
Mitigating Multi-target Attacks in Hash-Based
Signatures

Andreas Hülsing1(B), Joost Rijneveld2(B), and Fang Song3(B)

1 Department of Mathematics and Computer Science,
Technische Universiteit Eindhoven, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
andreas@huelsing.net

2 Digital Security Group, Radboud University, P.O. Box 9010,
6500 GL Nijmegen, The Netherlands

joost@joostrijneveld.nl
3 Department of Combinatorics and Optimization,

Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
fang.song@uwaterloo.ca

Abstract. This work introduces XMSS-T, a new stateful hash-based
signature scheme with tight security. Previous hash-based signatures are
facing a loss of security, linear in performance parameters such as the
total tree height. Our new scheme can achieve the same security level
but using hash functions with a smaller output length, which immedi-
ately leads to a smaller signature size. The same techniques also apply
directly to the recent stateless hash-based signature scheme SPHINCS
(Eurocrypt 2015), and the signature size is reduced as well.

Being a little more specific and technical, the tight security stems from
new multi-target notions of hash-function properties which we define and
analyze. We show precise complexity for breaking these security proper-
ties under both classical and quantum generic attacks, thus establishing
a reliable estimate for the quantum security of XMSS-T. Especially, we
prove quantum query complexity tailored for cryptographic applications,
which overcome some limitations of standard techniques in quantum
query complexity such as they usually only consider worst-case com-
plexity. Our proof techniques may be useful elsewhere.

We also implement XMSS-T and compare its performance to that of
XMSS (PQCrypto 2011), the most recent stateful hash-based signature
scheme before our work.

Keywords: Post-quantum cryptography · Hash-based signatures ·
Hash function security · Multi-target attacks · Quantum query
complexity

Full version of this paper including missing proofs is available at: http://ia.cr/2015/
1256. This work was supported by European Commission through the ICT program
under contract ICT-645622 (PQCRYPTO). Part of this work was done while the first
author was visiting IQC. F.S. acknowledges support by Cryptoworks21, Canada’s
NSERC and ORF.

c© International Association for Cryptologic Research 2016
C.-M. Cheng et al. (Eds.): PKC 2016, Part I, LNCS 9614, pp. 387–416, 2016.
DOI: 10.1007/978-3-662-49384-7 15

http://ia.cr/2015/1256
http://ia.cr/2015/1256


388 A. Hülsing et al.

1 Introduction

Hash-based signatures are considered the most promising post-quantum alter-
native to existing schemes RSA and ECDSA which are vulnerable to quan-
tum attacks. This is especially because the security of cryptographic hash func-
tions has been well understood under intensive scrutinization. In addition, there
are exact reductionist proofs relating the hardness of breaking the schemes to
the hardness of breaking security properties of the hash functions used in the
schemes. This allows precise estimation on the security of specific parameter sets.

Traditionally, the security of hash-based signature schemes was related to
collision-resistance of the used hash function. In recent years several works
focused on basing security on milder assumptions [5,11,12,15,20,22], such as
second-preimage resistance and one-wayness. There are two fundamental reasons
driving this trend. On the one hand, the attacks against the collision-resistance
of SHA1 and MD5 motivated researchers to develop collision-resilient signature
schemes [19,26]. On the other hand, collision resistance is subject to birthday
attacks while (second-)preimage resistance is not. Hence, to reach a security level
of λ bits, a hash function with n = 2λ bit digests is needed if collision resistance
is required whereas for (second-)preimage resistance only n = λ bit digests are
needed. Halving the output size of the used hash function immediately halves
the signature and key sizes of hash-based signatures.

Multi-target Attacks. The above statement is only half the truth because
it bears on the implicit assumption that a hash function is used only once.
Clearly, for many cryptographic constructions this is not the case. Consider
for example preimage resistance (aka. one-wayness). For many cryptographic
constructions, an adversary will be able to learn a magnitude of function values
and security breach may occur once he finds a preimage for just one of them.
More specifically, suppose that a hash function with n bit outputs is used d
times in a cryptographic construction. If it suffices to invert the hash function
on any one out of the d outputs to break the security of the scheme, then the
attack complexity is downgraded to O(2n/d) instead of O(2n). Intuitively this is
because every input value that an adversary tries has probability d/2n of being a
solution instead of 1/2n, if we treat the hash function as a random function. For
theoretical (asymptotic) security this worries nobody as d is normally at most
polynomial in n. However, when choosing parameters in practice this can easily
cause serious consequences.

This issue is indeed very pertinent to hash-based signatures. Consider for
example the hash-based signature scheme XMSS [12] and its multi-tree version
XMSSMT [22] (see Sect. 4) with parameters that allow to use a keypair for a
virtually unlimited amount of signatures (e.g. a total tree height of h = 60). In
this case, an attacker can learn about 266 images under the same hash function
and will succeed in forging a signature if he finds a single preimage for any one
of the 266 values. Consequently, to achieve for example security of 256 bits one
cannot use a 256 bit hash function but has to use one with output length 322.



Mitigating Multi-target Attacks in Hash-Based Signatures 389

This does not only imply the use of a hash function with a bigger output length
(and hence a slowdown), it also increases the signature size by roughly 25%.

This Work. In this work we introduce a new hash-based signature scheme
XMSS-T that is not vulnerable to multi-target attacks. Towards this end, we
propose two new multi-target notions for preimage and second-preimage resis-
tance. We then analyze the generic security of hash functions with regard to
these new properties against classical and quantum adversaries, proving upper
and lower bounds on the query complexity of generic attacks. More specifically,
the first type of notions (single-function multi-target) models a notion that is
implicitly used by recent collision-resilient hash-based signature schemes like
XMSS, XMSSMT and SPHINCS [5,12,22]. In these notions, an adversary A
receives p target values and a random function from the hash function family.
Then, A is asked to find a preimage (or second-preimage, respectively) for one of
the target values under the given function. We prove that compared to standard
(second-)preimage resistance, the query complexity of generic attacks drops by a
factor p for classical and

√
p for quantum adversaries. Then we introduce multi-

function multi-target notions of preimage and second-preimage resistance. For
these notions, A is given multiple pairs of function and target value, drawn inde-
pendently at random. It is now A’s goal to find a preimage (or second-preimage,
respectively) for one of the target values under the associated function. We prove
that in this case the query complexity of generic attacks is exactly the same as
for the standard (single-function, single-target) notions.

Given that multi-function multi-target notions are as hard as the standard
notions of preimage and second-preimage resistance we construct a new hash-
based signature scheme with security based on these new notions. As the basic
construction follows that of XMSS, we call the new scheme XMSS-T, indicating
XMSS with tightened security. While XMSS looses in the bit security an amount
linear in several parameters including the total tree height, XMSS-T looses only
two bits, independent of any parameters. The differences between XMSSMT and
XMSS-T are a different hash tree and one-time signature scheme construction
such that the security can be based on the multi-target multi-function properties.
The basic change is that for every hash function call within a hash tree or a hash
chain, a different hash function key and different bitmasks are used. Note that
XMSS-T is stateful and it may be not suitable in some practical use cases.
The good news is that we can make similar changes to the stateless hash-based
signature scheme SPHINCS easily. Roughly speaking, it amounts to replacing
the used hash trees and one-time signatures by the ones described in this work.

Finally, we present an implementation of XMSS-T and compare it to XMSS
and XMSSMT . We show that the applied changes only have marginal perfor-
mance implications (a factor 3 loss in speed for all algorithms). Our code is
available at https://joostrijneveld.nl/papers/multitarget xmss.

Remarks on Proving Quantum Generic Security. At first sight the tasks
of breaking the various security properties for hash functions seem similar to

https://joostrijneveld.nl/papers/multitarget_xmss


390 A. Hülsing et al.

some standard problems studied in quantum query complexity. However due
to some limitations, existing results such as techniques for proving quantum
query lower bounds [2,3] cannot be applied directly. For example, there are
famous works showing upper and lower bounds on finding collisions in r-to-1
functions [1,9]. Nonetheless, random functions, whose properties our work stud-
ies, are very unlikely to be r-to-1. More generally, quantum query complexity
usually considers worst-case complexity only, whereas in cryptographic settings
we care about average-case complexity. Another issue is that, as observed by
Zhandry [29], quantum query lower bounds often have implications about quan-
tum algorithms with high success probability only. For cryptographic applica-
tions however, an attacker with small but noticeable chance of breaking a scheme
is still relevant. Therefore, a complete lower bound would be bounding the suc-
cess probability of any algorithm making a specified number of queries. It might
be possible to find fixes by digging into existing works, the situation is yet
unclear. We expect that techniques developed in this work can find useful in
other cryptographic settings as well.

Organization. We introduce and discuss the new security notions for hash
function families in Sect. 2, where detailed analysis for quantum generic security
is presented in Section 3. In Sect. 4 we present XMSS-T and discuss its security
in Sect. 5. Finally, we present our implementation results in Sect. 6.

Notation. We write x
$←− X if x is randomly chosen from the set X using

the uniform distribution. We further write log for log2. We denote the uniform
distribution over bit strings of length n by Un. We write m = poly (n) to denote
that m is a function, polynomial in n. We call a function ε(n) : N → [0, 1]
negligible and write ε(n) = negl(n) if for any c ∈ N, c > 0 there exists a nc ∈ N

s.th. ε(n) < n−c for all n > nc.

