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Preface

The 19th IACR International Conference on Practice and Theory of Public-Key
Cryptography (PKC 2016) was held March 6–9, 2016 in Taipei (Taiwan). The con-
ference, sponsored by the International Association for Cryptologic Research (IACR),
focuses on all technical aspects of public-key cryptography. These proceedings contain
34 papers selected by the Program Committee from 143 submissions. The many
high-quality submissions made it easy to build a strong program but also required
rejecting good papers. Each submission was judged by at least three reviewers, or four
in the case of submissions by Program Committee members. The selection process
included one whole month of independent review (each Program Committee member
was assigned about 14 papers) followed by five more weeks of discussions. We tried to
make the review and discussion system more interactive and used a new feature of the
review system that allows Program Committee members to send specific questions to
the authors.

We would like to thank the many authors from all over the world for submitting
their papers—without them there would not be a conference. We are deeply grateful to
the Program Committee for their hard work to ensure that each paper received a
thorough and fair review. We gratefully acknowledge the external reviewers listed on
the following pages. Our thanks go to Shai Halevi: the committee’s work was
tremendously simplified by his submission/review software.

January 2016 Giuseppe Persiano
Bo-Yin Yang
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Trading Plaintext-Awareness for Simulatability
to Achieve Chosen Ciphertext Security

Takahiro Matsuda(B) and Goichiro Hanaoka

National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

{t-matsuda,hanaoka-goichiro}@aist.go.jp

Abstract. In PKC 2014, Dachman-Soled showed a construction of a
chosen ciphertext (CCA) secure public key encryption (PKE) scheme
based on a PKE scheme which simultaneously satisfies a security prop-
erty called weak simulatability and (standard model) plaintext awareness
(sPA1) in the presence of multiple public keys. It is not well-known if
plaintext awareness for the multiple keys setting is equivalent to the more
familiar notion of that in the single key setting, and it is typically consid-
ered that plaintext awareness is a strong security assumption (because
to achieve it we have to rely on a “knowledge”-type assumption). In
Dachman-Soled’s construction, the underlying PKE scheme needs to be
plaintext aware in the presence of 2k + 2 public keys.

The main result in this work is to show that the strength of plain-
text awareness required in the Dachman-Soled construction can be some-
how “traded” with the strength of a “simulatability” property of other
building blocks. Furthermore, we also show that we can “separate” the
assumption that a single PKE scheme needs to be both weakly simulat-
able and plaintext aware in her construction. Specifically, in this paper
we show two new constructions of CCA secure key encapsulation mech-
anisms (KEMs): Our first scheme is based on a KEM which is chosen
plaintext (CPA) secure and plaintext aware only under the 2 keys set-
ting, and a PKE scheme satisfying a “slightly stronger” simulatability
than weak simulatability, called “trapdoor simulatability” (introduced by
Choi et al. ASIACRYPT 2009). Our second scheme is based on a KEM
which is 1-bounded CCA secure (Cramer et al. ASIACRYPT 2007) and
plaintext aware only in the single key setting, and a trapdoor simulatable
PKE scheme. Our results add new recipes for constructing CCA secure
PKE/KEM from general assumptions (that are incomparable to those
used by Dachman-Soled), and in particular show interesting trade-offs
among building blocks with those used in Dachman-Soled’s construction.

Keywords: Public key encryption · Key encapsulation mecha-
nism · Chosen ciphertext security · Plaintext-awareness · Trapdoor
simulatability

c© International Association for Cryptologic Research 2016
C.-M. Cheng et al. (Eds.): PKC 2016, Part I, LNCS 9614, pp. 3–34, 2016.
DOI: 10.1007/978-3-662-49384-7 1



4 T. Matsuda and G. Hanaoka

1 Introduction

1.1 Background and Motivation

For public key encryption (PKE), security (indistinguishability) against cho-
sen ciphertext attacks (CCA) [23,46,49] is nowadays considered as a de-facto
standard security notion required in most practical situations/applications in
which PKE schemes are used. CCA security is quite important in both practical
and theoretical points of view. It implies security against practical attacks (e.g.
Bleichenbacher’s attack [8]) and it also implies very strong and useful security
notions, such as non-malleability [23] and universal composability [10]. Thus,
constructing and understanding CCA secure PKE schemes is one of the cen-
tral research themes in the area of cryptography. In this paper, we focus on
the constructions of CCA secure PKE schemes and its closely related primitive
called key encapsulation mechanism (KEM) from general cryptographic assump-
tions. There have been a number of works that show that several different kinds
of cryptographic primitives are sufficient to realize CCA secure PKE/KEM:
These include trapdoor permutations [23] (with some enhanced property [27]),
identity-based encryption [12] and a weaker primitive called tag-based encryp-
tion [32], lossy trapdoor function [48] and related primitives [13,33,42,50,54],
PKE schemes with weaker-than-but-close-to-CCA security [31,34,40], positive
results on cryptographic obfuscation [38,52], the combination of a CPA secure
PKE scheme and a strong form of hash functions [39], and very recently, the com-
bination of a sender non-committing encryption scheme and a key-dependent-
message secure symmetric key encryption (SKE) scheme [41]. (We review more
works in Sect. 1.4).

In PKC 2014, Dachman-Soled [18] showed a construction of a CCA secure
PKE scheme based on a PKE scheme which simultaneously satisfies a secu-
rity property called weak simulatability [20,43] and (standard model) plain-
text awareness (sPA1) [5] in the presence of multiple public keys [43], which is
based on the earlier work by Myers et al. [43] who showed a construction of
a PKE scheme that achieves security slightly weaker than CCA (the so-called
cNM-CCA1 security). Plaintext awareness was first introduced by Bellare and
Rogaway [7] as a useful notion for showing CCA security of a PKE scheme in
the random oracle model [6], and was used in a number of random-oracle-model
constructions (e.g. [7,24,25,47]). Bellare and Palacio [5] defined the standard
model versions of plaintext awareness.1 The plaintext awareness notions were
further studied by subsequent works (e.g. [20]). The most works on plaintext
awareness studied the notions for the single key setting. The extension to the
multiple keys setting was first introduced by Myers et al. [43].

We note that it is not well-known or well-studied if plaintext awareness for
the multiple keys setting is equivalent to the more familiar notion of plaintext
1 [5] defined several versions (PA0, PA1, and PA2, with their computa-

tional/statistical/perfect variants) for standard model plaintext awareness. As in
the previous works [18,43], we focus on the statistical PA1 notion in the multiple
keys setting (denoted by “sPA1�”, where � denotes the number of public keys).
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awareness in the single key setting, and it is typically considered that plaintext
awareness is a strong security assumption (because to achieve it we have to rely
on a “knowledge”-type assumption). In the construction of [18], the underlying
PKE scheme needs to be plaintext aware in the presence of 2k + 2 public keys.
Our motivation in this work is to clarify whether we can weaken the assumption
of plaintext awareness in Dachman-Soled’s construction [18]. As mentioned in
[18], a plaintext aware (sPA1) PKE scheme seems almost like a CCA1 secure
PKE scheme [46], but it seems not possible to replace the building block PKE
scheme in [18] with a CCA1 secure scheme to remove the plaintext awareness.
It is currently not known if we can construct a CCA secure PKE scheme only
from a CPA secure scheme or even from a CCA1 secure scheme. We believe
that studying the possibility of weakening the assumption of plaintext awareness
from [18] thus is expected to lead to deepening our knowledge on this topic, and
generally contribute to the long line of research on clarifying the minimal general
assumption that implies CCA secure PKE.

1.2 Our Contributions

Based on the motivation mentioned above, we study the possibility of weakening
the requirements of plaintext awareness used in Dachman-Soled’s construction
[18], and come up with new results that show that the strength of plaintext
awareness required in [18] can be somehow “traded” with the strength of a
“simulatability” property of other building blocks. Furthermore, we also show
that we can “separate” the requirement that a single PKE scheme needs to be
simultaneously weakly simulatable and plaintext aware, in her construction.

Specifically, in this paper we show two new constructions of CCA secure
KEMs (which are given in Sect. 4), based on the assumptions that are incompa-
rable to those used in [18]:

– Our first construction (Sect. 4.1) is based on a KEM which is chosen plaintext
(CPA) secure and plaintext aware only under the 2 keys setting2, and a PKE
scheme satisfying a “slightly stronger” simulatability than weak simulatability,
called “trapdoor simulatability” (introduced by Choi et al. [14]). Actually,
although we write that it is “slightly stronger”, it is formally incomparable to
weak simulatability. For more details, see Sect. 1.3.

– Our second construction (Sect. 4.2) is based on a KEM which is 1-bounded
CCA secure [15] and plaintext aware only in the single key setting, and a trap-
door simulatable PKE scheme. We can in fact slightly weaken the requirement
of 1-bounded CCA security to CPA security in the presence of one “plaintext-
checking” query [1,47]. We will also show that we can construct a KEM satis-
fying simultaneously 1-bounded CCA security and plaintext awareness under
the single key setting, based on a KEM satisfying CPA security and plaintext
awareness under the 2k keys setting, via the recent result by Dodis and Fiore
[21, Appendix C].

2 Plaintext awareness for KEMs is defined analogously to that for PKE. See Sect. 2.1.
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One may wonder the meaning of the second construction, because if we use
a KEM that is plaintext aware under O(k) keys setting, there is no merit
compared to our first construction. We are however considering it to be still
meaningful in several aspects, and we refer the reader to Sect. 4.2 for more
discussions regarding the second construction.

Note that from CCA secure KEMs, we can immediately obtain full-fledged PKE
schemes by using CCA secure SKE [16].

We emphasize that we do not require plaintext awareness and the trapdoor
simulatability property to be satisfied by a single building block. This “separa-
tion” of the requirements should be contrasted with Dachman-Soled’s construc-
tion [18], the building block PKE scheme of which is required to satisfy plaintext
awareness and the weak simulatability property simultaneously. We also again
emphasize that the assumptions on which both of our constructions are based,
are incomparable to those used in [18]. Thus, our results add new recipes for
constructing CCA secure PKE/KEM from general assumptions (and thus the
assumptions that we use could be new targets that are worth pursuing), and
also show interesting trade-offs regarding assumptions with Dachman-Soled’s
construction.

1.3 Technical Overview

Assumptions on the Building Blocks. Trapdoor simulatable PKE (TSPKE) [14]
is the key building block for our constructions. TSPKE is a weaker (relaxed) ver-
sion of simulatable PKE that was originally formalized by Damg̊ard and Nielsen
[19]. Simulatable PKE admits “oblivious sampling” of both public keys and
ciphertexts (i.e. sampling them without knowing the randomness or plaintext)
in such a way that honestly generated public keys and ciphertexts can be later
convincingly explained that they were generated obliviously. These properties
are realized by requiring that the key generation algorithm and the encryption
algorithm have their own “oblivious sampling” algorithm and its corresponding
“inverting” algorithm (where the inverting algorithm corresponds to the algo-
rithm that “explains” that an honest generated public key (or a ciphertext) is
sampled obliviously). The difference between TSPKE and simulatable PKE is
whether we allow the “inverting” algorithm to take the randomness (and the
plaintext) used by the ordinary algorithms (key generation and encryption algo-
rithms) as input. TSPKE allows to take these inputs, while ordinary simulatable
PKE does not, which makes the security property of TSPKE weaker but easier to
achieve. For our purpose, we only need even a simplified version of TSPKE than
the formalization in [14]: we only require a pair (pk, c) of public key/ciphertext
(or, a “transcript”) can be obliviously sampled, but not each of pk and c can be
so (which is the formalization in [14]). It was shown [14,19] that we can real-
ize TSPKE from a number of standard cryptographic assumptions, such as the
computational and decisional Diffie-Hellman assumptions, RSA, Factoring, and
lattice based assumptions. (For more details, see Sect. 2.2).

On the other hand, a weakly simulatable PKE scheme (used in the construc-
tions in [18,43]) considers oblivious sampling only for the encryption algorithm.
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However, the definition of weakly simulatable PKE used in [18,43] does not allow
the inverting algorithms to take the randomness and the plaintext used by the
ordinary encryption algorithm. Therefore, strictly speaking, the “strength” of
these primitives as “general cryptographic assumptions” are actually incompa-
rable. Nonetheless, the reason why we still think that weakly simulatable PKE
could be viewed as a weaker primitive, is that it does not require the key gen-
eration algorithm to be obliviously samplable. In fact, this difference is very
important for our work. It is this simple difference between TSPKE and weakly
simulatable PKE that enables us to weaken the plaintext awareness required
in [18], from plaintext awareness in the presence of O(k) keys in [18] into that
under only O(1) keys in our constructions.

Ideas for the Constructions. Other than employing TSPKE instead of weakly
simulatable PKE, the ideas for our constructions and their security analyses are
similar to those in [18]. In particular, the construction of [18] and our construc-
tions are based on the Dolev-Dwork-Naor (DDN) construction [23], but we do
not require a non-interactive zero-knowledge proof to ensure the validity of a
ciphertext. Instead, the approach of the “double-layered” construction of Myers
and Shelat [44] (and its simplifications [31,37,40] and variants [38,39,41]) is
employed, in which a ciphertext consists of the “inner”-layer and “outer”-layer,
and the randomness used for generating an outer ciphertext is somehow embed-
ded into an inner ciphertext, so that in the decryption, the validity of the outer
ciphertext can be checked by “re-encryption” using the randomness recovered
from the inner ciphertext. (In our constructions, the inner-layer encryption is
done by a KEM). In fact, we do a simplification to [18] by removing a one-time
signature scheme in [18], by using a commitment scheme, based on the ideas
employed in the recent constructions [38,39,41].

Recently, Matsuda and Hanaoka [39] introduced the notion of puncturable
tag-based encryption (PTBE) which abstracts and formalizes the “core” struc-
ture of the DDN construction [23]. We define the trapdoor simulatability prop-
erty for PTBE (and call the primitive trapdoor simulatable PTBE ) in Sect. 3,
and use this primitive as an “intermediate” building block in our constructions.
(This primitive could have other applications than constructing CCA secure
PKE, and may be of independent interest). We also show (in the full version)
how to construct a trapdoor simulatable PTBE scheme from a TSPKE scheme.
This construction is exactly the same as the construction of a PTBE scheme
from a CPA secure PKE scheme used in [39], which is in turn based on the
original DDN construction.

Ideas for the Security Proofs. We briefly recall the construction and the security
proof in [18], and explain the difference in our proofs and that in [18]. As men-
tioned above, the construction of [18] is double-layered, where the outer encryp-
tion is like the “DDN-lite” construction (i.e. the DDN construction without a
non-interactive zero-knowledge proof), and the inner encryption is a multiple-
encryption by two PKE schemes. Both the inner and outer encryption schemes
use the same building block, with independently generated public keys: 2k keys
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for the outer-layer encryption (that does DDN-lite-encryption) and 2 keys for
the inner-layer encryption (that does multiple-encryption by two encryptions).
Roughly speaking, in the security proof, [18] constructs a CPA adversary (reduc-
tion algorithm) for the inner-layer encryption, from a CCA adversary A against
the entire construction. The reduction algorithm of course has to somehow
answer A’s decryption queries, and this is the place where plaintext awareness
comes into play. Plaintext awareness in the � keys setting (sPA1� security) ensures
that for any algorithm C (called “ciphertext creator”) that receives a set of public
keys (pki)i∈{1,...,�} and a randomness rC as input and makes decryption queries,
there exists an extractor E that also receives (pki)i∈{1,...,�} and rC as input, and
can “extract” the plaintext from a ciphertext queried by C. (In our actual secu-
rity proofs, we denote the “ciphertext creator” by “A′”, but for the explanation
here we continue to use C for clarity). The idea in the proof in [18] is to use an
extractor guaranteed by plaintext awareness to answer the CCA adversary A’s
decryption queries. The problem that arises here is: how do we design the algo-
rithm C with which the extractor E is considered? Since the extractor E needs to
be given the randomness rC used by C, if we naively design C, the reduction algo-
rithm cannot use the extractor E while embedding its instances (the public key
and the challenge ciphertext) in the reduction algorithm’s CPA security experi-
ment into A’s view. The approach in [18] is to consider a modified version of the
CCA security experiment in which all component ciphertexts (i.e. ciphertexts
for the outer-layer encryption) are generated obliviously using some randomness
r (which can be performed due to the weak simulatability property of the under-
lying PKE scheme), and view this modified experiment as a ciphertext creator
C that takes as input � = 2k +2 public keys (for both inner-/outer-layer encryp-
tions) and a randomness rC consisting of the randomness rA used by A and
the randomness r used for oblivious generation of the component ciphertexts
in A’s challenge ciphertext. (rC actually also contains some additional random-
ness used for generating the remaining parts of A’s challenge ciphertext, but we
ignore it here for simplicity). Designing the algorithm C in this way, the extrac-
tor E corresponding to C can be used to answer A’s decryption queries while the
reduction algorithm (attacking the CPA security of the inner-layer encryption)
can perform the reduction.

Our main idea for weakening the requirement of plaintext awareness for the
building blocks, from 2k + 2 keys in [18] to O(1) keys, is due to the observa-
tion that by relying on the trapdoor simulatability property for the outer-layer
encryption, we can “push” the public keys for the outer-layer encryption, into
the “randomness” rC for the ciphertext creator C (with which the extractor E is
considered), by generating the public keys regarding the outer-layer encryption
also obliviously. In order to make this idea work, we thus consider a different
design strategy for the ciphertext creator C. This also enables us to “separate”
the requirement that a single building block PKE scheme needs to be simultane-
ously plaintext aware and simulatable, because we need the simulatability only
for the outer-layer encryption.
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Actually, like the security proof of the construction in [18], we need to deal
with a “bad” decryption query, which is a ciphertext such that its actual decryp-
tion result (by the normal decryption algorithm with a secret key) differs from
the decryption result obtained by using the extractor E . (Such a decryption
query makes the simulation of the decryption oracle by the reduction algorithm
fail). Our first construction uses the clever trick of Dachman-Soled [18] of using
two CPA secure PKE schemes (that each encrypts a “share” of 2-out-of-2 secret
sharing) and their plaintext awareness under 2 keys setting. (As mentioned ear-
lier, in fact, we use a KEM instead of a PKE scheme for the inner encryption).
Dachman-Soled’s approach enables us to use the CPA security and the ability of
“detecting” bad queries at the same time. Our second construction is a simplifi-
cation of our first construction, where we employ a “single” KEM for the inner
layer, as opposed to multiple-encryption by two KEMs in our first construction.
To detect “bad” decryption queries by an adversary, we employ the ideas and
techniques from [31,37,40,44] of using “1-bounded CCA” security [15]. (As men-
tioned earlier, in fact, CPA security in the presence of one “plaintext-checking”
query [1,47] is sufficient for our purpose). For more details on these, see Sect. 4.

1.4 Related Work

The notion of CCA security for PKE was formalized by Naor and Yung [46] and
Rackoff and Simon [49]. Since the introduction of the notion, CCA secure PKE
schemes have been studied in a number of papers, and thus we only briefly review
constructions from general cryptographic assumptions. Dolev et al. [23] showed
the first construction of a CCA secure PKE scheme, from a CPA secure scheme
and a NIZK proof system, based on the construction by Naor and Yung [46]
that achieves weaker non-adaptive CCA (CCA1) security. These NIZK-based
constructions were further improved in [35,51,53]. Canetti et al. [12] showed
how to transform an identity-based encryption scheme into a CCA secure PKE
scheme. Kiltz [32] showed that the transform of [12] is applicable to a weaker
primitive of tag-based encryption (TBE). Peikert and Waters [48] showed how
to construct a CCA secure PKE scheme from a lossy trapdoor function (TDF).
Subsequent works showed that TDFs with weaker security/functionality prop-
erties are sufficient for obtaining CCA secure PKE schemes [13,33,42,50,54].
Hemenway and Ostrovsky [29] showed how to construct a CCA secure scheme
in several ways from homomorphic encryption that has some appropriate prop-
erties, and the same authors [30] showed that one can construct a CCA secure
PKE scheme from a lossy encryption scheme [4] if it can encrypt a plaintext
longer than the length of randomness consumed by the encryption algorithm.
Myers and Shelat [44] showed that a CCA secure PKE scheme for 1-bit messages
can be turned into one with an arbitrarily large plaintext space. Hohenberger
et al. [31] showed that CCA secure PKE can be constructed from a PKE with a
weaker security notion called detectable CCA security, from which we can obtain
a 1-bit-to-multi-bit transformation for CCA security in a simpler manner than
[44]. The simplicity and efficiency of [44] were further improved by Matsuda and
Hanaoka [37,40]. Lin and Tessaro [34] showed how to amplify weak CCA security
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into strong (ordinary) CCA secure one. Matsuda and Hanaoka [38] showed how
to construct a CCA secure PKE scheme by using a CPA secure PKE scheme and
point obfuscation [9,36], and the same authors [39] showed a CCA secure PKE
scheme from a CPA secure PKE scheme and a family of hash functions satis-
fying the very strong security notion called universal computational extractors
(UCE) [3]. The same authors [41] recently also showed that a CCA secure PKE
scheme can be built from the combination of a sender non-committing encryp-
tion scheme and a key-dependent-message secure SKE scheme. More recently,
Hajiabadi and Kapron [28] showed how to construct a CCA secure PKE scheme,
from a 1-bit PKE scheme that satisfies circular security and has the structural
property called reproducibility.

As has been stated several times, Dachman-Soled [18] showed how to con-
struct a CCA secure PKE scheme from a PKE scheme which simultaneously
satisfies weak simulatability [43] and the (standard model) plaintext awareness
under the multiple keys setting, which is built based on the result by Myers
et al. [43] who showed a PKE scheme satisfying the so-called cNM-CCA1 secu-
rity, from the same building blocks as [18]. Sahai and Waters [52] showed (among
other cryptographic primitives) how CCA secure PKE and KEMs can be con-
structed using an indistinguishability obfuscation [2,26].

1.5 Paper Organization

In Sect. 2 (and in AppendixA), we review definitions of primitives and security
notions that are necessary for explaining our results. In Sect. 3, we introduce
the notion of trapdoor simulatable PTBE, which is an extension of PTBE intro-
duced in [39], and works as one of main building blocks of our proposed KEMs
in the next section. Finally, in Sect. 4, we show our main results: two construc-
tions of KEMs that show the “trade-off” between “simulatability” property and
“plaintext awareness” in Dachman-Soled’s construction [18].

2 Preliminaries

In this section, we review the basic notation and the definitions for plaintext
awareness (sPA1� security) [5,18,43] of a KEM, trapdoor simulatability prop-
erties of a PKE scheme and a commitment scheme, and the syntax of a punc-
turable tag-based encryption (PTBE) scheme. The definitions for standard cryp-
tographic primitives with standard security definitions that are not reviewed in
this section are given in AppendixA, which include PKE, KEMs, and commit-
ment schemes.

Basic Notation. N denotes the set of all natural numbers, and for n ∈ N, we
define [n] := {1, . . . , n}. “x ← y” denotes that x is chosen uniformly at random
from y if y is a finite set, x is output from y if y is a function or an algorithm,
or y is assigned to x otherwise. If x and y are strings, then “|x|” denotes the
bit-length of x, “x‖y” denotes the concatenation x and y, and “(x ?= y)” is
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the operation which returns 1 if x = y and 0 otherwise. “(P)PTA” stands for a
(probabilistic) polynomial time algorithm. For a finite set S, “|S|” denotes its size.
If A is a probabilistic algorithm ,then “y ← A(x; r)” denotes that A computes
y as output by taking x as input and using r as randomness, and we just write
“y ← A(x)” if we do not need to make the randomness used by A explicit.
If furthermore O is a function or an algorithm, then “AO” means that A has
oracle access to O. A function ε(k) : N → [0, 1] is said to be negligible if for all
positive polynomials p(k) and all sufficiently large k ∈ N, we have ε(k) < 1/p(k).
Throughout this paper, we use the character “k” to denote a security parameter.

2.1 Plaintext Awareness for Multiple Keys Setup (sPA1� Security)

Here, we review the definition of (statistical) plaintext awareness for multiple
keys setup [18,43] (denoted by sPA1� security, where � denotes the number of
keys). Unlike these previous works, we define it for a KEM, rather than a PKE
scheme, but we can define plaintext awareness for a KEM in essentially the same
way as that for a PKE scheme.

Let Γ = (KKG,Encap,Decap) be a KEM (where we review the definition of a
KEM in AppendixA), and � = �(k) > 0 be a polynomial. Let A be an algorithm
(called a “ciphertext creator”) that takes a set of public keys (pki)i∈[�] as input,
and makes decapsulation queries of the form (j ∈ [�], c) which is supposed to
be answered with K = Decap(skj , c). For this A, we consider the corresponding
“(plaintext) extractor” E : It is a stateful algorithm that initially takes a set of
public keys (pki)i∈[�] and the randomness rA consumed by A, and expects to
receive “decapsulation” queries of the form q = (j ∈ [�], c); Upon a query, it
tries to extract a session-key K corresponding to c so that K = Decap(skj , c),
where skj is the secret key corresponding to pkj . After E extracts a session-key,
it may update its internal state to prepare for the next call. Informally, a KEM
Γ is said to be sPA1� secure if for all PPTA ciphertext creators A, there exists
a corresponding PPTA extractor E that can work as A’s decapsulation oracle in
the experiment above.

More formally, for A that makes Q = Q(k) decapsulation queries, E , and �,
consider the following experiment ExptsPA1Γ,A,E,�(k):

ExptsPA1Γ,A,E,�(k) : [ ∀i ∈ [�] : (pki, ski) ← KKG(1k); rA ← {0, 1}∗;

stE ← ((pki)i∈[�], rA); Run AE(stE ,·)((pki)i∈[�]; rA) until it terminates;
If ∃i ∈ [Q] : Decap(skji , ci) �= Ki then return 1 else return 0.],

where (ji, ci) represents A’s i-th decapsulation query (which A expects to be
decapsulated as a ciphertext under pkji), and Ki represents the answer (i.e.
“decapsulation result” of ci) computed by the algorithm E . In the experiment,
E is the (possibly stateful) extractor which initially takes stE = ((pki)i∈[�], rA)
as input, and works like A’s decapsulation oracle, as explained above.

Definition 1. Let � = �(k) > 0 be a polynomial. We say that a KEM Γ is sPA1�

secure if for all PPTAs (ciphertext creator) A, there exists a stateful PPTA
(extractor) E such that AdvsPA1Γ,A,E,�(k) := Pr[ExptsPA1Γ,A,E,�(k) = 1] is negligible.
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If � = 1, then sPA1� security is equivalent to statistical PA1 security defined
by Bellare and Palacio [5]. By definition, trivially, sPA1x implies sPA1y for x > y.
However, to the best of our knowledge, whether there is an implication (or
separation) for the opposite direction, is not known.

2.2 (Simplified) Trapdoor Simulatable Public Key Encryption

Trapdoor simulatable PKE (TSPKE) [14] is a relaxed version of simulatable
PKE [19]. Simulatable PKE admits “oblivious sampling” of both public keys
and ciphertexts (i.e. sampling them without knowing the randomness or plain-
text) in such a way that honestly generated public keys and ciphertexts can
be later convincingly explained that they were generated obliviously.3 These
properties are realized by requiring that the key generation algorithm and the
encryption algorithm have their own “oblivious sampling” algorithm and its cor-
responding “inverting” algorithm (where the inverting algorithm corresponds to
the algorithm that explains that an honest generated public key (or a ciphertext)
is sampled obviously). The difference between TSPKE and simulatable PKE, is
whether we allow for the “inverting” algorithm to take the randomness (and
the plaintext) used by the ordinary algorithms PKG and Enc as input. Since
the “inverting” algorithm in TSPKE is allowed to see more information than
that in simulatable PKE, the former primitive is strictly weaker (and easier to
construct) than the latter.

For our purpose, we only need even a simplified version of TSPKE of [14]:
we only require a pair (pk, c) of public key/ciphertext (or, “transcript) can be
obliviously sampled [14], but not each of pk and c can be so. A TSPKE scheme
with such a simplified syntax may not be useful for constructing non-committing
encryption (as done in [14,19]), but sufficient for our purpose in this paper.

Definition 2. We say that a PKE scheme4 Π = (PKG,Enc,Dec) is trapdoor
simulatable (and say that Π is a trapdoor simulatable PKE (TSPKE) scheme) if
Π has two additional PPTAs (oSampΠ , rSampΠ) with the following properties:

– oSampΠ is the oblivious-sampling algorithm which takes 1k as input, and out-
puts an “obliviously generated” public key/ciphertext pair (pk, c).

– rSampΠ is the inverting algorithm (corresponding to oSampΠ) that takes ran-
domness rg and re, and a plaintext m (which are supposed to be used as
(pk, sk) ← PKG(1k; rg) and c ← Enc(pk,m; re)) as input, and outputs a string
r̂ (that looks like a randomness used by oSampΠ).

– (Trapdoor Simulatability). For all PPTAs A = (A1, A2), AdvTSPKEΠ,A (k) :=
|Pr[ExptTSPKE-RealΠ,A (k) = 1] − Pr[ExptTSPKE-SimΠ,A (k) = 1]| is negligible, where
the experiments ExptTSPKE-RealΠ,A (k) and ExptTSPKE-SimΠ,A (k) are defined as in Fig. 1
(upper-left and upper-right, respectively).

3 (Trapdoor) simulatable PKE scheme was introduced as a building block for con-
structing non-committing encryption [11].

4 The syntax of PKE is reviewed in Appendix A.



Trading Plaintext-Awareness for Simulatability to Achieve CCA Security 13

ExptTSPKE-RealΠ,A (k) :

(m, st) ← A1(1
k)

rg, re ← {0, 1}∗

(pk, sk) ← PKG(1k; rg)
c ← Enc(pk, m; re)
r ← rSampΠ(rg, re, m)
b ← A2(st, pk, c, r)
Return b .

ExptTSPKE-SimT ,A (k) :

(m, st) ← A1(1
k)

r ← {0, 1}∗

(pk, c) ← oSampΠ(1k; r)
b ← A2(st, pk, c, r)
Return b .

ExptTSPTBE-RealT ,A (k) :

(tag∗, m, st) ← A1(1
k)

rg, re ← {0, 1}∗

(pk, sk) ← TKG(1k; rg)
c ← TEnc(pk, tag∗, m; re)

sktag∗ ← Punc(sk, tag∗)
r ← rSampT (rg, re, tag

∗, m)

b ← A2(st, pk, c, sktag∗ , r)
Return b .

ExptTSPTBE-SimT ,A (k) :

(tag∗, m, st) ← A1(1
k)

r ← {0, 1}∗

(pk, c, sktag∗) ← oSampT (tag∗; r)

b ← A2(st, pk, c, sktag∗ , r)
Return b .

Fig. 1. Security experiments for defining security of TSPKE (upper-left and upper-
right) and those for defining security of TSPTBE (bottom-left and bottom-right)

Concrete Instantiations of TSPKE. Since our definition of TSPKE is a simplified
(and hence weaker) version of the definition by Choi et al. [14], and TSPKE is a
weaker primitive than a simulatable PKE scheme in the sense of Damg̊ard and
Nielsen [19], we can use any of (trapdoor) simulatable PKE schemes shown in
these works. In particular, we can construct a TSPKE scheme from most of the
standard cryptographic assumptions such as the computational and decisional
Diffie-Hellman, RSA, factoring, and learning-with-errors assumptions [14,19].
(For example, the ElGamal encryption, Damg̊ard’s ElGamal encryption, and
Cramer-Shoup-Lite encryption schemes can be shown to be a TSPKE scheme
if they are implemented in a simulatable group [20]). In terms of “general”
cryptographic assumptions, Damg̊ard and Nielsen [19] showed that a simulatable
PKE scheme can be constructed from a family of trapdoor permutations with the
simulatability property, in which the key generation and the domain-sampling
algorithms have the oblivious sampling property (which is defined analogously
to simulatable PKE). Hence, we can also construct a TSPKE from it.

2.3 Trapdoor Simulatable Commitment Schemes

Let C = (CKG,Com) be a commitment scheme. (We review the syntax of a
commitment scheme and its “target-binding” property in AppendixA).

We define the trapdoor simulatability property of a commitment scheme C in
exactly the same way as the trapdoor simulatability of a PKE scheme. Namely,
we require that there be the oblivious sampling algorithm oSampC (for sam-
pling a key/commitment pair (ck, c)) and the corresponding inverting algorithm
rSampC , whose interfaces are exactly the same as oSampΠ and rSampΠ of a
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TSPKE scheme, respectively. We say that a commitment scheme C is trapdoor
simulatable (and say that C is a trapdoor simulatable commitment scheme) if for
all PPTA adversaries A, the advantage AdvTSComC,A (k) := | Pr[ExptTSCom-RealC,A (k) =
1]−Pr[ExptTSCom-SimC,A (k) = 1]| is negligible, where the experiments ExptTSCom-RealC,A (k)
and ExptTSCom-SimC,A (k) are defined in exactly the same way as ExptTSPKE-RealΠ,A (k) and
ExptTSPKE-SimC,A (k) for a TSPKE scheme, respectively (and thus we do not write
down them).

We can achieve a commitment scheme which satisfies target-binding, trap-
door simulatability, and the requirement of the size of commitments (namely
we require the size of commitments to be k-bit for k-bit security), only from a
TSPKE scheme and a universal one-way hash function (UOWHF) [45], just by
hashing a ciphertext of the TSPKE scheme by the UOWHF. This construction
is given in the full version.

2.4 Puncturable Tag-Based Encryption

Here, we recall the syntax of puncturable tag-based encryption (PTBE), which
was introduced by Matsuda and Hanaoka [39] as an abstraction of the “core”
structure of the Dolev-Dwork-Naor (DDN) construction [23]. Similarly to [39], we
use PTBE as an intermediate building block to reduce the description complexity
of our proposed constructions in Sect. 4.

Intuitively, a PTBE scheme is a TBE scheme that has a mechanism for
generating a “punctured” secret key ̂sktag∗ , according to a “punctured point” tag
tag∗. The punctured secret key can be used to decrypt all “honestly generated”
ciphertexts that are generated under tags that are different from tag∗, while the
punctured secret key is useless for decrypting ciphertexts generated under tag∗.

Formally, a PTBE scheme consists of the five PPTAs (TKG,TEnc,TDec,

Punc, T̂Dec) among which the latter three algorithms are deterministic, with the
following interface:

Key Generation: Encryption: Decryption:
(pk, sk) ← TKG(1k) c ← TEnc(pk, tag,m) m (or ⊥) ← TDec(sk, tag, c)

Puncturing: Punctured Decryption:
̂sktag∗ ← Punc(sk, tag∗) m (or ⊥) ← T̂Dec(̂sktag∗ , tag, c)

where (pk, sk) is a public/secret key pair, c is a ciphertext of a plaintext m under
pk and a tag tag ∈ {0, 1}k, and ̂sktag∗ is a “punctured” secret key corresponding
to a tag tag∗ ∈ {0, 1}k.

We require for all k ∈ N, all tags tag∗, tag ∈ {0, 1}k such that tag∗ �= tag,
all (pk, sk) output from TKG(1k), all plaintexts m, and all ciphertexts c output
from TEnc(pk, tag,m), it holds that TDec(sk, tag, c) = T̂Dec(Punc(sk, tag∗), tag,
c) = m.

In [39], the security notion called “extended CPA security” was defined as a
security notion of PTBE. In our proposed KEMs, we need a stronger security
property for PTBE, which is an analogue of TSPKE, and we will introduce it in
the next section.
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3 Trapdoor Simulatable PTBE

In this section, we define trapdoor simulatability of a PTBE scheme, in the
same way as that of a PKE scheme and a commitment scheme. However, for
the oblivious sampling algorithm, we let it take a “punctured point” tag tag∗ as
input, and require that it output the punctured secret key ̂sktag∗ (corresponding
to tag∗) in addition to a public key/ciphertext pair (pk, c).

Formally, we define a trapdoor simulatable PTBE (TSPTBE) as follows:

Definition 3. We say that a PTBE scheme T = (TKG,TEnc,TDec,Punc,

T̂Dec) is trapdoor simulatable (and say that T is a trapdoor simulatable PTBE
(TSPTBE) scheme) if T has two additional PPTAs (oSampT , rSampT ) with the
following properties:

– oSampT is the oblivious sampling algorithm which takes a “punctured point”
tag tag∗ as input, and outputs an “obliviously generated” public key/ciphertext
pair (pk, c) and a punctured secret key ̂sktag∗ .

– rSampT is the inverting algorithm (corresponding to oSampT ) that takes
1k, randomness rg and re, a “punctured point” tag tag∗, and a plaintext
m (which are supposed to be used as (pk, sk) ← TKG(1k; rg) and c ←
TEnc(pk, tag∗,m; re)) as input, and outputs a string r̂ (that looks like a ran-
domness used by oSampT ).

– (Trapdoor Simulatability) For all PPTAs A = (A1, A2), AdvTSPTBET ,A (k) :=
|Pr[ExptTSPTBE-RealT ,A (k) = 1] − Pr[ExptTSPTBE-SimT ,A (k) = 1]| is negligible, where the
experiments ExptTSPTBE-RealT ,A (k) and ExptTSPTBE-SimT ,A (k) are defined as in Fig. 1
(bottom-left and bottom-right, respectively).

On the Existence of TSPTBE. Though it might look complicated, we can con-
struct a TSPTBE scheme from a TSPKE scheme, by a Dolev-Dwork-Naor-style
approach [23]. The construction is exactly the same as the construction of a
PTBE scheme from any CPA secure PKE shown in [39], which is the “core”
structure of the DDN construction, namely, the DDN construction without a
NIZK proof and without its one-time signature. (For this construction, we can
straightforwardly consider the oblivious sampling algorithm and the correspond-
ing inverting algorithm). We prove the following lemma in the full version.

Lemma 1. If a TSPKE scheme exists, then so does a TSPTBE scheme.

Useful Fact. For the security proofs of our constructions in Sect. 4, we will use
the fact that the straightforward concatenation of a “transcript” of a trapdoor
simulatable commitment and that of a TSPTBE scheme, also admits the trap-
door simulatable property.

More formally, for a TSPTBE scheme T = (TKG,TEnc,TDec,Punc, T̂Dec,
oSampT , rSampT ) and a trapdoor simulatable commitment scheme C = (CKG,
Com, oSampC , rSampC) such that the plaintext space of T and that of C are iden-
tical, and for an adversary A = (A1,A2), consider the following “real” experi-
ment ExptTS-Real[C,T ],A(k) and the “simulated” experiment ExptTS-Sim[C,T ],A(k) as described
in Fig. 2 (left and right, respectively).
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ExptTS-Real[C,T ],A(k) :

(m, st) ← A1(1
k)

rg, rg, rc, rt ← {0, 1}∗

ck ← CKG(1k; rg)
tag∗ ← Com(ck, m; rc)
rc ← rSampC(rg, rc, m)

(pk, sk) ← TKG(1k; rg)
c∗ ← TEnc(ck, tag∗, m; re)

sktag∗ ← Punc(sk, tag∗)
rt ← rSampT (rg, rt, tag

∗, m)

b ← A2(st, ck, tag∗, pk, c∗, sktag∗ , rc, rt)
Return b .

ExptTS-Sim[C,T ],A(k) :

(m, st) ← A1(1
k)

rc, rt ← {0, 1}∗

(ck, tag∗) ← oSampC(1k; rc)

(pk, c∗, sktag∗) ← oSampT (tag∗; rt)

b ← A2(st, ck, tag∗, pk, c∗, sktag∗ , rc, rt)
Return b .

Fig. 2. Security experiments for defining the trapdoor simulatability of the concatena-
tion of a “transcript” of a commitment scheme and that of a TSPTBE scheme.

Then, we can prove the following lemma, whose proof is almost straightfor-
ward due to the trapdoor simulatability property of C and T . The proof is by a
standard hybrid argument, and is given in the full version.

Lemma 2. Assume that the commitment scheme C and the PTBE scheme
T are trapdoor simulatable. Then, for all PPTAs A, AdvTS[C,T ],A(k) :=
|Pr[ExptTS-Real[C,T ],A(k) = 1] − Pr[ExptTS-Sim[C,T ],A(k) = 1]| is negligible.

4 Proposed KEMs

In this section, we show our main results: two KEMs that show the “trade-off”
between the strength of (standard model) plaintext awareness and the simulata-
bility property with those of the construction by Dachman-Soled [18].

In Sect. 4.1, we show our first construction, which is CCA secure based on
a KEM satisfying CPA security and sPA12 security, and a TSPKE scheme. In
Sect. 4.2, we show our second construction which is CCA secure based on a KEM
satisfying 1-CCA security and sPA11 security, and a TSPKE scheme.

4.1 First Construction

Let Γin = (KKGin,Encapin,Decapin) be a KEM whose ciphertext length is
n = n(k) and whose session-key space is {0, 1}3k for k-bit security.5 Let
T = (TKG,TEnc,TDec,Punc, T̂Dec) be a PTBE scheme and C = (CKG,Com)
be a commitment scheme. We require the plaintext space of TEnc and the
message space of Com to be {0, 1}2n, and the randomness space of TEnc and

5 Note that the session-key space of a KEM can be adjusted “for free” by applying
a pseudorandom generator to a session-key. Such a construction preserves CPA and
sPA1� security.
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that of Com to be {0, 1}k for k-bit security.6 Then, our first proposed KEM
Γ = (KKG,Encap,Decap) is constructed as in Fig. 3.

KKG(1k) :

(pkin0, skin0) ← KKGin(1
k)

(pkin1, skin1) ← KKGin(1
k)

(pk, sk) ← TKG(1k)

ck ← CKG(1k)
PK ← (pkin0, pkin1, pk, ck)
SK ← (skin0, skin1, sk, PK)
Return (PK, SK).

Encap(PK) :
(pkin0, pkin1, pk, ck) ← PK
(cin0, α0) ← Encapin(pkin0)
(cin1, α1) ← Encapin(pkin1)
α ← α0 ⊕ α1

Parse α as (rc, rt, K) ∈ ({0, 1}k)3

tag ← Com(ck, (cin0 cin1); rc)
c ← TEnc(pk, tag, (cin0 cin1); rt)
C ← (tag, c).
Return (C, K).

Decap(SK, C) :
(skin0, skin1, sk, PK) ← SK
(pkin0, pkin1, pk, ck) ← PK
(tag, c) ← C
(cin0 cin1) ← TDec(sk, tag, c)
If TDec has returned ⊥ then return ⊥.
α0 ← Decapin(skin0, cin0)
α1 ← Decapin(skin1, cin1)
If α0 = ⊥ or α1 = ⊥ then return ⊥.
α ← α0 ⊕ α1

Parse α as (rc, rt, K) ∈ ({0, 1}k)3

If Com(ck, (cin0 cin1); rc) = tag
and TEnc(pk, tag, (cin0 cin1); rt) = c

then return K else return ⊥.

Fig. 3. The first proposed construction: the KEM Γ based on a KEM Γin, a commit-
ment scheme C, and a PTBE scheme T .

