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Preface

The 19th IACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC 2016) was held March 6–9, 2016 in Taipei (Taiwan). The con-
ference, sponsored by the International Association for Cryptologic Research (IACR),
focuses on all technical aspects of public-key cryptography. These proceedings contain
34 papers selected by the Program Committee from 143 submissions. The many
high-quality submissions made it easy to build a strong program but also required
rejecting good papers. Each submission was judged by at least three reviewers, or four
in the case of submissions by Program Committee members. The selection process
included one whole month of independent review (each Program Committee member
was assigned about 14 papers) followed by five more weeks of discussions. We tried to
make the review and discussion system more interactive and used a new feature of the
review system that allows Program Committee members to send specific questions to
the authors.

We would like to thank the many authors from all over the world for submitting
their papers—without them there would not be a conference. We are deeply grateful to
the Program Committee for their hard work to ensure that each paper received a
thorough and fair review. We gratefully acknowledge the external reviewers listed on
the following pages. Our thanks go to Shai Halevi: the committee’s work was
tremendously simplified by his submission/review software.

January 2016 Giuseppe Persiano
Bo-Yin Yang
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Algebraic Approaches for the Elliptic Curve
Discrete Logarithm Problem over Prime Fields

Christophe Petit1(B), Michiel Kosters2, and Ange Messeng3

1 Mathematical Institute, University of Oxford,
Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road,

Oxford OX2 6GG, UK
christophe.f.petit@gmail.com

2 University of California, Irvine, 340 Rowland Hall, Irvine, CA 95697-3875, USA
kosters@gmail.com

3 Faculty of Mathematics, University of Passau, InnStrasse 33, IM207,
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Abstract. The elliptic curve discrete logarithm problem is one of the
most important problems in cryptography. In recent years, several index
calculus algorithms have been introduced for elliptic curves defined over
extension fields, but the most important curves in practice, defined over
prime fields, have so far appeared immune to these attacks.

In this paper we formally generalize previous attacks from binary
curves to prime curves. We study the efficiency of our algorithms with
computer experiments and we discuss their current and potential impact
on elliptic curve standards.

Our algorithms are only practical for small parameters at the moment
and their asymptotic analysis is limited by our understanding of Gröbner
basis algorithms. Nevertheless, they highlight a potential vulnerability on
prime curves which our community needs to explore further.

1 Introduction

The elliptic curve discrete logarithm problem (ECDLP) is widely believed to be
one of the hardest computational number theory problem used in cryptography.
While integer factorization and discrete logarithms over finite fields suffer from
index calculus attacks of subexponential or even quasipolynomial complexity,
recommended key sizes for elliptic curve cryptography correspond to the birthday
paradox bound complexity of generic discrete logarithm algorithms.

In the last ten years starting from the seminal work of Semaev [19], index
calculus algorithms have progressively been adapted to elliptic curve discrete log-
arithm problems. However, the most efficient attacks target parameters that are
not used in standards; attacks against binary curves rely on poorly understood
Gröbner basis assumptions; and almost no attacks at all have been proposed
against the most important family of curves, namely elliptic curves defined over
prime fields.
c© International Association for Cryptologic Research 2016
C.-M. Cheng et al. (Eds.): PKC 2016, Part II, LNCS 9615, pp. 3–18, 2016.
DOI: 10.1007/978-3-662-49387-8 1



4 C. Petit et al.

Contributions. In this paper, we provide new index calculus algorithms to solve
elliptic curve discrete logarithm problems over prime fields of cardinality p.

The factor bases in our algorithms are of the form F := {(x, y) ∈
E(K)|L(x) = 0}, where L is a large-degree rational map. We additionally require
that L is a composition of small-degree rational maps Lj , j = 1, . . . , n′, such that
the large-degree constraint L(x) = 0 can be replaced by a system of low degree
constraints x2 = L1(x), x3 = L2(x2), x4 = L3(x3), . . . , xn′ = Ln′−1(xn′−1),
Ln′(xn′) = 0. Relations are computed by solving a polynomial system con-
structed from Semaev’s summation polynomials and the above decomposition of
the map L.

Our factor bases generalize the factor bases used in previous works: Diem
and Gaudry’s attacks [6,10] implicitly use L(x) = xq − x where q is the size
of a subfield; small characteristic, prime degree extension attacks [7–9,12,17,21]
implicitly use the linearized polynomial corresponding to a vector space; and
Semaev’s original factor basis [19] implicitly uses L(x) =

∏
α<B(x−α) for some

B of appropriate size. The potential advantage of our polynomials L compared
to the one implicitly used by Semaev is that they can be re-written in the form
of a system of low degree polynomial equations, similar to systems occurring in
the characteristic 2 case, which we then solve using Gröbner basis algorithms.

We specify two concrete instances of the above algorithm. In the first
instance, we assume that p − 1 has a large divisor which is smooth, and we
define L such that its roots form precisely a coset of a subgroup of smooth
order. In the second instance, we assume the knowledge of an auxiliary curve
over the same field with a large enough smooth subgroup, and we define L using
the isogeny corresponding to that subgroup. We complete the second instance
with two different algorithms to compute an auxiliary curve over a finite field,
and we compare both methods.

Interestingly, the standardized curve NIST P-224 falls into the framework of
our first algorithm. We also show that computing a finite field and an auxiliary
curve for this field is as far as we know much easier than computing an auxiliary
curve for a given finite field.

The complexity of our algorithms remains an open problem. We implemented
both of them in Magma, and compared their performances to previous attacks on
binary curves of comparable sizes. The experimental results suggest that in spite
of a common structure, the systems are a bit more efficient to solve in binary
cases than in prime cases. They also suggest that all the systems we studied are
easier to solve than generic systems of “comparable parameters”. This may look
encouraging from a cryptanalytic point of view, but we stress that the set of
experiments is too limited to draw any conclusion at this stage (see also [11] for
a criticism of the analysis of [17]). At the moment all attacks are outperformed
by generic discrete logarithm algorithms for practically relevant parameters.

Perspectives. Our paper introduces a new algorithmic framework to solve
ECDLP over prime fields. We hope that these ideas revive research in this
area and lead to a better understanding of the elliptic curve discrete logarithm
problem.
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Proving meaningful complexity bounds for our algorithms appears very chal-
lenging today as they use Gröbner basis algorithms on non-understood families of
polynomial systems with a special structure. At the time of writing it is not clear
yet whether the special structure introduced in this paper leads to asymptotic
improvements with respect to generic discrete logarithm algorithms. Of course,
Gröbner basis algorithms may also not be the best tools to solve these systems.
At the end of the paper we suggest that better, dedicated algorithms to solve
these systems, inspired from existing root-finding algorithms, could perhaps lead
to substantial efficiency and analysis improvements of our algorithms.

Related work. In recent years many index calculus algorithms have been pro-
posed for elliptic curves [6–10,12,17,19,21]. All these papers except Semaev’s
paper [19] focus on elliptic curves defined over extension fields, and Semaev did
not provide an algorithm to compute relations. Moreover, our work offers a nat-
ural large prime counterpart to recent characteristic 2 approaches, and an avenue
to generalize any future result on these approaches to the even more interesting
large prime case.

We are aware of two other types of attacks that first exploited smoothness
properties of p − 1 and were later generalized using elliptic curves. The first one
is Pollard’s p−1 factorization method generalized to the celebrated elliptic curve
factorization method [13]. The second one is den Boer’s reduction of the com-
putational Diffie-Helman problem to the discrete logarithm problem, which was
generalized by Maurer [5,14]. We point out that the smoothness requirements on
the auxiliary curve order are much weaker in our attacks than in these contexts.

Because of these attacks, there may also be a folklore suspicion in the com-
munity that using primes with special properties could lead to improved attacks
on elliptic curves, but to the best of our knowledge this was not supported by
any concrete attack so far, and in fact all NIST curves use generalized Mersenne
primes.

Outline. The remaining of the paper is organized as follows. In Sect. 2 we describe
related work, particularly on binary curves. In Sect. 3 we describe our main
results. We first sketch our main idea and provide a partial analysis of our
general algorithm, leaving aside precomputation details and the complexity of
the Gröbner basis step. We then describe the p − 1 smooth and isogeny versions
of our algorithms, and we analyze the complexity of computing an auxiliary
curve in the second case. In Sect. 4 we describe our experimental evaluation of
the attack. Finally, Sect. 5 summarizes our results and provides routes towards
improvements.

2 Previous Work on (binary) Curves

Let K be a finite field; let E be an elliptic curve defined over K; and let P,Q ∈
E(K) such that Q is in the subgroup G ⊂ E(K) generated by P . The discrete
logarithm problem is the problem of finding an integer k such that Q = kP .
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In the following we assume that the order r of G is prime, as it is usually the
case in cryptographic applications.

2.1 Index Calculus for Elliptic Curves

Index calculus algorithms use a subset F ⊂ G often called a factor basis. The
simplest algorithms run in two stages. The first stage consists in collecting
relations of the form

aiP + biQ +
∑

Pj∈F
eijPj = 0.

The second stage consists in performing linear algebra on these relations to
deduce a relation of the form

aP + bQ = 0,

from which the discrete logarithm k = −a/b mod r is easily deduced.
Since the seminal work of Semaev [19], index calculus algorithms for elliptic

curves have used a basis of the form

F := {(x, y) ∈ E(K)|x ∈ V }
where V is some subset of K. Relations are obtained by computing R = (X,Y ) =
aP + bQ for random a and b, then solving a polynomial equation

Sm+1(x1, . . . , xm,X) = 0

with the additional constraints that xi ∈ V for all i. Here S� is such that for
X1, . . . , X� ∈ K one has S�(X1, . . . , X�) = 0 if and only if there exist Pi =
(Xi, Yi) ∈ E(K) with P1+. . .+P� = 0. The polynomials S� are called summation
polynomials.

When K = Fp, Semaev originally proposed to use V = {x ∈ Z≥0|x < p1/m}.
This was inspired by the factor bases used for discrete logarithms over finite
fields. However, Semaev did not suggest any algorithm to compute relations
with this factor basis.

2.2 Weil Restriction on Vector Spaces

In the case of an extension field K = Fqn , developments of Semaev’s ideas by
Gaudry, Diem and Faugère-Perret-Petit-Renault [6–8,10] led to choosing V as
a linear subspace of Fqn/Fq with dimension n′ ≈ �n/m�. In order to compute
relations, we then proceed to a Weil descent or Weil restriction of the summation
polynomial onto the vector space.

Concretely we fix a basis {v1, . . . , vn′} for V , we define mn′ variables xij

over Fq, we substitute xi by
∑

j xijvj in Sm+1, and by fixing a basis {θ1, . . . , θn}
of Fqn/Fq we see the resulting equation over Fqn as a system of n polynomial
equations over Fq. Namely, we write

Sm+1

⎛

⎝
∑

j

x1jvj , . . . ,
∑

j

xmjvj ,X

⎞

⎠ = 0
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in the form ∑

k

θkfk(xij) = 0

which implies that for all k we have

fk(xij) = 0.

This polynomial system is then solved using generic methods such as resultants
or Gröbner basis algorithms.

A particular case of this approach consists in taking V := Fq. The result-
ing index calculus algorithm is more efficient than generic algorithms for fixed
n > 3 and large enough q, and has subexponential time when q and n increase
simultaneously in an appropriate manner [6,10].

Another particular case occurs when q is a very small constant (typically
q = 2). In this case the efficiency of Gröbner basis algorithms is increased by
adding the so-called field equations xq

ij − xij = 0 to the system. Experimental
results and a heuristic analysis led Petit and Quisquater to conjecture that the
algorithm could also have subexponential time in that case [17].

2.3 Limits of Previous Works

From a practical point of view, the subexponential result in [6] is of little interest
as elliptic curves that appear in leading cryptographic standards are defined
either over prime fields or binary fields with a prime extension degree. Semaev’s
seminal paper [19] proposes one factor basis for the prime case, but as mentioned
above, it does not provide any corresponding algorithm to compute relations.

Binary curves may be vulnerable to index calculus algorithms for large
enough parameters, according to Petit and Quisquater’s analysis and follow-
ing works [9,12,17,21]. However, generic algorithms currently outperform these
algorithms for the parameters used in practice, and the complexity estimates
for larger parameters depend on the so-called first fall degree assumption. This
assumption on Gröbner basis algorithms holds in some cases including for HFE
systems [11,15], but it is also known to be false in general. The systems occur-
ring in binary ECDLP attacks are related to HFE systems, but at the time of
writing it is not clear whether or not, or to which extent the assumption holds in
their case. On the other hand, as the systems in play are clearly not generic, one
should a priori be able to replace Gröbner basis by other, more dedicated tools.

2.4 Alternative Systems

One idea in that direction is to completely avoid the Weil descent methodology.
The vector space constraints xi ∈ V are equivalent to the constraints L(xi) = 0
where

L(x) :=
∏

v∈V

(x − v).
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It is easy to prove (see [2, Chap. 11]) that L is a linearized polynomial, in other
words L can be written as

L(x) =
n′

∑

j=0

cjx
qj

where cj ∈ Fqn . Moreover (see also [16]) L can be written as a composition of
degree q maps

L(x) = (xq − αn′x) ◦ . . . ◦ (xq − α1x) (1)

for well-chosen αi ∈ Fqn . Abusing the notations xij , the problem of finding
xi ∈ V with Sm+1(x1, . . . , xm,X) = 0 can now be reduced to solving either

⎧
⎪⎨

⎪⎩

Sm+1(x11, . . . , xm1,X) = 0
xij = xq

i,j−1 i = 1, . . . ,m; j = 2, . . . , n′
∑n′

j=0 cixij = 0 i = 1, . . . ,m

(2)

or ⎧
⎪⎨

⎪⎩

Sm+1(x11, . . . , xm1,X) = 0
xij = xq

i,j−1 − αj−1xi,j−1 i = 1, . . . ,m; j = 2, . . . , n′

0 = xq
i,n′ − αn′xi,n′ i = 1, . . . ,m.

(3)

The two systems have been suggested in [11,15,16]. Compared to polynomial
systems arising from a Weil descent, both systems have the disadvantage to be
defined over the field Fqn but on the other hand they are much sparser and a
priori easier to study. In fact, these systems are equivalent to polynomial systems
arising from a Weil descent under linear changes of equations and variables, and
in the univariate case (m = 1) their study has allowed to derive bounds on the
corresponding Weil descent systems [11,15].

While Systems (2) and (3) can be solved with generic Gröbner basis algo-
rithms, their simple structures might lead to better algorithms in the future.
Most importantly for this article, they open the way to a generalization of pre-
vious algorithms to elliptic curves over prime fields.

3 Algebraic Attacks on Prime Curves

3.1 Main Idea

We replace the map L in Eq. (1) by another algebraic or rational map over Fp

which for a given m similarly satisfies the following two conditions

1. |{x ∈ Fp|L(x) = 0}| ≈ ∣
∣
{
x ∈ Fp|L(x) = 0

}∣
∣ ≈ p1/m,

2. L can be written as a composition of low degree maps Lj .

The resulting index calculus algorithm is summarized as Algorithm 1. For an
optimal efficiency, the parameter m will have to be fixed depending on the cost
of the relation search. At the moment, we have not investigated the existence
of any algorithm better than Gröbner basis algorithms to solve System (4).
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Algorithm 1. Index calculus algorithm for prime curves
Require: p, E, P , Q defining a discrete logarithm problem
Ensure: discrete logarithm k such that Q = kP
1: Fix m
2: Find a suitable map L and its decomposition L = ◦n′

j=1Lj

3: Define a factor base F = {(x, y) ∈ E(K)|L(x) = 0}
4: Compute deg L + Δ relations as follows

a. Pick a, b ∈ Fp randomly and compute (X, Y ) = aP + bQ.
b. Construct and solve the system

⎧
⎪⎨

⎪⎩

Sm+1(x11, . . . , xm1, X) = 0

xi,j+1 = Lj(xi,j) i = 1, . . . , m; j = 1, . . . , n′ − 1

0 = Ln′(xi,n′) i = 1, . . . , m.

(4)

(If the Lj are rational maps, their denominators are put on the left-hand sides
to obtain a polynomial system.)

c. For any solution found (modulo symmetries, namely permutations of the xi1),
if there are Pi = (xi, yi) ∈ F such that

∑
i Pi = 0, then store this relation.

5: Use linear algebra to solve the discrete logarithm

The parameter Δ can be a priori fixed to 10; its aim is to account for linear
depencies that may occur with a low probability between the relations.

The above conditions on L are such that: (1) most solutions of the system
are defined over Fp; (2) heuristically, we expect that the system has a constant
probability to have a solution; (3) all the equations in the system have low
degree. Note that System (4) is very similar to System (2) and System (3). We
now show how these conditions can be satisfied, first for primes p such that p−1
has a large smooth factor, and then for arbitrary primes.

3.2 Partial Analysis

We consider a computation model where both arithmetic operations in Fp and
elliptic curve scalar multiplications have unitary cost. This is of course a very
rough approximation as scalar multiplications require a polynomial number of
field operations, but the approximation will be sufficient for our purposes.

Let T (E,m,L) be the time needed to solve System (4) for X chosen as in the
algorithm. Let P (p,m) be the precomputation time required to perform Step 2.
The expected number of different solutions of the system in Steps 4b and 4c is
about

(deg L)m

m! · p
.

Indeed, |F| is about deg(L) and |E(K)| is about p. A given point (X,Y ) is in
the image of Fn → E(K), (Pr)n

r=1 → ∑n
r=1 Pr about (deg L)m

m!·p times on average.
The cost of Step 5 is

(deg L)ω



10 C. Petit et al.

where 2 < ω ≤ 3 depends on the algorithm used for linear algebra. The total
cost of the attack is therefore

P (p,m) +
m! · p

(deg L)m−1
T (E,m,L) + (deg L)ω.

Our algorithm will outperform generic discrete logarithm algorithms when this
complexity is smaller than p1/2. When (deg L)m ≈ m! · p, this will happen when
one can solve T (E,m,L) more efficiently than p1/2−1/m.

3.3 Attack When p − 1 Has a Large Smooth Factor

Let us first assume that p − 1 = r
∏n′

i=1 pi where the pi are not necessarily
distinct primes, all smaller than B, and

∏n′

i=1 pi ≈ p1/m. We do not impose any
particular condition on r. We define V as the subgroup G of order

∏n′

i=1 pi in
F

∗
p. We then set Lj(x) = xpj for j = 1, . . . , n′ − 1, and Ln′(x) = 1 − xpn′ . The

function L := ◦n′
j=1Lj satisfies all the properties required.

Alternatively, we could also choose V as a coset aG of G, and adapt the maps
accordingly.

Due to Pohlig-Hellman’s attack [18], finite fields with smooth order, or an
order with some large smooth factor, have long been discarded for the discrete
logarithm problem over finite fields, but to the best of our knowledge there has
been no similar result nor even warning with respect to elliptic curves. In fact,
NIST curves use pseudo-Mersenne numbers and are therefore potentially more
vulnerable to our approach than other curves. In particular, the prime number
used to define NIST P-224 curve is such that

p − 1 = 296 · 3 · 5 · 17 · 257 · 641 · 65537 · 274177 · 6700417 · 67280421310721

hence it satisfies the prerequisites of our attack already for m ≥ 3 and B = 2.

3.4 Generalization to Arbitrary p

Let now p be an arbitrary prime number, in particular not necessarily of the
previous form. Our second attack assumes the knowledge of an auxiliary elliptic
curve E′/Fp with an order N = r

∏n′

i=1 pi where the pi are not necessarily distinct
primes, all smaller than B, and

∏n′

i=1 pi ≈ p1/m. Note that the auxiliary curve is
a priori unrelated to the curve specified by the elliptic curve discrete logarithm
problem, except that it is defined over the same field. Let H be a subgroup of
E′(Fp) of cardinality

∏n′

i=1 pi. The set V will consist of the x-coordinates of all
points (x, y) ∈ E′(Fp) in a coset of H. Let ϕ : E′ → E′ be the isogeny with
kernel H. This isogeny can be efficiently written as a composition

ϕ = ϕn′ ◦ . . . ◦ ϕ1
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where deg ϕi = pi and moreover all these isogenies can be efficiently computed
using Vélu’s formulae [23]. There exist polynomials ξj , ωj , ψj such that

ϕj =

(
ξj(x)
ψ2

j (x)
, y

ωj(x)
ψ3

j (x)

)

.

We then choose Lj = ξj(x)

ψ2
j (x)

for j = 1, . . . , n′ − 1 and Ln′ = ξn′ (x)
ψ2

n′ (x)
− χ, where χ

is the x-coordinate of a point in the image of ϕ which is not 2-torsion. It is easy
to check that the map L = ◦n′

j=1Lj then satisfies all properties required:

Lemma 1. In the above construction, {x ∈ Fp|L(x) = 0} has size
∏n′

i=1 pi.

Proof. By construction, the isogeny ϕ has a kernel of size N/s, and so does any
kernel coset. We claim that all the points in a coset have distinct x-coordinate
if χ is not the x-coordinate of a point of order 2. Indeed, let P1 �= P2 with
ϕ(P1) = ϕ(P2). If P1 and P2 have the same x-coordinate, then we have P2 = −P1

hence ϕ(P2) = ϕ(−P1) = −ϕ(P1). Therefore ϕ(P1) = −ϕ(P1) has order 2. �
In Sect. 3.5 we discuss how the auxiliary curve E′ can be found, first assuming

that p has been fixed and cannot be changed, second assuming that we have some
flexibility in choosing p as well.

3.5 Finding an Auxiliary Curve

We now consider the cost of Step 2 of our algorithm for general prime num-
bers. We propose two algorithms to perform this task: the first one just picks
curves at random until one that has the good properties is found, the second
one uses the theory of complex multiplication. As many applications will be
using standardized curves such as NIST curves, these costs can be considered as
precomputation costs in many applications. Finally, we show that they can be
greatly reduced for an attacker who can choose the prime p.

Random Curve Selection. The simplest method to perform the precompu-
tation is to pick curves over Fp at random until one is found with a smooth
enough order. To simplify the analysis, let us first consider a smoothness bound
B = 2. The probability that the order of a random curve over Fp can be written
as N = 2s · r with 2s ≈ p1/m is approximately 1/2s ≈ p−1/m, hence we expect
to try about p1/m curves before finding a good one. Note that p1/m is essentially
the size of the factor basis, hence the precomputation costs will always be dom-
inated by at least the linear algebra costs in the whole index calculus algorithm.
In practice we might be able to choose B bigger than 2, and this will make the
precomputation cost even smaller, as shown by Table 1.
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Table 1. Expected number of trials before finding a good curve, such that a factor at
least p1/m is B-smooth. A number k in the table means that 2k trials are needed on
average. The numbers provided are for |p| = 160 and |p| = 256.

B/m 2 3 4 5

2 80.0 54.0 40.0 32.0
3 75.3 49.2 36.3 28.6
5 71.5 45.9 33.3 25.9
7 68.3 43.3 31.0 23.9
11 65.7 41.2 29.3 22.3
13 63.4 39.4 27.8 21.1
17 61.5 37.8 26.5 20.0

B/m 2 3 4 5

2 128.0 86.0 64.0 52.0
3 122.7 80.6 59.6 47.2
5 118.2 76.6 56.1 43.9
7 114.4 73.4 53.2 41.3
11 111.2 70.7 50.9 39.2
13 108.3 68.4 48.9 37.5
17 105.8 66.3 47.2 36.0

Complex Multiplication. The existence of a curve with N points over Fp

within the Hasse-Weil bound is equivalent to the existence of an integer solution
to the equation

(N + 1 − p)2 − Df2 = 4N

with D < 0 (see [3, Eq. 4.3]). Once this solution is known, the curve can be con-
structed using the complex multiplication algorithm [3, p.30], provided however
that the reduced discriminant D is not too large to compute the Hilbert class
polynomial HD mod p. To the best of our knowledge, the best algorithm for this
task is due to Sutherland [22] and runs in quasi-linear time in |D|. Sutherland
reports computations up to |D| ≈ 1013.

We can rewrite the above equation as (p + 1 − N)2 − Df2 = 4p and try
to solve it for some small D using Cornacchia’s algorithm [4]. More precisely,
we can solve the equation x2 − Dy2 = 4p and check if the solution produces a
number N which is divisible by a large enough smooth factor. This approach is
relatively slow since the number of such N is relatively small. With B = 2, one
needs to try about p1/m different values of D.

Faster Precomputation for Chosen p. We now consider a different attack
scenario, where p is not fixed but can be chosen by the attacker. In this setting,
we first construct a number N in such a way that we know its factorization, and
that N has a large enough smooth factor. We then solve x2 − Dy2 = 4N for
some small |D| (using the factorization of N). We check if the appropriate value
for p is indeed prime, and if not we try a different small |D|. The probability of
p being prime is about 1/ log(p) ≈ 1/ log(N). This method allows to use much
smaller |D| and it will outperform previous methods in general.

We remark that this approach can potentially be applied to produce a sort
of “back door” when choosing primes for elliptic curve cryptography standards.
However, this seems unlikely for the following two reasons. First, as soon as a
user is aware of the potential existence of such a back door, it can easily detect it
by solving the above equation for the given p and all small values of D. Second,
other equally useful auxiliary curves can be constructed in a time dominated by
other steps of the index calculus algorithm.
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4 Gröbner Basis Experiments

In this section we describe preliminary computer experiments to evaluate the
complexity of relation search in our approach, and compare it to the binary case.

4.1 Experimental Set-Up

In the binary case, we selected random curves over F22n1 and a fixed vector space
V = 〈1, x, x2, . . . , xn1〉, for 1 ≤ n1 ≤ 11.

For the attack of Sect. 3.3 we chose the smallest prime p such that 2n1 divides
p − 1 with p ≥ 22n1 , and V equal to the subgroup of order 2n1 in F

∗
p.

For the attack of Sect. 3.4 we fixed D = 7. We selected parameters N and p
such that there exists a curve of order N over Fp, 2n1 divides N , N ∈ [22n1 −
22n1−2; 22n1 + 22n1−1] and N is the closest to 22n1 among those parameters.
Using complex multiplication, we generated an elliptic curve E′ over Fp with N
rational points, and we computed a reduced Weierstrass model for this curve.
We finally chose V as the projection on the x-coordinate of a coset of a subgroup
of order 2n1 of E′, such that V had cardinality 2n1 .

In all cases we selected a random (reduced Weierstrass model) curve over the
field of consideration and a random point P on the curve. We then attempted to
write P = P1+P2 with Pi in the factor basis by reduction to polynomial systems
and resolution of these systems with the Gröbner Basis routine of Magma. In
the binary case we experimented on systems of the forms (2) and (3). In the
other two cases we generated the systems as described in Sect. 3. We repeated
all sets of experiments 100 times.

All experiments were performed on a CPU with 16-cores Intel Xeon Processor
5550, running at 2.67 GHz with a L3 cache of 18MB. The Operating System
was Linux Ubuntu 12.04.5 LTS with kernel version GNU/Linux 3.5.0-17-generic
x86 64 and 24GB memory. The programming platform was Magma V2.18-5 in
its 64-bit version.

4.2 Experimental Results

In the tables below (Tables 2, 3, 4 and 5) nbsols is the average number of solutions
of the system, Av. time is the average time in seconds and Max. mem is the
maximum amount of memory used. The values Dav and Dcorr

av are the average
values of two measures of the degree of regularity from Magma’s verbose output.
For Dav we take the largest “step degree” occurring during a Gröbner Basis
computation. This corresponds to the degrees reported in [17]. For Dcorr

av we
correct that by removing any step in which no pair was reduced, as these steps
should arguably not significantly impact the overall complexity of the algorithm.
This corresponds to the degrees reported in [20] and [11].

Based on this (limited) set of experiments we make the following observations:

1. The corrected version of the degree of regularity is a very stable measure:
except for very small parameters, no variation was observed within any set
of 100 experiments.
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Table 2. Binary case, SRA system

n1 n Dav Dcorr
av nbsols Av. time (s) Max. mem (MB)

1 2 2.76 2.76 0.59 0.00 14

2 4 3.93 3.93 0.73 0.00 14

3 6 3.99 3.99 0.72 0.00 14

4 8 3.99 3.98 1.03 0.00 15

5 10 4.36 4.00 1.19 0.02 41

6 12 4.50 4.00 1.30 0.09 80

7 14 4.64 4.00 1.04 0.43 213

8 16 4.62 4.00 1.03 2.21 622

9 18 4.56 4.00 0.78 9.27 1555

10 20 5.14 4.00 1.26 38.83 4170

11 22 4.93 4.00 0.94 207.72 53173

Table 3. Binary case, System (2)

n1 n Dav Dcorr
av nbsols Av. time (s) Max. mem (MB)

1 2 2.60 2.60 0.95 0.00 14

2 4 3.93 3.93 0.54 0.00 14

3 6 4.00 4.00 0.96 0.00 14

4 8 4.38 4.00 1.14 0.00 15

5 10 4.35 3.99 1.06 0.01 25

6 12 4.39 4.00 0.98 0.05 18

7 14 4.32 4.00 0.91 0.20 19

8 16 4.66 4.00 1.18 2.04 24

9 18 4.74 4.00 1.18 4.90 34

10 20 4.62 4.00 0.98 39.00 65

11 22 4.70 4.00 1.00 4989.96 256

2. In our experiments, systems in the form (2) require much less memory than
the corresponding SRA systems.

3. Timing comparison is less clear: while systems in the form (2) are more effi-
cient up to n1 = 10, SRA systems are much better at n2 = 11.

4. The degrees of regularity, time and memory requirements are similar in the
subgroup and isogeny versions of our attack.

5. The degrees of regularity, time and memory requirements seem to increase a
bit faster in the prime case than in the binary case in general.

According to Bardet [1, Prop 4.1.2], homogeneous semi-generic systems with
n equations of degree 2 and 1 equation of degree 4 in n variables have a degree of
regularity equal to (3+n)/2. In all our experiments we observed a much smaller
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Table 4. Prime case, p − 1 subgroups

n1 p Dav Dcorr
av nbsols Av. time (s) Max. mem (MB)

1 5 4.00 4.00 0.59 0.00 9

2 17 4.00 4.00 0.79 0.00 9

3 73 4.00 4.00 0.84 0.00 9

4 257 4.01 4.00 1.14 0.00 9

5 1153 4.48 4.00 1.34 0.02 10

6 4289 5.00 5.00 1.08 0.13 13

7 17921 5.36 5.00 0.99 1.14 17

8 65537 5.36 5.00 0.96 9.09 35

9 262657 5.78 5.00 1.06 59.87 98

10 1051649 6.36 6.00 0.96 454.79 501

11 4206593 6.29 6.00 0.76 4975.07 2266

Table 5. Prime case, isogeny kernel

N p Dav Dcorr
av nbsols Av. time (s) Max. mem (MB)

21 · 4 11 4.00 4.00 0.25 0.00 11

22 · 7 29 5.00 5.00 0.44 0.00 11

23 · 7 71 5.00 5.00 0.91 0.01 11

24 · 22 359 5.00 5.00 0.52 0.01 11

25 · 29 967 5.00 5.00 0.97 0.03 11

26 · 53 3467 5.42 5.00 1.23 0.15 12

27 · 106 13619 5.47 5.00 1.17 1.16 18

28 · 203 52291 5.42 5.00 1.13 9.08 34

29 · 414 212587 5.92 5.00 1.19 51.87 95

210 · 791 811763 6.44 6.00 1.04 438.57 367

211 · 1548 3173683 6.45 6.00 1.06 5163.46 1945

dependency in n of the degree of regularity, suggesting that the systems occurring
in our attacks are easier to solve than semi-generic systems with comparable
parameters.

5 Conclusion, Further Work and Perspectives

Our algorithms generalize previous index calculus attacks from binary curves
to prime curves, and therefore considerably increase their potential impact. All
attacks including ours (implicitly) reduce the relation search in index calculus
algorithms to an instance of the following problem:
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Problem 1 (Generalized Root-Finding Problem). Given a finite field K,
given f ∈ K[X1, . . . , Xm], and given L ∈ K(X), find Xi ∈ K such that
f(X1, . . . , Xm) = 0 and L(Xi) = 0 for all i.

We have suggested to focus on special polynomials L, which can be written as
compositions of low degree maps, so that the generalized root-finding problem
can be reduced to a polynomial system similar to “SRA systems” [16, Sect. 6],
and then solved using Gröbner basis algorithms. Our computer experiments sug-
gest that the resulting systems are a bit harder to solve than the corresponding
systems in binary cases, but easier to solve than generic systems of comparable
parameters.

The attacks are not practical at the moment and we do not know their
asymptotic complexity. Still, we believe that they do unveil potential vulnera-
bilities that cryptanalysts need to study further. In particular, we showed that
the standardized curve NIST P-224 satisfies the requirements of our first attack.

Following a suggestion by the PKC 2016 committee, we have also compared
our approach with a variant of Semaev’s original attack using Groebner basis
algorithms to solve the system S(x1, x2,X) = 0, L(x1) = 0, L(x2) = 0 with
L(x) =

∏
α<B(x − α). Intriguingly, our preliminary results show that these

systems are easier to solve than ours using Groebner basis algorithms on simi-
lar parameters. This can perhaps be explained by the much smaller number of
variables, and may either suggest that our approach is unlikely to be efficient
asymptotically, or that Semaev’s original attack should be revisited from an
algebraic perspective.

Important open problems include providing a satisfactory theoretical expla-
nation for our experiments, and predicting the complexity of all algorithms for
large parameters.

An even more important problem is to design a dedicated algorithm for
the generalized root-finding problem, which would not rely on Gröbner basis
algorithms at all. It is worth noticing that the Weil descent and Gröbner basis
approach, when applied to classical root-finding problems (where f is univariate
and L(x) = x|K| − x), provides an algorithm with complexity exponential in
O(log n · deg f) under a somewhat controversial heuristic assumption, whereas
the best algorithms for this problem have a provable complexity exponential in
O(log n+deg f). A similar improvement for the above generalized version of the
root-finding problem will greatly impact elliptic curve cryptography.
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Abstract. Invalid curve attacks are a well-known class of attacks
against implementations of elliptic curve cryptosystems, in which an
adversary tricks the cryptographic device into carrying out scalar mul-
tiplication not on the expected secure curve, but on some other, weaker
elliptic curve of his choosing. In their original form, however, these
attacks only affect elliptic curve implementations using addition and dou-
bling formulas that are independent of at least one of the curve parame-
ters. This property is typically satisfied for elliptic curves in Weierstrass
form but not for newer models that have gained increasing popularity in
recent years, like Edwards and twisted Edwards curves. It has therefore
been suggested (e.g. in the original paper on invalid curve attacks) that
such alternate models could protect against those attacks.

In this paper, we dispel that belief and present the first attack of this
nature against (twisted) Edwards curves, Jacobi quartics, Jacobi inter-
sections and more. Our attack differs from invalid curve attacks proper in
that the cryptographic device is tricked into carrying out a computation
not on another elliptic curve, but on a group isomorphic to the multi-
plicative group of the underlying base field. This often makes it easy to
recover the secret scalar with a single invalid computation.

We also show how our result can be used constructively, especially on
curves over random base fields, as a fault attack countermeasure similar
to Shamir’s trick.

Keywords: Elliptic curve cryptography · Edwards curves · Implemen-
tation issues · Fault attacks · Countermeasures

1 Introduction

Elliptic curve cryptography (ECC) was introduced in the 1980s by Miller [44]
and Koblitz [38], following the successful application of elliptic curves to integer
factorization [39]. Compared to its finite field alternatives, ECC offers shorter
c© International Association for Cryptologic Research 2016
C.-M. Cheng et al. (Eds.): PKC 2016, Part II, LNCS 9615, pp. 19–35, 2016.
DOI: 10.1007/978-3-662-49387-8 2



20 S. Neves and M. Tibouchi

keys, higher speeds, and additional structure that enables constructions such
as bilinear pairings. ECC rests on the hardness of the elliptic curve discrete
logarithm problem (ECDLP), which has remained intractable so far—for well-
chosen curves.

Regardless of the theoretical security of elliptic curve cryptosystems, attacks
targeting their implementations are numerous. One particularly powerful attack
class is the fault attack [12,13], which consists in injecting faults before or dur-
ing a cryptographic operation, and inspecting the resulting output to recover
key information. Fault attacks directed at elliptic curve scalar multiplication
implementations were first published in [9] and further developed in many other
works, including [11,15,20,36].

A conceptually simpler attack pointed out by Antipa et al. [1] and extended
in several further works [35,37], the invalid curve attack, exploits implementa-
tions that fail to verify that input points to a scalar multiplication belong to the
correct elliptic curve, and where point addition and doubling formulas are inde-
pendent of at least one curve parameter. In such cases, the attacker can query its
target with a specially-crafted point outside of the correct elliptic curve. Then,
because the formulas used in the scalar multiplication do not depend on all curve
parameters, the implementation really computes a normal scalar multiplication
by the same scalar, but on a different curve depending on the invalid input point.
Choosing invalid points in such a way that the corresponding curves are weak,
the attacker can then quickly recover secret keys from observing the outputs (or
the hashed outputs) of the scalar multiplications. Although the attack and rec-
ommended countermeasures are well-known to cryptographers, recent research
has found that a number of widely-used cryptographic libraries in the wild are
vulnerable [29].

The attack of Antipa et al. was originally introduced in the context of elliptic
curves in Weierstrass form y2 = x3 + ax + b, where the usual formulas for point
addition and doubling are independent of the curve parameter b. Nowadays, how-
ever, alternate elliptic curve models and addition laws are gaining prominence:
models such as Montgomery [4,45] and Edwards [7,18] curves are being pro-
posed for wide Internet usage1, and several others are known to have desirable
properties for cryptographic applications [10,33,34,40,53].

Invalid curve attacks generalize directly to those alternate models provided
that the crucial property of independence of the arithmetic on at least one curve
parameter is satisfied. But many of the newer models for elliptic curves, including
Edwards curves, use all parameters in their most common addition formulas. It
is thus reasonable to expect, then, that invalid curve attacks would not apply to
those curves. In fact, the use of addition formulas depending on all curve parame-
ters was specifically mentioned by Antipa et al. [1] as a possible countermeasure
to thwart their attack.

Our Contribution. In this paper, we re-examine the feasibility of invalid curve
attacks against newer elliptic curve models like Edwards curves, and find that
1 See https://tools.ietf.org/html/draft-irtf-cfrg-curves.

https://tools.ietf.org/html/draft-irtf-cfrg-curves
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a new variant of the attack of Antipa et al. will indeed break the security of
implementations that do not carry out proper point validation. The new attack
works by reducing the problem of finding the secret scalar to solving discrete
logarithms not on a weaker elliptic curve, but in the multiplicative group of the
base field, which is easy for typical curve sizes.

The idea behind the attack is roughly to let one of the parameters in the
curve family vary, and consider the degenerate curves (those of genus 0) among
them. On those special curves, the group law degenerates to the multiplicative
group (or in rare cases, the additive group), and while in principle the group
formulas should still involve the curve parameter that was made to vary, it often
ends up being multiplied by the constant zero for all points on the degenerate
curve. As a result, the same formulas as for scalar multiplication on the correct
curve yield an exponentiation in the degenerate group.

When only a hash value of the result of the scalar multiplication is provided
(as in hashed Diffie–Hellman), our new attack is somewhat less flexible than
invalid curve attacks, since it is no longer possible to vary the weak curve as
done by Antipa et al. However, using a baby-step-giant-step-like time-memory
tradeoff, we show that we can still easily break curves over some of the largest
fields commonly used for elliptic curve cryptography, such as F2521−1.

This new attack underscores the importance of point validation even over
newer elliptic curve models.

Finally, the properties we exploit in the attack can also be used construc-
tively, to thwart fault attacks. We present a concrete countermeasure, similar
to Shamir’s trick [50], that detects faults injected during scalar multiplication
particularly efficiently. This is done by lifting the computation on the elliptic
curve over Fp to the composite order ring Z/prZ for some small constant r, and
making sure that the component modulo r of the lifted curve is degenerate in
the sense mentioned above. Then, verifying that the computation modulo r was
correct becomes a simple field exponentiation, which is much faster than the
usual scalar multiplication. This technique applies to Weierstrass curves as well
as newer models.

Organization of the Paper. In Sect. 2, we provide a rundown of some of the
most common curve models and addition laws used in elliptic curve cryptog-
raphy. In Sect. 3, we first recall the traditional invalid curve attack, and then
present our extension of it to newer models of elliptic curves using the degener-
ate curve technique. In Sect. 4, we explain how the new attack can be applied
when only a hash of the result of the scalar multiplication is available. And
finally, in Sect. 5, we present our concrete fault attack countermeasure using
degenerate curves.

2 Elliptic Curve Models

We begin by presenting the elliptic curve forms and respective group laws studied
in this paper. This is not an exhaustive list; there are many other addition
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laws in the literature, and the interested reader can see an overview of many
of them in [8]. Every base field Fp throughout this paper is assumed to have
characteristic ≥ 5.

2.1 Weierstrass Model

The canonical short Weierstrass form of an elliptic curve is given by the equation
y2 = x3 +ax+b, with a point at infinity O = (0 : 1 : 0). Addition on Weierstrass
curves is derived directly from the chord and tangent method [52, Chapter III.2]:

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3) − y1
where λ =

{
y1−y2
x1−x2

if (x1, y1) �= (x2,±y2),
3x2

1+a
2y1

if (x1, y1) = (x2, y2).
(1)

2.2 Twisted Edwards Model

Edwards curves were introduced in 2007 [7,18]. Here we look at their generaliza-
tion, twisted Edwards curves [5], which cover more curves. A twisted Edwards
curve is defined by the equation ax2 + y2 = 1 + dx2y2, with neutral affine point
O = (0, 1). The general complete group law for twisted Edwards curves is

(x3, y3) =
(

x1y2 + y1x2

1 + dx1x2y1y2
,

y1y2 − ax1x2

1 − dx1x2y1y2

)

. (2)

An addition formula, no longer complete, which does not require the d para-
meter, was found by Hisil, Wong, Carter, and Dawson [25]:

(x3, y3) =

⎧
⎨

⎩

(
x1y1+x2y2
y1y2+ax1x2

, x1y1−x2y2
x1y2−y1x2

)
if (x1, y1) �= (x2, y2), (−x1,−y1)

(
2x1y1
y2
1+ax2

1
,

y2
1−ax2

1
2−y2

1−ax2
1

)
if (x1, y1) = (x2, y2)

. (3)

2.3 Huff’s Model

Huff curves are a recently rediscovered elliptic curve model [34] previously used
in the study of a certain Diophantine equation [27]. They are defined by the
equation ax(y2 − 1) = by(x2 − 1), and have the affine neutral point O = (0, 0).
Huff’s addition formula, complete for points of odd order, is independent of the
curve’s parameters:

(x3, y3) =
(

(x1 + x2)(1 + y1y2)
(1 + x1x2)(1 − y1y2)

,
(y1 + y2)(1 + x1x2)
(1 − x1x2)(1 + y1y2)

)

. (4)

2.4 Hessian Model

The Hessian form of an elliptic curve, introduced in [14] (also in [17,24,33,46,
53]), is defined by the equation x3 + y3 + 1 = 3dxy, with a point at infinity
O = (1,−1, 0) as neutral element. The group law is given by

(x3, y3) =

⎧
⎨

⎩

(
y2
1x2−y2

2x1
x2y2−x1y1

,
x2
1y2−x2

2y1
x2y2−x1y1

)
if (x1, y1) �= (x2, y2)

(
y1(1−x3

1)

x3
1−y3

1
,
x1(y

3
1−1)

x3
1−y3

1

)
if (x1, y1) = (x2, y2).

(5)
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2.5 Twisted Hessian Model

The twisted Hessian form [6,8] is defined by equation ax3 + y3 + 1 = dxy, with
neutral element O = (0,−1). Unlike the original Hessian form, twisted Hessian
curves have an affine neutral point and complete addition formula

(x3, y3) =
(

x1 − y2
1x2y2

ax1y1x2
2 − y2

,
y1y

2
2 − ax2

1x2

ax1y1x2
2 − y2

)

. (6)

2.6 Twisted Jacobi Intersections

Jacobi intersections were suggested by Chudnovsky and Chudnovsky [14], and
were among the first competitive candidates for fast single-coordinate arith-
metic2. Here we present Hisil et al.’s generalization [26], defined by the intersec-
tion of bs2 + c2 = 1 and as2 + d2 = 1, with neutral affine point O = (0, 1, 1) and
complete addition formula

(s3, c3, d3) =
(

s1c2d2 + c1d1s2
1 − abs21s

2
2

,
c1c2 − bs1d1s2d2

1 − abs21s
2
2

,
d1d2 − as1c1s2c2

1 − abs21s
2
2

)

. (7)

2.7 Extended Jacobi Quartics

Extended Jacobi quartics [14,26] are defined by the equation y2 = dx4+2ax2+1,
with O = (0, 1) and group law

(x3, y3) =
(

x1y2 + y1x2

1 − dx2
1x

2
2

,
(1 + dx2

1x
2
2)(y1y2 + 2ax1x2) + 2dx1x2(x2

1 + x2
2)

(1 − dx2
1x

2
2)2

)

.

(8)

3 Invalid Curve Attacks

3.1 Review of the Weierstrass Curve Case

We begin by describing the classic invalid curve attack against short Weierstrass
curves Ea,b : y2 = x3 + ax + b over the finite field Fp. The key insight is that
formulas defining the arithmetic on that curve, given by Eq. (1), do not depend
on the parameter b of the curve equation. All the curves Ea,b′ for all b′ actually
share the same addition and doubling formulas.

Now consider a cryptographic device that performs scalar multiplications in
Ea,b(Fp) by a constant secret scalar k, and that, furthermore, does not check
that input points actually belong to that curve. An attacker trying to recover
k can then query the device on an invalid point P̃ = (x̃, ỹ) �∈ Ea,b(Fp). That
point belongs to a well-defined curve of the form Ea,b′ , namely Ea,b̃ with b̃ =

2 Miller [44] also suggested x-only arithmetic for Diffie–Hellman. However he suggested
using division polynomials for scalar multiplication, which is far more computation-
ally expensive.
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ỹ2 − x̃3 − ax̃. As a result, on input P̃ , the device actually computes the scalar
multiplication k · P̃ in the group Ea,b̃(Fp) and returns that value.

The discrete logarithm problem in the subgroup 〈P̃ 〉 generated by P̃ in
Ea,b̃(Fp) will typically be much easier than in the original group Ea,b(Fp), and
the attacker can even choose the invalid point and curve to make the problem
particularly easy. This allows him to efficiently recover k modulo the order of
〈P̃ 〉, and then all of k by repeating the process a few times with different invalid
curves.

The whole attack can thus be summarized as follows:

1. Find a curve Ea,b̃(Fp) and a point P̃ on it such that discrete logarithms in
〈P̃ 〉 are easy;

2. Query the cryptographic device on P̃ to get k · P̃ ;
3. Solve the discrete logarithm in the easy group, revealing k mod ord(P̃ );
4. Repeat until k is recovered in its entirety.

Finding a curve and point such that discrete logarithms are easy can be done
in several different ways. The original approach, inspired by [41], was to use
invalid curves containing subgroups of very small orders and an input point in
those subgroups; such curves are easy to find, but quite a few queries are needed
to recover all of k.

Another approach is to use a curve of smooth order [43]: this is somewhat
harder to construct, but may allow a full recovery of k in a single query. Alter-
natively, using a singular curve [35] yields a discrete logarithm problem in a
form of the multiplicative group over Fp (or the additive group when a = 0),
which is typically easy to solve and again makes the single-query recovery of k
possible [28, Sect. 3.7].

The attack also extends to the situation when the cryptographic device only
returns a hash of the resulting point of the scalar multiplication (the hashed
Diffie–Hellman setting): in that case, the small subgroup approach is typi-
cally the most efficient. That is the approach taken by Jager, Schwenk and
Somorovsky in their paper attacking ECDH key exchange in actually deployed
TLS libraries [29].

3.2 Parameter-Independent Formulas

The invalid curve attack translates easily to the case of alternate curve models for
which the addition and doubling formulas are independent of at least one of the
curve parameters: when querying the cryptographic device on a point P̃ outside
of the valid curve E, the computations still amount to a scalar multiplication on
a different curve Ẽ in the same family, obtained by adjusting the independent
parameter appropriately.

This is the case for (twisted) Hessian and Huff curves. Additionally, efficient
d-less formulas exist for Edwards curves (cf. Eq. (3)), Jacobian quartics and
Jacobian intersections [26].

On the other hand, in the case of addition laws depending on all curve para-
meters, the result of sending an arbitrary invalid input point to the device can no
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longer be interpreted as a scalar multiplication on a well-defined invalid curve:
the attack of Antipa et al. does not generalize directly to that setting.

3.3 Our New Approach: The Degenerate Curve Attack Against
Edwards Curves

As is easily observed in Eq. (2), the typical Edwards addition formulas depend
on all curve parameters and are therefore not vulnerable to the original invalid
curve attack as described above. However, there is one interesting property of
this addition law that helps us transfer elliptic curve discrete logarithms to the
curve’s underlying field, rendering them solvable by sieve methods [16,21].

Theorem 1. Let Ea,d be a twisted Edwards curve over Fp. The subset G̃ ⊂ F
2
p

of the affine plane consisting of points of the form (0, y), y �= 0, endowed with
the addition law defined by the same formula as Ea,d, given by Eq. (2), forms a
group isomorphic to F

∗
p under the isomorphism y �→ (0, y).

Proof. The map ϕ : F∗
p → G̃, y �→ (0, y) is by definition a bijection. It suffices to

check that it is a homomorphism to conclude. But this is indeed the case since
adding the points (0, y1) and (0, y2) yields, according to Eq. (2):

ϕ(y1) + ϕ(y2) =
(

0 · y2 + y1 · 0
1 + d · 0 · 0 · y1y2

,
y1y2 − a · 0 · 0

1 − d · 0 · 0 · y1y2

)

= (0, y1y2) = ϕ(y1y2)

as required. 
�
As a result, given a cryptographic device performing scalar multiplications

in the group Ea,d(Fp) without input point validation, as in the original attack of
Sect. 3.1, an attacker can send as input an invalid point P̃ of the form (0, ỹ), and
receive as result the scalar multiplication of P̃ by the secret k in the group G̃,
namely (0, ỹk). Therefore, recovering k is reduced to solving the discrete loga-
rithm problem in the multiplicative group F

∗
p, which as we have mentioned above

is much easier than in Ea,d(Fp) owing to well-known subexponential attacks.
For elliptic curve sizes used in practice (up to 500 or so bits), the finite field

discrete log is easy! By choosing y as a generator of F∗
p (which is always a cyclic

group), the attacker can thus recover all of k in a single query. This yields our
generalization of invalid curve attacks to the case of Edwards curves: we call this
attack a degenerate curve attack for reasons that will become apparent shortly.

Remark 1. An obvious but important observation is that, while we have
described our attack in affine coordinates, it also works in the (likely) case when
the device performs its computation in projective coordinates, using the projec-
tive versions of the same group operations. It is straightforward to check, for
example, that (0 : Y1 : 1) + (0 : Y2 : 1) = (0 : Y1Y2 : 1) (and generalizations with
other values of the Z-coordinates go through similarly).

One can wonder why, despite the dependence of the group law Eq. (2) on all
curve parameters, we can still find an invalid curve in the affine plane where
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the same formulas induce a group structure. A rough explanation is as follows.
First, the y-axis Y : x = 0 in the plane is actually a limit (in the usual sense of
one-parameter families) of the twisted Edwards curves Ea,d for fixed d: it is the
fiber above a = ∞. This is easily seen by rewriting the equation of Ea,d in terms
of a′ = 1/a, as x2 + a′y2 = a′(1 + dx2y2), and setting a′ = 0. Since Y is of genus
0, the Edwards group law should degenerate on Y (minus a finite number of
points) as the additive or the multiplicative group. The expression of the group
law need not a priori be the same as on the original curve Ea,d itself, but it does
turn out to be the case, because the only term depending on the parameter a
cancels out along Y : x = 0.

Now the line Y is not itself singular (although it should perhaps really be seen
as the non-reduced double line x2 = 0), but it is where the family degenerates,
hence the name of our attack.

3.4 Degenerate Curve Attacks Against Other Models

The idea of the previous attack generalizes easily to other models of elliptic
curves, including all of those mentioned in Sect. 2. We now describe those gen-
eralizations in affine coordinates below; they of course also work in projective
coordinates.

Extended Jacobi Quartics. Let Ea,b : y2 = dx4 +2ax2 +1 be an extended Jacobi
quartic curve over Fp, and consider the set G̃ of points in F

2
p of the form (0, y),

y �= 0. Endow this set with the same addition law as Ea,d, defined by Eq. (8).
It then forms a group isomorphic to F

∗
p under the isomorphism ϕ : y �→ (0, y).

Indeed, this map is a bijection and we have:

ϕ(y1) + ϕ(y2) =
(

0 · y2 + y1 · 0
1 − d · 0 · 0

,
(1 + d · 0 · 0)(y1y2 + 2a · 0 · 0) + 2d · 0 · 0 · 0

(1 − d · 0 · 0)2

)

= (0, y1y2) = ϕ(y1y2),

so ϕ is an isomorphism as required.
Therefore, we can carry out our attack as before, by sending to a device

performing scalar multiplications on Ea,d the invalid input point (0, y) for some
generator y of F∗

p.
In this case, the y-axis appears as the degenerate limit of the family Ea,d for

fixed a and varying d, taken for d = ∞.

Twisted Jacobi Intersections. Let Ea,b : as2 + c2 = bs2 + d2 = 1 be a twisted
Jacobi intersection over Fp, and consider the sets G̃1 and G̃2 of points in F

3
p of the

form (0, c, 0), c �= 0, and (0, 0, d), d �= 0, respectively. Endow both of these sets
with the same addition law as Ea,b, defined by Eq. (7). Then they form groups
isomorphic to F

∗
p under the isomorphisms ϕ1 : c �→ (0, c, 0) and ϕ2 : d �→ (0, 0, d)

respectively. Indeed, those maps are both bijections and we have:
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ϕ1(c1) + ϕ1(c2) =

(
0 · c2 · 0 + c1 · 0 · 0

1 − ab · 0 · 0
,
c1c2 − b · 0 · 0 · 0 · 0

1 − ab · 0 · 0
,
0 · 0 − b · 0 · c1 · 0 · c2

1 − ab · 0 · 0

)

= (0, c1c2, 0) = ϕ1(c1c2)

and similarly for ϕ2 by symmetry.
This provides two families of invalid points using which we can carry out our

attack exactly as before.

Twisted Hessian Curves. The case of twisted Hessian curves is somewhat less
interesting, since this model has a group law independent of the curve parameter
d, and hence the original invalid curve attack applies to it. Nevertheless, we can
mention for completeness that our approach generalizes rather directly to those
curves as well.

Indeed, if Ea,d : ax3 + y3 + 1 = dxy is a twisted Hessian curve, the map
ϕ : y �→ (0,−y) defines an isomorphism between F

∗
p and the set of elements of

the form (0, y), y �= 0 in F
2
p endowed with the same addition law as Ea,d, defined

by Eq. (6). Indeed:

ϕ(y1) + ϕ(y2) =
(

0 + y2
1 · 0 · y2

−a · 0 · y1 · 0 + y2
,

−y1y
2
2 − a · 0 · 0

−a · 0 · y1 · 0 + y2

)

= (0,−y1y2) = ϕ(y1y2).

Huff Curves. As with Hessian curves, Huff curves have a parameter-independent
group law and hence are not the most relevant setting for us, but we can again
extend our attack to them.

For the Huff curve Ea,b : ax(y2−1) = by(x2−1) with the group law of Eq. (4),
we can consider the set G̃ of points in F

2
p of the form (0, y). The sum of two such

points under the addition law given by the same formula is given by:

(0, y1) + (0, y2) =
(

0 · (1 + y1y2)
1 · (1 − y1y2)

,
(y1 + y2) · 1
1 · (1 + y1y2)

)

=
(

0,
y1 + y2
1 + y1y2

)

.

Thus, if we consider the map ϕ : F∗
p → G̃ defined outside −1 by ϕ(t) =

(
0, (1 −

t)/(1 + t)
)
, it is easy to check that ϕ(t1) + ϕ(t2) = ϕ(t1t2), and therefore we

again have a group isomorphic to F
∗
p to carry out our attack.

Remark 2. It may be worth noting that for some curve models, we are also able
to find degenerate curves on which the addition law induces a group structure
isomorphic to the twisted form of the multiplicative group (i.e. the subgroup of
order p + 1 of elements of norm 1 in F

∗
p2). Huff curves offer a simple concrete

example: consider the set of points of the form (x, x) ∈ F
2
p with the Huff addition

law of Eq. (4). The sum of two such points is given by (x1, x1)+(x2, x2) = (x3, x3)
where

x3 =
x1 + x2

1 − x1x2
.

When −1 is a quadratic nonresidue in Fp, this is well-known to be the so-called
“compressed form” of the twisted multiplicative group [49].
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4 The Hashed Case

The previous section considered attacks on a cryptographic device that per-
forms elliptic curve scalar multiplications without validation of input points,
and returns the actual result of the scalar multiplication. This is a somewhat
idealized attack model, however.

One real-world protocol where a similar situation arises is (static) Diffie–
Hellman key exchange over elliptic curves, one variant of which is presented in
Fig. 1. In an invalid curve attack on that protocol, Bob would send Alice his
invalid point B, and Alice would use it to compute the product kA ·B where kA
is her static secret key. The resulting point kA · B is not directly sent back to
Bob, however, but used to derive a key K = KDF(kA · B) used in subsequent
communication. In effect, what Bob receives is the image of kA ·B under a fixed,
public one-way function, usually with low collision probability (in Fig. 1, it would
be the authentication message M).

We model that situation by considering an oracle which, on input of a point
P (still unvalidated), computes the scalar multiplication k · P by a fixed secret
k, and returns the image H(k · P ) of the result under a public hash function H.
In that more restrictive setting, degenerate curve attacks are not as devastating
as previously described, but we will see that it is often still possible to recover
k quite quickly in practice, depending on the smoothness of the order p − 1
of F

∗
p (or of p + 1 in the case of degenerate groups isomorphic to the twisted

multiplicative group; we will describe the attack in the F
∗
p case to fix ideas).

The idea is simply to apply the Pohlig–Hellman algorithm [47]. Using the
naive variant of the algorithm, the attacker can, for each prime divisor � of
p − 1, choose a point P̃ of order � in the degenerate group, obtain H(k · P̃ )
from the oracle, and perform an exhaustive search in the subgroup 〈P̃ 〉 to find
the point Q̃ such that H(k · P̃ ) = H(Q̃), revealing k mod �. Prime powers are
dealt with similarly, and in the end the attacker recovers all of k with only a few
oracle queries, in time quasilinear in the largest prime factor P1(p − 1) of p − 1.
Furthermore, if a higher query complexity is acceptable, we can use Shanks’

Fig. 1. Basic unauthenticated elliptic curve Diffie–Hellman protocol, under which
invalid curve attacks may be mounted. The protocol works over a curve Ea,b(Fp),
with a generator point P of prime order n. KDF(·) is an arbitrary key-derivation func-
tion taking points of Ea,b(Fp) as input; E(K, M) is taken to be some authenticated
encryption primitive, e.g., AES–GCM.



Degenerate Curve Attacks 29

baby-step giant-step time-memory tradeoff [51] to recover k in time quasilinear
in

√
P1(p − 1), also using a number of queries and a space complexity quasilinear

in
√

P1(p − 1).
In general, even

√
P1(p − 1) need not be much smaller than the complexity of

the discrete logarithm problem in the original curve. However, newer models like
Edwards curves are often used over special base fields Fp with particularly effi-
cient arithmetic. Table 1 lists those efficient primes for usual curve sizes together
with the bit size of P1(p − 1), and we can see that for many of them, the degen-
erate curve attack is quite efficient: for example, for curves over the Mersenne
prime field F2521−1 (used to construct the highest security elliptic curves, includ-
ing E-521 [2]), the complexity of an F

∗
p degenerate curve attack would be around

O(244), which is very practical. And it would be O(257.5), also quite fast, over
F2448−2224−1, the field of definition of Ed448-Goldilocks [22].

5 A Fault Attack Countermeasure

Soon after the announcement of the Bellcore attack on RSA, Shamir proposed
a countermeasure [50] that relies on the Chinese remainder theorem to detect
faults during modular exponentiation. The basic idea of Shamir is to replace
computations modulo a prime p by computations in the ring modulo the com-
posite pr, where r is a small randomly-selected integer, and then compare the
result modulo r against an independent equivalent computation modulo r.

While Shamir’s trick3 works well on RSA, due to its simple structure, it is
trickier to apply this countermeasure to the elliptic curve case. Nevertheless,
countermeasures based on Shamir’s trick have been devised. The first one was
invented by Blömer, Otto, and Seifert [11] (BOS), and consisted of two elliptic
curve scalar multiplications—one over Z/prZ, the other over Z/rZ. Baek and
Vasyltov [3] suggested the use of the curve Y 2Z +pY Z3 = X3 +aXZ4 +BZ6 ∈
Z/prZ, where B = y2 + py − x3 − ax, which clearly is equivalent to the original
when reduced modulo p. This method is limited to projective coordinates, since
not every intermediate result may have an inverse in the extended ring. Their
method also has some potential weaknesses owing to its reliance on random
integers r instead of adequately selected primes [31]. It has been recently pointed
out that the original BOS countermeasure is not correct when coupled with
group laws containing exceptions [48], and thus group laws used in BOS-like
countermeasures must be test-free.

More recently, Joye [30,32] proposed a variant of the BOS countermeasure,
where one works instead over Z/pr2Z (resp. Z/r2Z). To accelerate the second
scalar multiplication, Joye takes advantage of the isomorphism between the set of
points of E(Z/r2Z) that reduce to the neutral point modulo r, and the additive
group F

+
r . For example, the set of affine points (αr, 1) ∈ E(Z/r2Z), coupled with

the Edwards group law, yields the useful identity k ·(αr, 1) = (k ·αr, 1) (mod r2),

3 Not to be confused with Shamir’s double-exponentiation trick, pointed out by ElGa-
mal [19, p. 471] and originally discovered by Straus [54].
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Table 1. For primes p suitable for fast elliptic curve cryptography [23], size in bits of
the largest prime factor of p − 1 and p + 1, and complexity of our BSGS-style hashed
Diffie–Hellman attack in F

∗
p ((p − 1) attack) and in the twisted multiplicative group

((p + 1) attack).

p log2 P1(p − 1) (p − 1) attack log2 P1(p + 1) (p + 1) attack

2191 − 19 90 O(245) 93 O(246.5)

2196 − 15 64 O(232) 165 O(282.5)

2216 − 2108 − 1 107 O(253.5) 19 O(29.5)

2221 − 3 73 O(236.5) 42 O(221)

2224 − 296 + 1 46 O(223) 157 O(278.5)

2226 − 5 127 O(263.5) 49 O(224.5)

2230 − 27 101 O(250.5) 136 O(268)

2251 − 9 235 O(2117.5) 70 O(235)

2255 − 19 236 O(2118) 95 O(247.5)

2266 − 3 37 O(217.5) 125 O(262.5)

2285 − 9 237 O(2118.5) 60 O(230)

2291 − 19 259 O(2129.5) 114 O(257)

2322 − 2161 − 1 133 O(266.5) 64 O(232)

2336 − 3 166 O(283) 214 O(2107)

2338 − 15 166 O(283) 204 O(2102)

2369 − 25 192 O(296) 252 O(2126)

2383 − 31 88 O(244) 97 O(248.5)

2389 − 21 247 O(2123.5) 311 O(2155.5)

2401 − 31 48 O(224) 209 O(2104.5)

2416 − 2208 − 1 60 O(230) 96 O(248)

2448 − 2224 − 1 115 O(257.5) 49 O(224.5)

2450 − 2225 − 1 88 O(244) 54 O(227)

2452 − 3 88 O(244) 266 O(2133)

2468 − 17 209 O(2104.5) 164 O(282)

2480 − 2240 − 1 163 O(281.5) 36 O(218)

2489 − 21 263 O(2131.5) 260 O(2130)

2495 − 31 158 O(279) 319 O(2159.5)

2521 − 1 88 O(244) 1 O(20.5)

which can be used to detect a fault very efficiently. Our proposed countermeasure
is conceptually similar, but takes advantage of the multiplicative and additive
identities of degenerate curves described in Sect. 3 instead. The countermeasure
is described, in its most general form, in Algorithm 1.
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Algorithm 1: Fault attack countermeasure for elliptic curves with degen-
erate points allowing “shortcut” scalar multiplications.
Input:
A curve E(Fp);
A point P = (x, y) ∈ E(Fp);
A scalar exponent k ∈ Z;
A security parameter b;
An efficiently-computable “shortcut” map f(k, P ) : E(Fr) → E(Fr)
implementing scalar multiplication by k.
Output: k · P
begin

r ← random b-bit prime
Er ← DegenerateCurve(r) // Pick degenerate curve, model-dependent

Pr ← (xr, yr) ∈ Er(Fr) // Pick appropriate degenerate point on Er

E′ ← E × Er / Z/prZ

P ′ ←
(
CRTp,r(x(P ), xr), CRTp,r(y(P ), yr)

)
∈ E′(Z/prZ)

Q′ ← k · P ′

if Q′ mod r �= f(k, P ′ mod r) then // Check for fault

return “error”
else

return
(
x(Q′) mod p, y(Q′) mod p

)

end

end

One can view our proposed countermeasure as the BOS [11] countermeasure
coupled with a “shortcut” f(k, P ) to compute the second scalar multiplication—
k · P in E(Fr)—much faster than by using the standard formulas. This short-
cut takes different forms depending on which curve shape we are working over.
Generically, we begin by picking a curve Er over Fr for which there is at least
one point for which scalar multiplication is easy to compute. Then, the extended
curve E′ is the direct product E′(Z/prZ) = E(Fp) × Er(Fr), and the counter-
measure consists of checking whether k · P ′ ∈ E′, reduced modulo r, equals
the same multiplication performed independently in Er. The correctness of this
method follows from the correctness of BOS [11]; our concrete contribution is the
shortcuts taken to reduce the computation overhead of the scalar multiplication
in Er. The following considers two popular shapes—Weierstrass and Edwards
curves—but others are similarly easy to derive.

5.1 Weierstrass Curves

In Weierstrass curves, we may take advantage of the unique singular curve y2 =
x3. This curve is notable for degenerating into the additive group F

+
r via the

map (x, y) �→ x/y and ∞ �→ 0, with inverse t �→ (t−2, t−3) and 0 �→ ∞ [28,
Sect. 3.7]. This immediately suggests a very efficient shortcut map for Er:
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f(k, P ) =
(
(kt)−2, (kt)−3

)
,

where t = x/y or t = 0 if P = ∞.
The resulting correctness test only requires a few multiplications modulo

r, which is more efficient than both BOS [11] and Baek–Vasyltsov [3], and is
comparable with Joye’s approach [30]. Note that the inversions are avoidable by
using projective coordinates.

5.2 Edwards Curves

Unlike Weierstrass curves, Edwards curves do not have any additive degenera-
tion. However, we can use the results of Sect. 3.3 to devise a similar countermea-
sure using a multiplicative degeneration. The shortcut map for Er is

f(k, P ) =
(
0, yk

)
,

where P = (0, y) for any y /∈ {0, 1} that generates the group F
∗
r . In this case

the computational overhead is larger than in the Weierstrass case—a modular
exponentiation modulo r—but is still far cheaper than a scalar multiplication.

5.3 Comparison with Previous Countermeasures

The above methods offer some advantages relatively to previous Shamir-inspired
fault attack countermeasures:

Only one full-fledged scalar multiplication is required. This is in
contrast with Blömer–Otto–Seifert [11, Sect. 8] which requires 2 scalar
multiplications—one modulo pr, another modulo r. In the case of Weierstrass
curves, our countermeasure is faster than any other targeting the same curve
shape.

Works both in affine and projective coordinates. This is in contrast with
Baek–Vasyltsov [3], which due to working on Weierstrass curves, breaks down
when faced with the corner cases in the addition and doubling formulas of
those curves.

Although our method may not suit every use case, it is another useful tool for
hardened implementations of elliptic curves. It is particularly suitable for imple-
mentations of curves over random primes, which hardware implementers tend to
favor [42], since multiplication modulo pr is straightforward to implement, and
the overhead remains small. On the other hand, highly structured primes, usu-
ally very close to a power of 2, would likely suffer a higher performance impact,
since modular reduction would no longer be a linear-time operation.
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Abstract. The Coppersmith methods is a family of lattice-based tech-
niques to find small integer roots of polynomial equations. They have
found numerous applications in cryptanalysis and, in recent develop-
ments, we have seen applications where the number of unknowns and
the number of equations are non-constant. In these cases, the combina-
torial analysis required to settle the complexity and the success condition
of the method becomes very intricate.

We provide a toolbox based on analytic combinatorics for these stud-
ies. It uses the structure of the considered polynomials to derive their gen-
erating functions and applies complex analysis techniques to get asymp-
totics. The toolbox is versatile and can be used for many different appli-
cations, including multivariate polynomial systems with arbitrarily many
unknowns (of possibly different sizes) and simultaneous modular equa-
tions over different moduli. To demonstrate the power of this approach,
we apply it to recent cryptanalytic results on number-theoretic pseudo-
random generators for which we easily derive precise and formal analysis.
We also present new theoretical applications to two problems on RSA
key generation and randomness generation used in padding functions for
encryption.
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1 Introduction

Many important problems in (public-key) cryptanalysis amount to solving poly-
nomial equations with partial information about the solutions. In 1996, Cop-
persmith introduced two celebrated lattice-based techniques [11–13] for finding
small roots of polynomial equations. They have notably found many important
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applications in the cryptanalysis of the RSA cryptosystem (see [27] and refer-
ences therein). The first technique works for a univariate modular polynomial
whereas the second one deals with a bivariate polynomial over the integers. In
these methods, a family of polynomials is first derived from the polynomial whose
roots are wanted; this family naturally gives a lattice basis and short vectors of
this lattice possibly provide the wanted roots. Since 1996 many generalizations
of the methods have been proposed to deal with more variables (e.g., [8,20,22])
or multiple moduli (e.g., [28–30]).

Most of the applications of the Coppersmith methods in cryptanalysis involve
a constant number of multivariate polynomial equations in a constant number
of variables. However, in recent developments, we have seen applications of the
methods where the number of unknowns is non-constant (e.g., [2,18,29]). These
applications typically involve a number-theoretic pseudorandom number gener-
ator that works by iterating an algebraic map on a secret random initial seed
value and outputting the state value at each iteration. It has been shown that
in many cases Coppersmith’s methods can be applied to recover some secret
value. The difficulty comes from the fact that the polynomial system to solve
involves all iterates of the pseudorandom generator. It is very tedious to ana-
lyze the attack complexity (i.e., the dimension of the lattice derived from the
polynomial system whose roots are wanted) and its success condition (i.e., the
total degrees of the polynomials and monomials families used in the lattice
construction). For instance in [2,18], this analysis is a bit loose; it uses a nice
simplifying trick in order to analyze the condition of success but does not permit
to estimate the attack complexity. The main intent of this paper is to promote
the use of analytic combinatorics in order to perform these computations. In
order to demonstrate the power of this approach, we apply it to known cryptan-
alytic results [2] for which we easily derive precise and formal analysis. We also
present new theoretical applications to two problems that were left open in [16]
on RSA key generation and randomness generation used in padding functions
for encryption.

Prior Work. As illustrations of our toolbox, we apply it to the following prob-
lems from the literature:

– Number-theoretic pseudorandom generators. A pseudorandom generator is a
deterministic algorithm that maps a random seed to a longer string that
cannot be distinguished from uniformly random bits by a computationally
bounded algorithm. As mentioned above, a number-theoretic pseudorandom
generator iterates an algebraic map F over a residue ring ZN on a secret
random seed v0 ∈ ZN and computes the intermediate states vi+1 = F (vi)
mod N for i ∈ N. It outputs (some consecutive bits of) the state value vi

at each iteration. The well-known linear congruential generator corresponds
to the case where F is an affine function. It is efficient and has good sta-
tistical properties but Boyar [10] proved that one can recover the seed in
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time polynomial in the bit-size of M and this is also the case even if one
outputs only the most significant bit of each vi (see [9,23,31]). In [2], Bauer,
Vergnaud, and Zapalowicz studied the security of number-theoretic generators
for rational map F and proposed attacks based on Coppersmith’s techniques
showing that for low degree F the generators are polynomial time predictable
if sufficiently many consecutive bits of the vi’s are revealed (see also [5,6]).
Their lattice constructions are intricate and the analysis of their attacks is
complex.

– Key generation and Paddings from weak pseudorandom generator. The for-
mer attacks assume that the adversary has direct access to sufficiently many
consecutive bits of a certain number of outputs. However, it may be possi-
ble that using such a generator in a cryptographic protocol does not make
the resulting protocol insecure. For instance, in [25], Koshiba proved that
the linear congruential generator can be used to generate randomness in the
ElGamal encryption scheme (based on some plausible assumption). This secu-
rity results holds because the adversary against ElGamal encryption scheme
does not have access to the actual outputs of the generator. A contrario, in
1997, Bellare et al. [4] broke the Digital Signature Algorithm (DSA) when
the random nonces used in signature generation are computed using a linear
congruential generator. Recently, Fouque et al. [16] analyzed the security of
public-key schemes when the secret keys are constructed by concatenating
the outputs of a linear congruential generator. They obtained a time/memory
tradeoff on the search for the seed when such generators are used to generate
the prime factors of an RSA modulus (using multipoint polynomial evalua-
tion). They left open the problem to extend it to different scenarios, such as
the generation of randomness used in padding functions for encryption and
signatures.

Technical Tools. In Coppersmith methods, one usually considers an irreducible
multivariate polynomial f defined over Z, having a small root x modulo a known
integer N and one generates a collection of polynomials having x as a modular
root (usually, multiples and powers of f are chosen). The problem of finding x
can be reformulated by constructing a matrix using the collection of polynomi-
als (see Sect. 2). The methods succeed (heuristically) if some conditions on the
matrix hold and these conditions can be checked by enumerating the polynomials
involved in the collection and the total degree of the monomials appearing in the
collection. The success condition is usually stated as a bound x < N δ where δ is
an asymptotic explicit constant derived from the combinatorial analysis. How-
ever, in order to actually reach this bound in practice, the constructed matrix is
of huge dimension and the computation which is theoretically polynomial-time
becomes in practice prohibitive1. These attacks based on this method are obvi-
ously strong evidence of a weakness in the underlying cryptographic scheme and
there exist method that makes it possible to use matrices of reasonable dimension
1 Following Lipton’s terminology we can often qualify as galactic the resulting

polynomial-time algorithm for the asymptotic value of δ [26].
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(e.g., by performing an exhaustive to retrieve a small part of x and Coppersmith
technique with a smaller matrix to retrieve the other (bigger) part).

The combinatorial analysis in Coppersmith methods is usually easy to per-
form but as mentioned above it can be very intricate if one considers multivariate
polynomial equations in a non-constant number of variables. Analytic combina-
torics is a celebrated technique — which was mostly developed by Flajolet and
Sedgewick [15] — of counting combinatorial objects. It uses the structure of
the objects considered to derive their generating functions and applies complex
analysis techniques to get asymptotics.

Contributions. The main contribution of the paper is to provide a toolbox
based on analytic combinatorics for the study of the complexity and the suc-
cess condition of Coppersmith methods. The toolbox is versatile and can be
used for many different applications, including multivariate polynomial systems
with arbitrarily many unknowns (of possibly different sizes) and simultaneous
modular equations over different moduli.

In order to illustrate the usefulness of this toolbox, we then revisit the analysis
of previous cryptanalytic results from the literature on number-theoretic pseudo-
random generators [2]. In particular, we precise the complexity analysis of the
attacks described in [2] by giving generating functions and asymptotics for the
dimension of the matrix involved in the attack. We provide a complete analysis
of the success condition of the attacks described in [2,29]. The technique uses
simple formal manipulation on the generating functions and are readily done
using any computer algebra system. In particular, this shows that the toolbox
is very generic and can be applied in many settings (and does not require any
clever tricks).

Eventually, we provide new applications of the toolbox to RSA key gen-
eration and encryption paddings from weak pseudorandom generator. We
improve Fouque et al. time/memory tradeoff attack and we propose a (heuris-
tic) polynomial-time factorization attack when the RSA prime factors are con-
structed by concatenating the outputs of a linear congruential generator. Our
attack applies when the primes factors are concatenation of three (or more) con-
secutive outputs of the generator, i.e., when the seed is at most N1/6 (for which
the time/memory tradeoff attack has the prohibitive complexity O(N1/12)). The
attack is theoretical since it makes use of a matrix of large dimension. Following
their suggestion, we also apply our toolbox to the setting of the randomness
generation used in padding functions for encryption. To illustrate our technique,
we consider RSA Encryption with padding as described in pkcs#1 v1.5; it has
been known to be insecure since Bleichenbachers chosen ciphertext attack [7]
but, unfortunately, this padding is still in used about everywhere (e.g., TLS,
XML encryption standard, hardware token, . . . ). We consider several scenario,
namely linear congruential generator (LCG), truncated LCG, and LCG used in
n consecutive ciphertext. We apply our toolbox to all of them and for an RSA
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modulus N with a public exponent e and a LCG with modulus M , our attacks
are polynomial-time in log(N) for the following (asymptotic) M ’s:

Key generation pkcs#1 v1.5

with LCG LCG Truncated LCG LCG and multiple ciphertexts

M � N1/6 M < N1/e M < N1/e M < Nn/e

2 Coppersmith Methods

In this section, we give a short description of Coppersmith method for solving a
multivariate modular polynomial system of equations over multiple moduli. We
refer the reader to [22,30] for details and proofs.

Problem Definition. Let f1(y1, . . . , yn), . . . , fs(y1, . . . , yn) be irreducible mul-
tivariate polynomials defined over Z, having a root (x1, . . . , xn) modulo respec-
tive known integers N1, . . . , Nn, that is fi(x1, . . . , xn) ≡ 0 mod Ni. This root
is small in the sense that each of its components is bounded by a known
value, namely |x1| < X1, . . . , |xn| < Xn. We need to bound the sizes of Xi

(for i ∈ {1, . . . , n}) allowing to recover the desired root in polynomial time.

Polynomials Collection. In a first step, for each modulus Ni, one gener-
ates a collection of polynomials {f̃i,1, . . . , f̃i,r(i)} having (x1, . . . , xn) as a root
modulo Ni. Usually, multiples and powers of the original polynomial fi are cho-
sen, namely f̃i,j = y

ki,j,1
1 · · · yki,j,n

n f
ki,j,�

i for some integers ki,j,1, . . . , ki,j,n, ki,j,�.
By construction, such polynomials satisfy the relation f̃i,j(x1, . . . , xn) ≡ 0
mod N

ki,j,�

i , i.e., there exists an integer ci,j,k such that f̃i,j,k(x1, . . . , xn) =
ci,j,kN

ki,j,�

i . If some moduli Ni are equals, one can also consider multiples and
powers of products of the corresponding original polynomials fi.

From now, we denote for each i ∈ {1, . . . , s}, the polynomials {f̃i,1, . . . , f̃i,r(i)}
constructed as above. Considering the union of such sets if some moduli Ni

are equals, we can assume without loss of generality that the moduli Ni are
pairwise distinct and even pairwise coprime. Let us denote as P the set of all
the polynomials and M the set of monomials appearing in the collection P. In
the paper, we use the following essential condition for the method to work: for
each i ∈ {1, . . . , s}, the polynomials {f̃i,1, . . . , f̃i,r(i)} are linearly independent.

Matrix Construction. The problem of finding small modular roots of these
polynomials can now be reformulated in a vectorial way. Indeed, each polynomial
from our chosen collection can be expressed as a vector over Z

t by extracting
its coefficients and putting them into a vector with respect to a chosen order
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on M . We hence construct a matrix M as follows and we define as L the lattice
generated by its rows:

M =

f̃1,1 · · · f̃s,r(s)

↓ · · · ↓
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1

�
1

X−1
1 y1

. . .
...

X−a1
1 . . . X−an

n ya1
1 . . . yan

n

0
N

k1,1,�

1

. . .

N
ks,r(s),�
s

On that figure, every row of the upper part is related to one monomial of M
(we assume in the figure that M contains 1, y1, and ya1

1 . . . yan
n among other

monomials). The left-hand side contains the bounds on these monomials (e.g.,
the coefficient X−1

1 X−2
2 is put in the row related to the monomial y1y

2
2). The

right-hand side is formed by all vectors coming from the union of the collections
{f̃i,1, . . . , f̃i,r(i)}.

A Short Vector in a Sublattice. Let us now consider the row vector

r0 = (1, x1, . . . , x
a1
1 . . . xan

n ,−c1, . . . ,−cr).

By multiplying this vector by the matrix M, one obtains:

s0 =
(

1,

(
x1

X1

)

, . . . ,

(
x1

X1

)a1

· · ·
(

xn

Xn

)an

, 0, . . . , 0
)

.

By construction, this vector which, in some sense, contains the root we are
searching for, belongs to L and its norm is very small. Thus, the recovery of a
small vector in L, will likely lead to the recovery of the desired root (x1, . . . , xn).
To this end, we first restrict ourselves in a more appropriated subspace. Indeed,
noticing that the last coefficients of s0 are all null, we know that this vector
belongs to a sublattice L′ whose last coordinates are composed by zero coeffi-
cients. By doing elementary operations on the rows of M, one can easily construct
that sublattice and prove that its determinant is the same as the one of L.

Method Conclusion. From that point, one computes an LLL-reduction on the
lattice L′ and computes the Gram-Schmidt’s orthogonalized basis (b�

1, . . . , b
�
t )

of the LLL output basis (b1, . . . , bt). Since s0 belongs to L′, this vector can
be expressed as a linear combination of the b�

i ’s. Consequently, if its norm is
smaller than those of b�

t , then s0 is orthogonal to b�
t . Extracting the coefficients
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appearing in b�
t , one can construct a polynomial p1 defined over Z such that

p1(x1, . . . , xn) = 0. Repeating the same process with the vectors b�
t−1, . . . , b

�
t−n+1

leads to the system {p1(x1, . . . , xn) = 0, . . . , pn(x1, . . . , xn) = 0}. Under the
(heuristic) assumption that all created polynomials define an algebraic variety
of dimension 0, the previous system can be solved (e.g., using elimination tech-
niques such as Groebner basis) and the desired root recovered in polynomial
time.

The conditions on the bounds Xi that make this method work are given by
the following (simplified) inequation (see [30] for details):

∏

y
k1
1 ...ykn

n ∈M

Xk1
1 · · · Xkn

n <
∏

i

N
∑n

i=1
∑r(i)

j=1 ki,j,�

i . (1)

For such techniques, the most complicated part is the choice of the collection of
polynomials, what could be a really intricate task when working with multiple
polynomials.

3 Analytic Combinatorics

We now recall the analytic combinatorics results that we need in the remaining
of this paper. We deliberately omit some of the formalism in order to simplify
the techniques used. See [15] for more details. In the following, we denote by |A|
the cardinal of a set A.

3.1 Introduction

As explained in the former section, Coppersmith’s method requires polynomials
which are usually constructed as fk = yk1

1 . . . ykn
n fk� (with f being a polynomial

of degree e in the variables y1, . . . , yn). In the following, we thus consider a set
of polynomials looking like2

P = {fk = yk1
1 . . . ykn

n fk� mod Nk� | 1 � k� < t

and deg(fk) = k1 + . . . + kn + k�e < te},

where the notation mod Nk� is only here to recall that the considered solution
verifies fk ≡ 0 mod Nk� (to make things clearer). We suppose that f is not just
a monomial (i.e., is the sum of at least two distinct monomials) and therefore
each k corresponds to a distinct polynomial fk.

The set of monomials appearing in the collection P will usually look like

M = {yk = yk1
1 . . . ykn

n | 0 � deg(yk) = k1 + . . . + kn < te}.

2 We only use one polynomial f and one modulus N for the sake of simplicity. Fur-
thermore, this exact set P could actually not appear in the Coppersmith methods,
as the polynomials are not linearly independent. However, it is easier to explain
analytic combinatorics tools on this set P. We show later, in Sect. 4 and throughout
this paper, how to adapt these tools to useful variants of this set.



Easing Coppersmith Methods Using Analytic Combinatorics 43

By construction, since (x1, . . . , xn) is a modular root of the polynomials fk,
there exists an integer ck such that fk(x1, . . . , xn) = ckNk� (see Sect. 2). Fur-
thermore, this root is small in the sense that each of its components is bounded
by a known value, namely |x1| < X1, . . . , |xn| < Xn. These considerations imply
that for the final condition in Coppersmith’s method (see Eq. (1)), one needs to
compute the values

ψ =
∑

fk∈P

k� and ∀i ∈ {1, . . . , n}, αi =
∑

yk∈M

ki.

These values correspond to the exponent of N and Xi (for i ∈ {1, . . . , n}) in
Eq. (1) respectively.

For the sake of readability for the reader unfamiliar with analytic combina-
torics, we first show how to compute the number of polynomials in P or M
of a certain degree and then how to compute these sums ψ and αi but only
for polynomials in P or M of a certain degree. These computations are of no
direct use for Coppersmith’s method but are a warm-up for the really interesting
computation, namely these sums ψ and ai for polynomials in P or M up to a
certain degree.

3.2 Combinatorial Classes, Sizes, and Parameters

A combinatorial class is a finite or countable set on which a size function is
defined, satisfying the following conditions: (i) the size of an element is a non-
negative integer and (ii) the number of elements of any given size is finite. Poly-
nomials of a “certain” form and up to a “certain” degree can be considered as
a combinatorial class, using a size function usually related to the degree of the
polynomial.

In the following, we can consider the set P as a combinatorial class, with
the size function SP

defined as S
P

(fk) = deg(fk) = k1 + . . . + kn + k�e. In
order to compute the sum of the k� as explained in Sect. 3.1, we define another
function χP , called a parameter function, such that χP (fk) = k�. This function
will enable us, instead of counting “1” for each polynomial, to count “k�” for
each polynomial, which is exactly what we need (see Sect. 3.4 for the details).

As for the monomials, we will also consider the set M as a combinatorial
class, with the size function SM

defined as S
M

(yk) = k1+ . . .+kn. In the case the
bounds on the variables are equal (X1 = . . . = Xn = X), the parameter function
corresponding to the exponent α1 of X1 in the final condition in Coppersmith’s
method will be set as χM

(yk) = k1 + . . . + kn. Otherwise, one will be able to
define other parameter functions in case the bounds are not equal (see again
Sect. 3.4).

3.3 Counting the Elements: Generating Functions

The counting sequence of a combinatorial class A with size function S is the
sequence of integers (Ap)p�0 where Ap = |{a ∈ Ap | S(a) = p}| is the number
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of objects in class A that have size p. For instance, if we consider the set M
defined in Sect. 3.1, we have the equality M1 = n since there are n monomials
in n variables of degree 1.

Definition 1. The ordinary generating function (OGF) of a combinatorial class
A is the generating function of the numbers Ap, for p � 0, i.e., the formal3 power
series A(z) =

∑+∞
p=0 Apz

p.

For instance, if we consider the set M (1) = {yk1
1 | 1 � k1 < t} of the

monomials with one variable, then one gets M
(1)
p = 1 for all p ∈ N, implying

that M (1)(z) =
∑+∞

p=0 zp = 1
1−z .

In the former example, we constructed the OGF A(z) from the sequence of
numbers Ap of objects that have size p. Of course, what we are really interested
in is to do it the other way around. We now describe an easy way to construct
the OGF, and we will deduce from this function and classical analytic tools
the value of Ap for every integer p. We assume the existence of an “atomic”
class, comprising a single element of size 1, here a variable, usually denoted as
Z. We also need a “neutral” class, comprising a single element of size 0, here
1, usually denoted as ε. Their OGF are Z(z) = z and E(z) = 1. We show in
Table 1 the possible admissible constructions that we will need here, as well as
the corresponding generating functions.

One then recovers the formula M (1)(z) = 1
1−z from Z(z) = z and the con-

struction Seq(Z) to describe M (1). Similarly, if we now consider the set M (2) =
{yk = yk1

1 yk2
2 | 0 � k1 + k2 < t} of the monomials with two variables, with the

size function S(yk) = k1+k2, then one gets M (2)(z) = M (1)(z)·M (1)(z) = 1
(1−z)2

from M (2) = M (1) × M (1). Finally, since 1
(1−z)2 =

∑+∞
p=1 pzp−1, one gets, for

all p � 1, (M2)p = p + 1, which is exactly the number of monomials with two
variables of size p.

When the class contains elements of different sizes (such as variables of degree
1 and polynomials of degree e), the variables are represented by the atomic

Table 1. Combinatorics constructions and their OGF

Construction OGF

Atomic class Z Z(z) = z

Neutral class ε E(z) = 1

Disjoint union A = B + C (when B ∩ C = ∅) A(z) = B(z) + C(z)

Complement A = B \ C (when C ⊆ B) A(z) = B(z) − C(z)

Cartesian product A = B × C A(z) = B(z) · C(z)

Cartesian exponentiation A = Bk = B × · · · × B A(z) = B(z)k

Sequence A = Seq(B) = ε + B + B2 + . . . A(z) = 1
1−B(z)

3 We stress that it is a “formal” series, i.e., with no need to worry about the conver-
gence.



Easing Coppersmith Methods Using Analytic Combinatorics 45

element Z and the polynomials by the element Ze, in order to take into account
the degree of the polynomial f . If we consider for instance the set P(1,2) =
{fk = yk1

1 fk� | 1 � k� < t and deg(fk) = k1 + 2k� < 2t}, with f a polynomial of
degree 2, this set is isomorphic to Seq(Z) × Z2Seq(Z2), since deg(f) = 2. This
leads to an OGF equals to

1
1 − z

z2

1 − z2
=

+∞∑

q=0

qzq
+∞∑

r=1

rz2r =
+∞∑

p=0

�p/2�∑

r=1

(p − 2r)rzp ,

which gives P
(1,2)
p =

∑�p/2�
r=1 (p−2r)r, which is exactly the number of polynomials

of degree p contained in the class.

3.4 Counting the Parameters of the Elements: Bivariate Generating
Functions

As seen in the former section, when one considers a combinatorial class A of
polynomials and computes the corresponding OGF A(z), classical analytic tools
enable to recover Ap as the coefficient of zp in the OGF. As explained in the
introduction of this section, however, Coppersmith’s method requires a compu-
tation a bit more tricky, which involves an additional parameter. For the sake of
simplicity, we describe this technique on an example.

For instance, consider our monomial set example M (2), but now assume
that X1 �= X2. Our goal is to compute

∑
k1, where the sum is taken over all the

monomials in M (2) of size p. We set a parameter function4 χ(yk) = k1 and we
do not compute M

(2)
p (for p � 1) anymore, but rather

χp(M (2)) =
∑

yk∈M (2)|S(yk)=p

χ(yk) =
∑

yk∈M (2)|S(yk)=p

k1

where, informally speaking, instead of counting for 1, every monomial counts for
the value of its parameter (here the degree k1 in y1).

The value χp(M (2)) cannot be obtained by the construction of M (2) as
Seq(Z) × Seq(Z) that we used in the former section, since the two atomic ele-
ments Z do not play the same role (the first one is linked with the parameter,
whereas the second one is not). The classical solution is simply to “mark” the
atomic element useful for the parameter, with a new variable u: With this new
parameter function, M (2) is seen as Seq(uZ) × Seq(Z), defining the bivari-
ate ordinary generating function (BGF)5 M2(z, u) = 1

1−uz
1

1−z . We remark that
when we set u = 1, we get the original non-parameterized OGF. Informally
speaking, the BGF of a combinatorial class A with respect to a size function S

4 Note that it is possible to count the exponents of both X1 and X2 at once using two
parameters, but it is usually easier to count them separately, which often boils down
to the same computation. See concrete examples in Sect. 4.

5 In complex cases, the marker u can be put to some exponent k, for instance if the
parameter considered has a value equal to k for the atomic element.
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and a parameter function χ is obtained from the corresponding OGF by replac-
ing each z by ukz where k is the value of the parameter taken on the atomic
element Z. We then obtain χp(A) via the following result:

Theorem 2. Assume A is a combinatorial class with size function S and para-
meter function χ, and assume A(z, u) is the bivariate ordinary generating funtion
for A corresponding to this parameter (constructed as explained above). Then, if
we define

χp(A) =
∑

a∈A|S(a)=p

χ(a)

the ordinary generating function of the sequence (χp(A))p�0 is equal to the value
(∂A(z, u)/∂u)u=1, meaning that we have the equality

∂A(z, u)
∂u

∣
∣
∣
∣
u=1

=
+∞∑

p=0

χp(A)zp def
= χ(A)(z).

Coming back to our example, one then gets

χ(M (2))(z) =
+∞∑

p=0

χp(M (2))zp =
∂M (2)(z, u)

∂u

∣
∣
∣
∣
u=1

=
z

(1 − z)3
=

+∞∑

p=1

p(p − 1)
2

zp−1.

meaning that χp(M (2)) = p(p + 1)/2 (remind that it is an equality on formal
series). Finally, the sum of the degrees k1 of the elements of size p is p(p + 1)/2,
which can be checked by enumerating them: yp

2 , y1y
p−1
2 , y2

1y
p−2
2 , . . . , yp−1

1 y2, y
p
1 .

It is easy to see that the result is exactly the same for X2, without any additional
computation, by symmetry.

3.5 Counting the Parameters of the Elements up to a Certain Size

We described in the former section a technique to compute the sum of the
(partial) degrees of elements of size p, but how about computing the same sum
for elements of size up to p? Using the notations of the former section, we want
to compute

χ�p
(A) =

∑

a∈A|S(a)�p

χp(a).

The naive way is to sum up the values χi(A) for all i between 0 and p:

χ�p
(A) =

p∑

i=0

∑

a∈A|S(a)=i

χi(a) ,

but an easier way to do so is to artificially force all elements a of size less than
or equal to p to be of size exactly p by adding enough times a dummy element
y0 such that χ(y0) = 0.

In our context of polynomials, the aim of the dummy variable y0 is to homog-
enize the polynomial. If we consider again the set M (2) of monomials of two
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variables y1 and y2, with size function equal to S(yk) = k1 + k2 and parame-
ter function equal to χ(yk) = k1, and if we are interested in the sum of the
degrees k1 of the elements in this set of size up to p, we now describe this set as
Seq(uZ) × Seq(Z) × Seq(Z), the last part being the class of monomials in the
unique variable y0. This variable is not marked, since its degree is not counted.
One obtains the new bivariate generating function M (2)(z, u) = 1

1−uz
1

(1−z)2 and

χ�(M (2))(z) =
+∞∑

p=0

χ�p
(M (2))zp =

∂M (2)(z, u)
∂u

∣
∣
∣
∣
u=1

=
z

(1 − z)4

=
+∞∑

p=2

p(p − 1)(p − 2)
6

zp−2 ,

meaning that χ�p
(M (2)) = p(p + 1)(p + 2)/6 (remind that it is an equality on

formal series). Finally, the sum of the degrees k1 of the elements of size up to p
(i.e., the exponent of X1 in Coppersmith’s method) is p(p + 1)(p + 2)/2, which
can be checked by the computation

p∑

i=0

i(i + 1)
2

=
p(p + 1)(p + 2)

6
.

Again, it is easy to see that the result is exactly the same for X2, without any
additional computation.

3.6 Asymptotic Values: Transfer Theorem

Finding the OGF or BGF of the combinatorial classes is usually an easy task,
but finding the exact value of the coefficients can be quite painful. Coppersmith’s
method is usually used in an asymptotic way. Singularity analysis enables us to
find the asymptotic value of the coefficients in an simple way, using the technique
described in [15, Corollary VI.1(sim-transfer), p. 392]. Adapted to our context,
their transfer theorem can be stated as follows:

Theorem 3 (Transfer Theorem). Assume A is a combinatorial class with
an ordinary generating function F regular enough such that there exists a value
c verifying

F (z) ∼
z→1

c

(1 − z)α

for a non-negative integer α. Then the asymptotic value of the coefficient Fn is

Fn ∼
n→∞

cnα−1

(α − 1)!
.
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4 A Toolbox for the Cryptanalyst

We now describe how to use the generic tools recalled in the former section
to count the exponents of the bounds X1, . . . , Xn and of the modulo N (as
in the previous section, we consider the simplified case with only one modu-
lus N) on the monomials and polynomials appearing in Coppersmith’s method
(see Sect. 2). For the sake of simplicity, we describe the technique on several
examples, supposedly complex enough to be easily combined and adapted to
most of the useful cases encountered in practice.

4.1 Counting the Bounds for the Monomials (Useful Examples)

First Example. In this example, we consider

M = {y1
i1 · · · ym

m · ym+1
m+1 · · · yn

in | 1 � i1 + . . . + in < t}

with the bounds |yi| < X for 1 � i � m et |yi| < Y for m < i � n. In
order to obtain the exponent for the bound X, we consider the size function
S(y1i1 . . . yn

in) = i1 + . . . + in and the parameter function χ
X

(y1i1 . . . yn
in) =

i1 + . . . + im.
We describe M as

∏m
i=1 Seq(uZ) × ∏n

i=m+1 Seq(Z) × Seq(Z) \ ε (the last
Seq(Z) being for the dummy value y0), which leads to the OGF

F (z, u) =
(

1
1 − uz

)m (
1

1 − z

)n−m+1

− 1.

The next step is to compute the partial derivative in u at u = 1:

∂F (z, u)
∂u

∣
∣
∣
∣
u=1

=
mz

(1 − uz)m+1

(
1

1 − z

)n−m+1
∣
∣
∣
∣
∣
u=1

=
mz

(1 − z)n+2

and take the equivalent value when z → 1:

∂F (z, u)
∂u

∣
∣
∣
∣
u=1

∼
z→1

m

(1 − z)n+2
,

which finally leads, using Theorem3, to χ
X,<t

(M ) ∼ m(t−1)n+1

(n+1)! ∼ mtn+1

(n+1)! .
Finally, it is easy to see that if one denotes χ

Y
(y1i1 . . . yn

in) = im+1+. . .+in,
one gets χ

Y,<t
(M ) ∼ (n−m)tn+1

(n+1)! . This set of monomials used in Coppersmith’s

method thus leads to the bound X
mtn+1
(n+1)! Y

(n−m)tn+1

(n+1)! . In the particularly useful

case where X = Y , the bound becomes X
ntn+1
(n+1)! for all the monomials in n

variables of degree up to t.



Easing Coppersmith Methods Using Analytic Combinatorics 49

Second Example. In this example, we consider

M = {y1
i1 . . . yn

in | (i1 = 0 or i2 = 0)
and 1 � i3 � e and 1 � i1 + . . . + in < t}

with the bounds |yi| < X for 1 � i � n. We use the size function
S(y1i1 . . . yn

in) = i1 + . . . + in and the parameter function χ(y1i1 . . . yn
in) =

i1 + . . . + in (since the bound X is the same for all variables).
The first step is to split M into disjoint subsets. In our case, the three disjoint

subsets correspond to i1 = i2 = 0, (i1 = 0 and i2 �= 0) and (i1 �= 0 and i2 = 0).
Taking into account the dummy value y0, we describe them as

(Z + . . . + Ze) ×
n−3∏

i=1

Seq(uZ) × Seq(Z)

for the first one and

(uZ) × Seq(uZ) × (Z + . . . + Ze) ×
n−3∏

i=1

Seq(uZ) × Seq(Z)

for the two others (since the presence of y1 or y2 is mandatory). This leads to
the OGF

F (z, u) =
(

1 +
uz

1 − uz
+

uz

1 − uz

)

(z + . . . + ze)
(

1
1 − uz

)n−3 1
1 − z

=
1 + uz

(1 − uz)n−2

z + . . . + ze

1 − z
,

which gives, after computations,

∂F (z, u)
∂u

∣
∣
∣
∣
u=1

=
z((n − 3)uz + n − 1)

(1 − uz)n−1

z + . . . + ze

1 − z

∣
∣
∣
∣
u=1

∼
z→1

(2n − 4)e
(1 − z)n

,

which finally leads to χ
<t

(M ) ∼ (2n−4)e(t−1)n−1

(n−1)! ∼ (2n−4)etn−1

(n−1)! , using Theorem 3.

4.2 Counting the Bounds for the Polynomials (Example)

We now consider the set

P = {fk = yk1
1 . . . ykn

n fk� mod Nk� | 1 � k� < t

and deg(fk) = k1 + . . . + kn + k�e < te}
with the bounds X1 = . . . = Xn = X for the variables. In order to obtain the
exponent for the modulus N , we consider the size function S(y1k1 . . . yn

knfk�) =
k1 + . . . + kn + k� and the parameter function χ

N
(y1k1 . . . yn

knfk�) = k�.
For the sake of simplicity, we can consider 0 � k� < t since the parameter

function is equal to 0 on the elements fk such that k� = 0. We describe P as
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∏n
i=1 Seq(Z) × Seq(uZe) × Seq(Z) (the last one being for the dummy value

y0), since only f needs a marker and its degree is e. This leads to the OGF

F (z, u) =
(

1
1 − z

)n+1 1
1 − uze

.

The next step is to compute the partial derivative in u at u = 1:

∂F (z, u)
∂u

∣
∣
∣
∣
u=1

=
ze

(1 − uze)2

(
1

1 − z

)n+1
∣
∣
∣
∣
∣
u=1

=
ze

(1 − ze)2

(
1

1 − z

)n+1

and take the equivalent value when z → 1, using the formula 1 − ze ∼ e(1 − z):

∂F (z, u)
∂u

∣
∣
∣
∣
u=1

∼
z→1

1
e2(1 − z)n+3

,

which finally leads, using Theorem3, to χ
N,<te

(P) ∼ (te)n+2

e2(n+2)! .

5 Number-Theoretic Pseudorandom Generators
(Following [2])

As mentioned in the introduction, number-theoretic pseudorandom generators
work by iterating an algebraic map F over a residue ring ZN on a secret random
initial seed value v0 ∈ ZN to compute the intermediate state values vi+1 = F (vi)
mod N for i ∈ N and outputting (some consecutive bits of) the state value vi at
each iteration. In [2], Bauer et al. showed that such a pseudorandom generator
defined by a known iteration polynomial function F can be broken under the
condition that sufficiently many bits are output by the generator at each iteration
(with respect to the degree of F ).

Let F (X) be a polynomial of degree d in ZN [X] and let v0 be a secret seed.
As in [2], we assume that the generator outputs the k most significant bits
of vi at each iteration (with k ∈ {1, . . . , n} where n is the bit-length of N).
More precisely, if vi = 2n−kwi + xi, with 0 � xi < 2n−k = M = N δ which
is unknown to the adversary and wi is output by the generator. The adversary
wants to recover xi for some i ∈ N from consecutive values of the pseudorandom
sequence (with M as large as possible). We have vi+1 = F (vi) mod N (for
i ∈ N) for a known polynomial F and 2m−kwi+1 + xi+1 = F (2m−kwi + xi)
mod N . We can therefore define explicitly a family of bivariate polynomials of
degree d, fi(yi, yi+1) ∈ ZN [yi, yi+1], such that fi(xi, xi+1) = 0 mod N , for i ∈
{0, . . . , n} whose coefficients publicly depend on the approximations wi, wi+1 and
F ’s coefficients. The goal is to compute the (small) modular root (x0, x1, . . . , xn)
of the polynomial system {f0(y0, y1) = 0, . . . , fn(yn, yn+1) = 0} in polynomial
time.



Easing Coppersmith Methods Using Analytic Combinatorics 51

Description of the attack. In order to solve this system, Bauer et al. [2] applied
Coppersmith method for multivariate modular polynomial system to the follow-
ing collection of polynomials:

P = {y0
jf0

i0 . . . fn
in | d(i0 + di1 + . . . + dnin) + j � dm ∧ (i0 + . . . + in > 0)}

where m ≥ 1 is a fixed integer. They showed that the set of monomials occurring
in the collection is:

{y0
jy1

i0 . . . yn+1
in | d(i0 + di1 + . . . + dnin) + j � dm}.

To analyze their algorithm, Bauer et al. used a trick from [18] and only computes
the quotient of the two quantities involved in Coppersmith success condition (1)
(thanks to a fortunate simplification). In the following, we will use our toolbox
to recompute (more) easily the bounds on these two quantities. We also obtain
more precise estimates since our toolbox also permits to obtain the dimensions
of the matrix used in Coppersmith method (and therefore the actual complexity
of the attack).

Bound for the Polynomials. We consider the set P defined as

{y0
jf0

i0 . . . fn
in mod N in | d(i0+di1+ . . .+dnin)+j � dm∧i0+ . . .+in > 0)}

as a combinatorial class, with the size function S
f
(y0jf0

i0 . . . fn
in) = d(i0 +

di1 + . . . + dnin) + j and the parameter function χ
f
(y0jf0

i0 . . . fn
in) = i0 +

. . . + in. For the sake of simplicity, we can consider i0 + . . . + in � 0 since the
parameter function is equal to 0 on the elements such that i0 + . . . + in = 0.
We split the parameter functions into (n + 1) parts χ

f,j
(y0jf0

i0 . . . fn
in) = ij

(for j ∈ {0, . . . , n}), do the computation for each of them and sum the obtained
asymptotic equivalents (and this can be done legitimately by computing the
corresponding limits).

Let j ∈ {0, . . . , n}. Since the degree of each fk is dk+1, we consider P as

Seq(Z)
︸ ︷︷ ︸

y0

×
n∏

k=0
k 	=j

Seq(Zdk+1
)

︸ ︷︷ ︸
fk

×Seq(uZdj+1
)

︸ ︷︷ ︸
fj

× Seq(Z)
︸ ︷︷ ︸

dummy var.

\ Seq(Z)
︸ ︷︷ ︸

y0

× Seq(Z)
︸ ︷︷ ︸

dummy var.

which leads to the following generating function

Fj(u, z) =
1

1 − z

(
n∏

k=0
k 	=j

1
1 − zdk+1

)
1

1 − uzdj+1

1
1 − z

− 1
1 − z

1
1 − z

.

We take the partial derivative in u and then let u = 1:

∂Fj

∂u
(u, z)

∣
∣
∣
∣
u=1

=
(

1
1 − z

)2

×
(

n∏

k=0
k 	=j

1
1 − zdk+1

)

× zdj+1

(1 − zdj+1)2
.
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We take the equivalent when z → 1, using the formula 1 − zn ∼ n(1 − z):

∂Fj

∂u
(u, z)

∣
∣
∣
∣
u=1

∼
z→1

(
1

1 − z

)2

×
(

n∏

k=0
k 	=j

1
dk+1(1 − z)

)

× 1
(dj+1)2(1 − z)2

∼
z→1

1
(1 − z)n+4

1
d(n+1)(n+2)/2dj+1

.

Applying Theorem 3, one finally gets

χ
f,j,�dm

(P) ∼ 1
(n + 3)!

(dm)n+3 1
d(n+1)(n+2)/2dj+1

,

which leads to

χ
f,�dm

(P) ∼
⎛

⎝
n∑

j=0

1
dj+1

⎞

⎠ 1
(n + 3)!

(dm)n+3 1
d(n+1)(n+2)/2

.

Bound for the Monomials. We consider the set M defined as

{y0
jy1

i0 . . . yn+1
in mod M i0+...+in | d(i0 + di1 + . . . + dnin) + j � dm}

as a combinatorial class, with the size function S
y
(y0jy1

i0 . . . yn+1
in) = d(i0 +

di1 + . . . + dnin) + j and the parameter function χ
y
(y0jf0

i0 . . . fn
in) = i0 +

. . . + in. As before, we split the parameter functions into (n + 1) parts
χy,j (y0

jy1
i0 . . . yn+1

in) = ij (for j ∈ {0, . . . , n}) and do the computation for
each of them. As each yk “counts for” dk in the condition of the set, we consider
M as

Seq(Z)
︸ ︷︷ ︸

y0

×
n+1∏

k=1
k 	=j

Seq(Zdk

)
︸ ︷︷ ︸

yk

×Seq(uZdj

)
︸ ︷︷ ︸

yj

× Seq(Z)
︸ ︷︷ ︸

dummy var.

,

which leads to the following generating function

Gj(u, z) =
1

1 − z

(
n+1∏

k=1
k 	=j

1
1 − zdk

)
1

1 − uzdj

1
1 − z

.

We take the partial derivative in u and then let u = 1:

∂Gj

∂u
(u, z)

∣
∣
∣
∣
u=1

=

(
n+1∏

k=0
k 	=j

1
1 − zdk

)

×
(

1
1 − z

)

× zdj

(1 − zdj )2
.

We take the equivalent when z → 1, using the formula 1 − zn ∼ n(1 − z):

∂Gj

∂u
(u, z)

∣
∣
∣
∣
u=1

∼
z→1

(
n+1∏

k=0
k 	=j

1
dk(1 − z)

)

×
(

1
1 − z

)

× 1
(dj)2(1 − z)2

∼
z→1

1
(1 − z)n+4

1
d(n+1)(n+2)/2dj

.
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Applying Theorem 3, one finally gets

χ
y,j,�dm

(M ) ∼ 1
(n + 3)!

(dm)n+3 1
d(n+1)(n+2)/2dj

,

which leads to

χ
y,�dm

(M ) ∼
⎛

⎝
n+1∑

j=0

1
dj

⎞

⎠ 1
(n + 3)!

(dm)n+3 1
d(n+1)(n+2)/2

.

Condition. If we denote by μ = χ
f,�dm

(P) and ξ = χ
y,�dm

(M ), the condition
for Coppersmith’s method is Nμ > M ξ, i.e., Nμ/ξ > M , where

μ

ξ
=

χ
f,�dm

(P)
χ

y,�dm
(M )

∼
∑n

j=0
1

dj+1

∑n+1
j=0

1
dj

=
1
d
1−1/dn+1

1−1/d

1−1/dn+2

1−1/d

∼ 1
d

,

which leads to the expected bound M < N1/d that was given in [2], for which the
algorithm (heuristically) outputs the the (small) modular root (x0, x1, . . . , xn)
of the polynomial system {f0(y0, y1) = 0, . . . , fn(yn, yn+1) = 0} in polynomial
time.

Complexity. In order to compute the dimensions of the matrix used in Cop-
persmith methods, we have to compute the cardinality of the sets P and M
(i.e., with the constant parameter functions χf = 1 and χy,j = 1). We obtain
the generating functions

1
1 − z

(
n∏

k=0

1
1 − zdk+1

)
1

1 − z
− 1

1 − z

1
1 − z

∼
z→1

1
(1 − z)n+3

1
d(n+1)(n+2)/2

and
1

1 − z

(
n+1∏

k=1

1
1 − zdk

)
1

1 − z
∼

z→1

1
(1 − z)n+3

1
d(n+1)(n+2)/2

for P and M (respectively). We thus obtain as above for the cardinality of both
sets P and M (and therefore essentially for the dimensions of the matrix), the
asymptotics

(dm)n+2

(n + 2)!
1

d(n+1)(n+2)/2
.

Remark 4. A computer algebra program can compute the first coefficients of
the formal series for μ and ξ and for the cardinality of the sets P and M ,
for any given d and n. Therefore, given d, n, and log M/ log N , it enables to
compute the minimum value m such that the attack works (i.e., such that μ/ξ >
log M/ log N , using the simplified condition, assuming the heuristic assumption
holds) and then to compute the corresponding number of polynomials in P and
of monomials in M , which then yield the size of the matrix. For an example of
such an analysis see end of Sect. 6.1.
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6 New Applications

6.1 Key Generation from Weak Pseudorandomness

In [16], Fouque, Tibouchi and Zapalowicz analyzed the security of key genera-
tion algorithms when the prime factors of an RSA modulus are constructed by
concatenating the outputs of a linear congruential generator. They proposed an
(exponential-time) attack based on multipoint polynomial evaluation to recover
the seed when such generators are used to generate one prime factor of an RSA
modulus. In this section, we propose a new heuristic (polynomial-time) algo-
rithm based on Coppersmith methods that allows to factor an RSA modulus
when both its primes factors are constructed by concatenating the outputs of a
linear congruential generator (with possible different seeds).

Let M = 2k be a power of 2 (for k ∈ N \ {0}). For the ease of exposition, we
consider a straightforward method to generate a prime number in which the key
generation algorithm starts from a random seed modulo M , iterates the linear
congruential generator and performs a primality test on the concatenation of
the outputs (and in case of an invalid answer, repeat the process with another
random seed until a prime is found). Let v0 and w0 be two random seeds for a
linear congruential generator with public parameters a and b in ZM that defines
the pseudorandom sequences:

vi+1 = avi + b mod M and wi+1 = awi + b

for i ∈ N. We assume that the adversary is given as input a (balanced) RSA
modulus N = p · q where p and q are (kn)-bit primes where p = v0 + Mv1 +
. . . + Mnvn and q = w0 + Mw1 + . . . + Mnwn.

Description of the attack. The adversary is given as inputs the RSA modulus N
and the generator parameters a and b and its goal is to factor N (or equivalently
to recover one of the secret seed v0 or w0 used in the key generation algorithm).
This can be done by solving the following multivariate system of polynomial
equations over the moduli N and M with unknowns v0,. . . ,vn,w0,. . . ,wn:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = (v0 + Mv1 + . . . + Mnvn)(w0 + Mw1 + . . . + Mnwn) ≡ 0 mod N

g0 = v1 − (av0 + b) ≡ 0 mod M

...
gn−1 = vn − (avn−1 + b) ≡ 0 mod M

h0 = w1 − (aw0 + b) ≡ 0 mod M

...
hn−1 = wn − (awn−1 + b) ≡ 0 mod M.

In order to apply Coppersmith technique, the most complicated part is the
choice of the collection of polynomials constructed from the polynomials that
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occur in this system. After several attempts, we choose to use the following
polynomial family (parameterized by some integer t ∈ N):

f̃i0,...,in,j0,...,jn,k = vi0
0 . . . vin

n · wj0
0 . . . wjn

n · fk mod Nk

with 1 ≤ k < t, (i0 = 0 or j0 = 0)

and deg(f̃...) = i0 + . . . + in + j0 + . . . + jn + 2k < 2t

g̃i0,...,in,j0,...,jn
= gi0

0 . . . g
in−1
n−1 · vin

n · hj0
0 . . . hjn−1

n · wjn
n mod M �

with 1 ≤ 	 = i0 + . . . + in−1 + j0 + . . . + jn−1

and deg(g̃...) = i0 + . . . + in + j0 + . . . + jn < 2t.

The moduli N and M are coprime (since N is an RSA modulus and M
is a power of 2) and it is easy to see that the polynomials f̃i0,...,in,j0,...,jn,k on
one hand and the polynomials g̃i0,...,in,j0,...,jn

on the other hand are linearly
independent.

We have a system of modular polynomial equations in 2n + 2 unknowns and
the Coppersmith method does not necessarily imply that we can solve the system
of equations. As often in this setting, we have to assume that if the method
succeeds, we will be able to recover the prime factors p and q from the set of
polynomials we will obtain:

Heuristic 1. Let F denote the polynomial set

P =
{

f̃i0,...,in,j0,...,jn,k | 1 ≤ k < t, (i0 = 0 or j0 = 0)
i0 + . . . + in + j0 + . . . + jn + 2k < 2t

}

⋃{

g̃i0,...,in,j0,...,jn
| 1 ≤ 	 = i0 + . . . + in−1 + j0 + . . . + jn−1

deg(g̃...) = i0 + . . . + in + j0 + . . . + jn < 2t

}

.

We assume that the set of polynomials we get by applying Coppersmiths method
with the polynomial set P define an algebraic variety of dimension 0.

Theorem 5. Under Heuristic 1, given as inputs an RSA modulus N = p ·q and
the linear congruential generator parameters a and b such that p = v0 + Mv1 +
. . .+Mnvn and q = w0 +Mw1 + . . .+Mnwn. (where v0 and w0 are two random
seeds and vi+1 = avi + b mod M and wi+1 = awi + b for i ∈ N), we can recover
the prime factors p and q in polynomial time in log(N) for any n � 2.

Bounds for the Polynomials Modulo N . We consider the set

P
f
= {f̃i0,...,in,j0,...,jn,k = vi0

0 . . . vin
n · wj0

0 . . . wjn
n · fk mod Nk

| 1 ≤ k < t, (i0 = 0 or j0 = 0)

and deg(f̃i0,...,in,j0,...,jn,k) = i0 + . . . + in + j0 + . . . + jn + 2k < 2t}

as a combinatorial class, with the size function Sf (f̃i0,...,in,j0,...,jn,k) = i0 + . . . +
in + j0 + . . . + jn + 2k and the parameter function χf (f̃i0,...,in,j0,...,jn,k) = k.
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The degree of each variable v0, . . . , vn, w0, . . . , wn is 1, whereas the degree of f
is 1. For the sake of simplicity, we can consider 0 � k < t since the parameter
function is equal to 0 on the elements fk such that k = 0. We use the technique
described in the second example of Sect. 4.2 to write P

f
as a disjoint union of

three sets (depending on the values i0 and j0) and consider it as

(ε + ZSeq(Z) + ZSeq(Z)
︸ ︷︷ ︸

v0,w0

)×
n∏

k=1

Seq(Z)
︸ ︷︷ ︸

vk

×
n∏

k=1

Seq(Z)
︸ ︷︷ ︸

wk

×Seq(uZ2)
︸ ︷︷ ︸

f

× Seq(Z)
︸ ︷︷ ︸

dummy var,

which leads to the following generating function:

F (u, z) =
(

1 +
z

1 − z
+

z

1 − z

)
1

(1 − z)2n

1
1 − uz2

1
1 − z

=
1 + z

(1 − z)2n+2

1
1 − uz2

.

We take the partial derivative in u, then let u = 1, and finally take the equivalent
when z → 1:

∂F

∂u
(u, z)

∣
∣
∣
∣
u=1

=
z2

(1 − z)2n+4(1 + z)
∼

z→1

1
2(1 − z)2n+4

.

Applying Theorem3, since 2t ∼ 2t − 1, one finally gets

χ
f,<2t

(P
f
) ∼ 1

2(2n + 3)!
(2t)2n+3.

Bounds for the Polynomials Modulo M . We consider the set

Pg = {g̃i0,...,in,j0,...,jn
= gi0

0 . . . g
in−1
n−1 · vin

n · hj0
0 . . . hjn−1

n · wjn
n mod M �

| 1 ≤ 	 = i0 + . . . + in−1 + j0 + . . . + jn−1

and deg(g̃i0,...,in,j0,...,jn
) = i0 + . . . + in + j0 + . . . + jn < 2t}

as a combinatorial class, with the size function S
g
(g̃i0,...,in,j0,...,jn

) = i0 + . . . +
in + j0 + . . . + jn and the parameter function χg (g̃i1,...,in,j0,...,jn

) = i0 + . . . +
in−1 + j0 + . . . + jn−1. The degree of each polynomial gk is 1, as well as the
degrees of vn and wn. For the sake of simplicity, we can consider 0 � 	 since
the parameter function is equal to 0 on the elements such that 	 = 0. We thus
consider P

g
as

n−1∏

k=0

Seq(uZ)
︸ ︷︷ ︸

gk

×Seq(Z)
︸ ︷︷ ︸

vn

×
n−1∏

k=0

Seq(uZ)
︸ ︷︷ ︸

hk

×Seq(Z)
︸ ︷︷ ︸

wn

× Seq(Z)
︸ ︷︷ ︸

dummy var.

which leads to the following generating function:

G(u, z) =
1

(1 − uz)2n

1
(1 − z)2

1
1 − z

.
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We take the partial derivative in u, then let u = 1, and finally take the equivalent
when z → 1:

∂G

∂u
(u, z)

∣
∣
∣
∣
u=1

=
2nz

(1 − z)2n+4
∼

z→1

2n

(1 − z)2n+4
.

Applying Theorem3, since 2t ∼ 2t − 1, one finally gets

χ
g,<2t

(P
g
) ∼ 2n

(2n + 3)!
(2t)2n+3.

Bounds for the Monomials Modulo M . We consider the set

M={v0
i0 . . . vn

in ·w0
j0 . . . wn

jn mod M � | 0 � 	=i0+. . .+in+j0+. . .+jn < 2t}

as a combinatorial class, with the size function S
x
(v0i0 . . . vn

in ·w0
j0 . . . wn

jn) =
i0+. . .+in+j0+. . .+jn and the parameter one χ

x
(v0i0 . . . vn

in ·w0
j0 . . . wn

jn) =
i0 + . . .+ in + j0 + . . .+ jn. The degree of each variable xk is 1. We thus consider
M as

n∏

k=0

Seq(uZ)
︸ ︷︷ ︸

vk

×
n∏

k=0

Seq(uZ)
︸ ︷︷ ︸

wk

× Seq(Z)
︸ ︷︷ ︸

dummy var,

which leads to the following generating function:

H(u, z) =
1

(1 − uz)2n+2

1
1 − z

.

We take the partial derivative in u, then let u = 1, and finally take the equivalent
when z → 1:

∂H

∂u
(u, z)

∣
∣
∣
∣
u=1

=
(2n + 2)z

(1 − z)2n+4
∼

z→1

2n + 2
(1 − z)2n+4

.

Applying Theorem 3, since 2t ∼ 2t − 1, one finally gets

χ
x,<2t

(M ) ∼ 2n + 2
(2n + 3)!

(2t)2n+3.

Condition. If we denote by ν = χ
f,<te

(P
f
), μ = χ

g,<te
(P

g
) and ξ =

χ
x,<te

(M ), the condition for Coppersmith’s method is Nν · Mμ > M ξ, where

ν

ξ − μ
=

χ
f,<te

(P
f
)

χx,<te(M ) − χg,<te(Pg )
∼

z→1

1
2(2n+3)! (2t)2n+3

2n+2
(2n+3)! (2t)2n+3 − 2n

(2n+3)! (2t)2n+3
∼

z→1

1
4

which leads to the bound M < N1/4 (and since N is an even power of M we
obtain M � N1/6 and thus n � 2).
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Table 2. Bounds in Coppersmith (simplified) success condition (1)

n t 1 2 3 4 5 6 7 8

2 Polynomial bound 4 38 186 654 1866 4602 10182 20706

Monomial bound 6 48 216 720 1980 4752 10296 20592

3 Polynomial bound 6 68 402 1688 5682 16340

Monomial bound 8 80 440 1760 5720 16016

4 Polynomial bound 10 152 1206 6704 29416

Monomial Bound 12 168 1260 6720 28560

5 Polynomial bound 12 206 1842 11486

Monomial bound 14 224 1904 11424

Remark 6. In the previous attack, we actually considered a very naive prime
number generation algorithm. However, a prime number generation algorithm
based on this (bad) design principle would probably use instead an incremental
algorithm and output prime numbers p = (v0 + Mv1 + . . . + Mnvn) + α and
q = (w0 + Mw1 + . . . + Mnwn) + β for some α and β in N. Thanks to the prime
number theorem, these values are likely to be small and the previous algorithm
can be run6 after an exhaustive search of α and β.

Concrete bounds. The previous analysis leads to the bound M < N1/4 when t
goes to ∞. Actually to reach the (simplified) success condition (1) in Copper-
smith method for n � 2, we need only small values of t as shown in Table 2.

Unfortunately, even if t is small, the constructed matrix is of huge dimension
(since the number of monomials is quite large) and the computation which is
theoretically polynomial-time becomes in practice prohibitive (for instance, for
n = 3 and t = 6, the matrix is of dimension 6473). These attacks are netherthe-
less good evidence of a weakness in this key generation scheme. For n = 1 (i.e.,
M = N1/4), the polynomial time attack does not apply, but one may combine it
with an exhaustive search to retrieve a small part of v0, v1, w0 and w1 to retrieve
the other (bigger) part of the seeds.

6.2 PKCS#1 V1.5 Padding Encryption with Weak
Pseudorandomness

pkcs#1 v1.5 describes a particular encoding padding for rsa encryption. Let
N be RSA an modulus of byte-length k (i.e., 28(k−1) < N < 28k, e be a public
exponent coprime to the Euler totient ϕ(N) and m be a message of 	-byte with
	 < k − 11. The pkcs#1 v1.5 padding of m is defined as follows:

1. A randomizer r consisting in k−3−	 � 8 nonzero bytes is generated uniformly
at random;

6 Alternatively, one can also adapt the algorithm by adding unknowns for α and β to
the multivariate modular polynomial system.
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2. μ(m, r) is the integer converted from the octet-string:

μ(m, r) = 000216||r||0016||m. (2)

The encryption of m is then defined as c = μ(m, r)e mod N . To decrypt c ∈ Z
∗
N ,

compute cd mod N (where ed ≡ 1 mod ϕ(N)), convert the result to a k-byte
octet-string and parse it according to Eq. (2). If the string cannot be parsed
unambiguously or if r is shorter than eight octets, the decryption algorithm D
outputs ⊥; otherwise, D outputs the plaintext m.

The pkcs#1 v1.5 padding has been known to be insecure for encryption
since Bleichenbachers famous chosen ciphertext attack [7]. Several additionnal
attacks were published since 1998 (e.g., [1,14,21]).

Fouque et al. [16] suggested to consider the setting of the randomness gen-
eration used in padding functions for encryption. In pkcs#1 v1.5 padding, the
randomizer shall be pseudorandomly generated (according to the RFC which
defines it [24]) and since it is still widely used in practice (e.g., TLS, XML
Encryption standard, Hardware token. . . )n it seems interesting to investigate
its security when the randomizer is constructed by concatenating the outputs
of a linear congruential generator. We consider several scenarios (linear congru-
ential generator, truncated linear congruential generators, multiple ciphertexts
. . . ) and we apply our toolbox to all of them.

Scenario 1: Linear Congruential Generator. The first attack scenario can
be seen as a chosen distribution attack. These attacks were introduced by Bellare
et al. [3] to model attacks where an adversary can control the distribution of
both messages and random coins used in an encryption scheme. We assume that
the adversary can control the message (as in the classical notion of semantic
security for public-key encryption schemes [17]) and that the randomizer used in
the pkcs#1 v1.5 padding is constructed by concatenating the outputs of a linear
congruential generator (with a seed picked uniformly at random). The adversary
will choose two messages m0 and m1 of the same byte-length 	 < k − 11 (where
k is the byte length of the RSA modulus N) and the challenger will pick at
random a seed x1 of byte-length ρ. It will compute

xi+1 = axi + b mod M

for i ∈ {2, . . . , n−1} where n = (k−3−	)/ρ and M = 28ρ. The challenge cipher-
text will be c = μ(mb, r)e mod N where b is a bit picked uniformly at random
by the challenger and the randomizer r is the concatenation of x1, . . . , xn. We
have

μ(mb, r) = 000216||r||0016||mb

= 000216||x1||x2|| . . . ||xn||0016||mb

= (α̃1x1 + α̃2x2 + . . . + α̃nxn + β̃)

where this last expression is the integer converted from the octet-string with the
α̃i’s are known public constant and β̃ is the integer converted from the string
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mb. If we divide c by α̃1
e, we obtain

c = (x1 + α2x2 + . . . + αnxn + β)e mod N

where αi = α̃i/α̃1 for i ∈ {2, . . . , n} and β = β̃/α̃1.

Description of the attack. The adversary is therefore looking for the solutions
of the following modular multivariate polynomial system: of monic polynomial
equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f = (x1 + α2x2 + . . . + αnxn + β)e mod N
g1 = x1 − ax2 + b mod M

...
gn−1 = xn−1 − axn + b mod M

where β can be derived easily from the value mb. The attack consists in applying
Coppersmith Method for multivariate polynomials with two moduli (see Sect. 2)
to the two systems derived from the two possible values for mb.

As above, the most complicated part is the choice of the collection of polyno-
mials constructed from the polynomials that occur in this system. Our analysis
brought out the following polynomial family (parameterized by some integer
t ∈ N):

f̃i1,...,in,j = xi1
1 . . . xin

n · f j mod N j

with 1 ≤ j < t, 0 ≤ i1 < e and deg(f̃...) = i1 + . . . + in + je < te

g̃i1,...,in
= gi1

1 . . . g
in−1
n−1 · xin

n mod Mk

with 1 ≤ k = i1 + . . . + in−1 and deg(g̃...) = i1 + . . . + in < te.

As in the previous section, the moduli N and M are coprime (since N is
an RSA modulus and M is a power of 2). Moreover, it is easy to see that the
polynomials f̃i1,...,in,j on one hand and the polynomials g̃i0,...,in

on the other
hand are linearly independent. Indeed, these polynomials have distinct leading
monomials and are monic.

We have a system of modular polynomial equations in n unknowns and the
Coppersmith method does not necessarily imply that we can solve the system
of equations. Thus, we also have to assume that if the method succeeds, we will
be able to recover the seed x1 from the set of polynomials we will obtain:

Heuristic 2. Let P denote the polynomial set

P =
{

f̃i1,...,in,j | 1 ≤ j < t, 0 ≤ i1 < e
i1 + . . . + in + je < te

}

⋃{

g̃i1,...,in
| 1 ≤ k = i1 + . . . + in−1

i1 + . . . + in < te

}

.

We assume that the set of polynomials we get by applying Coppersmiths method
with the polynomial set P define an algebraic variety of dimension 0.
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Theorem 7. Under Heuristic 2, given as inputs an RSA modulus N , the linear
congruential generator parameters a and b, two messages m0 and m1 and a
pkcs#1 v1.5 ciphertext c = μ(mb, r) for some bit b ∈ {0, 1} such that the
randomizer r is the concatenation of x1, . . . , xn (where x1 is a random seed
of size M and xi+1 = axi + b mod M for i ∈ N), we can recover the seed x1

(and thus the bit b) in polynomial time in log(N) as soon as M < N1/e.

Bounds for the Polynomials Modulo N . We consider the set

P
f

= {f̃i1,...,in,j = xi1
1 · · · xin

n · f j mod N j | 1 ≤ j < t, 0 ≤ i1 < e

and deg(f̃i1,...,in,j) = i1 + . . . + in + je < te}

as a combinatorial class, with the size function S
f
(f̃i1,...,in,j) = i1 + . . . + in + je

and the parameter function χ
f
(f̃i1,...,in,j) = j. The degree of each variable xk

is 1, whereas the degree of f is e. For the sake of simplicity, we can consider
0 � j < t since the parameter function is equal to 0 on the elements such that
j = 0. We thus consider P

f
as

(ε + Z + . . . + Ze−1)
︸ ︷︷ ︸

x1

×
n∏

k=2

Seq(Z)
︸ ︷︷ ︸

xk

×Seq(uZe)
︸ ︷︷ ︸

f

× Seq(Z)
︸ ︷︷ ︸

dummy var.

which leads to the following generating function:

F (u, z) = (1 + z + . . . + ze−1)
1

(1 − z)n−1

1
1 − uze

1
1 − z

.

We take the partial derivative in u and then let u = 1:

∂F

∂u
(u, z)

∣
∣
∣
∣
u=1

= (1 + z + . . . + ze−1)
1

(1 − z)n

ze

(1 − ze)2
.

We take the equivalent when z → 1, using the formula 1 − ze ∼ e(1 − z):

∂F

∂u
(u, z)

∣
∣
∣
∣
u=1

∼
z→1

1
e(1 − z)n+2

.

Applying Theorem3, since te ∼ te − 1, one finally gets

χ
f,<te

(P
f
) ∼ 1

e(n + 1)!
(te)n+1.

Bounds for the Polynomials Modulo M . We consider the set

Pg = {g̃i1,...,in
= gi1

1 · · · gin−1
n−1 · xin

n mod M i1+···+in−1 | 1 ≤ k = i1 + · · · + in−1

and deg(g̃i1,...,in
) = i1 + . . . + in < te}
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as a combinatorial class, with the size function Sg (g̃i1,...,in
) = i1+. . .+in and the

parameter function χ
g
(g̃i1,...,in

) = i1 + . . .+ in−1. The degree of each polynomial
gk is 1, as well as the degree of xn. For the sake of simplicity, we can consider
0 � k since the parameter function is equal to 0 on the elements such that k = 0.
We thus consider P

g
as

n−1∏

k=1

Seq(uZ)
︸ ︷︷ ︸

gk

×Seq(Z)
︸ ︷︷ ︸

xn

× Seq(Z)
︸ ︷︷ ︸

dummy var,

which leads to the following generating function:

G(u, z) =
1

(1 − uz)n−1

1
1 − z

1
1 − z

.

