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Abstract. The Coppersmith methods is a family of lattice-based tech-
niques to find small integer roots of polynomial equations. They have
found numerous applications in cryptanalysis and, in recent develop-
ments, we have seen applications where the number of unknowns and
the number of equations are non-constant. In these cases, the combina-
torial analysis required to settle the complexity and the success condition
of the method becomes very intricate.

We provide a toolbox based on analytic combinatorics for these stud-
ies. It uses the structure of the considered polynomials to derive their gen-
erating functions and applies complex analysis techniques to get asymp-
totics. The toolbox is versatile and can be used for many different appli-
cations, including multivariate polynomial systems with arbitrarily many
unknowns (of possibly different sizes) and simultaneous modular equa-
tions over different moduli. To demonstrate the power of this approach,
we apply it to recent cryptanalytic results on number-theoretic pseudo-
random generators for which we easily derive precise and formal analysis.
We also present new theoretical applications to two problems on RSA
key generation and randomness generation used in padding functions for
encryption.

Keywords: Coppersmith methods · Analytic combinatorics · Crypt-
analysis · Pseudorandom generators · RSA key Generation · Encryption
padding

1 Introduction

Many important problems in (public-key) cryptanalysis amount to solving poly-
nomial equations with partial information about the solutions. In 1996, Cop-
persmith introduced two celebrated lattice-based techniques [11–13] for finding
small roots of polynomial equations. They have notably found many important
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applications in the cryptanalysis of the RSA cryptosystem (see [27] and refer-
ences therein). The first technique works for a univariate modular polynomial
whereas the second one deals with a bivariate polynomial over the integers. In
these methods, a family of polynomials is first derived from the polynomial whose
roots are wanted; this family naturally gives a lattice basis and short vectors of
this lattice possibly provide the wanted roots. Since 1996 many generalizations
of the methods have been proposed to deal with more variables (e.g., [8,20,22])
or multiple moduli (e.g., [28–30]).

Most of the applications of the Coppersmith methods in cryptanalysis involve
a constant number of multivariate polynomial equations in a constant number
of variables. However, in recent developments, we have seen applications of the
methods where the number of unknowns is non-constant (e.g., [2,18,29]). These
applications typically involve a number-theoretic pseudorandom number gener-
ator that works by iterating an algebraic map on a secret random initial seed
value and outputting the state value at each iteration. It has been shown that
in many cases Coppersmith’s methods can be applied to recover some secret
value. The difficulty comes from the fact that the polynomial system to solve
involves all iterates of the pseudorandom generator. It is very tedious to ana-
lyze the attack complexity (i.e., the dimension of the lattice derived from the
polynomial system whose roots are wanted) and its success condition (i.e., the
total degrees of the polynomials and monomials families used in the lattice
construction). For instance in [2,18], this analysis is a bit loose; it uses a nice
simplifying trick in order to analyze the condition of success but does not permit
to estimate the attack complexity. The main intent of this paper is to promote
the use of analytic combinatorics in order to perform these computations. In
order to demonstrate the power of this approach, we apply it to known cryptan-
alytic results [2] for which we easily derive precise and formal analysis. We also
present new theoretical applications to two problems that were left open in [16]
on RSA key generation and randomness generation used in padding functions
for encryption.

Prior Work. As illustrations of our toolbox, we apply it to the following prob-
lems from the literature:

– Number-theoretic pseudorandom generators. A pseudorandom generator is a
deterministic algorithm that maps a random seed to a longer string that
cannot be distinguished from uniformly random bits by a computationally
bounded algorithm. As mentioned above, a number-theoretic pseudorandom
generator iterates an algebraic map F over a residue ring ZN on a secret
random seed v0 ∈ ZN and computes the intermediate states vi+1 = F (vi)
mod N for i ∈ N. It outputs (some consecutive bits of) the state value vi

at each iteration. The well-known linear congruential generator corresponds
to the case where F is an affine function. It is efficient and has good sta-
tistical properties but Boyar [10] proved that one can recover the seed in
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time polynomial in the bit-size of M and this is also the case even if one
outputs only the most significant bit of each vi (see [9,23,31]). In [2], Bauer,
Vergnaud, and Zapalowicz studied the security of number-theoretic generators
for rational map F and proposed attacks based on Coppersmith’s techniques
showing that for low degree F the generators are polynomial time predictable
if sufficiently many consecutive bits of the vi’s are revealed (see also [5,6]).
Their lattice constructions are intricate and the analysis of their attacks is
complex.

– Key generation and Paddings from weak pseudorandom generator. The for-
mer attacks assume that the adversary has direct access to sufficiently many
consecutive bits of a certain number of outputs. However, it may be possi-
ble that using such a generator in a cryptographic protocol does not make
the resulting protocol insecure. For instance, in [25], Koshiba proved that
the linear congruential generator can be used to generate randomness in the
ElGamal encryption scheme (based on some plausible assumption). This secu-
rity results holds because the adversary against ElGamal encryption scheme
does not have access to the actual outputs of the generator. A contrario, in
1997, Bellare et al. [4] broke the Digital Signature Algorithm (DSA) when
the random nonces used in signature generation are computed using a linear
congruential generator. Recently, Fouque et al. [16] analyzed the security of
public-key schemes when the secret keys are constructed by concatenating
the outputs of a linear congruential generator. They obtained a time/memory
tradeoff on the search for the seed when such generators are used to generate
the prime factors of an RSA modulus (using multipoint polynomial evalua-
tion). They left open the problem to extend it to different scenarios, such as
the generation of randomness used in padding functions for encryption and
signatures.

Technical Tools. In Coppersmith methods, one usually considers an irreducible
multivariate polynomial f defined over Z, having a small root x modulo a known
integer N and one generates a collection of polynomials having x as a modular
root (usually, multiples and powers of f are chosen). The problem of finding x
can be reformulated by constructing a matrix using the collection of polynomi-
als (see Sect. 2). The methods succeed (heuristically) if some conditions on the
matrix hold and these conditions can be checked by enumerating the polynomials
involved in the collection and the total degree of the monomials appearing in the
collection. The success condition is usually stated as a bound x < N δ where δ is
an asymptotic explicit constant derived from the combinatorial analysis. How-
ever, in order to actually reach this bound in practice, the constructed matrix is
of huge dimension and the computation which is theoretically polynomial-time
becomes in practice prohibitive1. These attacks based on this method are obvi-
ously strong evidence of a weakness in the underlying cryptographic scheme and
there exist method that makes it possible to use matrices of reasonable dimension
1 Following Lipton’s terminology we can often qualify as galactic the resulting

polynomial-time algorithm for the asymptotic value of δ [26].
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(e.g., by performing an exhaustive to retrieve a small part of x and Coppersmith
technique with a smaller matrix to retrieve the other (bigger) part).

The combinatorial analysis in Coppersmith methods is usually easy to per-
form but as mentioned above it can be very intricate if one considers multivariate
polynomial equations in a non-constant number of variables. Analytic combina-
torics is a celebrated technique — which was mostly developed by Flajolet and
Sedgewick [15] — of counting combinatorial objects. It uses the structure of
the objects considered to derive their generating functions and applies complex
analysis techniques to get asymptotics.

Contributions. The main contribution of the paper is to provide a toolbox
based on analytic combinatorics for the study of the complexity and the suc-
cess condition of Coppersmith methods. The toolbox is versatile and can be
used for many different applications, including multivariate polynomial systems
with arbitrarily many unknowns (of possibly different sizes) and simultaneous
modular equations over different moduli.

In order to illustrate the usefulness of this toolbox, we then revisit the analysis
of previous cryptanalytic results from the literature on number-theoretic pseudo-
random generators [2]. In particular, we precise the complexity analysis of the
attacks described in [2] by giving generating functions and asymptotics for the
dimension of the matrix involved in the attack. We provide a complete analysis
of the success condition of the attacks described in [2,29]. The technique uses
simple formal manipulation on the generating functions and are readily done
using any computer algebra system. In particular, this shows that the toolbox
is very generic and can be applied in many settings (and does not require any
clever tricks).

Eventually, we provide new applications of the toolbox to RSA key gen-
eration and encryption paddings from weak pseudorandom generator. We
improve Fouque et al. time/memory tradeoff attack and we propose a (heuris-
tic) polynomial-time factorization attack when the RSA prime factors are con-
structed by concatenating the outputs of a linear congruential generator. Our
attack applies when the primes factors are concatenation of three (or more) con-
secutive outputs of the generator, i.e., when the seed is at most N1/6 (for which
the time/memory tradeoff attack has the prohibitive complexity O(N1/12)). The
attack is theoretical since it makes use of a matrix of large dimension. Following
their suggestion, we also apply our toolbox to the setting of the randomness
generation used in padding functions for encryption. To illustrate our technique,
we consider RSA Encryption with padding as described in pkcs#1 v1.5; it has
been known to be insecure since Bleichenbachers chosen ciphertext attack [7]
but, unfortunately, this padding is still in used about everywhere (e.g., TLS,
XML encryption standard, hardware token, . . . ). We consider several scenario,
namely linear congruential generator (LCG), truncated LCG, and LCG used in
n consecutive ciphertext. We apply our toolbox to all of them and for an RSA
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modulus N with a public exponent e and a LCG with modulus M , our attacks
are polynomial-time in log(N) for the following (asymptotic) M ’s:

Key generation pkcs#1 v1.5

with LCG LCG Truncated LCG LCG and multiple ciphertexts

M � N1/6 M < N1/e M < N1/e M < Nn/e

2 Coppersmith Methods

In this section, we give a short description of Coppersmith method for solving a
multivariate modular polynomial system of equations over multiple moduli. We
refer the reader to [22,30] for details and proofs.