Alternative Decapsulation Algorithm. Similarly to the constructions in
[37–39], to show the CCA security of the proposed KEM Γ , it is useful to con-
sider the following alternative decapsulation algorithm AltDecap. For a k-bit
string tag∗ ∈ {0, 1}k and a key pair (PK,SK) output by KKG(1k), where
PK = (pkin0, pkin1, pk, ck) and SK = (skin0, skin1, sk, PK), we define an “alter-
native” secret key ̂SKtag∗ associated with tag∗ ∈ {0, 1}k by ̂SKtag∗ = (skin0,
skin1, tag

∗, ̂sktag∗ , PK), where ̂sktag∗ = Punc(sk, tag∗). AltDecap takes an “alter-
native” secret key ̂SKtag∗ defined as above and a ciphertext C = (tag, c) as
input, and runs as follows:

AltDecap(̂SKtag∗ , C): First check if tag∗ = tag, and return ⊥ if this is the
case. Otherwise, run in exactly the same way as Decap(SK,C), except that
“(cin0‖cin1) ← T̂Dec(̂sktag∗ , tag, c)” is executed in the fourth step, instead of
“(cin0‖cin1) ← TDec(sk, tag, c).”

6 The requirements of the randomness space of TEnc and Com are without loss of gen-
erality, because we can adjust them using a pseudorandom generator. (The trapdoor
simulatability property is preserved even if we use a pseudorandom generator).
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Regarding AltDecap, the following lemma is easy to see due to the correctness
of the underlying PTBE scheme T and the validity check of c by re-encryption
performed at the last step. (The formal proof is given in the full version).

Lemma 3. Let tag∗ ∈ {0, 1}k be a string and let (PK,SK) be a key pair
output by KKG(1k). Furthermore, let ̂SKtag∗ be an alternative secret key as
defined above. Then, for any ciphertext C = (tag, c) (which could be outside
the range of Encap(PK)) satisfying tag �= tag∗, it holds that Decap(SK,C) =
AltDecap(̂SKtag∗ , C).

CCA Security. The security of Γ is guaranteed by the following theorem.

Theorem 1. Assume that the KEM Γin is CPA secure and sPA12 secure, the
commitment scheme C is target-binding and trapdoor simulatable, and the PTBE
scheme T is trapdoor simulatable. Then, the KEM Γ constructed as in Fig. 3 is
CCA secure.

Note that as mentioned in Sect. 2.3, a commitment scheme with trapdoor simu-
latability and target-binding can be constructed from any TSPKE scheme, and
thus the above theorem shows that we can indeed construct a CCA secure KEM
(and thus CCA secure PKE) from the combination of a KEM satisfying CPA and
sPA12 security and a TSPKE scheme.

We have provided ideas for the security proof in Sect. 1.3, and thus we directly
proceed to the proof.

Proof of Theorem 1. Let A be any PPTA adversary that attacks the CCA security
of the KEM Γ . Our security proof is via the sequence of games argument. To
describe the games, we will need an extractor E corresponding to some “cipher-
text creator” A′ that is guaranteed to exist by the sPA12 security of Γin. Specif-
ically, consider the following A′ (that internally runs A) that runs in the exper-
iment ExptsPA1Γin,A′,E,2(k), with a corresponding extractor E :

A′E(stE ,·)(pk1, pk2; rA′ = (rA, r̂c, r̂t,K
∗)): A′ firstly sets pkin0 ← pk1 and pkin1 ←

pk2 (which implicitly sets skin0 ← sk1 and skin1 ← sk2, where sk1 (resp.
sk2) is the secret key corresponding to pk1 (resp. pk2)), and runs (ck, tag∗) ←
oSampC(1k; r̂c) and (pk, c∗, ̂sktag∗) ← oSampT (tag∗; r̂t). Then A′ sets PK ←
(pkin0, pkin1, pk, ck) and C∗ ← (tag∗, c∗), and then runs A(PK,C∗,K∗; rA).
When A submits a decapsulation query C, A′ responds to it as if it runs
AltDecap(̂SKtag∗ , C), where the oracle calls (to the extractor E) of the form
(1, cin0) and (2, cin1) are used as substitutes for Decapin(skin0, cin0) and
Decapin(skin1, cin1), respectively. More precisely, A′ answers A’s decapsu-
lation query C = (tag, c) as follows:
1. If tag = tag∗, then return ⊥ to A.
2. Run (cin0‖cin1) ← T̂Dec(̂sktag∗ , tag, c), and return ⊥ to A if T̂Dec has

returned ⊥.
3. Submit queries (1, cin0) and (2, cin1) to the extractor E(stE , ·) and receive

the answers α0 and α1, respectively. (Here, the answers α0 and α1 are
expected to be α0 = Decapin(skin0, cin0) and α1 = Decapin(skin1, cin1),
respectively, and the extractor E may update its state upon each call).
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4. If α0 = ⊥ or α1 = ⊥, then return ⊥ to A.
5. Let α ← α0 ⊕ α1 and parse α as (rc, rt,K) ∈ ({0, 1}k)3.
6. If Com(ck, (cin0‖cin1); rc) = tag and TEnc(pk, (cin0‖cin1); rt) = c, then

return K, otherwise return ⊥, to A.
When A terminates, A′ also terminates.

The above completes the description of the algorithm A′. The randomness rA′

consumed by A′ is of the form (rA, r̂c, r̂t,K
∗), where rA, r̂c, and r̂t are the

randomness used by A, oSampC , and oSampT , respectively, and K∗ is a k-bit
string. The corresponding extractor E thus receives (pk1, pk2) and rA′ as its
initial state stE . Note that since Γin is assumed to be sPA12 secure and A′ is a
PPTA, AdvsPA1Γin,A′,E,2(k) is negligible for this extractor E , which will be used later
in the proof. (Looking ahead, we will design the sequence of games so that A’s
view in the case A is internally run by A′ and A′ is run in ExptsPA1Γin,A′,E,2(k), is
identical to A’s view in Game 6).

For convenience, we refer to the procedure of using the extractor E as substi-
tutes for Decapin(skin0, ·) and Decapin(skin1, ·), as AltDecap′

E . Here, AltDecap′
E

is a stateful procedure that initially takes tag∗, ̂sktag∗ , and an initial state stE of
E (i.e. stE = ((pkin0, pkin1), rA′)) as input, and expects to receive a ciphertext
C = (tag, c) as an input. If it receives a ciphertext C = (tag, c), it calculates the
decapsulation result K (or ⊥) as A′ does for A, using ̂sktag∗ and the extractor
E , where E ’s internal state could be updated upon each execution.

Now, using the adversary A and the extractor E , consider the following
sequence of games: (Here, the values with asterisk (*) represent those related
to the challenge ciphertext for A).

Game 1: This is the experiment ExptCCAΓ,A(k) itself.
Game 2: Same as Game 1, except that all decapsulation queries C = (tag, c)

satisfying tag = tag∗ are answered with ⊥.
Game 3: Same as Game 2, except that all decapsulation queries C are answered

with AltDecap(̂SKtag∗ , C), where ̂SKtag∗ is the alternative secret key cor-
responding to (PK,SK) and tag∗. Furthermore, we pick a random bit
γ ∈ {0, 1} uniformly at random just before executing A, which will be used
to define the events in this game and the subsequent games. (γ does not
appear in A’s view in this and all subsequent games, and thus does not
affect its behavior at all).

Game 4: In this game, we use AltDecap′
E (defined as above) as A’s decapsulation

oracle, where the initial state of E (used internally by AltDecap′
E) is prepared

using the “inverting algorithms” rSampC of C and rSampT of T . Moreover,
we also change the ordering of the steps so that they do not affect A’s view.
More precisely, this game is defined as follows:
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Game 4:

(pkin0, skin0) ← KKGin(1
k);

(pkin1, skin1) ← KKGin(1
k);

(c∗
in0, α

∗
0) ← Encapin(pkin0);

(c∗
in1, α

∗
1) ← Encapin(pkin1);

α∗ ← (α∗
0 ⊕ α∗

1);

Parse α∗ as (r∗
c , r∗

t , K∗
1 ) ∈ ({0, 1}k)3;

rg ← {0, 1}∗;

ck ← CKG(1k; rg);
tag∗ ← Com(ck, (c∗

in0‖c∗
in1); r

∗
c );

r̂c ← rSampC(rg, r∗
c , (c∗

in0‖c∗
in1));

(Continue to the right column ↗)

r′
g ← {0, 1}∗;

(pk, sk) ← TKG(1k; r′
g);

̂sktag∗ ← Punc(sk, tag∗);
c∗ ← TEnc(pk, tag∗, (c∗

in0‖c∗
in1); r

∗
t );

r̂t ← rSampT (r′
g, r∗

t , tag∗, (c∗
in0‖c∗

in1));
PK ← (pkin0, pkin1, pk, ck);
C∗ ← (tag∗, c∗);

K∗
0 ← {0, 1}k;

b ← {0, 1};
rA ← {0, 1}∗;
rA′ ← (rA, r̂c, r̂t, K

∗
b );

stE ← ((pkin0, pkin1), rA′);
γ ← {0, 1};
b′ ← AO(PK, C∗, K∗

b ; rA)

where the decapsulation oracle O that A has access in Game 4 is AltDecap′
E

(which initially receives tag∗, ̂sktag∗ , stE = (pkin0, pkin1, rA′) as input). Note
that the extractor E used internally by AltDecap′

E may update its state stE
upon each execution.

Game 5: Same as Game 4, except that r∗
c , r∗

t ,K∗
1 ∈ {0, 1}k are picked uniformly

at random, independently of α∗ = α∗
0 ⊕ α∗

1. That is, the steps “α∗ ← α∗
0 ⊕

α∗
1; Parse α∗ as (r∗

c , r∗
t ,K∗

1 ) ∈ ({0, 1}k)3” in Game 4 are replaced with the
step “r∗

c , r∗
t ,K∗

1 ← {0, 1}k,” and we do not use α∗ anymore.
Game 6: Same as Game 5, except that the key/commitment pair (ck, tag∗)

and the key/ciphertext pair (pk, c∗) and a punctured secret key ̂sktag∗ are
sampled obliviously, and correspondingly the randomness r̂c and r̂t used for
oblivious sampling are used in rA′ .
More precisely, the steps “rg, r

∗
c ← {0, 1}∗; ck ← CKG(1k; rg); tag∗ ←

Com(ck, (c∗
in0‖c∗

in1); r
∗
c ); r̂c ← rSampC(rg, r

∗
c , (c∗

in0‖c∗
in1))” in Game 5 are

replaced with the steps “r̂c ← {0, 1}∗; (ck, tag∗) ← oSampC(1k; r̂c)”.
Furthermore, the steps “r′

g, r
∗
t ← {0, 1}k; (pk, sk) ← TKG(1k; r′

g); c∗ ←
TEnc(pk, tag∗, (c∗

in0‖c∗
in1); r

∗
t ); r̂t ← rSampT (r′

g, r
∗
t , tag∗, (c∗

in0‖c∗
in1))” in

Game 5 are replaced with the steps “r̂t ← {0, 1}∗; (pk, ̂sktag∗ , c∗) ←
oSampT (tag∗; r̂t)”.

The above completes the description of the games.
For i ∈ [5], let Succi denote the event that A succeeds in guessing the chal-

lenge bit (i.e. b′ = b occurs) in Game i. Furthermore, for i ∈ {3, . . . , 6}, we define
the following bad events in Game i:

Badi: A submits a decapsulation query C = (tag, c) satisfying the following condi-
tions simultaneously: (1) tag �= tag∗, (2) T̂Dec(̂sktag∗ , tag, c) = (cin0‖cin1) �=
⊥, and (3) Decapin(skin0, cin0) �= E(stE , (1, cin0)) or Decapin(skin1, cin1) �=
E(stE , (2, cin1)).

Bad
(σ)
i : (where σ ∈ {0, 1}) A submits a decapsulation query C = (tag, c) that

satisfies the same conditions as Badi, except that the condition (3) is replaced
with the condition: Decapin(skinσ, cinσ) �= E(stE , (σ + 1, cinσ)).
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Bad∗
i : A submits a decapsulation query C = (tag, c) that satisfies the same con-
ditions as Badi, except that the condition (3) is replaced with the condition:
Decapin(skinγ , cinγ) �= E(stE , (γ + 1, cinγ)) (where γ is the random bit chosen
just before executing A).

Note that for all i ∈ {3, . . . , 6}, the events Bad(0)i , Bad(1)i , and Bad∗
i all imply the

event Badi, and thus we have Pr[Bad(0)i ],Pr[Bad(1)i ], Pr[Bad∗
i ] ≤ Pr[Badi].

By the definitions of the games and events, we have

AdvCCAΓ,A(k) = 2 ·
∣

∣

∣Pr[Succ1] − 1
2

∣

∣

∣

≤ 2 ·
(

∑

i∈[4]

∣

∣

∣Pr[Succi] − Pr[Succi+1]
∣

∣

∣ +
∣

∣

∣Pr[Succ5] − 1
2

∣

∣

∣

)

. (1)

In the following, we will upperbound each term that appears in the right hand
side of the above inequality.

Claim 1. There exists a PPTA Bb such that AdvTBindC,Bb
(k) ≥ |Pr[Succ1] −

Pr[Succ2]|.

Proof of Claim 1. For i ∈ {1, 2}, let NoBindi be the event that in Game i, A
submits at least one decapsulation query C = (tag, c) satisfying tag = tag∗ and
Decap(SK,C) �= ⊥. Recall that A’s query C must satisfy C �= C∗ = (tag∗, c∗),
and thus tag = tag∗ implies c �= c∗. The difference between Game 1 and Game 2
is how A’s decapsulation query C = (tag, c) satisfying tag = tag∗ is answered.
Hence, these games proceed identically unless NoBind1 or NoBind2 occurs in the
corresponding games, and thus we have

∣

∣

∣Pr[Succ1] − Pr[Succ2]
∣

∣

∣ ≤ Pr[NoBind1] = Pr[NoBind2]. (2)

Thus, it is sufficient to upperbound Pr[NoBind2].
Observe that for a decapsulation query C = (tag∗, c) satisfying the condition

of NoBind2, it is guaranteed that TDec(sk, tag, c) = (cin0‖cin1) �= (c∗
in0‖c∗

in1).
Indeed, if TDec(sk, tag, c) = (c∗

in0‖c∗
in1) and Decap(SK,C) �= ⊥, then by the

validity check of c in Decap, we have c∗ = c, which is because c must sat-
isfy TEnc(pk, tag∗, (c∗

in0‖c∗
in1); r

∗
t ) = c where r∗

t is the (k + 1)-to-2k-th bits
of α∗ = (α∗

0 ⊕ α∗
1) = (Decapin(skin0, c∗

in0) ⊕ Decapin(skin1, c∗
in1)). However,

TEnc(pk, tag∗, (c∗
in0‖c∗

in1); r
∗
t ) = c∗ also holds due to how c∗ is generated, and

thus contradicting the condition c �= c∗ implied by NoBind2.
We use the above fact to show how to construct a PPTA adversary Bb that

attacks the target-binding property of the commitment scheme C with advantage
AdvTBindC,Bb

(k) = Pr[NoBind2]. The description of Bb = (Bb1, Bb2) is as follows:

Bb1(1k): Bb1 first runs (pkin0, skin0) ← KKGin(1k), (pkin1, skin1) ← KKGin(1k),
(c∗

in0, α
∗
0) ← Encapin(pkin0), and (c∗

in1, α
∗
1) ← Encapin(pkin1). Bb1 then sets

α∗ ← (α∗
0 ⊕ α∗

1), and parses α∗ as (r∗
c , r∗

t , α∗) ∈ ({0, 1}k)3. Finally, Bb1 sets
M ← (c∗

in0‖c∗
in1), R ← r∗

c , and stB ← (Bb1’s entire view), and terminates
with output (M,R, stB).
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Bb2(stB, ck): Bb2 first runs (pk, sk) ← TKG(1k), and then sets PK ← (pkin0,
pkin1, pk, ck) and SK ← (skin0, skin1, sk, PK). Bb2 next runs tag∗ ← Com(ck,
(c∗

in0‖c∗
in1); r

∗
c ) and c∗ ← TEnc(pk, tag∗, (c∗

in0‖c∗
in1); r

∗
t ), sets C∗ ← (tag∗, c∗),

and also chooses K∗
0 ∈ {0, 1}k and b ∈ {0, 1} uniformly at random. Then,

Bb2 runs A, where the decapsulation queries from A are answered as Game 2
does, which is possible because Bb2 possesses SK.
When A terminates, Bb2 checks if A has made a decapsulation query C =
(tag, c) satisfying the conditions of NoBind2, namely, tag = tag∗, c �= c∗,
TDec(sk, tag, c) = (cin0‖cin1) /∈ {(c∗

in0‖c∗
in1),⊥}, Decapin(skin0, cin0) = α0 �=

⊥, Decapin(skin1, cin1) = α1 �= ⊥, (α0 ⊕ α1) = (rc‖rt‖K) ∈ {0, 1}3k, and
Com(ck, (cin0‖cin1); rc) = tag∗, and TEnc(pk, tag, (cin0‖cin1); rt) = c. (Actu-
ally, the last condition is redundant for Bb2’s purpose). If such a query is
found, then Bb2 terminates with output M ′ = (cin0‖cin1) and R′ = rc. Oth-
erwise, Bb2 gives up and aborts.

The above completes the description of Bb. It is easy to see that Bb does a
perfect simulation of Game 2 for A, and whenever A makes a query that causes
the event NoBind2, Bb2 can find such a query by using SK and output a pair
(M ′, R′) = ((cin0‖cin1), rc) satisfying Com(ck,M ;R) = Com(ck,M ′; R′) = tag∗

and M �= M ′, violating the target-binding property of the commitment scheme
C. Therefore, we have AdvTBindC,Bb

(k) = Pr[NoBind2]. Then, by Eq. (2), we have
AdvTBindC,Bb

(k) ≥ |Pr[Succ1] − Pr[Succ2]|, as required. � (Claim 1)

Claim 2. Pr[Succ2] = Pr[Succ3].

Proof of Claim 2. It is sufficient to show that the behavior of the oracle given to A
in Game 2 and that in Game 3 are identical. Let C = (tag, c) be a decapsulation
query that A makes. If tag = tag∗, then the query is answered with ⊥ in Game 2
by definition, while the oracle AltDecap(̂SKtag∗ , C) that is given access to A in
Game 3 also returns ⊥ by definition. Otherwise (i.e. tag �= tag∗), by Lemma 3,
the result of Decap(SK,C) and that of AltDecap(̂SKtag∗ , C) always agree. This
completes the proof. � (Claim 2)

Claim 3. There exist PPTAs Bg and Bd such that
∣

∣

∣Pr[Succ3] − Pr[Succ4]
∣

∣

∣ ≤ 2 ·
(

AdvCPAΓin,Bg
(k) + AdvTS[C,T ],Bd

(k) + AdvsPA1Γin,A′,E,2(k)
)

.

We postpone the proof of this claim to the end of the proof of Theorem1.

Claim 4. There exists a PPTA B′
g such that AdvCPAΓin,B′

g
(k) = |Pr[Succ4] −

Pr[Succ5]|.

Proof of Claim 4. Using A and E as building blocks, we show how to construct
a PPTA CPA adversary B′

g with the claimed advantage. The description of B′
g is

as follows:
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B′
g(pk′, c′∗, α′∗

β ): (where β ∈ {0, 1} is B′
g’s challenge bit in its CPA experi-

ment) B′
g sets pkin0 ← pk′, c∗

in0 ← c′∗, and α∗
0 ← α′∗

β . Next, B′
g gen-

erates (pkin1, skin1) ← KKGin(1k) and (c∗
in1, α

∗
1) ← Encapin(pkin1), sets

α∗ ← (α∗
0 ⊕ α∗

1), and parses α∗ as (r∗
c , r∗

t ,K∗
1 ) ∈ ({0, 1}k)3. Then, B′

g

picks rg, r
′
g ← {0, 1}∗ uniformly at random, and runs ck ← CKG(1k; rg),

tag∗ ← Com(ck, (c∗
in0‖c∗

in1); r
∗
c ), r̂c ← rSampC(rg, r

∗
c , (c∗

in0‖c∗
in1)), (pk, sk) ←

TKG(1k; r′
g), ̂sktag∗ ← Punc(sk, tag∗), c∗ ← TEnc(pk, tag∗, (c∗

in0‖c∗
in1); r

∗
t ),

and r̂t ← rSampT (r′
g, r

∗
t , tag∗, (c∗

in0‖c∗
in1)). Then B′

g picks rA ∈ {0, 1}∗,
K∗

0 ∈ {0, 1}k, and b ∈ {0, 1} all uniformly at random, and sets PK ←
(pkin0, pkin1, pk, ck), C∗ ← (tag∗, c∗), rA′ ← (rA, r̂c, r̂t,K

∗
b ), and stE ←

(pkin0, pkin1, rA′). Finally, B′
g runs A(PK,C∗,K∗

b ; rA).
B′
g answers A’s decapsulation queries as AltDecap′

E does, where the initial
state of AltDecap′

E is tag∗, ̂sktag∗ , and stE . (Note that stE is used by E , and
may be updated upon each call of AltDecap′

E).
When A terminates with output b′, B′

g sets β′ ← (b′ ?= b), and terminates
with output β′.

The above completes the description of B′
g. B′

g’s CPA advantage can be calculated
as follows:

AdvCPAΓin,B′
g
(k) = 2 ·

∣

∣

∣Pr[β′ = β] − 1
2

∣

∣

∣ =
∣

∣

∣Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0]
∣

∣

∣

=
∣

∣

∣Pr[b′ = b|β = 1] − Pr[b′ = b|β = 0]
∣

∣

∣.

Consider the case when β = 1. It is easy to see that in this case, B′
g simulates

Game 4 perfectly for A. Specifically, the real session-key α′∗
β = α′∗

1 (corresponding
to c∗

in0 = c′∗) is used as α∗
0, and thus α∗ = (α∗

0 ⊕ α∗
1) = (r∗

c‖r∗
t ‖K∗

1 ) is generated
exactly as that in Game 4. All other values are distributed identically to those
in Game 4. Furthermore, B′

g uses AltDecap′
E for answering A’s decapsulation

queries, where the initial state of AltDecap′
E (and thus the initial state of E) is

appropriately generated as those in Game 4. Under this situation, the probability
that A succeeds in guessing b (i.e. b′ = b occurs) is exactly the same as the
probability that A does so in Game 4, i.e. Pr[b′ = b|β = 1] = Pr[Succ4].

On the other hand, when β = 0, then B′
g simulates Game 5 perfectly for

A. Specifically, in this case, a uniformly random value α′∗
β = α′∗

0 is used as α∗
0.

Therefore, α∗ = (α∗
0⊕α∗

1) is also a uniformly random 3k-bit string, and thus each
of r∗

c , r∗
t , and K∗

1 is a uniformly random k-bit string, which is exactly how these
values are chosen in Game 5. Since this is the only change from the case of β = 1,
with a similar argument to the above, we have Pr[b′ = b|β = 0] = Pr[Succ5].

In summary, we have AdvCPAΓin,B′
g
(k) = |Pr[Succ4] − Pr[Succ5]|, as required.

� (Claim 4)

Claim 5. Pr[Succ5] = 1/2.

Proof of Claim 5. This is obvious because in Game 5, the real session-key K∗
1

is made independent of the challenge ciphertext C∗. Since both K∗
1 and K∗

0 are
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now uniformly random, the view of A does not contain any information on b.
This means that the probability that A succeeds in guessing the challenge bit is
exactly 1/2. � (Claim 5)

Claims 1, 2, 3, 4 and 5 and Eq. (1) guarantee that there exist PPTAs Bb, Bg,
Bd, and B′

g such that

AdvCCAΓ,A(k) ≤ 2 · AdvTBindC,Bb
(k) + 4 · AdvCPAΓin,Bg

(k) + 4 · AdvTS[C,T ],Bd
(k)

+ 4 · AdvsPA1Γin,A′,E,2(k) + 2 · AdvCPAΓin,B′
g
(k),

which, due to our assumptions on the building blocks and Lemma2, implies that
AdvCCAΓ,A(k) is negligible. Recall that the choice of the PPTA CCA adversary A was
arbitrarily, and thus for any PPTA CCA adversary A we can show a negligible
upperbound for AdvCCAΓ,A(k) as above.

In order to finish the proof of Theorem1, it remains to prove Claim 3.

Proof of Claim 3. Note that the difference between Game 3 and Game 4 is how
a query C = (tag, c) satisfying the conditions of Bad3 (or Bad4) is answered,
and Game 3 and Game 4 proceed identically unless Bad3 or Bad4 occurs in the
corresponding games. This means that we have

∣

∣

∣Pr[Succ3] − Pr[Succ4]
∣

∣

∣ ≤ Pr[Bad3] = Pr[Bad4]. (3)

We claim the following:

Subclaim 1. Pr[Bad4] ≤ 2 · Pr[Bad∗
4].

Proof of Subclaim 1. The argument here is essentially the same as the one used
in the proof of Claim 4.13 in [17].

Note that the event Bad4, Bad
(0)
4 , Bad

(1)
4 , and Bad∗

4 are triggered once A
makes a query C = (tag, c) satisfying the conditions that cause these events.
Moreover, by definition, if any of the latter three events occurs, then Bad4
occurs. Furthermore, the bit γ is information-theoretically hidden from A’s view
in Game 4. This means that the probability of Bad∗

4 occurring is identical to the
probability of the event (in Game 4) that is triggered when (1) A first makes a
query satisfying the conditions of Bad4, (2) γ is picked “on-the-fly” at this point,
and then (3) Decapin(skinγ , cinγ) �= E(stE , (γ + 1, cinγ)) holds. The probability
of this event occurring is Prγ←{0,1}[Bad4 ∧ Bad

(γ)
4 ] = Prγ←{0,1}[Bad

(γ)
4 ] (where

the probability is also over Game 4 except the choice of γ). This can be further
estimated as follows:

Pr
γ←{0,1}

[Bad(γ)4 ] =
1
2

(

Pr[Bad(0)4 ] + Pr[Bad(1)4 ]
)

≥ 1
2

Pr[Bad(0)4 ∨ Bad
(1)
4 ] =

1
2

Pr[Bad4],

where we used Pr[Bad(0)4 ∨ Bad
(1)
4 ] = Pr[Bad4], which is by definition.
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In summary, we have Pr[Bad∗
4] ≥ 1

2 Pr[Bad4], as required. � (Subclaim 1)

Using Subclaim 1, we can further estimate Pr[Bad4] as follows:

Pr[Bad4] ≤ 2 · Pr[Bad∗
4]

≤ 2 ·
(∣

∣

∣Pr[Bad∗
4] − Pr[Bad∗

5]
∣

∣

∣ + Pr[Bad∗
5]

)

≤ 2 ·
(∣

∣

∣Pr[Bad∗
4] − Pr[Bad∗

5]
∣

∣

∣ + Pr[Bad5]
)

≤ 2 ·
(∣

∣

∣Pr[Bad∗
4] − Pr[Bad∗

5]
∣

∣

∣ +
∣

∣

∣Pr[Bad5] − Pr[Bad6]
∣

∣

∣ + Pr[Bad6]
)

,

(4)

where we used Pr[Bad∗
5] ≤ Pr[Bad5] in the third inequality, which is again by

definition. It remains to upperbound the right hand side of the above inequality.

Subclaim 2. There exists a PPTA Bg such that AdvCPAΓin,Bg
(k) = | Pr[Bad∗

4] −
Pr[Bad∗

5]|.

Proof of Subclaim 2. Using A and E as building blocks, we show how to construct
a PPTA CPA adversary Bg with the claimed advantage. The description of Bg is
as follows:

Bg(pk′, c′∗, α′∗
β ): (where β ∈ {0, 1} is Bg’s challenge bit in its CPA experiment) Bg

picks γ ∈ {0, 1} uniformly at random, then sets pkin(1−γ) ← pk′, c∗
in(1−γ) ←

c′∗, and α∗
1−γ ← α′∗

β . Next, Bg generates (pkinγ , skinγ) ← KKGin(1k) and
(c∗

inγ , α∗
γ) ← Encapin(pkinγ), sets α∗ ← (α∗

0 ⊕ α∗
1), and parses α∗ as (r∗

c , r∗
t ,

K∗
1 ) ∈ ({0, 1}k)3. Then, Bg prepares K∗

1 ,K∗
0 ∈ {0, 1}k, b ∈ {0, 1}, PK =

(pkin0, pkin1, pk, c), C∗ = (tag∗, c∗), ̂sktag∗ , and stE = (pkin0, pkin1, rA′ = (rA,
r̂c, r̂t,K

∗
b )), exactly as B′

g in the proof of Claim 4 does. Finally, Bg runs A(PK,
C∗,K∗

b ; rA) until it terminates, where Bg answers A’s queries in exactly the
same way as B′

g does.
When A terminates, Bg checks whether A has submitted a decapsulation
query C = (tag, c) that satisfies the conditions of Bad∗

4 (i.e. (1) tag �= tag∗,
(2) T̂Dec(̂sktag∗ , tag, c) = (cin0‖cin1) �= ⊥, and (3) Decapin(skinγ , cinγ) �=
E(stE , cinγ) hold), which can be checked by using skinγ . If such a query is
found, the Bg sets β′ ← 1, otherwise sets β′ ← 0, and terminates with out-
put β′.

The above completes the description of Bg. Let Bad∗
B be the event that A submits

a decapsulation query that satisfies the conditions (1), (2), and (3) of Bad∗
4, in

the experiment simulated by Bg. Note that Bg outputs β′ = 1 only when Bad∗
B

occurs. Therefore, Bg’s CPA advantage can be calculated as follows:

AdvCPAΓin,Bg
(k) = 2 ·

∣

∣

∣Pr[β′ = β] − 1
2

∣

∣

∣ =
∣

∣

∣Pr[β′ = 1|β = 1] − Pr[β′ = 1|β = 0]
∣

∣

∣

=
∣

∣

∣Pr[Bad∗
B|β = 1] − Pr[Bad∗

B|β = 0]
∣

∣

∣.
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With essentially the same arguments as in the proof of Claim 4, we can
see that Bg does a perfect simulation of Game 4 for A if β = 1, and does a
perfect simulation of Game 5 for A if β = 0. In particular, the only differ-
ence from the proof of Claim 4 is in which of the positions (pkin0, c

∗
in0, α

∗
0) or

(pkin1, c
∗
in1, α

∗
1) Bg embeds Bg’s instance of the CPA experiment. In the proof of

Claim 4, the reduction algorithm B′
g embeds its challenge into (pkin0, c

∗
in0, α

∗
0),

while in the current proof, the reduction algorithm Bg embeds its challenge into
(pkin(1−γ), c

∗
in(1−γ), α

∗
1−γ) for a random γ ∈ {0, 1}. It is easy to see that even

after this change, if β = 1, then the view of A is identical to that in Game 4,
and if β = 0, then the view of A is identical to that in Game 5.

Under the situation, the probability that Bad∗
B occurs in the experiment

simulated by Bg in case β = 1 (resp. β = 0) is identical to the probability
that Bad∗

4 (resp. Bad∗
5) occurs in Game 4 (resp. Game 5), namely, we have

Pr[Bad∗
B|β = 1] = Pr[Bad∗

4] and Pr[Bad∗
B|β = 0] = Pr[Bad∗

5].
In summary, we have AdvCPAΓin,Bg

(k) = |Pr[Bad∗
4] − Pr[Bad∗

5]|, as required.
� (Subclaim 2)

Subclaim 3. There exists a PPTA Bd such that AdvTS[C,T ],Bd
(k) = | Pr[Bad5] −

Pr[Bad6]|.

Proof of Subclaim 3. Using A and E as building blocks, we show how to construct
a PPTA B that has the claimed advantage in distinguishing the distributions
considered in Lemma 2. The description of Bd = (Bd1, Bd2) as follows:

Bd1(1k): Bd1 runs (pkin0, skin0) ← KKGin(1k), (pkin1, skin1) ← KKGin(1k),
(c∗

in0, α
∗
0) ← Encapin(pkin0), (c∗

in1, α
∗
1) ← Encapin(pkin1). Then Bd1 sets

M ← (c∗
in0‖c∗

in1) and stB ← (Bd1’s entire view), and terminates with out-
put (M, stB).

Bd2(stB, ck, tag∗, pk, c∗, ̂sktag∗ , r̂c, r̂t): Bd2 sets PK ← (pkin0, pkin1, pk, ck) and
C∗ ← (tag∗, c∗), picks K∗ ∈ {0, 1}∗ and rA ∈ {0, 1}∗ uniformly at random,
and then sets rA′ ← (rA, r̂c, r̂t,K

∗) and stE ← (pkin0, pkin1, rA′). (Recall
that K∗

0 and K∗
1 in Games 5 and 6 are distributed identically, and thus it is

sufficient to choose just a single value K∗ and pretend as if K∗ is K∗
b ). Then

Bd2 runs A(PK,C∗,K∗; rA).
Bd2 answers A’s queries as Game 5 does, which is possible because Bd2 pos-
sesses ̂sktag∗ and stE , and thus Bd2 can run AltDecap′

E (which internally runs
the extractor E(stE , ·)).
When A terminates, Bd2 checks whether A has submitted a query that sat-
isfies the conditions of Bad5, which can be checked by using skin0 and skin1
that Bd2 possesses. If such a query is found, then Bd2 outputs 1, otherwise
outputs 0, and terminates.

The above completes the description of Bd. Let BadB be the event that A sub-
mits a decapsulation query C = (tag, c) that satisfies the conditions of Bad5 in
the experiment simulated by Bd (i.e. the query satisfying (1) tag �= tag∗, (2)
T̂Dec(̂sktag∗ , tag, c) = (cin0‖cin1) �= ⊥, and (3) Decapin(skin0, cin0) �= E(stE , cin0)
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or Decapin(skin1, cin1) �= E(stE , cin1)). Note that Bd submits 1 only when BadB
occurs. Therefore, Bd’s advantage AdvTS[C,T ],Bd

(k) can be calculated as follows:

AdvTS[C,T ],Bd
(k) =

∣

∣

∣Pr[ExptTS-Real[C,T ],Bd
(k) = 1] − Pr[ExptTS-Sim[C,T ],Bd

(k) = 1]
∣

∣

∣

=
∣

∣

∣Pr[ExptTS-Real[C,T ],Bd
: BadB] − Pr[ExptTS-Sim[C,T ],Bd

(k) : BadB]
∣

∣

∣.

Consider the case when Bd is run in the “real” experiment ExptTS-Real[C,T ],Bd
(k). It

is easy to see that in this case, Bd simulates Game 5 perfectly for A. Specifically,
ck, pk, tag∗, c∗, and ̂sktag∗ are generated from CKG, TKG, Com, TEnc, and Punc,
respectively, in such a way that tag∗ is a commitment of (c∗

in0‖c∗
in1) and c∗ is

an encryption of (c∗
in0‖c∗

in1) under the tag tag∗. Furthermore, r̂c and r̂t are gen-
erated from rSampC and rSampT , respectively, which is how they are generated
in Game 5. Under the situation, the probability that A submits a decapsulation
query that causes the event BadB is exactly the same as the probability that A
does so in Game 5. That is, we have Pr[ExptTS-Real[C,T ],Bd

(k) : BadB] = Pr[Bad5].
On the other hand, consider the case when Bd is run in the “simulated”

experiment ExptTS-Sim[C,T ],Bd
(k). In this case, Bd simulates Game 6 perfectly for A.

Specifically, (ck, tag∗) and (pk, c∗, ̂sktag∗) are generated by oSampC(1k; r̂c) and
oSampT (tag∗; r̂t) with uniformly chosen randomness r̂c and r̂t, respectively, and
this is exactly how these values are generated in Game 6. Since this is the only
change from the above case, with a similar argument we have Pr[ExptTS-Sim[C,T ],Bd

(k) :
BadB] = Pr[Bad6].

In summary, we have AdvTS[C,T ],Bd
(k) = |Pr[Bad5] − Pr[Bad6]|, as required.

� (Subclaim 3)

Subclaim 4. AdvsPA1Γin,A′,E,2(k) = Pr[Bad6].

Proof of Subclaim 4. Note that the view of A in Game 6 is exactly the same
as the view of A when it is internally run by A′ in the situation where A′

is run in the experiment ExptsPA1Γin,A′,E,2(k) with the extractor E . Therefore, the
probability that A submits a query that causes the event Bad6 in Game 6, is
exactly the same as the probability that A′ submits a query to E that makes the
experiment ExptsPA1Γin,A′,E,2(k) outputs 1 (i.e. A′ submits a query of the form (j +
1, cinj) such that Decapin(skinj , cinj) �= E(stE , (j + 1, cinj)) for some j ∈ {0, 1}).

� (Subclaim 4)

Equations (3) and (4), and Subclaims 2, 3 and 4 imply Claim 3. � (Claim 3)

This concludes the proof of Theorem1. � (Theorem 1)

4.2 Second Construction

Let Γin = (KKGin,Encapin,Decapin) be a KEM whose ciphertext length is
n = n(k) and whose session-key space is {0, 1}3k for k-bit security. Let
T = (TKG,TEnc,TDec,Punc, T̂Dec) be a PTBE scheme and C = (CKG,Com)
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be a commitment scheme. We require the plaintext space of TEnc and the
message space of Com to be {0, 1}n, and the randomness space of TEnc and
that of Com to be {0, 1}k for k-bit security. Then, our second proposed KEM
Γ = (KKG,Encap,Decap) is constructed as in Fig. 4.

KKG(1k) :

(pkin, skin) ← KKGin(1
k)

(pk, sk) ← TKG(1k)

ck ← CKG(1k)
PK ← (pkin, pk, ck)
SK ← (skin, sk, PK)
Return (PK, SK).

Encap(PK) :
(pkin, pk, ck) ← PK
(cin, α) ← Encapin(pkin)

Parse α as (rc, rt, K) ∈ ({0, 1}k)3

tag ← Com(ck, cin; rc)
c ← TEnc(pk, tag, cin; rt)
C ← (tag, c).
Return (C, K).

Decap(SK, C) :
(skin, sk, PK) ← SK
(pkin, pk, ck) ← PK
(tag, c) ← C
cin ← TDec(sk, tag, c)
If cin = ⊥ then return ⊥.
α ← Decapin(skin, cin)
If α = ⊥ then return ⊥.

Parse α as (rc, rt, K) ∈ ({0, 1}k)3

If Com(ck, cin; rc) = tag
and TEnc(pk, tag, cin; rt) = c

then return K else return ⊥

Fig. 4. The second proposed construction: the KEM Γ based on a KEM Γin, a com-
mitment scheme C, and a PTBE scheme T .

The security of Γ is guaranteed by the following theorem.

Theorem 2. Assume that the KEM Γin is 1-CCA secure and sPA11 secure, the
commitment scheme C is target-binding and trapdoor simulatable, and the PTBE
scheme T is trapdoor simulatable. Then, the KEM Γ constructed as in Fig. 4 is
CCA secure.

The proof of this theorem proceeds very similarly to the proof of Theorem1, and
thus we only explain the difference here, and will give the formal proof in the
full version.

Recall that in the proof of Theorem 1, the “bad” queries (for which the
extractor fails to extract correct decapsulation results) are dealt with due to
the property of “multiple encryption” of two instances of the KEM Γin with
public keys (pkin0, pkin1). In particular, the reduction algorithm in the proof of
Subclaim 2 that attacks the CPA security of the underlying KEM Γin, uses one
of secret keys skinγ (corresponding to pkinγ) to detect whether the bad event
occurs, while embedding its CPA instance regarding Γin into the other position,
i.e. into (pkin(1−γ), cin(1−γ)). This strategy works thanks to the argument regard-
ing the probabilities given in the proof of Subclaim1 (which is in turn based on
the proof of [17, Claim 4.13]). However, for this argument to work, it seems to
us that we inherently have to rely on the sPA12 security of Γin, in order for the
reduction algorithms (especially, the reduction algorithms attacking the CPA of
Γin) to simulate the decapsulation oracle for an adversary A.
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The simple idea employed in our second construction is to change the mech-
anism of detecting the bad queries by relying on the 1-CCA security of Γin, so
that a reduction algorithm can check (by its access to the decapsulation oracle)
whether A has submitted a bad decapsulation query. This allows us to use Γin

only in the “single” key setting, leading to only requiring it to be sPA11 secure.
By employing this idea, a security analysis similar to the recent constructions
[31,37,40,44] works, and for the other parts of the security proof (other than the
analysis regarding dealing with the bad decapsulation queries) are essentially the
same as those in the proof of Theorem1. For more details, see the full version.

On the Merits of the Second Construction. Since we need to use a KEM which
simultaneously satisfies 1-CCA and sPA11 security for our second construction,
a natural question would be whether we can construct such a scheme. We note
that we can achieve such a KEM from a CPA secure PKE (or a KEM) which is
also sPA12k secure. Specifically, Dodis and Fiore [21, Appendix C] showed how
to construct a 1-CCA secure PKE scheme from the combination of a CPA secure
PKE scheme and a one-time secure signature scheme (in which 2k independently
generated public keys are arranged as in the “DDN-lite” construction, but a
message is encoded and encrypted in a k-out-of-k fashion, rather than encrypting
the same message under k public keys). It is straightforward to see that their
construction is sPA11 secure if the underlying PKE scheme is sPA12k secure. We
note that we can slightly optimize their construction by using a CPA secure KEM,
instead of a PKE scheme, as a building block. We provide the construction and
its security proof in the full version.

However, if we implement a 1-CCA and sPA11 secure KEM from a CPA and
sPA12k secure KEM, there is no merit compared to our first construction (that
only requires a CPA and sPA12 secure KEM), both in terms of the assumptions
and the efficiency. So far, we do not know a better way to construct a 1-CCA
and sPA11 secure scheme than the approach that relies on [21, Appendix C]. We
would like to however emphasize that the point of our second construction is
that it may in the future be possible to come up with a direct construction of a
KEM (or a PKE scheme) satisfying the requirements for the second construction,
from assumptions weaker than those required in our first construction or the
combination of our second construction and the Dodis-Fiore construction. We
believe that such a possibility of the existence of better constructions can be
a raison d’etre of our second construction. In particular, we actually do not
need the “full” power of 1-CCA security, but a (seemingly) much weaker security
notion such that CPA security holds in the presence of one “plaintext-checking”
query [1,47]. More specifically, a plaintext-checking query (for a KEM it could
be called a session-key-checking query, but we stick to the terminology in [47])
is a query of the form (c,K), and its reply is the one-bit (Decap(sk, c) ?= K).
This could be a hint for the next step.

We would also like to note that even if using the result based on [21], we still
achieve the property of “separating” the requirement that a single PKE scheme
(or a KEM) needs to satisfy “plaintext awareness” and a “simulatability prop-
erty” simultaneously in [18]. This is another merit of our second construction.
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A Standard Cryptographic Primitives

Public Key Encryption. A public key encryption (PKE) scheme Π consists of
the three PPTAs (PKG,Enc,Dec) with the following interface:

Key Generation: Encryption: Decryption:
(pk, sk) ← PKG(1k) c ← Enc(pk,m) m (or ⊥) ← Dec(sk, c)

where Dec is a deterministic algorithm, (pk, sk) is a public/secret key pair, and
c is a ciphertext of a plaintext m under pk. We say that a PKE scheme satisfies
correctness if for all k ∈ N, all keys (pk, sk) output from PKG(1k), and all
plaintexts m, it holds that Dec(sk,Enc(pk,m)) = m.

Since we do not directly use the ordinary security notions for PKE in this
paper, we do not introduce them. In Sect. 2.2, we review the (simplified version
of) trapdoor simulatability property [14] of a PKE scheme.

Key Encapsulation Mechanism. A key encapsulation mechanism (KEM) Γ con-
sists of the three PPTAs (KKG,Encap,Decap) with the following interface:

Key Generation: Encapsulation: Decapsulation:
(pk, sk) ← KKG(1k) (c,K) ← Encap(pk) K (or ⊥) ← Decap(sk, c)

where Decap is a deterministic algorithm, (pk, sk) is a public/secret key pair
that defines a session-key space K, and c is a ciphertext of a session-key K ∈ K
under pk. We say that a KEM satisfies correctness if for all k ∈ N, all keys
(pk, sk) output from KKG(1k) and all ciphertext/session-key pairs (c,K) output
from Encap(pk), it holds that Decap(sk, c) = K.