2 New Security Notions for Hash Function Families

In this section, we recall some known and define several new security notions
for (hash) function families and discuss their security against both classical and
quantum generic attacks. In the following we restrict ourselves to function fami-
lies that operate on bit strings and have a fixed input size, as this is the case in our
constructions. However, the definitions are the same for the more general case.
In the following let n ∈ N be the security parameter, m = poly (n) , k = poly (n),
and Hn = {HK : {0, 1}m → {0, 1}n}K∈{0,1}k be a family of functions. We say
a function family Hn is efficient if there exists a probabilistic polynomial time
(PPT) algorithm that evaluates HK(M) for any M ∈ {0, 1}m and K ∈ {0, 1}k.
We require all used functions to be efficient, unless we state otherwise. For hash-
based signatures we are mainly interested in functions with m, k ≥ n. However,
we try to keep our results as general as possible and make it explicit whenever
we are relying on m, k ≥ n.



Mitigating Multi-target Attacks in Hash-Based Signatures 391

2.1 Defining the Security Notions

Preimage-Resistance (OW). Let’s revisit the standard notion of preimage
resistance (a.k.a. one-wayness). We define the success probability of an adversary
A against the preimage resistance of a hash function family Hn as

SuccowHn
(A) = Pr [ K

$←− {0, 1}k;M $←− {0, 1}m, Y ←− HK(M);

M ′ $←− A(K,Y ) : Y = HK(M ′)] . (1)

Single-Function, Multi-target Preimage Resistance (SM-OW). We now
define the success probability of an adversary against sm-ow. This is the basic
multi-target notion of preimage resistance implicitly used by previous collision
resilient hash-based signature schemes like XMSS. We show in Sect. 3 that this
notion is significantly easier to attack than standard preimage resistance. The
definition takes another parameter p defining the number of targets.

Succsm-owHn,p (A) = Pr [ K
$←− {0, 1}k;Mi

$←− {0, 1}m, Yi ←− HK(Mi), 0 < i ≤ p;

M ′ $←− A(K, (Y1, . . . , Yp)) : ∃0 < i ≤ p, Yi = HK(M ′)] . (2)

Multi-Function, Multi-target Preimage Resistance (MM-OW). Next we
define the success probability of an adversary A against mm-ow. This is the
notion we are aiming for with XMSS-T as it is as hard to break as standard
preimage resistance, as we will show below. Again the definition is parameterized
by the number of targets:

Succmm-owHn,p (A) = Pr [ Ki
$←− {0, 1}k,Mi

$←− {0, 1}m, Yi ←− HKi
(Mi), 0 < i ≤ p;

(j,M ′) $←− A((K1, Y1), . . . , (Kp, Yp)) : Yj = HKj
(M ′)

]
. (3)

The difference between these two new definitions is that for sm-ow all targets
are for the same function while for mm-ow each target has an associated random
function from the family. We decided that A has to output the associated index
i in case of mm-ow as otherwise any reduction would have to search for i and A
knows i for any attack that does better than guessing.

Second-Preimage Resistance (SPR). After presenting the multi-target
notions for one-wayness, we now turn to second-preimage resistance. We start
revisiting the standard notion of second-preimage resistance. We define the suc-
cess probability of an adversary A against the second-preimage resistance (spr)
of a hash function family Hn as

SuccsprHn
(A) = Pr [ K

$←− {0, 1}k;M $←− {0, 1}m;

M ′ $←− A(K,M) : M ′ 	= M ∧ HK(M) = HK(M ′)] . (4)

Note that in this definition the adversary is not promised to receive an M that
actually has a second-preimage. Hence, especially for families Hn with m = n,



392 A. Hülsing et al.

i.e. same size of domain and co-domain, the adversaries success probability is
largely influenced by the probability that a random M actually has a second-
preimage.

Single-Function, Multi-target Second-Preimage Resistance (SM-SPR).
As for one-wayness, we define two multi-target notions: single-function multi-
target second-preimage resistance (sm-spr) and multi-function multi-target
second-preimage resistance (mm-spr). The first one (sm-spr) is the notion
implicitly used in XMSS. The latter is the notion we aim for with XMSS-T
that is as hard to break as standard second-preimage resistance, as we will prove
below. We start defining the success probability of an adversary against sm-spr.
The definition again takes another parameter p defining the number of targets:

Succsm-sprHn,p (A) = Pr [K $←− {0, 1}k;Mi
$←− {0, 1}m, 0 < i ≤ p;

M ′ $←− A(K, (M1, . . . , Mp)) :
∃0 < i ≤ p : M ′ 	= Mi ∧ HK(Mi) = HK(M ′)] . (5)

Multi-function, Multi-target Second-Preimage Resistance (MM-SPR).
Next we define the success probability of an adversary A against mm-spr. Again
the definition is parameterized by the number of targets:

Succmm-sprHn,p (A) = Pr [Ki
$←− {0, 1}k,Mi

$←− {0, 1}m, 0 < i ≤ p;

(j,M ′) $←− A((K1,M1), . . . , (Kp,Mp)) :

M ′ 	= Mj ∧ HKj
(Mj) = HKj

(M ′)
]
. (6)

Extended Target Collision Resistance (eTCR). In [19] Halevi and
Krawczyk introduced extended target collision resistance (eTCR) as a hash func-
tion property that is close to target collision resistance. In the classical target-
collision resistance game, the adversary is allowed to choose a target message M .
Afterwards he learns a function (by learning a key K) and has to find a collision
for the M under this function HK . While the setup of the eTCR game is exactly
the same, the adversary wins if he can present a new message M ′ and a (possibly
new) key K ′ such that HK(M) = HK′(M ′). Formally, the success probability
of an adversary A = (A1,A2), where A1 and A2 have shared memory, against
eTCR is defined as follows:

SucceTCR
Hn

(A) = Pr [M $←− A1(1n);K $←− {0, 1}k; (M ′,K ′) $←− A2(K,M) :
M ′ 	= M ∧ HK(M) = HK′(M ′)] . (7)

Multi-target Extended Target Collision Resistance (m-eTCR). We can
also define a multi target version (eTCR is inherently multi function anyway).
To keep the definition readable we use a challenge oracle Box(·) that on input of a
message outputs a uniformly random function key. This oracle models the ability
of A to adaptively obtain p eTCR challenges for the same function family. We
denote by (Mi,Ki) the ith query-answer pair of Box(·). The success probability



Mitigating Multi-target Attacks in Hash-Based Signatures 393

of an adversary A against m-eTCR that makes no more than p queries to Box(·)
is defined as:

Succm-eTCR
Hn,p (A) = Pr [ (M ′,K ′, i) $←− ABox(·)(1n) :

M ′ 	= Mi ∧ HKi
(Mi) = HK′(M ′)] . (8)

2.2 Generic Security

To determine secure parameters for hash function families or constructions based
on them, their security against generic attacks is analyzed. Generic attacks show
which security level is achievable at all for a given property as they do not take
any possibly existing function specific weaknesses into account. A hash function
family is considered broken if the security level for one property is (significantly)
lower than the generic security.

Classical Generic Security. The standard way to analyze the complexity of
generic attacks against a security property of hash function families is analyzing
the success probability of an adversary A against a random function family to
which it is given black box access. The classical security is well understood in the
literature. The security of the new notions we defined can be easily established
as well. For completeness, we give brief justifications in Appendix A. Table 1
summarizes the classical and quantum generic security.

Quantum Generic Security. When we analyze the properties of hash func-
tions under generic quantum attacks, we treat any hash function as a random
function and the adversary can issue quantum superposition queries to the
function. Namely, we are essentially working under the quantum random-oracle
model [6]. When there are multiple functions, we assume they are independent
random functions and the adversary can query them jointly in superposition.
Namely, queries in the form of

∑

K,M,z

αK,M,z|K,M, z〉 �→
∑

K,M,z

αK,M,z|K,M, z + HK(M)〉,

are permitted1. This choice is meant to capture the fact that in reality all hash
functions are public, and a quantum adversary can certainly evaluate them
jointly in superposition. This is in contrast to the classical setting, where each
query must specify an index, and hence the adversary only gets one value of
one function per query. One can define a similar model in the quantum setting
(i.e., each query must specify one and only one function index K) and study all
the security properties therein. We stress that this model seems weaker than the
one we choose, and in particular our lower bounds results are hence stronger.
Namely, they hold against stronger quantum attacks. It is an interesting theo-
retical question as to determining whether the two models are indeed different.
1 Alternatively, one can think of it as a global random function (K, M) �→ O(K, M).



394 A. Hülsing et al.

Table 1. Security against generic classical and quantum attacks. Entries represent the
success probability of a q-query adversary (upper and lower bound).

ow,mm-ow, spr,mm-spr sm-ow, sm-spr eTCR m-eTCR

Classical q+1
2n

(q+1)p
2n

(q+1)
2n + q

2k
(q+1)p

2n + qp
2k

Quantum Θ( (q+1)2

2n ) Θ( (q+1)2p
2n ) Θ( (q+1)2

2n + q2

2k ) Θ( (q+1)2p
2n + q2p

2k )

We prove our results regarding quantum generic security in Sect. 3. Our find-
ings are summarized in Table 1. Please note that the constant hidden in the Θ
is small, i.e. 16 for the lower bounds.