We take the partial derivative in u, then let u = 1, and finally take the equivalent
when z → 1:

∂G

∂u
(u, z)

∣
∣
∣
∣
u=1

=
(n − 1)z

(1 − z)n+2
∼

z→1

n − 1
(1 − z)n+2

.

Applying Theorem3, since te ∼ te − 1, one finally gets

χg,<te(Pg ) ∼ n − 1
(n + 1)!

(te)n+1.

Bounds for the Monomials Modulo M . We consider the set

M = {x1
i1 . . . xn

in mod M i1+...+in | 0 � i1 + . . . + in < te}.

as a combinatorial class, with the size function Sx(x1
i1 . . . xn

in) = i1 + . . . + in
and the parameter function χ

x
(x1

i1 . . . xn
in) = i1 + . . . + in. The degree of each

variable xk is 1. We thus consider M as
n∏

k=1

Seq(uZ)
︸ ︷︷ ︸

xk

× Seq(Z)
︸ ︷︷ ︸

dummy var,

which leads to the following generating function:

H(u, z) =
1

(1 − uz)n

1
1 − z

.

We first take the partial derivative in u, then let u = 1, and finally take the
equivalent when z → 1:

∂H

∂u
(u, z)

∣
∣
∣
∣
u=1

=
nz

(1 − z)n+2
∼

z→1

n

(1 − z)n+2
.

Applying Theorem3, since te ∼ te − 1, one finally gets

χ
x,<te

(M ) ∼ n

(n + 1)!
(te)n+1.
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Condition. If we denote by ν = χ
f,<te

(P
f
), μ = χg,<te(Pg ) and ξ =

χ
x,<te

(M ), the condition for Coppersmith’s method is Nν · Mμ > M ξ, where

ν

ξ − μ
=

χ
f,<te

(P
f
)

χ
x,<te

(M ) − χ
g,<te

(P
g
)

∼
z→1

1
e(n+1)! (te)

n+1

n
(n+1)! (te)

n+1 − n−1
(n+1)! (te)

n+1
∼

z→1

1
e

which leads to the expected bound M < N1/e.

Scenario 2: Truncated Linear Congruential Generator. In 1997, Bellare
et al. [4] broke the Digital Signature Algorithm (DSA) when the random nonces
used in signature generation are computed using a linear congruential generator.
They also broke the DSA signature scheme if the nonces are computed by a
truncated linear congruential generator. In order to pursue the parallel with
their work, in the second attack scenario, we the previous analysis to the case
where the randomize in pkcs#1 v1.5 padding is constructed by concatenating
any consecutive bits of the outputs of a linear congruential generator (with a
seed picked uniformly at random).

More precisely, the seed of the linear congruential generator is now denoted
v1 = y1 + x1 · 2γy log M + z1 · 2γx log M+γy log M , where y1 has γy log M bits, x1

has γx log M bits, z1 has γz log M bits and γx + γy + γz = 1. We define the
(weak)pseudorandom sequence by vi+1 = avi + b mod M for i ∈ N (with public
a, b and M). We denote vi = yi + xi · 2γy log M + zi · 2γx log M+γy log M , where yi

has γy log M bits, xi has γx log M bits and zi has γz log M bits.
As above, the challenge ciphertext will be c = μ(mb, r)e mod N where b is

a bit picked uniformly at random by the challenger and the randomizer r is the
concatenation of x1, . . . , xn for n = (k − 3 − 	)/(8γx log M). We have

μ(mb, r) = 000216||r||0016||mb

= (α̃1x1 + α̃2x2 + . . . + α̃nxn + β̃).

Description of the attack. The adversary is looking for the solutions of the fol-
lowing multivariate modular polynomial system: of monic polynomial equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f=(x1 + α2x2 + . . . + αnxn + β)e mod N
g1=x1 + a′y1 + a′′z1 + bx2 + b′y2 + b′′z2 + c mod M

...
gn−1=xn−1 + a′yn−1 + a′′yn−1 + bxn + b′yn + b′′zn + c mod M

where β can be derived easily from the value mb and the constants α2, . . . , αN ,
a′, a′′, b, b′ and b′′ are public. As in the previous scenario, the attack consists
in applying Coppersmith Method for multivariate polynomials with two moduli
(see Sect. 2) to the two systems derived from the two possible values for mb.
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For the choice of the polynomials collection, we choose in this scenario the
following polynomial family (parameterized by some integer t ∈ N):

f̃i ,i ′,i ′′,j = xi1
1 . . . xin

n · y
i′
1
1 . . . y

i′
n

n · z
i′′
1
1 . . . z

i′′
n

n · f j mod N j

with 1 ≤ j < t, 0 ≤ i1 < e and deg(f̃...) < te

g̃i ,i ′,i ′′ = gi1
1 . . . g

in−1
n−1 · xin

n · y
i′
1
1 . . . y

i′
n

n · z
i′′
1
1 . . . z

i′′
n

n mod Mk

with 1 ≤ k = i1 + . . . + in−1 and deg(g̃...) < te.

As above, the moduli N and M are coprime and the polynomials f̃i1,...,in,j on one
hand and the polynomials g̃i0,...,in

on the other hand are linearly independent.
Again the Coppersmith method does not necessarily imply that we can solve

the system of equations and we have to make the following heuristic:

Heuristic 3. Let P denote the polynomial set

P =
{

f̃i,i′,i′′,j | 1 ≤ j < t, 0 ≤ i1 < e
i1 + . . . + in + +i′1 + . . . + i′n−1 + i′′1 + . . . + i′′n−1 + je < te

}

⋃{

g̃i,i′,i′′ | 1 ≤ k = i1 + . . . + in−1

i1 + . . . + in + +i′1 + . . . + i′n−1 + i′′1 + . . . + i′n−1 < te

}

.

We assume that the set of polynomials we get by applying Coppersmiths method
with the polynomial set P define an algebraic variety of dimension 0.

Theorem 8. Under Heuristic 3, given as inputs an RSA modulus N , the trun-
cated linear congruential generator parameters a and b, two messages m0 and
m1 and a pkcs#1 v1.5 ciphertext c = μ(mb, r) for some bit b ∈ {0, 1} such that
the randomizer r is the concatenation of truncations of v1, . . . , vn (where v1 is a
random seed of size M and vi+1 = avi+b mod M for i ∈ N), we can recover the
seed v1 (and thus the bit b) in polynomial time in log(N) as soon as M < N1/e.

Due to lack of space, the details of the computation are provided in the full
version.

Scenario 3: Truncated Linear Congruential Generator and Multiple
Ciphertexts. We can also extend the first chosen distribution attack by letting
the adversary control m pair of messages (as in the semantic security for multiple
ciphertexts, see e.g. [19]) and that the randomizer used in all the pkcs#1 v1.5
paddings are constructed by concatenating the successive outputs of a linear
congruential generator (with a unique seed picked uniformly at random). We
also apply our toolbox to this scenario and for an RSA modulus N with a public
exponent e and a linear congruential generator with modulus M , our heuristic
attacks are polynomial-time in log(N) for the M < Nm/e (see details in the full
version).
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Abstract. Recently, the security of RSA variants with moduli N =
prq, e.g., the Takagi RSA and the prime power RSA, have been actively
studied in several papers. Due to the unusual composite moduli and
rather complex key generations, the analyses are more involved than the
standard RSA. Furthermore, the method used in some of these works
are specialized to the form of composite integers N = prq.

In this paper, we generalize the techniques used in the current best
attacks on the standard RSA to the RSA variants. We show that the
lattices used to attack the standard RSA can be transformed into lattices
to attack the variants where the dimensions are larger by a factor of (r+1)
of the original lattices. We believe the steps we took present to be more
natural than previous researches, and to illustrate this point we obtained
the following results:

– Simpler proof for small secret exponent attacks on the Takagi RSA
proposed by Itoh et al. (CT-RSA 2008). Our proof generalizes the
work of Herrmann and May (PKC 2010).

– Partial key exposure attacks on the Takagi RSA; generalizations of
the works of Ernst et al. (Eurocrypt 2005) and Takayasu and Kunihiro
(SAC 2014). Our attacks improve the result of Huang et al. (ACNS
2014).

– Small secret exponent attacks on the prime power RSA; generaliza-
tions of the work of Boneh and Durfee (Eurocrypt 1999). Our attacks
improve the results of Sarkar (DCC 2014, ePrint 2015) and Lu et al.
(Asiacrypt 2015).

– Partial key exposure attacks on the prime power RSA; generalizations
of the works of Ernst et al. and Takayasu and Kunihiro. Our attacks
improve the results of Sarkar and Lu et al.

The construction techniques and the strategies we used are conceptually
easier to understand than previous works, owing to the fact that we
exploit the exact connections with those of the standard RSA.
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1 Introduction

Background. RSA [RSA78] is one of the most well-known cryptosystems. Let
N be the public RSA modulus, a product of two distinct primes p and q with
the same bit sizes. The public and secret exponents are positive integers such
that ed = 1 mod (p − 1)(q − 1). The RSA cryptosystem has been extensively
studied in numerous papers including lattice based cryptanalysis. In this paper,
we introduce two well-analyzed attacks; small secret exponent attacks and partial
key exposure attacks. Boneh and Durfee [BD00] showed that a public RSA mod-
ulus N can be factorized when a secret exponent d is small, e.g., they proposed
a weaker result d < N0.284 and a stronger result d < N0.292. Several papers
[BM03,EJMW05,SGM10,TK14] have studied the security of RSA when some
portions of the most significant bits (MSBs) or the least significant bits (LSBs)
of d are exposed to attackers. The attack of Ernst et al. [EJMW05] are the best
results for general cases, e.g., the MSBs or the LSBs are exposed for general
sizes of e and d. Although Blömer and May [BM03] and Sarkar et al. [SGM10]
achieved the same result, they are only special cases of Ernst et al., e.g., Blömer
and May’s attack works only with the LSBs and the attack of Sarkar et al. works
only with the MSBs and large e. Takayasu and Kunihiro [TK14] proposed an
improved attack of Ernst et al. for specific parameters, e.g., small d.

There are some variants of RSA. In this paper, we study two of them that
we call the Takagi RSA [Tak98] and the prime power RSA. Both have a public
RSA modulus N = prq for r ≥ 2 with distinct primes p and q with the same bit
sizes. A public and a secret exponent e ≈ Nα and d ≈ Nβ satisfy

ed = 1 mod (p − 1)(q − 1)

for the Takagi RSA and

ed = 1 mod pr−1(p − 1)(q − 1)

for the prime power RSA, respectively. The security of the variants have been
analyzed; May [May04] proposed small secret exponent attacks and partial key
exposure attacks on the prime power RSA, and Itoh et al. [IKK08] proposed small
secret exponent attacks on the Takagi RSA. Recently, the research area becomes
a hot topic and several papers have been published. Huang et al. [HHX+14] pro-
posed partial key exposure attacks on the Takagi RSA. Sarkar [Sar14] proposed
small secret exponent attacks on the prime power RSA, and further improved
the result in [Sar15] with a result for partial key exposure attacks. The result is
better than May for small r. Lu et al. [LZPL15] proposed small secret exponent
attacks and partial key exposure attacks on the prime power RSA that fully
improve May’s attack and are better than Sarkar’s attack for r ≥ 5.

Attacks of May [May04], and Lu et al. [LZPL15] make use of the special
structure of a public modulus N = prq and a key generation equality of the prime
power RSA. Then, their attacks do not work for the standard RSA. However,
a naive approach for the analysis of RSA variants should be generalizations of
the attacks on the standard RSA. By definition, the Takagi RSA and the prime
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power RSA become the same as the standard RSA for r = 1. Hence, the attacks
on the variants for r = 1 should completely cover the currently known best
attacks on the standard RSA; the stronger Boneh-Durfee small secret exponent
attack, partial key exposure attacks of Ernst et al., and Takayasu and Kunihiro.
Since a public modulus N and key generations for the variants are more involved
than the standard RSA, the analyses also become involved. Indeed, almost all the
algorithm constructions and their strategies are too complicated to understand
since the connections with those for the standard RSA are unclear. Moreover,
existing attacks on the variants for r = 1 do not fully cover the currently known
best attacks on the standard RSA.

Our Results. In this paper, we study the security of the Takagi RSA and the
prime power RSA. The main focus of this paper is to generalize the currently
known best attacks on the standard RSA, e.g., small secret exponent attacks
and partial key exposure attacks, to the variants and to exploit the connections
between their algorithm constructions. We show that the lattices used to attack
the standard RSA can be transformed into lattices to attack the variants with
simple operations. More concretely, the lattices used to attack the standard RSA
can be transformed into lattices to attack the Takagi RSA (resp. the prime power
RSA) by multiplying {1, q, pq, p2q, . . . , pr−1q} (resp. {qa, pqa, p2qa, . . . , pr−1qa,
pr−1qa+1} with some integer a) to all the polynomials in the bases. Hence,
dimensions of the lattices that we use to attack the variants are larger by a
factor of (r + 1) of the original lattices to attack the standard RSA. We believe
that the connections offer better understanding for our algorithm constructions
and enable us to easily generalize other attacks for their variants. As applications
of our generalizations, we obtain the following results:

– In Sect. 3, we propose a partial key exposure attack on the Takagi RSA that
fully generalizes the attack of Ernst et al. [EJMW05]. Our attack becomes the
same as Huang et al. [HHX+14] with the exposed LSBs and better than the
attack with the exposed MSBs for all α, β, and r.

– In Sect. 4, we give a simpler proof for the Itoh et al. small secret exponent
attack on the Takagi RSA that fully generalizes the stronger Boneh-Durfee
attack [BD00]. Our alternative proof fully generalizes that of Herrmann and
May [HM10] for the stronger Boneh-Durfee attack and enables us to under-
stand the Itoh et al. attack in detail. Based on the understanding, we propose
a partial key exposure attack on the Takagi RSA with the exposed LSBs that
fully generalizes Takayasu and Kunihiro’s attack [TK14]. The attack is better
than our attack in Sect. 3 and that of Huang et al. [HHX+14] for all α and r
when β is small.

– In Sect. 5, we propose a small secret exponent attack on the prime power RSA
that fully generalizes the weaker Boneh-Durfee attack [BD00]. To obtain the
attack is technically easy since it is an extension of Sarkar’s attack [Sar15]
for arbitrary α. However, the extension reveals an important fact. Although
Sarkar’s attack, which captures only for α = 1, is weaker than Lu et al.
[LZPL15] for r ≥ 5, our attack is better than Lu et al. for all r when α is small.



70 A. Takayasu and N. Kunihiro

In addition, we propose a partial key exposure attack that fully generalizes
the Ernst et al. [EJMW05]. Our attack is better than Sarkar’s result for small
α and β, and is better than Lu et al. [LZPL15] for small r.

– In Sect. 6, we propose a small secret exponent attack on the prime power
RSA that (almost) fully generalizes the stronger Boneh-Durfee [BD00]. The
attack is better than our attack in Sect. 5. In addition, we propose a partial
key exposure attack that (almost) fully generalizes Takayasu and Kunihiro
[TK14]. The attack is better than all known attacks for small r and β.

Since the elliptic curve method factorization [Len87] becomes efficient for large
r and Boneh et al. [BDH99] revealed that only a 1/(r + 1) fraction of the most
significant bits of p suffices to factorize the modulus, they are the more important
for small r. Then, we mainly compare our results and previous works for r = 2
and 3 throughout the paper, although we analyze the security for arbitrary r.

Technical Overview. In 1996, Coppersmith introduced lattice based meth-
ods to solve univariate modular equations [Cop96a] and bivariate integer equa-
tions [Cop96b], and they can be extended to more variables with a reasonable
assumption (that we discuss later). The method is useful to evaluate the secu-
rity of RSA. See [Cop97,Cop01,NS01,May03,May10]. Indeed, small secret expo-
nent attack was firstly mentioned by Wiener [Wie90]. The attack is based on
a continued fraction approach and works when d < N0.25. Later, Boneh and
Durfee revisited the attack and improved the bound to d < N0.292 using the
Coppersmith method. Although the original Coppersmith method is con-
ceptually involved, simpler reformulations have been proposed; for modular
equations by Howgrave-Graham [How97] and for integer equations by Coron
[Cor04,Cor07]. In short, the methods construct a lattice whose bases consist of
coefficients of polynomials that have the same roots as the original equations.
By finding short lattice vectors using the LLL reduction, the original equations
can be solved. The methods can solve modular (resp. integer) equations when
sizes of roots are to some extent smaller than the modulus (resp. the norm of
polynomial).

To maximize solvable root bounds, appropriate selections of lattice bases are
essential. Jochemsz and May [JM06] proposed a conceptually simple strategy for
the lattice constructions. Although the strategy does not always offer the best
results, usually offers the best or similar bounds. For example, the Boneh-Durfee
weaker result d < N0.284 can be obtained based on the strategy. Especially, the
strategy is the more compatible with integer equations based analysis. To the best
of our knowledge, there are no algorithms solving integer equations outperforming
the Jochemsz-May strategy; currently known best algorithms solving any integer
equations can be captured by the Jochemsz-May strategy. Furthermore, most algo-
rithms by solving modular equations based on the Jochemsz-May strategy can also
be obtained by solving integer equations based on the strategy although reverse
does not always hold. For example, in the context of partial key exposure attacks
on the standard RSA, Ernst et al. [EJMW05] solved integer equations, whereas
Blömer and May [BM03], and Sarkar et al. [SGM10] solved modular equations, and
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all these results are captured by the Jochemsz-May strategy. As we noted, attacks
of Blömer and May, and Sarkar et al. are only the special cases of Ernst et al. How-
ever, in the context of security analyses of the Takagi RSA and the prime power
RSA, there are no results known that solved integer equations. Therefore, we solve
integer equations for the Takagi RSA (Sect. 3) and the prime power RSA (Sect. 5),
and fully generalize the weaker Boneh-Durfee and Ernst et al.

Although the differences are small, there are some results beyond the
Jochemsz-May strategy that solve modular equations, e.g., the stronger Boneh-
Durfee attack d < N0.292 [BD00]. In general, analyses to obtain attacks out-
performing the Jochemsz-May strategy are difficult. Indeed, there are no results
known that attack the Takagi RSA or the prime power RSA outperforming the
Jochemsz-May strategy except the Itoh et al. small secret exponent attack on
the Takagi RSA [IKK08]. In the context of the stronger Boneh-Durfee attack,
the proof is involved since determinants of lattices, whose basis matrices are
non-triangular, should be calculated. For the purpose, Boneh and Durfee intro-
duced geometrically progressive matrix although the notion is unfamiliar. Since
Itoh et al. followed the proof, the analysis is also involved. The fact makes
it difficult to obtain partial key exposure attacks on the Takagi RSA outper-
forming the Jochemsz-May strategy. As the hope of such situations, Herrmann
and May [HM10] gave a simpler proof for the stronger Boneh-Durfee attack.
They used unravelled linearization [HM09] and transformed Boneh and Dur-
fee’s non-triangular basis matrices to be triangular. The simpler proof offers
better understanding of the attack. Based on the understanding, Takayasu and
Kunihiro extended the stronger Boneh-Durfee attack to partial key exposure
attacks outperforming the Jochemsz-May strategy. As the same way, we give a
simpler proof of the Itoh et al. and propose a partial key exposure attack on the
Takagi RSA outperforming the Jochemsz-May strategy (Sect. 4). Moreover, we
analyze better lattice constructions and propose small secret exponent attacks
and partial key exposure attacks on the prime power RSA outperforming the
Jochemsz-May strategy (Sect. 6).

2 Preliminaries

In the beginning of this section, we formulate the exposed bits that will be used
to analyze partial key exposure attacks. In the remaining of this section, we
introduce tools to solve modular equations and integer equations; lattices and
the LLL algorithm, the overview of the Coppersmith method, and the Jochemsz-
May strategy. The experts of the research area can skip this part.

Exposed Bits. In this paper, we analyze partial key exposure attacks when
some portions of the MSBs or the LSBs are exposed. In this section, we formu-
lated the exposed bits. When the MSBs (resp. LSBs) are exposed, let d0 > Nβ−δ

denote the exposed MSBs (resp. LSBs) and d1 < N δ denote the unknown LSBs
(resp. MSBs). The secret exponent can be written as d = d0M + d1 (resp.
d = d1M +d0) with an integer M = 2�δ log N� (resp. M = 2�(β−δ) log N�). We also
use d̃ to denote d0M (resp. d0).
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Lattices and the LLL Algorithm. Let b1, . . . , bn ∈ Z
n′

be linearly
independent n′-dimensional vectors. All vectors are row representations. The
lattice L(b1, . . . , bn) spanned by the basis vectors b1, . . . , bn is defined as
L(b1, . . . , bn) = {∑n

j=1 cjbj : cj ∈ Z}. We also use matrix representations
B ∈ Z

n×n′
for the bases where each row corresponds to a basis vector b1, . . . , bn.

Then, a lattice spanned by the basis matrix B is defined as L(B) = {cB : c ∈
Z

n}. We call n a rank of the lattice, and n′ a dimension of the lattice. We call the
lattice full-rank when n = n′. We define a determinant of a lattice det(L(B)) as
det(L(B)) =

√
det(BBt) where Bt is a traspose of B. By definition, a deter-

minant of a full-rank lattice can be computed as det(L(B)) = |det(B)|.
For a cryptanalysis, to find short lattice vectors is a very important problem.

In 1982, Lenstra et al. [LLL82] proposed a polynomial time algorithm to find
short lattice vectors, called the LLL algorithm.

Proposition 1 (LLL algorithm [LLL82,May03]) Given a matrix B ∈ Z
n×n′

,
the LLL algorithm finds vectors b′

1 and b′
2 in a lattice L(B). Euclidean norms

of the vectors are bounded by

‖b′
1‖ ≤ 2(n−1)/4(det(L(B)))1/n and ‖b′

2‖ ≤ 2n/2(det(L(B)))1/(n−1).

The running time is polynomial time in n, n′, and input length.

Although the outputs of the LLL algorithm are not the shortest lattice vectors
in general, the fact is not the matter when we use the Coppersmith method.

The Coppersmith Methods. Instead of the original Coppersmith method, we
introduce Howgrave-Graham’s reformulation to solve modular equations [How97]
and Coron’s reformulation to solve integer equations [Cor04]. Although Coron’s
method [Cor04] is less efficient than the original Coppersmith method [Cop96b]
and Coron’s method [Cor07], it is simpler to analyze than the other methods.

For a k-variate polynomial h(x1, . . . , xk) =
∑

hi1,...,ik
xi1
1 · · · xik

k , we define a

norm of a polynomial ‖h(x1, . . . , xk)‖ =
√∑

h2
i1,...,ik

and ‖h(x1, . . . , xk)‖∞ =
maxi1,...,ik

|hi1,...,ik
|. At first, we show a modular method since an integer method

makes use of the modular method. The Coppersmith method can find solu-
tions (x̃1, x̃2) of a bivariate modular equation h(x1, x2) = 0 mod e when
|x̃1| < X1, |x̃2| < X2, and X1X2 is reasonably smaller than e. Let m be a posi-
tive integer. We construct n polynomials h1(x1, x2), . . . , hn(x1, x2) that have the
roots (x̃1, x̃2) modulo em. Then, we construct a matrix B whose rows consist
of coefficients of h1(x1X1, x2X2), . . . , hn(x1X1, x2X2). Applying the LLL algo-
rithm to B and we obtain two short vectors b′

1 and b′
2, and their corresponding

polynomials h′(x1, x2) and h′
2(x1, x2). If norms of these polynomials are small,

they have roots (x̃1, x̃2) over the integers. The fact comes from the following
lemma.

Lemma 1 [How97]. Let h(x1, . . . , xk) ∈ Z[x1, . . . , xk] be a polynomial over the
integers that consists of at most n monomials. Let X1, . . . , Xk, and R be positive
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integers. If the polynomial h(x1, . . . , xk) satisfies the following two conditions:
1. h(x̃1, . . . , x̃k) = 0 (mod R), where |x̃1| < X1, . . . , |x̃k| < Xk,
2. ‖h(x1X1, . . . , xkXk)‖ < R/

√
n.

Then, h(x̃1, . . . , x̃k) = 0 holds over the integers.

Therefore, if h′(x1, x2) and h′
2(x1, x2) satisfy Lemma 1, we can compute Gröbner

bases or a resultant of them and easily recover (x̃1, x̃2).
Next, we show an integer case. The Coppersmith method can find solutions

(x̃1, x̃2, x̃3) of a trivariate equation h(x1, x2, x3) = 0 over the integers when
|x̃1| < X1, |x̃2| < X2, |x̃3| < X3, and X1X2X3 is reasonably smaller than
‖h(x1X1, x2X2, x3X3)‖∞. Although we omit details of the method, we set a
reasonable integer R and remaining procedures are almost the same as modular
case by solving a modular equation h(x1, x2, x3) = 0 mod R. New polynomials
h′(x1, x2, x3) and h′

2(x1, x2, x3) obtained by outputs of the LLL algorithm are
provably algebraically independent of h(x1, x2, x3). See [Cor04] for the detail.

We should note that the methods need heuristic argument. There are no
assurance if new polynomials obtained by outputs of the LLL algorithm are
algebraically independent. In this paper, we assume that these polynomials are
always algebraically independent and resultants of polynomials will not vanish
since there have been few negative reports that contradict the assumption. More-
over, most our attacks use sublattices of lattices that are used in previous works.
Hence, validities of previous attacks justify validities of our results.

The Jochemsz-May Strategy. We summarize lattice constructions to solve
integer equations based on the Jochemsz-May strategy [JM06]. Let lj denote the
largest exponent of xj in the polynomial h(x1, . . . , xk) =

∑
hi1,...,ik

xi1
1 · · · xik

k . We
set an (possibly large) integer W such that W ≤ ‖h(x1, . . . , xk)‖∞. Next, we set
an integer R := WX

l1(m−1)+t
1

∏k
u=2 X

lu(m−1)
j with some positive integers m and

t = O(m) such that gcd(R, h0,...,0) = 1. We compute c = h−1
0,...,0 mod R and

h′(x1, . . . , xk) := c ·h(x1, . . . , xk) mod R. We define shift-polynomials g and g′ as

g : xi1
1 · · · xik

k · h(x1, . . . , xk) · X
l1(m−1)+t−i1
1

k∏

u=2

X
lu(m−1)−ij

j for xi1
1 · · · xik

k ∈ S,

g′ : xi1
1 · · · xik

k · R for xi1
1 · · · xik

k ∈ M\S,

for sets of monomials

S :=
⋃

0≤j≤t

{xi1+j
1 · · · xik

k |xi1
1 · · · xik

k is a monomial of h(x1, . . . , xk)m−1},

M :={monomials of xi1
1 · · · xik

k · h(x1, . . . , xk) for xi1
1 · · · xik

k ∈ S}.

All these shift-polynomials g and g′ modulo R have the roots (x̃1, . . . , x̃k)
that are the same as h(x1, . . . , xk). We construct a lattice with coefficients of
g(x1X1, . . . , xkXk) and g′(x1X1, . . . , xkXk) as the bases. The shift-polynomials
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generate a triangular basis matrix. Ignoring low order terms of m, LLL outputs
short vectors that satisfy Lemma 1 when

k∏

j=1

X
sj

j < W |S| for sj =
∑

x
i1
1 ···xik

k ∈M\S

ij .

When the condition holds, we can find all small roots. See [JM06] for the detail.

3 Attacks on the Takagi RSA by Solving Integer
Equations

In this section, we analyze the security of the Takagi RSA by solving integer
equations. In Sect. 3.1, we give an alternative proof of the Itoh et al. small secret
exponent attack [IKK08] that was proposed by solving modular equations. In
Sect. 3.2, we propose a partial key exposure attack that fully generalizes the
attack of Ernst et al. [EJMW05].

3.1 Small Secret Exponent Attack

In this section, we revisit the Itoh et al. small secret exponent attacks [IKK08].
The result fully generalizes the weaker Boneh-Durfee [BD00] in the sense that it
completely covers their attack, i.e., β < (7 − 2

√
7)/6 for r = 1 and α = 1.

Theorem 1 [IKK08]. Let N = prq be a public modulus and let e ≈ Nα and
d ≈ Nβ be public exponent and secret exponent of the Takagi RSA, respectively.
If

β <
7 − 2

√
1 + 3(r + 1)α

3(r + 1)
for α ≤ 1

r + 1

holds, then the Takagi RSA modulus N can be factorized in polynomial time.

Although the original paper [IKK08] solved modular equations for the attack,
we solve integer equations and give an alternative proof. The proof is convenient
to analyze partial key exposure attacks in Sect. 3.2. Moreover, we exploit the
exact connection between the algorithm constructions of Itoh et al. and the
weaker Boneh-Durfee.

Alternative Proof of Theorem 1. Looking at a key generation for the Takagi RSA;
ed = 1 + �(p − 1)(q − 1) with some integer |�| ≈ Nα+β−2/(r+1). To recover the
secret exponent d, we use the following polynomial

fT.SSE.i(x, y, z1, z2) = 1 + ex + y(z1 + 1)(z2 + 1)

whose roots over the integers are (x, y, z1, z2) = (−d, �,−p,−q). The
absolute values are bounded by X := Nβ , Y := Nα+β−2/(r+1), Z1 :=
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2N1/(r+1), Z2 := 2N1/(r+1). We also use a notation Z = Z1 = Z2 for sim-
plicity. We set an (possibly large) integer W such that W < Nα+β since
‖fT.SSE.i(xX, yY, z1Z1, z2Z2)‖∞ ≥ |eX| ≈ Nα+β . Next, we set an integer
R := W (XY )m−1Zm+r−1+t with some integers m = ω(r) and t = τm where
τ ≥ 0. We define shift-polynomials gT.SSE.i and g′

T.SSE.i as

gT.SSE.i : xiX yiY z
iZ1
1 z

iZ2
2 · fT.SSE.i · Xm−1−iX Y m−1−iY Zm+r−1+t−iZ1−iZ2

for xiX yiY z
iZ1
1 z

iZ2
2 ∈ S1 ∪ S2,

g′
T.SSE.i : xiX yiY z

iZ1
1 z

iZ2
2 · R for xiX yiY z

iZ1
1 z

iZ2
2 ∈ (M1 ∪ M2)\(S1 ∪ S2),

for sets of monomials

S1 :=
⋃

0≤j≤t

{

xiX yiY z
iZ1+j
1

∣
∣
∣
∣
xiX yiY z

iZ1
1 is a monomial of

fT.SSE.i(x, y, z1, z2)m−1

}

,

S2 :=
⋃

0≤j≤t

⎧
⎨

⎩
xiX yiY z

iZ1
1 z

iZ2+j
2

∣
∣
∣
∣

xiX yiY z
iZ1
1 z

iZ2
2 is a monomial of

s̃ · fT.SSE.i(x, y, z1, z2)m−1 for iZ2 ≥ 1
where s̃ = {zr−1

1 z2, z
r−2
1 z2, . . . , z1z2}

⎫
⎬

⎭
,

M1 :=

{

xiX yiY z
iZ1
1

∣
∣
∣
∣
monomials of xi′

X yi′
Y z

i′
Z1
1 · fT.SSE.i(x, y, z1, z2)

for xi′
X yi′

Y z
i′
Z1
1 ∈ S1

}

,

M2 :=

{

xiX yiY z
iZ1
1 z

iZ2
2

∣
∣
∣
∣
monomials of xi′

X yi′
Y z

i′
Z1
1 z

i′
Z2
2 · fT.SSE.i(x, y, z1, z2)

for iZ2 ≥ 1 where xi′
X yi′

Y z
i′
Z1
1 z

i′
Z2
2 ∈ S2

}

.

By definition of sets of monomial S1, S2,M1, and M2, it follows that

xiX yiyz
iZ1
1 ∈ S1 ⇔ iX = 0, 1, . . . ,m − 1; iY = 0, 1, . . . ,m − 1 − iX ;

iZ1 = 0, 1, . . . , iY + t,

xiX yiyz
iZ1
1 z

iZ2
2 ∈ S2 ⇔ iX = 0, 1, . . . ,m − 1; iY = 0, 1, . . . ,m − 1 − iX ;

iZ1 = 0, 1, . . . , r − 1; iZ2 = 1, 2, . . . , iY + t + 1,

xiX yiyz
iZ1
1 ∈ M1 ⇔ iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m − iX ;

iZ1 = 0, 1, . . . , iY + t,

xiX yiyz
iZ1
1 z

iZ2
2 ∈ M2 ⇔ iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m − iX ;

iZ1 = 0, 1, . . . , r − 1; iZ2 = 1, 2, . . . , iY + t + 1.

All these shift-polynomials gT.SSE.i and g′
T.SSE.i modulo R have the roots

(x, y, z1, z2) = (−d, �,−p,−q) that are the same as fT.SSE.i(x, y, z1, z2). We
replace each occurrence of zr

1z2 by N and construct a lattice with coefficients of
gT.SSE.i(xX, yY, z1Z1, z2Z2) and g′

T.SSE.i(xX, yY, z1Z1, z2Z2) as the bases. The
shift-polynomials generate a triangular basis matrix. Ignoring low order terms
of m, based on the Jochemsz-May strategy [JM06], LLL outputs short vectors
that satisfy Lemma 1 when

X(r+1)( 1
6+

τ
2 )m3

Y (r+1)( 1
3+

τ
2 )m3

Z
(r+1)

(
1
6+

τ
2+

τ2
2

)
m3

< W (r+1)( 1
6+

τ
2 )m3

(1)
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that leads to

0 < −(r + 1)α − (r + 1) (2 + 3τ) β + 3 + 3τ − 3τ2.

To maximize the right hand side of the inequality, we set the parameter τ =
(1 − (r + 1)β)/2 and the condition becomes

β <
7 − 2

√
1 + 3(r + 1)α

3(r + 1)

as required. To satisfy the restriction τ ≥ 0, the condition β ≤ 1
r+1 should hold.

The condition results in α ≥ 1
r+1 . 
�

The algorithm construction fully generalizes that of Ernst et al. that is a
partial key exposure extension of the weaker Boneh-Durfee by solving integer
equations, although the connection is hard to follow from the original proof
in [IKK08]. In [EJMW05], Ernst et al. used a similar polynomial as fT.SSE.i

and the condition becomes X( 1
6+

τ
2 )m3

Y ( 1
3+

τ
2 )m3

Z

(
1
6+

τ
2 +

τ2
2

)
m3

< W ( 1
6+

τ
2 )m3

.
Clearly, the condition relates to that of Eq. (1). The connection comes from our
definition of sets of monomials S1, S2,M1, and M2 that are generalizations of
those of Ernst et al. by a factor of (r + 1). More concretely, each of our S1 and
S2 for iZ1 = 0, 1, . . . , r − 1 play the same role as that for Ernst et al. and so
do M1 and M2 for iZ1 = 0, 1, . . . , r − 1. Hence, our n, sX , sY , and sZ are larger
by a factor of (r + 1) of Ernst et al. As a result, we successfully proposed a
generalization the weaker Boneh-Durfee. In Sect. 3.2, we use the same sets of
monomials S1, S2,M1, and M2 and construct a generalization of the partial key
exposure attack of Ernst et al.

3.2 Partial Key Exposure Attack

In this section, we propose partial key exposure attacks on the Takagi RSA that
satisfy the following property.

Theorem 2. Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ

be public exponent and secret exponent of the Takagi RSA, respectively. When
(β − δ) log N bits of the most significant bits or the least significant bits are
exposed, if

δ <
5 − 2

√−5 + 3(r + 1)(α + β)
3(r + 1)

for
2

r + 1
≤ α + β

holds, then the Takagi RSA modulus N can be factorized in polynomial time.

The result fully generalizes Ernst et al. [EJMW05] in the sense that it completely
covers their attack, i.e., β <

(
5 − 2

√−5 + 6(α + β)
)
/6 for r = 1. When the

LSBs are exposed, our attack becomes the same as Huang et al. [HHX+14].
Although the attack of Huang et al. with the MSBs is weaker than that with the
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LSBs, our attacks work in the same conditions. We can obtain the advantage by
solving integer equations.

Proof of Theorem 2. Looking at a key generation for the Takagi RSA with the
exposed bits (regardless of the MSBs or the LSBs); e

(
d̃ + (d − d̃)

)
= 1 + �(p − 1)

(q − 1) with some integer |�| ≈ Nα+β−2/(r+1). To recover unknown parts d − d̃, we
use the following polynomial

fT.PKE.i(x, y, z1, z2) = 1 − ed̃ + eMx + y(z1 + 1)(z2 + 1)

where M = 1 (resp. M = 2�(β−δ) log N�) with the exposed MSBs (resp.
LSBs) whose roots over the integers are (x, y, z1, z2) = (−(d − d̃), �,−p,−q).
The absolute values are bounded by X := Nδ, Y := Nα+β−2/(r+1), Z1 :=
2N1/(r+1), Z2 := 2N1/(r+1). We also use a notation Z = Z1 = Z2 for simplicity.

These formulations and those for small secret exponent attacks in Sect. 3.1
are essentially the same when we use the Jochemsz-May strategy. That means the
Newton polygons of polynomials fT.SSE.i(x, y, z1, z2) and fT.PKE.i(x, y, z1, z2)
are the same, e.g., there are six monomials for variables 1, x, y, yz1, yz2, and
yz1z2. Hence, we use almost the same algorithm construction. We set an (possibly
large) integer W such that W < Nα+β since ‖fT.SSE.i(xX, yY, z1Z1, z2Z2)‖∞ ≥
max{|1 − ed̃|, |eMX|} ≈ Nα+β . Next, we set an integer R := W (XY )m−1·
Zm+r−1+t with some integers m = ω(r) and t = τm where τ ≥ 0 such that
gcd(R, 1−ed̃) = 1. We compute c = (1−ed̃)−1 mod R and f ′

T.PKE.i(x, y, z1, z2)
:= c · fT.PKE.i(x, y, z1, z2) mod R. We define shift-polynomials gT.PKE.i and
g′

T.PKE.i as

gT.PKE.i : xiX yiY z
iZ1
1 z

iZ2
2 · f ′

T.PKE.i · Xm−1−iX Y m−1−iY Zm+r−1+t−iZ1−iZ2

for xiX yiY z
iZ1
1 z

iZ2
2 ∈ S1 ∪ S2,

g′
T.PKE.i : xiX yiY z

iZ1
1 z

iZ2
2 · R for xiX yiY z

iZ1
1 z

iZ2
2 ∈ (M1 ∪ M2)\(S1 ∪ S2),

for sets of monomials S1, S2,M1, and M2 that are the same as in Sect. 3.1
where fT.SSE.i is replaced by f ′

T.PKE.i. All these shift-polynomials gT.PKE.i

and g′
T.PKE.i modulo R have the roots (x, y, z1, z2) = (−(d − d̃), �,−p,−q) that

are the same as fT.PKE.i(x, y, z1, z2). We replace each occurrence of zr
1z2 by

N and construct a lattice with coefficients of gT.PKE.i(xX, yY, z1Z1, z2Z2) and
g′

T.PKE.i(xX, yY, z1Z1, z2Z2) as the bases. Hence, ignoring low order terms of m,
based on the Jochemsz-May strategy [JM06], LLL outputs short lattice vectors
that satisfy Lemma 1 when the inequality Eq. (1) holds. For partial key expo-
sure attacks (regardless of the MSBs or the LSBs are exposed), the inequality
becomes

0 < −(r + 1) (α + β) − (r + 1)δ (1 + 3τ) + 3 + 3τ − 3τ2.

To maximize the right hand side of the inequality, we set the parameter τ =
(1 − (r + 1)δ)/2 and the condition becomes

δ <
5 − 2

√−5 + 3(r + 1)(α + β)
3(r + 1)
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Fig. 1. Comparisons of partial key exposure attacks on the Takagi RSA when the MSBs
are exposed for α = 1/(r + 1). We compare how much portions of d should be exposed
for β between the attack of Huang et al. [HHX+14] and our Theorem 2. The left figure
is for r = 2 and the right figure is for r = 3.

as required. To satisfy the restriction η ≥ 0, the condition δ ≤ 1
r+1 should hold.

The condition results in 2
r+1 ≤ α + β. 
�

As we claimed in Sect. 3.1, the algorithm construction fully generalizes Ernst
et al.

When the MSBs are exposed, our attack is always better than Huang

et al. [HHX+14] that works when δ <
7−

√
−39+24(r+1)(α+β)

4(r+1) . Figure 1 compare
Theorem 2 and Huang et al. for r = 2 and 3. Our attack is the better for all β,
e.g., our attack works with less partial information.

In Sect. 4.2, we propose an improved attack when the LSBs are exposed.
It seems that our Theorem 2 with the exposed MSBs is hard to be improved.
Although there exist attacks that are better than Ernst et al. (the other attack
of Ernst et al. [EJMW05] and Takayasu and Kunihiro’s attack [TK14]), by defi-
nition, it seems difficult to generalize the attacks for the Takagi RSA since both
attacks make use of the MSBs of �. To compute the MSBs of �, we have to know
the MSBs of (p − 1)(q − 1). It is possible for the standard RSA since pq = N .
However, it seems difficult for the Takagi RSA. Hence, to improve Theorem 2, we
have to exploit the special structure of the Takagi RSA or improve the attacks
on the standard RSA without the knowledge of the MSBs of �.

4 Attacks on the Takagi RSA by Solving Modular
Equations

In this section, we analyze the security of the Takagi RSA by solving modular
equations. In Sect. 4.1, we give an alternative proof of the Itoh et al. small secret
exponent attack [IKK08] that is analogous to Herrmann and May [HM10]. In
Sect. 4.2, we propose a partial key exposure attack that fully generalizes Takayasu
and Kunihiro’s result [TK14].
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4.1 Small Secret Exponent Attack

In this section, we prove the following Itoh et al. small secret exponent attack.
The result fully generalizes the stronger Boneh-Durfee [BD00] in the sense that
it completely covers their attack, i.e., β < 1 − 1/

√
2 for r = 1 and α = 1.

Theorem 3 [IKK08]. Let N = prq be a public modulus and let e ≈ Nα and
d ≈ Nβ be public exponent and secret exponent of the Takagi RSA, respectively. If

β <
2 − √

(r + 1)α
r + 1

for
1

r + 1
≤ α

holds, then the Takagi RSA modulus N can be factorized in polynomial time.

The original proof in [IKK08] is involved since they used geometrically progres-
sive matrix. We use unravelled linearization [HM09] and offer simpler proof.
Moreover, we exploit the exact connection between the algorithm constructions
of Itoh et al. and the stronger Boneh-Durfee.

Alternative Proof of Theorem 3. Looking at a key generation for the Takagi RSA
modulo N = prq, ed = 1+ �(p−1)(q −1) with some integer |�| ≈ Nα+β−2/(r+1).
Itoh et al. [IKK08] considered a polynomial

fT.SSE.m(x, y1, y2) = 1 + x(y1 + 1)(y2 + 1).

The polynomial modulo e has roots (x, y1, y2) = (�,−p,−q). The absolute values
are bounded by X := Nα+β−2/(r+1), Y1 = Y2 := 2N1/(r+1). Let m = ω(r) be an
integer and τ ≥ 0. To solve a modular equation fT.SSE.m(x, y1, y2) = 0 mod e,
we use shift-polynomials

gT.SSE.m(x, y1, y2) = xiX y
iY1
1 y

iY2
2 fu

T.SSE.m(x, y1, y2)em−u

with indices in

Ix1 ⇔ u = 0, 1, . . . , m; iX = 0, 1, . . . ,m − u; iY1 = 0; iY2 = 0, or
Ix2 ⇔ u = 0, 1, . . . , m; iX = 0, 1, . . . ,m − u; iY1 = 0, 1, . . . , r − 1; iY2 = 1,

Iy1 ⇔ u = 0, 1, . . . , m; iX = 0; iY1 = 1, 2, . . . , �τu; iY2 = 0, or
Iy2 ⇔ u = 0, 1, . . . , m; iX = 0; iY1 = 0, 1, . . . , r − 1; iY2 = 2, 3, . . . , �τu.

All these shift-polynomials gT.SSE.m modulo em have the roots (x, y1, y2) =
(�,−p,−q) that are the same as fT.SSE.m. We replace each occurrence of yr

1y2
by N and construct a lattice with coefficients of gT.SSE.m(xX, y1Y1, y2Y2) as the
bases.

Here, we observe why the construction offers a bound outperforming the
Jochemsz-May strategy. In the above Iy1 and Iy2, iY1 and iY2 are upper bounded
by �τu that depend on u. In the Jochemsz-May strategy, the corresponding
indices (iZ1 − iY and iZ2 − iY in S1, S2,M1, and M2 in Sect. 3.1) are bounded
by t = τm that only depends m. Since the former covers the latter, we can ana-
lyze broader classes of lattice constructions. The restriction of the Jochemsz-May
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strategy offers simpler analysis with a triangular basis matrix although that does
not always offer the best bound. Moreover, the parameter is eventually set to
τ = 1 − (r + 1)β. The optimization follows from the fact that shift-polynomials
gT.SSE.m with indices in Iy1 and Iy2 reduce the norm of outputs of the LLL algo-
rithm, e.g., the diagonals for the shift-polynomials are smaller than the modulus
em. This observation enables readers to understand our improvements in Sect. 6
easily.

However, the former selection requires involved analysis since the shift-
polynomials generate non-triangular basis matrices. The dependence of the
Jochemsz-May strategy always generates triangular basis matrices and the
analysis is easy. To construct partial key exposure attacks outperforming the
Jochemsz-May strategy, we require better understanding for small secret expo-
nent attacks. For the purpose, we show an analogous elementary proof to
Herrmann and May [HM10]. Although the above shift-polynomials generate
non-triangular basis matrices, we can transform it to be triangular by using
unravelled linearization.

Lemma 2. Using a linearization z1 = 1 + xy1 and z2 = 1 + xy2, the above
shift-polynomials generate a triangular basis matrix. The diagonals of the basis
matrix for gT.SSE.m are

– Xu+iX Y u
1 em−u for indices in Ix1,

– Xu+iX Y
iY1
1 Y u+1

2 em−u for indices in Ix2,
– Y

iY1
1 Zu

1 em−u for indices in Iy1,
– Y

iY1
1 Y2Z

u
2 em−u for indices in Iy2.

Indeed, the transformation is analogous to Herrmann and May [HM10],
and show the exact connection with the stronger Boneh-Durfee and the Itoh
et al. attack although the connection is hard to follow from the original proof
[IKK08]. The shift-polynomials for indices in Ix1 and Ix2 for iY1 = 0, 1, . . . , r−1
(resp. Iy1 and Iy2 for iY1 = 0, 1, . . . , r − 1) play the same role as x-shifts
(resp. y-shifts) of the stronger Boneh-Durfee. Ignoring low order terms of m,
the dimension of the lattice is (r + 1)

(
1
2 + τ

2

)
m2, and the determinant of the

basis matrix is X(r+1)( 1
3+

τ
3 )m3

Y
(r+1)

(
1
6+

τ
3 +

τ2
6

)
m3

e(r+1)( 1
3+

τ
6 )m3

. Notice that
Z1 = Z2 ≈ XY . Again, we stress the connection with the stronger Boneh-
Durfee. In the proof, a dimension of a lattice is

(
1
2 + τ

2

)
m2 and its determinant

is X( 1
3+

τ
3 )m3

Y

(
1
6+

τ
3+

τ2
6

)
m3

e(
1
3+

τ
6 )m3

. Hence, it is clear that the algorithm con-
struction of Itoh et al. is a generalization of that for the stronger Boneh-Durfee.
We set the parameter τ = 1 − (r + 1)β, and obtain Theorem 3. Here, we omit
overall calculations since they are completely the same as those in [IKK08]. 
�

4.2 Partial Key Exposure Attack

In this section, we propose a partial key exposure attack on the Takagi RSA
that satisfies the following property.
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Theorem 4. Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ

be public exponent and secret exponent of the Takagi RSA, respectively. When
(β − δ) log N bits of the least significant bits are exposed, if

δ <
2 + (r + 1)β − √−12 + 4(r + 1)α + 12(r + 1)β − 3(r + 1)2β2

2(r + 1)
and

β ≤9 − √−3 + 12(r + 1)α
6(r + 1)

hold, then the Takagi RSA modulus N can be factorized in polynomial time.

The result fully generalizes Takayasu and Kunihiro’s result [TK14] in the sense
that it completely covers their attack, i.e., δ <

(
1 + β −

√
−1 + 6β − 3β2

)
/2

and β < (9 − √
21)/12 for r = 1 and α = 1.

Proof of Theorem 4. Looking at a key generation for the Takagi RSA with the
exposed LSBs; e(d1M + d0) = 1 + �(p − 1)(q − 1) with some integer |�| ≈
Nα+β−2/(r+1). To recover the unknown MSBs of the secret exponent d1, we use
the following polynomials

fT.PKE.m1(x, y1, y2) = 1 − ed0 + x(y1 + 1)(y2 + 1) and
fT.PKE.m2(x, y1, y2) = 1 + x(y1 + 1)(y2 + 1)

whose roots with appropriate moduli are (x, y1, y2) = (�,−p,−q), e.g.,
fT.PKE.m1(�,−p,−q) = 0 mod eM and fT.PKE.m2(�,−p,−q) = 0 mod e. The
absolute values are bounded by X := Nα+β−2/(r+1), Y1 = Y2 := 2N1/(r+1). Let
m = ω(r) be an integer and define a function

lr(k) = max
{

0,
k − (r + 1)(β − δ)m
1 + (r + 1)(δ − 2β)

}

.

To solve modular equations fT.PKE.m1(x, y1, y2) = 0 mod eM and
fT.PKE.m2(x, y1, y2) = 0 mod e simultaneously, we use following shift-
polynomials

gT.PKE.m1(x, y1, y2) = xiX y
iY1
1 y

iY2
2 fu

T.PKE.m1(x, y1, y2)(eM)m−u,

gT.PKE.m2(x, y1, y2) = y
iY1+k1

1 y
iY2+k2

2 f
u−	lr(k1+k2)

T.PKE.m1 (x, y1, y2)·

f
	lr(k1+k2)

T.PKE.m2 (x, y1, y2)em−uMm−(u−	lr(k1+k2)
).

To construct a lattice we use gT.PKE.m1 with indices in Ix1, Ix2 and gT.PKE.m2

with indices in Iy1, Iy2 where

Ix1 ⇔ u = 0, 1, . . . , m; iX = 0, 1, . . . ,m − u; iY1 = 0; iY2 = 0,

Ix2 ⇔ u = 0, 1, . . . , m; iX = 0, 1, . . . ,m − u; iY1 = 0, 1, . . . , r − 1; iY2 = 1,

Iy1 ⇔ u = 0, 1, . . . , m; iY1 = 0; iY2 = 0;
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k1 = 1, 2, . . . , �(r + 1)(β − δ)m + (1 + (r + 1)(δ − 2β))u�; k2 = 0,

Iy2 ⇔ u = 0, 1, . . . ,m; iY1 = 0, 1, . . . , r − 1; iY2 = 1; k1 = 0;
k2 = 1, 2, . . . , �(r + 1)(β − δ)m + (1 + (r + 1)(δ − 2β))u�.

All these shift-polynomials gT.PKE.m1 and gT.PKE.m2 modulo (eM)m have the
roots (x, y1, y2) = (�,−p,−q) that are the same as fT.PKE.m. We replace
each occurrence of yr

1y2 by N and construct a lattice with coefficients of
gT.PKE.m1(xX, y1Y1, y2Y2) and gT.PKE.m2(xX, y1Y1, y2Y2) as the bases.

As in the proof of Theorem 3, the shift-polynomials gT.PKE.m1 with indices in
Ix1 and Ix2 for iY1 = 0, 1, . . . , r−1 (resp. gT.PKE.m2 with indices in Iy1 and Iy2

for iY1 = 0, 1, . . . , r−1) play the same role as x-shifts (resp. y-shifts) of Takayasu
and Kunihiro. The shift-polynomials generate a triangular basis matrix using a
linearization z1 = 1 + xy1 and z2 = 1 + xy2. Assume 1 + (r + 1)(δ − 2β) ≥ 0 and
the diagonals of the basis matrix are

– Xu+iX Y u
1 em−u for gT.PKE.m1 with indices in Ix1,

– Xu+iX Y
iY1
1 Y u+1

2 em−u for gT.PKE.m1 with indices in Ix2,
– Xu−	lr(k1)
Y u−	lr(k1)
+k1

1 Z
	lr(k1)

1 em−uMm−(u−	lr(k1)
)

for gT.PKE.m2 with indices in Iy1,
– Xu−	lr(k2)
Y iY1

1 Y
u−	lr(k2)
+k1+1
2 Z

	lr(k2)

2 em−uMm−(u−	lr(k2)
)

for gT.PKE.m2 with indices in Iy2.

In Iy1 and Iy2, k1 and k2 are upper bounded by �(r+1)(β−δ)m+(1+(r+1)(δ−
2β))u�. As Takayasu and Kunihiro, the definition follows from the fact that the
shift-polynomials reduce norms of output vectors by the LLL algorithm.

As the proof of Theorem 3, all these values are larger by a factor of (r + 1)
of Takayasu and Kunihiro’s. Ignoring low order term of m, the LLL algorithm
outputs short vectors that satisfy Lemma 1 when

(r + 1)2δ2 − (r + 1)(2 + (r + 1)β)δ + 4 − (r + 1)α − 2(r + 1)β + (r + 1)2β2 > 0.

Hence, we obtain the bound of Theorem 4

δ <
2 + (r + 1)β − √−12 + 4(r + 1)α + 12(r + 1)β − 3(r + 1)2β2

2(r + 1)

as required. To satisfy the restriction 1 + (r + 1)(δ − 2β) ≥ 0, the condition

β ≤ 9−
√

−3+12(r+1)α

6(r+1) should hold. 
�
When the LSBs are exposed and β ≤ 9−

√
−3+12(r+1)α

6(r+1) , our attack is better

than Huang et al. [HHX+14] that works when δ <
5−2

√
−5+3(r+1)(α+β)

3(r+1) . Figure 2
compare our results and Huang et al. for r = 2 and 3. Our attack is the better
for small β, e.g., our attack works with less partial information.
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Fig. 2. Comparisons of partial key exposure attacks on the Takagi RSA when the LSBs
are exposed and α = 1/(r+1). We compare how much portions of d should be exposed
for β between the attack of Huang et al. [HHX+14] and our Theorem 4. The left figure
is for r = 2 and the right figure is for r = 3.

5 Attacks on the Prime Power RSA by Solving Integer
Equations

In this section, we analyze the security of the prime power RSA by solving
integer equations. In Sect. 5.1, we propose a small secret exponent attack that
fully generalizes the weaker Boneh-Durfee result [BD00]. In Sect. 5.2, we propose
a partial key exposure attack that fully generalizes Ernst et al. [EJMW05].

5.1 Small Secret Exponent Attack

In this section, we propose small secret exponent attacks on the prime power
RSA that satisfy the following property.

Theorem 5. Let N = prq be a public modulus for r ≥ 2 and let e ≈ Nα

and d ≈ Nβ be public exponent and secret exponent of the prime power RSA,
respectively. If

0 < −r(r + 1)2α + r(r + 1)(1 − β)(2(r + 1) + 3rτ) − 1 − 3rη(1 + rη)

− r3(1 − η + τ)3 + r2(η − τ)3 where

η =
r(r + 1)(1 − β) − 1

2r
and τ = η − r − √−r + (r + 1)2(1 − β)

r + 1

for
3r3 + r2 + r − 1

4(r + 1)
≤ α, or

β <
r + (

√
r − 1)2

2r(r + 1)
− α

2
for

r + (
√

r − 1)2

r(r + 1)
< α ≤ 3r3 + r2 + r − 1

4(r + 1)

holds, then prime power RSA modulus N can be factorized in polynomial time.

The result extends Sarkar’s attack [Sar15] for arbitrary α although they solved
modular equations. The result for r = 1 does not cover the weaker Boneh-Durfee
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[BD00]. Moreover, the second condition becomes β < 1/4 for r = 1 and α = 1
that is the same as Wiener’s result [Wie90]. Indeed, Sarkar did not claim the
connection with their attack and the weaker Boneh-Durfee at all. However, we
think that the result fully generalizes the weaker Boneh-Durfee. Although we
should use parameters (η and τ such that η ≥ τ in the following proof) that do
not exactly cover lattices for the weaker Boneh-Durfee to make use of the special
structure of the prime power RSA, the construction is conceptually the same.
Moreover, we will show in Sect. 5.2 that our construction covers Ernst et al.
[EJMW05] that is a partial key exposure extension of the weaker Boneh-Durfee.
The proof is convenient to analyze partial key exposure attacks in Sect. 3.2.

Proof of Theorem 5. Looking at a key generation for the prime power RSA;
ed = 1 + �pr−1(p − 1)(q − 1) with some integer |�| ≈ Nα+β−1. To recover the
secret exponent d, we use the following polynomial

fPP.SSE.i(x, y, z1, z2) = 1 + ex + yzr−1
1 (z1 − 1)(z2 − 1)

whose roots over the integers are (x, y, z1, z2) = (−d, �, p, q). The absolute values
are bounded by X := Nβ , Y := Nα+β−1, Z1 := 2N1/(r+1), Z2 := 2N1/(r+1). We
also use a notation Z = Z1 = Z2 for simplicity. We set an (possibly large) inte-
ger W such that W < Nα+β since ‖fPP.SSE(xX, yY, z1Z1, z2Z2)‖∞ ≥ |eX| ≈
Nα+β . Next, we set an integer R := W (XY )m−1Zr(m−1−a+t) with some inte-
gers m = ω(r), t = τm, and a = ηm where τ ≥ 0 and η ≥ τ . We define
shift-polynomials gPP.SSE.i and g′

PP.SSE.i as

gPP.SSE.i : xiX yiY z
iZ1
1 z

iZ2
2 · fPP.SSE.i · Xm−1−iX Y m−1−iY Zr(m−1−a+t)−iZ1−iZ2

for xiX yiY z
iZ1
1 z

iZ2
2 ∈ S,

g′
PP.SSE.i : xiX yiY z

iZ1
1 z

iZ2
2 · R for xiX yiY z

iZ1
1 z

iZ2
2 ∈ M\S,

for sets of monomials

S :=
⋃

0≤j≤rt

⎧
⎨

⎩
xiX yiY z

iZ1+j
1 z

iZ2
2

∣
∣
∣
∣

xiX yiY z
iZ1
1 z

iZ2
2 is a monomial of

s̃ · fPP.SSE.i(x, y, z1, z2)m−1 where
s̃ =

{
za
2 , z1z

a
2 , z21z

a
2 , . . . , zr

1z
a
2 , zr−1

1 za+1
2

}

⎫
⎬

⎭
,

M :=

{

xiX yiY z
iZ1
1 z

iZ2
2

∣
∣
∣
∣
monomials of xi′

X yi′
Y z

i′
Z1
1 z

i′
Z2
2 · fPP.SSE.i(x, y, z1, z2)

where xi′
X yi′

Y z
i′
Z1
1 z

i′
Z2
2 ∈ S

}

,

with an integer a = ηm for η ≥ τ . By definition, it follows that

xiX yiyz
iZ1
1 z

iZ2
2 ∈ S ⇔ iX = 0, 1, . . . ,m − a + t − 1;

iY = a − t, a − t + 1, . . . ,m − 1 − iX ;
iZ1 = 0, 1, . . . , r(iY − a + t); iZ2 = 0, and
iX = 0, 1, . . . ,m − 1; iY = 0, 1, . . . ,m − 1 − iX ;
iZ1 = max{0, r − iY + r(iZ2 − 1 − a)}, . . . , r − 1;
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iZ2 = a + 1, a + 2, . . . , a + �(iY + 1)/r, and
iX = 0, 1, . . . ,m − 1; iY = 0, 1, . . . ,m − 1 − iX ;
iZ1 = 0, 1, . . . , r − 1;
iZ2 = max{0,−iY + a − t}, . . . , a,

xiX yiyz
iZ1
1 z

iZ2
2 ∈ M ⇔ iX = 0, 1, . . . ,m − a + t;

iY = a − t, a − t + 1, . . . ,m − iX ;
iZ1 = 0, 1, . . . , r(iY − a + t); iZ2 = 0, and
iX = 0, 1, . . . ,m; iY = 0, 1, . . . , m − iX ;
iZ1 = max{0, r − iY + r(iZ2 − 1 − a)}, . . . , r − 1;
iZ2 = a + 1, a + 2, . . . , a + �(iY + 1)/r, and
iX = 0, 1, . . . ,m; iY = 0, 1, . . . , m − iX ;
iZ1 = 0, 1, . . . , r − 1;
iZ2 = max{0,−iY + a − t}, . . . , a.

All these shift-polynomials gPP.SSE.i and g′
PP.SSE.i modulo R have the roots

(x, y, z1, z2) = (−d, �,−p,−q) that are the same as fPP.SSE.i(x, y, z1, z2). We
replace each occurrence of zr

1z2 by N and construct a lattice with coefficients
of gPP.SSE.i(xX, yY, z1Z1, z2Z2) and g′

PP.SSE.i(xX, yY, z1Z1, z2Z2) as the bases.
The shift-polynomials generate a triangular basis matrix.

Ignoring low order terms of m, based on the Jochemsz-May strategy [JM06],
LLL outputs short vectors that satisfy Lemma 1 when

X( r+1
6 + r

2 τ)m3
Y ( r+1

3 + r
2 τ)m3

Z

(
r2(1−η+τ)3

6

)

m3

1 Z
( 1

6r +
1
2η+ r

2 η2− r
6 (η−τ)3)m3

2

< W ( r+1
6 + r

2 τ)m3
(2)

that leads to

0 < − r(r + 1)2α + r(r + 1)(1 − β)(2(r + 1) + 3rτ)

− 1 − 3rη(1 + rη) − r3(1 − η + τ)3 + r2(η − τ)3. (3)

To maximize the right hand side of the inequality, we set parameters η =
r(r+1)(1−β)−1

2r and τ = η − r−
√

−r+(r+1)2(1−β)

r+1 that results in the first condition
of Theorem 5.

To satisfy the restriction τ ≥ 0, the condition β ≤ r2−r−1+2
√

r
r(r+1) should hold.

The condition results in α ≥ 3r3+r2+r−1
4(r+1) . Other restrictions η ≥ τ and η ≥ 0

always hold.
In the other cases, e.g. α ≤ 3r3+r2+r−1

4(r+1) , we fix the parameter τ = 0. To
maximize the right hand side of the inequality Eq. (3), we set the other parameter
η = 1 − 1/

√
r and the condition becomes

β <
r + (

√
r − 1)2

2r(r + 1)
− α

2
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as required. Since the prime power RSA satisfies α + β > 1 by definition, α >
r+(

√
r−1)2

r(r+1) should hold. 
�
This attack is an extension of Sarkar’s attack [Sar15] for arbitrary α. However,

the extension offers an advantage of the approach although Sarkar did not claim.
Lu et al. [LZPL15] claimed that their attack, which works when β < r(r−1)

(r+1)2 , is
better than Sarkar’s attack for r ≥ 5. Indeed, the attack of Lu et al. is better
than Theorem 5 for α = 1 (that is equivalent to Sarkar’s attack). However, our
attack becomes better than the attack of Lu et al. for small α. Considering the
restriction α + β > 1, although the attack of Lu et al. works when α > 3r+1

(r+1)2 ,

our attack works when α > r+(
√

r−1)2

r(r+1) . Hence, our attack works for smaller α

than Lu et al. In Sect. 6.1, we propose further (although slight) improvements
and compare our results and Lu et al.

We note that the restriction η ≥ τ comes from the fact that we can obtain bet-
ter results than η < τ for small secret exponent attacks on the prime power RSA
for r ≥ 2. As we claimed, the algorithm construction fully generalizes the weaker
Boneh-Durfee. That means the weaker Boneh-Durfee result can be obtained by
setting η < τ . The connection is hard to follow from Sarkar’s proof [Sar15] and
they did not claim it. As our previous proofs, the construction comes from our
definition of sets of monomials S and M that play the same roles as those for
Ernst et al. that is a partial key exposure extension of the weaker Boneh-Durfee.
More concretely, each of our S for s̃ =

{
za
2 , z1z

a
2 , z21z

a
2 , . . . , zr−1

1 za
2 , zr−1

1 za+1
2

}

play the same role as that for Ernst et al. and so do M . However, our n, sX , sY ,
and sZ do not become larger by a factor of (r + 1) of those of Ernst et al. for
the asymmetry of p and q for the prime power RSA key generation. So far, the
asymmetry made it difficult to exploit the connection between the standard RSA
and the prime power RSA, and to generalize attacks on the standard RSA to
the prime power RSA.

5.2 Partial Key Exposure Attack

In this section, we propose partial key exposure attacks on the prime power RSA
that satisfy the following property.

Theorem 6. Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ

be public exponent and secret exponent of prime power RSA, respectively. When
(β − δ) log N bits of the most significant bits or the least significant bits are
exposed, if

0 < −r(r + 1)2(α + β) + r(r + 1)(1 − δ)((r + 1) + 3rτ) + r(r + 1)2 − 1

− 3rη(1 + rη) − r3(1 − η + τ)3 + r2(η − τ)3 where

η =
r(r + 1)(1 − δ) − 1

2r
and τ = η − r − √−r + (r + 1)2(1 − δ)

r + 1

for 1 < α + β ≤ 3r3 + r2 + 5r − 1
4r(r + 1)

, or
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δ < 1 − r +
√

12r2(r + 1)(α + β) − r(9r2 + 14r − 3)
3r(r + 1)

for
3r3 + r2 + 5r − 1

4r(r + 1)
≤ α + β

holds, then prime power RSA modulus N can be factorized in polynomial time.

The result fully generalizes Ernst et al. [EJMW05] in the sense that it completely
covers their attack, i.e., β <

(
5 − 2

√−5 + 6(α + β)
)
/6 for r = 1. Moreover, we

exploit the exact connection between the algorithm constructions of Theorem 6
and the Ernst et al.

Proof of Theorem 6. Looking at a key generation for prime power RSA with the
exposed bits (regardless of the MSBs or the LSBs); e(d̃+(d−d̃)) = 1+�pr−1(p−1)
(q −1) with some integer |�| ≈ Nα+β−1. To recover unknown parts d− d̃, we use
the following polynomial

fPP.PKE.i(x, y, z1, z2) = 1 − ed̃ + eMx + yzr−1
1 (z1 − 1)(z2 − 1)

where M = 1 (resp. M |2�(β−δ) log N�) with the exposed MSBs (resp. LSBs) whose
roots over the integers are (x, y, z1, z2) = (−(d − d̃), �, p, q). The absolute values
are bounded by X := N δ, Y := Nα+β−1, Z1 := 2N1/(r+1), Z2 := 2N1/(r+1). We
also use a notation Z = Z1 = Z2 for simplicity.

These formulations and that for small secret exponent attacks in
Sect. 5.1 are essentially the same when we use the Jochemsz-May strategy.
That means the Newton polygons of polynomials fPP.PKE.i(x, y, z1, z2) and
fPP.PKE.i(x, y, z1, z2) are the same, e.g., there are six monomials for variables
1, x, yzr−1

1 , yzr
1 , yzr−1

1 z2, and y. Hence, we use almost the same algorithm con-
struction. We set an (possibly large) integer W such that W < Nα+β since
‖fPP.PKE.i(xX, yY, z1Z1, z2Z2)‖∞ ≥ max{|1 − ed̃|, |eMX|} ≈ Nα+β . Next, we
set an integer R := W (XY )m−1· Zr(m−1−a+t) with some integers m = ω(r) and
t = τm where τ ≥ 0 such that gcd(R, 1 − ed̃) = 1. We compute c = (1 − ed̃)−1

mod R and f ′
PP.PKE.i(x, y, z1, z2) := c · fPP.PKE.i(x, y, z1, z2) mod R. We

define shift-polynomials gPP.PKE.i and g′
PP.PKE.i as

gPP.PKE.i : xiX yiY z
iZ1
1 z

iZ2
2 · f ′

PP.PKE.i · Xm−1−iX Y m−1−iY Zr(m−1−a+t)−iZ1−iZ2

for xiX yiY z
iZ1
1 z

iZ2
2 ∈ S,

g′
PP.PKE.i : xiX yiY z

iZ1
1 z

iZ2
2 · R for xiX yiY z

iZ1
1 z

iZ2
2 ∈ M\S,

for sets of monomials S and M that are the same as in Sect. 5.1 where fPP.SSE.i

is replaced by f ′
PP.PKE.i. All these shift-polynomials gPP.PKE.i and g′

PP.PKE.i

modulo R have the roots (x, y, z1, z2) = (−(d − d̃), �,−p,−q) that are the same
as fPP.PKE.i(x, y, z1, z2). Hence, based on the Jochemsz-May strategy [JM06],
LLL outputs short lattice vectors that satisfy Lemma 1 when the inequality (2)
holds. For partial key exposure attacks (regardless of the MSBs or the LSBs are
exposed), the inequality leads to

0 < − r(r + 1)2(α + β) + r(r + 1)(1 − δ)((r + 1) + 3rτ) + r(r + 1)2
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− 1 − 3rη(1 + rη) − r3(1 − η + τ)3 + r2(η − τ)3.

To maximize the right hand side of the inequality, we set parameters η =
r(r+1)(1−δ)−1

2r and τ = η − r−
√

−r+(r+1)2(1−δ)

r+1 that results in the first condition
of Theorem 6. To satisfy the restriction η ≥ τ , the condition δ ≥ 1

r+1 should

hold. The condition results in α+β ≤ 3r3+r2+5r−1
4r(r+1) . Notice that other restrictions

τ ≥ 0 and η ≥ 0 always hold.
For smaller α+β, we use the other lattice construction that fully generalizes

Ernst et al. However, the construction is essentially the same as previous one as
we noted in the proof of Theorem 5. Indeed, we use the same shift-polynomials
gPP.PKE.i and g′

PP.PKE.i with the same sets of monomials S and M . The only
difference is a restriction of parameters η ≤ τ . Hence, by definition, it follows
that

xiX yiyz
iZ1
1 z

iZ2
2 ∈ S ⇔ iX = 0, 1, . . . ,m − a + t − 1;

iY = a − t, a − t + 1, . . . ,m − 1 − iX ;
iZ1 = 0, 1, . . . , r(iY − a + t); iZ2 = 0, and
iX = 0, 1, . . . ,m − 1; iY = 0, 1, . . . ,m − 1 − iX ;
iZ1 = max{0, r − iY + r(iZ2 − 1 − a)}, . . . , r − 1;
iZ2 = a + 1, a + 2, . . . , a + �(iY + 1)/r, and
iX = 0, 1, . . . ,m − 1; iY = 0, 1, . . . ,m − 1 − iX ;
iZ1 = 0, 1, . . . , r − 1;
iZ2 = max{0,−iY + a − t}, . . . , a,

xiX yiyz
iZ1
1 z

iZ2
2 ∈ M ⇔ iX = 0, 1, . . . ,m − a + t;

iY = a − t, a − t + 1, . . . ,m − iX ;
iZ1 = 0, 1, . . . , r(iY − a + t); iZ2 = 0,

iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m − iX ;
iZ1 = max{0, r − iY + r(iZ2 − 1 − a)}, . . . , r − 1;
iZ2 = a + 1, a + 2, . . . , a + �(iY + 1)/r, and
iX = 0, 1, . . . ,m; iY = 0, 1, . . . ,m − iX ;
iZ1 = 0, 1, . . . , r − 1;
iZ2 = max{0,−iY + a − t}, . . . , a.

All these shift-polynomials gPP.PKE.i and g′
PP.PKE.i modulo R have the

roots (x, y, z1, z2) = (−d, �,−p,−q) that are the same as fPP.PKE.i(x, y, z1, z2).
We replace each occurrence of zr

1z2 by N and construct a lattice with coefficients
of gPP.PKE.i(xX, yY, z1Z1, z2Z2) and g′

PP.SSE.i(xX, yY, z1Z1, z2Z2) as the bases.
The shift-polynomials generate a triangular basis matrix.
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Ignoring low order terms of m, based on the Jochemsz-May strategy [JM06],
LLL outputs short vectors that satisfy Lemma 1 when

X( r+1
6 + r

2 τ)m3
Y ( r+1

3 + r
2 τ)m3

Z

(
r2(1+τ−η)3

6 − r2(τ−η)3

6

)

m3

1 Z
( 1

6r +
1
2η+ r

2 η2)m3

2

< W ( r+1
6 + r

2 τ)m3

that leads to

0 < − (r + 1)2(α + β) + (2(r + 1)2 + 3r(r + 1)τ) − δ((r + 1)2 + 3r(r + 1)τ)

− r2(1 + τ − η)3 + r2(τ − η)3 − 1
r

− 3η − 3rη2.

To maximize the right hand side of the inequality, we set parameters η =
r(r+1)(1−δ)−1

2r and τ = η + (r+1)(1−δ)−r
2r and the condition becomes

δ < 1 − r +
√

12r2(r + 1)(α + β) − r(9r2 + 14r − 3)
3r(r + 1)

as required. To satisfy the restriction η ≤ τ , the condition δ ≤ 1
r+1 should hold.

The condition results in 3r3+r2+5r−1
4r(r+1) ≤ α + β. Notice that other restrictions

τ ≥ 0 and η ≥ 0 always hold. 
�

Fig. 3. Comparisons of partial key exposure attacks on the prime power RSA when the
MSBs are exposed for α = 1. We compare how much portions of d should be exposed
for β between the attack of Lu et al. [LZPL15], Sarkar [Sar15], and our Theorem 6.
The left figure is for r = 2 and the right figure is for r = 3.

When the MSBs are exposed, our attack is better than that of Sarkar when
α+β is small and is better than that of Lu et al. when r is small. Figure 3 compare
Theorem 6 and those of Lu et al. and Sarkar for r = 2 and 3. Our attack is the
better for small β, e.g., our attack works with less partial information.

In Sect. 6.2, we propose an improved attack with the LSBs. However, it seems
that our Theorem 6 with the exposed MSBs also has room for improvements.
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As opposed to the Takagi RSA, and as the standard RSA, we can compute the
MSBs of � since we know the MSBs of pr−1(p − 1)(q − 1). Indeed, the result of
Sarkar makes use of the fact and generalize the other attack of Ernst et al. In
addition, there exists better attacks by Takayasu and Kunihiro for small β. To
generalize the attack to the prime power RSA remains as a future work.

6 Attacks on the Prime Power RSA by Solving Modular
Equations

In this section, we analyze the security of prime power RSA by solving modular
equations. In Sect. 6.1, we propose a small secret exponent attack that (almost)
fully generalizes the stronger Boneh-Durfee result [BD00]. In Sect. 6.2, we pro-
pose a partial key exposure attack that (almost) fully generalizes Takayasu and
Kunihiro’s result [TK14].

6.1 Small Secret Exponent Attack

In this section, we propose small secret exponent attacks on the prime power
RSA that satisfy the following property.

Theorem 7. Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ be
public exponent and secret exponent of prime power RSA, respectively. If

β < 1 − −r +
√

4r(r + 1) + 4r2(3r + 4)(r + 1)2α
r(3r + 4)(r + 1)

for

α ≥ 9(r + 1)2

(r + 2)2(3r + 4)
− 1

r(r + 1)(3r + 4)
, or

β <
7r2 + 17r + 9 − √

36r4 + 204r3 + 376r2 + 292r + 84 + 4r(r + 1)2(r + 3)α
r(r + 1)

for α >
−4r2 − 8r − 3 + 2

√
(r + 1)(4r3 + 15r2 + 10r + 3)
r(r + 1)

holds, then prime power RSA modulus N can be factorized in polynomial time.

The result (almost) fully generalizes the stronger Boneh-Durfee [BD00] in the
sense that it is better than the weaker Boneh-Durfee and weaker than the
stronger Boneh-Durfee for r = 1, i.e., β < (15 − 2

√
30)/14 = 0.28896 · · · . Since

the results of Theorem 7 are better than those of Theorem 5, they are outper-
forming the Jochemsz-May.

Proof of Theorem 7. Looking at a key generation for the prime power RSA;
ed = 1 + �pr−1(p − 1)(q − 1) with some integer |�| ≈ Nα+β−1. To recover the
secret exponent d, we use the following polynomial

fPP.SSE.m(x, y1, y2) = 1 + xyr−1
1 (y1 − 1)(y2 − 1).
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The polynomial modulo e has roots (x, y1, y2) = (�, p, q). The absolute values are
bounded by X := Nα+β−1, Y1 = Y2 := 2N1/(r+1). Let m = ω(r) and a = ηm be
integers. To solve a modular equation fPP.SSE.m(x, y1, y2) = 0 mod e, we use
shift-polynomials

gPP.SSE.m(x, y1, y2) = xiX y
iY1
1 y

a+iY2
2 fu

PP.SSE.m(x, y1, y2)em−u

with indices in

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m − u; iY1 = 0, 1, . . . , r − 1; iY2 = 0,

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m − u; iY1 = r − 1; iY2 = 1,

Iy ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 1, 2, . . . , �(1 − (r + 1)β)u� + ra; iY2 = 0.

All these shift-polynomials gPP.SSE.m modulo em have the roots (x, y1, y2) =
(�,−p,−q) that are the same as fPP.sse.m(x, y1, y2). We replace each
occurrence of yr

1y2 by N and construct a lattice with coefficients of
gPP.SSE.m(xX, y1Y1, y2Y2) as the bases.

As in the proof of Theorem 5, the shift-polynomials gPP.SSE.m with indices
in Ix1 for iY1 = 0, 1, . . . , r − 1 and Ix2 play the same role as x-shifts of the
stronger Boneh-Durfee by a factor of (r + 1). Although gPP.SSE.m with indices
in Iy plays the same role as y-shifts of the stronger Boneh-Durfee by a factor of r
since iY1 is upper bounded by �(1−(r+1)β)u�+ra that depends on u. However,
there are no additional y-shifts which play the same role as the stronger Boneh-
Durfee. Notice that all polynomials are multiplied by ya

2 and the operation plays
the same role as the y-shifts of the weaker Boneh-Durfee. Hence, our Theorem 7
(almost) fully generalizes the stronger Boneh-Durfee and is always better than
Theorem 5. We do not know how to fully generalize the stronger Boneh-Durfee
and we think there may be room for improvements.

Assume that �(1 − (r + 1)β)u� + ra ≥ 0, e.g., η ≥ ((r + 1)β − 1)/r, and the
shift-polynomials generate triangular basis matrix with diagonals

– Xu+iX Y
max{0,r(u−a)+iY1}
1 Y

max{a−�u+iY1/r�,0}
2 em−u for indices in Ix1,

– Xu+iX Y
a+	(u+1)/r

2 em−u for indices in Ix2,

– XuY
ru+iY1
1 em−u for indices in Iy.

In Iy, iY1 is upper bounded by �(1 − (r + 1)β)u� + ra. The definition follows
from the fact that the shift-polynomials reduce norms of outputs by the LLL
algorithm, e.g., the diagonals for the shift-polynomials are smaller than em.

Ignoring low order terms of m, the LLL algorithm outputs short lattice vec-
tors that satisfy Lemma 1 when (det(L))1/n < em that leads to

0 < − r(r + 1)2α − 1 − 3rη(1 + rη)

+ r(r + 1)(2 + 3rη)(1 − δ) + r(r + 1)2(1 − δ)2.

To maximize the right hand side of the inequality, we set the parameter η =
r(r+1)(1−β)−1

2r and the condition becomes

β < 1 − −r +
√

4r(r + 1) + 4r2(3r + 4)(r + 1)2α
r(3r + 4)(r + 1)
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as required. To satisfy the restriction η ≥ ((r + 1)β − 1)/r, the condition β <
r(r+1)+1
(r+2)(r+1) should hold. The condition results in 9(r+1)2

(r+2)2(3r+4) − 1
r(r+1)(3r+4) ≤ α.

For smaller α, we propose an alternative lattice construction. We use the
same shift-polynomials gPP.SSE.m(x, y1, y2) with indices in

Ix1 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m − u; iY1 = 0, 1, . . . , r − 1; iY2 = 0,

Ix2 ⇔ u = 0, 1, . . . ,m; iX = 0, 1, . . . ,m − u; iY1 = r − 1; iY2 = 1,

I ′
y ⇔ u = 0, 1, . . . ,m; iX = 0; iY1 = 1, 2, . . . , �r(a − ηu)�; iY2 = 0.

We replace each occurrence of yr
1y2 by N and construct a lattice with

coefficients of gPP.SSE.m(xX, y1Y1, y2Y2) as the bases. Assume 0 ≤ η and the
shift-polynomials generate a triangular basis matrix with the same diagonals as
previous ones.

As previous cases, we should define I ′
y such that the shift-polynomials

reduce norms of outputs by the LLL algorithm, e.g., the diagonals for the shift-
polynomials are smaller than em. However, that is not the case and the definition
is a suboptimal. Therefore, we think there may be room for improvements.

Ignoring low order terms of m, the LLL algorithm outputs short vectors that
satisfy Lemma 1 when (det(L))1/n < em that leads to

0 < −r(r + 1)2α + r(1 − β)
(
2(r + 1)2 + r(r + 1)η

)− r3(1 − η)2 − 1 − 3rη(1 + rη).

To maximize the right hand side of the inequality, we set the parameter η =
r(r+1)(1−β)+2r2−3

2r2+6r and the condition becomes

β <
7r2 + 17r + 9 − √

36r4 + 204r3 + 376r2 + 292r + 84 + 4r(r + 1)2(r + 3)α
r(r + 1)

as required. To satisfy α+β > 1, the condition α >
−4r2−8r−3+2

√

(r+1)(4r3+15r2+10r+3)
r(r+1)

should hold. The restriction η ≥ 0 always holds. 
�
Since Theorem 7 works when α >

−4r2−8r−3+2
√

(r+1)(4r3+15r2+10r+3)

r(r+1) , it
works for smaller α than Theorem 5. Indeed, Theorem 7 is (although slightly)
always better than Theorem 5. Figure 4 compare Theorem 7 and Lu et al. for
r = 2 and 3. Theorem 7 is the better for all α and the differences become larger
for smaller α. Moreover, Table 1 compare Lu et al., Theorems 5 and 7 for r = 5
and 6. When α = 1, Lu et al. is the best. However, our attack becomes the better
for smaller α.

6.2 Partial Key Exposure Attack

In this section, we propose small secret exponent attacks on the prime power
RSA that satisfy the following property.



How to Generalize RSA Cryptanalyses 93

Fig. 4. Comparisons of small secret exponent attacks on the prime power RSA. We
compare recoverable values β for α between the attack of Lu et al. [LZPL15] and our
Theorem 7. The left figure is for r = 2 and the right figure is for r = 3.

Table 1. Comparisons of small secret exponent attacks on the prime power RSA. We
compare recoverable values β for α between the attack of Lu et al. [LZPL15], our
Theorem 5, and Theorem 7. The left table is for r = 5 and the right table is for r = 6.

α [LZPL15] Theorem 5 Theorem 7

1 0.5555 0.5442 0.5495

0.9 0.5555 0.5670 0.5730

0.8 0.5555 0.5911 0.5979

0.7 0.5555 0.6167 0.6244

0.6 0.5555 0.6442 0.6528

0.5 0.5555 0.6741 0.6837

0.4 – 0.7073 0.7179

0.3 – 0.7452 0.7561

α [LZPL15] Theorem 5 Theorem 7

1 0.6122 0.5738 0.5798

0.9 0.6122 0.5950 0.6017

0.8 0.6122 0.6174 0.6248

0.7 0.6122 0.6412 0.6494

0.6 0.6122 0.6668 0.6759

0.5 0.6122 0.6946 0.7046

0.4 0.6122 0.7254 0.7364

0.3 – 0.7607 0.7724

0.2 – 0.8036 0.8106

Theorem 8. Let N = prq be a public modulus and let e ≈ Nα and d ≈ Nβ

be public exponent and secret exponent of prime power RSA, respectively. When
(β − δ) log N bits of the least significant bits are exposed, if

δ < 1 − r(2r + 1) + 2
√

r(r + 1)(r(r + 1)(3r + 4)(α + β) − 3r3 − 6r2 − 4r + 1)
r(r + 1)(3r + 4)

for
30r3 + 51r2 + 25r − 4

4r(r + 1)(3r + 4)
≤ α + β

holds, then prime power RSA modulus N can be factorized in polynomial time.

As Theorem 7, the result (only almost) fully generalizes Takayasu and Kunihiro’s
attack. However, the result is better than Theorem 6 with the exposed LSBs.

Proof of Theorem 8. Looking at a key generation for prime power RSA with
the exposed LSBs; e(d1M + d0) = 1 + �pr−1(p − 1)(q − 1) with some integer
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|�| ≈ Nα+β−1. To recover the unknown MSBs of the secret exponent d1, we use
the following polynomials

fPP.PKE.m(x, y1, y2) = 1 − ed0 + xyr−1
1 (y1 − 1)(y2 − 1)

whose roots modulo e are (x, y1, y2) = (�, p, q).
To solve a modular equation fPP.PKE.m(x, y1, y2) = 0 mod e, we use the

following shift-polynomials

gPP.PKE.m(x, y1, y2) = xiX y
iY1
1 y

a+iY2
2 fu

PP.SSE.m(x, y1, y2)(eM)m−u

with indices in

Ix1 ⇔ u = 0, 1, . . . , m; iX = 0, 1, . . . , m − u; iY1 = 0, 1, . . . , r − 1; iY2 = 0,

Ix2 ⇔ u = 0, 1, . . . , m; iX = 0, 1, . . . , m − u; iY1 = r − 1; iY2 = 1,

Iy ⇔ u = 0, 1, . . . , m; iX = 0; iY1 = 1, 2, . . . , �((r + 1)(1 − δ) − 1)u� + ra; iY2 = 0.

All these shift-polynomials modulo (eM)m have roots (x, y1, y2) = (�, p, q) that
are the same as gPP.PKE.m. We replace each occurrence of yr

1y2 by N and con-
struct a lattice with coefficients of gPP.PKE.m(xX, y1Y1, y2Y2) as the bases. The
shift-polynomials generate a triangular basis matrix with diagonals

– Xu+iX Y
max{0,r(u−a)+iY1}
1 Y

max{a−�u+iY1/r�,0}
2 (eM)m−u with indices in Ix1,

– Xu+iX Y
a+	(u+1)/r

2 (eM)m−u with indices in Ix2,

– XuY
ru+iY1
1 (eM)m−u with indices in Iy.

In Iy, iY1 is upper bounded by �((r + 1)(1 − δ) − 1)u� + ra. The definition
follows from the fact that the shift-polynomials reduce norms of outputs by the
LLL algorithm, e.g., the diagonals for the shift-polynomials are smaller than the
modulus (eM)m.

Ignoring low order terms of m, the LLL algorithm outputs short vectors that
satisfy Lemma 1 when (det(L))1/n < (eM)m that leads to

0 < − r(r + 1)2(α + β − 1) − 1 − 3rη(1 + rη)

− r(r + 1)(r − 1 − 3rη)(1 − δ) + r(r + 1)2(1 − δ)2.

To maximize the right hand side of the inequality, we set the parameter η =
r(r+1)(1−δ)−1

2r and the condition becomes

δ < 1 − r(2r + 1) + 2
√

r(r + 1)(r(r + 1)(3r + 4)(α + β) − 3r3 − 6r2 − 4r + 1)
r(r + 1)(3r + 4)

as required. To satisfy the restriction η ≥ 0, δ ≤ 1 − 1
r(r+1) should hold. The

condition results in 30r3+51r2+25r−4
4r(r+1)(3r+4) ≤ α + β. 
�

When the LSBs are exposed, our attack is better than that of Lu et al. when
r is small. Figure 5 compare Theorem 8 and Lu et al. for r = 2 and 3. Our attack
is the better for all β, e.g., our attack works with less partial information.
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Fig. 5. Comparisons of partial key exposure attacks on the prime power RSA for α = 1
when the least significant bits are exposed. We compare how much portions of d should
be exposed for β between the attack of Lu et al. [LZPL15] and our Theorem 8. The
left figure is for r = 2 and the right figure is for r = 3.
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Abstract. The literature on leakage-resilient cryptography contains
various leakage models that provide different levels of security. In this
work, we consider the bounded leakage and the continual leakage models.
In the bounded leakage model (Akavia et al. – TCC 2009), it is assumed
that there is a fixed upper bound L on the number of bits the attacker
may leak on the secret key in the entire lifetime of the scheme. Alter-
natively, in the continual leakage model (Brakerski et al. – FOCS 2010,
Dodis et al. – FOCS 2010), the lifetime of a cryptographic scheme is
divided into “time periods” between which the scheme’s secret key is
updated. Furthermore, in its attack the adversary is allowed to obtain
some bounded amount of leakage on the current secret key during each
time period.

In the continual leakage model, a challenging problem has been to
provide security against leakage on key updates, that is, leakage that
is a function not only of the current secret key but also the random-
ness used to update it. We propose a new, modular approach to over-
come this problem. Namely, we present a compiler that transforms
any public-key encryption or signature scheme that achieves a slight
strengthening of continual leakage resilience, which we call consecutive
continual leakage resilience, to one that is continual leakage resilient
with leakage on key updates, assuming indistinguishability obfuscation
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(Barak et al. – CRYPTO 2001, Garg et al. – FOCS 2013). Under the
stronger assumption of public-coin differing-inputs obfuscation (Ishai
et al. – TCC 2015) the leakage rate tolerated by our compiled scheme
is essentially as good as that of the starting scheme. Our compiler is
obtained by making a new connection between the problems of leak-
age on key updates and so-called “sender-deniable” encryption (Canetti
et al. – CRYPTO 1997). In particular, our compiler adapts and opti-
mizes recent techniques of Sahai and Waters (STOC 2014) that make any
encryption scheme sender-deniable. We then show that prior continual
leakage resilient schemes can be upgraded to security against consecutive
continual leakage without introducing new assumptions.

In the bounded leakage model, we develop an entirely new approach to
constructing leakage-resilient encryption from obfuscation directly, based
upon the public-key encryption scheme from iO and punctured pseudo-
random functions due to Sahai and Waters (STOC 2014). In particular,
we achieve (1) leakage-resilient public key encryption tolerating L bits
of leakage for any L from iO and one-way functions, (2) leakage-resilient
public key encryption with optimal leakage rate of 1 − o(1) based on
public-coin differing-inputs obfuscation and collision-resistant hash func-
tions.

1 Introduction

1.1 Background and Motivation

In recent years, researchers have uncovered a variety of ways to capture crypto-
graphic keys through side-channel attacks: physical measurements, such asbreak
execution time, power consumption, and even sound waves generated by the
processor. This has prompted cryptographers to build models for these attacks
and to construct leakage resilient schemes that remain secure in the face of such
attacks. Of course, if the adversary can leak the entire secret key, security becomes
impossible, and so the bounded leakage model was introduced (cf. [1,4,19,22]).
Here, it is assumed that there is a fixed upper bound, L on the number of bits the
attacker may leak, regardless of the parameters of the scheme, or, alternatively, it
is assumed that the attacker is allowed to leak L = λ · |sk| total number of bits,
where the amount of leakage increases as the size of the secret key increases. Vari-
ous works constructed public key encryption and signature schemes with optimal
leakage rate of λ = 1−o(1), from specific assumptions (cf. [4,22]). Hazay et al. [17]
constructed a leakage resilient public key encryption scheme in this model, assum-
ing only the existence of some standard public key encryption scheme; the tradeoff
is that they tolerate a leakage rate of only O(log(κ)/|sk|), where |sk| is the size of
the secret key when using security parameter κ.

Surprisingly, it is possible to do better; an interesting strengthening of the
model — the continual leakage model1 — allows the adversary to request
1 Here “continual” refers to the fact that the total amount of leakage obtained by

the adversary is unbounded. Additionally, the model is more accurately called the
continual memory leakage model to contrast with schemes constructed under an
assumption that “only computation leaks” [21].
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unbounded leakage. This model was introduced by Brakerski et al. [5] and Dodis
et al. [11], who constructed continual-leakage resilient (CLR) public-key encryp-
tion and signature schemes. Intuitively, the CLR model divides the lifetime of the
attack, which may be unbounded, into time periods and: (1) allows the adver-
sary to obtain the output of a “bounded” leakage function in each time period,
and (2) allows the secret key (but not the public key!) to be updated between
time periods. So, while the adversary’s leakage in each round is bounded, the
total leakage is unbounded.

Note that the algorithm used by any CLR scheme to update the current secret
key to the next one must be randomized, since otherwise the adversary can obtain
some future secret key, bit-by-bit, via its leakage in each time period. While the
CLR schemes of [5,11] were able to tolerate a remarkable 1 − o(1) leakage rate
(the ratio of the allowed number of bits leaked per time period to the length
of the secret key) handling leakage during the update procedure itself — that
is, produced as a function of the randomness used by the update algorithm as
well as the current secret key — proved to be much more challenging. The first
substantial progress on this problem of “leakage on key updates” was made by
Lewko et al. [20], with their techniques being considerably refined and generalized
by Dodis et al. [12]. In particular, they give encryption and signature schemes
that are CLR with leakage on key updates tolerating a constant leakage rate,
using “dual-system” techniques (cf. [24]) in bilinear groups.

1.2 Overview of Our Results

Our first main contribution is to show how to compile any public-key encryption
or signature scheme that satisfies a slight strengthening of CLR (which we call
“consecutive” CLR or 2CLR) without leakage on key updates to one that is CLR
with leakage on key updates. Our compiler is based on a new connection we make
between the problems of leakage on key updates and “sender-deniability” [6] for
encryption schemes. In particular, our compiler uses program obfuscation —
either indistinguishability obfuscation (iO) [2,14] or the public-coin differing-
inputs obfuscation [18]2 — and adapts and extends techniques recently developed
by Sahai and Waters [23] to achieve sender-deniable encryption. This demon-
strates the applicability of the techniques of [23] to other seemingly unrelated
contexts.3 We then show that the existing CLR encryption scheme of Brakerski
et al. [5] can be extended to meet the stronger notion of 2CLR that we require
for our compiler. Additionally, we show all our results carry over to signatures
as well. In particular, we show that 2CLR PKE implies 2CLR signatures (via
the intermediate notion of CLR “one-way relations” of Dodis et al. [11]), and
2 To the best of our knowledge, no impossibility results are known for public-coin

differing-inputs obfuscation. Indeed, the impossibility results of Garg et al. [15] do
not apply to this setting.

3 We note that the techniques of [23] have been shown useful in adaptively secure two-
party and multiparty computation [7,9,16] and “only computation leaks” (OCL)
circuits without trusted hardware [10]. We note that this work precedes the work
of [9].
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observe that our compiler also upgrades 2CLR signatures to ones that are CLR
with leak on updates.

Our second main contributions concerns constructions of leakage-resilient
public-key encryption directly from obfuscation. In particular, we show that the
approach of Sahai and Waters to achieve public-key encryption from iO and
punctured pseudorandom functions [23] can be extended to achieve leakage-
resilience in the bounded-leakage model. Specifically, we achieve (1) leakage-
resilient public key encryption tolerating L bits of leakage for any L from iO
and one-way functions, (2) leakage-resilient public key encryption with optimal
leakage rate of 1 − o(1) based on public-coin differing-inputs obfuscation and
collision-resistant hash functions. Extending these constructions to continual
leakage-resilience (without introducing additional assumptions) is an interest-
ing open problem.

In summary, we provide a thorough study of the connection between program
obfuscation and leakage resilience. We define a new notion of leakage-resilience
(2CLR), and demonstrate new constructions of 2CLR secure encryption and sig-
nature schemes from program obfuscation. Also using program obfuscation, we
construct a compiler that lifts 2CLR-secure schemes to CLR with leakage on
updates; together with our new constructions, this provides a unified and modu-
lar method for constructing CLR with leakage on key updates. Under appropriate
assumptions (namely, the ones used by Brakerski et al. [5] in their construction),
this approach allows us to achieve a leakage rate of 1/4 − o(1), a large improve-
ment over prior work, where the best leakage rate was 1/258−o(1) [20]. Our result
nearly matches the trivial upper-bound of 1/2 − o(1).4 In the bounded leakage
model, we show that it is possible to achieve optimal-rate leakage-resilient public
key encryption from obfuscation and generic assumptions. As we have mentioned
above, Hazay et al. [17] constructed leakage resilient public key encryption in
this model from a far weaker generic assumption, albeit with a far worse leakage
rate. In addition to offering a tradeoff between the strength of the assumption
and the leakage rate, the value of our result in the bounded leakage model is
that it provides direct insight into the connection between program obfuscation
and leakage resilience. We are hopeful that our techniques might lead to future
improvements in the continual-leakage models.

1.3 Details and Techniques

Part I: The Leak-on-Update Compiler. As described above, in the model of
continual leakage-resilience (CLR) [5,11] for public-key encryption or signature
schemes, the secret key can be updated periodically (according to some algorithm

4 Unlike the case of CLR without leakage on key updates, observe that any scheme that
is CLR with leakage on key updates can leak at most 1/2 · |sk|-bits per time period,
since otherwise the adversary can recover an entire secret key. As a consequence,
the optimal leakage rate for a scheme that is CLR with leakage on key updates is
at most 1/2·|sk|

|sk|+|rup| < 1/2, where |sk| is the secret key length and |rup| is the length of

the randomness needed by the update algorithm.
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Update) and the adversary can obtain bounded leakage between any two updates.
Our compiler applies to schemes that satisfy a slight strengthening of CLR we
call consecutive CLR, where the adversary can obtain bounded leakage as a joint
function of any two consecutive keys. More formally, let sk0, sk1, sk2, . . . , skt, . . .
be the secret keys at each time period, where ski = Update(ski−1, ri), and
each ri denotes fresh random coins used at that round. For leakage functions
f1, . . . , ft, . . . (chosen adaptively by the adversary), consider the following two
leakage models:
(1) For consecutive CLR (2CLR), the adversary obtains leakage

f1(sk0, sk1), f2(sk1, sk2), . . . , ft(skt−1, skt), . . . .

(2) For CLR with leakage on key updates, the adversary obtains leakage

f1(sk0, r1), f2(sk1, r2), . . . , ft(skt−1, rt), . . . .

Our compiler from 2CLR to CLR with leakage on key updates produces
a slightly different Update algorithm for the compiled scheme depending on
whether we assume indistinguishability-obfuscation (iO) [2,14] or public-coin
differing-inputs obfuscation [18]. In both cases, if we start with an underlying
scheme that is consecutive two-key CLR while allowing μ-bits of leakage, then
our compiled scheme is CLR with leakage on key updates with leakage rate

μ

|sk| + |rup| ,

where |rup| is the length of the randomness required by Update. When using iO,
we obtain |rup| = 6|sk|, where |sk| is the secret key length for the underlying
2CLR scheme, whereas using public-coin differing-input obfuscation we obtain
|rup| = |sk|. Thus:

– Assuming iO, the compiled scheme is CLR with leakage on key updates with
leakage rate μ

7·|sk| .
– Assuming public-coin differing-input obfuscation, the compiled scheme is CLR

with leakage on key updates with leakage rate μ
2·|sk| .

Thus, if the underlying 2CLR scheme tolerates the optimal number of bits of
leakage (≈ 1/2·|sk|), then our resulting public-coin differing-inputs based scheme
achieves leakage rate 1/4 − o(1).

Our compiler is obtained by adapting and extending the techniques developed
by [23] to achieve sender-deniable PKE from any PKE scheme. In sender-deniable
PKE, a sender, given a ciphertext and any message, is able to produce coins that
make it appear that the ciphertext is an encryption of that message. Intuitively,
the connection we make to leakage on key updates is that the simulator in the
security proof faces a similar predicament to the coerced sender in the case of
deniable encryption; it needs to come up with some randomness that “explains”
a current secret key as the update of an old one. Our compiler makes any two
such keys explainable in a way that is similar to how Sahai and Waters make
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any ciphertext and message explainable. Intuitively, this is done by “encoding”
a secret key in the explained randomness in a special way that can be detected
only by the (obfuscated) Update algorithm. Once detected, the Update algorithm
outputs the encoded secret key, instead of running the normal procedure.

However, in our context, näıvely applying their techniques would result in
the randomness required by our Update algorithm being very long, which, as
described above, affects the leakage rate of our resulting CLR scheme with leak-
age on key updates in a crucial way (we would not even be able to get a constant
leakage rate). We decrease the length of this randomness in two steps. First, we
note that the sender-deniable encryption scheme of Sahai and Waters encrypts
a message bit-by-bit and “explains” each message-bit individually. This appears
to be necessary in their context in order to allow the adversary to choose its
challenge messages adaptively depending on the public key. For our setting, this
is not the case, since the secret key is chosen honestly (not by the adversary), so
“non-adaptive” security is in fact sufficient in our context and we can “explain” a
secret key all at once. This gets us to |rup| = 6 · |sk| and thus 1/14−o(1) leakage
rate assuming the underlying 2CLR scheme can tolerate the optimal leakage.
Second, we observe that by switching assumptions from iO to the public-coin
differing-inputs obfuscation we can replace some instances of sk in the explained
randomness with its value under a collision-resistant hash, which gets us to
|rup| = sk and thus 1/4 − o(1) leakage rate in this case.

A natural question is whether the upper bound of 1/2− o(1) leakage rate for
CLR with leakage on key updates, can be attained via our techniques (if at all).
We leave this as an intriguing open question, but note that the only way to do
so would be to further decrease |rup| so that |rup| < |sk|.

Part II: Constructions Against Two-Key Consecutive Continual Leakage. We
revisit the existing CLR public-key encryption scheme of [5] and show that
a suitable modification of it achieves 2CLR5 with optimal 1/4 − o(1) leak-
age rate6, under the same assumption used by [5] to achieve optimal leakage
rate in the basic CLR setting (namely the symmetric external Diffie-Hellman
(SXDH) assumption in bilinear groups; smaller leakage rates can be obtained
under weaker assumptions). Our main technical tool here is a new generaliza-
tion of the Crooked Leftover Hash Lemma [3,13] that generalizes the result of [5],
which shows that “random subspaces are leakage resilient,” showing that ran-
dom subspaces are in fact resilient to “consecutive leakage.” Our claim also leads
to a simpler analysis of the scheme than appears in [5].

Finally, we also show (via techniques from learning theory) that 2CLR public-
key encryption generically implies 2CLR one-way relations. Via a transformation
of Dodis et al. [11], this then yields 2CLR signatures with the same leakage rate

5 Note that [5] also constructs such a signature scheme, but, as discussed below, such
a signature scheme can in fact be generically obtained, and therefore for simplicity
we do not consider their direct construction here.

6 In the 2CLR model, the maximum amount of leakage is roughly 1/2 · |sk|, so the

optimal rate is roughly 1/2·|sk|
|sk|+|sk| = 1/4.
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as the starting encryption scheme. Therefore, all the above results translate
to the signature setting as well. We also show a direct approach to constructing
2CLR one-way relations following [11] based on the SXDH assumption in bilinear
groups, although we are not able to achieve as good of a leakage rate this way
(only 1/8 − o(1)).

Part III: Exploring the Relationship Between Bounded Leakage Resilience and
Obfuscation. Note that, interestingly, even the strong notion of VBB obfusca-
tion does not immediately lead to constructions of leakage resilient public-key
encryption. In particular, if we replace the secret key of a public key encryption
scheme with a VBB obfuscation of the decryption algorithm, it is not clear that
we gain anything: E.g., the VBB obfuscation may output a circuit of size |C|,
where only

√|C| number of the gates are “meaningful” and the remaining gates
are simply “dummy” gates, in which case we cannot hope to get a leakage bound
better than L =

√|C|, and a leakage rate of 1/
√|C|. Nevertheless, we are able to

show that the PKE scheme of Sahai and Waters (SW) [23], which is built from
iO and “punctured pseudorandom functions (PRFs),” can naturally be made
leakage resilient. To give some brief intuition, a ciphertext in our construction
is of the form (r, w,Ext(PRF(k; r), w) ⊕ m), where Ext is a strong extractor, r
and w are random values7, and the PRF key k is embedded in obfuscated pro-
grams that are used in both encryption and decryption. In the security proof,
we “puncture” the key k at the challenge point, t∗, and hardcode the mapping
t∗ → y, where y = PRF(k; t∗), in order to preserve the input/output behavior.
As in SW, we switch the mapping to t∗ → y∗ for a random y∗ via security of the
puncturable PRF. But now observe we have that the min-entropy of y∗ is high
even after leakage, so the output of the extractor is close to uniform. To achieve
optimal leakage rate, we further modify the scheme to separate t∗ → y∗ from the
obfuscated program and store only an encryption of t∗ → y∗ in the secret key.

2 Compiler from 2CLR to Leakage on Key Updates

In this section, we present a compiler that upgrades any scheme for public key
encryption (PKE), digital signature (SIG), or one-way relation (OWR) that is
consecutive two-key leakage resilient, into one that is secure against leak on
update. We first introduce a notion of explainable update transformation, which
is a generalization of the idea of universal deniable encryption by Sahai and
Waters [23]. We show how to use such a transformation to upgrade a scheme
(PKE, SIG, or OWR) that is secure in the consecutive two-key leakage model to
one that is secure in the leak-on-update model (Sect. 2.2). Finally, we show two
instantiations of the explainable update transformation: one based on indistin-
guishability obfuscation, and the other on differing-inputs obfuscation (Sect. 2.3).
For clarity of exposition, the following sections will focus on constructions of
PKE, but we remark that the same results can be translated to SIG and OWR.
7 Technically, we actually use pseudo-random value r, just as SW do. We omit this

here to make the explanation a little more clear.
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2.1 Consecutive Continual Leakage Resilience (2CLR)

In this section, we present a new notion of consecutive continual leakage resilience
for public-key encryption (PKE). We remark that this notion can be easily
extended to different cases, such as signatures, leakage resilient one-way rela-
tions [11]. We only present the PKE version for simplicity and concreteness. Let κ
denote the security parameter, and μ be the leakage bound between two updates.
Let PKE = {Gen,Enc,Dec,Update} be an encryption scheme with update.

Setup Phase. The game begins with a setup phase. The challenger calls
PKE.Gen(1κ) to create the initial secret key sk0 and public key pk. It gives
pk to the attacker. No leakage is allowed in this phase.

Query Phase. The attacker specifies an efficiently computable leakage function
f1, whose output is at most μ bits. The challenger updates the secret key
(changing it from sk0 to sk1), and then gives the attacker f1(sk0, sk1). The
attacker then repeats this a polynomial number of times, each time supplying
an efficiently computable leakage function fi whose output is at most μ bits.
Each time, the challenger updates the secret key from ski−1 to ski according
to Update(·), and gives the attacker fi(ski−1, ski).

Challenge Phase. The attacker chooses two messages m0, m1 which it gives to the
challenger. The challenger chooses a random bit b ∈ {0, 1}, encrypts mb, and
gives the resulting ciphertext to the attacker. The attacker then outputs a
guess b′ for b. The attacker wins the game if b = b′. We define the advantage
of the attacker in this game as |12 − Pr[b′ = b]|.

Definition 1 (Continual Consecutive Leakage Resilience). We say a
public-key encryption scheme is μ-leakage resilient against consecutive contin-
ual leakage (or μ-2CLR) if any probabilistic polynomial time attacker only has
a negligible advantage (negligible in κ) in the above game.

2.2 Explainable Key-Update Transformation

Now we introduce a notion of explainable key-update transformation, and show
how it can be used to upgrade security of a PKE scheme from 2CLR to CLR with
leakage on key updates. Informally, an encryption scheme has an “explainable”
update procedure if given both ski−1 and ski = Update(ski−1, ri), there is an
efficient way to come up with some explained random coins r̂i such that no
adversary can distinguish the real coins ri from the explained coins r̂i. Intuitively,
this gives a way to handle leakage on random coins given just leakage on two
consecutive keys.

We start with any encryption scheme PKE that has some key update proce-
dure, and we introduce a transformation that produces a scheme PKE′ with an
explainable key update procedure.

Definition 2 (Explainable Key Update Transformation). Let PKE =
PKE.{Gen,Enc,Dec,Update} be an encryption scheme with key update. An
explainable key update transformation for PKE is a ppt algorithm TransformGen
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that takes input security parameter 1κ, an update circuit CUpdate (that imple-
ments the key update algorithm PKE.Update(1κ, ·; ·)), a public key pk of PKE,
and outputs two programs Pupdate,Pexplain with the following syntax:

Let (pk, sk) be a pair of public and secret keys of the encryption scheme

– Pupdate takes inputs sk, random coins r, and Pupdate(sk; r) outputs a updated
secret key sk′;

– Pexplain takes inputs (sk, sk′), random coins v̄, and Pexplain(sk, sk′; v̄) outputs a
string r.

Given a public key pk, we define Πpk =
⋃poly(κ)

j=0 Πj, where Π0 = {sk :
(pk, sk) ∈ PKE.Gen}, Πi = {sk : ∃sk′ ∈ Πi−1, sk ∈ Update(sk′)} for i =
1, 2, . . . ,poly(κ). In words, Πpk is the set of all secret keys sk such that either
(pk, sk) is in the support of PKE.Gen or sk can be obtained by the update procedure
Update (up to polynomially many times) with an initial (pk, sk′) ∈ PKE.Gen.

We say the transformation is secure if:

(a) For any pk, all sk ∈ Πpk, any Pupdate ∈ TransformGen(1κ,PKE.Update, pk),
the following two distributions are statistically close: {Pupdate(sk)} ≈
{PKE.Update(sk)}. Note that the circuit Pupdate and the update algorithm
PKE.Update might have different spaces for random coins, but the distribu-
tions can still be statistically close.

(b) For any public key pk and secret key sk ∈ Πpk, the following two distributions
are computationally indistinguishable:

{(Pupdate,Pexplain, pk, sk, u)} ≈ {(Pupdate,Pexplain, pk, sk, e)},

where (Pupdate,Pexplain) ← TransformGen(1κ,PKE.Update, pk), u ←
Upoly(κ), sk

′ = Pupdate(sk;u),
e ← Pexplain(sk, sk′), and Upoly(κ) denotes the uniform distribution over a
polynomial number of bits.

Let PKE = PKE.{Gen,Enc,Dec,Update} be a public key encryption
scheme and TransformGen be an explainable key update transformation
for PKE as above. We define the following transformed scheme PKE′ =
PKE′.{Gen,Enc,Dec,Update} as follows:

– PKE′.Gen(1κ): compute (pk, sk) ← PKE.Gen(1κ).
Then compute (Pupdate,Pexplain) ← TransformGen(1κ,PKE.Update, pk).
Finally, output pk′ = (pk,Pupdate,Pexplain) and sk′ = sk.

– PKE′.Enc(pk′,m): parse pk′ = (pk,Pupdate,Pexplain). Then output c ←
PKE.Enc(pk,m).

– PKE′.Dec(sk′, c): output m = PKE.Dec(sk′, c).
– PKE′.Update(sk′): sample sk′′ ← Pupdate(sk′) and overwrite the old key, i.e.

sk′ := sk′′.

Then we are able to show the following theorem for the upgraded scheme
PKE′.
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Theorem 1. Let PKE = PKE.{Gen,Enc,Dec,Update} be a public key encryp-
tion scheme that is μ-2CLR (without leakage on update), and TransformGen a
secure explainable key update transformation for PKE. Then the transformed
scheme PKE′ = PKE′.{Gen,Enc,Dec,Update} described above is μ-CLR with
leakage on key updates.

Proof. Assume towards contradiction that there is a PPT adversary A and a
non-negligible ε(·) such that for infinitely many values of κ, AdvA,PKE′ ≥ ε(κ)
in the leak-on-update model. Then we show that there exists B that breaks the
security of the underlying PKE (in the consecutive two-key leakage model) with
probability ε(κ) − negl(κ). This is a contradiction.

For notionally simplicity, we will use AdvA,PKE′ to denote the advantage of the
adversary A attacking the scheme PKE′ (according to leak-on-update attacks),
and AdvB,PKE to denote the advantage of the adversary B attacking the scheme
PKE (according to consecutive two-key leakage attacks).

We define B in the following way: B internally instantiates A and participates
externally in a continual consecutive two-key leakage experiment on public key
encryption scheme PKE′. Specifically, B does the following:

– Upon receiving pk∗ externally, B runs
(Pupdate,Pexplain) ← TransformGen(1κ,PKE.Update, pk∗). Note that by the
properties of the transformation, this can be done given only pk∗. B sets
pk′ = (pk∗,Pupdate, Pexplain) to be the public key for the PKE′ scheme and
forwards pk′ to A.

– When A asks for a leakage query f(sk′
i−1, ri), B asks for the following leakage

query on (ski−1, ski): f ′(ski−1, ski) = f(ski−1,Pexplain(ski−1, ski)) and forwards
the response to A. Note that the output lengths of f and f ′ are the same.

– At some point A submits m0,m1 and B forwards them to its external exper-
iment.

– Upon receiving the challenge ciphertext c∗, B forwards it to A and outputs
whatever A outputs.

Now we would like to analyze the advantage of B. It is easy to see that B
has the same advantage as A, however there is a subtlety such that A does not
necessarily have advantage ε(κ): the simulation of leakage queries provided by B
is not identical to the distribution in the real game that A would expect. Recall
that in the security experiment of the scheme PKE′, the secret keys are updated
according to Pupdate. In the above experiment (where B set up), the secret keys
were updated using the Update externally, and the random coins were simulated
by the Pexplain algorithm.

Our goal is to show that actually A has essentially the same advantage in
this modified experiment as in the original experiment. We show this by the
following lemma:

Lemma 1. For any polynomial n, the following two distributions are computa-
tionally indistinguishable.
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D1 ≡ (Pupdate,Pexplain, pk, sk0, r1, sk1, . . . , skn−1, rn, skn) ≈
D2 ≡ (Pupdate,Pexplain, pk, sk0, r̂1, ŝk1, . . . , ŝkn−1, r̂n, ŝkn),

where the initial pk, sk0 and TransformGen(1κ, pk) are sampled identically in both
experiment; in D1 ski+1 = Pupdate(ski; ri+1), and ri+1’s are uniformly random;
in D2, ŝki+1 ← Update(ŝki), r̂i+1 ← Pexplain(ŝki, ŝki+1). (Note ŝk0 = sk0).

Proof. To show the lemma, we consider the following hybrids: for i ∈ [n] define

H(i) = (Pupdate, Pexplain, pk, sk0, r̂1, ŝk1, . . . , ŝki−1, ri, ski, ri+1, ski+1, ri+2, . . . , skn),

where the experiment is identical to D2 for up to ŝki−1. Then it samples a
uniformly random ri, sets ski = Pupdate(ŝki−1; ri), and proceeds as D1.

H(i.5) = (Pupdate, Pexplain, pk, sk0, r̂1, ŝk1, . . . , ŝki−1, r̂i, ski, ri+1, ski+1, ri+2, . . . , skn),

where the experiment is identical to H(i) for up to ŝki−1, and then it samples
ski ← Pupdate(ŝki−1), and r̂i ← Pexplain(ŝki−1, ski). The experiment is identical to
D1 for the rest.

Then we establish the following lemmas, and the lemma follows directly.

Lemma 2. For i ∈ [n − 1], H(i.5) is statistically close to H(i+1).

Lemma 3. For i ∈ [n], H(i) is computationally indistinguishable from H(i.5).

This first lemma follows directly from the property (a) of Definition 2. We
now prove Lemma 3.

Proof. Suppose there exists a (polysized) distinguisher D that distinguishes H(i)

from H(i.5) with non-negligible probability, then there exist pk∗, sk∗, and another
D′ that can break the property (b).

From the definition of the experiments, we know that Pupdate,Pexplain

are independent of the public key and the first i secret keys, i.e. p =
(pk, sk0, ŝk1, . . . , ŝki−1). By an average argument, there exists a fixed

p∗ = (pk∗, sk∗
0, ŝk

∗
1, . . . , ŝk

∗
i−1)

such that D can distinguish H(i) from H(i.5) conditioned on p∗ with non-
negligible probability (the probability is over the randomness of the rest exper-
iment). Then we are going to argue that there exist a polysized distinguisher
D′, a key pair pk′, sk′ such that D′ can distinguish (Pupdate,Pexplain, pk

′, sk′, u)
from (Pupdate,Pexplain, pk

′, sk′, e) where u is from the uniform distribution, sk′′ =
Pupdate(sk′;u), and e ← Pexplain(sk′, sk′′).

Let pk′ = pk∗, sk′ = ŝk
∗
i−1, and we define D′ (with the prefix p∗ hardwired)

who on the challenge input (Pupdate,Pexplain, pk
′, sk′, z) does the following:

– For j ∈ [i − 1], D′ samples r̂j = Pexplain(sk∗
j−1, sk

∗
j ).

– Set ski−1 = sk′ and ri = z, ski = Pupdate(ski−1, z).
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– For j ≥ i + 1, D′ samples rj from the uniform distribution and sets skj =
Pupdate(skj−1; rj).

– Finally, D′ outputs D(Pupdate,Pexplain, pk
′, sk∗

0, r̂1, sk
∗
1, . . . , ski−1, ri, ski, ri+1,

. . . , skn).

Clearly, if the challenge z was sampled according to uniformly random (as u),
then D′ will output according to D(H(i)|p∗). On the other hand, suppose it was
sampled according to Pexplain (as e), then D′ will output according to D(Hi.5|p∗).
This completes the proof of the lemma.

Remark. The non-uniform argument above is not necessary. We present in this
way for simplicity. The uniform reduction can be obtained using a standard
Markov type argument, which we omit here.

Now, we are ready to analyze the advantage of B (and A). Denote AdvA,PKE′;D
as the advantage of A in the experiment where the leakage queries are answered
according to the distribution D. By assumption, we know that AdvA,PKE′;D1 =
ε(κ), and by definition the leakage queries are answered according to D1. By the
above lemma, we know that |AdvA,PKE′;D1 − AdvA,PKE′;D2 | ≤ negl(κ), otherwise
D1 and D2 are distinguishable. Thus, we know AdvA,PKE′;D2 ≥ ε(κ)− negl(κ). It
is not hard to see that AdvB,PKE = AdvA,PKE′;D2 , since B answers A’s the leakage
queries exactly according the distribution D2. Thus, AdvB,PKE ≥ ε(κ) − negl(κ),
which is a contradiction. This completes the proof of the theorem.

2.3 Instantiations via Obfuscation

In this section, we show how to build an explainable key update transforma-
tion from program obfuscation. Our best parameters are achieved using public-
coin differing-inputs obfuscation [18] (rather than the weaker indistinguishability
obfuscation (iO) [2,14]), so we present this version here.

Let PKE = (Gen,Enc,Dec,Update) be a public-key encryption scheme (or a
signature scheme with algorithms Verify,Sign) with key-update, and diO be a
public-coin differing-inputs obfuscator (for some class defined later). Let κ be
a security parameter. Let Lsk be the length of secret keys in PKE and Lr be
the length of randomness used by Update. For ease of notation, we suppress
the dependence of these lengths on κ. We note that in the 2CLR case, it is
without loss of generality to assume Lr << Lsk, because we can always use
pseudorandom coins (e.g. the output of a PRG) to do the update. Since only the
two consecutive keys are leaked (not the randomness, e.g. the seed to the PRG),
the update with the pseudorandom coins remains secure, assuming the PRG is
secure.

Let H be a family of public-coin collision resistant hash functions, as well as
a family of (2κ, ε)-good unseeded extractors8, mapping 2Lsk + 2κ bits to κ bits.
Let F1 and F2 be families of puncturable pseudo-random functions, where F1

8 The extractor outputs a distribution that is ε close to the uniform distribution if the
source has min-entropy 2κ. Here we set ε to be some negligible. The hash function
is chosen from a family of functions, and once chosen, it is a deterministic function.
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has input length 2Lsk + 3κ bits and output length Lr bits, and it is as well an
(Lr + κ,ε)-good unseeded extractor; F2 has input length κ and output length
Lsk + 2κ. Here |u1| = κ and |u2| = Lsk + 2κ, |r′| = 2κ.

Define the algorithm TransformGen(1κ, pk) that on input the security para-
meter, a public key pk and a circuit that implements PKE.Update(·) as follows:

– TransformGen samples K1,K2 as keys for the puncturable PRF as above, and
h ← H. Let P1 be the program as Fig. 1, and P2 as Fig. 2.

– Then it samples Pupdate ← diO(P1), and Pexplain ← diO(P2). It outputs
(Pupdate,Pexplain).

Internal (hardcoded) state: Public key pk, keysK1,K2, and h.

On input secret key sk1; randomness u = (u1, u2).

– If F2(K2, u1) ⊕ u2 = (sk2, r
′) for (proper length) strings sk2, r

′ and u1 =
h(sk1, sk2, r

′), then output sk2.
– Else let x = F1(K1, (sk1, u)). Output sk2 = PKE.Update(pk, sk1;x).

Fig. 1. Program update

Internal (hardcoded) state: key K2.

On input secret keys sk1, sk2; randomness r ∈ {0, 1}κ

– Set u1 = h(sk1, sk2, r). Set u2 = F2(K2, u1) ⊕ (sk2, r). Output e = (u1, u2).

Fig. 2. Program explain

Then we can establish the following theorem.

Theorem 2. Let PKE be any public key encryption scheme with key update.
Assume diO is a secure public-coin differing-inputs indistinguishable obfuscator
for the circuits required by the construction, F1, F2 are puncturable pseudoran-
dom functions with the additional properties stated above, and H is a family
of public-coin collision resistant hash function with the extraction property as
above. Then the transformation TransformGen defined above is a secure explain-
able update transformation for PKE as defined in Definition 2.

Proof. Recall we need to demonstrate that for any public key pk∗ and secret key
sk∗ ∈ Πpk, the following two distributions are computationally indistinguishable:

{(Pupdate,Pexplain, pk
∗, sk∗, u∗)} ≈ {(Pupdate,Pexplain, pk

∗, sk∗, e∗)},

where these values are generated by
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1. (Pupdate,Pexplain) ← TransformGen(1κ,PKE.Update, pk∗),
2. u∗ = (u∗

1, u
∗
2) ← {0, 1}Lsk+3κ,

3. Set x∗ = F1(K1, sk
∗||u∗), sk′ = Pupdate(sk∗;u∗). Then choose uniformly ran-

dom r∗ of length κ, and set e∗
1 = h(sk∗, sk′, r∗) and e∗

2 = F2(K2, e
∗
1)⊕(sk′, r∗).

We prove this through the following sequence of hybrid steps.

Hybrid 1: In this hybrid step, we change Step 3 of the above challenge. Instead
of computing sk′ = Pupdate(sk∗;u∗), we compute sk′ = PKE.Update(pk∗, sk∗;x∗):

1. (Pupdate,Pexplain) ← TransformGen(1κ,PKE.Update, pk∗),
2. u∗ = (u∗

1, u
∗
2) ← {0, 1}Lsk+3κ,

3. Set x∗ = F1(K1, sk
∗||u∗), sk′ = PKE.Update(pk∗, sk∗;x∗), and choose uni-

formly random r∗ of length κ. Then, e∗
1 = h(sk∗, sk′, r∗) and e∗

2 = F2(K2, e
∗
1) ⊕

(sk′, r∗).

Note that the only time in which this changes the experiment is when the values
(u∗

1, u
∗
2) ← {0, 1}2Lsk+3κ happen to satisfy F2(K2, u

∗
1) ⊕ u∗

2 = (sk′, r′) such that
u∗
1 = h(sk∗, sk′, r′). For any fixed u∗

1, sk
∗, sk′, and a random u2∗ , we know the

marginal probability of r′ is still uniform given u∗
1, sk

∗, sk′. Therefore, we have
Pru2∗[h(sk∗, sk′, r′) = u∗

1] = Prr′ [h(sk∗, sk′, r′) = u∗
1] < 2−κ + ε. This is because h

is a (2κ, ε)-extractor, so the output of h is ε-close to uniform over {0, 1}κ, and a
uniform distribution hits a particular string with probability 2−κ. Since we set ε
to be some negligible, the two distributions are only different with the negligible
quantity.

Hybrid 2: In this hybrid step, we modify the program in Fig. 1, puncturing key
K1 at points {sk1||u∗} and {sk1||e∗}, and adding a line of code at the beginning
of the program to ensure that the PRF is never evaluated at these two points. See
Fig. 3. We claim that with overwhelming probability over the choice of u∗, this
modified program has identical input/output as the program that was used in
Hybrid 1 (Fig. 1). Note that on input (sk∗, e∗) the output of the original program
was already sk′ as defined in Hybrid 1, so the outputs of the two programs are
identical on this input. (This follows because e∗ anyway encodes sk′, so when the
“Else if” statement is triggered in the program of Fig. 1, the output is sk′.) As
long as u∗

1 and u∗
2 do not have the property that u∗

1 = h(sk∗, F2(K2, u
∗
1) ⊕ u∗

2),
then the programs have identical output on input (sk∗, u∗) as well. (This follows
because sk′ is defined as sk′ = Pupdate(sk∗;F1(K1, sk

∗||u∗)) in the challenge game,
which is also the output of the program in Fig. 1 when u∗

1 and u∗
2 fail this

condition.) As we argued in Hybrid 1, with very high probability, u∗ does not
have this property. (We stress that u∗ is fixed before we construct the obfuscated
program described in Fig. 3, so with overwhelming probability over the choice of
u∗, the two programs have identical input output behavior.) Indistinguishability
of Hybrids 1 and 2 follows from the security of the obfuscation.

Hybrid 3: In this Hybrid we change the challenge game to use truly ran-
dom x∗ when computing sk′ = PKE.Update(pk∗, sk∗;x∗), (instead of x∗ =
F1(K1; sk∗||u∗)). Security holds by a reduction to the pseudo-randomness of
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Internal (hardcoded) state: Public key pk∗, keys ˜K1 =
PRF.Punct(K1, {sk∗||u∗}, {sk∗||e∗}),K2, sk′ (as defined in Hybrid 1) and h.

On input secret key sk1; randomness u = (u1, u2).

– If (sk1, u) = (sk∗, u∗) or (sk1, u) = (sk∗, e∗) output the value sk′.
– Else If F2(K2;u1) ⊕ u2 = (sk2, r

′) such that u1 = h(sk1, sk2, r
′), then output sk2.

– Else let x = F1(K1, sk1||u). Output sk2 = PKE.Update(pk∗, sk1;x).

Fig. 3. Program update, as used in Hybrid 2

F1 at the punctured point (sk∗, u∗). More specifically, given an adversary A
that distinguishes Hybrid 2 from Hybrid 3 on values pk∗, sk∗, we describe
an reduction B that attacks the security of the puncturable PRF, F1. B
generates u∗ at random and submits (sk∗, u∗) to his challenger. He receives
K̃1 = PRF.Punct(K1, {sk∗||u∗}), and a value x∗ as a challenge. B computes
sk′ = PKE.Update(pk∗, sk∗;x∗), chooses r∗ at random, and computes e∗ as in
the original challenge game. He creates Pupdate using K̃1 and sampling K2 hon-
estly. The same K2 is used for creating Pexplain. B obfuscates both circuits, which
completes the simulation of A’s view.

Hybrid 4: In this hybrid, we puncture K2 at both u∗
1 and e∗

1, and modify the
Update program to output appropriate hardcoded values on these inputs. (See
Fig. 4.) To prove that Hybrids 3 and 4 are indistinguishable, we rely on secu-
rity of public-coin differing-inputs obfuscation and public-coin collision resistant
hash function. In particular, we will show that suppose the Hybrids are distin-
guishable, then we can break the security of the collision resistant hash function.

Consider the following sampler Samp(1κ) : outputs C0, C1 as the two update
programs as in Hybrids 3 and 4 respectively; and it outputs an auxiliary input
aux = (pk∗, sk∗, sk′, u∗, e∗,K2, h, r∗) sampled as in the both hybrids. Note that
aux includes all the random coins of the sampler. Suppose there exists a distin-
guisher D for the two hybrids, then there exists a distinguished D′ that distin-
guishes (diO(C0), aux) from (diO(C1), aux). This is because given the challenge
input, D′ can complete the rest of the experiment either according to Hybrid
3 or Hybrid 4. Then by security of the diO, we know there exists an adver-
sary (extractor) B that given (C0, C1, aux) finds an input such that C0 and C1

evaluate differently. However, this contradicting the security of the public-coin
collision resistant hash function. We establish this by the following lemma.

Lemma 4. Assume h is sampled from a family of public-coin collision resistant
hash function, (and (2κ, ε)-extracting) as above. Then for any PPT adversary,
the probability is negligible to find a differing input given (C0, C1, aux) as above.

Proof. By examining the two circuits, we observe that the differing inputs have
the following two forms: (s̄k, u∗

1, ū2) such that u∗
1 = h(s̄k, F2(K2;u∗

1) ⊕ ū2),
(s̄k, ū2) �= (sk∗, u∗

2); or (s̄k, e∗
1, ē2) such that e∗

1 = h(s̄k, F2(K2; e∗
1)⊕ ē2), (s̄k, ē2) �=

(sk∗, e∗
2). This is because they will run enter the first Else IF in Hybrid 3 (Fig. 3),
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but will enter the modified line (the first Else IF) in Hybrid 4 (Fig. 4). We argue
that both cases happen with negligible probability; otherwise security of the
hash function can be broken.

For the first case, we observe that the collision resistance and (2κ, ε) extract-
ing guarantee that the probability of finding an pre-image of a random value
u∗
1 is small, even given aux; otherwise there is an adversary who can break

collision resistance. For the second case, we know that e∗
1 = h(sk∗, sk′, r∗) =

h(s̄k, F2(K2; e∗
1) ⊕ ē2) = h(s̄k, e∗

2 ⊕ (sk′, r∗) ⊕ ē2). Since we know that (s̄k, ē2) �=
(sk∗, e∗

2), we find a collision, which again remains hard even given aux.
Thus, suppose there exists a differing-input finder A, we can define an adver-

sary B to break the collision resistant hash function: on input h, B simulates
the sampler Samp with the h. Then it runs A to find a differing input. Then
according to the above argument, either of the two cases will lead to finding a
collision.

Internal (hardcoded) state: Public key pk∗, keys ˜K1 =
PRF.Punct(K1, {sk∗||u∗}, {sk∗||e∗}), ˜K2 = PRF.Punct(K2, {u∗

1}, {e∗
1}), sk′ (as

defined in Hybrid 3) and h.

On input secret key sk1; randomness u = (u1, u2).

– If (sk1, u) = (sk∗, u∗) or (sk1, u) = (sk∗, e∗) output value sk′.
– Else If u1 = u∗

1 or u1 = e∗
1, let x = F1( ˜K1, sk1||u). Output sk2 =

PKE.Update(pk∗, sk1;x).
– Else
– If F2(K2;u1) ⊕ u2 = (sk2, r

′) such that u1 = h(sk1, sk2, r
′), then output sk2.

– Else let x = F1(K1, sk1||u). Output sk2 = PKE.Update(pk∗, sk1;x).

Fig. 4. Program update, as used in Hybrid 4

Hybrid 5: In this hybrid, we puncture K2 at both u∗
1 and e∗

1, and mod-
ify the Explain program to output appropriate hardcoded values on these
inputs. (See Fig. 5.) Similar to the argument for the previous hybrids,
we argue that Hybrids 4 and 5 are indistinguishable by security of the
public-coin differing-inputs obfuscation and public-coin collision resistant hash
function. Consider a sampler Samp(1κ) : outputs C0, C1 as the two explain pro-
grams as in Hybrids 4 and 5 respectively; and it outputs an auxiliary input
aux = (pk∗, sk∗, sk′, u∗, e∗, K̃2, h, r∗) sampled as in the both hybrids (note that
aux includes all the random coins of the sampler). Similar to the above argu-
ment: suppose there exists a distinguisher D that distinguishers Hybrids 4 and 5,
then we can construct a distinguisher D′ that distinguishes (diO(C0), aux) from
(diO(C1), aux). This is because given the challenging input, D′ can simulate the
hybrids. Then by security of the diO, there exists an adversary (extractor) B
that can find differing inputs. Now we want to argue that suppose the h comes
from a public-coin collision resistant hash family, then no PPT adversary can
find differing inputs. This leads to a contradiction.
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Lemma 5. Assume h is sampled from a family of public-coin collision resistant
hash function, (and (2κ, ε)-extracting) as above. Then for any ppt adversary,
the probability is negligible to find a differing input given (C0, C1, aux) as above.

Proof. The proof is almost identical to that of Lemma4. We omit the details.

Internal (hardcoded) state: key ˜K2 = PRF.Punct(K2, {u∗
1}, {e∗

1}), u∗, e∗.