Let ATK ∈ {CPA, 1-CCA, CCA}. We say that a KEM Γ is ATK secure if for all
PPTAs A, the advantage AdvATKΓ,A(k) := 2·|Pr[ExptATKΓ,A(k) = 1]−1/2| is negligible,
where the CCA experiment ExptCCAΓ,A(k) is defined as follows:

ExptCCAΓ,A(k) : [ (pk, sk) ← KKG(1k); (c∗,K∗
1 ) ← Encap(pk); K∗

0 ← {0, 1}k;

b ← {0, 1}; b′ ← ADecap(sk,·)(pk, c∗,K∗
b ); Return (b′ ?= b) ],

where in the experiment, A is not allowed to submit c∗ to the oracle. The 1-CCA
(1-bounded CCA) experiment Expt1-CCAΓ,A (k) is defined in the same way as the CCA
experiment, except that A is allowed to submit a decapsulation query only once.
Furthermore, the CPA experiment ExptCPAΓ,A(k) is also defined similarly to the CCA
experiment, except that A is not allowed to submit any query.
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Commitment. A commitment scheme C consists of the two PPTAs (CKG,Com)
with the following interface:

Key Generation: Commitment Generation:
ck ← CKG(1k) c ← Com(ck,m)

where ck is a commitment key, and c is a commitment of the message m under ck.
As a (non-standard) requirement, we require the size of a commitment to be

k-bit for k-bit security, no matter how long a committed message is.7

We say that a commitment scheme C is target-binding8 if for all PPTAs
A = (A1,A2), the advantage function AdvTBindC,A (k) := Pr[ExptTBindC,A (k) = 1] is
negligible, where the experiment ExptTBindC,A (k) is defined as follows:

ExptTBindC,A (k) : [ (m, r, st) ← A1(1k); ck ← CKG(1k); (m′, r′) ← A2(st, ck);

Return 1 iff Com(ck,m′; r′) = Com(ck,m; r) ∧ m′ �= m. ].

Since we do not directly use the hiding property, we do not introduce its
formal definition. In Section 2.3, we define the trapdoor simulatability property
for a commitment scheme, which is defined in essentially the same way as that
for a TSPKE scheme.
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Abstract. We construct a public-key encryption (PKE) scheme whose
security is polynomial-time equivalent to the hardness of the Subset Sum
problem. Our scheme achieves the standard notion of indistinguishabil-
ity against chosen-ciphertext attacks (IND-CCA) and can be used to
encrypt messages of arbitrary polynomial length, improving upon a pre-
vious construction by Lyubashevsky, Palacio, and Segev (TCC 2010)
which achieved only the weaker notion of semantic security (IND-CPA)
and whose concrete security decreases with the length of the message
being encrypted.

At the core of our construction is a trapdoor technique which origi-
nates in the work of Micciancio and Peikert (Eurocrypt 2012).

Keywords: Public-key cryptography · Chosen-ciphertext security ·
Subset Sum problem

1 Introduction

Public-Key Encryption (PKE) is perhaps the most basic application of public-
key cryptography [10]. Intuitively a PKE scheme allows Alice to encrypt a mes-
sage M for Bob, given just Bob’s public key pk ; the received ciphertext C can
be decrypted by Bob using the secret key sk corresponding to pk .

Security of a PKE scheme can be formulated in different ways, depending on
the assumed adversarial capabilities. The most basic and natural notion is that
of indistinguishability against chosen-plaintext attacks (IND-CPA, a.k.a. seman-
tic security) [14]; here we demand that a passive (computationally bounded)
adversary only given pk should not be able to distinguish the encryption of two
(adversarially chosen) messages M0,M1.

Whilst already sufficient for some applications, IND-CPA security is not
enough to deal with active adversaries. Hence, researchers have put forward
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stronger security notions. The de-facto standard notion of security for PKE is
that of indistinguishability against chosen-ciphertext attacks [29] (IND-CCA),
where we now demand that an active (computationally bounded) adversary given
pk should not be able to distinguish the encryption of two (adversarially chosen)
messages M0,M1 even given access to an oracle decrypting arbitrarily chosen
ciphertexts.1

By now we dispose of many PKE schemes satisfying IND-CCA security under
a variety of assumptions, including factoring [15], decisional and computational
Diffie-Hellman [6,8], and learning parity with noise [18].

The Subset Sum assumption. Since its introduction, the Subset Sum problem
has been considered a valid alternative to number-theoretic assumptions. In its
basic computational version, the Subset Sum problem SS(n, μ) (parametrized
by integers μ and n) asks to find a secret vector s ∈ {0, 1}n given a vector
a ∈ Z

n
μ together with the target value T := 〈a · s〉 mod μ, where both a and

s are chosen uniformly at random, and 〈·, ·〉 denotes the inner product. The
hardness of SS(n, μ) depends on the so-called density, which is defined by the
ratio δ := n/ log μ. In case δ < 1/n or δ > n/ log2 n, the problem can be solved in
polynomial time [12,13,20,21,32]. In case δ is o(1) or even as small as O(1/ log n),
the problem is considered to be hard. The best classical algorithm for solving
Subset Sum is due to [19], and takes sub-exponential time for solving instances
with δ = o(1) and time 2(ln 2/2+o(1))n/ log log n for instances with δ = O(1/ log n).

One nice feature of the Subset Sum problem is its believed hardness against
quantum attacks. At the time of writing, the best quantum attack—due to
Bernstein et al. [3]—on Subset Sum requires complexity 2(0.241+o(1))n to solve a
random instance of the problem.

PKE from Subset Sum. The first PKE scheme based on the hardness of
Subset Sum was constructed in the seminal work of Ajtai and Dwork [2], who
presented a scheme whose semantic security is as hard to break as solving worst-
case instances of a lattice problem called “the unique shortest vector problem”
(uSVP). It is well known that Subset Sum can be reduced to uSVP [13,20].

A disadvantage of the scheme in [2] (and its extensions [27,30,31]) is that they
are based on Subset Sum only in an indirect way (i.e., via a non-tight reduction
to uSVP). This limitation was overcome by the work of Lyubashevsky, Palacio,
and Segev [22] that proposed a new PKE scheme achieving IND-CPA security
with a simple and direct reduction to solving random instances of the Subset
Sum problem.

More precisely, the security of the scheme in [22] is based on the assumption
that a random instance (a, T ) of the Subset Sum problem is indistinguishable
from uniform. Such a decisional variant of the problem was shown to be equiva-
lent to the above introduced computational version (i.e., to the task of recovering
s) by Impagliazzo and Naor [16].

1 Clearly, the decryption oracle cannot be queried on the challenge ciphertext.
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1.1 Our Contributions and Techniques

The work of [22] left as an explicit open problem to construct a PKE scheme
achieving IND-CCA security with a direct reduction to the hardness of Subset
Sum.

Contributions. In this paper we present a new PKE scheme resolving the
above open problem. Previous to our work, the only known PKE schemes with
IND-CCA security from Subset Sum were the ones based on uSVP [27,28] (which
are not directly based on the hardness of Subset Sum). An additional advantage
of our scheme is that it can be used to encrypt an arbitrary polynomial number of
bits; this stands in sharp contrast with the scheme of [22], whose concrete security
starts to decrease when encrypting messages of length longer than n log n (where
n is, as usual, the Subset Sum dimension).2 The theorem below summarizes our
main result.

Theorem 1 (Main result, informal). For q = Θ(n2 log6 n) there exists a
PKE scheme with IND-CCA security based on the hardness of SS(n, 2n log n).

Techniques. Our scheme (as the one of [22]) is based on the decisional variant
of SS(n, qm), where q is a small integer and m is an integer. The main observation
(also made in [22]) is that, in case μ = qm, the target value T := 〈a · s〉 mod qm

written in base q is equal to As + e(A, s) where A ∈ Z
m×n
q is a matrix whose

i-th column corresponds to the i-th element of vector a written in base q, and
e(A, s) is a vector in Z

m
q (function of A and s) which corresponds to the carries

when performing “grade-school” addition. This particular structure resembles
the structure of an instance of the learning with errors (LWE) problem [31],
with the important difference that the noise term is “deterministic” and, in fact,
completely determined by the matrix A and the vector s.

We use the above similarity between LWE and Subset Sum to construct our
new PKE scheme, using a trapdoor technique due to Micciancio and Peikert [24].
Essentially our scheme relies on a tag-based trapdoor function, where the trap-
door is associated with a hidden tag. Whenever the function is evaluated w.r.t.
the hidden tag, the trapdoor disappears and the function is hard to invert; for
all other tags the function can be inverted efficiently given the trapdoor. Using
the leftover hash lemma, one can switch the hidden tag without the adversary
noticing.

The above technique allows us to prove that our PKE scheme achieves a
weaker (tag-based) CCA notion. This means that each ciphertext is associated
with a tag τ , and in the security game the adversary has to commit in advance
to the tag τ∗ which will be associated with the challenge ciphertext.3 In the
security proof we first switch the tag associated with the hidden trapdoor with

2 In particular, for message length n2 the scheme of [22] can be broken in polynomial
time.

3 Decryption queries for the challenge tag τ∗ are disallowed.
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the challenge tag (using the trapdoor technique outlined above). Now, the sim-
ulator is not able to decrypt a message related to the challenge tag which allows
us to argue about indistinguishability of the PKE scheme.

It is well known that the above weak tag-based CCA notion can be gener-
ically enhanced to full-fledged IND-CCA security using a one-time signature
scheme [17]. This allows us to conclude Theorem 1.

Efficiency. Let � be the length of the messages to be encrypted, and denote
by n, q and m the parameters of the Subset Sum problem. The secret key of
our PKE scheme consists of a binary matrix of dimension n × m; the public key
consists of 3 matrices of elements in Zq, with dimensions (respectively) m × n,
n × n, and � × n. A ciphertext consists of 3 vectors of elements in Zq, with
dimensions (respectively) m, n, and �.

1.2 Related Work

Pioneered by Merkle and Hellman [23], the first construction of PKE schemes
based on Subset Sum were based on instances of the problem with special struc-
ture. All these constructions have been subsequently broken. (See [26] for a
survey.)

In a seminal paper, Impagliazzo and Naor [16] presented constructions of
universal one-way hash functions, pseudorandom generators and bit commitment
schemes based on the hardness of random instances of Subset Sum.

Besides constructing PKE schemes, [22] additionally presents an oblivi-
ous transfer protocol with security against malicious senders and semi-honest
receivers. The Subset Sum problem has also recently been used to solve the
problem of outsourced pattern matching [11] in the cloud setting.

2 Preliminaries

For two distributions D and D′ over Ω, D(x) is the probability assigned to x ∈ Ω
and Δ[D,D′] := 1

2

∑

x∈Ω |D(x)−D′(x)| is the statistical distance between D and
D′. We denote with x ← X that x is sampled according to the distribution X.
If X is a set, then this denotes that x is sampled uniformly at random from X.
�·�2 : Zq → Z2 is the rounding function defined by �x�2 := �x · 2

q �.
Vectors and matrices are denoted in boldface. For two vectors u,v, with

u = (u1, . . . , un) and v = (v1, . . . , vn), the inner product between u and v is
defined as 〈u,v〉 :=

∑n
i=1 ui · vi. We represent elements in Zq by integers in the

range [−(q −1)/2; (q − 1)/2]. For an element v ∈ Zq, its length, denoted by |v| is
the absolute value of its representative in the range [−(q − 1)/2; (q − 1)/2]. For
a vector v = (v1, . . . , vn) ∈ Z

n
q , we define ‖v‖∞ := max1≤i≤n |vi|.

We say that a function ν is negligible in the security parameter n, if it is
asymptotically smaller than the inverse of any polynomial in n, i.e. ν(n) =
n−ω(1). An algorithm A is probabilistic polynomial-time (PPT) if A is random-
ized, and for any input x, r ∈ {0, 1}∗ the computation of A(x; r) (i.e., A with
input x and random coins r) terminates in at most poly(|x|) steps.
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2.1 Subset Sum

Traditionally a Subset Sum SS(n, μ) instance is defined as a := (a1, . . . , an)
and a target T := 〈a, s〉 mod μ, where the goal is to recover s ∈ {0, 1}n. For
a modulus μ = qm, Lyubashevsky, Palacio, and Segev [22] gave an alternative
description which shows its similarities with the LWE problem more clearly.
First they define matrix A ∈ Z

m×n
q , where aj,i :=

⌊

ai

qj−1

⌋

mod q. Thus,

A 
 s :=
n

∑

i=1

si ·

⎛

⎝

m
∑

j=1

aj,iq
j−1

⎞

⎠ mod qm =
n

∑

i=1

si · aimod qm = 〈a, s〉mod qm

where s ∈ {0, 1}n. Notice that when As is the matrix vector multiplication modq,
then A 
 s = As + e(A, s) mod q ∈ Z

m
q . Here e(A, s)1 := 0, and for 1 < j ≤ m

the j-th component of e(A, s) is given by

e(A, s)j :=
⌊∑n

i=1 siaj−1,i

q

⌋

+ cj mod q,

for carry cj which is recursively defined by c2 := 0 and

cj :=
⌊

(
∑n

i=1 siaj−1,i)mod q + e(A, s)j−1

q

⌋

mod q.

Since cj is small, and moreover it is the only part of e(A, s)j which depends on
e(A, s)j−1, one has that e(A, s)j − cj is bound by the Hoeffding bound. This
implies an overall bound on e(A, s)j :

Lemma 1 ([22] Lemma 3.3). For any n,m ∈ N and s ∈ {0, 1}n, there exists
a negligible function ν : N → [0, 1] such that

Pr
A←Z

m×n
q

[‖e(A, s)‖∞ ≥
√

n log n] ≤ ν(n).

The main difference between Subset Sum and LWE is that error term e(A, s)
is uniquely determined given A and s where as in case of LWE, error e is sampled
from a discrete Gaussian distribution independent of A, s.

The Subset Sum assumption. A SS(n, qm) instance has the following distri-
bution:

DSS(n,qm) := {(A,A 
 s) | A ← Z
m×n
q , s ← {0, 1}n}.

The challenge is to distinguish DSS(n,qm) from a uniform (A,b) ∈ Z
m×n
q × Z

m
q .

The advantage of an algorithm A in breaking the SS(n, qm) assumption is

AdvSS(n,qm)(A) = |Pr[A(A,b) = 1] − Pr[A(A′,b′) = 1]|,

where (A,b) ← DSS(n,qm) and (A′,b′) ← Z
m×n
q ×Z

m
q . It was shown by Impagli-

azzo and Naor [16] that this decisional version of Subset Sum is as hard as
recovering the hidden vector s.
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Re-randomizing Subset Sum. We use a technique introduced by Lyuba-
shevsky [21] allowing to re-randomize a Subset Sum sample. This technique
is based on the leftover hash lemma:

Lemma 2 (Leftover hash lemma). For 2m ≥ n + 1 + ω(log n + 1)/ log q
and polynomial �, there exists a negligible function ν : N → [0, 1] such that the
statistical distance

Δ
[

(A,RA,a,Ra), (A,C,a, c)
]

≤ ν(n),

for A ← Z
m×n
q , R ← [−√

q/2,
√

q/2]�×m, a ← Z
n
q , C ← Z

�×n
q , c ← Z

�
q.

A Subset Sum sample (A,b) ← DSS(n,qm) can now be re-randomized to
(RA,Rb) where RA is statistically close to uniform given A,b and Rb. Note
that (RA,Rb) is not SS(n, qm)-distributed anymore.

Given this re-randomization technique, we are able to construct a tag-based
trapdoor function [24] and a PKE scheme whose hardness is independent of the
amount of simultaneously encrypted bits. Of major significance is the fact that,
after re-randomization, the noise is still bounded:

Lemma 3 ([22] Lemma 3.4). For any n,m ∈ N, s ∈ {0, 1}n and r ∈ [−√
q/2,√

q/2]m, there exists a negligible function ν : N → [0, 1] such that

Pr
A←Z

m×n
q

[r · e(A, s) ≥ √
qnm log2 n +

√
qm] ≤ ν(n).

This bound will be crucial to show the correctness of our proposed PKE.

2.2 Tag-Based Encryption

The main motivation behind the concept of tag-based encryption (TBE) comes
from the fact that it is possible to transform an identity-based encryption scheme
into an IND-CCA secure PKE scheme [4,5]. Kiltz [17] showed that these trans-
formations already work starting from TBE.

A TBE scheme with tag-space T , message-space M, and security parameter
n, consists of the following three PPT algorithms TBE = (Gen,Enc,Dec).

Gen(1n): Outputs a secret key sk and a public key pk .
Enc(pk , τ,M ): Outputs a ciphertext C for M ∈ M, and tag τ ∈ T .
Dec(sk , τ, C): Outputs the decrypted message M of ciphertext C with respect

to tag τ ∈ T , or an invalid symbol ⊥.

For correctness, we require that for any τ,M and (sk , pk) ← Gen(1n):

Dec(sk , τ,Enc(pk , τ,M )) = M

holds with overwhelming probability. As for security, we define the following
selective-tag weak CCA game GTBE [17]:
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1. Adversary A picks a tag τ∗ ∈ T .
2. Run (sk , pk) ← Gen(1n). Adversary A receives public key pk and gets perma-

nent access to an oracle which outputs Dec(sk , τ, C) upon input requests of
the form QueryDec(C, τ) for all τ �= τ∗, and ⊥ otherwise.

3. A chooses M0 and M1 from M and receives C ← Enc(pk , τ∗,Mu) for u ←
{0, 1}.

4. Finally A outputs u′ and GTBE outputs 1 iff u′ = u.

The advantage of an adversary A in game GTBE is defined as

AdvTBE(A) :=
∣

∣

∣

∣

Pr[GTBE(A) = 1] − 1
2

∣

∣

∣

∣

,

and a TBE scheme is called secure against selective-tag weak CCA adversaries,
if for all PPT A there exists a negligible function ν : N → [0, 1] such that
AdvTBE(A) ≤ ν(n).

Given an exponential tag-space, there is a transformation from a TBE scheme
satisfying the above notion to an IND-CCA secure PKE; the transformation
requires a one-time signature scheme or a message authentication code plus a
commitment [17].

We embed the tags in our proposed TBE using a full-rank differences (FRD)
encoding H [1,7]. This means that H : Zn

2 → Z
n×n
2 , τ �→ Hτ and ∀τ �= τ ′ ∈ Z

n
2

Hτ − Hτ ′ has full rank.

3 A Subset Sum Based TBE

For security parameter n, let q = Θ(n2 log6 n), 2 | q, and m = Θ(n) for appro-
priate constant factors. The following three algorithms describe our TBE =
(Gen,Enc,Dec) based on SS(n, qm) with tag space T := Z

n
2 \ {0} (where 0 is the

all-zero vector of length n) and message space M := {0, 1}�.

Gen(1n): Sample R ← {0, 1}n×m and A ← Z
m×n
q , C ← Z

�×n
q . Define B := RA.

The private and public key are defined as

sk := R, pk := (A,B,C) ∈ Z
m×n
q × Z

n×n
q × Z

�×n
q .

Enc(pk , τ,M ): Pick R′ ← [−√
q/2,

√
q/2]n×m, R′′ ← [−√

q/2,
√

q/2]�×m, s ←
{0, 1}n and define

c0 := As + e(A, s) ∈ Z
m
q

c1 :=
(

B +
q

2
· Hτ

)

s + R′ · e(A, s) ∈ Z
n
q

c2 := Cs + R′′ · e(A, s) +
q

2
· M ∈ Z

�
q

where Hτ is the matrix representation of τ .
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Dec(sk , τ, C): Compute

ŝ :=
⌊

(

R I
)

·
(

−c0

c1

)⌉

2

.

and s = H−1
τ ŝ. If c0 �= A 
 s or ‖c1 −

(

B + q
2 · Hτ

)

s‖∞ ≥ q
4 output ⊥.

Otherwise output message M = �c2 − Cs�2.

3.1 Correctness

The correctness of the scheme follows basically from the bounds on the noise of re-
randomized Subset Sum instances. Given these bounds, the noise will be smaller
than q/4 such that it will be rounded away by the rounding function �·�2.

Theorem 2 (Correctness). Let q = O(n2 log6 n), 2 | q, m = Θ(n), and � ∈
O(nc) for some constant c. Then for any τ ∈ Z

n
2 , M ∈ {0, 1}�, there exists a

negligible function ν : N → [0, 1] such that

Pr
(sk ,pk)←Gen(1n)

[Dec(sk , τ,Enc(pk , τ,M )) �= M ] ≤ ν(n).

Proof. Given a ciphertext C = (c0, c1, c2), in case Dec successfully reconstruct
s, the decryption algorithm computes

�c2 − Cs�2 =
⌊

R′′ · e(A, s) +
q

2
· M

⌉

2
= �R′′ · e(A, s)�2 + M .

By Lemma 3, ‖R′′ · e(A, s)‖∞ ≤ √
qnm log2 n +

√
qm < q/4 with overwhelming

probability over A ← Z
m×n
q (for appropriately chosen constants). Hence �R′′ ·

e(A, s)�2 = 0 and Dec outputs M .
For the same reason �(R′ − R) · e(A, s)�2 = 0 holds with overwhelming

probability over A ← Z
m×n
q (for appropriately chosen constants). Therefore Dec

reconstructs
⌊

(

R I
)

·
(

−c0

c1

)⌉

2

=
⌊q

2
· Hτs + (R′ − R)e(A, s)

⌉

2
=

⌊q

2
· Hτs

⌉

2
.

The coordinates of Hτ are in Z2, and as 2 | q, we get ŝ =
⌊

q
2 · Hτs mod q

⌉

2
=

Hτs mod 2. This results in the correct reconstruction of s = H−1
τ ŝ = H−1

τ Hτs.

3.2 Proof of Security

The intuition behind the security proof is that B = RA is statistically indis-
tinguishable from B′ = RA − q

2Hτ∗ . But when B′ is used as part of the public
key, ciphertexts with tag τ∗ can not be decrypted using Dec anymore. During
the proof, we will show that there are ciphertexts for τ∗ which are at least as
hard to decrypt as solving SS(n, qm). Given any algorithm guessing the message
encrypted in such a ciphertext and therefore breaking the security of TBE, there
will be also an algorithm solving SS(n, qm).
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Theorem 3 (CCA Security). Let q = Θ(n2 log6 n), 2 | q, and m = Θ(n)
for appropriate constant factors. If the SS(n, qm) assumption holds (which cor-
responds to density δ ∈ O(1/ log n)), then the proposed TBE scheme is secure
against selective-tag weak CCA adversaries. In particular, for every PPT algo-
rithm A there exist a PPT algorithm D and a negligible function ν : N → [0, 1]
such that:

AdvTBE(A) ≤ AdvSS(n,qm)(D) + ν(n).

Proof. We construct an algorithm D which will distinguish SS(n, qm) from uni-
form invoking a successful adversary A in game GTBA. If D receives a SS(n, qm)
instance D will simulate game GTBA and a successful A will guess b correctly
with probability 1

2 +AdvTBE(A) > 1
2 + ν(n). When D receives a uniform input,

D will simulate a game in which the challenge ciphertext is independent of mes-
sage Mu, and hence independent of u. Therefore guess u′ of A will be correct
(i.e., u′ = u) with probability 1

2 .
In the following, we describe algorithm D interacting with A and afterwards

we analyse its success probability.

1. D receives a SS(n, qm) challenge (A,b) and invokes A which will send a tag
τ∗ ∈ T .

2. D samples R′ ← [−√
q/2,

√
q/2]n×m, R′′ ← [−√

q/2,
√

q/2]�×m and sets pk =
(A,B := R′A − q

2Hτ∗ ,C := R′′A) which is by Lemma 2 statistically close
to the output distribution of public keys of Gen. The public key pk is given
to A.

Thus, D uses R′ to respond to QueryDec(C, τ) queries as follows: If τ = τ∗

output ⊥. Otherwise D uses Dec(R′, τ, C) to reconstruct:

ŝ :=
⌊

(

R′ I
)

·
(

−c0

c1

)⌉

2

.

For a properly distributed C,

ŝ =
⌊(

q
2 · Hτ − q

2Hτ∗ mod q
)

s
⌉

2

=
⌊(

q
2 · (Hτ − Hτ∗ mod 2)

)

s
⌉

2
= (Hτ − Hτ∗)s.

s is reconstructed by computing s = (Hτ − Hτ∗)−1ŝ. If c0 �= A 
 s or
‖c1 −

(

B + q
2 · Hτ

)

s‖∞ ≥ q
4 output ⊥. This ensures that the output of

QueryDec(C, τ) is independent of R′ conditioned on B = R′A − q
2Hτ∗ and

C is a proper cipertext for randomness s. D follows now the description of
Dec(R′, τ, C) such that by Theorem 2 for all properly generated C and τ �= τ∗

QueryDec(C, τ) outputs the correct message M .
3. A sends M0 and M1. Now D samples u ← {0, 1}, sets C∗ := (b,R′b,R′′b +

q
2Mu), and sends C∗ to A.

4. Finally A outputs u′ and D outputs 1 iff u′ = u.
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When b = As + e(A, s), the challenge ciphertext C∗ is a proper ciphertext
for public key pk and randomness s:

c0 := b = As + e(A, s)

c1 := R′b = R′As + R′e(A, s) =
(

B +
q

2
· Hτ

)

s + R′e(A, s)

c2 := R′′b +
q

2
Mu = R′′As + R′′e(A, s) +

q

2
Mu = Cs + R′′e(A, s) +

q

2
Mu.

Note that, by Lemma 2, there is enough entropy in R′, R′′ such that B, R′e(A, s)
and C, R′′e(A, s) are independent. In this case B outputs 1 with roughly prob-
ability 1

2 + AdvTBE(A).
In the other case, i.e. when A,b ← Z

m×n
q × Z

m
q , we know that c2 := R′′b+

q
2Mu is uniform and independent of A,C, c0 and c1 by Lemma 2. Therefore C∗

is independent of u and for any output u′ of A:

Pr
u←{0,1}

[u = u′] =
1
2
.

Summing up, D outputs 1 for a SS(n, qm) instance with roughly probability
1
2 + AdvTBE(A), and it outputs 1 otherwise with probability 1

2 . This implies

AdvSS(n,qm)(D) = AdvTBE(A) − ν(n),

for a negligible function ν, concluding the proof.

4 Conclusions and Open Problems

We presented a construction of a new PKE scheme with a simple and direct
security proof based on the hardness of random instances of the Subset Sum
problem. Our scheme achieves IND-CCA security and its concrete security does
not depend on the length of the messages being encrypted. This resolves the main
open problems from the previous work by Lyubashevsky, Palacio, and Segev [22].

Similarly to one of the constructions in [22], it is not hard to see that actu-
ally our PKE scheme achieves the stronger notion of IND-CCA security against
non-adaptive leakage attacks.4 We leave it as an open problem to construct a
PKE scheme with IND-CCA security against fully adaptive leakage attacks. An
approach towards answering this question would be to construct a hash proof
system [9] based on Subset Sum, as this would directly yield a leakage-resilient
IND-CCA secure PKE [25].

It would also be interesting to construct PKE schemes with additional prop-
erties (always based on Subset Sum), such as circular security, key-dependent
message security, and security against related-key attacks.

4 Since the latter notion is a very weak form of leakage resilience, we preferred to not
work out the details.
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Abstract. The well-known Signed ElGamal scheme consists of ElGamal
encryption with a non-interactive Schnorr proof of knowledge. While this
scheme should be intuitively secure against chosen-ciphertext attacks in
the random oracle model, its security has not yet been proven nor dis-
proven so far, without relying on further non-standard assumptions like
the generic group model. Currently, the best known positive result is that
Signed ElGamal is non-malleable under chosen-plaintext attacks. In this
paper we provide some evidence that proving Signed ElGamal to be CCA
secure in the random oracle model is hard. That is, building on previous
work of Shoup and Gennaro (Eurocrypt’98), Seurin and Treger (CT-RSA
2013), and Bernhard et al. (PKC 2015), we exclude a large class of potential
reductions that could be used to establish CCA security of the scheme.

1 Introduction

Indistinguishability under chosen-ciphertext attacks (IND-CCA, or CCA for
short) is widely considered to be the appropriate security notion for public-key
encryption. Most known CCA-secure public-key schemes are built from a basic
IND-CPA scheme (like ElGamal) and a non-interactive proof system. Examples
of this approach include Cramer-Shoup [7], TDH2 [16], and the Chaum-Pedersen-
Signed ElGamal scheme of Seurin and Treger [15], but also more theoretical
constructions like the DDN encryption scheme [8] fall under this paradigm.

The difference between IND-CPA and IND-CCA security is that the latter
notion allows the adversary to see decryptions of ciphertexts via a decryption
oracle. Informally, “encrypt-then-prove” schemes require an adversary to prove
knowledge of a plaintext as part of a valid ciphertext. But then a decryption
oracle which the adversary can only call for ciphertexts on messages that she
already knows is, intuitively, redundant. Hence, the encrypt-then-prove should
reduce CCA-security to IND-CPA of the basic scheme. Interestingly, this intu-
ition appears to be hard to turn into a formal proof, as we discuss for the case
of the Signed ElGamal encryption scheme.

1.1 Signed ElGamal

Signed ElGamal [14,16] is a well-known encrypt-then-prove scheme combining
ElGamal encryption with a Fiat-Shamir-Schnorr proof [9,13] of the randomness
c© International Association for Cryptologic Research 2016
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used to encrypt (from which you can recover the plaintext from a ciphertext).
It is the most efficient encrypt-then-prove scheme known to date both in terms
of ciphertext size and computation cost. Further, it is submission-secure [18]
(i.e., one can work homomorphically with the “core” ElGamal ciphertexts) and
publicly verifiable, making it suitable for applications such as electronic voting1.
All these properties would make Signed ElGamal the “primary choice” for a
CCA encryption scheme, unless one objects to the Random Oracle Model (ROM)
methodology [3]. Remarkably, however, Signed ElGamal has never been proven
to be CCA-secure, even in the Random Oracle Model!

Shoup and Gennaro [16] were the first to consider the security of Signed ElGa-
mal. They found that the “obvious” proof strategy to show CCA-security based on
the encrypt-then-prove intuition did not work and gave a concrete example why
the common strategy fails, but neither proved nor disproved CCA-security of the
scheme. Instead, they developed the slightly less efficient TDH2 scheme which does
come with a CCA proof. Schnorr and Jakobsson [14] proved Signed ElGamal to
be CCA-secure under a combination of the ROM and the generic group model
(GGM). Tsiounis and Yung [17] gave yet another proof under a non-standard
“knowledge assumption” that resembles the approach behind the GGM.

More abstractly, the two mentioned proofs of CCA-security of Signed ElGa-
mal [14,17] both rely on variants of a property known as plaintext awareness,
which together with IND-CPA security suffices to show CCA; this property is
in fact strictly stronger than CCA-security [4]. Plaintext awareness requires the
existence of a plaintext extractor who, given some trapdoor key, can extract
plaintexts from ciphertexts in an “online” manner, i.e., without interacting fur-
ther with the party who created the ciphertext. However, in 2013, Seurin and
Treger [15] showed that a plaintext extractor for Signed ElGamal in the ROM,
without extra assumptions such as the GGM, could not exist, unless plain ElGa-
mal is already insecure (i.e. one can solve the Computational Diffie-Hellman
(CDH) problem in the underlying group). This result calls into question the
proofs based on plaintext awareness as a route to show CCA-security of Signed
ElGamal.

We stress again that Seurin and Treger, like Shoup and Gennaro, did not
prove or disprove the CCA-security of Signed ElGamal in the ROM. Their result
only rules out proofs based on plaintext awareness. Also, the recent result of
Bernhard et al. [5], showing that Fiat-Shamir-Schnorr proofs of knowledge are
not adaptively secure, only gives a limited answer about the CCA-security of
Signed ElGamal. Their result relies on the fact the knowledge extractor has
to return the full witness (i.e., the randomness for Signed ElGamal), whereas
a clever CCA-to-CPA reduction only needs to simulate the decryption oracle,
returning the message as a fraction of the full witness.

In this paper we provide further evidence against the CCA security of Signed
ElGamal, even if one takes a direct route, without going through plaintext aware-
ness. To this end, we rule out a large class of common proof techniques. The
obstacle encountered by Shoup and Gennaro seems to be very solid indeed.

1 The Helios [2] voting scheme used by the IACR uses a variant of Signed ElGamal.
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1.2 State of the Art

We summarise previous work on the security of Signed ElGamal in the table in
Fig. 1, ordered by the strength of the model.

Fig. 1. Overview over security results for Signed ElGamal. Here, OMDL is the one-
more discrete log problem, IES is our Interactive ElGamal-Schnorr assumption. In
case of negative results, further restrictions on the reductions (such as black-box use
of adversaries) may apply.

Although CCA security of Signed ElGamal has sometimes been claimed infor-
mally, the strongest formal result in the ROM to date [6] only shows the weaker
notion of non-malleability (NM-CPA). If one extends the ROM to include either
the generic group model [14], a generic knowledge assumption [17] or restricts
to algebraic adversaries [1] then one can prove CCA security. Conversely, we
know that in the plain ROM the “obvious” CCA proof fails [16]. Signed ElGa-
mal cannot be ROM-PA2 plaintext aware unless CDH is easy [15] which rules
out proofs based on non-rewinding extractors for the contained ZK proof. The
strongest negative result to date [5] rules out any CCA proof based on adaptive
extractors for the ZK proof, by showing that the proof scheme in question (Fiat-
Shamir-Schnorr) is not adaptively secure unless the one-more discrete logarithm
(OMDL) problem is easy.

Adaptive proofs of knowledge. To put our results in context, we outline
and discuss the results of Bernhard et al. [5], explain their limits and how we
improve on them. Their work identifies the notion of adaptive proofs of knowl-
edge as a potential bottleneck towards proving IND-CCA security for Signed
ElGamal: this notion is what seems to be necessary to make the intuition behind
encypt-then-prove work, yet it is provably not achieved by its implementation
based on Fiat-Shamir-Schnorr proofs in Signed ElGamal.

In a hypothetical CCA-to-IND-CPA reduction of Signed to plain ElGamal,
when the adversary asks a decryption query on a ciphertext, the reduction
rewinds the adversary to extract the plaintext. Shoup and Gennaro [16] con-
sidered an adversary who makes a chain of n ciphertexts, the plaintext of each
one depending on the last ciphertext (e.g. through a hash function), then asks
decryption queries in reverse order. The effect of this adversary is to make a
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straightforward rewinding strategy take exponential time in n, as the reduction
ends up re-rewinding the rewound adversaries each time.

Bernhard et al. [5] were the first to show that such an exponential expan-
sion is unavoidable under certain conditions. A non-interactive proof of knowl-
edge is, informally speaking, a construction in which you can extract a witness
from a single proof given suitable powers (e.g. the ability to rewind the prover).
Bernhard et al. proposed a notion of adaptive proofs in which the prover can
make a sequence of proofs and the extractor must return the found witnesses
to the prover. In this way, should the prover ever succeed in making a proof for
which she does not know a witness, she gains knowledge from the extractor. The
game is adaptive in the sense that the extractor must deliver the witness for the
k-th proof before the prover prepares the (k + 1)-st proof.

Bernhard et al. proved that (unlike a construction of Fischlin [10]) Fiat-
Shamir-Schnorr proofs are not adaptively secure, unless the one-more discrete
logarithm (OMDL) problem is easy in the group concerned. Specifically, any
adaptive extractor must either take at least 2n time on an adapted version of
Shoup/Gennaro’s adversary, or reduce to solving OMDL.

Their results rules out a proof of IND-CCA security for Signed ElGamal
which considers the basic encryption scheme and the non-interactive proofs in
isolation, such as one might do following the encrypt-then-prove intuition. The
intuition is that the reduction would not be able to answer decryption queries by
relying on an extractor for the Fiat-Shamir-Schnorr proofs, as such an extractor
does not exists.

Strictly speaking however, their result only rules out an extractor that obtains
the randomness used in the ciphertexts and not one that somehow obtains only
the underlying plaintexts. Yet, there is a significant complexity gap between
these two problems: finding the plaintext is equivalent to solving a CDH problem
(with the aid of rewinding) whereas finding the randomness (again with the aid
of rewinding) is equivalent to taking a discrete logarithm. This means that the
result outlined above does not rule out all plausible reductions. In addition, the
result does not immediately apply to the combination of ElGamal ciphertext
and proof that makes up Signed ElGamal.

1.3 Our Contribution

We narrow the gap between the positive and negative results by showing that,
in the ROM, one cannot construct any black-box key-passing reduction from
CCA-security of Signed ElGamal to IND-CPA security of plain ElGamal unless
Schnorr proofs are insecure (specifically, they can help you solve CDH). We view
this result as strong evidence in favour of the hypothesis that Signed ElGamal
is not CCA secure in the ROM.

Technically, we show a metareduction whose starting point is any reduction
from the IND-CCA security to IND-CPA of ElGamal, where the reduction makes
only black-box use of the adversary and which is key-passing in the sense that it
hands the public key in the ElGamal scheme to the adversary. Our metareduction
turns such a reduction into an algorithm against an assumption which we call
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the “Interactive ElGamal-Schnorr” assumption, or IES in short. Informally, the
IES assumption is the following.

You are given an ElGamal public key and a ciphertext on an unknown,
random message. You can play the verifier in a single interactive Schnorr
proof of the randomness in the ciphertext. Then you cannot extract the
encrypted message.

We remark that we are not proposing a new assumption for the purpose
of giving a cryptosystem that is secure under this assumption. Instead, we are
showing that an already well-known cryptosystem cannot be proven CCA secure
unless a plausible assumption is actually false — in which case we would be
distrustful of any cryptosystem employing Schnorr proofs. Since IES is closely
related to CDH, we would also have concerns about the use of any ElGamal-
based scheme in a group in which IES is easy.

1.4 Outline of This Work

We begin by recalling the definition of Signed ElGamal and the IND-CPA/CCA
notions for encryption. We then present and justify the IES assumption and
prove that for any group, if there is an efficient key-passing reduction from CCA
of Signed ElGamal to IND-CPA of ElGamal then IES is efficiently breakable
in the group concerned. Our result even shows that proving CCA1 security,
where the adversary makes all decryption queries before learning the challenge
ciphertext, is hard.

2 Preliminaries

2.1 Cryptographic Groups

A cryptographic group is a group G of some prime order q together with a desig-
nated generator g, in which one can perform the group operation and inversion
efficiently. It follows that one can also efficiently exponentiate in such groups.
Typical examples (that have interesting security properties) are subgroups of
the multiplicative group Z

×
p for primes p and groups derived from elliptic curves

over finite fields.

2.2 Public-Key Encryption and ElGamal

A public-key encryption scheme consists of three algorithms: KeyGen which pro-
duces a public and a secret key, Encrypt which takes a message and a public key
and produces a ciphertext and Decrypt which takes a secret key and ciphertext
and produces either a message or the symbol ⊥ to indicate failure. Decryption
is deterministic. If you generate a key pair, encrypt a message with the public
key then decrypt the ciphertext with the matching secret key then you get the
same message back.
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The ElGamal encryption scheme over a group G (generated by g, of order q)
has key pairs of the form (gx, x) for x ∈ Zq; to generate a secret key one picks a
random integer x modulo q. To encrypt a message m ∈ G to public key y ∈ G,
pick a random r ∈ Zq, your ciphertext is (gr,m · yr). To decrypt a ciphertext
(c, d) with secret key x compute d/cx.

The IND-CPA and IND-CCA security notions are given by the following
game. To begin, the game generates a key pair and returns the public key.
Once in the game, you may pick two messages (m0,m1) of the same length2 in
response to which the game picks β ∈ {0, 1} randomly and gives you a challenge
encryption c∗ of mβ . In the CCA version of the game only, you may ask the
game to decrypt any ciphertext for you, as often as you like and both before and
after obtaining the challenge — except that after obtaining the challenge c∗, you
may not ask for c∗ itself to be decrypted. Your aim is to guess β. Your success
probability σ is the probability that you guess β correctly (taken over all random
choices made by the game) and your advantage α is defined as 2σ−1, so a perfect
guesser has advantage 1 and a uniform random guesser has advantage 0.

For a sequence of groups Gλ indexed by a security parameter λ ∈ N, the ElGa-
mal encryption scheme is said to be (asymptotically) IND-CPA/CCA secure if
the advantage of any efficient adversary (who receives λ as input in unary nota-
tion) in the corresponding game over group Gλ is negligible as a function of the
parameter λ.

ElGamal (a.k.a. plain ElGamal) is IND-CPA secure under the DDH assump-
tion: given a pair (gx, gy) of uniformly random and independent group elements
it is hard to tell gxy from another independent, uniformly random group element
gz. More precisely, there is a reduction from breaking IND-CPA of ElGamal to
solving DDH that succeeds 1/2 of the time. Plain ElGamal is not CCA secure.

2.3 Schnorr Proofs

Over a cryptographic group G with designated generator g and order q, the
Schnorr proof scheme is a protocol for a prover to convince a verifier that he
knows a secret x such that y = gx, where y may be known to the verifier in
advance. The prover picks a random a ∈ Zq and sends y and ga to the verifier
who replies with a challenge c drawn randomly from Zq. The prover answers
with s = a + cx (mod q) and the verifier accepts if and only if gs = ga · yc.

The Fiat-Shamir-Schnorr protocol is a non-interactive version of the above.
Instead of the verifier picking c, the prover picks it herself as c = H(y, ga) where
H is a cryptographic hash function with codomain Zq. The prover sends the
verifier a single message (y, ga, s) and the verifier recomputes3 c and performs
the same check as in the interactive protocol. Fiat-Shamir-Schnorr requires the

2 For ElGamal, the message space is the underlying group G and all group elements
have the same length which can be described as “one element”.

3 A variant of the protocol has the prover send (y, c, s) which is often shorter as it
consists of one group element and two integers instead of two group elements and one
integer. This variant is identical to the protocol presented here for security purposes.
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so-called Random Oracle Model (ROM) for its security analysis, which idealises
the hash function as an oracle that both prover and verifier can call.

2.4 Signed ElGamal

Signed ElGamal combines plain ElGamal and a Fiat-Shamir-Schnorr proof in a
construction that Bernhard et al. call encrypt-then-prove. We define the scheme
formally here.

Definition 1. Signed ElGamal is the following encryption scheme over a cryp-
tographic group G of order q with generator g.

KeyGen: Pick x ∈ Zq uniformly at random and set y = gx for your public key.
Your keypair is (y, x).

Encrypt: Your message m must be an element of G. Let y be the public key. Pick
a random r ∈ Zq and compute an ElGamal ciphertext (gr, yr · m). Then make a
Fiat-Shamir-Schnorr proof: pick random a ∈ Zq, set c = H(y, gr, yr · m, ga) and
compute s = a + cx (mod q). Your ciphertext is (gr, yr · m, ga, s).

Decrypt: Given x and a ciphertext (u, v, b, s) compute c = H(gx, u, v, b) and check
that gs = b·uc. If this check fails, the ciphertext is invalid — return ⊥. Otherwise
decrypt m = v/ux.

2.5 Metareductions

A cryptographic security definition often takes the form of a game: an algorithm
with one interface and a notion of winning. Specifically, a scheme is secure if there
is no efficient adversary (an algorithm with one interface, compatible with that
of the game) such that if we connect the adversary to the game, the adversary
wins (with more than a negligible chance).