3 Analyzing Quantum Generic Security

In the following we establish the generic security of hash function families against
quantum attacks on the defined properties. For each security property, we give
attacks and analyze their success probabilities. All attacks are based on Grover’s
quantum search algorithm, but we will need to analyze the complexity for ran-
dom problem instances. More importantly, we establish matching lower bounds
for all cases. The proofs of lower bounds follow a unified structure. Specifically,
we first define a family of distributional search problems and bound the success
probability of quantum algorithms against these problems. Then, we reduce var-
ious instances of the search problem to the task of breaking each of the security
properties we care about. The hardness of the distributional search problems
hence implies the generic security of hash functions for these security properties.

3.1 Toolbox

(Generalized) Grover’s Quantum Search Algorithm. One of the most
useful algorithmic tools in quantum computing is Grover’s quantum search algo-
rithm and its many generalizations (e.g., [7,8,10,18] to name a few). Here we
just need a simple version for searching a universe with multiple marked items.
We state it in the following Lemma.

Lemma 1. Let f : X → {0, 1} be an oracle function and let Xf = {x ∈ X :
f(x) = 1}. Then there is a quantum algorithm QSearch with q queries that
finds an x ∈ Xf with success probability Ω(q2 |Xf |

|X| ).

Most of the attacks we describe later will apply QSearch in a straightfor-
ward way. However, since our problem instances are generated randomly, we will
need to give a new analysis of the average-case performance.

A Hard Average-Case Search Problem. It is well known that Grover’s
search algorithm is also optimal [4]. Namely, adopting notations from Lemma 1,
any q-query algorithm can find a marked item with probability at most



Mitigating Multi-target Attacks in Hash-Based Signatures 395

O(q2 |Xf |
|X| ). However since the security notions we defined all refer to average-case

problems, the worst-case lower bound of Grover’s search is not very useful. Here
we introduce a distributional search problem, and prove a stringent hardness
result.

Definition 1. Let F := {f : {0, 1}m → {0, 1}} be the collection of all boolean
functions on {0, 1}m. Let λ ∈ [0, 1] and ε > 0. Define a family of distributions
Dλ on F such that f ←R Dλ satisfies

f : x �→
{

1 with prob. λ,
0 with prob. 1 − λ

for any x ∈ {0, 1}m.

We define Avg-Search λ to be the problem that given oracle access to f ← Dλ,
finds an x such that f(x) = 1. For any quantum algorithm A that makes q
queries, we define

Succq
λ(A) := Pr

f←Dλ

[f(x) = 1 : x ← Af (·)].

Theorem 1. Succq
λ(A) ≤ 8λ(q + 1)2 holds for any quantum algorithm A with q

queries.

Note that this theorem matches the intuitive argument that for f ← Dλ,
there are 2mλ marked items on average and hence any quantum algorithm needs
Θ(

√
2m/(2mλ)) = Θ(1/

√
λ) queries. We defer its proof to the full version.

Simulating Random Functions. In our reductions to show lower bounds, we
usually assume we have access to some random function f : X → Y. Ultimately,
we will need to simulate f efficiently so that any algorithm with q queries cannot
notice a difference. Fortunately, the following claim allows us to do so by sampling
uniformly from a 2q-wise independent hash function family H.

Lemma 2. [28, Theorem 6.1] For any quantum adversary that makes no more
than q queries to either a truly random function or a function drawn uniformly
from H, the final states are identical.

There exists a vast literature on efficient constructions of t-wise indepen-
dent hash functions. Interested readers are referred to, e.g., [14,23,24]. There
is a technical subtlety though. Most constructions of H consider output space
Y with size being a prime or a prime power. We need one with Y = [N ],
N = 2n − 1. A natural approach is to pick a prime M >> N and construct
a 2q-wise independent family H0 : X → [M ]. Then we would expect that
H : x �→ H0(x) mod N will suffice for our purpose, modulo a tiny error. However
we were unable to identify a rigorous proof in the literature for the correctness
of this “mod” construction, especially with respect to quantum attacks. We give
a formal proof in the full version.



396 A. Hülsing et al.

Sometimes we need a random function f that excludes some output y ∈ Y.
This is easy to realize as follows. We take a random function g : X → [k] where
k = |Y| − 1. Then f(x) will be obtained by applying g on x and then mapping
the outcome to Y\y according to some canonical isomorphism (e.g., any thing
smaller than y remains unchanged, and anything else is incremented by 1.).

3.2 Hardness of Breaking the Security

We analyze in this section the hardness of generic quantum attacks on the var-
ious notions of hash functions. We give upper bounds on the success probabil-
ities of any quantum adversary making at most q queries. Basically, we reduce
Avg-Searchλ with various λ to the task of breaking the security notion generically.
The hardness of Avg-Search then implies the security against generic quantum
attacks. The bounds for ow, spr and their variants are given in Propositions
1 and 2. While the proofs are quite similar we have to deal with a restriction
for the ow notions that we did not figure out how to circumvent. Namely, we
require that 2m 
 2n (e.g. m = 2n) and p � 2n, which is the case for most rel-
evant hash function families. The complexity for eTCR and m-eTCR involves
additional technical difficulty concerning programming a random oracle, and we
analyze them in Proposition 3.

Proposition 1. Let m = cn for a positive real constant c > 1 and p = o(n).
For any quantum adversary with q queries, it holds that

SuccowHn
(A) = O((q + 1)2/2n),Succsm-owHn

(A) = O((q + 1)2p/2n),

Succmm-owHn
(A) = O((q + 1)2/2n).

The proof is given in the full version.

Proposition 2. For any quantum adversary with q queries, it holds that

SuccsprH (A) = O((q + 1)2/2n),Succsm-sprHn
(A) = O((q + 1)2p/2n),

Succmm-sprHn
(A) = O((q + 1)2/2n).

We give the proof for mm-spr. The others can be proven analogously and
are deferred to the full version.

Proof (Hardness of mm-spr). Given an Avg-Search instance, we construct an
instance of mm-ow in Fig. 1:

Note that the way that f is generated ensures that each constructed H̃i is
distributed identically to a uniformly random function H : {0, 1}m → {0, 1}n.
Therefore the output instance in the reduction is valid according to the definition
Eq. 6. This implies that any q-query attacker solving mm-spr will give rise to a
2q-query algorithm for Avg-Searchλ. As a consequence

Succmm-sprHn
(A) ≤ ADV2q

A (λ) ≤ 16(q + 1)2/2n,



Mitigating Multi-target Attacks in Hash-Based Signatures 397

Fig. 1. Reducing Avg-Search to mm-spr.

follows by Theorem 1. We remark that, as mentioned in Sect. 3.1, H̃i can be
implemented efficiently.

Proposition 3. Let ε = 8(q + 1)2/2n and δ = 4q2/2k. For any quantum adver-
sary with q queries, it holds that

SucceTCR
Hn

(A) ≤ ε + 2δ, Succm-eTCR
Hn

(A) ≤ p(ε + 2δ).

To prove the proposition, we need a lemma that allows us to adaptively
program a quantum random oracle. The proof follows standard techniques (see
similar analyses for different scenarios in [16,27]). Let A be an arbitrary quantum
algorithm and let H : {0, 1}m×{0, 1}k → {0, 1}n be a random function. Consider
two games as follows:

– Game G0: A gets access to H. In phase 1, after making at most q1 queries
to H, A outputs a message M ∈ {0, 1}m. Then a random K̂ ∈R {0, 1}k is
sampled and (K̂,HK̂(M)) is handed to A. A continues to the second phase
and makes at most q2 queries. A outputs b ∈ {0, 1} at the end.

– Game G1: A gets access to H. After making at most q1 queries to H, A
outputs a message M ∈ {0, 1}m. Then a random K̂ ∈R {0, 1}k is sampled as
well as a random range element y ∈R {0, 1}n. Program HK̂(M) = y and call
the new oracle H ′. A receives (K̂, y = H ′

K̂
(M)) and proceeds to the second

phase. After making at most q2 queries, A outputs b ∈ {0, 1} at the end.

Lemma 3. |Pr[A(G0) = 1] − Pr[A(G1) = 1]| ≤ 2δ, with δ = 4q2/2k.

The proof of the Lemma is described in the full version. Using the Lemma, we
can prove Proposition 3.



398 A. Hülsing et al.

Proof (Proof of Proposition 3). We give a reduction from Avg-Search to break-
ing eTCR. Assume that there is A that breaks eTCR with probability η. We
construct an adversary A′ that solves Avg-Search with probability η − 2δ. Note
that as long as A does not notice that we reprogrammed H, its view would
be identical to that of the standard eTCR game, and by assumption A wins
with probability at least η. By Lemma 3, reprogramming only incurs an addi-
tive error 2δ = 4q2/2k. We claim that Pr[f(K∗,M∗) = 1] ≥ η − 2δ. But we
know that the success probability of Avg-Search is at most ε := 8(q + 1)2/2n by
Theorem 1. Therefore η ≤ ε+2δ and this proves Proposition 3. We can generalize
the arguments above to the multi-target case easily.

Fig. 2. Reducing Avg-Search to eTCR

3.3 Quantum Attacks

In this section, we apply quantum search algorithm QSearch to attack the
various notions generically. In most cases, we get bounds on success probabilities
matching the hardness results we have shown in Sect. 3.2.