On input secret keys sk1, sk2; randomness r ∈ {0, 1}κ

– If u∗
1 = h(sk1, sk2, r), output u∗. Else If e∗

1 = h(sk1, sk2, r), output e∗.
– Else, set u1 = h(sk1, sk2, r). Set u2 = F2(K2, u1) ⊕ (sk2, r). Output e = (u1, u2).

Fig. 5. Program explain, as used in Hybrid 5

Hybrid 6: In this hybrid, we change both e∗
1 and e∗

2 to uniformly random.
Hybrids 5 and 6 are indistinguishable by the security of the puncturable PRF
F2, and by the fact that h is (2κ, ε)-extracting. Clearly in this hybrid, the dis-
tributions of {(Pupdate,Pexplain, pk

∗, sk∗, u∗)} and {(Pupdate,Pexplain, pk
∗, sk∗, e∗)}

are identical. From the indistinguishable arguments that the original game and
Hybrid 6 are indistinguishable, we can argue that the distributions in the original
game are indistinguishable. This concludes the proof.

3 2CLR from “Leakage Resilient Subspaces”

We show that the PKE scheme of Brakerski et al. [5] (BKKV), which has been
proven CLR, can achieve 2CLR (with a slight adjustment in the scheme’s para-
meters). We note that our focus on PKE here is justified by the fact that we
show generically in the full version [8] that any CLR (resp. 2CLR) PKE scheme
implies a CLR “one-way relation” (OWR) [11]; to the best of our knowledge,
such an implication was not previously known. Therefore, by the results of Dodis
et al. [11], this translates all our results about PKE to the signature setting as
well. In the full version [8] of the paper, we show that the approach of Dodis
et al. [11] for constructing CLR OWRs can be extended to 2CLR one-way rela-
tions, but we achieve weaker parameters this way.

Recall that in the work [5], to prove that their scheme is CLR, they show
“random subspaces are leakage resilient”. In particular, they show that for a
random subspace X, the statistical difference between

(
X, f(v)

)
and

(
X, f(u)

)

is negligible, where f is an arbitrary length-bounded function, v is a random
point in the subspace, and u is a random point in the whole space. Then by
a simple hybrid argument, they show that

(
X, f1(v0), f2(v1), . . . , ft(vt−1)

)
and(

X, f1(u0), f2(u1), . . . , ft(ut−1)
)

are indistinguishable, where f1, . . . , ft are arbi-
trary and adaptively chosen length-bounded functions, v0, v1, . . . , vt−1 are inde-
pendent random points in the subspace, and u0, u1, . . . , ut−1 are independent
random points in the whole space. This lemma plays the core role in their proof.
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In order to show that their scheme satisfies the 2CLR security, we consider
random subspaces under “consecutive” leakage. That is, we want to show:

(
X, f1(v0, v1), f2(v1, v2), . . . , ft(vt−1, vt)

) ≈ (X, f1(u0, u1), f2(u1, u2), . . . , ft(ut−1, ut)
)
,

for arbitrary and adaptively chosen fi’s, i.e. each fi can be chosen after seeing the
previous leakage values f1, . . . , fi−1. However, this does not follow by a hybrid
argument of

(
X, f(v)

) ≈ (
X, f(u)

)
, because in the 2CLR case each point is

leaked twice. It is not clear how to embed a challenging instance of (X, f(z))
into the larger experiment while still being able to simulate the rest.

To handle this technical issue, we establish a new lemma showing random
subspaces are “consecutive” leakage resilient. With the lemma and a hybrid argu-
ment, we can show that the above experiments are indistinguishable. Then we
show how to use this fact to prove that the scheme of BKKV is 2CLR.

Lemma 6. Let t, n, �, d ∈ N, n ≥ � ≥ 3d, and q be a prime. Let (A,X) ←
Z

t×n
q × Z

n×�
q such that A · X = 0, T, T ′ ← Rkd(Z�×d

q ), U ← Z
n×d
q such that

A · U = 0, (i.e. U is a random matrix in Ker(A)), and f : Zt×n
q × Z

n×2d
q → W

be any function9 . Then we have:

Δ
((

A,X, f(A,XT,XT ′),XT ′),
(
A,X, f

(
A,U,XT ′),XT ′)) ≤ ε,

as long as |W | ≤ (1 − 1/q) · q�−3d+1 · ε2.

Proof. We will actually prove something stronger, namely we will prove, under
the assumptions of the Lemma 6, that

Δ
((

A,X, f(A,X · T,X · T ′),X · T ′, T ′
)
,
(
A,X, f(A,U,X · T ′),X · T ′, T ′

))

≤ 1
2

√
3|W |

(1 − 1/q)q�−3d+1
< ε .

Note that this implies the Lemma by solving for ε, after noting that ignoring
the last component in each tuple can only decrease statistical difference.

For the proof, we will apply Lemma7 as follows. We will take hash function H
to be H : Zn×�

q ×Z
�×d
q → Z

n×d
q where HK(D) = KD (matrix multiplication), and

take the set Z to be Zn×�
q ×Z

�×d
q . Next we take random variable K to be uniform

on Z
n×�
q (denoted as the matrix X), D to be uniform on Rkd(Z�×d

q ), and finally
Z = (A,XT ′, T ′) where A is uniform conditioned on AX = 0, T ′ ∈ Rkd(Z�×d

q )
is independent uniform. We define U|Z as the uniform distribution such that
AU = 0. This also means that U is a random matrix in the kernel of A.

It remains to prove under these settings that

Pr [ (D,D′, Z) ∈ BAD ] ≤ 1
(1 − 1/q)q�−3d+1

9 Note: Rk denotes rank. Here we use n as the dimension (different from [5] who used
m) to avoid overloading notation.
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with BAD defined as in Lemma 7. For this let us consider

Δ
(
(HK|Z (T1),HK|Z (T2)), (U|Z , U ′

|Z)
)

where Z = (A,XT ′, T ′) as defined above. The above statistical distance is zero
as long as the outcomes of T1, T2, T

′ are all linearly independent. This is so
because � ≥ 3d. Now, by a standard formula the probability that T1, T2, T

′ have
a linear dependency is bounded by 1

(1−1/q)q�−3d+1 , and we are done.

We note that this lemma is slightly different that the original lemma in the
work [5]: the leakage function considered here also takes in a public matrix A,
which is used as the public key in the system. We observe that both our work
and [5] need this version of the lemma to prove security of the encryption scheme.

We actually prove Lemma 6 as a consequence of a new generalization of
the Crooked Leftover Hash Lemma (LHL) [3,13] we introduce (to handle hash
functions that are only pairwise independent if some bad event does not happen),
as follows.

Lemma 7. Let H : K × D → R be a hash function and (K,Z) be joint random
variables over (K,Z) for the set K and some set Z. Define the following set

BAD =
{(

d, d′, z
) ∈ D × D × Z : Δ

(
(HK|Z=z

(d), HK|Z=z
(d′)), (U|Z=z , U ′

|Z=z)
)

> 0
}

, (1)

where U|Z=z, U
′
|Z=z denote two independent uniform distributions over R con-

ditioned on Z = z, and K|Z=z is the conditional distribution of K given Z = z.
We note that R might depend on z, so when we describe a uniform distribution
over R, we need to specify the condition Z = z.

Suppose D and D′ are i.i.d. random variables over D, (K,Z) are random
variables over K × Z satisfying Pr [ (D,D′, Z) ∈ BAD ] ≤ ε′. Then for any set S
and function f : R × Z → S it holds that

Δ((K,Z, f(HK(D), Z)), (K,Z, f(U|Z , Z))) ≤ 1
2

√
3ε′ |S| .

Proof. The proof is an extension of the proof of the Crooked LHL given in [3].
First, using Cauchy-Schwarz and Jensen’s inequality we have

Δ((K,Z, f(HK(D), Z)), (K,Z, f(U|Z , Z)))

� 1
2

√
√
√
√|S|Ek,z

[
∑

s

(Pr [ f(Hk(D), z) = s ] − Pr
[
f(U|Z=z, z) = s

]
)2

]

,

where U|Z=z is uniform on R conditioned on Z = z, and the expectation is over
(k, z) drawn from (K,Z). Thus, to complete the proof it suffices to prove the
following lemma.
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Lemma 8.

Ek,z

[
∑

s

(
Pr [ f(Hk(D), z) = s ] − Pr

[
f(U|Z=z, z) = s

])2
]

≤ 3ε′ . (2)

Proof. By the linearity of expectation, we can express Eq. 2 as:

Ek,z

∑
s

Pr [ f(Hk(D), z) = s ]2 − 2Ek,z

∑
s

Pr [ f(Hk(D), z) = s ]Pr
[
f(U|Z=z , z) = s

]

+EzCol(f(U|Z=z , z)), (3)

where U|Z=z is uniform on R conditioned on Z = z, and Col is the collision prob-
ability of its input random variable. Note that since f(U|Z=z, z) is independent
of k, we can drop it in the third term. In the following, we are going to calculate
bounds for the first two terms.

For any s ∈ S, we can write Pr [ f(Hk(D), z) = s ] =
∑

d Pr [D = d ]
δf(Hk(d),z),s where δa,b is 1 if a = b and 0 otherwise, and thus

∑

s

Pr [ f(Hk(D), z) = s ]2 =
∑

d,d′
Pr [D = d ]Pr [D = d′ ]δf(Hk(d),z),f(Hk(d′),z) .

So we have

Ek,z

∑
s

Pr [ f(Hk(D), z) = s ]2 = Ek,z

⎡
⎣∑

d,d′
Pr [D = d ]Pr

[
D = d′ ]δf(Hk(d),z),f(Hk(d′),z)

⎤
⎦

= Ez

⎡
⎣∑

d,d′
Pr [D = d ]Pr

[
D = d′ ]Ek

[
δf(Hk(d),z),f(Hk(d′),z)

]
⎤
⎦

≤
∑

z,d,d′ /∈BAD

Pr [Z = z ]Pr [D = d ]Pr
[
D = d′ ]Ek

[
δf(Hk(d),z),f(Hk(d′),z)

]
+ ε′

= Ez
[
Col(f(U|Z=z , z))

]
+ ε′, (4)

where BAD is defined as in Eq. (1) from Lemma 7. The inequality holds because,
by our definition of BAD, if (z, d, d′) /∈ BAD, (Hk(d),Hk(d′)) are distributed
exactly as two uniformly chosen elements (conditioned on Z = z), and because
Pr[(z, d, d′) ∈ BAD] ≤ ε′.

By a similar calculation, we have:

Ek,z

∑

s

Pr [ f(Hk(D), z) = s ]Pr
[
f(U|Z=z, z) = s

] ≥ Ez

[
Col(f(U|Z=z, z))

]−ε′ .

(5)
For the same reason, Hk(D) is uniformly random except for the bad event, whose
probability is bounded by ε′.

Putting things together, the inequality in Eq. 2 follows immediately by plug-
ging the bounds in Eqs. 4 and 5. This concludes the proof.
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Here we describe the BKKV encryption scheme, and show it is 2CLR-secure.
We begin by presenting the main scheme in BKKV, which uses the weaker
linear assumption, but achieves a worse leakage rate (that can tolerate roughly
1/8 · |sk| − o(κ)). In that work [5], it is also pointed out that under the stronger
SXDH assumption, the rate can be improved to tolerate roughly 1/4 · |sk|−o(k),
with essentially the same proof. The same argument also holds in the 2CLR
setting. To avoid repetition, we just describe the original scheme in BKKV, and
prove that it is actually 2CLR under the linear assumption.

– Parameters. Let G,GT be two groups of prime order p such that there exists
a bilinear map e : G × G → GT . Let g be a generator of G (and so e(g, g) is a
generator of GT ). An additional parameter � ≥ 7 is polynomial in the security
parameter. (Setting different � will enable a tradeoff between efficiency and
the rate of tolerable leakage). For the scheme to be secure, we require that
the linear assumption holds in the group G, which implies that the size of the
group must be super-polynomial, i.e. p = κω(1).

– Key-generation. The algorithm samples A ← Z
2×�
p , and Y ← Ker2(A), i.e.

Y ∈ Z
�×2
p can be viewed as two random (linearly independent) points in the

kernel of A. Then it sets pk = gA, sk = gY . Note that since A is known, Y
can be sampled efficiently.

– Key-update. Given a secret key gY ∈ G�×2, the algorithm samples R ←
Rk2(Z2×2

p ) and then sets sk′ = gY ·R.
– Encryption. Given a public key pk = gA, to encrypt 0, it samples a random

r ∈ Z
2
p and outputs c = grT ·A. To encrypt 1, it just outputs c = guT

where
u ← Z

�
p is a uniformly random vector.

– Decryption. Given a ciphertext c = gvT

and a secret key sk = gY , the
algorithm computes e(g, g)vT ·Y . If the result is e(g, g)0, then it outputs 0;
otherwise 1.

Then we are able to achieve the following theorem:

Theorem 3. Under the linear assumption, for every � ≥ 7, the encryption
scheme above is μ-bit leakage resilient against two-key continual and consecu-
tive leakage, where μ = (�−6)·log p

2 − ω(κ). Note that the leakage rate would be
μ

|sk|+|sk| ≈ 1/8, as � is chosen sufficiently large.

Proof. The theorem follows directly from the following lemma:

Lemma 9. For any t ∈ poly(κ), r ← Z
2
p, A ← Z

2×�
p , random Y ∈ Ker2(A), and

polynomial sized functions f1, f2, . . . , ft where each fi : Z�×2
p × Z

�×2
p → {0, 1}μ

and can be adaptively chosen (i.e. fi can be chosen after seeing the leakage values
of f1, . . . , fi−1), the following two distributions, D0 and D1, are computationally
indistinguishable:

D0 = (g, gA, grT ·A, f1(sk0, sk1), . . . ft(skt−1, skt))

D1 = (g, gA, gu, f1(sk0, sk1), . . . ft(skt−1, skt)),

where sk0 = gY and ski+1 = (ski)Ri for Ri a random 2 by 2 matrix of rank 2.
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Basically, the distribution D0 is the view of the adversary when given an
encryption of 0 as the challenge ciphertext and continual leakage of the secret
keys; D1 is the same except the challenge ciphertext is an encryption of 1. Our
goal is to show that no polynomial sized adversary can distinguish between them.

We show the lemma in the following steps:

1. We first consider two modified experiment D′
0 and D′

1 where in these experi-
ments, all the secret keys are sampled independently, i.e. sk′

i+1 ← Ker2(A). In
other words, instead of using a rotation of the current secret key, the update
procedure resamples two random (linearly independent) points in the kernel
of A. Denote D′

b = (g, gA, gz, f1(sk′
0, sk

′
1), . . . ft(sk′

t−1, sk
′
t)) for gz is sampled

either from grT ·A or gu depending on b ∈ {0, 1}. Intuitively, the operations
are computed in the exponent, so the adversary cannot distinguish between
the modified experiments from the original ones. We formally prove this using
the linear assumption.

2. Then we consider the following modified experiments: for b ∈ {0, 1}, define

D′′
b = (g, gA, gz, f1(gu0 , gu1), f2(gu1 , gu2), · · · , ft(gut−1 , gut)),

where the distribution samples a random X ∈ Z
�×(�−3)
p such that A · X = 0;

then it samples each ui = X · Ti for Ti ← Rk2(Z
(�−3)×2
p ); finally it samples

z either as rT · A or uniformly random as in D′
b. We then show that D′′

b is
indistinguishable from D′

b using the new geometric lemma.
3. Finally, we show that D′′

0 ≈ D′′
1 under the linear assumption.

To implement the approach just described, we establish the following lemmas.

Lemma 10. For both b ∈ {0, 1}, Db is computationally indistinguishable from
D′

b.

To show this lemma, we first establish a lemma:

Lemma 11. Under the linear assumption, (g, gA, gY , gY ·U ) ≈ (g, gA, gY , gY ′
),

where A ← Z
2×�
p , Y, Y ′ Ker2(A), and U ← Rk2(Z2×2

p ).

Suppose there exists a distinguisher A that breaks the above statement with
non-negligible probability, then we can construct B that can break the linear
assumption (the matrix form). In particular, B distinguishes (g, gC , gC·U ) from
(g, gC , gC′

) where C and C ′ are two independent and uniformly random samples
from Z

(�−2)×2
p , and U is uniformly random matrix from Z

2×2
p . Note that when

p = κω(1) (this is required by the linear assumption), then with overwhelming
probability, (C||C ′) is a rank 4 matrix, and (C||C · U) is a rank 2 matrix. The
linear assumption is that no polynomial time adversary can distinguish the two
distributions when given in the exponent.

B does the following on input (g, gC , gZ), where Z is either C·U or a uniformly
random matrix C ′:
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– B samples a random rank 2 matrix A ∈ Z
2×�
p . Then B computes an arbitrary

basis of Ker(A) (note that Ker(A) = {v ∈ Z
�
p : A · v = 0}), denoted as X. By

the rank-nullity theorem (see any linear algebra textbook), the dimension of
Ker(A) plus Rk(A) is �. So we know that X ∈ Z

�×(�−2)
p , i.e. X contains (�−2)

vectors that are linearly independent.
– B computes gX·C and gX·Z . This can be done efficiently given (gC , gZ) and

X in the clear.
– B outputs A(g, gA, gX·C , gX·Z).

We observe that when p = κω(1), the distribution of A is statistically close
to a random matrix, and U is statistically close to a random rank 2 matrix.
Then it is not hard to see that gX·C is identically distributed to gY , and gX·Z

is distributed as g(X·C)·U if Z = C · U , and otherwise as gY ′
. So B can break

the linear assumption with probability essentially the same as that of A. This
completes the proof of the lemma.

Then Lemma 10 can be proven using the lemma via a standard hybrid argu-
ment. We show that D0 ≈ D′

0 and the other one can be shown by the same
argument. For i ∈ [t + 1], define hybrids Hi as the experiment as D0 except
the first i secret keys are sampled independently, as D′

0; the rest are sampled
according to rotations, as D0. It is not hard to see that H1 = D0, Ht+1 = D′

0,
and Hi ≈ Hi+1 using the lemma. The argument is obvious and standard, so we
omit the detail.

Then we recall the modified distribution D′′
b : for b ∈ {0, 1},

D′′
b = (g, gA, gz, f1(gu0 , gu1), f2(gu1 , gu2), · · · , ft(gut−1 , gut)),

where the distribution samples a random X ∈ Z
�×(�−2)
p such that A · X = 0;

then it samples each ui = X ·Ti for Ti ← Rk2(Z
(�−2)×2
p ), and z is sampled either

rT · A or uniformly random. We then establish the following lemma.

Lemma 12. For b ∈ {0, 1}, D′
b is computationally indistinguishable from D′′

b .

We prove the lemma using another hybrid argument. We prove that D′
0 ≈ D′′

0 ,
and the other follows from the same argument. We define hybrids Qi for i ∈ [t]
where in Qi, the first i secret keys (the exponents) are sampled randomly from
Ker2(A) (as D′

0), and the rest secret keys (the exponents) are sampled as X · T
(as D′′

0 ). Clearly, Q0 = D′′
0 and Qt+1 = D′

0. Then we want to show that Qi is
indistinguishable from Qi+1 using the extended geometric lemma (Lemma 6).

For any i ∈ [t + 1], we argue that suppose there exists an (even unbounded)
adversary that distinguishes Qi from Qi+1 with probability better than ε, then
there exist a leakage function L and an adversary B such that B can distinguish(
A,X,L(A,X ·T,X ·T ′),X ·T ′

)
from

(
A,X,L(A,U,X ·T ′),X ·T ′

)
in Lemma 6

with probability better than ε − negl(κ) (dimensions will be set later). We will
set the parameters of Lemma 6 such that the two distributions have negligible
statistical difference; thus ε can be at most a negligible quantity.

Now we formally set the dimensions: let X be a random matrix in Z
�×(�−3);

T, T ′ be two random rank 2 matrices in Z
(�−3)×2
p , i.e. Rk2

(
Z
(�−3)×2
p

)
; L : Z�×2

p ×
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Z
�×2
p → {0, 1}2μ; recall that 2μ = (�−6)·log p−ω(κ), and thus |L| ≤ p�−6 ·κ−ω(1).

By Lemma 6, for any (even computationally unbounded) L, we have

Δ
((

A, X, L(A, X · T, X · T ′), X · T ′
)
,
(
A, X, L(A, U, X · T ′), X · T ′

))
< κ−ω(1) = negl(κ).

Let g be a random generator of G, and ω is some randomness chosen uni-
formly. We define a particular function L∗, with g, ω hardwired, as follows:
L∗(A,w, v) on input A,w, v does the following:

– It first samples Y0, . . . , Yi−1 ← Ker2(A), using the random coins ω. Then it
sets skj = gYj for j ∈ [i − 1].

– It simulates the leakage functions, adaptively, obtains the values
f1(sk0, sk1), . . . , fi−1(ski−2, ski−1), and obtains the next leakage function fi.

– It computes fi(ski−1, g
w), and then obtains the next leakage function fi+1.

– Finally it outputs fi(ski−1, g
w)||fi+1(gw, gv).

Recall that fi, fi+1 are two leakage functions with μ bits of output, so L∗ has
2µ bits of output. Now we construct the adversary B as follows:

– Let g be the random generator, ω be the random coins as stated above, and L∗

be the function defined above. Then B gets input (A,X,L∗(A,Z,X ·T ′),X ·T ′)
where Z is either uniformly random or X · T .

– B samples Y0, . . . , Yi−1 ← Ker2(A), using the random coins ω. Then it sets
skj = gYj for j ∈ [i−1]. We note that the secret keys (in the first i−1 rounds)
are consistent with the values used in the leakage function for they use the
same randomness ω.

– B sets ski+2 = gX·T ′
.

– B samples Ti+3, . . . , Tt+1 ← Rk2(Z
(�−3)×2
p ) and sets skj = gX·Tj for j ∈ {i +

3, . . . , t + 1}.
– B outputs A

(
gA, gz, f1(sk0, sk1), f2(sk1, sk2), · · · , fi−1(ski−2, ski−1), L∗(Z,X ·

T ′), fi+2(ski+2, sk
′
i+3), . . . , ft(sk′

t, sk
′
t+1)

)
.

Then it is not hard to see that if Z comes from the distribution XT , then the
simulation of B and L∗ distributes as Qi, and otherwise Qi−1. Thus, suppose A
can distinguish Qi from Qi+1 with non-negligible probability ε, then B can dis-
tinguish the two distributions with a non-negligible probability. This contradicts
Lemma 6.

Finally, we show that D′′
0 is computationally indistinguishable from D′′

1 under
the linear assumption.

Lemma 13. Under the linear assumption, the distributions D′′
0 and D′′

1 are
computationally indistinguishable.

We use the same argument as the work [5]. In particular, we will prove that
suppose there exists an adversary A that distinguishes D′′

0 from D′′
1 , then there
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exists an adversary B that distinguishes the distributions {gC : C ← Z
3×3
p } and

{gC : C ← Rk2(Z3×3
p )}. We assume that the second distribution samples two

random rows, and then sets the third row as a random linear combination of
the first two rows. As argued in the work [5], this assumption is without loss of
generality.

Now we describe the adversary B. B on input gC does the following.

– B samples a random matrix X ← Z
�×(�−3)
p , and a random matrix B ← Z

3×�
p

such that B · X = 0.
– B computes gCB , and sets its first two rows as gA and the last row as gz.
– B samples T1, . . . , Tt ← Rk2(Z

(�−3)×2
p ), and sets ski = gXTi for i ∈ [t].

– B outputs A(g, gA, gz, f1(sk0, sk1), . . . , ft(skt−1, skt)).

As argued in the work [5], if C is uniformly random, then (A, z) is distributed
uniformly as D′′

1 . If C is of rank 2, then (A, z) is distributed as (A, rT A) for some
random r ∈ Z

2
p as D′′

0 . Thus, suppose A can distinguish D′′
0 from D′′

1 with non-
negligible probability, then B breaks the linear assumption with non-negligible
probability.

Lemma 9 (D0 ≈ D1) follows directly from Lemmas 10, 12, and 13. This suf-
fices to prove the theorem. We present the proofs of Lemmas 10, 12, and 13.

4 Bounded Leakage-Resilient Encryption Schemes
from Obfuscation

We show that by modifying the Sahai-Waters (SW) public key encryption
scheme [23] in two simple ways, the scheme already becomes non-trivially leak-
age resilient in the one-time, bounded setting. Recall that in this setting, the
adversary, after seeing the public key and before seeing the challenge ciphertext,
may request a single leakage query of length L bits. We require that semantic
security hold, even given this leakage.

Our scheme can tolerate an arbitrary amount of one-time leakage. Specifi-
cally, for any L = L(κ) = poly(κ), we can obtain a scheme which is L-leakage
resilient by setting the parameter ρ in Fig. 6 depending on L. However, our leak-
age rate is not optimal, since the size of the secret key sk, grows with L. In the
full version [8] of the paper, we will show how to further modify the construction
to achieve optimal leakage rate.

On a high-level, we modify SW in the following ways: (1) Instead of following
the general paradigm of encrypting a message m by xoring with the output of
a PRF, we first apply a strong randomness extractor Ext to the output of the
PRF and then xor with the message m; (2) We modify the secret key of the
new scheme to be an iO of the underlying decryption circuit. Recall that in SW,
decryption essentially consists of evaluating a puncturable PRF. In our scheme,
sk consists of an iO of the puncturable PRF, padded with poly(L) bits.

We show that, even given L bits of leakage, the attacker cannot distinguish
Ext(y) from random, where y is the output of the PRF on a fixed input t∗. This



126 D. Dachman-Soled et al.

will be sufficient to prove security. We proceed by a sequence of hybrids: First,
we switch sk to be an obfuscation of a circuit which has a PRF key punctured at
t∗ and a point function t∗ → y hardcoded. On input t �= t∗, the punctured PRF
is used to compute the output, whereas on input t∗, the point function is used.
Since the circuits compute the same function and—due to appropriate padding—
they are both the same size, security of the iO implies that an adversary cannot
distinguish the two scenarios. Next, just as in SW, we switch from t∗ → y to
t∗ → y∗, where y∗ is uniformly random of length L+Lmsg+2 log(1/ε) bits; here we
rely on the security of the punctured PRF. Now, observe that since y∗ is uniform
and since Ext is a strong extractor for inputs of min-entropy Lmsg + 2 log(1/ε)
and output length Lmsg, Ext(y∗) looks random, even under L bits of leakage.

The informal theorem statement is below. We present the formal theorem
and proof in the full version (Figs. 7 and 8).

Encryption Scheme E = (E .Gen, E .Enc, E .Dec)

Key Generation: (pk, sk0) ← E .Gen(1κ)
Compute k ← PRF.Gen(1κ), where PRF : {0, 1}κ × {0, 1}ρ → {0, 1}ρ. Let Ck be the
circuit described in Figure 7, and let CEnc ← iO(Ck).
Let Ck,κ+ρ be the circuit described in Figure 8, and let CDec ← iO(Ck,κ+ρ).
Output pk = (CEnc) and sk = (CDec).

Encryption: c ← E .Enc(pk,m)
On input message m ∈ {0, 1}Lmsg , sample r ← {0, 1}κ, w ← {0, 1}d, and output
c = (G(r), w,Ext(CEnc(r), w) ⊕ m), where PRG G : {0, 1}κ → {0, 1}ρ, and Ext :
{0, 1}ρ × {0, 1}d → {0, 1}Lmsg .

Decryption: m̂ ← E .Dec(sk, c)
On input ciphertext c = (t, w, v), compute y := CDec(t).
If y �= ⊥, output m̂ = Ext(y, w) ⊕ v. Otherwise, output m̂ = ⊥.

Fig. 6. The one-time, bounded leakage encryption scheme, E .

Internal (hardcoded) state: k.

On input: r

– Output z = PRF.Eval(k,G(r)), where G is the same PRG used in E .Enc.

Fig. 7. This program Ck is obfuscated using iO and placed in the public key to be used
for encryption.

Theorem 4 (Informal.). Under appropriate assumptions, E is L-leakage
resilient against one-time key leakage where L = ρ − 2 log(1/ε) − Lmsg.
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Internal (hardcoded) state: k.

On input: t

– Output z = PRF.Eval(k, t).

Fig. 8. The circuit above is padded with poly(κ+ρ) dummy gates to obtain the circuit
Ck,κ+ρ. Ck,κ+ρ is then obfuscated using iO and placed in the secret key.
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Abstract. We propose generic constructions of public-key encryption
schemes, satisfying key-dependent message (KDM) security for projec-
tions and different forms of key-leakage resilience, from CPA-secure
private-key encryption schemes with two main abstract properties: (1)
a form of (additive) homomorphism with respect to both plaintexts
and randomness, and (2) reproducibility, providing a means for reusing
encryption randomness across independent secret keys. More precisely,
our construction transforms a private-key scheme with the stated prop-
erties (and one more mild condition) into a public-key one, providing:

– KDM-projection security, an extension of circular security, where the
adversary may also ask for encryptions of negated secret key bits;

– a (1 − o(1)) resilience rate in the bounded-memory leakage model of
Akavia et al. (TCC 2009); and

– Auxiliary-input security against subexponentially-hard functions.

We introduce homomorphic weak pseudorandom functions, a homomor-
phic version of the weak PRFs proposed by Naor and Reingold (FOCS
’95) and use them to realize our base encryption scheme. We in turn
obtain homomorphic weak PRFs from homomorphic hash-proof systems
(HHPS). We also show how the base encryption scheme may be realized
using subgroup indistinguishability (implied, in particular, by quadratic
residuosity (QR) and decisional composite residuosity (DCR)). As corol-
laries of our results, we obtain (1) the first multiple-key projection-secure
bit-encryption scheme (as well as the first scheme with a (1 − o(1))
resilience rate) based solely on the HHPS assumption, and (2) a uni-
fying approach explaining the results of Boneh et al. (CRYPTO ’08)
and Brakerski and Goldwasser (CRYPTO ’10). Finally, by observing
that Applebaum’s KDM amplification method (EUROCRYPT ’11) pre-
serves both types of leakage resilience, we obtain schemes providing at
the same time high leakage resilience and KDM security against any fixed
polynomial-sized circuit family.
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1 Introduction

A central goal in cryptography is to build a variety of cryptographic primi-
tives with a high degree of versatility from assumptions that are as general
as possible. Encryption in particular has been defined, starting with the sem-
inal paper of Goldwasser and Micali [23], with respect to successively strong
models of security. However, standard notions of encryption security (i.e., CPA
and different forms of CCA security [17,23,36,38]) fall short in certain appli-
cations, in particular, where the adversary may obtain some side informa-
tion about the internal secret parameters (e.g., the secret key) of the scheme.
This leakage of side information may occur due to some unforeseen attacks on
the scheme (side-channel attacks), or more fundamentally, when encryption is
used as a primitive in a complex protocol which may inherently expose inside
information. These observations have led to the definition and realization of
stronger notions of encryption security, such as security against different forms of
leakage [1,2,9,14,15,19,25,32,35], and key-dependent message (KDM) security
[3–5,7–10,27,31]. Our goal is to construct schemes realizing these security prop-
erties from general assumptions. Our results concern a basic model of leakage,
known as the bounded-leakage model [1] and a basic model of KDM security,
known as projection security (which is slightly stronger than circular security).
We will also consider a model of auxiliary-input security [14,15]. We first provide
some background on these models and then describe our results.

For all definitions below (unless otherwise stated) we assume we are encrypt-
ing the secret key (or functions thereof) bit-by-bit, i.e., the scheme is either bit
encryption, or there is a mapping from bits to two fixed plaintext messages.

KDM Security. KDM security is defined with respect to a function family F :
informally, an encryption scheme (G,E,Dec) is F -KDM(1) secure if no adver-
sary can distinguish between two oracles, where the first one, on input f ∈ F ,
returns Epk(f(sk)) (for a random (pk, sk) chosen at the beginning), and the
second one, regardless of the input, returns an encryption of a fixed message. A
basic form of KDM(1) security is 1-circular security, allowing the adversary to
obtain encryptions of any bit of the secret key. Another basic notion is projec-
tion security, which also allows the adversary to obtain encryptions of negations
of secret key bits. KDM(1) security generalizes naturally to the case of multiple
pairs of keys, giving rise to the notion of F -KDM(n)-security, where in a system
with the pairs of keys (pk1, sk1), . . . , (pkn, skn) a chosen function f ∈ F comes
with an index j, and as a result f(sk1, . . . , skn) is encrypted under pkj . For
example, n-projection security allows the adversary to see encryptions of any bit
of any secret key or its negation under (possibly) any other public key.

KDM security was originally defined by Black et al. [7], who built a fully-
KDM -secure scheme (i.e., KDM-security with respect to all functions) in the
random oracle model. In [8] Boneh et al. gave the first construction in the stan-
dard model, based on the DDH assumption, of a public-key scheme that was
proved KDM(n) secure with respect to affine functions. This positive result led
to a series of subsequent works, focusing on building affine-KDM(n) security
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under alternate specific assumptions (i.e., LPN/LWE [4], and QR/DCR and
more generally subgroup indistinguishability (SG) assumptions [9]), and on devel-
oping KDM-amplification methods for transforming schemes with basic forms
of KDM security into schemes with more sophisticated forms of KDM security
[3,5,10]. These amplification methods in turn employ techniques such as garbled
circuits [5], randomized encoding of functions [3] and entropic-KDM security [10]
to enable KDM transformations. Most relevant to our work are the results of
Applebaum [3], showing that, informally speaking, projection security is suffi-
cient to obtain KDM security with respect to any fixed circuit family whose size
is poly-bounded. Thus, a fundamental question regarding KDM security is to
study general assumptions sufficient for realizing projection security, which is
one of the main goals in our paper.

It turns out that realizing even 1-circular security for bit encryption is con-
siderably more difficult than the case where the secret-key space is a subset of
the plaintext space (so one can encrypt the whole key at once). In the latter
case, through simple modifications to the encryption algorithm, one can make
any CPA-secure scheme 1-circularly secure. Currently, the only constructions
that provide bitwise 1-circular security are those of [4,8,10], which are based
on specific assumptions. Also, it was shown in [41] that the implication that
“any CPA-secure bit encryption scheme is also 1-circularly secure” is not prov-
able using reductions that use both the adversary and the scheme in a blackbox
way.1 Moreover, under widely-believed assumptions, there exist CPA-secure bit-
encryption schemes that are not 1-circularly secure [30,41].

Leakage Resilience. Akavia et al. [1] introduce the notion of encryption secu-
rity against bounded memory leakage, wherein an adversary (after seeing the
public key) may obtain arbitrary information about the secret key, of the form
f(sk) for adaptively chosen f , as long as the total number of bits leaked does
not exceed an a priori fixed quantity, �. (We refer to the fraction �/|sk| as the
resilience rate.) They showed that Regev’s scheme [39] and the identity based
encryption scheme of [20], both under the LWE assumption, provide resilience
rate O(1/polylog(|sk|)). Naor and Segev [35] showed how to obtain encryption
schemes resilient to high leakage lengths (but with low resilience rates) from
any hash-proof system [13] and how to obtain schemes with (1 − o(1))-resilience
rates from d-linear assumptions; moreover, they showed that the circularly-secure
scheme of [8] provides a (1 − o(1)) resilience rate. Brakerski and Goldwasser [9],
under the subgroup indistinguishability assumption, implied in turn by the QR
and DCR assumptions, showed how to obtain encryption schemes that are affine-
KDM secure, with a (1 − o(1)) resilience rate.

Auxiliary-Input Security. In the auxiliary-input model [14,15] the adversary
is given some side information of the form h(pk, sk), and the goal is to guarantee
security as long as recovering sk from h(pk, sk) is sufficiently, computationally
hard. For public-key encryption Dodis et al. [14] build schemes based on LWE

1 Note that this is different from asking whether CPA-secure bit encryption implies
the existence of circularly-secure bit encryption.
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and DDH (where their DDH-based scheme is a variant of [8]) secure against
subexponentially-hard-to-invert functions. Brakerski and Goldwasser [9] present
schemes with the same level of auxiliary-input security under the subgroup indis-
tinguishability assumption.

1.1 Our Results (Assumptions and Constructions)

As pointed our earlier, the only constructions of circularly-secure/projection-
secure bit encryption (even 1-circular security) are based on specific assumptions
[4,8,9]. Moreover, the schemes of [8,9], referred to as BHHO and BG henceforth,
besides KDM security, also provide security against different forms of leakage
(as shown in [9,14,35]). Therefore, a natural question is whether there exist
more general constructions that encompass all these specific constructions.

We will try to answer these questions by building leakage-resilient, projection-
secure encryption schemes from CPA-secure private-key schemes with some
special properties, which we now informally describe. Then we will use this
private-key encryption abstraction as a stepping stone toward obtaining our
results under other primitives.

The first property is a generalized version of additive homomorphism, where
homomorphism is required to hold also with respect to randomness (let Hom
denote the associated function). The second property is what Bellare et al. [6]
call reproducibility, requiring that given a message m2, secret key sk2 and cipher-
text c = Esk1(m1; r), where sk1, m1 and r are unknown, one can efficiently
obtain Esk2(m2; r), i.e., there is a way to efficiently transfer the randomness from
one encryption to another, provided the secret key for the second encryption is
known.2 We denote this efficient computation by Rep(c,m2, sk2). Note that if
an encryption algorithm reveals its randomness in the clear, then reproducibil-
ity is trivially satisfied, e.g., the standard way of building CPA-secure private-
key encryption from a pseudorandom function family F , defining encryption as
Esk(m) = (r, Fsk(r)⊕m), provides reproducibility. In fact, we will later use this
idea to obtain our encryption primitive, based on the existence of homomorphic
weak pseudorandom functions. Note that for homomorphism, we are assuming
that the message and randomness spaces must form groups. For technical rea-
sons, we will also require the following property: from any encryption Esk(b; r),
for unknown sk, b, r, one can obtain Esk(1; 0), i.e., the encryption of bit 1 under
key sk based on the identity element of the randomness group.3 We see this as
a form of degenerate homomorphism.

We introduce a construction C (formalized in Sect. 3 and sketched in Sub-
sect. 1.4) that transforms a private-key scheme with the stated properties into a
public-key one and show the following result.

2 Both these conditions were used implicitly by Peikert and Waters as the main build-
ing blocks for their construction of lossy-trapdoor functions [37].

3 The actual assumption we need is substantially weaker. However, we leave it this way
for the sake of readability. In fact, under all concrete schemes we present, Esk(m; 0)
depends only on m and is independent of sk.
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Theorem (Informal). Assume that E = (G,E,Dec,Hom,Rep) is a CPA-secure
private-key, bit-encryption scheme that is degenerate additively homomorphic
and reproducible. Then the constructed scheme E ′ = C(E) is a public-key bit-
encryption scheme that satisfies the following properties.

– For any integer n, by appropriately choosing the system parameters, E ′ is
n-projection secure. (Formalized in Theorem 2)

– By appropriately choosing the system parameters, E ′ provides a (1 − o(1))-
leakage resilience rate. (Formalized in Theorem 3)

– E ′ provides auxiliary-input leakage resilience against subexponentially-hard
functions. (Formalized in Theorem 6 and Remark 1)

We will also discuss generalizations of the above construction to the case the
base scheme is not bit-encryption.

1.2 Realizations

From Homomorphic Weak Pseudorandom Functions. Pseudorandom
function families (PRFs) provide a convenient way of realizing reproducible
CPA-secure private-key encryption via the standard PRF-based encryption con-
struction. Towards providing homomorphism for a PRF-based scheme, we call
a function family homomorphic if both the domain and range of the underlying
functions form groups, and each function acts as a homomorphism. A stan-
dard PRF cannot, however, be homomorphic since with high probability a truly
random function will not be homomorphic and an adversary with the power to
(even) nonadaptively query a function oracle may easily exploit this fact. To pre-
vent this type of attack, we work with weak PRFs, defined by Naor and Reingold
[34], which allow an adversary to see values of the function only on a sequence
of random inputs. Formally, fk is weakly pseudorandom if no adversary can dis-
tinguish between (d1, fk(d1)), . . . , (dp, fk(dp)) and (d1, r1), . . . , (dp, rp), where all
di’s and ri’s are chosen independently at random. As we see next, not only is the
notion of homomorphic weak PRFs meaningful, it is naturally realizable under
specific assumptions. We also note that the standard construction of private-key
encryption from a PRF, when applied to homomorphic weak PRFs, results in a
scheme that satisfies the properties we need from our base encryption primitive
(Lemma 4).

For a DDH-hard group G with o = |G|, define F = {fk : G → G}k∈Zo
by

fk(g) = gk. This function family was introduced and proved to be weakly pseudo-
random by Naor, Pinkas and Reingold [33]; the proof of weak pseudorandomness
uses standard techniques related to random-self-reducibility of DDH. The fact
that fk is homomorphic is clear. Interestingly, by plugging this PRF into our
general construction, we obtain a scheme which is a close variant of the BHHO
scheme. We also give a realization of weak homomorphic PRFs under homomor-
phic hash-proof systems (HHPS) [13]: here the PRF is simply the family of hash
functions on valid points (Theorem 4). A corollary of our results is the following.
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Corollary. Under the HHPS assumption and for any integer n, there exists
a public-key encryption scheme that provides, at the same time, n-projection
security and a (1 − o(1))-leakage resilience rate.

To the best of our knowledge, our results give the first HHPS-based encryp-
tion scheme that provides (even individually) n-projection security and a
(1−o(1))-leakage resilience rate. (See Subsect. 1.4 for a comparison of our results
with those of the recent work of [42].) Naor and Segev [35] show how to construct
schemes with high tolerated leakage lengths (but low rates of leakage resilience)
from any hash-proof system, and also how to obtain schemes with (1 − o(1))
leakage-resilience rates from k-linear assumptions. Our results can be thought
of as complementing those of [35], by saying that if we add homomorphism to a
HPS, we obtain schemes with high resilience rates. Hazay et al. [26] show how to
obtain schemes withstanding high leakage lengths from any CPA-secure public-
key encryption (which is the minimal assumption). Their construction, however,
produces a scheme with low leakage-resilience rates, and does not imply our
leakage resilience result based on HHPS.

From Subgroup Indistinguishability. We show how to instantiate our
encryption primitive under the subgroup indistinguishability (SG) assump-
tion [9], of which QR and DCR are special cases (Lemma 5). Our current for-
mulation of homomorphic weak PRFs does not seem to be realizable under the
SG assumption. It is, however, possible to formulate a more relaxed version of
such PRFs, one that is still sufficient for realizing our encryption assumptions
and is also realizable under the SG assumption. We choose not to pursue this
direction since there is already an easy way to realize our encryption primitive
under the SG assumption.

We provide a summary of our results in Fig. 1.

DDH,
d-linear

HHPS

DCR,
QR

Subgroup
IND

Homomor-
phicweak

PRFs

Reprod.,
Homo-
morphic

SKE

Projection-
secure

Leakage-
resilient
PKE

Fig. 1. Summary of results (dashed arrows indicate known implications)

1.3 KDM Amplification and Leakage Resilience

We prove that Applebaum’s KDM amplification method [3] for obtaining KDM-
security for any fixed family of bounded circuits from projection security also
preserves both types of leakage resilience (Theorem 9). We were not, however,
able to show this for the KDM amplification methods of [5,10]. Applebaum’s
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transformation has the key property that it only modifies the encryption and
decryption algorithms of the base scheme, by applying randomized encoding and
decoding, which are fixed mappings constructed based on the target function
family, inside the encryption and decryption algorithms. This property facili-
tates reducing leakage resilience and auxiliary input security of the constructed
scheme to the same requirements (i.e., with the same parameters) on the base
scheme. As a corollary, for any fixed bounded function family F and any inte-
ger n, assuming the existence of private-key schemes with the stated proper-
ties, we obtain schemes that at the same time provide (1) F -KDM(n) security,
(2) a (1 − o(1))-leakage resilience rate, and (3) auxiliary-input security against
subexponentially-hard functions (Corollary 1).

1.4 Construction Technique and Further Discussion

Construction and Proof Techniques. We now give a sketch of the construc-
tion, C, and proof techniques. Fix E = (G,E,D,Rep,Hom) to be a private-key
bit-encryption scheme that provides reproducibility and the generalized homo-
morphism condition. The latter, using additive notation, states the following
condition that Hom(Esk(b1; r1), Esk(b2; r2)) = Esk(b1 + b2; r1 + r2). (Note that
because of our additive notation our message space is Z2, and 0 is the identity
element of the randomness space.)
Under E ′ = C(E) = (G′, E′,D′), the secret key is a random string s ← {0, 1}l

(for some poly l) and the public key is a tuple of ciphertexts

pk = (Esk(0; r1), . . . , Esk(0; rl), Esk(0; s · r)),

where sk, r1, . . . , rl are generated randomly under E and (·) denotes the inner
product of s and r = (r1, . . . , rl). In words, pk consists of l + 1 E-encryptions
of zero, where the first l encryptions are produced independently, while the
randomness value used for the last encryption is a “subset-sum” of the previ-
ous ones based on s. To encrypt a bit b we sample sk′ ← G(1λ) and output
(Esk′(0; r1), . . . , Esk′(0; rl), Esk′(b; s · r)), which can be computed from pk by
applying Rep component-wise. To decrypt (c1, . . . , cl, cl+1) under s, we return 0
iff cl+1 = Homs(c1, . . . , cl), where Homs(c1, . . . , cl) “sums” those ciphertexts ci

where ski = 1. The correctness of decryption follows.
Some notes are in order. Firstly, under G′, the secret key of the old scheme,

sk, is used only to compute the encryptions needed to form pk. Roughly, the
fact that s is independent of sk underlies the circular security of E ′. Secondly,
E′ has the somewhat unusual property that it calls G, with the returned values
comprising all the randomness used in encryption.

As a warm-up we first discuss CPA security of E ′. Consider a malformed
public key pkmal with rl+1 chosen independently at random (instead of being
s · r). CPA security under pkmal reduces to showing (pkmal, c0) ≡c (pkmal, c1),
where ≡c denotes computational indistinguishability, and

cb = (Esk′(0; r1), . . . , Esk′(0; rl), Esk′(b; rl+1)
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This in turn follows by appealing to the CPA security and reproducibility of E .
To complete the CPA-security proof, it would suffice to argue that a malformed
public-key is indistinguishable from a valid one, which follows information the-
oretically (from the leftover hash lemma) if l is large enough. Below we extend
the arguments given here to argue about KDM and leakage-resilience security
of the scheme.

KDM Security. A main idea used in the proof of 1-circular security (for sim-
plicity) is that if one possesses s, then the encryption of a bit b may be equiv-
alently computed as c = (c1, . . . , cl,Hom(ci1 , . . . , ciw , c′)), where sk′ ← G(1λ),
cj ← Esk′(0) for 1 ≤ j ≤ l, (i1, . . . , iw) are the indices of nonzero bits of s and
c′ = Esk′(b; 0) (i.e., c′ is the encryption of b where the randomness value is fixed
to the group identity 0.) Now we consider an intermediate hybrid, W1, in which
to encrypt the hth bit of s, we return (c1, . . . , cl,Hom(ci1 , . . . , ciw , c′)), where
now ch is an encryption of 1, but every other cj is an encryption of 0 (and c′

is an encryption of sh under the identity randomness). We will show that W1

provides a view computationally indistinguishable from the real view, W0; the
main idea is that any distinguisher between W0 and W1 can be reduced to an
adversary A that wins in a special vector-encryption game (performed under E),
in which A may adaptively issue fixed-length vectors of bits (of a certain form),
and in response to each vector query v, either v or the all-zero vector (depend-
ing on the challenge bit) is component-wise encrypted under a fresh secret key,
but by reusing randomness across each fixed component of vectors (that is the
ith component of each vector is always encrypted under a fixed random ri).
In Lemma 3 we show any A has a negligible advantage under this game, and
use this to prove the indistinguishability of W0 and W1. (It turns out this last
step also requires us to use degenerate homomorphism to compute Esk′(1; 0)
obliviously to sk′.) Having proved the indistinguishability of W0 and W1 we
notice that under W1 the reply to “encrypt the hth bit of s” is indeed formed as
(Esk′(0; r1), . . . , Esk′(0; rh−1), Esk′(1; rh), Esk′(0; rh+1), . . . , Esk′(0; rl), Esk(0; s ·
r)), and in particular is independent of s beyond s · r, which makes the rest of
the proof follow smoothly using ideas described for the CPA case.

The described techniques might be called simulated KDM encryptions, orig-
inally introduced in [8], used also in subsequent works [4,9], which show how to
simulate KDM responses under public information. The main challenge in our
setting is how to enable such properties under our general assumptions.

Leakage Resilience. For simplicity, we first outline the idea of the proof for the
case of nonadaptive leakage resilience (that is, the function f is queried before
the public key being published). To argue about nonadaptive leakage resilience,
one has to show D0 ≡c D1, where Db = (pk, cb, f(s)), and

cb = (Esk′(0; r1), . . . , Esk′(0; rl), Esk′(b; s · r))

Now since f is chosen independently of pk, it is also independent of r, which
allows us to apply the average-case version of the leftover hash lemma [16] (con-
sidering the inner product acts as a universal hash function) to replace s · r with
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a totally random rl+1; the rest of the proof follows from the fact that E allows
secure reuse of randomness. For the adaptive case, to handle the issue that f
depends on pk (and so we cannot apply random extraction directly), we use sim-
ilar techniques to those used by [35]: we consider a hybrid D′

b, which is similar to
Db, but in which the first l bits encrypted under sk′ are independently random
bits b1, . . . , bl (as opposed to zeros) and that the last bit is s · (b1, . . . , bl) + b.
By proving D′

b ≡c Db, for both b ∈ {0, 1}, (essentially using reproducibility and
semantic security of E) we can now apply the generalized leftover hash lemma by
taking (b1, . . . , bl) as the seed, s as the source and considering that bi’s are chosen
independently of f and r; this allows us to replace s ·(b1, . . . , bl) with a uniformly
random bit, proving D′

0 is statistically close to D′
1. The leakage resilience proof

follows. The proof for the auxiliary-input case essentially follows the same line of
arguments, except for replacing randomness extraction with pseudorandomness
extraction [22]. We refer the reader to the full proof.

Final Remarks. Instantiating the above construction using homomorphic weak
PRFs provides an improvement in efficiency, matching the same level of effi-
ciency as [8] if the base PRF (in turn) is instantiated under the corresponding
assumption. Technically, in this case, it would suffice to define the public key
to be (d1, . . . , dl, s · (d1, . . . , dl)), i.e., instead of putting the whole ciphertext in
each component, we only give the underlying randomness, which would have
been given out by the ciphertext itself in the clear. Also, to encrypt m under
pk = (d1, . . . , dl, dl+1), we simply output (Fsk(d1), . . . , Fsk(dl), Fsk(dl+1) + m),
where sk is a fresh PRF key.

While our results enable us to explain those of [8,9,35], regarding KDM secu-
rity and leakage resilience of the BHHO and BG schemes, they suffer from the
same limitations as those of [9], in that, in order to achieve KDM(n) security, we
must choose the parameters of our constructed scheme based on n. Boneh et al.
[8] get around this dependency by using the random self-reducibility of DDH and
strong key-homomorphism properties of DDH-based schemes. Similar dependen-
cies for (even specific) non-DDH-based assumptions occur in other settings as
well, e.g., [11]. We leave it as an open problem to resolve this dependency. We
should also mention that the BHHO and BG schemes were proved affine-KDM
secure; under the current assumptions, we were not able to extend our results to
the affine-KDM setting. Finally, we note that just the fact that we can build a
CPA-secure (as opposed to KDM secure) public-key scheme from our private-key
assumptions is not unheard of since even weaker forms of homomorphism are
known to be sufficient to bridge this gap [40].

Comparison with [42]. Concurrently with our work, Wee [42] recently showed
that the original HHPS-based encryption scheme of Cramer and Shoup [13]
provides F -KDM(1) security, where F is a function class defined based on
the underlying hash functions. (Specifically, following notation in Subsect. 6.2,
F = {fc,k : SK �→ K}, where fc,k(sk) = Λsk(c) + k.) We note that the basic KDM
setting of [42] is different from ours in that we are concerned with KDM-security
with respect to bit-projections of the secret key. Nevertheless, by instantiat-
ing that framework under specific DDH/SG-based HHPSs, [42] obtains schemes
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that are close variants of BHHO and BG. Moreover, the results of [42] also
explain the bit-affine-security of BHHO and BG, while our results only explain
the projection security. On the other hand, we obtain HHPS-based schemes that
are n-projection secure, while the results of [42] do not seem to extend to the
multiple-key setting (as noted there). Moreover, by using an encryption-based
primitive as our base assumptions, we are able to obtain generic constructions
under homomorphic weak PRFs, that is a weaker abstraction than the HHPS,
as we show.

Other Related Work. Choi and Wee [12] show how to construct lossy trapdoor
functions from homomorphic reproducible encryption by abstracting the matrix-
based construction of Peikert and Waters [37]. This shows one more application
of homomorphic weak PRFs as a general primitive. We mention, however, that
the main difference between our constructions and those of [12,37] is that in [12,
37] the trapdoor key of the constructed schemes consists of secret keys produced
under the base scheme, while in our setting, the main challenge (and novelty)
is to come up with a construction whose encryption function still somehow calls
that of the base scheme (in order to inherit its security), but in such a way that
the secret keys of the base scheme are not included in the constructed secret key.

2 Definitions

2.1 Standard Notation and Definitions

For a finite set S we use x ← S to denote sampling x uniformly at random from
S and denote by US or U(S) the uniform distribution on S. If D is a distribution
then x ← D denotes choosing x according to D. We denote the support set of
a distribution D by Sup(D), and write x ∈ D to indicate x ∈ Sup(D). The
notions of computational indistinguishability and statistical indistinguishability
are standard. We use ≡c to refer to computational indistinguishability, ≡s to
statistical indistinguishability and ≡ to identity of two distributions. We use the
term PPT in this paper in the standard sense. We will often omit the adjec-
tive PPT/efficient when discussing functions – by default we assume all such
functions are efficient.

We denote the length of x ∈ {0, 1}∗ by |x| and the ith bit of x, for 1 ≤ i ≤ |x|,
by xi. We denote the n-th Cartesian power of a set S by Sn. We call f : N → R

negligible if f(λ) < 1/P (λ), for any poly P and sufficiently large λ.
All groups are assumed to admit efficient group operations, and to be com-

mutative, but not necessarily cyclic, unless otherwise indicated.

2.2 Syntax of Encryption Schemes

We first start with some notation. We use A(a1, a2, . . . ; r) to denote the deter-
ministic output of randomized function A on inputs a1, a2, . . . and randomness
r, and use x ← A(a1, a2, . . .) to denote the distribution formed by first choosing
r uniformly at random and then outputting A(a1, a2, . . . ; r).
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Weassume that all cryptographic primitives (encryption,PRFs, etc.) discussed
in this paper, besides their usual algorithms, have a parameter-generation algo-
rithm that produces public parameters (e.g., a group) used by all other algorithms.
In situations where we talk about generating many keys it should be understood
that all keys are sampled under the same public parameters, which were generated
randomly at the beginning. We now give the syntax of encryption schemes.

A public-key encryption scheme E is given by algorithms (Param,G,E,Dec),
all taking as input a security parameter 1λ (that we make it explicit for Param
and G and implicit for other algorithms.) Param takes input 1λ, and outputs
a public parameter, par. The key-generation algorithm, takes 1λ and par and
outputs public/secret keys, (pk, sk) ← G(1λ, par). The encryption algorithm E,
takes a public key pk, a plaintext m ∈ Mλ (where Mλ is the plaintext space) and
randomness r ∈ Rλ (where Rλ is the randomness space), and deterministically
produces ciphertext c = Epk(b; r). Finally, the decryption algorithm takes a
secret key sk and ciphertext c, and deterministically outputs m = Decsk(c). For
correctness, we require, for every par ∈ Param(1λ), (pk, sk) ∈ G(1λ, param),
every m and c ∈ Epk(m), that Decsk(Epk(m)) = m. We typically use PKλ and
SKλ to refer to the public-key and secret-key spaces. Formally, (PKλ,SKλ) =
Sup(G(1λ)). We make the inclusion of Param implicit henceforth.

2.3 Key-Dependent-Message Security

In this paper we consider encryption schemes, whose generated secret keys are
always bitstrings, but whose plaintext space may or may not be the single-bit
space, e.g., it may be a group space. For the latter case, in order to make the
notion of bitwise encryption of the secret key meaningful, we assume that a
fixed mapping ({0, 1} → Mλ) is already in place. In the following, when we say
Epk(b), where b is a bit, if E is a bit encryption algorithm, then we are encrypting
the actual bit b, and otherwise, we are encrypting the element that b is mapped
to. We now proceed to describe the notion of KDM(n) security for an arbitrary
encryption scheme E = (G,E,Dec) (bit encryption or otherwise).

Assume that F = {Fλ}λ∈N is an ensemble of sets of functions, where for each
f ∈ Fλ, it holds that f : SKn

λ → {0, 1}.
We define F -KDM(n) security through the following F -KDM(n) game, played

between a challenger and an adversary. The challenger first chooses b ← {0, 1},
generates (pk1, sk1), . . . , (pkn, skn) ← G(1λ), and gives pk1, . . . , pkn to the
adversary. The adversary A, given pki’s, can repeatedly and adaptively, for
1 ≤ i ≤ n, make queries of the form (i, f), where f ∈ Fλ, or of the form
(i,m), where m ∈ Mλ, and in return,

– If b = 0, the challenger returns Epki
(f(sk1, . . . , skn)) in response to (i, f) and

Epki
(m) in response to (i,m); and

– If b = 1, the challenger returns Epki
(0).

A finally outputs a bit b′. We define the F -KDM(n) advantage of A as

AdvF -KDM(n)
(A) = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| ,
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where the probabilities are computed over the coins of A and of the challenger.
We say that E is F -KDM(n)-secure if for any A in the above game, it holds

that AdvF -KDM(n)
(A) = negl.

Assume SKλ = {0, 1}l(λ) and let l = l(λ). For 1 ≤ i ≤ n and 1 ≤ j ≤ l,
define Seli,j : SKn

λ �→ {0, 1} to be the function that on input (sk1, . . . , skn)
returns the jth bit of ski. Similarly, define NSeli,j to be the function that on
input (sk1, . . . , skn) returns the negation of the jth bit of ski. Finally, define
Sλ = {Seli,j : 1 ≤ i ≤ n, 1 ≤ j ≤ l} and Ŝλ = {NSeli,j : 1 ≤ i ≤ n, 1 ≤ j ≤ l}.
We now give the following definitions.

– We call E n-circularly secure if E is F -KDM(n) secure, where Fλ = Sλ.
– We call E n-projection secure if E is F -KDM(n) secure for Fλ = Sλ ∪ Ŝλ.

Semantic Security for Private-Key Encryption. For a private-key encryp-
tion scheme (G,E,Dec) it is convenient to work with the following definition of
CPA security. (1) The challenger chooses b ← {0, 1} and private key sk ← G(1λ).
(2) The adversary submits a sequence of messages (m1, . . . ,mp), where p = p(λ)
is an arbitrary function. (3) The challenger returns (Esk(m1), . . . , Esk(mp)) if
b = 0, and (Esk(0), . . . , Esk(0)), otherwise. (4) The adversary returns a bit b′.
We define the CPA-security advantage of the adversary as

|Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| ,

and call the scheme CPA secure if all adversaries have negligible advantage.

2.4 Leakage Resilience

We define the notion of leakage resilience. For £ = £(λ), we say that the
public-key encryption scheme E = (G,E,Dec) is £-length leakage resilient if, for
any adversary A, the £-leakage-advantage of A, Adv£-leak(A), defined via the
following game, is negligible.

– Setup: The challenger generates (pk, sk) ← G(1λ) and gives pk to A.
– Leakage queries: A sends function f : SKλ → {0, 1}∗ to the challenger, where

|f(sk)| ≤ £, and receives, in response, f(sk).
– Challenge: A submits (m0,m1) ∈ M2

λ, and the challenger, samples b ← {0, 1},
and returns Epk(mb) to A. Finally, A returns an output bit b′.

We define Adv£-leak(A) = |Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| . We say that E is
r-rate leakage resilient (or has resilience rate r) if E is r · log |SK|-length leakage
resilient.

Finally, we note that restricting A in the above game to a single leakage
query is without loss of generality. In particular, the security definition does
not become stronger if A is allowed to adaptively make multiple leakage queries
provided that the total length of the bits leaked is bounded by £(λ). The proof
of this fact is straightforward; see [1] for a proof.
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2.5 Properties of the Base Scheme

We give the definitions of the main properties that we need from the base private-
key encryption scheme.

Definition 1. A private-key encryption scheme E = (G,E,Dec) provides repro-
ducibility (or is reproducible) if there is an efficient function Rep such that for
any sk, sk′ ∈ G(1λ), r ∈ Rλ and m1,m2 ∈ Mλ,

Rep(Esk(m1; r),m2, sk
′) = Esk′(m2; r).

Definition 2. Let E = (G,E,Dec) be a private key encryption scheme where
both (Rλ,+) and (Mλ,+) form groups. Then E is additively homomorphic with
respect to plaintexts and randomness (PR-additively homomorphic) if there is
an efficient function Hom such that for every sk ∈ G(1λ), m1,m2 ∈ Mλ, and
r1, r2 ∈ Rλ,

Hom (Esk(m1; r1), Esk(m2; r2)) = Esk(m1 + m2; r1 + r2).

We extend the notation of Hom(·) to define Hom(c1, . . . , cm) in the straight-
forward way. For technical reasons, we also need the following condition: for
any sk, m, r and m′, given only m′ and Esk(m; r), we can form the ciphertext
Esk(m′, 0), where 0 denotes the identity element of Rλ. We sometimes refer to
this property as the degenerate condition.

Henceforth, when discussing encryption schemes, we will use “homomorphic” as
shorthand for “PR-additively homomorphic.”

3 Construction

We first fix some notation. Throughout this section we will be working with
additive notation for groups with 0 denoting the identity element. For g
= (g1, . . . , gp) ∈ G

p and b = (b1, . . . , bp) ∈ {0, 1}p we define b ·g = b1 ·g1 + . . .+
bp · gp ∈ G, where, 0 · g = 0, and for n ∈ N, we define n · g = g + (n − 1) · g.

We present a generic construction that transforms a reproducible, homomor-
phic private-key encryption scheme into a public-key bit-encryption scheme. This
always produces a bit-encryption scheme even if the base scheme is not. In the
full version we show how to adjust the construction, to maintain the plaintext
space, at the cost of additional syntactic assumptions (which are satisfied by our
specific instantiations).

For simplicity, we present (and prove the security of) the bit-encryption con-
struction for the case where the base scheme is also bit encryption.

Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-encryption
scheme providing reproducibility (with the associated function Rep) and homo-
morphism (with the associated function Hom). Recall for homomorphism, both
the message space, {0, 1}, and the randomness space, Rλ, form groups, which
implies the plaintext group is just Z2. We now present the construction.
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Construction 1 (Single bit encryption): Let E = (G,E,Dec,Hom,Rep) be as
above and let l = l(λ) be a value that we instantiate later.

– Key generation G′: Choose the secret key as s ← {0, 1}l and the public key as
(Esk(0; r1), . . . , Esk(0; rl), Esk(0; s · r)), where sk ← G(1λ), r1, . . . , rl ← Rλ

and r = (r1, . . . , rl).
– Encryption E′: To encrypt bit b under public key (c1, . . . , cl, cl+1), do the

following: choose sk′ ← G(1λ) and return (c′
1, . . . , c

′
l, c

′
l+1), where c′

i =
Rep(ci, 0, sk′), for 1 ≤ i ≤ l, and c′

l+1 = Rep(cl+1, b, sk
′).

– Decryption Dec′: To decrypt (c′
1, . . . , c

′
l, c

′
l+1) under secret key s, letting

(i1, . . . , iw) be the indices of non-zero bits of s, output 0 if c′
l+1 =

Hom
(
c′
i1

, . . . , c′
iw

)
, and 1 otherwise.

The completeness of the scheme follows immediately. A few comments are in
order. First, the encryption algorithm of the constructed scheme uses that of the
base scheme, but by reusing the randomness values of the ciphertexts given in
the public key. Second, the constructed decryption function does not need any
secret keys of the base scheme, e.g., sk, for its computation. Roughly, this is why
proving circular security for the constructed scheme should not be much harder
than proving CPA security. In our security proofs, we will rely on the fact that
we may use the homomorphism properties of the base primitive to form public
keys and encryptions in alternate, equivalent ways as described below.

Proposition 1 1. The public key may be computed as (c1, . . . , cl, cl+1), where
ci ← Esk(0), for 1 ≤ i ≤ l, and cl+1 = Hom (ci1 , . . . , ciw), where (i1, . . . , iw)
are the indices of non-zero bits of s.

2. Let s, sk′ and c′
1, . . . , c

′
l be as in the definition of encryption in Construc-

tion 1. Then, c′
l+1 may be computed as c′

l+1 = Hom(ci1 , . . . , ciw , Esk′(b; 0)),
where (i1, . . . , iw) are the indices of non-zero bits of s.

4 Proof of Projection Security

In this section we give the proof of projection security of our constructed scheme.
This section is organized as follows. In Subsect. 4.1 we reviews some facts related
to entropy which are needed by our proofs. In Subsect. 4.2 we introduce an
intermediate lemma that will be used in the proofs of our main theorems. Finally,
in Subsect. 4.3 we give the proof for projection security.

4.1 Information-Theoretic Tools

We denote the min-entropy of a distribution D by H∞(D), defined as H∞(D) =
mind∈D

[
log( 1

Pr[D=d] )
]
. We also need to work with the notion of average min

entropy, formalized by Dodis et al. [16], which measures the expected unpre-
dictability of X given a random value y of Y . Formally,

H̃∞(X|Y )=−log
(
Ey←Y (2−H∞(X|Y =y))

)
=−log

(
Ey←Y (max

x
Pr[X=x|Y =y])

)
.
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A well-known fact about average-min entropy is a special form of the chain
rule, saying that conditioning on a random variable Y , the average min entropy
decreases by at most the logarithm of the support size of Y .

Lemma 1 [16]. For any (X,Y,Z) it holds that H̃∞(X|Y,Z) ≥ H̃∞(X|Z) −
log |Sup(Y )|.

A family of functions {h : D → R}h∈H is called universal if for all x1, x2 ∈ D,
with x1 �= x2, it holds that

Pr
h←H

[h(x1) = h(x2)] ≤ 1
|R| .

We typically denote a family of functions {h : D → R}h∈H as a single function
H : D×H → R, where H(d, h) = h(d). We have the following fact, showing that
universal hash functions are good average-case extractors.

Lemma 2 [16]. If Ext : {0, 1}n × W → W ′ is a family of universal hash
functions, then for any pair of random variables (D,X), where D takes values
in {0, 1}n, it holds that

Δ ((Ext(D,S), S,X), (R,S,X)) ≤ 1/2
√

2−H̃∞(D|X)|W ′|,

where S is uniform over W , R is uniform over W ′ and Δ denotes statistical
distance. We stress that S is independent of (D,X).

4.2 A Useful Lemma

We begin by introducing a game that will be used in proving our main results.
Intuitively, the following experiment corresponds to a vector-encryption game,
in which an adversary may interactively issue vectors of bits (of certain forms) to
be encrypted, and each vector is component-wise encrypted under a fresh secret
key while reusing randomness across each fixed component of vectors.

The Randomness-Sharing (RS) Game. Let (G,E,Dec) be a private-key
bit-encryption scheme. As some notation, for l ∈ N, we let el

i, for 1 ≤ i ≤ l,
be the the vector of size l which has 1 in the ith position and 0 everywhere
else, and e′l

i, for 1 ≤ i ≤ l, be the vector of size l which has 1 in both its
ith position and last position, and 0 everywhere else. We let 0l be the all-0
vector of size l. Finally, for b = (b1, . . . , bl) and r = (r1, . . . , rl), we define
Esk(b; r) = (Esk(b1; r1), . . . , Esk(bl; rl)).

The game is parameterized over l = l(λ) and is played as follows.
The challenger chooses b ← {0, 1} and it samples r = (r1, . . . , rl) ← Rl

λ.
Then the game proceeds as follows: the adversary repeatedly and adaptively
makes queries of the form e, for e ∈ {0l} ∪ {el

1, . . . , e
l
l} ∪ {e′l

1, . . . , e
′l
l}, and in

response to each such query, the challenger samples sk ← G(1λ) (using fresh
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coins for each query) and returns Esk(e; r) if b = 0, and Esk(0l; r), otherwise.
Finally, the adversary outputs a bit b′ and its advantage is defined as:

Advp-rs (A) = Pr [b′ = 1 | b = 0] − Pr [b′ = 1 | b = 1] .

The following lemma is used extensively in our subsequent proofs.

Lemma 3. Assume E = (G,E,Dec,Rep) is a CPA-secure, private-key bit-
encryption scheme that provides reproducibility. For any polynomial functions
l(·), any adversary A in the l-RS game has a negligible advantage.

Proof. First, we introduce the following notation. For b = (b1, . . . , bl) and c =
(c1, . . . , cl), define

Rep(c,b, sk) = (Rep(c1, b1, sk), . . . , Rep(cl, bl, sk)) .

Assuming that A makes t = t(λ) queries q1, . . . ,qt we define the hybrid Wi, for
1 ≤ i ≤ t + 1, as follows: first generate randomness vector r = (r1, . . . , rl) ← Rl

and respond to queries as follows: in response to the j’th query, for 1 ≤ j < i,
generate skj ← G(1λ) and return Eskj

(qj ; r) (i.e., encryption of the actual
vector); and in response to the w’th query, for w ≥ i, generate skw ← G(1λ)
and return Eskw

(0l; r) (i.e., encryption of the all-zero vector). Note that W1 and
Wt+1 match exactly the view of the adversary produced under the RS game
when b = 1 and b = 0, respectively. Thus, for the rest of the proof, we show how
to reduce an adversary that can distinguish between Wi and Wi+1, for some
1 ≤ i ≤ t, to an adversary against the CPA security game; the whole proof then
follows using a standard hybrid argument.

Assume that A′ can distinguish between Wi and Wi+1 with a non-negligible
advantage. Noting that Wi and Wi+1 only differ in the way that the answer
to the ith query is made, and that each query vector can take at most 2l + 1
different values, we guess the ith query vector (that is going to be issued by A′),
call the LOR-CPA oracle, which is parameterized over an unknown secret key, on
the guessed vector to receive c = (c1, . . . , cl), and start simulating A′ as follows:
in response to the j’th query, qj , for 1 ≤ j < i, we generate skj ← G(1λ) and
return Rep(c,qj , skj); in response to the ith query we return c (if our guess for
qi was incorrect, we stop and return a random bit); and in response to the w’th
query, qw, for w > i, we generate skw ← G(1λ) and return Rep(c,0l, skw). Now
it is easy to see that, if our guessing for the ith query was correct, depending
on whether the CPA-challenge bit was zero or one, the resulting experiment
matches exactly either Wi or Wi+1. This completes the proof. �

4.3 Proof of Projection Security

We first give the proof of 1-projection security of our scheme, building on tech-
niques from [9], which in turn generalize the DDH-based techniques of [8].

Theorem 1. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key
bit-encryption scheme providing degenerate homomorphism and reproducibil-
ity. Then, by taking l = l(λ) = ω(log λ) + log (|Rλ|), the scheme built in
Construction 1 is 1-projection secure.
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Proof. To represent the 1-projection game more concisely, we denote:

– enc-secret(i) encrypt the ith bit of the secret key; and
– enc-secret(̄i) encrypt the negation of the ith bit of the secret key.

We introduce a series of hybrid games and show no adversary can distin-
guish between any two adjacent games. The first game corresponds to the real-
encryption circular-security game, while the last game is the one where we always
encrypt 0. Letting xi be the adversary’s output in Game-i, we write Game-i ≡G

Game-j to indicate |Pr[xi = 1] − Pr[xj = 1]| = negl. In all these games, when-
ever we write, say, sk′ ← G(1λ) we mean that sk′ is chosen freshly, so we may
keep using the same variable sk′ inside each game whenever we are producing
a new key. Let R = Rλ for the following discussion. Also, recall the notation
Esk(b, r) introduced in Subsect. 4.2. Below we write ei as shorthand for el

i.

Game-0 : Real Encryption. This game provides the adversary with a view that is
identical to that under the projection security game in which the challenge bit
is zero. The identical view is produced by using the algorithm Hom to produce
the public key and to reply to encryption queries (See Proposition 1).

Generate r = (r1, . . . , rl) ← Rl and s ← {0, 1}l and let (i1, . . . , iw) be the
indices of nonzero bits of s. Then,

– the adversary is given (c1, . . . , cl,Hom(ci1 , . . . , ciw)) as the public key, where

(c1, . . . , cl) = Esk(0l; r)

and sk ← G(1λ).
– In response to enc-secret(i) we return (c′

1, . . . , c
′
l,Hom(c′

i1
, . . . , c′

iw
, Esk′

(si; 0))), where
(c′

1, . . . , c
′
l) = Esk′(0l; r)

and sk′ ← G(1λ). Again we emphasize sk′ is chosen freshly for each query.
– In response to enc-secret(̄i) we return (c′′

1 , . . . , c′′
l ,Hom(c′′

i1
, . . . , c′′

iw
,

Esk′′(s̄i; 0))), where
(c′′

1 , . . . , c′′
l ) = Esk′′(0l; r)

and sk′′ ← G(1λ).

Game-1: In this game we handle key generation exactly as in Game-0, but we
reply to enc-secret queries in a special way. Formally, generate r = (r1, . . . , rl) ←
Rl and s ← {0, 1}l and let (i1, . . . , iw) be the indices of nonzero bits of s. Then,

– the adversary is given (c1, . . . , cl,Hom(ci1 , . . . , ciw)) as the public key, where
(c1, . . . , cl) = Esk(0l; r), for sk ← G(1λ).

– In response to enc-secret(i) we return (c′
1, . . . , c

′
l,Hom(c′

i1
, . . . , c′

iw
,

Esk′(si; 0))), where (c′
1, . . . , c

′
l) = Esk′(ei; r) and sk′ ← G(1λ).

– In response to enc-secret(̄i) we return (c′′
1 , . . . , c′′

l ,Hom(c′′
i1

, . . . , c′′
iw

,

Esk′′(s̄i; 0))), where (c′′
1 , . . . , c′′

l ) = Esk′′(ei; r) and sk′′ ← G(1λ).
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We claim that the difference between Game-0 and Game-1 can be simu-
lated through the l-RS game. The reason is if we know s, then we can compute
Hom(c′

i1
, . . . , c′

iw
, Esk′(si; 0)) from (c′

1, . . . , c
′
l) even if we do not have sk′: note

that here we are using the degenerate condition of the homomorphism prop-
erty. A similar argument holds with respect to c and c′′. Moreover, for every
1 ≤ j ≤ l, the ciphertexts cj , c′

j and c′′
j were formed under the same random-

ness. Thus, we can reduce any distinguisher betweenGame-0 and Game-1 to an
l-RS game adversary A as follows: A samples s ← {0, 1}l and lets (i1, . . . , iw) be
the indices of nonzero bits of s; it calls its RS-oracle on 0l to receive (c1, . . . , cl)
and then returns (c1, . . . , cl,Hom(ci1 , . . . , ciw)) as the public key; it responds to
enc-secret(i) by first calling its oracle on ei to get (c′

1, . . . , c
′
l) and then return-

ing (c′
1, . . . , c

′
l,Hom(c′

i1
, . . . , c′

iw
, Esk′(si; 0))); it responds to enc-secret(̄i) in a

similar way. Thus, by Lemma 3 we obtain that Game-0 ≡G Game-1.
Finally, note that under this game, the distribution of the public key and the

distributions of responses to enc-secret(i)’s and to enc-secret(̄i)’s are:
(
Esk(0l; r), Esk(0; rl+1)

)
public key

(Esk(ei; r), Esk′(0; rl+1)) enc-secret(i)
(Esk(ei; r), Esk′′(1; rl+1)) enc-secret(̄i), (1)

where sk, sk′, sk′′ ← G(1λ), s ← {0, 1}l and r = (r1, . . . , rl) ← Rl and rl+1 =
s · r. In particular, note that the bits of s never appear as a plaintext (under E)
in Eq. 1, and the only place we use s is to form rl+1.

Game-2: This game proceeds exactly as in Game-1, except we now sample rl+1

independently of all other ri’s. Namely, we sample (r1, . . . , rl, rl+1) ← Rl+1 and
run the game by forming the public key and responses to the adversary’s queries
exactly as in Eq. 1. Notice that the entire game can be simulated by only knowing
(r1, . . . , rl, rl+1): we generate the public key and we answer to enc-secret queries
by sampling sk, sk′ and sk′′ on our own and forming the outputs as spelled out
by Eq. 1. (Here we are exploiting the fact that the bits of s never appear as a
plaintext under E in Eq. 1.) Thus, since l = ω(log λ) + log (|R|) and the inner
product is a family of universal hash functions, by Lemma 2 (indeed by the
Leftover Hash Lemma, which is a special case of Lemma 2) we obtain that the
statistical distance between (r, s · r) and a tuple chosen uniformly at random
from Rl

λ is at most
√

1/2ω(log λ) = negl(λ), and thus Game-1 ≡G Game-2.

Game-3: In this game we again sample rl+1 independently of other ri’s, but reply
to all queries as “encryptions” of zero. That is, we generate (r1, . . . , rl, rl+1) ←
Rl+1 and form the public key and responses to the adversary’s queries as follows:

(Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)) public key
(Esk′(0; r1), . . . , Esk′(0; rl), Esk′(0; rl+1)) response to all queries (2)

where, again, sk′ is sampled freshly for each query. Now using the fact that all
ri’s are sampled independently, and also that sk′ is generated using fresh coins
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each time, we obtain that any adversary that can distinguish between Game-2
and Game-3 can be reduced to break the (l + 1)-RS security of E (which is a
contradiction by Lemma (3)). Thus, Game-2 ≡G Game-3.

Game-4: In this game we change back the distributions of ri’s to the original,
but answer to all the adversary’s queries as encryptions of zero. That is, we
generate s ← {0, 1}l, r = (r1, . . . , rl) ← Rl, let rl+1 = s · r, and form the public
key and responses to the adversary’s queries as follows:

(Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)) public key
(Esk′(0; r1), . . . , Esk′(0; rl), Esk′(0; rl+1)) responses to all queries (3)

Now, similarly to our proof of Game-1 ≡G Game-2, since Game-3 and Game-4
differ only in the way that (r1, . . . , rl, rl+1) is generated, and again using the fact
that l = ω(log λ) + log (|R|), by applying Lemma 2, we conclude that Game-3
≡G Game-4. This completes the proof. �

We give the statement of n-projection security below, and give the proof in
the full version [24].

Theorem 2. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-
encryption scheme providing degenerate homomorphism and reproducibility. For
any constant c > 1, by taking l = n log (|Rλ|) + ω(log λ), the scheme built in
Construction 1 is n-projection secure.

5 Proof of Leakage Resilience

The following theorem shows the leakage resilience property of our scheme.

Theorem 3. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key
bit-encryption scheme providing degenerate homomorphism and reproducibility.
Then, the scheme built in Construction 1 is (l − log |Rλ| − u)-length leakage
resilient, for any u ∈ ω(log λ). Moreover, by taking l = ω(log |Rλ| + u), the
constructed scheme achieves a (1 − o(1)) resilience rate.

Proof. We first show the second statement of the theorem, assuming the first
statement is true. Fix u ∈ ω(log λ). We know that the scheme provides (l −
log |Rλ| − u)-length leakage resilience, and so its resilience rate is

ω (log |Rλ| + u) − log |Rλ| − u

ω(log |Rλ| + u)
= 1 − log |Rλ| + u

ω(log |Rλ| + u)
= 1 − o(1). (4)

To prove the first statement, first we assume without loss of generality that the
adversary always outputs (0, 1) as its challenge query, since otherwise the challenge
ciphertext can be simulated by the adversary itself. We prove the first statement
through a series of games, where the first game matches the actual leakage game
(under a fixed challenge bit b), and in the last game the viewof the adversary is inde-
pendent of the challenge bit b. We conclude the proof by showing that the views of
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the adversary under any two adjacent games under the same b ∈ {0, 1} are com-
putationally indistinguishable. Thus, fix b ∈ {0, 1} for the rest of the proof. In all
game below, we let f be the leakage query of the adversary.

Game-0: In this game we reply to the adversary’s queries exactly as in the
actual leakage game, where the challenge bit is b. Thus, at the end of the game,
the view of the adversary is (c1, . . . , cl, cl+1, f(s), c′

1, . . . , c
′
l, c

′
l+1), produced as

follows: s ← {0, 1}l, r = (r1, . . . , rl) ← Rl
λ, rl+1 = s · r, sk ← G(1λ), sk′ ←

G(1λ), ci = Esk(0; ri), for 1 ≤ i ≤ l + 1, c′
j = Esk′(0; rj), for 1 ≤ j ≤ l, and

c′
l+1 = Esk′(b; rl+1).

Notice that the view of the adversary may identically be produced as

(c1, . . . , cl, c
′′
l+1, f(s), c′

1, . . . , c
′
l, c

′′′
l+1), (5)

where all ci’s and c′
i’s are produced as above, and c′′

l+1 = Hom(ch1 , . . . , chw
)

and c′′′
l+1 = Hom(c′

h1
, . . . , c′

hw
, Esk′(b; 0)) with (h1, . . . , hw) being the indices of

non-zero bits of s.

Game-1: In this game we generate the secret key, the public key and the response
to the leakage query exactly as in Game-0, but we reply to the encryption chal-
lenge query in a special way. Formally, choose s ← {0, 1}l, r = (r1, . . . , rl) ← Rl

λ,
let (h1, . . . , hw) be the indices of non-zero bits of s, and

– form the public key as (c1, . . . , cl, c
′′
l+1), where sk ← G(1λ), ci = Esk(0; ri),

for 1 ≤ i ≤ l, and c′′
l+1 = Hom(ch1 , . . . , chw

);
– reply to the leakage query f with f(s);
– return (c′

1, . . . , c
′
l, c

′′′
l+1) as the challenge ciphertext, where b = (b1, . . . , bl) ←

{0, 1}l, sk′ ← G(1λ), c′
j = Esk′(bj ; rj), for 1 ≤ j ≤ l, and

c′′′
l+1 = Hom(c′

h1
, . . . , c′

hw
, Esk′(b; 0)).

To show Game-0 ≡G Game-1, note that both games can be simulated in
exactly the same way by only having D = (c1, . . . , cl, c

′
1, . . . , c

′
l) (see Eq. 5);

this can be done by sampling s by ourselves and forming c′′
l+1 and c′′′

l+1 from,
respectively, (c1, . . . , cl) and (c′

1, . . . , c
′
l) by using the degenerate homomorphic

property of E . Further, since E is reproducible, in both games the distribution
of (c1, . . . , cl) can be generated from (c′

1, . . . , c
′
l) alone. Now since the distribu-

tions produced for (c′
1, . . . , c

′
l) under the two games are computationally indis-

tinguishable, which is followed by semantic security (recall that in Game-0, c′
i’s

are encryptions of zeros and in Game-1, they are encryptions of the bits of b),
we get that the distributions produced for D under the two games are computa-
tionally indistinguishable. Thus, we conclude Game-0 ≡G Game-1. Notice that,
under Game-1, the view of the adversary is

(
Esk(0; r1), . . . , Esk(0; rl), Esk(0; s · r), f(s), (6)

Esk′(b1; r1), . . . , Esk′(bl; rl), Esk′(bl+1 + b; s · r)),
where bl+1 = s · b.
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Game-2: This game runs exactly as in Game-1 (Eq. 6), except that now we
generate bl+1 ← {0, 1}, i.e., independent of b = (b1, . . . , bl). First, notice that
both Game-1 and Game-2 can be simulated in exactly the same manner by only
having

Dis = (r, s · r,b, bl+1, f(s)). (7)

The only difference between Dis from Game-1 to Game-2 is that under Game-1
we set bl+1 = s · b, while in Game-2 we sample bl+1 freshly; the other parts of
Dis are generated in the same way under both games: that is, s ← {0, 1}l and
r = (r1, . . . , rl) ← Rl

λ. Thus, to show the indistinguishability between these two
games, it suffices to show that the distributions of Dis under the two games are
indistinguishable. We have,

H̃∞(s|r, s · r, f(s)) ≥ H̃∞(s|r, f(s)) − log|Rλ|
= H̃∞(s|f(s)) − log|Rλ|
≥ H∞(s) − l + log |Rλ| + u − log|Rλ|
= u = ω(log λ).

Now, since r is independent of b, and also that f is independent of b (since
f is queried before seeing the challenge ciphertext) we may use Lemma 2 to
deduce that the distribution of Dis under Game-1 and Game-2 are statistically
indistinguishable. To apply Lemma 2, take D = s, S = b and X = (r, s ·r, f(s)).
Notice that Game-2 produces the same views for the adversary under b = 0 and
b = 1 (since bl+1 is chosen uniformly at random and hides the value of b), and
hence the proof is complete. �

6 Realizations

We show how to realize our base encryption primitive under various number-
theoretic assumptions. In Subsect. 6.1 we formulate an abstraction, called homo-
morphic weak pseudorandom functions, and use them to realize our encryption
primitive. Then in Subsect. 6.2 we give realizations of such pseudorandom func-
tions using homomorphic hash-proof systems. Finally, in Subsect. 6.3 we show
how to realize our encryption primitive under subgroup indistinguishably.

6.1 Realizations from Homomorphic Weak PRFs

We introduce the notion of homomorphic weak pseudorandom functions (PRFs),
which is a homomorphic version of the notion of weak PRFs, introduced by Naor
and Reingold [34].

Let K = {Kλ}λ∈N, D = {Dλ}λ∈N and R = {Rλ}λ∈N be ensembles of sets.
For each security parameter λ and each k ∈ Kλ we have an associated function
fk : Dλ → Rλ. We let Fλ = {fk | k ∈ Kλ} and F = {Fλ}λ∈N. The following is
the definition of weak pseudorandomness for a function family.
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Definition 3. [34] We call F a weak pseudorandom function family if for any
polynomial function p = p(λ), it holds that DS1 ≡c DS2, where

DS1 ≡ (d1, r1), . . . , (dp, rp)
DS2 ≡ (d1, fk(d1)), . . . , (dp, fk(dp)),

for k ← Kλ, d1, . . . , dp ← Dλ and r1, . . . , rp ← Rλ.4

Note that a PRF in the standard sense is trivially a weak PRF.
Let F be as above. We call F homomorphic if for every λ ∈ N, both Dλ and

Rλ are groups, and that for every k ∈ Kλ, the function fk is a homomorphism
from Dλ to Rλ.

Now we show that the standard method of constructing CPA-secure private-
key encryption from a PRF, when applied to a homomorphic weak PRF, results
in the kind of encryption primitive we need.

Lemma 4. Assuming the existence of a homomorphic weak pseudorandom func-
tion family, there exists a CPA-secure private-key encryption scheme which is
degenerately homomorphic and reproducible.

Proof. Let F be a homomorphic weak PRF with the associated set parameters
given above (i.e., Kλ, etc.). Construct E = (G,E,Dec), with plaintext space Rλ

and randomness spaces Dλ as follows: G(1λ) returns k ← Kλ; Ek(p1; d1) returns
(d1, fk(d1)+p1); and Deck(d, r) returns r−fk(d). CPA-security, homomorphism
and reproducibility of E are clear. Finally, note that since fk(0) = 0, we have
Ek(p; 0) = (0, p), which verifies the degenerate case of homomorphism. �

6.2 Homomorphic Hash-Proof Systems to Homomorphic Weak
PRFs

We first review the notion of a homomorphic hash-proof system (HHPS), origi-
nally defined in [13]. Then we realize homomorphic weak PRFs using an HHPS.

A HHPS HHPS = (Param,Priv,Pub) is described as follows. The randomized
setup algorithm Param(·) takes as input a security parameter 1λ and outputs
public parameters HP = (C,Cv,W,K,SK,PK, μ : SK → PK,Λ : SK × C → K),
where, C is called the set of ciphertexts, Cv ⊆ C the set of valid ciphertexts, W
the set of witnesses, K the set of plaintexts, SK the set of secret keys and PK the
set of public keys. We should point out that all these aforementioned sets are
indeed descriptions of their actual sets. Each c ∈ Cv admits a witness w ∈ W of
its membership in Cv, meaning that there exists a PPT relation R such that

c ∈ Cv ⇔ ∃w ∈ W s.t. R(c,w) = 1.

We assume it is efficiently possible to generate a uniform element from Cv along
with a corresponding witness, and also to sample uniformly from SK and K.
4 The domain and the key spaces may themselves come with an associated distribution,

but we leave this point implicit for simplicity.
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The efficient private evaluation algorithm Priv takes as input sk ∈ SK and
c ∈ C, and deterministically computes Privsk(c) = Λ(sk, c). The efficient public
evaluation algorithm Pub, takes as input pk = μ(sk), c ∈ Cv and a witness w
for c, and deterministically computes Pubpk(c,wc) = Λ(sk, c). Finally, we require
HHPS to satisfy the following properties.

Subset Membership: For every adversary A, given all the public parameters
of the scheme, it holds that

|Pr [A(cv) = 1] − Pr [A(cinv) = 1]| = negl(λ),

where, cv ← Cv, cinv ← C \ Cv and the probabilities are computed over the
random coins of the adversary and over the choices of cv and cinv, and also over
the choices of C and Cv, which are taken from the output of Param(1λ).

Smoothness: It holds that Δ [(pk,Privsk(c), c) , (pk, k, c)] = negl(λ), where c ←
C \ Cv, k ← K, sk ← SK and pk = μ(sk).

Homomorphism: (C,+), (Cv,+) and (K,+) admit groups (with efficient group
operations), and, for every sk, it holds that Λ(sk, ·) constitutes a homomorphism,
i.e., for every sk ∈ SK and c1, c2 ∈ C, it holds that,5

Λ(sk, c1) + Λ(sk, c2) = Λ(sk, c1 + c2).

We now show how to construct a homomorphic weak PRF from a HHPS.

Theorem 4. Assuming the existence of a HHPS, there exists a homomorphic
weak PRF.

Proof. Assume that HHPS = (Param,Priv,Pub) is a HHPS. Let

HP = (C,Cv,W,K,SK,PK, μ : SK → PK,Λ : SK × C → K)

be the public parameters of HHPS produced by running Param. The tuple HP
will also be the public parameters of our PRF, F , constructed as follows. We set
Kλ = SK, Dλ = Cv and Rλ = K, and define fsk(c) = Λsk(c). We have that both
Cv and K admit groups and that fsk(c1) + fsk(c2) = fsk(c1 + c2), which implies
homomorphism for PRF F . To prove weak pseudorandomness for F we need to
show that, for any p = p(λ), it holds that DS ≡c DS ′, where

DS = (c1,Λsk(c1)), . . . , (cp,Λsk(cp))
DS ′ = (c1, k1), . . . , (cp, kp),

5 We remark that in many settings the homomorphism of Cv is implied by that of
C: Especially in the standard setting, where the set of valid ciphertexts is defined
as those, for which the value of Λ(sk, ·), for any sk is determined solely from the
ciphertexts itself and μ(sk). However, we put it as a separate condition just to be as
general as possible.



152 M. Hajiabadi et al.

for c1, . . . , cp ← Cv, k1, . . . , kp ← K and sk ← SK. To this end, for 0 ≤ i ≤ p, we
define the hybrid DSi as follows.

DSi = ((c1,Λsk(c1)), . . . , (ci,Λsk(ci)), (ci+1, ki+1), . . . , (cp, kp)) , (8)

where c1, . . . , cp, k1, . . . , kp and sk are sampled as above. Note that DS ′ = DS0

and DS = DSp. Now to conclude the proof for each 0i we show DSi ≡c DSi+1.
Note that we have (pk, ci+1,Λsk(ci+1)) ≡c (pk, ci+1, ki+1). This follows by com-

bining the subset membership and smoothness properties of HHPS. Now we claim
that DSi = DSi+1 follows from the fact that was just given: to see this, given
(pk, ci+1, ∗), where ∗ either corresponds to Λsk(ci+1) or to ki+1, we form

((c1,Pubpk(c1,w1)) , . . . , (ci,Pubpk(ci,wi)) , (ci+1, ∗) , (ci+2, ki+2) , . . . , (cp, kp)) ,
(9)

where, for 1 ≤ j ≤ i, we sample cj ← Cv along with a witness wj , and sample
ci+2, . . . , cp ← Cv and ki+2, . . . , kp ← K. The distribution given in Equation 9
would either correspond to DSi or to DSi+1. �

6.3 Realization Under Subgroup Indistinguishability Assumptions

For the sake of clarity, in this section we give an instantiation of our encryption
primitive based only on the quadratic residuosity assumption, which is a special
case of the subgroup indistinguishability (SG) assumption. We leave the general
SG-based instantiation to the full version [24].

We first start by reviewing the quadratic residuosity assumption. For an RSA
number N (i.e., N = pq, where p and q are distinct odd primes) we use QRN

to denote the subset of Z∗
N

consisting of quadratic residues modulo N , and let
JN denote the set of elements in Z

∗
N

with Jacobi symbol one. Finally, we define
QNRN = JN \ QRN .

Assume that RSAGen(1λ) is a PPT algorithm that on input 1λ generates
a Blum integer N , i.e., N = pq with p and q being distinct primes satisfying
p, q ≡ 3 (mod 4). We stress here that we do not need RSAGen(1λ) to output the
factorization of N as well. We say that the quadratic residuosity (QR) problem
is hard under RSAGen if {N,U(QRN )}λ∈N is computationally indistinguishable
from {N,U(QNRN )}λ∈N, where N is generated according to RSAGen(1λ).

Theorem 5. Assuming the quadratic residuosity assumption holds for RSAGen
there exists a CPA-secure private-key bit encrypiton scheme that is both repro-
ducible and homomorphic.

Proof. We construct the private-key bit encryption scheme (G,E,Dec) as fol-
lows. The public parameter of the scheme is N ← RSAGen(1λ), and the plaintext
group and the randomness group of the scheme are, respectively, Z2 and QRN .
The components of the encryption scheme are defined as follows. (All computa-
tions, if not otherwise stated, are done modulo N .)

– G(1λ): Choose the secret key as x ← ZN2 ;
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– Ex(b; g): return (g, (−1)bgx);
– Decx(g1, g2): return b ∈ {0, 1} if g2 = (−1)bgx

1 .

We first verify the syntactic properties required of the scheme. Notice that
given an encryption (g, (−1)bgx1) (of an arbitrary bit b) under x1, we can effi-
ciently obtain the encryption of an arbitrary bit b1 under the same randomness,
g, relative to a secret key x2 by simply outputting (g, (−1)b1gx2). This veri-
fies the reproducibility property. As for homomorphism, from (g1, (−1)b1gx

1 ) and
(g2, (−1)b2gx

2 ), we can easily derive (g1g2, (−1)b1+b2(g1g2)x), which is the encryp-
tion of b1 + b2 under randomness g1g2 (relative to the same unknown secret key
x). Note that as the randomness group here is multiplicative, we will denote the
identity element by 1. We then have that Ex(b; 1) = (1, (−1)b), independently
of x. This verifies the degenerate case of homomorphism.

To show that the above scheme is CPA-secure, we need to show that for any
p = p(λ) and any sequence of bits (b1, . . . , bp), it holds that DS0 ≡c DS1, where

DS0 =
[

g1 g2 . . . gp

(−1)b1gx
1 (−1)b2gx

2 . . . (−1)bpgx
p

]

, and (10)

DS1 =
[

g1 g2 . . . gp

gx
1 gx

2 . . . gx
p

]

, (11)

for g1, . . . , gp ← QRN and x ← ZN2 . The proof of the above indistinguishability
is standard. (See, e.g., [13,29] for a simple proof and also [9, Lemma 5.1] for a
stronger statement.) �

7 Extensions

In this section we discuss some extensions and complementary results. In Sub-
sect. 7.1 we show that our constructed scheme provides auxiliary-input security.
In Subsect. 7.2 we show that an existing KDM-amplification construction pre-
serves leakage resilience.

7.1 Auxiliary-Input Security

We first give the definitions related to auxiliary-input security.

Background. Let E = (G,E,Dec) be an encryption scheme with public-key,
secret-key and message spaces, respectively, PKλ, SKλ and Mλ. Throughout
this Section we use f to refer to a function with domain (PKλ,SKλ) and range
SKλ. We follow the notation of [9]. For E = (G,E,Dec) we define f-weak inver-
sion and f-strong inversion as follows. We say that f is ε-strongly-uninvertible
under E if for any adversary A, the probability that A outputs sk when given
(f(pk, sk), pk) is at most ε(λ), where the probability is taken over A’s ran-
dom coins and (pk, sk) ← G(1λ). Also, we say that f is ε-weakly-uninvertible
under E if for any adversary A, the probability that A outputs sk when given
f(pk, sk) is at most ε(λ), where the probability is taken over A’s random coins
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and (pk, sk) ← G(1λ). Let Auxst
ε be the class of all ε-strongly-uninvertible func-

tions and Auxwk
ε be the class of all ε-weakly-uninvertible functions. Note that

Auxst
ε ⊆ Auxwk

ε .
We say that E is f-auxiliary-input secure if any adversary A has a negligible

advantage in the following game: A is given (pk, f(pk, sk)), where (pk, sk) ←
G(1λ); A submits (m0,m1) ∈ M2

λ; A receives Epk(mb), for b ← {0, 1}; finally,
A outputs bit b′, and achieves the following advantage

|Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]| .

We say that E is ε-weakly-auxiliary-input secure (resp., ε-strongly-auxiliary-input
secure) if E is f-auxiliary-input secure for any f ∈ Auxst

ε (resp., Auxwk
ε ). We

say E is auxiliary-input secure against subexponentially-hard functions if for some
c > 0, E is 1/(2λc

)-strongly-auxiliary-input secure.
We now show that the encryption scheme produced by Construction 1 pro-

vides auxiliary-input security. We first consider weak-auxiliary-input security
and then discuss the extension to the strong-auxiliary case.

Theorem 6. Let E = (G,E,Dec,Hom,Rep) be a CPA-secure private-key bit-
encryption scheme providing degenerate homomorphism and reproducibility. Let
E ′ be the scheme constructed from E using Construction 1. For any poly-bounded
l = l(λ) and negligible function ε = ε(λ), it holds that E ′ is ε-weakly-auxiliary-
input secure.6

The proof of Theorem 6 follows similarly to that of Theorem 3, except for
one step, where we replace real-randomness extraction with pseudorandomness
extraction. We first give the following theorem, due to Goldreich and Levin [22],
where we follow the presentation of [14], adapted to the binary field.

Theorem 7 [22]. Assume that l = l(λ) and h : {0, 1}l → {0, 1}∗ is a (possibly
randomized) function and D is a distinguisher, where

|Pr[D(b, b, h(s)) = 1] − Pr[D(b, b′, h(s)) = 1]| = δ(l), (12)

where s,b ← {0, 1}l, b ← {0, 1} and b′ = s · b. Then there exists an inverter A,
for which it holds that

Pr[A(y) = s] ∈ Ω(
δ3

l
), (13)

where s ← {0, 1}l and y ← h(s).

We now give the proof of Theorem 6, using ideas from [14].

Proof. The proof follows by introducing Game-0, Game-1 and Game-2 exactly
as in the proof of Theorem 3 (except that now the function f is applied to both
the secret key and the public key), and deriving Game-0 ≡G Game-1 exactly as

6 In order for statement to be useful, it should hold that 1
2l

≤ ε, because otherwise

the statement will be vacuously true, as Auxst
ε = Auxwk

ε = ∅.
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in there. To prove Game-1 ≡G Game-2, however, we proceed as below. To prove
Game-1 ≡G Game-2, it suffices to show that

(b1, . . . , bl, bl+1,f(PK, s),

PK
︷ ︸︸ ︷
Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)) ≡c (14)

(b1, . . . , bl, b
′
l+1, f(PK, s), Esk(0; r1), . . . , Esk(0; rl), Esk(0; rl+1)

︸ ︷︷ ︸
PK

),

where s ← {0, 1}l, b1, . . . , bl, bl+1 ← {0, 1}, b′
l+1 = s · (b1, . . . , bl), r =

(r1, . . . , rl) ← Rl
λ, rl+1 = s · r and sk ← G(1λ). The fact that proving Eq. 14

suffices to conclude Game-1 ≡G Game-2 can easily be verified by considering
the descriptions of Game-1 and Game-2, taking into account the fact that the
private-key scheme is reproducible.

By the assumption of the theorem, we know that it is ε-hard to recover s from
(PK, f(PK, s)). Now Eq. 14 follows from Theorem 7, by defining the randomized
function h(s) = (PK, f(PK, s)), where all the variables are sampled as above.
Formally, if there is an adversary that can distinguish between the distributions
in Eq. 14 with a non-negligible probability, then there exists an adversary that,
with a non-negligible probability, recovers s from h(s) = (PK, f(PK, s)), which
is a contradiction to the first sentence of this paragraph.

Remark 1. As in previous work [9,14] we can prove strong auxiliary-input secu-
rity for E ′ with respect to subexponentially-hard functions by working with a
modification of Construction 1, letting (c1, . . . , cl) = (Esk(0; r1), . . . , Esk(0; rl))
be the public parameters of the scheme, and letting the public key be computed,
under secret key s, as Hom(ci1 , . . . , ciw), where (i1, . . . , iw) are the indices of
non-zero bits of s. Now since a public key under the new scheme has at most
l′ = |Rλ| different values we can obtain ε

l′ -strong auxiliary-input security from
ε-weak-auxiliary-input security. This last step follows since, for any scheme with
l′ different public keys, if recovering sk from f(pk, sk) is ε/l′-hard (i.e., succeeds
with a probability at most ε/l′), recovering sk from (f(pk, sk), pk) is ε-hard.
Finally, we mention that the proof of multiple-key circular security (Theorem 2)
extends to the setting above which contains public parameters.

7.2 KDM Amplification

We show that Applebaum’s KDM-amplification method [3], which, informally
speaking, shows that projection security is sufficient for obtaining “rich-KDM”
security, preserves both types of leakage resilience. For simplicity, we focus on
the case of bit encryption and 1-KDM security.

As notation, we identify an efficiently computable function f =
{fλ : {0, 1}l(λ) �→ {0, 1}}λ∈N with an ensemble of circuits {cλ}λ∈N, and say that
f has size p = p(λ) if, for any λ, the circuit cλ has size at most p. We say an
ensemble of sets of functions F = {Fλ}λ∈N is p-bounded if for every λ and every
f ∈ Fλ, f has size p. The following theorem is a special case of the results of [3].
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Theorem 8 [3]. Assume that F = {Fλ}λ is a fixed p-bounded ensemble of sets
of functions and E = (G,E,Dec) is a 1-projection-secure public-key encryption
scheme. The scheme E ′ = (G,E′,D′), constructed below, is F -KDM(1) secure:
E′

pk(b) = Epk(Sim(b)) and D′
sk(C) = Rec(Dsk(C)). Here Sim is a randomized

function and Rec is a deterministic function, both of which are constructed based
on F , through the procedure of randomized encoding of functions. The details
of Sim and Rec are not important for our analysis, bu we refer the reader to [3]
for further details.

Theorem 9. Let E and E ′ be as in Theorem 8. Then assuming that E is r-rate
leakage resilient (resp., ε-auxiliary input secure) then E ′ is r-rate leakage resilient
(resp., ε-auxiliary input secure).

Proof. This follows by noting that the constructed scheme E ′ has the same key
generation algorithm as that E . We consider the leakage resilience case; the proof
for the auxiliary-input case is entirely the same. Assume A′ wins against �-length
leakage resilience of E ′; we build A that breaks the �-length leakage resilience of
E ′ by simulating A′ as follows: A runs A′(pk), where pk is the public key that
A receives; when A′ sub,its the leakage query f , A makes the same query from
its oracle and gives f(sk) to A′; finally, when A′ submits (b0, b1), A submits
(Sim(b0), Sim(b1)) to its oracle and gives the returned ciphertext to A′. Thus,
A achieves the same advantage as A′ does, and the proof is complete. �
We now obtain the following corollary, by combining Theorems 2, 3, 6 and 9.

Corollary 1. Assuming the existence of a CPA-secure private-key scheme with
reproducibility and degenerate homomorphism, for any poly p and any fixed p-
bounded function family F , there exists a scheme E ′ which (at the same time) (1)
is F -KDM secure, (2) achieves a (1 − o(1)) resilience rate, and (3) is auxiliary-
input secure against subexponentially-hard functions.

Acknowledgments. We would like to thank Josh Benaloh and Dan Boneh for helpful
discussions.
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Abstract. We present new frameworks for constructing public-key
encryption schemes satisfying key-dependent message (KDM) security
and that yield efficient, universally composable oblivious transfer (OT)
protocols via the dual-mode cryptosystem framework of Peikert, Waters
and Vaikuntanathan (Crypto 2008).

– Our first framework yields a conceptually simple and unified treatment
of the KDM-secure schemes of Boneh et al. (Crypto 2008), Brakerski
and Goldwasser (Crypto 2010) and Brakerski, Goldwasser and Kalai
(TCC 2011) in the single-key setting.

– Using our second framework, we obtain new dual-mode cryptosystems
based on the d-linear, quadratic residuocity and decisional composite
residuocity assumptions.

Both of these frameworks build on the notion of smooth projective hash-
ing introduced by Cramer and Shoup (Eurocrypt 2002), with the addi-
tional requirement that the hash function is homomorphic, as is the case
for all known instantiations.

1 Introduction

The most basic security guarantee we require of a public key encryption scheme
is that of semantic security against chosen-plaintext attacks (CPA) [21]: it is
infeasible to learn anything about the plaintext from the ciphertext. However,
a series of increasingly sophisticated use of encryption —both directly in the
case of practical applications, and indirectly as a cryptographic building block
in more theoretical work — call for encryption schemes with much stronger
security guarantees. In this work, we consider two such security notions.

Key-Dependent Message (KDM) Security. The standard CPA security
definition does not provide any guarantee where the plaintext depends on the
secret key (as pointed out in [21]), as may be the case in disk encryption. It
was later observed that this situation is not so unlikely and may sometimes
even be desirable [1,12]. Black, Rogaway and Shrimpton [7] formally defined
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key-dependent message (KDM) security: roughly speaking, we want to guaran-
tee semantic security even against an adversary that can obtain encryptions of
(efficient) functions of its choosing, taken from some specified class of functions
F , applied to the secret key.

Several years ago, Boneh et al. (BHHO) [9] presented a public-key encryption
scheme that is KDM-secure w.r.t. the class of affine functions under the decisional
Diffie-Hellman (DDH) assumption. Since then, Applebaum et al. [4] presented
a scheme under the LWE assumption (which is itself a variant of Regev’s cryp-
tosystem [33]) and Brakerski and Goldwasser [10] presented a BHHO-like scheme
based on the quadratic residuocity (QR) and decisional composite residuocity
(DCR) assumptions. All of these schemes achieve KDM-security w.r.t. the class
of affine functions, which can in turn be “boosted” to the class of circuits of
a-priori bounded size [3,5]. In spite of the fact that many of these schemes
inherit the BHHO algebraic structure, there does not seem to be a general prin-
ciple that explains the design or analysis of these schemes: the BHHO analysis
uses an intermediate notion of an “expanded system”, whereas that of Brakerski
and Goldwasser rely on an incomparable “interactive vector” game.

Dual-Mode Cryptosystems. Dual-mode cryptosystems were put forth by
Peikert et al. [32] as a tool for constructing efficient and universally compos-
able oblivious transfer (OT) protocols. Oblivious transfer is a fundamental two-
party cryptographic primitive for secure two-party and multi-party computation
[20,28,35]: it allows one party, called the receiver, to obtain exactly one of two
values from another party, called the sender. The receiver remains oblivious to
the other value, and the sender is oblivious to which value was received.

A natural approach towards realizing OT is to have the receiver generate a
pair of public keys, and have the sender encrypt both of its input values under
the respective public keys [17,19]. In order to provide security against a malicious
sender, we can simply generate a pair of “normal” public keys along with the
corresponding secret keys and we can then decrypt the ciphertexts sent by the
sender to extract both its inputs. On the other hand, if the receiver is malicious,
we need to ensure that (at least) one of the two public keys be “messy”, namely
it carries no information about the ciphertext encrypted under the key.

A dual-mode cryptosystem provides exactly both of these guarantees in the
common reference string (CRS) model. The cryptosystem admits two types of
public keys, “normal” keys that enable correct decryption, and “messy” keys that
carry no information statistically about the ciphertext. Moreover, a simulator
can generate the CRS in one of two indistinguishable modes: a “messy” mode
which ensures that amongst any pair of possibly adversarially chosen public keys,
at least one must be “messy”; and a “decryption” mode which allows a simulator
to generate a pair of “normal” keys.

Peikert et al. also presented three instantiations of dual-mode cryptosystems
based on DDH, QR and LWE. However, there seems to be no overarching theme
to the three constructions – the DDH-based scheme relies on a “re-randomization
trick” from the earlier OT protocols of Naor and Pinkas [30] whereas the QR-
based scheme relies on algebraic properties of Cocks’ IBE scheme [14].
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Our Results. We present new frameworks for constructing KDM-secure
encryption schemes and dual-mode cryptosystems that admit a very simple and
modular analysis. Both of these frameworks build on the notion of smooth pro-
jective hashing, introduced by Cramer and Shoup in the context of CCA-secure
encryption [15,16], with the additional requirement that the hash function is
homomorphic, as is the case for all known instantiations. Using our frameworks,
we obtain:

– a unified treatment of the KDM-secure encryption schemes based on DDH,
QR, and DCR given in [9,10] for affine functions of the secret key, as well as
those for low-degree functions of the secret key in [11] (we focus here on the
single-key setting, which already captures much of the difficulty in realizing
KDM-security in prior works; see Sect. 2.1 for a discussion on multiple keys),

– new constructions of dual-mode cryptosystems: (i) a construction based on the
d-linear assumption, generalizing the previous construction based on DDH;
(ii) a simple construction based on QR, which does not rely on the Cocks
IBE; (iii) a new construction based on DCR.

We regard our first construction for KDM security as our primary technical con-
tribution. The second for dual-mode cryptosystems builds heavily upon existing
constructions of OT from smooth project hashing in [23], although highlighting
the role of the group structure and homomorphism for dual-mode cryptosystems
appears to be novel to this work (c.f. comparison in Sect. 2.2).

Our high-level approach for KDM security is quite simple. Via the projective
property, we will define ciphertexts via decryption with the secret key instead of
encryption with the public key. Now, by feeding the decryption algorithm some
“malformed” ciphertext, decryption leaks a function f of the secret key sk. In
fact, we can design the malformed ciphertexts carefully so that they decrypt to
f(sk); moreover, these malformed ciphertexts are indistinguishable from random
encryptions of f(sk). It is important here that the distribution of the malformed
ciphertext depends only on f and the public key pk. For this to work out, we
require some algebraic structure for the decryption algorithm and the space of
ciphertexts, as is captured by precisely by homomorphic projective hashing.

We note that in the proof of KDM security, we show that the simulated
encryptions of f(sk) are computationally indistinguishable from honest encryp-
tions of f(sk), even if the indistinguisher gets sk; this is necessary to enable a
hybrid argument across the KDM queries. (As a side remark, we note that we
cannot rely on smoothness at this step of the proof.) Projective hashing have
the distinctive and extremely useful property in that it enables a computational
assumption on the ciphertext space even against distinguishers that know the
secret key; this property also played a crucial role in the original work on CCA-
security [16], and the more recent work on leakage resilience [31].

2 Overview of Our Constructions

Smooth Projective Hashing. We begin with an informal overview of smooth
projective hashing [15,16], since our constructions build on this framework. We
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consider a family of hash functions Λhk(·) indexed by a hashing key hk, whose
input comes from a group G. Let Gyes be a subgroup of G and let μ(·) denote
a projection map defined on the hashing key hk. We are interested in hash
functions that satisfy the following properties:

– (projective) for C ∈ Gyes, the value Λhk(C) is uniquely determined by μ(hk)
and C. Moreover, there is an algorithm Pub that given μ(hk) along with the
randomness r used to sample C, outputs Λhk(C).

– (smoothness) for C /∈ Gyes, the value Λhk(C) is statistically close to random
even given μ(hk) and C.

– (homomorphic) for all C0, C1 ∈ G, we have Λhk(C0 · C1) = Λhk(C0) · Λhk(C1).

In addition, we require that the uniform distributions over Gyes and G be com-
putationally indistinguishable, and that the uniform distributions over Gyes and
Gno := G \Gyes are also computationally indistinguishable. (If Gyes has negligible
density, then the former implies the latter.)

2.1 KDM-Security

Starting with a smooth projective hash function Λhk(·) defined on G, we can
build a CPA-secure encryption scheme —which we will refer to as the “Cramer-
Shoup scheme”— as follows:

– Gen(1k): Sample a uniform hashing key hk and output the key pair

pk := μ(hk) and sk := hk

Henceforth, we will use sk and hk interchangeably for this scheme.
– Enc(pk,m): To encrypt a message m, sample C ←r Gyes with randomness r,

output the ciphertext
(C,Λsk(C) · m)

where Λsk(C) is computed via the projective property using Pub(pk, C, r).
– Dec(sk, (C,ψ)): On input a ciphertext (C,ψ), output the plaintext

(Λsk(C)−1 · ψ)

A standard argument shows that this scheme is CPA-secure: we switch the dis-
tribution of C in the ciphertext to C ←r Gno and then by smoothness, the
ciphertext statistically hides m. Moreover:

Theorem (informal). Suppose in addition that Λsk(·) is homomorphic.
Then this encryption scheme is KDM-secure w.r.t. the class of functions
{sk �→ Λsk(e)} for any e ∈ G.

Once we have KDM-security for affine functions, we can “boost” to the class of
circuits of a-priori bounded size [3,5].

Simulating KDM Queries. The core difficulty lies in simulating encryptions
of Λsk(e) given only the public key, which turns out to be really simple in our
framework.
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Enc(pk,Λsk(e)) ≡ (C,Pub(pk, C, r) · Λsk(e)) : C ←r Gyes, randomness r
≡ (C,Λsk(C) · Λsk(e)) : C ←r Gyes, via projective property
≈c (C,Λsk(C) · Λsk(e)) : C ←r G, via subgroup membership
≡ (C,Λsk(C · e)) : C ←r G, since Λsk(·) is homomorphic
≡ (C · e−1,Λsk(C)) : C ←r G, since e ∈ G
≈c (C · e−1,Λsk(C)) : C ←r Gyes

≡ (C · e−1,Pub(pk, C, r)) : C ←r Gyes, randomness r, via projective

Note that:

– we can sample from the final distribution given only pk;
– the above transition does not rely on smoothness, and therefore everything

goes through even if we append sk to the view, namely (sk,Enc(Λsk(e))) ≈c

(sk, (C · e−1,Pub(pk, C, r))), which allows us to carry out a hybrid argument
over the KDM queries;

– the treatment of KDM queries relies on the projective and homomorphic prop-
erties of Λsk(·) but not smoothness; instead, we will use smoothness for the
normal encryption queries.

Again, we stress that the proof crucially exploits the projective property; the
role of the projective property is not captured by any of the prior “expanded
system”, “interactive vector” or the “triple proofs” frameworks for KDM-security
in [9,10,29].

An Instantiation. In the BHHO DDH-based KDM-secure encryption scheme,
the underlying projective hash function is defined on a group G := G

� where G

is the DDH group with some generator g, and � is a parameter. The hashing
key (also the secret key) sk = (s1, . . . , s�) lies in {0, 1}�, and given an instance
C = (c1, . . . , c�) ∈ G

�,
ΛBHHO
sk (C) = cs1

1 · cs2
2 · · · cs�

�

This means that given any (a1, . . . , a�) ∈ Z
�
q,

ΛBHHO
sk ((ga1 , . . . , ga�)) = ga1s1+···+a�s�

Average-case smoothness follows readily from the left-over hash lemma. Now, if
we modify the underlying Cramer-Shoup scheme to encrypt the message in the
exponent, this function corresponds precisely to linear functions of the bits of
the secret key. To handle affine functions, we need to handle an additional offset
as described in Sect. 4.

Moreover, we can further extend the hash proof system to handle KDM-
security with respect to some fixed functions f1, . . . , ft for any polynomial t (for
instance, constant-degree polynomials in the bits of the secret keys or uniform
Turing machine computation of description at most c log k bits) as is the setting
considered in Brakerski, Goldwasser and Kalai [11]. We now consider instances
C = (c1, . . . , c�+t) ∈ G

�+t,

ΛBHHO
sk (C) = cs1

1 · cs2
2 · · · cs�

� · c
f1(sk)
�+1 · · · cft(sk)

�+t

Average-case smoothness follows as before from the left-over hash lemma. Then,
ΛBHHO
sk (ge�+i) = gfi(sk) corresponds to an encryption of fi(sk). This provides a
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more direct construction of KDM-security with respect to f1, . . . , ft as opposed
to the entropic-KDM framework in [11].

On KDM-Security with Multiple Keys. We clarify that we only address
KDM-security in this paper with a single public/secret key, whereas the pre-
vious constructions in [9,10] address KDM-security with multiple public/secret
key pairs. We note that simplifying KDM-security for a single public/secret key
is still important in and of itself: (1) it suffices for some applications, e.g. disk
encryption, (2) it already captures much of the technical difficulty in realizing
KDM-security, (3) previous schemes in [4,9,10] first establish KDM-security for
a single public/secret key, and then “bootstrap” to multiple keys (in a non-black-
box way), (4) more recent schemes for RKA-KDM-security in [8] also reduces
security to KDM-security for a single public/secret key. In particular, our frame-
work clarifies the first step of the analysis for multiple key pairs; our framework
is also the first to point out the role of the projective property for KDM-security
(which is not covered in prior “expanded system”, “interactive vector” or the
“triple proofs” frameworks for KDM-security in [9,10,29]) and that captures
the algebraic structure needed for the decryption algorithm and the space of
ciphertexts via homomorphic projective hashing.

Connection to Leakage Resilience. Let us informally refer to a Cramer-
Shoup scheme as “linear” if Λsk(·) computes a linear function of sk (possibly in
the exponent), where the coefficients of the linear function are specified by the
instance. From the preceding discussion, we see that (1) linear Cramer-Shoup
schemes are KDM-secure w.r.t. linear functions, and (2) the BHHO scheme [9]
along with the BHHO-like schemes given by Brakerski and Goldwasser [10] are
examples of such schemes. Naor and Segev [31] also showed that linear Cramer-
Shoup schemes are resilient to bounded key leakage; this follows from the fact
that random linear functions are good strong extractors. This yields a simple
explanation as to why the BHHO scheme and variants there-of are both KDM-
secure and resilient to bounded key leakage.

2.2 Dual-Mode Encryption

Starting with a smooth projective hash function Λhk(·) defined on G, we can
build a different CPA-secure encryption scheme —which we will refer to as the
“dual Cramer-Shoup scheme”— as follows:

– Gen(1k): Sample C ←r Gyes with randomness r and output the key pair

pk := C and sk := r

– Enc(pk,m): To encrypt a message m, sample a random hk and output the
ciphertext

(μ(hk),Λhk(C) · m)
– Dec(sk, (p, ψ)): On input a ciphertext (p, ψ), compute K := Λhk(C) using Pub

on input p,C and r (via the projective property) and output

(K−1 · ψ)
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As observed in by Halevi and Kalai [23,24], if we sample the public key
C ←r Gno, smoothness tells us that we obtain a “messy” public key where the
ciphertext carries no information about the message. This suggests the following
natural construction of a dual-mode cryptosystem / OT protocol:

– the receiver generates a pair of public keys C0, C1 ∈ G subject to the constraint
that C0 · C1 is the CRS.

– in the normal mode, we pick C0, C1 ←r Gyes, and the CRS is chosen uniformly
from Gyes.

– in the messy mode, the CRS is chosen uniformly from Gno. Now, whenever
a possibly malicious receiver sends a pair of public keys (C0, C1) such that
C0 · C1 ∈ Gno, then we know that one of C0, C1 lies in Gno and is therefore
messy. (Otherwise, if C0, C1 ∈ Gyes, then C0 · C1 ∈ Gyes by closure properties
of the subgroup.)

We note that exploiting subgroup structure of Gyes appears to be novel to this
work, and we use subgroup structure in two ways: first, to argue that if C0 ·C1 ∈
Gno, then one of C0, C1 lies in Gno; and second, randomizing Gyes in the CRS
(which is necessary for reusability in the context of UC security) by adding
another random Gyes instance. In contrast, the prior work [23] uses the fact
that if two pairs of group elements agree on the first component and disagree
on the second, then one of them is a non-DDH tuple, and there is no need for
randomizing Gyes as it addresses stand-alone security.

2.3 Discussion

On Lattice-Based Instantiations. A natural question is whether our frame-
works extend to LWE-based instantiations of KDM-secure encryption and dual-
mode cryptosystems given in [2,4,32], while relying on an approximate notions
of smooth projective hashing as given in [27]. In the LWE setting, the “yes”
instances as given by valid LWE instances do not form a subgroup. We note
that for KDM security, our proof does not rely on the fact that Gyes forms a
subgroup. For dual-mode cryptosystems, we only require that the “product”
of two instances in Gyes is “far” from Gno, which is indeed satisfied by LWE
instances. However, in order to obtain an OT protocol where the same CRS can
be reused for an a-priori unbounded number executions, it is crucial that we can
statistically rerandomize instances in Gyes. We do not know how to achieve the
latter for LWE; indeed, the LWE-based OT in [32] only achieves security for an
a-priori bounded number of OT executions. In particular, we do not know any
LWE instantiations for the “full-fledged” notion of dual-mode cryptosystems.

Additional Related Work. Smooth projective hashing is an extremely ver-
satile tool that has found many other applications beyond CCA-security – two-
message oblivious transfer [23], password-authenticated key exchange [6,18],
bounded leakage resilience [31], and encryption schemes secure against selective
opening attacks [24]. The works of Barak et al. and Applebaum [3,5], Brakerski,
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Goldwasser and Kalai [11], and Malkin, Teranishi and Yung [29] each presented
general and different techniques to extend KDM-security to richer classes of
functions with incomparable trade-offs. Haitner and Holenstein [22] presented
black-box impossibility results for (single-key) KDM-security based on general
assumptions. In subsequent work, Hofheinz [25] presented a KDM-CCA-secure
scheme with compact ciphertexts, inspired in part by the connection between
smooth projective hashing and KDM-security established in this work.

Organization. We present definition and results on KDM-secure public-key
encryption in Sect. 4, and those for dual-mode encryption in Sect. 5. We present
the instantiations in Sects. 6 and 7.

3 Preliminaries

Notation. We denote by s ←r S the fact that s is picked uniformly at random
from a finite set S and by x, y, z ←r S that all x, y, z are picked independently
and uniformly at random from S. By PPT, we denote a probabilistic polynomial-
time algorithm. Throughout, we use 1k as the security parameter. We use · to
denote multiplication (or group operation) as well as component-wise multipli-
cation. We use lower case boldface to denote (column) vectors and upper case
boldface to denote matrices.

3.1 Smooth Projective Hashing

We present the notion of smooth projective hashing as introduced by Cramer
and Shoup [16], in the context of group-theoretic languages.

Setup. Fix a family of groups Gpp indexed by a public parameter pp. We require
that pp be efficiently samplable along with a secret parameter sp given a secu-
rity parameter 1k, and assume that all algorithms are given pp as part of its
input. We omit pp henceforth whenever the context is clear. We consider sub-
groups Gyes of G and we use Gno to denote G \ Gyes. We will require that each
of these groups G,Gyes,Gno be efficiently samplable given pp, and that given the
secret parameter sp, we can efficiently verify membership in Gyes. Observe that
if Gyes has negligible density (as is the case for most instantiations), we may use
the same sampling algorithm for both G and Gno since both distributions are
statistically indistinguishable.

Subgroup Membership Assumption. We will consider two related compu-
tational assumptions pertaining to the group G, which we refer to collectively as
the subgroup membership assumption. The first assumption states that the uni-
form distributions over Gyes and G are computationally indistinguishable, even
given pp. The second assumption states that the uniform distributions over Gyes

and Gno are computationally indistinguishable, even given pp. Again, observe
that if Gyes has negligible density, these two assumptions are equivalent, since
the distributions over G and Gno are then statistically indistinguishable.
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Homomorphic Projective Hashing. Fix a public parameter pp. We con-
sider a family of hash functions {Λhk : G → K} indexed by a hashing key hk.
We require that Λhk(·) be efficiently computable (by a ‘private evaluation’ algo-
rithm), and hk be efficiently samplable. In addition, we require that both G and
K are groups, and that Λhk(·) is a group homomorphism, that is, for all hk and
all C0, C1 ∈ G, we have Λhk(C0) · Λhk(C1) = Λ(C0 · C1). We say that Λhk(·) is
projective if there exists a projection map μ(·) defined on hk such that μ(hk)
determines the behavior of Λhk on inputs from Gyes. Specifically, we require that
there exists an efficient public evaluation algorithm Pub that on input μ(hk)
and C ∈ Gyes along with the randomness r used to sample C, outputs the value
Λhk(C).

Smoothness. We say that Λhk(·) is smooth if the behavior of Λhk on Gno is
completely undetermined. That is, for all C ∈ Gno, the following distributions
are statistically close:

(pk,Λhk(C)) and (pk,K)

where hk is random, pk = μ(hk) and K ←r K. (Looking ahead, we will also
consider a relaxed notion in some of our instantiations where we choose K from
the uniform distribution over some subset of K; see Sect. 7.) We also say that
Λhk(·) is average-case smooth where we relax the requirement for smoothness to
hold for a random C ∈ G [31]. That is, the following distributions are statistically
close:

(C,pk,Λhk(C)) and (C,pk,K)

where hk is random, pk = μ(hk), C ←r G and K ←r K.

4 KDM-Secure Encryption

Key-Dependent Message Security. We adopt a simulation-based variant
of key-dependent message (KDM) security from [7,9], in the setting where
there is only one public/secret key pair. Fix a public-key encryption scheme
(Gen,Enc,Dec). For a stateful adversary A, we define the advantage function

AdvKDMA,F (k) := Pr

[
(pk, sk) ← Gen(1k);

AkdmEnc(·),Enc(pk,·)(pk) = 1

]
− Pr

[
(pk, sk) ← Gen(1k);

AkdmEnc∗(pk,·),Enc∗(pk,·)(pk) = 1

]

where

– kdmEnc(·) is an oracle that on input f ∈ F returns a random encryption
Enc(pk, f(sk));

– kdmEnc∗(pk, ·) corresponds to a simulator that gets as input f ∈ F ;
– Enc∗(pk, ·) is an oracle that on input m, returns Enc(pk, 0|m|).
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An encryption scheme is said to be F-KDM secure if there exists an effi-
cient kdmEnc∗() such that for all PPT A, the advantage |AdvKDMA,F (k)| is a
negligible function in k.

Construction. Starting with a projective hash function Λhk : G → K, we may
derive a semantically secure public-key encryption scheme (Gen,Enc,Dec). The
message space is M, and we require an injective map φ : M → K which is
efficiently computable and invertible.

– Gen(1k): Sample public parameters pp, a uniform hashing key hk and compute
pk := (pp, μ(hk)). Output the key pair

pk := (pp, μ(hk)) and sk := hk

– Enc(pk,m): Sample C ←r Gyes with randomness r, output the ciphertext

(C,Pub(pk, C, r) · φ(m))

– Dec(sk, (C,ψ)): Output the plaintext

φ−1(Λsk(C)−1 · ψ)

Theorem 1. Suppose Λhk(·) is a projective hash function that is average-case
smooth and homomorphic, and the subgroup membership problem is hard (w.r.t.
G vs Gyes). Then, the encryption scheme (Gen,Enc,Dec) described above is
F-KDM secure where F = {fe,k : sk �→ φ−1(Λsk(e) · k) | e ∈ G, k ∈ K}.
We do require that given a description of the function fe,k, we can efficiently
compute the corresponding e ∈ G, k ∈ K. Later on in the instantiations, the term
e allows us to specify the coefficients in a linear function, whereas k corresponds
to the constant off-set in an affine function. On the first reading, we suggest that
the reader assume φ is the identity map.

Proof. Observe that correctness of the encryption scheme follows readily from
the projective property. We proceed to establish KDM security. First, we describe
kdmEnc∗: on input pk, fe,k and randomness r, use r to sample C ←r Gyes and
output

(C · e−1,Pub(pk, C, r) · k)

We proceed via a sequence of games. Fix a PPT adversary A that makes at most
Q0 queries to kdmEnc and Q1 queries to Enc. We show that

|AdvKDMA,F (k)| ≤ (2Q0 + 2Q1) · ε

where ε is the advantage for the subgroup membership assumption. We start
with Game 0, where the challenger proceeds like in the security game with
kdmEnc,Enc oracles in the left experiment and kdmEnc∗,Enc∗ oracles in the
right experiment.
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Game 1. We will run a hybrid argument over the Q0 queries to kdmEnc. That
is, for i = 1, . . . , Q0, in Game 1.i, we replace the i’th query fe,k to kdmEnc
on the left with kdmEnc∗, so that we answer the first i queries using kdmEnc∗

and the last Q0 − i queries using kdmEnc. It suffices to show that for each i,

(pk, sk,Enc(pk, fe,k(sk)))
2ε≈c (pk, sk, (C · e−1,Pub(pk, C, r) · k)),

where we would use pk to simulate the Enc queries and the first i−1 kdmEnc∗

queries, and sk to simulate the remaining Q0 − i kdmEnc queries. For nota-
tional simplicity, we omit (pk, sk) in the hybrid transitions below:

Enc(pk, fe,k(sk); r)
≡ (C,Pub(pk, C, r) · Λsk(e) · k) : C ←r Gyes, randomness r
≡ (C,Λsk(C) · Λsk(e) · k) : C ←r Gyes, via projective property
≈c (C,Λsk(C) · Λsk(e) · k) : C ←r G, via subgroup membership
≡ (C,Λsk(C · e) · k) : C ←r G, since Λsk(·) is homomorphic
≡ (C · e−1,Λsk(C) · k) : C ←r G, since e ∈ G
≈c (C · e−1,Λsk(C) · k) : C ←r Gyes

≡ (C · e−1,Pub(pk, C, r) · k) : C ←r Gyes, randomness r, via projective

Note that the above transition does not rely on smoothness, and therefore
everything goes through even if we append (pk, sk) to the view.

Game 2. For i = 1, . . . , Q1, replace the i’th query m to Enc on the left with
Enc∗. We will run a hybrid argument over the Q1 queries, and thus it suffices
to show that for each i,

(pk,Enc(pk,m))
2ε≈c (pk,Enc(pk, 0|m|)).

This is standard CPA-security of the Cramer-Shoup encryption. Observe
that the view includes pk, which is sufficient to run kdmEnc∗.

Enc(pk, m) ≡ (C,Pub(pk, C, r) · φ(m)) : C ←r Gyes, randomness r
≡ (C, Λsk(C) · φ(m) : C ←r Gyes, via projective property
≈c (C, Λsk(C) · φ(m) : C ←r G, via subgroup membership
≡ (C, K · φ(m)) : C ←r G, K ←r K, via smoothness

≡ (C, K · φ(0|m|)) : C ←r G, K ←r K, via uniformity of K

≈c Enc(pk, 0|m|)) by reversing the hybrids

We conclude by observing that in Game 2, the left and right experiments are
identical (both use the kdmEnc∗,Enc∗ oracles), and therefore the advantage is 0.

	


5 Dual-Mode Encryption

In this section, we present the definition of a dual-mode cryptosystem from
[32], and show a generic construction from smooth projective hashing. By [32,
Theorem 4.1], once we have a dual-mode cryptosystem, we immediately obtain
UC-secure two-message oblivious transfer in the CRS model.

Preliminaries. Most of this is copied verbatim from [32, Sect. 3].
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– Setup(1k, μ): given security parameter 1k and mode μ ∈ {0, 1}, outputs
(crs, τ). The crs is a common string for the remaining algorithms, and τ
is a trapdoor value that enables either the FindMessy or TrapKeyGen algo-
rithm, depending on the selected algorithm. We will also denote the messy
setup algorithm using SetupMessy(·) := Setup(·, 0) and the decryption mode
setup algorithm using SetupDec(·) := Setup(·, 1). All the remaining algorithms
take crs as their first input, but for notational clarity, we usually omit it from
the list of arguments.