A reduction from source problem (e.g. IND-CPA of ElGamal) to a target
problem (e.g. DDH) is an algorithm with two interfaces, one for a source-problem
adversary and one for the target-problem game. The aim of a proof by reduction
is to show that for any adversary who could win the source game, the system
obtained by composing the adversary and the reduction would win the target
game. This system is itself an algorithm with one interface, which is compatible
with the target game.

A metareduction is an algorithm with three interfaces. A proof by metare-
duction shows that there can be no reduction from a source problem S to a
target problem T unless another problem U is already easy. The metareduc-
tion’s first two interfaces are those of an S-adversary and a T -game; the third
interface is compatible with the U -game. In a proof by metareduction, we take
a hypothetical S-to-T reduction and connect its S and T interfaces to those of
the metareduction. In other words, composing a S, T, U metareduction with a
S, T reduction gives a system with one free interface of type U , and this whole
system can be connected to the U -game.
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A metareduction will typically simulate a perfect S-adversary. The accompa-
nying proof will show that if the reduction wins the T -game given a perfect S-
adversary, then the metareduction wins the U -game given the reduction. In most
cases, security of the U -game should only hold against efficient adversaries, such
that the metareduction is typically also required to obey this running time bound.

3 The IES Assumption

The interactive Schnorr proof scheme is known to be a correct, honest-verifier
zero-knowledge proof of knowledge of a discrete logarithm. The non-interactive
(Fiat-Shamir-Schnorr) version is “full” zero-knowledge in the ROM. We propose
an assumption that we call IES (Interactive ElGamal-Schnorr) that looks at
an interactive Schnorr proof on an ElGamal ciphertext for a random message.
While weaker than assuming such a proof to be zero-knowledge, IES states the
assumption that such a proof does not leak the encrypted message.

Suppose you are given an ElGamal public key y = gx and an encryption
(u, v) = (gr,myr) for a random group element m. In addition, you receive a
Schnorr commitment ga for a random a and can pick c ∈ Zq, in response to
which you get s = a + cr (mod q). The IES assumption is then that you cannot
recover m.

It turns out that m is actually not required to state IES. Decrypting an
ElGamal ciphertext is solving a CDH4 instance, so we can state IES as a CDH
variant directly:

Definition 2. Given three uniformly random and independent group elements
(gx, gr, ga) in a cryptographic group G of order q with generator g, the IES prob-
lem is to compute grx (the CDH problem) where one, after receiving (gx, gr, ga),
may pick a single value c ∈ Zq and learns s = a + cr (mod q) as a one-time
auxiliary information.

This definition shows that IES is stronger than CDH since a CDH solver could
break IES trivially. The justification that s should not help is the same one as for
the interactive Schnorr proof: since a is uniformly random in Zq and independent
of r, x, if ga were not provided then s would be uniform and independent of r, x
itself and the problem would reduce to CDH. The IES assumption formalises the
idea that giving out ga as well, which is also independent of the CDH problem
on r, x, should not help you either.

For IES adversaries who pick c independently of a, the IES assumption
reduces to CDH with the help of a rewinding reduction. Given a CDH instance
(gx, gr) one can pick a random ga and run the adversary up to the point where she
produces c, then pick a random s and set h = gs/(gr)c and rerun the adversary
on (gx, gr, h). As long as the same c appears in the second run, the simulation
is sound (in particular the adversary can verify that she got the correct s). This
is of course exactly how one simulates Schnorr proofs to show honest-verifier

4 Computational Diffie-Hellman: given random group elements gx, gy compute gxy.
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zero-knowledge of the protocol. Like for Schnorr proofs, the simulation argu-
ment breaks down if the adversary chooses c depending on ga but there is no
known attack to exploit this technique.

The difference between breaking IES and extracting a witness from a Schnorr
proof is that the former requires only finding a particular group element whereas
the latter involves recovering an integer (exponent). An adversary who can recover
x from a Schnorr proof (gx, ga, c, s = a + cx) can take discrete logarithms.

The result of Bernhard et al. on Fiat-Shamir-Schnorr shows that one can-
not build a CCA–to–IND-CPA reduction for Signed ElGamal by extracting the
witness (the encryption randomness) from the Schnorr proof in a ciphertext.
However, the main task for such a reduction is to answer decryption queries, for
which it suffices to recover the encrypted message (a group element).

4 Main Theorem

Our goal is to exclude reductions from CCA security of Signed ElGamal to IND-
CPA security of plain ElGamal (equivalently, to DDH). We make three con-
straints on the class of reductions that we consider. First, we consider only effi-
cient reductions, since an exponential-time reduction could exhaustively search
the key-space. Secondly, we consider rewinding black-box reductions: our reduc-
tions may invoke any number of copies of the adversary as long as the reduction
is efficient overall. Each invocation of the adversary counts as a single opera-
tion. All these copies of the adversary run with the same random string. The
reduction is in charge of all communication to and from these copies, including
random oracle calls. In particular the reduction can employ the usual “special
soundness” forking strategies. All computation from the moment the reduction
sends a message to a copy of the adversary up to the adversary’s reply counts
as a single operation as far as the reduction is concerned.

Finally, we consider only key-passing reductions. A reduction to IND-CPA
receives a public key from the IND-CPA challenger whereas a CCA adversary
expects a public key; keys for plain and Signed ElGamal are of the same form.
A key-passing reduction is one that gives all copies of the adversary the same
public key which it received from its challenger. Alternatively, one could view
the public key as being made available globally to all parties (the reduction and
the copies of the adversary) via the IND-CPA challenger.

Why key-passing? We provide some intuition and the technical reasons for
the key-passing assumption. Due to the rewinding nature of the Schnorr protocol
extractor, we must allow our reduction access to multiple copies of the adversary
with full control over the random oracle. Yet we do not want to offer the reduction
the option to substitute a key of its own (for which it may know the secret key)
for some copies of the adversary, which would lead to the following problem: The
reduction may first run multiple copies of the adversary under self-chosen keys
and test if the adversary succeeds in predicting the challenge bit with sufficiently
high probability, exploiting knowledge of the secret key for answering decryption
queries in this part. Only if this test phase is over, it may start the actual
reduction to the IND-CPA challenger’s public key.



56 D. Bernhard et al.

While an actual adversary would pass the test phase of the reduction above,
any metareduction most likely will fail to reach the second phase. The reason is
simply that it would need to efficiently break CCA security under the reduction’s
keys. More precisely, if the metareduction treats the reduction as a black box, then
one could potentially even mount meta-metareduction techniques (i.e., now play-
ing against the metareduction) as in [11] to base this argument on formal grounds.
Still, it seems that this “testing” reduction is somewhat contrived, as it is not
known how the test phase helps to break CPA security for the given key.

Technically, the chosen-key problem appears when our metareduction tries
to inject an IES challenge into the reduction’s view. The reduction, on input
the challenger’s public key pk, could both substitute a key of its own (for which
it knows the secret key, but which is independent of the IES challenger) or the
reduction could rerandomise pk by picking random r and returning pkr. In this
case the reduction cannot directly decrypt anything, but there is a dependency
on the IES challenger’s key. Intuitively, creating further keys of its own should
not help the reduction to attack the challenger. But to a metareduction, both
these tactics are indistinguishable: the resulting key looks random in both cases.
If the metareduction injects an IES challenge into a ciphertext for which the
reduction knows the secret key, all bets are off — the metareduction cannot
simulate an adversary consistently anymore.

The solution to the above dilemma would be to somewhat grant the metare-
duction access to the reduction’s self-chosen secretkeys. Note that it would not
be sufficient to ask that each public key comes with a Schnorr signature of
knowledge of its secret key (perhaps signed by the challenger) — the reduction
controls the random oracle towards the adversary, so it could easily forge such
signatures. But, in principle, other secure means of proofs of knowledge could
help. Alternatively, switching to more transparent types of reductions such as
algebraic or generic ones could also be a viable path.

It would be interesting to see whether the key-passing requirement could be
weakened in future work. A more complicated argument (with looser concrete
security bounds) may well succeed, but for now we prefer to work in the key-
passing model.

Our main result is the following theorem that excludes a large class of
attempts to prove Signed ElGamal CCA-secure. The proof of the following also
reveals that showing even CCA1 security is hard.

Theorem 1. Suppose that DDH and IES hold in a cryptographic group G. Then
there is no efficient key-passing black-box reduction from CCA security of Signed
ElGamal to IND-CPA security of plain ElGamal in G.

5 The Proof

We will construct a metareduction to IES from any CCA–to–CPA reduction for
Signed ElGamal. We introduce some variants of IES that will make the proof
easier to present. We note that this does not introduce additional assumptions
for our result: we show that they all reduce to IES.
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5.1 Verifiable IES

First, we deal with the issue that decrypted messages are not “verifiable”. Proofs
of knowledge are usually taken over NP relations (e.g. discrete logarithm). How-
ever, the statement that a ciphertext decrypts to a particular message is not
immediately verifiable — it would require either the secret key or the encryp-
tion randomness to verify.

Our metareduction will have to check the decryptions produced by the reduc-
tion with which it interacts. We introduce a new assumption that we call ver-
ifiable IES or vIES to give the metareduction this ability; we also show that
vIES reduces to IES. The new feature of vIES is that the adversary gets many
attempts at guessing the message; formally we introduce a new oracle for the
adversary to check messages.

Definition 3 (vIES). The vIES problem in a cryptographic group (G, q, g) is to
solve IES given the extra ability to check candidate solutions. Given (gx, gr, ga)
one may once submit a value c ∈ Zq and learn s = a + cr (mod q) in return;
in addition, one may query an oracle check(m) many times which returns 1 if
and only if m = grx. One wins the game if one can find grx. A code-based
presentation of the game is given in Fig. 2.

Fig. 2. Verifiable IES. The checking oracle allows the adversary to test candidate solu-
tions before submitting one. Challenge may only be called once.

The vIES assumption reduces to the IES assumption with a loss in soundness
of a factor k + 1 where k is the number of checks made by the adversary. To see
this, consider an efficient adversary with probability p of winning the vIES game
and let k be a (polynomial) bound on the number of checks the adversary makes.
Then with probability p, one of the following k+1 events occur: Ei for 1 ≤ i ≤ k
is the event that the adversary makes at least i checking queries and the i-th
check contains the correct message; E0 is the event that the adversary never
makes a checking query on the correct message but still calls the finalization
oracle with the correct message.

Our reduction to IES guesses i
$← {0, 1, . . . , k} uniformly at random and

simulates as follows: forward the initial data and the challenge query between
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the adversary and IES challenger, for i > 0 answer the first i−1 checking queries
with 0 and pass the result of the i-th checking query to the IES finalization
oracle directly, aborting the adversary at this point. For i = 0 answer 0 to
all the adversary’s checking queries and forward the adversary’s output to the
finalization oracle. If the adversary does not make i checking queries or in case
0 makes no output, abort.

If event Ei occurs then the reduction for case i will break IES. Since we
assumed the adversary to succeed with probability p, at least one of the events
will occur with probability p/(k + 1) as the k + 1 events are a partition of the
event that the adversary succeeds. Since the reduction chooses i uniformly, we
conclude that it succeeds against IES with probability p/(k + 1).

5.2 One-More Verifiable IES

For our metareduction we use a one-more variation of IES, for the same reason
that Bernhard et al.’s proof that Fiat-Shamir-Schnorr is not adaptively secure
requires the one-more discrete logarithm assumption. Unlike the cited theorem
and assumption, the one-more IES assumption reduces to the basic one. We give
the one-more assumption and reduction for verifiable IES; the same reduction
holds for the non-verifiable variation.

The one-more assumption works as follows. The adversary may obtain and
open a number of IES “instances”; her aim is to solve an unopened instance.
The initialization oracle produces a “public key” gx shared between all instances.
The instance oracle creates a fresh pair (gr, ga) together with an internal flag
f = 0 to denote that this instance is fresh. The adversary may issue a challenge
c once per instance, to which the challenger replies with s = a + cr and sets the
flag to f = 1 to denote that the challenge for this instance has been provided.
In addition, the adversary may ask for an instance to be opened to which the
challenger responds with (r, a) and sets f = 2. As in vIES, the adversary may
also ask to check a value m against an instance, in which case the challenger
reveals if m = grx. Checking does not affect the flag f . The adversary wins by
providing the value m = grx on an instance that has not been opened, i.e. f ≤ 1.
The one-more verifiable IES game is asymmetric in that the adversary must only
solve a CDH instance to win but the game must provide a discrete logarithm r on
request. It is this asymmetry that makes our metareduction work. Nonetheless,
one-more verifiable IES reduces to plain IES. In the code-based presentation of
the game in Fig. 3, an index i is used to distinguish different instances.

Definition 4 (OMvIES). The one-more verifiable IES game is given by the
code in Fig. 3.

The readermaybe askingwhy they should have any confidence that an assump-
tion as complex as OMvIES should be hard. We note that vIES and OMvIES derive
their justification solely from the fact that they reduce to IES: they are intermedi-
ate steps to make our main proof easier, not assumptions in their own right that
we ask anyone to believe in. The justification for basic IES we gave when we intro-
duced it, that a single Schnorr proof should not completely break the security of
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j ← 0 T ← [ ]

x
$← Zq X ← gx

X

j ← j + 1
r

$← Zq R ← gx

a
$← Zq A ← gx

f ← 0
T [j] ← (r, a, f)

(j, R, A)

i, m

i > j 0
(r, a, f) ← T [i]

f > 1 0
i, m

i, c

i > j ⊥
(r, a, f) ← T [i]

f > 0 ⊥
T [i] ← (r, a, 1)

a + cr (mod q)

i, m

i > j 0
(r, a, f) ← T [i]

m = grx 1
0

i

i > j ⊥
(r, a, f) ← T [i]
T [i] ← (r, a, 2)

(r, a)

Fig. 3. One-more verifiable IES. All IES instances share a common x but have their
own r, a — which can be revealed using the open oracle.

ElGamal encryption. The reason that the one-more version reduces to the simple
one is that the instances are independent in the sense that the adversary cannot
perform a challenge query that “touches” more than one instance.

Lemma 1. There is a reduction from OMvIES to IES that loses a factor O(k2)
in soundness where k is a bound on the number of queries made by the adversary.

Proof. It suffices to reduce OMvIES to vIES with a loss of O(k). Given an upper

bound k on the number of instances an adversary can create, pick n
$← {1, . . . , k}

at random and use the vIES challenger for the n-th instance. Simulate all other
instances by picking fresh (r, a). To open a simulated instance, simply reveal
(r, a). To check a simulated instance against a candidate m, check if m = Xr. If
the adversary tries to open the n-th instance, abort. If the adversary succeeds
with probability p against OMvIES then she succeeds with probability at least
p/k against the n-th instance, in which case she cannot have opened this instance.
So the reduction wins the vIES game with at least p/k probability too. ��

5.3 A Model Adversary

Let R be a rewinding, black-box, key-passing reduction from CCA security of
Signed ElGamal to IND-CPA security of plain ElGamal. That is, R may invoke
multiple copies of a CCA adversary A which expects to receive a public key, can
make one challenge and many decryption queries and will output a guess bit.
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R itself can interact with one IND-CPA challenger who provides a public key
and a single challenge query, which returns a plain ElGamal ciphertext.

The aim of R is to guess its challenger’s bit β. We first construct an inefficient
adversary A that breaks CCA of Signed ElGamal with advantage 1, that is it
guesses correctly all the time. Our adversary A will operate in three phases:
phases 1 and 2 are efficient and if a reduction R advances our adversary to
phase 3 then R must have already broken an assumption (IES or DDH) itself
or launched exponentially many copies of the adversary. We also show how to
construct an efficient simulation of (multiple copies of) A under these conditions,
yielding our metareduction. Thus, using an inefficient adversary in the first place
does not cause triviality problems.

Suppose w.l.o.g. that q > 5 and consider the inefficient adversary An in Fig. 4
where Ψ : Zq[X] → Zq is a random function5 (since efficiency is not an issue,
random functions exist). RO is a random oracle call and dlog takes a discrete
logarithm (which an inefficient adversary can also do). Decrypt and Challenge are
calls to the CCA challenger.

Adversary An runs in three phases. In phase 1, it builds up a chain of n
Signed ElGamal ciphertexts in such a way that the randomness used in each
ciphertext depends on the challenge returned from the random oracle in the
previous one. Indeed, An only draws one random value to initialise S and uses

Y

S
$← Zq T ← [ ]

i = 1 . . . n

r ← Ψ(1, S)
a ← Ψ(2, S)
m ← Ψ(3, S)
M ← gm

(C, D) ← (gr, MY r)
A ← ga

c ← (Y, C, D,A)
s ← a + cr (mod q)
S ← (S, c)
T [i] ← (M, C, D,A, s)

i = n . . . 1 (−1)
(M,C, D,A, s) ← T [i]
M ′ ← (C, D, A, s)

M 	= M ′

m0 ← Ψ(4, S)
m1 ← Ψ(5, S)
(C, D, A, s) ← (m0, m1)
r ← (C)
M ← D/Y r

M = gm0 0
1

Fig. 4. Adversary An against CCA of Signed ElGamal with advantage 1.

5 By choosing the polynomial ring over Zq as the domain, we mean that Ψ takes
arbitrary-length finite sequences of integers modulo q as input.
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the random function Ψ to update its state afterwards. One can think of S as the
current state of a internal pseudorandom number generator.

In phase 2, our adversary asks decryption queries in reverse order, in the
manner first proposed by Shoup and Gennaro [16] and used by Bernhard
et al. [5]. Crucially, our adversary checks the correctness of each decryption and
aborts if the CCA game resp. reduction to which it is connected tries to cheat
by returning a false decryption. By the time our adversary reaches phase 3, it is
“satisfied” that whoever it is interacting with really can decrypt Signed ElGamal
ciphertexts. It picks two random messages, asks a challenge query and takes a
discrete logarithm to win the CCA game with overwhelming probability6.

Our proof strategy will be to give an efficient simulation of phases 1 and 2
(which means dealing with Ψ) and to argue that no copy of An will ever reach
phase 3 in less than exponential time, unless the reduction solves IES or DDH.

In the proof we will make three case distinctions. Recall that R is a reduction
from CCA of Signed ElGamal to IND-CPA of plain ElGamal.

1. R answers the IND-CPA challenger’s query without any copy of the adversary
reaching Phase 3. In this case, we can simulate all copies of the adversary by
lazily sampling the random function Ψ to obtain an IND-CPA adversary that
wins its game with the same probability as R given access to a CCA adversary
that always guesses correctly.

2. R answers a decryption query on a ciphertext without using special sound-
ness. We build a metareduction to IES.

3. Neither of the above cases occur. In this case one copy of the adversary we are
simulating proceeds to the point where it would have to use its discrete loga-
rithm capability hence it must have got answers to all n decryption queries. In
this case we show that the reduction must have launched Ω(2n) copies of the
adversary.

5.4 Case 1: The Reduction Solves DDH by Itself

If the reduction answers its IND-CPA challenge without getting any copy of the
adversary to run to phase 3 then the reduction must be breaking indistinguisha-
bility “by itself”. In this case we can just simulate the adversary efficiently for
as long as needed.

Lemma 2. Let E1 be the event that the reduction R returns a guess to its chal-
lenger without any copy of the adversary reaching Phase 3. There is a metare-
duction M1 that breaks DDH in G with advantage αM = Pr[E1]αE1/2 where αE1

is the advantage of R (with access to our adversary) given that E1 has occurred.

Proof. Consider an efficient metareduction M1 which simulates all the copies
of our adversary in phases 1 and 2 and the random function by lazy sampling,
once for all copies of the adversary. If an adversary copy reaches phase 3 or R
aborts, M1 outputs a random guess. Writing σE1 := Pr[R guesses correctly | E1]
6 The probability is not exactly 1 because m0 and m1 could collide.
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and αE1 := (2σE1 − 1) we compute the advantage of M1 as Pr[E1] · αE1 . The
advantage against the encryption scheme gives an adversary against DDH with
advantage Pr[E1]αE1/2. ��

5.5 Case 2: The Reduction Breaks IES

If the reduction R does run a copy of the adversary to phase 3, we can hope that
it solves IES for us along the way. We define a metareduction M2 that simulates
individual copies of An as follows, with joint state between the copies in two global
variables U, V . All other variables are local to each simulated copy of the adversary.

// COPY OF An //

// PHASE 1 //
S ← 0
for i = 1 . . . n do

(R,A, d) ← draw(S)
c ← R.RO(X,R, gd, A)
s ← chal(R,A, c)
S ← (S, c)
T [i] ← (R,A, d, c, s)

endfor

// PHASE 2 //
for i = n . . . 1 step (−1) do

(R,A, d, c, s) ← T [i]
M ← R.decrypt(R, gd, A, s)
Z ← gd/M

if not check(R,A,Z) then
abort this copy of An

endif
endfor

oracle check(R,A,Z):

(j, φ, c′, s′, r′, a′) ← V [R,A]
β ← I.check(j, Z)
if β = 1 and φ < 2 then

abort and return (j, Z)
to OMvIES challenger

else
return β

endif

oracle draw(S):

if U [S] is defined then
(R,A, d) ← U [S]
return (R,A, d)

else
(j, R,A) ← I.Instance()

d
$← Zq

U [S] ← (R,A, d)
V [R,A] ← (j, 0, 0, 0, 0, 0)
return (R,A, d)

endif

oracle chal(R,A, c):

(j, φ, c′, s′, r′, a′) ← V [R,A]
if φ = 0 then

s ← I.Challenge(j, c)
V [R,A] ← (j, 1, c, s, 0, 0)
return s

elseif φ = 1 then
if c = c′ then // replay

return s′

else // fork
(r, a) ← I.open(j)
V [R,A] ← (j, 2, c′, s′, r, a)
return a + cr (mod q)

endif
else // φ = 2

return a′ + cr′ (mod q)
endif
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Our metareduction M2 simulates both the adversary and challenger interfaces
towards the reduction R and interacts with an OMvIES challenger. On the
challenger interface M2 passes the challenger’s public key. By assumption, R is
key-passing so although the simulated adversaries formally receive a public key
from R we could equally well have the metareduction provide them with this
key directly. If the reduction asks an IND-CPA challenge query, we just simulate
this challenge query (picking a random bit b); since we have already dealt with
case 1 we can ignore the reduction returning a guess to the challenger for now.

In detail, our metareduction operates as follows. Initially, it obtains a value
X from its OMvIES challenger and hands control to the reduction R. When R
asks to invoke a new copy of the adversary A, metareduction M2 simulates a
copy of A using public key X (since R is key-passing) using the algorithms in
the code listing above. The oracles check, draw and chal are shared between all
copies of the simulated adversary. R.alg means we call back to R, simulating the
adversary calling its challenger’s oracle named alg whereas I.alg means call the
oracle named alg on the OMvIES challenger.

If the reduction makes a challenge query (to its IND-CPA challenger) the
metareduction draws a random bit b and simulates the challenge ciphertext; if
the reduction R makes a guess at b then the metareduction aborts (this is case
1 which we have dealt with above). If R manages to get a copy of the simulated
adversary to phase 3, the metareduction M2 aborts too — this is case 3 which
we will deal with later.

The check, draw and chal oracles help the metareduction M2 simulate multi-
ple copies of An using only one OMvIES challenger. The draw oracle ensures that
multiple copies of the adversary who receive identical (random oracle) replies
from R also produce identical ciphertexts. In a table U the metareduction keeps
track of whether a particular adversary state S has been encountered before; if
so we can simply replay the same ciphertexts.

The chal oracle is responsible for completing the proofs in Signed ElGamal
ciphertexts. The table V maps each OMvIES instance (R,A) to the following
parameters:

– The integer j is the index required to tell the challenger to operate on this
particular instance.

– The potential φ is the equivalent of the OMDL potential in Bernhard
et al. ’s proof [5] and matches the potential f stored internally by the OMvIES
challenger.

• The first time a particular instance (R,A) is used (case φ = 0), chal uses
the OMvIES challenge oracle to complete the proof.

• In case φ = 1, if the current challenge has been used before then the
reduction is replaying one adversary copy’s responses to a second copy.
In this case the metareduction replays the response s that it computed
earlier. If c is fresh on the other hand, then the reduction has “forked”
two copies of the adversary on the random oracle call in this proof and is
about to recover the discrete logarithm r by applying special soundness.
In this case our metareduction M2 opens the instance.
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• In case φ = 2 the instance has already been opened, so M2 knows the
values a, r necessary to make the proof itself.

– The values c′, s′ in a V -entry store the challenge and response from a previous
chal query. These values are used in case φ = 1 and the reduction replays the
same c′, in which case the metareduction replies with the same s′.

– The values r′, a′ store the discrete logarithms of R,A when φ = 2. In this
case the reduction has forked the adversary on the instance (R,A), forcing
the metareduction to open the instance.

The check oracle is responsible for checking both that the reduction does not
cheat and whether the reduction has solved OMvIES for us. When the reduction
returns a decryption M to a copy of the adversary, the simulated adversary
strips out the message to recover what would be the CDH solution grx for the
instance in question. The metareduction M2 then checks this with the OMvIES
challenger. Should the decryption turn out to be false, the copy of the adversary
in question aborts. If the decryption is correct and the potential is not yet at 2
then the reduction has given us some information that we do not know already
(the instance in question is unopened) and we solve OMvIES.

The above arguments show that whenever R decrypts an unopened challenge
instance, the metareduction M2 breaks OMvIES. It remains to show that R
cannot distinguish M from multiple, independent copies of An running on the
same random string. Recall that in Fig. 4 we have the following invariants.

1. Two copies of An that receive identical messages from R also produce identical
messages/calls back to R.

This is because all copies execute on the same random string and do not
communicate with anyone except R.

2. R can influence copies of An in exactly three places: answering random oracle
queries in phase 1, decryption queries in phase 2 and the challenge query in
phase 3.

3. The moment that two copies of An get different answers to a random oracle
query, the two copies become independent of each other.

If at some point two copies U, V get different answers cU 	= cV to the
same random oracle query then their states SU , SV will become distinct from
then on and never coincide again (since we only ever append to state vectors).
Since the randomness used to construct Signed ElGamal ciphertexts is drawn
using a random function Ψ from the current state S, the ciphertexts in two
copies with different states are independent.

4. The distribution of each individual ElGamal ciphertext and Schnorr commit-
ment produced by An is uniform, that is (C,D,A) is a uniformly random
element of G3.

This follows from r, a,m being drawn by a random function on distinct
inputs.

5. In phase 2, a copy of An will proceed past a decryption query (and not abort)
if and only if the decryption is correct.
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These invariants will let us show that the values received by R when inter-
acting with M2 or multiple copies of An are identically distributed. We use
induction over the sequence of all calls made to R in a particular execution.
Before the first call, the distributions of all values sent to R are certainly equal.

– For a RO call, there are two cases. If this call is made by a copy of the adversary
that has received the exact same sequence of inputs and outputs as some other
copy has received previously, then it will return the same values (X,C,D,A)
as the previous copy.

This holds for An as the state S of the copy that sent the current call will
match the state S′ of the previous copy at the time it sent the equivalent call,
so the values C,D,A will be equal (and X is constant in any case).

In M2, the oracle draw ensures that the same state S leads to the same
values (R,A, d) being returned.

– For a fresh RO call (that does not match the case above), the value X is
constant and the values R,D,A are uniformly random and independent of
each other and all values sent to the reduction R so far.

In An this holds because S is fresh and the values in question are therefore
obtained by a random function on distinct, fresh inputs (since m is uniform,
so is M and because M is not used elsewhere, so is MY r). In M2 a fresh S
causes (R,A) to be sampled from the OMvIES challenger so they are uniform
and independent of previous values as expected; D is also a fresh, uniform
group element.

– The value s in a decryption query is completely determined by the matching
C,D,A and c — all of which R has seen before in the matching random oracle
query, or in the case of c the reduction R has chosen the value itself. This
holds in both An and M2.

It follows that up until some adversary copy reaches phase 3, R cannot tell
M2 from An and must therefore have a negligibly close IND-CPA advantages in
both experiments.

5.6 Case 3: The Reduction Takes Exponential Time

This case is essentially the same argument as that of Bernhard et al. [5]. If
the reduction R when interacting with M2 ever gets a copy of the simulated
adversary to phase 3 (in which case M2 aborts) then it must have launched at
least 2n copies of the adversary.

Lemma 3. Consider an execution of M2 with any reduction R that results in
one copy of the simulated adversary advancing to phase 3. Then R must have
launched 2n copies of the adversary.

If a copy of the adversary simulated by M2 advances to phase 3, we know
that neither has R returned a guess at β (this would have halted the entire
execution as in Case 1) nor has the check oracle aborted because OMvIES has
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been solved (Case 2). In particular, R has never answered a decryption query
on a ciphertext linked to an OMvIES instance at potential φ ≤ 1.

We build a complete binary tree of depth n representing points in the execu-
tion of R with our metareduction where the adversary must have been “forked”
on Schnorr proofs. Our aim is to show that each leaf of the tree must reference
a distinct copy of the adversary, hence there must have been at least 2n copies
overall launched by R. We first give the invariants of our tree and prove that
these imply distinct adversary copies in the leaves. Then we will construct a tree
meeting these invariants from any execution that reaches phase 3.

The nodes in our tree have labels (i, k) where i is an identifier for some copy
of the adversary (for example, one can number the copies in the order that they
begin phase 1) and k ≤ n is an integer referencing a particular decryption query.
Our nodes will have the following invariants.

1. Any copy of the adversary referenced in the tree has advanced to at least
phase 2 and has obtained all its n challenges. If a node (i, k) is present then
copy i has also obtained answers to at least its first k decryption queries,

2. The root of the tree is of the form (i, n). A child of (i, k) is of the form (j, k−1)
and a descendant of (i, k) is of the form (j, l) with 0 ≤ l < k.

3. If (j, l) is a descendant of (i, k) then (1) the copy j has got the same first
n − k challenges as copy i. (The two could also be identical.) However, (2)
the copies (j, k − 1) and (j′, k − 1) represented by the two children of (i, k)
differ in challenge n − k + 1.

Recall that our adversary An performs decryption queries in reverse order
after it has got all n challenges, so the first decryption query uses the n-th
challenge etc. This explains the reversed indexing n − (k − 1) of the referenced
challenges for the (∗, k − 1) nodes in the last property.

If we can construct such a complete binary tree rooted at (i, n) where i is the
copy of the adversary that reached phase 3 then we claim that all 2n leaves of
this tree represent distinct copies of the adversary, proving our exponential lower
bound. Suppose for the sake of contradiction that two distinct leaves L = (j, 0)
and M = (j′, 0) refer to the same copy of the adversary, i.e. j = j′. Then consider
the unique path from the one leaf to the other in the tree, and the highest (i.e.
closest to the root) node R = (i, k) on this path. R will have two children A
and B, since R is not itself a leaf by construction. W.l.o.g. L is a descendant or
equal to A and M is a descendant or equal to B. The contradiction is that by
invariant 3, A and B must differ in their n − k + 1st challenge (part 1 of the
invariant) whereas all descendants of A, including L, must share their n−k+1st
challenge with A (by applying part 2 of the invariant to A). Similarly, M must
share challenge n − k + 1 with B and therefore L,M must differ in challenge
n − k + 1. It follows that j 	= j′ and that there must be 2n distinct copies of
the adversary referenced in the leaves, hence R must have launched this many
copies.

To construct the tree from an execution that reaches phase 3, we pick the
copy i of the adversary An that reached phase 3 and use (i, n) as the root; this
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trivially meets all invariants. We repeatedly give each node (j, l) with l > 0 two
children as follows. The first child of (j, l) is simply (j, l − 1). Invariant 1 carries
over as the second component of the node decreases, invariants 2 and 3(1) are
trivially satisfied.

The core of the tree construction is in the choice of the second child for each
node. For the second child of (j, l) with l > 0 we observe that since copy j has
got an answer to its l-th decryption query yet M2 has not solved OMvIES with
this answer, the corresponding IES instance must be at φ = 2. Therefore some
other copy j′ of the adversary must have triggered the opening of this instance,
before copy j got its l-th decryption query answered. This other copy j′ must
therefore have shared challenges 1 up to n − l with j and been “forked” on
challenge n − l + 1 to open the IES instance in question. And this forking can
only have happened after j′ had its own l−1st decryption query answered, since
it must have been the lth decryption query of j′ that triggered the opening. It
follows that we can pick (j′, l − 1) as our second child of (j, l) to satisfy all the
invariants.

Taken together, our three cases show that a key-passing black-box reduction
R from IND-CPA security of Signed ElGamal to IND-CPA security of plain
ElGamal must either solve DDH, or IES, or run in exponential time. This proves
our Theorem 1. ��

6 Conclusion

CCA security is often presented as the correct notion for public-key encryption
and Signed ElGamal is very tempting to use due to its short ciphertexts and
fast computation. However, Signed ElGamal has never been proven CCA secure
in the plain ROM (without algebraic or generic-group assumptions).

Our results do not disprove CCA security of Signed ElGamal in the plain
ROM nor yield an attack against CCA of Signed ElGamal in typical implemen-
tations. What they do is further limit the techniques available to anyone wishing
to prove CCA security. Where Shoup and Gennaro [16] showed that the obvious
proof does not work and Bernhard et al. [5] excluded proofs based on extracting
the Schnorr proof’s randomness, which seems to us to be overly strong — even
the honest decryptor holding the secret key cannot learn the randomness without
taking a discrete logarithm — we exclude all proofs by reduction to IND-CPA of
plain ElGamal that do not make use of at least one non-standard step, such as
treating the adversary in a non-black box manner. We would recommend caution
before using Signed ElGamal in a scenario where CCA security is really called
for (if NM-CPA is sufficient, so is Signed ElGamal).

At this point, our result works for key-passing reductions only. Our metare-
duction to IES requires the reduction to launch its adversary copies with the
same public key that it got from its (simulated) IND-CPA challenger. In par-
ticular, if instead of reducing to IND-CPA of ElGamal, one wishes to reduce to
a problem such as DDH directly, there is no notion of a key anymore so such



68 D. Bernhard et al.

reductions seem not to be covered7. Key-passing seems to be a common way
to build a reduction to the CPA security of ElGamal, and has been used in the
proofs of previous results on Signed ElGamal [14,17] with some additional knowl-
edge assumption. Alternatively, one may consider the implications of restricting
to algebraic or generic reductions — unlike algebraic adversaries, this seems a
sound choice to us as there do not seem to be any non-algebraic reductions in
discrete-logarithm based schemes. Potentially, this could not only eliminate the
key-passing requirement but also show an impossibility of a reduction to any
“natural” problem over groups as in Fleischhacker et al. [12]. We will investigate
this problem in future research.

Another interesting question is whether IES is hard in the generic group
model. Our best answer at the moment is that IES is out of scope of the
generic model: as defined by Shoup, the model allows an adversary to start
with arbitrary information and perform generic computations on the group ele-
ments in the adversary’s input, but it does not allow for information relating
to the adversary’s group inputs to be revealed adaptively during the execution.
This is exactly what IES does and it seems to us that one would have to extend
the model to capture this, leading to the question how one would validate such
a new model.
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rity when the evaluation key is unavailable to the adversary and remain
CCA1-secure when the evaluation key is exposed. While existing keyed-
homomorphic encryption schemes only allow simple computations on
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morphic encryption (keyed-FHE) capable of evaluating any functions on
encrypted data with an evaluation key.

In this paper, we first introduce a new primitive called convert-
ible identity-based fully homomorphic encryption (IBFHE), which is an
IBFHE with an additional transformation functionality, and define its
security notions. Then, we present a generic construction of CCA-secure
keyed-FHE from IND-sID-CPA-secure convertible IBFHE and strongly
EUF-CMA-secure signature. Finally, we propose a concrete construction
of IND-sID-CPA-secure convertible IBFHE, resulting in the first CCA-
secure keyed-FHE scheme in the standard model.
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1 Introduction

Today’s information services are increasingly storing data across many servers
shared with other data owners. An example of this is cloud computing which
has the great potential of providing various services to the society at signifi-
cantly reduced cost due to aggregated management of elastic resources. Since
software systems are not guaranteed to be bug-free and hardware platforms are
not under direct control of data owners in such distributed systems, security
risks are abundant. To mitigate users’ privacy concern about their data, a com-
mon solution is to outsource data in encrypted form so that it will remain private
even if data servers are not trusted or compromised. To not nullify the benefits of
cloud computing, however, we need homomorphic encryption schemes that allow
meaningful computations on encrypted data. Recently, in a breakthrough effort,
Gentry [28] constructed a fully homomorphic encryption (FHE) scheme enabling
anyone to compute arbitrary functions on encrypted data. On the other hand,
security against chosen-ciphertext attack (CCA) [24,42,47] is now a commonly
accepted standard security notion for encryption, and unfortunately, it is well-
known that CCA security and the homomorphic property cannot be achieved
simultaneously.

The incompatibility of CCA security and homomorphicity cannot be recon-
ciled under the assumption that everyone can “freely” perform homomorphic
operations on ciphertexts. Very recently, Emura et al. [25] showed that in the
setting where homomorphic operations are performed in a “controlled” fash-
ion, CCA security and homomorphicity can be simultaneously achieved. They
suggested a new primitive called keyed-homomorphic encryption [25], where
homomorphic ciphertext manipulations are only possible to a party holding a
devoted evaluation key EK which, by itself, does not enable decryption. A keyed-
homomorphic encryption scheme should provide CCA2 security when the eval-
uation key is unavailable to the adversary and remain CCA1 secure when EK is
exposed. Emura et al. [25] presented a number of keyed-homomorphic encryption
schemes through hash proof systems [22], which only allow simple computations
on encrypted data (i.e., either adding or multiplying encrypted ciphertexts, but
not both operations at the same time). This paper is motivated by the goal
of constructing CCA-secure keyed-fully homomorphic encryption (keyed-FHE)1

capable of evaluating any functions on encrypted data with a devoted evaluation
key EK.
Our Contribution. One may hope to obtain CCA-secure keyed-FHE by using
the double encryption methodology: a ciphertext of an “inner” CPA-secure FHE
scheme is encrypted by an “outer” CCA-secure encryption scheme, and the evalu-
ation key EK is the decryption key of the “outer” CCA-secure encryption scheme.
Unfortunately, this naive construction is not secure in the sense of our security
definition for keyed-fully homomorphic encryption. An adversary is allowed to
1 We focus on leveled keyed-FHE schemes, and typically omit the term “leveled”. In a
leveled keyed-FHE scheme, the parameters of the scheme may depend on the depth,
but not the size, of the circuits that the scheme can evaluate.
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issue decryption queries before the evaluation key EK is exposed to the adversary
in our security definition. However, no such decryption query is allowed in the
CPA security game of the underlying “inner” FHE scheme2.

We propose a generic paradigm of constructing CCA-secure keyed-FHE,
which follows the line of CHK transformation [18]. It is worth noting that, one
cannot achieve CCA-secure keyed-FHE from IND-sID-CPA-secure IBFHE by CHK
transformation directly, since each IBE ciphertext is under a fresh identity and
the homomorphic evaluation functionality of IBFHE does not work.

– We define a new primitive named convertible identity-based fully homomor-
phic encryption (IBFHE) and its IND-sID-CPA security notions. Informally, a
convertible IBFHE is an IBFHE with an additional transformation function-
ality, which may be of independent interest.

– Based on our new primitive, IND-sID-CPA-secure convertible IBFHE, and
strongly EUF-CMA-secure signature, we propose a generic paradigm of con-
structing CCA-secure keyed-FHE by modifying CHK transformation [18]
slightly.

– We construct a convertible identity-based (leveled) FHE scheme based on the
adaptively-secure IBE scheme proposed by Agrawal et al. [1], and prove that
it is IND-sID-CPA secure in the standard model, resulting in the first CCA-
secure keyed-FHE scheme in the standard model. Actually, one can use our
techniques to construct convertible IBFHE schemes based on the adaptively-
secure IBE schemes proposed in [2,19].

Convertible IBFHE. A convertible IBFHE scheme consists of seven algo-
rithms: Setup, Extract, GenerateTK, Encrypt, Transform, Decrypt and Evaluate.
Among these algorithms, (Setup, Extract, Encrypt, Decrypt, Evaluate) constitute
the traditional IBFHE scheme; algorithms GenerateTK and Transform provide
the following functionality: given a transformation key TK �→ ˜ID for an identity ˜ID,
which is generated by an authority using algorithm GenerateTK, one with the
help of algorithm Transform can transform a ciphertext CT under any identity
into a ciphertext under identity ˜ID without changing the underlying plaintext
of CT.

The additional functionality of convertible IBFHE is reminiscent of identity-
based proxy re-encryption (IBPRE) [32]. Unlike convertible IBFHE, in an
IBPRE scheme, a transformation key (i.e., re-encryption key) TKID1→ID2 asso-
ciated with two identities ID1 and ID2, is generated by the user with identity
2 Another naive approach to construct CCA-secure keyed-FHE is to utilize Naor-Yung

paradigm [42]: a plaintext is encrypted twice (independently) by CPA-secure FHE,
and then a non-malleable non-interactive zero-knowledge (NIZK) [51] proof is used in
order to prove that both ciphertexts are encryptions to the same plaintext (the CRS
needed for the NIZK is part of the public key); the evaluation key EK is the trapdoor
associated with the CRS. However, as the construct by using the double encryption
methodology, this construction is not secure in the sense of our security definition:
the adversary is allowed to use the decryption oracle even after the challenge phase,
just before the adversary requests EK.
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ID1, and one with the transformation key can only convert an encryption under
identity ID1 into the encryption under identity ID2.

The adaptive security of convertible IBFHE requires that given a challenge
ciphertext CT∗ under some identity ID∗, no PPT adversary can distinguish,
except with a negligible advantage, whether CT∗ is an encryption of 1 under
identity ID∗ or an encryption of 0 under identity ID∗. We allow an adversary
to adaptively issue private key queries on identities ID and transformation key
queries on identities ˜ID, but with the natural constraints that: (1) the adversary
cannot issue private key query for the challenge identity ID∗; (2) the adversary
cannot issue private key query for an identity ˜ID such that the adversary has
issued a transformation key query on ˜ID, and vice versa.

For constructing CCA-secure keyed-FHE, we only require that the underlying
convertible IBFHE be secure in a weaker security model, denoted as IND-sID-
CPA security model. In this weaker security model, the transformation key query
can be issued only once by the adversary, and the target identity ID∗ and the
designated identity ˜ID which the adversary wants to obtain the corresponding
transformation key must be committed by the adversary ahead of the system
setup.
CCA-secure keyed-FHE from IND-sID-CPA-secure convertible
IBFHE. We give a high-level description on how to construct a CCA-secure
keyed-FHE scheme from an IND-sID-CPA-secure convertible IBFHE scheme char-
acterized by (GenerateTK,Transform), with the help of a strongly EUF-CMA-
secure signature scheme S = (Gen,Sign,Vrfy).