Proposition 4. There exist quantum adversaries A1, . . . ,A8 all of which mak-
ing Θ(q) queries, such that

SuccowHn
(A1) = Ω(q2/2n),Succsm-owHn

(A2) = Ω(q2p/2n),

Succmm-owHn
(A3) = Ω(q2/2n); SuccsprHn

(A4) = Ω(q2/2n),

Succsm-sprHn
(A5) = Ω(q2p/2n),Succmm-sprHn

(A6) = Ω(q2/2n);

SucceTCR
Hn

(A7) = Ω(q2/2n),Succm-eTCR
Hn

(A8) = Ω(q2p/2n).



Mitigating Multi-target Attacks in Hash-Based Signatures 399

The proof is adapting standard analysis to the average case. We illustrate
the basic idea by proving the case of preimage-resistance. The others are left to
the full version.

Proof (Quantum attack on ow). We describe a O(q)-query attacker A1 as fol-
lows. Given y and oracle access to H, A1 will apply QSearch to search for
x such that H(x) = y. More specifically, A1 constructs gH : {0, 1}m → {0, 1}
such that gH(x) = 1 iff. H(x) = y. Each evaluation on gH can be realized effi-
ciently by two queries to h. For any h ∈ H, let ph := PrH←H[H = h] and let
XH = |H−1(y)| be the random variable representing the preimage size of y.
Then by Lemma 1 we can see that

SuccowHn
(A1) =

∑

h

ph · Ω(q2
Xh

2m
) = Ω(

q2

2m

∑

h

phXh)

= Ω(
q2

2m
· E(XH)) = Ω(

q2

2n
).

In the last step we observe, by linearity of expectation, that

E(XH) =
∑

x∈X

Pr
H←H

[H(x) = y] = 2m/2n.

4 XMSS-T

The eXtended Merkle Signature Scheme (XMSS) was proposed by Buchmann,
Dahmen, and Hülsing in [12]. The original proposal for XMSS essentially com-
bines a collision-resilient version of the Winternitz one-time signature scheme
(WOTS) from [11] with the collision-resilient hash tree construction from [15]
and adds two different kinds of pseudorandom key generation, one leading an
EU-CMA-secure and one a forward-secure signature scheme. Under the name
XMSSMT Hülsing, Rausch, and Buchmann [22] later proposed a multi-tree ver-
sion of XMSS.

In this work we introduce XMSS-T, XMSS with tightened security. In con-
trast to XMSS, XMSS-T avoids multi-target attacks. To this end, XMSS-T uses
a new hash tree construction and a new WOTS variant WOTS-T. XMSS-T is
based on XMSSMT . The main difference in the construction of XMSSMT and
XMSS-T is the use of independent function keys and bitmasks for every call to
a hash function inside of the hash trees or WOTS-T. XMSSMT used a single
fixed key per function family and the same bitmask per internal tree level or
chain position. The function keys and bitmasks used by XMSS-T are needed for
verification. To keep the public key small these values are generated pseudoran-
domly, using a hash-based pseudorandom function family and a seed value that
becomes part of the public key. In the following we describe XMSS-T.



400 A. Hülsing et al.

Parameters. XMSS-T uses several parameters and several functions. The
main security parameter is n ∈ N, the message digest length m ∈ poly (n).
The functions include two keyed, short-input cryptographic hash functions F :
{0, 1}n × {0, 1}n → {0, 1}n and H : {0, 1}n × {0, 1}2n → {0, 1}n; one arbitrary-
input randomized hash function H : {0, 1}m × {0, 1}∗ → {0, 1}m; and two
ensembles of pseudorandom function families Fn : {0, 1}n × {0, 1}∗ → {0, 1}n,
Fm : {0, 1}n × {0, 1}∗ → {0, 1}m, where we denote by {0, 1}∗ the ability to
handle arbitrary input lengths up to some practical limit (e.g. 264 bits as in the
case of the SHA family). Of course, these functions can all be built from a single
cryptographic hash function, but the security analysis gets easier separating the
functions according to the required properties.

XMSS-T uses a hyper-tree (a tree of trees) of total height h ∈ N, where h is a
multiple of d and the hyper-tree consists of d layers of trees, each having height
h/d. WOTS allows for a space-time trade-off using the Winternitz parameter
w ∈ N, w > 1. The Winternitz parameter w and the length of the bit string that
is signed λ determine 
 the number of function chains for WOTS:


1,λ =
⌈

λ

log(w)

⌉
, 
2,λ =

⌊
log(
1(w − 1))

log(w)

⌋
+ 1, 
λ = 
1 + 
2.

The bit strings signed using WOTS are the m-bit message digests on the lowest
layer and the n-bit root nodes of the layer below on all other layers.

As a running example we present concrete numbers for XMSS-T-256; the
choices are explained in Sect. 6. For XMSS-T-256 we use n = 256,m = 316,
h = 60, d = 3, w = 16 which leads to 
n = 67 and 
m = 82.

Addressing Scheme. XMSS-T requires an addressing scheme for hash function
calls. Every addressing scheme that assigns to every call to either F or H within
the virtual structure of a XMSS-T hyper-tree a unique address can be used (e.g.
numbering all the calls in some order). We suggest to use a recursive addressing
scheme that numbers sub-structures (e.g. a OTS key pair) inside a structure
(e.g. a tree). The addressing scheme generates an address for a substructure,
taking the address of the structure and appending the index of the substructure.
For trees, which contain three different kinds of substructures (OTS key pairs,
L-trees, and nodes), an additional identifier for the type of substructure is added.
Below we assume that a function GenAddr(as, index) exists that takes the
address of the structure and the index of the substructure and outputs a unique
address for this substructure within an XMSS-T key pair. The advantage of this
addressing scheme is that it only uses information that is available when the
hash call is executed.

The addressing scheme is publicly known and the same addresses can be used
for all XMSS-T key pairs. The resulting addresses are used as inputs to PRF Fn

to pseudorandomly generate function keys and bitmasks.

WOTS-T. We now describe the new WOTS version. The construction differs
from [20] in that it uses fresh keys and bitmasks for each hash function call.



Mitigating Multi-target Attacks in Hash-Based Signatures 401

We denote the message length by λ ∈ {n,m} and to improve readability we
write 
, 
1, and 
2 instead of 
λ, 
1,λ, and 
2,λ. We include pseudorandom key
generation, meaning that a seed value takes the place of a secret key in our
description. We describe the algorithms as used by XMSS-T, hence, they take
global secret and public information. For a standalone version, this information
would have to be generated during key generation.

The difference between all WOTS variants is in the way the so called chaining
function is constructed. WOTS-T uses the function F to construct the following
chaining function:

Chaining Function ci,j(x,aC ,Seed): On input of value x ∈ {0, 1}n, iteration
counter i ∈ N, start index j ∈ N, chain address aC , and (public) seed Seed,
the chaining function works the following way. In case i = 0, c returns x, i.e.,
c0,j(x,aC ,Seed) = x. For i > 0 we define c recursively as

ci,j(x,aC ,Seed) = F(ki,j , c
i−1,j(x,aC ,Seed) ⊕ ri,j),

where key ki,j = Fn(Seed,GenAddr(aC , 2 · (j + i))) and bitmask ri,j =
Fn(Seed, GenAddr(aC , 2 · (j + i) + 1)). I.e. in every round, the function first
takes the bitwise xor of the previous value ci−1,j(x,aC ,Seed) and bitmask ri,j

and evaluates F with key ki,j on the result.
Now we describe the three algorithms of WOTS-T.

Key Generation Algorithm ((sk, pk) ←− WOTS.kg(S,aOTS,Seed)): On input
of a global secret key seed S ∈ {0, 1}n (used for every WOTS-T keypair within a
XMSS-T keypair), the address of the WOTS-T keypair within a tree aOTS, and
public seed Seed, the key generation algorithm computes the internal secret key
sk = (sk1, . . . , sk�) as ski ←− Fn(S,GenAddr(aOTS, i)), i.e., the 
 n bit secret
key elements are derived form the secret key seed using the address of the chain
they are contained in. The public key pk is computed as

pk = (pk1, . . . , pk�) = (cw−1,0(sk1,aC1 ,Seed), . . . , cw−1,0(sk�,aC�
,Seed)),

where aCi
= GenAddr(aOTS, i). Note that S requires less storage than sk; thus

we generate sk and pk on the fly when necessary.

Signature Algorithm (σ ←− WOTS.sign(M,S,aOTS,Seed)): On input of a
λ-bit message M , the global secret key seed S ∈ {0, 1}n, the address of the
WOTS-T keypair within a tree aOTS, and public seed Seed, the signature
algorithm first computes a base-w representation of M : M = (M1 . . . M�1),
Mi ∈ {0, . . . , w − 1}. That is, M is treated as the binary representation of a
natural number x and then the w-ary representation of x is computed. Next it
computes the checksum C =

∑�1
i=1(w − 1 − Mi) and its base w representation

C = (C1, . . . , C�2). The length of the base w representation of C is at most 
2
since C ≤ 
1(w − 1). We set B = (b1, . . . , b�) = M ‖ C, the concatenation of the
base w representations of M and C. Then the internal secret key is generated



402 A. Hülsing et al.

Fig. 3. The authentication path for leaf i.

using ski ←− Fn(S,GenAddr(aOTS, i)) the same way as during key generation.
The signature is computed as

σ = (σ1, . . . , σ�) = (cb1,0(sk1,aC1 ,Seed), . . . , cb�,0(sk�,aC�
,Seed)),

where aCi
= GenAddr(aOTS, i) as above.