– KeyGen(σ): given a desired decryptable branch value σ ∈ {0, 1}, outputs
(pk, sk) where pk is a public encryption key and sk is a corresponding secret
key for messages encrypted on branch σ.

– Enc(pk, b,m): given a public key pk, a branch value b ∈ {0, 1}, and a message
m ∈ {0, 1}�, outputs a ciphertext c encrypted on branch b.

– Dec(sk, ψ): given a secret key sk and a ciphertext ψ, outputs a message m ∈
{0, 1}�.

– FindMessy(τ,pk): given a trapdoor τ for crs generated in messy mode and
some (possibly malformed) public key pk, outputs a branch value b ∈ {0, 1}
corresponding to a messy branch of pk.

– TrapKeyGen(τ): given a trapdoor τ for crs generated in decryption mode,
outputs (pk, sk0, sk1) where pk is a public encryption key and sk0, sk1 are
corresponding secret decryption keys for branches 0 and 1 respectively.

We use SetupMessy1,SetupDec1 to denote the first output crs of SetupMessy,
SetupDec andKeyGen1 to denote the first output pk ofKeyGen.

Definition 1 (Dual-Mode Encryption). A dual-mode cryptosystem is a
tuple of algorithms described above that satisfy the following properties:

1. Completeness for decryptable branch: For every μ ∈ {0, 1}, every (crs, τ) ←
Setup(1k, μ), every σ ∈ {0, 1}, every (pk, sk) ← KeyGen(σ) and every m ∈
{0, 1}�, decryption is correct on branch σ, i.e. Dec(sk,Enc(pk, σ,m)) = m.

2. Indistinguishability of modes: the first outputs of SetupMessy and
SetupDec are computationally indistinguishable, i.e. SetupMessy1(1k) ≈c

SetupDec1(1k).
3. (Messy Mode) Trapdoor identification of messy branch: For every (crs, τ) ←

SetupMessy(1k) and every (possibly malformed) pk, FindMessy(τ,pk) outputs
a branch value b ∈ {0, 1} such that Enc(pk, b, ·) is messy. Namely, for every
m0,m1 ∈ {0, 1}�, Enc(pk, b,m0) ≈s Enc(pk, b,m1).

4. (Decryption Mode) Trapdoor generation of keys decryptable on both branches:
For every (crs, τ) ← SetupDec(1k), TrapKeyGen(τ) outputs (pk, sk0, sk1)
such that for every σ ∈ {0, 1}: (pk) ≈s KeyGen1(σ) and (pk, skσ) ∈
Supp(KeyGen(σ)).

Remark 1. Our requirement for decryption mode is actually weaker than that in
[32], which stipulates that for every σ ∈ {0, 1}, (pk, skσ) ≈s KeyGen(σ). That is,
we allow TrapKeyGen output any valid secret key skσ for branch σ, whereas the
original requirement is that the distribution of skσ be close to that output by
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KeyGen(σ). This weaker guarantee is nonetheless sufficient for UC-secure OT,
since the decryption mode is used in the case of a corrupted sender. A corrupted
sender sees only pk and not sk0 or sk1; moreover, as long as both sk0 and sk1

are valid, we will be able to extract both of its inputs.

Dual-Mode Encryption from Projective Hashing. We begin with the set-
up algorithms:

– SetupMessy(1k): Run Param(1k) ← (pp, sp) and sample C ←r Gno. Output

crs := (pp, C) and τ := sp

– SetupDec(1k): Run Param(1k) ← (pp, sp) and sample C ←r Gyes with ran-
domness r. Output

crs := (pp, C) and τ := r

All the remaining algorithms take crs = (pp, C) where C ∈ G as their first
input.

– KeyGen(σ): On input a branch value σ ∈ {0, 1}, sample Cσ ←r Gyes with
randomness rσ. Set C1−σ := C · C−1

σ . Output

pk := (C0, C1) and sk := (σ, rσ)

– Enc(pk, b,m): On input pk = (C0, C1), sample a uniform hashing key hk and
output

ψ := (μ(hk),Λhk(Cb) · m)

– Dec(sk, ψ): On input sk = (σ, r) and ψ = (pk∗, ψ∗), output

m := Pub(pk∗, Cσ, r)−1 · ψ∗

– FindMessy(τ,pk): On input τ = sp and pk = (C0, C1), check that C0 ·C1 = C.
Output

b :=

{
1 if C0 ∈ Gyes

0 otherwise

– TrapKeyGen(τ): On input τ = r, sample C0 ←r Gyes with randomness r0 and
compute C1 ∈ Gyes with randomness r1 := r − r0 (so that C0 · C1 = C).
Output

pk := (C0, C1) and (sk0, sk1) := (r0, r1)

Theorem 2. Suppose Λhk(·) is a smooth projective hash function, and the sub-
group membership problem is hard (w.r.t. Gyes vs Gno). Then, the above con-
struction yields a dual-mode cryptosystem.

We note here that our construction requires an additional property from under-
lying group, namely that given the respective randomness r0, r1 for sampling
C0, C1 ∈ Gyes, the value r0 + r1 is the randomness for sampling C0 · C1 (that is,
the sampling algorithm is also homomorphic). This requirement may be elimi-
nated if we are willing to settle for the weaker guarantee where each CRS may
only be used for a single (or a-priori bounded) instance of OT, as with the
LWE-based instantiation in [32].



172 H. Wee

Proof. We verify that our construction satisfies all of the four properties in Def-
inition 1:

1. Completeness for decryptable branch: This follows readily from the projective
property.

2. Indistinguishability of modes: This follows readily from our subset member-
ship assumption.

3. (Messy Mode) Trapdoor identification of messy branch: In the messy mode,
we require that C0 · C1 = C ∈ Gno. Therefore, (at least) one of C0, C1 ∈ Gno

(a subgroup is closed under multiplication, so if C0, C1 ∈ Gyes, then C0 ·C1 ∈
Gyes). Moreover, using the membership trapdoor, we can identify which of C0

or C1 is in Gno. The corresponding ciphertext must be messy by smoothness.
4. (Decryption Mode) Trapdoor generation of keys decryptable on both

branches: It is clear that the distribution of each of C0 and C1 is the uniform
distribution over Gyes. Moreover, r0 and r1 are randomness used for sampling
C0 and C1 respectively. Therefore, by the projective property, we can decrypt
ciphertexts on both branches. 	


6 Instantiations from DLIN

Let G be a group of prime order q specified using a generator g. The
DDH assumption asserts that gab is pseudorandom given g, ga, gb where
g ←r G; a, b ←r Zq. The d-LIN assumption asserts that gr1+···+rd

d+1 is pseudoran-
dom given g1, . . . , gd+1, g

r1
1 , . . . , grd

d where g1, . . . , gd+1 ←r G; r1, . . . , rd ←r Zq.
DDH is equivalent to 1-LIN.

6.1 Dual-Mode Encryption

For dual-mode encryption, we use the original Cramer-Shoup DDH-based hash
proof system in [15,16] and its generalization to d-LIN [26,34].

Setup. Sample P ←r Z
d×(d+1)
q along with a check vector v �= 0 so that Pv = 0.

Output

pp := (G, q, g, gP) and sp := (v)

The subgroup indistinguishability problem is given by:

Gyes :=
{

gr
�P : r ∈ Z

d
q

}
and G :=

{
ga

�
: a ∈ Z

d+1
q

}

where SampR(r) = gr
�P and the group operation is the natural one given

by entry-wise product. The uniform distributions over Gyes and G are com-
putationally distinguishable under the d-LIN assumption as shown in [9,31].
Observe that we can efficiently verify membership in Gyes using v since:

ga
� ∈ Gyes ⇐⇒ ga

�v = 1
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Hashing. The hashing key is given by a column vector s ←r Z
d+1
q , with

μ(gP, s) := gPs ∈ G
d×1

Private and public evaluation are given by:

Λs(ga
�
) := ga

�s ∈ G and Pub(gPs,C, r) := gr
�(Ps)

Clearly, Λs(·) is a group homomorphism. For the projective property, observe
that for C = gr

�P ∈ Gyes, we have

Λs(C) = gr
�Ps = Pub(gPs,C, r)

Smoothness. Observe that for any ga
� ∈ Gno (and a �= 0), we have that a� is

not in the row span of P. This means that for a random s ←r Z
d+1
q , a�s is

uniformly distributed over Zq given Ps. Smoothness follows readily.

6.2 KDM-security

We extend the d-LIN based hash proof system in [9,31], which are the vectorial
analogues of the preceding constructions, augmented with t functions following
[11]. This in turn captures the DDH-based KDM-secure encryption in [9] and
the DLIN-based scheme in [13]. Fix � ≥ (d + 2) log q and suppose we have t
additional (efficiently computable) functions f1, . . . , ft : {0, 1}� → {0, 1}, where
t ≥ 0. For instance, these functions may be low-degree polynomials of the bits
of the input, as considered in [11].

Setup. Sample P ←r Z
d×(�+t)
q . Output

pp := (G, q, g, gP)

The subgroup indistinguishability problem is given by:

Gyes :=
{

gr
�P : r ∈ Z

d
q

}
and G :=

{
ga

�
: a ∈ Z

�+t
q

}

where the group operation is the natural one given by entry-wise product.
The uniform distributions over Gyes and G are computationally distinguish-
able under the d-LIN assumption as shown in [9,31].

Hashing. The hashing key is given by a column vector s ←r {0, 1}�. We then
set ŝ ∈ {0, 1}�+t to be the concatenation of s and f1(s), . . . , ft(s).

μ(gP, s) := gPŝ ∈ G
d×1

Private and public evaluation are given by:

Λs(ga) := ga
�ŝ ∈ G and Pub(gPŝ,C, r) := gr

�(Pŝ)

Clearly, Λs(·) is a group homomorphism and the projective property simply
follows from the fact that g(r

�P)ŝ = gr
�(Pŝ).
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Smoothness. For average-case smoothness, the left-over hash lemma implies
that for � > (d + 2) log q, the following distributions:

(P,Pŝ,a,a�ŝ) and (P,Pŝ,a, a′)

are 1/q-statistically close, where s ←r {0, 1}�,a ←r Z
�
q, a

′ ←r Zq. Note that
ŝ has � bits of min-entropy, so ŝ conditioned on Pŝ ∈ Z

d×1
q has roughly

� − d log q ≥ 2 log q bits of min-entropy.
Class F . The message space M = {0, 1} and φ(m) = gm.

– Observe that for all a ∈ Z
�
q, c ∈ Zq (such that a�s + c ∈ {0, 1} for all

s ∈ {0, 1}�):

Λs(g(a||0)�) · gc = g(a||0)�ŝ · gc = φ(a�s + c)

– Moreover, for all i ∈ [t],

Λs(ge�+i) = gfi(s) = φ(fi(s))

where e�+i ∈ {0, 1}�+t is the unit vector with a 1 in the (� + i)’th index.
That is, the resulting scheme is F-KDM secure for F = {s �→ a�s + c | a ∈
Z

�
q, c ∈ Zq} ∪ {f1, . . . , ft}, i.e. affine functions of the bits of the secret key

(which includes flipping the i’th bit of the key s �→ 1− si) plus the functions
f1, . . . , ft.

7 Instantiations from QR and DCR

We will rely on the subgroup indistinguishability framework of Brakerski and
Goldwasser [10] (also [16, Sect. 7.4.2]). We consider a family of finite commutative
groups G that is generated by two elements g, h of co-prime order (thus |G| =
ord(g) ·ord(h)); we use G0 to denote 〈g〉. We will require the following additional
properties:

– given the public description of G, we may compute ord(h) and a good approxi-
mation a for ord(g) (so that the uniform distributions over [a] and over [ord(g)]
are statistcally close).

– computing discrete log with respect to h is easy.
– the uniform distributions over G0 and over G are computationally indistin-

guishable, given g, h.
– given some trapdoor, deciding membership in 〈g〉 is easy.

For our instantiations here, the output of Λhk(·) lies in G. We will work with a
relaxed notion of smoothness here in this section, where instead of requiring that
Λhk(·) be random over G, we only require that Λhk(·)modG0 be random over
〈h〉. More formally, smoothness states that for all C ∈ Gno: Λhk(C)modG0 is
statistically close to uniform over the subgroup 〈h〉 even given μ(hk). Similarly,
average-case smoothness states that the following distributions are statistically
close:

(μ(hk), C,Λhk(C)modG0) and (μ(hk), C, h′)
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where C ←r G and h′ ←r 〈h〉. The relaxed notion of smoothness is sufficient for
all of our applications as long as we will embed the message into the subgroup 〈h〉.
Instantiation from QR. Fix a Blum integer N = PQ for k-bit safe primes
P,Q ≡ 3 (mod 4) (such that P = 2p + 1 and Q = 2q + 1 for primes p, q). Let
JN denote the subgroup of Z

∗
N with Jacobi symbol +1, and let QRN denote

the subgroup of quadratic residues. The QR assumption states that the uniform
distributions over QRN and JN \ QRN are computationally indistinguishable.
That is, we may take G and G0 to be JN and QRN respectively. Observe that
JN is isomorphic to QRN × (±1) and that |JN | = 2pq = 2|QRN |. We can then
sample g by squaring a random element in Z

∗
N and fix h to be −1. Note that

|QRN | = pq = N/4 − O(
√

N), which we may approximate by N/4.

Instantiation from DCR. (See [16, Sect. 8.2]). Again, fix a Blum integer N =
PQ for k-bit safe primes P,Q ≡ 3 (mod 4) (such that P = 2p+1 and Q = 2q+1
for primes p, q). Let JN2 denote the subgroup of Z∗

N2 with Jacobi symbol +1, so
|JN2 | = Nφ(N)/2 = 2Npq. Consider the cyclic subgroup G0 of JN2 consisting of
all N ’th powers of elements of JN2 . Then, JN2 = G0×〈1+N〉. Roughly speaking,
the DCR assumption states that the uniform distributions over G0 and JN2 are
computationally indistinguishable. We can sample a random generator g of G0

as follows: pick x ←r Z
∗
N2 and set g := −xN . In addition, we can fix h := 1+N .

Note that |G0| = Npq = N2/4 − O(
√

N), which we may approximate by N2/4.

7.1 Dual-Mode Encryption

For dual-mode encryption, we use the Cramer-Shoup QR/DCR-based hash proof
system in [16].

Setup. Sample a random group G along with generators g and h.

pp := (G, g, h)

The subgroup indistinguishability problem is given by:

Gyes :=
{
gr : r ∈ Zord(g)

}
= G0 and G :=

{
hd · gr : d ∈ Zord(h), r ∈ Zord(g)

}
= G

where SampR(r) = gr. We also denote by sp the trapdoor that allows us
to verify membership in Gyes; for the instantiations from QR and DCR, this
would be the factorization of N .

Hashing. The hashing key is given by s ←r Zord(G).

μ(pp, s) := gs ∈ G

Private and public evaluation are given by:

Λs(C) := Cs ∈ G and Pub(gs, gr, r) := (gs)r = grs

Clearly, Λs(·) is a group homomorphism. The projective property follows
from the fact that (gr)s = (gs)r. For smoothness, first observe that by the
Chinese Remainder Theorem, smod ord(h) is random even given gs. Hence,
Λs(hdgr)modG0 = hds is random over 〈h〉 if d �= 0.
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7.2 KDM-security

The next construction is implicit in [10], and is the vectorial analogue of
the preceding construction, augmented with t functions following [11]. Let
� > 3 log |G|. Suppose we have t additional (efficiently computable) functions
f1, . . . , ft : {0, 1}� → Zord(h), where t ≥ 0.

Setup. Sample a random group G along with generators g and h. In addition,
sample p ←r Z

�+t
ord(g). Output

pp := (G, gp, h)

The subgroup indistinguishability problem is given by:

Gyes :=
{
g

rp
: r ∈ Zord(g)

}
⊆ G

�+t
0 and G :=

{
h
d · grp

: d ∈ Z
�+t
ord(h), r ∈ Zord(g)

}
⊆ G

�+t

where the group operation over G�+t is the natural one given by coordinate-wise
product. The uniform distributions over Gyes and G are computationally distin-
guishable under subgroup indistinguishability as shown in [10]. (The reduction
is fairly straight-forward: it essentially takes the challenge (x, g, h) where either
x ←r G0 or x ←r G and computes (gp

′
, xp′

) where p′ ←r Z
�+t
|G| .)

Hashing. The hashing key is given by a column vector s ←r Z
�
ord(h). We then

set ŝ ∈ Z
�+t
ord(h) to be the concatenation of s and f1(s), . . . , ft(s).

μ(gp, s) := gp
�ŝ ∈ G

Private and public evaluation are given by:

Λs(c) := cŝ ∈ G and Pub(gp
�ŝ, c, r) := (gp

�ŝ)r

where cŝ :=
∑�+t

i=1 c
ŝi
i . Clearly, Λs(·) is a group homomorphism. The projective

property simply follows from the fact that g(rp)
�ŝ = grp�ŝ = (gp

�ŝ)r.
Smoothness. To establish average-case smoothness, first observe that:

Λŝ(hd · grp)modG0 = hd�ŝ

The left-over hash lemma tells us that d�ŝ is statistically close to uniform over
Zord(h). More precisely, for � > 3 log |G|, the following distributions:

(p,p�ŝmod |G0|,d,d�ŝmod ord(h)) and 〈p,p�ŝmod |G0|,d, d′)

are statistically close, where s ←r Z
�
ord(h),d ←r Z

�+t
ord(h), d

′ ←r Zord(h).

Average-case smoothness follows readily, since gp
�ŝ is completely determined

by p�ŝmod |G0|.
Class F . The message space M = Zord(h) and φ(m) = hm.

– Observe that for all a ∈ Z
�, c ∈ Z (such that a�s + c ∈ Zord(h) for all

s ∈ Z
�
ord(h)):

Λs(ha||0) · hc = ha�s+c = φ(a�s + c)
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– Moreover, for all i ∈ [t],

Λs(he�+i) = hfi(s) = φ(fi(s))

where e�+i ∈ {0, 1}�+t is the unit vector with a 1 in the (� + i)’th index.
That is, the resulting scheme is F-KDM secure for F = {s �→ a�s + c | a ∈
Z

�, c ∈ Z} ∪ {f1, . . . , ft}, i.e. affine functions of the bits of the secret key, plus
the functions f1, . . . , ft.

Acknowledgments. I would like to thank David Cash, Kai-Min Chung and Dennis
Hofheinz for helpful discussions.
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Abstract. In the setting of secure multiparty computation, a set of
mutually distrusting parties wish to securely compute a joint function.
It is well known that if the communication model is asynchronous, mean-
ing that messages can be arbitrarily delayed by an unbounded (yet finite)
amount of time, secure computation is feasible if and only if at least two-
thirds of the parties are honest, as was shown by Ben-Or, Canetti, and
Goldreich [STOC’93] and by Ben-Or, Kelmer, and Rabin [PODC’94].
The running-time of all currently known protocols depends on the func-
tion to evaluate. In this work we present the first asynchronous MPC
protocol that runs in constant time.

Our starting point is the asynchronous MPC protocol of Hirt,
Nielsen, and Przydatek [Eurocrypt’05, ICALP’08]. We integrate thresh-
old fully homomorphic encryption in order to reduce the interactions
between the parties, thus completely removing the need for the expen-
sive king-slaves approach taken by Hirt et al.. Initially, assuming an hon-
est majority, we construct a constant-time protocol in the asynchronous
Byzantine agreement (ABA) hybrid model. Using a concurrent ABA pro-
tocol that runs in constant expected time, we obtain a constant expected
time asynchronous MPC protocol, secure facing static malicious adver-
saries, assuming t < n/3.

Keywords: Multiparty computation · Asynchronous communication ·
Threshold FHE · Constant-time protocols · Byzantine agreement.

1 Introduction

1.1 Background

In the setting of secure multiparty computation, a set of mutually distrusting
parties wish to jointly and securely compute a function of their inputs. This
computation should be such that each party receives its correct output, and
none of the parties learn anything beyond their prescribed output. The standard
definition today [14,26] formalizes the above requirements (and others) in the
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following general way. Consider an ideal world in which an external trusted party
is willing to help the parties carry out their computation. An ideal computation
takes place in this ideal world by having the parties simply send their inputs to
the trusted party, who then computes the desired function and passes each party
its prescribed output. The security of a real protocol is established by comparing
the outcome of the protocol to the outcome of an ideal computation. Specifically,
a real protocol that is run by the parties is secure, if an adversary controlling a
coalition of corrupted parties can do no more harm in a real execution than in
the ideal execution.

One of the most important parameters for designing a protocol is the com-
munication model. In the synchronous communication model, messages that are
sent are guaranteed to be delivered within a known and finite time frame. As
a result, the computation can proceed in rounds, such that if a party failed to
receive a particular message in some round, within the expected time frame, the
receiver knows that the sender did not transmit the message. Impressive feasibil-
ity results are known in this model [8,17,27,38], stating that every functionality
can be securely computed, assuming that a majority of the parties are honest.
Furthermore, under suitable cryptographic assumptions, the computation can
be done using constant-round protocols [2,4,24,28,31,33].

The asynchronous model of communication is arguably more appropriate
for modeling the real world. In this model the adversary has a stronger control
over the communication channels and can impose an arbitrary unbounded (yet
finite) delay on the arrival of each message. In particular, an honest party cannot
distinguish between a corrupted party that refuses to send messages and an
honest party whose messages are delayed.

This inherent limitation was taken into account by Ben-Or et al. [9] by adjust-
ing the ideal-world computation. Since messages from t parties might never be
delivered during the execution of the protocol, the trusted party cannot compute
the function on all inputs. Therefore, the ideal-world adversary gets to decide
on a core set of n − t input providers (t of which might be corrupted) and the
trusted party computes the function on their inputs (and default values for the
rest). Next, the trusted party sends to each party the output of the computation
along with the identities of the parties in the core set. It immediately follows
that a secure protocol implies agreement in the asynchronous setting, since the
core set must be agreed upon as part of the protocol, and therefore is feasible in
the standard model if and only if t < n/3 [9,10]. Asynchronous protocols that
are secure assuming t < n/2 are only known in weaker models that assume either
a synchronous broadcast round [6] or some form of non-equivocation [3]. More-
over, the running-time1 of all currently known asynchronous protocols depends
on the function to be computed and no constant-time protocols were known.

In this work we study the following question.

Do there exist asynchronous secure multiparty protocols which run in
constant time?

1 The running time is measured by the elapsed time of the protocol while normalizing
the maximal delay imposed on a message to 1.
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1.2 Our Result

Our main result is a feasibility result of an asynchronous secure multiparty pro-
tocol that runs in constant time in a hybrid model where the parties have access
to an ideal asynchronous Byzantine agreement (ABA) functionality.

The main tools that we use are threshold fully homomorphic encryption
(TFHE) and threshold signatures (TSIG). A fully homomorphic encryption
scheme (FHE) is an encryption scheme that enables an evaluation of a function
over a tuple of ciphertexts to obtain an encrypted result. TFHE is essentially a
distributed version of FHE, where the decryption key is secret shared amongst
the parties. In order to decrypt a ciphertext, each party locally uses its share
of the decryption key and computes a share of the plaintext. The plaintext can
then be reconstructed given t + 1 decryption shares. Similarly, in a threshold
signature scheme, the signing key is secret shared and t + 1 shares are required
in order to sign a message. We note that both of these computational assumption
can be based on the standard learning with errors (LWE) problem, see Asharov
et al. [2], Bendlin and Damg̊ard [11] and Bendlin et al. [12].

Theorem 1 (informal). Assume that TFHE and TSIG schemes exist, and
that the cryptographic keys have been pre-distributed. Then any efficiently com-
putable function f can be securely computed in the asynchronous setting facing
static malicious adversaries, assuming an honest majority and given access to
an ABA ideal functionality. The time complexity of the protocol is O(1), the
communication complexity is independent of the multiplication-depth of the cir-
cuit representing f and the number of (concurrent) invocations of the ABA ideal
functionality is n.

Using the concurrent ABA protocol of Ben-Or and El-Yaniv [7], which runs
in constant expected time2 and is resilient for t < n/3, we obtain the following
corollary.

Corollary 1 (informal). Assume that TFHE and TSIG schemes exist, then
any function can be securely computed in the asynchronous setting using a con-
stant expected time protocol, in the presence of static malicious adversaries, for
t < n/3.

1.3 Overview of the Protocol

The basis of our technique is the protocol of Cramer et al. [20] (designed for
the synchronous setting), which is based on threshold additively homomorphic
encryption (TAHE)3 and is designed in a hybrid model where the encryption
keys are pre-distributed before the protocol begins. Initially, each party encrypts
its input and broadcasts the ciphertext. Next, the circuit is homomorphically
evaluated, where addition gates are computed locally and multiplication gates
2 Following the impossibility result of [22], asynchronous agreement protocols cannot

be computed in constant time.
3 Which essentially means that ciphertexts can be added but not multiplied.
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are computed interactively. Finally, a threshold decryption protocol is executed,
and the parties learn the output.

Hirt et al. [29,30] adopted the protocol of [20] into the asynchronous setting
by introducing the king-slaves paradigm. Initially, each party sends its encrypted
input to all the parties, and the core set is decided upon using an agreement on
a common subset (ACS) protocol, which incorporates n instances of ABA. Next,
n copies of the circuit are interactively evaluated. In each evaluation one of the
parties acts as king while all other parties act as slaves. The role of the slaves
is to help the king with the computation of multiplication gates. At the end of
each such evaluation, the slaves send their decryption shares to the king which
recovers the output. The evaluations of the circuit are executed asynchronously,
i.e., one king may finish its computation while another king hasn’t started yet,
therefore each party must hold a state for each evaluation of the circuit.

The time complexity of the protocols of Hirt et al. [29,30] depends on the
depth of the circuit to compute. In this work, we use a TFHE instead of TAHE
in order to reduce the running time. This adjustment not only yields better
time complexity and better communication complexity, but also enables a design
without the expensive king-slave paradigm, since each party can locally and non-
interactively evaluate the entire circuit. As a consequence, the description of
the new protocol is greatly simplified, and also results with a better memory
complexity compared to [29,30], since the parties do not need to store a local
state for each of the n evaluations of the circuit.

Our protocol consists of three stages. The input stage, in which the core set
of input providers is determined, follows in the lines of Hirt et al. [29,30]. In
the computation and threshold decryption stage, each party homomorphically
evaluates the circuit non-interactively and obtains an encrypted output c̃. Next,
the party uses its share of the decryption key to compute a decryption share and
send it to all other parties. Once a party receives t + 1 valid decryption shares
it can recover the output. During these stages, the validity of each message
sent by some party must be proven. This is done by running a sub-protocol
which produces a certificate for the message (which is essentially a signature
produced by n − t parties). Therefore, a party must remain active and assist in
constructions of certificates even after it obtained its output. The termination
stage ensures a safe termination of all the parties and follows Bracha [13]. Once
a party obtained its output it sends it to all other parties. When a party receives
t+1 consisting values it can safely set its output to this value (even if it did not
complete the computation and threshold decryption stage) and once receiving
outputs from n − t parties, terminate.

1.4 Additional Related Work

Ben-Or et al. [9] were the first to define asynchronous secure multiparty compu-
tation. They constructed a BGW-alike [8] asynchronous protocol that is secure
in the presence of malicious adversaries when t < n/4; the authors showed that
this threshold is tight when considering perfect correctness. Ben-Or et al. [10]
constructed a protocol with statistical correctness that is secure in the presence
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of malicious adversaries, for t < n/3. This threshold is also tight following the
lower bound of Toueg [41], stating that asynchronous Byzantine agreement is
impossible if t ≥ n/3, even in the PKI model.

Following the feasibility results of [9,10] great improvements have been made
regarding the communication complexity. Two main approaches have been used,
the first is in the information-theoretic model and does not rely on cryptographic
assumptions [5,19,35–37,40] while the second is in the computational model and
is based on threshold additively homomorphic encryption, these protocols appear
in [18,29,30] and rely on a preprocessing phase for key distribution.

In order to achieve security for an honest majority, the model must be weak-
ened in some sense. Beerliová-Trub́ıniová et al. [6] allowed a limited usage of syn-
chronous Byzantine agreement and adjusted the protocol from [30] to the case
where t < n/2. Backes et al. [3] augmented the model with a non-equivocation
oracle, and constructed a protocol that is secure assuming an honest majority.

In an independent work, Choudhury and Patra [18] suggested using TFHE in
order to reduce the time complexity, but did not proceed in this route since they
considered concrete efficiency. We note that in this work we focus on feasibility
results rather than concrete efficiency of the protocols.

A comparison of the asynchronous MPC protocols appears in Table 1.

Paper Organization

The cryptographic primitives are defined in Sect. 2 and followed by the descrip-
tion of the UC security model in Sect. 3. Certificates are defined in Sect. 4 and
then in Sect. 5 we present our asynchronous MPC protocol. The security proof
is given in Sect. 6.

2 Preliminaries

In this section we present the definitions of the cryptographic schemes that are
used in our protocol.

2.1 Threshold Fully Homomorphic Encryption

Definition 1. A homomorphic encryption (HE) scheme consists of 4 PPT algo-
rithms:

– Key generation: (dk, ek) ← Gen(1κ); outputs a pair of keys: the secret
decryption key dk and the public encryption (and evaluation) key ek.

– Encryption: c ← Encek(m); using ek, encrypt a plaintext m into a
ciphertext c.

– Decryption: m = Decdk(c); using dk, decrypt the ciphertext c to into a
plaintext m.

– Homomorphic evaluation: c = Evalek(C, c1, . . . , c�); using ek, evaluate a
circuit C over a tuple of ciphertexts (c1, . . . , c�) to produce a ciphertext c.
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Table 1. Comparison of asynchronous MPC protocols.

Paper Resilience Correctness Timea Communicationb Assumptionsc Hybrid

Modeld

[9] t < n/4 Perfect O(cM ) O(cM · n6)

[10] t < n/3 Statistical O(cM ) Ω(cM · n11)

[40] t < n/4 Perfect O(cM ) Ω(cM · n5)

[37] t < n/4 Statistical O(cM ) O(cM · n4 + n5)

[29] t < n/3 Computational O(cM ) O(cM · n3κ) TAHE, TSIG KeyDist

[5] t < n/4 Perfect O(cM ) O(cM · n3)

[30] t < n/3 Computational O(cM ) O(cM · n2κ + n3κ) TAHE, TSIG KeyDist

[35] t < n/3 Statistical O(cM ) O(cM · n5)

[36] t < n/4 Statistical O(cM ) O(cM · n2 + n4)

[36] t < n/4 Perfect O(cM ) O(cM · n2 + n3)

[6] t < n/2 Computational O(cM ) O(cM · n4κ) TAHE, TSIG KeyDist,

Bcast

[19] t < n/4 Statistical O(cM ) O(cM · n + n3)

[3] t < n/2 Computational O(cM ) O(cM · n3κ) AHE, TSIG KeyDist,

NEQ

[3] t < n/2 Computational O(cM ) O(cM · n2κ + n3κ) TAHE, TSIG KeyDist,

NEQ

[18] t < n/3 Computational O(cM ) O(cM · nκ + n3κ) TSHE KeyDist

This work t < n/3 Computational O(1) O(n3κ) TFHE, TSIG KeyDist
aTime complexity is measured in the ABA-hybrid model.
bcM denotes the number of multiplication gates. Input, output and addition gates are ignored.
cTSIG is a threshold digital signature scheme, AHE is an additively homomorphic encryption

scheme, TAHE is a threshold additively homomorphic encryption scheme, TSHE is a threshold

somewhat homomorphic encryption scheme, TFHE is a threshold fully homomorphic encryp-

tion scheme.
dKeyDist stands for key distribution for a threshold cryptosystem, NEQ stands for transferable

non-equivocation mechanism, Bcast stands for synchronous broadcast.

We say that a HE scheme is correct for circuits in a circuit class C if for every
C ∈ C and every series of inputs m1, . . . ,m� ∈ {0, 1}∗ it holds that

Pr [Decdk (Evalek (C,Encek(m1), . . . ,Encek(m�))) �= C (m1, . . . ,m�)] ≤ negl(κ).

Semantic security of HE schemes is defined in the standard way, see [25].

Definition 2. A family of HE schemes {Π(d) = (Gen(d),Enc(d),Dec,Eval(d)) |
d ∈ N

+} is leveled fully homomorphic if for every d ∈ N
+, the following holds:

– Correctness: Π(d) correctly evaluates the set of all boolean circuits of depth
at most d.

– Compactness: There exists a polynomial s such that the common decryption
algorithm can be expressed as a circuit of size at most s(κ) and is independent
of d.

In our protocol for computing a function f , the depth d of the circuit C repre-
senting f is known in advance. We remove the notation (d) from the schemes
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throughout the paper for clarity. We also require the FHE scheme to have a
threshold decryption, informally this means that Gen generates the public key ek
as well as a te-secret sharing of the secret key (dk1, . . . , dkn), such that decrypt-
ing c using dki produces a share mi of the plaintext m. We will use te = t + 1.

Definition 3. A threshold homomorphic encryption scheme is a homomorphic
encryption scheme augmented with the following properties:

– The key generation algorithm is parameterized by (te, n) and outputs
(dk, ek) ← Gen(te,n)(1κ), where dk is represented using a (te, n)-threshold
secret sharing of the secret key (dk1, . . . , dkn).

– Given a ciphertext c and a share of the secret key dki, the share-decryption
algorithm outputs di = DecSharedki

(c) such that (d1, . . . , dn) forms a (te, n)-
threshold secret sharing of the plaintext m = Decdk(c). We denote the
reconstruction algorithm that receives te decryption shares {di} by m =
DecRecon({di}).

2.2 Threshold Signatures

A threshold signature scheme is a signature scheme in which the signing key is
shared amongst n parties using a ts-threshold secret-sharing scheme. Using ts
shares of the signing key it is possible to sign on any message, however using
less than ts shares it is infeasible to forge a signature. We will use ts = n − t.

Definition 4 (Threshold Signature Scheme). A threshold signature scheme
is a signature scheme (SigGen,Sign,Vrfy) augmented with the following proper-
ties

– The signature key generation algorithm is parameterized by (ts, n) and outputs
(sk, vk) ← SigGen(ts,n)(1κ), where sk is represented using a (ts, n)-threshold
secret sharing of the secret signing key (sk1, . . . , skn).

– Given a plaintext m and a share of the secret key ski, the share-signing algo-
rithm outputs σi ← SignShareski

(m) such that (σ1, . . . , σn) forms a (ts, n)-
threshold secret sharing of the signature σ ← Signsk(m).

For a security definition of threshold signatures see, for example, [1].

3 The Security Model

3.1 The UC Framework

In this section we present a high-level description of the security model. We follow
the UC framework of Canetti [14], which is based on the real/ideal paradigm,
i.e., comparing what an adversary can do in the real execution of the protocol to
what it can do in an ideal model where an uncorrupted trusted party (an ideal
functionality) assists the parties. Informally, a protocol is secure if whatever an
adversary can do in the real protocol (where no trusted party exists) can be done
in the ideal computation.
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The Real World. An execution of a protocol π in the real model consists of n
interactive Turing machines (ITMs) P1, . . . , Pn representing the parties, along
with two additional ITMs, an adversary A, describing the behavior of the cor-
rupted parties and an environment Z, representing the external environment in
which the protocol operates. The environment gives inputs to the honest parties,
receives their outputs, and can communicate with the adversary at any point
during the execution. The adversary controls the operations of the corrupted
parties and the delivery of messages between the parties.

In more details, each ITM is initialized with the security parameter κ and
random coins, where the environment may receive an additional auxiliary input.
We consider static corruptions, meaning that the set of corrupted parties is fixed
before the protocol begins and is known to A and Z. The protocol proceeds
by a sequence of activations, where the environment is activated first and at
each point a single ITM is active. The environment can either activate one of
the parties with input or activate the adversary by sending it a message. Once
a party is activated it can perform a local computation, write on its output
tape or send messages to other parties. After the party completes its operations
the control is returned to the environment. Once the adversary is activated it
can send messages on behalf of the corrupted parties or send a message to the
environment. In addition, A controls the communication between the parties,
and so it can read the content of the messages sent between the parties and
is responsible for delivering each message to its recipient. Once A delivers a
message to some party, this party is activated. We assume that the adversary
cannot omit, change or inject messages, however it can decide which message
will be delivered and when.4 The protocol completes once Z stops activating
other parties and outputs a single bit.

If the adversary is fail-stop, it always instructs the corrupted parties to follow
the protocol, with the exception that they can halt prematurely and stop sending
messages. If the adversary is malicious, it may instruct the corrupted parties to
deviate from the protocol arbitrarily.

Let realπ,A,Z(κ, z, r) denote Z’s output on input z and security parame-
ter κ, after interacting with adversary A and parties P1, . . . , Pn running pro-
tocol π with random tapes r = (r1, . . . , rn, rA, rZ) as described above. Let
realπ,A,Z(κ, z) denote the random variable realπ,A,Z(κ, z, r), when the vector
r is uniformly chosen.

The Ideal Model. A computation in the ideal model consists of n dummy par-
ties P1, . . . , Pn, an ideal adversary (simulator) S, an environment Z, and an
ideal functionality F . The environment gives inputs to the honest (dummy) par-
ties, receives their outputs, and can communicate with the ideal adversary at
any point during the execution. The dummy parties act as channels between
the environment and the ideal functionality, meaning that they send the inputs
received from Z to F , and transfer the output they receive from F to Z. We

4 This behaviour is formally modeled using the eventual-delivery secure message trans-
mission ideal functionality in [32].
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consider static corruptions, and so the set of corrupted parties is fixed before
the computations, and is known to Z, S and F . As before, the computation
completes once Z stops activating other parties and outputs a single bit.

The ideal functionality defines the desired behaviour of the computation. F
receives the inputs from the dummy parties, executes the desired computation
and sends the output to the parties. The ideal adversary does not see and can-
not delay the communication between the parties and the ideal functionality,
however, S can communicate with F . As we consider asynchronous protocols in
the real model, ideal functionalities must consider some inherent limitations, for
instance, the ability of the adversary to decide when each honest party learns
the output. Since the UC framework has no notion of time, we follow [32,34]
and model time by number of activations. Once F prepares an output for some
party it does not ask permission from the adversary to deliver it to the party,
instead the party must request the functionality for the output, and this can
only be done when the party is active. Furthermore, the adversary can instruct
F to delay the output for each party by ignoring the requests for a polynomial
number of activations. If the environment activates the party sufficiently many
times, the party will eventually receive the output from the ideal functionality.
It follows that the ideal computation will terminate, i.e., all honest parties will
obtain their output, in case the environment will allocate enough resources to
the parties. We use the term F sends a request-based delayed output to Pi to
describe the above interaction between the F , S and Pi.

Let idealF,S,Z(κ, z, r) denote Z’s output on input z and security parameter
κ, after interacting with ideal adversary S and dummy parties P1, . . . , Pn which
interact with ideal functionality F with random tapes r = (rS , rZ) as described
above. Let idealF,S,Z(κ, z) denote the random variable idealF,S,Z(κ, z, r),
when the vector r is uniformly chosen.

Definition 5. We say that a protocol π t-securely UC realizes an ideal function-
ality F in the presence of static malicious (resp., fail-stop) adversaries, if for
any PPT malicious (resp., fail-stop) real model adversary A, controlling a subset
of up to t parties, and any PPT environment Z, there exists a PPT ideal model
adversary S such that following two distribution ensembles are computationally
indistinguishable

{realπ,A,Z (κ, z)}κ∈N,z∈{0,1}∗
c≡ {idealF,S,Z (κ, z)}κ∈N,z∈{0,1}∗ .

The Hybrid Model. In a G-hybrid model, the execution of the protocol proceeds
as in the real model, however, the parties have access to an ideal functionality
G for some specific operations. The communication of the parties with the ideal
functionality G is performed as in the ideal model. An important property of the
UC framework is that an ideal functionality in a hybrid model can be replaced
with a protocol that securely UC realizes G. We informally state the composition
theorem from Canetti [14].

Theorem 2 [14]. Let π be a protocol that t-securely UC realizes F in the
G-hybrid model and let ρ be a protocol that t-securely UC realizes G. Then the
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protocol πρ that is obtained from π by replacing every ideal call to G with the
protocol ρ, t-securely UC realizes F in the model without ideal functionality G.

3.2 Some Ideal Functionalities

We now present the asynchronous SFE and asynchronous BA functionalities.

Asynchronous Secure Function Evaluation. Secure function evaluation
(SFE) is a multiparty primitive where a set of n parties wish to compute a
(possibly randomized) function f : ({0, 1}∗)n × {0, 1}∗ → ({0, 1}∗)n, where f =
(f1, . . . , fn). That is, for a vector of inputs x = (x1, . . . , xn) ∈ ({0, 1}∗)n and
random coins r ∈R {0, 1}∗, the output vector is (f1(x; r), . . . , fn(x; r)). The
output for the i’th party (with input xi) is defined to be fi(x; r). The function
f has public output, if all parties output the same value, i.e., f1 = . . . = fn,
otherwise f has private output.

In an asynchronous protocol for computing secure function evaluation, the
adversary can always delay messages from t parties, and so t input values might
not take part in the computation. Therefore, in the definition of the ideal func-
tionality for asynchronous SFE, the ideal-model adversary is given the power to
determine a core set of n − t input providers (t of which might be corrupted)
that will contribute input values for the computation. The asynchronous secure
function evaluation functionality, Ff

ASFE, is presented in Fig. 1.

Functionality Ff
ASFE

Ff
ASFE proceeds as follows, running with parties P1, . . . , Pn and an adversary S,

and parameterized by an n-party function f : ({0, 1}∗)n×{0, 1}∗ → ({0, 1}∗)n.
For each party Pi initialize an input value xi = ⊥ an output value yi = ⊥.

– Upon receiving a message (input, sid, v) from some party Pi, if CoreSet has
not been recorded yet or if Pi ∈ CoreSet, set xi = v. Next, send a message
(input, sid, Pi) to S.

– Upon receiving a message (coreset, sid,CoreSet) from S, verify that CoreSet
is a subset of {P1, . . . , Pn} of size n− t; else ignore the message. If CoreSet
has not been recorded yet, record CoreSet and for every Pi not in CoreSet,
set xi to some default input value xi = x̃i.

– Upon receiving a message (output, sid) from some party Pi, do:
1. If CoreSet has not been recorded yet or if xj has not been recorded

for some Pj ∈ CoreSet, ignore the message.
2. Otherwise, if y1, . . . , yn have not been set yet, then choose r ∈R {0, 1}∗

and compute (y1, . . . , yn) = f(x1, . . . , xn; r).
3. Generate a request-based delayed output (output, sid, (CoreSet, yi)) to

Pi and send (output, sid, Pi) to S.

Fig. 1. The asynchronous secure function evaluation functionality
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Asynchronous Byzantine Agreement. In a synchronous Byzantine agree-
ment, each party has an input bit and outputs a bit. Three properties are
required: agreement, meaning that all honest parties agree on the same bit,
validity, meaning that if all honest parties have the same input bit then this will
be the common output and termination, meaning that the protocol eventually
terminates. When considering asynchronous Byzantine agreement (ABA), the
definition must be weakened, since t input values may be delayed and not effect
the result. We adopt the ABA functionality as defined in [34]. The asynchronous
Byzantine agreement functionality, FABA, is presented in Fig. 2.

Functionality FABA

FABA proceeds as follows, running with parties P1, . . . , Pn and an adversary S:

– Upon receiving a message (vote, sid, b), where b ∈ {0, 1} from party Pi,
send a message (vote, sid, Pi, b) to the adversary. The adversary is also
allowed to vote.

– The result is computed using one of the following rules:
• If n − t parties voted, and t + 1 voted b and S voted b, then set the

result to be b.
• If n − t parties voted b, then set the result to be b.
• If n − t parties voted, but do not agree, then the result is set by the

vote of S.
When the result of voting sid has been decided to be v, the functionality
sends (decide, sid, v) as a request-based delayed output to all parties.

Fig. 2. The asynchronous Byzantine agreement functionality

4 Zero-Knowledge Proofs and Certificates

In order to ensure security against malicious behaviour, the parties must
prove their actions using zero-knowledge proofs during the protocol. The zero-
knowledge functionality FZK and its one-to-many extension F1:M

ZK are defined in
Sect. 4.1 and the notion of certificates in Sect. 4.2.

4.1 Zero-Knowledge Proofs

In the zero-knowledge functionality, parameterized by a relation R, the prover
sends the functionality a statement x to be proven along with a witness w. In
response, the functionality forwards the statement x to the verifier if and only
if R(x,w) = 1 (i.e., if and only if x a correct statement and w is a witness
for x). Thus, in actuality, this is a proof of knowledge in that the verifier is
assured that the prover actually knows w (and has explicitly sent w to the
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Functionality FZK

FZK proceeds as follows, running with prover P , a verifier V and an adversary
S, and parameterized with a relation R:

– Upon receiving (ZK-prover, sid, x, w) from P , do: if R(x,w) = 1,
then send (ZK-proof, sid, x) to S, send a request-based delayed output
(ZK-proof, sid, x) to V and halt. Otherwise, halt.

Fig. 3. The zero-knowledge functionality

functionality), rather than just being assured that such a w exists. The zero-
knowledge functionality, FZK, is presented in Fig. 3.5

The zero-knowledge functionality, as defined in Fig. 3, is parameterized by a
single relation R (and thus a different copy of FZK is needed for every different
relation required). In this work we require zero-knowledge proofs for several
relations, therefore, we use standard techniques by considering the relation R
index several predetermined relations. This can be implemented by separating
the statement x into two parts: x1 that indexes the relation to be used and x2

that is the actual statement. Then, define R((x1, x2), w) as Rx1(x2, w).
We now define the one-to-many extension of the zero-knowledge functional-

ity, where one party proves a statement to some subset of parties. The definition
of the one-to-many zero-knowledge functionality, denoted F1:M

ZK , is presented
in Fig. 4.

Functionality F1:M
ZK

F1:M
ZK proceeds as follows, running with parties P1, . . . , Pn and an adversary S,

and parameterized with a relation R:

– Upon receiving (ZK-prover, sid,P, x, w) from party Pi, where P ⊆
{P1, . . . , Pn} do: if R(x,w) = 1, then send (ZK-proof, sid, Pi,P, x) to S,
a request-based delayed output (ZK-proof, sid, Pi,P, x) to all parties in P
and halt. Otherwise, halt.

Fig. 4. The one-to-many zero-knowledge functionality

4.2 Certificates

As we consider static corruptions, there exists efficient constant-round zero-
knowledge protocols in the FCRS-hybrid model, e.g., omega protocols [23], and
5 For simplicity, we concentrate on the single-session version of FZK, which requires a

separate common reference string for each protocol that realizes FZK. The protocols
realizing FZK will later be composed, using the universal composition with joint
state of Canetti and Rabin [16], to obtain protocols that use only a single copy of
the common reference string when realizing all the copies of FZK.
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even non-interactive zero-knowledge proofs [21]. These protocols would suffice
for realizing FZK as it is a two-party functionality. However, when considering
the multiparty functionality F1:M

ZK , some problems may arise. The reason is that
the statement that needs to be proven is not public, and a malicious prover may
prove different statements to different parties.

This problem is resolved using certificates, introduced by Hirt et al. [30].
Certificates are generated by an interactive protocols among the parties such that
at the end of the execution, one party can non-interactively prove correctness of
some statement to each other party, without revealing additional information.
The protocol for issuing a certificate is based on threshold signatures and involves
two stages. First, a signature proving the statement is computed interactively
with all the parties – it is essential that all the parties are active during this
stage, otherwise the prover might not receive enough shares to reconstruct the
signature. Next, the prover can send the signature as a non-interactive proof of
the statement and every other party can validate it.

During out main protocol, in Sect. 5, we consider three relations:

– Proof of Plaintext Knowledge. The relations is parameterized by a TFHE
scheme. The statement consists of a public encryption key ek and a ciphertext
c and the witness consists of the plaintext x and random coins r, explaining
c as an encryption of x under ek. That is

RPoPK = {((ek, c), (x, r)) | c = Encek(x; r)} .

– Proof of Correct Decryption. The relations is parameterized by a TFHE
scheme. The statement consists of a public encryption key ek, a ciphertext c
and a decryption share d and the witness consists of the decryption key dk.
That is

RPoCD = {((ek, c, d), dk) | d = DecSharedk(c)} .

– Proof of Correct Signature. The relations is parameterized by a TSIG
scheme. The statement consists of a public verification key vk, a message msg
and a signature share σ and the witness consists of the signing key sk. That is

RPoCS = {((vk,msg, σ), sk) | σ = SignSharesk(msg)}
Lemma 1. Let n > 2t + 1 and let Rx1 be a binary relation. Assuming the
existence of threshold signature schemes, F1:M

ZK can be UC realized in the FZK-
hybrid model in the presence of static malicious adversaries.

Proof. Consider a party Pi, holding a witness w, that wishes to prove a statement
x to all other parties. The high-level idea is for Pi to prove x to each other
Pj using a two-party zero-knowledge proof. If all parties are active and Pi is
honest, it is guaranteed that eventually at least n − t proofs will successfully
terminate. Once a verifier Pj accepts the proof, it produces a share σj of a
signature approving x, sends the share back to Pi and proves the validity of σj

to Pi using another two-party zero-knowledge proof. After Pi obtains n− t valid
signature shares, it can reconstruct the signature σ which serves as its certificate.
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Assuming that n > 2t+1, it holds that (n−t)−t ≥ 1, and so it is guaranteed
that at least one honest party accepted the proof of the statement x; it follows
that the corrupted parties cannot falsely certify invalid statements. Furthermore,
assuming the two-parties zero-knowledge proofs are constant round, certifying a
statement takes constant time.

Protocol 3 shows how to compute F1:M
ZK in the FZK-hybrid model. During the

protocol, two instances of FZK are used; the first is for proving statements for
the relation Rx1 and the second for the relation RPoCS. We use the notation sidk

j

for the string sid ◦ k ◦ j.

Protocol 3 (F1:M
ZK protocol, in the FZK-hybrid model)

Offline setup:
For every j ∈ [n], party Pj is initialized with keys for a threshold
signature scheme (vk, skj), where (sk, vk) ← SigGen(n−t,n)(1

κ), and
sk = (sk1, . . . , skn).

Code for sender Pi:
– Upon receiving (ZK-prover, sid, P, (x1, x2), w) from the environment,

party Pi sends (ZK-prover, sid1j , (x1, x2), w) to FZK where Pi acts as
the prover and Pj acts as the verifier (for every j ∈ [n] \ {i}). In
addition, send (sid, P) to every party.

– Request output from FZK until receiving
(ZK-proof, sid2j , (PoCS, vk,msg, σ)), with msg =
〈(x1, x2) is a valid statement, for (sid, P)〉 (for every j ∈ [n] \ {i}),
until receiving n − t signature shares {σj}.

– Compute cert = SignRecon({σj}), send (sid, (x1, x2), cert) to every
party in P and halt.

Code for receiver Pj (for j 	= i):
– Requests output from FZK until receiving (ZK-proof, sid1j , (x1, x2)).

Next, upon receiving the message (sid, P) from Pi, set
msg = 〈(x1, x2) is a valid statement, for (sid, P)〉, compute σj =
SignShareskj

(msg) and send (ZK-prover, sid2j , (PoCS, vk,msg, σj), skj)
to FZK where Pj acts as the prover and Pi acts as the verifier.

– Upon receiving the first message (sid, (x1, x2), cert) from Pi set
msg = 〈(x1, x2) is a valid statement, for (sid, P)〉 and verify that
Vrfyvk(msg, cert) = 1. If so output (ZK-proof, sid, Pi, P, (x1, x2)) and
halt.

The one-to-many zero-knowledge protocol

Let A be an adversary attacking Protocol 3 and let Z be an environment.
We construct a simulator S as follows. S runs the adversary A and simulates
the environment, the honest parties and the ideal functionality FZK towards A.
In order to simulate Z, S forwards every message it receives from Z to A and
vice-versa. S simulates the honest parties towards A. In case Pi is corrupted,
S receives ((x1, x2), w) by simulating FZK and in addition receives P from A.
Next, S sends (ZK-prover, sid,P, (x1, x2), w) to F1:M

ZK and continues simulating
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the honest parties and FZK to A. In case Pi is not corrupted, it first receives
(ZK-proof, sid, Pi,P, (x1, x2)) from F1:M

ZK . Next, whenever A requests output from
FZK with sid1j for j ∈ I, S replies with (ZK-proof, sid, (x1, x2)). The rest of the
simulation follows the protocol. It is straight-forward to see that the view of A
is indistinguishable when interacting with S and when attacking the execution
of Protocol 3, and the proof follows.

5 Asynchronous MPC Protocol

Following the spirit of [29,30], the protocol consists of an offline key-distribution
stage (preprocessing) followed three online stages: the input stage, the compu-
tation and threshold-decryption stage and the termination stage. We present
the protocol for public-output functionalities, and a variant for private-output
functionalities can be obtained using the technique of [29].

5.1 Key-Distribution Stage

The key-distribution stage can be computed once for multiple instances of the
protocol and essentially distributes the keys for threshold schemes amongst
the parties. We will describe the protocol in a hybrid model where the key-
distribution is done by an ideal functionality FKeyDist. This ideal functionality
can be realized using any asynchronous MPC protocol that does not require
preprocessing, e.g., [35]. We emphasize that the time complexity of the protocol
realizing the key-distribution stage is independent of the function to compute.

FKeyDist generates the public and secret keys for the TFHE and the TSIG
schemes and sends to each party its corresponding keys. The key-distribution
functionality is described in Fig. 5.

5.2 Input Stage

In the input stage, as described in Protocol 4, each party encrypts its input and
sends it to all the other parties along with certificates proving that the party
knows the plaintext (and so independence of inputs is retained) and that n − t
parties have obtained it. Next, the parties jointly agree on a common subset of
input providers, CoreSet, which consists of n − t parties whose encrypted input
has been obtained by all the parties. This stage proceeds in a similar manner
to [29] with the difference that the plaintexts are encrypted using TFHE rather
than TAHE.

In more details, each party Pi starts by encrypting its input ci ← Encek(xi),
and proving to each other party knowledge of the plaintext. Once a party Pj

accepts the proof, it sends Pi a signature share for the statement msg = 〈n −
t parties hold the input ci of Pi〉. After Pi obtains n − t signature shares, it can
reconstruct and distribute the certificate certinputi , which is essentially a signature
on msg.
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Functionality FKeyDist

FKeyDist proceeds as follows, interacting with parties P1, . . . , Pn and an adver-
sary S, and parameterized by TFHE and TSIG schemes.

– Upon receiving a message (keydist, sid) from party Pi, do:
1. If there is no value (sid, dk, ek, sk, vk) recorded, compute

(dk, ek) ← Gen(t,n)(1
κ), where dk = (dk1, . . . , dkn), and

(sk, vk) ← SigGen(n−t,n)(1
κ), where sk = (sk1, . . . , skn) and

record (sid, dk, ek, sk, vk).
2. Send (sid, Pi, ek, vk) to S and a request-based delayed outputa

(sid, dki, ek, ski, vk) to Pi.

a This is the standard formalization of the asynchronous setting in the UC
framework, see Section 3; Pi must request the output from FKeyDist, and S
can continuously instruct FKeyDist to arbitrarily delay the answer.

Fig. 5. The key-distribution functionality

When a party collects n − t certificates it knows that at least n − t parties
have their certified inputs distributed to at least n − t parties. Since n ≥ 2t + 1,
by assumption, this means that at least (n − t) − t ≥ 1 honest parties obtained
certified inputs from at least n − t parties. Hence, if the honest parties echo the
certified inputs they receive and collect n − t echoes, then all honest parties will
end up holding the certified inputs of the n − t parties which had their certified
inputs distributed to at least one honest party. These n−t parties will eventually
be the input providers. To determine who they are, the asynchronous Byzantine
agreements functionality FABA is invoked (concurrently) n times. During the
protocol description we use the notation sidk

j for the string sid ◦ k ◦ j.

5.3 Computation and Threshold Decryption Stage

In the computation and threshold-decryption stage, as described in Protocol 5,
each party locally prepares the circuit Circ(CoreSet) (with hard-wired default
input values for parties outside CoreSet) and evaluates it over the encrypted
input ciphertexts that were agreed upon in the input stage. Since the encryption
scheme is fully homomorphic, this part is done without interaction between
the parties. Once the encrypted output c̃i is obtained, Pi computes a decryption
share di and interactively certifies it. Next, Pi sends the certified decryption share
to all other parties and waits until it receives t + 1 certified decryption shares,
from which it can reconstruct the output yi.

Once Pi obtains the output, it should send it to all other parties in order
to trigger the termination stage. This is done by first computing a signature
share σoutput

i for the statement that yi is the output value, interactively certify
σoutput

i and send it to all parties. Once Pi receives n − t signature shares it can
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Protocol 4 (The input stage, in the (FKeyDist, FZK, F1:M
ZK , FABA)-hybrid)

Setup: Upon receiving input (input, sid, xi) from the environment, proceed as fol-
lows:
1. Send (keydist, sid) to FKeyDist.
2. Request the output from FKeyDist until receiving (sid, dki, ek, ski, vk).
3. Initialize the following sets to ∅: VerProvi (verified input providers),

VerDistProvi (verified distributed input providers), GlobalProvi (globally
verified distributed input providers), CertInputsi (certified inputs) and
GlobalInputsi (globally certified inputs).

Distribution of Encrypted Input:
1. Compute ci = Encek(xi; ri) (for uniformly distributed ri).
2. Send (ZK-prover, sid1i , {P1, . . . , Pn} \ {Pi}, (PoPK, ek, ci), (xi, ri)) to F1:M

ZK .
3. Request output from FZK (with sid2i,j for every j ∈ [n] \ {i}) until receiving

(ZK-proof, sid2i,j , (PoCS, vk,msg, σ
inputi
j )), where Pi acts as the verifier and

Pj acts as the prover, with msg = 〈n − t parties hold the input ci of Pi〉,
until receiving n − t signature shares {σ

inputi
j }.

4. Compute the certificate certinputi = SignRecon({σ
inputi
j }) (which equals

Signsk(msg)). Send (sid,msg, ci, cert
input
i ) to all the parties.

Grant Certificate:
Request the output from F1:M

ZK (with sid1j for every j ∈ [n]\{i}). Upon receiving

(ZK-proof, sid1j , Pj , {P1, . . . , Pn}\{Pj}, (PoPK, ek, cj)), add j to VerProvi. Next,

set the message msg = 〈n− t parties hold the input cj of Pj〉, compute σ
inputj
i =

SignShareski
(msg), and send (ZK-prover, sid2j,i, (PoCS, vk,msg, σ

inputj
i ), ski) to

FZK, where Pi acts as the prover and Pj as the verifier.
Echo Certificate:

Upon receving (sid,msg, cj , certinputj ) with the message msg = 〈n −
t parties hold the input cj of Pj〉 and Vrfyvk(msg, certinputj ) = 1, check if j /∈
VerDistProvi. If so, add j to VerDistProvi, add (cj , certinputj ) to CertInputsi and

forward (sid,msg, cj , certinputj ) to all the parties.
Select Input Providers:

When |VerDistProvi| ≥ n − t, stop executing the above rules and proceed as
follows:
1. Send (sid,VerProvi,CertInputsi) to all the parties.
2. Collect a set of

{
(VerProvj ,CertInputsj)

}
j∈J

of n − t pairs.

3. Let GlobalProvi = ∪j∈JVerProvj and GlobalInputsi = ∪j∈JCertInputsj .

4. For j ∈ [n], send (vote, sid3j , vj) to FABA, where vj = 1 iff j ∈ GlobalProvi.

5. Request the outputs from FABA until receiving (decide, sid3j , wj) for every
j ∈ [n].

6. Denote CoreSet = {j ∈ [n] | wj = 1}.

7. For each j ∈ GlobalProvi ∩ CoreSet, send (sid, cj , certinputj ) to all the parties

(note that (cj , certinputj ) ∈ GlobalInputsi).

8. Wait until receiving (cj , certinputj ) for every j ∈ CoreSet.

The input stage code for Pi
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reconstruct a certificate proving that yi is indeed the output value. Finally Pi

sends yi along with the certificate to all the parties.

Protocol 5 (The computation and threshold-decryption stage)

Wait until input stage is completed, resulting with a core set CoreSet and input
ciphertexts {cj | j ∈ CoreSet}.

Circuit Evaluation:
1. For each j /∈ CoreSet, hard-wire the default value x̃j for Pj into the

circuit Circ, denote the new circuit by Circ(CoreSet).
2. Locally compute the homomorphic evaluation of the circuit

c̃i = Evalek

(
Circ(CoreSet), cj1 , . . . , cj|CoreSet|

)
.

Threshold Decryption:
1. Compute the decryption share di = DecSharedki(c̃i).
2. Send (ZK-prover, sid4i , {P1, . . . , Pn} \ {Pi}, ((PoCD, ek, c̃i, di), dki) to

F1:M
ZK .

3. Request the output from F1:M
ZK (for every j ∈ [n]\{i}). Upon receiving

(ZK-proof, sid4j , Pj , {P1, . . . , Pn} \ {Pj}, (PoCD, ek, c̃j , dj)), accept the
proof if c̃i = c̃j .

4. Once t + 1 decryption shares with accepted proofs {(ek, c̃i, dj)} have
arrived, reconstruct the output yi = DecRecon({dj}).

5. Set msg = 〈yi is the output value〉 and compute σoutput
i =

SignShareski
(msg).

6. Send (ZK-prover, sid5i , {P1, . . . , Pn}\{Pi}, (PoCS, vk,msg, σoutput
i ), ski)

to F1:M
ZK .

7. Request output from F1:M
ZK (for j ∈ [n] \ {i}) until receiving

(ZK-proof, sid5j , Pj , {P1, . . . , Pn} \ {Pj}, (PoCS, vk,msg, σoutput
j )), with

msg = 〈yi is the output value〉.
8. Compute the certificate certoutput-verifiedi = SignRecon({σ

outputi
j }) (which

equals Signsk(msg) with msg = 〈yi is the output value〉).
Send (sid,msg, certoutput-verifiedi ) to all the parties.

The computation and threshold-decryption stage code for Pi

5.4 Termination Stage

The termination stage, as described in Protocol 6, ensures that all honest parties
will eventually terminate the protocol, and will do so with the same output.
Recall that the computation and threshold-decryption stage is concluded when a
party sends a certified output value to all the parties. The party cannot terminate
at this point since it might be required to assist in certifying statements for other
parties. Therefore, during the entire course of the protocol the termination code
is run concurrently. The termination stage follows the technique of Bracha [13].
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In this stage, each party continuously collects certified outputs sent by other
parties. Once it receives t + 1 certified outputs of the same value it knows that
this is the correct output value for the computation (since at least one honest
party sent it). The party then adopts this certified output as its own output
(in case it did not obtain the output value earlier) and echoes it to all other
parties. Once the party receives n − t certified outputs of the same value, it can
terminate.

Protocol 6 (The termination stage)

During the protocol, concurrently executes the following rule:

Collecting Output Values:
When receiving for the first time from party Pj the value
(sid,msg, certoutput-verifiedj ), with msg = 〈yj is the output value〉 and

Vrfyvk(msg, certoutput-verifiedj ) = 1.
1. If the value yj has arrived from t + 1 parties and the output of

Pi is not set to be yj , then set the output yi to be yj and echo
(sid,msg, certoutput-verifiedj ) to all the parties.

2. If the value yj has arrived from n − t parties, then terminate with
output (output, sid, (CoreSet, yi)).

The termination stage code for Pi

6 Proof of Security

Lemma 2. Let f be an n-party functionality and assume the existence of TFHE
and TSIG schemes. Then the protocol π described in Protocols 4, 5 and 6 UC
realizes Ff

ASFE in the (FKeyDist,FZK,F1:M
ZK ,FABA)-hybrid model, in constant time,

in the presence of static malicious adversaries corrupting at most t parties, for
t < n/2.

Proof. Let A be a static malicious adversary against the execution of π and let
Z be an environment. Denote by I the set of indices of the corrupted parties.
We construct an ideal-process adversary S, interacting with the environment Z
and with the ideal functionality Ff

ASFE. S constructs virtual real-model honest
parties and runs the real-model adversary A. S must simulate the view of A,
i.e., its communication with Z, the messages sent by the uncorrupted parties,
and the interactions with the functionalities (FKeyDist,FZK,F1:M

ZK ,FABA).
In order to simulate the communication with Z, every message that S receives

from Z is sent to A, and likewise, every message sent from A sends to Z is
forwarded by S.
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Simulating the Input Stage. S starts by simulating FKeyDist and generates
the cryptographic keys by computing (dk, ek) ← Gen(t,n)(1κ), where dk =
(dk1, . . . , dkn), and (sk, vk) ← SigGen(n−t,n)(1κ), where sk = (sk1, . . . , skn),
and recording (dk, ek, sk, vk). Upon request from A, S sends the corresponding
keys (dki, ek, ski, vk) for each corrupted party Pi (i ∈ I).

Next, S simulates the operations of all honest parties in the input
stage (Protocol 4). During the Distribution of Encrypted Input phase, S sets
every ciphertext of an honest party to be an encryption of zero, that is
for every j /∈ I, compute cj ← Encek(0). When the adversary send a
request to F1:M

ZK with sid1j (for j /∈ I) on behalf of a corrupted party, S
responds with a confirmation of the validity of the ciphertext cj , i.e., with
(ZK-proof, sid1j , Pj , {P1, . . . , Pn} \ {Pj}, (PoPK, ek, cj)). When a corrupted party
Pi (i ∈ I) sends (ZK-prover, sid1i , {P1, . . . , Pn} \ {Pi}, (PoPK, ek, ci), (xi, ri)) to
F1:M

ZK , S confirms that indeed ci = Encek(xi; ri) and if so records the input xi.
S continues to simulate the honest parties by following the protocol; in all other
calls to FZK, S responds according to the ideal functionality. When the simula-
tion reaches the Select Input Providers phase, S simulates the interface to FABA

to A. When the first honest party completes the simulated input stage, S learns
the set CoreSet.

Note that S learned the input values that were used by the adversary A
on behalf of the corrupted parties that were selected to be input providers.
This follows since for every i ∈ I ∩ CoreSet, there exists an honest party that
confirmed the ciphertext ci and sent a signature share to Pi (except for the
negligible probability that A managed to forge a signature). It follows that the
corrupted party must have sent its input to F1:M

ZK during the Distribution of
Encrypted Input phase, and so its input value xi was recorded by S.

Interacting with Ff
ASFE. Once S learns CoreSet, it sends to Ff

ASFE the input
value xi that was recorded for each i ∈ I ∩ CoreSet, the input value xi = 0 for
each i ∈ I \ CoreSet and the set CoreSet as the set of input providers. Once S
receives back the output value y, it starts the simulation of the computation and
threshold-decryption stage.

Simulating the Computation and Threshold-Decryption Stage. In order to simu-
late the honest parties in this stage (Protocol 5), S proceeds as follows. Initially,
S computes the evaluated ciphertext c̃ based on the input ciphertexts of the
input providers, i.e., c̃ = Evalek(Circ(CoreSet), cj1 , . . . , cj|CoreSet|). Next, for every
i ∈ I, use the share of the decryption key dki to compute the decryption share
di = DecSharedki

(c̃). S then sets the decryption share dj , for every j /∈ I, such
that (d1, . . . , dn) form a secret sharing of the output value y. When the adversary
sends a request to F1:M

ZK with sid4j (for j /∈ I) on behalf of a corrupted party, S
responds with a confirmation of the validity of the decryption share dj , i.e., with
(ZK-proof, sid4j , Pj , {P1, . . . , Pn} \ {Pj}, (PoCD, ek, c̃, dj)). S continues to simu-
late the honest parties by following the protocol; in all other calls to F1:M

ZK , S
responds according to the ideal functionality.
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Simulating the Termination Stage. S simulates the honest parties in the termi-
nation stage (Protocol 6) by following the protocol;

We now define a series of hybrid games that will be used to prove the indistin-
guishability of the real and ideal worlds. The output of each game is the output
of the environment.

The Game realπ,A,Z . This is exactly the execution of the protocol π in
the real-model with environment Z and adversary A (and ideal functionalities
(FKeyDist,FZK,F1:M

ZK ,FABA)).

The Game hyb1
π,A,Z . In this game, we modify the real-model experiment

in the computation stage as follows. Whenever a corrupted party requests
output from F1:M

ZK with sid4j (for j /∈ I), the response from F1:M
ZK is

(ZK-proof, sid4j , Pj , {P1, . . . , Pn} \ {Pj}, (PoCD, ek, c̃, dj)), without checking if Pj

sent a valid witness.

Claim 7. realπ,A,Z ≡ hyb1
π,A,Z .

Proof. This follows since in the execution of π, honest parties always send a valid
witness to F1:M

ZK , and so the response from F1:M
ZK is the same in both games.

The Game hyb2
π,A,Z . This game is just like an execution of hyb1 except for the

computation of the decryption shares of honest parties during the computation
stage. Let y be the output of f , let c̃ be the evaluated ciphertext, let dki (for
i ∈ I) be the shares of the decryption key held by the corrupted parties, and
let di = DecSharedki

(c̃) be the corresponding decryption shares. Then, instead
of computing the decryption share of the honest parties as dj = DecSharedkj

(c̃)
(for j /∈ I), the decryption shares are computed such that (d1, . . . , dn) form a
secret sharing of the output value y.

Claim 8. hyb1
π,A,Z

c≡ hyb2
π,A,Z .

Proof. The ability to compute the decryption shares of the honest parties follows
from the properties of the secret sharing scheme.6 Computational indistinguisha-
bility follows from the semantic security of the TFHE scheme.

The Game hyb3
π,A,Z . This game is just like an execution of hyb2 except for

the following difference. Whenever a corrupted party requests output from F1:M
ZK

with sid1j (for j /∈ I), the response from F1:M
ZK is (ZK-proof, sid1j , Pj , {P1, . . . , Pn}\

{Pj}, (PoPK, ek, cj)), without checking if Pj sent a valid witness.

Claim 9. hyb2
π,A,Z ≡ hyb3

π,A,Z .

Proof. This follows since in the execution of π, honest parties always send a valid
witness to F1:M

ZK , and so the response from F1:M
ZK is the same in both games.

6 In the scheme of Shamir [39], fix the points corresponding to the shares di (for
i ∈ I) and the secret y, create a degree t polynomial interpolating these points, and
compute the shares dj (for j /∈ I) accordingly.
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The Game hyb4,�
π,A,Z .. This game is just like an execution of hyb3 with the

following difference. In the input stage, in case i ≤ � honest party Pi encrypts
its actual input ci ← Encek(xi), whereas in case i > � Pi encrypts zeros ci ←
Encek(0). (Note that hyb4,n is exactly hyb3.)

Claim 10. For every � ∈ {0, . . . , n − 1}, hyb4,�
π,A,Z

c≡ hyb4,�+1
π,A,Z .

Proof. This follows from the semantic security of the encryption scheme.

Claim 11. hyb4,0
π,A,Z ≡ idealf,S,Z .

Proof. This follows since the joint behaviour of ideal functionalities
(FKeyDist,FZK,FABA), the modified behaviour of the ideal functionality F1:M

ZK and
the behaviour of the honest parties in hyb4,0 is identical to the simulation done
by S.

Combining Claims 7–11, we conclude that realπ,A,Z
c≡ idealf,S,Z .

7 Conclusions

By Lemma 1, F1:M
ZK can be realized in the FZK-hybrid model (assuming the exis-

tence of TSIG and an honest majority). Assuming the existence of enhanced
trapdoor permutations, FZK can be UC realized in the FCRS-hybrid model non-
interactively (meaning that the prover sends a single message to the verifier)
[21]. Using universal composition with joint state [16], a multi-session version
of FZK that requires a single copy of the CRS can be used. We thus obtain the
following theorem from Lemma 2:

Theorem 12 (formal statement of Theorem1). Let f be an n-party func-
tion and assume that enhanced trapdoor permutations, TFHE schemes and TSIG
schemes exist. Then Ff

ASFE can be UC realized in the (FCRS,FKeyDist,FABA)-hybrid
model, in constant time, in the presence of static malicious adversaries corrupt-
ing at most t parties, for t < n/2.

During the input stage (Protocol 4) the functionality FABA is concurrently
invoked n times. If FABA is instantiated using a constant expected round pro-
tocol, e.g., the protocol of Canetti and Rabin [15], the time complexity of
the concurrent composition will result with expectancy of log(n). Ben-Or and
El-Yaniv [7] constructed a concurrent ABA protocol that runs in constant
expected time, assuming that t < n/3.7 We therefore conclude with the fol-
lowing corollary.

Corollary 2 (formal statement of Corollary 1). Let f be an n-party func-
tion and assume that enhanced trapdoor permutations, TFHE schemes and TSIG
schemes exist. Then Ff

ASFE can be UC realized in the (FCRS,FKeyDist)-hybrid
model, in constant expected time, in the presence of static malicious adversaries
corrupting at most t parties, for t < n/3.
7 Although the protocol in [7] is proved based on the property-based definition of

ABA, a simulation-based proof should follow as we consider static adversaries.
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Abstract. Adaptively secure Multi-Party Computation (MPC) is an
essential and fundamental notion in cryptography. In this work, we con-
struct Universally Composable (UC) MPC protocols that are adaptively
secure against all-but-one corruptions based on LWE. Our protocols have
a constant number of rounds and communication complexity dependant
only on the length of the inputs and outputs (it is independent of the
circuit size).

Such protocolswere only knownassuming anhonestmajority. Protocols
in the dishonest majority setting, such as the work of Ishai et al. (CRYPTO
2008), require communication complexity proportional to the circuit size.
In addition, constant-round adaptively secure protocols assuming dishon-
est majority are known to be impossible in the stand-alone setting with
black-box proofs of security in the plain model. Here, we solve the problem
in the UC setting using a set-up assumption which was shown necessary in
order to achieve dishonest majority.

The problem of constructing adaptively secure constant-round MPC
protocols against arbitrary corruptions is considered a notorious hard
problem. A recent line of works based on indistinguishability obfuscation
construct such protocols with near-optimal number of rounds against
arbitrary corruptions. However, based on standard assumptions, adap-
tively secure protocols secure against even just all-but-one corruptions
with near-optimal number of rounds are not known. However, in this
work we provide a three-round solution based only on LWE and NIZK
secure against all-but-one corruptions.

In addition, Asharov et al. (EUROCRYPT 2012) and more recently
Mukherjee and Wichs (ePrint 2015) presented constant-round protocols
based on LWE which are secure only in the presence of static adversaries.
Assuming NIZK and LWE their static protocols run in two rounds where
the latter one is only based on a common random string. Assuming adap-
tively secure UC NIZK, proposed by Groth et al. (ACM 2012), and LWE
as mentioned above our adaptive protocols run in three rounds.

Our protocols are constructed based on a special type of cryptosystem
we call equivocal FHE from LWE. We also build adaptively secure UC
commitments and UC zero-knowledge proofs (of knowledge) from LWE.

This is an extended abstract. Further details can be found in the full version [DPR14].
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Moreover, in the decryption phase using an AMD code mechanism we
avoid the use of ZK and achieve communication complexity that does
not scale with the decryption circuit.

1 Introduction

Secure multi-party computation is an extremely strong and important tool for
making distributed computing more secure. General solutions to the problem
allows us to carry out any desired computation among a set of players, without
compromising, the privacy of their inputs or the correctness of the outputs. This
should even hold if some of the players have been corrupted by an adversary. An
important issue in this connection is how the adversary chooses which players
to target. In the static model, the adversary must choose who to corrupt before
the protocol starts. A more general and also more realistic model is adaptive
corruption where the adversary may corrupt new players during the protocol.

Of course efficiency of the protocol is also important, and important mea-
sures in this respect are the number of rounds we need to do, as well as the
communication complexity (the total number of bits sent). Obviously, achieving
a constant number of rounds and small communication complexity, while still
getting the best possible security, is an important research goal.

Unconditionally secure protocols such as [BGW88] are typically adaptively
secure. But these protocols are not constant round, and it is a major open
problem if it is even possible to have unconditional security and constant number
of rounds for secure computation of any function, see [DNP15] for a detailed
discussion.

If we are willing to make computational assumptions, we can achieve constant
round protocols, the first example of this is Yao’s garbled circuits for two players,
but on the other hand this does not give us adaptive security. Another class of
protocols based on Fully Homomorphic Encryption (FHE) also naturally leads
to constant round protocols, where we can tolerate that a majority of players are
corrupted. Here we also get low communication complexity, that depends only on
the lenght of inputs and outputs. But again, these protocols achieve only static
security (see for instance [Gen09,AJLA+12,LTV12]). More recently, the work
of Mukherjee and Wichs [MW15] achieve a two-round static protocol assuming
LWE and NIZK where additionally the protocol only assumes a random reference
string (as opposed to being sampled form a specific distribution).

We can in fact get adaptive security in the computational setting, as shown
in [CFGN96] by introducing the notion of Non-Commiting Encryption (NCE).
Moreover, in [DN03], adaptive security was obtained as well, but much more
efficiently using additively homomorphic encryption. However, neither [CFGN96]
nor [DN03] run in a constant number of rounds.

If we assume honest majority we can get both constant round and adaptive
security but the communication complexity will be propositional to the size of
the evaluated circuit. This was shown in several papers [DI05,DI06,DIK+08,
IPS08]. The idea here is to use an unconditionally secure protocol to compute,
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for instance, a Yao garbled circuit, that is then used to compute the desired
function in a constant number of rounds. Since the computation leading to the
Yao circuit is easy to parallelise, this can be constant round as well and we
inherit adaptive security from the unconditionally secure “preprocessing”. On
the other hand, as mentioned this requires communication that is proportional
to the size of circuit to be securely evaluated. One may apply the IPS compiler
to one of these protocols to get a solution for dishonest majority. This preserves
the adaptive security and the constant number of rounds, but unfortunately also
preserves the dependence of the communication complexity on the circuit size.
Therefore, the question becomes:

Is it possible to construct constant round MPC protocols secure against
an adaptive adversary that may corrupt all but one parties with commu-
nication complexity independent of the circuit size?

1.1 Contributions

We answer this in the affirmative. More specifically, we achieve an adaptive
UC-secure protocol that tolerates corruption of n − 1 of the n players with UC
secure composition with protocols secure against n−1 corruptions. Our protocol
requires a constant number of rounds and its communication complexity depends
only on the length of inputs and outputs (and the security parameter), and not
on the size of the evaluated circuit and the decryption circuit. The protocol is
secure if the LWE problem is hard. Moreover, we do not consider the weaker
model of secure erasures.

Theorem 1 (informal). Assuming hardness of LWE, we show that arbitrary
functions can be UC-securely computed in the presence of adaptive, active cor-
ruption of all-but-one parties within a constant number of rounds.

Assuming adaptively secure UC NIZK, proposed by Groth et al. [GOS12],
and LWE our adaptive protocols run in three rounds.

Theorem 2 (informal). Assuming hardness of LWE and the existence of adap-
tively secure UC NIZK, we show that arbitrary functions can be UC-securely
computed in the presence of adaptive, active corruption of all-but-one parties in
three rounds of broadcast.

In our construction we assume a broadcast channel where encryption is per-
formed using what we call Equivocal FHE, a notion weaker than non-commiting
encryption, presented in Sect. 3 which can be of independent interest. For exam-
ple, using our equivocal scheme we also build adaptively secure UC commitment
and UC zero-knowledge proofs (of knowledge) based on hardness of LWE (see
Sect. 4).

Last but not least, in the standard ZK-based decryption used by approaches
based on FHE, all the parties need to append a ZK proof, to prove that they
decrypted correctly, whose communication complexity grows with the size of the
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decryption circuit. In this work using an AMD code mechanism [CDF+08] we
avoid the use of ZK and achieve communication complexity that does not scale
with the decryption circuit. In particular, the total communication complexity of
the decryption phase of our concrete protocol is O(n2λ) where λ is the security
parameter.

1.2 Technical Difficulties and New Ideas

To construct our adaptively secure protocol, we start from the well known blue-
print for FHE-based MPC: players encrypt their inputs under a common public
key, evaluate the desired function locally and then jointly decrypt the result.
This is possible under an appropriate set-up assumption, which is always needed
for UC security and dishonest majority. Namely, we assume that a public key
has been distributed, and players have been given shares of the corresponding
secret key.

This approach has been used before and usually leads to static security.
One reason for this is that encryptions are usually committing, so we are in
trouble if the sender of a ciphertext is corrupted later. This can be solved using
a cryptosystem with equivocal properties and this would mean that the input
and the evaluation phase of the protocol can be simulated, even for adaptive
corruptions. Players need, of course, to prove that they know the inputs they
contribute, but this can be done once we construct constant round adaptively
secure UC commitment and ZK proofs from LWE.

An important tool we would like to get in order to achieve constant-round
adaptively secure MPC protocols may be a Fully Homomorphic Encryption
(FHE) scheme with equivocal properties.

Starting Point – Fully Homomorphic NCE. It is tempting to consider a
generic solution from FHE and Non-Commiting Encryption (NCE). In particu-
lar, in such a hypothetical construction, the secret key would be a secret key for
an FHE scheme, the public key an FHE encryption of the NCE secret key and
the NCE public key. Encryption would be performed using the NCE, and homo-
morphic evaluation and decryption would be performed as expected. However,
there are fundamental caveats with this approach.

It does not seem to buy us any efficiency at all. In particular, NCE schemes
are interactive, in that the receiver must send fresh (public-)key material for
each new message to be encrypted. There is even a result by Nielsen saying that
this is inherent for NCE [Nie02]. It will be hard for an interactive scheme to
fit the above suggestion. Indeed, the public key material would run out after
encrypting some number of inputs. Therefore, in generic NCE the public-key
cannot be reused, and has to be updated for each new message. Moreover, one
may go around this issue by having an NCE public-key for each party where the
FHE encryption in the public key will include all the public keys. However, such
a solution is highly inefficient since it is not the number of parties that matter
but the amount of data to be encrypted. The amount of public-key material has
to be proportional to size of the plaintext data. For instance, if only a constant
number of parties had input, but a lot of, we would have a significant problem.
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Another suggestion is to always regenerate this setup afresh using a constant
round adaptive protocol prior to each new execution. This might work but unfor-
tunately set-up data are considered reasonable if its size does not depend on the
function to be computed (otherwise we are in the preprocessing model which is
a completely different ball game). Hence, one would in fact always need this key
regeneration step per execution.

It turns out that the motivation of considering NCE in this context is very
weak.

Our Approach - Starting Afresh. Towards minimising the above caveat we
propose a scheme we call Equivocal FHE. An equivocal FHE scheme is a fully
homomorphic encryption scheme with additional properties. Most importantly,
it is possible to generate “fake” public keys that look like normal keys but where
encryption leads to ciphertexts that contain no information on the plaintext.
This is similar to the known notion of meaningful/meaningless keys, but in
addition we want that fake public keys come with a trapdoor that allows to
“explain” (equivocate) a ciphertext as an encryption of any desired plaintext.
This is similar to (but not the same as) what is required for NCE: for NCE one
needs to equivocate a ciphertext even if the decryption key is also given (say, by
corrupting the receiver), here we only need to give the adversary valid looking
randomness for the encryption. In order to achieve such a cryptosystem the
main properties we require from an FHE scheme is formula privacy, invertible
sampling and homomorphishm over the randomness. Given this, we managed to
obtain the required equivocation directly with much less overhead compared to
a possible NCE solution.

We give a concrete instantiation of equivocal FHE based on LWE, starting
from the FHE scheme by Brakerski et al. [BV11].

Adaptive UC Commitments and ZK from LWE. A second tool we need
is constant-round UC-secure commitments and zero-knowledge proofs. For the
commitments we start from a basic construction appeared in [CLOS02], which
was originally based on claw-free trapdoor permutations (CFTP). We show that
it can be instantiated based on LWE (which is not known to imply CFTP).
Zero-knowledge then follows quite easily from known techniques.

Achieving a Simulatable Protocol. A harder problem is how to simulate
the output phase in which ciphertexts containing the outputs are decrypted. In
the simulation we cannot expect that these ciphertexts are correctly formed and
hold the actual outputs, so the simulator needs to “cheat”. However, each player
holds a share of the secret key which we have to give to the adversary if he is
corrupted. If this happens after some executions of the decryption protocol, we
(the simulator) may already be committed to this share. It is therefore not clear
how the simulator can achieve the desired decryption results by adjusting the
shares of the secret key. To get around this, we adapt an idea from Damg̊ard and
Nielsen [DN03], who proposed an adaptively secure protocol based on additively
homomorphic threshold encryption but in the honest majority scenario. The
idea is to add a step to the protocol where each ciphertext is re-randomised
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just before decryption. This gives the simulator a chance to cheat and turn
the ciphertext into one that contains the correct result, and one can therefore
simulate the decryption without having to modify the shares of the secret key.
The re-randomisation from [DN03] only works for honest majority, we show a
different method that works for dishonest majority and augment our Equivocal
FHE scheme with the ciphertext randomisation property to achieve our goal.

General Purpose Equivocal FHE. We mention for completeness that there
is also a more generic approach which will give us adaptive security based only on
our Equivocal FHE: namely, we follow the same blueprint as before, with input,
evaluation and output phases. However, we implement the verification of cipher-
texts in the input phase and the decryptions in the output phase using generic
adaptively secure MPC a la [CLOS02,IPS08]. This way, the communication and
the number of rounds do not depend on the size of circuit to be computed
securely. However, it would not be genuinely constant round, and the communi-
cation complexity would depend on the circuits computing the encryption and
decryption functions of the underlying cryptosystem. Hence, unlike our proto-
col, any such solution would have communication complexity proportional to
the Boolean circuit complexity of the decryption function (which seems inherent
since one needs Yao garbling underneath). We measure the round and commu-
nication complexity of such a possible solution based on the IPS compiler. The
bottom line is that using IPS generically would yield a larger (constant) num-
ber of rounds (20–30 rounds) and worse dependence on the security parameter.
A concise estimate can be found in AppendixA. Clearly the above estimate
should be taken with large grains of salt. We have tried to be optimistic on the
part of IPS, to not give our concrete protocol an unfair advantage. Thus, actual
numbers could be larger. On the other hand, we propose a three-round solution.

AMD Code Solution to Replace ZK. However, contrary to the above generic
IPS solution, our approach allows for significant optimization of the decryption as
follows. Instead of using ZK proofs to prove that the player’s evaluation shares to
the decryption phase are correct, we change the evaluation phase of the protocol.
In particular, instead of having ciphertexts containing the desired output z, the
evaluation phase computes encryptions containing a codeword c = (z, α) in
an algebraic manipulation detection code, where z is the data and α is the
key/randomness. In the decryption stage, players commit to their decryption
shares (recall that we have UC commitment available), and then all shares are
opened. If decryption fails, or decoding the codeword fails, we abort, else we
output the decoded z. If z and α are thought of as elements in a (large) finite
field, then the codeword can just be (z, α, αz). According to our optimization,
the communication complexity of our protocol is not only independent of the size
of the evaluated circuit but also independent of the circuit size of the decryption
circuit.

Impossibility Results? In the following we mention two impossibility results
which apply to adaptively secure MPC and mention why they do not apply in
our setting.
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Motivated by ruling out one possible approach to achieving adaptive security,
Katz et al. [KTZ13] showed that FHE with security against adaptive corruption
of the receiver is impossible. In our setting, we distribute the private key of an
FHE scheme among n parties; since we allow only n − 1 of the parties to be
corrupted, the impossibility result from [KTZ13] does not apply. Note that if an
FHE scheme is to be of use in MPC, it seems to be necessary that the players
are able to decrypt, if not by themselves, then at least by collaborating. But if
corruption of all n players was allowed, the adversary would necessarily learn all
secret keys, and then the impossibility result from [KTZ13] would apply. This
suggests that our result with n − 1 corruptions is the best we can achieve based
only on FHE.

We note that in [GS12], adaptive security in constant number of rounds in
the plain model was obtained using a non-blackbox proof in the stand-alone
setting. Also a solution with a blackbox proof was shown to be impossible, but
this does not, of course, apply to our case, where we go for UC security, and
therefore require a set-up assumption.

Security Against Arbitrary Corruptions: Round complexity of all
known adaptively secure protocols secure against n corruptions grows (see,
e.g. [CLOS02,KO04,GS12,DMRV13]) linearly in the depth of the evaluated cir-
cuit. Recent independent works [GP15,CGP15,DKR15], have been shown that
MPC protocols with security against n corruptions in a constant number of
rounds can be achieved using indistinguishability obfuscation (IO) [GGH+13].

While the above results on constant round MPC using IO are exciting, the
focus of this work is to avoid indistinguishability obfuscation altogether and to
achieve adaptive security against corruption of n − 1 of the n players, (with
communication complexity depended only on the length of inputs and outputs
and not on the size of the circuit to be computed securely), using simpler tools
with simple standard assumptions involving them. In particular, our construction
only requires FHE based on the hardness of LWE and avoids the use of IO which
also incurs a cost in efficiency. Also as we have already mentioned, our result
with n − 1 corruptions is the best we can achieve based only on FHE.

Roadmap. In Sect. 3 we define our Equivocal fully homomorphic encryption
scheme and its properties. A concrete instantiation based on the scheme of
[BV11] is given in the full version. In Sect. 4 we give our construction for UC
commitments and ZKPoK. Next in Sect. 5, we proceed by presenting our MPC
protocol. The simulator and the security proof of our protocol can be found in
the full version. In Sect. 6 we show how AMD codes can be used in order to avoid
the use of ZK.

2 Notation

Throughout the paper λ ∈ N will denote the security parameter. We use d ← D
to denote the process of sampling d from the distribution D or, if D is a set, a
uniform choice from it. We say that a function f : N → R is negligible if ∀c ∃nc
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s.t. if n > nc then f(n) < n−c. We will use negl(·) to denote an unspecified
negligible function. We often use [n] to denote the set {1, ..., n}. We write �
and � to denote operations over encrypted data including multiplication of a
ciphertext with a non encrypted string. If D1 and D2 are two distributions, then
we denote that they are statistically close by D1 ≈s D2; we denote that they
are computationally indistinguishable by D1 ≈c D2; and we denote that they
are identical by D1 ≡ D2. For a randomized algorithm A, we use a ← A(x; r) to
denote running A on input x and uniformly random bits r ∈ {0, 1}∗, producing
output a.

Invertible Sampling [OPW11]: We recall the notion of invertible sampling, which
is closely connected to adaptive security in simulation models where erasures
are not allowed. We say that an algorithm A with input space X has invertible
sampling if there exists a PPT inverting algorithm, denoted by InvA, such that
for all input x ∈ X, the outputs of the following two experiments are either
computationally, or statistically indistinguishable:

y ← A(x, r) y ← A(x, r)
r′ ← InvA(y, x)

Return (x, y, r) Return (x, y, r′)

3 Equivocal Fully Homomorphic Encryption Scheme

We start by recalling the notions of (fully) homomorphic encryption. Next we
define the new notion of Equivocal FHE and we specify the properties needed
for such an instantiation. We give a concrete instantiation of our Equicocal
FHE scheme from the LWE assumption, based on Brakerski and Vaikutanathan
[BV11] FHE scheme, in the full version.

3.1 Homomorphic Encryption

A homomorphic encryption scheme HE = (KeyGen,Enc,Eval,Dec) is a quadru-
ple of PPT algorithms. In this work, the message space M of the encryption
schemes will be some (modulo 2) ring, and the functions to be evaluated will
be represented as arithmetic circuits over this ring, composed of addition and
multiplication gates. The syntax of these algorithms is given as follows.

– K ey-Generation. The algorithm KeyGen, on input the security parameter 1λ,
outputs (pk, sk) ← KeyGen(1λ), where pk is a public encryption key and sk is
a secret decryption key.

– Encryption. The algorithm Enc, on input pk and a message m ∈ M , outputs
a ciphertext ct ← Encpk(m).

– Decryption. The algorithm Dec on input sk and a ciphertext ct, outputs a
message m̃ ← Decsk(ct).

– H omomorphic-Evaluation. The algorithm Eval, on input pk, an arithmetic
circuit ckt, and a tuple of � ciphertexts (ct1, . . . , ct�), outputs a ciphertext
ct′ ← Evalpk

(
ckt(ct1, . . . , ct�)

)
.



216 I. Damg̊ard et al.

We note that we can treat the evaluation key as a part of the public key. The
security notion needed in this work is security against chosen plaintext attacks
(IND-CPA security), defined as follows.

Definition 1 (IND-CPA security). A scheme HE is IND-CPA secure if for
any PPT adversary A it holds that:

AdvCPAHE [λ] := |Pr[A(pk,Encpk(0)) = 1] − Pr[A(pk,Encpk(1)) = 1]| = negl(λ),

where, (pk, sk) ← KeyGen(1λ).

3.2 Fully Homomorphic Encryption

A scheme HE is fully homomorphic if it is both compact and homomorphic with
respect to a class of circuits. More formally:

Definition 2 (Fully homomorphic encryption). A homomorphic encryp-
tion scheme FHE = (KeyGen,Enc,Eval,Dec) is fully homomorphic if it satisfies
the following properties:

1. Homomorphism: Let C = {Cλ}λ∈N be the set of all polynomial sized arithmetic
circuits. (sk, pk) ← KeyGen(1λ), ∀ckt ∈ Cλ, ∀(m1, . . . ,m�) ∈ M � where � =
�(λ), ∀(ct1, . . . , ct�) where cti ← Encpk(mi), it holds that:

Pr[Decsk(Evalpk(ckt, ct1, . . . , ct�)) 	= ckt(m1, . . . ,m�)] = negl(λ)

2. Compactness: There exists a polynomial μ = μ(λ) such that the output length
of Eval is at most μ bits long regardless of the input circuit ckt and the number
of its inputs.

3.3 Equivocal Fully Homomorphic Encryption Scheme

Our Equivocal fully homomorphic encryption scheme consists of a tuple
(KeyGen,KeyGen∗,QEnc,Rand,Eval,Dec,Equiv) of algorithms where the syntax
of the procedures (KeyGen,QEnc,Eval,Dec) is defined as in the above FHE
scheme. Our scheme is augmented with two algorithms (KeyGen∗,Equiv) used
for equivocation. Jumping ahead, in this paper we are interested in building
adaptively secure n-party protocols generically using an equivocal QFHE scheme
and gain in terms of round and communication efficiency. Two extra properties
needed for the MPC purpose, are distributed decryption and ciphertext randomi-
sation where the latter one guarantees simulatable decryption1. If the purpose
of our Equivocal scheme is not MPC then these properties are not required,
see Sect. 4 for QFHE based UC commitment schemes. In the sequel, we will use
blue color to stress whether a part is relevant to the ciphertext randomisation
property.

1 Ciphertext randomisation is needed in order to force the output in the simulation.
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Definition 3 (Equivocal fully homomorphic encryption). An Equiv-
ocal fully homomorphic encryption scheme QFHE = (KeyGen,KeyGen∗,
QEnc,Rand,Eval,Dec,Equiv) with message space M is made up of the follow-
ing PPT algorithms:

– (KeyGen,QEnc,Eval,Dec) is an FHE scheme with the same syntax as in
Sect. 3.1.

– The Equivocal key generation algorithm KeyGen∗(1λ), outputs an equivocal
public-key secret-key pair (P̃K, S̃K).

– The Equivocation algorithm Equiv(P̃K, S̃K, ct, rct,m), given P̃K, S̃K, a plain-
text m, a ciphertext ct and random coins rct, outputs a value e in the ran-
domness space.

– The Ciphertext Randomisation algorithm Rand(ct, ct′
1, . . . , ct

′
n), given cipher-

texts ct, ct′
1, . . . , ct

′
n generated by the procedure QEnc outputs a ciphertext CT.

We require the following properties:
1. Indistinguishability of equivocal keys. We say that the scheme has indis-

tinguishability of equivocal keys if the distributions of PK and P̃K are com-
putationally indistinguishable, where (PK, ·) ← KeyGen(1λ) and (P̃K, ·) ←
KeyGen∗(1λ).

2. Indistinguishability of equivocation. Let Drand(1λ) denote the distribution
of randomness used by QEnc. Let O(P̃K,m) and O′(P̃K, S̃K,m) be the
following oracles:

Let O(P̃K,m) : Let O′(P̃K, S̃K,m) :
rct ← Drand(1λ) rct ← Drand(1λ)
ct = QEnc

P̃K
, (m; rct) ct = QEnc

P̃K
(m̃; rct)

e = Equiv(P̃K, S̃K, ct, rct,m)
Output (P̃K, ct, rct) Output (P̃K, ct, e)

There exists m̃ ∈ M such that for any PPT adversary A with oracle
access to O(P̃K, ·) and O′(P̃K, S̃K, ·) the following holds.

∣∣∣∣∣∣
Pr

⎡
⎣ (P̃K, S̃K) ← KeyGen∗(1λ)

1 ← AO(P̃K,·)

⎤
⎦ − Pr

⎡
⎣ (P̃K, S̃K) ← KeyGen∗(1λ)

1 ← AO′(P̃K,S̃K,·)

⎤
⎦
∣∣∣∣∣∣
≤ negl(λ)

3. Ciphertext Randomisation. Let PK be the public key used in the proce-
dure QEnc for generating ciphertexts ct, ct′

1 . . . ct′
n from the plaintexts

m,m′
1, . . . ,m

′
n ∈ M , respectevely. If Pr[Decsk(ct) = m] = 1 − negl(λ)

and for all i ∈ [n], Pr[Decsk(ct′
i) = m′

i] = 1 − negl(λ) then it holds that
Pr[Decsk(Rand(ct, ct′

1 . . . ct′
n)) = m] = 1 − negl(λ).

On the other hand, let P̃K be the public key used in the procedure QEnc for
generating ciphertexts ct, ct′

1 . . . ct′
n, respectevely. If Pr[Decsk(ct) = m] =

1 − negl(λ) and for all i ∈ [n], Pr[Decsk(ct′
i) = m′

i] = 1 − negl(λ) then it
holds that

Pr[Decsk(Rand(ct, ct′
1 . . . ct′

n)) = m′
1 + . . . + m′

n] = 1 − negl(λ).
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In the sequel for simplicity of exposition, we call the ciphertexts ct′
1 . . . ct′

n

redundant in case they are generated by QEncPK and non − redundant if they
are generated by QEnc

P̃K
. Analogously, we call the ciphetext ct non − redundant

or redundant if it is generated by QEncPK or QEnc
P̃K

, respectively2.
In order to construct our equivocal QFHE scheme we use the following special

FHE scheme with some additional properties.

Definition 4. [Special fully homomorphic encryption] We call a fully homomor-
phic encryption scheme FHE = (KeyGen,Enc,Eval,Dec) a special FHE scheme,
if it is IND-CPA secure and satisfies the following properties: Let Drand(1λ)
denote the distribution of randomness used by Enc.

1. Additive homomorphism over random coins: ∀r1, r2 ∈ Supp(Drand(1λ)) and
∀m ∈ M , it holds that

(
m�Encpk(0; r1)

)
�Encpk(0; r2) = Encpk(0;m ·r1+r2).

2. E-Hiding: There exists D′
rand(1

λ) such that ∀m ∈ M , if rblind ← Drand(1λ)
and rK ← D′

rand(1
λ) then the distribution of (rblind − m · rK) is statistically

close to Drand(1λ).3

3. Invertible Sampling: The distribution Drand(1λ), has invertible sampling via
the algorithm InvDrand

.

Recall that we defined an invertible sampler of an algorithm A in Sect. 2 as an
algorithm InvA that takes as inputs the input x and output y with consistent
random coins. In our case, x = 1λ and y is a sample from the range of Drand.
Next, in Fig. 1, we show how to build an equivocal FHE scheme using a special
FHE scheme. The high level intuition is as follows. In order to achieve equiv-
ocality we modify an FHE scheme satisfying the properties of Definition 4 as
follows: The public key contains an encryption of 1 and an encryption of 0. More
specifically, PK = (pk,K = Encpk(1), R = Encpk(0)) where pk is the public key
of an FHE scheme. An encryption of a message m in the real world is computed
using K as (m � K � Encpk(0)) and encryption for re-randomisation is com-
puted using R as (z � R � Encpk(0)) for a random value z. In the simulation,
the values encrypted in K and R are switched, in particular, K = Encpk(0) and
R = Encpk(1). Therefore, normal encryption leads to encryption of 0 with the
guarantee of equivocation. However, encryption for re-randomisation actually
encrypts non-zero values i.e., z, in order to force the output.

Theorem 3. Let FHE be a special fully homomorphic encryption scheme. Then
QFHE = (KeyGen,KeyGen∗,QEnc,Rand,Eval,Dec,Equiv) in Fig. 1 is an equivocal
QFHE scheme.

2 By the ciphertext randomisation property, the reader can think of the redundant

messages as encryptions of zeros.
3 Intuitively, E-Hiding can be argued in the same way as formula privacy for some

FHE schemes. This requires dwarfing in the sense that rblind should be large enough
to dwarf mrK where Drand(1λ) and D′

rand(1λ) are Gaussian distributions. Hence,
rK ← D′

rand(1λ) and rblind ← Drand(1λ) such that the noise of Drand(1λ) is super-
polynomially larger than the noise of D′

rand(1λ).
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QFHE

Let FHE = (KeyGenFHE,Enc,Eval,Dec) be a special fully homomorphic en-
cryption scheme. QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Rand,Dec,Equiv) is
defined as follows:

KeyGen(1λ):

1. (pk, sk) ← KeyGenFHE(1
λ).

2. K = Encpk(1; rK) where rK ← D′
rand(1λ) and R = Encpk(0; rR) where

rR ← D′
rand(1λ)

3. Return as public key PK = (pk,K,R) and secret key SK = sk.a

KeyGen∗(1λ):

1. (pk, sk) ← KeyGenFHE(1
λ).

2. ˜K = Encpk(0; r
˜K) where r

˜K ← D′
rand(1λ) and ˜R = Encpk(1; r

˜R) where

r
˜R ← D′

rand(1λ).

3. Return as public key ˜PK = (pk, ˜K, ˜R) and secret key ˜SK = (sk, r
˜K , r

˜R).

QEncPK(b,m) :

1. Compute ctblind = Encpk(0; rblind) where rblind ← Drand(1λ).
2. If b {∈� 0, 1} then output ⊥.
3. If b = 0 then output ct = (m K) � ctblind otherwise

output ct = (m R) � ctblind.

QEnc
˜PK(b, m̃) :

1. Compute ˜ct
blind

= Encpk(0; r̃blind) where r̃blind ← Drand(1λ).
2. If b {∈� 0, 1} then output ⊥.

3. If b = 0 then output ˜ct = (m̃ ˜K) � ˜ct
blind

otherwise

output ˜ct = (m̃ ˜R) � ˜ct
blind

.

Equiv(b, ˜PK, ˜SK, ˜ct, r̃blind,m, m̃):

1. If b = 0 compute rblind := r̃blind + (m̃ − m) · r ˜K otherwise

rblind := r̃blind + (m̃ − m) · r ˜R

2. Run rstate ← InvDrand(rblind) and output rstate.

Rand(ct, ct′
1 . . . , ct

′
n) : Output CT = ct � ct′

1 � . . . � ct′
n.

Procedures (Eval,Dec) are as defined in normal FHE schemes.

a Note that procedure Dec, given sk, runs as in normal FHE schemes (see Section
3.1), so there is no need to provide rK in SK. We also enhance the notation
of QEnc to include a bit b which indicates whether the encryption is performed
using the key K or R, respectively. In addition, the plaintext m̃ is usually set to
zero.

Fig. 1. Description of QFHE scheme

Proof. Indistinguishability of equivocal keys. Let (PK,SK) ← KeyGen(1λ) and
(P̃K, S̃K) ← KeyGen∗(1λ), then the indistinguishability of the two pairs of
public keys follows from the IND-CPA security of the FHE scheme.
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Indistinguishability of equivocation. Without loss of generality, we will show that
indistinguishability of equivocation holds for m̃ = 0. Let A be an adversary
that breaks indistinguishability of equivocation; then we construct a PPT
algorithm R such that RA breaks E-hiding. R simulates the oracle for every
query mi as follows. R invokes A and receives some message mi and forwards
it to the E-hiding challenger. Next it receives the challenge rcti and computes
cti = QEnc

P̃K
(0,mi; rcti) and forwards (rcti , cti) to A and outputs whatever

A does. Now, if rcti ← Drand(1λ) then cti ← QEnc
P̃K

(0,mi; rcti), namely,
the view of A follows the distribution which corresponds to the left game
in Definition 3 of indistinguishability of equivocation. On the other hand, if
rcti = (rblind

i − mi · rK̃); then cti = (mi � K̃) � Encpk(0; rblind
i − mi · rK̃) =

Encpk(0; rblind
i ) = QEnc

P̃K
(0, 0; rblind

i ) which implies that in this case the view
of A follows the distribution of the right game in Definition 3 of indistin-
guishability of equivocation. This means that the distinguishing advantage
of R is the same as that of A which leads to a contradiction.

Ciphertext Randomisation. The algorithm Rand adds the ciphertexts
(ct, ct′

1, . . . , ct
′
n). If ct is a ciphertext generated by QEncPK for b = 0 and

(ct′
1 . . . ct′

n) are ciphertexts generated by QEncPK for b = 1 then

Pr[Decsk(Rand(ct, ct′
1 . . . ct′

n)) = m] = 1 − negl(λ)

since it is easy to see that the ciphertexts (ct′
1 . . . ct′

n) contain encryptions
of zeros due to the fact that R = Encpk(0). An analogous argument holds
for ct and ct′

1 . . . ct′
n generated by QEnc

P̃K
for b = 0 and b = 1, respectively,

since in this case the ciphertext ct contain an encryption of a zero (because
in this case K̃ = Encpk(0)) and ciphertexts (ct′

1 . . . ct′
n) contain encryptions

of the corresponding m′
i since R̃ = Encpk(1).


�

Distributed Decryption: As we mentioned above, we need distributed decryp-
tion to implement our MPC protocol. To this end, we assume that the common
public key pk has been set up where the secret key sk has been secret-shared
among the players in such a way that they can collaborate to decrypt. Notice
that some setup assumption is always required to show UC security in the dis-
honest majority setting. Roughly, we assume that a functionality is available
which generates a key pair and secret-shares the secret key among the players
using a secret-sharing scheme that is assumed to be given as part of the specifi-
cation of the cryptosystem. Since we allow corruption of all but one player, the
maximal unqualified sets must be all sets of n − 1 players. We point out that
we could make a weaker set-up assumption, such as a common reference string,
and using a general UC secure multiparty computation protocol for the common
reference string model to implement the above functionality. While this may not
be very efficient, one only needs to run this protocol once in the life-time of the
system. The properties needed for the distributed decryption and its protocol
are specified later.
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4 UC Adaptive Commitments and ZKPoK from LWE

Commitment schemes that satisfy both equivocality and extractability form use-
ful tools in achieving adaptive security. In this section, we show how using a
QFHE scheme, one can build equivocal and extractable commitments. Having
realized a QFHE scheme based on the LWE assumption, we consequently get
equivocal and extractable commitments assuming the hardness of LWE. Note
that such commitments based on LWE can be of independent interest. We remark
that any encryption scheme that satisfies the properties specified in Definition 4
would have sufficed for our purposes in this section – the multiplicative homo-
morphic property of our QFHE scheme will not be of use here; however, since
we are using our commitment scheme as a tool in our adaptive MPC protocol
based on LWE, we use the same QFHE scheme in our commitment scheme too.

Since we are interested in UC security against adaptive adversaries, our com-
mitment scheme is in the CRS model. The scheme must satisfy the following two
properties, polynomial equivocality and simulation extractability. The former
guarantees that the simulator S needs to be able to produce polynomially many
equivocal commitments using the same CRS. More specifically, S can open the
equivocal commitments to any value of its choice and give consistent random-
ness to adversary A. The latter property says that the simulator S needs to be
able to extract the contents of any valid commitment generated by adversary
A, even after A obtains polynomially many equivocal commitments generated
by S. Note that there is only an apparent conflict between equivocality and
the binding property and between the extractability and the hiding property, as
the simulator is endowed with additional power (trapdoors) in comparison with
the parties in the real world execution. In the following we elaborate how our
commitment scheme satisfies the above properties.

Our Construction. Equivocation in our scheme is achieved via QFHE. In par-
ticular, the commitment algorithm is the algorithm QEnc, defined in Fig. 1. In
order to add extractability we must enhance our scheme in such a way that we
do not sacrifice equivocality. A failed attempt is to include a public key for an
encryption scheme secure against CCA2 attacks in the CRS. In this case, the
committer will send an encryption of the decommitment information along with
the commitment itself. Then, as the simulator has the associated decryption key,
it can decrypt the decommitment information and hence extract the commit-
ted value from any adversarially prepared commitment. However, notice that
such an encryption is binding even to the simulator, so equivocality cannot be
achieved.

The solution to the problem is to send the commitment along with two
pseudorandom ciphertexts. One ciphertext is an encryption of the decommitment
information and the other ciphertext is a uniformly random string. In this way,
the simulator can encrypt both decommitment values and later show that it only
knows the decryption to one and that the other was uniformly chosen.

For the security of our construction, the encryption scheme used to encrypt
the decommitment information has to be a CCA2-secure encryption scheme with
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the property that any produced ciphertext is pseudorandom and has determin-
istic decryption. To this end, the CCA2 encryption scheme of Micciancio and
Peikert [MP12] based on LWE satisfies the above properties. They obtain their
result via relatively generic assumptions using either strongly unforgeable one-
time signatures [DDN00], or a message authentication code and a weak form
of commitment [BCHK07]. The first assumption does not yield pseudorandom
ciphertexts, thus another encryption producing pseudorandom ciphertexts on
top of the scheme of [MP12] could have been used, resulting in a double encryp-
tion scheme. However, it turns out that their construction with the latter set of
assumptions has pseudorandom ciphertexts.

The reader might have observed that this bears some resemblance with the
trick used in the seminal work of [CLOS02], referred to as CLOS hereafter, to
achieve extractability. Their scheme is based on enhanced trapdoor permuta-
tions, also needed in order to get double encryption CCA2 security. Moreover,
in order to build equivocal commitments they need an NP reduction to graph
Hamiltonicity since the CRS of their commitment scheme consists of a graph
G sampled from a distribution such that it is computationally hard to tell if G
has a Hamiltonian cycle. Interestingly, the CLOS commitment scheme does not
give an instantiation based on LWE and to begin with, there are no known trap-
door permutations based on LWE. On the other hand, assuming the hardness
of LWE, we propose an extractable and equivocal commitment with no need of
an NP reduction, leading to a huge improvement in efficiency.

More formally, given a QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Dec,Equiv)4

scheme, a CCA2-secure scheme ECCA with encryption algorithm ENCCCA based
on LWE [MP12], with the property that any ciphertext is pseudorandom and has
deterministic decryption, we construct the following equivocal and extractable
UC bit-commitment scheme ΠCom. For simplicity of exposition, we will use ECCA

in a black box manner. We note that the scheme naturally extends to a setting
where commitments are defined over strings instead of just bits.

Common Reference String: The CRS consists of the public key (PK) of the
QFHE scheme and the public key for the encryption scheme ENCCCA.

Commit Phase:

1. On input (Commit, sid, ssid, Pi, Pj , b) where b ∈ {0, 1}, party Pi com-
putes z = QEncPK(b; r) where r ← Drand(1λ). Next, Pi computes
Cb = ENCCCA(Pi, Pj , sid, ssid, r; s) using random coins s, and sets C1−b

to a random string of length |Cb|. Then, Pi records (sid, ssid, Pj , r, s, b),
and sends c = (sid, ssid, Pi, z, C0, C1) to Pj .

2. Pj receives and records c, and outputs (Receipt, sid, ssid, Pi, Pj). Pj

ignores any later commit messages from Pi with the same (sid, ssid).
Reveal Phase:

1. On input (Reveal, sid, ssid), party Pi retrieves (sid, ssid, Pj , r, s, b) and
sends (sid, ssid, r, s, b) to Pj .

4 Algorithms QEnc′,Rand are not necessary for the construction of UC Commitments.
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2. Upon receiving (sid, ssid, r, s, b) from Pi, Pj checks that it has a tuple
(sid, ssid, Pi, z, C0, C1). If yes, then it checks that z = QEncPK(b; r) and
that Cb = ENCCCA(Pi, Pj , sid, ssid, r; s). If both these checks succeed,
then Pj outputs (Reveal, sid, ssid, Pi, Pj , b). Otherwise, it ignores the mes-
sage.

Proposition 1. Assuming hardness of LWE, Protocol ΠCom UC realizes FMCom

in the FCRS-hybrid model.

The above commitment scheme UC realizes the multi-session ideal commit-
ment functionality FMCom, described in Fig. 2, which reuses the public string
for multiple commitments. The proof can be found in the full version. Next,
we show how our UC commitment scheme serves towards the realization of a
commit-and-prove functionality FCom-ZK based on LWE.

Functionality FMCom

The functionality FMCom runs with parties P1, . . . , Pn and an adversary S. It
proceeds as follows:

Commit Phase:
Upon receiving a message (Commit, sid, ssid, Pi, Pj , b) from Pi, where
b ∈ {0, 1}, record the tuple (ssid, Pi, Pj , b) and send the message
(Receipt, sid, ssid, Pi, Pj) to Pj and S. Ignore any future commit messages with
the same ssid from Pi to Pj .

Prove Phase:
Upon receiving a message (Reveal, sid, ssid) from Pi: If a tuple (ssid, Pi, Pj , b)
was previously recorded, then send the message (Reveal, sid, ssid, Pi, Pj , b) to
Pj and S. Otherwise, ignore.

Fig. 2. The ideal functionality FMCom.

4.1 Adaptive UC ZKPoK from LWE

Our UC commitment scheme serves towards the realization of a commit-and-prove
functionality FCom-ZK based on LWE. Such a functionality is generic and hence is
quite useful – it allows a party to prove NP statements relative to its commitment
value in the setting where parties commit to their inputs but they never decommit.
The functionality FCom-ZK is presented in Fig. 3 and is comprised of two phases.
In the first phase, a party commits to a specific value. In the second phase, this
party proves NP statements in zero-knowledge relative to the committed value.
It allows the committer to commit to multiple secret values wi, and then have the
relation R depend on all these values in a single proof. In addition, the committer
may ask to prove multiple statements with respect to the same set of secret values.
Hence, once a committer gives a new (Commit, sid, w) command, FCom-ZK adds
the current w to the already existing list w of committed values. Then, on receiving
a (Proof, sid,R, x) request, FCom-ZK evaluates R on x and the current list w.
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Functionality FCom-ZK

The functionality FCom-ZK runs with parties P1, . . . , Pn and an adversary S. It
proceeds as follows:

Commit Phase:
Upon receiving a message (Commit, sid, cid,P, w)a from Pi where P is a set of
parties and w ∈ {0, 1}∗, append the value w to the existing list w, record P, and
send the message (Receipt, sid, cid, Pi,P) to the parties in P and S. (Initially,
the list w is empty. Also, if a commit message has already been received, then
check that the recorded set of parties is P. If it is a different set, then ignore
this message.)

Prove Phase:
Upon receiving a message (Prover, sid,R, x) from Pi, where x ∈ {0, 1}poly(k),
compute R(x,w) : If R(x,w) = 1, then send the message (Proof, sid,R, x) to
the parties in P and S. Otherwise, ignore.

a Note that in the protocol we use one command for two cid’s. In particular we use
cid1 to commit to the encrypted value and cid2 to commit to the randomness
used for the corresponding encryption

Fig. 3. Ideal functionality FCom-ZK.

Using the power of the UC commitment scheme we constructed in Sect. 4,
we show how it can be used to first construct UC Zero-Knowledge protocols
from LWE. Canetti and Fischlin [CF01, Theorem 5], show that in the FCom-
hybrid model there exists a 3-round protocol that securely realizes FZK with
respect to any NP relation without any computational assumptions. Using the
composition theorem and [CF01, Theorem 5], we can instantate FCom with the
UC commitment protocol from LWE (see Sect. 4) in the CRS model and realize
FZK from LWE. Also, as it is noted by [CF01] we can replace FCom by the
functionality FMCom.

We next obtain a protocol for UC realizing functionality FCom-ZK in the
FZK-hybrid model, in the presence of adaptive adversaries. In [CLOS02, Proposi-
tion 7.2], a protocol for UC realizing FCom-ZK in the FZK-hybrid model, based on
any one-way function is proposed. To guarantee security against adaptive adver-
saries, they need equivocal and extractable commitments which they instantiate
assuming the existence of enhanced trapdoor permutations. Using [CLOS02,
Proposition 7.2] we can get such an instantiation assuming the hardness of LWE
via our extractable and equivocal commitment scheme described above and
instantiation of the FZK functionality from LWE.

5 Our Protocol

Sincewe established all the primitives neededwe are ready to present ourMPCpro-
tocol. Our protocol is based on any equivocal QFHE scheme which comes together
with a statistically secure distributed function sharing scheme. In addition, the
protocol assumes access to the FCom-ZK functionality which we build from any



Adaptively Secure Multi-Party Computation 225

equivocal QFHE, see Sect. 4. In Fig. 4 we describe our protocol ΠMPC realizing
the functionality FAMPC in Fig. 6, in the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid
model. The functionality FKey-Dist is described in Fig. 5 and the functionality
FCom-ZK is described in Fig. 3.

During the Load phase, players encrypt their inputs xi under a common
public key PK and give a ZKPoK. In the evaluation phase, players evaluate the
desired function locally and obtain the ciphertext enc(z). In the output phase
they jointly decrypt the result calling the decryption protocol ΠDDec together
with the ciphertext randomisation technique as is abstracted by the algorithm
Rand of the QFHE, see Sect. 3.

In the protocol ΠDDec parties use ZK to prove that their evaluation shares are
correct. However, as discussed in the introduction we optimise the output phase
avoiding the expensive use of ZK proofs to prove that the player’s evaluation
shares to the decryption protocol are correct, changing the evaluation phase of
the protocol and avoiding the ZK proofs. For details see Sect. 6.

5.1 Distributed Function Evaluation

In order to achieve distributed decryption, we assume, as a set up assumption,
that a common public key pk has been set up where the secret key sk has
been secret-shared between n parties in such a way that they can compute
their corresponding decryption evaluation shares and then collaborate to decrypt
while the sk is kept secret. We also need to enforce honest computation of the
evaluation shares of a ciphertext. Commitments to the shares of the secret key
are also made public, along with pk. Using these commitments, when parties
are distributedly decrypting a ciphertext, they can then prove (via FCom-ZK)
that the evaluation shares were computed honestly using the secret-key shares
initially delegated to them.

To this end, the functionality FKey-Dist generates a key pair (pk, sk)5 and
secret-shares the secret key sk among the players using a secret-sharing scheme
that is assumed to be given as part of the specification of the cryptosystem. The
validity of the evaluation shares is tested inside the protocol ΠDDec calling the
functionality FCom-ZK. In order to describe our protocol ΠDDec, we next define
the following distributed sharing scheme.

Definition 5. We call (ShareSK,ShareEval,Combine) a distributed func-
tion sharing scheme for an encryption scheme (KeyGenFHE,Enc,Dec),
with construction threshold c and privacy threshold t, if for a triple
(ShareSK,ShareEval,Combine) of PPT algorithms the following hold:

Key sharing: The algorithm ShareSK on input (pk, sk) ← KeyGenFHE(1λ) and
a construction threshold c, outputs a tuple (sk1, . . . , skn) ← ShareSK(sk).

5 In the description of our protocol we choose to explicitly refer to the keys (pk, sk)
since it helps in the description of the decryption protocol.
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Protocol ΠMPC

Protocol ΠMPC uses an equivocal QFHE = (KeyGen,KeyGen∗,QEnc,
Rand,Eval,Dec,Equiv) scheme and runs in the (Fbroadcast

a,FKey-Dist,FCom-ZK)-
hybrid model with parties (P1, . . . , Pn). It proceeds as follows:

Initialize:
On input (init, 1λ) from all parties, invoke the functionalities Fbroadcast,
FKey-Dist and FCom-ZK. The invocation of FKey-Dist results in every party Pi

receiving (PK, c1, . . . , cn), (ski, ri)
)

.
Load:

To encrypt its input xi, Pi does the following:
– Pi computes Xi = QEncPK(0, xi; rxi), where rxi ← Drand(1λ), and broad-

casts Xi via Fbroadcast.
– For i �= j, Pi sends (Commit, sid, cid1, cid2, Pi, Pj , xi, rxi) to

FCom-ZK. At this point all other parties Pj receive message
(Receipt, sid, cid1, cid2, Pi, Pj) from FCom-ZK.

– For j �= i, Pi sends (Prover, sid, (cid1, cid2),Req, Xi) to FCom-ZK for the
relation

Req = {((PK, Xi), (xi, rxi)) : Xi = QEncPK(0, xi; rxi)}
whereupon Pj receives (Proof, sid, Pi,Req, (PK, Xi)).

– If all the proofs are accepted then the parties define enc(xi) = Xi, otherwise
output ⊥.

Evaluation Phase:
Let ckt be the arithmetic circuit to be computed on inputs (x1, . . . , xn) by
n parties. Every party executes the deterministic algorithm Eval and obtains
enc(z) ← Evalpk(ckt, enc(x1), . . . , enc(xn)).

Output Phase:

– Pi generates yi ← Drand(1λ) and Loads it into variable enc(yi) via QEncPK
for b = 0. Let cid1 and cid2 be the identifiers of the commitment phase of
this Load.

– Pi computes ˜enc(yi) = QEncPK(1, yi; r̃yi), where r̃yi ← Drand(1λ), and

broadcasts ˜enc(yi) via Fbroadcast.
Next, for j �= i party Pi sends (Commit, sid, cid3, Pi, Pj , r̃yi) to FCom-ZK and

(Prover, sid, (cid1, cid3),Req, ˜enc(yi)) to FCom-ZK, where cid1 is the identi-
fier of the commitment phase of the Load of the above Step 1, where Pi

commits to yi.

– Let J be the set of indices of Pj ’s having defined enc(yi) and ˜enc(yi). Then

compute CT = Rand(enc(z), { ˜enc(yi)}i∈J).
– Every party Pi runs ΠDDec

b with the rest of the parties to decrypt CT.

a Since we have (potential) dishonest majority, note that we cannot guarantee
termination. For a concrete implementation of the broadcast functionality we
refer to [DPSZ12].

b The protocol ΠDDec is described in Subsetion 5.1 and Figure 7.

Fig. 4. ΠMPC Protocol.
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Functionality FKey-Dist

The functionality FKey-Dist runs with parties P1, . . . , Pn and is parameterized
by a statistically hiding commitment scheme with commitment function Com.
It proceeds as follows:

Generate:
On input (init, 1λ) from all honest parties, run KeyGen(1λ) of the QFHE scheme
and obtain PK, SK and then additively secret-share sk to obtain (sk1, . . . , skn).
1. For i = 1, . . . , n, commits to the share ski by computing ci = Com(ski; ri)

where ri ← Drand(1λ).
2. In a round specified by the adversary, output (PK, c1, . . . , cn), (ski, ri)

)

to
Pi.

Incorrect inputs:
If in the first round an honest party inputs a non-trivial value and does not
input init, abort. Moreover, abort if an honest party inputs init twice or any
other value than init.

Fig. 5. Ideal functionality FKey-Dist.

Functionality FAMPC

The functionality FAMPC runs with parties P1, . . . , Pn and an adversary S and
is parametrised by an arithmetic circuit ckt. It proceeds as follows.

Initialize:
On input (init, 1λ) from all parties, the functionality generates a random FHE
key (SK,PK). It outputs PK to all parties.

Load Phase:
On input (Input, Pi, varid , x) from Pi and (Input, Pi, varid , ?) from all other
parties, with varid a fresh identifier, the functionality stores (varid , x)
and outputs (cid, varid ,Defined) to all parties. If Pi is corrupted before
(cid, varid ,Defined) is output, and if the adversary outputs (cid, varid ,Fail),
then output (cid, varid ,Fail) to all parties.

Evaluation Phase:
On input (Evaluation, varid1, . . . , varidn, varidn+1) from all parties (if
varid1, . . . , varidn are present in memory and varidn+1 is not), the functionality
retrieves (varid1, x1), . . . ,(varidn, xn) and stores (varidn+1, ckt(x1, . . . , xn)).

Output Phase:
On input (Output, varidn+1) from all honest parties (if varidn+1 is present in
memory), the functionality retrieves (varidn+1, x) and outputs it to the environ-
ment. If the environment inputs OK then x is output to all players. Otherwise
⊥ is output to all players.

Fig. 6. Ideal functionality for Arithmetic MPC.

Evaluation sharing: The evaluation function ShareEval on input (pk, ski) and
a ciphertext Encpk(z), outputs an evaluation share

evi = ShareEval(pk, ski,Encpk(z); revi
)

for i ∈ [n] where revi
← Drand(1λ).
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Share combining: The algorithm Combine on input correctly computed evalu-
ation shares {evi}i∈[n] of the same ciphertext Encpk(z), constructs the output
Decsk(Encpk(z)) = Combine({evi}i∈[n]).

For our purposes, the construction threshold c = n and the corruption thresh-
old t = n − 1. In Fig. 7, we describe our protocol ΠDDec, parameterized by
(ShareSK,ShareEval,Combine).

Protocol ΠDDec

The protocol runs in the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid model with
parties P1, . . . , Pn and it is parametrized by (ShareEval,Combine), as defined
in Definition 5. It proceeds as follows:

Key Sharing: On input (init, 1λ) from all parties, invoke the functionalities
Fbroadcast,FKey-Dist and FCom-ZK. The invocation of FKey-Dist results in every
party Pi receiving (PK, c1, . . . , cn), (ski, ri)

)

.
Evaluation Sharing:

1. For i �= j, Pi samples revi ← Drand(1λ) and sends
(Commit, sid, cid, Pi, Pj , revi) to FCom-ZK. At this point all other parties
Pj receive message (Receipt, sid, Pi, Pj) from FCom-ZK.

2. Party Pi, on input ciphertext CT, computes its evaluation share evi ←
ShareEval(PK, ski,CT; revi) and broadcasts evi via Fbroadcast.

3. For j �= i, Pi sends (Prover, sid, Pi, Pj ,Reval, (ci,PK, enc(z), evi)) to
FCom-ZK for the relation

Reval = {((ci,PK,CT, evi), (ski, ri, revi)) : ci = Com(ski; ri)∧
evi = ShareEval(PK, ski,CT; revi)}

where Com is the commitment scheme used in FKey-Dist.
4. For i �= j, Pj sends the message (Proof, sid,Reval, (ci,PK,CT, evi)).

Share Combining: If any party Pi outputs reject for a proof given by any party
Pj , then output Abort. Otherwise, output Combine({evi}i∈[n]).

A concrete instantiation of the protocol ΠDDec based on LWE is given in the full
version.

Fig. 7. Distributed decryption protocol.

Theorem 4. Let QFHE = (KeyGen,KeyGen∗,QEnc,Eval,Rand,Dec,Equiv) be
an equivocal fully homomorphic encryption scheme; let it be associated with
a distributed function sharing scheme (ShareSK,ShareEval,Combine). Then the
constant-round protocol ΠMPC UC-securely realises the ideal functionality FAMPC

in the (Fbroadcast,FKey-Dist,FCom-ZK)-hybrid model with computational security
against any adaptive, active adversary corrupting at most all-but-one parties.

For the proof of Theorem4 see the full version. Replacing UC ZK with UC NIZK
yields a three-round protocol.
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High Level Idea of the Security Proof. Our simulator uses the properties
of the QFHE scheme such as the indistingusability of equivocation, according
to Definition 3. Furthermore, as we discussed in Sect. 1, the simulator will not
be able to cheat in the distributed decryption protocol by decrypting a given
ciphertext to any desired value. The key setup for the decryption protocol fixes
the shares of the private key even in the simulation. Thus, a ciphertext can only
be decrypted to the value it actually contains. Of course, when decrypting the
outputs, the correct results should be produced both in simulation and real life,
and so we have a problem since all ciphertexts in the simulation generated with
respect to the honest parties will contain encryptions of 0. For this issue we
use the ciphertext randomisation property. Notice that the ciphertext ct in the
ciphertext randomization property as per Definition 3 corresponds to the real
output enc(z) of the protocol ΠMPC and the ciphertexts ct′

1, . . . , ct
′
n correspond

to the ciphertexts {ẽnc(yi)}i∈J . In the real-world the ciphertexts {ẽnc(yi)}i∈J

are redundant. On the other hand, in the ideal-world the final ciphertext CT
decrypts to a value contributed only by the ciphertexts {ẽnc(yi)}i∈J . In this case

we will call the ciphertexts {ẽnc(yi)}i∈J non − redundant. This implies that an
honest execution of the Output stage is not possible with the ciphertexts of
{ẽnc(yi)}i∈J being non − redundant. Analogously, the ciphertext enc(z) can be
either redundant or non − redundant. In other words, it is pertinent that before
we get to a hybrid where the Output stage is performed honestly, we need a
hybrid where {ẽnc(yi)}i∈J turn to redundant ciphertexts. However, with both

ciphertexts {ẽnc(yi)}i∈J and enc(z) redundant, we can not hope to get the final
output CT to decrypt to the actual output value. Thus, even before turning
{ẽnc(yi)}i∈J to redundant ciphertexts, we need a hybrid where we can cheat
in the final decryption. That is, we first need to have a hybrid that, instead
of running the distributed decryption protocol, runs what we abstract as the
simulator for the distributed decryption. Moreover, we also based on the semantic
security of the FHE scheme in interchangeably switching the keys K and R to
encryptions of 0 and 1, respectively. A full proof is given in the full version.

6 On the Communication Complexity of Distributed
Decryption

Our protocol as described in Sect. 5 assumes that the QFHE scheme comes with
a semi-honest secure distributed decryption protocol: from the ciphertext and
shares of the secret key players can compute decryption shares which, if cor-
rect, allow the reconstruction of the plaintext. We then augment the distributed
decryption with ZK proofs so that players prove that their contributions to the
decryption are correct. This solution has communication complexity proportional
to the circuit complexity of the decryption function.

However, our approach allows for a significant optimization of the decryption
procedure compared to generic solutions. More specifically, we tweak our protocol
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ΠMPC such that the communication complexity of the decryption becomes inde-
pendent of its circuit complexity.

To this end, we modify the evaluation phase of our protocol presented in
Sect. 5. Note that our original protocol allows us to securely compute any (ran-
domized) function. In particular, any randomized function allows the parties to
encrypt randomized shares and then add up them together. Therefore, instead
of computing the original function, we compute a new function, which for each
output z of the original function also outputs α and w = αz where α is randomly
chosen in some large field, and where the multiplication αz also takes place in
that field. Of course if we can compute this function securely then we can also
compute the original function securely. Observe that this new function comes
along with an extra property which allows to check if the output is correct or
not based on whether w = αz.

In order to incorporate the above, the modification to the protocol is as fol-
lows. Instead of having a single ciphertext enc(z) containing z, we will have two
extra ciphertexts, namely enc(α) and enc(w). The ciphertext enc(α) is computed
as follows. Each party randomly selects a one-time ai and encrypts it according
to the Load phase of our protocol ΠMPC in Fig. 5. Once each party has loaded
and broadcasted enc(ai), each party computes enc(α) = enc(a1) � . . . � enc(an)
and enc(w) = enc(α) � enc(z). Thus, instead of calling the output phase of
our protocol only on input enc(z) we call it on three different ciphertexts
enc(z), enc(α), enc(w). This means that now the decryption protocol will gen-
erate three sets of evaluation shares.

The modification in the decryption protocol is as follows. Before we first
broadcast the shares and then we prove in ZK that they were correct. Instead,
we are not going to broadcast all the evaluation shares immediately due to the
adversary who may see the contributions from the honest parties to α before his
broadcast enabling him to forge. We need to guarantee that the adversary cannot
forge the output by making sure that he should output his share before he sees
α. In order to avoid the above complication, we first commit to the evaluation
shares and then we open them. In particular, all players compute their evaluation
shares for z, α and w and commit to them. If opening fails or if the decrypted
values do not satisfy αz = w, we abort. This solution avoids the use of ZK
proofs yielding a solution which is independent of the circuit complexity of the
decryption.