Problem Definition. Let f1(y1, . . . , yn), . . . , fs(y1, . . . , yn) be irreducible mul-
tivariate polynomials defined over Z, having a root (x1, . . . , xn) modulo respec-
tive known integers N1, . . . , Nn, that is fi(x1, . . . , xn) ≡ 0 mod Ni. This root
is small in the sense that each of its components is bounded by a known
value, namely |x1| < X1, . . . , |xn| < Xn. We need to bound the sizes of Xi

(for i ∈ {1, . . . , n}) allowing to recover the desired root in polynomial time.

Polynomials Collection. In a first step, for each modulus Ni, one gener-
ates a collection of polynomials {f̃i,1, . . . , f̃i,r(i)} having (x1, . . . , xn) as a root
modulo Ni. Usually, multiples and powers of the original polynomial fi are cho-
sen, namely f̃i,j = y

ki,j,1
1 · · · yki,j,n

n f
ki,j,�

i for some integers ki,j,1, . . . , ki,j,n, ki,j,�.
By construction, such polynomials satisfy the relation f̃i,j(x1, . . . , xn) ≡ 0
mod N

ki,j,�

i , i.e., there exists an integer ci,j,k such that f̃i,j,k(x1, . . . , xn) =
ci,j,kN

ki,j,�

i . If some moduli Ni are equals, one can also consider multiples and
powers of products of the corresponding original polynomials fi.

From now, we denote for each i ∈ {1, . . . , s}, the polynomials {f̃i,1, . . . , f̃i,r(i)}
constructed as above. Considering the union of such sets if some moduli Ni

are equals, we can assume without loss of generality that the moduli Ni are
pairwise distinct and even pairwise coprime. Let us denote as P the set of all
the polynomials and M the set of monomials appearing in the collection P. In
the paper, we use the following essential condition for the method to work: for
each i ∈ {1, . . . , s}, the polynomials {f̃i,1, . . . , f̃i,r(i)} are linearly independent.

Matrix Construction. The problem of finding small modular roots of these
polynomials can now be reformulated in a vectorial way. Indeed, each polynomial
from our chosen collection can be expressed as a vector over Z

t by extracting
its coefficients and putting them into a vector with respect to a chosen order
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on M . We hence construct a matrix M as follows and we define as L the lattice
generated by its rows:

M =

f̃1,1 · · · f̃s,r(s)

↓ · · · ↓⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

�
1

X−1
1 y1

. . .
...

X−a1
1 . . . X−an

n ya1
1 . . . yan

n

0
N

k1,1,�

1

. . .

N
ks,r(s),�
s

On that figure, every row of the upper part is related to one monomial of M
(we assume in the figure that M contains 1, y1, and ya1

1 . . . yan
n among other

monomials). The left-hand side contains the bounds on these monomials (e.g.,
the coefficient X−1

1 X−2
2 is put in the row related to the monomial y1y

2
2). The

right-hand side is formed by all vectors coming from the union of the collections
{f̃i,1, . . . , f̃i,r(i)}.

A Short Vector in a Sublattice. Let us now consider the row vector

r0 = (1, x1, . . . , x
a1
1 . . . xan

n ,−c1, . . . ,−cr).

By multiplying this vector by the matrix M, one obtains:

s0 =
(

1,

(
x1

X1

)
, . . . ,

(
x1

X1

)a1

· · ·
(

xn

Xn

)an

, 0, . . . , 0
)

.

By construction, this vector which, in some sense, contains the root we are
searching for, belongs to L and its norm is very small. Thus, the recovery of a
small vector in L, will likely lead to the recovery of the desired root (x1, . . . , xn).
To this end, we first restrict ourselves in a more appropriated subspace. Indeed,
noticing that the last coefficients of s0 are all null, we know that this vector
belongs to a sublattice L′ whose last coordinates are composed by zero coeffi-
cients. By doing elementary operations on the rows of M, one can easily construct
that sublattice and prove that its determinant is the same as the one of L.

Method Conclusion. From that point, one computes an LLL-reduction on the
lattice L′ and computes the Gram-Schmidt’s orthogonalized basis (b�

1, . . . , b
�
t )

of the LLL output basis (b1, . . . , bt). Since s0 belongs to L′, this vector can
be expressed as a linear combination of the b�

i ’s. Consequently, if its norm is
smaller than those of b�

t , then s0 is orthogonal to b�
t . Extracting the coefficients
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appearing in b�
t , one can construct a polynomial p1 defined over Z such that

p1(x1, . . . , xn) = 0. Repeating the same process with the vectors b�
t−1, . . . , b

�
t−n+1

leads to the system {p1(x1, . . . , xn) = 0, . . . , pn(x1, . . . , xn) = 0}. Under the
(heuristic) assumption that all created polynomials define an algebraic variety
of dimension 0, the previous system can be solved (e.g., using elimination tech-
niques such as Groebner basis) and the desired root recovered in polynomial
time.

The conditions on the bounds Xi that make this method work are given by
the following (simplified) inequation (see [30] for details):

∏

y
k1
1 ...ykn

n ∈M

Xk1
1 · · · Xkn

n <
∏

i

N
∑n

i=1
∑r(i)

j=1 ki,j,�

i . (1)

For such techniques, the most complicated part is the choice of the collection of
polynomials, what could be a really intricate task when working with multiple
polynomials.

3 Analytic Combinatorics

We now recall the analytic combinatorics results that we need in the remaining
of this paper. We deliberately omit some of the formalism in order to simplify
the techniques used. See [15] for more details. In the following, we denote by |A|
the cardinal of a set A.

3.1 Introduction

As explained in the former section, Coppersmith’s method requires polynomials
which are usually constructed as fk = yk1

1 . . . ykn
n fk� (with f being a polynomial

of degree e in the variables y1, . . . , yn). In the following, we thus consider a set
of polynomials looking like2

P = {fk = yk1
1 . . . ykn

n fk� mod Nk� | 1 � k� < t

and deg(fk) = k1 + . . . + kn + k�e < te},

where the notation mod Nk� is only here to recall that the considered solution
verifies fk ≡ 0 mod Nk� (to make things clearer). We suppose that f is not just
a monomial (i.e., is the sum of at least two distinct monomials) and therefore
each k corresponds to a distinct polynomial fk.

The set of monomials appearing in the collection P will usually look like

M = {yk = yk1
1 . . . ykn

n | 0 � deg(yk) = k1 + . . . + kn < te}.

2 We only use one polynomial f and one modulus N for the sake of simplicity. Fur-
thermore, this exact set P could actually not appear in the Coppersmith methods,
as the polynomials are not linearly independent. However, it is easier to explain
analytic combinatorics tools on this set P. We show later, in Sect. 4 and throughout
this paper, how to adapt these tools to useful variants of this set.
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By construction, since (x1, . . . , xn) is a modular root of the polynomials fk,
there exists an integer ck such that fk(x1, . . . , xn) = ckNk� (see Sect. 2). Fur-
thermore, this root is small in the sense that each of its components is bounded
by a known value, namely |x1| < X1, . . . , |xn| < Xn. These considerations imply
that for the final condition in Coppersmith’s method (see Eq. (1)), one needs to
compute the values

ψ =
∑

fk∈P

k� and ∀i ∈ {1, . . . , n}, αi =
∑

yk∈M

ki.

These values correspond to the exponent of N and Xi (for i ∈ {1, . . . , n}) in
Eq. (1) respectively.

For the sake of readability for the reader unfamiliar with analytic combina-
torics, we first show how to compute the number of polynomials in P or M
of a certain degree and then how to compute these sums ψ and αi but only
for polynomials in P or M of a certain degree. These computations are of no
direct use for Coppersmith’s method but are a warm-up for the really interesting
computation, namely these sums ψ and ai for polynomials in P or M up to a
certain degree.

3.2 Combinatorial Classes, Sizes, and Parameters

A combinatorial class is a finite or countable set on which a size function is
defined, satisfying the following conditions: (i) the size of an element is a non-
negative integer and (ii) the number of elements of any given size is finite. Poly-
nomials of a “certain” form and up to a “certain” degree can be considered as
a combinatorial class, using a size function usually related to the degree of the
polynomial.