Verification Algorithm (pk′ ←− WOTS.vf(M,σ,aOTS,Seed)): On input of a
λ-bit message M , a signature σ, the address of the WOTS-T keypair within a
tree aOTS, and public seed Seed, the verification algorithm first computes the
bi, 1 ≤ i ≤ 
 as described above. Then it returns:

pk′ = (pk′
1, . . . , pk

′
�) = (cw−1−b1,b1(σ1,aC�

,Seed), . . . , cw−1−b�,b�(σ�,aC�
,Seed)).

A formally correct verification algorithm would compare pk′ to a given public
key and output true on equality and false otherwise. In XMSS-T this comparison
is delegated to the overall verification algorithm.

Binary Hash Trees. The central elements of a Merkle tree signature scheme
are full binary hash trees. We use a new construction that allows multi-target-
attack resilience. In XMSS-T, a binary hash tree of height h always has 2h leaves
which are n bit strings Li, i ∈ [2h − 1]. Each node Ni,j , for 0 < j ≤ h, 0 ≤ i <
2h−j , of the tree stores an n-bit string. For the leaf nodes define Ni,0 = Li. The
values of the internal nodes Ni,j are computed as

Ni,j = Hki,j
((N2i,j−1‖N2i+1,j−1) ⊕ (ri,j)),

where key ki,j = Fn(Seed,GenAddr(aTree, 4 · (j + i))) and bitmask ri,j =
(Fn(Seed,GenAddr(aC , 4·(j+i)+1))‖Fn(Seed,GenAddr(aC , 4·(j+i)+2))).
We also denote the root as Root = N0,h.

An important notion is the authentication path Authi = (A0, . . . ,Ah−1) of
a leaf Li shown in Fig. 3. Authi consists of all the sibling nodes of the nodes
contained in the path from Li to the root. For a discussion on how to compute
authentication paths, see Sect. 6. Given a leaf Li together with its authentication
path Authi, the root of the tree can be computed using Algorithm 1.



Mitigating Multi-target Attacks in Hash-Based Signatures 403

Input: Leaf index i, leaf Li, authentication path Authi = (A0, . . . ,Ah−1) for Li.
Output: Root node Root of the tree that contains Li.

Set P0 ← Li;
for j ← 1 up to h do

Set i′ =
⌊
i/2j
⌋
;

Pj =

{
Hki′,j

((Pj−1||Aj−1) ⊕ ri′,j), if
⌊
i/2j−1

⌋ ≡ 0 mod 2;

Hki′,j
((Aj−1||Pj−1) ⊕ ri′,j), if

⌊
i/2j−1

⌋ ≡ 1 mod 2;

end
return Ph

Algorithm 1. Root Computation

L-Tree. In addition to the full binary trees above, we also use unbalanced binary
trees called L-Trees as in [15]. These are exclusively used to hash WOTS-T public
keys. The 
λ leaves of an L-Tree are the elements of a WOTS-T public key and
the tree is constructed as described above but with one difference: A left node
that has no right sibling is lifted to a higher level of the L-Tree until it becomes
the right sibling of another node. Apart from this the computations work the
same as for binary trees. The L-Trees have height �log 
λ�.

4.1 XMSS-T

Given all of the above we can finally describe the algorithms of the XMSS-T
construction. An XMSS-T keypair completely defines a hyper-tree of height h
that consists of d layers of trees of height h/d. Each of these trees looks as follows.
The leaves of a tree are 2h/d L-Tree root nodes that each compress the public
key of a WOTS-T key pair. Hence, a tree can be viewed as a key pair that can
be used to sign 2h/d messages. The hyper-tree is structured into d layers. On
layer d − 1 it has a single tree. On layer d − 2 it has 2h/d trees. The roots of
these trees are signed using the WOTS-T key pairs of the tree on layer d − 1.
In general, layer i consists of 2(d−1−i)(h/d) trees and the roots of these trees are
signed using the WOTS-T key pairs of the trees on layer i + 1. Finally, on layer
0 the WOTS-T key pairs are used to sign the message digests.

To improve readability, we only give a functional description of the algorithms
of XMSS-T. To obtain a practical scheme, this has to be combined with the
distributed signature generation method from [22] which in turn makes use of
the BDS algorithm [13] for efficient tree traversal.

Key Generation Algorithm ((SK,PK) ←− kg(1n)): The key generation algorithm
first samples two secret values (SK1,SK2) ∈ {0, 1}n ×{0, 1}n. The value SK1 = S
is the seed used for pseudorandom key generation in WOTS-T. The value SK2

is used to generate pseudorandom values to randomize the message hash in sign.
Also, the public seed Seed

$←− {0, 1}n is sampled as a uniform random value.
The remaining part of kg consists of generating the root node of the tree

on layer d − 1. Towards this end the WOTS-T key pairs for the single tree on



404 A. Hülsing et al.

layer d − 1 are generated using SK1 as S. The ith leaf Li of the tree is the root
of an L-Tree that compresses pki. Finally, a binary hash tree is built using the
constructed leaves and its root node becomes PK1.

Besides the secret values and Seed, the secret key also contains the index
i of the next WOTS-T key pair to use for message signing. The index takes
h bits and is initialized with the all 0 bit string. The XMSS-T secret key is
SK = (i = 0h,SK1,SK2,Seed), the public key is PK = (PK1,Seed). kg returns
the key pair ((SK1,SK2,Seed), (PK1,Seed)).

Signature Algorithm ((Σ,SK) ←− sign(M,SK)): On input of a message M ∈
{0, 1}∗ and secret key SK = (i,SK1,SK2,Seed), sign computes a randomized
message digest D ∈ {0, 1}m: First, a pseudorandom R ∈ {0, 1}m is computed as
R ←− Fm(SK2,M). Then, D ←− H(R,M) is computed as the randomized hash
of M using R as randomness. Note that signing is deterministic, i.e., we need
no real randomness as all required ‘randomness’ is pseudorandomly generated
using PRF Fm.

Given index i, the ith WOTS-T key pair on layer d = 0 is used to sign D. More
specifically, this is the i0th WOTS-T keypair in the i′0th tree on layer 0, where i0
is given by the last h/d bits of i and i′0 by the remaining (d−1)h/d bits of i. Next,
the authentication path Authi0 for the i0th leaf of the i′0th tree is computed as
well as the root of that tree. Now, for every layer 1 ≤ δ ≤ d−1 the same procedure
is repeated with the difference that i = i′δ−1 and the root computed on layer
δ−1 is signed. So, to sign the root from layer δ−1, the iδth WOTS-T keypair in
the i′δth tree on layer δ is used, where iδ is given by the last h/d bits of i′δ−1 and
i′δ by the remaining (d−1)h/d bits of i′δ−1. Then the authentication path Authiδ

for the iδth leaf of the i′δth tree is computed as well as the root of that tree.
The XMSS-T signature Σ = (i, R, σW,0,Authi0 , . . . , σW,d−1,Authid−1) contains
the used index i, randomness R and one WOTS-T signature – authentication
path pair σW,j ,Authij

, j ∈ [d − 1] per layer.
Finally, sign updates the secret key SK setting i = i + 1 and outputs the

pair(Σ,SK).

Verification Algorithm (b ←− vf(M,Σ,PK)): On input of a message M ∈
{0, 1}∗, a signature Σ, and a public key PK, the algorithm computes the mes-
sage digest D ←− H(R,M) using the randomness R contained in the signature.
Using i, the indices iδ, i

′
δ are computed for 0 ≤ δ ≤ d − 1. The message digest

D and the Seed from PK are used to compute the first WOTS-T public key
pkW,0 ←− WOTS.vf(D,σW,0,aOTS0 ,Seed), where aOTS0 is the address of the
i0th WOTS-T keypair in the i′0th tree on layer 0. An L-Tree is used to compute
Li0 , the leaf corresponding to pkW,0. Then, the root Root0 of the respective
tree is computed using Algorithm 1 with index i0, leaf Li0 and authentication
path Authi0 .

Then, this procedure gets repeated for layers 1 to d−1 with the following two
differences. First, on layer 1 ≤ δ ≤ d−1 the root of the previously processed tree
Rootδ−1 is used to compute the WOTS-T public key pkW,δ. Second, the leaf
computed from pkW,δ using an L-Tree is Liδ

. The result of the final repetition



Mitigating Multi-target Attacks in Hash-Based Signatures 405

on layer d − 1 is a value Rootd−1 for the root node of the single tree on the
top layer. This value is compared to the first element of the public key, i.e.,
PK1

?= Rootd−1. If the comparison holds, vf returns true, otherwise false.

5 Security

In the following we give a security reduction for XMSS-T. First, we review
the required security definitions. Afterwards we give a security reduction for
XMSS-T.