Since there is an encryption of α available, the new aspect in the proof is
to show that this does not help the adversary to learn α unless he can break
CPA security. We can argue this in the proof in the full version where we turn
the ciphertext enc(z) to redundant. Therefore, the same proof still applies but
instead we will have three redundant ciphetexts enc(αz), enc(α), enc(w). In this
hybrid the outputs cannot be forged since the ciphertext enc(α) is redundant
and it does not contain information about α. Thus, an advesary that he cannot
forge he cannot distinguish in the real world and break CPA-security.



Adaptively Secure Multi-Party Computation 231

Acknowledgements. The authors would like to thank Nico Döttling, Yuval Ishai and
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A Performance of General Solution Based on the IPS
Compiler

The following should be taken with large grains of salt. We have tried to be
optimistic on the part of the IPS compiler, to not give our concrete protocol an
unfair advantage. Thus, actual numbers could be larger.

We estimate that using the best known outer and inner protocols in the IPS
compiler, one invocation of IPS would require 10–15 rounds. For the generic
suggestion one needs two invocations, one to generate key material for NCE
(see below) and one for decryption. On top of that one needs a few rounds
for distributing inputs and proving knowledge of them in ZK or NIZK. So we
estimate at least 30 rounds for the complete protocol.

The computation and communication overhead is even harder to estimate.
We looked at communication since that is a lower bound on computation and
made a crude estimate that equates statistical and computational security para-
meters. To do the FHE decryption generically, one needs to write it as a binary
circuit, say of size s and then use the IPS compiler. For n players and security
parameter λ, we get communication Ω(n4λ2s) where s depends on the FHE
scheme but can be expected to be at least quadratic in λ. This is based on a
very optimistic assumption on what the outer protocol can do while also mini-
mizing the number of rounds. If this is not true, then such a protocol yields an
Ω(n6λ3s) overhead.

In comparison the total communication of the decryption phase of our con-
crete protocol is O(n2λ). We used the IPS paper and there are likely ways to
optimize, but it does seem that the difference is very significant nevertheless.
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Abstract. Direct Anonymous Attestation (DAA) is one of the most
complex cryptographic algorithms that has been deployed in practice. In
spite of this and the long body of work on the subject, there is still no
fully satisfactory security definition for DAA. This was already acknowl-
edged by Bernard et al. (IJIC’13) who showed that in existing models
insecure protocols can be proved secure. Bernard et al. therefore pro-
posed an extensive set of security games which, however, aim only at
a simplified setting termed pre-DAA. In pre-DAA, the host platform
that runs the TPM is assumed to be trusted. Consequently, their notion
does not guarantee any security if the TPM is embedded in a potentially
corrupt host which is a significant restriction. In this paper, we give a
comprehensive security definition for full DAA in the form of an ideal
functionality in the Universal Composability model. Our definition con-
siders the host and TPM to be separate entities that can be in different
corruption states. None of the existing DAA schemes satisfy our strong
security notion. We therefore propose a realization that is based on a
DAA scheme supported by the TPM 2.0 standard and prove it secure in
our model.

1 Introduction

Direct Anonymous Attestation (DAA) allows a small chip, the Trusted Platform
Module (TPM), that is embedded in a host computer to create attestations
about the state of the host system. Such attestations, which can be seen as
signatures on the current state under the TPM’s secret key, convince a remote
verifier that the system is running on top of a certified hardware module and
is using the correct software. A crucial feature of DAA is that it performs such
attestations in a privacy-friendly manner. That is, the user of the host system
can choose to create attestations anonymously ensuring that her transactions
are unlinkable and do not leak any information about the particular TPM being
used. User-controlled linkability is also allowed and is steered by a basename
bsn: attestations under a fresh or empty basename can not be linked whereas
the repeated use of the same basename makes the corresponding transactions
linkable.

DAA is one of the most complex cryptographic protocols deployed in prac-
tice. The Trusted Computing Group (TCG), the industry standardization group
c© International Association for Cryptologic Research 2016
C.-M. Cheng et al. (Eds.): PKC 2016, Part II, LNCS 9615, pp. 234–264, 2016.
DOI: 10.1007/978-3-662-49387-8 10
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that designed the TPM, standardized the first DAA protocol in the TPM 1.2
specification in 2004 [23] and included support for multiple DAA schemes in the
TPM 2.0 specification in 2014 [24]. Over 500 million computers with TPM chips
have been sold1, making DAA one of the largest deployments of such a complex
cryptographic scheme. This sparked a strong interest in the research community
in the security and efficiency of DAA schemes [3,5–7,14–18].

Direct Anonymous Attestation has recently also gained the attention of the
FIDO alliance which aims at basing online authentication on strong cryptogra-
phy rather than passwords. The FIDO approach is to choose a fresh key pair
for every user account, to provide the public key to the service provider, and to
re-authenticate via the corresponding secret key. Adding DAA to this approach
allows one to prove that the secret key is properly stored on and protected by a
trusted platform.

Existing Security Models. Interestingly, in spite of the large scale deployment
and the long body of work on the subject, DAA still lacks a sound and compre-
hensive security model. There exist a number of security definitions using the
simulation-based and property-based paradigms. Unfortunately all have rather
severe shortcomings such as allowing completely broken schemes to be proven
secure. This was recently discussed by Bernard et al. [3] who provided an analysis
of existing security notions and also proposed a new DAA model. In a nutshell,
the existing simulation-based models that capture the desired security proper-
ties in form of an ideal functionality either miss to treat signatures as concrete
objects that can be output or stored by the verifier [5] or are unrealizable by
any instantiation [14,17]. The difficulty in defining a proper ideal functionality
for the complex DAA setting might not be all that surprising considering the
numerous (failed) attempts in modeling the much simpler standard signature
scheme in the universal-composability framework [1,13].

Another line of work therefore aimed at capturing the DAA requirements in
the form of property-based security games [3,7,15] as a more intuitive way of
modeling. However, the first attempts [7,15] have missed to cover some of the
expected security properties and also have made unconventional choices when
defining unforgeability (the latter resulting in schemes being secure that use a
constant value as signatures).

Realizing that the previous models were not sufficient, Bernard et al. [3]
provided an extensive set of property-based security games. The authors con-
sider only a simplified setting which they call pre-DAA. The simplification is
that the host and the TPM are considered as single entity (the platform), thus
they are both either corrupt or honest. For properties such as anonymity and
non-frameability this is sufficient as they protect against a corrupt issuer and
assume both the TPM and host to be honest. Unforgeability of a TPM attesta-
tion, however, should rely only on the TPM being honest but allow the host to
be corrupt. This cannot be captured in their model. In fact, shifting the load of
the computational work to the host without affecting security in case the host is

1 http://www.trustedcomputinggroup.org/solutions/authentication.

http://www.trustedcomputinggroup.org/solutions/authentication
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corrupted is one of the main challenges when designing a DAA scheme. There-
fore, a DAA security model should be able to formally analyze this setting of an
honest TPM and a corrupt host.

This is also acknowledged by Bernard et al. [3] who, after proposing a pre-
DAA secure protocol, argue how to obtain security in the full DAA context.
Unfortunately, due to the absence of a full DAA security model, this argumen-
tation is done only informally. We show that this argumentation is actually
somewhat flawed: the given proof for unforgeability of the given pre-DAA proof
can not be lifted (under the same assumptions) to the full DAA setting. This
highlights the fact that an “almost matching” security model together with an
informal argument of how to achieve the actually desired security does not pro-
vide sound guarantees beyond what is formally proved.

Thus still no satisfying security model for DAA exists to date. This lack of
a sound security definition is not only a theoretic problem but it in fact has
resulted in insecure schemes being deployed in practice. A DAA scheme that
allows anyone to forge attestations (as it does not exclude the “trivial” TPM
credential (1, 1, 1, 1)) has even been ISO standardized [18,20].

Our Contributions. We tackle the challenge of formally defining Direct Anony-
mous Attestation and provide an ideal functionality for DAA in the Univer-
sal Composability (UC) framework [12]. Our functionality models the host and
TPM as individual parties who can be in different corruption states and com-
prises all expected security properties such as unforgeability, anonymity, and
non-frameability. The model also includes verifier-local revocation where a veri-
fier, when checking the validity of a signature, can specify corrupted TPMs from
which he no longer accepts signatures.

We choose to define a new model rather than addressing the weaknesses of
one of the existing models. The latest DAA security model by Bernard et al. [3]
seem to be the best starting point. However, as this model covers pre-DAA
only, changing all these definitions to full DAA would require changes to almost
every aspect of them. Furthermore, given the complexity of DAA, we believe
that the simulation-based approach is more natural as one has a lower risk of
overlooking some security properties. A functionality provides a full description
of security and no oracles have to be defined as the adversary simply gets full
control over corrupt parties. Furthermore, the UC framework comes with strong
composability guarantees that allow for protocols to be analyzed individually
and preserve that security when being composed with other protocols.

None of the existing DAA constructions [3,6,7,16,18] satisfy our security
model. Therefore, we also propose a modified version of recent DAA schemes [3,
18] that are built from pairing-based Camenisch-Lysyanskaya signatures [9] and
zero-knowledge proofs. We then rigorously prove that our scheme realizes our
new functionality. By the universal composition theorem, this proves that our
scheme can be composed in arbitrary ways without losing security.

Organization. The rest of this paper is structured as follows. We start with a
detailed discussion of existing DAA models in Sect. 2, with a focus on the latest
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model by Bernard et al. [3]. Section 3 then presents our new definition in the
form of an ideal functionality in the UC framework. Section 4 introduces the
building blocks required for our DAA scheme, which is presented in Sect. 5. The
latter section also contains a discussion why the existing DAA schemes could
not be proven secure in our model. The proof that the new DAA scheme fulfills
our definition of security is sketched in Sect. 6 (the complete proof is given in
the full version of this paper).

2 Issues in Existing Security Models

In this section we briefly discuss why current security models do not properly
capture the security properties one would expect from a DAA scheme. Some of
the arguments were already pointed out by Bernard et al. [3], who provide a
thorough analysis of the existing DAA security notions and also propose a new
set of definitions. For the sake of completeness, we summarize and extend their
findings and also give an assessment of the latest model by Bernard et al.

Before discussing the various security models and their limitation, we infor-
mally describe how DAA works and what are the desired security properties. In
a DAA scheme, we have four main entities: a number of trusted platform module
(TPM), a number of hosts, an issuer, and a number of verifiers. A TPM and a
host together form a platform which performs the join protocol with the issuer
who decides if the platform is allowed to become a member. After becoming a
member, the TPM and host together can sign messages with respect to base-
names bsn. If a platform signs with bsn = ⊥ or a fresh basename, the signature
must be anonymous and unlinkable. That is, any verifier can check that the
signature stems from a legitimate platform via a deterministic verify algorithm,
but the signature does not leak any information about the identity of the signer.
Only when the platform signs repeatedly with the same basename bsn �= ⊥, it
will be clear that the resulting signatures were created by the same platform,
which can be publicly tested via a (deterministic) link algorithm.

As usual one requires the typical completeness properties for signatures cre-
ated by honest parties:

Completeness: When an honest platform successfully creates a signature on a
message m w.r.t. a basename bsn, an honest verifier will accept the signature.

Correctness of Link: When an honest platform successfully creates two sig-
natures, σ1 and σ2, w.r.t. the same basename bsn �= ⊥, an honest verifier
running a link algorithm on σ1 and σ2 will output 1. To an honest verifier, it
also does not matter in which order two signatures are supplied when testing
linkability between the two signatures.

The more difficult part is to define the security properties that a DAA scheme
should provide in the presence of malicious parties. These properties can be
informally described as follows:

Unforgeability-1: When the issuer and all TPMs are honest, no adversary can
create a signature on a message m w.r.t. basename bsn when no platform
signed m w.r.t. bsn.
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Unforgeability-2: When the issuer is honest, an adversary can only sign in the
name of corrupt TPMs. More precisely, if n TPMs are corrupt, the adversary
can at most create n unlinkable signatures for the same basename bsn �= ⊥.

Anonymity: An adversary that is given two signatures, w.r.t. two different
basenames or bsn = ⊥, cannot distinguish whether both signatures were
created by one honest platform, or whether two different honest platforms
created the signatures.

Non-frameability: No adversary can create signatures on a message m w.r.t.
basename bsn that links to a signature created by an honest platform, when
this honest platform never signed m w.r.t. bsn. We require this property to
hold even when the issuer is corrupt.

2.1 Simulation-Based Models

A simulation-based security notion defines an ideal functionality, which can be
seen as a central trusted party that receives inputs from all parties and pro-
vides outputs to them. Roughly, a protocol is called secure if its behavior is
indistinguishable from the functionality.

The Brickell, Camenisch, and Chen Model [5]. DAA was first introduced by
Brickell, Camenisch, and Chen [5] along with a simulation-based security model.
This model has one procedure for signature generation and verification, meaning
that a signature is generated for a specific verifier and will immediately be verified
by that verifier. As the signature is never output to the verifier, he only learns
that a message was correctly signed, but can neither forward signatures or verify
them again. Clearly this limits the scenarios in which DAA can be applied.

Furthermore, linkability of signatures was not defined explicitly in the secu-
rity model. In the instantiation it is handled by attaching pseudonyms to signa-
tures, and when two signatures have the same pseudonym, they must have been
created by the same platform.

The Chen, Morissey, and Smart Models [14,17]. An extension to the model by
Brickell et al. was later proposed by Chen, Morissey, and Smart [17]. It aims at
providing linkability as an explicit feature in the functionality. To this end, the
functionality is extended with a link interface that takes as input two signatures
and determines whether they link or not. However, as discussed before, the sign
and verify interfaces are interactive and thus signatures are never sent as output
to parties, so it is not possible to provide them as input either. This was real-
ized by the authors who thus proposed a new simulation-based model [14] that
now separates the generation of signatures from their verification by outputting
signatures. Unfortunately, the functionality models the signature generation in
a too simplistic way: signatures are simply random values, even when the TPM
is corrupt. Furthermore, the verify interface refuses all requests when the issuer
is corrupt. Clearly, both these behaviours are not realizable by any protocol.
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2.2 Property-Based Models

Given the difficulties in properly modeling signature-based ideal functionali-
ties, there is also a line of work that captures DAA features via property-based
definitions.

The Brickell, Chen, and Li Model [7]. The first paper is by Brickell, Chen,
and Li [7], who define security games for anonymity, and “user-controlled trace-
ability”. The latter aims to capture our unforgeability-1 and unforgeability-2
requirements. Unfortunately, this model has several major shortcomings that
were already discussed in detail by Bernard et al. [3].

The first problem is that the game for unforgeability-1 allows insecure
schemes to be considered secure. The adversary in the unforgeability-1 game
has oracle access to the honest parties from whom he can request signatures
on messages and basenames of his choice. The adversary then wins if he can
come up with a valid signature that is not a previous oracle response. This last
requirement allows trivially insecure schemes to pass the security game: assume
a DAA scheme that outputs the hash of the TPM’s secret key gsk as signature,
i.e., the signature is independent of the message. Clearly, this should be an inse-
cure scheme as the adversary, after having seen one signature can provide valid
signatures on arbitrary messages of his choice. However, it would actually be
secure according to the unforgeability-1 game, as there reused signatures are not
considered a forgery.

Another issue is that the game for unforgeability-2 is not well defined. The
goal of the adversary is to supply a signature σ, message m, basename bsn �= ⊥,
and a signer’s identity ID. The adversary wins if another signature “associated
with the same ID” exists, but the signatures do not link. Firstly, there is no
check on the validity of the supplied signature, which makes winning trivial
for the adversary. Secondly, “another signature associated with the same ID”
is not precisely defined, but we assume it to mean that the signature was the
result of a signing query with that ID. However, then the adversary is limited to
tamper with at most one of the signatures, whereas the second one is enforced
to be honestly generated and unmodified. Thirdly, there is no check on the
relation between the signature and the supplied ID. We expect that the intended
behavior is that the supplied signature uses the key of ID, but there is no
way to enforce this. Now an adversary can simply make a signing query with
(m, bsn, ID1) giving σ, and win the game with (σ,m, bsn, ID2).

The model further lacks a security game that captures the non-frameability
requirement. This means a scheme with a link algorithm that always outputs 1
can be proven secure. Chen [15] extends the model to add non-frameability, but
this extension inherits all the aforementioned problems from [7].

The Bernard et al. Model [3]. Realizing that the previous models are not suf-
ficient, Bernard et al. [3] provide an extensive set of property-based security
definitions covering all expected security requirements.

The main improvement is the way signatures are identified. An identify algo-
rithm is introduced that takes a signature and TPM key, and outputs whether
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the key was used to create the signature, which is possible as signatures are
uniquely identifiable if the secret key is known. In the game definitions, the keys
of honest TPMs are known, allowing the challenger to identify which key was
used to create the signature, solving the problems related to the imprecisely
defined ID in the Brickell, Chen, and Li model.

However, the security games make a simplifying assumption, namely that
the platform, consisting of a host and a TPM, is considered as one party. This
approach, termed “pre-DAA”, suffices for anonymity and non-frameability, as
there both the TPM and host have to be honest. However, for the unforgeability
requirements it is crucial that the host does not have to be trusted. In fact,
distributing the computational work between the TPM and the host, such that
the load on the TPM is as small as possible and at the same time security does
not require an honest host, is the main challenge in designing a DAA scheme.
Therefore, a DAA security model must be able to formally analyze this setting
of an honest TPM working with a corrupt host.

The importance of such full DAA security is also acknowledged by Bernard
et al. [3]. After formally proving a proposed scheme secure in the pre-DAA
model, the authors bring the scheme to the full DAA setting where the TPM
and host are considered as separate parties. To obtain full DAA security, the
host randomizes the issuer’s credential on the TPM’s public key. Bernard et al.
then argue that this has no impact on the proven pre-DAA security guarantees,
as the host does not perform any action involving the TPM secret key. While
this is intuitively correct, it gives no guarantees whether the security properties
are provably preserved in the full DAA setting.

Indeed, the proof of unforgeability of the pre-DAA scheme, which is proven
under the DL assumption, does not hold in the full DAA setting as a corrupt
host could notice the simulation used in the security proof. More precisely, in
the Bernard et al. scheme, the host sends values (b, d) to the TPM which are
the re-randomized part of the issuers credential and are supposed to have the
form bgsk = d with gsk being the TPM’s secret key. The TPM then provides
a signature proof of knowledge (SPK) of gsk to the host. The pre-DAA proof
relies on the DL assumption and places the unknown discrete logarithm of the
challenge DL instance as the TPM key gsk. In the pre-DAA setting, the TPM
then simulates the proof of knowledge of gsk for any input (b, d). This, however,
is no longer possible in the full DAA setting. If the host is corrupt, he can send
arbitrary values (b, d) with bgsk �= d to the TPM, but would expect the TPM
to respond with a SPK only if (b, d) are properly set. Relying only on the DL
assumption does not allow the TPM to check whether (b, d) are well-formed
though, such that he would provide correct proofs for false statements. Thus,
the unforgeability can no longer be proven under the DL assumption. Note that
the scheme could still be proven secure using the stronger static DH assumption,
but the point is that a proof of pre-DAA security and a seemingly convincing
but informal argument to transfer the scheme to the full DAA setting does not
guarantee security in the full DAA setting.
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Another peculiarity of the Bernard et al. model is that it makes some
rather strong yet somewhat hidden assumptions on the adversaries behavior.
For instance, in the traceability game showing unforgeability of the credentials,
the adversary must not only output the claimed forgery but also the secret keys
of all TPMs. For a DAA protocol this implicitly assumes that the TPM secret
key can be extracted from every signature. Similarly, in games such as non-
frameability or anonymity that capture security against a corrupt issuer, the
issuer’s key is generated honestly within the game, instead of being chosen by
the adversary. For any realization this assumes either a trusted setup setting or
an extractable proof of correctness of the issuer’s secret key.

In the scheme proposed in [3], none of these implicit assumptions hold though:
the generation of the issuer key is not extractable or assumed to be trusted, and
the TPM’s secret key cannot be extracted from every signature, as the rewinding
would require exponential time. Note that these assumptions are indeed neces-
sary to guarantee security for the proposed scheme. If the non-frameability game
would allow the issuer to choose its own key, it could choose y = 0 and win the
game. Ideally, a security model should not impose such assumptions or protocol
details. If it is necessary though, then the required assumptions should be made
more explicit to avoid pitfalls in the protocol design.

3 A New Security Model for DAA

In this section we present our security model for DAA, which is defined as an
ideal functionality F l

daa in the UC framework [12]. In UC, an environment E
passes inputs and outputs to the protocol parties. The network is controlled by
an adversary A that may communicate freely with E . In the ideal world, the
parties forward their inputs to the ideal functionality F , which then (internally)
performs the defined task and creates outputs that the parties forward to E .

Roughly, a real-world protocol Π is said to securely realize a functionality
F , if the real world is indistinguishable from the ideal world, meaning for every
adversary performing an attack in the real world, there is an ideal world adver-
sary (often called simulator) S that performs the same attack in the ideal world.
More precisely, a protocol Π is secure if for every adversary A, there exists a
simulator S such that no environment E can distinguish executing the real world
with Π and A, and executing the ideal world with F and S.

3.1 Ideal Functionality F l
daa

We now formally define our ideal functionality F l
daa, for which we assume static

corruptions, i.e., the adversary decides upfront which parties are corrupt and
makes this information known to the functionality. The UC framework allows
us to focus our analysis on a single protocol instance with a globally unique
session identifier sid. Here we use session identifiers of the form sid = (I, sid′)
for some issuer I and a unique string sid ′. To allow several sub-sessions for the
join and sign related interfaces we use unique sub-session identifiers jsid and
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ssid. Our ideal functionality F l
daa is further parametrized by a leakage function

l : {0, 1}∗ → {0, 1}∗, that we need to model the information leakage that occurs
in the communication between a host Hi and TPM Mj .

We first briefly describe the main interfaces, then present the full function-
ality F l

daa and finally discuss in depth why F l
daa implements the desired security

properties.

Setup. The SETUP interface on input sid = (I, sid′) initiates a new DAA ses-
sion for the issuer I and expects the adversary to provide a number of algorithms
(ukgen, sig, ver, link, identify) that will be used inside the functionality.

– gsk ←$ ukgen() will be used to generate keys gsk for honest TPMs.
– σ ←$ sig(gsk,m, bsn) will also be used for honest TPMs and on input a key

gsk, message m and basename bsn, it outputs a signature σ.
– f ← ver(σ,m, bsn) will be used in the verify interface. On input a signature

σ, message m and basename bsn, it outputs f = 1 if the signature is valid,
and f = 0 otherwise.

– f ← link(σ,m, σ′,m′, bsn) will be used in the link interface. It takes two
tuples (σ,m), (σ′,m′), a basename bsn and outputs f = 1 to indicate that
both signature are generated by the same TPM and f = 0 otherwise.

– f ← identify(σ,m, bsn, gsk) outputs f = 1 if σ is a signature of m, bsn under
key gsk, and f = 0 otherwise. We will use identify in several places to ensure
consistency, e.g., whenever a new key gsk is generated or provided by the
adversary.

Note that the ver and link algorithms only assist the functionality for sig-
natures that are not generated by F l

daa itself. For signatures generated by the
functionality, F l

daa will enforce correct verification and linkage using its internal
records. While ukgen and sig are probabilistic algorithms, the other ones are
required to be deterministic. The link algorithm also has to be symmetric, i.e.,
for all inputs it must hold that link(σ,m, σ′,m′, bsn) ↔ link(σ′,m′, σ,m, bsn).

Join. When the setup is completed, a host Hj can request to join with a TPM
Mi using the JOIN interface. Only if the issuer gives his approval through the
JOINPROCEED interface, the join will complete and F l

daa stores 〈Mi,Hj , gsk〉 in
an internal list Members. If the host or TPM are corrupt, gsk has to be provided
by the adversary. If both are honest, F l

daa stores gsk ← ⊥.
On the first glance, it might seem a bit surprising that we let the adversary

also provide gsk when the host is corrupt but the TPM is honest. However
we use gsk inside the functionality only to reflect the anonymity properties
according to the set of corrupted parties. Only if the entire platform if honest,
one can guarantee anonymity and then we enforce gsk ← ⊥. Note that gsk has
in particular no impact on the unforgeability guarantees that are always enforced
by F l

daa if Mi is honest.
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Sign. Once a platform joined, the host Hj can call the SIGN interface to request
a DAA signature from a TPM Mi for message m with respect to basename
bsn. If the issuer is honest, only platforms 〈Mi,Hj , gsk〉 ∈ Members can sign.
Then, the TPM is notified and has to give its explicit approval through the
SIGNPROCEED interface. If the host or TPM are corrupt, the signature σ has to
be input by the adversary. When both are honest, the signature is generated via
the sig algorithm. Thereby, F l

daa first chooses a fresh key gsk whenever an honest
platform (honest host and honest TPM) wishes to sign under a new basename,
which naturally enforces unlinkability and anonymity of those signatures. Every
newly generated key is stored as 〈Mi, bsn, gsk〉 in a list DomainKeys and will be
re-used whenever the honest platform wants to sign under the same bsn again.
For honest platforms, the generated or adversarial provided signature is also
stored as 〈σ,m, bsn,Mi〉 in a list Signed.

Verify. The verify interface VERIFY allows any party V to check whether σ
is a valid signature on m with respect to bsn. The functionality will use its
internal records to determine whether σ is a proper signature. Here we also use
the helper algorithm identify to determine which of the gsk values stored by
F l

daa belongs to that signature. If the key belongs to an honest TPM, then an
entry 〈σ,m, bsn,Mi〉 ∈ Signed must exist. For signatures of corrupt TPMs, F l

daa

checks that a valid signature would not violate any of the expected properties,
e.g., whether the signature links to another signature by an honest TPM.

The interface also provides verifier-local revocation, as it excepts a revoca-
tions list RL as additional input which is a list of gsk’s from which the verifier does
not accept signatures anymore. To ensure that this does not harm the anonymity
of honest TPMs, F l

daa ignores all honest gsk′s for the revocation check.
If the F l

daa did find some reason why the signature should not be valid, it
sets the output to f ← 0. Otherwise, it determines the verification result f using
the ver algorithm. Finally, the functionality keeps track of this result by adding
〈σ,m, bsn, RL, f〉 to a list VerResults.

Link. Any party V can use the LINK interface to learn whether two signature
(σ,m), (σ′,m′) generated for the same basename bsn originate from the same
TPM or not. Similarly as for verification, F l

daa then first uses its internal records
and helper functions to determine if there is any evidence for linkage or non-
linkage. If such evidence is found, then the output bit f is set accordingly to 0
or 1. When the functionality has no evidence that the signatures must or must
not belong together, it determines the linking result via the link algorithm.

The full definition of F l
daa is given in Figs. 1 and 2. To save on repeating and

non-essential notation, we use the following conventions in our definition:

– All requests other than the SETUP are ignored until setup phase is completed.
For such requests, F outputs ⊥ to the caller immediately.

– Whenever the functionality performs a check that fails, it outputs ⊥ directly
to the caller of the respective interface.
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– We require the link algorithm to be symmetric: link(σ,m, σ′,m′, bsn) ↔
link(σ′,m′, σ,m, bsn). To guarantee this, whenever we write that F runs
link(σ,m, σ′,m′, bsn), it runs link(σ,m, σ′,m′, bsn) and link(σ′,m′, σ,m, bsn).
If the results are equal, it continues as normal with the result, and otherwise
F outputs ⊥ to the adversary.

– When F runs algorithms sig, ver, identify, link, ukgen, it does so without main-
taining state. This means all user keys have the same distribution, signatures
are equally distributed for the same input, and ver, identify, and link invoca-
tions only depend on the current input, not on previous inputs.

We will further use two “macros” to determine if a gsk is consistent with
the functionalities records or not. This is checked at several places in our func-
tionality and also depends on whether the gsk belongs to an honest or corrupt
TPM. The first macro CheckGskHonest is used when the functionality stores a
new TPM key gsk that belongs to an honest TPM, and checks that none of
the existing valid signatures are identified as belonging to this TPM key. The
second macro CheckGskCorrupt is used when storing a new gsk that belongs to
a corrupt TPM, and checks that the new gsk does not break the identifiability
of signatures, i.e., it checks that there is no other known TPM key gsk′, unequal
to gsk, such that both keys are identified as the owner of a signature. Both
functions output a bit b where b = 1 indicates that the new gsk is consistent
with the stored information, whereas b = 0 signals an invalid key. Formally, the
two macros are defined as follows.

CheckGskHonest(gsk) =
∀〈σ,m, bsn,M〉 ∈ Signed : identify(σ,m, bsn, gsk) = 0 ∧

∀〈σ,m, bsn, ∗, 1〉 ∈ VerResults : identify(σ,m, bsn, gsk) = 0

CheckGskCorrupt(gsk) =

¬∃σ,m, bsn :
(
(〈σ,m, bsn, ∗〉 ∈ Signed ∨ 〈σ,m, bsn, ∗, 1〉 ∈ VerResults) ∧

∃gsk′ : (gsk �= gsk′ ∧ (〈∗, ∗, gsk′〉 ∈ Members ∨ 〈∗, ∗, gsk′〉 ∈ DomainKeys) ∧
identify(σ,m, bsn, gsk) = identify(σ,m, bsn, gsk′) = 1)

)

3.2 Detailed Analysis of F l
daa

We now argue that our functionality enforces the desired unforgeability, ano-
nymity and non-frameability properties we informally introduced in Sect. 2.

In terms of completeness and correctness, we further have to add to three more
properties: consistency of verify and link, and consistency of link. These proper-
ties are trivially achieved for property-based definitions, where one simply requires
the algorithms to be deterministic, and the link algorithm to be symmetric. In a
simulation-based definition, however, the behavior of a functionality may depend
on its state, which is why we explicitly show that we achieve these properties.

We start with the security related properties unforgeability, anonymity and
non-frameability, and then discuss the correctness and consistency properties.
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Fig. 1. The setup and join related interfaces of F l
daa. (The roman numbers are labels

for the different checks made within the functionality and will be used as references in
the detailed analysis in Sect. 3.2)

Unforgeability. We consider two unforgeability properties, depending on all
TPMs being honest or some of them being corrupt. The issuer is of course
always honest when aiming at unforgeability. Firstly, if all TPMs are honest, an
adversary cannot create a signature on a message m with respect to basename
bsn when no honest TPM signed m with respect to bsn. By Check (x), the
signature must trace to some TPMs gsk. As we assumed all TPMs to be honest,
Check (xi) will reject any signature on messages not signed by that TPM.

Secondly, when some TPMs are corrupt, an adversary cannot forge signatures
with more distinct ‘identities’ than there are corrupt TPMs. More precisely,
when the adversary corrupted n TPMs, he cannot create more than n unlinkable
signatures for the same bsn �= ⊥, and when no honest TPM signed under bsn
too. We show that for any n + 1 signatures {σi,mi, bsn}0≥i≥n, we cannot have
that all signatures verify, mi was not signed with respect to bsn by an honest
TPMs, and every pair of signatures is unlinkable.

If all signatures verify, by Check (x), each of the n+1 signatures must trace to
exactly one pair (Mi, gski). Given the fact that no honest TPM signed mi with
respect to bsn, by Check (xi), we must have that every TPM in the list of tracing
(Mi, gski) pairs is corrupt. Furthermore, we know that all (Mi, gski) come from
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Fig. 2. The sign, verify, and link related interfaces of F l
daa



Universally Composable Direct Anonymous Attestation 247

Members, as only honest TPMs occur in DomainKeys. Since the issuer is honest,
Check (ii) enforces that every TPM can join at most once, i.e., there can be at
most n pairs (Mi, gski) of corrupt TPMs in Members. Thus, the traced list of
(Mi, gski) pairs must contain at least one duplicate entry. By Check (xvi), the
two signatures that trace to the same gsk must link, showing that the adversary
cannot forge more than n unlinkable signatures with a single bsn �= ⊥.

Anonymity. Anonymity of signatures created by an honest TPM Mi and host
Hj is guaranteed by F l

daa due to the random choice of gsk for every signa-
ture. More precisely, if the platform is honest, our functionality does not store
any unique gsk for the pair (Mi,Hj) in Members, but leaves the key unas-
signed. Whenever a new signature is requested for an unused basename bsn,
F l

daa first draws a fresh key gsk ← ukgen under which it then creates the signa-
ture using the sig algorithm. The combination of basename and key is stored as
〈Mi, bsn, gsk〉 in a list DomainKeys, and gsk is re-used whenever Mi wishes to
sign under the same bsn �= ⊥ again.

That is, two signatures with different basenames or with basename bsn = ⊥
are distributed in exactly the same way for all honest platforms, independent
of whether the signatures are created for the same platform or for two distinct
platforms.

Verifier-local revocation is enabled via the revocation list attribute RL in
the VERIFY interface and allows to “block” signatures of exposed gsk’s. This
revocation feature should not be exploitable to trace honest users, though, as
that would clearly break anonymity. To this end, F l

daa ignores gsk ∈ RL in the
revocation test when the key belongs to an honest TPM (Check (xii)).

Note that the anonymity property dictated the use of the sig algorithm
in F l

daa. We only use the algorithm if the platform is honest though, whereas
for corrupt platforms the simulator is allowed to provide the signature (which
then could depend on the identity of the signer). This immediately reflects that
anonymity is only guaranteed if both the TPM and host are honest.

Non-frameability. An honest platform (Mi,Hj) cannot be framed, meaning
that no one can create signatures on messages that the platform never signed
but that link to signatures the platform did create. Note that this definition
also crucially relies on both Mi,Hj being honest. Intuitively, one might expect
that only the TPM Mi is required to be honest, and the host could be corrupt.
However, that would be unachievable. We can never control the signatures that a
corrupt Hj outputs. In particular, the host could additionally run a corrupt TPM
that joined as well, and create signatures using the corrupt TPM’s key instead
of using Mi’s contribution. The resulting signature can not be protected from
framing, as it uses a corrupt TPM’s key. Thus, for a meaningful non-frameability
guarantee, the host has to be honest too. The issuer can of course be corrupt.

We now show that when an honest platform (Mi,Hj) created a signature σ on
message m and under basename bsn, then no other signature σ′ on some m′ links to
σ when (Mi,Hj) never signedm′ with respect tobsn.Thefirst requirement inLINK
is that both signatures must be valid (Check (xiv)). By completeness (discussed
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below) we know that σ,m, bsn generated by the honest platform is valid, and that
it traces to some key gsk. If the second signature σ′,m′, bsn is valid too, we know
by the Check (xi) in the VERIFY interface that the signature cannot trace to the
same gsk, because (Mi,Hj) has never signed m′, bsn′. Finally, by Check (xv) that
ensures that the output of identify must be consistent for all used keys, the output
of LINK is set to f ← 0.

Completeness. The functionality guarantees completeness, i.e., when an hon-
est platform successfully creates a signature, this signature will be accepted by
honest verifiers. More precisely, when honest TPM Mi with honest host Hj

signs m with respect to bsn resulting in a signature σ, a verifier will accept
(σ,m, bsn). To show this, we argue that the four checks the functionality makes
(Check (ix), Check (x), Check (xi), and Check (xii)) do not set f to 0, and that
ver will accept the signature.

Check (ix) will not trigger, as by Check (viii) there was no honest TPM
other than Mi with a key matching this signature yet and, by Check (iv), Check
(iv), and Check (v), gsk values matching σ cannot be added to Members and
DomainKeys.

Check (x) will not trigger as we have an entry 〈Mi, bsn, gsk〉 ∈ DomainKeys,
and by Check (vii) we know this one matches σ.

In Check (xi), F l
daa finds all honest TPMs that have a key matching this

signature, and checks whether they signed m with respect to bsn. By Check
(viii), at the time of signing there were no other TPMs with keys matching
this signature and, by Check (iii) and Check (v), no honest TPM can get a key
matching this signature. The only honest TPM with a matching key is Mi, but
as he honestly signed m with respect to bsn, we have an entry 〈σ,m, bsn,Mi〉 ∈
Signed ensuring that the check does not trigger.

The revocation test Check (xii) does not trigger as by Check (vii) we know
that honest TPM Mi has a key matching this signature.

As all previous checks did not apply, F l
daa sets the verification outcome using

the ver algorithm, we now show that ver will accept the signature. F l
daa checked

that ver accepts the signature in Check (vi), and by Check (i) and the fact that
F l

daa does not maintain state for the algorithms, the verification algorithm output
only depends on its input, so ver outputs 1 and F l

daa accepts the signature.

Correctness of Link. If an honest platform signs multiple times with the
same basename, the resulting signatures will link. Let platform (Mi, Hj) sign
messages m1 and m2 with basename bsn �= ⊥, resulting in signatures σ1 and σ2

respectively. By completeness, both signatures verify, so Check (xiv) does not
trigger. By Check (vii), both signatures identify to some gsk, which results in
Check (xvi) setting the signatures as linked.

Consistency of Verify. This property ensures that calling the VERIFY interface
with the same input multiple times gives the same result every time. To prevent the
functionality from becoming unnecessarily complex, we only enforce consistency
for valid signatures. That is, whenever a signature was accepted, it will remain
valid, whereas an invalid signature could become valid at a later time.
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Suppose a signature σ on message m with basename bsn was verified success-
fully with revocation list RL. We now show that in any future verification with
the same RL will lead to the same result. To show this, we argue that the four
checks the functionality makes (Check (ix), Check (x), Check (xi), and Check
(xii)) do not set f to 0, and that ver will accept the signature.

Check (ix) makes sure that at most one key gsk matches the signature σ,
meaning that for at most one gsk we have identify(σ,m, bsn, gsk) = 1. This check
does not cause rejection of the signature, as the signature previously verified,
and by Check (ix) we have that at most one gsk matched the signature at that
time. After that, the signature was placed in VerResults, which means Check
(iii), Check (iv), and Check (v) prevent adding gsk values that match σ, so the
number of matching gsk values has not changed and Check (ix) still passes.

Check (x) does not apply. If I is corrupt, the check trivially does not trigger.
If I is honest, from the previous verification we have that there was precisely
one key matching, and as argued for the previous check, no matching gsk values
can be added, so we must still have precisely one matching gsk.

To show that Check (xi) does not apply, we must show that for every honest
TPM that has a key matching this signature, that TPM has signed m with
respect to bsn. As the check previously passed, so we know that at that point for
any matching Mi there is a satisfying entry in Signed. No new TPMs matching
this signature can be found, as Check (iii) and Check (v) prevent honest TPMs
from registering a key that matches an existing signature.

Check (xii), the revocation check, did not reject σ in the previous verifica-
tion. By the fact that identify is deterministic Check (i) and executed without
maintaining state, it will not do so now.

As the four checks F l
daa makes did not apply, F l

daa uses the verification algo-
rithm ver. Since the signature was previously accepted, by Check (xiii) ver must
have accepted the signature. By the fact that ver is deterministic (Check (i))
and executed without maintaining state, it will also accept now.

Consistency of Link. We also want to ensure that calling the LINK interface
with the same input multiple times gives the same result every time. Here we
guarantee consistency for both outputs f ∈ {0, 1} i.e., if LINK outputs f for
some input (σ,m, σ′,m′, bsn), the result will always be f .

Suppose we have signatures σ and σ′ on messages m and m′ respectively,
both with respect to basename bsn, that have been linked with output f ∈ {0, 1}
before. We now show that the same result f will be given in future queries, by
showing that Check (xiv) will not cause an output of ⊥, and by showing that
Check (xv), Check (xvi), and the link algorithm are consistent.

F l
daa will not output ⊥, as by the previous output f �= ⊥ we know that the

verification of both signatures must have passed. As VERIFY is consistent for
valid signatures, this test in Check (xiv) will pass again.

Check (xv) and Check (xvi) are consistent. They depend on the gsk values
in Members and DomainKeys that match the signatures and are retrieved via the
deterministic identify algorithm. The matching gsk values cannot have changed



250 J. Camenisch et al.

as Check (iii), Check (iv), and Check (v) prevent conflicting gsk values to be
added to these lists. The link algorithm used to in the final step is deterministic
by Check (i). Thus, Link will consistently generate the same output bit f .

Symmetry of Link. The link interface is symmetric, i.e., it does not mat-
ter whether one gives input (LINK, σ,m, σ′,m′, bsn) or (LINK, σ′,m′, σ,m, bsn).
Both signatures are verified, the order in which this happens does not change
the outcome. Next F l

daa finds matching keys for the signatures, and as identify
is executed without state, it does not matter whether it first tries to match σ
or σ′. The next checks are based on the equality of the bi and b′

i values, which
clearly is symmetric. Finally F l

daa uses the link algorithm, which is enforced to
be symmetric as F l

daa will abort as soon as it detects link not being symmetric.

4 Building Blocks

In this section we introduce the building blocks for our construction. Apart
from standard building blocks such as pairing-based CL-signatures [9] and zero-
knowledge proofs, we also provide a new functionality Fauth* that captures the
semi-authenticated channel that is present in the DAA setting.

4.1 Bilinear Maps

Let G1, G2 and GT be groups of prime order q. A map e : G1 × G2 → GT

must satisfy bilinearity, i.e., e(gx
1 , gy

2 ) = e(g1, g2)xy; non-degeneracy, i.e., for all
generators g1 ∈ G1 and g2 ∈ G2, e(g1, g2) generates GT ; and efficiency, i.e., there
exists an efficient algorithm G(1τ ) that outputs the bilinear group (q,G1,G2,
GT , e, g1, g2) and an efficient algorithm to compute e(a, b) for any a ∈ G1, b ∈ G2.
If G1 = G2 the map is called symmetric, otherwise the map is called asymmetric.

4.2 Camenisch-Lysyanskaya Signature

We now recall the pairing-based Camenisch-Lysyanskaya (CL) signature scheme
[9] that allows for efficient proofs of signature possession and is the basis for
the DAA scheme we extend. The scheme uses a bilinear group (q,G1,G2,
GT , e, g1, g2) that is available to all algorithms.

Key generation. The key generation algorithm chooses x ←$
Zq and y ←$

Zq,
and sets sk ← (x, y), pk ← (X,Y ), where X ← gx

2 and Y ← gy
2 .

Signature. On input a message m and secret key sk = (x, y), choose a random
a ←$

G1, and output the signature σ ← (a, ay, ax+mxy).
Verification. On input a public key pk = (X,Y ), message m, and purported

signature σ = (a, b, c), output 1 if the following verification equations hold,
and 0 otherwise: a �= 1G1 , e(a, Y ) = e(g1, b) and e(X, a) · e(X, b)m = e(g1, c).
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This signature scheme is existentially unforgeable against a chosen-message
attack (EUF-CMA) under the LRSW assumption [21], which is proven in [9].
Certain schemes [3,18], including ours, add a fourth element d = bm to the
signature, which allows more efficient proofs of knowledge of a message signed by
a signature. This extended CL signature is as secure as the original CL signature:
Any adversary that can create a standard CL forgery (a, b, c) on message m can
forge an extended CL signature by adding d = bm. Any adversary that can create
an extended CL forgery (a, b, c, d) on m can forge a standard CL signature, by
adding d = bm to the signing oracle outputs, and omitting d from the final
forgery.

4.3 Proof Protocols

When referring to the zero-knowledge proofs of knowledge of discrete logarithms
and statements about them, we will follow the notation introduced by Camenisch
and Stadler [11] and formally defined by Camenisch, Kiayias, and Yung [8].

For instance, PK{(a, b, c) : y = gahb ∧ ỹ = g̃ah̃c} denotes a “zero-knowledge
Proof of Knowledge of integers a, b and c such that y = gahb and ỹ = g̃ah̃c

holds,” where y, g, h, ỹ, g̃ and h̃ are elements of some groups G = 〈g〉 = 〈h〉
and G̃ = 〈g̃〉 = 〈h̃〉. Given a protocol in this notation, it is straightforward to
derive an actual protocol implementing the proof [8]. Indeed, the computational
complexities of the proof protocol can be easily derived from this notation: for
each term y = gahb, the prover and the verifier have to perform an equivalent
computation, and to transmit one group element and one response value for each
exponent.

SPK denotes a signature proof of knowledge, that is a non-interactive trans-
formation of a proof with the Fiat-Shamir heuristic [19] in the random oracle
model [2]. From these non-interactive proofs, the witness can be extracted by
rewinding the prover and programming the random oracle. Alternatively, these
proofs can be extended to be online-extractable, by verifiably encrypting the
witness to a public key defined in the common reference string (CRS). Now
a simulator controlling the CRS can extract the witness without rewinding by
decrypting the ciphertext. A practical instantiation is given by Camenisch and
Shoup [10] using Paillier encryption, secure under the DCR assumption [22].

4.4 Semi-Authenticated Channels via Fauth*

In the join protocol of DAA, it is crucial that the TPM and issuer authenticate
to each other, such that only authentic TPMs can create signatures. This is not
an ordinary authenticated channel, as all communication is channeled via the
host, that can read the messages, block the communication, or append messages.
There exist several sub-protocols and setup settings in the DAA context that
provide this type of special authenticated channels, of which an overview is
given by Bernard et al. [3]. These constructions require the TPM to have a key
pair, the endorsement key, of which the public part is known to the issuer. In
practice, the TPM manufacturer certifies the public key using traditional PKI,
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allowing an issuer to verify that this public key indeed belongs to a certain
TPM. If the endorsement key is a key for a signature scheme, the TPM can send
an authenticated message to the issuer by signing the message. If a public key
encryption key is used, this can be used to exchange a MAC key to authenticate
later messages.

We design a functionality Fauth* modeling the desired channel, which allows
us to rather use the abstract functionality in the protocol design instead of a
concrete sub-protocol. Then, any protocol that securely realizes Fauth* can be
used for the initial authentication.

The functionality must capture the fact that the sender S sends a message
containing an authenticated and an unauthenticated part to the receiver R, while
giving some forwarder F (this role will be played by the host) the power to block
the message or replace the unauthenticated part, and giving the adversary the
power to replace the forwarder’s message and block the communication. We
capture these requirements in Fauth*, defined in Fig. 3.

Fig. 3. The special authenticated communication functionality Fauth*

Clearly we can realize this functionality using the endorsement key and a
signature scheme or public key encryption scheme.

5 Construction

In this section, we present our DAA scheme that securely implements F l
daa. While

our scheme is similar to previous constructions [3,6,7,16,18], it required several
modifications in order to fulfill all of our desired security guarantees. We give a
detailed discussion of the changes with respect to previous versions in Sect. 5.2.

The high-level idea of our DAA scheme is as follows. In the join protocol, a
platform, consisting of a TPM Mi and host Hj , receives a credential (a, b, c, d)
from the issuer I which is a Camenisch-Lysyanskaya signature [9] on some TPM
chosen secret gsk . After joining, the platform can sign any message m w.r.t. some
basename bsn. To this end, the host first randomizes the credential (a, b, c, d)
to (a′ = ar, b′ = br, c′ = cr, d′ = dr) for a random r and then lets the TPM
Mi create a signature proof of knowledge (SPK) on m showing that b′gsk = d′.
To obtain user-controlled linkability for basenames bsn �= ⊥, pseudonyms are
attached to the signature. Pseudonyms are similar to BLS signatures [4] on the
basename and have the form nym = H1(bsn)gsk for some hash function H1.
Whenever a basename bsn �= ⊥ is used, the SPK generated by the TPM also
proves that the pseudonym is well-formed.



Universally Composable Direct Anonymous Attestation 253

5.1 Our DAA Protocol Πdaa

We now present our DAA scheme in detail, and also give a simplified overview
of the join and sign protocols in Figs. 4 and 5 respectively.

We assume that a common reference string functionality FD
crs and a certificate

authority functionality Fca are available to all parties. The later allows the issuer
to register his public key, and FD

crs is used to provide all entities with the system
parameters comprising a security parameter τ , a bilinear group G1,G2,GT of
prime order q with generators g1, g2 and bilinear map e, generated via G(1τ ).
We further use a random oracle H1 : {0, 1}∗ → G1.

For the communication between the TPM and issuer (via the host) in the join
protocol, we use our semi-authenticated channel Fauth* introduced in Sect. 4.4.
For all communication between a host and TPM we assume the secure message
transmission functionality F l

smt (enabling authenticated and encrypted commu-
nication). In practice, F l

smt is naturally guaranteed by the physical proximity of
the host and TPM forming the platform, i.e., if both are honest an adversary can
neither alter nor read their internal communication. To make the protocol more
readable, we simply say that Hi sends a message to, or receives a message from
Mj , instead of explicitly calling F l

smt with sub-session IDs etc. For definitions of
the standard functionalities FD

crs,Fca and F l
smt we refer to [12,13].

Fig. 4. Overview of the join protocol
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Fig. 5. Overview of the sign protocol

In the description of the protocol, we assume that parties call FD
crs and Fca

to retrieve the necessary key material whenever they use a public key of another
party. Further, if any of the checks in the protocol fails, the protocol ends with
a failure message ⊥. The protocol also outputs ⊥ whenever a party receives
an input or message it does not expect (e.g., protocol messages arriving in the
wrong order.)

Setup. In the setup phase, the issuer I creates a key pair of the CL-signature
scheme and registers the public key with Fca.

1. I upon input (SETUP, sid) generates his key pair:
– Check that sid = (I, sid ′) for some sid ′.
– Choose x, y ←$

Zq, and set X ← gx
2 , Y ← gy

2 . Initiate LJOINED ← ∅.
– Prove that the key is well-formed in π ←$ SPK{(x, y) : X = gx

2 ∧Y = gy
2}.

– Register the public key (X,Y, π) at Fca, and store the secret key as (x, y).
– Output (SETUPDONE, sid).

Join. The join protocol runs between the issuer I and a platform, consisting
of a TPM Mi and a host Hj . The platform authenticates to the issuer and, if
the issuer allows, obtains a credential that subsequently enables the platform to
create signatures. To distinguish several join sessions that might run in parallel,
we use a unique sub-session identifier jsid that is given as input to all parties.

1. Hj upon input (JOIN, sid , jsid,Mi) parses sid = (I, sid ′) and sends the
message (JOIN, sid , jsid) to I.

2. I upon receiving (JOIN, sid , jsid) from a party Hj chooses a fresh nonce
n ← {0, 1}τ and sends (sid, jsid, n) back to Hj .

3. Hj upon receiving (sid , jsid, n) from I, sends (sid, jsid, n) to Mi.
4. Mi upon receiving (sid , jsid, n) from Hj , generates its secret key:

– Check that no completed key record exists.
– Choose gsk ←$

Zq and store the key as (sid,Hj , gsk ,⊥).
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– Set Q ← ggsk1 and compute π1 ←$ SPK{(gsk) : Q = ggsk1 }(n).
– Send (Q, π1) via the host to I using Fauth*, i.e., invoke Fauth* on input

(SEND, (Mi, I, sid), jsid, (Q, π1),Hj).
5. Hj upon receiving (APPEND, (Mi, I, sid), jsid,Q, π1) from Fauth*, forwards

the message to I by sending (APPEND, (Mi, I, sid), jsid,Hj) to Fauth*. It
also keeps state as (jsid,Q).

6. I upon receiving (SENT, (Mi, I, sid), jsid, (Q, π1),Hj) from Fauth* verifies
π1 and checks that Mi /∈ LJOINED. It stores (jsid,Q,Mi,Hj) and outputs
(JOINPROCEED, sid , jsid,Mi).

The join session is then completed when the issuer receives an explicit input
telling him to proceed with join session jsid.

1. I upon input (JOINPROCEED, sid , jsid) generates the CL credential:
– Retrieve the record (jsid,Q,Mi,Hj) and add Mi to LJOINED.
– Choose r ← Zq and compute a ← gr

1, b ← ay, c ← ax · Qrxy, d ← Qry.
– Prove correctness of the signature in π2 ←$ SPK{(t) : b = gt

1 ∧ d = Qt}.
– Send the credential (a, b, c, d) to the host Hj by giving Fauth* input (SEND,

(I,Mi, sid), jsid, (b, d, π2), (a, c),Hj).
2. Hj upon receiving (APPEND, (I,Mi, sid), jsid, (b, d, π2), (a, c)) from Fauth*

verifies the credential (a, b, c, d) and forwards (b, d, π2) to Mi:
– Retrieve (jsid,Q) and verify π2 w.r.t. Q.
– Verify the credential as a �= 1, e(a, Y ) = e(b, g2), and e(c, g2) = e(a ·d,X).
– Send (APPEND, (I,Mi, sid), jsid,⊥) to Fauth*.

3. Mi upon receiving (SENT, (I,Mi, sid), jsid, (b, d, π2),⊥) from Fauth*, com-
pletes the join:
– Retrieve the record (sid,Hj , gsk ,⊥) and verify π2 with respect to Q ← ggsk1 .
– Complete the record to (sid,Hj , gsk , (b, d)) and send (jsid, JOINED) to Hj .

4. Hj upon receiving (jsid, JOINED) from Mi stores (sid,Mi, (a, b, c, d)) and
outputs (JOINED, sid , jsid).

Sign. The sign protocol runs between a TPM Mi and a host Hj . After joining,
together they can sign a message m with respect to basename bsn. Again, we
use a unique sub-session identifier ssid to allow for multiple sign sessions.

1. Hj upon input (SIGN, sid , ssid,Mi,m, bsn) re-randomizes the CL-
credential:
– Retrieve the join record (sid,Mi, (a, b, c, d)).
– Choose r ←$

Zq and set (a′, b′, c′, d′) ← (ar, br, cr, dr).
– Send (ssid,m, bsn, r) to Mi and store (ssid, (a′, b′, c′, d′))

2. Mi upon receiving (ssid,m, bsn, r) from Hj asks for permission to proceed.
– Check that a complete join record (sid ,Hj , gsk , (b, d)) exists.
– Store (ssid,m, bsn, r) and output (SIGNPROCEED, sid , ssid,m, bsn).
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The signature is completed when Mi gets permission to proceed for ssid.

1. Mi upon input (SIGNPROCEED, sid , ssid) computes the SPK and nym:
– Retrieve records (sid ,Hj , gsk , (b, d)) and (ssid,m, bsn, r).
– Compute b′ ← br, d′ ← dr.
– If bsn = ⊥, set nym = ⊥ and compute π ←$ SPK{(gsk) : d′ =

b′gsk}(m, bsn).
– If bsn �= ⊥, set nym = H1(bsn)gsk and compute the SPK on (m,bsn) as

π ←$ SPK{(gsk) : nym = H1(bsn)gsk ∧ d′ = b′gsk}(m, bsn).
– Send (ssid, π, nym) to Hj .

2. Hj upon receiving (ssid, π, nym) from Hj , retrieves (ssid, (a′, b′, c′, d′)) and
outputs (SIGNATURE, sid , ssid, (a′, b′, c′, d′, π, nym)).

Verify. The verify algorithm allows everyone to check whether signature σ on
message m with respect to basename bsn is valid, i.e., stems from a certified
TPM. To test whether the signature originates from a TPM that did get cor-
rupted, the verifier can pass a revocation list RL to the algorithm. This list
contains the keys of corrupted TPMs he no longer wishes to accept signatures
from.

1. V upon input (VERIFY, sid ,m, bsn, σ, RL) verifies the signature:
– Parse σ as (a, b, c, d, π, nym).
– Verify π with respect to (m, bsn) and nym (if bsn �= ⊥).
– Check that a �= 1, b �= 1, e(a, Y ) = e(b, g2) and e(c, g2) = e(a · d,X).
– For every gsk i ∈ RL, check that bgski �= d.
– If all tests pass, set f ← 1, otherwise f ← 0.
– Output (VERIFIED, sid , f).

Link. With the link algorithm, anyone can test whether two signatures (σ,m),
(σ′,m′) that were generated for the same basename bsn �= ⊥, stem from the
same TPM.

1. V upon input (LINK, sid , σ,m, σ′,m′, bsn) verifies the signatures and com-
pares the pseudonyms contained in σ, σ′:
– Check that bsn �= ⊥ and that both signatures σ, σ′ are valid.
– Parse the signatures as (a, b, c, d, π, nym) ← σ, (a′, b′, c′, d′, π′, nym′) ← σ′.
– If nym = nym′, set f ← 1, otherwise f ← 0.
– Output (LINK, sid , f).

5.2 Differences with Previous Schemes

The proposed scheme is very similar to previous DAA schemes using the CL
signature. For each part of the protocol, we now show the weaknesses of previous
schemes and the way our solution overcomes them.
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Setup. In our scheme, the issuer is required to prove knowledge of the issuer
secret key. Previous works let the challenger generate the issuer key in the secu-
rity game for anonymity, which allowed the simulator to use the issuer private
key in the security reduction. This implicitly assumes that the issuer private key
is extractable, but none of the schemes actually realized this. We therefore add
a SPK proof π to the issuer’s public key from which the simulator can extract
the issuer secret key.

Join. In the join protocol, we reintroduced a proof π1 by the TPM, that was
present in many previous works but omitted in the scheme by Bernard et al. [3].
Additionally, our scheme contains the proof π2 by the issuer, which was intro-
duced by Bernard et al.

Many previous schemes [6,7,16,18] let the TPM prove knowledge of the dis-
crete log of ggsk in the join protocol. Bernard et al. removed this proof by reduc-
ing the forgery of a credential to the security of a blind signature scheme, and in
the unforgeability game requiring the adversary to output all secret keys. This
assumes that all these secrets are extractable which, if extraction by rewinding
is used, would require exponential time. We realize efficient extraction by adding
the TPM’s proof of knowledge of gsk to the join protocol and allowing only a
logarithmic number of simultaneous join sessions.

Bernard et al. let the issuer compute d and required the issuer to prove that
he correctly formed the credential, which none of the previous works did. We
also use this proof as it allows to simulate a TPM without knowing the secret
key gsk . This is required in our reduction where we use the unknown discrete
logarithm of a DL or DDH instance as the key of a TPM.

Sign. We change the communication between the TPM and host to prevent the
TPM from leaking information about its secret key gsk to the host, and we only
use pseudonyms when required.

Chen, Page, and Smart [18] let the host send a randomized b value of the
credential to the TPM, which responded with d = bgsk . This gives information to
the host that cannot be simulated without knowing gsk , which prevents a proof
of unforgeability under the DL assumption, and requires the stronger static DH
assumption. The scheme by Bernard et al. [3] has a similar problem: The host
sends (b, d) to the TPM, and the TPM responds with a proof proving that
bgsk = d. Now the TPM should only output a valid proof for valid inputs, i.e.,
when bgsk = d. A simulator mimicking a TPM in the security proof, however,
cannot decide this when reducing to the DL problem, a stronger assumption is
required to prove unforgeability in their scheme.

We apply the fix by Xi et al. [25], in which the host sends the randomness r
used to randomize the credential. This does not give the host any new informa-
tion on gsk , which is why we can prove unforgeability under the DL assumption.
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Some schemes [6,7,16,18] always attached a pseudonym to signatures to sup-
port revocation, even when the basename bsn was equal to ⊥. However, we can
perform the revocation check on the credential: bgsk

?= d, so the pseudonym can
be omitted when bsn = ⊥ for a more efficient scheme.

Verify. We add a check a �= 1G1 to the verification algorithm, which many of the
previous schemes [6,7,16,18] are lacking. Without this check, schemes tolerate
a trivial issuer credential (1G1 , 1G1 , 1G1 , 1G1) that allows anyone to create valid
DAA signatures, which clearly breaks unforgeability. Note that [18] has been
ISO standardized [20] with this flaw.

The verification algorithm also checks b �= 1G1 , which is not present in any of
the previous schemes. A credential with b = 1G1 leads to d = 1G1 , and lets any
gsk match the credential, which is undesirable as we no longer have a unique
matching gsk . An adversarial issuer can create such credentials by choosing its
secret key y = 0. This case is “excluded” by the non-frameability property of
Bernard et al. [3] which assumes that even a corrupt issuer creates his keys
honestly, so y = 0 will occur with negligible probability only. We avoid such an
assumption and simply add the check b �= 1G1 .

6 Security Proof Sketch

Theorem 1. The protocol Πdaa presented in Sect. 5 securely realizes F l
daa in the

(Fauth*,Fca,F l
smt,FD

crs)-hybrid model using random oracles and static corrup-
tions, if the DL and DDH assumptions hold, the CL signature [9] is unforgeable,
and the proofs-of-knowledge are online extractable.

As CL signatures are unforgeable under the LRSW assumption [21], and
we can instantiate the SPKs to be online extractable under the DCR assump-
tion [22], we obtain the following corollary:

Corollary 1. The protocol Πdaa presented in Sect. 5 instantiated with online
extractable proofs securely realizes F l

daa in the (Fauth*,Fca,F l
smt,FD

crs)-hybrid
model using random oracles and static corruptions under the DL, DDH, LRSW,
and DCR assumptions.

Instead of relying on online extractable SPKs one could also use extraction
by rewinding, which would yield a more efficient scheme. However, one needs
to take special care that the rewinding does not require exponential time in
the security proof. The only SPK we constantly have to extract from in our
security proof is π1 used in the join protocol. Thus, we can avoid the exponential
blow-up by letting the issuer limit the number of simultaneous join sessions to
be logarithmic in the security parameter. Since we keep the way in which the
simulator extracts witnesses abstract in the proof of Theorem 1, the very same
simulator proves the scheme with extraction by rewinding secure. Note though,
that the UC framework does not allow rewinding at all, i.e., this only proves the
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Fig. 6. Visualization of the proof strategy

instantiation using extraction by rewinding secure in a stand-alone fashion, but
one cannot claim composability guarantees.

To show that no environment E can distinguish the real world, in which
it is working with Πdaa and adversary A, from the ideal world, in which it
uses F l

daa with simulator S, we use a sequence of games. We start with the
real world protocol execution. In the next game we construct one entity C that
runs the real world protocol for all honest parties. Then we split C into two
pieces, a functionality F and a simulator S, where F receives all inputs from
honest parties and sends the outputs to honest parties. We start with a useless
functionality, and gradually change F and update S accordingly, to end up with
the full F l

daa and a satisfying simulator. This strategy is depicted in Fig. 6.
Due to space constraints, we present the complete security proof including all

intermediate functionalities and simulators in the full paper. Here an overview
of the game hops is given, along with an explanation how we can show indistin-
guishability between the games.

Game 1: This is the real world protocol.

Game 2: One entity C now receives all inputs and simulates the real world pro-
tocol for honest parties. Since C gets all inputs, it can simply run the real world
protocol. It also simulates all hybrid functionalities, but does so honestly, so E
does not see any difference. By construction, this is equivalent to the previous
game.

Game 3: We now split C into F and S. F receives all inputs, and simply
forwards them to S. S simulates the real world protocol and sends the outputs
it generated to F , who then outputs it to E . This game only restructures the
previous game.

Game 4: In the next step, we let the next intermediate F handle the setup
related interfaces. S now has to give algorithms to F , that will be used to verify,
link, and identify signatures. Note that the sig algorithm must contain the issuer
private key from the real world, so S must be able to get those values.

When I is honest, S will receive a message from F asking for the algorithms,
which informs S what is happening and allows him to start simulating the issuer.
Because S is simulating the issuer, it knows the secret keys, and can set the
algorithms accordingly.

When I is corrupt, S knows when to simulate the setup as it simulates Fca

and it notices the issuer registering a key. Because the public key includes a
proof of knowledge of the secret key, S can extract the secret key and define the
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algorithms accordingly. As I is corrupt, S can send inputs to F on the issuer’s
behalf, and performs the setup procedure giving F the correct algorithms.

Game 5: F now performs the verify and link queries, rather than forwarding
them to S. Because verify and link do not involve network traffic, the simulator
does not have to simulate network traffic, we must only make sure the output
does not change.

F executes the algorithms that S supplied, and S supplied them in such a
way that they are equivalent to the real world algorithms. F does not perform
checks yet, so the outcome will clearly be equivalent.

Game 6: In this step we change F to handle to join-related interfaces, meaning
it will receive the inputs and generate the outputs. We must make sure that F
outputs the same values as the real world did. As the join interfaces do not output
crypto values, but only output messages like start and complete, we only have to
make sure that whenever the real world protocol would reach a certain output
the functionality also allows that output, and vice versa. The first direction we
achieve by removing all checks from F , such that it will always proceed. We
introduce these checks further on in the proof. The other direction we achieve as
before every output, F sends a message to S and requires a response. When the
real world protocol would not proceed, S simply does not respond to F , such
that F will also not proceed.

Furthermore, as A and E can communicate freely, S must make sure that A
sees the right messages between every input and output. S is activated before
every output, and in that activation must simulate the network traffic A expects
to see. If S can figure out which inputs were send to F , it can do so by simulating
the real world protocol with the same input. When the host is honest, F upon
receiving the first input from the host informs S of the full input, making the
simulation easy. When the host is corrupt but the TPM is honest, S simulating
the TPM will receive a message over a secure channel from the host, by which
it learns that host wants to join with the TPM, again giving S the full input.
Only when the TPM and host are corrupt and the issuer is honest, S is missing
information: It cannot determine the identity of the host, as the host does not
authenticate towards the issuer in the real world. This does not matter for the
real world simulation, as S only has to simulate the honest issuer, for which it
does know the input.

Finally, S must call F on behalf of corrupt parties. For inputs it can derive,
S simply sends the input on behalf of the corrupt party to F . The only input it
cannot derive is the identity of the host when only the issuer is honest. Then, S
simply chooses an arbitrary corrupt host and uses that as input to F . This will
only result in a different host in Members, but F never uses this identity when
the corresponding TPM is corrupt.

Later in the proof, we need to know the gsk value of every TPM when I is
honest. S can extract the key from the proof π1 and submits it to F .

Game 7, 8, 9, 10: Over the next four game hops, we transform F such that it
handles the signing queries instead of forwarding the inputs and outputs. As in
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the previous step, S receives a message from F before every output, such that
it can block any output that would not happen in the real world. We remove all
checks from F such that it does not block any output that could happen in the
real world, and we add these checks later on in the proof.

S can easily simulate the network traffic when the TPM or the host is corrupt,
as it sees the message and basename sent over a secure channel in the real world.
When both the TPM and host are honest, F only informs S of the leakage of
the message and basename, l(m, bsn). In this scenario, S only has to simulate
the network traffic, and as all messages between the TPM and host are sent over
a secure channel, it picks a message and basename with the same leakage which
is sufficient to simulate the messages.

When the TPM or the host is corrupt, S is allowed to supply the signature,
which it can take from the real world simulation, making it output the same
as the real world. When both the TPM and the host are honest, F creates the
signatures anonymously: It chooses a new gsk per basename, or per signature
when bsn = ⊥. This difference is indistinguishable under the DDH assumption.

The reduction uses the fact that we can simulate a TPM knowing only h =
ggsk
1 , but not gsk itself. A TPM uses gsk to set Q in the join protocol, to do

proofs π1 in the join protocol and π in signing, and to compute pseudonyms.
In simulation, we set Q ← h and we simulate the proofs. For pseudonyms, the
power over the random oracle is used. S chooses H1(bsn) = gr

1 for r ←$
Zq, and

now it can set nym ← hr = H1(bsn)gsk without knowing gsk. Note that the proof
the issuer makes in the join protocol helps simulating the TPM without knowing
gsk: With this proof the TPM does not have to use gsk to check bgsk ?= d, it
can simply verify the proof.

Suppose an environment can distinguish a signature by an honest party with
the gsk it joined with from a signature by the same party but with a different gsk.
Then we show we can break DDH instance α, β, γ by simulating the join and the
first signature using the unknown logg1(α) as gsk, and for the second signature
we use the unknown logβ(γ) as gsk. If the environment notices a difference, we
know that logg1(α) �= logβ(γ), solving the DDH problem.

Game 11: In this game we let F additionally check the validity of every new
gsk that is generated or received in the join and sign interface.

F now checks that CheckGskCorrupt(gsk) = 1, which prevents the adversary
from choosing keys that will lead to two distinct gsk values matching one signa-
ture. This will never fail, as in our protocol for every valid signature there exists
only a single gsk with identify(σ,m, bsn, gsk).

For keys of honest TPMs, F verifies that CheckGskHonest(gsk) = 1, which
prevents the registration of keys for which there already are matching signa-
tures. Because keys for honest TPMs are chosen uniformly at random from an
exponentially large group and every signature as one matching key, the chance
that a signature using that key already exists is negligible.

Game 12: We now add checks on honestly generated signatures to F . After
creating a signature, F checks whether the signature verifies and matches the
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right key. As S supplied proper algorithms, these checks will obviously always
succeed.

It also checks no one else already has a key that matches this signature. If
this fails, we can solve the DL problem: We simulate a TPM using the unknown
discrete logarithm of a DL instance as key like before. If a matching gsk is found,
then we solve the DL problem.

Game 13, 14, 15, 16: In these four game hops, we let F perform the four
checks that are done by F l

daa in the verification interface and show that this does
not change the verification outcome.

The first check prevents multiple gsk values matching one signature, but as
identify considers the discrete log relation between b and d from the credential,
and b �= 1, there exists only one gsk ∈ Zq such that bgsk = d.

If the issuer is honest, the second check prevents signing with credentials that
were not issued by the issuer. We can reduce this to the unforgeability of the
CL signature. The signing oracle is now used to create credentials, and when a
credential is verified that was not signed by the issuer, it must be a forgery.

F prevents signatures that use the key and credential of an honest TPM,
but are signing messages that this TPM never signed. We can reduce this to the
DL problem. Again we simulate a TPM using the unknown discrete logarithm
of the problem instance. When a signature is verified that signs a message that
the TPM never signed, we know that the proof π is not simulated, so we can
extract gsk from it, breaking the DL assumption.

The last check prevents revocation of honest TPMs. This too we can reduce to
the DL problem. We simulate the TPM using the DL instance, and if a matching
key is placed on the revocation list, this must be the discrete logarithm of the
problem instance.

Game 17: We now let F perform all the checks F l
daa makes for link inputs.

If it notices a key that matches one signature but not the other, F states the
signatures are not linked. If it notices one key that matches both signatures, it
outputs that the signatures are linked. This output is always the same as the
output link gives: If there is a gsk that matches one signature but not the other,
by soundness of π we have that the pseudonyms are not based on the same
gsk. As H1(bsn) generates G1 with overwhelming probability, the pseudonyms
differ and link would output 0. If there is a gsk that matches both signatures,
by soundness of π we have that the pseudonyms are based on the same gsk and
must be equal, resulting in link outputting 1.

Now F is equal to F l
daa, concluding our proof sketch.
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Abstract. Message authentication and key exchange are two of the
most basic tasks of cryptography and are often basic components in com-
plex and security-sensitive protocols. Thus composable security analysis
of these primitives is highly motivated. Still, the state of the art in com-
posable security analysis of these primitives is somewhat unsatisfactory
in the prevalent case where solutions are based on public-key infrastruc-
ture (PKI). Specifically, existing treatments either (a) make the unrealis-
tic assumption that the PKI is accessible only within the confines of the
protocol itself, thus failing to capture real-world PKI-based authenti-
cation, or (b) impose often-unnecessary requirements—such as strong
on-line non-transferability—on candidate protocols, thus ruling out
natural candidates.

We give a modular and universally composable analytical framework
for PKI-based message authentication and key exchange protocols. This
framework guarantees security even when the PKI is pre-existing and
globally available, without being unnecessarily restrictive. Specifically,
we model PKI as a global set-up functionality within the Global UC secu-
rity model [Canetti et al., TCC 2007] and relax the ideal authentication
and key exchange functionalities accordingly. We then demonstrate the
security of basic signature-based authentication and key exchange pro-
tocols. Our modeling makes minimal security assumptions on the PKI in
use; in particular, “knowledge of the secret key” is not needed. Further-
more, there is no requirement of uniqueness in this binding: an identity
may be represented by multiple strings of public keys.
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1 Introduction

Public-Key-Based Authentication. Authentication may be done in many
different ways, such as biometric human identification, or via some pre-shared
longer-term secret (such as a pre-shared key or a password). In this work we
concentrate on public-key authentication, as put forth in the groundbreaking
work of Diffie and Hellman [DH76]: The parties have no á priori shared secret
information or other physical means for authentication. The only mechanism
available for authenticating messages is a globally-accessible public database
that allows actors to record arbitrary information; each record is made publicly
available and linked to the public identity of the actor who created it. We call
this setting the global public-key infrastructure (PKI) setting.

A simple and frequently-used message authentication protocol in this setting
proceeds as follows. For Alice to send an authenticated message to Bob, Alice signs
(using her private key) the message, together with her and Bob’s identities and
a session identifier that’s unique to that message, and sends the message and the
signature to Bob over an unauthenticated channel. Bob authenticates the message
by obtaining Alice’s public key from the PKI and verifying the signature.

An almost equally simple authenticated key exchange protocol is the fol-
lowing: Alice sends to Bob her Diffie-Hellman message ga, bob responds by
sending his Diffie-Hellman message gb, together with ga and a signature sB =
SigBob(ga, gb, ‘Alice’). Alice responds by sA = SigAlice(ga, gb, ‘Bob’). Both par-
ties are assumed to have each other’s verification key in advance, and verify the
signatures to authenticate. (This is essentially the ISO 9798-3 key exchange stan-
dard.) For sake of illustration, we keep these two simple protocols, respectively
denoted φauth and φke, as running examples throughout this paper. Practical
protocols that use φauth and φke (or close variants thereof) to establish trust in
the identity of an interlocutor or in data payloads are ubiquitous. For instance,
they include the TLS standard, chip-and-pin debit cards [EMV11], end-to-end
authentication of email contents [RFC 1847], and many others.

Since these protocols use signatures against a globally-available PKI, and
send them in the clear over world-readable channels, anyone in the system can
verify Alice’s and Bob’s signatures, even though they were intended only for each
other. While we recognize this as an inherent property of signatures (namely,
they provide transferable verifiability), in the context of authentication this is
merely a side-effect which may or may not be desirable.

We know that faithfully analyzing the security of public-key based authen-
tication and key exchange protocols turns out to be a difficult problem, mainly
due to the intricate interactions among the various components of the actual
protocols, the public-key infrastructure, and the systems they run in. So a nat-
ural question arises: Is φauth a good authentication protocol? Is φke a good key
exchange protocol? Should we keep using them? Should we treat them as broken
and use more sophisticated protocols instead?

Modular Analysis. In light of the complexity and ubiquity of authentication
protocols, it would be desirable to be able to analyze them in a modular fashion:
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to abstract out an ideal authentication service for higher-level protocols to use,
such that the security of the higher-level protocols would be independent of the
details of its implementation. This approach allows consumers of authentication
to dynamically replace their authentication implementations—for example, to
base authentication on a different setup service or on a different hard problem—
without affecting the security of the higher-level protocol. Conversely, modular-
ity also encourages reuse of an authentication module by multiple higher-level
protocols, discouraging local, ad hoc implementations.

Several efforts to model public-key based authentication within a compos-
able security framework appear in the literature. Canetti and Krawczyk [CK01]
and Shoup [Sho99] perhaps provide the first such guarantees in the context of
authenticated key exchange, but their modeling of the public key infrastructure
is quite rudimentary and does not allow analyzing the long-term signature and
certification module separately from the rest of the protocol.

Other attempts at composable analysis were made in [CK02] and later
in [Can04]within theUniversallyComposable (UC) security framework of [Can01].
(The second work is more directly focused at analyzing the simple φauth.)

However, these works have the following significant drawback: They treat
the public-key infrastructure—namely, the public record with the public infor-
mation provided by each actor—as a construct that is local to each specific
protocol instance and unavailable for use outside that protocol instance. This
modeling is inadequate for representing the PKI model as envisioned by Diffie
and Hellman and used in practice—where the public information is globally avail-
able. Instead, this analysis guarantees security only when each instance of the
analyzed protocol uses its own independent instance of a PKI.

This is the case even if the PKI is modeled as joint to a number of instances of
the authentication protocol in question, and composition is argued via Universal
Composition with Joint State (JUC) [CR03]. Indeed, even there the PKI is
modeled not as a global entity but rather as an entity that is local to a specific
collection of instances of some specific protocol.

The works of [MTC13,KMO+14], which are set in the Abstract Cryptography
setting of [MR11], have a similar modeling shortcoming: the public key infrastruc-
ture is modeled as local to the protocol instance. Furthermore, as argued below,
this discrepancy is not merely aesthetic; rather, it has real security implications.

Long-lived, global trusted information that is shared among all parties, proto-
cols, and protocol instances in the system are addressed in the Global UC (GUC)
framework [CDPW07]. That framework is similar to the (“basic”) UC framework,
but directly models trusted entities that are globally available throughout the sys-
tem regardless of any specific protocol to be analyzed. Authentication protocols
with global PKI are analyzed in [DKSW09,Wal08]. However, these works consider
only authentication protocols that provide additional properties on top of authen-
ticity: only protocols that provide thenon-transferability (or, deniability) property
are considered. This leaves us with the following fundamental question:

How to formulate the basic composable security requirements from plain
PKI-based authentication and key exchange protocols? In particular,
how to justify signature-based protocols such as φauth and φke?
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A Litmus Test: The Transferability Problem. The discrepancy between the
security modeling of [CK02,Can04,CR03,MTC13,KMO+14] and real implemen-
tations of PKI infrastructure is illustrated by the following issue: while real-life
PKI-based authentication is transferable (i.e., non-deniable), ideal authentica-
tion is not.1

In detail, ideal authentication is defined as a deniable task that leaves “no
trace”; it passes a message from the sender to the receiver, but the receiver is
unable to subsequently prove to a third party that the authentication had in
fact happened. In contrast, some PKI-based authentication protocols (and, in
particular, protocol φauth) allow the receiver to obtain a transferable and non-
repudiable proof of communication (e.g., a signature), which can be verified by
anyone against the global PKI. Hence, PKI-based authentication protocols are
transferable (non-deniable) whenever the PKI is globally available. Moreover,
this transferability gap is independent of the security model in use. This was
formalized by [DKSW09], which proves that no protocol based on a plain PKI
can realize the ideal authentication functionality. Still, in [Can04,CR03,MTC13,
KMO+14], protocol φauth (or variants thereof) securely realize an ideal process
that guarantees non-transferable authentication. (Note that moving to a stronger
modeling of PKI, where registering parties are required to prove knowledge of a
secret key associated with the registered public value, does not solve the problem.
Indeed, protocol φauth remains transferable even with such stronger PKI.)

We stress that transferability, or lack thereof, is not the main concern of
this work; it only serves an example of the inadequacy of the current mod-
els of composable security in capturing the security requirements of PKI-based
authentication and key exchange.

What About Game-Based Modeling? The above line of reasoning concen-
trates on models that provide composable security, more specifically models that
define security by way of emulating an ideal process. Can we avoid the difficul-
ties described above by putting general composability aside and instead using
game-based modeling of authentication and key exchange? This is an interest-
ing research direction. Indeed, we are not aware of any game-based modeling of
authentication and key exchange that directly considers global PKI that can be
used (and abused) by arbitrary other applications.

1.1 Our Results

We provide a framework for analyzing security of authentication and key
exchange protocols that use a globally-available PKI. Our framework adequately
represents global PKIs. Specifically, we concentrate on authentication and jus-
tifying the security of transferable protocols. To exemplify our framework, we
analyze protocols φke and φauth, which previously could not be justified in a
realistic security model. In particular:

1 We use the terms “transferability” and “deniability” interchangeably, where they
refer to properties of message authentication.
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(a) We model global PKI as a globally-available bulletin-board that provides
minimal guarantees of binding between strings and identities, without requir-
ing or promising any knowledge or secrecy.

(b) We relax the UC authentication and key exchange functionalities of [CK02,
Can04] to be non-deniable. Our functionalities Fcert−auth and Fcert−ke allow
the adversary to obtain “global” certificates on messages that have the ses-
sion id of Fcert−auth or Fcert−ke as a prefix. (A global certificate is one that
can be verified by any entity in the system.) In particular, the adversary may
obtain a global certificate on the message to be authenticated. This coupling
eliminates the authentication functionality’s deniability, without affecting
authenticity.
We remark that the underlying technical trick in Fcert−auth is reminiscent
of the one in the relaxed key exchange functionality of [DKSW09]. However,
there, one needs a PKI that is only partially-global and a very specific non-
deniable protocol to realize that functionality. In contrast, our goal in this
work is to analyze basic protocols with a completely-global PKI.

(c) We prove security of the natural public-key-based protocols φauth and φke.
The protocols require no setup beyond a bulletin-board and GUC-securely
realize the authentication and key exchange functionalities Fcert−auth and
Fcert−ke, respectively.

To the best of our knowledge, this is the first treatment of authentication with
a realistic modeling of PKI as a global construct that can be used by arbitrary
protocols.

While we concentrate on protocol φauth and φke for simplicity and clarity,
our treatment can be naturally extended to deal with other PKI-based authen-
tication and key exchange protocols.

Review of UC and GUC. We first briefly review the UC and GUC frame-
works. Informally, UC security is defined via a challenge to distinguish between
actual attacks, performed by an adversary A on protocol π and simulated
attacks, performed by a simulator S on protocol φ. The model allows the attacks
to be orchestrated by an environment Z that has an I/O interface to the parties
running the challenge protocol (π or φ) and is allowed to freely communicate
with the attacker (without knowing whether it is A or S). However, the environ-
ment Z is constrained to execute only a single instance of the challenge protocol.
In this execution model, protocol π is said to UC-emulate the protocol φ if for
any adversary A attacking a protocol π there exists a simulator S attacking pro-
tocol φ such that no environment can successfully distinguish these two possible
scenarios.

The GUC challenge experiment is similar to the basic UC experiment, only
with an unconstrained environment. In particular, now Z is allowed to invoke
and interact with arbitrary protocols, and even multiple sessions of the challenge
protocol. The protocols invoked by Z may share subroutines with challenge
protocol instances. GUC emulation is defined analogously to basic UC emulation.
The UC and GUC frameworks are presented more rigorously in Sect. 2.
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Our Methods. We develop a general framework for analyzing PKI-based
authentication and key-exchange protocols. Our framework consists of an ideal
message authentication functionality (or ideal key-exchange functionality) cou-
pled with a long-lived certificates functionality.

For simplicity we concentrate on the authentication protocol. The treatment
of the key exchange protocol is analogous. We formulate an ideal authentication
functionality that does not impose unnecessary requirements (such as deniabil-
ity) on the implementing protocols. The functionality, denoted Fcert−auth, is a
sender-receiver functionality that on input m from the sender not only deliv-
ers m to the receiver but also allows the adversary to see legitimate signatures
on messages of its choice, which Fcert−auth obtains from the ideal certificates
functionality Gcert. (This does not affect Fcert−auth’s authenticity promises since
Fcert−auth delivers the original m to the receiver.) This is done as follows:

The adversary determines the message to be signed and hands it to Fcert−auth;
then, Fcert−auth requests a signature (on behalf of the sender) on the message
affixed with the session identifier. The signature obtained by the adversary is
thus tied to a specific Fcert−auth session and cannot be used in other sessions.
Since the signature seen by the adversary is correctly generated and can be suc-
cessfully verified by any entity in the system, deniability (or, non-transferability)
is no longer guaranteed. Nonetheless, the essence of authentication—binding an
action to some long-lived entity—remains guaranteed. That is, Fcert−auth guar-
antees that if a receiver accepts a message from a given sender, then that sender
sent that message to the receiver. Therefore, any protocol that GUC-realizes
Fcert−auth guarantees authenticated message transmission in the same way.

Observe that Fcert−auth allows the adversary to obtain, as a side-effect, the
sender’s signature on almost any message. This might seem weak, and almost
contradictory to authentication. We note however that (a) Fcert−auth still guar-
antees authenticity, as argued above, and (b) other standard definitions of secu-
rity for authentication protocols (e.g., the definition of authentication based on
a local PKI) also allow the same side effects. We simply make this point explicit.

We note that a somewhat similar mechanism is used by [DKSW09] to aug-
ment the key exchange functionality with the secret keys of the parties. However,
there the secret keys are made unavailable beyond the key exchange protocol,
which is the opposite of our purpose here. Indeed, the goal in [DKSW09] is close
to diametrically opposite to the goal of this work: Dodis et al. study deniable
protocols, whereas we study real-life, non-deniable protocols.

We also show that standard EU-CMA signatures together with a globally-
available PKI precisely capture the guarantees provided by Gcert, and can be
used in its stead. That is:

(a) We define a global ideal certificate functionality Gcert that is parametrized
by a party identity (PID). That is, Gcert is willing to provide certificates on
chosen messages to any session of that PID. The verification service is pro-
vided to any PID in the system. The authentication functionality Fcert−auth

will provide certificates generated by Gcert to the adversary.
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(b) To realize Gcert, we define a signing module GΣ , parametrized by a PID, that
holds the secret key (of some signature scheme) and similarly to Gcert is will-
ing to provide signing service to any session of that PID. Similarly to [CK01],
our signing module enables modeling “key knowledge” and “signing capabil-
ities” separately. Separation of long-term key handling and signing module
from session module is an essential part of security modeling of key-exchange
and secure sessions: it preserves security of sessions even when other sessions
using the same public-key are compromised. This was not done previously
in any UC-based framework.

(c) We show a GUC-secure realization of ideal certificates Gcert from standard
EU-CMA signatures (where the secret key is kept in the signing module).

We exemplify the usability of our model by analyzing φauth and φke, the
signed key exchange protocol of Diffie-Hellman (ISO 9798-3), within it and show-
ing they GUC-realize Fcert−auth and Fcert−ke, respectively. (The complete real-
ization of Fcert−auth within our framework is depicted in Fig. 1).

To this end, we formalize new composition theorems that allow reduction
between global functionalities. The first theorem (in Sect. 3) shows that a secure
realization of functionality G is sufficient for replacing any use of G (as a global
functionality) with G’s implementation:

Theorem 1 (informal statement). Let π be a protocol with access to global
functionality G. If a functionality F GUC-realizes G, then π using global F GUC-
realizes π using global G.

Our second composition theorem presents the necessary conditions, required
from a pair of global functionalities, such that any secure protocol GUC-realizing
some task using globally one of the functionalities would remain equally secure
using the other:

Theorem 2 (informal statement). Let π and φ be protocols with access to
global functionality G. If π GUC-realizes φ, the functionality F GUC-realizes G
and G GUC-realizes F , then π GUC-realizes φ with access to global functional-
ity F .

Since the operation of replacing one global functionality by another was not
considered before, we extend the definition of GUC-emulation. The extended
definition admits not only previous results, but also allows arguing these
theorems formally. Although the composition proof is simple, the terminology is
vital for our analysis.

1.2 Related Work

Due to the fundamentality of the problem, there has been a vast line of works
on secure authentication and its equivalent problem of key exchange. PKI-based
authentication can be examined from three different angles: the composability
guarantees of the model, the modeling of the PKI, and the deniability guarantees
of the ideal authentication. We concentrate on composable settings, where the
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Fig. 1. A snapshot of an authentication in the system. The signing module together
with Gbb is an instantiation of Gcert. Each party participates in multiple executions
of φauth, one per session. Each session may involve a different interlocutor (not limited
to pid1 and pid2). The bulletin-board Gbb is shared with many other protocols execut-
ing in the system. The parties also obtain signatures from their local signing module
instances upon demand.

authentication (or key exchange) maintains its security guarantees when used as
a component in building complex protocols.

UC-Based Models. Many works [CK02,FAK08,CG10,AF10] analyze key
agreement and key exchange protocols in the UC framework. However, like
[Can04], they also model the PKI as local to the protocol instance. Another
line of works in UC prohibit honest participants from engaging in multiple ses-
sions concurrently [LBdM07,BLdMT09] or assume password-based security and
erasures [DF12]. Likewise, here the PKI modeling does not allow external pro-
tocols to access the PKI.

Dodis et al. [DKSW09,Wal08] study deniable authentication in a GUC set-
ting. They prove it impossible to securely realize standard message authenti-
cation in GUC with merely a standard PKI. To overcome this impossibility
result, they present a non-transferable authentication protocol based on sym-
metric keys. The symmetric keys are obtained from a non-standard PKI. How-
ever, their protocol has two drawbacks: Its security proof requires a strong PKI
(namely, key registration with proof of knowledge of the secret key) and their
protocol is somewhat less efficient than φauth. Most importantly, that framework
cannot be used to justify the security of φauth as a basic authentication protocol.

The Abstract Cryptography (AC) Model. Maurer et al. [MTC13] imple-
ment authenticated channels in the Abstract Cryptography setting of [MR11].
Their construction is composable, uses the canonical signature-based authen-
tication protocol (φauth) and assumes a standard PKI. Still, similarly to
Canetti [Can04], these works treat the PKI as a local functionality that services
only a single instance of an authentication protocol. Indeed, their abstraction of
an authentication channel is deniable, while their protocol is PKI-based.
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Kohlweiss et al. [KMO+14] study the TLS protocol in the same setting and
analyze three key exchange modes of TLS. Of them, one uses symmetric keys
and two use a standard PKI. However, as with [Can04] and [MTC13], their PKI
is private to the protocol. Thus, their modeling does not adequately capture
global PKIs.

Game-Based Models. The work of [CK01] develops a game-based framework
for analyzing the key exchange problem. Later, [BFS+13] proposed a framework
with stronger composability guarantees to enable analysis of the TLS protocol.
However, both frameworks allow only limited composition and model the PKI
as a setup inaccessible by other protocols.

Other Models. Kidron and Lindell [KL07] study impossibility results in a
number of public-key models. However, none of the considered public-key models
are in a global setting, and thus do not address the issue at hand. Barak et al.
[BCL+05] study what notion of security is achievable in a PKI-less setting. Their
work does not address the setting of global PKI.

Invisible Adaptive Attacks. Nielsen and Strefler [NS14] point out a weakness
in definitions of security in the GUC model, called invisible adaptive attacks and
propose a general way to fix the weakness. We demonstrate in Sect. 6 that our
protocols satisfy not only the [NS14] definition even a stronger (and simpler)
definition proposed in this work.

2 Overview of Generalized UC Security

To provide the proper setting for the authentication, we now review the original
UC [Can01,Can00] (referred to as basic UC) and Generalized UC [CDPW07]
frameworks.2 We will focus on the notion of protocol emulation, wherein the
objective of a protocol π is to imitate another protocol φ. In this work, the enti-
ties and protocols we consider are polynomial-time bounded Interactive Turing
Machines (ITMs), in the sense detailed in [Can01].

Systems of ITMs. To capture the mechanics of computation and commu-
nication among entities, the UC framework employs an extension of the ITM
model [GMR89]. A computer program (such as run by a participant in a proto-
col, or by an adversary) is modeled in the form of an ITM. An execution exper-
iment consists of a system of ITMs which are instantiated and executed, with
multiple instances possibly sharing the same ITM code. A particular executing
ITM instance running in the network is referred to as an ITI. Individual ITIs
are parameterized by the program code of the ITM they instantiate, a party ID
(pid) and a session ID (sid). We require that each ITI can be uniquely identified
by the identity pair id = (pid,sid), irrespective of the code it may be running.
All ITIs running with the same code and session ID are said to be a part of

2 We relate to the 2013 version of [Can00] and explicitly mention in the text the
relevant differences from previous versions.



274 R. Canetti et al.

the same protocol session, and the party IDs are used to distinguish among the
various ITIs participating in a particular protocol session.

The Basic UC Framework. At a very high level, the intuition behind secu-
rity in the basic UC framework is that any adversary A attacking a protocol π
should learn no more information than could have been obtained via the use of
a simulator S attacking protocol φ. Furthermore, we would like this guarantee
to hold even if φ were to be used as a subroutine in arbitrary other protocols
that may be running concurrently in the networked environment and after we
substitute π for φ in all the instances where it is invoked. This requirement is
captured by a challenge to distinguish between actual attacks on protocol φ and
simulated attacks on protocol π. In the model, attacks are executed by an envi-
ronment Z that also controls the inputs and outputs to the parties running the
challenge protocol. The environment Z is constrained to execute only a single
instance of the challenge protocol. In addition, the environment Z is allowed
to interact freely with the attacker (without knowing whether it is A or S).
At the end of the experiment, the environment Z is tasked with distinguishing
between adversarial attacks perpetrated by A on the challenge protocol π, and
attack simulations conducted by S with protocol φ acting as the challenge pro-
tocol instead. If no environment can successfully distinguish these two possible
scenarios, then protocol π is said to UC-emulate the protocol φ.

Balanced Environments. In order to keep the notion of protocol emulation
from being unnecessarily restrictive, we consider only environments where the
amount of resources given to the adversary (namely, the length of the adversary’s
input) is at least some fixed polynomial fraction of the amount of resources given
to all protocols in the system. From now on, we only consider environments that
are balanced.

Definition 1 (UC-emulation). Let π and φ be multi-party protocols. We say
that π UC-emulates φ if for any adversary A there exists an adversary S such
that for any (constrained) environment Z, we have:

EXECπ,A,Z ≈ EXECφ,S,Z

Defining protocol execution this way is sufficient to capture the entire range
of network activity that is observable by the challenge protocol but may be
under adversarial control. Therefore, the UC framework admits a very strong
composition theorem, which guarantees that arbitrary instances of φ that may
be running in the network can be safely substituted with any protocol π that
UC-emulates it. More formally,

Definition 2 (Subroutine-respecting protocols; [Can00]). We say that a
protocol π is subroutine-respecting if the following properties hold with respect
to every instance of π in any execution of any protocol ρ that makes subroutine
calls to π:

(a) No ITI which is a subsidiary of this instance passes inputs or outputs to an
ITI which is not a party or subsidiary of this instance.
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(b) At first activation, each ITI that is currently a subsidiary of this instance, or
will ever become one, sends a special message to the adversary, notifying it
of its own code and identity, as well as the code π and SID of this instance.
We call this requirement subroutine publicness.3

Theorem 3 (UC-Composition). Let ρ,π and φ be protocols such that ρ
makes subroutine calls to φ. If π UC-emulates φ and both π and φ are subroutine-
respecting, then protocol ρπ/φ UC-emulates protocol ρ.

The Generalized UC Framework. As mentioned above, the environment
Z in the basic UC experiment is unable to invoke protocols that share state
in any way with the challenge protocol. In many scenarios, the challenge pro-
tocol produces information that is shared by other network protocol sessions.
For example, protocols may share information via a global setup such as a pub-
lic Common Reference String (CRS) or a standard Public Key Infrastructure
(PKI). The basic UC framework discussed above does not address this kind
of shared state; moreover, the UC composition theorem does not hold for non-
subroutine-respecting protocols (i.e., protocols that share state information with
other protocol sessions). Still, we would like to analyze such protocols in a mod-
ular way. To overcome this limitation, [CDPW07] propose the Generalized UC
(GUC) framework. The GUC challenge experiment is similar to the basic UC
experiment, only with an unconstrained environment. In particular, now Z is
allowed to invoke and interact with arbitrary protocols, and even multiple ses-
sions of the challenge protocol. Some of the protocol sessions invoked by Z may
even share state information with challenge protocol sessions, and indeed, those
protocol sessions might provide Z with information related to the challenge pro-
tocol instances that it would have been unable to obtain otherwise. To distinguish
this from the basic UC experiment, we denote the output of an unconstrained
environment Z, running with an adversary A and a challenge protocol π in
the GUC protocol execution experiment, by GEXECπ,A,Z . GUC emulation is
defined analogously to the definition of basic UC emulation outlined above:

Definition 3 (GUC-emulation). Let π and φ be multi-party protocols. We
say that π GUC-emulates φ if for any adversary A there exists an adversary S
such that for any (unconstrained) environment Z, we have:

GEXECπ,A,Z ≈ GEXECφ,S,Z .

The External-Subroutine UC Framework. The great generality provided
by the GUC framework also raises difficulties in proving security of protocols in
it. Observing real scenarios, it turns out to be sufficient to model shared state
information via the use of “shared functionalities”, which are simply function-
alities that may interact with more than one protocol session (such as the PKI
functionality). For clarity, we distinguish the notation for shared functionalities

3 While natural, these properties are necessary for Theorem 4 and the composition to
go through. The reader is referred to [Can00] for further details.
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by adding a bar. We call a protocol π that only shares state information via a
single global functionality Ḡ a Ḡ-subroutine respecting protocol (Definition 2 is
extended to allow communication with Ḡ). Moreover, a Ḡ-externally constrained
environment is subject to the same constraints as the environment in the basic
UC framework, only it is additionally allowed to invoke a single ITI that runs
the code of Ḡ. Thus, any state information that will be shared by the challenge
protocol must be shared via calls to Ḡ (i.e., challenge protocols are Ḡ-subroutine
respecting), and the environment is specifically allowed to access Ḡ. Although Z
is once again constrained to invoking a single instance of the challenge protocol,
it is now possible for Z to internally mimic the behavior of multiple sessions
of the challenge protocol, or other arbitrary network protocols, by making use
of calls to Ḡ wherever shared state information is required. We allow the envi-
ronment direct access to shared state information. This security notion is called
External-subroutine UC (EUC) security. The EUC-security notion collapses to
UC-security for subroutine-respecting protocols (Definition 2).

Given a Ḡ-subroutine respecting protocol π, we denote the output of the envi-
ronment in the EUC protocol experiment by EXECπ,Ḡ,D,Z . The EUC-emulation
definition presented here is an extension of the emulation definition appearing
in [CDPW07]. The new definition allows a protocol π to emulate φ using a
different shared functionality than φ uses. More formally,

Definition 4 (EUC-emulation). Let π and φ be multi-party protocols, where
π is F̄-subroutine respecting and φ is Ḡ-subroutine respecting. We say that π
EUC-emulates φ if for any adversary A there exists a adversary S such that for
any F̄-externally constrained environment Z, we have:

EXECπ,F̄,D,Z ≈ EXECφ,Ḡ,S,Z .

Note that a F̄-subroutine respecting π communicates with the global func-
tionality F̄ (similarly, φ with Ḡ). We remark that, in the underlying model, the
substitution of Ḡ for F̄ is done by changing the control function (so that mes-
sages addressed to F̄ are implicitly delivered to Ḡ instead), in a similar manner
to the changes effected thereto when substituting φ for π in UC or GUC.

Ideal Protocols ([Can01,Can00]). Let F be an ideal functionality and sid be
its session ID. The ideal protocol IDEALF for F is defined as follows: Whenever a
dummy party is activated with input v, it writes v onto the input tape of the ideal
functionality F(sid,⊥) (recall that this message includes the extended identity of
the calling ITI). Messages delivered by the adversaries, including corruption
messages, are ignored. Whenever a dummy party receives a value v from F on
its subroutine output tape, it writes this value on the subroutine output tape
of an ITI instructed by F . Specifying the output destination enables an ideal
functionality F to communicate with another (shared) ideal functionality Q̄
via the dummy party. Such functionality F is called Q̄-subroutine respecting
functionality. We say that a functionality F EUC-realizes an functionality G if
IDEALF EUC-emulates IDEALG . GUC-realization is defined analogously.
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Since the class of Ḡ-subroutine respecting protocols captures a broad range
of real-life protocols, we focus our attention on those. For this class of protocols,
[CDPW07] shows that GUC-emulation is equivalent to EUC-emulation.

Theorem 4 ([CDPW07]). Let G be some ideal functionality and let π and φ
be Ḡ-subroutine respecting protocols. Then π GUC-emulates φ, if and only if π
EUC-emulates φ.

Although it is not stated in [CDPW07], subroutine publicness of φ, as
described in Definition 2, is necessary for the equivalence to hold.

As a special case, if the challenge protocol does not share any state infor-
mation (i.e., it is subroutine-respecting according to [Can01]), then Theorem 4
states that GUC- and UC-security are equivalent.

3 The Global Functionality Composition Theorem

Suppose a protocol ρ uses another protocol φ as a subroutine. Global UC
[CDPW07] shows that we can replace the use of φ with any protocol π that
GUC-emulates it. This replacement maintains the security of the composed pro-
tocol, even if both the calling protocol ρ and the subroutine protocol (φ or π)
have access to the same instance of a global ideal functionality. However, it is
unknown whether it is safe to replace the global functionality with something
“equivalent”. Such a replacement would be useful, for example, for designing
protocols using an efficient signatures scheme (with keys that can be used con-
currently by any other protocols) and analyzing their security using an ideal
signatures functionality.

In this section we provide a new composition theorem that handles security
of global functionality replacement. Informally, the theorem states that a pro-
tocol that shares state via a global functionality Ḡ remains secure if we replace
this functionality with a different (presumably weaker) global functionality F̄ ,
provided that F is a secure implementation of G. The theorem holds even if the
global functionalities share state via a third global functionality. (In Sect. 4, this
theorem is used to substitute an ideal certification functionality, which shares
state via a global PKI functionality, by EU-CMA signatures.)

Theorem 5 (Generalized Functionality Composition). Let G,F be Q̄-
subroutine respecting functionalities, for some ideal functionality Q. Let π be a Ḡ-
subroutine respecting protocol. If F EUC-realizes G, then πF̄/Ḡ GUC-emulates π.

Proof. We denote by π and π′ the protocols πḠ and πF̄/Ḡ respectively. We first
prove that π′ EUC-emulates π and then show that GUC-emulation follows. We
make use of an equivalent formulation of emulation with respect to dummy
adversaries. Thus, denoting the dummy adversary by D, we wish to construct
an adversary S such that:

EXECπ′,F̄ ,D,Z ≈ EXECπ,Ḡ,S,Z
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for any (F̄ , Q̄)-constrained environment Z. Since F EUC-realizes G there is an
adversary SF such that

EXECF,Q̄,D,ZF ≈ EXECG,Q̄,SF ,ZF (1)

for any Q̄-constrained environment ZF . That is, SF expects to interact with G
and Q̄, and translates it to mimic the action of the corresponding execution of
F and Q̄ from the viewpoint of any environment ZF . We present and analyze
S. (We note that the construction of S and the proof of its validity are remi-
niscent of the treatment in [CDPW07]. Still, the context is quite different.) The
construction idea is to internally run a single copy SF to mimic all the calls
to F and route all relevant messages through this adversary. In addition, the
adversary S behaves as follows:

(a) forwarding all messages intended for F̄ sent by the environment Z to its
internal simulation of SF , as well as forwarding any messages from SF back
to Z as appropriate.

(b) forwarding all other messages sent by the environment Z to the external
participants of π or to Q̄, as well as forwarding any incoming messages from
π and Q̄ (and other protocols in the system) back to Z as appropriate.

(c) forwarding all messages of SF to the functionality Ḡ and back, as appropri-
ate. This is done using the subroutine publicness property, as explained in
Definition 2).

A graphical description of S can be found in Fig. 2(a).
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(a) The simulator S interacting with the protocol π and
the global functionality G.
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(b) The environment Ẑ constructed
out of Z . The entire system is exe-
cuted inside Ẑ except for the inter-
action with the global functionality,
which is either F or G.

Fig. 2. The simulator S and the distinguishing environment Ẑ constructed in the proof.

In order to prove that S satisfies the required, we perform a standard proof by
contradiction. Assume there exists an environment Z capable of distinguishing
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the interaction with S and π from the interaction with D and π′. We show how
to construct an environment Ẑ such that

EXECπ,Ḡ,S,Z = EXECG,Q̄,SF ,Ẑ
and

EXECπ′,F̄,D,Z = EXECF,Q̄,D,Ẑ .

The environment Ẑ will internally run Z and behave as follows: Any message
from Z to F is forwarded to the external adversary. Any output from the exter-
nal adversary is forwarded back to Z. Any other message from Z is internally
simulated. That is, Ẑ internally executes the dummy adversary D and honestly
simulates any uncorrupted entity in the execution (i.e., parties of π and parties
of other protocols). Whenever an internally simulated honest party provides an
input to F or Q̄, the environment Ẑ forwards it externally and the response
is forwarded back to the internal honest party. Eventually, the environment Ẑ
outputs whatever Z outputs. The environment Ẑ is depicted in Fig. 2(b).

It follows from the construction that if the external adversary is D then
Z interacts with the dummy adversary D, the protocol π′ and functionality F .
If the external adversary is SF then Z interacts with D where all of its accesses
to F are replaced with accesses to G via SF . This is exactly the execution of Z
with the adversary S and the protocol π with access to G. Hence, existence of
such distinguishing environment Z contradicts Eq. 1 as desired.

Note that the components of S (i.e., the dummy adversary D and simulator
SF ) can handle multiple instances of π and therefore S can simulate π′ with
unconstrained environment as well. In other words,

GEXECπ′,D,Z ≈ GEXECπ,S,Z .

for any unconstrained environment Z.

Informally, secure realization allows replacing any use of an idealized task by
an implementation of the task, in a localized manner (that is, without having to
consider the rest of the system). In particular, if a protocol π securely implements
another protocol φ, where Ḡ exists in the system, then we intuitively expect π to
continue to securely implement φ after we replace Ḡ with some F̄ that securely
implements Ḡ. However, this intuition is misleading. Consider, for example, some
functionality F and let G be as F but with extra capabilities granted to the
adversary. The functionality F (trivially) securely implements G, since it is a
restriction of G. However, the simulation of π might be such that it uses the
extra adversarial capabilities given him by Ḡ. Thus, once we replace Ḡ with F̄
the simulation becomes invalid, and moreover, the extra capabilities might be
essential to the simulation ability. This hints that in order for the intuition to
hold, it must be the case that F̄ and Ḡ must have “similar” adversarial interfaces.
This is formally captured as follows:

Theorem 6. Let G, F be Q̄-subroutine respecting functionalities, for some ideal
functionality Q. Let π, φ be Ḡ-subroutine respecting protocols. If the following
holds:
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(a) π GUC-emulates φ.
(b) F EUC-realizes G and vice versa.

Then πF̄/Ḡ GUC-emulates φF̄/Ḡ.

Proof. The theorem fully follows from Theorem 5. We denote by π and φ the
protocols πḠ and φḠ respectively. More formally, by Theorem 5 and Item (2) we
obtain that πF̄/Ḡ GUC-emulates π. Combining this with Item (1) we obtain that
πF̄/Ḡ GUC-emulates φ. Next, using again Theorem 5 with Item (2) we infer that
φ GUC-emulates φF̄/Ḡ and conclude that πF̄/Ḡ GUC-emulates φF̄/Ḡ as desired.

Such composition enables the GUC-framework to offer full modularity in
analyzing protocols.

4 Secure Authentication Using Signatures

As discussed in the introduction, the standard authentication functional-
ity Fcert−auth is unimplementable in a GUC setting with fully global PKI since
it requires non-transferability (deniability). However, this de jure impossibility
does not prevent people from using digital signatures in day-to-day communica-
tions to achieve an authentication guarantee.

In this section, we bridge the gap between practical and provably secure
authentication. We show that the classic, signature-based authentication pro-
tocol implements (transferable) authentication using standard public key
infrastructure (PKI). That is, we formalize the “Authentication via signatures”
paradigm in a GUC setting and present a functionality which encapsulates it.

This has two benefits: it allows for analyzing in the modular setting of GUC
real-life protocols that use digital signatures as a building block, and it increases
the trust in the signature-based authentication protocol by proving it secure
under GUC’s strong composition operation.

The proof details are similar to [Can04]; however, the formulation and analy-
sis are done in the GUC framework. Section 4.1 presents a formulation of ideal
certificate and ideal signature functionalities (Ḡcert and Ḡcwk), and shows their
equivalence. Section 4.2 shows that EU-CMA signatures provide the same secu-
rity guarantees as the ideal signature functionality Ḡcwk. Section 4.3 presents
and implements the relaxed, non-deniable message authentication functional-
ity Fcert−auth.

4.1 Signatures and Certificates

We formulate a global ideal functionality, Ḡcert, that provides ideal binding of
messages to party identities. The key difference in our setting is that Ḡcert is
accessible at any time, by any party, no matter which protocols it participates
in. Another important difference from previous formulations is that the public
key lives in a global bulletin-board, to capture the fact that a principal has a
single keypair (“secret”) which she uses in multiple protocols. Then, we formulate
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Global Functionality Ḡbb
Report: Upon receiving a message (Register,v) from party P, send (Registered,P,v) to

the adversary; upon receiving OK from the adversary, and if this is the first request
from P, then record the pair (P,v). Otherwise, ignore the new message.

Retrieve: Upon receiving a message (Retrieve,Pi) from some party Pj (or the adversary S),
generate a public delayed output (Retrieve,Pi,v) to Pj , where v = ⊥ if no record (Pi,v)
exists.

Fig. 3. The bulletin-board certificate authority (CA) functionality. Any ITI can register
a single key that would be associated with its identity. Any ITI in the system can request
the key of any other ITI.

a global signature functionality Ḡcwk that realizes Ḡcert given a public bulletin-
board Ḡbb.

The Bulletin Board Functionality. The global bulletin board functional-
ity, Ḡbb, is presented in Fig. 3. The bulletin board accepts only the first reg-
istered value, and does not allow to modify or delete it.4 The bulletin board
is authenticated in a sense that it records the value along with the identity of
the publisher, but does not perform any checks on the registered value; it sim-
ply publicly records the value. Nonetheless, as we will show later, the present
minimal formulation suffices for authentication.

The Certification Functionality. The ideal certification functionality, Ḡcert, is
presented in Fig. 4. The session ID names a distinguished principal, the ‘signer’.
The functionality provides direct binding between a message and the identity
of the signer. (In contrast, Fsig, which appears in Fig. 5, binds a message only
to a verification key.) Using common terminology, this corresponds to providing
signatures accompanied by “certificates” that bind the verification process to the
signer’s identity. The functionality generates a key for each new signer; however,
the key is used only to register in the bulletin-board. That is, neither signing nor
verification is done with respect to this key. Verification (and signing) requests
are processed only if the signer is registered in the bulletin-board, however, they
are indifferent to the registered value. Lastly, corrupted signers are allowed to
dictate the verification result. We note that Ḡcert is a Ḡbb-subroutine respecting
functionality as defined in Sect. 2.

We model the certificate authority in a simplistic way, by associating each
Ḡcert with an owner PID, and providing certificates to any session of the owner.
A more sophisticated modeling could have the certificate authority provide cer-
tificates according to some policy provided by the owner. For example, policies
that allow sessions of other PIDs to generate certificates would capture a more
refined notion of trust (“delegated signers”).

4 The modeling of PKI that allows a single public key per identity has been chosen
for simplicity of the modeling and presentation. It can be extended in a natural way
to handle the case where an entity may register and be authenticated via multiple
public keys.
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Fig. 4. The certification functionality. The certification functionality is parametrized by
a party identity, referred to as the owner, and allows only that party to sign messages.
The functionality generates a key for the owner when the first signing request arrives.
This is done to advertise that party’s existence; neither signature nor verification is
done with respect to that key.

The Certification with Keys Functionality. The functionality Ḡcwk is a
GUC adaptation of the ideal signature functionality Fsigof [Can04] (formal
description of Fsigcan be found in Fig. 5); it is used to realize the certifica-
tion functionality. For an uncorrupted party it offers the capabilities of signing
a message (reserved for the owner PID) and verifying a signature. It also cap-
tures the ways in which a corrupted party may deviate: as a signer, a corrupted
party may refrain from registering the generated key in the bulletin-board, and
as a verifier it may request verification of messages with respect to keys of its
choice (instead of the key registered in the bulletin-board). The only difference
between the two formulations is the inability of a corrupted signer to generate
a signing key without providing a message to be signed. Nonetheless, the capa-
bilities of the attacker with respect to the formulations are equivalent. A formal
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Fig. 5. The basic signature functionality [Can04]. The signature functionality is para-
metrized by a party identity and allows only this party to generate a key and sign
messages. The owner can generate only a single key and sign only with respect to this
key. Verifying a signature is done with respect to the signing key generated by the
signature functionality. The functionality accepts verification requests from any ITI
in the system. The signature functionality lets the adversary determine the signing
key, the legitimate signatures, and the results of verifications that use an incorrect
key or a different signature. When the signer is corrupted, the functionality allows the
verification process to succeed, even if the message was never signed.

description appears in Fig. 6. We note that Ḡcwk is a Ḡbb-subroutine respecting
functionality, as defined in Sect. 2.

Lemma 1. The functionality Gcwk EUC-realizes functionality Gcert and vice
versa, with respect to adaptive corruptions.
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Fig. 6. The certification with keys functionality. The functionality Ḡcwk is parametrized
by a party identity and internally executes the code of the basic signature functionality
Fsig. The functionality does not allow generating a key without signing a message. Key
generation is done internally by the functionality. Note that keys of corrupted parties
registered with Ḡbb do not have to match the keys generated by Fsig.

Proof. First we observe that as long as verification requests are done with the
actual verification key, the functionalities are equivalent. To handle the other sce-
narios, we use the simulator’s ability to postpone signature requests of corrupted
signers up to the verification moment.

We begin by showing that Gcwk GUC-realizes functionality Gcert. The simu-
lation here is even simpler than in [Can04] due to the existence of Ḡbb also in the
ideal execution. We make use of an equivalent formulation of GUC-emulation
with respect to dummy adversaries. Thus, denoting the dummy adversary by D,
we wish to construct an adversary S such that:

GEXECGcwk,D,Z ≈ GEXECGcert,S,Z (2)

The adversary S is specified as follows. For signature generation, if the signer
is honest then behave as the dummy adversary D. That is, any output of Gcert

and Ḡbb is forwarded to Z and any input of Z is forwarded to Gcert or Ḡbb,
in an appropriate manner. It also records the generated key v. If the signer is
corrupted, S behaves as follows: for the first sign request it verifies that the
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signer is registered in Ḡbb (if not it ignores the sign request) and simulates
the key generation procedure. After recording the generated key v it simulates
the signature generation process, without involving Gcert, and records the tuple
(m,σ, v, 1) where σ is the signature chosen by Z (except when a record (m,σ, v, 0)
exists, in which case it outputs an error message). Note that Gcert does not receive
any sign requests from a corrupted signer during the simulation of signature
generation. Signing using Gcert is postponed, and executed only if a verification
request is received for this record.

For signature verification, we simulate differently depending on the integrity
of the signer and the key used by the verifier. If the signer is honest and some
uncorrupted party makes a verification request (or a corrupted party that is
using the key registered in Ḡbb) then do the following:

(a) behave as a dummy adversary D in the retrieve process (if executed).
(b) Once (Verify, sid ,m, σ) received, append the verification key, which is

recorded in Ḡbb, and forward it to the environment Z. The response of Z is
forwarded back to Gcert. If in the output f = 0 then record (m,σ, v′, 0).

For corrupted signer, upon receiving a verification request from a honest verifier
(or a corrupted verifier that is using the key registered in Ḡbb) do the following:

(a) behave as a dummy adversary D in the retrieve process (if executed).
(b) if a record (m,σ, v′, 1) exists, where v′ is the key registered in Ḡbb, forward a

sign request on m to Gcert, pick σ to be the signature and delete the record.
(c) behave exactly as in the honest signer honest verifier scenario to emulate

the communication with Z. That is, append the verification key, which is
recorded in Ḡbb, and forward it to the environment Z. The response of Z is
forwarded back to Gcert.

In case a verification request is made with a key that does not match the key
registered in Ḡbb, independently of the signer’s integrity, then simulate the veri-
fication process by giving Z the appropriate (Verify, sid ,m, σ, v′′) and obtaining
its response φ. Next, if the tuple (m,σ, v′′, b′) is recorded, set φ = b′, else record
(m,σ, v′′, φ). In any case, output (Verified, sid ,m, φ). It is important to note that
verification requests with v′′ �= v are simulated without involving Gcert.

Since the simulator does nor perform any cheating, the simulation is perfect.
That is, the environment Z’s view of an interaction with S and Gcert is distrib-
uted identically to its view of an interaction with parties running protocol Gcwk

in the Ḡbb-hybrid model, even if Z is computationally unbounded.
Now we show the other direction: Gcert GUC-realizes functionality Gcwk. Sig-

nature generation for a honest signer is simulated by behaving as a dummy adver-
sary D. If the signer is corrupted, we forward the signing request to Gcwk and
pick the key for Fsig to be the key registered in Ḡbb. In the verification process, as
before, retrieve is simulated by behaving as a dummy adversary. Upon receiving
(Verify, sid ,m, σ, v) from Gcwk, the simulator drops v and forwards the modified
message to Z. The response (Verified, sid ,m, φ) of Z is forwarded to Gcwk. Note
that the simulator ensures that the key in Ḡbb is the same as the key registered
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in Fsig. Therefore, all simulated verification requests are made with respect to
the correct key, and hence answered exactly as in the real execution. This follows
from the functionalities being identical when the verification is done with the
key recorded in Fsig.

4.2 Using EU-CMA Signatures for Certification

[Can04] shows that realizing Fsig is equivalent to being EU-CMA secure (exis-
tential unforgeability against chosen message attacks; [GMR88]). However, his
theorem does not apply to a setting where the keys are reused by arbitrary proto-
cols. This section extends the connection between ideal signatures and EU-CMA
security to the GUC setting. Specifically, we show its equivalence to Ḡcwk.

Unforgeable Signatures. A signature scheme is a triple of PPT algorithms
Σ = (gen, sig, ver), where sig may maintain local state between activations.

Definition 5 ([GMR88]). A signature scheme Σ = (gen, sig, ver) is called EU-
CMA if the following properties hold for any negligible function ν and all large
enough values of the security parameter κ.

Completeness: For any message m, Pr
[
(s, v) ← gen(1κ);σ ← sig(s,m); 0 ←

ver(m,σ, v)
]

< ν(κ).

Consistency: For any m, the probability that gen(1κ) generates (s, v) and
ver(m,σ, v) generates two different outputs in two independent invocations is
smaller than ν(κ).

Unforgeability: For any PPT forger F , Pr[(s, v) ← gen(1κ); (m,σ) ←
F sig(s,·)(v); 1 ← ver(m,σ, v) andF never asked sig to signm] < ν(κ).

Signing Module. To capture re-usability of keys within different protocols,
we describe a signing module that accepts sign requests from its owner PID.
This module can be thought of as a local service process, physically running
on some local machine, providing signing service to all authorized processes
on this machine. This is formally described as an ideal functionality, denoted
Ḡpid

Σ , parametrized by a signature scheme Σ = (gen, sig, ver) and some party
ID. The keys’ re-usability is modeled by having the functionality be shared
among different SIDs, as long as they are owned by the same PID. That is,
the functionality Ḡpid

Σ is a “local” subroutine of this PID and is not accessible
by anyone else.

The signing module separates the signing capability from secret key knowl-
edge, and hence allows greater flexibility in terms of corruptions. Corrupting the
module captures the scenario of complete privacy loss; corrupting a principal in
a single session that uses the module captures a weaker privacy loss, allowing
the adversary to sign some messages but not arbitrary messages. In particular,
corrupting a session that uses the module does not provide the adversary with
the secret key or with the ability to sign messages of other SIDs. The signing
module could be generalized to be selective about which sign requests it honors
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(for example, as a function of the session id and message contents). For our pur-
pose, it suffices to consider the basic module. Formal description of Ḡpid

Σ appears
in Fig. 7.

Fig. 7. The signing module. The functionality Ḡpid
Σ is parametrized by a party iden-

tity and some signature scheme. The functionality generates a signing and verification
keypair. The signing key is kept inside ḠΣ and used to handle signing requests. The
verification key is given outside, similarly to Ḡcwk.

To our knowledge, this is the first modeling of authentication in a composable
setting to feature SID-wise corruption; prior works used PID-wise corruptions
exclusively.

The Equivalence. A signature scheme Σ = (gen, sig, ver) may be translated
into a per-PID protocol πpid

Σ that “locally” uses Gpid
Σ . This protocol localizes

the signing/verification process and reduces trust in the setup. That is, it is no
longer required to trust a global, accessible by many parties, signing function-
ality; instead, each party can trust merely his local signing module, which is
running on his computer.

The protocol πpid
Σ proceeds as follows:

(a) When party P receives an input (Sign, sid ,m), it verifies that sid = (P, sid ′)
for some sid ′. If not, it ignores the input. Next, it forwards (Sign, sid ,m) to
Gpid

Σ . It obtains a verification key v and a signature σ on message m. If no
key is registered, then forward v to Gbb and outputs (Signature, sid ,m, σ).

(b) When party P receives an input (Verify, ŝid ,m, σ), where ŝid =
(p̂id , sid ′), it checks whether a pair (p̂id , v) is recorded. If not, send
(Retrieve, p̂id) to Gbb and obtain a response (Retrieve, p̂id , v). If v =
⊥ then output (Verified, ŝid ,m, 0). Else record (p̂id , v). Next output
(
Verified, ŝid ,m, ver(m,σ, v)

)
.

Lemma 2. Let Σ = (gen, sig, ver) be a signature scheme. If Σ is EU-CMA, then
πpid

Σ EUC-realizes Gpid
cwk with respect to adaptive corruptions.
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Fig. 8. The non-deniable authentication functionality. The adversarial ability to obtain
legitimate signatures on messages of its choice makes the authentication non-deniable.
Signatures are obtained by instructing the dummy party S to communicate with Ḡcert.

4.3 Defining and Realizing Non-deniable Message Authentication

This section shows that the most basic PKI, i.e., bulletin-board, suffices for
secure authentication, even if the keys are reused in other arbitrary protocols.
This is similar to the last step of [Can04]’s construction, except that we use a
weaker authentication functionality—one that lets the adversary obtain a sig-
nature of the ‘authentication transaction’ —to capture non-deniability. (The
signature serves as a transferable ‘proof of transaction’.)

We first formulate a non-deniable ideal authentication functionality
Fcert−auth. The non-deniability property is obtained via the usage of ideal cer-
tificates. Then, we show that the classic signature-based authentication protocol
(presented in Fig. 9) GUC-securely realizes this relaxed authentication function-
ality. Finally, using the composition theorem and the results of Sects. 4.1 and
4.2, we obtain an authentication protocol using merely existentially-unforgeable
signatures and a global bulletin-board.

On Capturing Transferability. Since the essence of transferability is that
“anyone” may become convinced of the message that was authenticated, one
might attempt to capture transferability by having Fauth disclose to any principal
in the system, upon request, that an authentication took place; the identities of
the originator and recipient; and the contents of the authenticated message. This
modeling allows any principal in the system to become convinced in the contents
of the authenticated message and the identities of its originator and recipient.
However, this modeling of authentication poses unnecessary requirements on
the implementing protocol, such as supporting inquiries by third parties in an
authenticated manner.

The Non-Deniable Authentication Functionality. The functionality
Fcert−auth, presented in Fig. 8, is a non-deniable version of the authentication
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functionality of [Can04]. The non-deniability of the functionality is captured by
allowing the adversary to request signatures on messages affixed with Fcert−auth’s
session id (SID). Including the SID in the signed message binds the signature to
the execution at hand, and prevents the adversary from reusing the signatures in
other sessions. Later, any entity can verify this signature and be convinced that
this message was indeed sent from S to R. Our Fcert−auth is a Ḡcert-subroutine-
respecting functionality. We highlight that the signature provided during the
authentication process includes the identity of the intended recipient and the
session identifier. This has two consequences: it does not guarantee the receiver
deniability since it allows to publicly verify not only that a specific message was
sent by some ITI, but also the intended recipient’s identity; and it also prevents
the adversary from relaying signatures between different sessions. The authen-
tication functionality enables a corrupted sender to produce many signature on
messages of its choice. This enables corrupting parties without corrupting their
signing module. One could define, and realize by a similar protocol, a receiver-
deniable version of Fcert−auth. However, receiver-deniable authentication enables
the adversary to reroute messages to a destination of its choice.

Fig. 9. The signature-based authentication protocol.

Lemma 3. The protocol φauth GUC-emulates functionality Fcert−auth with
respect to adaptive corruptions.

Proof. The proof here is simpler than the proof of [Can04] due to having the
certificate functionality in both the ideal and real executions.

Let D be the dummy adversary that interacts with parties running φauth in
the Ḡcert-hybrid model. We construct an ideal-process adversary (simulator) S
such that the view of any environment Z from an interaction with D and φauth

is distributed identically to its view of an interaction with S in the ideal process
for Fcert−auth. The simulator S proceeds as follows.

Simulating the Sender. When an uncorrupted party A is activated with
input (Send, sid , B), S obtains this value from Fcert−auth. Then, S replies with
(External-info, A,B, sid ,m) and behaves as D in the interaction with Ḡcert. That
is, S forwards to Z the message

(
Sign, (A,B, sid), (m, sid , B)

)
from Ḡcert, and

forwards back to Ḡcert the obtained signature σ. Next, S hands Z the message
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(sid , A,m, s) sent from A to B. If the sender is corrupted, then all that S has
to do is to behave as the dummy party D in the interaction with Ḡcert.

Simulating the Verifier. When Z instructs to deliver a message (sid , A, m̄, σ)
to an uncorrupted party B, S first sends

(
Verify, (A,B, sid), (m̄, sid , B), σ

)

to Ḡcert. If Ḡcert outputs
(
Verified, (A,B, sid), (m̄, sid , B), σ, f = 1

)
then do the

following: if the sender is honest, then allow Fcert−auth to deliver the message
which was sent in the ideal process to B. If the sender is corrupted, then forward
(Corrupt-send, sid , m̄) to Fcert−auth. In case f = 0 do nothing.

It is readily seen that the combined view of Z and D in an execution of φauth

is distributed identically to the combined view of Z and S in the ideal process.
Indeed, the only case where the two views may potentially differ is if the receiver
obtains (Verified, sid ′,m′, σ, f = 1) from Fcert−auth for an incoming message
(sid , A,m, σ), while A is honest and never sent this message. However, if A
never sent (sid , A,m, σ), then the message m′ = (m, sid , B) was never signed
by Ḡcert with session id (A,B, sid); thus, according to the logic of Ḡcert, B would
always obtain (Verified, sid ′,m′, σ, f = 0) from Ḡcert.

Now we are ready to fully instantiate the ideal functionalities used for authen-
tication. The resulting authentication protocol is the signature protocol used in
practice, which is depicted in Fig. 1 along with the minimal PKI required for
this task.

Corollary 1. If EU-CMA signatures exist then protocol φ
π̄Σ/Ḡcert
auth GUC-realizes

functionality Fcert−auth with respect to adaptive corruptions.

Proof. By combining Lemma 1 with Theorem 2 we manage to reduce the security
of Gcert to the security of πΣ . This allows us to combine Lemma 3 with Theorem 5
and conclude that φauth GUC-realizes Fcert−auth, where φauth uses π̄Σ with ḠΣ

instead of Ḡcert.

5 Non-deniable Key Exchange

We present a non-deniable key exchange functionality Fcert−ke and show that the
classic signed-Diffie-Hellman protocol φke (see ISO 9798-3, [CK01]), realizes it.
The protocol φke is presented in Fig. 10.

The Non-Deniable Key Exchange Functionality. The functionality, pre-
sented in Fig. 11, is a key exchange functionality coupled with Ḡcert, similarly
to Fcert−auth. The main difference between our functionality and [DKSW09] is
that we do not guarantee mutual authentication. That is, Fcert−ke allows a party
to have a key also if the other party aborted before establishing a shared key.

Lemma 4. Under the Decisional Diffie-Hellman (DDH) assumption, the proto-
col φke GUC-emulates functionality Fcert−ke with respect to adaptive corruptions.
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Fig. 10. The non-deniable-authentication-based key exchange protocol.

Proof. Let p, q, g be as in φke and let D = {gz}z∈Z�
q
. We construct a simula-

tor S that simulates the execution of the protocol with the dummy adversary D
and environment Z. The simulation of uncorrupted parties is done by honestly
executing the protocol. That is, the simulator honestly generates the share of
the secret key, and obtains the necessary certificates via Ḡcert of the appropriate
party. Once the simulation reaches the output step of party A, the simulator
provides Fcert−ke with (setkey, sid , S,R, k′) where k′ is set to be the simulated
key. More formally,

(a) The simulator samples x
$← Zq and outputs (sid , A, α = gx) to Z as if it was

sent by A.
(b) Upon receiving (sid , A, α′) from Z as a message to be delivered to {0, 1}

(recall that the channels are unauthenticated and hence Z can instruct

D to deliver a different message instead). S samples y
$← Zq, sets sid ′ =(

A, (B, sid)
)
, sets m′ = (α′, β = gy, sid , A,B), and sends (External-info, B,

sid ′,m′) to Fcert−ke, obtains the response (Signature, sid ′,m′, σB), sends
(sid , B, β, σB) to Z as if this message was sent by B.

(c) Upon receiving (sid , B, β′, σ′
B) from Z, the simulator verifies the signature

on m′ = (α, β′, sid , A,B) by sending an appropriate input to ḠB
cert, If the

signature is not verified, the simulation of A stops. Otherwise, it sends
(External-info, B, sid ′,m′) to Fcert−ke, obtains the response (Signature, sid ′,
m′, σA), and outputs (sid , A, σA) to Z. It also computes the key k′ = (β′)x,
gives input (setkey, sid , A,B, k′) to Fcert−ke, and instructs Fcert−ke to give
output to A.
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(d) Upon receiving (sid , A, σ′
A) the simulator verifies the signature on m′ =

(α′, β, sid , A,B) by sending an appropriate input to ḠA
cert. If the signature

is not verified, the simulator halts. Otherwise, it instructs Fcert−ke to give
output to B.

Upon corruption, the simulator reveals the secret information (if any) associ-
ated with the simulated transcript of the newly corrupted party. More concretely,
if the environment requests to corrupt party A or party B before A outputs the
key, then S reveals the share x or the simulated key k′ respectively; in any other
case, it reveals the secret key k provided to it by Fcert−ke.

The analysis of S considers three possible scenarios:

(a) No corruption case: correctness can be violated by Z only with negligible
probability. That is, the only way to have parties in the real execution output
different keys is by forging a signature, which can happen negligibly often. In
the ideal execution, correctness always holds and thence indistinguishability
follows. Conditioned on Z not forging any signature, the view of Z in the
real execution consists of {gx, gy, gxy} while in the simulated execution the
view is {gx, gy, gr} for random r. If Z can distinguish the two executions
with non-negligible advantage, then we can construct an adversary A that
internally runs Z and breaks the DDH assumption.

(b) Corruption after A produced an output: this is similar to the no corruption
case. After party A produced an output, there is no secret information avail-

Fig. 11. The non-deniable key exchange functionality Fcert−ke. The functionality allows
the adversary to request signatures on messages of its choice, together with the session
and parties id. This behavior is allowed as long as the key it not outputted, to prevent
the functionality from being used beyond the lifetime of the protocol.
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able (it is erased beforehand) and hence indistinguishability follows as in the
no corruption case.

(c) Corruption before A produced an output: in both executions the outputted
key is distributed identically, since in the ideal execution the uncorrupted
party is honestly simulated and the output is set to be the simulated key.
Moreover, the secret share x of A (revealed in case Z requests to corrupt
party A after the first message is sent) is distributed identically in both
executions. ��

6 Capturing Invisible Adaptive Attacks

Recently, Nielsen and Strefler [NS14] introduced a concept called Invisible Adap-
tive Attacks (IAA), which the GUC framework fails to capture, and showed how
to immune the GUC model from such attacks, for CRS-style setup assumptions.
An IAA is an attack wherein a protocol behave insecurely with respect to some
specific values of the global setup, but continues to behave securely under other
values of the setup. Since the setup is long-lived and fixed for the lifetime of
the system, such protocols should be rejected by the security definition. How-
ever, at present, the security definition accepts such protocols, since it examines
candidate protocols’ behavior only with respect to the average case of the setup-
generating algorithm.

The approach of [NS14] for capturing such attacks is to consider worst-case
security, i.e., guarantee security with respect to any setup. This is incorporated
in the GUC model by letting the environment pick the random coins the setup
(e.g. a CRS) uses. For our protocols, IAA security boils down to letting the
environment determine the random coins of Ḡpid

Σ . This additional power does not
influence the security and the analysis of φauth and φke, since the only possible
way to distinguish ideal from real is to forge a signature. However, since the
environment is oblivious to the secret keys, its forging ability remains negligible
and security continues to hold.

An Alternative Definition. We also propose an alternative approach for defin-
ing security in a way that captures such “invisible attacks”. Rather than defining
security of a protocol against a worst-case choice of the set-up, we define security
of a protocol relative to a specific CRS, or more generally relative to a specific
random input for the set-up functionality. This way, it is possible o capture a
setting where the same protocol is considered (or, believed to be) secure with
respect to some setup values, and insecure with respect to others. The approach is
similar to the definition of security of a fixed hash function by Rogaway [Rog06].
That is, security is captured by a reduction from knowing a distinguishing envi-
ronment (with respect to a specific setup value) to breaking a hard problem.
This implies that the designer of a protocol is in charge of specifying the hard
problem P for the security reduction. The meaning of such reduction is that,
as long as solving P is believed to be hard, coming up with a distinguishing
environment must be hard as well. It is stressed that here the existence of a
reduction is part of the definition of security rather than part of the security
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argument. Furthermore, P can relate either to properties of the set-up itself, or
alternatively to other constructs. More formally, let P be some problem; denote
by G(P ) the game corresponding to P ; and let B(P ) be the probability bound
on winning in G(P ). For a shared setup Ḡ we denote by str = (s, v) a value of
Ḡ with s and v being the secret and public parts respectively.