In the following, we can consider the set P as a combinatorial class, with
the size function SP

defined as S
P

(fk) = deg(fk) = k1 + . . . + kn + k�e. In
order to compute the sum of the k� as explained in Sect. 3.1, we define another
function χP , called a parameter function, such that χP (fk) = k�. This function
will enable us, instead of counting “1” for each polynomial, to count “k�” for
each polynomial, which is exactly what we need (see Sect. 3.4 for the details).

As for the monomials, we will also consider the set M as a combinatorial
class, with the size function SM

defined as S
M

(yk) = k1+ . . .+kn. In the case the
bounds on the variables are equal (X1 = . . . = Xn = X), the parameter function
corresponding to the exponent α1 of X1 in the final condition in Coppersmith’s
method will be set as χM

(yk) = k1 + . . . + kn. Otherwise, one will be able to
define other parameter functions in case the bounds are not equal (see again
Sect. 3.4).

3.3 Counting the Elements: Generating Functions

The counting sequence of a combinatorial class A with size function S is the
sequence of integers (Ap)p�0 where Ap = |{a ∈ Ap | S(a) = p}| is the number
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of objects in class A that have size p. For instance, if we consider the set M
defined in Sect. 3.1, we have the equality M1 = n since there are n monomials
in n variables of degree 1.

Definition 1. The ordinary generating function (OGF) of a combinatorial class
A is the generating function of the numbers Ap, for p � 0, i.e., the formal3 power
series A(z) =

∑+∞
p=0 Apz

p.

For instance, if we consider the set M (1) = {yk1
1 | 1 � k1 < t} of the

monomials with one variable, then one gets M
(1)
p = 1 for all p ∈ N, implying

that M (1)(z) =
∑+∞

p=0 zp = 1
1−z .

In the former example, we constructed the OGF A(z) from the sequence of
numbers Ap of objects that have size p. Of course, what we are really interested
in is to do it the other way around. We now describe an easy way to construct
the OGF, and we will deduce from this function and classical analytic tools
the value of Ap for every integer p. We assume the existence of an “atomic”
class, comprising a single element of size 1, here a variable, usually denoted as
Z. We also need a “neutral” class, comprising a single element of size 0, here
1, usually denoted as ε. Their OGF are Z(z) = z and E(z) = 1. We show in
Table 1 the possible admissible constructions that we will need here, as well as
the corresponding generating functions.

One then recovers the formula M (1)(z) = 1
1−z from Z(z) = z and the con-

struction Seq(Z) to describe M (1). Similarly, if we now consider the set M (2) =
{yk = yk1

1 yk2
2 | 0 � k1 + k2 < t} of the monomials with two variables, with the

size function S(yk) = k1+k2, then one gets M (2)(z) = M (1)(z)·M (1)(z) = 1
(1−z)2

from M (2) = M (1) × M (1). Finally, since 1
(1−z)2 =

∑+∞
p=1 pzp−1, one gets, for

all p � 1, (M2)p = p + 1, which is exactly the number of monomials with two
variables of size p.

When the class contains elements of different sizes (such as variables of degree
1 and polynomials of degree e), the variables are represented by the atomic

Table 1. Combinatorics constructions and their OGF

Construction OGF

Atomic class Z Z(z) = z

Neutral class ε E(z) = 1

Disjoint union A = B + C (when B ∩ C = ∅) A(z) = B(z) + C(z)

Complement A = B \ C (when C ⊆ B) A(z) = B(z) − C(z)

Cartesian product A = B × C A(z) = B(z) · C(z)

Cartesian exponentiation A = Bk = B × · · · × B A(z) = B(z)k

Sequence A = Seq(B) = ε + B + B2 + . . . A(z) = 1
1−B(z)

3 We stress that it is a “formal” series, i.e., with no need to worry about the conver-
gence.
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element Z and the polynomials by the element Ze, in order to take into account
the degree of the polynomial f . If we consider for instance the set P(1,2) =
{fk = yk1

1 fk� | 1 � k� < t and deg(fk) = k1 + 2k� < 2t}, with f a polynomial of
degree 2, this set is isomorphic to Seq(Z) × Z2Seq(Z2), since deg(f) = 2. This
leads to an OGF equals to

1
1 − z

z2

1 − z2
=

+∞∑
q=0

qzq
+∞∑
r=1

rz2r =
+∞∑
p=0

�p/2�∑
r=1

(p − 2r)rzp ,

which gives P
(1,2)
p =

∑�p/2�
r=1 (p−2r)r, which is exactly the number of polynomials

of degree p contained in the class.

3.4 Counting the Parameters of the Elements: Bivariate Generating
Functions

As seen in the former section, when one considers a combinatorial class A of
polynomials and computes the corresponding OGF A(z), classical analytic tools
enable to recover Ap as the coefficient of zp in the OGF. As explained in the
introduction of this section, however, Coppersmith’s method requires a compu-
tation a bit more tricky, which involves an additional parameter. For the sake of
simplicity, we describe this technique on an example.

For instance, consider our monomial set example M (2), but now assume
that X1 �= X2. Our goal is to compute

∑
k1, where the sum is taken over all the

monomials in M (2) of size p. We set a parameter function4 χ(yk) = k1 and we
do not compute M

(2)
p (for p � 1) anymore, but rather

χp(M (2)) =
∑

yk∈M (2)|S(yk)=p

χ(yk) =
∑

yk∈M (2)|S(yk)=p

k1

where, informally speaking, instead of counting for 1, every monomial counts for
the value of its parameter (here the degree k1 in y1).

The value χp(M (2)) cannot be obtained by the construction of M (2) as
Seq(Z) × Seq(Z) that we used in the former section, since the two atomic ele-
ments Z do not play the same role (the first one is linked with the parameter,
whereas the second one is not). The classical solution is simply to “mark” the
atomic element useful for the parameter, with a new variable u: With this new
parameter function, M (2) is seen as Seq(uZ) × Seq(Z), defining the bivari-
ate ordinary generating function (BGF)5 M2(z, u) = 1

1−uz
1

1−z . We remark that
when we set u = 1, we get the original non-parameterized OGF. Informally
speaking, the BGF of a combinatorial class A with respect to a size function S

4 Note that it is possible to count the exponents of both X1 and X2 at once using two
parameters, but it is usually easier to count them separately, which often boils down
to the same computation. See concrete examples in Sect. 4.

5 In complex cases, the marker u can be put to some exponent k, for instance if the
parameter considered has a value equal to k for the atomic element.
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and a parameter function χ is obtained from the corresponding OGF by replac-
ing each z by ukz where k is the value of the parameter taken on the atomic
element Z. We then obtain χp(A) via the following result:

Theorem 2. Assume A is a combinatorial class with size function S and para-
meter function χ, and assume A(z, u) is the bivariate ordinary generating funtion
for A corresponding to this parameter (constructed as explained above). Then, if
we define

χp(A) =
∑

a∈A|S(a)=p

χ(a)

the ordinary generating function of the sequence (χp(A))p�0 is equal to the value
(∂A(z, u)/∂u)u=1, meaning that we have the equality

∂A(z, u)
∂u

∣∣∣∣
u=1

=
+∞∑
p=0

χp(A)zp def
= χ(A)(z).

Coming back to our example, one then gets

χ(M (2))(z) =
+∞∑
p=0

χp(M (2))zp =
∂M (2)(z, u)

∂u

∣∣∣∣
u=1

=
z

(1 − z)3
=

+∞∑
p=1

p(p − 1)
2

zp−1.

meaning that χp(M (2)) = p(p + 1)/2 (remind that it is an equality on formal
series). Finally, the sum of the degrees k1 of the elements of size p is p(p + 1)/2,
which can be checked by enumerating them: yp

2 , y1y
p−1
2 , y2

1y
p−2
2 , . . . , yp−1

1 y2, y
p
1 .

It is easy to see that the result is exactly the same for X2, without any additional
computation, by symmetry.

3.5 Counting the Parameters of the Elements up to a Certain Size

We described in the former section a technique to compute the sum of the
(partial) degrees of elements of size p, but how about computing the same sum
for elements of size up to p? Using the notations of the former section, we want
to compute

χ�p
(A) =

∑
a∈A|S(a)�p

χp(a).

The naive way is to sum up the values χi(A) for all i between 0 and p:

χ�p
(A) =

p∑
i=0

∑
a∈A|S(a)=i

χi(a) ,

but an easier way to do so is to artificially force all elements a of size less than
or equal to p to be of size exactly p by adding enough times a dummy element
y0 such that χ(y0) = 0.

In our context of polynomials, the aim of the dummy variable y0 is to homog-
enize the polynomial. If we consider again the set M (2) of monomials of two
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variables y1 and y2, with size function equal to S(yk) = k1 + k2 and parame-
ter function equal to χ(yk) = k1, and if we are interested in the sum of the
degrees k1 of the elements in this set of size up to p, we now describe this set as
Seq(uZ) × Seq(Z) × Seq(Z), the last part being the class of monomials in the
unique variable y0. This variable is not marked, since its degree is not counted.
One obtains the new bivariate generating function M (2)(z, u) = 1

1−uz
1

(1−z)2 and

χ�(M (2))(z) =
+∞∑
p=0

χ�p
(M (2))zp =

∂M (2)(z, u)
∂u

∣∣∣∣
u=1

=
z

(1 − z)4

=
+∞∑
p=2

p(p − 1)(p − 2)
6

zp−2 ,

meaning that χ�p
(M (2)) = p(p + 1)(p + 2)/6 (remind that it is an equality on

formal series). Finally, the sum of the degrees k1 of the elements of size up to p
(i.e., the exponent of X1 in Coppersmith’s method) is p(p + 1)(p + 2)/2, which
can be checked by the computation

p∑
i=0

i(i + 1)
2

=
p(p + 1)(p + 2)

6
.