Existential Unforgeability Under Adaptive Chosen Message Attacks.
The standard security notion for digital signature schemes is existential unforge-
ability under adaptive chosen message attacks (EU-CMA) [17] which is defined
using the following experiment. By Dss(1n) we denote a signature scheme with
security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A)

(sk, pk) ←− kg(1n)
(Msg�, σ�) ←− ASign(sk,·)(pk)
Let {(Msgi, σi)}q

1 be the query-answer pairs of sign(sk, ·).
Return 1 iff vf(pk,Msg�, σ�) = 1 and Msg� 	∈ {Msgi}q

1.

For the success probability of an adversary A in the above experiment we write

Succeu-cmaDss(1n) (A) = Pr
[
ExpEU-CMA

Dss(1n) (A) = 1
]
.

A signature scheme is called EU-CMA-secure if any PPT adversary has only
negligible success probability:

Definition 2 (EU-CMA). Let n ∈ N, Dss a digital signature scheme as defined
above. We call Dss EU-CMA-secure if for all q, t = poly (n) the maximum suc-
cess probability InSeceu-cma (Dss(1n); t, q) of all possibly probabilistic adversaries
A running in time ≤ t, making at most q queries to Sign in the above experiment,
is negligible in n:

InSeceu-cma (Dss(1n); t, q)
def
= max

A
{Succeu-cmaDss(1n) (A)} = negl(n).

To be precise, XMSS-T is a so-called key-evolving signature scheme which auto-
matically updates the secret key after each signature. We capture this, assuming
that the oracle sign(sk, ·) in the above experiment replaces the secret key sk
after each signature with the one returned by XMSS-T.sign and that it returns
the empty string when i ≥ 2h, i.e. when the maximum number of signatures
were done.



406 A. Hülsing et al.

Pseudorandom Function Families. In the following we give the missing
definition for the properties of (hash) function families that we use, namely
pseudorandomness. In our definition we use the definition of (hash) function
families from Sect. 2. In the definition of the success probability of an adversary
against pseudorandomness (prf) the adversary gets black-box access to an oracle
Box. Box is either initialized with a function from Hn or a function from the set
G(m,n) of all functions with domain {0, 1}m and range {0, 1}n. The goal of the
adversary is to distinguish both cases:

SuccprfHn
(A) =

∣
∣
∣Pr[Box

$←− Hn : ABox(·) = 1]

−Pr[Box $←− G(m,n) : ABox(·) = 1]
∣
∣
∣ . (9)

Using this success probability, we define a pseudorandom function family the
following way.

Definition 3 (PRF). Let Hn be defined as above. We call Hn a pseudorandom
function family, if it is efficient and for all t = poly (n) the maximum success
probability InSecprf (Hn; t) of all possibly probabilistic adversaries A, running in
time ≤ t, is negligible in n:

InSecprf (Hn; t)
def
= max

A
{SuccprfHn

(A)} = negl(n).

5.1 Security Reduction

We now proof the security of XMSS-T. We will base the security of the core
scheme on the multi-function multi-target second-preimage resistance of F,H,
the pseudorandomness of Fn, the multi-target extended target collision resis-
tance of H and a functional requirement on F defined below in the random
oracle model. Please note that the random oracle model is only required to show
that we can hand out the seed Seed used to generate the public function keys
and bitmasks. Towards this end, we have to split the use of Fn into two parts.
Assume two functions F1

n and F2
n. We assume F1

n is used in place of Fn for
pseudorandom (secret) key generation and generation of the message hash ran-
domness. For F1

n we require standard model pseudorandomness. On the other
hand, F2

n is used to replace Fn when generating the hash keys ki,j and bitmasks
ri,j . In the proof, only F2

n is modeled as random oracle (using the concatenation
of key and input as input to the RO).

As mentioned above we need an additional requirement on F. Informally we
require that every element in the image of F has at least two preimages, i.e.,

(∀k ∈ {0, 1}n)(∀y ∈ IMG(Fk))(∃x, x′ ∈ {0, 1}n) : x 	= x′ ∧Fk(x) = fk(x′). (10)

Please note that this requirement meets the expectation for a random function.
This additional requirement is needed to not having to use the one-wayness of F.
If we had to use the one-wayness of F, we still would have to guess the messages



Mitigating Multi-target Attacks in Hash-Based Signatures 407

an adversary sends to the oracle. The reason is that plugging a challenge image
into a chain means not knowing any previous value of the chain. Hence, we could
not answer a query where the signature contains such a previous value of a chain.
This would imply a security loss of roughly h bits. Given the above property we
can instead extract a second preimage if A inverts F with probability 1/2, loosing
only 1 bit in the security level.

Now we got everything needed for the security reduction. We proof the fol-
lowing theorem:

Theorem 2. XMSS-T is existentially unforgeable under adaptive chosen mes-
sage attacks with respect to the random oracle model if

– F and H are multi-function multi-target second-preimage resistant function
families,

– F fulfills the requirement of Eq. 10,
– F1

n,Fm are pseudorandom function families,
– F2

n is modeled as a random oracle, and
– H is an multi -target extend target collision resistant hash function family.

More specifically, the insecurity function InSecEU-CMA
(
XMSS-T; ξ, 2h

)
describ-

ing the maximum success probability over all adversaries running in time ≤ ξ
against the EU-CMA security of XMSS-T is bounded by

InSeceu-cma (XMSS-T; ξ)

≤ InSecprf
(F1

n; ξ
)

+ InSecprf (Fm; ξ)

+ max{InSecm-eTCR (H; ξ) , 2InSecmm-spr (F; ξ) , InSecmm-spr (H; ξ)}
The general idea of the proof follows that of previous hash-based schemes.

There are a few mutually exclusive cases what could have happened if an adver-
sary succeeded. First, the attacker could have broken the m-eTCR property of
H. This case is easily detected and can be handled in a straight-forward manner.
Otherwise, the message digests have to differ. In this case the adversary has found
a second preimage or a preimage for F or H with high probability. To extract a
second preimage in this case, the reduction takes one mm-spr challenge (M,K)
per hash function call (H and F). Then, for this call the function is keyed with
K and the bitmask is selected such that the input to the hash function is M .
This means, if the input before the XOR with the bitmask is X, we use X ⊕ M
as bitmask. Then the RO is programmed such that it generates this bitmask
and key for this hash function call. This programming is done adaptively, only
when the adversary queries the RO for a value. Now, any second preimage in
the scheme will be a valid solution for mm-spr of either H or F. The full proof
can be found in Appendix B.

6 Implementation

In Sect. 4, we described XMSS-T, which builds on XMSSMT , altering the func-
tions that are used to construct WOTS chains and hash trees. We now examine



408 A. Hülsing et al.

the cost of this change in terms of computation time. In order to measure the
cost of the additional bitmasks and keys that are required for each application
of the functions F and H, we have implemented and benchmarked XMSS-T
and XMSSMT . We use the BDS tree traversal algorithm [13] to speed up the
authentication path computation, making the scheme practical.

We examine the scheme for two parameter configurations from the current
Internet Draft for XMSSMT [21], obtaining measurements for both a single-tree
and a multi-tree set-up. For both settings, we use w = 16 and m = n = 256.
For the first benchmark, we set h = 20, d = 1. We use the same subtree height
for the second configuration, setting h = 60, d = 3 to construct three layers of
subtrees with a height of twenty nodes each. We set k = 2 as the BDS parameter
for both parameter sets, we rely on the SHA 256 function to construct F and
H, and use ChaCha20 as the pseudorandom generator. These choices are also in
accordance with [21]. For more parameter sets see [21].

For XMSS these parameters lead to a security level of 190 bits classical and
95 bits quantum for h = 60 (230 and 115 for h = 20). Following the security
analysis in the last section and the lower bounds in Sect. 2, these parameters have
a security level of more than 256 bits classical, and 128 bits quantum (assuming
that each hash query requires more than 4 bit operations) for XMSS-T (without
the message digest). With the message digest we get approximately 190 bits
classical and 95 bits quantum like for XMSS as m-eTCR is still vulnerable to
multi-target attacks. However, this can be fixed by increasing just the message
digest size to m = 276 for h = 20 and m = 316 for h = 60. With this change we
get 256 bit classical and 128 bit quantum security. However, to get an insight into
the effects of the changes made in XMSS-T, we decided to run the experiments
for the exact same parameters (m = 256). For more benchmarks with different
parameters see the full version.

To carry out these benchmarks, we have used a single core of an Intel Core
i7-4770K CPU, running at 3.5 GHz, although the implementation was not opti-
mized specifically for this platform.In the first setting, with h = 20, we measure
an average signing time of 12 488 458 clock cycles per signature for XMSS, and
34 862 033 clock cycles for XMSS-T. For the multi-tree version (h = 60), the
scheme takes 13 014 401 clock cycles per signature for XMSS, and 37 025 552
cycles for XMSS-T.

This difference is quite significant. However, this was to be expected as the
running time of the scheme is largely dominated by applications of F and H –
precisely the functions that are changed for XMSS-T. For plain XMSS with the
aforementioned parameters, these functions merely consist of calls to SHA-256
with inputs of 256 and 512 bits, respectively. Each of these inputs fits within
the internal block size of SHA-256 (512 bits). When considering the Merkle-
Damg̊ard construction [25] that defines the structure of SHA-256, this implies
a single application of the internal compression function. When transforming F
and H into keyed hash functions, the input length increases. To ensure that the
key and the input are in separate blocks, the key is prefixed with 256 zero-bits.
This results in inputs of 768 and 1024 bits, respectively, implying the need for



Mitigating Multi-target Attacks in Hash-Based Signatures 409

two blocks, as well as two applications of the compression function. The straight-
forward calls to SHA-256 for F and H run in 1 072 and 1 924 cycles, while the
keyed variants take 1 932 and 2 812 cycles, respectively.