The public key of our proposed keyed-FHE scheme is the public parameters
of the convertible IBFHE scheme, the secret key is the corresponding master
key, and the evaluation key is (˜vk, ˜sk,TK �→˜vk

), where (˜vk, ˜sk) is a key-pair for
the signature scheme S and TK�→˜vk

which is generated by algorithm GenerateTK

of the convertible IBFHE scheme is the transformation key for “identity” ˜vk.
To encrypt a message bit, the encryption algorithm first runs algorithm

S.Gen to obtain a key-pair (vk, sk), and then uses the convertible IBFHE scheme
to encrypt the message bit with respect to the “identity” vk, with the result-
ing ciphertext denoted as CT. Next, the signing key sk is used to sign CT to
obtain a signature σ. The final ciphertext C consists of the verification key vk,
the convertible IBFHE ciphertext CT and the signature σ. Given a ciphertext
C = (vk,CT, σ), the decryption algorithm first uses algorithm S.Vrfy to verify
the signature σ on CT with respect to vk and outputs ⊥ if the verification fails.
Otherwise, the decryption algorithm generates the private key SKvk correspond-
ing to the “identity” vk, and decrypts the ciphertext CT using the underlying
convertible IBFHE scheme.

Given a tuple of ciphertexts C = (C1, . . . , Ck) where Ci = (vki,CTi, σi),
and a Boolean circuit f : {0, 1}k → {0, 1}, the evaluation algorithm first veri-
fies the signature σi on CTi with respect to vki for each i ∈ [k] and outputs ⊥
if the verification fails. Otherwise, for each i ∈ [k], with TK �→˜vk

, it runs algo-
rithm Transform of the convertible IBFHE scheme to convert the ciphertext CTi
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under “identity” vki into a ciphertext ˜CTi under the “identity” ˜vk. Since now
˜CT1, . . . , ˜CTk are the ciphertexts under the same “identity” ˜vk, the evaluation
algorithm can evaluate the Boolean circuit f on the ciphertexts ˜CT1, . . . , ˜CTk

using the underlying convertible IBFHE scheme. Then the resulting ciphertext
˜CT is signed using ˜sk to obtain a signature σ̃, and the evaluation algorithm
outputs the ciphertext C = (˜vk, ˜CT, σ̃).

As for the security of our proposed keyed-FHE scheme, we show that if there
exists an adversary A with a non-negligible advantage in the CCA security game,
we can create a reduction algorithm B that breaks the IND-sID-CPA security of
the underlying convertible IBFHE scheme. The reduction algorithm B is infor-
mally described as follows. B first runs S.Gen to obtain two key-pairs (vk∗, sk∗)
and (˜vk, ˜sk). Then, B sets vk∗ and ˜vk as its target “identity” and designated
“identity”, which are submitted to its challenger in the IND-sID-CPA security
game of the convertible IBFHE scheme. B is given the public parameters of the
convertible IBFHE scheme and the transformation key TK �→˜vk

for “identity”
˜vk. Now, B can use (˜vk, ˜sk) and TK �→˜vk

to answer A’s evaluation queries and
the evaluation key query, and the challenge ciphertext C∗ given to A is set as
(vk∗,CT∗, σ∗), where CT∗ is B’s challenge ciphertext of the convertible IBFHE
scheme and σ∗ ← S.Sign(sk∗,CT∗). Next, we shall explain how B answers the
decryption queries for ciphertexts C = (vk,CT, σ) issued by adversary A.

We say a ciphertext C = (vk,CT, σ) is valid if σ is a valid signature on CT
with respect to vk. For A’s decryption query on a ciphertext C = (vk,CT, σ)
such that C is a valid ciphertext and vk /∈ {vk∗, ˜vk}, B can issue a private key
query on the “identity” vk to its challenger to obtain the corresponding private
key SKvk, and use the private key SKvk to answer A’s query. The subtlety lies
in how B deals with A’s decryption query on a valid ciphertext C = (vk,CT, σ)
such that vk ∈ {vk∗, ˜vk}. Recall that B is not allowed to issue a private key
query on the “identity” vk ∈ {vk∗, ˜vk} to it’s own challenger in the IND-sID-
CPA security game of the convertible IBFHE scheme. We first note that any
valid ciphertext C = (vk,CT, σ) submitted by the adversary during its queries
must, except with negligible probability, have vk �= vk∗ by the strong security
of the signature scheme S. The crux of the security proof is then to show how
B answers A’s decryption query on a valid ciphertext C = (vk,CT, σ) such that
vk = ˜vk.

In our security definition of keyed-fully homomorphic encryption, the adver-
sary can issue the decryption and evaluation queries only if it does not request
the evaluation key to be exposed. Hence, for any valid ciphertext C = (vk,CT, σ)
submitted by the adversary during its decryption queries, if vk = ˜vk, with over-
whelming probability, C is one of B’s responses to A’s evaluation queries by
the strong EUF-CMA security of the signature scheme S. Based on the above
observation, B will resort to a list EList to answer A’s decryption query on a
valid ciphertext C = (vk = ˜vk,CT, σ). The list EList is set as ∅ initially and is
updated while answering A’s evaluations queries. Now, when A issues an eval-
uation query on a tuple of ciphertext C = (C1, . . . , Ck) and a Boolean circuit
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f , after sending the result C of the evaluation algorithm to the adversary, B
additionally proceeds as follows.

1. Check whether there exists an i ∈ [k] such that Ci = C∗. If so, update the
list by EList ← Elist ∪ {(⊥, C)}. Note that, to avoid an unachievable security
definition, B answers ⊥ for “unallowable ciphertext” that are the result of
homomorphic evaluation for C∗ and any ciphertext of A’s choice.

2. For each valid ciphertext Ci = (vki,CTi, σi) where i ∈ [k], obtain the corre-
sponding plaintext bi by finding the corresponding record (bi, Ci) in the list
EList if vki = ˜vk or decrypting CTi with the help of issuing a private key
query on the “identity” vki to its challenger. Then, compute the message bit
m = f(b1, . . . , bk) and update the list by EList ← Elist ∪ {(m,C)}.

Consequently, when A issues a decryption query on a valid ciphertext C =
(vk,CT, σ) such that vk = ˜vk, except with negligible probability, B can find a
record (m,C) in the list EList and return m to the adversary as its answer. Hence,
by the strong EUF-CMA security of the signature scheme S, with overwhelming
probability, B simulates the CCA security game of our proposed keyed-FHE
scheme for A properly. Therefore, if A has a non-negligible advantage in the CCA
security game, B breaks the IND-sID-CPA security of the underlying convertible
IBFHE scheme with a non-negligible advantage.
Construction of IND-sID-CPA-secure convertible IBFHE. Based on
the standard learning with errors (LWE) problem [49], Agrawal et al. [1] pro-
posed an efficient identity-based encryption scheme and showed that their base
construction can be extended to an adaptively-secure IBE using a lattice analog
of the Waters IBE [56]. Our IND-sID-CPA-secure convertible IBFHE starts from
the adaptively-secure IBE scheme in [1].

An encryption of a message bit b for an identity ID = (d1, . . . , d�) ∈ {−1, 1}�

in the adaptively-secure IBE scheme [1] takes the form of

c0 = u�s + x + b	q

2

 ∈ Zq, c1 = F�

IDs +
[

y
R�

IDy

]

∈ Z
2m
q ,

where FID = A | B0 +
∑�

i=1 diBi, RID =
∑�

i=1 diRi, and A,B0, B1, . . . , B�, u
are the system’s public parameters, a short basis TA for Λ⊥

q (A) is the master
key, s, x, y,R1, . . . , R� are noise vectors with short norm used in the encryption
algorithm. The private key SKID for identity ID is a short vector eID in Λu

q (FID),
hence the message bit b can be recovered from c0 − e�

IDc1.
Agrawal et al. [1] utilized the partitioning strategy to prove the adaptively-

secure security of the above IBE scheme. In the security reduction, B1, . . . , B�

in the public parameters are set as Bi = AR∗
i + hiB0, where all the matrices R∗

i

are random and hi is a secret coefficient in Zq. Consequently,

FID = A | B0 +
�

∑

i=1

diBi = A | A(
�

∑

i=1

diR
∗
i ) + hIDB0,
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where hID = (1 +
∑�

i=1 dihi), and the identity space is partitioned into two
parts according to whether hID is equal to 0 or not. If hID �= 0, the simulator,
without knowing the master key, can use a trapdoor TB0 for Λ⊥

q (B0) to generate
the private key for identity ID, i.e., a short vector eID in Λu

q (FID). The simulator
cannot produce the corresponding private key for identities ID such that hID = 0,
but will be able to construct a useful challenge to solve the given LWE problem
instance. Let ID∗ be the challenge identity and let ID1, . . . , IDQ be the identities
for which the adversary issues private key queries. The security proof will require
that for any ID∗, ID1, . . . , IDQ, with non-negligible probability,

hID∗ = 0 ∧ hID1 �= 0 ∧ . . . ∧ hID�
�= 0,

which can be satisfied by the abort-resistant hash family used in [7,34,56].
The idea of constructing convertible IBFHE is summarized as follows. We

first show how to design a convertible IBE scheme (i.e. without the homomorphic
evaluation functionality), and then extend it to a convertible IBFHE scheme. To
construct convertible IBE, we should provide an approach to converting a cipher-
text CT under any identity ID into a ciphertext ˜CT under the designated identity
˜ID. For transformation correctness (i.e., decrypting CT and ˜CT with the corre-
sponding private key SKID for identity ID and SK

˜ID for identity ˜ID respectively,
must have the same result), we need be able to check whether a ciphertext is
well-formed. However, starting from the adaptively-secure IBE scheme proposed
in [1], we are thrown into a dilemma. Agrawal et al. [1] proved that in their
proposed IBE scheme, encryption of any message bit is indistinguishable from
uniform vector over Zq under the LWE assumption. That is, any well-formed
ciphertext in [1] is pseudorandom; thus it is difficult to design a mechanism to
check the well-formedness of a ciphertext. We resort to the recent advances in
indistinguishability obfuscation [52] to overcome the obstacle.

Besides A,B0, B1, . . . , B�, u, the public parameters of our proposed convert-
ible IBE include an indistinguishability obfuscation of the following program that
takes as input an identity ID = (d1, . . . , d�) ∈ {−1, 1}�, a message bit b ∈ {0, 1}
and randomness r,

1. Set t = PRG(r) and (s, x, y,R1, . . . , R�) = F(K, ID, t);

2. Compute c0 = u�s + x + b	 q
2
 ∈ Zq, c1 = F�

IDs +
[

y
R�

IDy

]

∈ Z
2m
q and output

(t, c0, c1).

The system’s master key additionally includes the key K to the puncturable
pseudorandom function (PRF) [52] F. Let PEnc be the above obfuscated pro-
gram. The encryption algorithm simply runs PEnc(ID, b, r) and outputs the result
(t, c0, c1). The private key SKID for identity ID is a short vector eID in Λu

q (FID),
and given a ciphertext (t, c0, c1) under identity ID, the message bit b can be recov-
ered from c0−e�

IDc1. Observe that, with the knowledge of K, one can retrieve the
randomness s, x, y,R1, . . . , R� and the message bit b from a ciphertext (t, c0, c1)
under an identity ID, and thus can check the well-formedness of the ciphertext
and re-encrypt b under another identity. Consequently, the transformation key
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for an designated identity ˜ID = (d̃1, . . . , d̃�) ∈ {−1, 1}� is an indistinguisha-
bility obfuscation of the following program that takes as input a ciphertext
CT = (t, c0, c1) under an identity ID = (d1, . . . , d�) ∈ {−1, 1}�,

1. Set (s, x, y,R1, . . . , R�) = F(K, ID, t), and check whether there exists b ∈ {0, 1}
such that c0 = u�s + x + b	 q

2
 and c1 = F�
IDs +

[

y
R�

IDy

]

. If not, output ⊥.

2. Set (s̃, x̃, ỹ, R̃1, . . . , R̃�) = F(K, ˜ID, t), and compute c̃0 = u�s̃ + x̃ + b	 q
2
,

c̃1 = F�
˜ID

s̃ +
[

ỹ

R̃�
˜ID
ỹ

]

and output (t, c̃0, c̃1).

Let PTrans be the above obfuscated program. To convert an encryption CT under
identity ID into the encryption under identity ˜ID, the transformation algorithm
now simply runs PTrans(ID,CT) and outputs the result.

As for the IND-sID-CPA security of the convertible IBE scheme, we follow
the line of [1], i.e., utilizing the partitioning strategy. Let ID∗ be the challenge
identity, ˜ID be the designated identity which the adversary wants to obtain the
corresponding transformation key TK �→ ˜ID = (˜ID,PTrans), and ID1, . . . , IDQ be the
identities for which the adversary issues private key queries. Let CT∗ = (t∗, c∗

0, c
∗
1)

be the challenge ciphertext for ID∗. In the security reduction, there exist some
subtleties:

1. It requires that hID∗ = 0, in order to construct the challenge CT∗ = (t∗, c∗
0, c

∗
1)

to solve the given LWE problem instance. Like the security reduction in [1],
the randomness s∗, x∗, y∗ that are used to evaluate c∗

0 and c∗
1, come from

the given LWE problem instance and is unknown to the simulator. Hence,
when the adversary runs PTrans(ID∗, CT∗), it will get an error symbol ⊥,
which enables it to distinguish the simulated settings and the real settings.
We observe that the simulator can prepare CT∗ and ˜CT

∗
at the setup phase,

where ˜CT
∗

denotes the corresponding result of calling the transformation
algorithm on the challenge ciphertext CT∗ = (t∗, c∗

0, c
∗
1), since in the IND-sID-

CPA security game the adversary must commit ID∗ and ˜ID ahead of the system
setup. Consequently, the simulator can employ the technique of punctured
programs, introduced by Sahai et al. [52], to simulate the transformation key
for ˜ID properly.

2. It requires that for any ID∗, ˜ID, ID1, . . . , IDQ, with non-negligible probability,
hID∗ = 0 ∧ h

˜ID = 0 ∧ hID1 �= 0 ∧ . . . ∧ hID�
�= 0. Unfortunately, it cannot be

satisfied by the abort-resistant hash family used in [7,34,56]. On the other
hand, we observe that, if ID∗ and ˜ID are chosen uniformly at random, with
non-negligible probability, the requirement of hID∗ = 0 ∧ h

˜ID = 0 ∧ hID1 �=
0∧ . . .∧hID�

�= 0 can be satisfied by the abort-resistant hash family used in [7,
34,56]. Therefore, we use another puncturable PRF to map an identity ID into
a random identity id ∈ {−1, 1}�, and replace ID with id in all functionalities.
Similarly, since ID∗ and ˜ID must be committed by the adversary ahead of
the system setup, the technique of punctured programs allows the simulator’s
simulation be performed properly.
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So far, we obtain an IND-sID-CPA-secure convertible IBE scheme. Next, we
show that the convertible IBE scheme extends to a convertible IBFHE scheme.
Recently, Gentry et al. [31] described a simple “compiler” that transforms
any LWE-based IBE scheme (that satisfies certain natural properties) into an
identity-based (leveled) FHE scheme. Since our proposed convertible IBE scheme
starts from the LWE-based IBE schemes proposed in [1] that have the required
properties, we can utilize the “compiler” to transform it into a convertible
identity-based (leveled) FHE scheme.

Related Work. Emura et al. [25] showed that CCA security does not rule
out homomorphicity when the capability to compute on encrypted data is
controlled, by introducing a primitive called keyed-homomorphic encryption.
Other approaches to reconcile homomorphism and non-malleability were taken
in [9,20,44–46] but they inevitably satisfy weaker security notions than CCA
security.

Based on hash proof systems [22], Emura et al. [25] constructed a number
of CCA-secure keyed-homomorphic schemes. Recently, Libert et al. [40] applied
linearly homomorphic structure-preserving signatures [39] to quasi-adaptive non-
interactive zero-knowledge (QA-NIZK) proofs [37], proposed QA-NIZK proofs
with unbounded simulation-soundness (USS), and constructed a CCA-secure
keyed-homomorphic scheme with threshold decryption by applying USS. These
CCA-secure keyed-homomorphic schemes only allow simple computations on
encrypted data, i.e., either adding or multiplying encrypted ciphertexts, but not
both operations at the same time.

Fully Homomorphic Encryption. The notion of fully homomorphic encryption
(FHE) capable of performing any computations on encrypted data, was first
put forward by Rivest et al. [50]. However, only in the past few years have
candidate FHE schemes been proposed. The first such scheme was constructed
by Gentry [28]; his work inspired a tremendous amount of research effort on
improving the efficiency of his scheme [13,21,29,30,53,54], realizations of FHE
based on different assumptions [14,16,17,55], and so on. Until now, fully homo-
morphic encryption schemes can only be proven secure against chosen-plaintext
attack (CPA).

Controlled Homomorphic Encryption. Desmedt et al. [23] put forth the notion of
a controllable homomorphic encryption scheme (CHES) that blends together the
notion of a fully homomorphic encryption scheme and of a functional encryption
scheme [8]. In a CHES, a designated homomorphic operation C can be efficiently
performed on a single ciphertext by a party that has a special token for function
C that is released by the owner of the secret key. Compared with CHES, keyed-
FHE enables a party holding a devoted evaluation key to compute arbitrary
functions on ciphertexts, and it can provide CCA2 security when the evaluation
key is unavailable.

Indistinguishability Obfuscation. Program obfuscation deals with the problem of
how to protect a program from reverse engineering while preserving functionality.
Unfortunately, Barak et al. [5,6] showed that the most natural simulation-based
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formulation of program obfuscation (a.k.a. “black-box obfuscation”) is impossi-
ble to achieve for general programs in a very strong sense. Faced with this impos-
sibility result, Barak et al. [5,6] suggested another notion of program obfuscation
named indistinguishability obfuscation. Roughly speaking, an indistinguishabil-
ity obfuscation scheme ensures that the obfuscations of any two functionally
equivalent circuits are computationally indistinguishable. Recently, Garg et al.
[27] proposed the first candidate construction of an efficient indistinguishability
obfuscation (iO) for general programs.

Recently, staring with [52] there has been much interest in investigating what
can be built from iO, since this model leads to poly-time obfuscation of unre-
stricted program classes, circumventing the known impossibility results of [5,6].
Subsequently, many papers [11,26,33,35,36,48,52,57] have shown a wide range
of cryptographic applications of iO. We utilize iO to construct an IND-sID-CPA-
secure convertible IBFHE scheme.

Organization. The rest of the paper is organized as follows. Some preliminaries
are given in Sect. 2. We introduce the notion and security model of convertible
IBFHE in Sect. 3. We propose a paradigm of constructing CCA-secure keyed-FHE
from IND-sID-CPA-secure convertible IBFHE and strongly EUF-CMA-secure sig-
nature in Sect. 4. We present a concrete construction of IND-sID-CPA-secure con-
vertible identity-based (leveled) FHE in Sect. 5. Section 6 concludes the paper.

2 Preliminaries

If S is a set, then s1, . . . , st ← S denotes the operation of picking elements
s1, . . . , st uniformly at random from S. If n ∈ N then [n] denotes the set
{1, . . . , n}. For a probabilistic algorithm A, we denote y ← A(x;R) the process
of running A on input x and with randomness R, and assigning y the result. Let
RA denote the randomness space of A, and we write y ← A(x) for y ← A(x;R)
with R chosen from RA uniformly at random. A function f(κ) is negligible, if
for every c > 0 there exists a κc such that f(κ) < 1/κc for all κ > κc. For a real
x ∈ R, 	x� denotes the nearest integer to x, and 	x
, x� for x ≥ 0 to indicate
rounding down or up.

2.1 Lattices

A full-rank lattice Λ is the set of all integer linear combinations of n linearly
independent basis vectors belonging to some R

n. In this work, we are interested
in full-rank integer lattices that are restricted to Z

n.

Definition 1. Fixing q and given a matrix A ∈ Z
n×m
q , define the following

m-dimensional Ajtai lattices,

Λq(A) = {y ∈ Z
m : y = AT s mod q for some s ∈ Z

n},

Λ⊥
q (A) = {y ∈ Z

m : Ay = 0 mod q}.
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For any u ∈ Z
n
q admitting an integral solution to Ax = u mod q, define the

coset (or shifted lattice) Λu
q (A) = {y ∈ Z

m : Ay = u mod q} = Λ⊥
q (A) + x .

For a set of vectors B = {b1, . . . , bm} ∈ Z
n×m
q , denote by ‖B‖ the L2 length

of the longest vector in B and denote by ˜B = {˜b1, . . . , ˜bm} the Gram-Schmidt
orthogonalization of b1, . . . , bm taken in that order. We refer to ‖ ˜B‖ as the
Gram-Schmidt norm of B .

2.2 Discrete Gaussians

Let σ ∈ R
+ and c ∈ R

m, the Gaussian function On R
m with center c and

parameter σ is defined as ρσ,c(x) = exp(−π‖x − c‖2/σ2). For a positive integer
m ∈ N, and a lattice Λ ∈ Z

m, define the infinite discrete sum of Gaussian function
over the lattice Λ, ρσ,c(Λ) =

∑

x∈Λ ρσ,c(x). The discrete Gaussian distribution
DΛ,σ,c is the m-dimensional Gaussian distribution centered at c and restricted
to the lattice Λ, defined as DΛ,σ,c(x) = ρσ,c(x)

ρσ,c(Λ) for all the lattice point x ∈ Λ.
For ease of notation, we omit the center c if c = 0, and then abbreviate DΛ,σ,0

as DΛ,σ.

2.3 Sampling Algorithms

How to generate a random matrix A statistically close to uniform in Z
n×m
q

along with a short basis (i.e., trapdoor) T of Λ⊥
q (A) is an important technique

in lattice-based cryptography. It has been widely investigated by [3,4,41]. We
use the trapdoor sampling algorithm proposed by Alwen and Peikert [4].

Theorem 1. Let n ≥ 1 and q be an odd prime, and let m ≥ 6n log q. There is an
efficient probabilistic polynomial-time algorithm TrapGen(q, n) that outputs A ∈
Z

n×m
q and T ∈ Z

m×m such that the distribution of A is within negl(n) statistical
distance of uniform and T is a basis of Λ⊥

q (A) satisfying ‖T‖ ≤ O(n log q) and
‖˜T‖ ≤ O(

√
n log q) with all but negligible probability in n.

In the construction and the simulation of our convertible IBFHE scheme, we
employ the sampling algorithms SampleLeft and SampleRight given in [1], which
can be used to sample relatively short vectors.

Theorem 2. Let A be a rank n matrix in Z
n×m
q and let TA be a “short” basis of

Λ⊥
q (A). Let M1 be a matrix in Z

n×m1
q and let F1 = A|M1. Let u be a vector in

Z
n
q and σ > ‖˜TA‖ · ω(

√

log(m + m1)). There is a probabilistic polynomial-time
algorithm SampleLeft(A,M1,TA,u, σ) that outputs a vector e ∈ Z

m+m1
q sampled

from a distribution statistically close to DΛu
q(F1),σ. In particular, e ∈ Λu

q (F1).

Theorem 3. Let B be a rank n matrix in Z
n×m
q and let TB be a “short” basis

of Λ⊥
q (B). Let R be a matrix in Z

k×m
q . Let A be a matrix in Z

n×k
q and let

F2 = A|AR+B. Let u be a vector in Z
n
q and σ > ‖ ˜TB‖·‖R‖·ω(

√

log(m)). There
is a probabilistic polynomial-time algorithm SampleRight(A,B,R,TB,u, σ) that
outputs a vector e ∈ Z

m+k
q sampled from a distribution statistically close to

DΛu
q(F1),σ. In particular, e ∈ Λu

q (F2).
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2.4 The LWE Hardness Assumption

Let n be a positive integer dimension, let q ≥ 2 be a prime, and let χ be a
probability distribution over Zq. For s ∈ Z

n
q , let As,χ and U$ be two distributions

defined as follows:

– As,χ: the probability distribution on Z
n
q ×Zq obtained by choosing a random

vector a ∈ Z
n
q uniformly, choosing an error term e ∈ Zq according to χ, and

outputting (a , 〈a , s〉 + e).
– U$: the uniform distribution over Z

n
q × Zq.

For uniformly random s ∈ Z
n
q , an (Zq, n, χ)-LWE problem instance consists of

access to a challenge oracle O that outputs samples (a , b) from Z
n
q ×Zq according

to, either the probability distribution As,χ, or the uniform distribution U$. The
(Zq, n, χ)-LWE problem allows repeated queries to the challenge oracle O. We
say that an algorithm A decides the LWEZq,n,χ problem if

Adv(Zq,n,χ)-LWE
A = |Pr[AOs = 1] − Pr[AO$ = 1]|

is non-negligible for a random s ∈ Z
n
q , where Os and O$ represent that the

oracle O outputs samples from Z
n
q × Zq according to As,χ and U$ respectively.

Regev [49] and Perkert [43] showed that for certain noise distributions χ,
denoted Ψ̄α, the LWE problem is as hard as the worst-case SIVP and GapSVP
under a quantum reduction. Brakerski et al. [15] provided the first classical
hardness reduction of LWE with polynomial modulus.

Definition 2. Consider a real parameter α ∈ (0, 1) and a prime q. Let T = R/Z
denote the group of reals [0, 1) with addition modulo 1. Let Ψα be the distribution
on T obtained by sampling a normal variable with mean 0 and standard deviation
α/

√
2π and reducing the result modulo 1. Let Ψ̄α denote the discrete distribution

over Zq of the random variable 	qX� where the random variable X ∈ T has
distribution Ψα.

The following lemma about the distribution Ψ̄α taken from [1] will be needed
to show that decryption works correctly.

Lemma 1. Let e be some vector in Z
m and let y ←R Ψ̄α. Then the quantity

|e�y| treated as an integer in [0, q − 1] satisfies |e�y| ≤ ‖e‖qαω(
√

log m) +
‖e‖√

m/2 with all but negligible probability in m.

2.5 Vector Decomposition

Let k be an integer dimension, let l = 	log2 q
 + 1 and N = k · l. Let a , b ∈ Z
k
q .

We show a way of decomposing vectors that preserves the inner product [31].
We often break vectors into their bit representations as defined below:

BitDecomp(a): For a ∈ Z
k
q , let ai,j be the j-th bit in ai’s binary repre-

sentation, bits ordered least significant to most significant. Output the N -
dimensional vector (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1). BitDecomp−1(a ′): It is
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the inverse of BitDecomp. For a ′ = (a1,0, . . . , a1,l−1, . . . , ak,0, . . . , ak,l−1), output
(
∑

2j · a1,j , . . . ,
∑

2j · ak,j). Note that, it is well-defined even if a ′ is not a 0/1
vector.
Flatten(a ′): For N -dimensional vector a ′, output BitDecomp(BitDecomp−1(a ′)),
a N -dimensional vector with 0/1 coefficients.
Powerof2(b): For b = (b1, . . . , bk) ∈ Z

k
q , output the N -dimensional vector (b1, 2b1,

. . . , 2l−1b1, . . ., bk, 2bk, . . . , 2l−1bk).

Claim 1. Let a, b be vectors of some dimension k over Zq, let a′ be any N -
dimensional vector. We have

– 〈BitDecomp(a),Powerof2(b)〉 = 〈a, b〉.
– 〈a′,Powerof2(b)〉 = 〈BitDecomp−1(a′), b〉 = 〈Flatten(a′),Powerof2(b)〉.

When A is a matrix, let BitDecomp(A), BitDecomp−1(A) or Flatten(A) be the
matrix formed by applying the operation to each row of A separately.

2.6 Indistinguishability Obfuscation

Roughly speaking, an indistinguishability obfuscation (iO) scheme ensures that
the obfuscations of any two functionally equivalent circuits are computationally
indistinguishable. Indistinguishability obfuscation was originally proposed by
Barak et al. [5,6] as a potential weakening of virtual-black-box obfuscation. We
recall the definition from [27]. A uniform probabilistic polynomial time (PPT)
machine iO is called an indistinguishability obfuscator for a circuit class {Cλ}λ∈N

if the following conditions are satisfied:

– Correctness. For all security parameters λ ∈ N, for all C ∈ Cλ, and for all
input x, we have that Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– Security. For any (not necessarily uniform) PPT distinguisher D, for all
pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) on all inputs x the
following distinguishing advantage is negligible:

AdvD
iO,C0,C1

(λ) := |Pr[D(iO(λ,C0)) = 1] − Pr[D(iO(λ,C1)) = 1]|.

2.7 Puncturable PRFs

A pseudorandom function (PRF) is a function F : K × X → Y such that the
function F (K, ·) is indistinguishable from random when K ← K. Puncturable
PRFs were defined by Sahai and Waters [52] as a simple type of constrained
PRFs [10,12,38]. They defined a puncturable PRF as a PRF for which a key
can be given out that allows evaluation of the PRF on all inputs, except for a
designated polynomial-size set of inputs. Formally, a puncturable PRF F (K, ·)
is equipped with additional PPT algorithms (EvalF ,PunctureF ) such that the
following properties hold:



CCA-Secure Keyed-Fully Homomorphic Encryption 83

– Correctness. For every PPT algorithm which on input a security parameter
λ outputs a set S ⊆ {0, 1}n, for all x ∈ {0, 1}n\S, we have that

Pr[EvalF (K{S}, x) = F (K,x) : K ← K,K{S} ← PunctureF (K,S)] = 1.

– Security. For any PPT algorithm A, the following distinguishing advantage
is negligible:

|Pr[A(S,K{S}, F (K,S)) = 1 : S ← A(λ),K{S} ← PunctureF (K,S)] −
Pr[A(S,K{S}, U�̄·|S|) = 1 : S ← A(λ),K{S} ← PunctureF (K,S)]|,

where F (K,S) denotes the concatenation of F (K,x1), · · · , F (K,xk), S =
{x1, · · · , xk} is the enumeration of the elements of S in lexicographic order,
�̄ denotes the bit-length of the output F (K,x), and U� denotes the uniform
distribution over � bits.

2.8 Keyed-Fully Homomorphic Encryption

A keyed-fully homomorphic encryption scheme consists of the following four
algorithms:

Setup(1κ) takes as input a security parameter κ. It outputs a public key PK, a
decryption key DK and an evaluation key EK.

Enc(PK, b) takes as input a public key PK and a message bit b ∈ {0, 1}. It outputs
a ciphertext C.

Dec(PK,DK, C) takes as input a public key PK, a decryption key DK and a
ciphertext C. It outputs a message bit b.

Eval(PK,EK,C , f) takes as input a public key PK, an evaluation key EK, a tuple
of ciphertexts C = (C1, . . . , Ck) and a Boolean circuit f : {0, 1}k → {0, 1}.
It outputs a ciphertext C.

Correctness. We require that for each (PK,DK,EK) output by Setup(1κ), the
following hold:

Encryption correctness: with overwhelming probability, for all message bit
b ∈ {0, 1}, we have Dec(PK,DK,Enc(PK, b)) = b.

Evaluation correctness: for any k-ciphertexts (C1, . . . , Ck) such that
Dec( PK,DK, Ci) = bi ∈ {0, 1}, and a Boolean circuit f : {0, 1}k → {0, 1},
with overwhelming probability, we have

Dec(PK,DK,Eval(PK,EK,C = (C1, . . . , Ck), f)) = f(b1, . . . , bk).

Security. The CCA security of keyed-FHE scheme is defined using the follow-
ing game between a PPT adversary A and a challenger. The adversary is only
allowed to issue the decryption queries before it requests the evaluation key EK
to be exposed in our security definition; thus it is slightly different from the def-
inition given in [25]. That is, in our model, a keyed-FHE scheme should provide
CCA security when the evaluation key is unavailable to the adversary and remain
CPA-secure when the evaluation key is exposed.
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Setup. The challenger runs Setup(1λ) to obtain a public key PK, a decryption
key DK and an evaluation key EK. It sends the public key PK to the adversary
A. In addition, the challenger maintains a list DList, which is set as ∅ initially.

Query phase 1. The adversary A adaptively issues the following queries:
• DecCT〈C〉: The challenger uses the decryption key DK to decrypt C

with algorithm Dec. The result is sent back to A. This query is not
allowed to issue if A has queried to RevEK .

• EvalOnCT〈C = (C1, . . . , Ck), f〉: The challenger runs Eval(PK,EK,C ,
f) to obtain a ciphertext C, which is returned to A. This query is not
allowed to issue if A has queried to RevEK .

• RevEK: The challenger sends the evaluation key EK to A.
Challenge. The challenger first selects a message bit b∗ ∈ {0, 1} uniformly

at random. Then, it computes C∗ ← Enc(PK, b∗), and sends the challenge
ciphertext C∗ to the adversary. Finally, the challenger updates the list by
DList ← DList ∪ {C∗}.

Query phase 2. The adversary A continues to adaptively issue the following
queries:

• DecCT〈C〉: If C ∈ DList, the challenger returns ⊥. Otherwise, the chal-
lenger uses the decryption key DK to decrypt C with algorithm Dec, and
the result is sent back to A. This query is not allowed to issue if A has
queried to RevEK .

• EvalOnCT〈C = (C1, . . . , Ck), f〉: The challenger runs Eval(PK,EK,C ,
f) to obtain a ciphertext C, which is returned to A. In addition, if there
exists i ∈ [k] such that Ci ∈ DList, then the challenger updates the list
by DList ← DList ∪ {C}. This query is not allowed to issue if A has
queried to RevEK .

• RevEK: The challenger sends the evaluation key EK to A.
Guess. The adversary A outputs its guess b ∈ {0, 1} for b∗ and wins the game

if b = b∗.

The advantage of the adversary in this game is defined as |Pr[b = b∗] − 1
2 | where

the probability is taken over the random bits used by the challenger and the
adversary.

Definition 3. A keyed-FHE scheme is CCA-secure if all probabilistic polynomial
time adversaries have at most a negligible advantage in the above security game.

3 Convertible Identity-Based Fully Homomorphic
Encryption

Informally, a convertible IBFHE is an IBFHE with an additional transformation
functionality: given a transformation key TK �→ ˜ID for an identity ˜ID, which is
generated by the authority, one can transform a ciphertext CT under any identity
into a ciphertext under identity ˜ID without changing the underlying plaintext
of CT. Concretely, a convertible IBFHE scheme consists of the following seven
algorithms:
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Setup(1κ) takes as input a security parameter κ. It generates a public parameters
PP and a master key MK.

Extract(PP,MK, ID) takes as input the public parameters PP, the master key
MK and an identity ID. It produces a private key SKID for identity ID.

GenerateTK(PP,MK, ˜ID) takes as input the public parameters PP, the master
key MK and an identity ˜ID. It generates a transformation key TK�→ ˜ID for
identity ˜ID.

Encrypt(PP, ID, b) takes as input the public parameters PP, an identity ID and a
message bit b ∈ {0, 1}. It outputs a ciphertext CT.

Transform(PP,TK �→ ˜ID, ID,CT) takes as input the public parameters PP, a trans-
formation key TK�→ ˜ID, and a ciphertext CT for an identity ID. It outputs a
ciphertext ˜CT under identity ˜ID.

Decrypt(PP,SKID,CT) takes as input the public parameters PP, a private key
SKID and a ciphertext CT. It outputs a message bit b ∈ {0, 1}.

Evaluate(PP, ID,CT , f) takes as input the public parameters PP, a tuple of
ciphertexts CT = (CT1, . . . ,CTk) under an identity ID and a Boolean circuit
f : {0, 1}k → {0, 1}. It outputs a ciphertext CT under identity ID.

Correctness. We require that for each (PP,MK) output by Setup(1κ), the fol-
lowing hold:

Encryption correctness: with overwhelming probability, for all iden-
tity ID and message bit b ∈ {0, 1}, we have Decrypt(PP,Extract(PP,
MK, ID),Encrypt( PP, ID, b)) = b.

Transformation correctness: with overwhelming probability, for all iden-
tity ID,˜ID and message bit b ∈ {0, 1}, let CT ← Encrypt(PP, ID, b),
SKID ← Extract(PP,MK, ID), SK

˜ID ← Extract(PP, MK, ˜ID), TK �→ ˜ID ←
GenerateTK(PP, MK,˜ID), and ˜CT ← Transform(PP,TK �→ ˜ID, ID,CT), we have

Decrypt(PP,SKID,CT) = Decrypt(PP,SK
˜ID, ˜CT).

Evaluation correctness: for any k-ciphertexts (CT1, . . . ,CTk) under an
identity ID such that Decrypt(PP,Extract(PP,MK, ID),CTi) = bi ∈ {0, 1},
and a Boolean circuit f : {0, 1}k → {0, 1}, with overwhelming prob-
ability, we have Decrypt(PP,Extract(PP,MK, ID),Evaluate(PP, ID,CT =
(CT1, . . . ,CTk), f)) = f(b1, . . . , bk).

Security. The IND-sID-CPA security of convertible IBFHE scheme is defined
using the following game between a PPT adversary A and a challenger.

Init. The adversary submits a target identity ID∗ and a designated identity ˜ID.
Setup. The challenger first runs Setup(1κ) to obtain a public parameters PP

and a master key MK. Then, it runs GenerateTK(PP,MK,˜ID) to get the
transformation key TK�→ ˜ID for identity ˜ID, and sends the public parameters
PP and the transformation key TK�→ ˜ID to the adversary A.
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Query phase 1. The adversary A adaptively issues the following queries:
• GetSK〈ID〉: The challenger runs Extract(PP,MK, ID) to generate the

corresponding private key SKID, which is returned to A. We require that
ID /∈ {ID∗, ˜ID}.

Challenge. The challenger first selects a message bit b∗ ∈ {0, 1} uniformly
at random. Then, it computes CT∗ ← Encrypt(PP, ID∗, b∗), and sends the
challenge ciphertext CT∗ to the adversary.

Query phase 2. This is same as Query phase 1.
Guess. The adversary A outputs its guess b ∈ {0, 1} for b∗ and wins the game

if b = b∗.

The advantage of the adversary in this game is defined as |Pr[b = b∗]− 1
2 |, where

the probability is taken over the random bits used by the challenger and the
adversary.

Definition 4. A convertible IBFHE scheme is IND-sID-CPA secure, if the
advantage in the above security game is negligible for all PPT adversaries.

4 Proposed CCA Secure Keyed-FHE Scheme

Given a convertible IBFHE scheme cIBE = (Setup,Extract,GenerateTK,Encrypt,
Transform, Decrypt, Evaluate) for identities of length � which is IND-sID-CPA
secure, we construct a CCA-secure keyed-FHE scheme. In the construction, we
use a strongly EUF-CMA secure signature scheme S = (Gen,Sign,Vrfy) in which
the verification key output by Gen has length �. The construction of our CCA-
secure keyed-FHE scheme is described as follows.

Setup(1κ): The setup algorithm first runs cIBE.Setup(1κ) to obtain (PP,MK),
and calls S.Gen(1κ) to obtain a key pair (˜vk, ˜sk). Then, it computes

TK�→˜vk
← cIBE.GenerateTK(PP,MK, ˜vk).

Finally, it sets the public key PK = PP, the decryption key DK = MK and
the evaluation key EK = (˜vk, ˜sk,TK �→˜vk

).
Enc(PK, b ∈ {0, 1}) : The encryption algorithm takes as input the public key

PK = PP, and a message bit b ∈ {0, 1}. It proceeds as follows.
1. Run S.Gen(1κ) to obtain a key pair (vk, sk).
2. Compute CT ← cIBE.Encrypt(PP, vk, b) and σ ← S.Sign(sk,CT).
3. Output the ciphertext C = (vk,CT, σ).

Dec(PK,DK, C): The decryption algorithm takes as input the public key PK =
PP, the decryption key DK = MK and a ciphertext C = (vk,CT, σ). This
algorithm first checks whether S.Vrfy(vk,CT, σ) = 1. If not, it outputs ⊥.
Otherwise, it computes SKvk ← cIBE.Extract(PP,MK, vk) and sets b ←
cIBE.Decrypt(PP,SKvk,CT). Then, it outputs the message bit b.
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Eval(PK,EK,C , f): This algorithm takes as input the public key PK = PP, the
evaluation key EK = (˜vk, ˜sk,TK �→˜vk

), a tuple of ciphertexts C = (C1 =
(vk1,CT1, σ1), . . . , Ck = (vkk,CTk, σk)) and a Boolean circuit f : {0, 1}k →
{0, 1}. For i = 1, . . . , k, it proceeds as follows.
1. Check whether S.Vrfy(vki,CTi, σi) = 1. If not, it outputs ⊥.
2. Compute ˜CTi ← cIBE.Transform(PP,TK �→˜vk

, vki,CTi).
Next, it calls cIBE.Evaluate to obtain ˜CT ← cIBE.Evaluate(PP, ˜vk, (˜CT1, . . .,

˜CTk), f). Then, it computes σ̃ ← S.Sign(˜sk,CT), and outputs the ciphertext
C = (˜vk, ˜CT, σ̃).

Correctness. If the underlying convertible IBFHE scheme cIBE satisfies encryp-
tion correctness, transformation correctness and evaluation correctness, it is
obvious that the above construction satisfies the correctness requirements of
keyed-FHE.

Theorem 4. If the underlying convertible IBFHE scheme is IND-sID-CPA
secure, and the signature scheme S is strongly EUF-CMA secure, then our pro-
posed keyed-FHE scheme is CCA-secure.

Proof. To prove the CCA security of our proposed keyed-FHE scheme, we con-
sider the following games which is described by its modification from the previous
game.

Game 0. This is the original CCA security game between an adversary A against
our scheme and a CCA challenger.

Game 1. In this game, we slightly change the way that the challenger answers
the adversary’s DecCT and EvalOnCT queries. Let C∗ = (vk∗,CT∗, σ∗)
be the challenge ciphertext.

When the adversary A issues a DecCT query on ciphertext C =
(vk,CT, σ), the challenger checks whether vk = vk∗, C �= C∗ and
S.Vrfy(vk,CT, σ) = 1. If so, the challenger returns ⊥; otherwise, it responds
as in Game 0.

When the adversary A issues an EvalOnCT query on 〈C =
(C1, . . . , Ck), f〉, the challenger first parses Ci as (vki,CTi, σi) for each
i ∈ [k]. Then, the challenger checks whether there exists i ∈ [k] such that
vki = vk∗, Ci �= C∗ and S.Vrfy(vki,CTi, σi) = 1. If so, the challenger returns
⊥; otherwise, it responds as in Game 0.

Game 2. In this game, at the setup phase, except for the list DList, the challenger
also maintains another list EList, which is set as ∅ initially. We also modify the
way how the adversary A’s DecCT and EvalOnCT queries are answered.
Let PK,DK,EK = (˜vk, ˜sk,TK�→˜vk

) be the public key, decryption key and
evaluation key respectively, generated by the challenger at the setup phase.

When the adversary A issues a DecCT query on ciphertext C =
(vk,CT, σ), the challenger checks whether vk = vk∗ or vk �= ˜vk. If so, the
challenger responds as in Game 1; otherwise (i.e., vk = ˜vk), it proceeds as
follows:
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1. Check whether S.Vrfy(vk,CT, σ) = 1. If not, return ⊥.
2. Search the list EList for a record (m,C). If such record does not exist,

return ⊥; otherwise, send m to A.
When the adversary A issues an EvalOnCT query on 〈C =
(C1, . . . , Ck), f〉, the challenger first parses Ci as (vki,CTi, σi) for each
i ∈ [k]. Then, it checks whether there exists i ∈ [k] such that one of the fol-
lowing conditions holds: (1) vki = vk∗,S.Vrfy(vki,CTi, σi) = 1 and Ci �= C∗;
(2) vki = ˜vk,S.Vrfy(vki,CTi, σi) = 1 and the list EList does not contain a
record (mi, Ci). If so, the challenger returns ⊥ to A; otherwise, the chal-
lenger runs Eval(PK,EK,C , f) to obtain a ciphertext C, which is returned
to A. In addition, when the ciphertext C �=⊥, the challenger checks whether
there exists i ∈ [k] such that Ci ∈ DList. If so, the challenger updates the
list by DList ← DList ∪ {C}; otherwise, it proceeds as follows.
1. For each i ∈ [k], if vki = ˜vk, the challenger finds the record (mi, Ci) in the

list EList; otherwise (i.e., vki �= ˜vk), the challenger uses the decryption
key DK to decrypt Ci with algorithm Dec and obtain a message bit mi.