Again, it is easy to see that the result is exactly the same for X2, without any
additional computation.

3.6 Asymptotic Values: Transfer Theorem

Finding the OGF or BGF of the combinatorial classes is usually an easy task,
but finding the exact value of the coefficients can be quite painful. Coppersmith’s
method is usually used in an asymptotic way. Singularity analysis enables us to
find the asymptotic value of the coefficients in an simple way, using the technique
described in [15, Corollary VI.1(sim-transfer), p. 392]. Adapted to our context,
their transfer theorem can be stated as follows:

Theorem 3 (Transfer Theorem). Assume A is a combinatorial class with
an ordinary generating function F regular enough such that there exists a value
c verifying

F (z) ∼
z→1

c

(1 − z)α

for a non-negative integer α. Then the asymptotic value of the coefficient Fn is

Fn ∼
n→∞

cnα−1

(α − 1)!
.
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4 A Toolbox for the Cryptanalyst

We now describe how to use the generic tools recalled in the former section
to count the exponents of the bounds X1, . . . , Xn and of the modulo N (as
in the previous section, we consider the simplified case with only one modu-
lus N) on the monomials and polynomials appearing in Coppersmith’s method
(see Sect. 2). For the sake of simplicity, we describe the technique on several
examples, supposedly complex enough to be easily combined and adapted to
most of the useful cases encountered in practice.

4.1 Counting the Bounds for the Monomials (Useful Examples)

First Example. In this example, we consider

M = {y1
i1 · · · ym

m · ym+1
m+1 · · · yn

in | 1 � i1 + . . . + in < t}

with the bounds |yi| < X for 1 � i � m et |yi| < Y for m < i � n. In
order to obtain the exponent for the bound X, we consider the size function
S(y1i1 . . . yn

in) = i1 + . . . + in and the parameter function χ
X

(y1i1 . . . yn
in) =

i1 + . . . + im.
We describe M as

∏m
i=1 Seq(uZ) × ∏n

i=m+1 Seq(Z) × Seq(Z) \ ε (the last
Seq(Z) being for the dummy value y0), which leads to the OGF

F (z, u) =
(

1
1 − uz

)m (
1

1 − z

)n−m+1

− 1.

The next step is to compute the partial derivative in u at u = 1:

∂F (z, u)
∂u

∣∣∣∣
u=1

=
mz

(1 − uz)m+1

(
1

1 − z

)n−m+1
∣∣∣∣∣
u=1

=
mz

(1 − z)n+2

and take the equivalent value when z → 1:

∂F (z, u)
∂u

∣∣∣∣
u=1

∼
z→1

m

(1 − z)n+2
,

which finally leads, using Theorem3, to χ
X,<t

(M ) ∼ m(t−1)n+1

(n+1)! ∼ mtn+1

(n+1)! .
Finally, it is easy to see that if one denotes χ

Y
(y1i1 . . . yn

in) = im+1+. . .+in,
one gets χ

Y,<t
(M ) ∼ (n−m)tn+1

(n+1)! . This set of monomials used in Coppersmith’s

method thus leads to the bound X
mtn+1
(n+1)! Y

(n−m)tn+1

(n+1)! . In the particularly useful

case where X = Y , the bound becomes X
ntn+1
(n+1)! for all the monomials in n

variables of degree up to t.
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Second Example. In this example, we consider

M = {y1
i1 . . . yn

in | (i1 = 0 or i2 = 0)
and 1 � i3 � e and 1 � i1 + . . . + in < t}

with the bounds |yi| < X for 1 � i � n. We use the size function
S(y1i1 . . . yn

in) = i1 + . . . + in and the parameter function χ(y1i1 . . . yn
in) =

i1 + . . . + in (since the bound X is the same for all variables).
The first step is to split M into disjoint subsets. In our case, the three disjoint

subsets correspond to i1 = i2 = 0, (i1 = 0 and i2 �= 0) and (i1 �= 0 and i2 = 0).
Taking into account the dummy value y0, we describe them as

(Z + . . . + Ze) ×
n−3∏
i=1

Seq(uZ) × Seq(Z)

for the first one and

(uZ) × Seq(uZ) × (Z + . . . + Ze) ×
n−3∏
i=1

Seq(uZ) × Seq(Z)

for the two others (since the presence of y1 or y2 is mandatory). This leads to
the OGF

F (z, u) =
(

1 +
uz

1 − uz
+

uz

1 − uz

)
(z + . . . + ze)

(
1

1 − uz

)n−3 1
1 − z

=
1 + uz

(1 − uz)n−2

z + . . . + ze

1 − z
,

which gives, after computations,

∂F (z, u)
∂u

∣∣∣∣
u=1

=
z((n − 3)uz + n − 1)

(1 − uz)n−1

z + . . . + ze

1 − z

∣∣∣∣
u=1

∼
z→1

(2n − 4)e
(1 − z)n

,

which finally leads to χ
<t

(M ) ∼ (2n−4)e(t−1)n−1

(n−1)! ∼ (2n−4)etn−1

(n−1)! , using Theorem 3.

4.2 Counting the Bounds for the Polynomials (Example)

We now consider the set

P = {fk = yk1
1 . . . ykn

n fk� mod Nk� | 1 � k� < t

and deg(fk) = k1 + . . . + kn + k�e < te}
with the bounds X1 = . . . = Xn = X for the variables. In order to obtain the
exponent for the modulus N , we consider the size function S(y1k1 . . . yn

knfk�) =
k1 + . . . + kn + k� and the parameter function χ

N
(y1k1 . . . yn

knfk�) = k�.
For the sake of simplicity, we can consider 0 � k� < t since the parameter

function is equal to 0 on the elements fk such that k� = 0. We describe P as
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∏n
i=1 Seq(Z) × Seq(uZe) × Seq(Z) (the last one being for the dummy value

y0), since only f needs a marker and its degree is e. This leads to the OGF

F (z, u) =
(

1
1 − z

)n+1 1
1 − uze

.

The next step is to compute the partial derivative in u at u = 1:

∂F (z, u)
∂u

∣∣∣∣
u=1

=
ze

(1 − uze)2

(
1

1 − z

)n+1
∣∣∣∣∣
u=1

=
ze

(1 − ze)2

(
1

1 − z

)n+1

and take the equivalent value when z → 1, using the formula 1 − ze ∼ e(1 − z):

∂F (z, u)
∂u

∣∣∣∣
u=1

∼
z→1

1
e2(1 − z)n+3

,

which finally leads, using Theorem3, to χ
N,<te

(P) ∼ (te)n+2

e2(n+2)! .

5 Number-Theoretic Pseudorandom Generators
(Following [2])

As mentioned in the introduction, number-theoretic pseudorandom generators
work by iterating an algebraic map F over a residue ring ZN on a secret random
initial seed value v0 ∈ ZN to compute the intermediate state values vi+1 = F (vi)
mod N for i ∈ N and outputting (some consecutive bits of) the state value vi at
each iteration. In [2], Bauer et al. showed that such a pseudorandom generator
defined by a known iteration polynomial function F can be broken under the
condition that sufficiently many bits are output by the generator at each iteration
(with respect to the degree of F ).

Let F (X) be a polynomial of degree d in ZN [X] and let v0 be a secret seed.
As in [2], we assume that the generator outputs the k most significant bits
of vi at each iteration (with k ∈ {1, . . . , n} where n is the bit-length of N).
More precisely, if vi = 2n−kwi + xi, with 0 � xi < 2n−k = M = N δ which
is unknown to the adversary and wi is output by the generator. The adversary
wants to recover xi for some i ∈ N from consecutive values of the pseudorandom
sequence (with M as large as possible). We have vi+1 = F (vi) mod N (for
i ∈ N) for a known polynomial F and 2m−kwi+1 + xi+1 = F (2m−kwi + xi)
mod N . We can therefore define explicitly a family of bivariate polynomials of
degree d, fi(yi, yi+1) ∈ ZN [yi, yi+1], such that fi(xi, xi+1) = 0 mod N , for i ∈
{0, . . . , n} whose coefficients publicly depend on the approximations wi, wi+1 and
F ’s coefficients. The goal is to compute the (small) modular root (x0, x1, . . . , xn)
of the polynomial system {f0(y0, y1) = 0, . . . , fn(yn, yn+1) = 0} in polynomial
time.
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Description of the attack. In order to solve this system, Bauer et al. [2] applied
Coppersmith method for multivariate modular polynomial system to the follow-
ing collection of polynomials:

P = {y0
jf0

i0 . . . fn
in | d(i0 + di1 + . . . + dnin) + j � dm ∧ (i0 + . . . + in > 0)}

where m ≥ 1 is a fixed integer. They showed that the set of monomials occurring
in the collection is:

{y0
jy1

i0 . . . yn+1
in | d(i0 + di1 + . . . + dnin) + j � dm}.