A bigger factor weighing down F and H is the time needed to generate
the keys and bitmasks pseudorandomly. Both these values require calls to the
pseudorandom generator. For F, we require two output blocks of 256 bits each;
H requires three. At an expense of 560 cycles per output block, generating ran-
domness for the masks and keys carries a significant cost.

Altogether, the experiments show that the tightened security comes at the
cost of a factor less than 3 increase in the runtime.

References

1. Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element
distinctness problems. J. ACM 51(4), 595–605 (2004)

2. Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst.
Sci. 64(4), 750–767 (2002)

3. Beals, R., Buhrman, H., Cleve, R., Mosca, M., De Wolf, R.: Quantum lower bounds
by polynomials. J. ACM 48(4), 778–797 (2001)

4. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses
of quantum computing. SIAM J. Comput. 26(5), 1510–1523 (1997)

5. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R.,
Papachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9056, pp. 368–397. Springer, Heidelberg (2015)

6. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.:
Random oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT
2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011)

7. Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching.
arXiv preprint quant-ph/9605034 (1996)

8. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification
and estimation. Contemp. Math. 305, 53–74 (2002)

9. Brassard, G., Hoyer, P., Tapp, A.: Quantum algorithm for the collision problem.
arXiv preprint quant-ph/9705002 (1997)

10. Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: Larsen, K.G., Skyum, S.,
Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 820–831. Springer, Heidelberg
(1998)

11. Buchmann, J., Dahmen, E., Ereth, S., Hülsing, A., Rückert, M.: On the security
of the Winternitz one-time signature scheme. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 363–378. Springer, Heidelberg (2011)

12. Buchmann, J., Dahmen, E., Hülsing, A.: XMSS - a practical forward secure
signature scheme based on minimal security assumptions. In: Yang, B.-Y. (ed.)
PQCrypto 2011. LNCS, vol. 7071, pp. 117–129. Springer, Heidelberg (2011)

13. Buchmann, J., Dahmen, E., Schneider, M.: Merkle tree traversal revisited. In:
Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 63–78.
Springer, Heidelberg (2008)

14. Carter, J.L., Wegman, M.N.: Universal classes of hash functions. In: Proceedings of
the Ninth Annual ACM Symposium on Theory of Computing, pp. 106–112. ACM
(1977)



410 A. Hülsing et al.

15. Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of second-
preimage resistant hash functions. In: Buchmann, J., Ding, J. (eds.) PQCrypto
2008. LNCS, vol. 5299, pp. 109–123. Springer, Heidelberg (2008)

16. Eaton, E., Song, F.: Making existential-unforgeable signatures strongly unforge-
able in the quantum random-oracle model. In: 10th Conference on the Theory
of Quantum Computation, Communication and Cryptography, TQC 20–22 May
2015, Brussels, Belgium, pp. 147–162 (2015)

17. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

18. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219. ACM (1996)

19. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006)

20. Hülsing, A.: W-OTS+ – shorter signatures for hash-based signature schemes. In:
Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol.
7918, pp. 173–188. Springer, Heidelberg (2013)

21. Hülsing, A., Butin, D., Gazdag, S., Mohaisen, A.: Xmss: extended hash-
based signatures draft-irtf-cfrg-xmss-hash-based-signatures-01. Crypto
Forum Research Group Internet-Draft (2015). https://tools.ietf.org/html/
draft-irtf-cfrg-xmss-hash-based-signatures-01

22. Hülsing, A., Rausch, L., Buchmann, J.: Optimal parameters for XMSSMT . In: Cuz-
zocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES Workshops
2013. LNCS, vol. 8128, pp. 194–208. Springer, Heidelberg (2013)

23. Joffe, A., et al.: On a set of almost deterministic k-independent random variables.
Ann. Probab. 2(1), 161–162 (1974)

24. Karloff, H., Mansour, Y.: On construction of k-wise independent random variables.
In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Com-
puting, pp. 564–573. ACM (1994)

25. Merkle, R.C.: Secrecy, authentication, and public key systems. Ph.D thesis, Stan-
ford University (1979)

26. Mironov, I.: Collision-resistant no more: hash-and-sign paradigm revisited. In:
Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958,
pp. 140–156. Springer, Heidelberg (2006)

27. Unruh, D.: Quantum position verification in the random oracle model. In: Garay,
J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 1–18.
Springer, Heidelberg (2014)

28. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 758–775. Springer, Heidelberg (2012)

29. Zhandry, M.: A note on the quantum collision and set equality problems. Quantum
Inf. Comput. 15(78), 557–567 (2015)

https://tools.ietf.org/html/draft-irtf-cfrg-xmss-hash-based-signatures-01
https://tools.ietf.org/html/draft-irtf-cfrg-xmss-hash-based-signatures-01


Mitigating Multi-target Attacks in Hash-Based Signatures 411

A Classical Generic Security

Preimage Resistance. For preimage resistance, analysis shows that the suc-
cess probability of any classical A that makes q queries to its oracle is

SuccowHn
(A) =

(
q + 1
2n

)
, (11)

where the probability is taken over the internal coins of the oracle and the
random choices of K and M . An attacker that makes no query but simply
outputs a random domain element has success probability 2−n of hitting the
target Y . An attacker that makes one query can verify the first guess. If that
one did not hit Y he can make another guess which he now can not verify
anymore. Together this gives a success probability of 2/2n. Iterating this gives
the above bound. Consequently, an attacker needs O(2n) queries to reach a
success probability of at least 0.5.

Single-Function Multi-target Preimage Resistance. For sm-ow a similar
analysis shows a bound of

Succsm-owHn,p (A) =
(

(q + 1)p
2n

)
, (12)

The reason is that the success probability of a single guess is now p/2n. Other-
wise, the argument follows along the lines of the above argument. Consequently,
the query complexity of a successful attack is O(2n/p). Please note, we also can
get this result using a reduction from ow. In this case, we replace a random Yi

by the given Y from the ow game. The reduction looses a factor 1/p.

Multi-function Multi-target Preimage Resistance. While the previous
cases are more or less known results, for mm-ow we are not aware of any such
results. The difference to sm-ow is that the adversary now basically plays p
independent ow games at once. In contrast to the ow game A can not use
a query he made to attack Yi for any other Yj for j 	= i. The reason is that
different functions are associated to the different Yi. So, in the classical case we
get a query bound of

Succmm-owHn,p (A) =
(

q + 1
2n

)
, (13)

The reason is that a guess has success probability 1/2n. As one also has to guess
(Ki, Yi), every verification query can only check if a given M fulfills Yi = HKi

(M)
for a single i. Viewed differently, each query has to fix Ki in advance and outputs
the associated Yi only with probability 2−n. Consequently, we get the same query
bound O(2n) as for ow.



412 A. Hülsing et al.

Second-Preimage Resistance. In the case of second-preimage resistance, the
success probability of any A that makes q queries to its oracle is

SuccsprHn
(A) =

(
q + 1
2n

)
, (14)

where the probability is taken over the internal coins of the oracle and the
random choices of K and M . The bound can easily be derived following the
analysis for one-wayness. Consequently, an attacker needs O(2n) queries to reach
a success probability of at least 0.5.

Single-Function Multi-target Second-Preimage resistance. For sm-spr
a similar analysis shows a bound of

Succsm-sprHn,p (A) =
(

(q + 1)p
2n

)
. (15)

Again, the analysis follows along the lines of the respective analysis for sm-ow.
Consequently, the query complexity of a successful attack is O(2n/p).

Multi-function Multi-target Preimage Resistance. While the previous
cases are more or less known results, for mm-spr we are not aware of any such
results. The difference to sm-spr is that the adversary now basically plays p
independent spr games at once. As for mm-ow, in the classical case, we get a
query bound of

Succmm-sprHn,p (A) =
(

q + 1
2n

)
. (16)

Again, the analysis follows along the lines of the respective analysis for mm-ow.
Consequently, the query complexity of a successful attack is O(2n).

Extended Target Collision Resistance. For eTCR, analysis shows that the
success probability of any adversary A that makes no more than q queries to its
oracle is

SucceTCR
Hn

(A) ≤
(

q + 1
2n

+
q

2k

)
, (17)

where the probability is taken over the internal coins of the oracle and the
random choice of K.

Consider an arbitrary adversary A = (A1,A2) attacking eTCR. A1 makes
q1 queries and outputs a message M . Afterwards A2 obtains K and makes q2
queries, with q1+q2 = q. Without loss of generality, we assume that A1 stores all
his query results in the shared memory. When A2 receives K, we can distinguish
two mutually exclusive cases:



Mitigating Multi-target Attacks in Hash-Based Signatures 413

Case 1: A1 already queried the oracle for HK(M). To simplify analysis, we
consider this a success for A. As K is a random key and A1 made queries for
no more than q1 different keys, this case occurs with probability

ε1 ≤ q1
2k

.