Definition 6 (Reduction-UC). Let π and φ be Ḡ-subroutine respecting multi-
party protocols. We say that π RUC-emulates φ with respect to a value str =
(s, v) of G and a problem P if there exist an adversary S and a reduction f such
that for any environment Z such that if

EXEC ¯str
π,D,Z �≈ EXEC ¯str

φ,S,Z

we have that Pr[f(Z, v) wins in G(P )] > B(P ).

An important observation is that RUC-security implies GUC-security, and the
composition theorem easily holds for RUC-security. More formally, the simulator
is the same as in the composition theorem proof, the hard problem is the problem
the subroutine is defined with respect to, and the reduction is done by running
the composition proof to obtain a distinguishing environment for the subroutine
protocol and applying to that environment the reduction guaranteed for the
subroutine by the RUC security definition. Another important benefit of this
definition is that it easily induces a standard GUC-security definition: all we need
to do is consider a setup-generating algorithm instead of a specific fixed string.
For example, for ACRS this would be the key-generation algorithm. It should be
noted that all GUC secure protocols (that we are aware of) are already proven
secure by the way of reduction to some hard problem, and therefore RUC-secure.
For example, the proof of our authentication and key-exchange protocols is done
by a reduction to EU-CMA signatures and the DDH assumption respectively.

References

[AF10] Armknecht, F., Furukawa, J.: On the minimum communication effort for
secure group key exchange. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) SAC 2010. LNCS, vol. 6544, pp. 320–337. Springer, Heidelberg
(2011)

[BCL+05] Barak, B., Canetti, R., Lindell, Y., Pass, R., Rabin, T.: Secure computa-
tion without authentication. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 361–377. Springer, Heidelberg (2005)

[BFS+13] Brzuska, C., Fischlin, M., Smart, N.P., Warinschi, B., Williams, S.C.: Less
is more: relaxed yet composable security notions for key exchange. Int. J.
Inf. Sec. 12(4), 267–297 (2013)

[BLdMT09] Burmester, M., Van Le, T., de Medeiros, B., Tsudik, G.: Universally com-
posable RFID identification and authentication protocols. ACM Trans.
Inf. Syst. Secur. 12(4), 1–33 (2009)

[Can00] Canetti, R.: Universally composable security: A new paradigm for crypto-
graphic protocols. Cryptology ePrint Archive, Report 2000/067, December
2000. Revisededition, July 2013



Universally Composable Authentication and Key-Exchange with Global PKI 295

[Can01] Canetti, R.: Universally composable security: a new paradigm for crypto-
graphic protocols. In: FOCS, pp. 136–145. IEEE Computer Society (2001)

[Can04] Canetti, R.: Universally composable signature, certification, and authen-
tication. In: CSFW, p. 219. IEEE Computer Society (2004)

[CDPW07] Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable secu-
rity with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392,
pp. 61–85. Springer, Heidelberg (2007)

[CG10] Canetti, R., Gajek, S.: Universally composable symbolic analysis of Diffie-
Hellman based key exchange. IACR Crypt. ePrint Arch. 2010, 303 (2010)

[CK01] Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their
use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

[CK02] Canetti, R., Krawczyk, H.: Universally composable notions of key
exchange and secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 337–351. Springer, Heidelberg (2002)

[CR03] Canetti, R., Rabin, T.: Universal composition with joint state. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer,
Heidelberg (2003)
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1 Introduction

Secure two-party parallel coin-flipping is a probabilistic functionality that allows
two mutually distrustful parties to agree on a common random bit-string of a
certain target length. Using a coin-flipping protocol, both parties provide and
combine independent contributions so that the output bit-string of an honest
party is indistinguishable from random even if at most one party is malicious.
The coin-flipping is denoted simulatable if it can be proven secure within the
ideal/real simulation paradigm, showing that it emulates a protocol in an ideal
world where an ideal functionality would decide and deliver the random bit-string
to the two parties. Achieving simulatability is useful for the design of larger pro-
tocols, as it guarantees security under some type of composition operation, e.g.,
non-concurrent modular self-composition [Can00] (a.k.a. the stand-alone setting)
or universal composability (UC) [Can01], depending on the type of achievable
simulation, namely with-rewinding or one-pass, respectively.

Motivation for this functionality can be found directly in the real-world use-
fulness of “coin-flipping,” enabling parties to jointly make random decisions (e.g.,
“who gets the car” [Blu83]). A more-technical motivation for simulatability is
the security enhancement of larger cryptographic protocols. An important appli-
cation is the joint decision of a large common reference string needed as setup
condition of one or several follow-up protocols [CR03]. It is also useful for proto-
cols whose probabilistic output needs to directly depend on random bit-strings,
such as in S2PC-with-commitments (e.g., [Bra13]), where both parties may want
to jointly generate many random commitments.

1.1 Coin-Flipping and Primitives

A protocol for two-party coin-flipping (“by telephone”) was early proposed by
Blum [Blu83]. It uses the fundamental notion of commitment scheme, allowing
one party (PA) to commit her own contribution before knowing anything about
the contribution of the other party (PB), but hiding it until the contribution of
PB is revealed, and binding PA to only being able to open the committed value.
The solution, emulating a coin-flipping into a well, sets the basis for what is
hereinafter denoted as the traditional template:

– Step 1. (Commit phase) PA commits to a contribution, hiding it from PB.
– Step 2. PB selects and sends his random contribution to PA.
– Step 3. (Open phase) PA opens her contribution to PB in a convincing way.
– Step 4. Each party outputs a combination of both random contributions.

The simulatability of a coin-flipping protocol within this template may
depend on the number of coins flipped in parallel, i.e., the length of the con-
tributions, and the type of commitment scheme. When flipping a single coin,
any hiding and binding commitment scheme is enough if rewinding is allowed in
the simulation [Gol04, Sect. 7.4.3.1]. Conversely, when doing parallel flipping of
coins in number at least linear in the security parameter, or when considering
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a setting without rewinding, simulatability is facilitated by commitment (Com)
schemes with special extractable (Ext) and equivocable (Equiv) properties. In an
Ext-Com scheme [SCP00], a simulator is able to extract a contribution that has
been committed by another party, in apparent conflict with the hiding property.
In an Equiv-Com scheme [Bea96], a simulator is able to equivocate the opening
to any contribution, namely to a value different from what had been committed,
in apparent conflict with the binding property. The conflict is only apparent, as
in comparison with a real party the simulator has extra power, such as capability
to rewind the other party in the simulated execution, and/or knowledge of secret
information (a trapdoor) obtained from some specially selected setup.

Traditionally, achieving simultaneous Ext and Equiv properties is costly as a
function of the target length. For example: in the plain model and when allowing
rewinding, by requiring zero-knowledge (ZK) proofs (or ZK proofs of knowledge)
about elements of size or in number linear with the target length [Lin03], or cut-
and-choose techniques with high communication cost [PW09]; or, in a model with
setup assumptions but not allowing rewinding, by requiring Com-schemes based
on computationally expensive operations (e.g., exponentiations) in number or
size dependent on the target length [CF01,BCPV13].

This paper explores efficiency improvements in two ways: (i) augmenting
the traditional template into a new structure that requires less sophisticated
commitments (i.e., not necessarily Ext&Equiv); (ii) devising a more efficient
Ext&Equiv-Com scheme that can be directly used within the traditional template.
Both cases benefit from a pseudo-random generator (PRG) (naturally associated
with the generation of bit-strings indistinguishable from random) and a collision-
resistant hash function (CR-Hash) (naturally associated with compressing com-
mitments). As the target length increases, the asymptotic communication rate:
converges to 1 for each contribution of a party in the stand-alone coin-flipping;
converges to a rate close to 1 (i.e., closer than any desired distance), for each phase
(commit and open) of the UC-Com scheme. The computational complexity for
each party approximates that of applying a PRG and a CR-Hash to produce an
output and hash an input, respectively, with length expansion rate asymptoti-
cally as close as desired to 1. This is useful given the high efficiency of standardized
PRG [BK15] (e.g., based on block or stream ciphers) and CR-Hash [Nat15] con-
structions. In the UC-Com scheme each party also uses an erasure code to encode
a string of length approximately equal to the target length.

The initial (incomplete) intuition comes from the observation that: the Ext
of a large string can be reduced to the Ext of one short seed, whose PRG-
expansion is used to mask (with a one-time-pad) the large string; the Equiv of
a large string can be reduced to the Equiv of a short hash of whatever large
string (e.g., the mask) the simulator wants to equivocate. However, a simple
triplet composed of a masking of a string, an Ext-but-not-Equiv-Com of the
seed of the mask, and an Equiv-but-not-Ext-Com of a hash of the mask does not
result in an Ext&Equiv-Com of the string. For example, opening the Ext-Com
would disallow equivocability. This paper devises two ways in which to very-
efficiently and securely combine the two separate properties, associated with a
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few commitments of short seeds and hashes (in number independent of the target
length), into a unified property extended to a much larger string.

Contributions. In summary, two novel constant-round protocols are devised
for two-party parallel coin-flipping (the second stemming from a new UC-Com
scheme). They are proven secure in a static, active and computational model;
i.e., at most one party is corrupted at the onset of the protocol execution, the
corrupted party may deviate from the protocol specification, and both parties
are limited to probabilistic polynomial time computations. For simplicity and
generality, the protocols and proofs are defined in a hybrid model with access
to ideal commitment functionalities FX and FQ, from which the simulator only
needs to use either the Ext or the Equiv property, respectively, but not the
complementary property (Equiv or Ext, respectively).

1.2 Intuition and Overview of Protocol #1

The first protocol (Sect. 4) is simulatable-with-rewinding. It augments the tra-
ditional template with a simple preamble, in order to avoid a simulatability
difficulty (related with unknown adversarial probabilities of abort) found in
the protocol of Blum [Blu83], due to the use of an Equiv-but-not-Ext-Com
scheme in the traditional template. The new solution also avoids a full-fledged
Ext&Equiv-Com scheme, whose (older) constructions have a larger associated
complexity: explicit ZK proof/argument sub-protocols about a committed long-
contribution, as required in Lindell’s protocol [Lin03]; a high communication
cost, as incurred in Pass and Wee protocol [PW09].

PA is still the first party to learn the final bit-string. However, the new pro-
tocol starts with PB producing an Equiv-Com of his contribution and only then
proceeds to the traditional template. This allows the simulator in the role of PA

in the simulated execution to non-locally extract the contribution of a malicious
PB (i.e., upon rewinding beyond the respective commit phase), because said
value cannot change across rewinding attempts, namely because PB commits to
it before the contribution of PA is committed, and because the decision to open
it (vs. aborting) is done while the contribution of PA is still semantically hidden.
The significant benefit is that now the commitment by PA no longer needs to be
Equiv, but rather only Ext. Correspondingly, using the Ext property, the simu-
lator in the role of PB in the simulated execution can extract the contribution
of a malicious PA, without PA opening it.

To the knowledge of the author: this construction has not been analyzed
before (which is surprising given its simplicity), and in the mentioned simu-
latability setting it allows, asymptotically, the most efficient instantiation to
date of two-side-simulatable coin-flipping in the plain model (assuming a PRG
and CR-Hash instantiation with computational cost linear in the target length).
The simulatability motivation to depart from the traditional template is subtle
and the analysis is challenging for the case of corrupted PB (the simulator is
allowed expected-polynomial time). Asymptotically, the protocol requires com-
munication of only two bits per flipped coin. Computationally, each party has to
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commit and open a short value, and compute a PRG and a CR-Hash of a string
with the target length. Assuming intractability of the Decisional Diffie-Hellman
(DDH) problem, an instantiation is possible with only five exponentiations per
party in a setup phase (allowing the simulator to extract a trapdoor), and four
(or six) exponentiations in the online phase. Exponentiations can be avoided
altogether, by using PRG-based commitments of short strings or even just bit-
commitments (e.g., as in [PW09] or others analyzed in the full version of this
paper). In the later example, the simulator exercises Ext and Equiv over the
Ext-Com and the Equiv-Com, respectively, using rewinding, and the construc-
tion requires more communication rounds and larger concrete communication
complexity of the short commitments but is still amortizable.

1.3 Intuition and Overview of Protocol #2

The second protocol (Sect. 5) is a new UC-Com scheme (thus Ext&Equiv) for large
bit-strings, with asymptotic communication rate as close to 1 as desired, and com-
putational complexity linear in the string size. It is based on a cut-and-choose
method, where the size of each instance in the cut-and-choose is (approximately)
inversely proportional to the number of instances. Each instance is a triplet con-
taining: the Ext-Com of a seed; a masking of an “authenticated” fragment (pro-
duced by an erasure code) of the string being committed; and an Equiv-Com of
the hash of the mask. This allows the simulator to anticipate (before the actual
open phase) whether each extracted fragment is correct or not, and reconstruct
the original message using only correct fragments. The fragments are also equiv-
ocable because the respective pseudo-random masks are equivocable.

The ideal commitment functionalities used for separate Ext and Equiv simu-
latability properties can also be instantiated with a full-fledged Ext&Equiv-Com
functionality. Assuming the existence of a PRG and a CR-Hash, this repre-
sents a UC-Com length extension, where a few (commit and open) calls to an
Ext&Equiv-Com scheme for short bit-strings enable an Ext&Equiv-Com scheme
for a string of a polynomially larger size. At the cost of more interactivity, the
Equiv-Coms can be based on Ext-Coms.

Similar amortized asymptotic communication complexity is also achieved
by very recent UC-Com scheme proposals [GIKW14,DDGN14,CDD+15]. They
explicitly use oblivious transfer (OT), i.e., as an ideal functionality in a hybrid
model. In contrast, the protocol in this paper avoids explicit use of OT, and
instead uses base Ext-Com and Equiv-Com schemes (besides a PRG and a CR-
Hash). Also, [GIKW14,DDGN14] rely on secret sharing schemes with error-
correction or verifiability requirements ([CDD+15] works with any linear code),
whereas this paper uses a simpler erasure code, facilitated by an authentica-
tor mechanism, with corresponding benefits in terms of encoding parameters.
A comparison of tradeoffs allowed by each design is left for future work.
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1.4 Roadmap

The paper proceeds as follows: Sect. 2 reviews related work; Sect. 3 mentions
background notions about the security model and ideal functionalities; Sect. 4
describes the new protocol for coin-flipping simulatable-with-rewinding; Sect. 5
specifies the new UC commitment scheme.

2 Related Work

2.1 Basic Primitives

One-way permutations or functions are enough in theory to achieve many use-
ful cryptographic primitives, such as PRGs [HILL99,VZ12], one-way hash func-
tions [NY89,Rom90], some types of commitment schemes [Nao91,DCO99] and
ZK proofs of knowledge (ZKPoK) [FS90]. CR-Hash functions can also be built
from other primitives [Sim98], such as claw-free sets of permutations [Dam88]
or pseudo-permutations [Rus95]. Based on such primitives, coin-flipping can be
achieved in different ways, e.g., based solely on one-way functions [Lin03,PW09]
(with rewinding). In different simulatability settings, coin-flipping can be more
directly based on higher level primitives, such as bit or multi-bit Ext&Equiv-Com
schemes (e.g., [CF01,DN02,Cre03]) and even from coin-flipping protocols with
weaker properties [HMQU06,LN11].

In the computational model (the one considered in this paper), there are
known theoretical feasibility results about coin-flipping, covering the stand-alone
and the UC security settings. For example, in the UC setting it is possible to
achieve coin-flipping extension, i.e., coin-flip a large bit-string when having as
basis a single invocation of an ideal functionality realizing coin-flipping of a
shorter length [HMQU06]. This paper shares the concern of achieving properties
in large strings based on functionalities associated with short strings, but focuses
on a base of a few short commitments (not needing to be simultaneously Ext
and Equiv) and has a motivation of improving efficiency. The paper does not
delve into analyzing implications between different primitives (e.g., see [DNO10]
for relations between OT and commitments, under several setup assumptions).

Only in very recent research works (including this one) have UC commitment
schemes been devised with an amortized communication cost, with asymptotic
rate close to 1. In contrast, similar attention has not been given to coin-flipping in
the stand-alone setting, where the most efficient protocols known to be two-side
simulatable would not be highly efficient for large strings. While the new results
for UC-Com schemes are directly applicable to stand-alone secure coin-flipping,
with a corresponding asymptotic efficiency benefit (3 bits per flipped coin), an yet
different and more efficient approach (2 bits per flipped coin) is herein devised for
the stand-alone setting, without requiring an explicit Ext&Equiv-Com scheme.

In spite of very-efficient realizations of OT-extension [ALSZ15] and free-
XOR techniques [KS08] for garbled circuits, a coin-flipping based on a direct
(generic) approach of S2PC of bit-wise-XOR would still induce, in communica-
tion and computation, a multiplicative cost proportional to the security parame-
ter, by requiring one minicrypt block operation (e.g., block-cipher evaluation)
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per flipped coin. In contrast, in the approach in this paper each block of bits
(e.g., equal to the security parameter) requires a unitary number of minicrypt
block operations (e.g., close to 1 block-cipher for the PRG and 1 CR-Hash).

The idea of combining commitments with a CR-Hash (hash then commit) and
commitments with a PRG for efficiency reasons is not new. The former resem-
bles the hash then sign paradigm, and it also has applications to non-malleable
commitments [DCKOS01]. The later resembles hybrid encryption, where a sym-
metric key (the analogous to the PRG seed) would be encrypted with a public
key system (the analogous to the commitment) and then the message would be
encrypted with a symmetric scheme (the analogous to the one-time-pad masking
using the PRG expansion). This paper explores ways of combining both tech-
niques, aimed at efficient simulatable coin-flipping and UC commitment schemes.

2.2 Parallel Coin-Flipping Simulatable-with-Rewinding

A parallel coin-flipping using the traditional template is simulatable if the base
commitment scheme is Ext&Equiv. Lindell achieved this (in two variant proto-
cols [Lin03, Sects. 5.3 and 6]) by augmenting the commit and open phases with ZK
sub-protocols that enable the respective Ext and Equiv properties: an Ext-commit
phase (step 1) is a regular commitment followed by a ZK argument of knowledge of
the committed value, from which the simulator in the role of receiver can extract
the value; an Equiv-open phase (step 3) consists on sending the intended (equivo-
cated) contribution of PA (which on its own cannot be verified against the respec-
tive commitment) and giving a fake ZK argument that it was the valid commit-
ted value. The solution provides a feasibility result for constant-round simulat-
able parallel coin-flipping. However, for a general commitment scheme applied to
a long bit-string, either a ZK proof/argument of knowledge for extraction or a ZK
proof/argument for equivocation is typically expensive, if not both. Note: the pro-
tocols by Lindell also address an augmented version of coin-flipping into a well,
where PA receives a random bit-string and PB receives the result of applying a
known function to such bit-string – the case of the identity function is the one
considered in this paper.

In a different approach, Pass and Wee [PW09] use cut-and-choose techniques
to achieve Ext and Equiv properties directly from regular commitment schemes
(and thus from one-way functions). They show simulatability of coin-flipping in
the traditional template, based on an Ext&Equiv-Com scheme constructed from
regular commitments in number proportional to the target length multiplied by
the statistical parameter. In contrast with the two above referred constructions,
protocol #1 in this paper integrates separately the Ext and Equiv properties,
in different commitments, in order to improve efficiency, amortizing the cost of
base commitment schemes to that of a PRG and CR-Hash.

Goldreich and Kahan [GK96] also joined two types of commitment schemes in a
protocol to achieve (what this paper calls) non-local extraction. Their application
is constant round ZK interactive proof systems, rather than coin-flipping. They
also augment the protocol by introducing an unconditional hiding commitment
as preamble, but their goal is achieving statistical soundness in an interactive
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proof system, rather than providing local equivocability or achieving a commu-
nication complexity amortization as in protocol #1 in this paper. They define a
simulator that estimates the probability of non-abort of the malicious party, in
order to dynamically determine an upper bound on the number of rewindings that
should be tried before giving up on obtaining a (second) non-abort by the malicious
party. The estimation works because the commitments are used in a way that pre-
vents the probability of abort from depending (i.e., up to a negligible variation) on
the value committed by the honest party. This simulation strategy was also used
by [Lin03,PW09] for the simulation of ZK sub-protocols, and can also be used to
simulate the coin-flipping protocol #1 in this paper, with an expected polynomial
number of rewindings. However, the technique is not applicable in the coin-flipping
protocol of Blum [Blu83], because there the decision of abort by the party that pro-
duced the Equiv-Com (i.e., the decision to open her contribution vs. to abort with-
out opening) is made once already knowing the contribution of the other party.

A similar subtle problem of simulatability derived from unknown probabilities
of abort has also been addressed by Rosen [Ros04]. With the goal of simplifying
the analysis of simulatability of ZK proofs, Rosen introduces a preamble stage
involving an unconditionally-hiding Ext-Com, allowing a prover in a ZK proof
system to initially (and locally) extract the challenge of the verifier. Such aug-
mentation is different from the one in this paper. First, the preamble commitment
in their ZK proof (Ext-)commits a value (the challenge) that does not influence
the actual honest output bit (accept vs. reject) of the ZK. Conversely, herein the
value (Equiv-)committed (by PB) in the preamble is a contribution with direct
impact in the bit-string outputted by the coin-flipping execution. Second, in their
ZK application the use of the preamble with the Ext-Com by one party (the veri-
fier) relieves the simulator in the role of the other party (the prover) from having
to do non-local equivocation in the subsequent part of the execution. Conversely,
herein the preamble (with an Equiv-Com by PB) does not relieve the simulator
in the role of the other party (PA) from having to non-locally equivocate the
contribution that it commits to in the remainder of the execution. Third, their
proposed Ext-Com scheme is unconditionally hiding, whereas the PRG-based
Ext-Com construction used in protocol #1 to commit the contribution of PA is
(motivated by efficiency) inherently non-unconditionally hiding.

2.3 UC Commitment Schemes

When rewinding is not possible, the simulatability of flipping even a single coin
using the traditional template requires the underlying commitment scheme to
be simultaneously Ext and Equiv [CR03]. Canetti and Fischlin [CF01] devel-
oped non-interactive UC commitments, requiring a unitary number of asym-
metric operations per committed bit. The construction assumes a common ref-
erence string (CRS) setup and is based on the equivocable bit-commitment
from Crescenzo, Ishai and Ostrovsky [DCIO98]. Canetti, Lindell, Ostrovsky,
and Sahai [CLOS02] proposed other non-interactive schemes from general prim-
itives, with adaptive security without erasures. Damg̊ard and Nielsen [DN02]
then improved with a construction denoted mixed commitment scheme, that is
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able to commit a linear number of bits using only a unitary number of asym-
metric operations, and using a linear number of communicated bits. For some
keys they are unconditionally-hiding and equivocable, whereas for other keys they
are unconditionally-binding and extractable. Crescenzo [Cre03] devised two non-
interactive Ext&Equiv-Com schemes for individual bits, in the public random
string model. One construction is based on Equiv-Com schemes and NIZKs,
the other is based on one Ext-Com and one Equiv-Com schemes. Damg̊ard
and Lunemann [DL09] consider UC in a quantum setting and solve the prob-
lem of flipping a single bit, based on UC-Coms from [CF01]. Lunemann and
Nielsen [LN11] consider also the quantum setting and achieve secure flipping of
a bit-string based on mixed commitments from [DN02]. They consider how to
amplify security from weaker security notions of coin-flipping (uncontrollable,
random) up to full simulatable (enforceable). The use of Ext-Com and Equiv-
Com schemes, together with a cut-and-choose and encoding scheme has been
previously considered by Damg̊ard and Orlandi [DO10]. They combine these
techniques to enhance security from the passive to the active model for secure
computation of arithmetic circuits, in a model where a trusted dealer is able to
generate correlated triplets. While they achieve efficient constructions for mul-
tiparty computation (also including more than two parties), the efficiency is not
amortized to communication rate 1.

More efficient commitment schemes have been proposed for short strings,
e.g., [Lin11,FLM11,BCPV13,Fuj14] achieving a low (but greater than one) con-
stant number of group elements of communication and of exponentiations to
commit to a group element. Still, the trivial extension of these protocols for
larger strings would imply a linear increase in said number of asymmetric oper-
ations (modular exponentiations), without amortization. Some of these schemes
achieve adaptive security, whereas this paper considers only static security.

Recent independent works achieve asymptotic communication rate 1:
[GIKW14] additionally considers selective openings; [DDGN14,CDD+15] addi-
tionally consider homomorphic properties and verification of linear relations
between committed values; [CDD+15] achieves, comparably to this paper, lin-
ear computational complexity. These protocols are based on a hybrid model with
an ideal OT functionality. In contrast to OT, the cut-and-choose mechanism in
protocol #2 in this paper does not hide from the sender the partition of (check)
instances. Also, an authenticator mechanism allows the simulator to recover
the fragmented message using an erasure code, thus allowing a cut-and-choose
with less instances than what an error correction code would imply (e.g., see
Table 1). A more recent concurrent result [FJNT16] improves the complexity of
the OT-based protocols (also for additively homomorphic commitments), using
an additional consistency check mechanism to also allow an erasure code.

A concrete comparison between different methods – qualitative (e.g., impli-
cations between primitives) and quantitative (actual instantiations and
implementations) – is left for future work. For example, [GIKW14]) reports 640
exponentiations for a concrete instantiation of the OT setup phase. In this paper,
a concrete instantiation of Ext or Equiv commitments has not been explored,
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though their complexity is naturally upper bounded by that of instantiations of
full-fledged UC-Coms for short strings, e.g., requiring less than a dozen group ele-
ments per base commitment [BCPV13]. The overall number of commitments of
short strings will depend on the erasure code parameters, defined to meet the goals
of statistical security and communication rate.

In summary, this paper is focused on the design of protocols that explore
the duality between Ext and Equiv commitments, without considering OT as a
primitive. About OT only two notes are mentioned here from other work: it is
known that UC-OT implies UC-Coms in myriad setup models [DNO10, Fig. 1],
e.g., in the uniform, the chosen and the any CRS models (U/C/A-CRS), and in
the chosen and the any key registration authority models (C/A-KRA), whereas
the reverse implication is proven only in a narrower set of models (e.g., U/A-
CRS, A-KRA) [DNO10, Table 1]; while [GIKW14] shows that “the existence
of a semi-honest OT protocol is necessary (and sufficient) for UC-Com length
extension,” the UC scheme in this paper does not make explicit use of OT and
can also be seen as a UC-Com length extension (if replacing the Ext-Com and
Equiv-Com schemes with an Ext&Equiv-Com scheme) – these two results do not
superpose, since [GIKW14] only allows a single call to the ideal Com-scheme,
whereas the extension herein requires several calls.

3 Background Notions

It is here assumed that the reader is familiar with the ideal/real simulation para-
digm, as developed in the work of Canetti on composability of protocols [Can00,
Can01]. Familiarity is also assumed with the standard ideal functionalities of
commitment schemes (FMCOM) and coin-flipping (FMCF), namely in the UC
framework. For example, instances can be found in [CF01, Fig. 3] (multiple bit-
commitments), [DN02, Sect. 4.2] (multiple message-commitments, there also con-
sidering homomorphic relations), [DL09, Fig. 2] (coin-flipping), [Lin03] (general
S2PC). A background review of these standard notions and specification of ideal
functionalities is given in full version of this paper. For convenience, this section
simply states informal notions about extractable and equivocable commitments.

Definition 1 (Extractability). An extractable commitment (Ext-Com)
scheme is one whose commit phase in a simulated execution allows S in the
role of receiver, indistinguishable from an honest receiver in the view of a possi-
bly malicious sender, to extract (i.e., learn) the committed value, with probability
equal to or larger than a value negligibly-close to the maximum probability with
which the (possibly malicious) sender is able to successfully open said value.

Definition 2 (Equivocability). An equivocable commitment (Equiv-Com)
scheme is one whose open phase in a simulated execution allows S in the role of
sender, indistinguishable from an honest sender in the view of a possibly mali-
cious receiver, to equivocate the opening to any intended value, in the domain
of committable values and possibly decided only after the commit phase.
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Definition 3 (Locality of Ext and Equiv). Within a protocol using commit-
ments, namely with both commit and open phases, extraction is characterized
as local if S can extract the committed value within the respective commit phase,
i.e., without going beyond that phase in the protocol and without rewinding to
a step before that phase. Local equivocation is defined analogously in relation
to the open phase. The properties are characterized as non-local if they can be
achieved but not locally, i.e., involving rewinding beyond the respective phase.

The protocols hereinafter are described and proven secure in a hybrid model
with access to ideal commitment functionalities FX and FQ, with which S respec-
tively only needs to take advantage of Ext and Equiv, but not both.

4 A New Coin-Flipping Simulatable-with-Rewinding

This section devises a new (constant round) parallel coin-flipping protocol,
simulatable-with-rewinding.The intuitionhas alreadybeengiven (Sect. 1.2); a tex-
tual description follows, along with a specification with succinct notation in Fig. 1.

4.1 Description of Protocol #1

The protocol implicitly depends on a computational security parameter (1) and
a respectively secure PRG and CR-Hash function (2). The execution starts when

Implicit parameters.

Security parameters: 1κ (1)
Primitives: (PRG, κPRG), CR-Hash (2)

0. Initial input.

ctx ≡ (sid, cfid, PA, PB) (3)
inputA → PA : (cf-start-1, ctx, �) (4)
inputB → PB : (cf-start-2, ctx, �) (5)

1. Commit contribution of PB.

PB : χB ←$ {0, 1}� (contribution of PB) (6)
PB : hB = CR-Hash(χB) (short hash) (7)
PB → FQ : (commit, (ctx, Q), hB) (8)
FQ → PA : (receipt, (ctx, Q), |hB |) (9)

2. Commit contribution of PA (extractable).

PA : sA ←$ {0, 1}κPRG (short seed) (10)
PA → FX : (commit, (ctx, X), sA) (11)
FX → PB : (receipt, (ctx, X), |sA|) (12)

PA : tA ←$ {0, 1}� (contribution masking) (13)
PA → PB : (cf-masking-1, ctx, tA) (14)

3. Open contribution of PB (equivocable).

PB → FQ : (open-ask, (ctx, Q)) (15)
FQ → PA : (open-send, (ctx, Q), hB) (16)
PB → PA : (cf-contrib-2, ctx, χB) (17)
PA : If CR-Hash(χB) �= hB then Abort (18)

4. Open contribution of PA.

PA → FX : (open-ask, (ctx, X)) (19)
FX → PB : (open-send, (ctx, X), sA) (20)
PA, PB : s′

A = PRG[sA](�) (seed expansion ≡ mask) (21)
PA, PB : χA = tA ⊕ s′

A (contribution of PA) (22)
5. Final output (locally combine contributions).

PA, PB : χ = χA ⊕ χB (23)
PA → outputA : (cf-output-1, ctx, χ) (24)
PB → outputB : (cf-output-2, ctx, χ) (25)

Fig. 1. Protocol #1 (Parallel coin-flipping (simulatable-with-rewinding).
Legend: κ (cryptographic security parameter, e.g., 128 ≡ 1128); � (target length, i.e.,
number of bits to coin-flip in parallel, e.g., 106, satisfying � ∈ O(poly(κ))); χp (contribu-
tion of Pp, for p ∈ {A, B}); PRG[s](�) (expansion of seed s, using the PRG, into a bit-
string of length �); κPRG (length of PRG input-seed, consistent with κ); X, Q (indices
denoting extractable and equivocable); (ctx, x) (abbreviation for (sid, (cfid, x), PA, PB),
where x ∈ {X, Q} – by including X and Q in the context information exchanged with
the respective ideal Com functionalities (FX, FQ), it is syntactically easier to replace
them both by a single full-fledged ideal X&Q (multi-)Com functionality FX&Q).
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both parties are activated to initiate a coin-flipping of a certain target length,
with an appropriate execution context (3), which in particular encodes the roles
of the two parties – PA will be the first to learn the final outcome ((4)–(5)) –
and the target length. After a possibly implicit setup phase (e.g., in the plain
model, to allow the simulator to obtain a trapdoor), PB selects his contribution
(6) with the target length, calculates its hash (7), and uses FQ to commit to
the hash ((8)–(9)). Then, PA selects a seed (10) and commits to it using FX

((11)–(12)). PA also selects a random bit-string (denoted contribution masking)
with the target length (13) and sends it to PB (14). Then, PB uses FQ to open
the committed hash to PA ((15)–(16)) and sends his contribution to PA (17). PA

checks that the hash of the contribution of PB is equal to the opened hash (18).
If not, it Aborts; otherwise it proceeds. Then, PA uses FX to open to PB the
committed seed ((19)–(20)). Finally, each party proceeds concurrently with local
computations: expanding the seed of PA into a bit-string of the target length
(21) (i.e., the mask); computing the bit-wise exclusive-OR (XOR) combination
of the mask and the contribution masking, thus determining the contribution
of PA (22); and locally computing the final outcome as the XOR of the two
contributions (23), and deciding that as the final output ((24)–(25)).

4.2 Concrete Instantiations in the Plain Model

In the plain model, FX and FQ can be respectively replaced by actual Ext-Com
and Equiv-Com schemes, agreed upon in a setup phase, with Ext-Com being
non-malleable with respect to opening of Equiv-Com. An intuition is given here
for possible concrete instantiations (more details in the full version).

Based on DDH Intractability Assumption. For the Ext-Com scheme: PA

commits to the seed by sending a simple El-Gamal encryption [ElG85] of the
seed; the simulator can extract if it knows the encryption key (a discrete-log); PA

opens the seed by revealing the seed and the encryption randomness, thus letting
PB verify its correctness. For the Equiv-Com scheme: PB commits by sending a
simple Pedersen commitment [Ped92] of the hash; PB opens the hash by reveal-
ing the hash and the commitment randomness. The simulator can equivocate
the opening if it knows the trapdoor (a discrete-log). Interestingly, both Com-
schemes can have the same trapdoor, because the seed extraction and the hash
equivocation are needed by the same simulator (in the role of PB, when interact-
ing with P∗

A). The parameters can be agreed in a setup phase, with P∗
A propos-

ing them (two generators in a multiplicative group where the DDH assumption
holds) and giving a ZKPoK of their relation (the discrete-log between two gen-
erators). Basically, this can be a ZK adaptation of Schnorr’s protocol [Sch91],
e.g., as described in [LPS08, Fig. 3]. Overall, this requires only 9 exponentiations
from each party (or 11, using more practical parameters), 5 of which are in the
setup phase (amortizable across several coin-flippings).

A Concrete Application Example. The S2PC-with-BitComs protocol in
[Bra13], simulatable-with-rewinding, requires a simulatable coin-flipping to sam-
ple a random group element for each bit of input and output of the regular S2PC.
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(Improvements of the protocol can reduce the needed number and size of said
group-elements.) There, the benchmark evaluation of S2PC-with-BitComs of
AES-128 requires a simulatable flipping of about 1.18 million bits. As suggested
therein, using a DDH assumption in groups over elliptic curves, an instantiation
of the coin-flipping with the protocol of [Lin03] would require (for practical para-
meters) 7 exponentiations per party per block of 256 bits, and communication
of about 12 blocks per block, i.e., overall about 32 thousand exponentiations
and 14 megabits. In contrast, the new coin-flipping devised herein would overall
require (with the instantiation suggested in the previous paragraph) less than a
dozen exponentiations per party and slightly less than 2.5 megabits of commu-
nication, thus reducing the coin-flipping sub-protocol complexity by more than
3,000 fold in number of exponentiations and about 6 fold in communication.

Based on PRG-Based Commitments. It is possible to avoid exponentiations
by building Ext-Com and Equiv-Com schemes based on more basic primitives,
such as regular commitments (i.e., hiding and biding but possibly not Ext and
not Equiv). For example, Pass and Wee [PW09] analyze cut-and-choose based
constructions (the full version of this paper explores improvements, e.g., using
a random-seed-checking type of technique [GMS08]). Comparatively, those con-
structions require more concrete communication than the DDH based one, but
still amortizable because it only applies to two short elements (one seed and one
hash), and more online interactivity.

4.3 Security Analysis

Proving security (i.e., simulatability) amounts to show a simulator (S) that, with
an expected number of rewindings at most polynomial in the security parameter,
induces in the ideal world a global output whose distribution is indistinguishable
from the one in the real world. In the role of each party in a simulation, S must
be able (with overwhelming probability) to learn the contribution of the other
possibly-malicious (black-box) party and still be in a position to open the needed
complementary contribution, as if it was honestly random, and at the same time
simulate the correct probability of early abort.

Theorem 1 (Security of Protocol #1). Assuming a cryptographically
secure PRG and CR-Hash, protocol #1 securely-emulates (with computational
indistinguishability) the ideal functionality FMCF of long bit-string coin-flipping
between two-parties, in a stand-alone setting and in the (FX,FQ)-hybrid model,
in the presence of static and computationally active rewindable adversaries. For
each (polynomially arbitrarily-long) bit-string coin-flipping execution, each phase
( commit and open) of FX and FQ is invoked only once for a short string; sim-
ulation is possible: without rewinding in the case of a malicious P∗

A; with an
expected polynomial number of rewindings in the case of a malicious P∗

B.

One-Pass Simulation (i.e., Without Rewinding), for Malicious P∗
A. In

the simulated execution, S (in the role of PB) commits to a random hash value



310 L. T. A. N. Brandão

(8). Then, S impersonates FX to extract from P∗
A the seed committed by P∗

A (11).
S computes the PRG expansion of the seed (as in (21)). Then, upon receiving
the contribution masking of P∗

A (14), S combines it with the PRG-expansion of
the extracted seed (as in (22)), in order to learn the contribution of P∗

A. Then, in
the ideal world, S in the role of the ideal P̂

∗
A receives from the ideal coin-flipping

functionality FMCF the random target coin-flipping bit-string. S then computes
the needed complementary contribution of PB, as the XOR between the target
outcome and the contribution of P∗

A. S computes the hash of this complementary
contribution (as in (7)) and in the role of FQ it equivocates its opening to be such
hash value (16). Finally, S also sends the complementary contribution to P∗

A (17).
Since the ideal FX is impersonated by S (respectively, in the plain model, since
Equiv-Com is non-malleable with respect to opening of Ext-Com), it follows that
P∗
A can only either open the contribution (19) that has been extracted by S, or

abort without successfully opening her contribution. In case of abort by P∗
A, S

emulates an abort ; otherwise, S lets FMCF continue the execution in the ideal
world (i.e., send the bit-string to the ideal P̂B) and S outputs in the ideal world
what P∗

A outputs in the simulation. (In the plain model, extractability of Ext-
Com and/or equivocability of Equiv-Com may require either local rewinding or
rewinding in a setup phase, but that is irrelevant in the hybrid model).

Simulation with Explicit Rewinding, for Malicious P∗
B .

– First iteration. In the simulated execution, S in the role of an honest PA

interacts until receiving the contribution of P∗
B and verifying its hash against

the respective opening (18). If P∗
B aborts until this step (including by an

invalid opening), then S emulates an abort, otherwise it proceeds.
– Get target outcome. S in the role of ideal P̂

∗
B receives fromFMCF in the ideal

world the target outcome and uses it to compute the needed complementary
contribution of PA in the simulated execution, namely the XOR between the
target outcome and the contribution of P∗

B.
– Determine upper-bound of rewindings. S determines an upper bound

number of rewindings (#rw-bound) needed for the next simulation stage. This
can be based on the strategy of Goldreich and Kahan [GK96], which involves
rewinding, possibly a super-polynomial number of times, to repeat committing
a random contribution of PA ((11)–(14)) and expecting to obtain an open-
ing of the contribution of PB ((16)–(17)), until indeed obtaining a successful
opening (18) an adequate polynomial (e.g., quadratic) number of times, and
estimating therefrom an adequate probability of non-abort by PA, and defin-
ing #rw-bound as the inverse of said estimate. An intuition for the expected
polynomial number of rewindings is that a negligible probability of non-abort
also implies a negligible probability that the simulation reaches this estima-
tion stage. (Using a more involved argument about the hiding property of
the PRG-based Ext-Com of the contribution of PA, the full version of the
paper explores the possibility of a different simulation strategy, with a static
super-polynomial upper bound #rw-bound, i.e., not depending on a dynamic
estimation of the non-abort probability).
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– Induce target outcome. S rewinds and selects (10) and commits (11) to
a new random seed of PA. Then, S computes and sends to P∗

B a contribu-
tion masking of PA (14), computed as the XOR combination of the needed
complementary contribution and the PRG-expansion of the seed (instead of
a random contribution masking (13)). Since the Ext-Com+PRG-based com-
mitment of the contribution of PA is semantically hiding, the probability of
abort by P∗

B changes at most by a negligible amount in comparison with the
previous stage. If P∗

B subsequently opens his contribution successfully ((16)–
(18)), then S continues the simulation until the end and outputs in the ideal
world whatever P∗

B outputs in the simulated execution, even P∗
B aborts before

receiving the opening of the seed of PA (20). Otherwise, if P∗
B aborts with-

out successfully opening his contribution, S rewinds and replays again as just
described, again and again until either obtaining a successful opening of the
contribution of P∗

B (equal to the one already known by S) and in that case
leading the simulation to an end, or until reaching the #rw-bound bound, and
in that case it emulates an abort in the ideal world.

5 A New UC Commitment Scheme

This section devises a new UC commitment scheme, thus one-pass-simulatable
and with local Ext and Equiv properties, usable in the traditional template of
coin-flipping to commit and open the contribution of PA.

5.1 More Intuition

Besides the Ext-Com, Equiv-Com, PRG and CR-Hash, the new protocol embeds
three main ingredients, in a sequence of optimizations:

– a cut-and-choose: PA builds several instances of short commitments and
then PB checks the correctness of some (the check instances) to gain some
confidence that a majority of the others (the evaluation instances) is correct;

– authenticators: allow the simulator to anticipate whether individual
instances are good or bad, thus gaining assurance about correct extraction;

– an information dispersal algorithm (IDA): allows spliting the target mes-
sage m into smaller fragments, and allows recovery of the original message
from a sufficient number of those fragments (essentially, based on a threshold
erasure code); using an IDA enables the size of each instance of the cut-and-
choose to be reduced proportionally to the number of instances.

5.1.1 Cut-and-Choose Warmup
A simple (yet innefficient) UC-Com scheme:

– Commit phase. PA produces several seeds, builds an Ext-Com of each,
and also an Equiv-Com of a CR-Hash (hereafter denoted global hash) of the
sequence of PRG-expansions of all seeds. Then, PB cuts the set of instances
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of seed-commitments into two random complementary subsets, and chooses
one for a check operation and the other for an evaluation operation. For each
evaluation instance, PA uses the respective PRG-expansion to XOR-mask the
target message, and sends the respective message masking to PB.

– Open phase. PA reveals the message m, letting PB compute all used masks,
one for each evaluation instance, namely the XOR of the message with each
respective masking. PA also opens all check seeds, letting PB compute the
respective PRG-expansions. Finally, PA opens the committed global hash,
letting PB verify that it is equal to the one that can be obtained from the
learned masks and PRG-expansions. Otherwise, if the global hash verification
fails, PA rejects the opening of the message m.

This has the needed simulatability properties (though high communication
complexity: target length � multiplied by number e of evaluation instances):

– Hiding. In the commit phase, the maskings hide the message from PB, due
to the XOR one-time-pad between message and PRG-expansions (the masks).

– Binding. In the open phase, PA is bound to open a single message: by collision
resistance of CR-Hash, PA can know at most one pre-image of the global hash,
i.e., at most one sequence of valid masks (one mask per instance). Thus, PA

can at most successfully open the message that for all evaluation instances is
equal to the XOR of the respective mask and masking.

– Equivocation. In the open phase, the equivocator-simulator (SQ) in the role
of PA can open any desired fake message, by revealing the message, opening
the correct seeds of check instances and then equivocating the needed fake
global hash (without revealing the respective seeds of evaluation instances).

– Extractability. In the commit phase, the extractor-simulator (SX) in the
role of PB extracts the seed of each evaluation instance, then uses its PRG-
expansion to unmask the respective masking into a tentative message. If a
majority of the tentative messages are equal, then SX chooses their value as
the correct one. Otherwise SX guesses that PA will not be able to successfully
open any message in the later open phase. Conditioned on a future success-
ful verification of the global hash, the probability that the majority of the
extracted seeds are correct is, with adequate cut-and-choose parameters [SS11,
Sect. A], overwhelming in the total number of instances. For example, slightly
more than 40 bits of statistical security, i.e., a probability of wrong extraction
less that two to the minus 40, is obtained using 123 instances, 74 of which for
check and 49 of which for evaluation [Bra13, Table 2].

5.1.2 Authenticator Aid
Statistical security can be improved by giving SX the ability to decide whether
isolated evaluation instances are good or bad. This allows SX to extract an
incorrect message (or none at all) only if all check instances are good and all
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evaluation instances are bad, i.e., only if a malicious P∗
A anticipates the exact cut-

and-choose partition. The new rationale about probabilities is similar to that of
the forge-and-lose type of technique recently devised for more general S2PC pro-
tocols based on a cut-and-choose of garbled-circuits [Bra13,Lin13,HKE13]. The
success criterion changes from “at least a majority of correct instances” to “at
least one correct instance.” For example, 40 bits of statistical security can now be
obtained with 41 or 123 instances, by respectively limiting evaluation instances
to be at most 20 or 8. Since only evaluation instances are relevant in terms
of communication, with 123 instances this corresponds to a 6-fold reduction in
communication (i.e., vs. the previous method with 49 evaluation instances).

The intended verifiability is achieved by augmenting each evaluation instance
with a short authenticator that allows SX to verify whether or not each extracted
seed is consistent with each respective anticipated tentative message. Specifically,
when SX extracts a seed and uses its seed-expansion to unmask the respective
masking received from PA, only two things may happen: either (i) SX gets a
correctly authenticated message, which must be the only one that PA can later
successfully open, i.e., this is a good instance; or (ii) SX gets an incorrectly
authenticated message, implying that a successful opening by a malicious P∗

A

will reveal a mask different from the seed-expansion, i.e., this is a bad instance.
The authenticator is implemented as a function that relates the message and

a nonce in a non-trivial way, to ensure that it is infeasible for P∗
A to produce a

masking for which two different unmaskings yield authenticated messages. Also,
in order to allow equivocation by SQ (when in the role of PA), the authenticator
is masked by an equivocable mask. The authenticator cannot simply be a CR-
Hash function (i.e., without an unpredictable input) of the masked fragment,
lest P∗

A would in that case (by maliciously using a mask different from the seed-
expansion) be able to induce a collision by crafting a special mask different from
the seed-expansion. Instead, the authenticator can be achieved by means of a
universal hash family, such that the probability of collision is independent of the
choices of P∗

A. This can be implemented by introducing a random unpredictable
value (a nonce) that PB discloses to P∗

A only after P∗
A becomes bound to her

choices, e.g., after committing to the seeds and global hash. This nonce acts like
an identifier of the hash from the universal hash family.

In concrete, the authenticator can for example be an algebraic field-multipl-
ication between the nonce and a CR-hash of the message. If the image space of
the CR-Hash is the set of bit-strings of some fixed length (e.g., 256 bits), the
nonce can be uniformly selected from the non-null elements of a Galois field
with characteristic 2, modulo an irreducible polynomial of degree equal to the
hash length. This ensures that the authenticators of any two known messages
(which by assumption have different CR-Hash) would have an unpredictably
offset. Conversely, a successful forgery by P∗

A would require guessing this offset,
in order to make the real mask have such (bit-wise XOR) offset with the seed-
expansion. (Optimizations are possible, requiring a more involved explanation
and/or correlation-robust type of assumptions – details in the full version.)



314 L. T. A. N. Brandão

5.1.3 IDA Support
Communication is drastically reduced by using a threshold information dispersal
algorithm (IDA) [Rab89]. The IDA enables splitting (i.e., dispersing) the original
message m into several (e) fragments, such that m can be reconstructed from any
subset with at least a threshold number t of good fragments, each with a reduced
length (|m|e/t). As |m| increases, the asymptotic communication complexity is
thus proportional to e/t, which can be made as close to 1 as desired.

Any t-out-of-e erasure-code can be used, e.g., based on XOR operations and
with linear time encoding and somewhat efficient decoding. It does not need to
hide the original message, as would a full-fledged secret-sharing scheme [Sha79,
Kra94], because in the commit phase PB receives maskings of (authenticated)
fragments, instead of fragments in clear. It also does not need to support correc-
tion of semantic errors [RS60], because the authenticator mechanism gives SX (in
the role of PB) the ability to detect errors and thus simply discard bad fragments.
SX reconstructs m from any subset of at least t good fragments.

It is interesting to notice that parties only need to encode; only the simulator
needs to decode. A rateless code is also possible, with appropriate probabilistic
considerations – there are very efficient instantiations, e.g., [Lub02,Sho06].

The statistical security is again changed, with the new criterion for successful
extraction requiring a number of good evaluation instances at least as high as
the recovery threshold. Furthermore, the fragmentation also reduces the sum of
all PRG-expansion lengths, as well as the length of the sequence of masks whose
hash needs to be calculated. Concrete parameters are given in Table 1.

5.2 Description of Protocol #2

The protocol is succinctly described in Fig. 2. For further intuition, a pic-
torial sketch is provided in Fig. 3. The parties agree on security parameters
(computational and statistic) and other consistent elements: the cut-and-choose
parameters (with a fixed number of check and evaluation instances) (26); a PRG
and a CR-Hash functions (27); the IDA scheme and parameters (28); and an
authenticator mode (29) (in Fig. 2, the strict mode corresponds to the descrip-
tion given in Sect. 5.1.2) and respective parameters (30). The loose mode (dis-
cussed in the full version of the paper) allows removing some steps of the protocol
(namely avoiding the Equiv-Com of the hash of the message being committed)
but requires a stronger assumption about the authenticator function.

5.2.1 Commit Phase (PA Commits a Message to PB)
– 1.a. Commit instances. Upon being initialized to commit a message m (31),

PA selects n random seeds (32) (e.g., 119) and uses FX to commit individually
to each of them ((33)–(34)). PA uses the PRG to expand each seed sj into a
string s′

j with a reduced-length (equal to the target length � divided by the
IDA recovery-threshold t) extended by an authenticator-length �a (35). PA

calculates the global hash h as the CR-hash of the concatenation of all seed-
expansions (36). PA then uses FQ to commit to h ((37)–(38)). If in the strict
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mode, PA also computes the hash of the message m (39) and then uses FQ to
commit to said hash ((40)–(41)).

– 1.b. Cut-and-choose. PB decides a random cut-and-choose partition (42)
(e.g., identifying 73 instances for check and 46 for evaluation) and a random
nonce z (43) and sends them both to PA (44).

– 1.c. Message masking. PA uses the threshold IDA to split her message into
as many fragments as the number of evaluation instances (45), each with a
reduced length. Then, PA computes the authenticator aj of each fragment m′

j

Implicit parameters.

Security parameters: 1κ, (1σ, n, v, e) (26)
Primitives: (PRG, κPRG), CR-Hash (27)

IDA: (t, IDA[t]split, IDA[t]recover) (28)
AuthMode ∈ {strict, loose} (29)
Authenticator parameters: {α, �a = |α|, �z} (30)

1. X-Commit phase.

inputA → PA : (commit, sid, cid, PA, PB, m) (31)
1.a. Commit instances. For j ∈ [n] :

PA : sj ←$ {0, 1}κPRG (seed) (32)
PA → FX : (commit, (ctx, (X, j)), sj) (33)
FX → PB : (receipt, (ctx, (X, j)), |sj |) (34)
PA : s′

j = PRG[sj ](�|m|/t + �a	) (35)
PA : h = CR-Hash(||j∈[n]s

′
j) (global hash) (36)

PA → FQ : (commit, (ctx, Q), h) (37)
FQ → PB : (receipt, (ctx, Q), |h|) (38)

If AuthMode =? strict, then:

PA : η = CR-Hash (m) (hash of message) (39)

PA → FQ : (commit, (ctx, (Q, +)), η) (40)
FQ → PB : (receipt, (ctx, (Q, +)), |η|) (41)

1.b. Cut-and-choose. (n = e + v)

PB : (JV , JE) ←$ Partition[v, e](n) (42)

PB : z ←$ {0, 1}�z (nonce) (43)
PB → PA : (c&c, sid, cid, PB, PA, (JV , JE , z)) (44)

[1ex]1.c. Message masking.

PA :
〈
m′

j : j ∈ JE

〉 ← IDA[t]split (m, JE) (45)
PA : aj = α(m′

j , z) : j ∈ JE (authenticators) (46)
PA : tj =

(
m′

j ||aj

) ⊕ s′
j : j ∈ JE (maskings) (47)

PA → PB : (maskings, sid, cid, PA, PB, ||j∈JE tj)
(48)

2. Q-Open phase.

inputA → PA : (open, sid, cid, PA, PB) (49)
2.a. Reveal message.

PA → PB : (reveal, sid, cid, PA, PB, m) (50)

If AuthMode =? strict, then:

PA → FQ : (open-ask, (ctx, (Q, +))) (51)
FQ → PB : (open-send, (ctx, (Q, +)), η) (52)
PB : If CR-Hash(m) �= η then Abort (53)

2.b. Obtain evaluation maskings.

PB :
〈
m′

j : j ∈ JE

〉 ← IDA[t]split (m, JE) (54)
PB : aj = α

(
m′

j , z
)

: j ∈ JE (authenticator) (55)

PB : s′
j = tj ⊕ (

m′
j ||aj

)
: j ∈ JE (tentative masks) (56)

2.b. Obtain check maskings.

PA → FX : (open-ask, (ctx, (X, j))) : j ∈ JV (57)
FX → PB : (open-send, (ctx, (X, j)), sj) : j ∈ JV (58)
PB : s′

j = PRG[sj ](�|m|/t + �a	) : j ∈ JV (59)

2.d. Verify global hash.

PA → FQ : (open-ask, (ctx, Q)) (60)
FQ → PB : (open-send, (ctx, Q), h) (61)
PB : If CR-Hash(||j∈[n]s

′
j) �= h then Abort (62)

PB → outputB : (accept, sid, cid, PA, PB, m) (63)

Fig. 2. Protocol #2 (UC commitment scheme). Legend: legend of Fig. 1 also
applies; σ (statistical security parameter, e.g., 40 ≡ 140); n, v, e (numbers of total
instances, check instances and evaluation instances); [n] (set of the first n positive
integers); Partition[v, e](n) (set of possible partitions of [n], into a pair of complemen-
tary subsets, the first with v elements, and the second with the remaining e). IDA[t]
(information dispersal algorithm (erasure code) with recovery threshold of t fragments;
it has sub-algorithms split and recover ; if e and v are fixed in a setup phase they must
satisfy ((n − b)!e!) / ((e − b)s!) ≤ 2−σ, where b = e−t+1 is the number of bad instances
in an optimal attack); α (authenticator function); �z (length of nonce); �a (length of
authenticator output, e.g., 256 bits).
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Fig. 3. Sketch of UC commitment scheme. Legend: (seed sj); (Ext-Com
sj – like a vault with a single opening); (seed expansion s′

j – like a tree growing
from a seed); (global hash – like a smashed paper); (Equiv-Com h – like a
vault with several openings); (message m being committed – like a text file);
(message fragment m′

j – can be combined with other fragments to recover the initial
message); (authenticator aj – vouches for the correctness of the respective frag-
ment); (masking tj – the chess pattern represents something that is masked); auth
(authenticator function); C&C (cut-and-choose); FX (ideal extractable-commitment
functionality); FQ (ideal equivocable-commitment functionality); SX (simulator with
extraction goal). This is a toy example with a cut-and-choose with n = 5 instances, of
which v = 2 are selected for check and e = 3 are selected for evaluation. In the extrac-
tion example, a malicious P∗

A constructed one bad instance (j = 3), selected for the
check subset. SX detects the bad instance and thus ignores it when using the IDA to
reconstruct the message from only t = 2 (the recovery threshold) fragments.
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as an appropriate function α of the fragment and the nonce (46); PA then uses
the extended mask s′

j to compute the masking tj of the fragment concatenated
with the authenticator (47). Finally, PA sends to PB the maskings associated
with all evaluation instances (48).

5.2.2 Open Phase (PA Opens a Message to PB)
– 2.a. Reveal message. Upon being initialized to open the committed message

m (49), PA sends m to PB (50). If using the strict authenticator mode, then
PA also asks FQ to open to PB the hash of the message ((51)–(52)). PB then
verifies that it is consistent with the hash of the received message (53). If not,
it Aborts; otherwise it proceeds.

– 2.b. Obtain evaluation masks. PB uses the IDA to obtain the same frag-
ments that an honest PA would (54). PB computes the authenticator of the
fragment in the same way that an honest PA would have, based on the frag-
ment and the nonce (55). Then, PB concatenates the tentative fragment and
the tentative authenticator, and computes the XOR combination of the result-
ing string with the extended masking, thus obtaining the tentative extended
mask s′

j , supposedly used by PA (56).
– 2.c. Obtain check masks. PA uses FX to open to PB the seeds of check

instances (but not those of evaluation instances) ((57)–(58)). PB locally com-
putes the PRG-expansion (of appropriate length) of each check seed (59).

– 2.d. Verify global hash. PA uses FQ to open to PB the previously com-
mitted global hash ((60)–(61)). Then, PB verifies that the global hash of all
concatenated masks is equal to the one just opened by PA (62). If some veri-
fication has failed, then PB aborts, otherwise it accepts the message of PA as
a correct opening (63).

5.3 Concrete Configurations

Table 1 shows optimal configurations of the cut-and-choose and IDA parameters
for 40 bits of statistical security and several goals of communication rate. Asymp-
totically as � increases, it is possible to configure the parameters to yield arbi-
trary high levels of statistical security and reduce the expansion-rate to values
arbitrarily close to 1. With (n; e; t) = (119; 46; 23), the scheme achieves 40 bits
of statistical security and an asymptotic communication expansion-rate r = 2
in the commit phase (the open phase always has an asymptotic rate 1). With
(n; e; t) = (775; 275; 250), the rate becomes r = 1.1, with the computed PRG out-
put and the hash input being r′ = 3.1 times the message length. Both r and r′ can
be brought arbitrarily close to 1. In comparison, for a communication expansion
rate of r = 1.1, the protocol from [GIKW14] would require encoding m into 53,020
blocks, and using an error correcting code capable of correcting more than 1198
semantic errors. Table 1 also describes parameters for optimizations of [GIKW14],
namely by using k-out-of-n OT instead of δ-Rabin OT, reducing the number of
instances by up to a factor slightly larger than two.
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Table 1. UC commitment scheme parameters for 40 bits of statistical security

Common legend for columns B-F. r (communication expansion rate in the commit
phase, relative to the target length, i.e., to the length of the value being committed – it
is asymptotic in that it does not account with the base short commitments (columns B-
C) or the OT implementation (columns D-F).
Legend for columns B-C (“This work”). r′ (overall length of PRG output, divided
by the target length (at PA – it is smaller at PB, because PB does not evaluate the
PRG for evaluation instances); also the overall length of CR-Hash input, divided by
the target length); n (total number of instances in the cut-and-choose); e (number
of evaluation instances = number of fragments); t (recovery threshold = number of
fragments necessary to recover message). The parameters were chosen to minimize the
total number of instances n, while satisfying the maximum allowed rate (rmax, identified
in column A), as follows: in column B (“r = e/t ≤ rmax”), the communication expansion
rate r is limited to rmax (in this case the PRG and the CR-Hash can be applied to
bigger lengths – see r′); in column C (t = �n/r	), the computation expansion rate
r′ determined by the length of PRG output and CR-Hash input are limited to rmax

(and in this case the overall communication rate r is smaller). After minimizing n, the
remaining parameters were chosen to minimize e.
Legend for columns D-F(“[GIKW14]” and variations). n (number of blocks before
encoding, i.e., number of symbols in which the target message is partitioned); t0 (0-
info threshold (the original notation was t), i.e., number of blocks whose knowledge
does not reveal anything about the original message); terror (error-recovery threshold –
the original notation is Δ/2); δ (probability of message passing through the δ-Rabin-
OT – the original version uses t0 = 2δn′); n′ (total number of blocks after encoding,
satisfying n′ = t + n + Δ − 1). For each value r = n′/n, the values of other parameters
were chosen to minimize n. In column F, where the equivocator-simulator can always
equivocate, statistical security depends only on the probability that a malicious PA can
guess terror + 1 positions that PB will not select in the OT.
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Remark (Interactivity Tradeoffs). The use of an Equiv-Com scheme with
PA as sender and PB as receiver can be replaced by an Ext-Com scheme with PB

as sender and PA as receiver, and a regular Com scheme (i.e., possibly neither
Ext nor Equiv) and further interaction. Basically, the Ext of a short bit-string
committed by P∗

B would allow S (in the role of PA in the simulated execution) to
decide (within the overall open phase of the UC scheme) any desired outcome of
a (single-side simulatable) short coin-flipping played between PA and PB. Each
bit of this short coin-flipping can be set to determine one-out-of-two positions to
open from each pair of (supposedly) copies of a committed bit (and additional
redundant checksum bits included to prevent malicious behavior). This allows S
to equivocate the short-bit string because it could undetectably commit to two
different bits in each position (instead of two copies of the same bit) and then
open only the convenient ones. In a direction of less interaction, it is conceivably
possible to let the cut-and-choose partition and nonce values be computed by PA

non-interactively, if willing to accept an assumption of a non-programmable ran-
dom oracle model [Lin15]. This would make all interactivity of the commitment
scheme (commit and open) become implicit in the instantiations of the base
commitment schemes (Ext and Equiv). The cut-and-choose and IDA (erasure
code) parameters would have to increase, letting the statistical security para-
meter become equal to the cryptographic security parameter, to mitigate the
new possibility that PA could computationally try a brute-force trial-and-error
attempt to exploit the probability of error that would otherwise be negligible
only in a low statistical parameter.

5.4 Security Analysis

Proving security amounts to show, without rewiding, that the new commitment
scheme is Ext&Equiv, i.e., the commit phase is Ext and the open phase is Equiv.
The analysis assumes that the PRG and CR-Hash are cryptographically secure
and that the underlying Ext-Com and Equiv-Com schemes are realized (in a
hybrid model) by respective ideal functionalities (FX, FQ). The proof of security
is accomplished by defining respective simulators.

Theorem 2 (Security of Protocol #2). Assuming a cryptographically
secure PRG and CR-Hash, and an adequate authenticator, protocol #2 UC-
realizes the ideal functionality FMCOM of long bit-string commitments in the
(FX,FQ)-hybrid model, in the presence of static and computationally active
adversaries. Each phase of FQ and FX is invoked for short bit-strings only a
number of times that is independent of the polynomial target length.

5.4.1 Extractability – Simulatability with Corrupted P∗
A

The extractor-simulator SX initiates a simulation, with black-box access to A,
letting it believes that it is in the real world controlling P∗

A.

Simulation of the Commit Phase. Once the protocol starts, SX (in the role
of honest PB and also in the role of FX in the simulated execution) extracts the
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seeds committed by P∗
A (33) and later receives from P∗

A the maskings of authen-
ticated fragments of the message being committed (48). SX then unmasks each
masking, using the PRG-expansion of the respective extracted seed, obtaining
from each a respective tentative authenticated fragment. SX verifies whether the
authentication is correct or not, thus identifying which instances are good. (The
security of the described authenticator is statistically derived from the properties
of a universal hash family.) If the number of good fragments is at least t (the
recovery threshold) then SX uses the IDA recovery algorithm to reconstruct the
message from t (the recovery threshold) good fragments. Otherwise, if there are
less than t good fragments, then SX realizes that it cannot extract the message
from P∗

A, but it does not complain. Instead, SX computes a random message as
the assumed extracted message, and in addition it memorizes that the extracted
message is corrupted. Finally (in either of the two above cases), in the ideal
world, SX (in the role of the ideal P̂

∗
A) sends the extracted message to the ideal

functionality FMCOM, thus committing to it.

Simulation of the Open Phase. Once P∗
A opens the message to PB in the

simulated execution, SX checks that the opening is successful and that it corre-
sponds to the previously extracted message. If the opening is unsuccessful, e.g.,
if the global hash verification fails (62), then SX emulates an abort, leading
FMCOM to halt the execution associated with this commitment, consequently
leading the ideal party P̂B to never receive any opening. If (with negligible prob-
ability) the opening is successful but different from the value previously extracted
from SX , then SX outputs Fail (i.e., in this case the simulation fails). Other-
wise, if the opening of the expected message is done successfully, then S asks
FMCOM in the ideal world to open the committed message.

Analysis of the Simulation (Statistical Security). In the commit phase,
S makes a perfect emulation of the abort distribution, since it only aborts early
if and only if P∗

A also aborts. Thus, distinguishability (by the environment)
between real and simulated executions can only happen if P∗

A is able (with
non-negligible probability) to successfully open a message different from the
one SX has extracted. However, this is not possible. Based on the (described)
authenticator mechanism security (derived directly from the collision-resistance
of a CR-Hash, and the statistical properties of a universal hash family), P∗

A

cannot forge a bad authentication, i.e., lead SX to believe that a bad fragment
is actually good. Also, based on the default binding property of all underlying
commitments, P∗

A is not able to equivocate any of the Ext-Com or Equiv-Com. It
can thus be assumed impossible for S to unknowingly mark as good an evaluation
fragment (i.e., the result upon unmasking) that is actually bad. Now, a malicious
successful opening by P∗

A requires that all check instances are good selected and
at least n − t + 1 evaluation instances are bad. However, the probability of this
event can be made negligible for appropriate cut-and-choose and IDA parameters
(see Table 1). As an example, in the trivial case where P∗

A would build all check
and evaluation instances as bad, SX in the ideal world would still commit to
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a random valid value, but later in the open phase it would never let the ideal
functionality open the value to the honest PB.
Remark. There is a subtle difference between two types of commitment schemes.
There are those where the receiver is ensured that the committer is technically
able to open the commitment (if it “wants” to). For example, this is the case
when the commit phase includes a ZKPoK of the committed value. There are
other schemes where the commit phase is not enough to let the receiver know
about the actual ability of the committer to later open a value. It is possible
that a maliciously played commit phase prevents the sender (P∗

A) in advance
from being able to later open the commitment accepted by the receiver (PB).
Protocol #2 is of this second kind. Even if S detects, in a non-aborting commit
phase, that PA is unable to later open the commitment, S does not abort before
a failed open phase. The protocol can be easily changed to become of the first
type (if desired), at the cost of increasing the calls to the Equiv-Com functional-
ity, namely one per instance of the cut-and-choose, while nonetheless retaining
an amortized communication complexity. The idea is simple: instead of just pro-
ducing one Equiv-Com of the global hash, P∗

A would produce one Equiv-Com for
each possible mask (i.e., each PRG-expansion); then, after the cut-and-choose
partition is determined, but still within the overall commit phase, P∗

A would
open the check seeds and the check hashes. In this way, S immediately knows
whether some bad check instance was bad. If any bad check instance is detected,
then S can immediately emulate an abort; otherwise, S accepts an extracted
message based on the verification of the authentication of extracted evaluation
masks and the associated anticipated fragments. In this case there is a negligible
probability that the number of good instances is less than the recovery threshold.

5.4.2 Equivocability – Simulatability with Corrupted P∗
B

The equivocator-simulator SQ initiates a simulation, with black-box access to
A, letting it believe that it is in the real world controlling P∗

B.

Simulation of the Commit Phase. In the ideal world, SQ in the role of P̂
∗
B,

waits to receive from FMCOM a receipt of commitment done by the ideal P̂A.
Then, in the role of PA in the simulated execution, SQ plays the whole commit
phase to commit a random message to P∗

B. This involves keeping state about the
seeds (32) and their Ext-Coms (33), about the Equiv-Com of the global hash of
masks (38), possibly about the Equiv-Com of the hash of the random message
(41) (i.e., if in the Strict mode), about the cut-and-choose partition and the
nounce, and about the maskings of authenticated fragments (48). If P∗

B aborts
at any point before the end of the overall commit phase, then SQ emulates an
abort, i.e., in the role of P̂

∗
B in the ideal world sends abort to FMCOM, thus

making it ignore further actions related with this commitment sub-session.
Simulation of the Open Phase. SQ waits in the ideal world to receive from
FMCOM the opening of the target message (i.e., the one committed by the ideal
P̂A). Then, SQ, in the role of PA and also in the role of FQ in the simulated exe-
cution, sends to P∗

B the target message (50), instead of the previously committed
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random message. If in the strict mode, then SQ in the role of FQ equivocates
the opening of the needed hash of the message (52). Then, SQ computes what
are the alternative masks s′

j needed to unmask (the maskings tj previously sent)
into the target message received from FMCOM. This is done in the exact same
way that PB does as receiver: SQ computes the message fragments (54), then
their authenticators (55), and then takes the XOR with the maskings tj (56)
that were transmitted in the commit phase. Finally, SQ computes the global
hash (as in (36), but now using the updated masks), and then impersonates FQ

and equivocates the opening of said global hash (61). This allows P∗
B to perform

all verifications as if SQ was in fact an honest PA. Finally, SQ outputs in the
ideal world whatever P∗

B outputs in the simulated execution (63).
Analysis of the Simulation. The only difference between a real protocol
execution and the simulated execution is that SQ commits to a random message
and later equivocates it. However, detection by P∗

B of equivocation would require
differentiating the random masks from seed-expansions, which is contrary to the
pseudo-randomness assumption of the PRG. Thus, in case of corrupted P∗

B the
distributions between real and ideal world are computationally indistinguishable.

Remark. The cut-and-choose partition does not need to be decided via a sim-
ulatable coin-flipping, because equivocation is directly based on the assumed
ability to equivocate the global hash (committed with an Equiv-Com), which
directly allows equivocation of the masks of all evaluation instances. Thus, to
P∗
B, the actions of SQ “appear” as correct independently of the partition. SQ

simply produces all commitments of seeds and all maskings correctly (for a ran-
dom value), so that later all check instances are consistent.
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Abstract. We study robust secret sharing schemes in which between
one third and one half of the players are corrupted. In this scenario,
robust secret sharing is possible only with a share size larger than the
secrets, and allowing a positive probability of reconstructing the wrong
secret. We focus on the most challenging case where the number corrup-
tions is just one less than the number of honest players. In the standard
model, it is known that at least m + k bits per share are needed to
robustly share a secret of bit-length m with an error probability of 2−k;
however, to the best of our knowledge, no efficient scheme matches this
lower bound: the one that gets closest has share size m+Õ(n+k), where
n is the number of players in the scheme.

We show that it is possible to obtain schemes with close to minimal
share size in a model of local adversaries, i.e. in which corrupt players
cannot communicate between receiving their respective honest shares
and submitting corrupted shares to the reconstruction procedure, but
may coordinate before the execution of the protocol and can also gather
information afterwards. In this limited adversarial model, we prove a
lower bound of roughly m + k bits on the minimal share size, which
is (somewhat surprisingly) similar to the lower bound in the standard
model, where much stronger adversaries are allowed. We then present
efficient scheme that essentially meets our lower bound, and has shorter
share size than any known efficient construction in the standard model
for the same set of parameters. For our construction, we introduce a novel
procedure that compiles an error correcting code into a new randomized
one, with the following two properties: a single local portion of a code-
word leaks no information on the encoded message itself, and any set of
portions of a codeword reconstructs the message with error probability
exponentially low in the set size.

1 Introduction

While many cryptographic primitives require computational hardness assump-
tions to leverage restrictions on an adversary’s computing power, the fundamen-
tal primitive of secret sharing protects data information-theoretically. This is
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accomplished by dispersing a secret among several parties, a sufficient number
of whom are trustworthy. In a classical secret sharing scheme (as introduced
independently by Shamir [23] and Blakely [4]), a dealer shares a secret among n
parties such that any t+1 of them can reconstruct the secret, but any coalition of
at most t players cannot learn anything about the secret. This is an information-
theoretic guarantee, requiring that the joint distribution of any t shares must be
independent of the secret.

Applications of secret sharing schemes range widely from secure multiparty
computation (MPC), secure storage, secure message transmission, and distrib-
uted algorithms. In some of these applications, particularly secure storage and
message transmission, an additional feature of “robustness” is desirable. Robust
secret sharing is defined to satisfy all the usual properties of secret sharing, while
additionally requiring that when the reconstruction procedure receives at most
t adversarially corrupted shares out of n, it still outputs the correct secret (with
sufficiently high probability).

Prior works on robust secret sharing (e.g. [5,7,9,10,22]) have focused on
robustness against a “monolithic” adversary, i.e. a (computationally unbounded)
centralized adversary who maliciously corrupts t parties and submits arbitrary
values for their shares to the reconstruction procedure, potentially using all of
the joint information present in the t shares initially received by the corrupted
parties. In this model, it is known that for t < n/3 robust secret sharing schemes
can be perfect, i.e. for any admissible adversary the reconstruction procedure
outputs the correct secret with probability one (e.g. Shamir secret sharing, with
Reed-Solomon decoding achieves this property). Interestingly, for n/3 ≤ t < n/2
robust secret sharing is possible, but only by allowing a positive reconstruction
failure probability [8]. In this scenario, Cevallos et al. [9] presented a polynomial
time robust secret sharing scheme over m-bit messages with share sizes of m +
Õ(k + n) and reconstruction failure probability of 2−k. This scheme has the
lowest share size among efficient schemes in this model, but does not match the
best known lower bound of m + k [7]. Our work is motivated by the following
question:

Can the share size be significantly reduced with additional,
but reasonable, restrictions on the adversary?

We identify a very natural and realistic adversary for which we construct a
scheme with considerably shorter shares – while still maintaining efficiency. In
this new adversarial model, we also prove a lower bound of m + k − 2 − log2(3)
bits on the share size, which essentially matches our constructions’ shares and
is almost identical to the best known lower bound in the standard model, in
which much stronger adversaries are allowed. By constructing a scheme that
approximately attains our lower bound, we have a rather complete understanding
of the share sizes that can be obtained for robust secret sharing schemes in this
model, a degree of precision that has not yet been achieved against the standard
monolithic adversary.
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Our Adversarial Model. We consider a “local” adversary, meaning that the t
corrupted players cannot communicate with each other during the execution of
the protocol – but they may arbitrarily coordinate before and after (the latter
to try to gain knowledge on the secret). This means that each of the corrupted
parties must decide on his malicious share to submit to the reconstruction pro-
cedure based only on some pre-determined strategy and the one honest share it
has received from the dealer. This model carries some similarities to the work
of Lepinski et al. [18], in the context of collusion-free protocols. In the setting
of secret sharing robust against local adversaries, it is still true that for t < n/3
schemes can be perfect, and for n/3 ≤ t < n/2 robustness can be achieved
only allowing a failure probability (the same proofs as the ones in the mono-
lithic adversarial model still apply), but in this latter scenario, working with
local adversaries allows us to construct schemes with optimal share sizes, still
maintaining efficiency.

Motivation for Our Model. Local adversaries model several kinds of realistic
limitations of adversarial power in many applications. For example, in a secure
message transmission, data may travel quickly and realtime cooperation among
corrupted nodes may be unlikely. In a large secure multiparty computation, the
scale and pace of the computation may also make online coordination among
adversarial parties unrealistic. Corrupted parties may also be mutually distrust-
ing, unwilling to coordinate (e.g. if they have opposite goals), or they might not
even know about the existence of each other (say in a large scale MPC over the
Internet).

Similar adversary models have been well-studied in other subfields of com-
puter science, such as the multi-prover setting for interactive proofs. In the clas-
sical result of IP = PSPACE [24], a single, computationally unbounded and
potentially duplicitous prover must convince a much less powerful verifier of the
truth of a particular statement. As was shown in [3], considering two duplicitous
but non-communicating provers greatly expands the class of statements that
can be proved, as MIP = NEXP . Removing online communication between
the provers is precisely what fuels this expanded power, and similar gains may be
possible in other interactive scenarios, including secure multiparty computation
and robust distributed algorithms.

In order to capture limited collusion among adversarial parties during the
protocol, the locality model can be extended to allow small factions. More pre-
cisely, we could allow each adversarially submitted share to depend on the view of
a certain bounded number of received shares. We do not address this extended
model in this work, but we suspect that similar techniques can be applied to
obtain such extensions.

More Details on Our Results. As mentioned earlier, we prove two complementary
results on the share size of secret sharing schemes robust against a local adversary
corrupting t of the n players, where n/3 ≤ t < n/2, and where the reconstruction
failure probability is 2−k.
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In the first part of the paper, we show a lower bound of m + k − 2 − log2(3)
on the minimal share size in this setting. This is somewhat surprising, since it is
quantitatively comparable to the lower bound of m + k proven in [7] in the case
of a monolithic (and much stronger!) adversary. Our proof uses remarkably little
adversarial power to obtain this lower bound: more precisely, we show that this
lower bound holds against an oblivious adversary who completely ignores the
honest shares given to corrupted parties and replaces them with either default
values or fresh shares. We note that working with such little adversarial knowl-
edge requires us to develop new lower bound techniques. In particular, the proof
of the previous lower bound of [7] heavily leverages centralized adversarial knowl-
edge of the true secret and all of the shares received by corrupted players. Their
argument considers an adversary who maximizes its success conditioned on this
knowledge – knowledge that our much weaker local adversary does not have.

In the second part, we construct a poly-time scheme robust against local
adversaries whose share size is m + O(k), which essentially meets our lower
bound. Our core idea for shrinking the shares is to authenticate all honest shares
with a single MAC key that is “hidden in plain sight” from a local adversary.
To do so, while still ensuring that the key can be efficiently recovered by the
reconstruction procedure, we develop a novel tool integrating error-correcting
codes with “locally hiding” distributions, a rather general tool that may be of
independent interest.

Compared to the scheme in the standard model with smallest share size [9],
our scheme reduces the share size by removing the additive factor of n. Thus, we
see that restricting to local adversaries allows us to considerably reduce share
size down to approximately match a proven lower bound, removing any linear
dependence on the number of players, while maintaining polynomial time effi-
ciency. This yields a much tighter understanding of what is achievable against
local adversaries than what is known against a monolithic adversary in the con-
text of robust secret sharing.

Techniques for Our Construction. Previous constructions of robust secret shar-
ing schemes use MACs to authenticate honest shares. Against a monolithic
adversary who can view all of the shares received by corrupt players, it seems
necessary to use many different MACs to prevent the adversary from compil-
ing enough information about the keys to forge enough tags for corrupt shares.
These many MAC keys and tags significantly increase the size of shares.

In the local adversary setting where each corrupt party can only act based
upon a pre-determined strategy and its own received share, we can restrict to
a single MAC key to be used on each share for authentication. Essentially, we
will design our shares so that each party will be given a share that is distrib-
uted independently of the MAC key when considered on its own, but the joint
distribution of just a constant number of honest shares reveals the key (hence
allowing authentication of honest shares).

The basic idea is as follows: each share consists of a Shamir share of the
secret, a tag on the Shamir share, and information on the global MAC key (used
for the tag). This information has to be conveyed in a way that a single player
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obtains no information on the key itself (otherwise it could forge its tag), and
the key is still retrievable even if nearly half of the shares are corrupt.

In our construction, the dealer embeds the key in a bit-matrix and distributes
one row per player in such a way that each single row looks random, but the
joint distribution of enough rows reveals the key. More specifically, each bit of
the key is encoded as a column of such matrix, as follows: the bit 0 is encoded
as a uniform bit-column, while the bit 1 is encoded as either the all-zero and
the all-one column, and this choice is uniform. A single row in such matrix is
a uniform string; no information on the key is revealed. On the other hand,
looking across a bigger number of honest rows (and seeing them all agree at the
positions corresponding to 1) allows us to invert the embedding with probability
close to one – the failure probability decreases exponentially with the number of
honest rows seen. In order to make the failure probability negligible when the
number of inspected rows is constant, we encode the key via an asymptotically
good error correcting code before the embedding procedure.

A secondary challenge is that looking at corrupt rows can lead to the wrong
key. However, it is possible to detect a corrupt key by the fact that it verifies
fewer than t + 1 tags with high probability (the honest shares are likely to be
incompatible with a non-honest key).

Thus, we can iterate the procedure to invert the embedding of the key through
all subsets of shares of a fixed constant size, attempt to reconstruct the MAC
key from each set, and stop whenever we find one that authenticates properly.
This computation is still polynomial in n and succeeds with sufficiently high
probability. This comprises our construction of an efficient secret sharing scheme
that is robust against local adversaries, with a significantly reduced share size
compared to previous constructions in the standard model.

Techniques for the Lower Bound. To prove our lower bound on minimal share
size in this setting, we consider very simple local adversary strategies. We sup-
pose that a local adversary’s goal is to cause a reconstruction failure when a
challenger generates honest shares from a uniformly random secret. In particu-
lar, the adversary identifies a player with a share of minimal length and chooses
to corrupt a random set of t of the remaining players and replaces the corrupt
players’ shares with freshly generated honest shares for a new uniformly chosen
secret. Note that these t corrupted shares will be sampled from the same dis-
tribution as honest shares, but sampled independently from the true secret. For
simplicity of illustration, suppose that this local adversary has replaced the first
t shares with its own sample, while the remaining t + 1 shares are honest. Also
suppose that the t + 1st share has minimal length (any scenario follows these
assumptions, up to a relabeling of the players indices). Then, it is likely that
the first t corrupted shares and the honest t + 1st share are also consistent with
some honest sharing. At this point, the complete set of shares is ambiguous, in
the sense that the first t + 1 shares define a (corrupt) secret, while the last t + 1
shares define another (honest) secret. Now, it is not clear whether running the
reconstruction procedure on this set of shares will lead to one secret or the other:
in particular, the probability that an honest sharing agrees with the first t + 1
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shares could be different from the probability that an honest sharing agrees with
the last t+1 shares – and the reconstruction procedure can take this into account
when given an ambiguous set of shares as input (and, for example, output the
secret defined by the shares that are more likely).

To address these subtleties, we parameterize the underlying probability space
in terms of pairs of secrets and random strings chosen by the share generating
algorithm. We group these pairs into various equivalence classes based on colli-
sions of subsets of the resulting shares, and model these equivalences in a layered
graph. Our analysis takes advantage of the fact that the adversary can produce
the first t corrupted shares in a way that is consistent with the t+1st share with-
out knowing what the reconstruction would output. This crucial property comes
as a consequence of the privacy guarantee of the scheme: any first t shares are
consistent with every secret, otherwise the adversary would get information on
the secret after the protocol is over (and communication between corrupt play-
ers is allowed). This is a key source of the precision of our bound as compared
to [7], where they capture adversary success by considering when the adversary
correctly guesses an unknown share, making use of all the information on the t
shares he is given. We manage to capture the adversarial success without requir-
ing such guesses, and no knowledge on the honest shares given to the adversary.

Our lower bound proof holds for secret sharing schemes that are private,
robust, and statistically correct (i.e. we are not requiring that t+1 shares deter-
mine the secret with probability one – however, even if this is the case, by the
(t, δ)-robustness property for an n = 2 · t + 1 player secret sharing scheme, we
get that t + 1 shares determine a secret with probability 1 − δ).

In summary, we obtain an extremely powerful lower bound, since it relies
only upon (weak) local adversaries, and assumes only statistical correctness for
the underlying scheme.

Additional Related Work. Robust secret sharing schemes are also considered
in [11], which does not consider local adversaries, but relaxes the model by
requiring a gap between privacy threshold and reconstruction threshold (this is
commonly known as a ramp scheme). In this setting t/n must be less than 1/2−ε
for some positive ε. Moreover, ramp schemes can avoid the typical restriction
that the size of individual shares must be at least as large as the secret size. In
this model [11] achieves robust secret sharing with nearly constant sized shares.

Decentralized adversaries are also considered in [1,6], which provide frame-
works for simulation-based security definitions for cryptographic primitives
against local adversaries. Similarly, in the setting of leakage-resilient cryptog-
raphy, various “local” adversarial models have been studied. For example, the
“only computation leaks information” axiom of Micali and Reyzin [20] restricts
an adversary to leakage that happens solely on whatever portion of a secret
state is currently involved in a computation. Some other works, such as [13,14]
consider secret state as divided among multiple devices and leaking indepen-
dently. [2] also present a rather general study of various collusion restrictions on
adversarial actors in multiparty protocols.
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2 Preliminaries

In this section we list the classic tools and notation used in our paper.
We usually denote distributions by calligraphic letters (e.g. D), random vari-

ables by capital letters (e.g. D ∼ D reads as “D follows the distribution D”),
and samples by lowercase letters (e.g. d ← D reads “d is sampled according to
D”). Moreover, for any set X, we denote by UX the uniform distribution on X.

Definition 1 (Projection). For any integer n, for any set X = X1×· · ·×Xn,
and for any I ⊆ {1, . . . , n}, we write XI to denote the set

∏
i∈I Xi. This notation

is carried over to the elements of X.

Definition 2 (Hamming Weight). For a vector v ∈ F
c
2, we define w(v) to be

the Hamming weight of v (i.e. the number of non-zero coordinates of v).

We will use the following Chernoff Bound, which appears as Theorem 4.4
in [21].

Lemma 1. Let Y1, . . . , Ym be independent random variables with Pr[Yi = 1] = p
and Pr[Yi = 0] = 1 − p. Let Y =

∑m
i=1 Yi and μ = p · m. Then for 0 < β ≤ 1,

Pr[Y ≥ (1 + β) · μ] ≤ e−μβ2/3.

2.1 Message Authentication Codes

Definition 3 (MAC). A (one time) ε-secure message authentication code
(MAC) for messages in M is a function MAC : K × M → T , for some sets
K (key space) and T (tag space) such that for all m 	= m′ ∈ M, for all t, t′ ∈ T ,
and for a uniform random variable K ∼ UK:

Pr[MAC(K,m′) = t′ | MAC(K,m) = t] ≤ ε.

2.2 Error-Correcting Codes

An error-correcting code for messages that are bit strings of length h is a function
C : Fh

2 → F
c
2, where c is called the block length. The distance d of the code is

defined as

min
x�=y∈F

h
2

{w(x − y)}.

The number E of adversarial errors tolerated is 
d
2 − 1�, while the fraction e of

errors tolerated is E
c . The rate of the code r is defined to be h/c. A decoding

procedure is a function D : Fc
2 → F

h
2 such that whenever z satisfies w(z, C(x)) ≤

E, D(z) = x.
An infinite ensemble of codes for increasing block lengths c is said to be

asymptotically good if the rate r and fraction of errors e are both lower bounded
by positive constants. Such codes are known to exist, and with efficient encoding
and decoding functions. For example, Justesen [17] gave an explicit family of
asymptotically good codes with block lengths h = 2m(2m − 1) for each positive
integer m with efficient encoding and decoding functions.
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2.3 Robust Secret Sharing Schemes

Throughout the rest of the paper, we use the following notation:

– n is an integer that denotes the number of players in the scheme.
– t ≤ n denotes the maximum number of corruptible players in the scheme.
– M is the message space. We denote by m the integer such that 2m−1 < |M| ≤

2m.
– R is a set that denotes the randomness space used by the scheme to share

messages. We assume that the scheme samples uniform elements in R to
produce sequences of shares.

– S = S1×· · ·×Sn is a set that denotes the ambient space of sequences of shares.
For i = 1, . . . , n we denote by 0i a default element in Si (i.e. an element that
any Turing machine can retrieve without any input). For example, if Si is a
group, 0i could be the zero of Si as a group.

Definition 4 (Secret Sharing Scheme). A t-private, n-player secret sharing
scheme over a message space M is a tuple (Share,Rec) of algorithms that run
as follows:

Share(s, r) → (s1, . . . , sn): this algorithm takes as input a message s ∈ M and
randomness r ∈ R and outputs a sequence of shares (s1, . . . , sn) ∈ S.

Rec(s1, . . . , sn) → s′: this algorithm takes as input an element (s1, . . . , sn) ∈ S
(not necessarily output by Share) and outputs a message s′ ∈ M.

Moreover, the following properties hold:

Privacy: Any t out of n shares of a secret give no information on the secret itself.
More formally, for any random variable S over M and uniform R ∼ UR:

S = (S | Share(S,R)C1 = Share(s, r)C1 , . . . ,Share(S,R)Ct
= Share(s, r)Ct

)

Perfect Correctness: Reconstructing a sequence of shares generated by the
sharing procedure leads to the original secret, even given n − t − 1 erasures.
More formally, for any I ⊆ {1, . . . , n} with |I| = t + 1 let Δ(I) ∈ {⊥, 1}n be
the characteristic vector of I (i.e. for i ∈ I, Δ(I)i = 1; for i /∈ I, Δ(I)i =⊥,
where ⊥ is a special symbol such that ⊥ ·si =⊥ for any share si ∈ Si). Then,
for any s ∈ M, r ← UR:

Pr[Rec(Share(s, r) ∗ Δ(I)) = s] = 1,

where ∗ denotes the coordinate-wise product.

Remark 1. Jumping ahead, when defining (t, δ)-robust secret sharing, we relax
perfect correctness to statistical correctness – i.e. correctness holds with proba-
bility 1 − δ instead of 1.

Definition 5 (Merging Function). Let s ∈ M, r ∈ R and let I ⊆ {1, . . . , n}.
For i ∈ I, let vi ∈ Si. We define the merging function of s, r with I, (vi)i∈I as

Merge(s, r, I, (vi)i∈I) = S ∈ S
where for i ∈ I Si = vi, and for i /∈ I Si = Share(s, r)i.



Robust Secret Sharing Schemes Against Local Adversaries 335

Definition 6 (Adversary). For any t-private, n-player secret sharing scheme
(Share,Rec), we define the experiment Exp(Share,Rec)(D,Adv), where D is a distri-
bution over M, and Adv is an interactive Turing machine, called the adversary.

Exp(Share,Rec)(D,Adv) is defined as follows:

E.1. Send the public description (Share,Rec) of the scheme and the distribution
D to Adv.

E.2. Adv computes and outputs I = {i1, . . . , it} ⊆ {1, . . . , n}, i.e. a subset of
players whose size is less or equal to t.

E.3. Sample s ← D, and r ← UR, compute Share(s, r) and send Share(s, r)I to
Adv.

E.4. Adv outputs (vi)i∈I , where vi ← Vi and

Vi = Vi(Share,Rec,D,Share(s, r)i1 , . . . ,Share(s, r)it
)

is a random variable that may depend on the public information of the
scheme, and the ensemble of shares indexed by I.

E.5. Return 1 if and only if Rec(Merge(s, r, I, (vi)i∈I)) 	= s.

For v ≤ t, we say that an adversary is v-local if for all i ∈ I,

Vi = Vi(Share,Rec,D,Share(s, r)i1 , . . . ,Share(s, r)iv
),

i.e. Vi is a random variable that depends only on the public information of the
scheme, and at most v elements of the ensemble of shares indexed by I.

Definition 7 (Robust Secret Sharing Scheme). A t-private n-player secret
sharing scheme (Share,Rec) over a message space M is (t, δ)-robust if the fol-
lowing property holds:

Robustness: With probability less or equal to δ the reconstruction procedure
fails at outputing the correct shared value, even if t out of the n shares are
corrupt by adversary. Formally, for any distribution D, for any adversary
Adv:

Pr[Exp(Share,Rec)(D,Adv) = 1] ≤ δ

We say that a scheme is (t, δ)-robust against v-local adversaries if robustness
holds for any v-local adversary.

3 Lower Bound

We prove a lower bound for the share size of any secret sharing scheme that is
robust against 0-local adversaries, which implies that this lower bound applies
to any secret sharing scheme that is robust against v-local adversaries for any
v ≥ 0.

Theorem 1. Let k,m, t be integers. Let δ = 2−k, n = 2 · t + 1, M be a set
with 2m−1 ≤ |M| ≤ 2m. Let (Share,Rec) be an n-player secret sharing scheme
over M. If (Share,Rec) is (t, δ)-robust, then the minimum bit-length of any of
its shares is at least m + k − (2 + log2(3)).
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3.1 Intuition for the Proof of Theorem 1

Here, we give a high level overview of our proof. Let Pt+1 be a player associated
with a share with the shortest size λ.

An Adversary. We relate the value λ to the security parameter k by analyzing
the success probability of a (local) adversary that does the following:

1. “decide” whether to corrupt I = {P1, . . . , Pt} or J = {Pt+2, . . . , Pn}. An
intuition about how this decision is made is given in the following.

2. sample a uniform message x and randomness rx and compute Share(x, rx)
3. output Share(x, rx)i as the corrupt share of Pi, for all i in the set of corrupt

players.

The decision made by the adversary in step 1 can be thought of simulating each
choice (either corrupt I or J) and picking the one that leads to higher success
probability. Studying this success probability is a bit tricky. A sufficient way to
describe it is by analyzing the probability that:

– the t + 1st share is compatible with the corrupt shares and
– the reconstruction doesn’t output the correct secret (this latter property alone

would suffice, but it is easier to understand it in the presence of the former
one)

Intuitively, in order to directly understand the above two properties, one has
to understand the distribution induced by the sharing procedure on the shares,
which may be cumbersome. It would be helpful to relate the success of the
adversary solely on the distribution of secrets and randomness – the uniform
distribution.

A Graph – Definition. We achieve this feature by relating the above two
properties to a graph, constructed as follows: it is a 4-layered graph, where each
vertex in a layer is a pair (s, r) for all possible messages s and randomness r.
Edges are created according to the following rule:
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A Graph – Properties. In order to make his decision, the adversary labels
the edges between the second and third layer as follows:

The decision he makes in step 1, is merely counting how many edges have a
specific label:

Decide to corrupt I if |I-edges| ≥ |J-edges| (corrupt J otherwise)

Adversarial Success in the Graph. Without loss of generality, assume that
the adversary chose to corrupt I. Then, the robustness experiment is equivalent
to the following:

– choose a vertex (sJ , rJ ) uniformly from the third layer of the graph
– choose a vertex (s, r) uniformly from the first layer of the graph

It turns out that the success probability of the adversary is equivalent to the
probability that (s, r) and (sJ , rJ ) are connected (this implies that the t + 1st
share is compatible with the corrupt shares), and there exists an I-edge in the
connecting path (this implies that the reconstruction fails). In other words,

2−k ≥ Pr[Exp(Share,Rec)(U ,Adv) = 1]

= Pr (s,r,sJ ,rJ )[∃(sI , rI) | (s, r)—(sI , rI)
I
—(sJ , rJ )]

Refining, Analyzing Connectivity, and Concluding. Now, we can start an
analysis of the above property which relates the security parameter to the size
of the shortest share. Firstly, we define a subgraph with the specific connectivity
property that the number of vertices at layer one connected by a path to a
specific vertex at layer three is at least 2m times the number of vertices at layer
two connected to the same vertex at layer three. In other words,

|{(s, r) | ∃(sI , rI) : (s, r)—(sI , rI)—(sJ , rJ)| ≥ 2m · |(sI , rI) | (s, r)—(sI , rI)—(sJ , rJ)|

Somewhat surprisingly, this can be done by removing only a relatively small
number (2 · 2−k fraction) of vertices to the second layer of the graph: among
others, we remove all those vertices (s, r) such that Rec(Share(s, r)) 	= s (there
is most a 2−k fraction of them, by statistical correctness), and then use perfect
correctness and privacy on the induced graph to obtain the above.
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We now use the graph properties to manipulate the resulting probability:
the property of the refined graph allows us to essentially “move” the probability
mass at the first layer of the subgraph to the second layer, with a gain of a 2m

factor:

Pr (s,r,sJ ,rJ )[∃(sI , rI) | (s, r)—(sI , rI)
I
—(sJ , rJ )]

≈ 2m · Pr (sI ,rI ,sJ ,rJ )[(sI , rI)
I
—(sJ , rJ )]

(we write ≈ here instead of = to take into account of the small number of vertices
removed in the construction of the subgraph.) Then, we can remove the labeling
condition by noticing that the adversary chose the more successful among I and
J , which means that at least a 1/2 fraction of the labeled edges are I-edges:

2m · Pr (sI ,rI ,sJ ,rJ )[(s
I , rI)

I
—(sJ , rJ )] ≥ 2m−1 · Pr (sI ,rI ,sJ ,rJ )[(s

I , rI)—(sJ , rJ )]

The rest of the proof is an algebraic manipulation of the resulting probabil-
ity which leads to the correct result by using standard probability tools, such
as independence of random variables, union bounds, and the Cauchy-Schwarz
inequality.

3.2 Proof of Theorem 1

Proof. We first note that it suffices to prove a lower bound of m+k−(1+log2(3))
for |M| = 2m, since a lower bound for the share size required to share a secret
from a space of size 2m−1 certainly applies to sharing a secret from larger a
space of size |M| ≥ 2m−1. Throughout the proof, we will therefore assume that
|M| = 2m.

Our proof will rely solely on very simple local adversary strategies. Namely,
we will need to consider only two possible adversary strategies: one that replaces
some subset of t shares with default values of (say) all zeros, and another that
replaces them with shares generated with fresh randomness for a fresh (uniform)
secret. These strategies are both 0-local because the adversary submits shares
that are distributed independently of all the shares that the corrupted players
receive. The key idea will be that if one share is very short, then it becomes
more likely that the adversary submitting t freshly distributed shares will cause
a “collision”, meaning that the corrupted shares are consistent with the honestly
generated short share. This will make it difficult for the reconstruction algorithm
to tell which is the honestly shared secret. We also consider the adversary who
submits default values for technical reasons within the argument, in order to
prove that there are not too many honest sharings for differing secrets that agree
in some set of at least t + 1 shares. If these were too common, the adversary
submitting default values for the complement set would succeed in confusing the
reconstruction algorithm with sufficient probability.

To carefully study the probability space of pairs (s, r) where s is a uni-
formly random secret and r is a random bit string used in the share generating



Robust Secret Sharing Schemes Against Local Adversaries 339

procedure, we define a layered graph whose vertices at each layer correspond
to these pairs (s, r), and edges between the layers represent agreeing shares for
specified subsets of players. Essentially, our graph models various kinds of equiv-
alence classes of values (s, r) corresponding to partial agreements of the resulting
shares. To execute our proof, we will identify paths in our graph corresponding
to the events of adversary success, and we will then lower bound the number of
such edges and hence the success probability of the adversary.

A Graph. (For an intuitive description, see Sect. 3.1.) Let P ∈ {1, . . . , n} be
the index of a player, let I ⊂ {1, . . . , n} \ {P} be a set of cardinality |I| = t,
and let J = {1, . . . , n} \ ({P} ∪ I) be the set of size t corresponding to the
players that are not in I and are not P . Let G = G(P, I) be a graph defined
as:
– Vertices(G) = {1, . . . , 4}×M×R, i.e. the vertex set consists of four layers

of message and random value tuples.
– ((i, s, r), (i + 1, s′, r′)) ∈ Edges(G) if:

• i = 1, and Share(s, r)I = Share(s′, r′)I : i.e. a vertex at layer one is
connected to a vertex at layer two if the tuples of shares they define
agree on the shares at I.

• i = 2, s 	= s′, and Share(s, r)P = Share(s′, r′)P : i.e. a vertex at layer two
is connected to a vertex at layer three if the vertices represent different
secrets, and the tuples of shares they define agree on the share at P .

• i = 3, and Share(s, r)J = Share(s′, r′)J : i.e. a vertex at layer three is
connected to a vertex at layer four if the tuples of shares they define
agree on the shares at J .

Path Sets, Labeling, Balance. (For an intuitive description, see Sect. 3.1.)
We want to construct a labeling system for paths from layer one to layer
four, that will be useful to analyze certain reconstruction properties of the
secret sharing scheme associated with the graph. Firstly, however, we need
to construct a function that maps paths containing edges from layer two
to layer three to sequences of shares. For 1 ≤ i < j ≤ 4, let Ei,j be the
set of paths successively connecting vertices at layer i to vertices at layer j;
formally,

Ei,j := {((i, si, ri), (i + 1, si+1, ri+1), . . . , (j, sj , rj)) |
for i ≤ k < j : ((k, sk, rk), (k + 1, sk+1, rk+1)) ∈ Edges(G(P, I))}.

We also define another set, E , containing all paths with an edge between
layer two and three; formally,

E =
⋃

i∈{1,2},j∈{3,4}
Ei,j .

Now, we construct a string function S that assigns sequences of shares to
paths in E . Formally, for � ∈ E , � = (. . . , (2, s2, r2), (3, s3, r3), . . . ), define
S(�) as the sequence of shares with the following properties:
– S(�)I := Share(s2, r2)I ,
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– S(�)P := Share(s2, r2)P = Share(s3, r3)P ,
– S(�)J := Share(s3, r3)J .
Notice that the function S depends only on the edges between layer two and
three, so any two paths in E sharing the same edge from layer two and three
have the same image.
Now, for i ∈ {1, 2}, j ∈ {3, 4}, we define a labeling relation L as follows:

L : E �� {I, J}

�
� ��

{
I, if Rec(S(�)) 	= s3,
J, if Rec(S(�)) 	= s2

Analogously to S, L depends only on the edges between layer two and three
of a path. Also notice that L is not necessarily a function, as we do not
exclude the existence of paths � = (. . . , (2, s2, r2), (3, s3, r3), . . . ) with s2 	=
Rec(S(�)) 	= s3. Such paths would be labeled as both I and J .
Finally, we say that the graph G is I-oriented if there are at least as many

edges in E2,3 labeled by I than J , i.e. if |{� ∈ E2,3 | L(�) = I}| ≥ |{� ∈ E2,3 |
L(�) = J}|.
Now that we introduced all the required tools and definitions, we are ready
to begin our analysis.

Setup. Let λ be the minimal bit-length of any share of (Share,Rec). Without loss
of generality, assume that P is a player associated with a share of (Share,Rec)
of length λ.

Construction of an Adversary. (For an intuitive description, see Sect. 3.1.)
Let AdvA be the adversary who behaves as follows (during an execution of
Exp(Share,Rec)(D,AdvA)):
1. Given the public information (Share,Rec), D in step E.1, sample x ← UM,

rx ← UR.
2. Compute (v1, . . . , vn) ← Share(x, rx).
3. Sample a uniform set I ⊂ {1, . . . , n} \ {P} with |I| = t.
4. Construct G(P, I).
5. If G(P, I) is I-oriented, output I at step E.2, and (vi)i∈I at step E.4.

Else, output J at step E.2, and (vj)j∈J at step E.4.
Notice that AdvA is a valid 0-local adversary, since all the computation AdvA

performs is independent of the values it is inputed at step E.3.
Representing Adversarial Success in the Graph. (For an intuitive descrip-

tion, see Sect. 3.1.) Assume that, if I is the set chosen by the adversary, the
graph G(P, I), induced by the given secret sharing scheme, is I-oriented.
Let z ∈ M, rz ← UR, let C be a sequence of shares defined as: for i ∈ I,
Ci = Vi = Share(x, rx)i; for j ∈ J ∪ {P}, Cj = Share(z, rz)j . Notice that C
can be seen as a sharing of z corrupted at I by the above adversary, therefore,
by the robustness property:

Pr[Rec(C) 	= z] ≤ δ = 2−k, (1)
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where the probability is taken over uniform choices of x, z ∈ M, rx, rz ∈ R.
Notice that if there exists (y, ry) such that � := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈
E1,3 and V (�) = I then Rec(C) 	= z: in fact, if � ∈ E1,3, then V (�) = I implies
Rec(S(�)) 	= z, bydefinition ofV ; and sinceS(�) = C (by the following:S(�)I =
Share(y, ry)I = Share(x, rx)I = CI , S(�)J = Share(z, rz)J = CJ and S(�)P =
Share(y, ry)P = Share(z, rz)P = CP ) then V (�) = I implies Rec(C) 	= z. This
means that

Pr[∃(y, ry), � := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈ E1,3, V (�) = I]
≤ Pr[Rec(C) 	= z], (2)

which implies

Pr[∃(y, ry), � := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈ E1,3, V (�) = I] ≤ 2−k, (3)

by combining Eqs. 1 and 2.
A More Refined Graph. (For an intuitive description, see Sect. 3.1.) In order

to better analyze the left-hand side of Eq. 3, we introduce a subgraph G′(P, I)
of G(P, I), defined by the following algorithm:
1. Initialize G′ ← G(P, I)
2. For a = (ai1 , . . . , ait+1) ∈ SI∪{P}:

(a) Define Ha := {(2, s, r) ∈ Vertices(G) | Share(s, r)I∪{P} = a}
(b) Initialize H ′

a := Ha

(c) While there exist (2, s, r), (2, s′, r′) ∈ H ′
a such that s 	= s′:

i. Update the graph G′ by removing (2, s, r) and (2, s′, r′):
– Edges(G′) ← Edges(G′)|Vertices(G′)\{(2,s,r),(2,s′,r′)}
– Vertices(G′) ← Vertices(G′) \ {(2, s, r), (2, s′, r′)}

ii. Update H ′
a ← {(2, s, r) ∈ Vertices(G′) | Share(s, r)I∪{P} = a}

3. Output G′(P, I) ← G′.
Notice that the vertices we are removing in this graph might exist, because
we are allowing schemes where correctness is only statistical. In the following,
we bound the number VR = |Vertices(G(P, I))\Vertices(G′(P, I))| of vertices
removed from G(P, I) by the above algorithm to obtain G′(P, I). To do so,
we relate VR to Pr[Exp(Share,Rec)(UM,AdvB) = 1] where AdvB is a specific
adversary, defined as follows:
1. Let b = (0j1 , . . . , 0jt

) ∈ SJ

2. Output J at step E.2, b at step E.4.
Notice that AdvB is a valid 0-local adversary, as b depends only on the public
specifications (Share,Rec) of the scheme (and therefore it is independent of
any value inputed to B at step E.3). Let

GB := {(s, r) ∈ M × R | Rec(Merge(s, r, J, b)) 	= s}
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Notice that if any element (s, r) of GB is sampled at step E.3 of
Exp(Share,Rec)(UM,AdvB), then Exp(Share,Rec)(UM,AdvB) outputs 1, by def-
inition of GB . Notice also that the probability of sampling (s, r) in GB at
step E.3 is |GB |/|M × R|, as the experiment considers uniform messages
(and randomness). Therefore, by the robustness of the scheme,

|GB |/|M × R| ≤ 2−k (4)

Now, we want to relate GB and VR. Notice that any two vertices (2, s, r),
(2, s′, r′), simultaneously removed in step 2(c)i, belong to the same set Ha

for some a, which implies that

Share(s, r)I∪{P} = a = Share(s′, r′)I∪{P}, (5)

by definition of Ha. Combining Eq. 5 with the fact that {1, . . . , n} \ J =
I ∪ {P}, it follows that Merge(s, r, J, b) = S = Merge(s′, r′, J, b). Now, let
s′′ ← Rec(S). Since s 	= s′ then at least one between s and s′ differs from s′′,
which means that at least one between (s, r) and (s′, r′) lies in GB . Therefore,

VR ≤ 2 · |GB | (6)

In other words, at least half of the vertices (2, s, r) removed in the construc-
tion of G′ are such that to (s, r) ∈ GB . Combining Eq. 6 with Eq. 4, we
get

VR ≤ 2 · 2−k · |M × R| (7)

General Facts About the Connectivity Between Layers. (For an intuitive
description, see Sect. 3.1.) Now that we have a bound on the number of
vertices removed from G(P, I) to obtain G′(P, I) we can proceed and study
how some specific sets of vertices are connected between the layers of G′(P, I).
We are mostly interested in vertices on layer one and two. For any vertex
(2, s, r) ∈ Vertices(G′(P, I)), and for any secret s′ ∈ M, define

Cs′(2, s, r) := {(1, s′, r′) | ((1, s′, r′), (2, s, r)) ∈ Edges(G′(P, I))}

i.e. the set of vertices at layer one that represent secret s′ and are connected
to (2, s, r). Notice that the set {Cs′(2, s, r)}s′∈M is a partition of the set of
vertices at layer one connected to (2, s, r). We want to show that for any
s′, s′′, |Cs′(2, s, r)| = |Cs′′(2, s, r)|. For the sake of contradiction, assume this
is not the case, so without loss of generality there exist s′ 	= s′′ such that
|Cs′(2, s, r)| > |Cs′′(2, s, r)|. By definition of G′(P, I), this means that

|{r′ ∈ R | Share(s′, r′)I = Share(s, r)I}| > |{r′′ ∈ R | Share(s′′, r′′)I

= Share(s, r)I}|
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which implies that

Pr[s′ | Share(s, r)I ] > Pr[s′′ | Share(s, r)I ]

and therefore violates the privacy of the scheme, as Share(s, r)I would reveal
that the secret is more likely to be s′ than s′′, but by privacy given any t
shares the secret should look uniform. Therefore,

for any s′, s′′ ∈ M, (2, s, r) ∈ G′(P, I): |Cs′(2, s, r)| = |Cs′′(2, s, r)| (8)

This implies that any (2, s, r) ∈ G′(P, I) is connected to 2n · |Cs(2, s, r)|
vertices at layer one (2n · |Cs(2, s, r)| = | ∪s′∈S Cs′(2, s, r)|, by the fact that
{Cs′(2, s, r)}s′∈M is a partition).

Particular Facts About the Connectivity Between Layers. (For an intu-
itive description, see Sect. 3.1.) Now, with a notation similar to the one in
the construction of G′(P, I), for a ∈ SI∪{P}, let

H ′
a := {(2, s, r) ∈ Vertices(G′(P, I)) | Share(s, r)I∪{P} = a}

Moreover, let

C ′
a := {(1, s, r) ∈ Vertices(G′(P, I)) | ∃(2, s′, r′) ∈ H ′

a : ((1, s, r), (2, s′, r′))
∈ Edges(G′(P, I))}

i.e. the set of vertices at layer one that are connected to H ′
a. Notice that all

vertices in H ′
a represent the same secret: namely, if (2, s, r), (2, s′, r′) ∈ H ′

a,
then s = s′, by construction of G′(P, I). Also, for any (2, s, r) ∈ H ′

a, if
(2, s, r′) ∈ H ′

a, then ((1, s, r′), (2, s, r)) ∈ Edges(G′(P, I)), again by construc-
tion of H ′

a, and in particular from the fact that Share(s, r)I = Share(s, r′)I .
This implies that for any (2, s, r) ∈ H ′

a, |Cs(2, s, r)| ≥ |H ′
a|. Using property

8, we get that any (2, s, r) ∈ H ′
a is connected to a set X of vertices at layer

one of cardinality at least 2m · |H ′
a|. Since |C ′

a| ≥ |X| (as C ′
a ⊇ X), we get

Therefore,
|C ′

a| ≥ 2m · |H ′
a| (9)

Putting Things Together. (For an intuitive description, see Sect. 3.1.) We
can now proceed and bound the left-hand side of Eq. 3 in terms of the size of
SP . The following calculation starts with a probability space where (x, rx)
and (z, rz) are independently and uniformly sampled form M×R. We begin
with some simple consequences of our definitions:

2−k ≥ Pr[∃(y, ry), � := ((1, x, rx), (2, y, ry), (3, z, rz)) ∈ E1,3, V (�) = I]

=
∑

a∈SI∪{P }

Pr

[∃(y, ry), y �= z, Share(x, rx)I = aI , Share(y, ry)I = aI ,
Share(y, ry)P = aP , Share(z, rz)P = aP , V (�) = I

]

(definition of E1,3)

=
∑

a∈SI∪{P }

Pr

[
Share(x, rx)I = aI , ∃(2, y, ry) ∈ Vertices(G′(P, I)), y �= z,

Share(y, ry)I∪{P} = a, Share(z, rz)P = aP , V (�) = I

]

(Vertices(G′(P, I)) ⊆ Vertices(G(P, I)))
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Next we recall that the label of the � can be determined without reference
to (x, rx). We will write �2,3 as the edge connecting (2, y, ry) and (3, z, rz),
and we note that V (�) = V (�2,3). We note that the condition on x can now
be written independently:

=
∑

a∈SI∪{P }

Pr[(1, x, rx) ∈ C ′
a] · Pr

⎡

⎣
∃(2, y, ry) ∈ Vertices(G′(P, I)),
y 	= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (�2,3) = I

⎤

⎦

(definition of C ′
a)

=
∑

a∈SI∪{P }

|C ′
a|

|M × R| · Pr

⎡

⎣
∃(2, y, ry) ∈ Vertices(G′(P, I)),
y 	= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (�2,3) = I

⎤

⎦

(unif. of (x, rx) ∈ M × R)

=
∑

a∈SI∪{P }

2m · |H ′
a|

|M × R| · Pr

⎡

⎣
∃(2, y, ry) ∈ Vertices(G′(P, I)),
y 	= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (�2,3) = I

⎤

⎦ (Eq. 9)

Now in order to express this in a more convenient form and then replace the
existence condition on y with something easier to manipulate, we introduce
a fresh random variable (Y, rY ) sampled independently and uniformly from
M × R:

= 2m ·
∑

a∈SI∪{P }

Pr[(2, Y, rY ) ∈ H ′
a] · Pr

⎡

⎣
∃(2, y, ry) ∈ Vertices(G′(P, I)),
y 	= z,Share(y, ry)I∪{P} = a,

Share(z, rz)P = aP , V (�2,3) = I

⎤

⎦

(unif. of (Y, rY ) ∈ M × R)

≥ 2m ·
∑

a∈SI∪{P }

Pr
[

(2, Y, rY ) ∈ H ′
a, Y 	= z,

(2, Y, rY ) /∈ VR,Share(z, rz)P = aP , V (�2,3) = I

]

In this last expression, �2,3 now denotes the edge between (2, Y, rY ) and
(3, z, rz). Our labeling condition now applied to an edge between two uni-
formly sampled vertices at layer 2 and layer 3, hence we can directly apply
our knowledge that the graph is I-oriented to conclude:

≥ 2m

2
·

∑

a∈SI∪{P }

Pr
[

(2, Y, rY ) ∈ H ′
a, Y 	= z,

(2, Y, rY ) /∈ VR,Share(z, rz)P = aP

]
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We next observe that the events Y 	= z and Share(z, rz)P = aP are indepen-
dent, by privacy. This allows us to proceed as:

≥ (1 − 2−m) · 2m

2
·
∑

a∈SI∪{P }

Pr

[
(2, Y, rY ) ∈ H ′

a,
(2, Y, rY ) /∈ VR

]

· Pr[Share(z, rz)P = aP ]

(independence)

= (1 − 2−m) · 2m

2
·
∑

a∈SI∪{P }

Pr

⎡

⎣
Share(Y, rY )I = aI ,
Share(Y, rY )P = aP ,

(2, Y, rY ) /∈ VR

⎤

⎦ · Pr[Share(z, rz)P = aP ]

(definition of H ′
a)

We will next apply a union bound to remove the condition (2, Y, rY ) /∈ VR,
and then use our prior bound on the size of VR:

≥ − |VR|
|M × R| + (1 − 2−m) · 2m

2
·

·
∑

a∈SI∪{P }

Pr
[
Share(Y, rY )I = aI ,
Share(Y, rY )P = aP

]

· Pr[Share(z, rz)P = aP ]

(union bound)

≥ −2−k+1 +
2m

2
·

·
∑

a∈SI∪{P }

Pr
[
Share(Y, rY )I = aI ,
Share(Y, rY )P = aP

]

· Pr[Share(z, rz)P = aP ] (Eq. 7)

Next we reorganize our sum by looking at each aP value and summing over
all the values of aI :

= −2−k+1 +
2m

2
·

∑

a∈SP

Pr[Share(Y, rY )P = aP ] · Pr[Share(z, rz)P = aP ]

The remainder of the calculation is an application of the Cauchy-Schwarz
inequality after exploiting the fact that (Y, rY ) and (z, rz) are identically
distributed and now subject to the same condition:

= −2−k+1 +
2m

2
·

∑

a∈SP

Pr[Share(Y, rY )P = aP ]2

(identical random variables)

= −2−k+1 +
2m

2
· 1
|SP | ·

∑

a∈SP

Pr[Share(Y, rY )P = aP ]2
∑

a∈SP

12
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≥ −2−k+1 +
2m

2
· 1
|SP | ·

⎛

⎝
∑

a∈S{P }

Pr[Share(Y, rY )P = aP ] · 1

⎞

⎠

2

(Cauchy-Schwarz inequality)

= −2−k+1 +
2m

2
· 1
2λ

(definition of λ)

= 2m−λ−1 − 2−k+1

Therefore, we must have

2m−λ−1 − 2−k+1 ≤ 2−k,

which implies that

λ ≥ m + k − (1 + log2(3)).

4 An Efficient Scheme

The main idea behind our efficient scheme is similar to many other robust secret
sharing schemes in the standard model: in order to achieve robustness we use
Shamir’s secret sharing scheme and expand each share with some authentication
data so that any adversary who submits a corrupt share cannot provide authen-
tication data that matches it. Differently from previous work, however, we have
more freedom in what authentication data we can add, since each corrupt share
depends only on a single share sent by the dealer, instead of depending on all
the shares assigned to the adversary. We use this property and embed the same
MAC key into each share and add a tag to the share in such a way that the key
is not recoverable by individual corrupt players, while it is recoverable by the
reconstructor, who will then check the authenticity of each share.

More precisely, we will use our locally hiding transform developed in
AppendixA to distribute aMACkey among the parties so that it cannot be learned
by a local adversary but can be reliably extracted from a number of honest shares.
Recovery of the key and authentication in the reconstruction procedure will be
performed by iterating over constant subsets of shares, extracting a candidate key
value, and then attempting to authenticate at least t + 1 shares. Since the local
adversary cannot learn the real MAC key (during the execution of the protocol),
we will prove that is it unlikely that a corrupted share will authenticate properly
under the correct key. Similarly, we will prove it is unlikely for an incorrect can-
didate key to authenticate at least t + 1 shares. The error-correcting code in our
locally hiding transform will ensure that when we attempt to extract a key from
a subset of honest shares, we produce the correct key with very high probability.
Putting this all together, we can argue that the correct key will be recovered and
the correct secret will be reconstructed.
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Remark 2. After the completion of this work, Daniel Wichs discovered a simpli-
fication of our construction, achieving similar parameters. Intuitively, to share a
message s, the dealer does the following:

1. create Shamir secret shares si of s using a polynomial of degree t
2. choose a one-time MAC key z and compute a tag ti ← MAC(z, si) on si via z
3. create Shamir secret shares zi of z using a polynomial of degree 1
4. send (si, ti, zi) to Pi.

The reconstruction procedure recovers the correct key z from the zi (this can
be done via Reed-Solomon decoding and is correct against t corruption), checks
it against each tag ti and recovers the secret s from the shares si for which the
check passes.

The key is unknown to the adversaries during the protocol, because they
are local and the key is secret shared via a 1-private secret sharing. This means
that the adversaries have no chance to forge their MACs during the protocol.
Therefore, they cannot change their shares and make the test on the tags pass
at the same time. Notice that after the protocol the adversaries can collude
and reconstruct the key z, but at this point it is of no use for them, since the
reconstructor already retrieved the correct secret s.

We feel that both constructions are of independent interest.

4.1 Construction

In the following, we use the MAC defined in Appendix B and the locally hiding
transform defined in Appendix A. We let g denote the tag length of our MAC
(the bit-length of its keys is then h = 2·g), and we define an additional parameter
d := m/g, where m is the bit-length of messages. The security parameter for the
MAC is ε = d · 2−g.

We give an explicit construction of our secret sharing scheme in Figs. 1 and 2.

Fig. 1. The sharing procedure Share.
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Fig. 2. The reconstruction procedure Rec.

Theorem 2. For n = 2 · t + 1, the scheme (Share,Rec) given in Figs. 1 and 2 is
(t, δ)-robust against 1-local adversaries, where

δ = 2 · (t + 1) · t/|M| +
(

n

α

)

· (4 · d · ε + 5/|M|) + e− cβ2

3·2α−1

The proof of Theorem 2 can be found in the full version of this work [19].

Corollary 1. Given an error-correcting code C with block length c = Θ(g) and
constant relative distance γ and m = Ω(g), there exists positive constants σ1, σ2

such that our construction in Figs. 1 and 2 is δ-robust for δ ≤ 2−k and share
size is

m + c + g = m + c + k · σ−1
1 + σ2 · σ−1

1 · (log(n) + log(d)) = m + O(k).

The proof of Corollary 1 can be found in the full version of this work [19].

Remark 3. Note that the restriction that m = Ω(g) can be removed, if one
simply shares the shorter secrets in M with Shamir shares over a field of bit
length g. In this case, the share size becomes g + c + g = m + c + O(g) instead
of precisely m + c + g.

A New Tools for Scheme Construction

In this section, we develop some general tools that will be used in our efficient
scheme construction. First, we will define a simple “locally hiding function” that
generates two distributions D0 and D1. While any single bit of the output is
distributed identically in D0 and D1, the joint distribution of a relatively small
number of bits is sufficient to distinguish D0 from D1 with high probability.
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A.1 Locally Hiding Function

Definition 8 (Locally Hiding Function). Let D0 = UF
n
2

be the uniform
distribution over F

n
2 , and let D1 = UX be the uniform distribution over

X = {0n, 1n} ⊆ F
n
2 . The n-locally hiding function is a randomized function

η : F2 → F
n
2 defined as:

η : F2
�� Fn

2

v � �� Dv.

Lemma 2 (Properties). The n-locally hiding function has the following prop-
erties:

Local Hiding: For any distribution D over F2, for any v ∈ F2, for any i ∈
{1, . . . , n}, and for any wi ∈ F2, if B ∼ D,

Pr[B = v] = Pr[B = v | η(B)i = wi].

Local Almost Invertibility: For any I ⊆ {1, . . . , n}, |I| = α, the function
ιI : Fα

2 → F2

ιI : Fα
2

�� F2

u � ��
{

1 if u ∈ {0α, 1α}
0 otherwise

fails to invert η with probability less or equal to 2−α+1. More formally, for
any v ∈ F2,

Pr[ιI(η(v)I) 	= v] ≤ 2−α+1.

Proof. To prove local hiding, notice that for any i ∈ {1, . . . , n}

η(0)i =
(UF

n
2

)
i
= UF2 =

(U{0n,1n}
)
i
= η(1)i,

which means that for any distribution D and B ∼ D, η(B)i is a uniform bit,
independent of B. Therefore, for any v, wi ∈ F2, we have Pr[B = v] = Pr[B =
v | η(B)i = wi].

To prove local almost invertibility, simple manipulation leads to the result:

Pr[ιI(η(v)I) �= v] = Pr[ιI(η(v)I) �= v, v = 0] + Pr[ιI(η(v)I) �= v, v = 1]

≤ Pr[ιI(η(0)I) = 1] + Pr[ιI(η(1)I) = 0]

≤ Pr[ιI((UF
n
2
)I) = 1] + Pr[ιI((U{0n,1n})I) = 0]

≤ Pr[S ∈ {0α, 1α} | S∼(UF
n
2
)I ] + Pr[S /∈ {0α, 1α} | S∼(U{0n,1n})I}]

≤ Pr[S ∈ {0α, 1α} | S ∼ UF
α
2
] + Pr[S /∈ {0α, 1α} | S ∼ U{0α,1α}]

≤ 2 · 2−α = 2−α+1.
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A.2 Extended Locally Hiding Function

Definition 9 (Extended Locally Hiding Function). Let η be the n-locally
hiding function. For any vector space F

c
2, the extended n-locally hiding function

is the coordinate-wise extension of η, as follows:

ηc : Fc
2

�� Fn×c
2

v = (v1, . . . , vc)
� �� (η(v1), . . . , η(vc)).

Notice that the local hiding and invertibility properties are carried over as
follows:

Lemma 3 (Properties). The extended n-locally hiding function has the fol-
lowing properties:

Local Hiding: For any distribution D over F
c
2, for any v ∈ F

c
2, for any i ∈

{1, . . . , n}, and for any wi ∈ F
c
2, if B ∼ D,

Pr[B = v] = Pr[B = v | ηc(B)i = wi].

Local Almost Invertibility: For any I ⊆ {1, . . . , n}, |I| = α, the function
ιcI : Fα×c

2 → F
c
2

ιcI : Fα×c
2

�� Fc
2

u = (u1, . . . , uc)T � �� (ιI(u1), . . . , ιI(uc))

maps u = ηc(v) “close to” v. More formally, for any v ∈ F
c
2, 0 < β ≤ 1:

Pr[w(v − ιcI(η
c(v)I)) ≥ (1 + β) · c2−α+1] ≤ e− cβ2

3·2α−1 .

Proof. Similarly to the argument above, for all v ∈ F
c
2, for all i ∈ {1, . . . , n}:

ηc(v)i = (η(v1), . . . , η(vc))i = (η(v1)i, . . . , η(vc)i) = (UF2 , . . . ,UF2) = Uc
F2

which means that for any distribution D and B ∼ D, η(B)i is a uniform string
of length c, independent of B. Therefore, for any v, wi ∈ F

c
2, we have Pr[B =

v] = Pr[B = v | η(B)i = wi].
To prove local almost invertibility, firstly for i = 1, . . . , c define the following

(Bernoulli) random variable:

xi :=
{

1 if vi − ιI(η(vi)I) 	= 0
0 otherwise

By the local almost invertibility property of the (standard) locally hiding func-
tion, we have

Pr[xi = 1] ≤ 2−α+1
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and applying the Chernoff bound in Lemma 1 on the xi, for any 0 < β ≤
1 − 2−α+1 we get

Pr

[
c∑

i=1

xi ≥ (1 + β) · c2−α+1

]

≤ e− cβ2

3·2α−1 . (10)

To conclude, notice that

(v − ιcI(η
c(v)I))i = vi − ιcI(η

c(v)I)i = vi − ιI(η(vi)I)

therefore w(v − ιcI(η
c(v)I)) =

∑c
i=1 xi, by definition of xi and Hamming weight.

Combining this with Eq. 10, we get

Pr
[
w(v − ιcI(η

c(v)I)) ≥ (1 + β) · c2−α+1
] ≤ e− cβ2

3·2α−1 .

A.3 Locally Hiding Transform

To use our locally hiding function inside an efficient robust secret sharing scheme,
we would like it to be more resilient to inversion errors when we invert using
a relatively small set of bits. This leads us to define the combined primitive of
a locally hiding transform, a concatenation of an error-correcting code and our
locally hiding function.

Definition 10 (Locally Hiding Transform). Let C : F
h
2 → F

c
2 be a block

(error-correcting) code over alphabet F2, with message length h, block length c
and relative distance γ. Its locally hiding transform is a randomized function
Ĉ : Fh

2 → F
n×c
2 , defined as Ĉ = ηc ◦ C:

F
h
2

Ĉ

��
C �� Fc

2

ηc

�� Fn×c
2

z = (z1, . . . , zh) � �� C(z) = (v1, . . . , vc)
� �� (η(v1), . . . , η(vc)).

Moreover, for any I ⊆ {1, . . . , n} with |I| = α, define D̂I = D ◦ ιI (where D is
the decoding function for C):

F
α×c
2

D̂I

��ιc
I �� Fc

2
D �� Fh

2

u = (u1, . . . , uc)T � �� (ιI(u1), . . . , ιI(uc)) = v � �� D(v).

Notice that the local hiding property of ηc is trivially translated to Ĉ. For local
invertibility, if γ > 2 · (1 + β)2−α+1, then D̂ is locally inverts Ĉ with error

probability less or equal to e− cβ2

3·2α−1 .
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B A Suitable MAC for Our Scheme

B.1 The MAC and Some of Its Algebraic Properties

Definition 11. In the following, we assume that h = 2 · g, m = d · g, and use
the following MAC, for M ⊆ F2m ∼= (F2g )d (note that any set M can be thought
of as a subset of F2m , for large enough m), K = (F2g )2, and T = F2g :

MAC : (F2g )2 × (F2g )d �� F2g

(a, b), (m1, . . . ,md)
� ��

d∑

l=1

al · ml + b.

It is well known that the MAC described in Definition 11 is ε-secure for
ε = d · 2−g, [12,16,25].

Lemma 4. The MAC described in Definition 11 has the following properties:

– For any m ∈ M and t ∈ T , there are at most 2g different keys z ∈ K such
that MAC(z,m) = t.

– For m0,m1 ∈ M, m0 	= m1, and t0, t1 ∈ T , there are at most d different keys
z ∈ K such that MAC(z,m0) = t0, MAC(z,m1) = t1.

Proof. For the first property, fix an arbitrary m ∈ M and t ∈ T . Let define the
set Km,t := {z ∈ K | MAC(z,m) = t} of keys that produce t as a tag of m. We
want to study |Km,t|. Using Definition 11, we have

Km,t =

{

(a, b) ∈ F
2
2g |

d∑

l=1

al · ml + b = t

}

This means that if (a, b) ∈ Km,t, then b = t − ∑d
l=1 al · ml. Therefore,

Km,t =

{(

a, t −
d∑

l=1

al · ml

)

∈ F
2
2g

}

Since the function a �→ (a, t−∑d
l=1 al ·ml) is a bijection from F2g to Km,t (with

inverse (a, b) �→ a), we have |Km,t| = |F2g | = 2g.
For the second property, let m0,m1 ∈ M, m0 	= m1, and t0, t1 ∈ T . We want

to study the cardinality of the following set X

X := {z ∈ K | MAC(z,m0) = t0,MAC(z,m1) = t1}

Again, using Definition 11,

X =

{

(a, b) ∈ F
2
2g |

d∑

l=1

al · m0,l + b = t0,
d∑

l=1

al · m1,l + b = t1

}
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We can rewrite the above set as follows:

X =

{(

a, t0 −
d∑

l=1

al · m0,l

)

∈ F
2
2g |

d∑

l=1

al · (m0,l − m1,l) − t0 + t1 = 0

}

(11)

Since m0 	= m1, the polynomial x �→ ∑d
l=1 xl ·(m0,l −m1,l)− t0+ t1 is a non-zero

polynomial over F2g of degree at most d, which therefore has at most d roots.
Since a is one of those roots, a can take only d values. From this, and the fact
that for any (a, b) ∈ X a completely defines b (by Eq. 11), we get that there are
at most d pairs (a, b) ∈ X.

B.2 Behavior Towards Local Adversaries

We now prove another important property of the above MAC that will be useful
for our construction of a robust secret sharing scheme. Intuitively, we want to
study the probability that an honest message/tag pair is authenticated by any
key that validates two distinct message/tag pairs, each of them chosen by a
local adversary after seeing an honest message/tag pair. We also require that
at least one between the two adversarially chosen pairs is not honest, otherwise
the success probability of the adversaries would be trivially 1. To formalize this
notion, we define the following game played between a challenger (who provides
the honest message/tag pairs to the adversaries) and two, unbounded but non-
communicating adversaries (whose target is to provide new message/tag pairs).

Game A:
1. The challenger samples uniform messages m0,m1 	= m2 ∈ M.
2. The challenger samples a uniform key z ∈ K.
3. For i = 0, 1, 2, the challenger computes ti = MAC(z,mi).
4. For i = 1, 2, the challenger sends mi, ti to adversary i.
5. For i = 1, 2, adversary i generates m̃i, t̃i and sends them to the challenger.
6. The challenger checks and whether m̃2 	= m̃1 	= m1 and whether there exists

z̃ such that

t0 = MAC(z̃,m0), t̃1 = MAC(z̃, m̃1), t̃2 = MAC(z̃, m̃2).

If so, the challenger sets W = 1; otherwise, it sets W = 0.

Lemma 5. In the notation of GameA,

Pr[W = 1] ≤ 2 · d · ε.

Proof. In order to analyze Pr[W = 1], we define another game which is equiv-
alent to GameA – equivalent in the sense that the distribution of the random
variables that are involved remains the same. First, since in GameA the value
m0, t0 are never revealed to any adversary, they might as well be generated after
the challenger receives m̃1, t̃1 from adversary 1 and m̃2, t̃2 from adversary 2.
Therefore, GameA is equivalent to the following game
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Game A1:
1. The challenger samples uniform messages m1 	= m2 ∈ M.
2. The challenger samples a uniform key z ∈ K.
3. For i = 1, 2, the challenger computes ti = MAC(z,mi).
4. For i = 1, 2, the challenger sends mi, ti to adversary i.
5. For i = 1, 2, adversary i generates m̃i, t̃i and sends them to the challenger.
6. The challenger samples a uniform m0 ∈ M and computes t0 = MAC(z,m0).
7. The challenger checks whether m̃2 	= m̃1 	= m1 and whether ther exists z̃

such that

t0 = MAC(z̃,m0), t̃1 = MAC(z̃, m̃1), t̃2 = MAC(z̃, m̃2).