To analyze their algorithm, Bauer et al. used a trick from [18] and only computes
the quotient of the two quantities involved in Coppersmith success condition (1)
(thanks to a fortunate simplification). In the following, we will use our toolbox
to recompute (more) easily the bounds on these two quantities. We also obtain
more precise estimates since our toolbox also permits to obtain the dimensions
of the matrix used in Coppersmith method (and therefore the actual complexity
of the attack).

Bound for the Polynomials. We consider the set P defined as

{y0
jf0

i0 . . . fn
in mod N in | d(i0+di1+ . . .+dnin)+j � dm∧i0+ . . .+in > 0)}

as a combinatorial class, with the size function S
f
(y0jf0

i0 . . . fn
in) = d(i0 +

di1 + . . . + dnin) + j and the parameter function χ
f
(y0jf0

i0 . . . fn
in) = i0 +

. . . + in. For the sake of simplicity, we can consider i0 + . . . + in � 0 since the
parameter function is equal to 0 on the elements such that i0 + . . . + in = 0.
We split the parameter functions into (n + 1) parts χ

f,j
(y0jf0

i0 . . . fn
in) = ij

(for j ∈ {0, . . . , n}), do the computation for each of them and sum the obtained
asymptotic equivalents (and this can be done legitimately by computing the
corresponding limits).

Let j ∈ {0, . . . , n}. Since the degree of each fk is dk+1, we consider P as

Seq(Z)︸ ︷︷ ︸
y0

×
n∏

k=0
k 	=j

Seq(Zdk+1
)︸ ︷︷ ︸

fk

×Seq(uZdj+1
)︸ ︷︷ ︸

fj

× Seq(Z)︸ ︷︷ ︸
dummy var.

\ Seq(Z)︸ ︷︷ ︸
y0

× Seq(Z)︸ ︷︷ ︸
dummy var.

which leads to the following generating function

Fj(u, z) =
1

1 − z

(
n∏

k=0
k 	=j

1
1 − zdk+1

)
1

1 − uzdj+1

1
1 − z

− 1
1 − z

1
1 − z

.

We take the partial derivative in u and then let u = 1:

∂Fj

∂u
(u, z)

∣∣∣∣
u=1

=
(

1
1 − z

)2

×
(

n∏
k=0
k 	=j

1
1 − zdk+1

)
× zdj+1

(1 − zdj+1)2
.
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We take the equivalent when z → 1, using the formula 1 − zn ∼ n(1 − z):

∂Fj

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

(
1

1 − z

)2

×
(

n∏
k=0
k 	=j

1
dk+1(1 − z)

)
× 1

(dj+1)2(1 − z)2

∼
z→1

1
(1 − z)n+4

1
d(n+1)(n+2)/2dj+1

.

Applying Theorem 3, one finally gets

χ
f,j,�dm

(P) ∼ 1
(n + 3)!

(dm)n+3 1
d(n+1)(n+2)/2dj+1

,

which leads to

χ
f,�dm

(P) ∼
⎛
⎝

n∑
j=0

1
dj+1

⎞
⎠ 1

(n + 3)!
(dm)n+3 1

d(n+1)(n+2)/2
.

Bound for the Monomials. We consider the set M defined as

{y0
jy1

i0 . . . yn+1
in mod M i0+...+in | d(i0 + di1 + . . . + dnin) + j � dm}

as a combinatorial class, with the size function S
y
(y0jy1

i0 . . . yn+1
in) = d(i0 +

di1 + . . . + dnin) + j and the parameter function χ
y
(y0jf0

i0 . . . fn
in) = i0 +

. . . + in. As before, we split the parameter functions into (n + 1) parts
χy,j (y0

jy1
i0 . . . yn+1

in) = ij (for j ∈ {0, . . . , n}) and do the computation for
each of them. As each yk “counts for” dk in the condition of the set, we consider
M as

Seq(Z)︸ ︷︷ ︸
y0

×
n+1∏
k=1
k 	=j

Seq(Zdk

)︸ ︷︷ ︸
yk

×Seq(uZdj

)︸ ︷︷ ︸
yj

× Seq(Z)︸ ︷︷ ︸
dummy var.

,

which leads to the following generating function

Gj(u, z) =
1

1 − z

(
n+1∏
k=1
k 	=j

1
1 − zdk

)
1

1 − uzdj

1
1 − z

.

We take the partial derivative in u and then let u = 1:

∂Gj

∂u
(u, z)

∣∣∣∣
u=1

=

(
n+1∏
k=0
k 	=j

1
1 − zdk

)
×

(
1

1 − z

)
× zdj

(1 − zdj )2
.

We take the equivalent when z → 1, using the formula 1 − zn ∼ n(1 − z):

∂Gj

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

(
n+1∏
k=0
k 	=j

1
dk(1 − z)

)
×

(
1

1 − z

)
× 1

(dj)2(1 − z)2

∼
z→1

1
(1 − z)n+4

1
d(n+1)(n+2)/2dj

.
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Applying Theorem 3, one finally gets

χ
y,j,�dm

(M ) ∼ 1
(n + 3)!

(dm)n+3 1
d(n+1)(n+2)/2dj

,

which leads to

χ
y,�dm

(M ) ∼
⎛
⎝

n+1∑
j=0

1
dj

⎞
⎠ 1

(n + 3)!
(dm)n+3 1

d(n+1)(n+2)/2
.

Condition. If we denote by μ = χ
f,�dm

(P) and ξ = χ
y,�dm

(M ), the condition
for Coppersmith’s method is Nμ > M ξ, i.e., Nμ/ξ > M , where

μ

ξ
=

χ
f,�dm

(P)
χ

y,�dm
(M )

∼
∑n

j=0
1

dj+1∑n+1
j=0

1
dj

=
1
d
1−1/dn+1

1−1/d

1−1/dn+2

1−1/d

∼ 1
d

,

which leads to the expected bound M < N1/d that was given in [2], for which the
algorithm (heuristically) outputs the the (small) modular root (x0, x1, . . . , xn)
of the polynomial system {f0(y0, y1) = 0, . . . , fn(yn, yn+1) = 0} in polynomial
time.

Complexity. In order to compute the dimensions of the matrix used in Cop-
persmith methods, we have to compute the cardinality of the sets P and M
(i.e., with the constant parameter functions χf = 1 and χy,j = 1). We obtain
the generating functions

1
1 − z

(
n∏

k=0

1
1 − zdk+1

)
1

1 − z
− 1

1 − z

1
1 − z

∼
z→1

1
(1 − z)n+3

1
d(n+1)(n+2)/2

and
1

1 − z

(
n+1∏
k=1

1
1 − zdk

)
1

1 − z
∼

z→1

1
(1 − z)n+3

1
d(n+1)(n+2)/2

for P and M (respectively). We thus obtain as above for the cardinality of both
sets P and M (and therefore essentially for the dimensions of the matrix), the
asymptotics

(dm)n+2

(n + 2)!
1

d(n+1)(n+2)/2
.

Remark 4. A computer algebra program can compute the first coefficients of
the formal series for μ and ξ and for the cardinality of the sets P and M ,
for any given d and n. Therefore, given d, n, and log M/ log N , it enables to
compute the minimum value m such that the attack works (i.e., such that μ/ξ >
log M/ log N , using the simplified condition, assuming the heuristic assumption
holds) and then to compute the corresponding number of polynomials in P and
of monomials in M , which then yield the size of the matrix. For an example of
such an analysis see end of Sect. 6.1.
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6 New Applications

6.1 Key Generation from Weak Pseudorandomness

In [16], Fouque, Tibouchi and Zapalowicz analyzed the security of key genera-
tion algorithms when the prime factors of an RSA modulus are constructed by
concatenating the outputs of a linear congruential generator. They proposed an
(exponential-time) attack based on multipoint polynomial evaluation to recover
the seed when such generators are used to generate one prime factor of an RSA
modulus. In this section, we propose a new heuristic (polynomial-time) algo-
rithm based on Coppersmith methods that allows to factor an RSA modulus
when both its primes factors are constructed by concatenating the outputs of a
linear congruential generator (with possible different seeds).

Let M = 2k be a power of 2 (for k ∈ N \ {0}). For the ease of exposition, we
consider a straightforward method to generate a prime number in which the key
generation algorithm starts from a random seed modulo M , iterates the linear
congruential generator and performs a primality test on the concatenation of
the outputs (and in case of an invalid answer, repeat the process with another
random seed until a prime is found). Let v0 and w0 be two random seeds for a
linear congruential generator with public parameters a and b in ZM that defines
the pseudorandom sequences:

vi+1 = avi + b mod M and wi+1 = awi + b

for i ∈ N. We assume that the adversary is given as input a (balanced) RSA
modulus N = p · q where p and q are (kn)-bit primes where p = v0 + Mv1 +
. . . + Mnvn and q = w0 + Mw1 + . . . + Mnwn.

