-TE, significantly outperforms
simple traffic forwarding mechanisms based on STP and SPF in terms of packet
dropped level, average network delay and the total network throughput. At present only
the mechanism of initial assignment of flows to paths was implemented and assessed in
MSDN-TE. However, during the flow assignment to path the flow’s properties are not

Fig. 10. Number of dropped packets in case of AGIS

Fig. 11. Average network delay in case of AGIS

Table 1. Average delay and number of dropped packets comparison between STP and MSDN

Mechanisms 
Parameters 

STP MSDN-TE (k=5) 
Abilene AGIS Abilene AGIS 

Average network delay (s) 0.02 0.83 0.007 (65%) 0.54 (35%) 
Number of dropped packets 39037 7571268 3542 (91%) 2047934 (72.9%) 

638 K.T. Dinh et al.



known yet. It is therefore desirable to add a mechanism to dynamically redirect the
on-going flows to less loaded paths after their initial assignment. Such extensions to
MSDN-TE has been already implemented and simulations are on-going.

Acknowledgement. This work has been partially conducted as part of the CoSDN (Cognitive
Software Defined Networks) project, which is funded by FNR Luxembourg and NCBiR Poland.

References

1. Matsui, K., Kaneda, M., Matsuda, K.: Evaluation of a server-based traffic engineering
architecture suitable for large-scale MPLS networks. In: 2010 8th Asia-Pacific Symposium
on Information and Telecommunication Technologies (APSITT), pp. 1–6. IEEE, June 2010

2. Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V., Swallow, G.: RSVP-TE:
extensions to RSVP for LSP tunnels (No. RFC 3209) (2001)

3. Farrel, A., Ayyangar, A., Vasseur, J.P.: Inter-Domain MPLS and GMPLS Traffic
Engineering–Resource Reservation Protocol-Traffic Engineering (RSVP-TE) Extensions
(No. RFC 5151) (2008)

4. Das, S., Sharafat, A., Parulkar, G., McKeown, N.: MPLS with a simple OPEN control plane.
In: Optical Fiber Communication Conference, p. OWP2. Optical Society of America, March
2011. [RL] Sutton, R.: Reinforcement learning: An introduction. MIT Press (1998)

5. Doria, A., Salim, J., Haas, R., Khosravi, H., Wang, W., Dong, L., Gopal, R., Halpern, J.:
“Forwarding and Control Element Separation (ForCES) Forwarding Element Model,”
Internet Engineering Task Force (IETF) (2010)

6. Vasseur, J., Roux, J.: “Path Computation Element (PCE) Communication Protocol (PCEP),”
Internet Engineering Task Force (IETF) (2009)

7. McKeown, N., Anderson, T., Balakrshman, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Tuner, J.: OpenFlow: enabling innovation in campus networks. Sigcomm
Comput. Commun. 38(2), 69–74 (2008)

8. McKeown, N.: Software-defined networking. INFOCOM Keynote Talk 17(2), 30–32 (2009)
9. ONF, Software-Defined Networking: The New Norm for Networks (2012). https://www.

opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.
pdf

10. Jain, S., Kumar, A., Mandal, S., Ong, J., et al.: B4: experience with a globally deployed
software defined WAN. In: SIGCOMM 2013, 12–16 August 2013, Hong Kong, China
(2013)

11. Agarwal, S., Kodialam, M., Lakshman, T.: Traffic engineering in software defined networks.
In: Proceedings of the 32nd IEEE International Conference on Computer Communications,
INFOCOM 2013, pp. 2211–2219, April 2013

12. Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28, 652–673 (1999)
13. https://www.opendaylight.org/downloads
14. Botta, A., Dainotti, A., Pescapè, A.: A tool for the generation of realistic network workload

for emerging networking scenarios. Comput. Netw. 56(15), 3531–3547 (2012). Elsevier
15. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet topology

zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011)

MSDN-TE: Multipath Based Traffic Engineering for SDN 639

https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/white-papers/wp-sdn-newnorm.pdf
https://www.opendaylight.org/downloads

	MSDN-TE: Multipath Based Traffic Engineering for SDN
	Abstract
	1 Introduction
	2 Traffic Engineering Overview
	3 MSDN-TE Description
	3.1 MSDN-TE Implementation

	4 Simulation Environment and Results
	4.1 Testing Scenarios
	4.2 Simulation Results

	5 Conclusions
	Acknowledgement
	References