If so, the challenger sets W = 1; otherwise, it sets W = 0.

We are ready to analyze Pr[W = 1] in GameA1. First, define Z̃ ⊆ K as the set
of keys compatible with m̃1, t̃1 and m̃2, t̃2, i.e.

Z̃ = {z̃ ∈ K | t̃1 = MAC(z̃, m̃1), t̃2 = MAC(z̃, m̃2)}.

We can rewrite Pr[W = 1] as follows:

Pr[W = 1] = Pr (z,m0)[m̃2 	= m̃1 	= m1,∃z̃ ∈ Z̃ : t0 = MAC(z̃,m0)]

≤
∑

z̃∈Z̃

Pr (z,m0)[m̃2 	= m̃1 	= m1, t0 = MAC(z̃,m0)]. (12)

Making the requirement t0 = MAC(z̃,m0) explicit, we obtain:

t0 =
d∑

l=1

ãl · m0,l + b̃. (13)

Now, remember that m0 is uniform, and t0 is computed as follows, for z = (a, b)
sampled according to step 2:

t0 =
d∑

l=1

al · m0,l + b. (14)

Subtracting Eq. 14 from Eq. 13, we get that any key (ã, b̃) should satisfy

d∑

l=1

(
ãl − al

)
· m0,l + b̃ − b =

〈(
1, m0,1, . . . , m0,d

)
,
(
b̃ − b, ã1 − a1, . . . , ãd − ad

)〉
= 0.

(15)
In Eq. 15, if ã = a, then b̃ = b. This means that m̃1, t̃1 is a valid message/tag
pair for key (a, b), as it is valid for (ã, b̃), since (ã, b̃) = (a, b). Since the MAC
is ε-secure, and the adversaries are local (in particular adversary 1 only sees
m1, t1 and provides m̃1, t̃1 with m1 	= m̃1), then m̃1, t̃1 is a forgery for (a, b) –
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since (a, b) is a uniform key, valid for both m1, t1 and m̃1, t̃1, with m̃1 	= m1.
Therefore, for any (ã, b̃) = z̃ ∈ Z̃:

Pr (z,m0)[m̃2 	= m̃1 	= m1, t0 = MAC(z̃,m0), ã = a] ≤ ε. (16)

Now, If ã 	= a, then the vector v = (̃b−b, ã1−a1, . . . , ãd −ad) ∈ F
d+1
2 is non-zero,

and Eq. 15 holds if and only if v is orthogonal to a uniformly chosen direction
u = (1,m0,1, . . . ,m0,d), which happens with probability 2−g for any non-zero v.
Therefore,

Pr (z,m0)[m̃2 	= m̃1 	= m1, t0 = MAC(z̃,m0), ã 	= a] ≤ 2−g ≤ ε. (17)

Combining Eqs. 16 and 17 with inequality 12 we get:

Pr[W = 1] ≤
∑

z̃∈Z̃

Pr (z,m0)[m̃2 	= m̃1 	= m1, t0 = MAC(z̃,m0)] ≤
∑

z̃∈Z̃

2 ·ε ≤ 2 ·d ·ε,

since |Z̃| = d, from Lemma 4.
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Abstract. The candidate construction of multilinear maps by Garg,
Gentry, and Halevi (Eurocrypt 2013) has lead to an explosion of new
cryptographic constructions ranging from attribute-based encryption
(ABE) for arbitrary polynomial size circuits, to program obfuscation,
and to constrained pseudorandom functions (PRFs). Many of these con-
structions require κ-linear maps for large κ. In this work, we focus on
the reduction of κ in certain constructions of access control primitives
that are based on κ-linear maps; in particular, we consider the case of
constrained PRFs and ABE. We construct the following objects:

– A constrained PRF for arbitrary circuit predicates based on (n+�OR−
1)−linear maps (where n is the input length and �OR denotes the OR-
depth of the circuit).

– For circuits with a specific structure, we also show how to construct
such PRFs based on (n+ �AND − 1)−linear maps (where �AND denotes
the AND-depth of the circuit).

We then give a black-box construction of a constrained PRF for NC1

predicates, from any bit-fixing constrained PRF that fixes only one of
the input bits to 1; we only require that the bit-fixing PRF have certain
key homomorphic properties. This construction is of independent inter-
est as it sheds light on the hardness of constructing constrained PRFs
even for “simple” predicates such as bit-fixing predicates.

Instantiating this construction with the bit-fixing constrained PRF
from Boneh and Waters (Asiacrypt 2013) gives us a constrained PRF for
NC1 predicates that is based only on n-linear maps, with no dependence
on the predicate. In contrast, the previous constructions of constrained
PRFs (Boneh and Waters, Asiacrypt 2013) required (n + � + 1)−linear
maps for circuit predicates (where � is the total depth of the circuit) and
n-linear maps even for bit-fixing predicates.

We also show how to extend our techniques to obtain a similar
improvement in the case of ABE and construct ABE for arbitrary circuits
based on (�OR + 1)−linear (respectively (�AND + 1)−linear) maps.
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1 Introduction

The breakthrough work on multilinear maps [GGH13a] has found tremendous
applications in various areas of cryptography. It has lead to attribute-based
encryption (ABE) for all polynomial size circuits [GGH+13c], indistinguisha-
bility obfuscation and functional encryption for general circuits [GGH+13b],
constrained pseudorandom functions [BW13], and so on. Many of these con-
structions require κ-linear maps for large κ. Larger κ leads to more inefficient
schemes and stronger hardness assumptions. In this work, we are interested in
exploring the reduction of κ in such constructions – specifically, we consider the
case of constrained PRFs and ABE.

Constrained Pseudorandom Functions. A pseudorandom function (PRF) is a
keyed function, Fk(x), that is computationally indistinguishable from a truly
random function, even to an adversary who has oracle access to the function (but
has no knowledge about the key k). Constrained PRFs (introduced in [BW13,
BGI14,KPTZ13]), allow the owner of k to give out a constrained key kf , for a
predicate f , such that any user who has kf can evaluate Fk(x) iff f(x) = 1. The
security requirement on all points x, such that f(x) = 0 is the same as that of
standard PRFs.

Boneh and Waters [BW13] show how to construct constrained PRFs for
bit-fixing predicates using an n−linear map (where n is the input length to
the PRF), and also how to construct constrained PRFs for arbitrary circuit
predicates using an (n+�+1)−linear map (where � is the total depth of the circuit
predicate). Constrained PRFs can be used to construct broadcast encryption
with small ciphertext length, identity-based key exchange, and policy-based key
distribution.

Attribute Based Encryption. Attribute based encryption (ABE) [SW05] allows
a more fine-grained access policy to be embedded into public-key encryption.
In more detail, in ABE schemes, there is a master authority who owns sk and
publishes public parameters as well as a relation R(x, y). A user who encrypts a
message m, creates a ciphertext under some string x (that can specify some pol-
icy), to obtain Encpk(m,x). The master authority can give a user a secret key sky.
Now, this user can use sky to decrypt Encpk(m,x) and obtain m iff R(x, y) = 1;
otherwise, the user obtains no information about m. ABE, for the class of rela-
tions R ∈ NC1 can be constructed based on bilinear maps [GPSW06]. Recently,
the work of [GGH+13c] shows how to construct ABE for arbitrary circuits based
on (�+1)−linear maps (where � is the depth of the relation R when expressed as
a boolean circuit), while [GVW13] also show how to construct ABE for arbitrary
circuits based on the Learning with Errors (LWE) hardness problem.

1.1 Our Results

In this work, we show the following results:
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– We construct constrained PRFs for arbitrary circuit predicates using an
(n + �OR − 1)−linear map, where n is the input length to the PRF and �OR

denotes the OR-depth of the constraint f when expressed as a boolean circuit
(informally, the OR-depth of a circuit is defined to be the maximum number
of OR gates from input wires to the output wire along any path in the circuit).
We believe that the reduction in linearity is important even in cases when it is
not an asymptotic improvement as lower linearity results in a weaker hardness
assumption.

– Next, we construct constrained PRFs for circuit predicates using an (n +
�AND − 1)−linear map, where �AND denotes the AND-depth of the constraint
f (informally, the AND-depth of a circuit is defined to be the maximum
number of AND gates from input wires to the output wire along any path in
the circuit). Although in this construction, we require the circuit to be of a
specific structure, we show that for several circuits, our construction reduces
the number of levels of multilinear map needed.

– Then, we show (in a black-box manner) how to convert any bit-fixing con-
strained PRF that fixes only one bit1 to 1 into a constrained PRF for NC1

circuits; we only require that the bit-fixing PRF have certain additive key-
homomorphic properties. We believe this construction to be of independent
interest as the only known (non-trivial) constructions of constrained PRFs
are based on multilinear maps.
By instantiating this construction with the bit-fixing constrained PRF of

Boneh and Waters [BW13], we obtain a constrained PRF for all predicates
f ∈ NC1 using an n−linear map. In particular, the number of levels in our
construction has no dependence on f .

– Finally, we show how to extend our techniques to construct ABE schemes
from lesser levels of multi-linear maps.

Similar to [BW13], all our constructions are based on the κ-Multilinear Deci-
sional Diffie-Hellman (κ-MDDH) assumption and achieve selective security (i.e.,
the adversary must commit to the challenge query at the beginning of the secu-
rity game); as in [BW13], we can achieve standard security via complexity lever-
aging. We remark that our techniques can be extended to the constructions of
verifiable constrained PRFs [Fuc14,CRV14], thereby leading to a similar lower-
ing of κ.

Other Related Works. The work of [FKPR14] considers the prefix-fixing con-
strained PRF from the classical GGM construction [GGM86], and shows how to
avoid an exponential (in n) loss in security when going from selective secu-
rity to adaptive security. Their work also shows that any “simple” reduc-
tion, that proves full security of the bit-fixing constrained PRF of [BW13],
from a non-interactive hardness assumption, must incur an exponential secu-
rity loss. The work of [HKKW14] shows how to construct adaptively secure

1 By symmetry, we can also start with a bit-fixing constrained PRF that fixes only
one bit to 0.
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constrained PRFs for circuits from indistinguishability obfuscation in the ran-
dom oracle model. More recently, key-homomorphic constrained PRFs were con-
structed in [BV15,BFP+15]. Similar to us, Banerjee et al. [BFP+15] also observe
that [BW13] is “key-homomorphic”.

Security of Multilinear Maps. After the initial work of Garg et al. [GGH13a],
Coron, Lepoint and Tibouchi proposed a multilinear maps construction over
the integers [CLT13] also based on ideal lattices. But, Cheon, Han, Lee, Ryu
and Stehlé [CHL+15] proposed an attack which completely broke the CLT
scheme by recovering the secret parameters of the scheme in polynomial time.
Coron et al. [CLT15] proposed another candidate construction. This was broken
recently by Cheon et al. [CLR15] and Minaud et al. [MF15]. Hu and Jia [HJ15]
also recently showed that the κ-MDDH assumption in [GGH13a] does not hold
when encodings of zero are provided. Independent of these, Gentry, Gorbunov
and Halevi [GGH15] proposed a multilinear maps construction based on random
lattices but with the map defined with respect to a directed acyclic graph.

We do not rely on the security of any specific multilinear maps scheme.
Since we do not give low-level encodings of zero in our construction, any
scheme [GGH13a,CLT13,CLT15] which is secure under the κ-MDDH assump-
tion can be used to instantiate our constructions.

1.2 Our Techniques

Our starting point is the constrained PRF construction of [BW13] for arbitrary
circuit predicates. We first view this construction differently as follows. Let the
PRF in [BW13] be denoted by PRFn+�(u, x), where u is the key of the PRF,
x, an n-bit string, is the input to the PRF, and PRFn+� denotes that the PRF
output is at the (n+ �)−level of the multilinear map (where � denotes the depth
of the constraint f). Now, in order to give out a constrained key for f , we first
pick a random value rw for every wire w in the circuit. Let j denote the depth of
this wire in the circuit. Now, for a given x such that f(x) = 1, the idea is to give
a key that will enable the user to compute PRFn+j(rw, x) for all wires w in the
circuit that evaluate to 1 on x. Doing this inductively will allow the compution of
PRFn+�(u, x). Let w be an output to some gate in the circuit and let A(w), B(w)
be the input wires corresponding to this gate. If this gate is an AND (respectively
OR) gate, we give a key, that will allow a user to compute PRFn+j(rw, x) from
the values PRFn+j−1(rA(w), x) AND (respectively OR) PRFn+j−1(rB(w), x).

Free AND Construction. Our first observation is that for AND gates, one must
be able to compute the PRF value corresponding to w wire iff one has the
PRF values corresponding to both A(w) and B(w). Now, suppose the PRF
under consideration is “additively homomorphic” in some sense. Then, we
observe that given PRFn+j−1(rA(w), x) and PRFn+j−1(rB(w), x), one can com-
pute PRFn+j−1(rw, x), without the need for additional keys and without jumping
a level in the multilinear map as long as we set rA(w) and rB(w) to be random
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additive shares of rw. Now, this ensures that AND gates are “free” in the cir-
cuit. The OR gates are handled exactly as in the case of [BW13]. This leads to
a construction that only makes use of a (n + �OR − 1)−linear map.

While this is the main change made to the construction, the proof of security
now requires attention. At a very high level, [BW13] could embed a part of
the “hard problem” from the hardness assumption at every layer of the circuit
as they give out keys for all gates in the circuits. In our case, we do not have
that luxury. In particular, since we do not give any keys for AND gates, the
structure of the hard problem may be distorted after multiple evaluations of
AND gates. In order to overcome this, we must carefully give out the keys at
OR levels to “reset” the problem to be of our preferred form. This enables us to
then prove security.

Free OR Construction. Now, suppose we turn our attention towards the OR
gates alone. Note, that one must be able to compute the PRF value corre-
sponding to wire w iff one has the PRF values corresponding to either A(w) or
B(w). Now, suppose we set rw = rA(w) = rB(w), then this enables the computa-
tion of PRFn+j−1(rw, x) from either PRFn+j−1(rA(w), x) or PRFn+j−1(rB(w), x),
without the need for additional keys and without jumping a level in the multi-
linear map. However, doing this näıvely would lead to a similar “backtracking
attack” as the attack described by [GGH+13c] in the context of ABE. In more
detail, note that if A(w) = 0 and B(w) = 1, one can indeed (rightly) compute
PRFn+j−1(rw, x) from PRFn+j−1(rB(w), x) as both B(w) and w are 1. However,
this also enables the (unauthorized) computation of PRFn+j−1(rA(w), x), and
if this wire had a fan-out greater than 1, this would lead to an attack on the
security of the PRF. Here, we show that if the circuit had a specific structure,
then such a construction can still be made to work. We show that several cir-
cuits can be converted to this form (with a polynomial blowup) that results in
a reduction in the number of multilinear levels needed. We remark that for the
construction (and proof) to succeed, one must carefully select the random key
values on the circuit for the constrained key, starting backwards, from the output
wire in the circuit.

NC1 Construction. While we obtain our construction of constrained PRF for
NC1 circuits by combining the above two techniques, we note that the proof of
security is tricky and requires the simulator to carefully set the random keys in
the simulation. In particular, let x∗ be the challenge input to the PRF. Now,
suppose, the simulator must give out a constrained key for a circuit f such that
f(x∗) = 0. The simulator must choose all the random keys of the PRFs on
each wire in such a way that for all wires that evaluate to 1 on x∗, the key is
either chosen randomly by the simulator or can be computed from values that
are chosen randomly by the simulator. We show that this can be indeed done by
the simulator, thus resulting in the proof of security.

We then show how to generalize this construction to obtain a constrained
PRF for NC1 circuits from any constrained PRF for bit-fixing predicates that
fixes only one bit and has certain additively homomorphic properties. We believe
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this construction to be of independent interest as till date, constrained PRFs for
any non-trivial predicate, are known only based on multilinear maps.

Finally, we show how to extend our Free AND/OR techniques to the case of
ABE. This gives an ABE based on (�OR +1)−linear and (�AND +1)−linear maps
respectively, improving upon the (�+1)−linear map construction of [GGH+13c].

1.3 Organization

In Sect. 2, we define constrained PRFs and ABE as well as state the hardness
assumption that we make. We also present circuit notation that is used in the rest
of the paper. In Sect. 3, we describe our (n + �OR − 1)−linear map construction
of constrained PRF for arbitrary circuits. We outline our (n + �AND − 1)−linear
map construction in Sect. 4. We present our n−linear map construction of con-
strained PRF for NC1 circuits in Sect. 5 and the black-box construction of con-
strained PRF for NC1 circuits from bit-fixing constrained PRFs in Sect. 6. We
show how to extend our results to the setting of ABE in the full version of this
paper [CRV15].

2 Preliminaries

2.1 Definitions

Constrained Pseudorandom Functions. A pseudorandom function (PRF) F : K×
X → Y, is a deterministic polynomial (in security parameter λ) time algorithm,
that on input a key k ∈ K and an input x ∈ X , outputs F (k, x) ∈ Y. F has a
setup algorithm Setup(1λ) that on input λ, outputs a key k ∈ K.

Definition 1. A PRF F : K × X → Y is said to be constrained with respect
to a set system S ⊆ X if there is an additional key space Kc, and there exist
algorithms (F.Constrain, F.Evaluate) such that

– F.Constrain(k, S) is a randomized polynomial time algorithm that takes as
input a PRF key k ∈ K and the description of a set S ∈ S. It outputs a
constrained key kS ∈ Kc which enables the evaluation of F (k, x) for all x ∈ S
and no other x;

– F.Evaluate(kS , x) is a deterministic polynomial time algorithm that takes as
input a constrained key kS ∈ Kc and an input x ∈ X . If kS is the output of
F.Constrain(k, S) for some k ∈ K, then F.Evaluate(kS , x) outputs F (k, x) if
x ∈ S and ⊥ otherwise, where ⊥�∈ Y. We will use the shorthand F (kS , x) for
F.Evaluate(kS , x).

The security of constrained PRFs informally states that given several con-
strained keys, as well as the output of the PRF on several points of the adver-
sary’s choice, the PRF looks random at all points that the adversary could not
have computed himself. Let F : K × X → Y be a constrained PRF with respect
to a set system S. Define two experiments Exp0 and Exp1. For b ∈ {0, 1}, Expb

proceeds as follows:
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1. First, a random key k ∈ K is chosen, and two sets C, V ⊆ X are initialized
to ∅. C will keep track of points on which the adversary will be challenged
and V will keep track of points on which the adversary can compute the PRF
himself. The experiments will maintain the invariant that C ∩ V = ∅.

2. The adversary is given access to the following oracles:
– F.Constrain: Given a set S ∈ S, if S ∩ C = ∅, the oracle returns

F.Constrain(k, S) and updates V ← V ∪ S; otherwise, it returns ⊥.
– F.Evaluate: Given an input x ∈ X , if x �∈ C, the oracle returns F (k, x) and

updates V ← V ∪ x; otherwise, it returns ⊥.
– Challenge: Given x ∈ X where x �∈ V , if b = 0, the oracle returns F (k, x);

if b = 1, the oracle returns a random (consistent) y ∈ Y. C is updated as
C ← C ∪ x.

3. The adversary finally outputs a bit b′ ∈ {0, 1}.
4. For b ∈ {0, 1}, define Wb to be the event that b′ = 1 in experiment Expb. The

adversary’s advantage AdvA,F,S(λ) is defined to be |Pr[W0] − Pr[W1]|.

Definition 2. A constrained PRF F : K × X → Y, is said to be secure, if for
all PPT adversaries A, we have that AdvA,F,S(λ), is negligible in λ.

Remark. When constructing constrained pseudorandom functions, it will be
more convenient to work with the definition where the adversary is allowed to
issue only a single challenge query. A standard hybrid argument shows that this
definition is equivalent to the one where an adversary is allowed to issue mul-
tiple challenge queries. A constrained PRF is selectively secure if the adversary
commits to this single challenge query at the beginning of the experiment.

Attribute-Based Encryption. An attribute-based encryption (ABE) scheme has
the following algorithms:

– Setup(1λ, n, �): This algorithm takes as input the security parameter λ, the
length n of input descriptors in the ciphertext, and a bound � on the circuit
depth. It outputs the public parameters PP and the master secret key MSK.

– Encrypt(PP, x,M): This algorithm takes as input the public parameters, x ∈
{0, 1}n (representing the assignment of boolean variables) and a message M .
It outputs a ciphertext CT .

– KeyGen(MSK, f): This algorithm takes as input the master secret key and a
circuit f . It outputs a secret key SK.

– Decrypt(SK,CT ): This algorithm takes as input a secret key and ciphertext
and outputs either M or ⊥.

The correctness of the ABE requires that for all messages M , for all x ∈
{0, 1}n, for all depth � circuits f , with f(x) = 1, if Encrypt(PP, x,M) outputs
CT , and KeyGen(MSK, f) outputs SK, where PP and MSK were obtained as
the output of Setup(1λ, n, �), then Decrypt(SK,CT ) = M . The security of an
ABE scheme is defined through the following game between a challenger Chall
and adversary Adv as described below:
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– Setup. Chall runs Setup(1λ, n, �) and gives PP to Adv; it keeps SK to itself.
– Phase 1. Adv makes any polynomial number of queries for circuit descriptions

f of its choice. Chall returns KeyGen(MSK, f).
– Challenge. Adv submits two equal length messages M0 and M1 as well as an

x∗ ∈ {0, 1} such that for all f queried in Phase 1, f(x∗) = 0. Chall flips a bit
b and returns CT ∗ = Encrypt(PP, x∗,Mb) to Adv.

– Phase 2. Phase 1 is repeated with the restriction that f(x∗) = 0 for all
queried f .

– Guess. Adv outputs a bit b′.

Definition 3. The advantage of Adv in the above game is defined to be |Pr[b′ =
b]− 1

2 |. An ABE for circuits is secure if for all PPT adversaries Adv, the advan-
tage of Adv is negligible in the security parameter λ. An ABE scheme is said to
be selectively secure, if Adv commits to x∗ at the beginning of the security game.

2.2 Assumptions

Leveled Multilinear Groups. We assume the existence of a group generator G,
which takes as input a security paramter 1λ and a positive integer κ to indicate
the number of levels. G(1λ, κ) outputs a sequence of groups G = (G1, . . . ,Gκ)
each of large prime order p > 2λ. In addition, we let gi be a canonical generator
of Gi that is known from the group’s description. We let g = g1. We assume the
existence of a set of multilinear maps {ei,j : Gi ×Gj → Gi+j |i, j ≥ 1; i + j ≤ κ}.
The map ei,j satisfies the following relation: ei,j(ga

i , gb
j) = gab

i+j ,∀a, b ∈ Zp. When
the context is obvious, we will drop the subscripts i, j. For example, we may
simply write e(ga

i , gb
j) = gab

i+j . We define the κ-Multilinear Decisional Diffie-
Hellman (κ-MDDH) assumption [GGH13a] as follows:

Assumption 21. (κ-Multilinear Decisional Diffie-Hellman: κ-MDDH) The κ-
Multilinear Decisional Diffie-Hellman (κ-MDDH) problem is as follows: A
challenger runs G(1λ, κ) to generate groups and generators of order p. Then
it picks random c1, . . . , cκ+1 ∈ Zp. The assumption states that given g =

g1, g
c1 , . . . , gcκ+1 , it is hard to distinguish the element T = g

∏
j∈[κ+1] cj

κ from
a random group element in Gκ with better than negligible advantage in λ.

2.3 Circuit Notation

We will consider layered circuits, where a gate at2 depth j will receive both of its
inputs from wires at depth j−1. We also assume that all NOT gates are restricted
to the input level. Similar to [BW13], we restrict ourselves to monotonic circuits
where gates are either AND or OR gates of two inputs.3

Formally, our circuits will be a five tuple f = (n, q,A,B, GateType). We let
n be the number of inputs and q be the number of gates. We define inputs = [n],
2 When the term depth is used, it is synonymous to the notion of tot-depth described
ahead.

3 These restrictions are mostly useful for exposition and do not impact functionality.
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Wires = [n + q] and Gates = [n + q]\[n]. The wire n + q is designated as the
output wire, outputwire. A : Gates → Wires\{outputwire} is a function where
A(w) identifies w’s first incoming wire and B : Gates → Wires\{outputwire} is a
function where B(w) identifies w’s second incoming wire. Finally, GateType :
Gates → {AND,OR} is a function that identifies a gate as either an AND
gate or an OR gate. We let w > B(w) > A(w). Also, define three functions:
tot-depth(w), AND-depth(w), and OR-depth(w) that are all 1, when w ∈ inputs,
and in general are equal to the number of gates (respectively AND and OR gates)
on the shortest path to an input wire plus one. We let f(x) be the evaluation of
f on the input x ∈ {0, 1}n, and fw(x) be the value of the wire w on the input x.

3 A Free-AND Circuit-Predicate Construction

We show how to construct a constrained PRF for arbitrary polynomial size
circuit predicates, without giving any keys for AND gates, based on κ =
(n + �OR − 1)−linear maps, where �OR denotes the OR-depth of the circuit. The
starting point of our construction is the constrained PRF construction of [BW13]
which is based on the ABE for circuits [GGH+13c]. [BW13] works with layered
circuits. For ease of exposition, we assume a layered circuit where all gates in a
particular layer are of the same type (either AND or OR). Circuits have a single
output OR gate. Also a layer of gates is not followed by another layer of the
same type. We stress that these are only for the purposes of exposition and can
be removed as outlined later on in the section.

3.1 Construction

F .Setup(1λ, n, �OR): The setup algorithm takes as input the security parameter λ,
the bit length, n, of PRF inputs and �OR, the maximum OR-depth4 of the circuit.
The algorithm runs G(1λ, κ = n + �OR − 1) and outputs a sequence of groups
G = (G1, . . . ,Gκ) of prime order p with canonical generators g1, . . . , gκ, where
g = g1. It chooses random exponents u ∈ Zp and (d1,0, d1,1), . . . , (dn,0, dn,1) ∈ Z

2
p

and computes Dm,β = gdm,β for m ∈ [n] and β ∈ {0, 1}. It then sets the key of
the PRF as:

k = (G, p, g1, . . . , gκ, u, d1,0, d1,1, . . . , dn,0, dn,1,D1,0,D1,1, . . . , Dn,0,Dn,1)

The PRF is F (k, x) = g
u
∏

m∈[n] dm,xm
κ , where xm is the mth bit of x ∈ {0, 1}n.

F .Constrain(k, f = (n, q,A,B, GateType)): The constrain algorithm takes as
input the key k and a circuit description f . The circuit has n + q wires with
n input wires, q gates and the wire n + q designated as the output wire.

To generate a constrained key kf , the key generation algorithm chooses ran-
dom r1, . . . , rn ∈ Zp, where we think of the random value rw as being associated

4 We can define OR-depth of a circuit which is in our specified form as the number of
layers comprising of OR gates, plus 1.
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with the wire w. For each w ∈ [n + q − 1]\[n], if GateType(w) = AND, it sets
rw = rA(w) + rB(w) (where + denotes addition in the group Zp); otherwise, it
chooses rw ∈ Zp at random. Finally, it sets rn+q = u.

The first part of the constrained key is given out as simply all Di,β for i ∈ [n]
and β ∈ {0, 1}. Next, the algorithm generates key components. The structure
of the key components depends on whether w is an input wire or an output
of an OR gate. For AND gates, we do not need to give out any keys. The key
components in each case are described below.

– Input wire. By convention, if w ∈ [n], then it corresponds to the w-th input.
The key component is: Kw = grwdw,1 .

– OR gate. Let j = OR-depth(w). The algorithm chooses random aw, bw ∈ Zp.
Then, the algorithm creates key components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)
j−1 ,Kw,4 = g

rw−bw·rB(w)
j−1

The constrained key kf consists of all these key components along with {Di,β}
for i ∈ [n] and β ∈ {0, 1}.

F .Evaluate(kf , x): The evaluate algorithm takes as input a constrained key kf for
the circuit f and an input x ∈ {0, 1}n. The algorithm first checks that f(x) = 1,
and if not, it aborts. Consider the wire w at OR-depth j. If fw(x) = 1, then,

the algorithm computes Ew = g
rw

∏
m∈[n] dm,xm

n+j−1 . If fw(x) = 0, then nothing is
computed for that wire. The algorithm proceeds iteratively starting with com-
puting E1 and proceeds, in order, to compute En+q. Computing these values in
order ensures that the computation on a lower-depth wire that evaluates to 1
will be defined, before the compution on a higher-depth wire. Since rn+q = u,

En+q = g
u
∏

m∈[n] dm,xm

n+�OR−1 . We show how to compute Ew for all w where fw(x) = 1,
case-wise, according to whether the wire is an input, an OR gate or an AND
gate. Define D = D(x) = g

∏
m∈[n] dm,xm

n , which is computable through pairings.

– Input wire. Suppose fw(x) = 1. Through pairing operations, the algorithm

computes g
∏

m∈[n]\{w} dm,xm

n−1 . It then computes:

Ew = e
(
Kw, g

∏
m∈[n]\{w} dm,xm

n−1

)
= g

rw

∏
m∈[n] dm,xm

n

– OR gate. Let j = OR-depth(w). The computation is performed if fw(x) = 1.
Note that in this case, at least one of fA(w)(x) and fB(w)(x) must be 1. If
fA(w)(x) = 1, the algorithm computes:

Ew = e(EA(w),Kw,1) · e(Kw,3,D)

= e
(
g

rA(w)
∏

m∈[n] dm,xm

n+j−2 , gaw

)
· e

(
g

rw−aw·rA(w)
j−1 , g

∏
m∈[n] dm,xm

n

)

= g
rw

∏
m∈[n] dm,xm

n+j−1

Otherwise, we have fB(w)(x) = 1 and the algorithm computes Ew from
EB(w),Kw,2,Kw,4 in a similar manner.
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– AND gate. Let j = OR-depth(w). The computation is performed if fw(x) = 1.
Note that in this case, fA(w)(x) = fB(w)(x) = 1. The algorithm computes:

Ew = EA(w) · EB(w) = g
rA(w)

∏
m∈[n] dm,xm

n+j−1 · grB(w)
∏

m∈[n] dm,xm

n+j−1 = g
rw
∏

m∈[n] dm,xm

n+j−1

The procedures above are evaluated in order for all w for which fw(x) = 1.

Thus, the algorithm computes En+q = g
u
∏

m∈[n] dm,xm

n+�OR−1 = F (k, x).

3.2 Proof of Pseudorandomness

The correctness of the constrained PRF is verifiable in a straightforward manner.
The security proof is in the selective security model (where the adversary com-
mits to the challenge input x∗ at the beginning of the game). To get full security,
the proof will use the standard complexity leveraging technique of guessing the
challenge x∗; this guess will cause a loss of a 1/2n-factor in the reduction.

Theorem 1. If there exists a PPT adversary A that breaks the pseudorandom-
ness of our circuit-predicate construction for n-bit inputs with advantage ε(λ),
then there exists a PPT algorithm B that breaks the κ = (n+�OR−1)−Multilinear
Decisional Diffie-Hellman assumption with advantage ε(λ)/2n.

Proof. The algorithm B first receives a κ = (n + �OR − 1)−MDDH challenge
consisting of the group sequence description G and g = g1, g

c1 , . . . , gcκ+1 along
with T , where T is either g

∏
m∈[κ+1] cm

κ or a random group element in Gκ.

Setup: It chooses an x∗ ∈ {0, 1}n uniformly at random. Next, it chooses random
z1, . . . , zn ∈ Zp and sets Dm,β = gcm when x∗

m = β and gzm otherwise, for
m ∈ [n] and β ∈ {0, 1}. This corresponds to setting dm,β = cm when x∗

m = β
and zm otherwise. It then implicitly sets u = cn+1 · cn+2 · . . . · cn+�OR

. The setup
is executed as in the construction.

Constrain: Suppose a query is made for a secret key for a circuit f =
(n, q,A,B, GateType). If f(x∗) = 1, then B aborts. Otherwise, B generates key
components for every wire w, case-wise, according to whether w is an input wire
or an OR gate as described below.

Input Wire. By convention, if w ∈ [n], then it corresponds to the w-th input. If
x∗

w = 1, then B chooses ηw = rw at random. The key component is:

Kw = (Dw,1)rw = grwdw,1

If x∗
w = 0, then B implicitly sets rw = cn+1+ηw, where ηw ∈ Zp is a randomly

chosen element. The key component is:

Kw = (gcn+1 · gηw)zw = grwdw,1
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OR Gate. Suppose that w ∈ Gates and that GateType(w) = OR. In addition, let
j = OR-depth(w). In order to show that B can simulate all the key components,
we shall additionally show the following property:

Property 1. For any gate w ∈ Gates, B will be able to compute grw
j , where

j = OR-depth(w).

We will prove the above property through induction on the OR-depth j;
doing this will enable us to prove that B can compute all the key components
required to give out the constrained key. The base case of the input wires (j = 1)
follows as we know that for an input wire w, B can compute grw , where rw is
of the form ηw or cn+1 + ηw. We now proceed to show the computation of the
key-components. In each case, we show that Property 1 is satisfied.

CASE 1: If fw(x∗) = 1, then B chooses ψw = aw, φw = bw and ηw = rw at
random. Then, B creates key components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)
j−1 ,Kw,4 = g

rw−bw·rB(w)
j−1

By virtue of Property 1, since OR-depth(A(w)) = OR-depth(B(w)) = j − 1,
by the induction hypothesis, we know that B can compute g

rA(w)
j−1 and g

rB(w)
j−1 .

Hence, B can compute the above key-components, as the remaining exponents
were all chosen at random by B. Further, since rw was chosen at random, note
that grw

j can be be computed for this wire, and hence Property 1 holds for this
wire as well (at OR-depth j).

CASE 2: If fw(x∗) = 0, then B implicitly sets rw = cn+1 · . . . · cn+j + ηw, where
ηw ∈ Zp is a randomly chosen element. Since ηw was chosen at random, note
that grw

j can be be computed for this wire (since g
cn+1·...·cn+j

j can be computed
using j pairings of gcm , n + 1 ≤ m ≤ n + j), and hence Property 1 holds for this
wire as well. For computing the key-components, the choices of aw and bw are
done more carefully.

1. Suppose the level before the current level consists of the inputs. B would
know the values of ηA(w) and ηB(w), since for input wires, these values are
always chosen at random. In this case, B implicitly sets aw = cn+j + ψw and
bw = cn+j + φw, where ψw, φw ∈ Zp are randomly chosen elements. Then, B
creates key components:

Kw,1 = gcn+j+ψw = gaw ,Kw,2 = gcn+j+φw = gbw ,

Kw,3 = g
ηw−cn+j ·ηA(w)−ψw(cn+1·...·cn+j−1+ηA(w))

j−1 = g
rw−aw·rA(w)
j−1 ,

Kw,4 = g
ηw−cn+j ·ηB(w)−φw(cn+1·...·cn+j−1+ηB(w))

j−1 = g
rw−bw·rB(w)
j−1

B is able to create the last two key components due to a cancellation. Since
fA(w)(x∗) = fB(w)(x∗) = 0, B would have set rA(w) = cn+1 ·. . .·cn+j−1+ηA(w)

and rB(w) = cn+1·. . .·cn+j−1+ηB(w). Further, g
cn+1·...·cn+j−1
j−1 can be computed

using j − 1 pairings of gcm , n + 1 ≤ m ≤ n + j − 1.
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2. Suppose the level before the current level consists of AND gates. Since
fA(w)(x∗) = 0, we have two cases: either one of fA(A(w))(x∗) and fB(A(w))(x∗)
is zero, or both of them are zero. B sets aw = cn+j + ψw in the former case,
and aw = 1

2cn+j + ψw in the latter case, where ψw ∈ Zp is a randomly cho-
sen element. Similarly, since fB(w)(x∗) = 0, we have two cases: either one of
fA(B(w))(x∗) and fB(B(w))(x∗) must be zero, or both of them must be zero.
B sets bw = cn+j + φw in the former case, and bw = 1

2cn+j + φw in the lat-
ter case, where φw ∈ Zp is a randomly chosen element. Then, B creates key
components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)
j−1 ,Kw,4 = g

rw−bw·rB(w)
j−1

We now show that these components can indeed be computed in every case.
Note that the first two components can be computed in every case. Consider
Kw,3 (a similar argument holds for Kw,4).
(a) Consider the first case, where one of fA(A(w))(x∗) and fB(A(w))(x∗) is zero.

In particular, without loss of generality, assume that fA(A(w))(x∗) = 0 and
fB(A(w))(x∗) = 1. Hence, B must have set rA(A(w)) = cn+1 · . . . · cn+j−1 +
ηA(A(w)) and rB(A(w)) = ηB(A(w)). Since A(w) is an AND gate, we would
have rA(w) = rA(A(w))+rB(A(w)) = cn+1 ·. . .·cn+j−1+ηA(A(w))+ηB(A(w)).
Hence, we have:

Kw,3 = g
ηw−cn+j(ηA(A(w))+ηB(A(w)))−ψw(cn+1·...·cn+j−1+ηA(A(w))+ηB(A(w)))

j−1

= g
rw−aw·rA(w)
j−1

which can be computed as follows. We know the values of ηA(A(w)) and
ηB(A(w)). Further, g

cn+1·...·cn+j−1
j−1 can be computed using j − 1 pairings of

gcm , n + 1 ≤ m ≤ n + j − 1. Hence the key component can be computed.
(b) Consider the second case, where fA(A(w))(x∗) = fB(A(w))(x∗) = 0. Hence,

B must have set rA(A(w)) = cn+1 · . . . · cn+j−1 + ηA(A(w)) and rB(A(w)) =
cn+1 · . . . · cn+j−1 + ηB(A(w)). Since A(w) is an AND gate, we would have
rA(w) = rA(A(w)) + rB(A(w)) = 2cn+1 · . . . · cn+j−1 + ηA(A(w)) + ηB(A(w)).
Hence, we have:

Kw,3 = g
ηw− 1

2 cn+j(ηA(A(w))+ηB(A(w)))−ψw(2cn+1·...·cn+j−1+ηA(A(w))+ηB(A(w)))

j−1

= g
rw−aw·rA(w)
j−1

which can be computed as outlined in the former case.

Thus, the four key components can be given out in every case.

AND Gate. We now discuss the case of the AND gate. Suppose that w ∈ Gates
and that GateType(w) = AND. In addition, let j = OR-depth(w). B implicitly
sets rw = rA(w) + rB(w). Note that we need not choose any aw or bw. In fact,
rw is being chosen because the key components being given out for the OR
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gates involve rA(w), etc., which may potentially be from AND gates. Clearly,
Property 1 holds here as well, i.e., grw

j = g
rA(w)
j · grB(w)

j can be computed for this
wire, since g

rA(w)
j and g

rB(w)
j can be computed by virtue of Property 1.

Finally, we set, for the output wire w = n + q, ηw = 0, so that rw = u in
B’s internal view. It is easy to see that aw and bw have the same distribution in
the real game and the game executed by B. In the real game, they are chosen at
random and in the game executed by B, they are either chosen at random or are
values offset by some random values ψw and φw, respectively. For w ∈ [n+q−1],
rw also has the same distribution in the real game and the game executed by
B. This is true, since in the real game, they are chosen so that randomness on
the input wires of an AND gate add up to the randomness on its output wire,
and they are chosen at random for an OR gate, while in the game executed by
B, they are chosen in the exact same way, where being “chosen at random” is
either truly satisfied or are fixed values are offset by random ηw values. Now, we
look at rn+q. In the real game, it is a fixed value u, and in the game executed
by B, by setting ηn+q = 0, rn+q = cn+1 · cn+2 · . . . · cn+�OR

= u internally. Hence,
they too have the same distribution. Hence all the parameters in the real game
and game executed by B have the identical distribution.

Evaluate: Suppose a query is made for a secret key for an input x ∈ {0, 1}n. If
x = x∗, then B aborts. Otherwise, B identifies an arbitrary t such that xt �=
x∗

t . Through �OR pairings of gcm , n + 1 ≤ m ≤ n + �OR, it computes H =
gu

�OR
= g

cn+1·...·cn+�OR

�OR
. Then, through pairing of Dm,xm

∀m ∈ [n]\{t}, it computes

g
∏

m∈[n]\{t} dm,xm

n−1 and raises it to dt,xt
= zt to get H ′ = g

∏
m∈[n] dm,xm

n−1 . Finally, it

computes H ′′ = e(H,H ′) = g
u
∏

m∈[n] dm,xm

n+�OR−1 = F (k, x) and outputs it. Eventually,
A will issue a challenge input x̃. If x̃ = x∗, B will return the value T and output
the same bit as A does as its guess. If x̃ �= x∗, B outputs a random bit as
its guess.

This completes the description of the adversary B. We first note that in the
case where T is part of a MDDH tuple, the real game and game executed by B
have the identical distribution. Secondly, in both cases (i.e., whether or not T is
part of the MDDH tuple), as long as B does not abort, once again, the real game
and game executed by B have the identical distribution, except for the output
of B on the challenge query x∗. We now analyze the probability that B’s guess
was correct. Let δ′ denote B’s output and let δ denote whether T is an MDDH
tuple or not, δ, δ′ ∈ {0, 1}. Now

Pr[δ′ = δ] = Pr[δ′ = δ|abort] Pr[abort] + Pr[δ′ = δ|abort] Pr[abort]

=
1
2
(1 − 2−n) + Pr[δ′ = δ|abort] · (2−n)

=
1
2
(1 − 2−n) +

(
1
2

+ ε

)

· (2−n) =
1
2

+ ε · (2−n)

The set of equations shows that the advantage of B is ε(λ)/2n. This completes the
proof of the theorem, which establishes the pseudorandomness property of the
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construction. Hence, the constrained PRF construction for the circuit-predicate
case is secure under the κ-MDDH assumption.

Removing the Restrictions. The restriction that GateType(n + q) = OR enables
us to set randomness as we do in the scheme above. But this restriction can be
easily removed by setting the randomness corresponding to the last level of OR
gates (or the input wires in case there is no OR gate in the circuit) appropriately
so that rn+q ends up being u.

The restriction that a layer of gates cannot follow another layer of the same
type of gates can also be overcome. The case of several consecutive layers of OR
gates poses no threat since we move up one level in the multilinear maps for
layers of OR gates and hence the current proof method works as is. The case
of several consecutive layers of AND gates can be handled by even more careful
choices of the randomness aw and bw. When we had only one layer of AND gate
(before a layer of OR gates), for an OR gate at OR-depth j, we set aw to be
either 1 · cn+j +ψw or 1

2 · cn+j +ψw depending on whether rA(w) = 1 · cn+1 · . . . ·
cn+j−1+ηA(A(w))+ηB(A(w)) or rA(w) = 2 ·cn+1 · . . . ·cn+j−1+ηA(A(w))+ηB(A(w)).
Similarly, we set bw in accordance with rB(w). Now, when there are more than one
layers of AND gates consecutively, for an OR gate at OR-depth j just after these
AND gates, we set aw (resp. b(w)) to be 1

k cn+j + ψw where k is the coefficient
of cn+1 · . . . · cn+j−1 in rA(w) (resp. rB(w)). We present an illustration of this
technique in the full version [CRV15].

Regarding the first assumption, any layered circuit can be trivially converted
into a “homogeneous” layered circuit by “splitting” each layer in the layered
circuit into two layers: one with only AND gates and the other with only OR
gates. This doubles the depth of the circuit. But if we are a bit more careful and
do the splitting such that the odd layers are split into an AND-layer followed
by an OR-layer and the even layers are split into an OR-layer followed by an
AND-layer, the resulting circuit will have layers of the form (AND-OR)-(OR-
AND)-(AND-OR)-· · · . Now, we can merge the consecutive OR layers into a
single OR layer (because our scheme supports gates with arbitrary fan-in) with
just a polynomial increase in the number of wires. So, we can convert a layered
circuit of depth d into a layered circuit with each layer consisting of only AND or
OR gates with depth d + 1 but with the OR-depth of the circuit being d/2 now.
So even in the worst case we get improvements in parameters using our scheme.

4 A Free-OR Circuit-Predicate Construction

In this section, we show how to construct a constrained random function for
polynomial size circuit predicates of a specific form, without giving any keys for
the OR gates. Once again, we base our construction on multilinear maps and
on the κ-MDDH assumption; however κ in our construction will only depend
on n (the size of the input to the PRF) and now, the AND-depth of the circuit
(informally, this is the maximum number of AND gates from input wires to the
output wire along any path). Once again, the starting point of our construction
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is the constrained PRF construction of Boneh and Waters [BW13] which is
based on the attribute-based encryption construction for circuits [GGH+13c].
We restrict the class of boolean circuits to be of a specific form. We assume
layered circuits and that all gates in a particular layer are of the same type
(either AND or OR). We assume that a layer of gates is not followed by another
layer of the same type of gates. We also assume that all AND gates have a fanout
of 15.

We introduce here a “gadget” which we call a “FANOUT-gate”. This is done
in order to deal with OR gates in the circuit that have a fanout greater than
1. To this end, we assume that a FANOUT-gate is placed just after the OR
gate under consideration. We view such OR gates also to have a fanout of 1 and
without loss of generality assume that the FANOUT-gate alone has a fanout
greater than 1. However, we do not treat the FANOUT-gate while calculating
the total depth of the circuit, etc. It is merely a construct which allows us to
deal only with OR gates having fanout 1.

4.1 Construction

The setup and the PRF construction is identical to the construction in Sect. 3.
We now outline the constrain and evaluate algorithms.

F .Constrain(k, f = (n, q,A,B, GateType)): The constrain algorithm takes as
input the key k and a circuit description f . The circuit has n + q wires with
n input wires, q gates and the wire n+ q designated as the output wire. Assume
that all gates have fanout 1 and that FANOUT-gates have been inserted at
places where the gates have a fanout greater than 1.

To generate a constrained key kf , the key generation algorithm sets rn+q = u,
where we think of the random value rw as being associated with the wire w.
Hence, in notation, if a gate w has fanout greater than 1, then, notation-wise,
rw would have multiple values: one associated with each of the fanout wires of
the FANOUT-gate and one associated with the wire leading out of the gate w
itself. We introduce notation for the same below.

Consider a FANOUT-gate placed after wire w, as shown in Fig. 1. We denote
by rLw the randomness on the wire going as input to the FANOUT-gate (the
actual output wire of the gate under consideration) and by rR,i

w the randomness
on the ith fanout wire of the FANOUT-gate (there would be as many of these
as the fanout of the gate w), where i ∈ [Δ] and Δ is the fanout of the wire w.

We now describe how the randomness for each wire is set. For each w ∈
[n + q]\[n], if GateType(w) = OR, it sets rA(w) = rB(w) = rw, otherwise, it

5 This can always be ensured for circuits that have alternating AND and OR layers.
Suppose there is an AND gate with fanout Δ > 1. We simply replace it with Δ AND
gates having the same inputs and now we have Δ wires with the required output
as before. Note that this process would have forced us to make the fanout of gates
driving the AND gate to be Δ times as large, but since a gate driving an AND gate
would only be an OR gate by our imposed circuit structure, this blows up the size
of the circuit by only a polynomial factor.
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Fig. 1. FANOUT-gate

chooses rA(w) and rB(w) at random. The case of FANOUT-gates is handled as
follows. Note that the above description already takes care of setting randomness
on all the fanout wires of the FANOUT-gate. The randomness for the input wire
to the FANOUT-gate (the output wire of the gate with fanout greater than 1)
is chosen at random. Note that this completely describes how randomness on all
wires in the circuit are chosen.

The first part of the constrained key is given out as simply all Di,β for i ∈ [n]
and β ∈ {0, 1}. Next, the algorithm generates key components. The structure
of the key components depends on whether w is an input wire or an output of
an AND gate. For OR gates, we do not need to give out any keys, hence the
name Free-OR. But, we also need to give out special key components for the
FANOUT-gates. The key components in each case are described below.

– Input wire
By convention, if w ∈ [n], then it corresponds to the w-th input. The key
component is:

Kw = grwdw,1

– AND gate
Suppose that w ∈ Gates and that GateType(w) = AND. In addition, let
j = AND-depth(w). The algorithm chooses random aw, bw ∈ Zp. Then, the
algorithm creates key components:

Kw,1 = gaw ,Kw,2 = gbw ,Kw,3 = g
rw−aw·rA(w)−bw·rB(w)
j−1

– FANOUT-gate
Suppose that w ∈ Gates, GateType(w) = OR and that the fanout of w is
greater than 1. In addition, let j = AND-depth(w). In this case, a FANOUT-
gate would have been placed after w. Let rLw denote the randomness on the
wire going as input to the FANOUT-gate (the actual output wire of the gate
under consideration) and let rR,i

w denote the randomness on the ith fanout
wire of the FANOUT-gate (there would be as many of these as the fanout of
the gate w). The keys given out are:

Kw,w′,i = g
(rR,i

w −rL
w)

j−1

for all i ∈ [Δ], where Δ is the fanout of the gate w.

The constrained key kf consists of all these key components along with {Di,β}
for i ∈ [n] and β ∈ {0, 1}.
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F .Evaluate(kf , x): The evaluate algorithm takes as input a constrained key kf for
the circuit f = (n, q,A,B, GateType) and an input x ∈ {0, 1}n. The algorithm
first checks that f(x) = 1, and if not, it aborts.

Consider the wire w at AND-depth j. If fw(x) = 1, then, the algorithm

computes Ew = g
rw

∏
m∈[n] dm,xm

n+j−1 . If fw(x) = 0, then nothing needs to be com-
puted for that wire. The algorithm proceeds iteratively starting with computing
E1 and proceeds, in order, to compute En+q. Computing these values in order
ensures that the computation on a lower-depth wire that evaluates to 1 will
be defined before the computation for a higher-depth wire. Since rn+q = u,

En+q = g
u
∏

m∈[n] dm,xm

n+�AND−1 .
We show how to compute Ew for all w where fw(x) = 1, case-wise, according

to whether the wire is an input, an OR gate, an AND gate or a fanout wire of a
FANOUT-gate. Define D = D(x) = g

∏
m∈[n] dm,xm

n , which is computable through
n pairing operations.

– Input wire
By convention, if w ∈ [n], then it corresponds to the w-th input. Sup-
pose fw(x) = 1. Through pairing operations, the algorithm computes

g
∏

m∈[n]\{w} dm,xm

n−1 . It then computes:

Ew = e
(
Kw, g

∏
m∈[n]\{w} dm,xm

n−1

)
= g

rw

∏
m∈[n] dm,xm

n

– OR gate
Consider a wire w ∈ Gates with GateType(w) = OR. The computation is
performed if fw(x) = 1. Note that in this case, at least one of fA(w)(x) and
fB(w)(x) must be 1. Hence, we must have been able to evaluate at least one
of EA(w) and EB(w). Since, for an OR gate, rA(w) = rB(w) = rw, we have
Ew = EA(w) = EB(w), which can now be computed.

– AND gate
Consider a wire w ∈ Gates with GateType(w) = AND. In addition, let j =
AND-depth(w). The computation is performed if fw(x) = 1. Note that in this
case, both fA(w)(x) and fB(w)(x) must be 1. The algorithm computes:

Ew = e(EA(w),Kw,1) · e(EB(w),Kw,2) · e(Kw,3,D)

= e
(
g

rA(w)
∏

m∈[n] dm,xm

n+j−2 , gaw

)
· e

(
g

rB(w)
∏

m∈[n] dm,xm

n+j−2 , gbw

)
·

e
(
g

rA(w)−aw·rA(w)−bw·rB(w)
j−1 , g

u
∏

m∈[n] dm,xm
n

)

= g
rw

∏
m∈[n] dm,xm

n+j−1

– FANOUT-gate
Let rLw denote the randomness on the wire going as input to the FANOUT-
gate (the actual output wire of the gate under consideration) and let rR,i

w

denote the randomness on the ith fanout wire of the FANOUT-gate (there
would be as many of these as the fanout of the gate w). The computation is
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performed if fw(x) = 1. In coherence with the previous notation, we define
the quantities EL

w and ER,i
w . Note that the EL

w would have been computed. It
then computes:

ER,i
w = e (Kw,w′,i,D) · EL

w = g
rR,i

w

∏
m∈[n] dm,xm

n+j−1

The procedures above are evaluated in order for all w for which fw(x) = 1.

Thus, the algorithm computes En+q = g
u
∏

m∈[n] dm,xm

n+�−1 = F (k, x).

5 Combining the Free-AND and Free-OR Techniques

In this section, we show that for the case of NC1, we can indeed combine the
Free-AND and Free-OR techniques to obtain a construction that has Free-ANDs
and Free-ORs. While the main reason that the technique works is that for NC1

circuits we can consider only boolean formulas, proving that our construction is
secure is non-trivial (and different from the case of ABE).

5.1 An NC1-predicate Construction

We construct a constrained PRF for arbitrary NC1 circuit predicates, without
giving any keys for AND as well as OR gates. Again, we base our construction
on the κ-MDDH assumption; however κ in our construction will only depend on
n (the size of the input to the PRF) and not on the circuit in any way. We will
be dealing with circuits of the form described in Sect. 2.3.

5.2 Construction

F .Setup(1λ, 1n): The setup algorithm that defines the master secret key and
the PRF is identical to the setup algorithm from Sect. 3 with κ = n instead of
n + �OR − 1.

F .Constrain(k, f = (n, q,A,B, GateType)): The algorithm sets rn+q = u. For
each w ∈ [n + q]\[n], if GateType(w) = OR, it sets rA(w) = rB(w) = rw, other-
wise, it chooses rA(w) at random and sets rB(w) = rw − rA(w). Since the fanout
of all gates is 1, for any wire w ∈ [n + q]\[n], rw would have been uniquely
set. However, since the same inputs may be re-used in multiple gates, for any
wire w ∈ [n], rw may have multiple values (as many as the fanout of the input
wire), i.e., different randomness values for each use of the input wire (to different
gates). Note that this procedure sets randomness on all wires in the circuit. The
first part of the constrained key (kf ) is given out as simply all Di,β for i ∈ [n]
and β ∈ {0, 1}. The remaining key components are: Kw,i = grw,idw,1 ,∀i ∈ [Δ],
where Δ is the fanout of the input wire w.

F .Evaluate(kf , x): The evaluate algorithm takes as input a constrained key kf

and an input x ∈ {0, 1}n. The algorithm first checks that f(x) = 1, and if not,
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it aborts. Consider the wire w. If fw(x) = 1, then, we show how to compute6

Ew = g
rw

∏
m∈[n] dm,xm

n , case-wise, according to whether the wire is an input, an
OR gate or an AND gate.

– Input wire. Through pairing operations, compute g
∏

m∈[n]\{w} dm,xm

n−1 . Then

compute: Ew,i = e
(
Kw,i, g

∏
m∈[n]\{w} dm,xm

n−1

)
= g

rw,i

∏
m∈[n] dm,xm

n ∀i ∈ [Δ],
where Δ is the fanout of the input wire w.

– OR gate. In this case, at least one of fA(w)(x) and fB(w)(x) must be 1. Hence,
we can evaluate at least one of EA(w) and EB(w). Since, for an OR gate,
rA(w) = rB(w) = rw, Ew = EA(w) = EB(w), can now be computed.

– AND gate. In this case, fA(w)(x) = fB(w)(x) = 1. The algorithm computes:

Ew = EA(w) · EB(w) = g
rA(w)

∏
m∈[n] dm,xm

n · grB(w)
∏

m∈[n] dm,xm
n = g

rw
∏

m∈[n] dm,xm
n

The procedures above are evaluated, in order, for all w for which fw(x) = 1.

Thus, the algorithm computes En+q = g
u
∏

m∈[n] dm,xm
n = F (k, x).

5.3 Proof of Pseudorandomness

The correctness of the constrained PRF is verifiable in a straightforward manner.
To show pseudorandomness, given an algorithm A that breaks security of the
constrained PRF, we will construct algorithm B that breaks security of the
κ = n−MDDH assumption. B receives a κ−MDDH challenge consisting of the
group sequence description G and g = g1, g

c1 , . . . , gcκ+1 along with T , where T

is either g
∏

m∈[κ+1] cm

κ or a random group element in Gκ. The security proof is
in the selective security model (where the adversary commits to the challenge
input x∗ at the beginning of the game). To get full security, the proof will use
the standard complexity leveraging technique of guessing the challenge x∗; this
guess will cause a loss of a 1/2n-factor in the reduction. We formally show:

Theorem 2. If there exists a PPT adversary A that breaks the pseudorandom-
ness property of our NC1-predicate construction for n-bit inputs with advantage
ε(λ), then there exists a PPT algorithm B that breaks the κ = n−Multilinear
Decisional Diffie-Hellman assumption with advantage ε(λ)/2n.

Proof. The algorithm B first receives a κ = n−MDDH challenge consisting of
the group sequence description G and g = g1, g

c1 , . . . , gcκ+1 along with T , where
T is either g

∏
m∈[κ+1] cm

κ or a random group element in Gκ.

6 For input wires w ∈ [n], we have Ew,i = g
rw,i

∏
m∈[n] dm,xm

n for all i ∈ [Δ], where
Δ is the fanout of the input wire w. This feature has been present in our Free-OR
construction as well. We pay attention to it specifically in this construction because
of the absence of fanout for any wire other than the input wires.
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Setup. It chooses an x∗ ∈ {0, 1}n uniformly at random. Next, it chooses random
z1, . . . , zn ∈ Zp and sets Dm,β = gcm if x∗

m = β and gzm otherwise, for m ∈ [n]
and β ∈ {0, 1}. It then implicitly sets u = cn+1. The setup is executed as in the
construction.

Constrain. Suppose a query is made for a secret key for a circuit f =
(n, q,A,B, GateType). If f(x∗) = 1, then B aborts.

Otherwise, B sets the randomness on each wire in the circuit in the follow-
ing way. It sets, for the output wire w = n + q, rw = u = cn+1. For each
w ∈ [n + q]\[n], if GateType(w) = OR, it sets rA(w) = rB(w) = rw. Suppose
GateType(w) = AND. If fw(x∗) = 1, then fA(w)(x∗) = fB(w)(x∗) = 1 and B
chooses rA(w) at random and sets rB(w) = rw − rA(w). Suppose fw(x∗) = 0.
Then we know that at least one of fA(w)(x∗) and fB(w)(x∗) must be zero. If
fA(w)(x∗) = 0, it chooses rB(w) at random and sets rA(w) = rw − rB(w), while
if fA(w)(x∗) = 1 and hence fB(w)(x∗) = 0, it chooses rA(w) at random and
sets rB(w) = rw − rA(w). As we shall see later, such a choice of randomness
is critical for the security proof. Since the fanout of all gates is 1, for any wire
w ∈ [n+q]\[n], rw would have been uniquely set. However, since the same inputs
may be re-used in multiple gates, for any wire w ∈ [n], rw may have multiple
values (as many as the fanout of the input wire), i.e., different randomness values
for each use of the input wire (to different gates), which we denote by rw,i for
all i ∈ [Δ], where Δ is the fanout of the input wire w. Note that this procedure
sets randomness on all wires in the circuit.

To show that B can indeed compute all the key components, our proof will
follow a similar structure to the Free-OR case (Sect. 4). We shall prove that for
all wires in the circuit, B can compute grw . To prove this, we shall prove the
above statement, both when the wire w is such that fw(x∗) = 1 (Lemma 2),
and when the wire w is such that fw(x∗) = 0 (Lemma 3). To prove Lemma
2, we shall first prove the following fact (Lemma 1): consider all wires in the
circuit that evaluate to 1 on x∗ and consider those wires among these that have
maximum total depth; then, these wires must all be input wires to AND gates.

Lemma 1. Define:

– S1 = {w : w ∈ [n + q] ∧ fw(x∗) = 1}
– Smax-tot-depth

1 = {w : w ∈ S1 ∧ tot-depth(w) ≥ tot-depth(w′) ∀w′ ∈ S1}
Then w is an input wire to an AND gate ∀w ∈ Smax-tot-depth

1 .

Proof. This fact is very easy to easy. Clearly, w �= n+q, since fn+q(x∗) = 0 while
fw(x∗) = 1. Hence there exist layers of gates after the one containing w. Suppose
w is an input wire to an OR gate. Since fw(x∗) = 1, for some OR gate w′ in the
next layer of gates, fw′(x∗) = 1. Hence, ∃w′ ∈ S1 such that tot-depth(w) <

tot-depth(w′) which contradicts the fact that w ∈ Smax-tot-depth
1 .

Lemma 2. For any wire w ∈ [n + q], if fw(x∗) = 1, then rw is known.
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Proof. We prove this by observing the randomness we have set on each wire,
from the output wire to the input wires. From Lemma 1, we know that the first
such wire we would see would be an input to an AND gate. For an input wire
A(w), of an AND gate, satisfying fA(w)(x∗) = 1, first consider the case when
fw(x∗) = 17. In this case, B explicitly chooses all random values associated with
this gate and hence B chose rA(w). When fw(x∗) = 0, note that B carefully chose
the randomness on the input wires which may potentially evaluate to 1 on x∗ at
random (and set the value on the other input wire B(w) based on this). Hence,
if fA(w)(x∗) = 1, rA(w) is known to B. This forms the base case for the induction.
Now, consider any other wire A(w) such that fA(w) = 1. Now, if A(w) were an
input to an AND gate, then by the same argument as above, rA(w) is known
to B. Suppose, A(w) were an input to an OR gate w and fA(w)(x∗) = 1, then
fw(x∗) = 1. By the induction hypothesis, rw is known. We know that since w is
an OR gate, rA(w) = rw and hence rA(w) is known. This completes the proof.

Lemma 3. For any wire w ∈ [n + q], if fw(x∗) = 0, then grw is known.

Proof. We can prove this by observing the randomness we have set on each wire,
from the output wire to the input wires. The statement is true for the output
wire w = n + q, since gcn+1 is known. This forms the base case. We can now
argue inductively.

– Case 1: If w is an input to an OR gate w′, then rw = rw′ . If fw′(x∗) = 1, then
by Lemma 2, rw′ is known and hence grw is known. If fw′(x∗) = 0, then by
the induction hypothesis, grw′ is known and hence grw is known.

– Case 2: If w is an input to an AND gate w′, then fw′(x∗) = 0. Now, by the
induction hypothesis, grw′ is known. If w = A(w′), then rB(w′) was chosen
at random and is known, and hence grw = grw′ −rB(w′) is known. Suppose
w = B(w′). If fA(w′)(x∗) = 0, rw was chosen at random and is known, and
hence grw is known. If fA(w′)(x∗) = 1, then rA(w′) was chosen at random and
is known, and hence grw = grw′−rA(w′) is known.

Finally, B generates key components for input wires w ∈ [n]. By convention,
if w ∈ [n], then it corresponds to the w-th input. If x∗

w = 1, then rw,i is known,
from Lemma 2, for all i ∈ [Δ], where Δ is the fanout of the input wire w. The
key components are: Kw,i = (Dw,1)rw,i = grw,idw,1 , for all i ∈ [Δ]. If x∗

w = 0,
then grw,i is known, from Lemma 3, for all i ∈ [Δ]. The key components are:
Kw,i = (grw,i)zw = grw,idw,1 , for all i ∈ [Δ].

Evaluate. Suppose a query is made for a secret key for an input x ∈ {0, 1}n. If
x = x∗, then B aborts. Otherwise, B identifies an arbitrary t such that xt �= x∗

t .

Through pairing of Dm,xm
∀m ∈ [n]\{t}, it computes g

∏
m∈[n]\{t} dm,xm

n−1 and raises

it to dt,xt
= zt to get H = g

∏
m∈[n] dm,xm

n−1 . Finally, it computes H ′ = e(U,H) =

7 It is true that the first such wire when we go from output to input level would be
an AND gate with fw(x

∗) = 0. However, the discussion on the case of fw(x
∗) = 1 is

more a general one for all AND gates in the circuit.
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g
u
∏

m∈[n] dm,xm
n = F (k, x) and outputs it. Eventually, A will issue a challenge

input x̃. If x̃ = x∗, B will return the value T and output the same bit as A does
as its guess. If x̃ �= x∗, B outputs a random bit as its guess.

This completes the description of the adversary B. We first note that in the
case where T is part of a MDDH tuple, the real game and game executed by B
have the identical distribution. Secondly, in both cases (i.e., whether or not T is
part of the MDDH tuple), as long as B does not abort, once again, the real game
and game executed by B have the identical distribution, except for the output
of B on the challenge query x∗. Similar to the analysis in Sect. 3, the probability
that B’s guess was correct can be shown to be ε(λ)/2n.

6 From Bit-Fixing PRFs to NC1 PRFs

In this section, we show that from any constrained PRF scheme supporting
bit-fixing predicates that has certain additive homomorphic properties (let this
be Fbf), we can construct a constrained PRF scheme supporting NC1 circuit
predicates (FNC1) in a black-box manner. We will be dealing with circuits of the
form described in Sect. 2.3. It is sufficient if the PRF is able to fix a single bit
to just one of the possibilities (i.e., either fixing the bits only to 0 or only to 1).
The homomorphic properties that we require from the bit-fixing scheme are:

1. The PRF must have an additive key-homomorphism property. In other words,
there exists a public algorithm Fbf .KeyEval, such that, for all k1, k2 ∈ K,
Fbf .KeyEval outputs Fbf(k1 + k2, x) on inputs Fbf(k1, x) and Fbf(k2, x).

2. Let Fbf .Constrain(k, i) be the constrain algorithm that takes in a key and the
position of the bit to be fixed to 1.8 An additive key-homomorphism property
should also exist among the constrained keys, that is, there exists a public
algorithm, Fbf .AddKeys, such that9, for all k1, k2 ∈ K and index i,

Fbf .AddKeys(Fbf .Constrain(k1, i),Fbf .Constrain(k2, i)) = Fbf .Constrain(k1 + k2, i)

6.1 Construction

We follow the same template as in our NC1-predicate construction in Sect. 5.1.
We observe that the component Kw,i at the input level can be replaced with a
constrained key from any bit-fixing scheme which satisfies the properties men-
tioned above. Fbf ,FNC1 denote the bit-fixing and NC1 schemes respectively.

FNC1.Setup(1λ, 1n): The setup algorithm runs Fbf .Setup(1λ, 1n) to get the PRF
Fbf and key k. It sets the key as k. The keyed pseudo-random function is defined
as Fbf(k, x).

8 By symmetry, the construction also works if the constrain algorithm fixes a bit to 0.
9 We note here that Fbf .Constrain(k, i) could, in general, be a randomized algorithm
and in this case, we require the distributions on the left and the right of the equality
to be computationally indistinguishable. For ease of exposition, we assume that
Fbf .Constrain(k, i) is deterministic and state our results accordingly.
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FNC1.Constrain(k, f = (n, q,A,B, GateType)): The constrain algorithm sets
up randomness on the wires of the circuit using the procedure in the con-
struction in Sect. 5.1 and computes key components for the input wires as
Kw = Fbf .Constrain(rw, w)10. The constrained key kf consists of all these key
components.

FNC1.Evaluate(kf , x): The algorithm first checks that f(x) = 1, and if not, it
aborts. As in the construction in Sect. 5.1, for every wire w, if fw(x) = 1, then,
the algorithm computes Fbf(rw, x). The algorithm proceeds iteratively and com-
putes Fbf(rn+q, x) = Fbf(k, x). Fbf(rw, x) can be computed, case-wise, according
to whether the wire is an input, an OR gate or an AND gate.

– Input wire
If fw(x) = 1, it computes Fbf(rw, x) = Fbf .Eval(Kw, x).

– OR gate
If fw(x) = 1, at least one of fA(w)(x) and fB(w)(x) must be 1. Hence, we must
have been able to evaluate at least one of Fbf(rA(w), x) and Fbf(rB(w), x). Since,
rA(w) = rB(w) = rw, Fbf(rw, x) = Fbf(rA(w), x) = Fbf(rB(w), x), which can be
computed.

– AND gate
If fw(x) = 1, fA(w)(x) = fB(w)(x) = 1. Hence, we must have been able
to evaluate both Fbf(rA(w), x) and Fbf(rB(w), x). The algorithm computes
Fbf(rw, x) = Fbf .KeyEval(Fbf(rA(w), x),Fbf(rB(w)x)), since, rA(w)+rB(w) = rw.

The procedures above are evaluated, in order, for all w for which fw(x) = 1.
Thus, the algorithm computes Fbf(rn+q, x) = Fbf(k, x).

6.2 Proof of Pseudorandomness

The correctness of the scheme is straightforward from the key-homomorphism
property of the bit-fixing PRF scheme. We now prove the security.

Theorem 3. If there exists a PPT adversary A that breaks the selective security
of our construction for n-bit inputs supporting NC1-predicates with an advantage
ε(λ), then there exists a PPT algorithm B that breaks the selective security of
the underlying bit-fixing predicate construction with the same advantage ε(λ).

Proof. Let A be the adversary which breaks the selective security of our NC1

construction. We will construct an adversary B which will use A to break the
selective security of the bit-fixing construction Fbf . Thus, B plays a dual role:
one as an adversary in the security game breaking the bit-fixing construction
and also as a challenger in the security game breaking the NC1 construction.

– First A provides its challenge x∗ to B which in turn forwards it to its chal-
lenger. B receives the public parameters of the bit-fixing scheme from its
challenger along with either Fbf(k, x∗) or a random value which it forwards

10 As in Sect. 5.1, the fanout of the input wires can be easily incorporated.
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to A. B is going to answer queries as though the PRF evaluated by the NC1

construction is the same as that evaluated by the bit-fixing construction Fbf

used by the challenger. When A asks a query f to NC1.Constrain oracle with
f(x∗) = 0, B follows a procedure similar to the one in Sect. 5.1.
• B carefully sets the randomness on all wires in the circuit as in the proof

in Sect. 5.1. By virtue of this careful setting, the same properties hold: for
any wire w ∈ [n + q], if fw(x∗) = 1, then rw is known, and if fw(x∗) = 0,
then rw would either be known or of the form k +

∑
r, where each r is

known. Note that rn+q = k which is the key of PRF used by B as well as
B’s challenger.

• To give out keys for the input wires, B does the following. For
those wires w with fw(x∗) = 1, rw is known and hence B obtains
Kw = Fbf .Constrain(rw, w) by running Fbf .Constrain(rw, w) by itself. For
wires w with fw(x∗) = 0, if rw is known, then B obtains Kw =
Fbf .Constrain(rw, w) by running Fbf .Constrain(rw, w) by itself. Otherwise,
rw is of the form k +

∑
r, where each r is known. For each r, B obtains

K ′
r,w = Fbf .Constrain(r, w) by running Fbf .Constrain(r, w) by itself. Through

repeated use of Fbf .AddKeys, and by virtue of the homomorphism prop-
erty of the constrained keys, B obtains K ′∑

r,w = Fbf .Constrain (
∑

r, w).
B then queries its challenger for the constrained key fixing the wth bit,
i.e., it obtains K ′

k,w = Fbf .Constrain(k,w) by querying its challenger.

Finally, through the use of Fbf .AddKeys
(
K ′

k,w,K ′∑
r,w

)
, B obtains Kw =

Fbf .Constrain (rw, w).
• When answering A’s queries to NC1.Constrain, it is important to note

that B does not query for any predicate that allows it to evaluate F (k, x∗)
by itself. We achieve this because all queries by B to the challenger,
Fbf .Constrain(k,w), fix the wth bit to 1, while if the query were made,
fw(x∗) = 0, i.e., the wth bit of x∗ is 0.

– When A outputs a bit b′, B outputs the same.

In the above game, if A breaks the selective security of the NC1 construction
with an advantage of ε(λ) then B breaks the underlying bit-fixing construction
with the same advantage.
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Abstract. We formally study “non-malleable functions” (NMFs), a gen-
eral cryptographic primitive which simplifies and relaxes “non-malleable
one-way/hash functions” (NMOWHFs) introduced by Boldyreva et al.
(ASIACRYPT 2009) and refined by Baecher et al. (CT-RSA 2010). NMFs
focus on deterministic functions, rather than probabilistic one-way/hash
functions considered in the literature of NMOWHFs.

We mainly follow Baecher et al. to formalize a game-based definition.
Roughly, a function f is non-malleable if, given an image y∗ ← f(x∗)
for a randomly chosen x∗, it is hard to output a mauled image y with a φ
from some transformation class s.t. y = f(φ(x∗)). A distinctive strength-
ening of our non-malleable notion is that φ(x∗) = x∗ is always allowed. We
also consider adaptive non-malleability which stipulates non-malleability
maintains even when an inversion oracle is available.

We investigate the relations between non-malleability and one-wayness
in depth. In the non-adaptive setting, we show that for any achievable
transformation class, non-malleability implies one-wayness for poly-to-one
functions but not vise versa. In the adaptive setting, we show that for most
algebra-induced transformation class, adaptive non-malleability (ANM) is
equivalent to adaptive one-wayness (AOW) for injective functions. These
two results establish interesting theoretical connections between non-
malleability and one-wayness for functions, which extend to trapdoor func-
tions as well, and thus resolve some open problems left by Kiltz et al.
(EUROCRYPT 2010). Notably, the implication AOW ⇒ ANM not only
yields constructions ofNMFs fromadaptive trapdoor functions,which par-
tially solves an open problem posed by Boldyreva et al. (ASIACRYPT
2009), but also provides key insight into addressing non-trivial copy attacks
in the area of related-key attacks (RKA).

Finally, we show that NMFs lead to a simple black-box construction of
continuous non-malleable key derivation functions recently proposed by
Qin et al. (PKC 2015), which have proven to be very useful in achieving
RKA-security for numerous cryptographic primitives.
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1 Introduction

Non-malleability is an important notion for cryptographic primitives which
ensures some level of independence of outputs with respect to related inputs.
This notion, first treated formally in the seminal work of Dolev, Dwork and
Naor [25], has been studied extensively for many randomized primitives, such as
commitments [22,23,29,44], encryptions [12], zero-knowledge proofs [39,42,49],
obfuscations [20], and codes [26–28]. However, little attention has been paid on
deterministic primitives. Particularly, the study dedicated to non-malleability
for deterministic functions, which is arguably the most basic primitive, is still
open. With the goal to fill this gap, we initiate the study of non-malleability for
deterministic functions in this work.

1.1 Related Work

Non-Malleable One-Way and Hash Functions. Boldyreva et al. [16] ini-
tiated the foundational study of non-malleable one-way and hash functions
(NMOWHFs).1 They gave a simulation-based definition of non-malleability,
basically saying that, for any adversary mauling a function value y∗ into a
related value y, there exists a simulator which does just well even without see-
ing y∗. They provided a construction of NMOWHFs from perfectly one-way
hash functions (POWHF) and simulation-sound non-interactive zero-knowledge
proof of knowledge (NIZKPoK). However, they regarded this construction as
a feasibility result due to its inefficiency. They also discussed applications of
NMOWHFs to partially instantiating random oracles in the Bellare-Rogaway
encryption scheme [11] and OAEP [17], as well as enhancing the security of
cryptographic puzzles.

Being aware of several deficiencies in the simulation-based definition of
non-malleability [16],2 Baecher et al. [3] reverted the core idea behind non-
malleability and proposed a game-based definition which is more handy to work
with. Their definition avoids simulator completely and rather asks for the fol-
lowing: given a function value y∗ ← f(x∗) of an unknown preimage x∗, no prob-
abilistic polynomial time (PPT) adversary is able to output a mauled image y
together with a transformation φ from a prefixed transformation class Φ such
that y = f(φ(x∗)). To demonstrate the usefulness of their game-based defini-
tion, they proved that the strengthened Merkle-Damg̊ard transformation satisfies
their non-malleability notion w.r.t. bit flips, and their non-malleability notion
suffices for improving security of the Bellare-Rogaway encryption scheme.
1 Historically, Boldyreva et al. [16] aggregated both one-way functions and hash func-

tions under the term hash functions for simplicity.
2 See [3] for a detailed discussion on simulation-based non-malleable notion.
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We identify the following gaps in the NMOWHFs literature [3,16].

– Both [16] and [3] considered non-malleability for a very general syntax of func-
tions, comprising both classical one-way functions and collision resistant hash
functions. In their cases, the underlying functions could be probabilistic and
are assumed to be one-way.3 Despite such treatment is of utmost generality, it
is somewhat bulky and even inapplicable for some natural applications, e.g.,
when the functions are probabilistic, two independent parties computing with
the same input will not necessarily get the same output [16]. Moreover, to
some extent, it blurs the relations between non-malleability and one-wayness.

– The game-based non-malleable notion [3] is not strong enough in the sense
that the adversary is restricted to output φ ∈ Φ such that φ(x∗) �= x∗. Note
that Φ is introduced to capture all admissible transformations chosen by the
adversary, this restriction translates to the limit that Φ does not contain φ
that has fixed points, which is undesirable because many widely used trans-
formations (e.g., affine functions and polynomials) are excluded.

– Boldyreva et al.’s construction of NMOWHF is in the standard model, but
the uses of POWHF and NIZKPoK render it probabilistic, and inefficient
for practical applications [16] (e.g., cryptographic puzzles for network proto-
cols). The strengthened Merkle-Damg̊ard transformation does constitute an
efficient NMOWHF construction [3], but its non-malleability inherently relies
on modeling the compression function as a random oracle [3]. An efficient,
deterministic solution in the standard model was left open [16].

– Though NMOWHFs are powerful, their cryptographic applications are only
known for partially instantiating random oracles for some public-key encryp-
tion schemes and enhancing the design of cryptographic puzzles. Further appli-
cations of NMOWHFs in other areas were expected [16].

(Adaptive) One-Way Functions. As a fundamental primitive, one-way func-
tions [24] and their variants [19,43] have been studied extensively. Roughly,
one-way functions are a family of deterministic functions where each particular
function is easy to compute, but most are hard to invert on average.

Kiltz et al. [38] introduced a strengthening of trapdoor one-way functions
called adaptive one-way trapdoor functions (ATDFs), which remain one-way
even when the adversary is given access to an inversion oracle. They gave a
black-box construction of chosen-ciphertext secure public-key encryption (CCA-
secure PKE) from ATDFs, and showed how to construct ATDFs from either lossy
TDFs [45] or correlated-product TDFs [48]. Their work suggested a number of
open problems; in particular, considering non-malleability for TDFs, exploring
its relation to existing notions for TDFs and implications for PKE, and realizing
them from standard assumptions.

1.2 Motivation

Based on the above discussion, we find that the state of the art of NMOWHFs
is not entirely satisfactory. In particular, the study of non-malleability dedicated
to deterministic functions and its relation to one-wayness are still open.
3 The basic design principle for cryptographic hash functions is one-wayness.
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In this work, we continue the study of non-malleable primitive, but restrict
our attention to deterministic functions, rather than probabilistic one-way/hash
functions considered in prior works. Apart from being a natural question which
deserves study in its own right, a direct treatment of deterministic functions
(without imposing any other cryptographic property) provides three main ben-
efits. First, it shares the same underlying object of “classical” one-way func-
tions and hence allows us to explore the relations between non-malleability and
one-wayness. Second, this may further lead to efficient constructions of deter-
ministic NMFs in the standard model, by leveraging a vast body of works on
one-way functions. Third, deterministic primitives are more versatile, making
deterministic NMFs more attractive being used a building block for higher-level
cryptographic protocols.

In summary, we are motivated to consider the following intriguing questions:

What is the strong yet handy non-malleable notion for deterministic functions?
What are the relations between non-malleability and one-wayness? Can we con-
struct efficient deterministic NMFs in the standard model? Are there new appeal-
ing applications of deterministic NMFs?

1.3 Our Contributions

We give positive answers to the above questions, which we summarize below.

Non-Malleable Functions. In Sect. 3, we introduce a new cryptographic prim-
itive called deterministic NMFs,4 which simplifies and relaxes NMOWHFs in
that the underlying functions are deterministic and not required to have any
cryptographic property. Informally, NMFs stipulate no PPT adversary is able to
modify a function value into a meaningfully related one. We mainly follow the
game-based approach [3] to define non-malleability for deterministic functions
w.r.t. related-preimage deriving transformation5 (RPDT) class Φ, that is, given
y∗ ← f(x∗) for a randomly chosen x∗, no PPT adversary is able to output a
transformation φ ∈ Φ and a function value y such that y = f(φ(x∗)).

In our definition, adversary’s power is neatly expressed through Φ and there
is no other restriction. In particular, φ(x∗) = x∗ is always allowed even when
y = y∗, whereas existing definition of NMOWHFs [3, Section3.1] demands
φ(x∗) �= x∗. As we will see in Sects. 7 and 8, this strengthening surfaces as
an important property when applying to the area of RKA security. We also
introduce adaptive NMFs, which remain non-malleable even the adversary has
access to an inversion oracle. This stronger notion is desirable when NMFs are
used in more adversarial environment, as we will show in Sect. 8.4.

Novel Properties of RPDTs. Our non-malleability notion is stronger if Φ
is larger. To capture broad yet achievable RPDT class, in Sect. 4 we introduce
two novel properties for RPDT class that we call bounded root space (BRS) and
4 We will omit “deterministic” and simply say NMFs when the context is clear.
5 We use the term transformation to highlight that φ has the same domain and range.

RPDT was refereed to as admissible transformation in [3].
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sampleable root space (SRS). Let id and φc represent identity transformation and
any constant transformation respectively. The two properties demand that for
each φ ∈ Φ, the root spaces of composite transformations φ − φc and φ − id are
polynomially bounded and allow efficient uniform sampling.

BRS and SRS are general enough in that they are met by most algebra-
induced transformations considered in the literature, including linear functions,
affine functions, and low degree polynomials (with id and φc being punctured).
We let Φsrs

brs denote the general RPDT class satisfying the BRS & SRS properties.

Relations Among Non-Malleability and One-Wayness. In Sects. 5 and 6,
we investigate the relations among non-malleability and one-wayness in depth.
Figure 1 shows a (rough) pictorial summary.

Fig. 1. Let unhatched arrows represent implications, and hatched arrows represent
separations. The left figure is a rough overview of relations among (adaptive) Φ-non-
malleability and (adaptive) one-wayness for deterministic functions. See Sect. 5 for
concrete requirements on Φ and the underlying functions. The right figure depicts the
relation between standard one-wayness/non-malleability and hinted one-wayness/non-
malleability. See Sect. 6 for details.

In the non-adaptive setting, we show that w.r.t. any achievable RPDT class Φ,
non-malleability (NM) implies one-wayness (OW) for poly-to-one functions (cf.
Definition 1), but not vise versa. This rigorously confirms the intuition that in
common cases NM is strictly stronger than OW. In the adaptive setting, we show
that w.r.t. Φsrs

brs, adaptive non-malleability (ANM) is equivalent to adaptive one-
wayness (AOW) for injective functions. While the implication ANM ⇒ AOW is
obvious, the converse is much more technically involved. In Sect. 5.3, we prove
the implication AOW ⇒ ANM via a novel algebraic technique, leveraging the
injectivity of the underlying functions and the BRS & SRS properties of Φsrs

brs.
The rough idea is that: if an adversary breaks non-malleability (outputting a
mauled image along with a transformation), the reduction can obtain a solvable
equation about the preimage and thus contradicts the assumed one-wayness.

All these results indicate that the preimage size is a fundamental parameter
of NMFs. We also note that all the above results apply equally well to trap-
door functions. Most importantly, the equivalence AOW ⇔ ANM answers the
aforementioned open problems left by Kiltz et al. [38].
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Both OW and NM can be considered with auxiliary information of preim-
age x∗, which is modeled by a hint function hint(x∗). We refer to the standard
(default) notions without hint as hint-free notions, and refer to the ones with hint
as hinted notions. Compared to hint-free notions, hinted ones are generally more
useful for cryptographic applications, as we will demonstrate in Sect. 8. While
hinted notions trivially implies hint-free ones, the converse becomes more sub-
tle. In Sect. 6, we will show that w.r.t. statistically/computationally simulatable
hint(x∗), hinted notions are implied by hint-free ones.

Benefits of AOW ⇒ ANM. Given the fact that ATDFs are efficiently real-
izable from a variety of hardness assumptions, the implication AOW ⇒ ANM
immediately gives rise to efficient deterministic NMFs w.r.t. Φsrs

brs in the stan-
dard model. This partially6 resolves an open question raised in [16]. In the full
version [21] of this work, by using the technique underlying AOW ⇒ ANM, we
prove that the Merkle-Damg̊ard transformation is actually Φsrs

brs-non-malleable.
This greatly improves prior result [3], and thus provides an efficient candidate
of NMFs w.r.t. a large RPDT class, though in the random oracle model.

Apart from yielding efficient constructions of NMFs, we find that the implica-
tion AOW ⇒ ANM is also useful elsewhere. In Sect. 7, we discuss how the high-
level idea underlying AOW ⇒ ANM provides a key insight in the RKA area,
that is, resilience against non-trivial copy attacks w.r.t. most algebra-induced
related-key deriving class is in fact a built-in security.

Applications of NMFs. Boldyreva et al. [16] showed how to design crypto-
graphic puzzles using NMOWHFs. We note that poly-to-one NMFs can replace
NMOWHFs in their design, making it more applicable for securing practical
network protocols.

In Sect. 8, we revisit continuous non-malleable key derivation functions
(KDFs) recently proposed by Qin et al. [47], which have proven to be useful
in achieving RKA-security for numerous cryptographic primitives. The existing
construction of continuous non-malleable KDFs is somewhat complicated, which
employs one-time lossy filter, one-time signature, and pairwise-independent func-
tions as ingredients. We propose an exquisitely simple and elegant construction
of continuous non-malleable KDFs based solely on poly-to-one NMFs. Compar-
atively, our construction not only has potential advantages in efficiency, but also
admits a direct and modular proof.

1.4 Additional Related Work

Non-Malleable Codes. Dziembowski, Pietrzak and Wichs [26] introduced the
notion of “non-malleable codes” (NMCs) which relaxes the notion of error-
correction and error-detection codes. Roughly, NMCs require that given a code
c∗ ← NMC(m∗) for a source-message m∗, the decoded message m of the tam-
pered codeword c = φ(c∗) is either equal or completely unrelated to m∗. We note

6 We say “partially” since the posed question in [16] is to construct efficient determin-
istic NMFs in the context of their simulation-based definition.
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that NMFs are somehow dual to NMCs. The duality comes from the fact that
NMFs stipulate given y∗ ← NMF(x∗), NMF(φ(x∗)) is still hard to compute. Very
informally, we can think of in NMCs the tampering takes place on code (which
could be interpreted as image of message), whereas in NMFs the “tampering”
takes place on preimage.

Correlated-Input Hash Functions. Goyal, O’Neill and Rao [35] undertook
the study of correlated-input hash functions (CIHs), which maintain security
when the adversary sees hash values h(ci(r)) of related inputs ci(r) sharing the
same random coins, where ci is a sequence of circuits chosen by the adversary. In
particular, unpredictable CIHs require that no PPT adversary is able to pred-
icate h(cn+1(r)) after seeing h(ci(r)) for i ∈ [n]. NMFs can be roughly viewed
as a weakening of unpredictable CIHs by restricting n = 1 and c1 = id. Yet,
our motivation, definitional framework, as well as techniques are quite different
from their work. Until now, instantiation of unpredictable CIHs is only known
w.r.t. specific circuit class (tie to scheme algebra), and based on specific number-
theoretic assumption.

2 Preliminaries

Basic Notations. For a distribution or random variable X, we write x ← X to
denote the operation of sampling a random x according to X. For a set X, we
use x

R←− X to denote the operation of sampling x uniformly at random from X,
and use |X| to denote its size. We denote λ ∈ N as the security parameter. Unless
described otherwise, all quantities are implicit functions of λ (we reserve n(λ) and
m(λ) to denote the input length and output length of a function respectively),
and all cryptographic algorithms (including the adversary) take λ as an input.

We use standard asymptotic notation O, o, Ω, and ω to denote the growth
of functions. We write poly(λ) to denote an unspecified function f(λ) = O(λc)
for some constant c. We write negl(λ) to denote some unspecified function f(λ)
such that f(λ) = o(λ−c) for every constant c. We say that a probability is over-
whelming if it is 1−negl(λ), and a probability is noticeable if it is Ω(1/poly(λ)).

A probabilistic polynomial time (PPT) algorithm is a randomized algo-
rithm that runs in time poly(λ). If A is a randomized algorithm, we write
z ← A(x1, . . . , xn; r) to indicate that A outputs z on inputs (x1, . . . , xn) and
random coins r. We will omit r and write z ← A(x1, . . . , xn).

Implications and Separations. Consider security notions A and B for a cryp-
tographic primitive Π, we say that

– A ⇒ B: if all constructions of Π meeting security notion A also meet security
notion B.

– A � B: if there exists a construction of Π which meets security notion A but
does not meet security notion B.

Following [7], we call a result of the first type an implication, and a result of
the second type a separation. If A ⇒ B, we say A is stronger than B. If we
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further have B � A, we say that A is strictly stronger than B. If we further
have B ⇒ A, we say that A is equivalent to B.

3 One-Way and Non-Malleable Functions

We first recall the general syntax of a family of efficiently computable determin-
istic functions.

Definition 1 (EfficientlyComputableDeterministicFunctions).Afamily
of efficiently computable functions F consists of three polynomial time algorithms
(Gen,Samp,Eval) such that:

– Sample a function: Gen(λ) outputs a function index i ∈ Iλ. Each value of i
output by Gen(λ) defines a deterministic function fi : Dλ → Rλ.

– Sample a preimage: Samp(λ) samples a random preimage x ∈ Dλ according
to some distribution Cλ over Dλ.7 Typically Cλ is a uniform distribution over
Dλ, and we simply write x

R←− Dλ in this case.
– Evaluate a function: on input (i, x) ∈ Iλ × Dλ, Eval(i, x) outputs fi(x).

In the rest of this work, we simply say F is a family of functions when the
context is clear. For an element y ∈ Rλ we denote its preimage set under fi

by f−1
i (y) = {x ∈ Dλ : fi(x) = y}. We say F is injective if each fi ∈ F is

injective. Following [8], we measure the amount of “non-injectivity” by looking
at the maximum preimage size. Specifically, we say that F has polynomially
bounded preimage size if |f−1

i (y)| ≤ poly(λ) for all fi ∈ F , all y ∈ Rλ and all
λ ∈ N. For brevity, we simply say F is poly-to-one.

We say F is a family of trapdoor functions if Gen(λ) additionally outputs a
trapdoor tdi, and there is a PPT algorithm TdInv(tdi, y) that computes a preim-
age x ∈ f−1

i (y). If a value y is not in the image fi(Di), i.e., f−1
i (y) is empty,

then the behavior of TdInv(tdi, y) is unspecified.

Remark 1. When things are clear from the context, we will slightly abuse the
notation for simplicity and write: I for Iλ, D for Dλ, R for Rλ, C for Cλ, td for tdi,
f ← F .Gen(λ) for (i ← F .Gen(λ), f := fi). The above definition considers the
domains and ranges that depend only on λ. It is easy to generalize the definition
so that the domains and ranges also depend on the function index i.

Next, we recall the notion of one-wayness and formally define the notion of
non-malleability for deterministic functions. We also define the corresponding
adaptive notions, in which the adversary is given access to an inversion oracle
Oinv(·). For trapdoor functions, Oinv(y) := TdInv(td, y). For functions without
trapdoor, Oinv(y) returns a preimage x ∈ f−1(y) if y ∈ f(D), while its behavior is
unspecified otherwise. We emphasize that in the security experiments of adaptive
notions the challenger is not necessarily to be efficient and could be unbounded
for simulating Oinv(·).
7 Virtually all “interesting” security notions are achievable only for well-spread dis-

tributions Cλ (i.e., with super-logarithmic min-entropy). Therefore, we will stick to
this requirement in our work.



394 Y. Chen et al.

Definition 2 (One-Wayness and Adaptive One-Wayness). F is one-way
if for any PPT adversary A its advantage Advow

A,F (λ) defined in the security
experiment below is negligible in λ:

Advow
A,F (λ) = Pr

⎡

⎣x ∈ f−1(y∗) :
f ← F .Gen(λ);
x∗ ← F .Samp(λ); y∗ ← f(x∗);
x ← A(f, y∗);

⎤

⎦ .

F is adaptively one-way if one-wayness maintains even when A is allowed to
query Oinv(·) on any point other than y∗.

Definition 3 (Hardcore Functions). Let H be a family of functions that map
Dλ to {0, 1}m(λ). H is a hardcore of F if for any PPT adversary A its advantage
Advrand

A,H(λ) defined in the security experiment below is negligible in λ:

Advrand
A,H(λ) = Pr

⎡

⎢
⎢
⎢
⎢
⎣

b = b′ :

f ← F .Gen(λ);h ← H.Gen(λ, f);
x∗ ← F .Samp(λ); y∗ ← f(x∗);
r∗
0 ← h(x∗); r∗

1
R←− {0, 1}m;

b
R←− {0, 1};

b′ ← A(f, h, y∗, r∗
b );

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2
.

The well-known Goldreich-Levin theorem [34] says that if F is one-way, then
it has a hardcore H. More precisely, Goldreich and Levin [34] showed that the
inner product of preimage x with a random string r (the latter could be viewed as
part of the description of h) is a hardcore predicate (which is a special hardcore
function with one-bit outputs) for any OWFs.

Definition 4 (Non-Malleability and Adaptive Non-Malleability). Let Φ
be a RPDT class defined over the domain D. F is Φ-non-malleable if for any
PPT adversary A its advantage Advnm

A,F defined in the security experiment below
is negligible in λ:

Advnm
A,F (λ) = Pr

⎡

⎣φ ∈ Φ ∧ y = f(φ(x∗)) :
f ← F .Gen(λ);
x∗ ← F .Samp(λ); y∗ ← f(x∗);
(φ, y) ← A(f, y∗);

⎤

⎦ .

F is adaptively Φ-non-malleable if Φ-non-malleability maintains even when
A is allowed to query Oinv(·) on any point other than y∗.

We give several technical remarks about the above notions.

Impossible Classes. Obviously, our non-malleable notion is impossible to real-
ize w.r.t. RPDT class that contains “regular” transformations, namely, identity
transformation id and constant transformations φc. If Φ contains id, an adver-
sary can simply win by outputting (id, y∗). If Φ contains φc, an adversary can
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win by outputting (φc, f(c)). It is easy to see that inclusion of the transforma-
tions near to the regular ones8 will also make Φ-non-malleability unachievable.
In this regard, we call the regular transformations and the transformations near
to the regular ones as “dangerous” transformations. So, a primary task is to
distill the characterizations on Φ for excluding “dangerous” transformations yet
maintaining its generality to the largest extent.

Parameterized Adaptivity. Let q be the maximum number of inversion
queries that an PPT adversary is allowed to make in the experiments of adap-
tive one-wayness/non-malleability. Typically q is assumed to be polynomially
bounded and omitted from the definitions. Nevertheless, explicitly parameter-
izing adaptive notions with q yields more refined notions, i.e., q-adaptive one-
wayness/non-malleability. Clearly, adaptive notions degenerate to non-adaptive
ones when q = 0. We will adopt the refined adaptive notions in Sect. 5.3 to give a
dedicated relation between adaptive one-wayness and adaptive non-malleability.

Hinted Notions. In the non-malleability notions of one-way/hash functions
considered in [3,16], in addition to the challenge y∗, the adversary is also given
some hint of x∗ to capture the auxiliary information that might has been col-
lected from previous actions that involve x∗. The hint of x∗ is modeled by
hint(x∗), where hint is a probabilistic function from Dλ to {0, 1}m(λ). Analo-
gously, in the security experiments of both one-wayness and non-malleability for
deterministic functions, we can also make the adversaries more powerful by giv-
ing them hint(x∗).9 We say that the resulting notions are hinted, and the original
notions are hint-free. Hinted notions are very useful in cryptographic applica-
tions in which the adversaries may obtain some auxiliary information about x∗

other than merely its image y∗, as we demonstrate in Sect. 8.
Next, we first seek for an achievable yet large RPDT class in Sect. 4, then

explore the connections among non-malleability and one-wayness in Sect. 5,
working with hint-free notions for simplicity. We postpone the study of the rela-
tions between hint-free notions and hinted ones to Sect. 6, since we need some
result in Sect. 5 as prerequisite.

4 Related-Preimage Deriving Transformation Class

Following [3], our notion of non-malleability for a family of deterministic func-
tions is defined w.r.t. a RPDT class Φ, in which φ : D → D maps a preimage
to a related preimage. We require transformations in Φ should be efficiently
recognizable and computable. Hereafter, we use id to denote the identity trans-
formation f(x) = x and use cf to denote the set of all constant transformations

8 Roughly, we say f is near to g if they outputs agree on most inputs.
9 Clearly, to make the hinted notions achievable, hint must meets some necessary

condition. For instance of hinted non-malleability, hint should be at least uninvertible
(finding the exact preimage is infeasible). We prefer to keep the definition as general
as possible, so we do not explicitly impose concrete restriction to hint in definition.
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{φc(x) = c}x∈D. When D under addition forms a group, we use 0 to denote the
identity. For φ1, φ2 ∈ Φ, we define φ := φ1 − φ2 as φ(x) = φ1(x) − φ2(x).

As remarked before, we cannot hope to achieve non-malleability for any
RPDT class Φ. We are thus motivated to distill some characterizations on Φ that
make non-malleability achievable while keeping Φ still general enough. Towards
this goal, we introduce two novel properties for RPDT classes as below.

Definition 5 (Bounded Root Space). Let r(λ) be a quantity of λ. A trans-
formation φ has r(λ)-bounded root space if |φ−1(0)| ≤ r(λ). A RPDT class Φ
has r(λ)-bounded root space if for each φ ∈ Φ and each φc ∈ cf, the composite
transformations φ′ = φ − id and φ′ = φ − φc both have r(λ)-bounded root space.

Definition 6 (Sampleable Root Space). A transformation φ has sampleable
root space if there exists a PPT algorithm SampRS that takes φ as input and
outputs an element from φ−1(0) uniformly at random.10 A RPDT class Φ has
sampleable root space if for each φ ∈ Φ and each φc ∈ cf, the composite trans-
formations φ′ = φ − id and φ′′ = φ − φc both have sampleable root spaces.

In this work, we restrict our attention to root spaces whose size is polynomi-
ally bounded,11 i.e., r(λ) ≤ poly(λ). Hereafter, we let Φsrs

brs denote the RPDT
class satisfying the bounded root space (BRS) & sampleable root space (SRS)
properties. The BRS property immediately rules out the regular transformations
from Φ and stipulates that each φ ∈ Φ is far away from regular ones, i.e., having
at most polynomially many intersection points with them. As we will see shortly,
with the confining of the BRS property, an adversary’s correct solution (φ, y)
such that f(φ(x∗)) = y provides enough information about x∗ and thus reduces
the min-entropy of x∗ to O(log(λ)). The SRS property further guarantees that a
polynomial-time reduction can extract the right x∗ with noticeable probability.

Remark 2. Recent works [36,47] introduced two general properties called high
output entropy (HOE) and input-output collision resistance (IOCR) for trans-
formation class Φ. The former states that for each φ ∈ Φ, the min-entropy of
φ(x) is sufficiently high when x

R←− D, i.e., H∞(φ(x)) = ω(log λ). The latter
states that for each φ ∈ Φ, Pr[φ(x) = x] = negl(λ) when x

R←− D. We observe
here that BRS implies HOE & IOCR. To see this, notice that: (1) for each
c ∈ D the equation φ(x) − c = 0 having at most polynomial number of roots
implies that maxc∈D Pr[φ(x) = c] ≤ poly(λ)/|D| = negl(λ) when x

R←− D; (2) the
equation φ(x) − x = 0 having at most polynomial number of roots implies that
Pr[φ(x) = x] ≤ poly(λ)/|D| = negl(λ) when x

R←− D. We can alternatively think
of the BRS property captures the characterization that all φ ∈ Φ are far from
regular transformations in an algebraic view.

The notion of root sampleable RPDTs (RPDT class that meets the SRS prop-
erty) is reminiscent of the notion of preimage sampleable functions introduced
in [32]. The former one is weaker than the latter one in that it only insists two

10 If φ−1(0) is empty, this algorithm simply outputs a distinguished symbol ⊥.
11 We will continue to use BRS to denote poly-bounded root space for simplicity.
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special forms of transformations are preimage sampleable at zero point obeying
uniform distribution. We note that it suffices to relax uniform distribution to
some appropriate distribution.

We conclude this section by showing that the BRS & SRS properties are met
by most algebra-induced transformation classes (excluding id and cf) considered
in the literature, which we recall as below.

Group-Induced Transformations. When D under 
 forms a group G, let
Φlin = {φa}a∈G with φa(x) = a 
 x be the class of linear transformations, which
generalize several important classes, for example, “bit flips” (exclusive or, XOR)
φa(x) = a⊕x and modular additions φa(x) = a+x mod 2n when D = {0, 1}n.

Ring-Induced Transformations. When D under addition + and multiplica-
tion · forms a ring R, let Φaff = {φa,b}a,b∈R with φa,b(x) = ax + b be the class of
affine transformations.

Field-Induced Transformations. When D under addition + and multiplica-
tion · forms a field F, let p be the characteristic of F and d ≥ 0 be any fixed
integer. Let Φpoly(d) = {φq}q∈Fd(x) with φq(x) = q(x) be the class of polynomial
functions, where Fd(x) denotes single variable polynomials over F with degree
bounded by d. When d and p are small (i.e., d = poly(λ) and p = poly(λ)), one
can find all roots for any q ∈ Fd(x) in polynomial time O(d3p) using Berlekamp’s
algorithm [14]. When d is small but p is large, one can find all roots for any
q ∈ Fd(x) in expected polynomial time O(d2+ε + d1+ε log p) using Gathen and
Shoup’s algorithm [31].

It is easy to verify that Φlin\id, Φaff\(id ∪ cf), and Φpoly(d)\(id ∪ cf) for d =
poly(λ) all satisfy the BRS and SRS properties.

5 Relations Among Non-Malleability and One-Wayness

In this section, we explore the relations among (adaptive) non-malleability and
(adaptive) one-wayness for deterministic functions. For simplicity, we work with
hint-free notions. All the results obtained extend naturally among hinted notions.

5.1 Non-Malleability ⇒ One-Wayness

Lemma 1. For any achievable RPDT class Φ, Φ-Non-Malleability ⇒ One-Way-
ness when F is poly-to-one.

Proof. Suppose there is an adversary A that breaks the one-wayness of F with
non-negligible probability, then we can build an algorithm B that breaks non-
malleability of F also with non-negligible probability. B works by simulating A’s
challenger in the one-wayness experiment as follows:

Setup: Given f ← F .Gen(λ) and a challenge y∗ ← f(x∗) for x∗ ← F .Samp(λ),
B forwards (f, y∗) to A.
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Attack: When A outputs its solution x against one-wayness, B simply picks a
random φ ∈ Φ, then outputs (φ, f(φ(x)) as its solution.

Since F is poly-to-one, conditioned on A succeeds (x ∈ f−1(y∗)), we
have Pr[x = x∗|y∗] ≥ 1/poly(λ), where the probability is over the choice of
x∗ ← F .Samp(λ). This is because there are at most poly(λ) values x such that
f(x) = y∗, and they are all equally likely in A’s view. Therefore, if A breaks
the one-wayness of F with non-negligible probability, then B breaks the non-
malleability of F also with non-negligible probability. This lemma follows. ��

The above reduction loses a factor of 1/poly(λ). When F is injective, the
reduction becomes tight.

5.2 One-Wayness � Non-Malleability

Lemma 2. One-Wayness � Φsrs
brs-Non-Malleability.

Proof. Let F be a family of one-way functions. To prove this lemma, we show how
to modify F into F ′ so that F ′ is still one-way but malleable w.r.t. Φsrs

brs. Suppose
F .Gen(λ) outputs a function f : {0, 1}n → {0, 1}m, we construct F ′.Gen(λ) as
follows: run f ← F .Gen(λ), output a function f ′ : {0, 1}n+1 → {0, 1}m+1 where
f ′(x||β) := f(x)||β and β denotes the last bit of its input. We then proceed to
prove the following two claims.

Claim 1. F ′ is one-way.

Proof. It is easy to see that F ′ inherits the one-wayness from F . We omit the
proof here since it is straightforward. ��
Claim 2. F ′ is (Φxor\id)-malleable.

Proof. Given f ′ and a challenge y′∗ = f ′(x′∗) where x′∗ = x∗||β∗ is randomly
chosen from {0, 1}n+1, we build an adversary A′ against the non-malleability of
F ′ as follows: parse y′∗ as y∗||β∗, set a = 0n||1, then output φa together with
y′ = y∗||(β∗ ⊕ 1). It is easy to see that φa ∈ Φxor\id and y′ = f ′(x∗||(β∗ ⊕ 1)) =
f ′(φa(x′∗)). This proves Claim 2. ��

As shown in Sect. 4, Φxor is a special case of group-induced class, and thus
Φxor\id ⊆ Φsrs

brs. The lemma immediately follows from the above two claims. ��
While this is just a contrived counterexample for one particular attempt,

there exist more natural counterexamples. For instance, a Φ-homomorphic one-
way function12 f is also Φ-malleable since f(x∗) = y∗ implies f(φ(x∗)) = φ(y∗).
All these counterexamples indicate that functions with nice algebraic structure
are unlikely to be non-malleable.

12 Φ-homomorphism means that for any φ ∈ Φ and any x ∈ D, f(φ(x)) = φ(f(x)).
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5.3 Adaptive Non-Malleability ⇔ Adaptive One-Wayness

Lemma 3. For any achievable RPDT class Φ, q-Adaptive Φ-Non-Malleability ⇒
q-Adaptive One-Wayness when F is poly-to-one.

Proof. The proof can be easily adapted from that of Lemma 1. We omit it here
for since it is straightforward. ��
Lemma 4. (q +1)-Adaptive One-Wayness ⇒ q-Adaptive Φsrs

brs-Non-Malleability
when F is injective.

We first outline the high-level idea of the proof. Since the task of finding
the preimage x∗ appears to be harder than that of mauling its image, the major
technical difficulty is how to utilize the power of an adversary A against adaptive
non-malleability to break adaptive one-wayness.

It is instructive to see that a challenge instance of one-wayness has already
provided an equation about x∗, i.e., f(x∗) = y∗. When A outputs its solution
(φ, y) against non-malleability, the reduction immediately obtains another equa-
tion about x∗, that is, f(φ(x∗)) = y. However, these two equations are hard to
solve on their own due to the involvement of f (which could be complex). Luck-
ily, by utilizing either the injectivity of f or the inversion oracle, the reduction
is able to obtain a new solvable equation about x∗ without the presence of f :
(1) for the case of y = y∗, the reduction gets φ(x∗) = x∗ due to the injectivity
of f ; (2) for the case of y �= y∗, the reduction first queries the inversion oracle at
point y, then gets φ(x∗) = Oinv(y). In both cases, the reduction successfully con-
fines x∗ in a poly-bounded root space (due to the BRS property), then correctly
extracts it with noticeable probability (due to the SRS property). This justifies
the usefulness of BRS & SRS properties. See the formal proof as follows.

Proof. Suppose there is an adversary A against the adaptive non-malleability
of F , we can build an adversary B against the adaptive one-wayness of F . B
simulates A’s challenger in the adaptive non-malleability experiment as follows:

Setup: Given f ← F .Gen(λ) and a challenge y∗ ← f(x∗) for x∗ ← F .Samp(λ),
B forwards (f, y∗) to A.

Attack: When A issues an query to the inversion oracle, B forwards it to its own
challenger and sends back the reply. When A outputs its solution (φ, y) against
adaptive non-malleability, B proceeds as follows:

1. Case y = y∗: B runs SampRS(φ′) to output a random solution of φ′(α) = 0
where φ′(α) = φ(α) − α.

2. Case y �= y∗: B queries the inversion oracle Oinv(·) at point y and gets the
response x, then runs SampRS(φ′′) to output a random solution of φ′′(α) = 0
where φ′′(α) = φ(α) − x.

We justify the correctness of B’s strategy as follows. For case 1, conditioned
on A succeeds (f(φ(x∗)) = y∗), due to the injectivity of F , we have φ(x∗) = x∗,
i.e., x∗ is a solution of φ′(α) = 0. For case 2, conditioned on A succeeds
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(f(φ(x∗)) = y), due to the injectivity of F , we have φ(x∗) = x, i.e., x∗ is a
solution of φ′′(α) = 0. Taking the two cases together, conditioned on A succeeds
by making at most q inversion queries, then according to the BRS & SRS prop-
erties of Φsrs

brs, B will output the right x∗ with probability 1/poly(λ) by making at
most (q + 1) inversion queries. We stress that the probability here is taken over
the randomness of SampRS, but not F .Samp. Thereby, if A breaks the q-adaptive
non-malleability with non-negligible probability, B breaks the (q + 1)-adaptive
one-wayness also with non-negligible probability. This proves this lemma. ��

Combining Lemmas 3 and 4 together, we conclude that for injective functions,
adaptive Φsrs

brs-non-malleability is equivalent to adaptive one-wayness.

Remark 3. Analogous to the RKA security notion, our non-malleability notion
is of “unique” flavor, in which the adversary is only considered to be successful if
its output is a related image of the preimage x∗ exactly chosen by the challenger.
Precis for this reason, the injectivity of F is crucial for the reduction from
adaptive non-malleability to adaptive one-wayness. If F is non-injective, the
reduction is not guaranteed to get the right equation about x∗. For example, in
case y = y∗, if the adversary A always outputs φ ∈ Φ such that φ(x) �= x for
any x ∈ D, the reduction will never get a right solvable equation about x∗.

5.4 Non-Malleability � Adaptive Non-Malleability

At first glance, one might think non-malleability does imply adaptive non-
malleability based on the intuition that the inversion oracle does not help. Sup-
pose A is an adversary against adaptive non-malleability. Given y∗ ← f(x∗) for
randomly chosen x∗ and an inversion oracle, A is asked to output (φ, y) such
that f(φ(x∗)) = y. Since A is not allowed to query the inversion oracle on y∗, it
seems the only strategy is to firstly maul y∗ to some related y, then query the
inversion oracle on y, and use the answer x to help figuring out a transformation
φ s.t. φ(x∗) = x. As we showed in Lemma 1, if F is non-malleable and poly-to-
one, it is also one-way and thus x∗ is computationally hidden from A. Thus, it
seems impossible for A to determine φ without the knowledge of x∗.

However, the above intuition is deceptive in thinking that the inversion algo-
rithm always behave benignly, namely, returning the preimages of its inputs.
Actually, contrived inversion algorithm may reveal critical information (e.g. trap-
door) when its inputs fall outside the image of f , and thus make f not adap-
tively non-malleable. This is similar in spirit to the separation NM-CPA �

IND-CCA1 [7, Sect. 3.2] in the public-key encryption setting.

Lemma 5. For any achievable RPDT class Φ, Φ-Non-Malleability � Adaptive
Φ-Non-Malleability when F is poly-to-one.

Due to page limit, we defer the proof of this lemma to the full version [21].
In the above, we work with hint-free (standard) non-malleability notion and

one-wayness notion for simplicity. It is easy to see that all these relations apply
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equally well to the hinted non-malleability notion and the hinted one-wayness
notion, with respect to the same hint function.

Construction of NMFs. Baecher et al. [3, Construction4.1] showed that
the strengthened Merkle-Damg̊ard (MD) transformation is non-malleable w.r.t.
Φxor\id), assuming the compression function is a random oracle. We improve over
their result by showing that the strengthened MD transformation is essentially
non-malleable w.r.t. Φsrs

brs. This result gives us an efficient candidate of NMFs
w.r.t. large RPDT class, though in the random oracle model. Due to page limit,
we defer the details of this part to the full version [21].

As to the construction of NMFs in the standard model, Lemma 4 shows
that any injective ATDFs are indeed Φsrs

brs-non-malleable, while [38] demonstrates
that injective ATDFs can be constructed from either a number of cryptographic
primitives such as correlated-product TDFs [48], lossy TDFs [45] and CCA-
secure deterministic encryption [4] (which in turn can be efficiently constructed
from a variety of standard assumptions) or from some specific assumption,
e.g. “instance-independent” RSA assumption. This indicates that deterministic
NMFs are widely realizable in the standard model, and thus partially resolves
an open question raised in [16].

Finally, we observe that for the purpose of constructing NMFs, 1-ATDFs
(which only allows the adversary to query the inversion oracle once) are sufficient.
Nevertheless, if 1-ATDFs are strictly weaker than q-ATDFs for q > 1 and if it
allows more efficient instantiations, are still unknown to us. Besides, we are only
able to construct NMFs w.r.t. Φsrs

brs in this work. Though Φsrs
brs is very general

(comprising most algebra-induced transformations), it is still of great interest to
know if it is possible to go beyond the algebraic barrier.

6 Relation Between Hint-Free and Hinted Notions

In this section, we investigate the relations between hint-free notions and hinted
notions. While hinted notions obviously imply hint-free ones, if the reverse impli-
cation holds crucially depends on the hint functions. It is intriguing to know for
what kind of hint functions, hint-free notions do imply hinted notions.

Let F be a family of deterministic functions, f ← F .Gen(λ), x∗ ← F .Samp(λ)
and y∗ ← f(x∗). Roughly, we say hint(x∗) is p(λ)-statistically simulatable if there
exists a PPT algorithm R such that (y∗,R(y∗)) ≈s (y∗, hint(x∗)) holds with
probability p(λ); we say hint(x∗) is p(λ)-computationally simulatable if there
exists a PPT algorithm R such that (y∗,R(y∗)) ≈c (y∗, hint(x∗)) holds with
probability p(λ) based on the hint-free hardness assumption. The probability
is over the choice of x∗ ← F .Samp(λ) and the random coins of R. It is easy
to see that when hint(x∗) is either statistically simulatable or computationally
simulatable for some noticeable probability p(λ), a reduction algorithm is able to
create a game with probability p(λ) such that it is indistinguishable to the real
hinted game, and thus reduces hinted notions to hint-free ones. We exemplify
these two cases in Lemmas 7 and 8, respectively.
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Next, we formally study the relation between one-wayness and hinted one-
wayness, then show the analogous result also holds between non-malleability and
hinted non-malleability for poly-to-one functions.

Lemma 6. For a family of functions F , hinted one-wayness w.r.t. any achiev-
able hint function implies one-wayness.

Proof. This direction is straightforward and hence the proof is omitted. ��
We then turn to the inverse direction. We first show that regardless of the

construction of hint(·), as long as its output length is short, i.e., bounded by
log(poly(λ)), then hint(x∗) is 1/poly(λ)-perfectly simulatable (a special case of
statistically simulatable) and thus one-wayness implies hinted one-wayness.

Lemma 7 (Statistically Simulatable Case). For a family of functions F ,
one-wayness implies hinted one-wayness w.r.t. any hint function with output
length bounded by log(poly(λ)).

Proof. Let A be an adversary against hinted one-wayness of F with advan-
tage Advhow

A,F (λ). We build an adversary B against one-wayness by using A’s
power. Given (f, y∗) where f ← F .Gen(λ), y∗ ← f(x∗) for x∗ ← F .Samp(λ),
B simply makes a random guess of hint(x∗), then sends (f, y∗, hint(x∗)) to A.
Finally, B forwards A’s solution as its solution. Since the output length is
bounded by log(poly(λ)), B guesses the right hint value and thus simulates
perfectly with probability 1/poly(λ). Thereby, we conclude that Advow

B,F (λ) ≥
Advhow

A,F (λ)/poly(λ). The lemma immediately follows. ��
We then show that, for some specific hint functions with output length could

possibly beyond log(poly(λ)), hint(x∗) is computationally simulatable assuming
the one-wayness of F , and thus hint-free one-wayness also implies hinted one-
wayness in this case.

Lemma 8 (Computationally Simulatable Case). For a family of functions
F , one-wayness implies hinted one-wayness w.r.t. the following specific hint
function:

hint(x; b) =
{

h(x) if b = 0
r

R←− {0, 1}m(λ) if b = 1
(1)

Here, h : D → {0, 1}m(λ) denotes a hardcore function for f ∈ F . It is well-
defined when F is one-way.

Proof. The high-level idea of the proof is to show that, assuming the one-wayness
of F , hint(x∗; b) for x∗ R←− X and b

R←− {0, 1} is 1-computationally simulatable.
We prove this theorem via a sequence of games. Let A be an adversary against
the hinted one-wayness of F w.r.t. the hint function defined as above. Let Si be
the event that A wins in Game i.
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Game 0 (The real experiment): CH interacts with A in the real hinted one-
wayness experiment w.r.t. the hinted function defined as above. According to
the definition, we have:

Advhow
A,F (λ) = Pr[S0]. (2)

Game 1 (Modify the hint function): The same as Game 0 except that the hint
function hint(x∗; b) is modified to h̃int(x∗; b), which ignores its input (x∗, b) and
always returns a random value r

R←− {0, 1}m(λ). Observe that in this case the
hint value carries no information of x∗.

We now state and prove two claims that establish the lemma.

Claim 3. Game 0 and Game 1 are computationally indistinguishable, assuming
the hint-free one-wayness of F .

Proof. Since one-wayness of F implies pseudorandomness of its hardcore H (c.f.
Definition 3), it suffices to show that Game 0 and Game 1 are computationally
indistinguishable based on the pseudorandomness of H. We show how to turn a
distinguisher A into an algorithm B against the pseudorandomness of H.

Given (f, h, y∗, r∗
β) where f ← F .Gen(λ), h is a hardcore function for f ,

y∗ ← f(x∗) for x∗ ← F .Samp(λ), and r∗
β is h(x∗) if β = 0 or a random string

from {0, 1}m(λ) if β = 1, B is asked to determine the value of β. B picks a random
bit b and computes the hint value as follows:

hint′(x∗; b) =
{

r∗
β if b = 0

r
R←− {0, 1}m(λ) if b = 1

B then sends (f, y∗, hint′(x∗)) to A. Finally, A outputs a bit b′ (b′ = 0 indicates
Game 0 and b′ = 1 indicates Game 1), and B forwards b′ to its own challenger. It
is easy to verify that if β = 0 then hint(x∗; b) = hint′(x∗; b) and thus B perfectly
simulates Game 0; if β = 1 then h̃int(x∗; b) = hint′(x∗; b) and thus B perfectly
simulates Game 1. Therefore, B breaks the pseudorandomness of H with at least
the same advantage as A distinguishes Game 0 and Game 1. By assuming the
one-wayness of F , Game 0 and Game 1 are computationally indistinguishable.
This proves the Claim 3. ��
Claim 4. No PPT adversary has non-negligible advantage in Game 2 assuming
the one-wayness of F .

Proof. Suppose A is a PPT adversary that has non-negligible advantage in
Game 2. We show how to use A’s power to break the one-wayness of F . Given
the one-wayness challenge (f, y∗) where y∗ ← f(x∗) for randomly chosen x∗,
B simply assigns h̃int(x∗; b) to be a random string from {0, 1}m(λ), then sends
(f, y∗, h̃int(x∗; b)) to A as the challenge. Finally, A outputs its solution, and B
forwards it to its own challenger. Clearly, B perfectly simulates Game 1. There-
fore, B breaks the one-wayness of F with at least the same advantage as A
succeeds in Game 1. By assuming the one-wayness of F , A’s advantage must be
negligible in λ. This proves the Claim 4. ��
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From Claims 3 and 4, we have Pr[S1] − Pr[S0] = negl(λ) and Pr[S1] = negl(λ).
Putting all the above together, we have Advhow

A,F (λ) = negl(λ) assuming the one-
wayness of F . In other words, one-wayness implies hinted one-wayness w.r.t.
such specific hint function defined as above. The lemma follows. ��

The above results apply naturally to the adaptive setting.

Remark 4. It is easy to see that the above results also hold between hinted non-
malleability and hint-free non-malleability for poly-to-one F . Particularly, to see
hinted NM w.r.t. the hint function defined in Eq. (1) is implied by hint-free NM,
just note that such hint function is 1-computationally simulatable assuming the
one-wayness of F (as we have shown in Lemma 8), which in turn implied by the
non-malleability of F when F is poly-to-one (Lemma 1).

7 Built-In Resilience Against Non-trivial Copy Attacks

Here, we extend the idea underlying the implication AOW ⇒ ANM further
still to address non-trivial copy attacks in the RKA area. We begin by briefly
introducing the background of RKA security and defining what it means for
“copy attacks” (including trivial ones and non-trivial ones).

7.1 RKA-security Model and Copy Attacks

Traditional security models assume that the internal states (e.g., secret keys and
random coins) of cryptographic hardware device are completely protected from
the adversary. However, practical fault injection techniques [15,18] demonstrate
that the adversaries are able to launch related-key attacks (RKAs), namely,
to induce modifications to the keys stored in cryptographic hardware device
and subsequently observe the outcome under the modified keys. Bellare and
Kohno [9] initiated a theoretical study of RKA security. Their results mainly
focused on pseudorandom function/permutation, and their constructions were
subsequently improved by [1,5]. So far, the study of RKA security has expands to
other primitives, such as private-key encryption [2], public-key encryption [51],
signature [10], and identity-based encryption [10].

In the RKA-security model, modifications to the secret keys are modeled by
related-key deriving transformation (RKDT) class Φ, and cryptographic hard-
ware device is modeled by algorithm Func(sk, x), where Func(sk, ·) denotes some
keyed-operations (e.g., signing, decryption) and x denotes its input (e.g., mes-
sage, ciphertext). A primitive is said to be RKA-secure if it remains secure when
the adversary can access to a RKA oracle Orka(φ, x) := Func(φ(sk), x).

Let x∗ be the challenge in the security experiment. The RKA queries 〈φ, x∗〉
where φ(sk) = sk essentially capture a category of attacks known as “copy
attacks”. Among copy attacks, we refer to the ones with φ = id as trivial copy
attacks and the rest as non-trivial copy attacks. While trivial copy attacks must
be excluded to ensure the meaningfulness of the RKA-security notion, non-trivial
copy attacks should be allowed since they are possible in practice (e.g., via fault
injection attacks [15,18]). However, attaining resilience against non-trivial copy
attacks turns out to be difficult.
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7.2 Known Techniques in Tackling Non-trivial Copy Attacks

Almost all the known constructions of RKA-secure primitives achieve RKA
security by exploiting so called Φ-key-malleability as a vital property. Loosely
speaking, this property provides a PPT algorithm T such that Func(φ(sk), x) =
Func(sk,T(φ, x)). Let O(x) := Func(sk, x) be the original oracle of the starting
primitive. With such property, the reduction is able to reduce the RKA security
to the original security of the starting primitive by simulating the RKA oracle
via the original oracle, that is, answering Orka(φ, x) with O(T(φ, x)). However, a
subtlety in the above strategy is that the original oracle O(·) will deny query 〈x∗〉.
As a consequence, the reduction is unable to handle non-trivial copy attacks, i.e.,
answering RKA queries 〈φ, x∗〉 where φ �= id but φ(sk) = sk.

Prior works paid a lot of effort to address this problem. To date, there are
three methods dealing with non-trivial copy attacks in the literature. The first
method is assuming Φ is claw-free and contains id. Recall that claw-freeness
requires that for all distinct φ, φ′ ∈ Φ and all x ∈ D, φ(x) �= φ′(x). With this
assumption, such a φ is not in Φ and non-trivial copy attacks are automatically
ruled out. This is exactly the technical reason of why numerous constructions
of Φ-RKA-secure-primitives [5,9,33,41] are restricted to claw-free Φ. However,
as already pin-pointed by [1,6], this assumption is undesirable because many
natural and practical RKDT classes are not claw-free. The second method is
directly modifying the RKA security experiment to disallow RKA queries 〈φ, x∗〉
where φ �= id but φ(sk) = sk. Such method evades non-trivial copy attacks
only in the conceptual sense by adopting a potentially weaker RKA notion. It
also brings a new technical challenge, that is, checking if φ(sk) = sk without
knowing sk. To overcome this hurdle, existing works either require the starting
primitives to meet extra properties like Φ-fingerprinting [37,40,51] in the context
of public-key encryption or resort to ad-hoc transform like identity-renaming [10]
in the context of identity-based encryption.13 The third method in the context of
pseudorandom functions is to rely on Φ-key-collision-security [1], which requires
that for a random key k it is impossible to find two distinct φ1, φ2 ∈ Φ such that
φ1(k) = φ2(k). However, such property is only known to hold w.r.t. specific Φ
under concrete number-theoretic assumptions.

7.3 Our Insight in Addressing Non-trivial Copy Attacks

As discussed above, non-trivial copy attacks have not been well addressed at a
general level. Being aware of the similarity between our non-malleability notion
and the RKA security notion, we are curious to know if our strengthening of
allowing φ(x∗) = x∗ can shed light on this problem. Recall that in the proof
of Lemma 4 for the case of y = y∗, we essentially proved that by assuming
13 Briefly, Φ-fingerprinting for requires that φ(sk) �= sk always invalidates the challenge

ciphertext c∗. Notice that queries 〈φ, c∗〉 such that φ(sk) = sk are already forbidden
by the definition, the reduction can thus safely reject all RKA queries of the form
〈φ, c∗〉 without even looking at φ, since either case φ(sk) = sk or case φ(sk) �= sk
yields the same output ⊥ with respect to c∗.
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the one-wayness of f , no PPT adversary is able to find a φ ∈ Φsrs
brs such that

φ(x∗) = x∗ with non-negligible probability. The high-level idea is that as long
as the adversary is able to find such a φ ∈ Φsrs

brs, then a reduction can obtain an
efficiently solvable equation about x∗. Somewhat surprisingly, this idea imme-
diately indicates that w.r.t. RKDT class Φ = Φsrs

brs ∪ id ∪ cf, resilience against
non-trivial copy attacks is in fact a built-in immunity guaranteed by the security
of starting primitives.

We sketch the argument more formally as follows. Let A be a RKA adversary
and denote by E the event that non-trivial attack happens, i.e., A makes at
least one RKA query 〈φ, x∗〉 such that φ ∈ Φsrs

brs and φ(sk) = sk. Let l(λ) be the
maximum number of RKA queries A makes. Our aim is to prove Pr[E] = negl(λ)
by only assuming the original security of the starting primitives. Conditioned on
E happens, a reduction R can pick out a non-trivial copy attack query say 〈φ, x∗〉
and hence obtains a right equation φ(sk) = sk about sk, with probability at least
1/l(λ). Conditioned on getting the right equation, R can further compute the
correct sk with probability 1/poly(λ) due to the BRS & SRS properties of Φsrs

brs.
Overall, R is able to recover sk with probability Pr[E]/l(λ)poly(λ). Since A is a
PPT adversary, l(λ) is poly-bounded. Therefore, if Pr[E] is non-negligible, then
R can recover sk with non-negligible probability. This contradicts the security
of the starting primitives, and therefore we must have Pr[E] = negl(λ).

Somewhat surprisingly, our result indicates that w.r.t. RKDT class Φ ⊆
Φsrs

brs ∪ id ∪ cf, resilience against non-trivial copy attacks is essentially a built-
in security guaranteed by the starting primitives. Previous RKA-secure schemes
w.r.t. algebra-induced RKDTs could benefit from this, that is, “weak” RKA secu-
rity (disallowing non-trivial copy attacks) can be enhanced automatically with-
out resorting to claw-free assumption or additional properties/transformations.

8 Application to RKA-secure Authenticated KDFs

8.1 Continuous Non-Malleable KDFs, Revisited

Qin et al. [47] extended non-malleable key derivation functions (KDFs) [28] to
continuous non-malleable KDFs, and showed how to use it to compile numerous
cryptographic primitives into RKA-secure ones. In what follows, we briefly recall
the syntax, security notion, as well as construction of continuously non-malleable
KDFs presented in [47].

Syntax. KDFs consist of three polynomial time algorithms: (1) Setup(λ), on
input λ, outputs system-wide public parameters pp, which define the key space
S, the public key space Π, and the derived key space {0, 1}m. (2) Sample(pp),
on input pp, samples a random key s

R←− S and computes public key π ∈ Π. (3)
Derive(s, π), on input (s, π), outputs a derived key r ∈ {0, 1}m or ⊥ indicating
that π is not a valid proof of s.

Security. The continuous non-malleability of KDFs is defined w.r.t. a transfor-
mation class Φ, which states that no PPT adversary can distinguish a real derived
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key r ← Derive(s∗, π∗) from a random one, even if it can continuously query a
key derivation oracle OΦ

derive(·, ·), which on input φ ∈ Φ and π ∈ Π, returns a
special symbol same∗ if (φ(s∗), π) = (s∗, π∗), or Derive(φ(s∗), π) otherwise.

Construction. Let LF = (Gen,Eval, LTag) be a collection of one-time lossy
filters [46] with domain S, range Y , and tag space T = {0, 1}∗ × Tc. Let OTS =
(Gen,Sign,Vefy) be a strongly one-time signature. Let H be a family of pairwise
independent functions from S to {0, 1}m. The construction is as below.

– KDF.Setup(λ): run (ek, td) ← LF.Gen(λ), pick h
R←− H, output pp = (ek, h).

Precisely, pp also includes the public parameters of LF and OTS.
– KDF.Sample(pp): run (vk, sk) ← OTS.Gen(λ), pick tc

R←− Tc, s
R←− S; com-

pute y ← LF.Eval(ek, (vk, tc), s) and σ ← OTS.Sign(sk, tc||y), then set
t = (vk, tc, y, σ), and finally output (s, t).

– KDF.Derive(s, t): parse t = (vk, tc, y, σ), if LF.Eval(ek, (vk, tc), s) = y and
OTS.Vefy(vk, tc||y, σ) = 1 hold simultaneously, output h(s), else output ⊥.

Qin et al.’s construction requires one-time lossy filter, one-time signature,
and pairwise-independent functions as ingredients. Though ingenious, their con-
struction is somewhat complicated and expensive. Its public parameters consist
of those of three ingredients as well as an evaluation key; to compute a tag for a
random key, its sampling procedure has to generate a fresh one-time signature
key pair, pick a random tag, evaluate a function and also compute a signature;
to derive a random key, its key derivation procedure has to verify a signature
and a function value before deriving. Compared to standard KDFs, these do
add noticeable storage and computation overhead, which could be critical in
resource-constrained scenarios, e.g., embedded systems and low-end smart card.

More Accurate Naming. In standard KDFs, there is no the concept of “public
key”, and the key derivation algorithm never fails. In contrast, in the KDFs
introduced by Qin et al. [47], each key s is accompanied with an auxiliary “public
key” π, and the key derivation algorithm reports failure by outputting ⊥ if π
does not match s. Thus, it is preferable to use the name authenticated KDFs
to highlight this functional difference. In addition, π is interpreted as a proof
of knowledge of s in [47] . However, in the context of KDFs, the key s is not
necessarily belong to any NP language. In this regard, it is more appropriate to
simply view π as a tag of s, which we will denote by t.

We then reconsider its security notion. The continuous non-malleable notion
considered in [47] is potentially weak in that key derivation queries of the form
〈φ, π∗〉 with φ(s∗) = s∗ are implicitly rejected by returning same∗. As a con-
sequence, this notion cannot guarantee the resilience against non-trivial copy
attacks for its enabling RKA-secure schemes. Besides, non-malleability is con-
ventionally used to capture the inability to maul the value of a cryptographic
primitive in a controlled way, whereas RKA security ensures that a crypto-
graphic primitive remains secure even an adversary may adaptively learn func-
tions of a sequence of related keys. In light of this distinction, their “continuous
non-malleability” is actually a form of related-key security and we use the term
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“RKA-secure authenticated KDFs” instead of continuous non-malleable KDFs
in the rest of this work.

8.2 RKA-secure Authenticated KDFs

Based on the above discussions, we are motivated to enhance the security notion
and propose a simple yet efficient construction for RKA-secure authenticated
KDFs (AKDFs) w.r.t. general RKDT class. For completeness, we first present
authenticated KDFs with the refined terminology and enhanced security notions.

Definition 7 (Authenticated KDFs). Authenticated KDFs are given by
three polynomial time algorithms as follows:

– Setup(λ): on input λ, output system parameters pp, which define the derivation
key space S, the tag space T , and the derived key space {0, 1}m.

– Sample(pp): on input pp, pick a random key s
R←− S computes it associated tag

t ∈ T , output (s, t).
– Derive(s, t): on input a key s ∈ S and a tag t ∈ T , output a derived key

r ∈ {0, 1}m or a rejecting symbol ⊥ indicating that t is not a valid tag of s.

Definition 8 (RKA-Security). AKDFs are said to be Φ-RKA-secure w.r.t.
RKDT class Φ if for any PPT adversary A its advantage Advrka

A,AKDF defined in
the following experiment is negligible in λ.