Description of the attack. The adversary is given as inputs the RSA modulus N
and the generator parameters a and b and its goal is to factor N (or equivalently
to recover one of the secret seed v0 or w0 used in the key generation algorithm).
This can be done by solving the following multivariate system of polynomial
equations over the moduli N and M with unknowns v0,. . . ,vn,w0,. . . ,wn:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = (v0 + Mv1 + . . . + Mnvn)(w0 + Mw1 + . . . + Mnwn) ≡ 0 mod N

g0 = v1 − (av0 + b) ≡ 0 mod M

...
gn−1 = vn − (avn−1 + b) ≡ 0 mod M

h0 = w1 − (aw0 + b) ≡ 0 mod M

...
hn−1 = wn − (awn−1 + b) ≡ 0 mod M.

In order to apply Coppersmith technique, the most complicated part is the
choice of the collection of polynomials constructed from the polynomials that
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occur in this system. After several attempts, we choose to use the following
polynomial family (parameterized by some integer t ∈ N):

f̃i0,...,in,j0,...,jn,k = vi0
0 . . . vin

n · wj0
0 . . . wjn

n · fk mod Nk

with 1 ≤ k < t, (i0 = 0 or j0 = 0)

and deg(f̃...) = i0 + . . . + in + j0 + . . . + jn + 2k < 2t

g̃i0,...,in,j0,...,jn
= gi0

0 . . . g
in−1
n−1 · vin

n · hj0
0 . . . hjn−1

n · wjn
n mod M �

with 1 ≤ 	 = i0 + . . . + in−1 + j0 + . . . + jn−1

and deg(g̃...) = i0 + . . . + in + j0 + . . . + jn < 2t.

The moduli N and M are coprime (since N is an RSA modulus and M
is a power of 2) and it is easy to see that the polynomials f̃i0,...,in,j0,...,jn,k on
one hand and the polynomials g̃i0,...,in,j0,...,jn

on the other hand are linearly
independent.

We have a system of modular polynomial equations in 2n + 2 unknowns and
the Coppersmith method does not necessarily imply that we can solve the system
of equations. As often in this setting, we have to assume that if the method
succeeds, we will be able to recover the prime factors p and q from the set of
polynomials we will obtain:

Heuristic 1. Let F denote the polynomial set

P =
{

f̃i0,...,in,j0,...,jn,k | 1 ≤ k < t, (i0 = 0 or j0 = 0)
i0 + . . . + in + j0 + . . . + jn + 2k < 2t

}

⋃{
g̃i0,...,in,j0,...,jn

| 1 ≤ 	 = i0 + . . . + in−1 + j0 + . . . + jn−1

deg(g̃...) = i0 + . . . + in + j0 + . . . + jn < 2t

}
.

We assume that the set of polynomials we get by applying Coppersmiths method
with the polynomial set P define an algebraic variety of dimension 0.

Theorem 5. Under Heuristic 1, given as inputs an RSA modulus N = p ·q and
the linear congruential generator parameters a and b such that p = v0 + Mv1 +
. . .+Mnvn and q = w0 +Mw1 + . . .+Mnwn. (where v0 and w0 are two random
seeds and vi+1 = avi + b mod M and wi+1 = awi + b for i ∈ N), we can recover
the prime factors p and q in polynomial time in log(N) for any n � 2.

Bounds for the Polynomials Modulo N . We consider the set

P
f
= {f̃i0,...,in,j0,...,jn,k = vi0

0 . . . vin
n · wj0

0 . . . wjn
n · fk mod Nk

| 1 ≤ k < t, (i0 = 0 or j0 = 0)

and deg(f̃i0,...,in,j0,...,jn,k) = i0 + . . . + in + j0 + . . . + jn + 2k < 2t}

as a combinatorial class, with the size function Sf (f̃i0,...,in,j0,...,jn,k) = i0 + . . . +
in + j0 + . . . + jn + 2k and the parameter function χf (f̃i0,...,in,j0,...,jn,k) = k.
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The degree of each variable v0, . . . , vn, w0, . . . , wn is 1, whereas the degree of f
is 1. For the sake of simplicity, we can consider 0 � k < t since the parameter
function is equal to 0 on the elements fk such that k = 0. We use the technique
described in the second example of Sect. 4.2 to write P

f
as a disjoint union of

three sets (depending on the values i0 and j0) and consider it as

(ε + ZSeq(Z) + ZSeq(Z)︸ ︷︷ ︸
v0,w0

)×
n∏

k=1

Seq(Z)︸ ︷︷ ︸
vk

×
n∏

k=1

Seq(Z)︸ ︷︷ ︸
wk

×Seq(uZ2)︸ ︷︷ ︸
f

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

F (u, z) =
(

1 +
z

1 − z
+

z

1 − z

)
1

(1 − z)2n

1
1 − uz2

1
1 − z

=
1 + z

(1 − z)2n+2

1
1 − uz2

.

We take the partial derivative in u, then let u = 1, and finally take the equivalent
when z → 1:

∂F

∂u
(u, z)

∣∣∣∣
u=1

=
z2

(1 − z)2n+4(1 + z)
∼

z→1

1
2(1 − z)2n+4

.

Applying Theorem3, since 2t ∼ 2t − 1, one finally gets

χ
f,<2t

(P
f
) ∼ 1

2(2n + 3)!
(2t)2n+3.

Bounds for the Polynomials Modulo M . We consider the set

Pg = {g̃i0,...,in,j0,...,jn
= gi0

0 . . . g
in−1
n−1 · vin

n · hj0
0 . . . hjn−1

n · wjn
n mod M �

| 1 ≤ 	 = i0 + . . . + in−1 + j0 + . . . + jn−1

and deg(g̃i0,...,in,j0,...,jn
) = i0 + . . . + in + j0 + . . . + jn < 2t}

as a combinatorial class, with the size function S
g
(g̃i0,...,in,j0,...,jn

) = i0 + . . . +
in + j0 + . . . + jn and the parameter function χg (g̃i1,...,in,j0,...,jn

) = i0 + . . . +
in−1 + j0 + . . . + jn−1. The degree of each polynomial gk is 1, as well as the
degrees of vn and wn. For the sake of simplicity, we can consider 0 � 	 since
the parameter function is equal to 0 on the elements such that 	 = 0. We thus
consider P

g
as

n−1∏
k=0

Seq(uZ)︸ ︷︷ ︸
gk

×Seq(Z)︸ ︷︷ ︸
vn

×
n−1∏
k=0

Seq(uZ)︸ ︷︷ ︸
hk

×Seq(Z)︸ ︷︷ ︸
wn

× Seq(Z)︸ ︷︷ ︸
dummy var.

which leads to the following generating function:

G(u, z) =
1

(1 − uz)2n

1
(1 − z)2

1
1 − z

.
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We take the partial derivative in u, then let u = 1, and finally take the equivalent
when z → 1:

∂G

∂u
(u, z)

∣∣∣∣
u=1

=
2nz

(1 − z)2n+4
∼

z→1

2n

(1 − z)2n+4
.

Applying Theorem3, since 2t ∼ 2t − 1, one finally gets

χ
g,<2t

(P
g
) ∼ 2n

(2n + 3)!
(2t)2n+3.

Bounds for the Monomials Modulo M . We consider the set

M={v0
i0 . . . vn

in ·w0
j0 . . . wn

jn mod M � | 0 � 	=i0+. . .+in+j0+. . .+jn < 2t}

as a combinatorial class, with the size function S
x
(v0i0 . . . vn

in ·w0
j0 . . . wn

jn) =
i0+. . .+in+j0+. . .+jn and the parameter one χ

x
(v0i0 . . . vn

in ·w0
j0 . . . wn

jn) =
i0 + . . .+ in + j0 + . . .+ jn. The degree of each variable xk is 1. We thus consider
M as

n∏
k=0

Seq(uZ)︸ ︷︷ ︸
vk

×
n∏

k=0

Seq(uZ)︸ ︷︷ ︸
wk

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

H(u, z) =
1

(1 − uz)2n+2

1
1 − z

.

We take the partial derivative in u, then let u = 1, and finally take the equivalent
when z → 1:

∂H

∂u
(u, z)

∣∣∣∣
u=1

=
(2n + 2)z

(1 − z)2n+4
∼

z→1

2n + 2
(1 − z)2n+4

.

Applying Theorem 3, since 2t ∼ 2t − 1, one finally gets

χ
x,<2t

(M ) ∼ 2n + 2
(2n + 3)!

(2t)2n+3.