Case 2: A1 did not query HK(M) before. In this case, every query made by A1

and every query made by A2 has probability 2−n to hit HK(M) and hence
to be a solution. If A2 does not find a solution using all query results, he
can make another guess that has the same success probability as the queries
before. Hence, the success probability in this case is exactly

ε2 =
q1 + q2

2n
.

The sum of the two bounds ε1 + ε2 takes its maximum for q1 = q. This gives the
claimed bound. Note that the analysis for case 1 above is very rough and could
be tightened (This is only a success if A1 already found a pseudo-collision for
(K,M)). However, in all relevant cases we know k � n and hence tightening is
of little use.

Multi-target-ETCR. Now, switching to m-eTCR the complexities for the two
cases change as follows: In both cases a factor of q is lost. In Case 1 this is caused
by the fact that there are now q keys returned (over the game) that might hit
a previously queried one. In Case 2 this is caused by the fact that each query
works for all q targets (as in the case of mm-spr). This leads to the bound

Succm-eTCR
Hn,p (A) =

(q + 1)p
2n

+
qp

2k
.

B Proof of Theorem 2

In the following we omit indices for the mm-spr challenge pairs to preserve read-
ability. Assume that there exists an adversary A running in time ξ that breaks the
EU-CMA security of XMSS with probability εA. In the following we will prove
that εA ≤ InSecEU-CMA

(
XMSS-T; ξ, 2h

)
. First, consider the following two games:

Game 1. This is the original game.
Game 2. This is the same as Game 1 but instead of using random elements from

F1
n and Fm (by sampling S and SK2 from the key space), two truly random

functions Gn : {0, 1}n × {0, 1}∗ → {0, 1}n and Gm : {0, 1}n × {0, 1}∗ →
{0, 1}m are used.

The difference in the success probability of A playing one of these games
must be bound by InSecprf

(F1
n; ξ

)
+InSecprf (Fm; ξ), otherwise we could use A

to distinguish F1
n or Fm from a truly random function, breaking the pseudoran-

domness which would contradict the assumption. Hence, it suffices to analyze



414 A. Hülsing et al.

the success probability of A in Game 2. Towards this end, we construct an oracle
machine MA that breaks either the multi-function multi-target second-preimage
resistance of F or of H, or the extended target collision resistance of H. MA

takes q1 challenge pairs {(Ki,Mi)}q1
1 for F and q2 challenge pairs {(K ′

i,M
′
i)}q2

1

for H where q1 (q2) is the number of calls to F (H) for the XMSS-T key pair.
Each of these challenge pairs gets associated with one specific call to F or H
within the XMSS-T key pair.

MA first samples a random seed Seed
$←− {0, 1}n. The XMSS-T public key

PKbecomes (PK1 = HK′
j
(M ′

j),Seed) for (K ′
j ,M

′
j) – the pair associated with the

call to H that computes the root. Now A is run on this PK. When A makes his
ith query using some message Msgi, MA first sends Msgi to the m-eTCR chal-
lenger, receiving back a function key Ri. Then it computes the message digest as
Di = H(Ri,Msgi) and sets the signature index to i. The next steps are the same
for each tree involved in the signature. First, MA computes the chain indices b.
The WOTS+ signature is collected by selecting the challenge (K,M) for the bjth
call to F in the jth chain and computing the jth signature element as FK(M).
Similarly, the authentication path for the WOTS+ key pair is generated by figur-
ing out the nodes that are required. Then, these nodes are calculated as HK(M)
where (K,M) is the challenge pair associated with the call to H that computes
this authentication path node. The same is done for the root node. Afterwards,
the whole procedure is repeated for the parent tree, until the top tree is done.
Then the XMSS-T signature Σi is sent back to A.

If A queries the RO, the RO is adaptively programmed such that it outputs
the right bitmasks and keys. W.l.o.g., we assume that A makes each query only
once and stores the result. For any query (X1||X2) ∈ {0, 1}n × {0, 1}∗ where
X1 	= Seed or X2 is no valid address of a bitmask or a key for a hash function
call, the RO simply outputs a random value. Otherwise, assume for simplicity
(again w.l.o.g.) that the adversary always queries the RO for the bitmask(s) and
the key of a hash function call at once. Then the RO is programmed as follows:
Assume (K,M) is the challenge pair for the associated hash call. If the address
refers to the first hash call in a WOTS+ function chain, the start value of that
chain is generated as X = G(SK1,a) where a is the address of that function
chain. Next, the RO is programmed to return bitmask r = X ⊕ M and key K.
If the address refers to a hash call in a WOTS+ function chain that is not the
first in that chain, let (K ′,M ′) be the challenge template associated with the
previous hash call in that chain. Then the RO is programmed to return bitmask
r = FK′(M ′) ⊕ M and key K. Finally, if the address refers to a hash call to H,
let (K1,M1), (K2,M2) be the challenge templates associated with the hash calls
computing its two child nodes. Then the RO is programmed to return bitmask
r = (HK1(M1)‖HK2(M2)) ⊕ M and key K (Note that the challenge templates
might be associated with calls to F if the address is associate with the compu-
tation of a node on level 1 in an L-tree. In this case H is replaced by F in the
computation of r).

When A outputs a forgery (Msg, Σ) with Σ = (i, R, σW,0,Authi0 , . . . ,
σW,d−1, Authid−1), MA runs the verification algorithm on (Msg, Σ) and



Mitigating Multi-target Attacks in Hash-Based Signatures 415

(Σi,Msgi). If the forgery is invalid, MA returns ⊥. Otherwise, three mutually
exclusive cases can occur. MA compares the values computed during the two
verification runs in order of computation.

Case 1: If D = H(R,Msg) = H(Ri,Msgi) = Di, i.e., if the digests of the ith
query is the same as that of the forgery, MA broke m-eTCR and returns
(i, R,Msg). Hence, the probability that A outputs a case 1 forgery must be
upper bounded by InSecm-eTCR (H; ξ) per assumption.

If the digests are different, the corresponding bi are also different and hence,
parts of the data computed by the two verification runs must also differ. Now,
MA only compares the computed WOTS+ public keys and the computed root
values. By the pigeonhole principle, the signatures have to agree on one of these
for the first time as they lead to the same root of the top tree.

Case 2: If the data generated verifying the two signatures first agrees on a
WOTS+ public key, the message digests or the root nodes signed with this
WOTS+ keypair where different. Hence, we got a WOTS+ forgery. In this
case, by the construction of the checksum there must be one chain j in this
WOTS+ keypair such that bj < (bj)i, i.e. the jth signature value of the
forgery belongs to an earlier hash call than the one of the answer to the ith
query. As both chains end in the same public key value, they most collide
at the output of some call to F. If this point is not the (bj)ith call it has
to be a later one. In this case, the input to the colliding call to F computed
from the forgery is a second preimage for the challenge template associated
with that call to F and MA outputs it, breaking mm-spr of F. Otherwise,
the two chains collide on the output of the (bj)ith call to F, i.e., on (σj)i,
the jth value of the original signature. Let (K,M) be the challenge pair
associated with the call to F that produced (σj)i. According to Eq. 10, (σj)i

has at least two preimages under Fk. As A has no information about the
preimage, the value X that can be computed from the forgery and that leads
fK(X) = (σj)i is unequal to M with at least probability 1/2. In that case,
MA found a second preimage of M under FK and outputs it. Otherwise
it returns ⊥. Consequently, the probability that A outputs a case 2 forgery
must be upper bounded by 2InSecmm-spr (F; ξ) per assumption.

Case 3: If the data generated verifying the two signatures first agrees on a root
node, the WOTS+ public keys that are used to compute this root node have
to differ. A third time by the pigeonhole principle, there must be one call to H
between the WOTS+ public key and the root node where the output for the
forgery and the correct signature agree for the first time. As the input data
depends on previously computed outputs of H (or F), it must differ. Hence,
for challenge pair (K,M), the input to this call to HK is a second preimage
for M , that MA returns breaking mm-spr of H. Hence, the probability that
A outputs a case 3 forgery must be upper bounded by InSecmm-spr (H; ξ).

Combining the upper bounds from the three cases shows that the success prob-
ability εA of A winning in Game 2 must be upper bounded by

εA ≤ max{InSecm-eTCR (H; ξ) , 2InSecmm-spr (F; ξ) , InSecmm-spr (H; ξ)}.



416 A. Hülsing et al.

Combining this with the result that the difference in A’s success probability
between playing in Game 1 and playing in Game 2 must be upper bounded by
InSecprf

(F2
n; ξ

)
, we get the claimed bound on the success probability of any

adversary A running in time ξ:

Succeu-cmaXMSS-T (A) ≤ InSecprf
(F1

n; ξ
)

+ InSecprf (Fm; ξ)

+ max{InSecm-eTCR (H; ξ) , 2InSecmm-spr (F; ξ) , InSecmm-spr (H; ξ)}

��


	Mitigating Multi-target Attacks in Hash-Based Signatures
	1 Introduction
	2 New Security Notions for Hash Function Families
	2.1 Defining the Security Notions
	2.2 Generic Security

	3 Analyzing Quantum Generic Security
	3.1 Toolbox
	3.2 Hardness of Breaking the Security
	3.3 Quantum Attacks

	4 XMSS-T
	4.1 XMSS-T

	5 Security
	5.1 Security Reduction

	6 Implementation
	References
	A Classical Generic Security
	B Proof of Theorem 2