Advrka
A,AKDF(λ) = Pr

⎡

⎢
⎢
⎢
⎢
⎣

b′ = b :

pp ← Setup(λ);
(s∗, t∗) ← Sample(pp);
r∗
0 ← Derive(s∗, t∗), r∗

1
R←− {0, 1}m;

b
R←− {0, 1};

b′ ← AOΦ
derive(·,·)(pp, t∗, r∗

b );

⎤

⎥
⎥
⎥
⎥
⎦

− 1
2
.

Here OΦ
derive(φ, π) on input φ ∈ Φ and t ∈ T , returns a special symbol same∗

only if φ = id and t = t∗, and returns Derive(φ(s∗), t) otherwise.

Our RKA security notion is strong in the sense that only trivial query (under-
lined as above) is not allowed. By Qin et al.’s result [47], one can use RKA-secure
AKDFs to transform a cryptographic primitive to a RKA-secure one in a mod-
ular way, as long as the key generation algorithm of the primitive takes uniform
random coins to generate (public/secret) keys. Notably, this transform natu-
rally transfers our strong RKA security of AKDFs to the resulting RKA-secure
primitives.

8.3 RKA-secure AKDFs from Non-Malleable Functions

Before presenting our construction, we first sketch the high-level idea, which we
think may be useful in other places. The main technical hurdle in constructing
RKA-secure AKDFs is to answer related key derivation queries without knowing
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the secret key s∗. As we recalled in Sect. 7, a common approach addressing this
hurdle is exploiting key-malleable like property to simulate RKA oracle based
on the standard oracle of the starting primitive. However, this approach does
not fit for our purpose. On one hand, efficient construction of the starting prim-
itive namely AKDFs is yet unknown to us. On the other hand, key-malleable
like property (if exists) is usually tied to some specific algebraic structure and
thus cannot yield RKA-security w.r.t. general RKDT class. Here we take a com-
plementary approach, that is, acquiring RKA security from non-malleability.
Instead of trying to answer RKA queries, we aim to reject all RKA queries. We
do so by stipulating that even after seeing a valid tag t∗ of s∗, no PPT adversary
is able to generate a legal related key derivation query (φ, π) (here legal means
t is a valid tag of φ(s∗)). In this way, the reduction can handle all related key
derivation queries without knowing s∗, by simply returning ⊥.

With this strategy, an incredibly simple construction of RKA-secure AKDFs
comes out by twisting NMFs. Let F be a family of poly-to-one NMFs. The
Setup algorithm randomly picks f from F . Let h be a hardcore function of f .
To generate a tag for a random key, one simply computes t ← f(s). Intuitively,
t serves as a deterministic non-malleable tag of s. To get a derived key from
(s, t), one first checks if f(s) = t and then outputs r ← h(s) if so. On a high
(and not entirely precise) level, due to the non-malleability of the underlying
NMFs, all related-key derivation queries can be safely rejected, and thus the
pseudorandomness of the derived key can be reduced to the one-wayness of f . A
subtlety here is that, in addition to t∗, the adversary can obtain some auxiliary
information about s∗, namely, the real or random derived key. In this regard,
hinted non-malleability is required for F . We present our generic construction
and formal security proof in details as below.

Our Construction. Let F = (Gen,Samp,Eval) be a family of Φ-non-malleable
poly-to-one functions and H be its hardcore that maps D to {0, 1}m. We show
how to build Φ′-RKA-secure AKDFs from it, where Φ′ = Φ ∪ id ∪ cf.14

– AKDF.Setup(λ): run f ← F .Gen(λ), h ← H.Gen(λ, f), output pp = (f, h).
– AKDF.Sample(pp): sample s ← F .Samp(λ), compute t ← f(s), output (s, t).
– AKDF.Derive(s, t): if t �= f(s), output ⊥; otherwise output r ← h(s).

The RKA security of the above construction follows from the theorem below.

Theorem 1. The above construction of AKDFs is Φ′-RKA-secure if F is Φ-
non-malleable and poly-to-one, where Φ′ = Φ ∪ id ∪ cf.

Proof. We prove this theorem via a sequence of games. Let Si be the event that
A wins in Game i.
Game 0 (The real experiment): CH interacts with A as follows:

14 As we discussed in Sect. 3, non-malleability is impossible to achieve if Φ contains id
or constant transformations. Thus, we assume Φ ∩ (id ∪ cf) = ∅.
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1. CH picks f ← F .Gen(λ), h ← H.Gen(λ, f), sets pp = (f, h); picks s∗ ←
F .Samp(λ), computes t∗ ← f(s∗), r∗

0 ← h(s∗), r∗
1

R←− {0, 1}m. Finally, CH
picks b

R←− {0, 1}, sends (pp, t∗, r∗
b ) to A as the challenge.

2. Upon receiving a RKA key derivation query 〈φ, t〉 from A, if 〈φ, t〉 = 〈id, t∗〉,
CH returns same∗; else CH returns h(φ(s∗)) if φ(s∗) = t or ⊥ otherwise.

3. A outputs a guess b′ for b and wins if b′ = b.

According to the definition of A, we have:

Advrka
A,AKDF(λ) = |Pr[S0] − 1/2|. (3)

Game 1 (Handling trivial queries without s∗): The same as Game 0 except that
in step 2 CH handles trivial queries 〈φ, t〉 without s∗. Here the term “trivial”
means φ ∈ id ∪ cf. We break trivial queries into three cases:

– φ = id and t = t∗: return same∗ indicating that the query is illegal.
– φ = id and t �= t∗: return ⊥ indicating that the query is invalid. This is because

f is a deterministic function and hence each s has an unique tag.
– φ ∈ cf and all t: suppose φ is a constant transform that maps all its inputs to

a constant c, return h(c) if f(c) = t and ⊥ otherwise.

These modifications are purely conceptual and hence

Pr[S1] = Pr[S0]. (4)

Game 2 (Handling all queries without s∗): The same as Game 1 except CH
directly returns ⊥ for all non-trivial queries 〈φ, t〉. Here the term “non-trivial”
means φ ∈ Φ. Let E be the event that A issues a non-trivial query 〈φ, t〉 such
that t = f(φ(s∗)). According to the definitions of Game 1 and Game 2, if this
event happens, CH returns ⊥ in Game 2, but not in Game 1. It is easy to see
that unless event E occurs, Game 1 and Game 2 are identical from the view of
the adversary. By the difference lemma, it follows that:

|Pr[S2] − Pr[S1]| ≤ Pr[E]. (5)

We now state and prove two claims that establish the main theorem.

Lemma 9. Pr[E] is negligible in λ assuming the Φ-non-malleability of F .

What we need to show is that, after seeing t∗ and the auxiliary information
r∗
b about s∗, no PPT adversary is able to output a valid non-trivial RKA query

〈φ, t〉 such that φ(s∗) = t. Therefore, hint-free non-malleability is inadequate and
hinted non-malleability is needed. Notice that here the auxiliary information r∗

b

is exactly hint(s∗; b), where hint is the special hint function defined in Eq. (1).
As we have shown Sect. 6, hinted non-malleability w.r.t. this hint function is
implied by hint-free non-malleability.
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Proof. Suppose B is an adversary against hinted Φ-non-malleability of F w.r.t.
the hint function defined in Equation (1). Given (f, y∗, hint(x∗; b)), where f ←
F .Gen(λ), y∗ ← f(x∗) for x∗ ← F .Samp(λ), and b

R←− {0, 1}. B simulates A’s
challenger in Game 2 as below: set pp = (f, h),15 t∗ = y∗, r∗

b ← hint(x∗; b), then
send (pp, t∗, r∗

b ) to A. Here s∗ is implicitly set to be x∗, which is unknown to
B. This is not a problem since according to the definition of Game 2, B is able
to handle all RKA queries correctly without s∗. Let L be the list of all non-
trivial queries issued by A. Since A is a PPT adversary, we have |L| ≤ poly(λ).
At the end of the simulation, B picks a random tuple (φ, t) from the L list
as its answer against hinted Φ-non-malleability. Conditioned on E happens, B
succeeds with probability at least 1/poly(λ). Therefore, if Pr[E] is non-negligible,
B’s advantage is at least Pr[E]/poly(λ), which is also non-negligible. This breaks
the hinted Φ-non-malleability of F , which in turn contradicts the assumed hint-
free Φ-non-malleability of F in this case. The lemma immediately follows. ��
Lemma 10. |Pr[S2] − 1/2| = negl(λ) assuming the Φ-non-malleability of F .

Proof. Since F is poly-to-one, according to Lemma 1 Φ-non-malleability implies
one-wayness, and further implies pseudorandomness of its hardcore H. Thereby,
it suffices to prove |Pr[S2]−1/2| = negl(λ) assuming the pseudorandomness of H.
Suppose B is an adversary against pseudorandomness of hardcore H associated
with F . Given (f, h, y∗, r∗

b ), where y∗ ← f(x∗) for x∗ R←− D and r∗
b is either

h(x∗) when b = 0 or a random string from {0, 1}m when b = 1, B simulates A’s
challenger in Game 2 as follows: set pp = (f, h), t∗ = y∗, send (pp, t∗, r∗

b ) to A.
According to the definition of Game 2, B can handle all the queries without the
knowledge of s∗ = x∗. At the end of the game, B simply forwards A’s output
as its guess. It is easy to see that if A succeeds, so does B. Therefore, we have
Advrand

B,H (λ) ≥ |Pr[S2] − 1/2|. By the hypothesis that H is pseudorandom, we
have |Pr[S2] − 1/2| = negl(λ). This proves the lemma. ��
Putting it all together, the theorem immediately follows. ��

By instantiating our generic construction with poly-to-one NMFs w.r.t. Φsrs
brs

(which in turn can be constructed from ATDFs), we obtain RKA-secure AKDFs
w.r.t. Φsrs

brs ∪ id ∪ cf.

Comparison to Qin et al.’s Construction. While both our construction
and Qin et al.’s construction are generic, it is still instructive to make a rough
comparison. For efficiency, our construction is built solely from deterministic
NMFs, so its public parameters consist of merely the descriptions of a NMF f
and a hardcore function h; and its tag generation and authentication procedures
are both deterministic. In contrast, Qin et al.’s construction is built from three
different cryptographic primitives, and thus its public parameters size is large
and its tag generation procedure is randomized. In this regard, our construction
has potential advantages over Qin et al.’s construction in terms of small footprint

15 The description of h is implicit in hint.
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of cryptographic code, compact public parameters size, short tag size, as well
as quick tag generation and authentication. For security, our construction is
RKA-secure in the strong sense w.r.t. a general RKDT class with a direct and
modular proof, whereas Qin et al.’s construction is RKA-secure w.r.t. specific
RKDT class [30] with a bit involved proof.

8.4 Optimizations

Relaxation on NMFs. We observe that in the above construction, NMFs can
be relaxed to non-malleable verifiable relations (NMVRs). In NMVRs, instead
of requiring f to be efficiently computable, we only require that the distribution
(x, f(x)) for a random x is efficiently sampleable and the correctness of sampling
is publicly verifiable.16 It is easy to see that NMVRs are implied by adaptive
trapdoor relations (ATDRs) [50] with publicly verifiability. As shown in [52],
publicly verifiable ATDRs can be constructed from all-but-one verifiable lossy
trapdoor relations, which permit efficient realizations from a variety of standard
assumptions. Combining this result with our observation above, we are able to
give more efficient constructions of RKA-secure AKDFs.

Stronger RKA Security. In the above RKA security notion for AKDFs, the
adversary is only given access to a RKA oracle. In practice, it may also collect
some tags and learn the corresponding derivation keys. To defend against such
powerful adversaries, it is necessary to make the RKA security stronger by giving
the adversary access to a reveal oracle Oreveal that on input a tag t outputs
a corresponding key s.17 AKDFs satisfying such strong RKA notion can be
constructed from adaptive NMFs, which in turn can be constructed from ATDFs.
This not only justifies the utility of the adaptive non-malleability notion, but
also supports the view of Kiltz et al. [38] that “ATDFs may be useful in the
general context of black-box constructions of cryptographic primitives secure
against adaptive attacks.”

Increasing the Length of Derivation Key. We can always instantiate
h via the Goldreich-Levin hardcore predicate [34]. Nevertheless, such general
instantiation yields only one-bit derived key. We may also obtain a hardcore
function with linearly-many hardcore bits either by iteration when F is a
family of one-way permutations or relying on stronger decisional assumptions.
A recent work [13] provides us an appealing hardcore function with poly-many
hardcore bits from any one-way functions, assuming the existence of differing-
inputs/indistinguishability obfuscation. In applications of RKA-secure AKDFs
where the length of the derived key is of great importance, one can further stretch
it by applying a normal pseudorandom generator.

16 Here the publicly verifiable property means verification can be done without knowing
the secret random coins used in sampling.

17 Query on the challenge tag t∗ is not allowed to avoid trivial attack.
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9 Conclusion

We formally study non-malleable functions with simplified syntax and strong
game-based security definition. We establish connections between (adaptive)
non-malleability and (adaptive) one-wayness, by exploiting our newly abstracted
algebraic properties of transformation class. Notably, the implication AOW ⇒
ANM not only gives efficient construction of NMFs from adaptive trapdoor func-
tions, but also provides insight in addressing non-trivial copy attacks in the RKA
area. Using NMFs, we give a simple and efficient construction of RKA-secure
authenticated KDFs.
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Abstract. Several well-known public key encryption schemes, includ-
ing those of Alekhnovich (FOCS 2003), Regev (STOC 2005), and Gen-
try, Peikert and Vaikuntanathan (STOC 2008), rely on the conjectured
intractability of inverting noisy linear encodings. These schemes are lim-
ited in that they either require the underlying field to grow with the
security parameter, or alternatively they can work over the binary field
but have a low noise entropy that gives rise to sub-exponential attacks.

Motivated by the goal of efficient public key cryptography, we study
the possibility of obtaining improved security over the binary field by
using different noise distributions. Inspired by an abstract encryption
scheme of Micciancio (PKC 2010), we study an abstract encryption
scheme that unifies all the three schemes mentioned above and allows
for arbitrary choices of the underlying field and noise distributions.

Our main result establishes an unexpected connection between the
power of such encryption schemes and additive combinatorics. Con-
cretely, we show that under the “approximate duality conjecture”
from additive combinatorics (Ben-Sasson and Zewi, STOC 2011), every
instance of the abstract encryption scheme over the binary field can be
attacked in time 2O(

√
n), where n is the maximum of the ciphertext size

and the public key size (and where the latter excludes public randomness
used for specifying the code). On the flip side, counter examples to the
above conjecture (if false) may lead to candidate public key encryption
schemes with improved security guarantees.

We also show, using a simple argument that relies on agnostic learn-
ing of parities (Kalai, Mansour and Verbin, STOC 2008), that any such
encryption scheme can be unconditionally attacked in time 2O(n/ log n),
where n is the ciphertext size. Combining this attack with the security
proof of Regev’s cryptosystem, we immediately obtain an algorithm that
solves the learning parity with noise (LPN) problem in time 2O(n/ log log n)

using only n1+ε samples, reproducing the result of Lyubashevsky
(Random 2005) in a conceptually different way.

A full version of this extended abstract can be found in [6].
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Finally, we study the possibility of instantiating the abstract encryp-
tion scheme over constant-size rings to yield encryption schemes with no
decryption error. We show that over the binary field decryption errors
are inherent. On the positive side, building on the construction of match-
ing vector families (Grolmusz, Combinatorica 2000; Efremenko, STOC
2009; Dvir, Gopalan and Yekhanin, FOCS 2010), we suggest plausible
candidates for secure instances of the framework over constant-size rings
that can offer perfectly correct decryption.

Keywords: Public key encryption · Noisy codewords · Learning parity
with noise · Additive combinatorics

1 Introduction

Public key encryption is one of the most intriguing concepts of modern cryp-
tography. Decades after the introduction of the first public key encryption
schemes [13,17,31,38,42], there are still only a handful of candidate construc-
tions. While public key encryption schemes such as RSA are widely deployed
in practice, their concrete efficiency, including the size of keys and ciphertexts,
leaves much to be desired. In particular, there is still a considerable efficiency
gap between the best known public key encryption schemes and their private
key counterparts.

Motivated by the goal of finding new public key encryption schemes with
attractive efficiency features, we study an abstract encryption scheme which
captures a class of known schemes that rely on the hardness of inverting a
noisy linear encoding. This class includes the public key encryption scheme of
Alekhnovich [3], whose security is based on the conjectured intractability of the
“learning parity with noise” (LPN) problem, and the schemes of Regev [40] and
of Gentry, Peikert and Vaikuntanathan (GPV) [18], whose security is based on
the conjectured intractability of the “learning with errors” (LWE) problem.

In all of the above schemes, there is a publicly known linear code which is
typically chosen at random, and the public keys and ciphertexts are generated
by picking a secret uniform random codeword and adding a secret random noise
vector, or alternatively by computing the syndrome of such a noisy codeword.
Among other differences, the schemes differ in the choice of the underlying field
and the distribution from which the noise is picked. In the schemes proposed by
Regev and GPV, the field size grows polynomially with the security parameter
and the noise distribution is a discrete Guassian. The scheme of Alekhnovich
has the advantage of working over the binary field, but its noise distribution is
restricted to noise patterns whose Hamming weight is smaller than the square
root of the ciphertext size and public key size1.
1 We view the code specification as a global public parameter and do not count it

towards the public key size. This is justified by the possibility of picking the code
pseudorandomly or using special classes of codes that can be succinctly described
(cf. [12,30]).
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The choice of binary field made by Alekhnovich [3] is attractive because of the
potential for better concrete efficiency, especially on light-weight devices [12,23,
37]. However, the choice of noise distribution made in [3] has a negative impact on
efficiency since the low-weight noise makes a brute-force guessing attack possible.
In particular, if we require the scheme to resist 2t time attacks then this requires
the public keys as well as the ciphertexts to be of size at least Ω(t2), even when
encrypting a single bit. In contrast, the known attacks on the schemes of Regev
and GPV, using lattice algorithms, only require the public keys and ciphertexts
to be of size Θ(t log t). The main question we study is whether it is possible to
obtain a similar or better level of succinctness by using linear codes over the
binary field, thus obtaining a cryptosystem that enjoys the best of both worlds.

1.1 Overview of Contribution

Towards a systematic study of the above question, we study an abstract encryp-
tion scheme which unifies the schemes of Regev, GPV, and Alekhnovich, and
allows for arbitrary choices of the underlying field and noise distributions. This
scheme is inspired by an abstract encryption scheme of Micciancio described in
the online talk [33], which unifies the encryption schemes of Regev and GPV.

Our first result unconditionally rules out the possibility of instantiating the
abstract encryption scheme over the binary field to yield an optimally succinct
cryptosystem, in the sense that the ciphertexts and public keys are only O(t)
bits long2. This result is obtained using a simple argument that relies on a
previous result of Kalai et al. on agnostic learning of parities [24]. Combining
this attack with the security proof of Regev’s cryptosystem [40] immediately
yields an algorithm that solves the learning parity with noise (LPN) problem in
time 2O(n/ log log n) using only n1+ε samples, providing a conceptually different
proof for the main result of Lyubashevsky [29].

Our main result establishes an unexpected connection between the power
of such encryption schemes and additive combinatorics. We show that under
a conjecture from additive combinatorics it is also impossible to obtain near-
optimal succinctness over the binary field in the case in which the decryption
error of a single encryption is a sufficiently small constant. More concretely, every
instance of the abstract encryption scheme over the binary field can be attacked
in time 2O(

√
n), where n is the maximum of the ciphertext size and the public

key size. This suggests that the parameters of Alekhnovich’s original construction
cannot be significantly improved by choosing different noise distributions.
2 Recall that we do not include global public parameters, such as the specification of a

random linear code, in the public key size. Currently, the only plausible candidates
for public key encryption schemes that are optimally succinct in the above sense are
based on special families of elliptic curves. Unlike typical code-based constructions,
these schemes are inherently susceptible to quantum attacks. The work of Sahai and
Waters [43] shows that public key encryption with optimally succinct ciphertexts
can be based on indistinguishability obfuscation and an exponentially strong one-
way function. However, obfuscation-based constructions have large public keys and
their known instances are currently quite far from being practical.
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The high level idea behind this result is as follows. The unified encryption
scheme is parameterized by three independent noise distributions: a distribution
μsk, applied during the key generation, and distributions μ0 and μ1 that are used
for encrypting the messages 0 and 1 respectively. To enable correct decryption
with high probability, it must be the case that the distributions 〈μsk, μ0〉 and
〈μsk, μ1〉 are statistically far (where 〈·, ·〉 denotes the inner product of indepen-
dent random samples). On the other hand, the security of the scheme implies that
noisy linear encoding with respect to these noise distributions must be one-way,
and in particular these distributions should not satisfy certain combinatorial
properties that enable an adversary to guess the noise and solve the result-
ing system of linear equations. Our conditional negative results are obtained
by applying the approximate duality conjecture from [8] to establish limits on
the existence of distributions which satisfy the above. On the flip side, counter
examples to the approximate duality conjecture (if false) would give distribu-
tions μsk, μ0, μ1 that can potentially serve as a basis for cryptosystems (over the
binary field) that resist exponential time attacks.

As a secondary contribution of this work, we study the possibility of instan-
tiating the unified scheme over constant-size rings to yield encryption schemes
with no decryption error. We show that over the binary field, a small decryption
error probability is inherent. On the positive side, building on the construction
of matching vector families from [14], which builds in turn on the constructions
of [16,21], we suggest plausible candidates for secure instances of the framework
over constant-size rings that can offer perfectly correct decryption.

Before providing a more detailed account of our results, we provide some
background on the problem of noisy linear decoding and public key encryption
schemes based on its conjectured hardness.

1.2 Learning Parity with Noise

The learning parity with noise (LPN) problem is the problem of solving random
linear equations over F2 which are corrupted by some noise. More specifically, in
this problem there is an unknown vector s ∈ F

n
2 , and one is given independent

random samples of the form (ai, bi), where ai is a uniform random vector in F
n
2 ,

bi = 〈ai, s〉 + ei, and each noise bit ei ∈ {0, 1} is 1 with probability η < 1
2 and 0

otherwise independently of ai (all operations are performed over F2). The goal
is to recover the unknown vector s from these samples. If the noise rate η equals
0 then this can simply be done using Gaussian elimination. When η > 0 the
problem is conjectured to be intractable. Indeed, solving LPN given m samples
can be viewed as the problem of decoding a noisy codeword in a random linear
code of block length m and dimension n, a longstanding open problem in coding
theory.

It is known that the hardness of solving the above search version of LPN with
a uniform random unknown vector s implies the hardness of the decision version
of LPN, namely distinguishing between samples of the form (ai, bi) as above and
uniformly random and independent vectors in F

n+1
2 [5,10]. From a coding theory

perspective, this means that if it is hard to decode noisy random codewords in a
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random linear code, then the joint distribution (G, b) is pseudorandom, where G
is a random generator matrix of a random linear code and b is a noisy random
codeword in the code.

A naive approach for solving LPN is to search among all vectors in F
n
2 to find

a vector s′ the largest number of equations. This algorithm takes 2O(n) time and
one can show, using the Chernoff bound, that O(n) independent random samples
suffice to ensure that s′ will be the correct solution with high probability. In
[11], Blum et al. showed that, quite surprisingly, one can solve the LPN problem
in time 2O(n/ log n). However, a drawback of this algorithm is that it requires
2O(n/ log n) independent random samples. In [29] (see also [25]) it was shown
that the number of samples could be reduced to n1+ε at the price of increasing
the running time to 2O(n/ log log n). More specifically, they showed that using only
n1+ε initial independent random samples one can generate additional “almost
fresh” random samples by XORing sufficiently large random subsets of the initial
samples. These new samples can be used in turn as an input to the algorithm of
[11].

1.3 Alekhnovich’s Public Key Encryption Scheme

In 2003, Alekhnovich [3] proposed a public key encryption scheme whose security
was based on the intractability of the LPN problem. Roughly speaking, this
scheme can be used to encrypt a bit σ ∈ {0, 1} as follows. Let n be a security
parameter, m = 2n, and k = n1/2−ε for some small constant ε > 0. The key
generation proceeds by choosing a random noise vector e ∈ F

m
2 in which each

entry is set to 1 with independent probability η = k/m, a uniform random m×n
matrix G over the binary field, and a uniform random w ∈ Image(G) (that is,
w is uniform in the column span of G). The private key is the noise vector e
and the public key is the m × (n + 1) matrix G̃ = (G | b) obtained from G
by appending the noisy codeword b = w + e to the right of the matrix G. (As
discussed above, we do not count G towards the size of the public key.)

The encryption of σ = 0 is a random vector c ∈ F
m
2 of the form c = w̃ + ẽ,

where w̃ is a uniform random vector in ker(G̃T ) and ẽ ∈ F
m
2 is a random noise

vector distributed identically to (but independently of) the private key e. The
encryption of σ = 1 is a uniform random vector in F

m
2 . In order to decrypt

a ciphertext c ∈ F
m
2 , one simply outputs the inner product 〈c, e〉. It can be

easily seen that this inner product is a nearly uniform random bit when c is an
encryption of 1, and is equal to the inner product 〈e, ẽ〉 when c is an encryption of
0. By the birthday paradox, the inner product 〈e, ẽ〉 is 0 with probability 1−o(1)
and consequently, by repeating the encryption process polylog(n) times, one can
distinguish between encryptions of 0 and 1 with negligible error probability.

The security of the above scheme can be based on the intractability of the
LPN problem with noise rate η. Indeed, since the matrix G̃ is indistinguishable
from a uniform random matrix, the code from which w̃ is picked is indistin-
guishable from a random linear code, implying that the noisy codeword c is also
pseudorandom. However, by the choice of the noise rate η, the Hamming weight
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of the private key e is bounded by n1/2−ε/2 with overwhelming probability. By
trying all different possibilities for such a private key, the scheme can be attacked
in time 2O(

√
n).

It is instructive to consider the abstract requirements from the noise distri-
butions e and ẽ that are necessary for the correctness and security of the above
scheme. To enable correct decryption with high probability, the inner product
of e and ẽ (where the two noise vectors are independently sampled) should be
statistically far from uniform, i.e., significantly biased towards either 0 or 1. On
the other hand, a sufficient condition for security is that the LPN decision prob-
lem be intractable with respect to both of the noise distributions e and ẽ. The
main question that motivates this work is whether there can be other choices
of noise distributions that satisfy the above correctness requirement and may
provide substantially better security than the original choice of Alekhnovich.

1.4 Learning with Errors

The learning with errors (LWE) problem, introduced by Regev for the construc-
tion of his public key encryption scheme [40], is a generalization of the LPN
problem to arbitrary rings Zq (where q is a prime power). More specifically, in
this problem one is given independent random samples of the form (ai, bi) where
now ai is a uniform random vector in Z

n
q , bi = 〈ai, s〉 + ei for a fixed unknown

vector s ∈ Z
n
q and ei is distributed according to some fixed distribution χ on

Zq independently of ai (all operations are performed over Zq). Concretely, the
distribution χ is usually chosen to be some small discrete Gaussian. The goal is
again to recover the unknown vector s.

As was the case with LPN, assuming that the distribution χ is sufficiently far
from uniform, one can solve LWE naively in time qO(n) using O(n log q) samples,
and the algorithm of Blum et al. [11] can be adapted to solve this problem in time
qO(n/ log n) using qO(n/ log n) samples. However, what is remarkable about LWE is
that its hardness can be based on the worst-case hardness of well-studied lattice
problems. This makes all cryptographic constructions based on the hardness
of LWE secure under assumptions on the worst-case hardness of these lattice
problems. See the survey [41] for more details.

1.5 Public Key Encryption Based on Learning with Errors

As mentioned above, Regev introduced the LWE problem as a basis for the con-
struction of his public key encryption scheme [40] which can be used to encrypt
a bit σ ∈ {0, 1} as follows. Let n be a security parameter, m = (1 + ε)n log q
and q = poly(n). The key generation proceeds by choosing a random noise vec-
tor e ∈ F

m
q in which each coordinate is distributed independently according to

a small discrete Gaussian, a uniform random m × n matrix G over Fq, and a
uniform random w ∈ Image(G). The private key is the noise vector e and the
public key is the m × (n + 1) matrix G̃ = (G | b) obtained from G by appending
the noisy codeword b = w + e to the right of the matrix G.
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The encryption of a bit σ ∈ {0, 1} is a random vector c ∈ F
n+1
q of the form

c = G̃T · ẽ + vσ where ẽ is a uniform random vector in {0, 1}m and vσ ∈ F
n+1
q is

the vector all of whose coordinates equal 0 except for the (n + 1)-th coordinate
which equals σ · � q

2�. In order to decrypt a ciphertext c ∈ F
n+1
q one computes

σ′ =: cn+1 − 〈x, Pn(c)〉, where Pn : Fn+1
q → F

n
q denotes the projection on the

first n coordinates and x is such that w = Gx, and outputs 0 if σ′ is closer to 0
than to � q

2� and 1 otherwise. Finally, it can be verified that σ′ = σ · � q
2� + 〈e, ẽ〉.

Consequently, if one chooses the Guassian distribution of the coordinates of e
to be small enough then 〈e, ẽ〉, which is the sum of at most m such independent
Gaussians, would be smaller than � q

4� in absolute value with high probability
and therefore would enable one to distinguish between encryptions of 0 and 1
with small error probability. In fact, the error here can be completely eliminated
by truncating the tail of the Gaussian noise distribution.

The main advantage of Regev’s encryption scheme is that while Alekhnovich’s
encryption scheme can be attacked in time 2O(

√
n) by enumerating over all pos-

sible private keys, the best known attacks on Regev’s encryption scheme, using
lattice algorithms, run in time 2O(n). This advantage of Regev’s scheme stems
from the possibility to exploit the large modulus q for picking noise distributions
e and ẽ whose inner product is statistically far from uniform and yet the noisy
decoding problem corresponding to these distributions can be conjectured to
have nearly exponential hardness. Note, however, that since q is polynomial in
n, the ciphertext is of size Ω(n log n) and therefore falls slightly short of being
optimally succinct.

Another related public key encryption scheme, based on the hardness of
LWE, is the public key encryption scheme proposed by Gentry, Peikert and
Vaiknutanathan (GPV) [18] which is described by the authors as a “dual of
Regev’s scheme in which the key generation and the encryption algorithms are
swapped”. A useful property of the encryption scheme of [18] is that it allows
an identity-based encryption in which arbitrary strings are allowed to serve as
public keys.

1.6 Related Work

Originating from the seminal work of Ajtai [1], there has been a large body of
research on basing lattice-based cryptosystems on the minimal possible assump-
tions and improving the efficiency of such provably secure constructions. In par-
ticular, the work of Micciancio and Mol [34] considers the possibility of replac-
ing the standard Gaussian noise by other noise distributions, which may admit
a more efficient sampling algorithm, while maintaining provable security under
standard assumptions. In contrast, the goal of the present work is to explore the
space of constructions that might be secure, in the sense that they resist known
attacks, regardless of the underlying intractability assumption or the way secu-
rity is argued. Moreover, unlike the work on lattice-based cryptography, our main
focus is on constructions that use linear codes over the binary field.

As noted above, the unified encryption scheme we study is inspired by the
abstract encryption scheme described in Micciancio’s online talk [33] which gen-
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eralizes the encryption schemes of Regev and GPV. In particular, as in [33], this
unified scheme relies on duality between noisy codeword encoding and syndrome
encoding. This duality has also been noticed and used in other settings in the
context of lattice-based public key encryption, for example in [34,44]3.

Finally, one should note that the unified scheme we study does not capture all
of the code-based and lattice-based public key encryption schemes from the lit-
erature. For instance, it does not capture the code-based McEliece cryptosystem
and its variants [31,36], as well as lattice- and LWE-based cryptosystems such
as [2,4,19,22,30,32,35,39]. However, these alternative constructions do not seem
well suited to the goal of obtaining near-optimal succinctness over binary fields.
The former code-based schemes require the public key size to grow quadratically
with the security parameter, whereas the latter lattice-based schemes do not
admit a “native” implementation over binary fields.

2 Our Results in More Detail

To study the public key encryption schemes of Alekhnovich [3], Regev [40] and
Gentry, Peikert and Vaikuntanathan (GPV) [18] in a unified way, we start by
defining an abstract encryption scheme that captures these encryption schemes.
More specifically, for each of the schemes [3,18,40] we define an abstract version
that we call ΠAlek,ΠReg,ΠGPV, respectively, in which the field size as well as
the noise distributions used in the key generation and encryption processes are
allowed to be arbitrary.

Following Miciancio [33], we observe that for an identical choice of parame-
ters all the abstract schemes are equivalent to each other in terms of security:
Given a pair of schemes E,E′ ∈ {ΠAlek,ΠReg,ΠGPV}, there exists an efficiently
computable randomized mapping which for every bit σ ∈ {0, 1} maps the joint
distribution of the public key pk and the encryption of σ using pk in E to the
joint distribution of the public key pk′ and the encryption of σ using pk′ in E′4.

At a high level, all the abstract schemes work as follows (see Table 1 in the
full version [6] for more details). Each of the schemes is parametrized by integers
n < m, a field Fq (whose size may depend on n), a distribution μsk over F

m
q

and a pair of distributions μ0, μ1 over F
m+1
q . In all three schemes the private

key is a random noise vector e ∼ μsk. The public key consists of two parts:
A random linear code C : F

n
q → F

m
q , specified by either a uniform random

3 A different unified view of the schemes of Regev and Alekhnovich was previously
given by Lindner and Peikert [26] who suggested to add an additional noise vector
in the encryption process of Regev’s scheme. This allowed them to argue about the
security of Regev’s scheme using Alekhnovich-style security proof and consequently
reduce key sizes in Regev’s scheme.

4 Note that we do not claim that the original encryption schemes of Alekhnovich,
Regev and GPV are equivalent to each other in terms of security but rather that
for each pair of schemes E, E′ ∈ {Alekhnovich, Regev, GPV} one can change the
field size and noise distributions in E (but not the syntactics of E!) to obtain an
encryption scheme that is equivalent to E′ in terms of security.
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generator matrix GT ∈ F
n×m
q (in ΠAlek and ΠReg) or a uniform random parity-

check matrix HT ∈ F
(m−n)×m
q (in ΠGPV), together with either a noisy codeword

b = w+e where w is a random codeword in C (in ΠAlek and ΠReg) or its syndrome
u = HT · e (in ΠGPV).

The encryption process is similar: Let C̃ : Fm−n
q → F

m+1
q be the code speci-

fied by the parity-check matrix

G̃T =
(

G b
0T

n −1

)T

,

where G̃ is the (m + 1) × (n + 1) matrix obtained by appending the column b
to the right of the matrix G and adding below a row whose first n entries equal
zero and whose last entry equals −1. Let

H̃ =
(

H
uT

)

be the (m+1)×(m−n) matrix obtained by adding the row uT below the matrix
H, and note that H̃T is a generator matrix for the code C̃. In order to encrypt
a bit σ ∈ {0, 1} one chooses a random noise vector ẽ ∼ μσ. The encryption of σ
is either a noisy codeword b = w̃ + ẽ where w̃ is a uniform random codeword in
C̃ (in ΠAlek and ΠGPV) or its syndrome G̃T · ẽ (in ΠReg).

Finally, in all the three schemes using the private key e one can obtain the
inner product 〈e ◦ (−1), ẽ〉, where e ◦ (−1) denotes the vector obtained from e
by adding −1 below the vector e. To enable decryption one has to choose noise
distributions μsk, μ0 and μ1 such that it is possible to distinguish between the
distributions 〈μsk ◦ (−1), μ0〉 and 〈μsk ◦ (−1), μ1〉 efficiently.

2.1 Unconditional Negative Result

Our first result shows a simple unconditional attack running in time 2O(n/ log n)

on any instance of the abstract encryption scheme over the binary field. The
attack uses a simple argument based on the algorithm for agnostic learning of
parities of Kalai et al. [24], a powerful algorithm that learns parities with noise
from arbitrary distributions. More specifically, this algorithm is given indepen-
dent random samples of the form (ai, bi), where bi = 〈ai, s〉 + ei for a fixed
unknown vector s ∈ F

n
2 and (ai, ei) are distributed according to an arbitrary

distribution over F
n
2 × F2 (In particular, the ei’s may depend on the ai’s).

Assuming that the noise bit ei is non-zero with probability at most η (or alter-
natively, bi 
= 〈ai, s〉 with probability at most η), the algorithm returns a circuit
h : Fn

2 → F2 that errs with probability at most η on future examples, that is
Pr(ai,bi)[h(ai) 
= bi] ≤ η. The running time and number of samples used by this
algorithm is 2O(n/ log n) which matches the performance of the original LPN algo-
rithm of [11]. Note that though quite powerful, this algorithm is not a proper
learner since it returns an arbitrary circuit which is not necessarily a parity
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function. For simplicity, assume for now that the algorithm returns the original
vector s.

By the equivalence of the abstract encryption schemes ΠAlek, ΠReg and ΠGPV

it suffices to show an attack on the encryption scheme ΠReg. The property of
this scheme that we shall use for the attack is that the decryption of a ciphertext
c ∈ F

n+1
2 is cn+1 − 〈s, Pn(c)〉 where Pn : Fn+1

2 → F
n
2 denotes the projection on

the first n bits and s ∈ F
n
2 is such that w = Gs. Using the public key we generate

2O(n/ log n) samples of the form (Pn(c′), c′
n+1 − ξ) where ξ ∈ {0, 1} is a uniform

random bit and c′ is a random encryption of ξ and feed them to the algorithm
for agnostic learning of parities described above. Assuming that the decryption
algorithm has low error probability we have that c′

n+1 − 〈s, Pn(c′)〉 = ξ with
probability at least 1−η, or alternatively, 〈s, Pn(c′)〉 
= c′

n+1−ξ with probability
at most η. Hence the algorithm of [24] will recover the vector s and consequently
we can recover the private key e = b − Gs.

The attack described above has also some positive consequences to learning,
where it can be used for learning parities corrupted by arbitrary noise distribu-
tions in sub-exponential time using a relatively small number of samples. More
specifically, we observe that Regev’s security proof [40], which shows that his
original encryption scheme is secure assuming the hardness of LWE, can be gen-
eralized to show the security of the abstract encryption scheme under similar
assumptions. In more detail, one can show that any instance of the abstract
encryption scheme over an arbitrary field Fq, using an arbitrary noise distribu-
tion μsk and noise distributions μ0, μ1 of sufficiently high min-entropy, is secure
assuming the hardness of learning linear functions over Fq corrupted by noise
coming from the distribution μsk. We further observe that this security guarantee
holds even assuming the hardness of learning such functions using a relatively
small number of samples.

Stated positively, the above says that any attack on an instance of the
abstract encryption scheme as above can be turned into an algorithm that learns
linear functions over Fq corrupted by noise coming from the distribution μsk

using a relatively small number of samples. In particular, the attack described
above can be turned into such an algorithm. We further observe that an instance
of this latter algorithm solves the LPN problem in time 2O(n/ log log n) using n1+ε

samples, reproducing the result of [29] (see also [25]) in a conceptually different
way.

2.2 Conditional Negative Results

Our main result is a (non-uniform) attack running in time 2O(
√

m) on any
instance of the abstract encryption scheme over the binary field in the case in
which the decryption error of a single encryption is a sufficiently small constant,
assuming the ‘approximate duality conjecture’ of [8]. For the attacks we first for-
mulate combinatorial properties of the distributions μsk, μ0 and μ1 that imply
an attack on the abstract encryption scheme and then show that these combi-
natorial properties are satisfied assuming the approximate duality conjecture or
its variant. We elaborate on these two parts below.
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Attacks based on combinatorial properties of μsk, μ0, μ1. The main combinatorial
property we shall use for the attacks is sparsity. More precisely, we say that
a distribution μ over F

m
2 for m ≥ n is (n, k, ρ)-sparse if there exist k subsets

A1, . . . , Ak ⊆ F
m
2 (not necessarily distinct) and k full rank linear transformations

L1, . . . , Lk : Fm
2 → F

n
2 (not necessarily distinct) such that Prμ

(⋃k
i=1 Ai

) ≥ ρ
and Li(Ai) is constant for every i ∈ [k]. In other words, this means that there
exist k affine subspaces V1, . . . , Vk ⊆ F

m
2 , of co-dimension n each, such that with

probability at least ρ a random vector sampled from μ falls into the union of
these subspaces.

We show that if an instance of the abstract encryption scheme over the binary
field satisfies that the distribution μsk is (n, k, ρ)-sparse or one of the distributions
μ0 or μ1 is (m + 1 − n + log k + log(1/ρ), k, ρ)-sparse, and the decryption error
of a single encryption is relatively small compared to ρ, then one can attack this
instance in time O(k). To illustrate the idea behind our attacks assume that we
are attacking ΠAlek and that the distribution μsk is (n, k, ρ)-sparse. In this case
one can search for a ’good’ private key e′ by enumerating over all i ∈ [k] and
solving a corresponding system of linear equations to find a vector e′ ∈ ⋃k

i=1 Vi

and a vector x′ ∈ F
n
2 such that b = Gx′ + e′. We can further test whether e′ is a

’good’ private key by generating random encryptions of 0 and 1 using the public
key and computing the success probability of e′ in decrypting these encryptions.
Since the distribution μsk is (n, k, ρ)-sparse, with probability at least ρ we will
succeed in finding a ‘good’ private key e′ which can be used in turn in order to
decrypt the ciphertext.

The case in which one of the distributions μ0 or μ1 is (m + 1 − n + log k +
log(1/ρ), k, ρ)-sparse is a bit more tricky. In this case it will be convenient to
attack the scheme ΠGPV and by symmetry it suffices to show such an attack in
the case in which μ0 is (m + 1 − n + log k + log(1/ρ), k, ρ)-sparse. As in the μsk

case, we can still search in time O(k) for e′ ∈ ⋃k
i=1 Vi and a vector x′ ∈ F

m−n
2

such that c = H̃ · x′ + e′. Our main observation is that since
⋃k

i=1 Vi is not too
large, with high probability over the choice of the matrix H̃, there is no e′ 
= ẽ
such that e′ ∈ ⋃k

i=1 Vi and c = H̃x′+e′ for some x′ ∈ F
m−n
2 . This implies in turn

that by enumerating over all i ∈ [k] and solving a corresponding system of linear
equations, with high probability one can verify whether ẽ ∈ ⋃k

i=1 Vi and if this
is the case one can also find ẽ. It thus suffices to be able to distinguish between
ẽ ∼ μ0 and ẽ ∼ μ1, conditioned on the event that ẽ ∈ ⋃k

i=1 Vi. Assuming that
the decryption error is sufficiently small compared to ρ, this can be done by
computing the inner product 〈e(sk) ◦ (−1), ẽ〉 with a random e(sk) ∼ μsk.

Attacks based on the approximate duality conjecture. For a pair of subsets A,B ⊆
F

m
2 their duality measure is given by

D(A,B) = Ea∈A,b∈B

[
(−1)〈a,b〉

]
. (1)

Note that D(A,B) = 1 implies that 〈a, b〉 is constant. The question is what can
be said about the structure of A,B when D(A,B) is sufficiently large but strictly
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smaller than 1. The approximate duality conjecture of [8] (cf., also Conjecture
1.7.2 in [27]) postulates that in this case there exist large subsets A′ ⊆ A, B′ ⊆ B,
of density at least 2−O(

√
m) inside A, B respectively, with D(A′, B′) = 1.

We note that the bound of 2−O(
√

m) in the approximate duality conjecture
is tight, and to see this take A = B =

(
m√
m

)
to be the set of vectors that have√

m ones. The birthday paradox shows that D(A,B) is a fixed positive constant,
independent of m (in fact, taking vectors of weight α

√
m for α approaching 0

makes D(A,B) approach 1). But it can be verified that for any pair A′ ⊂ A and
B′ ⊂ B satisfying D(A′, B′) = 1, the size of one of the sets A′ or B′ is a 2−√

m

fraction of |A|. Such a pair is obtained by taking A′ (B′ respectively) to contain
all vectors supported on the first (last, respectively) m/2 coordinates.

In [7] it was shown that assuming the well-known polynomial Freiman-Ruzsa
conjecture from additive combinatorics (cf., [20]), the approximate duality con-
jecture holds when replacing the lower bound 2−O(

√
m) on the ratios |A′|/|A|

and |B′|/B| with the weaker bound of 2−O(m/ log m). Furthermore, in [28] a ver-
sion of the approximate duality conjecture over the reals was shown to hold
(unconditionally) with the stronger bound of 2−O(

√
m). The approximate dual-

ity conjecture has found so far various applications in complexity theory: To
the construction of two-source extractors [8], to relating rank to communication
complexity [7] and to lower bounds on matching vector codes [9].

We show that the approximate duality conjecture implies that in any instance
of the abstract encryption scheme over the binary field one of the distributions
μsk, μ0 or μ1 is sparse which by the above implies an attack on this instance. To
see this suppose that Π is an instance of the abstract encryption scheme over
the binary field in which μsk ◦ (−1), μ0, μ1 are distributed uniformly over subsets
A,B0, B1 ⊆ F

m+1
2 respectively. Then by correctness of the decryption algorithm

we have that either D(A,B0) ≥ 1 − ε or D(A,B1) ≤ −(1 − ε) for some constant
ε < 1. Without loss of generality assume that D(A,B0) ≥ 1− ε and note that in
this case the approximate duality conjecture implies that there exist subsets A′ ⊆
A, B′ ⊆ B0, of density at least 2−c

√
m inside A, B0 respectively, with D(A′, B′) =

1. The latter implies in turn that dim(span (A′)) + dim(span (B′)) ≤ m + 2.
Consequently, we have that either dim(span (A′)) ≤ m+2−n+2c

√
m in which

case A′ is contained in the union of 22c
√

m+1 affine subspaces of co-dimension
n and so μsk ◦ (−1) is (n, 22c

√
m+1, 2−c

√
m)-sparse or that dim(span (B′)) ≤

n − 2c
√

m in which case μ0 is (m − n + 2c
√

m, 1, 2−c
√

m)-sparse. This implies
in turn an attack running in time 2O(

√
m) in the case in which the decryption

error is 2−Ω(
√

m). Note that the attack is non-uniform since the attacker needs
to know the subsets A′ and B′.

In order to show such an attack in the case in which μsk, μ0, μ1 are general
distributions, not necessarily uniform over a subset, we prove that the standard
formulation of the approximate duality conjecture implies a generalized version
of it that holds also when the expectation in (1) is taken over arbitrary distribu-
tions. In order to handle larger decryption errors we apply the approximate dual-
ity conjecture iteratively to obtain t = 2O(

√
m) pairs of subsets A1, B1, . . . , At, Bt

such that D(Ai, Bi) = 1 for all 1 ≤ i ≤ t and such that the probability of being
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contained in the union of Ω(t) such subsets is Ω(1 − ε). This implies that either
μsk◦(−1) is (n, 23c

√
m+1, Ω(1−ε))-sparse or μ0 is (m−n+2c

√
m, 2c

√
m, Ω(1−ε))-

sparse which implies in turn an attack that runs in time 2O(
√

m) in the case in
which the decryption error is a sufficiently small constant.

Finally, we note that if the approximate duality conjecture is false, then a
counter example to this conjecture would be a pair of sets A,B ⊆ F

m
2 such that

D(A,B) is high but no large pair of subsets A′, B′ of A,B respectively are dual.
In this case, if we let Π be a (possibly non-uniform) instance of the unified
scheme in which μsk, μ0, μ1 are distributed uniformly over the sets A,B ◦0, B ◦1
respectively, then the fact that D(A,B) is high implies that the advantage of the
decryption algorithm in Π is high. On the other hand, the lack of linear struc-
ture in the above distributions makes them secure against our brute-force linear
algebra attacks which could potentially make Π secure against sub-exponential
time attacks.

2.3 Perfectly Correct Decryption

Our last collection of results is concerned with the possibility of achieving per-
fectly correct decryption in the abstract encryption scheme over constant-size
rings. As mentioned above, when the field size is polynomial in n, one can trun-
cate the tail of the Gaussian noise distribution used in Regev’s original encryp-
tion scheme [40] to achieve a perfectly correct decryption. We investigate whether
one can achieve perfect decryption also over constant-size rings.

Our first result in this regard is negative, showing that over the binary field
any instance of the abstract encryption scheme with perfectly correct decryption
can be attacked in time poly(m). On the positive side, we propose to use the
construction of matching vector families from [14], which builds on the construc-
tions of [16,21], to obtain candidates for instances of the abstract encryption
scheme over constant-size rings that achieve perfectly correct decryption but
resist poly(m)-time attacks.

It should be noted that Dwork et al. [15] provide a general method for elim-
inating decryption errors in public key encryption schemes. However, applying
their method has a high toll on efficiency and it only guarantees perfectly correct
decryption with high probability over the randomness of the key generation.

2.4 Open Problems

We end this section by highlighting several open problems for future research.

The approximate duality conjecture and its implications to public key encryption.
This work presents a new connection between additive combinatorics and pub-
lic key encryption by showing non-trivial attacks on any binary instance of an
abstract public key encryption scheme that captures the schemes of Alekhnovich
[3], Regev [40] and Gentry, Peikert and Vaikuntanathan [18], assuming the
approximate duality conjecture from additive combinatorics. On the positive
side, if the approximate duality conjecture is false then counter examples to this
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conjecture may lead to candidate binary instances of the abstract encryption
scheme with improved security guarantees. This motivates further study of the
connection between public key encryption from noisy codewords and additive
combinatorics in general and the approximate duality conjecture in particular.

Extending to non-binary fields. Our unconditional results could be possibly
extended to show an attack in time qO(n/ log n) on any instance of the gener-
alized encryption schemes over an arbitrary finite field Fq, given an algorithm
for agnostic learning of linear functions over Fq. However, we are not aware of
such an algorithm over non-binary fields and it seems that the results of [24] do
not immediately apply in this setting. Our conditional results, on the other hand,
do generalize to show an attack in time qO(

√
n) on any instance of the generalized

encryption schemes over an arbitrary constant-size field Fq assuming a variant
of the approximate duality conjecture over such fields (see e.g. Conjecture 1.7.2
in [27]).

Perfectly correct decryption. We have shown that, over the binary field, our gen-
eral framework cannot be instantiated to yield an encryption scheme with perfect
decryption. We proposed a plausible approach for obtaining perfect decryption
over constant-size rings by using matching vectors. The security of this construc-
tion, as well as the possibility of obtaining perfect security over constant-size
fields, remain to be further studied.

2.5 Paper Organization

Some of the material is omitted due to space limitations but can be found in the
full version of this paper [6]. In Sect. 3 we fix some notation and terminology,
and in Sect. 4 we formally define the abstract encryption scheme we study. In
Sect. 5 we present our unconditional attack, running in time 2O(n/ log n), on the
abstract encryption scheme over the binary field and consequences of this attack
to learning. In Sect. 6 we present combinatorial properties of the distributions
μsk, μ0 and μ1 that imply an attack on the abstract encryption scheme over
the binary field. In Sect. 7 we show that these latter properties are satisfied
assuming the approximate duality conjecture which implies an attack on the
abstract encryption scheme over the binary field running in time 2O(

√
m).

3 Preliminaries

We start with fixing some notation. For a prime power q let Fq denote the finite
field with q elements. All operations below are performed over Fq and all vectors
are assumed to be column vectors unless otherwise stated. For integers m ≥ n let
M∗

m×n(q) denote the set of all m × n full rank matrices over Fq. For an integer
m let Pm : Fm+1

q → F
m
q denote the projection on the first m coordinates. Let

0m, 1m denote the all-zeros and all-ones vectors of length m, respectively. For a
pair of vectors u, v let u ◦ v denote their concatenation.
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Let μ be a distribution over F
m
q . For an element a ∈ F

m
q let Prμ(a) =

Pre∼μ[e = a]. The support supp(μ) of μ is the set containing all elements a ∈ F
m
q

for which Prμ(a) > 0. For a subset A ⊆ F
m
q we let Prμ(A) = Pre∼μ[e ∈ A] and

we denote by μ|A the distribution μ conditioned on the event that e ∈ A. For a
pair of distributions μ, μ′ over Fm

q we denote by 〈μ, μ′〉 the distribution of 〈e, e′〉
where e ∼ μ and e′ ∼ μ′ independently. Finally, we write that a ∈R A if a is
chosen uniformly at random from the set A.

3.1 Public Key Encryption

A public key encryption scheme Π consists of three randomized polynomial time
algorithms: the key generation algorithm Gen, the encryption algorithm Enc and
the decryption algorithm Dec, which satisfy:

1. The key generation algorithm Gen takes as input the security parameter 1n

and outputs a pair of keys (sk,pk) where sk is the private key and pk is the
public key. We write this as (sk,pk) ← Gen(1n).

2. The encryption algorithm Enc takes as input a public key pk and a message
bit σ ∈ {0, 1} and outputs a ciphertext c. We write this as c ← Encpk(σ).

3. The decryption algorithm Dec takes as input a private key sk and a cipher-
text c and outputs a bit σ′ ∈ {0, 1}. We assume without loss of generality
that Dec is deterministic and write this as σ′ := Decsk(c).

The advantage of the decryption algorithm is given by

AdvDec(n) = Pr[Decsk(Encpk(1)) = 1] − Pr[Decsk(Encpk(0)) = 1], (2)

where the probabilities in (2) are taken over the internal coin tosses of the algo-
rithms Gen and Enc. We say that the decryption algorithm is perfectly correct
if AdvDec(n) = 1.

A typical choice of parameters in public key encryption schemes is that
AdvDec(n) = 1 − η(n) for η(n) which is a negligible function in n. However, in
the case where AdvDec(n) is a fixed constant one can achieve (1−η(n))-advantage
in the decryption process by repeating the key generation and encryption processes
polylog(n) times. In thisworkwe are interested in negative results and our uncondi-
tional results hold even when AdvDec(n) is negligible in n. Our conditional results,
on the other hand, hold only if a single encryption (without repetitions) achieves
advantage AdvDec(n) = 1 − ε where ε > 0 is a sufficiently small constant.

A (uniform) attack A on a public key encryption scheme Π is a randomized
algorithm that takes as input a public key pk and a ciphertext c and outputs a
bit σ′ ∈ {0, 1} and we write this as σ′ ← A(pk, c). The advantage of the attack
A is given by

AdvA(n) = Pr[A(pk,Encpk(1)) = 1] − Pr[A(pk,Encpk(0)) = 1], (3)

where the probabilities in (3) are taken over the internal coin tosses of the
algorithms Gen and Enc as well as the attack A. A non-uniform attack A is
defined similarly to the above except that it is modeled as a non-uniform Boolean
circuit and we say that it has running time t(n) if the associated circuit family
has size t(n).
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4 Unified Encryption Scheme

In what follows we present the formal definition of the abstract encryption
scheme ΠAlek, ΠReg and ΠGPV and show their equivalence.

General Parameters: Integers m > n, field Fq (q may depend on n), efficiently
samplable distribution μsk over F

m
q , a pair of efficiently samplable distributions

μ0, μ1 over F
m+1
q , efficiently computable decryption function g : Fq → {0, 1}.

ΠAlek scheme:

– Private key: Choose a random vector e ∈ F
m
q according to the distribution

μsk. The private key is e.
– Public key: Choose a uniform random matrix G ∈ M∗

m×n(q) and a uniform
random vector w ∈ Image(G) and let b = w + e. The public key is G̃ =(

G b
0T

n −1

)

.

– Encryption: In order to encrypt a bit σ ∈ {0, 1} choose a random vector
ẽ ∈ F

m+1
q according to the distribution μσ and a uniform random vector

w̃ ∈ ker(G̃T ). The encryption of σ is w̃ + ẽ.
– Decryption: The decryption of a vector c ∈ F

m+1
q is g(〈e ◦ (−1), c〉).

ΠReg scheme:

– Private key: Choose a random vector e ∈ F
m
q according to the distribution

μsk. The private key is e.
– Public key: Choose a uniform random matrix G ∈ M∗

m×n(q) and a uniform

random w ∈ Image(G) and let b = w + e. The public key is G̃ =
(

G b
0T

n −1

)

.

– Encryption: In order to encrypt a bit σ ∈ {0, 1} choose a random vector
ẽ ∈ F

m+1
q according to the distribution μσ. The encryption of σ is G̃T · ẽ.

– Decryption: The decryption of a vector c ∈ F
n+1
q is g(−〈x ◦ (−1), c〉) where

x ∈ F
n
q is such that b = Gx + e.

ΠGPV scheme:

– Private key: Choose a random vector e ∈ F
m
q according to the distribution

μsk. The private key is e.
– Public key: Choose a uniform random matrix H ∈ M∗

m×(m−n)(q) and let

u = HT · e. The public key is H̃ =
(

H
uT

)

.

– Encryption: In order to encrypt a bit σ ∈ {0, 1} choose a random vector
ẽ ∈ F

m+1
q according to the distribution μσ and a uniform random vector

w̃ ∈ Image(H̃). The encryption of σ is w̃ + ẽ.
– Decryption: The decryption of a vector c ∈ F

m+1
q is g(〈e ◦ (−1), c〉).



On Public Key Encryption from Noisy Codewords 433

A straightforward computation gives the following.

Claim 1 (Advantage of Decryption). For every Π ∈ {ΠAlek,ΠReg,ΠGPV},

AdvDec(n) = Pr[g(〈μsk ◦ (−1), μ1〉) = 1] − Pr[g(〈μsk ◦ (−1), μ0〉) = 1].

The following claim shows that for an identical setting of parameters all the
abstract encryption schemes defined above are equivalent in terms of security.
For an encryption scheme Π and a bit σ ∈ {0, 1} let (pkΠ ,EncΠ

pk(σ)) denote the
joint distribution of the public key and the encryption of the bit σ using this
public key in Π.

Claim 2 (Equivalence of Abstract Encryption Schemes). For every pair
of encryption schemes Π,Π ′ ∈ {ΠAlek,ΠReg,ΠGPV} there exists a random-
ized mapping ϕΠ→Π′ , computable in time poly(m, q), such that for every bit
σ ∈ {0, 1} the distributions ϕΠ→Π′(pkΠ ,EncΠ

pk(σ)) and (pkΠ′
,EncΠ′

pk (σ)) are
identical.

5 Unconditional Attack

In this section we show an unconditional simple attack running in time 2O(n/ log n)

on any instance of the abstract encryption scheme over the binary field. The
attack is based on the following algorithm for agnostic learning of parities (The
theorem below is given as Theorem 2 in [24] for the special case in which a =
log n/1000, b = n/a, ε = 2−n0.99

and the success probability is 0.99. The general
parameters can be deduced from the proof of this theorem.)

Theorem 1 (Agnostic Learning of Parities, [24]). For any integers a, b
such that ab ≥ n and for any ε > 0 there exists a randomized algorithm run-
ning in time poly

(
ε−2a

, 2b
)
which satisfies the following guarantees for every

distribution D over (x, y) ∈ F
n
2 × F2. With probability at least 1 − exp(−n),

given poly
(
ε−2a

, 2b
)
independent random samples from D, the algorithm outputs

a circuit computing h : Fn
2 → F2 such that

Pr(x,y)∼D[h(x) 
= y] ≤ min
s∈F

n
2

Pr(x,y)∼D[〈x, s〉 
= y] + ε.

Our main result in this section is the following.

Theorem 2. Let Π ∈ {ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥ ε.
Then for any integers a, b such that ab ≥ n and for any γ > 0 there exists a (uni-
form) attack Aagnost Π running in time poly

(
γ−2a

, 2b,m
)
with AdvAagnost(n) ≥

ε − γ − exp(−n).

By setting a = log n/1000, b = n/a and γ = 2−n0.99
in the above theorem we

obtain the following corollary.

Corollary 1. Let Π ∈ {ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥
ε. Then there exists a (uniform) attack Aagnost on Π running in time
poly(2n/ log n,m) with AdvAagnost(n) ≥ ε − 2−n0.99 − exp(−n),
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Proof (Proof of Theorem 2). By Claim 2 it suffices to prove the theorem for Π =
ΠReg and without loss of generality we may assume that the decryption function
g is the identity function over F2. Let D be the distribution over (x, y) ∈ F

n
2 ×F2

where x = GT ·Pm(e′) and y = 〈b◦(−1), e′〉−ξ for ξ ∈R {0, 1} and e′ ∼ μξ. Note
that D can be generated efficiently using the public key G̃. The attack Aagnost

runs the algorithm guaranteed by Theorem1 with the parameters a, b and γ/2
on the distribution D and outputs cn+1 − h(Pn(c)). By Theorem 1 we clearly
have that the attack runs in time poly

(
γ−2a

, 2b,m
)
. It remains to analyze the

advantage of the attack in guessing the message bit σ.
For a vector y ∈ F

m
2 let

ε(y) := Pr[〈y ◦ (−1), μ1〉 = 1] − Pr[〈y ◦ (−1), μ0〉 = 1],

and note that by Claim 1 we have that AdvDec(n) = E[ε(μsk)]. Let s ∈ F
n
2 be

such that w = Gs. Then we have that

Pr(x,y)∼D[〈x, s〉 �= y]

=
1

2
· Pr
[〈GT · Pm(μ1), s〉 = 〈b ◦ (−1), μ1〉

]

+
1

2
· Pr
[〈GT · Pm(μ0), s〉 = 1 + 〈b ◦ (−1), μ0〉

]

=
1

2
· Pr
[〈Pm(μ1), Gs〉 = 〈b ◦ (−1), μ1〉

]
+

1

2
· Pr
[〈Pm(μ0), Gs〉 = 1 + 〈b ◦ (−1), μ0〉

]

=
1

2
· Pr[〈μ1, (b − w) ◦ (−1)〉 = 0] +

1

2
· Pr[〈μ0, (b − w) ◦ (−1)〉 = 1]

=
1

2
· Pr[〈μ1, e ◦ (−1)〉 = 0] +

1

2
· Pr[〈μ0, e ◦ (−1)〉 = 1]

=
1

2
− 1

2
·
(

Pr[〈μ1, e ◦ (−1)〉 = 1] − Pr[〈μ0, e ◦ (−1)〉 = 1]

)

=
1 − ε(e)

2
.

Consequently, with probability at least 1 − exp(−n), the circuit h satisfies

Pr(x,y)∼D[h(x) 
= y] ≤ 1 − ε(e)
2

+
γ

2
=

1 − (ε(e) − γ)
2

.

Suppose that c is an encryption of a bit σ ∈ {0, 1}. Conditioned on the above,
we have that

Pr[cn+1 − h(Pn(c)) = 1 | σ = 1] − Pr[cn+1 − h(Pn(c)) = 1 | σ = 0]
= Pr

[〈b ◦ (−1), μ1〉 − h(GT · Pm(μ1)) = 1
]

−Pr
[〈b ◦ (−1), μ0〉 − h(GT · Pm(μ0)) = 1

]

= 1 − Pr
[
h(GT · Pm(μ1)) 
= 1 + 〈b ◦ (−1), μ1〉

]

−Pr
[
h(GT · Pm(μ0)) 
= 〈b ◦ (−1), μ0〉

]

= 1 − 2Pr(x,y)∼D[h(x) 
= y]
≥ ε(e) − γ.



On Public Key Encryption from Noisy Codewords 435

Averaging over all e ∼ μsk we obtain that the advantage of the attack is at least

E[ε(μsk)] − γ − exp(−n) = AdvDec(n) − γ − exp(−n) ≥ ε − γ − exp(−n).

6 Attacks Based on Combinatorial Properties of
µsk, µ0, µ1

In Sects. 6.1 and 6.2 we present combinatorial properties of the distribution μsk

and the pair of distributions μ0, μ1, respectively, that imply an attack on the
abstract encryption scheme over the binary field. In Sect. 7 we shall show that
assuming the approximate duality conjecture at least one of the distributions
μsk, μ0 or μ1 satisfies these combinatorial properties. This will imply in turn
an attack on the abstract encryption scheme over the binary field assuming the
approximate duality conjecture.

The main combinatorial property we shall utilize for the attacks is sparsity,
defined as follows.

Definition 1 ((n, k, ρ)-Sparse Distribution). Suppose that μ is a distribu-
tion over F

m
2 for m ≥ n. We say that μ is (n, k, ρ)-sparse if there exist k subsets

A1, . . . , Ak ⊆ F
m
2 and k full rank linear transformations L1, . . . , Lk : Fm

2 → F
n
2

such that Prμ

( ⋃k
i=1 Ai

) ≥ ρ and Li(Ai) is constant for every i ∈ [k].

Note that A1, . . . , Ak and L1, . . . , Lk in the definition above are not required to
be distinct. At a high level, asumming that one of the noise distributions μsk,
μ0 or μ1 is sparse one can ’guess’ the noise vector used in the key generation
process (in the case in which μsk is sparse) or in the encryption process (in the
case in which μ0 or μ1 are sparse) by enumerating over all i ∈ [k] and solving a
corresponding system of linear equations.

6.1 Attack Based on Combinatorial Properties of µsk

Lemma 1 (Attack Based on Combinatorial Properties of μsk). Let Π ∈
{ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥ 1 − ε and suppose that the
distribution μsk is (n, k, ρ)-sparse. Then there exists a non-uniform attack Ask

on Π running in time (k/ε) · poly(m) with AdvAsk(n) ≥ (ρ − 4
√

ε)/10.

Proof. By Claim 2 it suffices to prove the lemma for Π = ΠAlek and without
loss of generality we may assume that g is the identity function over F2. Since
μsk is (n, k, ρ)-sparse there exist k subsets A1, . . . , Ak ⊆ F

m
2 and k full rank

linear transformations L1, . . . , Lk : Fm
2 → F

n
2 such that Prμsk

( ⋃k
i=1 Ai

) ≥ ρ and
Li(Ai) is constant for every i ∈ [k].

Our main observation is that if e′ satisfies that b = w′ + e′ for some w′ ∈
Image(G) and in addition

Pr[〈e′ ◦ (−1), μ1〉 = 1] − Pr[〈e′ ◦ (−1), μ0〉 = 1] ≥ 1 − ε′ (4)
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then decrypting the ciphertext using e′ as the private key achieves advantage
1 − ε′. We search for e′ that satisfies the above by enumerating over all i ∈ [k]
and solving a corresponding system of linear equations and we test whether e′

satisfies (4) via sampling.
Fix y ∈ F

m
2 . By the Hoeffding bound for sampling if we draw � = m/(

√
ε/2)2

independent random samples e
(0)
1 , . . . , e

(0)
� ∼ μ0 and � independent random sam-

ples e
(1)
1 , . . . , e

(1)
� ∼ μ1 then

∣
∣
∣
∣

(

Pr[〈y ◦ (−1), μ1〉 = 1] − Pr[〈y ◦ (−1), μ0〉 = 1]
)

(5)

−
(

Pr
j∈[�]

[〈y ◦ (−1), e(1)j 〉 = 1] − Pr
j∈[�]

[〈y ◦ (−1), e(0)j 〉 = 1]
)∣

∣
∣
∣ ≤ √

ε

with probability at least 1−4·2−2m. By union bound this implies in turn that (5)
holds for every y ∈ F

m
2 with probability at least 1 − 4 · 2−m. In particular, there

exist � vectors e
(0)
1 , . . . , e

(0)
� ∈ supp(μ0) and � vectors e

(1)
1 , . . . , e

(1)
� ∈ supp(μ1)

for which (5) holds for every y ∈ F
m
2 .

Ask

- For every i = 1, 2, . . . , k:
- Solve the system of linear equations

Lib = LiGx′ + Li(Ai)

in the indeterminate x′.
- If there is no solution continue to the next i.
- Else let x′ be an arbitrary solution and let e′ := b − Gx′.
- If e′ satisfies that

Pr
j∈[�]

[〈e′ ◦ (−1), e(1)j 〉 = 1] − Pr
j∈[�]

[〈e′ ◦ (−1), e(0)j 〉 = 1] ≥ 1 − 2
√

ε, (6)

output 〈e′ ◦ (−1), c〉, else continue to the next i.
- Else if no e′ satisfies (6), output a random bit.

Inspection reveals that the attack above can be implemented using a non-
uniform circuit of size (k/ε) · poly(m). Next we analyze the advantage of the
attack in guessing the message bit σ. We will show that with probability at
least (ρ − √

ε)/10 the attack finds e′ which satisfies (6) and that in this case the
advantage of guessing the correct message bit is at least 1−3

√
ε. This will imply

in turn that AdvAsk(n) ≥ (ρ − 4
√

ε)/10.
We start by showing a lower bound on the probability that the attack finds e′

which satisfies (6). Since AdvDec(n) ≥ 1−ε by Claim 1, together with a standard
probabilistic argument, we have that e satisfies

Pr[〈e ◦ (−1), μ1〉 = 1] − Pr[〈e ◦ (−1), μ0〉 = 1] ≥ 1 − √
ε
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with probability at least 1 − √
ε. By (5) this implies in turn that e satisfies (6)

with probability at least 1 − √
ε. Furthermore, since μsk is (n, k, ρ)-sparse with

probability at least ρ we have that e ∈ ⋃k
i=1 Ai. So with probability at least

ρ − √
ε we have that e satisfies (6) and in addition e ∈ Ai for some i ∈ [k].

Finally, the matrix LiG is non-singular with probability at least 1/10 (say),
independently of the above.

Conditioned on all the above, in the i-th iteration we have that

e′ = b − Gx′ = b − G · (LiG)−1(Lib − Li(Ai)) = b − G · (LiG)−1 · (Lib − Lie) = e.

Consequently we have that the attack finds e′ which satisfies (6) with probability
at least (ρ − √

ε)/10.
Next we show that if the attack finds e′ which satisfies (6) then the advantage

of guessing the correct message bit using e′ is high. Since e′ = b − Gx′ we have
that

〈e′ ◦ (−1), c〉 = 〈(b − Gx′) ◦ (−1), w̃〉 + 〈(b − Gx′) ◦ (−1), ẽ〉
= 〈b ◦ (−1), w̃〉 − 〈x′, GT · Pm(w̃)〉 + 〈(b − Gx′) ◦ (−1), ẽ〉
= 0 − 0 + 〈e′ ◦ (−1), ẽ〉
= 〈e′ ◦ (−1), ẽ〉.

Furthermore, since e′ satisfies (6), by (5) we have that

Pr[〈e′ ◦ (−1), μ1〉 = 1] − Pr[〈e′ ◦ (−1), μ0〉 = 1] ≥ 1 − 3
√

ε,

so the advantage of the attack in this case is 1 − 3
√

ε.

6.2 Attack Based on Combinatorial Properties of µ0, µ1

Lemma 2 (Attack Based on Combinatorial Properties of μ0, μ1). Let
Π ∈ {ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥ 1−ε and suppose that
there exists ξ ∈ {0, 1} such that the distribution μξ is (m+1−n+r, k, ρ)-sparse.
Then there exists a non-uniform attack Aξ on Π running in time k · poly(m)
with AdvAξ(n) ≥ ρ/2 − ε − 2k2−r.

Proof. By Claim 2 it suffices to prove the lemma for Π = ΠGPV and by symmetry
we may further assume that ξ = 0. Without loss of generality we may assume
that g is the identity function over F2. Since μ0 is (m + 1 − n + r, k, ρ)-sparse
there exist k subsets A1, . . . , Ak ⊆ F

m+1
2 and k full rank linear transformations

L1, . . . , Lk : F
m+1
2 → F

m+1−n+r
2 such that Prμ0

( ⋃k
i=1 Ai

) ≥ ρ and Li(Ai) is
constant for every i ∈ [k]. For every i ∈ [k] let Vi =

{
v ∈ F

m+1
2 | Li(v) = Li(Ai)

}

and let S =
⋃k

i=1 Vi . Since AdvDec(n) ≥ 1 − ε, by averaging there exists e(sk) ∈
supp(μsk) such that

Pr[〈e(sk) ◦ (−1), μ1〉 = 1] − Pr[〈e(sk) ◦ (−1), μ0〉 = 1] ≥ 1 − ε.
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Our main observation is that since S is not too large, with high probability
over the choice of the matrix H̃, there is no e′ ∈ S \ {ẽ} such that c = H̃x′ + e′

for some x′ ∈ F
m−n
2 . This implies in turn that by enumerating over all i ∈ [k]

and solving a corresponding system of linear equations, with high probability
one can verify whether ẽ ∈ S and if this is the case one can also find ẽ. It thus
suffices to be able to distinguish between ẽ ∼ μ0 and ẽ ∼ μ1, conditioned on the
event that ẽ ∈ S. Assuming that ε is sufficiently small compared to ρ, this can
be done by computing the inner product 〈e(sk) ◦ (−1), ẽ〉.

A0

- For every i = 1, 2, . . . , k:
- Solve the system of linear equations

Lic = LiH̃x′ + Li(Ai) (7)

in the indeterminate x′.
- If there is no solution continue to the next i.
- Else let x′ be an arbitrary solution and let e′ := c − H̃x′.
- If e′ satisfies that 〈e(sk)◦(−1), e′〉 = 0 output 0, else continue

to the next i.
- Else if no e′ satisfies the above, output a random bit.

Inspection reveals that the attack above can be implemented using a non-
uniform circuit of size k · poly(m). Next we analyze the advantage of the attack
in guessing the message bit σ.

We say that H̃ is S-good for ẽ if there is no z ∈ S \ {ẽ} such that z − ẽ ∈
Image(H̃). We will show that for every ẽ the probability that H̃ is S-good for ẽ
is at least 1 − k · 2−r. Consequently, for every ẽ there exists a collection Hẽ of
S-good matrices for ẽ such that Pr[H̃ ∈ Hẽ] = 1−k ·2−r. We will then show that
conditioned on the event that H̃ ∈ Hẽ the attack outputs 0 with probability at
least (1+ρ− ε)/2 when c is an encryption of 0 and it outputs 1 with probability
at least (1 − ε)/2 when c is an encryption of 1. This will imply in turn that the
advantage of the attack is at least (1−k2−r)(ρ/2− ε)−k2−r ≥ ρ/2− ε−2k2−r.

We start by showing that for every ẽ the probability that H̃ is S-good for ẽ
is at least 1 − k · 2−r. For this note that for every i ∈ [k] the subspace Vi has
co-dimension m+1−n+r and hence |Vi| = 2n−r and consequently |S| ≤ k2n−r.
Thus by union bound it suffices to show that for every z ∈ S \ {ẽ} it holds that
z − ẽ ∈ Image(H̃) with probability at most 2−n. To see this fix z ∈ S \ {ẽ} and

suppose that z − ẽ ∈ Image(H̃). Since H̃ =
(

H
uT

)

this implies in turn that

Pm(z − ẽ) ∈ Image(H). Furthermore, since z − ẽ 
= 0 and H is full rank we also
have that Pm(z − ẽ) 
= 0. So we obtained that Pm(z − ẽ) is a non-zero point
contained in Image(H), a uniform random (m − n)-dimensional space, which
happens with probability at most 2−n.

Next we show a lower bound on the probability that the attack outputs 0
when c is an encryption of 0, conditioned on the event that H̃ ∈ Hẽ. Since the
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event H̃ ∈ Hẽ is independent of the choice of ẽ, by union bound we have that the
events ẽ ∈ ⋃k

i=1 Ai and 〈e(sk) ◦ (−1), ẽ〉 = 0 hold simultaneously with probability
at least ρ− ε. We will show that if these two events hold then the attack outputs
0. This will imply in turn that in the case in which c is an encryption of 0,
conditioned on the event that H̃ ∈ Hẽ, the attack outputs 0 with probability at
least ρ − ε and it outputs a random bit otherwise. So it outputs 0 in this case
with probability at least (1 + ρ − ε)/2.

Suppose that ẽ ∈ ⋃k
i=1 Ai and 〈e(sk) ◦ (−1), ẽ〉 = 0. Then in this case we have

that
Lic = Liw̃ + Liẽ = LiH̃x̃ + Li(Ai),

where i ∈ [k] is such that ẽ ∈ Ai and x̃ is such that w̃ = H̃x̃. Consequently, the
attack will find a solution for (7). Furthermore, we claim that if the attack finds
a solution x′ to (7) for some j ∈ [k] then e′ = c − H̃x

′
= ẽ. To see this note that

Lje
′ = Ljc − LjH̃x′ = Lj(Aj) and therefore e′ ∈ S. Furthermore, we have that

e′ − ẽ = (c − H̃x′) − (c − H̃x̃) = H̃(x̃ − x̃′) and so e′ − ẽ ∈ Image(H̃). But due
to our assumption that H̃ is S-good for ẽ this implies in turn that ẽ = e′. So we
have that ẽ = e′ and due to our assumption that 〈e(sk) ◦ (−1), ẽ〉 = 0 this implies
in turn that the attack will output 0.

Finally, we show a lower bound on the probability that the attack outputs 1
when c is an encryption of 1, conditioned on the event that H̃ ∈ Hẽ. Since the
event H̃ ∈ Hẽ is independent of the choice of ẽ, we have that 〈e(sk) ◦ (−1), ẽ〉 = 1
with probability at least 1 − ε. Suppose that this latter event holds. If there is
no solution for (7) for every j ∈ [k] the attack outputs a random bit. Otherwise
if the attack finds a solution x′ for (7) for some j ∈ [k] then similarly to the
above the assumption that H̃ ∈ Hẽ implies that e′ = c − H̃x

′
= ẽ. Due to our

assumption that 〈e(sk) ◦ (−1), ẽ〉 = 1 this implies in turn that the attack will
output a random bit. Concluding, we obtained that in the case in which c is an
encryption of 1, conditioned on the event that H̃ ∈ Hẽ, the attack outputs 1
with probability at least (1 − ε)/2.

7 Attacks Based on the Approximate Duality Conjecture

Recall the definition of the duality measure given in (1). All results presented in
this section assume that the following conjecture holds.

Conjecture 1 (Approximate duality conjecture [8]). For every constant ε > 0
there exists a constant c which depends only on ε such that the following holds.
If A,B ⊆ F

m
2 have D(A,B) ≥ ε then there exist subsets A′ ⊆ A and B′ ⊆ B

such that |A′| ≥ 2−c
√

m|A|, |B′| ≥ 2−c
√

m|B| and D(A′, B′) = 1.

Our main result in this section is the following.

Theorem 3. Assuming the approximate duality conjecture (Conjecture 1)
there exist constants ε, γ > 0 such that the following holds. Let Π ∈
{ΠAlek,ΠReg,ΠGPV} be with q = 2 and AdvDec(n) ≥ 1 − ε. Then there exists a
non-uniform attack A on Π running in time 2O(

√
m) with AdvA(n) ≥ γ.
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For the proof of the above theorem we first prove two consequences of Conjec-
ture 1. The first consequence is a generalized form of this conjecture that applies
to arbitrary distributions, not necessarily uniform over subsets A,B. For a pair
of distributions μ1, μ2 over F

m
2 we define their duality measure as

D(μ1, μ2) = E

[
(−1)〈μ1,μ2〉

]
.

Note that in the special case where μ1, μ2 are uniform distributions over subsets
A,B ⊆ F

m
2 respectively then D(μ1, μ2) = D(A,B).

Lemma 3. Assuming Conjecture 1, for every constant ε > 0 there exists a con-
stant c which depends only on ε such that the following holds. If a pair of distri-
butions μ1, μ2 over F

m
2 have D(μ1, μ2) ≥ ε then there exist subsets A′, B′ ⊆ F

m
2

such that Prμ1(A
′) ≥ 2−c

√
m, Prμ2(B

′) ≥ 2−c
√

m and D(A′, B′) = 1.

The proof of the above lemma is given in Sect. 7.1. Note that the probability of
being contained in the sets A′ and B′ in the above lemma is 2−c

√
m and so using

this lemma one can only obtain an attack on the abstract encryption scheme
in the case in which the decryption error of a single encryption is 2−Ω(

√
m).

However, we are interested in an attack that works in the case in which the
decryption error of a single encryption is a sufficiently small constant. For this
we apply Lemma 3 iteratively to obtain t ≈ 2c

√
m pairs of subsets Ai, Bi such

that D(Ai, Bi) = 1 for all 1 ≤ i ≤ t and such that the probability of being
contained in the union of Ω(t) of these subsets is Ω(ε).

Lemma 4. Assuming Conjecture 1, for every constant ε > 0 there exists a con-
stant c which depends only on ε such that the following holds for every integer
t ≤ 2c

√
mε/4. If a pair of distributions μ1, μ2 over F

m
2 have D(μ1, μ2) ≥ ε,

then there exist subsets A1, . . . , At ⊆ F
m
2 and B1, . . . , Bt ⊆ F

m
2 such that

D(Ai, Bi) = 1 for all i ∈ [t], and in addition for every I ⊆ [t] it holds that
Prμ1(

⋃
i∈I Ai) ≥ |I| · 2−c

√
m/4 and Prμ2(

⋃
i∈I Bi) ≥ |I| · 2−c

√
m/4.

Note that the sets A1, . . . , At and B1, . . . , Bt in the above lemma may have non-
empty intersections and in particular are not required to be distinct. The proof
of the above lemma is omitted due to space limitations.

In what follows we present the proof of our main Theorem3 based on
Lemma 4.

Proof (Proof of Theorem 3). We will show that assuming Conjecture 1 we have
that the conditions of either Lemmas 1 or 2 hold. Let c be the constant guaran-
teed by Lemma 4 for the constant 1 − 2ε. We shall show that the conclusion of
the theorem holds for

γ = min
{
(1 − 4

√
ε)/10, ((1 − 2ε)/32 − 4

√
ε)/10, (1 − 2ε)/64 − ε − 2 · 2−c

√
m

}
.

If n ≤ 2c
√

m we clearly have that the distribution μsk is (n, 22c
√

m, 1)-sparse
and consequently Lemma 1 implies an attack in time 2O(

√
m) with advantage

(1 − 4
√

ε)/10. Hence from now on we shall assume that n > 2c
√

m.
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Let ξ ∈ {0, 1} be such that the decryption function g satisfies g(0) = ξ. Our
main observation is that the assumption that AdvDec(n) ≥ 1 − ε implies that
Pr[〈μsk◦(−1), μξ〉 = 0] ≥ 1−ε and consequently D(μsk◦(−1), μξ) ≥ 1−2ε. Thus
we may apply Lemma 4 to the distributions μsk ◦ (−1) and μξ and conclude the
existence of t = 2c

√
m(1 − 2ε)/4 subsets A1, . . . , At ⊆ F

m+1
2 and B1, . . . , Bt ⊆

F
m+1
2 such that D(Ai, Bi) = 1 for all i ∈ [t], and in addition for every I ⊆ [t] it

holds that Prμsk◦(−1)(
⋃

i∈I Ai) ≥ |I|·2−c
√

m/4 and Prμξ
(
⋃

i∈I Bi) ≥ |I|·2−c
√

m/4.
Fix i ∈ [t]. The fact that D(Ai, Bi) = 1 implies in turn that dim(span (Ai))+

dim(span (Bi)) ≤ m + 2 and in particular we have that either dim(span (Ai)) ≤
m + 2 − n + 2c

√
m or dim(span (Bi)) ≤ n − 2c

√
m. Let I ⊆ [t] be the set of

all indices i for which dim(span (Ai)) ≤ m + 2 − n + 2c
√

m. We shall show that
if |I| ≥ t/2 the conditions of Lemma 1 hold while if |I| < t/2 the conditions of
Lemma 2 hold.

We start with the case in which |I| ≥ t/2. Fix i ∈ I and let v1, . . . , vm+1

be a basis for F
m+1
2 such that the subspace spanned by v1, . . . , vm+2−n+2c

√
m

contains span (Ai). Let Li : F
m+1
2 → F

n
2 be the linear transformation which

satisfies Li(
∑m+1

j=1 αjvj) = (αm−n+2, . . . , αm+1) for every α1, . . . , αm+1 ∈ F2.
Then Li(Ai) is supported only on the first 2c

√
m + 1 bits and consequently

|Li(Ai)| ≤ 22c
√

m+1. Furthermore, we have that |I| ≤ t = 2c
√

m(1 − 2ε)/4
and Prμsk◦(−1)(

⋃
i∈I Ai) ≥ (t/2) · 2−c

√
m/4 = (1 − 2ε)/32. This implies in turn

that the distribution μsk ◦ (−1), and consequently also μsk, are
(
n, 23c

√
m+1(1 −

2ε)/4, (1 − 2ε)/32)-sparse. Lemma 1 implies in turn that the encryption scheme
can be attacked in time 2O(

√
m) with advantage ((1 − 2ε)/32 − 4

√
ε)/10.

Next we deal with the case in which |I| < t/2. Similarly to the previous
case for every i /∈ I there exists a full rank linear transformation Li : Fm+1

2 →
F

m+1−n+2c
√

m
2 such that Li(Bi) ≡ 0 and Prμξ

(
⋃

i/∈I Bi) ≥ (1 − 2ε)/32. This
implies in turn that μξ is

(
m + 1 − n + 2c

√
m, 2c

√
m(1 − 2ε)/4, (1 − 2ε)/32)-

sparse. So by Lemma 2 we have that the encryption scheme can be attacked in
time 2O(

√
m) with advantage (1 − 2ε)/64 − ε − 2 · 2−c

√
m.

7.1 From Uniform to General Distributions – Proof of Lemma 3

We start with the following lemma which says that every distribution can be
approximated by a distribution which is a convex combination of not too many
uniform distributions.

Lemma 5. Let μ be a distribution with support S, |S| = N , and let t =
log(2N/ε)/ log(1 + ε/2). Then there exist a partition of S into at most t + 2
subsets S0, . . . , St+1 and a distribution χ which is a convex combination of uni-
form distributions on S0, . . . , St such that μ is ε-close to χ.

Proof. Choose an arbitrary element β ∈ S. Let

S0 =
{

α ∈ S \ {β}
∣
∣
∣
∣Prμ(α) ≤ ε

2N

}

,
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for all 1 ≤ i ≤ t let

Si =
{

α ∈ S \ {β}
∣
∣
∣
∣

ε

2N
· (1 + ε/2)i−1 < Prμ(α) ≤ ε

2N
· (1 + ε/2)i

}

and let St+1 = {β}.
Let χ be the distribution which satisfies

Prχ(α) =

⎧
⎪⎨

⎪⎩

0, α ∈ S0

ε
2N · (1 + ε/2)i−1, α ∈ Si for 1 ≤ i ≤ t

1 − ∑
γ∈S\{β} Prχ(γ), α = β.

We clearly have that S0, . . . , St+1 is a partition of S and that χ is a convex
combination of uniform distributions on S0, . . . , St+1.

It remains to show that μ is ε-close to the distribution χ. For this we compute

|μ − χ| =
1
2

∑

α∈S

|Prμ(α) − Prχ(α)| =
∑

α∈S\{β}
(Prμ(α) − Prχ(α))

≤
∑

α∈S0

ε

2N
+

t∑

i=1

∑

α∈Si

ε

2
Prμ(α) ≤ ε

2N
· N +

ε

2

∑

α∈S

Prμ(α) = ε.

We shall also use the definition of the spectrum given below.

Definition 2 (Spectrum). For a distribution μ over F
m
2 and ε ∈ [0, 1] let the

ε-spectrum of μ be the set

Specε(μ) =
{
x ∈ F

m
2

∣
∣
∣
∣E

[
(−1)〈x,μ〉] ≥ ε

}
. (8)

Note that if supp(μ1) ⊆ Specε(μ2) then D(μ1, μ2) ≥ ε. Conversely, a standard
probabilistic argument shows that if D(μ1, μ2) ≥ ε then Prμ1(Specε/2(μ2)) ≥ ε/2.

Proof (Proof of Lemma 3). Let c′ be the constant guaranteed by Conjecture 1
for the constant ε/4.

Let μ′
1 = μ1|Specε/2(μ2) and note that the fact that D(μ1, μ2) ≥ ε implies

that Prμ1(Specε/2(μ2)) ≥ ε/2. By Lemma 5 there exists a partition of supp(μ′
1)

into t + 2 subsets A0, . . . , At+1 ⊆ F
m
2 for t = log(2 · 2m/δ)/ log(1 + δ/2) such

that μ′
1 is δ-close to a distribution χ1 which is a convex combination of uniform

distributions on A0, . . . , At+1. Since supp(μ′
1) ⊆ Specε/2(μ2) we have that Ai ⊆

Specε/2(μ2) for all 0 ≤ i ≤ t + 1 and so D(Ai, μ2) ≥ ε/2 for all 0 ≤ i ≤ t + 1.

Fix 0 ≤ i ≤ t + 1. Similarly to the above, let μ
(i)
2 = μ2|Specε/4(Ai) and note

that the fact that D(Ai, μ2) ≥ ε/2 implies that Prμ2(Specε/4(Ai)) ≥ ε/4. By

Lemma 5 there exists a partition of supp(μ(i)
2 ) into t+2 subsets B

(i)
0 , . . . , B

(i)
t+1 ⊆

F
m
2 for t = log(2 · 2m/δ)/ log(1 + δ/2) such that μ

(i)
2 is δ-close to a distribution

χ
(i)
2 which is a convex combination of uniform distributions on B

(i)
0 , . . . , B

(i)
t+1.
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Since supp(μ(i)
2 ) ⊆ Specε/4(Ai) we have that B

(i)
j ⊆ Specε/4(Ai) for all 0 ≤ j ≤

t + 1 and so D(Ai, B
(i)
j ) ≥ ε/4 for all 0 ≤ j ≤ t + 1.

Summarizing, so far we found a collection of subsets {Ai}0≤i≤t+1 and a
collection {B

(i)
j }0≤i,j≤t+1 such that:

– μ′
1 = μ1|Specε/2(μ2) is close to a convex combination of uniform distributions

on A0, . . . , At+1.
– μ

(i)
2 = μ2|Specε/4(Ai) is close to a convex combination of uniform distributions

on B
(i)
0 , . . . , B

(i)
t+1 for all 0 ≤ i ≤ t + 1.

– D(Ai, B
(i)
j ) ≥ ε/4 for all 0 ≤ i, j ≤ t + 1.

For every 0 ≤ i, j ≤ t + 1 we can apply Conjecture 1 to the sets Ai, B
(i)
j and

conclude the existence of subsets Ã
(i)
j ⊆ Ai, B̃

(i)
j ⊆ B

(i)
j such that D(Ã(i)

j , B̃
(i)
j ) =

1 and |Ã(i)
j | ≥ 2−c′√m|Ai|, |B̃(i)

j | ≥ 2−c′√m|B(i)
j |. So in order to prove the lemma

it suffices to show the existence of a constant c and indices 0 ≤ k, � ≤ t + 1 for
which Prμ1(Ã

(k)
� ) ≥ 2−c

√
m and Prμ2(B̃

(k)
� ) ≥ 2−c

√
m.

By the pigeonhole principle, for every 0 ≤ i ≤ t + 1 there exists an index
0 ≤ ji ≤ t + 1 such that

Prμ2

(

B̃
(i)
ji

)

≥
Prμ2

(
⋃t+1

j=0 B̃
(i)
j

)

t + 2
.

Similarly, there exists 0 ≤ k ≤ t + 1 such that

Prμ1

(

Ã
(k)
jk

)

≥
Prμ1

(
⋃t+1

i=0 Ã
(i)
ji

)

t + 2
.

Let A′ = Ã
(k)
jk

and B′ = B̃
(k)
jk

. Then we have that D(A′, B′) = 1 and in order
to bound the probabilities Prμ1(A

′) and Prμ2(B
′) from below it suffices to bound

the probabilities Prμ2

(
⋃t+1

j=0 B̃
(k)
j

)

and Prμ1

(
⋃t+1

i=0 Ã
(i)
ji

)

from below. For this

we compute

Prμ2

( t+1⋃

j=0

B̃
(k)
j

)

≥ ε

4
· Pr

μ
(k)
2

( t+1⋃

j=0

B̃
(k)
j

)

(Since Prμ2(Specε/4(Ak)) ≥ ε/4)

≥ ε

4
·
(

Pr
χ
(k)
2

( t+1⋃

j=0

B̃
(k)
j

)

− δ

)

(Sinceμ(k)
2 and χ

(k)
2 are δ-close)

≥ ε

4
· (

2−c′√m − δ
)
,

where the last inequality follows since χ
(k)
2 is a convex combination of uniform

distributions on B
(k)
0 , . . . , B

(k)
t+1 and |B̃(k)

j | ≥ 2−c′√m|B(k)
j | for all 0 ≤ j ≤ t + 1.
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Similarly, we have that

Prμ1

( t+1⋃

i=0

Ã(i)
ji

)

≥ ε

2
·Prμ′

1

( t+1⋃

i=0

Ã(i)
ji

)

≥ ε

2
·
(

Prχ′
1

( t+1⋃

i=0

Ã(i)
ji

)

−δ

)

≥ ε

2
·(2−c′√m−δ

)
.

Concluding, we have found subsets A′, B′ such that D(A′, B′) = 1 and such
that both Prμ1(A

′) and Prμ2(B
′) are bounded from below by ε

4(t+2) ·
(
2−c′√m−δ

)
.

The proof is completed by letting δ = 2−c′√m/2 and t = log(2·2m/δ)
log(1+δ/2) and noting

that with this setting of parameters there exists a constant c which depends only

on ε such that ε
4(t+2) ·

(

2−c′√m − δ

)

≥ 2−c
√

m for a sufficiently large m.

Acknowledgements. We thank Parikshit Gopalan, Elad Haramaty, Swastik Kop-
party, Shachar Lovett, Oded Regev, Amir Shpilka, Shubhangi Saraf and Ben Lee Volk
for useful discussions, and the anonymous reviewers for helpful comments and pointers.

The research of the first two authors was supported by ERC grant no. 240258
(PaC) and ISF grant 1501/14.The research of the third author was supported by the
CFEM center funded by the Danish Council for Strategic Research, the FP7 EU-project
PRACTICE, the MPCPRO project funded by ERC and the CTIC center funded by
the Danish National Research Foundation. The research of the fourth author was sup-
ported by ERC grant no. 259426 CaC, ISF grant 1709/14, and BSF grant 2012378.
His research is also supported from a DARPA/ARL SAFEWARE award, NSF Frontier
Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276. This material
is based upon work supported by the Defense Advanced Research Projects Agency
through the ARL under Contract W911NF-15-C-0205. The views expressed are those
of the author and do not reflect the official policy or position of the Department of
Defense, the National Science Foundation, or the U.S. Government. The research of
fifth author was partially supported by NSF grants CCF-1412958 and CCF-1445755
and the Rothschild fellowship.

References

1. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing (STOC), pp. 99–108. ACM Press (1996)

2. Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case
equivalence. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on
the Theory of Computing (STOC), pp. 284–293. ACM Press (1997)

3. Alekhnovich, M.: More on average case vs approximation complexity. Comput.
Complex. 20(4), 755–786 (2011). Preliminary version in Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003)

4. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

5. Applebaum, B., Ishai, Y., Kushilevitz, E.: Cryptography with constant input local-
ity. J. Cryptology 22(4), 429–469 (2009)



On Public Key Encryption from Noisy Codewords 445

6. Ben-Sasson, E., Ben-Tov, I., Damg̊ard, I., Ishai, Y., Ron-Zewi, N.: On public
key encryption from noisy codewords. IACR Cryptology ePrint Archive, 2015:572
(2015)

7. Ben-Sasson, E., Lovett, S., Ron-Zewi, N.: An additive combinatorics approach
relating rank to communication complexity. J. ACM (2013) (to appear)

8. Ben-Sasson, E., Zewi, N.: From affine to two-source extractors via approximate
duality. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Com-
puting (STOC), pp. 177–186. ACM Press (2011)

9. Bhowmick, A., Dvir, Z., Lovett, S.: New bounds for matching vector families. In:
Proceedings of the 47th ACM Symposium on Theory of Computing (STOC), pp.
823–832. ACM Press (2013)

10. Blum, A., Furst, M.L., Kearns, M., Lipton, R.J.: Cryptographic primitives based
on hard learning problems. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 278–291. Springer, Heidelberg (1994)

11. Blum, A., Kalai, A., Wasserman, H.: Noise-tolerant learning, the parity problem,
the statistical query model. J. ACM 50(4), 506–519 (2003)

12. Damg̊ard, I., Park, S.: Is public-key encryption based on LPN practical? IACR
Cryptology ePrint Archive, 2011:699 (2012)

13. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

14. Dvir, Z., Gopalan, P., Yekhanin, S.: Matching vector codes. SIAM J. Comput.
40(4), 1154–1178 (2011). Preliminary version in Proceedings of the IEEE 51st
Annual Symposium on Foundations of Computer Science (FOCS 2011)

15. Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryp-
tion errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 342–360. Springer, Heidelberg (2004)

16. Efremenko, K.: 3-query locally decodable codes of subexponential length. SIAM J.
Comput. 41(6), 1694–1703 (2012). Preliminary version in Proceedings of the 41st
Annual ACM Symposium on Theory of Computing (STOC 2009)

17. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the 40th Annual ACM Symposium
on Theory of Computing (STOC). ACM Press (2008)

19. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 112–131. Springer, Heidelberg (1997)

20. Green, B.: Finite field models in additive combinatorics. In London Mathematical
Society Lecture Note Series, vol. 324. Cambridge University Press, Cambridge
(2005)

21. Grolmusz, V.: Superpolynomial size set-systems with restricted intersections mod
6 and explicit ramsey graphs. Combinatorica 20, 71–86 (2000)

22. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998)

23. Hopper, N.J., Blum, M.: Secure human identification protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

24. Kalai, A.T., Mansour, Y., Verbin, E.: On agnostic boosting and parity learning.
In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing
(STOC), pp. 629–638. ACM Press (2008)



446 E. Ben-Sasson et al.

25. Kopparty, S., Saraf, S.: Local list-decoding and testing of random linear codes from
high error. SIAM J. Comput. 42(3), 1302–1326 (2013)

26. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryp-
tion. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer,
Heidelberg (2011)

27. Lovett, S.: Additive combinatorics and its applications in theoretical computer
science (2013)

28. Lovett, S.: Communication is bounded by root of rank. In: Proceedings of the 46th
ACM Symposium on Theory of Computing (STOC). ACM Press (2014)

29. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX 2005 and RANDOM 2005. LNCS, vol. 3624,
pp. 378–389. Springer, Heidelberg (2005)

30. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43 (2013)

31. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. JPL
DSN Progress Report (1978)

32. Micciancio, D.: Improving lattice based cryptosystems using the hermite normal
form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001)

33. Micciancio, D.: Duality in lattice-based cryptography. In Public Key Cryptography
(invited talk) (2010)

34. Micciancio, D., Mol, P.: Pseudorandom Knapsacks and the sample complexity of
LWE search-to-decision reductions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 465–484. Springer, Heidelberg (2011)

35. Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buch-
mann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–192. Springer,
Heidelberg (2009)

36. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob.
Control Inf. Theory (Problemy Upravlenija i Teorii Informacii) 15, 159–166 (1986)

37. Pietrzak, K.: Cryptography from learning parity with noise. In: Bieliková, M.,
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Abstract. It is well known that inefficient indistinguishability obfusca-
tors (iO) with running time poly(|C|, λ) ·2n, where C is the circuit to be
obfuscated, λ is the security parameter, and n is the input length of C,
exists unconditionally : simply output the function table of C (i.e., the
output of C on all possible inputs). Such inefficient obfuscators, however,
are not useful for applications.

We here consider iO with a slightly “non-trivial” notion of effi-
ciency: the running-time of the obfuscator may still be “trivial” (namely,
poly(|C|, λ) · 2n), but we now require that the obfuscated code is just
slightly smaller than the truth table of C (namely poly(|C|, λ) · 2n(1−ε),
where ε > 0); we refer to this notion as iO with exponential efficiency,
or simply exponentially-efficient iO (Xio). We show that, perhaps sur-
prisingly, under the subexponential LWE assumption, subexponentially-
secure XiO for polynomial-size circuits implies (polynomial-time com-
putable) iO for all polynomial-size circuits.

1 Introduction

The goal of program obfuscation is to “scramble” a computer program, hiding
its implementation details (making it hard to “reverse-engineer”), while pre-
serving the functionality (i.e., input/output behavior) of the program. In recent
years, the notion of indistinguishability obfuscation (iO) [BGI+01,GGH+13b]
has emerged as the central notion of obfuscation. Roughly speaking, this notion
requires that obfuscations iO(C1), iO(C2) of any two functionally equivalent
circuits C1 and C2 (i.e., whose outputs agree on all inputs) from some class C
(of circuits of some bounded size) are computationally indistinguishable.
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On the one hand, this notion of obfuscation is strong enough for a plethora
of amazing applications (see e.g., [SW14,BCP14,BZ14,GGHR14,BGL+15,
CHJV14,KLW14]); on the other hand, it may plausibly exist [GGH+13b,
BGK+13,PST14,GLSW14], whereas stronger notion of obfuscations have run
into strong impossibility results, even in idealized models (see e.g., [BGI+01,
GK05,CKP15,PS15,MMN15,LPST15])

However, despite all these amazing progress, to date, all candidate con-
structions of iO rely on candidate constructions of multi-linear maps [GGH13a,
CLT13,GGH15,CLT15], all of which have non-trivial attacks [CHL+15,MF15],
and it is not clear to what extent the security of the obfuscators that rely on
them are affected.

Can Inefficient iO be Useful? Let us emphasize that for all known application
of iO, it is important that the obfuscator is efficient—namely, polynomial-time.
Indeed, as already observed by [BGI+01], it is “trivial” to provide an inefficient
iO with running time poly(|C|, λ) ·2n, where C is the circuit to be obfuscated, λ
is the security parameter, and n is the input length of C, exists unconditionally :
simply output the function table of C (i.e., the output of C on all possible
inputs). Recall that, in contrast, for “standard” (efficient) iO, the running time
and size of the obfuscator is required to be poly(|C|, λ)—namely, polylogarithmic
in the size of the truth table of C).

In this paper, we consider iO with just a slightly “non-trivial” notion of
efficiency: the running-time of the obfuscator may still be “trivial” (namely,
poly(|C|, λ) · 2n), but we now require that the obfuscated code is just slightly
smaller than the truth table of C (namely poly(|C|, λ) ·2n(1−ε), where ε > 0); we
refer to this notion as iO with exponential efficiency, or simply exponentially-
efficient iO (Xio). The main question investigated in this paper is the
following:

Can iO with just slightly non-trivial efficiency be useful for applications?

Main Theorem. Perhaps surprisingly, we show that in the regime of subexpo-
nential security, under the LWE assumption, XiO for P/poly implies (standard)
iO for P/poly.

Theorem 1. Assume subexponential security of the LWE assumption, and the
existence of subexponentially secure XiO for Plog/poly. Then there exists subex-
ponentially secure iO for P/poly.

Let us remark that in the proof of Theorem 1, we only employ the XiO on circuits
that take inputs of length O(log λ) (it would be surprising if we didn’t since we
aim is to achieve an obfuscator with polynomial efficiency). As a consequence, the
proof of Theorem 1 also shows that (under the subexponential LWE assumption),
subexponentially secure XiO for circuits with such “short” inputs (i.e., inputs of
length O(log λ))—we refer to this class of circuits as Plog/poly—implies iO for all
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polynomial-size circuits (with“long” inputs).1 We remark that in [BGL+15], the
authors (implicitly) considered a notion of “short-input” iO (as opposed to XiO)
and demonstrate that for some (but far from all) applications of iO, this weaker
notion actually suffices. Our results show that in the regime of subexponential
security, “short-input” iO (and in fact, even XiO) implies standard iO (and
thus suffices for all applications of iO).

Techniques. Our starting point are the recent beautiful works by Ananth and
Jain [AJ15] and Bitansky and Vaikuntanathan [BV15] which show that the
existence of subexponentially-secure functional encryption with sublinearly com-
pact ciphertexts (a.k.a. sublinear compact FE) for P/poly implies iO for P/poly.
Roughly speaking, a (single-key) functional encryption scheme is a public-key
encryption scheme for which it is possible to release a (single) functional secret-
key skC (for circuit C of some a-priori bounded size S) such that knowledge of
skC enables efficiently computing C(m) given any encryption of the message m,
(but nothing more); sublinear compactness means that the encryption time is
sublinear in the upper bound S on the circuit-size.2 We recently demonstrated
in [LPST15] that assuming subexponential LWE, it in fact suffices to start off
with an FE satisfying an even weaker notion of compactness—which we refer
to as weak sublinear compactness—which simply requires that the size of the
ciphertext (but not the encryption time) is sublinear in the circuit-size.

Our main technical contribution will be showing that XiO for Plog/poly
implies weakly sublinear compact FE for P/poly, which by the above-mentioned
result implies our main theorem.

Theorem 2. Assume the LWE assumption (resp. subexponential security of
the LWE assumption) holds, and the existence of XiO for Plog/poly (resp.
subexponentially-secure XiO for Plog/poly). Then there exists weakly sublinear
compact FE for P/poly (resp. subexponentially-secure weakly sublinear compact
FE for P/poly).

Note that Theorem 2 is interesting in its own right as it applies also in the regime
of polynomial security.3

1 “Short-input” iO is more appealing than standard iO (for P/poly) in the sense
that it can be efficiently checked whether an attack on a candidate scheme succeeds
[Nao03] (an attacker needs to come up with two circuits C1, C2 that are functionally
equivalent for which it can distinguish obfuscations; checking whether two circuits are
functionally equivalent may be hard in general, but becomes efficient if the circuits
are restricted to inputs of length O(log λ) by simply enumerating all inputs).

2 More precisely, in a functional encryption scheme (Setup,KeyGen,Enc,Dec), Setup
samples a public-key, secret-key pair (pk, msk), KeyGen(msk, C) generates the func-
tional secret key skC ; Enc(pk, m) outputs an encryption c of m, and Dec(skC , c)
outputs C(m) if c is an encryption of m.

3 Furthermore, as we remark later on, weakly sublinear compact FE trivially implies a
variant of XiO and this variant of XiO is also sufficient for our theorems. As such,
by our results, XiO may be viewed as a new way to characterize the complexity of
weakly sublinear compact FE.
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The proof of Theorem 2 proceeds as follows. Following a proof template from
[AJ15] (we discuss this result in more detail below), we start off with the result
of Goldwasser et al. [GKP+13] which shows that under the LWE assumption,
there exists a functional encryption scheme for boolean functions (i.e., functions
with 1-bit outputs) in NC1 that has logarithmic compactness. Combined with
the bootstrapping result of [ABSV14], this can be used to construct a func-
tional encryption scheme for boolean functions in P/poly that still has logarith-
mic compactness. We next show how to use XiO for Plog/poly to extend any
such compact FE scheme for boolean functions to one that handles arbitrary
polynomial-sized circuits (with potentially long outputs). ([AJ15] provided a
similar transformation assuming, so-called, compact randomized encoding (for
Turing machines) instead of XiO.)

We now turn to describe our transformation from “single-bit compact FE”
to “multi-bit weakly sublinear compact FE”. As an initial approach, instead of
simply encrypting a message m, encrypt the sequence (m; 1), (m; 2), . . . (m; �),
where � is the maximum output length of the class of functions we want to be able
to evaluate. Then, instead of simply releasing a functional secret key for a circuit
C, release a secret key for the function C ′(m; i) = Ci(m), where Ci(m) denotes
the ith output bit of C(m). This approach clearly enables evaluating circuits
with multi-bit outputs; but the encryption scheme is no longer (even weakly)
compact! The length of the ciphertext grows linearly with the number of output
bits. To retain compactness (or at least weakly sublinear compactness), we have
the encryption algorithm release an obfuscation of a program Π that generates
all the � encryptions—more precisely, given an index i, it applies a PRF (with a
hard-coded seed) to the index i to generate randomness ri and then outputs an
encryption of (m; i). As long as obfuscation size is “just-slightly-compressing”,
the functional encryption will have weak sublinear compactness; furthermore,
the program we obfuscate only needs to take inputs of length O(log λ). Thus, it
suffices to assume the obfuscator satisfies XiO for Plog/poly.

To prove security of the construction, we use the “one-input-at-a-time” tech-
nique from [BCP14,GLW14,PST14,GLSW14,CLTV15], and the punctured pro-
gram technique of Sahai and Waters [SW14]; the crucial point that enables us
to keep the obfuscation small is that the output of the program Π on different
inputs uses independent randomness (since they are independent encryptions)
and thus in the hybrid arguments it suffices to puncture the PRF on a single
point.

Let us end this section by briefly comparing our transformation to the above-
mentioned transformation by Ananth and Jain [AJ15]; [AJ15] shows how to use,
so-called, “compact randomized encoding” to transform single-bit compact FE for
NC1 into multi-bit compact FE for NC1. As we explain in more detail in Remark
3, compact randomized encoding can be viewed as a special case of XiO for the
class of Turing machines (as opposed to circuits) with short input. Turing machine
obfuscation is a significantly more challenging task than circuit obfuscation. We
provide a brief description of their transformation in Appendix A and explain why
the transformation fails when using XiO (for circuits).
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2 Preliminaries

Let N denote the set of positive integers, and [n] denote the set {1, 2, . . . , n}. We
denote by PPT probabilistic polynomial time Turing machines, and by nuPPT
non-uniform probabilistic polynomial time Turing machines. The term negligible
is used for denoting functions that are (asymptotically) smaller than one over
any polynomial. More precisely, a function ν(·) from non-negative integers to
reals is called negligible if for every constant c > 0 and all sufficiently large
n, it holds that ν(n) < n−c. For any algorithm A and input x we denote by
outlenA(x), the output length of A when run with input x.

Definition 1. We denote by Plog/poly the class of circuits {Cλ} where Cλ are
poly(λ)-size circuits that have input length c log λ for some constant c.

2.1 Puncturable PRF

Puncturable PRFs defined by Sahai and Waters [SW14], are PRFs for which a
key can be given out that allows evaluation of the PRF on all inputs, except for
a designated polynomial-size set of inputs.

Definition 2 (Puncturable PRF [SW14]). A puncturable pseudo-random
function F is given by a triple of efficient algorithms (F.Key, F.Punc, F.Eval),
and a pair of computable functions n(·) and m(·), satisfying the following con-
ditions:

– Functionality preserved under puncturing: For every polynomial size
set S ⊆ {0, 1}n(λ) and for every x ∈ {0, 1}n(λ)\S, we have that:

Pr[K ← F.Key(1λ),KS = F.Punc(K,S) : F.Eval(K,x) = F.Eval(KS , x)] = 1

– Pseudorandom at punctured points: For every polynomial size set S ⊆
{0, 1}n(λ) and for every nuPPT adversary A we have that:

|Pr[A(KS ,F.Eval(K,S)) = 1] − Pr[A(KS , Um(λ)·|S|) = 1]| = negl(λ)

where K ← F.Key(1λ) and KS = F.Punc(K,S) and F.Eval(K,S) denotes the
concatenation of F.Eval(K,x1), . . .F.Eval(K,xk) where S = {x1, . . . , xk} is
the enumeration of the elements of S in lexicographic order, U� denotes the
uniform distribution over � bits.

The GGM tree-based construction of PRFs [GGM86] from one-way func-
tions are easily seen to yield puncturable PRFs, as recently observed by [BW13,
BGI14,KPTZ13]. Furthermore, it is easy to see that if the PRG underlying
the GGM construction is sub-exponentially hard (and this can in turn be built
from sub-exponentially hard OWFs), then the resulting puncturable PRF is sub-
exponentially pseudorandom.
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2.2 Functional Encryption

We recall the definition of public-key functional encryption (FE) with selec-
tive indistinguishability based security [BSW12,O’N10]. We note that in this
work, we only need the security of the functional encryption scheme to hold
with respect to statically chosen challenge messages and functions. We further
consider FE schemes that only produce a single functional secret key for each
public key.

Definition 3 (Functional Encryption [O’N10,BSW12]). A public key func-
tional encryption scheme for a class of circuits {Cλ} is a tuple of PPT algorithms
(FE.Setup,FE.KeyGen,FE.Enc,FE.Dec) that behave as follows:

– (msk, pk) ← FE.Setup(1λ): FE.Setup takes as input the security parameter λ
and outputs the master secret key msk and public key pk.

– skC ← FE.KeyGen(msk,C): FE.KeyGen takes as input the master secret key
and a circuit C ∈ Cλ and outputs the functional secret key skC .

– c ← FE.Enc(pk,m): FE.Enc takes as input the public key and message m ∈
{0, 1}∗ and outputs the ciphertext c.

– y ← FE.Dec(skC , c): FE.Dec takes as input the functional secret key and
ciphertext and outputs y ∈ {0, 1}∗.

We require the following conditions to hold:

– Correctness: For every λ ∈ N, C ∈ Cλ with input length n and message
m ∈ {0, 1}n, we have that

Pr

⎡

⎣
(pk,msk) ← FE.Setup(1λ)

skC ← FE.KeyGen(msk,C)
c ← FE.Enc(pk,m)

: C(m) = FE.Dec(skC , c)

⎤

⎦ = 1

– Selective Security: For every nuPPT A there exists a negligible function
μ such that for every λ ∈ N, every circuit C ∈ Cλ with input length n and
pair of messages m0,m1 ∈ {0, 1}n such that C(m0) = C(m1) we have that
|Pr[A(D0) = 1] − Pr[A(D1) = 1]| ≤ μ(λ) where

Db = Pr

⎡

⎣
(pk,msk) ← FE.Setup(1λ)

skC ← FE.KeyGen(msk,C)
cb ← FE.Enc(pk,mb)

: (pk, skC , cb)

⎤

⎦

We say the scheme has sub-exponential security if there exists a constant
ε such that for every λ, every 2λε

-size adversary A, |Pr[A(D0) = 1] −
Pr[A(D1) = 1]| ≤ 1/2λε

where Db is defined above.

We recall the definition of compactness and succinctness for functional
encryption schemes, as defined in [BV15,AJ15].
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Definition 4 (Compact Functional Encryption [BV15,AJ15]). We say a
functional encryption scheme for a class of circuits {Cλ} is compact if for every
λ ∈ N, pk ← FE.Setup(1λ) and m ∈ {0, 1}∗ we have that

Time(FE.Enc(pk,m)) = poly(λ, |m|, log s)

where s = maxC∈Cλ
|C|. We say the scheme has sub-linear compactness if the

running time of FE.Enc is bounded as

Time(FE.Enc(pk,m)) = poly(λ, |m|) · s1−ε

where ε > 0.

Definition 5 (Succinct Functional Encryption). A compact functional
encryption scheme for a class of circuits that output only a single bit is called a
succinct functional encryption scheme.

Theorem 3 ([GKP+13]). Assuming (sub-exponentially secure) LWE, there
exists a (sub-exponentially secure) succinct functional encryption scheme for
NC1.

We note that [GKP+13] do not explicitly consider sub-exponentially secure suc-
cinct functional encryption, but their construction satisfies it (assuming sub-
exponentially secure LWE). Additionally, we have the following bootstrapping
theorem:

Theorem 4 ([GHRW14,ABSV14,AJ15]). Assuming the existence of
symmetric-key encryption with decryption in NC1 (resp. sub-exponentially
secure) and succinct functional encryption for NC1 (resp. sub-exponentially
secure), there exists succinct functional encryption for P/poly (resp. sub-
exponentially secure).

Following [LPST15], we here also consider a weaker compactness notion,
where only the ciphertext size (but not the encryption time) is sublinear in the
output length of the function being evaluated.

Definition 6 (Weakly Sublinear Compact Functional Encryption
[LPST15]). We say a functional encryption scheme for a class of circuits {Cλ}
is weakly sublinear compact if there exists ε > 0 such that for every λ ∈ N,
pk ← FE.Setup(1λ) and m ∈ {0, 1}∗ we have that

TimeFE.Enc(pk,m) = poly(λ, |m|, s)
outlenFE.Enc(pk,m) = s1−ε · poly(λ, |m|)

where s = maxC∈Cλ
|C|.
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2.3 Indistinguishability Obfuscation

We recall the notion of indistinguishability obfuscation (iO).

Definition 7 (Indistinguishability Obfuscator [BGI+01,GGH+13b]). A
PPT machine iO is an indistinguishability obfuscator (also referred to as iO)
for a circuit class {Cλ}λ∈N if the following conditions are satisfied:

– Functionality: for all security parameters λ ∈ N, for all C ∈ Cλ, for all
inputs x, we have that

Pr[C ′ ← iO(C) : C ′(x) = C(x)] = 1 .

– Indistinguishability: for any polysize distinguisher D, there exists a neg-
ligible function μ such that the following holds: For all security parameters
λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ of the same size, we have that if
C0(x) = C1(x) for all inputs x, then

∣
∣
∣ Pr

[D(iO(C0)) = 1
] − Pr

[D(iO(C1)) = 1
]∣∣
∣ ≤ μ(λ) .

We say the scheme has sub-exponential security if there exists a constant
ε such that for every λ, every 2λε

-size adversary D, |Pr[D(iO(C0)) = 1] −
Pr[D(iO(C1)) = 1]| ≤ 1/2λε

.

The recent beautiful results of [AJ15], Bitansky and Vaikuntanathan [BV15]
show that subexponentially secure sublinear compact functional encryption
schemes implies iO for P/poly. In an earlier work [LPST15], we demonstrated
that (if we additionally assume subexponential LWE), it suffices to start off with
just a weakly sublinear compact functional encryption scheme (recall that in such
a scheme only the length of the ciphertext needs to be sublinear, but encryption
time may be polynomial).

Theorem 5 ([LPST15]). Assume the existence of sub-exponentially secure
LWE. If there exists a weakly sublinear compact functional encryption scheme
for P/poly with sub-exponential security, then there exists a sub-exponentially
secure indistinguishability obfuscator for P/poly.

3 Exponentially-Efficient iO (XiO)

In this section, we define our new notion of exponentially-efficient indistinguisha-
bility obfuscation (XiO), which allows the obfuscator to have running time as
long as a brute-force canonicalizer that outputs the entire truth table of the
function, but requires the obfuscated program to be slightly smaller in size than
a brute-force canonicalization.

Definition 8 (Exponentially-Efficient Indistinguishability Obfuscation
(XiO)). A machine XiO is an exponentially-efficient indistinguishability obfus-
cator (also referred to as XiO) for a circuit class {Cλ}λ∈N if it satisfies the same
functionality and indistinguishability property of indistinguishability obfuscators
as in Definition 7 and the following efficiency requirement.
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– Non-trivial Efficiency4. There exists a constant ε > 0 such that for any
security parameter λ ∈ N, circuit C ∈ Cλ with input length n and C ′ ∈
XiO(1λ, C), we have that

TimeXiO(1λ, C) = poly(λ, |C|, 2n)

outlenXiO(1λ, C) = poly(λ, |C|) · 2n(1−ε)

Remark 1 (Circuits with logarithmic input length). Note that if we want the
obfuscation to be efficient (i.e., polynomial-time in λ and the size of the circuit
to be obfuscated), then the above definition is only meaningful when the class of
circuits Cλ has input length O(log λ). Our results in this paper hold assuming
XiO for Plog/poly.

Remark 2 (XiO in the preprocessing model and comparison with Compact
Functional Encryption). We can consider further a relaxation of the running-
time requirement of the obfuscator. The obfuscator may first perform a long
“pre-processing” step (without having seen the program to be obfuscated), taking
time poly(λ, s, 2n) (where s is the size bound on circuits to be obfuscated), and
outputting a (potentially long) pre-processing public-key Opk. The actual obfus-
cation then takes Opk, and the circuit C as inputs, runs in time poly(λ, s, 2n)
and outputs an obfuscated program of size poly(λ, s) · 2n(1−ε), and then the eval-
uation of the obfuscated program may finally also access the public-key Opk. All
our results also apply to this relaxed notion of XiO.

Additionally, we note that weakly sublinear compact FE directly implies this
notion as follows: pre-processing public key Opk (generated in the pre-processing
step) is the public key pk for the FE and the functional secret key skFT corre-
sponding to a function table generator program that takes as input a circuit and
outputs the function table of it; the obfuscation of a circuit C is an encryption
of the circuit C (w.r.t., the FE public key pk), and evaluation of the obfuscated
code uses the functional secret key skFT inside Opk to compute the function table
of C and selects the appropriate output. Sub-linear compactness of the functional
encryption scheme implies the obfuscator has exponential efficiency.

Remark 3 (Comparison with Compact Randomized Encoding for Turing
machines). [AJ15] and [LPST15] study a notion of compact randomized encod-
ings [IK02,AIK04]. Roughly speaking, a randomized encoding (RE) is a method
for encoding a Turing Machine Π, an input x and a running-time bound T ,
into a randomized encoding Π̂(x) from which Π(x) can be efficiently decoded;
furthermore the encodings does not leak anything more about Π and x than what

4 Our notion of “trivial” running-time is even more relaxed than the notion used in the
introduction. We here allow the running-time be polynomial in 2n, and opposed to
just linear (as we described it in the introduction). This even more relaxed notion of
efficiency is useful in order to more cleanly compare XiO with the notion of compact
FE; see Remark 2.
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can be (inefficiently) deduced from just the output Π(x) (truncated at T steps).5

A randomized encodings is compact (resp. sublinearly compact) if the encoding
time is poly-logarithmic (resp sublinear) in T (and polynomial in the size of Π
and x). We note that sublinear compact RE directly implies XiO as follows: to
obfuscate a circuit C, compute an encoding F̂ TC of the function table generator
Turing machine FTC that has the circuit C hardcoded (i.e., FTC takes no inputs
and simply computes the function table of C); evaluation of the obfuscation on an
input i simply decodes the encoding F̂ TC and picks out the ith output. Sublinear
compactness of the RE implies that the obfuscator is exponentially-efficient. In
fact, this obfuscator has a stronger efficiency guarantee than XiO: the running
time of the obfuscator is poly(λ, |C|) · 2n(1−ε) whereas XiO allows for a longer
running time.

In fact, the above methods extend to show that (sublinearly) compact RE
implies a notion of XiO for Turing machines. We note that Turing machine
obfuscation is a significantly harder task than circuit obfuscation (indeed, all
known construction of Turing machine obfuscators first go through circuit obfus-
cation). We also point out that whereas (subexponentially-secure) iO for circuits
is known to imply iO for Turing machine [BGL+15,CHJV14,KLW14], these
techniques do not apply in the regime of programs with short input (and thus do
not seem amenable in the regime of inefficient iO either).

4 iO from XiO

In this section, we show how to achieve “standard” (polynomially-efficient) iO
from XiO.

4.1 Weakly Sublinear Compact FE from Succinct FE and XiO

We first give our construction of weakly sublinear compact FE from succinct
FE and XiO for circuits with input-size O(log(λ)). At a high-level, our idea is
to have the ciphertext for the FE scheme be XiO of a circuit that, on input i,
generates a succinct FE encryption of (m, i). The secret key corresponding to
C consists of a single key for the succinct FE scheme, that, given a ciphertext
encrypting (m, i), computes the ith output bit of C(m).

Let F be a puncturable pseudorandom function, XiO be an exponentially-
efficient indistinguishability obfuscator for Plog/poly and sFE be a succinct func-
tional encryption scheme (resp. with sub-exponential security) for an appropri-
ate class of circuits {C′

λ} that includes C ′ defined below. We define a compact
functional encryption scheme FE for a class of poly-size circuits {Cλ} as follows:

(msk, pk) ← FE.Setup(1λ): FE.Setup is identical to sFE.Setup and has the same
output.

5 Or equivalently, for any two programs Π1, Π2 and inputs x1, x2 such that Π1(x1) =
Π2(x2), a randomized encoding of Π1, x1 is indistinguishable from an encoding of
Π2, x2.
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c ← FE.Enc(pk,m): FE.Enc samples a puncturable PRF key K ← F.Key(1λ)
and outputs Π ← XiO(1λ, G[pk,K,m]) where G[pk,K,m] is a circuit with
input length n = log s where s = maxC∈Cλ

outlen(C), defined as follows:

G[pk,K,m](i) = sFE.Enc(pk, (m, i);F.Eval(K, i))

G is padded to be the same size as circuits G′ and G′′ that we will define
later in the security proof. All circuits G, G′, and G′′ will ultimately have
size bounded by S = poly(λ, |m|, log s) where s = maxC∈Cλ

|C|, and are
padded to size S.

skC ← FE.KeyGen(msk,C): FE.KeyGen outputs sFE.KeyGen(msk,C ′) where C ′

on input (m, i) outputs the ith bit of C(m), or outputs ⊥ if i is greater than
the output length of C.

y ← FE.Dec(skC ,Π): FE.Dec runs ci ← Π(i) and yi ← sFE.Dec(skC , ci) for
every i and outputs y1, . . . y2n .

Let {C′
λ} be a class of circuits that includes C ′ as defined above for every

C ∈ Cλ.

Theorem 6. Assuming F is a puncturable pseudorandom function (resp. with
subexponential security), XiO is an exponentially efficient indistinguishability
obfuscator for Plog/poly (resp. with subexponential security) and sFE is a suc-
cinct functional encryption scheme for {C′

λ} (resp. with subexponential security),
we have that FE as defined above is a functional encryption scheme for {Cλ} with
weakly sub-linear compactness (resp. and with subexponential security).

Proof. We first show weak sublinear compactness of FE. Consider any λ, C ∈
Cλ, message m, pk ∈ FE.Setup(1λ) and puncturable PRF key K ∈ F.Key(1λ).
Time(FE.Enc(pk,m)) is the time XiO takes to obfuscate the circuit G[pk,K,m],
which is of size S = poly(λ, |m|, log s) where s = maxC∈Cλ

|C|. Hence we have
that

TimeXiO(1λ, G[pk,K,m]) = poly(λ, |m|, log s, 2n) ≤ poly(λ, |m|, s)
outlenXiO(1λ, G[pk,K,m]) = poly(λ, |m|, log s) · 2n(1−ε) ≤ poly(λ, |m|) · s1−ε′

where ε′ is a constant with 0 < ε′ < ε.
Next we show the selective security of FE. We proceed by using the ”one-

input-at-a-time” technique from [BCP14,GLW14,PST14,GLSW14,CLTV15].
More precisely, we proceed by a hybrid argument where in each hybrid distribu-
tion, the circuit being obfuscated, on input i, produces ciphertexts of m1 when i
is less than a “threshold”, and ciphertexts of m0 otherwise. Indistinguishability
of neighboring hybrids is shown using the “punctured programming” technique
of [SW14], as was done in [CLTV15] for constructing iO for probabilistic func-
tions. (This technique is also used extensively in other applications of iO, eg.,
[BGL+15], [CHJV14], [KLW14] and more.)

Assume for contradiction there exists a nuPPT A and polynomial p such
that for sufficiently large λ, circuit C ∈ Cλ and messages m0,m1 such that
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C(m0) = C(m1), A distinguishes D0 and D1 with advantage 1/p(λ), where

Db =

⎛

⎝
(msk, pk) ← FE.Setup(1λ)
K ← F.Key(1λ)
skC ← FE.KeyGen(msk,C)

: pk, skC ,XiO(G[pk,K,mb])

⎞

⎠

For j ∈ [�], we define the jth hybrid distribution Hj as follows:

Hj =

⎛

⎝
(msk, pk) ← FE.Setup(1λ)
K ← F.Key(1λ)
skC ← FE.KeyGen(msk,C)

: pk, skC ,XiO(G′[pk,K, j,m0,m1])

⎞

⎠

where G′[pk,K, j,m0,m1], where G′ is defined as follows

G′[pk,K, j,m0,m1](i) =
{
sFE.Enc(pk, (m0, i);F(K, i)) if i > j
sFE.Enc(pk, (m1, i);F(K, i)) if i ≤ j

We also require G′ to be padded to be of the same size S as G[pk,K,m].
We consider the hybrid sequence D0,H1, . . . , H�,D1. By a hybrid argument,

there exists a pair of neighboring hybrids in this sequence such that A distin-
guishes the pair with probability 1

p(λ)·(�+2) = 1
poly(λ) . We show a contradiction

by proving that each pair of neighboring hybrids is computationally indistin-
guishable.

We first note that D0 is indistinguishable from H0. This follows by observing
that G′[pk,K, 0,m0,m1] is functionally identical to G[pk,K,m0], and applying
the security of XiO. The same argument also shows that H� is indistinguishable
from D1.

Next, we show Hj∗ and Hj∗+1 are indistinguishable for each j∗ ∈ [�]. Define
hybrid distribution H ′

0 which is identical to Hj∗ except that XiO obfuscates
a different circuit G′′[pk,Kj∗ , j∗,m0,m1, c] where Kj∗ ← F.Punc(λ, j∗) and
c ← sFE.Enc(pk, (m0, j

∗);R) using uniformly sampled randomness R. G′′ on
input i has the same behavior as G′ except i = j∗, where it outputs the hard-
coded ciphertext c. By the “punctured programming” technique of Sahai-Waters
[SW14], which relies on the security of the obfuscator XiO and puncturable PRF
F, it follows that for sufficiently large λ, A distinguishes between Hj∗ and H ′

0

with negligible probability.
The puncturing programming technique itself works in two hybrid steps:

– First the circuit G′ is replaced with circuit G′′[pk,Kj∗ , j∗,m0,m1, c] where the
hardwired ciphertext is c = sFE.Enc(pk, (m0, j

∗);F(K, j∗)), which is the same
ciphertext G′ previously computed. Since this doesn’t change the functionality
of the circuit, indistinguishability follows from the security of XiO.

– Second, the hardcoded ciphertext is modified to be generated from real ran-
domness R, and indistinguishability follows from the security of the punc-
turable PRF.

Next, we define hybrid distribution H ′
1 which is identical to H ′

0 except that
the hardcoded ciphertext c is generated as sFE.Enc(pk, (m1, j

∗);R) for uniformly
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sampled randomness R. Since C(m0) is identical to C(m1), from the security of
sFE, A distinguishes H ′

0 and H ′
1 with negligible probability.

Finally, note that H ′
1 and Hj∗+1 differ in the same way H ′

0 and Hj∗ do,
and are hence indistinguishable by a similar argument. Hence A distinguishes
Hj∗ and Hj∗+1 with negligible probability and we have a contradiction. This
completes the proof.

We note that the proof above is described in terms of computational indistin-
guishability, but in fact also can be applied to show that FE is subexponentially-
secure, if both XiO and sFE are subexponentially secure.

4.2 Putting Pieces Together

Theorem 7. Assuming sub-exponentially hard LWE, if there exists a subex-
ponentially secure exponentially efficient indistinguishability obfuscator for
Plog/poly then there exists an indistinguishability obfuscator for P/poly with
subexponential security.

Proof. By Theorems 3 and 4, assuming subexponentially secure LWE, there
exists a succinct functional encryption scheme for P/poly that is subexponen-
tially secure. Using this with a subexponentially secure exponentially efficient
indistinguishability obfuscator for Plog/poly, by Theorem 6, we get weakly sub-
linear compact function encryption for P/poly with sub-exponential selective
security. Together with Theorem 5, this gives us iO for P/poly.

Remark 4 (XiO for NC1 suffices). We remark it in fact suffices to assume
XiO for only NC1 (instead of P/poly) if rely on the existence of puncturable
PRFs in NC1. Indeed, if encryption algorithm of the succinct FE scheme and the
puncturable PRF are both in NC1, then in our construction it suffices to obfuscate
NC1 circuits (we also need to verify that the “merged” circuit used in the hybrid
argument is in NC1, which directly follows). By the result of [AIK04], assuming
the existence of pseudorandom generators in NC1, we can assume without loss of
generality that the succinct FE encryption we rely on also has encryption in NC1

(in fact even NC0, but this will not be useful to us): the encryption algorithm for
the new succinct FE scheme computes the “randomized encoding” of the original
encryption function.

Acknowledgments. We thank Vinod Vaikuntanathan for insightful discussions.

A Comparison with [AJ15]

In this section we briefly describe the related result by [AJ15] and compare it
with our result. [AJ15] show how to construct a compact functional encryption
scheme from a succinct functional encryption scheme and “compact randomized
encodings for Turing machines” (see Remark 3 for an informal description of
randomized encodings). The rough idea is as follows: the compact functional
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secret key for a function f is a sequence of � independent succinct functional
secret keys where � is the output length of f . The ith succinct functional secret
key corresponds to the function that outputs the ith bit of f . The compact
functional ciphertext for a message m is the randomized encoding of a machine
Π that takes no input and when run, outputs {Enc(pki,m)}i∈[�] where pki is the
public key corresponding to the ith instance of the succinct functional scheme
(these instances are generated using a PRF, hence the description size of Π is
independent of �). The compactness of the functional encryption scheme follows
from the compactness of the randomized encoding scheme.

Note that the above result necessarily requires the computation being
encoded to be represented as a Turing machine, since the description size is
required to be independent of the output length. As we explain in Remark 3,
such a notion of randomized encodings for Turing machine does not seem useful
for our purposes.
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