Condition. If we denote by ν = χ
f,<te

(P
f
), μ = χ

g,<te
(P

g
) and ξ =

χ
x,<te

(M ), the condition for Coppersmith’s method is Nν · Mμ > M ξ, where

ν

ξ − μ
=

χ
f,<te

(P
f
)

χx,<te(M ) − χg,<te(Pg )
∼

z→1

1
2(2n+3)! (2t)2n+3

2n+2
(2n+3)! (2t)2n+3 − 2n

(2n+3)! (2t)2n+3
∼

z→1

1
4

which leads to the bound M < N1/4 (and since N is an even power of M we
obtain M � N1/6 and thus n � 2).
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Table 2. Bounds in Coppersmith (simplified) success condition (1)

n t 1 2 3 4 5 6 7 8

2 Polynomial bound 4 38 186 654 1866 4602 10182 20706

Monomial bound 6 48 216 720 1980 4752 10296 20592

3 Polynomial bound 6 68 402 1688 5682 16340

Monomial bound 8 80 440 1760 5720 16016

4 Polynomial bound 10 152 1206 6704 29416

Monomial Bound 12 168 1260 6720 28560

5 Polynomial bound 12 206 1842 11486

Monomial bound 14 224 1904 11424

Remark 6. In the previous attack, we actually considered a very naive prime
number generation algorithm. However, a prime number generation algorithm
based on this (bad) design principle would probably use instead an incremental
algorithm and output prime numbers p = (v0 + Mv1 + . . . + Mnvn) + α and
q = (w0 + Mw1 + . . . + Mnwn) + β for some α and β in N. Thanks to the prime
number theorem, these values are likely to be small and the previous algorithm
can be run6 after an exhaustive search of α and β.

Concrete bounds. The previous analysis leads to the bound M < N1/4 when t
goes to ∞. Actually to reach the (simplified) success condition (1) in Copper-
smith method for n � 2, we need only small values of t as shown in Table 2.

Unfortunately, even if t is small, the constructed matrix is of huge dimension
(since the number of monomials is quite large) and the computation which is
theoretically polynomial-time becomes in practice prohibitive (for instance, for
n = 3 and t = 6, the matrix is of dimension 6473). These attacks are netherthe-
less good evidence of a weakness in this key generation scheme. For n = 1 (i.e.,
M = N1/4), the polynomial time attack does not apply, but one may combine it
with an exhaustive search to retrieve a small part of v0, v1, w0 and w1 to retrieve
the other (bigger) part of the seeds.

6.2 PKCS#1 V1.5 Padding Encryption with Weak
Pseudorandomness

pkcs#1 v1.5 describes a particular encoding padding for rsa encryption. Let
N be RSA an modulus of byte-length k (i.e., 28(k−1) < N < 28k, e be a public
exponent coprime to the Euler totient ϕ(N) and m be a message of 	-byte with
	 < k − 11. The pkcs#1 v1.5 padding of m is defined as follows:

1. A randomizer r consisting in k−3−	 � 8 nonzero bytes is generated uniformly
at random;

6 Alternatively, one can also adapt the algorithm by adding unknowns for α and β to
the multivariate modular polynomial system.
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2. μ(m, r) is the integer converted from the octet-string:

μ(m, r) = 000216||r||0016||m. (2)

The encryption of m is then defined as c = μ(m, r)e mod N . To decrypt c ∈ Z
∗
N ,

compute cd mod N (where ed ≡ 1 mod ϕ(N)), convert the result to a k-byte
octet-string and parse it according to Eq. (2). If the string cannot be parsed
unambiguously or if r is shorter than eight octets, the decryption algorithm D
outputs ⊥; otherwise, D outputs the plaintext m.

The pkcs#1 v1.5 padding has been known to be insecure for encryption
since Bleichenbachers famous chosen ciphertext attack [7]. Several additionnal
attacks were published since 1998 (e.g., [1,14,21]).

Fouque et al. [16] suggested to consider the setting of the randomness gen-
eration used in padding functions for encryption. In pkcs#1 v1.5 padding, the
randomizer shall be pseudorandomly generated (according to the RFC which
defines it [24]) and since it is still widely used in practice (e.g., TLS, XML
Encryption standard, Hardware token. . . )n it seems interesting to investigate
its security when the randomizer is constructed by concatenating the outputs
of a linear congruential generator. We consider several scenarios (linear congru-
ential generator, truncated linear congruential generators, multiple ciphertexts
. . . ) and we apply our toolbox to all of them.

Scenario 1: Linear Congruential Generator. The first attack scenario can
be seen as a chosen distribution attack. These attacks were introduced by Bellare
et al. [3] to model attacks where an adversary can control the distribution of
both messages and random coins used in an encryption scheme. We assume that
the adversary can control the message (as in the classical notion of semantic
security for public-key encryption schemes [17]) and that the randomizer used in
the pkcs#1 v1.5 padding is constructed by concatenating the outputs of a linear
congruential generator (with a seed picked uniformly at random). The adversary
will choose two messages m0 and m1 of the same byte-length 	 < k − 11 (where
k is the byte length of the RSA modulus N) and the challenger will pick at
random a seed x1 of byte-length ρ. It will compute

xi+1 = axi + b mod M

for i ∈ {2, . . . , n−1} where n = (k−3−	)/ρ and M = 28ρ. The challenge cipher-
text will be c = μ(mb, r)e mod N where b is a bit picked uniformly at random
by the challenger and the randomizer r is the concatenation of x1, . . . , xn. We
have

μ(mb, r) = 000216||r||0016||mb

= 000216||x1||x2|| . . . ||xn||0016||mb

= (α̃1x1 + α̃2x2 + . . . + α̃nxn + β̃)

where this last expression is the integer converted from the octet-string with the
α̃i’s are known public constant and β̃ is the integer converted from the string
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mb. If we divide c by α̃1
e, we obtain

c = (x1 + α2x2 + . . . + αnxn + β)e mod N

where αi = α̃i/α̃1 for i ∈ {2, . . . , n} and β = β̃/α̃1.

Description of the attack. The adversary is therefore looking for the solutions
of the following modular multivariate polynomial system: of monic polynomial
equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f = (x1 + α2x2 + . . . + αnxn + β)e mod N
g1 = x1 − ax2 + b mod M

...
gn−1 = xn−1 − axn + b mod M

where β can be derived easily from the value mb. The attack consists in applying
Coppersmith Method for multivariate polynomials with two moduli (see Sect. 2)
to the two systems derived from the two possible values for mb.

As above, the most complicated part is the choice of the collection of polyno-
mials constructed from the polynomials that occur in this system. Our analysis
brought out the following polynomial family (parameterized by some integer
t ∈ N):

f̃i1,...,in,j = xi1
1 . . . xin

n · f j mod N j

with 1 ≤ j < t, 0 ≤ i1 < e and deg(f̃...) = i1 + . . . + in + je < te

g̃i1,...,in
= gi1

1 . . . g
in−1
n−1 · xin

n mod Mk

with 1 ≤ k = i1 + . . . + in−1 and deg(g̃...) = i1 + . . . + in < te.

As in the previous section, the moduli N and M are coprime (since N is
an RSA modulus and M is a power of 2). Moreover, it is easy to see that the
polynomials f̃i1,...,in,j on one hand and the polynomials g̃i0,...,in

on the other
hand are linearly independent. Indeed, these polynomials have distinct leading
monomials and are monic.

We have a system of modular polynomial equations in n unknowns and the
Coppersmith method does not necessarily imply that we can solve the system
of equations. Thus, we also have to assume that if the method succeeds, we will
be able to recover the seed x1 from the set of polynomials we will obtain:

Heuristic 2. Let P denote the polynomial set

P =
{

f̃i1,...,in,j | 1 ≤ j < t, 0 ≤ i1 < e
i1 + . . . + in + je < te

}

⋃{
g̃i1,...,in

| 1 ≤ k = i1 + . . . + in−1

i1 + . . . + in < te

}
.

We assume that the set of polynomials we get by applying Coppersmiths method
with the polynomial set P define an algebraic variety of dimension 0.
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Theorem 7. Under Heuristic 2, given as inputs an RSA modulus N , the linear
congruential generator parameters a and b, two messages m0 and m1 and a
pkcs#1 v1.5 ciphertext c = μ(mb, r) for some bit b ∈ {0, 1} such that the
randomizer r is the concatenation of x1, . . . , xn (where x1 is a random seed
of size M and xi+1 = axi + b mod M for i ∈ N), we can recover the seed x1

(and thus the bit b) in polynomial time in log(N) as soon as M < N1/e.

Bounds for the Polynomials Modulo N . We consider the set

P
f

= {f̃i1,...,in,j = xi1
1 · · · xin

n · f j mod N j | 1 ≤ j < t, 0 ≤ i1 < e

and deg(f̃i1,...,in,j) = i1 + . . . + in + je < te}

as a combinatorial class, with the size function S
f
(f̃i1,...,in,j) = i1 + . . . + in + je

and the parameter function χ
f
(f̃i1,...,in,j) = j. The degree of each variable xk

is 1, whereas the degree of f is e. For the sake of simplicity, we can consider
0 � j < t since the parameter function is equal to 0 on the elements such that
j = 0. We thus consider P

f
as

(ε + Z + . . . + Ze−1)︸ ︷︷ ︸
x1

×
n∏

k=2

Seq(Z)︸ ︷︷ ︸
xk

×Seq(uZe)︸ ︷︷ ︸
f

× Seq(Z)︸ ︷︷ ︸
dummy var.

which leads to the following generating function:

F (u, z) = (1 + z + . . . + ze−1)
1

(1 − z)n−1

1
1 − uze

1
1 − z

.