2. The challenger computes m = f(m1, . . . , mk) and updates the list by
EList ← EList ∪ {(m,C)}.

By the following lemmas, we prove these games are computationally indistin-
guishable, and in Game 2, the advantage of the adversary is negligible. Therefore,
we conclude that the advantage of the adversary in Game 0 (i.e., the original
CCA security game) is negligible. This completes the proof of Theorem4.

Lemma 2. Suppose that the signature scheme S is strongly EUF-CMA-secure.
Then Game 0 and Game 1 are computationally indistinguishable.

Proof. Let C∗ = (vk∗,CT∗, σ∗) be the challenge ciphertext. Define event E: the
adversary A submits a ciphertext C = (vk,CT, σ) such that vk = vk∗, C �= C∗

and S.Vrfy(vk,CT, σ) = 1 during its DecCT or EvalOnCT queries. If E does
not happen, Game 0 is identical to Game 1. All we have to do is to prove that
E happens with negligible probability.

Suppose that E happens with non-negligible probability. Then we can build
an algorithm B that breaks strong EUF-CMA security of the signature scheme
S with non-negligible probability. Let C be the challenger corresponding to B in
the strong EUF-CMA security game of the signature scheme S. B is given the
verification key vk∗ of the signature scheme S, and simulates Game 1 to the
adversary A as follows.

B runs Setup to obtain (PK,DK,EK), and sends the public key PK to A. Since
B knows the decryption key DK and the evaluation key EK associated with PK,
thus it is able to answer all queries made by the adversary. At some point, A
asks for the challenge ciphertext. B proceeds as follows.

1. Choose a message bit b∗ ∈ {0, 1} uniformly at random.
2. Compute CT∗ ← cIBE.Encrypt(PK, vk∗, b∗).
3. Issue the signing query on CT∗ to its challenger C to obtain the corresponding

signature σ∗.



CCA-Secure Keyed-Fully Homomorphic Encryption 89

4. Set the challenge ciphertext C∗ = (vk∗,CT∗, σ∗) and send it to the adver-
sary A.

Suppose E happens during the simulation (i.e., the adversary submits a cipher-
text C = (vk,CT, σ) such that vk = vk∗, C �= C∗ and S.Vrfy(vk,CT, σ) = 1
during its DecCT or EvalOnCT queries), B outputs (CT, σ) which is not equal
to (CT∗, σ∗), as its forgery of the signature scheme S. Thus, if E happens with
non-negligible probability, then B can break strong EUF-CMA security of the
signature scheme S with non-negligible probability.

Lemma 3. Suppose that the signature scheme S is strongly EUF-CMA-secure.
Then Game 1 and Game 2 are computationally indistinguishable.

Proof. Let EK = (˜vk, ˜sk,TK �→˜vk
) be the evaluation key. Game 2 is the same

as Game 1 except for the way of answering the adversary A’s DecCT and
EvalOnCT queries when A submits a ciphertext C = (vk,CT, σ) such that
vk = ˜vk and S.Vrfy(vk,CT, σ) = 1. Recall that in our security definition of
keyed-FHE, the adversary cannot issue the decryption or evaluation queries if it
requests the evaluation key to be exposed. Since our proposed scheme satisfies
the requirement of evaluation correctness, it is easy to observe that when A
submits a ciphertext C = (vk = ˜vk,CT, σ) during its DecCT or EvalOnCT
queries such that C is the return of A’s some EvalOnCT query, the challenger’s
response is the same in Game 1 and Game 2.

Define event E: the adversary A submits a ciphertext C = (vk = ˜vk,CT, σ)
during its DecCT or EvalOnCT queries such that S.Vrfy(vk, CT, σ) = 1 and
C is not the response to A’s some EvalOnCT query. If E does not happen,
Game 1 is identical to Game 2. All we have to do is to prove that E happens
with negligible probability.

One can prove that if the signature scheme S is strongly EUF-CMA-secure,
then event E happens with negligible probability. We omit the details due to its
similarity of Lemma 2.

Lemma 4. If the underlying convertible IBFHE scheme is IND-sID-CPA-secure,
then in Game 2, the advantage of the adversary is negligible.

Proof. Suppose there exists an adversary A that achieves a non-negligible advan-
tage in Game 2. Then we can build an algorithm B that makes use of A to
attack the underlying convertible IBFHE scheme cIBE in the IND-sID-CPA secu-
rity game with a non-negligible advantage. Let C be the challenger corresponding
to B in the IND-sID-CPA security game of the convertible IBFHE scheme cIBE.
B runs A executing the following steps.

Setup. B first runs S.Gen twice to obtain two key pairs (vk∗, sk∗) and (˜vk, ˜sk).
Then, it submits (vk∗, ˜vk) to C as its target identity and designated identity,
and C returns the public parameters PP of the convertible IBFHE scheme
cIBE and the transformation key TK�→˜vk

for identity ˜vk to B. Next, B sets
the public key PK = PP, the evaluation key EK = (˜vk, ˜sk,TK �→˜vk

), and
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sends the public key PK to the adversary A. In addition, B maintains two
lists DList and EList, which are set as ∅ initially.

Query phase 1. The adversary A adaptively issues the following queries:
• DecCT〈C〉: B first parses the ciphertext C as (vk,CT, σ). Then, it

checks whether S.Vrfy(vk, CT, σ) = 1. If not, B returns ⊥ to A; oth-
erwise, B proceeds as follows.
1. If vk = vk∗, B returns ⊥ to A.
2. If vk �= ˜vk, B issues GetSK query on 〈vk〉 to its challenger C to

obtain a private key SKvk for identity vk, and uses the private key
SKvk to decrypt CT with algorithm cIBE.Decrypt. The result is sent
back to A.

3. If vk = ˜vk and C ∈ DList, B returns ⊥ to A.
4. Otherwise (i.e., vk = ˜vk and C /∈ DList), B search the list EList for

a record (m,C). If such record does not exist, B returns ⊥ to A;
otherwise, B sends the message bit m to the adversary A.

• EvalOnCT〈C = (C1, . . . , Ck), f〉: For each i ∈ [k], B parses Ci as
(vki,CTi, σi). Then, B checks whether there exists i ∈ [k] such that one
of the following conditions holds: (1) vki = vk∗,S.Vrfy(vki,CTi, σi) = 1
and Ci �= C∗; (2) vki = ˜vk,S.Vrfy(vki,CTi, σi) = 1 and the list EList
does not contain a record (mi, Ci). If so, B returns ⊥ to A; otherwise,
B runs Eval(PK,EK,C , f) to obtain a ciphertext C, which is returned
to A. In addition, when the ciphertext C �=⊥, B checks whether there
exists i ∈ [k] such that Ci ∈ DList. If so, B updates the list by DList ←
DList ∪ {C}; otherwise, B proceeds as follows.
1. For each i ∈ [k], if vki = ˜vk, B finds the record (mi, Ci) in the list

EList; otherwise (i.e., vki �= ˜vk), B issues GetSK query on 〈vki〉 to its
challenger C to obtain a private key SKvki

for identity vki, and uses
the private key SKvki

to decrypt CTi with algorithm cIBE.Decrypt
and obtain a message bit mi.

2. B computes m = f(m1, . . . , mk) and updates the list by EList ←
EList ∪ {(m,C)}.

• RevEK: The challenger sends the evaluation key EK to A.
Challenge. Firstly, B asks C for its challenge ciphertext of the convert-

ible IBFHE scheme cIBE, and receives the ciphertext CT∗. Then, B com-
putes σ∗ ← S.Sign(sk∗,CT∗), and sets the challenge ciphertext C∗ =
(vk∗,CT∗, σ∗). Finally, B sends C∗ to the adversary A. In addition, B updates
the list by DList ← DList ∪ {C∗}.

Query phase 2. The adversary A continues to adaptively issue DecCT, Eval-
OnCT and RevEK queries. B responds as Query phase 1.

Guess. The adversary A outputs a bit b ∈ {0, 1}. B also takes b as its output.

It is easy to observe that, B’s simulation is perfect. Thus, if A has a non-negligible
advantage in Game 2, then B attacks the underlying convertible IBFHE scheme
cIBE in the IND-sID-CPA security game with a non-negligible advantage.
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5 Proposed Convertible IBFHE Scheme

We denote SampleUS(Zn
q ; rS) as a sample algorithm that chooses an element

in Z
n
q uniformly at random with the randomness rS , SampleGX(Zq, Ψ̄α; rX) as

a sample algorithm that chooses an element in Zq from the distribution Ψ̄α

with the randomness rX , SampleGY(Zm
q , Ψ̄m

α ; rY ) as a sample algorithm that
chooses an element in Z

m
q from the distribution Ψ̄m

α with the randomness rY ,
and SampleURs({−1, 1}m×m; rR) as a sample algorithm that chooses �-elements
in domain {−1, 1}m×m uniformly at random with the randomness rR. Let FD :
KD × {0, 1}∗ → {−1, 1}�, FS : KS × {0, 1}∗ × {0, 1}2κ × [N ] → RSampleUS, FX :
KX ×{0, 1}∗ ×{0, 1}2κ × [N ] → RSampleGX, FY : KY ×{0, 1}∗ ×{0, 1}2κ × [N ] →
RSampleGY, FR : KR × {0, 1}∗ × {0, 1}2κ × [N ] → RSampleURs be puncturable
PRFs, and let PRG : {0, 1}κ → {0, 1}2κ be a pseudorandom generator. Let iO
be a program indistinguishability obfuscator. Our proposed convertible identity-
based (leveled) FHE scheme consists of the following algorithms:

Setup(1κ, 1L): On input a security parameter κ and a number of levels L (max-
imum circuit depth to support), this algorithm first chooses the parameters
(q, n,m, σ, α) as specified in Sect. 5.1 below. Let N = (2m+1) · (	log q
+1).
It then invokes TrapGen(q, n) to generate a uniformly random matrix A ∈
Z

n×m
q and a short basis TA ∈ Z

m×m for Λ⊥
q (A). It also chooses uniformly

random matrices B0, B1, . . . , B� ∈ Z
n×m
q , and a uniformly random vector

u ∈ Z
n
q . Next, it chooses puncturable PRF keys KD ← KD, KS ← KS , KX ←

KX ,KY ← KY ,KR ← KR, and creates an obfuscation of the program Pro-
duceCT Fig. 1 as PEnc ← iO(κ,ProduceCT),

ProduceCT:
Input: Identity ID ∈ {0, 1}∗, a message b ∈ {0, 1}, and randomness r ∈ {0, 1}κ.
Constants: PRF keys KD,KS ,KX ,KY and KR.

1. Compute id = FD(KD, ID) ∈ {−1, 1} .
2. Compute t = PRG(r).
3. For each i ∈ [N ], do the following:

(a) compute rS,i = FS(KS , ID, t, i), rX,i = FX(KX , ID, t, i), rY,i =
FY (KY , ID, t, i) and rR,i = FR(KR, ID, t, i);

(b) evaluate (ci,0, ci,1) = ABBEnc0(PPABB, id, rS,i, rX,i, rY,i, rR,i).

4. Set cid =

⎡

⎢

⎣

c1,0|c1,1
...

cN,0|cN,1

⎤

⎥

⎦ ∈ Z
N×(2m+1)
q and compute CID = Flatten(b · IN +

BitDecomp(cid)).
5. Output: (t, CID).

Fig. 1. Program ProduceCT



92 J. Lai et al.

Finally, it outputs the public parameters

PP =
(

PPABB = (A,B0, B1, . . . , B�, u),PEnc,PRG,FD,FS ,FX ,FY ,FR

)

,

and master key MK =
(

TA,KD,KS ,KX ,KY ,KR

)

.

Extract(PP,MK, ID): On input public parameters PP, a master key MK, and
an identity ID ∈ {0, 1}∗, this algorithm first sets id = FD(KD, ID) =
(d1, . . . , d�) ∈ {−1, 1}� and evaluates e ID ← SampleLeft(A,B0 +
∑�

i=1 diBi, TA, u, σ) to obtain a short vector in Λu
q (Fid), where Fid = A |

B0 +
∑�

i=1 diBi and e ID is distributed as DΛu
q (Fid),σ. Then, it sets s ID =

(1,−e ID) and v ID = Powersof2(s ID), and outputs the private key SKID = v ID

for identity ID.

GenerateTK(PP,MK,˜ID): On input public parameter PP, a master key MK, and
an identity ˜ID ∈ {0, 1}∗, this algorithm creates an obfuscation of the pro-
gram ConvertTAID Fig. 2 as PTrans ← iO(κ,ConvertTAID), and outputs the
transformation key TK�→ ˜ID =

(

˜ID,PTrans
)

.
Encrypt(PP, ID, b): On input public parameters PP, an identity ID ∈ {0, 1}∗, and

a message b ∈ {0, 1}, the encryption algorithm first chooses r ∈ {0, 1}κ uni-
formly at random. Then, it computes (t, CID) = PEnc(ID, b, r), and outputs
the ciphertext CT = (t, CID).

Transform(PP,TK �→ ˜ID, ID,CT): On input public parameters PP, a transformation
key TK�→ ˜ID = (˜ID,PTrans), a ciphertext CT = (t, CID) for an identity ID, this
algorithm computes (t̃, C

˜ID) = PTrans(ID,CT), and outputs the transformed
ciphertext ˜CT = (t̃, C

˜ID).
Decrypt(PP,SKID,CT): The decryption algorithm takes as input public parame-

ters PP, a private key SKID = v ID, and a ciphertext CT = (t, CID). Observe
that the first 	log q
 + 1 coefficients of v ID are 1, 2, . . . , 2
log q�. Among these
coefficients, let vID,i = 2i be in (q/4, q/2]. Let CID,i be the i-th row of CID.
This algorithm computes xi ← 〈CID,i, v ID〉 and outputs μ′ = 	xi/vID,i�.

Evaluate(PP, ID,CT , f): The evaluation algorithm takes as input public parame-
ters PP, a tuple of ciphertext CT = (CT1, . . . ,CTk) under an identity ID and
a Boolean circuit f : {0, 1}k → {0, 1}. It is a remarkable fact that, Boolean
circuits computed over encryptions of binary values can be converted to use
only NAND gates [31]. Let CTi = (ti, cti) be an encryption of bi ∈ {0, 1} for
all i ∈ [k], the NAND homomorphic operation is described below:
NAND(ct1, ct2): To NAND ciphertexts ct1, ct2 ∈ Z

N×N
q , output Flatten(IN −

ct1 · ct2).
Let ct be the result of f(ct1, . . . , ctk) through appropriate leveled applica-

tion of the NAND homomorphic operation. The algorithm chooses a random
value t ∈ {0, 1}2κ and outputs the resulting ciphertext CT = (t, ct).

ABBEnc0(PPABB, id, rS , rX , rY , rR): On input public parameters PPABB, an iden-
tity id = (d1, . . . , d�) ∈ {−1, 1}� and randomness rS ∈ RSampleUS, rX ∈
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ConvertTAID:
Input: Identity ID ∈ {0, 1}∗, and ciphertext CT = (t, CID) ∈ {0, 1}2κ × Z

N×N
q .

Constants: PRF keys KD,KS ,KX ,KY and KR.
1. If ID is equal to ID, output CT.
2. Compute id = FD(KD, ID) ∈ {−1, 1} and id = FD(KD, ID) ∈ {−1, 1} .
3. For each i ∈ [N ], do the following:

(a) compute rS,i = FS(KS , ID, t, i), rX,i = FX(KX , ID, t, i), rY,i =
FY (KY , ID, t, i) and rR,i = FR(KR, ID, t, i);

(b) evaluate (ci,0, ci,1) = ABBEnc0(PPABB, id, rS,i, rX,i, rY,i, rR,i).

4. Set cid =

⎡

⎢

⎣

c1,0|c1,1
...

cN,0|cN,1

⎤

⎥

⎦ ∈ Z
N×(2m+1)
q .

5. Check whether there exists b ∈ {0, 1} such that CID = Flatten(b · IN +
BitDecomp(cid)).
If not, output ⊥.

6. For each i ∈ [N ], do the following:
(a) compute r̃S,i = FS(KS , ID, t, i), r̃X,i = FX(KX , ID, t, i), r̃Y,i =

FY (KY , ID, t, i) and r̃R,i = FR(KR, ID, t, i);
(b) evaluate (c̃i,0, c̃i,1) = ABBEnc0(PPABB, id, r̃S,i, r̃X,i, r̃Y,i, r̃R,i).

7. Set cid =

⎡

⎢

⎣

c̃1,0|c̃1,1
...

c̃N,0|c̃N,1

⎤

⎥

⎦ ∈ Z
N×(2m+1)
q and compute CID = Flatten(b · IN +

BitDecomp(cid)).
8. Output: (t, CID).

Fig. 2. Program ConvertTAID

RSampleGX, rY ∈ RSampleGY, rR ∈ RSampleURs, this algorithm proceeds as fol-
lows.
1. Let Fid = A | B0 +

∑�
i=1 diBi ∈ Z

n×2m
q .

2. Evaluate s = SampleUS(Zn
q ; rS), x = SampleGX(Zq, Ψ̄α; rX) and y =

SampleGY(Zm
q , Ψ̄m

α ; rY ).
3. Evaluate (R1, . . . , R�) = SampleURs({−1, 1}m×m; rR).
4. Set Rid =

∑�
i=1 diRi and compute z = R�

idy.

5. Compute c0 = u�s+x ∈ Zq, c1 = F�
id s+

[

y
z

]

∈ Z
2m
q , and return (c0, c1).

5.1 Parameters and Correctness

Let CT1 = (t1, ct1 = Flatten(b1 · IN + BitDecomp(c1))) be an encryption of
b1 ∈ {0, 1} under an identity ID. Recall that c1 is a N -row matrix whose rows
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are encryptions of 0 generated by using ABBEnc0, and the private key v ID =
Powersof2(s ID). By Claim 1, we have

ct1 · v ID = (b1 · IN + BitDecomp(c1)) · v ID = b1 · v ID + c1 · s ID.

Let c1,i be the i-th row of the matrix c1, and let vID,i be the i-th coefficient of
v ID. Algorithm Decrypt only uses the i-th coefficient of ct1 · v ID, which is xi =
b1 ·vID,i + c1,i ·s ID. If c1,i is properly generated using ABBEnc0, then the norm of
the inner product c1,i·s ID is bounded w.h.p by B = qσ�mαω(

√
log m)+O(σm3/2)

by Lemma 24 of [1]. Similarly as in [31], if B < q/8 and vID,i ∈ (q/4, q/2], then
xi/vID,i differs from b1 by at most (q/8)/vID,i < 1/2, and algorithm Decrypt uses
rounding to output the correct value of b1.

It is clear that our system satisfies transformation correctness if encryp-
tion correctness holds. Regarding evaluation correctness, let CT2 = (t2, ct2 =
Flatten(b2 · IN + BitDecomp(c2))) be an encryption of another bit b2 ∈ {0, 1}
under the same identity ID, where c2 is also a N -row matrix whose rows are
encryptions of 0 generated by using ABBEnc0. We have

NAND(ct1, ct2)·v ID = (IN−ct1·ct2)·v ID = (1−b1b2)·v ID−b2·(c1·s ID)−ct1·(c2·s ID).

Note that NAND maintains the invariant that if ct1 and ct2 are encryptions of
messages in {0, 1}, then the output ciphertext is also encryption of message in
{0, 1}. After an NAND homomorphic operation, the error is increased by a factor
of at most N + 1.

Recall that we represent the homomorphic function f over encryptions of
binary values as a Boolean circuit that can be converted to use only NAND gates.
Through appropriate leveled application of the NAND homomorphic operation,
the final ciphertext’s error will be bounded by (N+1)L ·B, where L is the NAND-
depth of the circuit. As long as (N + 1)L · B < q/8, the decryption algorithm
will decrypt correctly.

Hence, for the system to work correctly and evaluate a circuit of depth L, we
set the parameters (q, n,m, σ, α) that satisfy the following requirements, taking
n to be the security parameter κ:

– the error term has magnitude at most q/8 w.h.p (i.e. B · (N + 1)L < q/8),
– algorithm TrapGen can operate (i.e. m > 6n log q),
– σ is sufficiently large for SampleLeft and SampleRight (i.e. σ > �mω(

√
log m)),

– Regev’s reduction applies [49] (i.e. αq > 2
√

n),
– our security reduction applies (i.e. q > 2Q + 4, where Q is the number of

private key queries from the adversary).

5.2 Security

We now state the security theorem of our proposed scheme.

Theorem 5. If the (Zq, n, Ψ̄α)-LWE assumptions holds, the proposed convertible
IBFHE scheme is IND-sID-CPA secure.

Proof. See the full version of this paper.
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6 Conclusion

We introduced a new primitive called convertible IBFHE which is an IBFHE
with an additional transformation functionality. We showed that CCA-secure
keyed-FHE can be constructed from IND-sID-CPA-secure convertible IBFHE
and strongly EUF-CMA-secure signature. Utilizing the recent advances in indis-
tinguishability obfuscation, we presented a concrete construction of IND-sID-
CPA-secure convertible IBFHE without random oracles, and yielded the first
CCA-secure keyed-FHE scheme in the standard model. Since indistinguishability
obfuscation is a slightly cumbersome primitive currently, thus it would be inter-
esting to construct an efficient IND-sID-CPA-secure convertible IBFHE without
using indistinguishability obfuscation, even in the random oracle model.
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Abstract. In PKC 1999, Fujisaki and Okamoto showed how to convert
any public key encryption (PKE) scheme secure against chosen plaintext
attacks (CPA) to a PKE scheme which is secure against chosen ciphertext
attacks (CCA) in the random oracle model. Surprisingly, the resulting
CCA secure scheme has almost the same efficiency as the underlying
CPA secure scheme. Moreover, in J. Cryptology 2013, they proposed
more efficient conversion by using the hybrid encryption framework.

In this work, we clarify whether these two constructions are also secure
in the sense of key dependent message security against chosen ciphertext
attacks (KDM-CCA security), under exactly the same assumptions on
the building blocks as those used by Fujisaki and Okamoto. Specifically,
we show two results: Firstly, we show that the construction proposed in
PKC 1999 does not satisfy KDM-CCA security generally. Secondly, on
the other hand, we show that the construction proposed in J. Cryptology
2013 satisfies KDM-CCA security.

Keywords: Public key encryption · Key dependent message security ·
Chosen ciphertext security

1 Introduction

1.1 Background and Motivation

Security against chosen ciphertext attacks (CCA) has been considered as a desir-
able security notion for public key encryption (PKE) schemes. In order to take
adversaries who mount active attacks into consideration, it is desirable that
PKE schemes satisfy CCA security. Moreover, since CCA security implies non-
malleability [7,18], it is considered that CCA security is strong enough for many
applications. Therefore, many standardization bodies for public key cryptogra-
phy judge whether they include a PKE scheme or not mainly based on whether
the scheme satisfies CCA security [28].
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On these backgrounds, it has been widely studied how to construct a practi-
cal CCA secure PKE scheme [10,19–21,26]. Among them, the constructions pro-
posed by Fujisaki and Okamoto [19,21] are one of the most famous constructions.
In [19], Fujisaki and Okamoto showed how to convert any PKE scheme secure
against chosen plaintext attacks (CPA) to a PKE scheme which is CCA secure
in the random oracle model. Surprisingly, the resulting CCA secure scheme has
almost the same efficiency as the underlying CPA secure scheme. Moreover, in
[21], they proposed more efficient conversion by using the hybrid encryption
framework. EPOC (Efficient PrObabilistiC public-key encryption) that is one of
the concrete instantiations of [19,21] has been included by IEEE p1363a [1], as
it has high practicality, and moreover, its security can be strictly analyzed.

CCA security has been considered as a standard security notion, but it has
recently come to light that there are many situations where even CCA security
may not guarantee confidentiality of communication. One typical example is
situations where secret keys are encrypted in the system. It is known that there
is an encryption scheme which is totally insecure when an adversary can get an
encryption of secret keys, even though the scheme satisfies CCA security [16].

Black, Rogaway, and Shrimpton [11] introduced a security notion called key
dependent message (KDM) security which guarantees confidentiality even in the
situation of encrypting secret keys. (Around the same time, Camenisch and
Lysyanskaya [15] independently formalized a similar notion called circular secu-
rity.) It is widely known that when an encryption scheme is used as a building
block of complicated systems, encrypting secret keys can often occur. Hard disk
encryption systems (e.g., BitLocker [11]) and anonymous credential systems [15]
are known as such examples. In addition, from the perspective of symbolic cryp-
tography, KDM security is also important [2,3]. From these facts, we consider
that KDM security against chosen ciphertext attacks, that is, KDM-CCA secu-
rity is one of the desirable security notions for practical encryption schemes.

Since CCA security is regarded as a desirable security notion, the security of
standardized PKE schemes has been analyzed only in the sense of CCA security.
Therefore, it is not clear whether these schemes remain secure even when an
adversary can get an encryption of secret keys. In modern society where encryp-
tion schemes can be used as a building block of complicated systems, and can
encrypt secret keys, it is very important to clarify whether standardized schemes
are secure also in the sense of KDM-CCA security.

1.2 Our Results

Based on this motivation, in this paper, we clarify whether the constructions
proposed by Fujisaki and Okamoto [19,21] satisfy KDM-CCA security1 under
exactly the same assumptions on the building blocks as those used in [19,21],

1 When we refer to “KDM security”, unless stated otherwise, we mean KDM secu-
rity with respect to any polynomial time computable functions. For the details, see
Remark after Definition 4 in Sect. 2.2.



On the KDM Security of the Fujisaki-Okamoto Constructions 101

and show two results.2 Firstly, we show that the construction of [19] (which
we call FO1) does not satisfy KDM-CCA security generally. Secondly, on the
other hand, we show that the construction of [21] (which we call FO2) satisfies
KDM-CCA security. More specifically, we prove the following two theorems.

Theorem 1 (Informal). Assume that there exists an IND-CPA secure and
smooth PKE scheme. Then, there exists an IND-CPA secure and smooth PKE
scheme Π such that the PKE scheme FO1 does not satisfy KDM-CPA security
in the random oracle model, where FO1 is constructed by applying the conversion
of [19] to Π.

Theorem 2 (Informal). Let Π be a OW-CPA secure and smooth PKE scheme,
Σ be a OT-CPA secure symmetric key encryption scheme, and FO2 be the PKE
scheme which is constructed by applying the conversion of [21] to Π and Σ.
Then, FO2 satisfies KDM-CCA security in the random oracle model.

We note that smoothness is a security notion for PKE schemes introduced by
Bellare et al. [9], and essentially equivalent to γ-uniformity which is used in
[19,21]. We review the definition of smoothness in Sect. 2.

We think it is theoretically very interesting that the construction of [19]
does not necessarily satisfy KDM-CCA security, and on the other hand, that
of [21] satisfies KDM-CCA security, even though these two constructions are
closely related. In addition, due to Theorem 2, we can construct various practical
KDM-CCA secure PKE schemes in the random oracle model, by applying the
construction of [21] to existing OW-CPA secure PKE schemes and OT-CPA
secure symmetric key encryption (SKE) schemes.

The standardized PKE schemes EPOC-1 and EPOC-2 are respectively
instantiated by applying the conversion of [19,21] to the PKE scheme proposed
by Okamoto and Uchiyama [27]. We note that the counter-example we show in
the proof of Theorem 1 does not capture the PKE scheme of [27]. Therefore, it
is not the case that Theorem 1 states that EPOC-1 is insecure in the sense of
KDM security. On the other hand, due to Theorem 2, we can immediately see
that EPOC-2 is KDM-CCA secure in the random oracle model.

1.3 Related Work

Backes et al. [6] showed that RSA-OAEP is secure in the sense of KDM security
in the random oracle model. More specifically, they defined a security notion
called adKDM security which takes adaptive corruptions and arbitrary active
attacks into consideration, and showed that OAEP is adKDM secure in the
random oracle model if the underlying trapdoor permutation satisfies partial
domain one-wayness. Recently, Davies and Stam [17] studied KDM security of
hybrid encryption in the random oracle model. (Since the construction treated

2 Actually, the construction of [21] is based on that of [20]. In this work, we concentrate
on the construction of [21].
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in [17] is associated with the construction of FO2, we later refer to their work in
detail in Sect. 5).

Boneh et al. [12] constructed the first KDM secure PKE scheme in the
standard model under the decisional Diffie-Hellman (DDH) assumption. Their
scheme is KDM secure relative to the family of affine functions (affine-KDM
secure, for short) which is a comparatively simple function family. Informally,
a PKE scheme is said to be KDM secure relative to a function family F if
the scheme remains secure even when an adversary can get an encryption of
f(sk), where sk is the secret key and f is an arbitrary function belonging to F .
Also, affine-KDM secure schemes were later constructed under the learning with
errors (LWE) [5], quadratic residuosity (QR) [13], decisional composite residu-
osity (DCR) [13,25], and learning parity with noise (LPN) [5] assumptions.

Boneh et al.’s scheme is KDM secure only in the CPA setting, and thus how
to construct a KDM-CCA secure scheme remained open. Camenisch et al. [14]
later showed how to construct a KDM-CCA secure scheme using a KDM-CPA
secure scheme and a non-interactive zero-knowledge (NIZK) proof system for
NP languages as building blocks. Recently, Hofheinz [22] showed the first con-
struction of a circular-CCA secure scheme whose security can be directly proved
based on number theoretic assumptions.

Applebaum [4] showed how to construct a PKE scheme which is KDM secure
relative to functions computable by a-priori bounded polynomial time, based on
a PKE scheme which is KDM secure relative to a simple function family called
projection functions. We note that the result of Applebaum works in both of
the CPA and the CCA settings. Bellare et al. [8] showed a similar result that
works only in the CPA setting but is more efficient than Applebaum’s. Recently,
Kitagawa et al. [23] also showed a more efficient result than Applebaum’s, which
works in the CCA setting. In addition, Kitagawa et al. [24] showed how to expand
the plaintext space of a PKE scheme which is KDM secure relative to projection
functions, without using any other assumption.

1.4 Outline of the Paper

In Sect. 2, we review the definitions of the primitives and the security notions
that we use in this paper. Then, in Sect. 3, we prove Theorem 1. In the subsequent
sections, we tackle Theorem 2. Our idea for proving Theorem 2 is simple, but
the proof of Theorem 2 might look somewhat complicated. Thus, after reviewing
the construction of FO2 in Sect. 4, in Sect. 5, we first explain the difficulty which
we encounter when trying to prove the KDM security of a hybrid encryption
scheme whose key derivation function is regarded as a random oracle. Then, in
Sect. 6, we prove Theorem 2.

In order to help the reader understand the proof of Theorem 2, in the full
version of this paper, we also show that the hybrid encryption scheme whose
key derivation function is a random oracle satisfies KDM-CPA security in the
random oracle model, if the underlying PKE scheme and SKE scheme satisfy
OW-CPA security and OT-CPA security, respectively. Since the construction
can roughly be seen as a simplification of FO2, we believe the proof is relatively
easy to understand than that of Theorem 2.
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2 Preliminaries

In this section we define some notations and cryptographic primitives.

2.1 Notations

x
r←− X denotes choosing an element from a finite set X uniformly at random,

and y ← A(x; r) denotes assigning y to the output of an algorithm A on an input
x and a randomness r. When there is no need to write the randomness clearly,
we omit it and simply write y ← A(x). For strings x and y, x‖y denotes the
concatenation of x and y. λ denotes a security parameter. A function f(λ) is a
negligible function if f(λ) tends to 0 faster than 1

λc for every constant c > 0. We
write f(λ) = negl(λ) to denote f(λ) being a negligible function. PPT stands for
probabilistic polynomial time. [�] denotes the set of integers {1, · · · , �}. MSBn(x)
denotes the first n bits of x. ∅ denotes the empty set.

2.2 Public Key Encryption

In this subsection we define public key encryption (PKE).

Definition 1 (Public key encryption). A PKE scheme Π is a three tuple
(KG,Enc,Dec) of PPT algorithms.

– The key generation algorithm KG, given a security parameter 1λ, outputs a
public key pk and a secret key sk.

– The encryption algorithm Enc, given a public key pk and a message m ∈ M,
outputs a ciphertext c, where M is the plaintext space of Π.

– The decryption algorithm Dec, given a secret key sk and a ciphertext c, outputs
a message m̃ ∈ {⊥} ∪ M. This algorithm is deterministic.

Correctness. We require Dec(sk ,Enc(pk ,m)) = m for every m ∈ M and
(pk , sk) ← KG(1λ).

Next, we define one-wayness against chosen plaintext attacks (OW-CPA secu-
rity) for PKE schemes. KDM security, which we define in this subsection, con-
siders situations where there are many users, and thus KDM security is defined
via a security game where there are many keys and an adversary can make many
challenge queries. Therefore, for our purpose, it is useful to consider the following
one-wayness in the multi-user setting. Specifically, we use a security notion which
we call List-OW-CPA security. In the security game of List-OW-CPA security,
there are many keys, and an adversary can make multiple encryption queries
and outputs a list of candidate plaintexts in the final phase.

Definition 2 (List-OW-CPA security). Let Π be a PKE scheme whose mes-
sage space is M, and � be the number of keys. We define the List-OW-CPA game
between a challenger and an adversary A as follows.
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Initialization. First, the challenger generates � key pairs (pk j , sk j) ← KG(1λ)(j
= 1, · · · , �). Then, the challenger sends (pk1, · · · , pk�) to A. Finally, the
challenger sets Lenc = ∅.
A may make polynomially many encryption queries.

Encryption queries. j ∈ [�] is an index of a key. The challenger generates
m

r←− M and computes c ← Enc(pk j ,m). Then, the challenger adds m to
Lenc and returns c to A.

Final phase. A outputs Lans which is a set of plaintexts. (We require the size
of Lans to be bounded by some polynomial of λ.)

In this game, we define the advantage of the adversary A as follows.

Advlowcpa
Π,A,� (λ) = Pr[Lenc ∩ Lans 	= ∅]

We say that Π is List-OW-CPA secure if for any PPT adversary A and poly-
nomial � = �(λ), we have Advlowcpa

Π,A,� (λ) = negl(λ).

A OW-CPA secure PKE scheme Π is also List-OW-CPA secure. Formally,
the following lemma holds. We provide the definition of OW-CPA security and
the proof of Lemma 1 in Appendix A.

Lemma 1. Let Π be a OW-CPA secure PKE scheme. Then, Π is also List-
OW-CPA secure.

Next, we define KDM-CPA security and KDM-CCA security for PKE
schemes.

Definition 3 (KDM-CPA security). Let Π be a PKE scheme and � be the
number of keys. We define the KDM-CPA game between a challenger and an
adversary A as follows. In the following, sk denotes (sk1, · · · , sk �).

Initialization. First, the challenger chooses a challenge bit b
r←− {0, 1}. Next,

the challenger generates � key pairs (pk j , sk j) ← KG(1λ)(j = 1, · · · , �) and
sends (pk1, · · · , pk �) to A.
A may adaptively make polynomially many KDM queries.

KDM queries. (j, f), where j is a key index and f is a function. Here, f
needs to be efficiently computable. If b = 1 then the challenger returns c ←
Enc(pk j , f(sk)); If b = 0 then the challenger returns c ← Enc(pk j , 0|f(·)|).

Final phase. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as follows.

Advkdmcpa
Π,A,� (λ) = |Pr[b = b′] − 1

2
|

We say that Π is KDM-CPA secure if for any PPT adversary A and poly-
nomial � = �(λ), we have Advkdmcpa

Π,A,� (λ) = negl(λ).

By permitting the adversary to make decryption queries, we can analogously
define KDM-CCA security.
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Definition 4 (KDM-CCA security). Let Π be a PKE scheme and � be the
number of keys. We define the KDM-CCA game between a challenger and an
adversary A in the same way as the KDM-CPA game except that A is allowed to
adaptively make decryption queries. In the initialization step of the KDM-CCA
game, the challenger first runs in the same way as the KDM-CPA game, and
then, prepares the KDM query list Lkdm into which pairs of the form (j, c) will
be stored, where j is an index and c is a ciphertext, and which is initially empty.
When A makes a KDM query (j, f), the challenger computes the answer c and
adds (j, c) to Lkdm. A is not allowed to make a decryption query (j, c) which is
contained in Lkdm.

–Decryption queries. (j, c) /∈ Lkdm, where j is a key index and c is a ciphertext.
For this query, the challenger returns m ← Dec(sk j , c).

In this game, we define the advantage Advkdmcca
Π,A,� (λ) of the adversary A analo-

gously to that in the KDM-CPA game. Then, Π is said to be KDM-CCA secure
if for any PPT adversary A and polynomial � = �(λ), we have Advkdmcca

Π,A,� (λ) =
negl(λ).

Remarks. lack et al. [11] first defined KDM security. In their paper, they made an
assumption that functions which the adversary queries in the security game are
length-regular. A function f is said to be length-regular if the output length of
f(sk) does not depend on the value of sk, and thus we can uniquely determine the
length of f(sk) only from f . In this paper, we also impose the length-regularity
of functions which the adversary queries in the security game.

In the KDM-CPA game and KDM-CCA game in the random oracle model,
the adversary is allowed to make hash queries to the random oracle. Moreover, it
is more appropriate to permit a function which the adversary queries as a KDM
query (KDM function) to access to the random oracle, in order to capture more
various situations. Actually, Black et al. used the definition which allows KDM
functions to access to the random oracle. Therefore, similarly to the definition
of Black et al., we allow a KDM function to access to the random oracle.

IND-CPA security is a special case of KDM-CPA security. More specifically,
we can define IND-CPA security by restricting functions an adversary can query
as a KDM query in the KDM-CPA game to any constant functions. Similarly,
IND-CCA security is a special case of KDM-CCA security.

Usually, KDM security is defined with respect to a function family F . F-
KDM security is defined by restricting KDM functions used by an adversary
to functions belonging to F . In this paper, unless stated otherwise, we allow
an adversary to query arbitrary function computable in polynomial-time in the
security game, and we omit to write a function family.

Next, we review a security notion for PKE schemes called smoothness [9].
Informally, a PKE scheme is said to be smooth if the number of possible cipher-
texts is super-polynomially large for any message. We note that many known
PKE schemes secure in the sense of indistinguishability have smoothness uncon-
ditionally, but it is not the case that any IND-CPA or IND-CCA secure PKE
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scheme is smooth. However, we can easily transform any non-smooth PKE
scheme to a smooth one. Fujisaki and Okamoto [19,21] proved the security
of their scheme via a property called γ-uniformity. γ-uniformity is a slightly
stronger security notion than smoothness in the sense that it considers maxi-
mum also over all public keys, but these two notions are essentially the same.

Definition 5 (Smoothness [9]). Let Π be a PKE scheme. For λ ∈ N, we define
Smth as follows.

Smth(λ) = E(pk ,sk)←KG(1λ)

[

max
m,c′

Pr
c←Enc(pk ,m)

[c = c′]
]

We say that Π is smooth if we have Smth(λ) = negl(λ).

We note that Definition 5 is essentially equivalent to the security notion
defined via the following game played by a challenger and an adversary A.

Initialization. The challenger generates � key pairs (pk j , sk j) ← KG(1λ)(j =
1, · · · , �) and sends ((pk1, sk1), · · · , (pk �, sk�)) to A.

Final phase. A outputs (j,m, c′), and the challenger computes c ← Enc(pkj ,m).

In this game, we define the advantage of the adversary A as follows.

Advsmth
Π,A,�(λ) = Pr[c = c′]

Then, it is straightforward to see that for any computationally unbounded adver-
sary A and polynomial � = �(λ), we have Advsmth

Π,A,�(λ) ≤ � ·Smth(λ). Therefore,
if Smth(λ) is negligible, so is Advsmth

Π,A,�(λ) for any computationally unbounded
adversary A and polynomial � = �(λ).

2.3 Symmetric Key Encryption

In this subsection we define symmetric key encryption (SKE).

Definition 6 (Symmetric key encryption). SKE scheme Σ is a two tuple
(E,D) of PPT algorithms.

– The encryption algorithm E, given a key K ∈ {0, 1}λ and a message m ∈ M,
outputs a ciphertext c, where M is the plaintext space of Σ.

– The decryption algorithm D, given a key K and a ciphertext c, outputs a
message m̃ ∈ {⊥} ∪ M. This algorithm is deterministic.

Correctness. We require D(K,E(K,m)) = m for every m ∈ M and K ∈
{0, 1}λ.

Next, we review the definition of indistinguishability against one-time chosen
plaintext attacks (OT-CPA security) for SKE schemes.
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KGFO1(1
λ) :

(pk , sk) ← KG(1λ)
return (pk , sk)

EncFO1(pk ,m) :
r ← {0, 1}n

R ← H(m r)
c ← Enc(pk ,m r;R)
return c

DecFO1(sk , c) :
m r ← Dec(sk , c)
if m r = ⊥

return ⊥
else
R ← H(m r)
if c = Enc(pk,m r;R)
return ⊥

else
return m

Fig. 1. The construction [19] of an IND-CCA secure PKE scheme FO1 =
(KGFO1,EncFO1,DecFO1) from a PKE scheme Π = (KG,Enc,Dec) which is IND-CPA
secure and smooth, and a hash function H.

Definition 7 (OT-CPA security). Let Σ be a SKE scheme whose message
space is M. We define the OT-CPA game between a challenger and an adversary
A as follows.

Initialization. First the challenger chooses a challenge bit b
r←− {0, 1}. Next the

challenger generates a key K
r←− {0, 1}λ and sends 1λ to A.

Challenge. A selects two messages m0 and m1 of equal length, and sends them
to the challenger. Then the challenger returns c ← E(K,mb).

Final phase. A outputs b′ ∈ {0, 1}.

In this game, we define the advantage of the adversary A as follows.

Advotcpa
Σ,A (λ) = |Pr[b = b′] − 1

2
|

We say that Σ is OT-CPA secure if for any PPT adversary A, we have
Advotcpa

Σ,A (λ) = negl(λ).

3 Fujisaki-Okamoto Construction (PKC’99) Does Not
Satisfy KDM Security in General

Fujisaki and Okamoto [19] showed how to transform any IND-CPA secure (and
smooth) PKE scheme to an IND-CCA secure one by using a random oracle. The
resulting scheme has almost the same efficiency as the underlying scheme. In this
section, although their construction satisfies IND-CCA security, we show that
their construction generally does not satisfy KDM security. In the following, we
first review the construction of [19], and then we show our negative result.

Let Π = (KG,Enc,Dec) be a PKE scheme, and H : {0, 1}∗ → {0, 1}n be
a hash function, where n = n(λ) is a polynomial. Then, we construct a PKE
scheme FO1 = (KGFO1,EncFO1,DecFO1) as described in Fig. 1. Here, we assume
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KG(1λ) :

sk
r←− {0, 1}s

(pk, sk) ← KG(1λ; sk)

pk ← pk
return (pk, sk)

Enc(pk ,m) :

c ← Enc(pk,m)

(pk , sk ) ← KG(1λ;MSBs(m))
if pk = pk

return 1 c
else

return 0 c

Dec(sk, p c) :

(pk, sk) ← KG(1λ; sk)

m ← Dec(sk, c)
return m

Fig. 2. The construction of a PKE scheme Π = (KG,Enc,Dec) which is IND-CPA
secure and smooth but not KDM-CPA secure from an IND-CPA secure and smooth
PKE scheme ̂Π = (̂KG,̂Enc,̂Dec).

that the plaintext space of Π is {0, 1}∗, and thus that of FO1 is also {0, 1}∗. In
addition, let the randomness spaces of Enc and EncFO1 be both {0, 1}n.

In the above construction, Fujisaki and Okamoto showed that if Π is
IND-CPA secure and smooth, and H is a random oracle, then FO1 is IND-CCA
secure in the random oracle model. However, as mentioned above, we show that
FO1 does not satisfy KDM-CPA security generally under the same assumptions.
Formally, we show the following theorem.

Theorem 3. Assume that there exists an IND-CPA secure and smooth PKE
scheme. Then, there exists an IND-CPA secure and smooth PKE scheme Π
such that FO1 does not satisfy KDM-CPA security in the random oracle model.

Proof of Theorem 3. This proof consists of two steps. In the first step, using any
IND-CPA secure and smooth PKE scheme, we construct a PKE scheme which
is still IND-CPA secure and smooth, but insecure in the sense of KDM security.
Then, in the second step, we show that the PKE scheme which is constructed
by applying the conversion of [19] to the PKE scheme we construct in the first
step, also does not satisfy KDM-CPA security. In the following, we start with
the first step.

Let ̂Π = ( ̂KG, ̂Enc, ̂Dec) be any IND-CPA secure and smooth PKE scheme.
Without loss of generality, we assume that the plaintext space of ̂Π is {0, 1}∗,
and the randomness space of ̂KG is {0, 1}s for some polynomial s = s(λ). Then,
using ̂Π, we construct a PKE scheme Π = (KG,Enc,Dec) as described in Fig. 2.

It is clear that if ̂Π is IND-CPA secure and smooth, then Π satisfies the same
security notions. The reason is as follows. In the IND-CPA game regarding Π,
since a PPT adversary can find the randomness that was used to run ̂KG with
negligible probability, when the challenger generates the challenge ciphertext,
Enc outputs a ciphertext whose first bit is 1 with negligible probability. Thus,
if ̂Π satisfies IND-CPA, then so is Π. Moreover, regardless of the plaintext, a
ciphertext output by Enc includes a ciphertext output by ̂Enc itself, and thus Π
is smooth if so is ̂Π. On the other hand, Π does not satisfy KDM-CPA security.
In order to show it, we consider the following adversary A which attacks the
KDM-CPA security of Π. For simplicity, we consider the case where only one
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key pair exists. On input pk, A queries the identity function id, gets the answer
p‖c, and outputs b′ = p. Let b be the challenge bit in the KDM-CPA game
between the challenger and A. Then, we can estimate the advantage of A as
follows.

Advkdmcpa
Π,A,1 (λ) =

1
2
|Pr[b′ = 1|b = 1] − Pr[b′ = 1|b = 0]|

=
1
2
|Pr[p = 1|b = 1] − Pr[p = 1|b = 0]|

Here, let sk be the secret key corresponding to pk. Then, sk is chosen from
{0, 1}s at random and pk = ̂pk, where (̂pk, ̂sk) = ̂KG(1λ; sk). In addition, let
m1 = sk and m0 = 0s. Then, we note that for any b ∈ {0, 1}, the probability that
p equals 1 is the same as the probability that pk = pk′ holds, where (pk′, sk′) =
̂KG(1λ;mb). We note that these probabilities are taken over the choice of sk.
When b = 1, it is straightforward that pk = pk′ always holds, and thus we have
Pr[p = 1|b = 1] = 1. On the other hand, when b = 0, pk = pk′ occurs only
with negligible probability. The reason is as follows. If pk = pk′ holds, by the
correctness of ̂Π, ̂Dec(sk′, ̂Enc(pk,m)) = m holds for any m ∈ {0, 1}∗. Therefore,
if pk = pk′ holds with non-negligible probability, an adversary can break the
IND-CPA security of ̂Π by generating (pk′, sk′) ← ̂KG(1λ; 0s) and decrypting
the challenge ciphertext using sk′. This is a contradiction, and thus we have
Pr[p = 1|b = 0] = negl(λ). From these, we have Advkdmcpa

Π,A,1 (λ) = 1
2 (1 − negl(λ)),

and we see that Π does not satisfy KDM-CPA security.
Next, we construct a PKE scheme FO1 = (KGFO1,EncFO1,DecFO1) by apply-

ing the conversion in Fig. 1 to the above Π, and show that FO1 also does not
satisfy KDM-CPA security. Let (pk, sk) be a key pair output by KGFO1. Here, a
key pair of FO1 is a key pair of Π itself. Namely, sk is randomly chosen from
{0, 1}s and pk = ̂pk, where (̂pk, ̂sk) ← ̂KG(1λ; sk). Then, for any m ∈ {0, 1}s, the
probability that the first bit of the result of EncFO1(pk,m) equals 1 is the same
as the probability that pk = pk′ holds, where (pk′, sk′) = ̂KG(1λ;MSBs(m‖r)) =
̂KG(1λ;m) and r is a randomness generated in EncFO1. These probabilities are
over the choice of the random oracle H, (pk, sk), and r ∈ {0, 1}n. Therefore,
if m = sk, the first bit of EncFO1(pk,m; r) always equals 1. One the other
hand, if m does not depend on sk, similarly to the first step, the first bit of
EncFO1(pk,m; r) equals 1 only with negligible probability. From these, FO1 does
not satisfy KDM-CPA security. � (Theorem 3)

4 KDM-CCA Security of Fujisaki-Okamoto Construction
(J. Cryptology’13)

Fujisaki and Okamoto [21] showed how to construct an IND-CCA secure PKE
scheme in the random oracle model (which we call FO2) using a OW-CPA secure
PKE scheme and a OT-CPA secure SKE scheme. In this section, we show that
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KGFO2(1
λ) :

(pk , sk) ← KG(1λ)
return (pk , sk)

EncFO2(pk ,m) :

r
r←− {0, 1}λ

K
r←− G(r)

d ← E(K,m)
R ← H(r, d)
c ← Enc(pk , r;R)
return (c, d)

DecFO2(sk, (c, d)) :
r ← Dec(sk , c)
if r = ⊥ or c = Enc(pk, r;H(r, d))

return ⊥
else
K ← G(r)
m ← D(K, d)
return m

Fig. 3. The construction [21] of a PKE scheme FO2 = (KGFO2,EncFO2,DecFO2) from a
PKE scheme Π = (KG,Enc,Dec) and a SKE scheme Σ = (E,D).

FO2 also satisfies KDM-CCA security in the random oracle model, under exactly
the same assumptions on the building blocks as those used in [21]. First, we
review the construction of FO2.

Let Π = (KG,Enc,Dec) be a PKE scheme and Σ = (E,D) be a SKE scheme.
Here, we assume that the message space and the randomness space of Π are
{0, 1}λ and {0, 1}n, respectively, where n = n(λ) is a polynomial. Moreover,
we also assume that the message space and the key space of Σ are {0, 1}∗ and
{0, 1}λ, respectively. In addition, let H : {0, 1}∗ × {0, 1}∗ → {0, 1}n and G :
{0, 1}∗ → {0, 1}λ be hash functions. Then, we construct a PKE scheme FO2 =
(KGFO2,EncFO2,DecFO2) as described in Fig. 3. Here, we note that the message
space of FO2 is {0, 1}∗.

[21] showed that, by regarding H and G as random oracles, if Π is OW-CPA
secure and smooth, and Σ is OT-CPA secure, then FO2 satisfies IND-CCA secu-
rity in the random oracle model. As mentioned earlier, we show that FO2 satisfies
KDM-CCA security, even though we require exactly the same assumptions for
building blocks as those used in [21]. Formally, we show the following theorem.

Theorem 4. Let Π be a PKE scheme which is OW-CPA secure and smooth, Σ
be a OT-CPA secure SKE scheme, and H and G be random oracles. Then, FO2

is a PKE scheme which is KDM-CCA secure in the random oracle model.

5 Overview of Our Techniques

Our idea for proving the KDM-CCA security of FO2 is conceptually simple. How-
ever, unfortunately, our security proof might look somewhat complicated. Thus,
in this section, we first explain where the difficulty lies and how we overcome it
when showing the KDM-CCA security of FO2.

The difficulty. FO2 has a somewhat complicated structure at first glance. How-
ever, it can roughly be seen as a hybrid encryption scheme Πhyb which has the
following encryption algorithm Enchyb.

Enchyb(pk,m; r) = (Enc(pk, r),E(G(r),m))

Here, similarly to FO2, Π = (KG,Enc,Dec) and Σ = (E,D) are a OW-CPA
secure PKE scheme and a OT-CPA secure SKE scheme, respectively, and G is
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Game [b = 1] Game [hybrid] Game [b = 0]

1st Enchyb(pk, f
G
1 (sk)) Enchyb(pk, 0

|f1(·)|) Enchyb(pk, 0
|f1(·)|)

2nd Enchyb(pk, f
G
2 (sk)) Enchyb(pk, f

G
2 (sk)) Enchyb(pk, 0

|f2(·)|)

Fig. 4. The ordinary sequence of games. “1st” and “2nd” indicate the answers to the
first and second KDM queries from A, respectively.

a random oracle. The difficulty that lies in the security proof of the KDM-CCA
security of FO2, is almost the same as that of the KDM-CPA security of Πhyb.
Therefore, for simplicity, we explain the difficulty we encounter when showing
the KDM-CPA security of Πhyb in the case where only one key pair (pk, sk)
exists. In the following, we call a function an adversary queries as a KDM query
in the security game a KDM function. In addition, we call an answer to a KDM
query a challenge ciphertext, and randomness r encapsulated by Enc a proto-key.

We first consider a simple case, that is, the case where KDM functions
cannot access to the random oracle G. In this case, an adversary who does
not query a proto-key r to G cannot distinguish (Enc(pk, r),E(G(r), f(sk)))
and (Enc(pk, r),E(G(r), 0|f(·)|)) due to the randomness of outputs of G and the
OT-CPA security of Σ, where f is a KDM function. Thus, all we have to con-
sider is whether the adversary can query the proto-key r to G, but it is unlikely
because of the OW-CPA security of Π. From these, in this case, we can easily
see that Πhyb is KDM-CPA secure.

However, in the case where KDM functions can access to the random oracle G,
there is a problem. The problem is that an adversary who makes multiple KDM
queries can get an encryption of a proto-key r which was used to compute a past
challenge ciphertext. In order to take a closer look at this problem, we consider
the reduction from the KDM-CPA security of Πhyb to the OT-CPA security of Σ.
For simplicity, we consider an adversary A who makes only two KDM queries in
the KDM-CPA game of Πhyb. Let f1 and f2 be the KDM functions that A sends,
and b denote the challenge bit between the challenger and A. Then, consider the
sequence of games as described in Fig. 4.

Game [b = 1] and Game [b = 0] correspond to the KDM-CPA game when
b = 1 and b = 0, respectively. If the behavior of A does not change non-negligibly
between Game [b = 1] and Game [b = 0], then we can conclude that Πhyb is
KDM-CPA secure. In order to show this by using the OT-CPA security of Σ, we
typically consider a hybrid game Game [hybrid], and we show that the behavior
of A does not change between Game[b = 1] and Game [hybrid], and between
Game [hybrid] and Game [b = 0].

Then, we try to construct an adversary B who simulates Game [b = 1] or
Game [hybrid] for A according to the value of the challenge bit between B and
the challenger of the OT-CPA game regarding Σ. B first generates (pk, sk) using
KG and sends pk to A. B simulates G by lazy sampling. For the first KDM query
f1 from A, B first makes the challenge query (fG

1 (sk), 0|f1(·)|) and gets the answer
d1. Then, B generates a proto-key r1, computes c1 ← Enc(pk, r1), and returns
(c1, d1) to A. In addition, B let the value of G(r1) be the value of the key of
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Σ that the challenger used to compute d1. We note that B does not know the
actual value of the key of Σ. Here, suppose that A sends the following KDM
function f2 as the second KDM query. fG

2 (sk) computes r1 = Dec(sk, c1), and
then computes G(r1) and returns the value. Then, in order to compute the value
of fG

2 (r1), B needs the value of G(r1). However, B does not know the actual
value of G(r1), and thus cannot compute fG

2 (sk) correctly. Therefore, B fails a
simulation of Games for A if A queries such a second KDM query.

The approach of Davies and Stam [17]. Davies and Stam [17] studied
KDM security for hybrid encryption where the key derivation function (KDF) is
regarded as a random oracle, and pointed out the above problem.3 Then, they
overcame the problem and showed that if a PKE scheme satisfies OW-CCA secu-
rity and a SKE scheme satisfies OT-CCA security, the hybrid encryption scheme
satisfies KDM-CCA security in the random oracle model.

They approached the above problem by introducing a new security notion
for SKE schemes that they call prior key dependent message security (PKDM
security). Informally, PKDM security guarantees that an encryption scheme can
securely encrypt a message which depends only on keys of the scheme used to gen-
erate past ciphertexts. In other words, confidentiality of a ciphertext of a PKDM
secure scheme under a key Ki holds even if an adversary can get an encryption of
the form E(Ki, f(K1, · · · ,Ki−1)), where K1, · · · ,Ki−1 are keys used so far and
f is an arbitrary function. Davies and Stam showed that PKDM-CCA security is
equivalent to OT-CCA security, and they overcame the above problem by reduc-
ing the KDM-CCA security of the hybrid encryption scheme to the PKDM-CCA
security of the SKE scheme.

To accomplish this task, their reduction algorithm has to convert a KDM
function of the secret keys of the PKE scheme to that of the keys of the SKE
scheme. Here, in the KDM-CCA game which the reduction algorithm simulates,
there exists a random oracle. On the other hand, in the PKDM-CCA game which
the reduction algorithm actually plays, there does not exist a random oracle.
Therefore, Davies and Stam used the technique of replacing the random oracle
with a pseudorandom functions (PRF) when conducting the above conversion of
KDM functions. Therefore, their security bound has a PRF term even though the
construction does not include a PRF. In addition, they stated that it is difficult
to prove its KDM-CCA security without using PKDM security or a PRF.

Our approach. Both our work and the work of [17] study the KDM-CCA secu-
rity of the hybrid encryption scheme whose KDF is regarded as a random oracle.
However, there is a big difference between our work and [17]. The difference is
that the building blocks of [17] already satisfy CCA security. On the other hand,
the building blocks of FO2 that we treat satisfy only CPA security. In order to
prove the KDM-CCA security of FO2 even though the building blocks satisfy only
CPA security, similarly to Fujisaki and Okamoto [21], we have to use smooth-
ness [9]. (As mentioned in Sect. 2, smoothness is essentially the same notion as

3 Davies and Stam actually treated a hybrid encryption scheme constructed from a
SKE scheme and a key encapsulation mechanism (KEM).
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Game [b = 1] Game [reverse] Game [b = 0]

1st Enchyb(pk, f
G
1 (sk)) Enchyb(pk, f

G
1 (sk)) Enchyb(pk, 0

|f1(·)|)

2nd Enchyb(pk, f
G
2 (sk)) Enchyb(pk, 0

|f2(·)|) Enchyb(pk, 0
|f2(·)|)

Fig. 5. The sequence of games which replace the challenge ciphertexts in the “reverse
order”.

γ-uniformity.) In addition, the construction of FO2 contains two random oracles,
and one of them is used to generate a randomness for the encryption algorithm
of the PKE scheme. Thus, it looks difficult to replace both of two random oracles
with a PRF, and thus, to directly use the proof technique used in [17]. Therefore,
we try to prove the KDM-CCA security of FO2 by a proof technique which is
different from that of [17], especially a technique without using PKDM security
or a PRF. In the following, we give our main idea using Πhyb.

As earlier, we consider an adversary A for the KDM-CPA security of Πhyb

who makes a KDM query only twice. Our idea is to replace the challenge cipher-
texts in “reverse order”. Namely, we consider the sequence of games as described
in Fig. 5.

Then, we can avoid the problem that we explained above. We try to construct
an adversary B who simulates Game [b = 1] or Game [reverse] for A according
to the value of the challenge bit between B and the challenger of the OT-CPA
game regarding Σ. B first generates (pk, sk) using KG and sends pk to A. For the
first KDM query f1 from A, B generates a proto-key r1 and a key K1 of Σ, and
returns (Enc(pk, r1),E(K1, f

G
1 (sk))). In addition, B defines the value of G(r1)

as K1 by itself. For the second KDM query f2 from A, B makes the challenge
query (fG

2 (sk), 0|f2(·)|) and gets the answer d2. Then, B generates a proto-key r2,
computes c2 ← Enc(pk, r2), and returns (c2, d2) to A. Since B defines the value
of G(r1) by itself, B can simulate G for f2 and compute fG

2 (sk) correctly even if
f2 calls G.

Then, we in turn try to construct an adversary B′ who simulates Game
[reverse] or Game [b = 0] for A according to the value of the challenge bit
between B′ and the challenger of the OT-CPA game regarding Σ. B′ also gener-
ates (pk, sk) using KG and sends pk to A. For the first KDM query f1 from A, B′

first makes the challenge query (fG
1 (sk), 0|f1(·)|) and gets the answer d1. Then,

B′ generates a proto-key r1, computes c1 ← Enc(pk, r1), and returns (c1, d1) to
A. Here, B′ let the value of G(r1) be the value of the key of Σ that the challenger
used to compute d1, and thus B does not know the value of G(r1). However, in
this case, B′ does not need the value of G(r1) to respond to the second KDM
query because the answer to this query is an encryption of 0|f2(·)|, and thus B′

does not have to compute fG
2 (sk) actually. We note that since KDM functions

are length regular, B′ can know |f2(·)| without computing fG
2 (sk). Therefore, we

can overcome the problem that KDM functions may refer to past proto-keys by
replacing the challenge ciphertexts in the reverse order.

When we prove the KDM-CCA security of FO2, we have to take the OW-CPA
security and smoothness of the building block PKE scheme into consideration,
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and then we use the identical-until-bad technique and the deferred analysis tech-
nique. Hence, in this case, whether a KDM function is computed actually or not
is very sensitive, but by dividing the bad events into smaller pieces than Davies
and Stam, we are able to complete the proof.

6 Proof of Theorem 4

In this section, we show the formal proof of Theorem 4.
Let A be an adversary that attacks the KDM-CCA security of FO2 in the

random oracle model, and makes at most qe KDM queries and qd decryption
queries, where qe and qd are polynomials of λ. Let � be a polynomial of λ and
denote the number of keys. As mentioned just after Definition 4, similarly to
Black et al. [11], we assume that a function which A queries as a KDM query
can access to the random oracles, and is length-regular. We note that since
KDM functions can access to the random oracle, it makes security proof simple
to clearly distinguish the entries of the hash list used to compute KDM functions
and that used to make challenge ciphertexts. Thus, we divide the random oracle
into multiple random oracles, which is a technique used by Davies and Stam [17].
Namely, in our sequence of games, there are six random oracles even though
the construction of FO2 contains only two random oracles. Now, consider the
following sequence of games.

Game 0. This is the KDM-CCA game in the random oracle model regarding
FO2. See Fig. 6 for how KDM queries and decryption queries are answered,
and how random oracles behave in Game 0. In the original KDM-CCA game
regarding FO2, there exist only two random oracles H and G. However, to
define the subsequent games, we consider six random oracles H, H∗, HH∗, G,
G∗, and GG∗. Moreover, random oracles are implemented by lazy sampling.
More specifically, random oracles run as follows.

– H maintains the list LH which stores query/answer pairs so far, and runs as
follows. If some value (r, d) is queried to H, H first checks whether there is an
entry of the form ((r, d), R) in LH. If so, H returns R. Otherwise, H returns a
fresh random value R and adds ((r, d), R) to LH.

– H∗, G, and G∗ also maintain the query/answer pairs list LH∗ , LG, and LG∗ ,
respectively, and run in the same way as H.

– Similarly to the other random oracles, HH∗ and GG∗ are implemented by
lazy sampling. However, HH∗ and GG∗ do not have their own list. When HH∗

samples a fresh random value, HH∗ adds a new entry to LH, and when GG∗

samples a fresh random value, GG∗ adds a new entry to LG. In addition, HH∗

runs by referring to both lists LH and LH∗ , and GG∗ runs by referring to both
lists LG and LG∗ .

Moreover, in this game, H and H∗ are synchronized. Namely, H and H∗ refer to
not only their own list but also the list of the other one. Similarly, G and G∗

are synchronized. In this game, random oracles are called at the following four
cases.
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[KDM] (j, f)

m1 ← fHH∗,GG∗
(sk)

m0 ← 0|f(·)|

r
r←− {0, 1}λ, K ← G∗(r)

d ← E(K,mb)
R ← H∗(r, d)
c ← Enc(pkj , r;R)
add (j, c, d) to Lkdm

return (c, d)

[Decryption] (j, c, d) /∈ Lkdm

r ← Dec(skj , c)
if r = ⊥ or
c = Enc(pk j , r;HH

∗(r, d))
return ⊥

else
K ← GG∗(r)
return m ← D(K, c)

H(r, d):
if ((r, d), R) ∈ LH ∪ LH∗

return R
else

R
r←− {0, 1}n

add ((r, d), R) to LH

return R

G(r):
if (r,K) ∈ LG ∪ LG∗

return K
else

K
r←− {0, 1}λ

add (r,K) to LG

return K

H∗(r, d):
if ((r, d), R) ∈ LH ∪ LH∗

return R
else

R
r←− {0, 1}n

add ((r, d), R) to LH∗

return R

G∗(r):
if (r,K) ∈ LG ∪ LG∗

return K
else

K
r←− {0, 1}λ

add (r,K) to LG∗

return K

Fig. 6. The manner the challenger responds to a KDM query and a decryption query,
and the behavior of H, H∗, G, and G∗ in Game 0. We note that in Game 0, HH∗ and
GG∗ run in exactly the same way as H and G, respectively.

– (1) When A makes a hash query.
– (2) When the challenger computes a hash value to respond to a KDM query

from A.
– (3) When a function which A sends to the challenger as a KDM query accesses

to the random oracles.
– (4) When the challenger computes a hash value to respond to a decryption

query from A.

H and G are used when (1), H∗ and G∗ are used when (2), and HH∗ and GG∗

are used when (3) and (4). Then, we note that the difference between this game
and the original KDM-CCA game is only conceptual.

Game 1. Same as Game 0, except for the behaviors of H∗ and G∗. In this
game, H∗ runs without referring to LH. Moreover, every time H∗ is given an
input (r, d) ∈ {0, 1}λ × {0, 1}∗, H∗ generates a uniformly random value R
over {0, 1}n. Then, H∗ outputs R after adding ((r, d), R) to LH∗ even if there
already exists an entry whose first component is (r, d) in LH∗ . We note that
H and HH∗ still refer to LH∗ in this game. When H and HH∗ refer to LH∗ , if
there are multiple entries whose first components are identical, then H and
HH∗ adopt the entry which was added first. G, G∗, and GG∗ run analogously
to H, H∗, and HH∗, respectively. See Fig. 7 for how H∗ and G∗ behave in
Game 1.

Game 2. Same as Game 1, except that H runs without referring to LH∗ , and G
runs without referring to LG∗ . Here, we note that HH∗ still refers to both LH
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H∗(r, d):

R
r←− {0, 1}n

add ((r, d), R) to LH∗

return R

G∗(r):

K
r←− {0, 1}λ

add (r,K) to LG∗

return K

Fig. 7. The behavior of H∗ and G∗ in
Game 1.

H(r, d):
if ((r, d), R) ∈ LH

return R
else

R
r←− {0, 1}n

add ((r, d), R) to LH

return R

G(r):
if (r,K) ∈ LG

return K
else

K
r←− {0, 1}λ

add (r,K) to LG

return K

Fig. 8. The behavior of H and G in
Game 2.

[Decryption](j, c, d) /∈ Lkdm

if ∃((r, d), R) ∈ LH ∪ LH∗

s.t. c = Enc(pkj , r;R)
K ← GG∗(r)
m ← D(K, d)
return m

else return ⊥

Fig. 9. The manner the challenger
responds to a decryption query in
Game 3.

[Decryption](j, c, d) /∈ Lkdm

if ∃((r, d), R) ∈ LH

s.t. c = Enc(pkj , r;R)
K ← G(r)
m ← D(K, d)
return m

else return ⊥

Fig. 10. The manner the challenger
responds to a decryption query in
Game 4.

and LH∗ , and GG∗ also refers to both LG and LG∗ . See Fig. 8 for how H and
G behave in Game 2.

Game 3. Same as Game 2, except that if A makes a decryption query, then the
challenger responds as described in Fig. 9. We note that, due to this change,
the challenger can respond to a decryption query without using the secret
keys in this and subsequent games.

Game 4. Same as Game 3, except that if A makes a decryption query, the
challenger refers to only LH instead of LH ∪ LH∗ when checking the validity
of the ciphertext from A, and uses G instead of GG∗ to compute the answer.
See Fig. 10.

Game 5. Same as Game 4, except that if A makes a KDM query (j, f), the
challenger always returns a ciphertext whose plaintext is 0|f(·)|. See Fig. 11.

The above completes the description of the games.
We define the following events in Game i (i = 0, · · · , 5).

SUCi: A succeeds in guessing the challenge bit, that is, b = b′ occurs.
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[KDM](j, f)

r
r←− {0, 1}λ

K ← G∗(r)

d ← E(K, 0|f(·)|)
R ← H∗(r, d)
c ← Enc(pk j , r;R)
add (j, c, d) to Lkdm

return (c, d)

Fig. 11. The manner the challenger responds to a KDM query in Game 5.

COLi: When the challenger generates r ← {0, 1}λ to respond to a KDM query
from A, there exists an entry of the form (r, ·) in LG ∪ LG∗ , or there exists
an entry of the form ((r, ·), ·) in LH.

BHQi: When A queries r to G or queries (r, d) to H, there exists an entry of the
form (r, ·) in LG∗ . We call such a hash query a “bad hash query”.

In addition, we define the following two events related to decryption queries.

SMTHi: A makes a decryption query (j, c, d) /∈ Lkdm which satisfies the following
two conditions, where Dec(skj , c) = r : There does not exist an entry of the
form ((r, d), ·) in LH ∪ LH∗ , and c = Enc(pk, r;HH∗(r, d)) holds.

BDQi: A makes a decryption query (j, c, d) /∈ Lkdm which satisfies the following
condition: There exists an entry ((r, d), R) ∈ LH ∪ LH∗ which satisfies c =
Enc(pkj , r;R), and for such r, (r, ·) ∈ LG∗ holds. Here, (r, ·) ∈ LG∗ indicates
that there exists an entry in LG∗ whose first component is r. We call such a
decryption query a “bad decryption query”.

Using the above events, we can estimate Advkdmcca
FO2,A,�(λ) as Lemma 2 stated

below.

Lemma 2. We can estimate Advkdmcca
FO2,A,�(λ) as follows:

Advkdmcca
FO2,A,�(λ) ≤ Pr[COL1] + 2Pr[SMTH3] + |Pr[SUC4] − Pr[SUC5]|

+|Pr[BHQ4] − Pr[BHQ5]| + 2|Pr[BDQ4] − Pr[BDQ5]|
+ Pr[BHQ5] + 2Pr[BDQ5] (1)

Proof of Lemma 2. As mentioned above, the difference between Game 0 and the
original KDM-CCA game is only conceptual, and thus we have Advkdmcca

FO2,A,�(λ) =
|Pr[SUC0] − 1

2 |. By using the triangle inequality, we get the following inequality.

|Pr[SUC0] − 1
2
| ≤

4
∑

k=0

|Pr[SUCk] − Pr[SUCk+1]| + |Pr[SUC5] − 1
2
|
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We note that, in Game 5, the challenger always responds to a KDM query
(j, f) from A by returning an encryption of 0|f(·)| regardless of the value of
the challenge bit. Therefore, in Game 5, the choice of the challenge bit and the
behavior of A are independent, and thus |Pr[SUC5]− 1

2 | = 0. Below, we estimate
|Pr[SUCk] − Pr[SUCk+1]|(k = 0, 1, 2, 3, 4).

Game 0 and Game 1 are identical games unless when the challenger generates
r

r←− {0, 1}λ, there already exists an entry whose first component is r in LH ∪
LG ∪ LG∗ . We note that if LG∗ does not have such an entry, the same is true
for LH∗ . Therefore, we can see that Game 0 and Game 1 are identical unless
the event COL0 (resp. COL1) occurs in Game 0 (resp. Game 1), and thus we have
|Pr[SUC0] − Pr[SUC1]| ≤ Pr[COL1].

Next, the only difference between Game 1 and Game 2 is how the challenger
responds to a bad hash query from A. In other words, Game 1 and Game 2 are
identical unless the event BHQ1 (resp. BHQ2) occurs in Game 1 (resp. Game 2),
and thus we have |Pr[SUC1] − Pr[SUC2]| ≤ Pr[BHQ2].

Moreover, Game 2 and Game 3, and Game 3 and Game 4 are identical games
except for how the challenger responds to a decryption query which satisfies the
condition we stated in the definition of events SMTHi and BDQi, respectively. In
other words, Game 2 and Game 3 are identical unless the event SMTH2 (resp.
SMTH3) occurs in Game 2 (resp. Game 3), and Game 3 and Game 4 are identical
unless the event BDQ3 (resp. BDQ4) occurs in Game 3 (resp. Game 4). |Pr[SUC2]−
Pr[SUC3]| ≤ Pr[SMTH3] and |Pr[SUC3] − Pr[SUC4]| ≤ Pr[BDQ4]. Then, we get the
following inequality.

Advkdmcca
FO2,A,�(λ) ≤ Pr[COL1] + Pr[BHQ2] + Pr[SMTH3]

+ Pr[BDQ4] + |Pr[SUC4] − Pr[SUC5]| (2)

In addition, Pr[BHQ2] ≤
∑4

k=2 |Pr[BHQk] − Pr[BHQk+1]| + Pr[BHQ5] holds. By con-
sidering analogously to the above argument, we get |Pr[BHQ2] − Pr[BHQ3]| ≤
Pr[SMTH3] and |Pr[BHQ3]−Pr[BHQ4] ≤ Pr[BDQ4]. Therefore, the following inequal-
ity holds.

Pr[BHQ2] ≤ Pr[SMTH3] + Pr[BDQ4] + |Pr[BHQ4] − Pr[BHQ5]| + Pr[BHQ5]

Moreover, we have Pr[BDQ4] ≤ |Pr[BDQ4] − Pr[BDQ5]| + Pr[BDQ5]. By using these
inequalities in the inequality (2), we get the inequality (1). � (Lemma 2)

Below, we show the following lemmas that state each term of the right side
of the inequality (1) is negligible.

Lemma 3. Pr[COL1] = negl(λ).

Lemma 4. Let Π be smooth. Then Pr[SMTH3] = negl(λ).

Lemma 5. Let Σ be OT-CPA secure. Then |Pr[SUC4] − Pr[SUC5]| = negl(λ),
|Pr[BHQ4] − Pr[BHQ5]| = negl(λ), and |Pr[BDQ4] − Pr[BDQ5]| = negl(λ).

Lemma 6. Let Π be OW-CPA secure. Then Pr[BHQ5] = negl(λ).
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Lemma 7. Let Π be OW-CPA secure. Then Pr[BDQ5] = negl(λ).

Proof of Lemma 3. Since A is a PPT algorithm, there is a polynomial of λ
which is the upper bound of the number of total entries in LH ∪ LG ∪ LG∗ .
Let Q = Q(λ) denote this upper bound. Then, the probability that when the
challenger generates r

r←− {0, 1}λ to respond to a KDM query form A, there is an
entry of the form (r, ·) in LG∪LG∗ , or there is an entry of the form ((r, ·), ·) in LH

is at most Q
2λ . A makes a KDM query at most qe times, and qe is a polynomial

of λ. Therefore, we have Pr[COL1] ≤ Q·qe

2λ = negl(λ). � (Lemma 3)

Proof of Lemma 4. We first define the following event for every i ∈ [qd].

SMTHi
3: In Game 3, the i-th decryption query (j, c, d) made by A satisfies the

following two conditions, where Dec(skj , c) = r: (1) There does not exist an
entry of the form ((r, d), ·) in LH ∪ LH∗ , and (2) c = Enc(pkj , r;HH∗(r, d)).

When the condition (1) is satisfied, the value of HH∗(r, d) is defined with a
newly generated uniformly random value. Then, the above condition (2) means
that c = Enc(pkj , r;R) holds, where R

r←− {0, 1}n. In addition, Pr[SMTH3] ≤
∑

i∈[qd]
Pr[SMTHi

3] holds. Then, using the adversary A that attacks FO2, we con-
struct the following adversary B that attacks the smoothness of Π.

Initialization. On input ((pk1, sk1), · · · , (pk�, sk�)), B first chooses b
r←− {0, 1}

and t
r←− [qd]. Then, B sends (pk1, · · · , pk �) to A. Finally, B sets sk =

(sk1, · · · , sk�) and Lkdm = LH = LH∗ = LG = LG∗ = ∅.
Hash queries. If A queries (r, d) to H, B simulates H. Namely, B first checks

whether there is an entry of the form ((r, d), R) in LH. If so, B returns R to
A. Otherwise, B generates R

r←− {0, 1}n, adds ((r, d), R) to LH, and returns
R to A. If A queries r to G, B simulates G analogously.

KDM queries. For a KDM query (j, f) from A, B computes m1 ← fHH∗,GG∗
(sk)

and m0 ← 0|m1|. Here, B correctly forms LH, LH∗ , LG, and LG∗ through to
the end, and thus if f calls HH∗ or GG∗, B can simulate them for f . Next,
B generates r

r←− {0, 1}λ, K
r←− {0, 1}λ, and R

r←− {0, 1}n. Then, B computes
c ← Enc(pk j , r;R) and d ← E(K,mb), and returns (c, d) to A. Finally, B
adds (r,K) to LG∗ , ((r, d), R) to LH∗ , and (j, c, d) to Lkdm.

Decryption queries. For the i-th decryption query (j, c, d) /∈ Lkdm from A, B
responds as follows.

– In the case i < t, if there does not exist an entry ((r, d), R) ∈ LH which
satisfies c = Enc(pkj , r;R), B returns ⊥ to A. Otherwise, B first checks
whether there is an entry of the form (r,K) in LG ∪LG∗ . If so, B returns
m ← D(K, d) to A. Otherwise, B generates K

r←− {0, 1}λ, adds (r,K) to
LG, and returns m ← D(K, d) to A.

– In the case i = t, B first computes r ← Dec(skj , c). Then, if there exists
an entry of the form ((r, d), ·) in LH ∪ LH∗ , B aborts with output ⊥.
Otherwise, B outputs (j, r, c) and terminates.

B perfectly simulates Game 3 until A makes the t-th decryption query. We
note that since t is chosen from [qd] uniformly at random and independently of A,
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and is information-theoretically hidden from the view of A, the choice of t does
not affect the behavior of B. When A makes the t-th decryption query (j, c, d), B
first computes r ← Dec(skj , c), and if there does not exist an entry of the form
((r, d), ·) in LH ∪ LH∗ , B outputs (j, r, c) and terminates. Otherwise, B outputs
⊥ and terminates. We can see that B succeeds in breaking the smoothness of Π
if and only if c = Enc(pkj , r;R) holds for a fresh randomness R, which means
that the event SMTHt

3 occurs in Game 3 which B simulates for A. Therefore, we
can estimate the advantage of B Advsmth

Π,B (λ) as follows.

Advsmth
Π,B (λ) =

∑

i∈[qd]

Pr[SMTHi
3 ∧ t = i]

=
∑

i∈[qd]

Pr[SMTHi
3] · Pr[t = i] =

1
qd

∑

i∈[qd]

Pr[SMTHi
3]

Therefore, we see that Pr[SMTH3] ≤ qd ·Advsmth
Π,B (λ). Since Π is smooth and qd is

a polynomial of λ, we have Pr[SMTH3] = negl(λ). � (Lemma 4)

Proof of Lemma 5. Using the adversary A that attacks FO2, we construct the
adversaries BSUC, BBHQ, and BBDQ all of which attack the OT-CPA security of Σ.
We first describe BSUC below.

Initialization. On input security parameter 1λ, BSUC first chooses t
r←− [qe].

Then, BSUC generates � key pairs (pk j , sk j) ← KG(1λ)(j = 1, · · · , �) and
sends (pk1, · · · , pk �) to A. Finally, BSUC sets sk = (sk1, · · · , sk�) and Lkdm =
LH = LH∗ = LG = LG∗ = ∅.

Hash queries. For a hash query from A, BSUC responds in the same manner as
B in the proof of Lemma 4.

KDM queries. For the i-th KDM query (j, f) from A, BSUC responds as follows.
– In the case i < t, BSUC first computes m1 ← fHH∗,GG∗

(sk) and m0 ←
0|f(·)|. Since BSUC correctly forms LH, LH∗ , LG, and LG∗ up to this point,
when f calls HH∗ and GG∗, BSUC can simulate them for f . Next, BSUC gen-
erates r

r←− {0, 1}λ, K
r←− {0, 1}λ, and R

r←− {0, 1}n. Then BSUC computes
c ← Enc(pk j , r;R) and d ← E(K,mb), and returns (c, d) to A. Finally,
BSUC adds (r,K) to LG∗ , ((r, d), R) to LH∗ , and (j, c, d) to Lkdm.

– In the case i = t, BSUC first computes m1 ← fHH∗,GG∗
(sk) and m0 ←

0|f(·)|. Since BSUC correctly forms LH, LH∗ , LG, and LG∗ up to this point,
when f calls HH∗ and GG∗, BSUC can simulate them for f . Next, BSUC

sends (m0,mb) as a challenge query to the challenger to get the answer
d. Then, BSUC generates r

r←− {0, 1}λ and R
r←− {0, 1}n, computes c ←

Enc(pk j , r;R), and returns (c, d) to A. Finally, BSUC adds (r,⊥) to LG∗ ,
((r, d), R) to LH∗ , and (j, c, d) to Lkdm.

– In the case i > t, BSUC first generates r
r←− {0, 1}λ, K

r←− {0, 1}λ, and R
r←−

{0, 1}n. Then, BSUC computes c ← Enc(pk j , r; R) and d ← E(K, 0|f(·)|),
and returns (c, d) to A. Finally, BSUC adds (r,K) to LG∗ , ((r, d), R) to
LH∗ , and (j, c, d) to Lkdm.
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Decryption queries. For a decryption query (j, c, d) /∈ Lkdm from A, if there
does not exist an entry ((r, d), R) ∈ LH which satisfies c = Enc(pkj , r; R),
BSUC returns ⊥ to A. Otherwise, BSUC first checks whether there is an entry
of the form (r,K) in LG. If so, BSUC returns m ← D(K, d) to A. Otherwise,
BSUC generates K

r←− {0, 1}λ, adds (r,K) to LG, and returns m ← D(K, d) to
A.

Final phase. When A terminates with output b′, BSUC outputs βSUC = 1 if b = b′.
Otherwise, BSUC outputs βSUC = 0.

BBHQ runs in exactly the same way as BSUC except for how to determine the
final output bit βBHQ. BBHQ determines βBHQ as follows. BBHQ initially sets βBHQ = 0.
When A queries r to G or queries (r, d) to H, BBHQ first responds in the same
manner as BSUC. In addition, BBHQ checks whether the query is a bad hash query
or not. Namely, BBHQ checks whether there exists an entry in LG∗ whose first
component is r. If so, BBHQ sets βBHQ = 1. When A terminates with output b′,
BBHQ outputs βBHQ.

BBDQ also runs in exactly the same way as BSUC except for how to determine the
final output bit βBDQ. BBDQ determines βBDQ as follows. BBDQ initially sets βBDQ =
0. When A makes a decryption query (j, c, d) /∈ Lkdm, BBDQ first responds in
the same manner as BSUC. In addition, BBDQ checks whether the query is a bad
decryption query or not. Namely, BBDQ checks whether the query satisfies the
following condition: There exists an entry ((r, d), R) ∈ LH ∪ LH∗ which satisfies
c = Enc(pkj , r;R), and if so, for such r, (r, ·) ∈ LG∗ holds. If (j, c, d) satisfies the
above condition, then BBDQ sets βBDQ = 1. When A terminates with output b′,
BBDQ outputs βBDQ.

Let β be the challenge bit in the game between the challenger and BSUC. Then,
the advantage of BSUC is estimated as follows.

Advotcpa
Σ,BSUC

(λ) =
1
2
|Pr[βSUC = 1|β = 1] − Pr[βSUC = 1|β = 0]|

=
1
2
|

∑

k∈[qe]

Pr[βSUC = 1 ∧ t = k|β = 1]

−
∑

k∈[qe]

Pr[βSUC = 1 ∧ t = k|β = 0]|

Here, for any k ∈ [qe], we have the following two equations.

Pr[βSUC = 1 ∧ t = k|β = 1] = Pr[t = k|β = 1]Pr[βSUC = 1|β = 1 ∧ t = k]
Pr[βSUC = 1 ∧ t = k|β = 0] = Pr[t = k|β = 0]Pr[βSUC = 1|β = 0 ∧ t = k]

We note that t is chosen from [qe] uniformly at random and independently of
β. Hence, for all k ∈ [qe], we have Pr[t = k|β = 1] = Pr[t = k|β = 0] = 1

qe
.

Moreover, for every k ∈ [qe −1], in the cases β = 1∧ t = k and β = 0∧ t = k +1,
BSUC responds to KDM queries from A in exactly the same way. In the above
two cases, the only difference is whether BSUC computes fHH∗,GG∗

(sk) to responds
to the (k + 1)-th KDM query from A. Due to this difference, in the above two
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cases, the manner LH and LG are formed is different. However, since A cannot
see the contents of LH and LG, this does not affect the behavior of A. Therefore,
we have Pr[βSUC = 1|β = 1 ∧ t = k] = Pr[βSUC = 1|β = 0 ∧ t = k + 1] for any
k ∈ [qe − 1]. From these, we have the following equality.

Advotcpa
Σ,BSUC

(λ) =
1

2qe
|Pr[βSUC = 1|β = 1 ∧ t = qe] − Pr[βSUC = 1|β = 0 ∧ t = 1]|

Since BBHQ and BBDQ run in exactly the same way as BSUC except for how to
determine the final output bit, all of the above arguments also hold for BBHQ and
BBDQ. Therefore, we also have the following equalities.

Advotcpa
Σ,BBHQ

(λ) =
1

2qe
|Pr[βBHQ = 1|β = 1 ∧ t = qe] − Pr[βBHQ = 1|β = 0 ∧ t = 1]|

Advotcpa
Σ,BBDQ

(λ) =
1

2qe
|Pr[βBDQ = 1|β = 1 ∧ t = qe] − Pr[βBDQ = 1|β = 0 ∧ t = 1]|

We note that, until A makes the t-th KDM query, BSUC correctly forms LH,
LH∗ , LG, and LG∗ , and thus BSUC can compute KDM functions up to this point.
On the other hand, BSUC cannot simulate the t-th entry of LG∗ because B simu-
lates the security game for A so that the second component of the t-th entry of
LG∗ is the value of the key the challenger generates, and thus BSUC does not know
it. Therefore, when responding to the subsequent KDM queries, BSUC cannot com-
pute KDM functions correctly. However, since BSUC only needs the output length
of KDM functions to respond to the (t + 1)-th and subsequent KDM queries,
and KDM functions are length regular, BSUC need not compute f . Then, we see
that when β = 1 ∧ t = qe, BSUC perfectly simulates Game 4 for A. On the other
hand, when β = 0 ∧ t = 1, BSUC perfectly simulates Game 5 for A. We note that
t is information-theoretically hidden from the view of A, and thus the choice of
t does not affect the behavior of A. Here, this argument also holds for BBHQ and
BBDQ.