We take the partial derivative in u and then let u = 1:

∂F

∂u
(u, z)

∣∣∣∣
u=1

= (1 + z + . . . + ze−1)
1

(1 − z)n

ze

(1 − ze)2
.

We take the equivalent when z → 1, using the formula 1 − ze ∼ e(1 − z):

∂F

∂u
(u, z)

∣∣∣∣
u=1

∼
z→1

1
e(1 − z)n+2

.

Applying Theorem3, since te ∼ te − 1, one finally gets

χ
f,<te

(P
f
) ∼ 1

e(n + 1)!
(te)n+1.

Bounds for the Polynomials Modulo M . We consider the set

Pg = {g̃i1,...,in
= gi1

1 · · · gin−1
n−1 · xin

n mod M i1+···+in−1 | 1 ≤ k = i1 + · · · + in−1

and deg(g̃i1,...,in
) = i1 + . . . + in < te}
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as a combinatorial class, with the size function Sg (g̃i1,...,in
) = i1+. . .+in and the

parameter function χ
g
(g̃i1,...,in

) = i1 + . . .+ in−1. The degree of each polynomial
gk is 1, as well as the degree of xn. For the sake of simplicity, we can consider
0 � k since the parameter function is equal to 0 on the elements such that k = 0.
We thus consider P

g
as

n−1∏
k=1

Seq(uZ)︸ ︷︷ ︸
gk

×Seq(Z)︸ ︷︷ ︸
xn

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

G(u, z) =
1

(1 − uz)n−1

1
1 − z

1
1 − z

.

We take the partial derivative in u, then let u = 1, and finally take the equivalent
when z → 1:

∂G

∂u
(u, z)

∣∣∣∣
u=1

=
(n − 1)z

(1 − z)n+2
∼

z→1

n − 1
(1 − z)n+2

.

Applying Theorem3, since te ∼ te − 1, one finally gets

χg,<te(Pg ) ∼ n − 1
(n + 1)!

(te)n+1.

Bounds for the Monomials Modulo M . We consider the set

M = {x1
i1 . . . xn

in mod M i1+...+in | 0 � i1 + . . . + in < te}.

as a combinatorial class, with the size function Sx(x1
i1 . . . xn

in) = i1 + . . . + in
and the parameter function χ

x
(x1

i1 . . . xn
in) = i1 + . . . + in. The degree of each

variable xk is 1. We thus consider M as
n∏

k=1

Seq(uZ)︸ ︷︷ ︸
xk

× Seq(Z)︸ ︷︷ ︸
dummy var,

which leads to the following generating function:

H(u, z) =
1

(1 − uz)n

1
1 − z

.

We first take the partial derivative in u, then let u = 1, and finally take the
equivalent when z → 1:

∂H

∂u
(u, z)

∣∣∣∣
u=1

=
nz

(1 − z)n+2
∼

z→1

n

(1 − z)n+2
.

Applying Theorem3, since te ∼ te − 1, one finally gets

χ
x,<te

(M ) ∼ n

(n + 1)!
(te)n+1.
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Condition. If we denote by ν = χ
f,<te

(P
f
), μ = χg,<te(Pg ) and ξ =

χ
x,<te

(M ), the condition for Coppersmith’s method is Nν · Mμ > M ξ, where

ν

ξ − μ
=

χ
f,<te

(P
f
)

χ
x,<te

(M ) − χ
g,<te

(P
g
)

∼
z→1

1
e(n+1)! (te)

n+1

n
(n+1)! (te)

n+1 − n−1
(n+1)! (te)

n+1
∼

z→1

1
e

which leads to the expected bound M < N1/e.

Scenario 2: Truncated Linear Congruential Generator. In 1997, Bellare
et al. [4] broke the Digital Signature Algorithm (DSA) when the random nonces
used in signature generation are computed using a linear congruential generator.
They also broke the DSA signature scheme if the nonces are computed by a
truncated linear congruential generator. In order to pursue the parallel with
their work, in the second attack scenario, we the previous analysis to the case
where the randomize in pkcs#1 v1.5 padding is constructed by concatenating
any consecutive bits of the outputs of a linear congruential generator (with a
seed picked uniformly at random).

More precisely, the seed of the linear congruential generator is now denoted
v1 = y1 + x1 · 2γy log M + z1 · 2γx log M+γy log M , where y1 has γy log M bits, x1

has γx log M bits, z1 has γz log M bits and γx + γy + γz = 1. We define the
(weak)pseudorandom sequence by vi+1 = avi + b mod M for i ∈ N (with public
a, b and M). We denote vi = yi + xi · 2γy log M + zi · 2γx log M+γy log M , where yi

has γy log M bits, xi has γx log M bits and zi has γz log M bits.
As above, the challenge ciphertext will be c = μ(mb, r)e mod N where b is

a bit picked uniformly at random by the challenger and the randomizer r is the
concatenation of x1, . . . , xn for n = (k − 3 − 	)/(8γx log M). We have

μ(mb, r) = 000216||r||0016||mb

= (α̃1x1 + α̃2x2 + . . . + α̃nxn + β̃).

Description of the attack. The adversary is looking for the solutions of the fol-
lowing multivariate modular polynomial system: of monic polynomial equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f=(x1 + α2x2 + . . . + αnxn + β)e mod N
g1=x1 + a′y1 + a′′z1 + bx2 + b′y2 + b′′z2 + c mod M

...
gn−1=xn−1 + a′yn−1 + a′′yn−1 + bxn + b′yn + b′′zn + c mod M

where β can be derived easily from the value mb and the constants α2, . . . , αN ,
a′, a′′, b, b′ and b′′ are public. As in the previous scenario, the attack consists
in applying Coppersmith Method for multivariate polynomials with two moduli
(see Sect. 2) to the two systems derived from the two possible values for mb.
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For the choice of the polynomials collection, we choose in this scenario the
following polynomial family (parameterized by some integer t ∈ N):

f̃i ,i ′,i ′′,j = xi1
1 . . . xin

n · y
i′
1
1 . . . y

i′
n

n · z
i′′
1
1 . . . z

i′′
n

n · f j mod N j

with 1 ≤ j < t, 0 ≤ i1 < e and deg(f̃...) < te

g̃i ,i ′,i ′′ = gi1
1 . . . g

in−1
n−1 · xin

n · y
i′
1
1 . . . y

i′
n

n · z
i′′
1
1 . . . z

i′′
n

n mod Mk

with 1 ≤ k = i1 + . . . + in−1 and deg(g̃...) < te.

As above, the moduli N and M are coprime and the polynomials f̃i1,...,in,j on one
hand and the polynomials g̃i0,...,in

on the other hand are linearly independent.
Again the Coppersmith method does not necessarily imply that we can solve

the system of equations and we have to make the following heuristic:

Heuristic 3. Let P denote the polynomial set

P =
{

f̃i,i′,i′′,j | 1 ≤ j < t, 0 ≤ i1 < e
i1 + . . . + in + +i′1 + . . . + i′n−1 + i′′1 + . . . + i′′n−1 + je < te

}

⋃{
g̃i,i′,i′′ | 1 ≤ k = i1 + . . . + in−1

i1 + . . . + in + +i′1 + . . . + i′n−1 + i′′1 + . . . + i′n−1 < te

}
.

We assume that the set of polynomials we get by applying Coppersmiths method
with the polynomial set P define an algebraic variety of dimension 0.

Theorem 8. Under Heuristic 3, given as inputs an RSA modulus N , the trun-
cated linear congruential generator parameters a and b, two messages m0 and
m1 and a pkcs#1 v1.5 ciphertext c = μ(mb, r) for some bit b ∈ {0, 1} such that
the randomizer r is the concatenation of truncations of v1, . . . , vn (where v1 is a
random seed of size M and vi+1 = avi+b mod M for i ∈ N), we can recover the
seed v1 (and thus the bit b) in polynomial time in log(N) as soon as M < N1/e.

Due to lack of space, the details of the computation are provided in the full
version.

Scenario 3: Truncated Linear Congruential Generator and Multiple
Ciphertexts. We can also extend the first chosen distribution attack by letting
the adversary control m pair of messages (as in the semantic security for multiple
ciphertexts, see e.g. [19]) and that the randomizer used in all the pkcs#1 v1.5
paddings are constructed by concatenating the successive outputs of a linear
congruential generator (with a unique seed picked uniformly at random). We
also apply our toolbox to this scenario and for an RSA modulus N with a public
exponent e and a linear congruential generator with modulus M , our heuristic
attacks are polynomial-time in log(N) for the M < Nm/e (see details in the full
version).
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