In addition, BSUC outputs 1 only when A succeeds in guessing b, that is, b = b′

occurs, BBHQ outputs 1 only when A makes a bad hash query, and BBDQ outputs
1 only when A makes a bad decryption query. Therefore, we have following
equalities.

Pr[βSUC = 1|β = 1 ∧ t = qe] = Pr[SUC4], Pr[βSUC = 1|β = 0 ∧ t = 1] = Pr[SUC5]
Pr[βBHQ = 1|β = 1 ∧ t = qe] = Pr[BHQ4], Pr[βBHQ = 1|β = 0 ∧ t = 1] = Pr[BHQ5]
Pr[βBDQ = 1|β = 1 ∧ t = qe] = Pr[BDQ4], Pr[βBDQ = 1|β = 0 ∧ t = 1] = Pr[BDQ5]

Therefore, we get the following equalities.

Advotcpa
Σ,BSUC

(λ) =
1

2qe
|Pr[SUC4] − Pr[SUC5]|

Advotcpa
Σ,BBHQ

(λ) =
1

2qe
|Pr[BHQ4] − Pr[BHQ5]|

Advotcpa
Σ,BBDQ

(λ) =
1

2qe
|Pr[BDQ4] − Pr[BDQ5]|
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Since Σ is OT-CPA secure and qe is a polynomial of λ, we see that |Pr[SUC4] −
Pr[SUC5]| = negl(λ), |Pr[BHQ4]−Pr[BHQ5]| = negl(λ), and |Pr[BDQ4]−Pr[BDQ5]| =
negl(λ). � (Lemma 5)

Proof of Lemma 6. Using the adversary A that attacks FO2, we construct the
following adversary B that attacks the List-OW-CPA security of Π. We note
that since Π is OW-CPA secure, by Lemma 1, Π is also List-OW-CPA secure.

Initialization. On input (pk1, · · · , pk�), B sends (pk1, · · · , pk�) to A, and B sets
Lkdm = LH = LG = Lans = ∅.

Hash queries. If A queries (r, d) to H, B simulates H. Namely, B first checks
whether there is an entry of the form ((r, d), R) in LH. If so, B returns R to
A. Otherwise, B generates R

r←− {0, 1}n, adds ((r, d), R) to LH, and returns R
to A. Then, B adds r to Lans. If A queries r to G, B simulates G analogously
to H as above, and adds r to Lans.

KDM queries. For a KDM query (j, f) from A, B first queries j to the chal-
lenger as an encryption query and gets the answer c. Then, B generates
K

r←− {0, 1}λ and computes d ← E(K, 0|f(·)|). Finally, B adds (j, c, d) to
Lkdm, and returns (c, d) to A.

Decryption queries. For a decryption query (j, c, d) /∈ Lkdm from A, B
responds in the same manner as BSUC in the proof of Lemma 5.

Final phase. When A terminates with output b′, B outputs Lans.

In the List-OW-CPA game, the challenger maintains the list Lenc which
stores plaintexts of the challenge ciphertexts. Then, the advantage of B is Pr[Lenc

∩ Lans 	= ∅]. We see that B perfectly simulates Game 5 for A. If A queries r as
a G query or (r, d) as a H query, B adds r to Lans. In addition, in Game 5, a
new entry is added to LG and LH only when A makes a G query and H query,
respectively. Therefore, we can write Lans = {r|(r, ·) ∈ LG ∨ ((r, ·), ·) ∈ LH}.
Here, (r, ·) ∈ LG (resp. ((r, ·), ·) ∈ LH) indicates that there exists an entry in LG

(resp. LH) whose first component is r.
On the other hand, every time A makes a KDM query (j, f), B sends j to

the challenger as an encryption query and gets the answer c. Here, let c be an
encryption of r. Then, by the above encryption query from B, the challenger
adds r to Lenc. On the other hand, in Game 5, the hash value of r is computed
using G∗ at this point, and thus an entry of the form (r, ·) is added to LG∗ .
Therefore, Lenc can be seen as the set of the first components of the entries in
LG∗ in Game 5. (Actually, B does not make LG∗ by itself, but B does not need
LG∗ to simulate Game 5 for A.) From these, we see that Lenc ∩ Lans 	= ∅ holds
if the event BHQ5 occurs in Game 5 which B simulates for A. Therefore, we can
see that Advlowcpa

Π,B,� (λ) ≥ Pr[BHQ5]. Since Π is List-OW-CPA secure, we see that
Pr[BHQ5] = negl(λ). � (Lemma 6)

Proof of Lemma 7. First, we define the following two events.

BDQ15: In Game 5, A makes a decryption query (j, c, d) /∈ Lkdm satisfying the
following condition: There exists an entry ((r, d), R) ∈ LH which satisfies
c = Enc(pkj , r;R) and (r, ·) ∈ LG∗ .
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BDQ25: In Game 5, A makes a decryption query (j, c, d) /∈ Lkdm satisfying the
following condition: There exists an entry ((r, d), R) ∈ LH∗ which satisfies
c = Enc(pkj , r;R). (We note that if there is an entry of the form ((r, ·), ·) ∈
LH∗ , then there is an entry of the form (r, ·) ∈ LG∗ .)

By the definition of the events, obviously, BDQ5 = BDQ15 ∨ BDQ25 holds, and thus
we have Pr[BDQ5] ≤ Pr[BDQ15]+Pr[BDQ25]. Here, regarding BDQ25, when A makes
a decryption query (j, c, d) /∈ Lkdm satisfying the condition of BDQ25, it holds
that r = r∗, R = R∗, and d = d∗ for some entry (j∗, c∗, d∗) ∈ Lkdm, where
c∗ = Enc(pkj∗ , r∗;R∗). In addition, in this case, j 	= j∗ also holds. The reason
is as follows. If j = j∗ holds, then c = Enc(pkj , r; R) = Enc(pkj∗ , r∗; R∗) = c∗

holds, and thus we have (j, c, d) = (j∗, c∗, d∗), which contradicts (j, c, d) /∈ Lkdm.
Therefore, j 	= j∗ holds. From these, the event BDQ25 implies the following event.

BDQ2∗
5: In Game 5, A makes a decryption query (j, c, d) /∈ Lkdm satisfying

the following condition: For some entry (j∗, c∗, d∗) ∈ Lkdm, where c∗ =
Enc(pkj∗ , r∗;R∗), it holds that c = Enc(pkj , r

∗; R∗) and j 	= j∗.

Here, we have Pr[BDQ25] ≤ Pr[BDQ2∗
5].

Then, using the adversary A that attacks FO2, we construct the following
adversary B that attacks the List-OW-CPA security of Π. Since Π is OW-CPA
secure, from Lemma 1, Π is also List-OW-CPA secure. Here, we note that B
attacks the List-OW-CPA security of Π in the case the number of keys is � − 1.

Initialization. On input (pk∗
1 , · · · , pk∗

�−1), B first chooses s
r←− [�] and generates

(pks, sks) ← KG(1λ). Then, for 1 ≤ j < s, B sets pkj = pk∗
j , and for s <

j ≤ �, B sets pkj = pk∗
j−1. Finally, B sends (pk1, · · · , pk�) to A, and sets

Lkdm = LH = LG = L1
ans = L2

ans = ∅.
Hash queries. If A queries (r, d) to H, B first simulates H. Namely, B first

checks whether there is an entry of the form ((r, d), R) in LH. If so, B returns
R to A. Otherwise, B generates R

r←− {0, 1}n, adds ((r, d), R) to LH, and
returns R to A. Then, B adds r to L1

ans. If A queries r to G, B just simulates
G analogously to H. (B does not add r to L1

ans in the case of G query.)
KDM queries. For a KDM query (j, f) from A, B responds as follows.

– In the case j 	= s, B first queries j if j < s and j − 1 if j > s to
the challenger as an encryption query and gets the answer c. Then, B
generates K

r←− {0, 1}λ and computes d ← E(K, 0|f(·)|). Finally, B adds
(j, c, d) to Lkdm, and returns (c, d) to A.

– In the case j = s, B first generates r
r←− {0, 1}λ, K

r←− {0, 1}λ, and
R

r←− {0, 1}λ. Then, B computes c = Enc(pkj , r; R) and d ← E(K, 0|f(·)|).
Finally, B adds (j, c, d) to Lkdm, and returns (c, d) to A.

Decryption queries. For a decryption query (j, c, d) /∈ Lkdm from A, if j = s,
B first computes r ← Dec(sks, c), and adds r to L2

ans if r 	= ⊥. Then, B
responds in the same manner as BSUC in the proof of Lemma 5.

Final phase. When A terminates with output b′, B chooses γ
r←− {1, 2} and

outputs Lγ
ans.
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We see that B perfectly simulates Game 5 for A. In the initialization step,
B chooses s

r←− [�] and generates (pks, sks) ← KG(1λ). Since s is information-
theoretically hidden from the view of A, this does not affect the behavior of
A. We note that, in the List-OW-CPA game, the challenger maintains the list
Lenc which stores plaintexts of the challenge ciphertexts. Then, it holds that
Advlowcpa

Π,B,�−1(λ) = Pr[Lenc ∩ Lγ
ans 	= ∅]. Here, γ is a randomness over {1, 2} which

B chooses in the final phase, and thus the following equality holds.

Advlowcpa
Π,B,�−1(λ) =

1
2

Pr[Lenc ∩ L1
ans 	= ∅] +

1
2

Pr[Lenc ∩ L2
ans 	= ∅]

In the following, we first consider Pr[Lenc ∩L1
ans 	= ∅]. When the event BDQ15

occurs in Game 5 which B simulates for A, there exists an entry ((r∗, d), R) ∈ LH

which satisfies c = Enc(pkj , r
∗, R) and (r∗, ·) ∈ LG∗ for some decryption query

(j, c, d) /∈ Lkdm from A. We note that only when A makes a H query, an entry
is added to LH. Thus, ((r∗, d), R) ∈ LH means that A has queries (r∗, d) as a H
query. Therefore, in this case, L1

ans contains r∗. Also, (r∗, ·) ∈ LG∗ means that
r∗ is generated to compute the answer to a KDM query from A. (Actually, B
does not make LG∗ by itself, but B need not make LG∗ to simulate Game 5 for
A.) Here, let r∗ be generated to compute the answer (c∗, d∗) to a KDM query
(j∗, f) from A. In other words, let c∗ be an encryption of r∗ under pkj∗ . Then,
if j∗ 	= s, c∗ is computed by the challenger, and thus Lenc contains r∗. On the
other hand, if j∗ = s, c∗ is computed by B, and thus Lenc does not contain r∗.
Therefore, at least when A makes a decryption query satisfying the condition
of the event BDQ15, and j∗ 	= s holds for the above j∗, Lenc ∩ L1

ans 	= ∅ holds.
Since s is chosen from [�] uniformly at random, and is information-theoretically
hidden from the view of A, the choice of s is independent of the behavior of A.
Therefore, the probability that j∗ 	= s holds under the condition that A has made
a decryption query satisfying the condition of BDQ15 is �−1

� . Moreover, since B
perfectly simulates Game 5 for A, the probability that A makes a decryption
query satisfying the condition of the event BDQ15 is Pr[BDQ15]. From these, we
have Pr[Lenc ∩ L1

ans 	= ∅] ≥ �−1
� Pr[BDQ15].

Next, we consider Pr[Lenc ∩ L2
ans 	= ∅]. When the event BDQ2∗

5 occurs in
Game 5 which B simulates for A, for some decryption query (j, c, d) /∈ Lkdm

from A and some entry (j∗, c∗, d∗) ∈ Lkdm, it holds that c = Enc(pkj , r
∗; R∗)

and j 	= j∗, where c∗ = Enc(pkj∗ , r∗;R∗). Then, if j = s, L2
ans contains r∗.

In addition, in this case, j∗ 	= j = s holds, and thus Lenc also contains r∗.
Therefore, at least when A makes a decryption query (j, c, d) /∈ Lkdm satisfying
the condition of the event BDQ2∗

5, and j = s holds, Lenc ∩ L2
ans 	= ∅ holds. Since

the choice of s is independent of A, the probability that j = s holds under
the condition that A has made a decryption query satisfying the condition of
BDQ2∗

5 is 1
� . Moreover, since B perfectly simlates Game 5 for A, the probability

that A makes a decryption query satisfying the condition of the event BDQ2∗
5 is

Pr[BDQ2∗
5]. Therefore, we get Pr[Lenc ∩ L2

ans 	= ∅] ≥ 1
� Pr[BDQ2∗

5].
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From these, we can estimate Advlowcpa
Π,B,�−1(λ) as follows.

Advlowcpa
Π,B,�−1(λ) =

1
2

Pr[Lenc ∩ L1
ans 	= ∅] +

1
2

Pr[Lenc ∩ L2
ans 	= ∅]

≥ 1
2

· � − 1
�

Pr[BDQ15] +
1
2

· 1
�

Pr[BDQ2∗
5]

≥ 1
2�

(Pr[BDQ15] + Pr[BDQ2∗
5])

≥ 1
2�

(Pr[BDQ15] + Pr[BDQ25]) ≥ 1
2�

Pr[BDQ5]

From the above, we have Pr[BDQ5] ≤ 2�·Advlowcpa
Π,B,�−1(λ). Since Π is List-OW-CPA

secure and � is a polynomial of λ, we see that Pr[BDQ5] = negl(λ). � (Lemma 7)
From the inequality (1) and Lemmas 3 to 7, we have Advkdmcca

FO2,A,�(λ) = negl(λ).
Since the choice of � and A is arbitrary, we see that FO2 is KDM-CCA secure in
the random oracle model. � (Theorem 4)

A The Proof of Lemma 1

Here, we define OW-CPA security for PKE schemes, and then prove Lemma 1.

Definition 8. (OW-CPA security). Let Π be a PKE scheme whose message
space is M. We define the OW-CPA game between a challenger and an adversary
A as follows.

Initialization. First the challenger generates a key pair (pk , sk) ← KG(1λ).
Then, the challenger generates m

r←− M and c ← Enc(pk ,m), and sends
(pk , c) to A.

Final phase. A outputs m′.

In this game, we define the advantage of the adversary A as follows.

Advowcpa
Π,A (λ) = Pr[m = m′]

We say that Π is OW-CPA secure if for any PPT adversary A, we have
Advowcpa

Π,A (λ) = negl(λ).

We give the proof of Lemma 1 below.

Proof of Lemma 1. Let A be an adversary for the List-OW-CPA security of Π
which makes at most q encryption queries and outputs a list Lans that contains at
most p elements. Let � = �(λ) be any polynomial. Then, we define the following
event Si,k for any i ∈ [q] and k ∈ [p].

Si,k: Let mi be the i-th entry of Lenc and m′
k be the k-th entry of Lans. Then,

mi = m′
k holds.

Here, we have Advlowcpa
Π,A,� (λ) ≤

∑

i∈[q]

∑

k∈[p] Pr[Si,k].
Then, using A, we construct the following adversary B which attacks the

OW-CPA security of Π.
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Initialization. On the input (pk∗, c∗), B first chooses s
r←− [�] and t

r←− [q].
Then, B sets pks = pk∗, generates � − 1 key pairs (pk j , sk j) ← KG(1λ)(j =
1, · · · , s − 1, s + 1, · · · , �), and sends (pk1, · · · , pk �) to A.

Encryption queries. For the i-th encryption query j ∈ [�] made by A, B
responds as follows.
– In the case i 	= t, B generates m

r←− M, computes c ← Enc(pk j ,m), and
returns c to A.

– In the case i = t, if j 	= s, then B aborts with output ⊥. Otherwise, B
returns c∗ to A.

Final phase. When A outputs Lans, B first chooses u
r←− [p], where p is the

number of entries in Lans. Then, B outputs the u-th entry of Lans.

If B does not abort, B perfectly simulates the List-OW-CPA game for A. We
note that s, t, and u are chosen uniformly at random. In addition, if B does not
abort, the choice of them is information-theoretically hidden from the view of
A, and thus is independent of A. When A makes the t-th encryption query jt,
if jt = s, B returns c∗ which is the challenge ciphertext for B itself. Let c∗ be an
encryption of r∗. Then, the t-th entry of Lenc in the List-OW-CPA game which B
simulates for A is r∗. In addition, in the final phase, B outputs the u-th entry of
Lans output by A. From these, for any i ∈ [q] and k ∈ [p], B succeeds in breaking
the OW-CPA security of Π if the event Si,k occurs in the List-OW-CPA game
which B simulates for A, and t = i, jt = s, and u = k hold. Therefore, we can
estimate the advantage of B as follows.

Advowcpa
Π,B (λ) =

∑

i∈[q]

∑

k∈[p]

Pr[Si,k ∧ t = i ∧ s = ji ∧ u = k]

=
∑

i∈[q]

∑

k∈[q]

Pr[Si,k] · Pr[t = i] · Pr[s = ji] · Pr[u = k]

=
1

�pq

∑

i∈[q]

∑

k∈[p]

Pr[Si,k] ≥ 1
�pq

Advmowcpa
Π,A,� (λ)

Since Π is OW-CPA secure, and �, p, and q are polynomials of λ, we see that
Advlowcpa

Π,A,� (λ) ≤ �pq · Advowcpa
Π,B (λ) = negl(λ). � (Lemma 1)
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1 Introduction

Dual System Encryption. Recently we have witnessed a breakthrough of
proof technique in the field of functional encryptions. In 2009, Waters [36] pro-
posed a new proof paradigm for identity based encryptions (IBE), called dual
system technique, and obtained the first adaptively secure IBE with short public
key in the standard model whose security relies on a static assumption and the
security loss is O(q) where q is the number of key extraction queries. From a
high-level view, the dual system technique works with two copies of some target
cryptographic primitive such as IBE. The first copy is put into the so-called
normal space and acts as the real system, while the second copy is put into
the so-called semi-functional space and only used in the proof. Furthermore, the
independence of the two spaces (say, orthogonality under pairing operations)
allows us to make some changes in the semi-functional space for proof but still
maintain the correctness in the normal space. It is worth noting that the new
technique permits the simulator to reply all queries made by the adversary and
avoids the security loss caused by the classical partitioning technique [10,12,35].

The revolution was then spreading across the field of functional encryptions.
In particular, the dual system technique has been applied for establishing adap-
tive security of various types of functional encryptions, ranging from simple
functionality, such as IBE [9,14–16,22,25,32] to expressive and complicated func-
tionality, like ABE and IPE [5,7,13,16,26,27,31,37]. Some of them applied the
dual system technique in a modular and abstract fashion such as Wee’s predicate
encoding [37] and Attrapadung’s pairing encoding [5].

Almost-Tight Reduction. The dual system technique also helped us to go
further. Chen and Wee [15] combined the dual system technique with the proof
idea underlying the Naor-Reingold pseudorandom function [28] and achieved the
first almost-tight IBE from a standard assumption in the standard model. The
security loss is O(n) where n is the length of identities, and unrelated to the
number of key extraction queries anymore. They established the real system
in the normal space and a mirror one in the semi-functional space for proof
as the original dual system technique [36]. However, instead of dealing with
key extraction queries (in the semi-functional space) separately as Waters [36],
they handled all (i.e., q) secret keys as a whole in the next step following the
proof strategy of Naor and Reingold [28]. In detail, we may imagine the master
secret key as a truly random function taking identities as input. Starting from
the original master secret key whose domain is just {ε}, the proof argues that
one can double the domain size until it reaches the size of the identity space
if identities are encoded in a bit-by-bit fashion [35]. For identity space {0, 1}n,
only n steps are required. Finally, the property of the random function allows
us to information-theoretically hide the challenge message.

Recent work by Hofheinz et al. [21] extended Chen and Wee’s result [15]
and achieved almost tightness in the multi-instance, multi-ciphertext (MIMC)
setting where the adversary simultaneously attacks multiple challenge identities
in multiple IBE instances. In Chen and Wee’s paradigm [15], the ith step that
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increases the domain size from 2i−1 to 2i can only handle the situation where all
challenge ciphertexts share the same ith bit, which no longer holds in the MIMC
setting. The proposed solution [21] is to further split the semi-functional space
into two independent (in some sense) subspaces, labelled by ∧ and ∼ respectively.
The ith step starts from ciphertexts with ∧-semi-functional component. They
then move the semi-functional components in all ciphertexts for identities whose
ith bit is 1 to the ∼-semi-functional space. At this moment, (1) in the ∧-semi-
functional space, all ciphertexts share the same ith bit 0; (2) in the ∼-semi-
functional space, all ciphertexts share the same ith bit 1, which means that one
can now applied Chen and Wee’s proof strategy [15] in both subspaces separately.

We emphasize that achieving tight reduction, especially in the MIMC set-
ting, is of practical importance. Consider a scenario involving λ instances and
Q ciphertexts per instance. A trivial but generic transformation arises multi-
plicative O(λQ) security loss where both λ and Q may be quite huge quantities,
say 230. Therefore a large group should be employed to compensate the loss. This
always leads to longer ciphertexts and lower encryption/decryption procedures.

Problem and Goal. Hofheinz et al. only provided an instantiation of the above
proof strategy using composite-order bilinear groups [21]. Our goal is to realize
a fully and almost-tightly secure IBE in the MIMC setting using prime-order
bilinear groups. We emphasize that it is not just a theoretical interest to pursue
such a solution. Most schemes (including [21]) using composite-order bilinear
groups base their security on the Subgroup Decision Assumption [8] which implies
the hardness of factoring the group order. This forces us to work with elliptic
curve groups with quite large, say 1024 bits, base field when implementing the
scheme. In contrast, for constructions in the prime-order setting, we could employ
smaller base field, say 160 bits, without sacrificing the security. Although the
construction now becomes complex in general, this still brings us a considerable
advantage in both computation and space efficiency.

1.1 Motivation and Observation

Hofheinz et al.’s work [21] roughly follows the style of [15]. In particular, they
first extended the notion of Nested Dual System Groups (NDSG) proposed by
Chen and Wee [15], then proposed a general IBE construction from the extended
NDSG (ENDSG) in the MIMC setting, and finally presented an instantiation of
ENDSG using composite-order bilinear groups. Therefore it is sufficient for our
purpose to realize ENDSG using prime-order bilinear groups and apply the gen-
eral transformation in [21]. However we observe that their definition of ENDSG
sets too strong requirements on algebraic structure of underlying groups, which
makes it hard to be instantiated using existing techniques for prime-order bilin-
ear groups.

An ENDSG describes a set of abstract groups with a bunch of structural
and computational requirements supporting Hofheinz et al.’s proof strategy. We
roughly recall1 that an ENDSG defined in [21] consists of five algorithms: SampP,
1 The notation is slightly different from [21].
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SampG, SampH, ŜampG, and S̃ampG. Informally, the first algorithm generates a
set of groups G, H, GT of order N (as well as other parameters) and the other
four algorithms are used to sample random elements from some subgroup of G

or H (which are associated with ciphertexts and secret keys, respectively, in the
context of IBE). We emphasize that they required that

– Groups G and H are generated by some g ∈ G and h ∈ H, respectively. (From
the specification of group generator G.)

– “The outputs of SampG, ŜampG, and S̃ampG are distributed uniformly over
the generators of different nontrivial subgroups of G

n+1 of coprime order,
respectively.” (From the G-subgroups.)

However, nearly all techniques realizing dual system technique in the prime-order
setting employs vector spaces over Fp (for a prime p) to simulate group G and
H [13,15,16,25,27,31]. Meanwhile subgroups of G and H are naturally simulated
by its subspaces. Firstly, since a vector space is an additive group but not cyclic
in general, neither G nor H is cyclic. Secondly, any d-dimensional subspace has
pd vectors, thus the orders of the outputs of SampG, ŜampG, and S̃ampG must
share a common factor p. In a word, techniques based on vector spaces by no
means meets the requirements shown above.

Fortunately, we observe that both requirements are applied nowhere but
to provide random self-reducibility of computational requirements (including
LS1, LS2, NH) when they proved “ENDSG implies IBE”. For example, the Left
Subgroup Indistinguishability 1 (LS1) said that, for any (pp, sp) ← SampP(k, n),
the following two distributions are computationally indistinguishable.

{g : g ← SampG(pp)} and
{

g · ĝ : g ← SampG(pp), ĝ ← ŜampG(pp, sp)
}

.

Given T which is either g or g · ĝ, the simulator (in the proof) can sample
s ← Z

∗
N and generate another independent problem instance Ts following the

two requirements we have reviewed. We note that this property is crucial for
achieving almost-tight reduction in the MIMC setting where the adversary is
able to enquire more than one challenge ciphertext. This suggests that, if we
adapt the ENDSG to support such random self-reducibility explicitly, it will still
imply an IBE in MIMC setting and the limitations on underlying groups may be
removed. As this happens, many existing techniques in the prime-order setting
can now be applied to realize ENDSG and finally derive an almost-tight IBE in
the MIMC setting using prime-order bilinear groups.

1.2 Contributions and Techniques

In this paper, we revise the definition of ENDSG, and show that the revised
ENDSG not only almost-tightly implies an IBE in the MIMC setting but also can
be tightly instantiated using prime-order bilinear groups. Putting them together,
we obtain a fully and almost-tightly secure IBE in the same setting from prime-
order bilinear groups. In particular, we proposed two instantiations: the first one
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is proven secure under the d-linear assumption (d-Lin), while the second one is
proven secure under a stronger assumption, d-linear assumption with auxiliary
input, d-LinAI for short, but achieves shorter keys and ciphertexts.

Revisiting Extended Nested Dual System Groups. Our ENDSG is
defined mainly in the spirit of [21] but with the difference that we provide
(in requirements like LS1) enough independently-sampled subgroup elements
directly instead of assuming some special algebraic structure. As an example,
we define LS1 as: for any (pp, sp) ← SampP(k, n), the following two distribu-
tions are computationally indistinguishable.

{

{gj}j∈[q] : gj ← SampG(pp)
}

and
{

{gj · ĝj}j∈[q] : gj ← SampG(pp), ĝj ← ŜampG(pp, sp)
}

.

Here the parameter q depends on the number of challenge ciphertexts. This
makes the definition more general and allows us to realize the notion using
diverse algebra frameworks, especially prime-order bilinear groups. On the other
hand, it still almost-tightly implies a fully secure IBE in the MIMC setting. The
construction and the proof are nearly the same as [21].

To be fair, Hofheinz et al.’s definition is more convenient in the sense that
any instantiation of ENDSG immediately results in an almost-tight IBE in the
MIMC setting. In contrast, an instantiation of our definition with loose security
reduction (say, with security loss O(q)) clearly can not lead to tightly secure IBE.
Hence, when working with our definition, we should not jump to the conclusion
before checking the tightness. We also remark that we do not negate prime-order
instantiations of Hofheinz et al.’s ENDSG.

Instantiation from d-Linear Assumption. We realize our revised ENDSG
by extending the prime-order instantiation of NDSG by Chen and Wee [15]. The
security only relies on the d-Lin assumption and the security loss is O(d) and
independent of the number of samples, say q in the LS1 example, given to the
adversary. By the generic construction [21], we obtain the first almost-tight IBE
in the MIMC setting in the prime-order setting and fill the blank left in [21].

Technically, we extend the basis from 2d × 2d matrix used in [15] to 3d ×
3d matrix in order to accommodate the additional semi-functional space. In
detail, the first d-dimension subspace is the normal space, the next d-dimension
subspace is the ∧-semi-functional space, and the last d-dimension subspace is
the ∼-semi-functional space.

The main challenge is to realize the Left Subgroup Indistinguishability 2 (LS2)
property (c.f. Sect. 3). Roughly, we must prove that g · ĝ (sampled from the
normal space and ∧-semi-functional space of G) and g · g̃ (sampled from the
normal space and ∼-semi-functional space of G) are computationally indistin-
guishable even when the adversary can access to ̂h∗ · ˜h∗ ∈ H where ̂h∗ ∈ H

is orthogonal to the normal and ∼-semi-functional space of G and ˜h∗ ∈ H to
the normal and ∧-semi-functional space of G. To simulate ̂h∗ · ˜h∗, we further
extend the subspace of ̂h∗ and ˜h∗ from 1-dimension in [15] to d-dimension which
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allows us to utilize the technique for proving right subgroup indistinguishability of
Chen-Wee’s prime-order instantiation of dual system groups [16]. So as to sup-
port this technical extension and conform to our revision, we model the process
of sampling ̂h∗ and ˜h∗ as two algorithms ŜampH

∗
and S̃ampH

∗
respectively, and

give adversary adequate samples in related computational requirements. With
such high-dimension ̂h∗ and ˜h∗, the proof of Nested-hiding Indistinguishability
(NH) (c.f. Sect. 3) will also be extended accordingly.

Achieving Stronger Security Guarantee. Hofheinz et al. [21] achieved weak
security from their ENDSG where the adversary is allowed to make single chal-
lenge query for each identity in each instance. They introduced a variant of
the BDDH assumption (s-BDDH) and proved the full security of their origi-
nal construction where the above restriction on the adversary is removed. This
additional computational requirement is realized under the dual system bilinear
DDH assumption (DS-BDDH).

The revisions we have made do not involve the s-BDDH assumption, and the
resulting ENDSG only leads to weak security. Motivated by and based on our
prime-order instantiation, we investigate two flavors of stronger security: B-weak
and full adaptive security. The former model allows adversary to make at most
B challenge queries for each identity in each instance where B is a prior bound,
while the latter one sets no limitation on the number of challenge queries on a
single identity, i.e., polynomially many queries are allowed.

For each of them, we follow Hofheinz et al.’s workflow. Concretely, to
achieve stronger security, we enhance the non-degeneracy property in our revised
ENDSG and update the last step of Hofheinz et al.’s proof (decoupling challenge
messages and ciphertexts) to make it sound in stronger models, where the non-
degeneracy property is applied. We then prove that our instantiation of ENDSG
under the d-Lin assumption (see Sect. 4) indeed satisfies the enhanced non-
degeneracy property. The two results together imply an IBE with stronger secu-
rity guarantee and almost-tight reduction in the MIMC setting. In particular,

1. We enhance the non-degenerate property to B-bounded version which states
that the non-degeneracy property holds even when a single ̂h∗ works with B
ĝ0’s where B is a prior bound. It is easy to show that our instantiation under
the d-Lin assumption is d-bounded non-degenerated unconditionally.

2. We enhance the non-degeneracy property to computational version which is
essentially similar to the s-BDDH assumption [21] and states that the non-
degeneracy property holds even when a single ̂h∗ works with polynomially
many ĝ0’s. Luckily, we can prove that our instantiation is computationally
non-degenerated under the d-Lin assumption, and no additional assumption
is required.

Towards More Efficient Instantiation. Having obtained the first construc-
tion, we continue to purse more efficient solutions. The main idea is to reduce
the dimensions of two semi-functional spaces. However this forces us to base the
security on a non-standard assumption, d-LinAI assumption (c.f. Sect. 7) for an
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even positive integer d. We argue that the concrete assumption with d = 2 is
implied by the classical external decision linear assumption (XDLIN) [1]. We
give an overview of our method and the resulting IBE scheme in Sect. 7. All
details are given in the full version of the paper.

1.3 Comparison and Discussion

We make a comparison among existing almost-tightly secure IBE schemes in the
MIMC setting in terms of time and space efficiency. The details are shown in
Table 1. Our comparison involves the composite-order construction by Hofheinz
et al. [21], the prime-order construction in Sect. 5 based on the decisional
linear (DLIN, 2-Lin) and symmetric external Diffie-Hellman (SXDH, 1-Lin)
assumption, and the prime-order construction from Sect. 7 based on the XDLIN
(2-LinAI) assumption. As a base line, we also consider the efficiency of prime-
order construction by Chen and Wee [15] and Blazy et al. [9], which is not built
for the MIMC setting.

Hofheinz et al.’s construction (see the third row) works with a symmetric
bilinear group whose order is the product of four distinct primes, the sizes of
group elements are much larger, and exponentiation and pairing operations are
much more expensive. Therefore the overall efficiency is not acceptable even

Table 1. Comparing Efficiency among existing and proposed almost-tight IBE
schemes. n is the length of identities. Column |mpk|, |sk|, and |ct| show the size of
master public keys, user’s secret keys and ciphertexts, respectively. Each sub-column
contains the number of elements in G, G1, G2, and GT . Column TEnc and TDec show
encryption and decryption cost, respectively. Each sub-column E, E1, and ET shows
the number of exponentiations on group G, G1, and GT , respectively, and sub-column
P shows the number of pairings. Column “Assum.” shows the underlying assumption.
“Static” means static assumptions in the composite-order bilinear group. Column “|G|”
indicates the group order, “P” for prime and “C” for composite order, respectively.
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though the numbers of group elements in msk, sk and ct are smaller and Enc
and Dec involve less exponentiation and pairing operations.

When instantiating our first proposal (see the fourth row) under the DLIN
assumption, each group element in G and H is a 6-dimension vector over G1 and
G2, respectively, where G1 and G2 are source groups of a prime-order bilinear
group. When instantiating under the SXDH assumption, each group element in
G and H is a 3-dimension vector over G1 and G2, respectively. Compared with
Blazy et al.’s construction [9], both size of mpk, sk and ct and cost of Enc and
Dec are (at least) doubled in our construction. On the other hand, in our second
instantiation based on the XDLIN assumption (see the last row), each group
element in G and H is a vector of 4-dimension over G. Although the resulting
IBE is still less efficient than Blazy et al.’s construction [9] under the DLIN
assumption, the stronger computational assumption (i.e., XDLIN) helps us to
narrow the gap. We may view this as a tradeoff between strength of security and
efficiency without changing the security model. We leave it as an open problem
to find more efficient fully secure IBE with tight reduction in the MIMC setting,
especially from standard d-Lin assumption.

1.4 Related Work

Dual System Groups and Its Variants. Chen and Wee proposed the notion
of dual system groups [16], which captures key algebraic structure supporting
the dual system technique. They used this abstract primitive to obtain an HIBE
scheme with constant-size ciphertexts using prime-order bilinear groups. The
nested dual system group, an variant of dual system groups, was proposed by
Chen and Wee [15] to reach almost-tight adaptively secure IBE in the standard
model. Recently, the dual system group had been combined with the predi-
cate/pairing encoding [2,13] and led to a lot of functional encryptions in the
prime-order setting. Very recent work by Gong et al. [20] extended the con-
cept of dual system groups to build an unbounded HIBE [24,25] with shorter
ciphertexts in the prime-order setting.

Identity Based Encryption. The notion of identity based encryptions was
introduced by Shamir [33] in 1984. The first practical realization was proposed
by Boneh and Franklin [12] using bilinear groups and Cocks [17] using quadratic
residue. Both of them rely on the heuristic random oracle model. Before Waters
proposed his seminal work, there were several classical and practical solutions
in the standard model, including Boneh-Boyen’s IBE [10,11], Waters’ IBE [35],
and Gentry’s IBE [18]. IBE can also be realized using algebra frameworks other
than bilinear groups, such as lattices [3,4,19].

1.5 Independent Work

The independent work by Attrapadung, Hanaoka, and Yamada [6] also involves
several constructions of almost-tight IBE in the MIMC setting. They developed
an elegant framework for building almost-tight IBE in the MIMC setting from
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the so-called broadcast encoding, which is a special form of Attrapadung’s pairing
encoding [5], and obtained a series of concrete schemes with various properties
(including sub-linear size master public key and anonymous version) using both
composite-order and prime-order bilinear groups. Their results and ours partially
overlap. Their scheme with constant-size ciphertext in prime-order group (i.e.,
Φprime
cc ) is similar to our second construction based on the XDLIN assumption

shown in Sect. 7. In fact, they share the same performance in terms of the size of
ciphertexts and secret keys and running time of Enc and Dec. However we note
that we also provide an generalization of this construction but proven secure
under the non-standard d-LinAI assumption. Furthermore, our first construction
in Sect. 5 is full-adaptively secure under the standard d-Lin assumption, and
derives a SXDH-based concrete scheme, which has the best (space and time)
performance among all proposed solutions so far.

Outline. Section 2 presents necessary background. Section 3 gives our revised
definition of ENDSG. We realize our revised ENDSG in the prime-order setting
in Sect. 4 and investigate how to update our ENDSG and its prime-order instan-
tiation to achieve higher security level in Sect. 6. At last, Sect. 7 is an overview
of obtaining a more efficient solution.

2 Preliminaries

2.1 Notations

For a finite set S, we use s ← S to denote the process of picking s from S at
random. For any n ∈ Z

+, we take [n] as the brief representation of set {1, . . . , n}.
For a probabilistic algorithm Alg and an fixed input x, we use [Alg(x)] to indicate
the set of all possible outputs of algorithm Alg on input x. “p.p.t.” stands for
“probabilistic polynomial time”. We let ei denote the vector with 1 on the ith
position and 0 elsewhere. For a group G and g ∈ G, let hei be a vector over G with
h on the ith position and 1 elsewhere. For two vectors g := (g1, . . . , gn) ∈ Gn and
g′ := (g′

1, . . . , g
′
n) ∈ Gn, we define g ·g′ = (g1 · g′

1, . . . , gn · g′
n) ∈ Gn where “·” on

the right-hand side is the group operation of G. For any vector x = (x1, . . . , xn)
and i ∈ [n], we define x−i as a vector (x1, . . . , xi−1,⊥, xi+1, . . . , xn) whose ith
position is unknown (we take ⊥ as a placeholder).

2.2 Identity Based Encryptions

Algorithms. An IBE scheme in the multi-instance setting consists of five
p.p.t. algorithms defined as follows2. (1) The parameter generation algorithm
Param(1k, sys) takes as input a security parameter k ∈ Z

+ in its unary form
and a system-level parameter sys, and outputs a global parameter gp. (2) The
setup algorithm Setup(gp) takes as input a global parameter gp, and outputs

2 The definition shown here is slightly different from that in [21]. The adaptation is
purely conceptual and made for clarity. The security model is tuned accordingly.
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a master public/secret key pair (mpk,msk). (3) The key generation algorithm
KeyGen(mpk,msk,y) takes as input a master public key mpk, a master secret
key msk and an identity y, and outputs a secret key sky for the identity. (4) The
encryption algorithm Enc(mpk,x,m) takes as input a master public key mpk, an
identity x and a message m, outputs a ciphertext ctx for the message under the
identity. (5) The decryption algorithm Dec(mpk, sk,ct) takes as input a master
public key mpk, a secret key sk and a ciphertext ct, outputs a message m or a
failure symbol ⊥.

The so-called “multi-instance setting” indicates that we are considering a
collection of IBE instances established under the same global parameter gp. We
leave the system-level parameter sys undefined for generality. It may depend on
concrete constructions or application scenarios.

Correctness. For any parameter k ∈ Z
+, any sys, any gp ∈ [Param(1k, sys)],

any (mpk,msk) ∈ [Setup(gp)], any identity x, and any message m, it holds that

Pr [Dec(mpk,KeyGen(mpk,msk,x),Enc(mpk,x,m)) = m] � 1 − 2−Ω(k).

The probability space is defined by the random coins consumed by algorithm
KeyGen and Enc.

Adaptive Security in the Multi-instance, Multi-ciphertext Setting.
Roughly, the adaptive security in the multi-instance, multi-ciphertext setting
extends the traditional adaptive security model for IBE [12] in the sense that
the adversary can access to multiple IBE instances (obtaining master public
key and users’ keys) and attack multiple ciphertexts (i.e., challenge ciphertexts),
which is formalized by Hofheinz et al. [21]. Ideally, the adversary is free to choose
the challenge instance, the challenge identity and the challenge message pair.
Hofheinz et al. [21] also identified a weaker variant in which only one challenge
ciphertext is allowed for each challenge identity in each challenge instance, and
called the ideal one full security.

We review the experiment ExpIBE
A (k, λ, qK , qC , qR) between a challenger C

and an adversary A [21], which captures both the weaker and full security notion.

Setup. C gets gp ← Param(1k, sys) and creates (mpkι,mskι) ← Setup(gp) for
ι ∈ [λ]. All master public keys {mpkι}ι∈[λ] are sent to A. C also chooses a
secret random bit β ∈ {0, 1} and initializes QK and QC as empty sets.

Query. A is allowed to make two types of queries: key extraction queries
and challenge queries. C answers every queries as follows: (1) For each key
extraction query (ι,y), C returns sk ← KeyGen(mpkι,mskι,y) and updates
QK := QK ∪{(ι,y)}. (2) For each challenge query (ι∗,x∗,m∗

0,m
∗
1), C returns

ct
∗ ← Enc(mpkι∗ ,x∗,m∗

β) and updates QC := QC ∪ {(ι∗,x∗)}.
Guess. A outputs its guess β′ ∈ {0, 1}.

We say an adversary A wins experiment ExpIBE
A (k, λ, qK , qC , qR), denoted by

ExpIBE
A (k, λ, qK , qC , qR) = 1, if and only if (1) β = β′, (2) QK ∩ QC = ∅, (3)

A made at most qK key extraction queries, (4) there are at most qC challenge
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identities, and (5) for each of them, there exist at most qR challenge ciphertexts.
We define the advantage of A as

AdvIBE
A (k, λ, qK , qC , qR) =

∣

∣

∣Pr[ExpIBE
A (k, λ, qK , qC , qR) = 1] − 1/2

∣

∣

∣ .

The probability space is defined by random coins consumed by both C and A. An
IBE is (λ, qK , qC , qR)-adaptively-secure if, for any p.p.t. adversary A the advan-
tage AdvIBE

A (k, λ, qK , qC , qK) is bounded by 2−Ω(k). Clearly, the (λ, qk, qC , qR)-
adaptive security with unbounded qR is consistent with the full security, while
the (λ, qk, qC , 1)-adaptive security is exactly the weak security. Furthermore, we
define B-weak adaptive security, an intermediate security notion between them,
as (λ, qK , qC , B)-adaptive security for a priori bound B � 1.

3 Revisiting Extended Nested Dual System Groups

This section revises the ENDSG proposed by Hofheinz et al. [21]. Following the
intuitive discussion in Sect. 1, the key points are: we (1) remove special group
requirements, (2) explicitly provide samples in each computational assumption,
(3) generalize subgroup of ̂h∗ and ˜h∗. We show our definition followed by a series
of remarks clarifying motivations behind several technical decisions.

Syntax. Our revised ENDSG consists of eight p.p.t. algorithms as follows:

– SampP(1k, n): Output: (1) pp containing (a) group description (G, H, GT )
and an admissible bilinear map e : G × H → GT ; (b) an efficient linear map
μ defined on H; (c) an efficient sampler for H and Zord(H), respectively; (d)
public parameters for SampG and SampH. (2) sp containing secret parameters

for ŜampG, S̃ampG, ŜampH
∗

and S̃ampH
∗
.

– SampGT: Im(μ) → GT .
– SampG(pp): Output g = (g0, g1, . . . , gn) ∈ G

n+1.
– SampH(pp): Output h = (h0, h1, . . . , hn) ∈ H

n+1.
– ŜampG(pp, sp): Output ĝ = (ĝ0, ĝ1, . . . , ĝn) ∈ G

n+1.
– S̃ampG(pp, sp): Output g̃ = (g̃0, g̃1, . . . , g̃n) ∈ G

n+1.
– ŜampH

∗
(pp, sp): Output ̂h∗ ∈ H.

– S̃ampH
∗
(pp, sp): Output ˜h∗ ∈ H.

The first four algorithms are used in the real system, while the remaining ones
are defined for the proof. We let SampG0 refer to the first element in the output
of SampG, i.e., g0. The notation also applies to SampH, ŜampG, and S̃ampG.

Correctness. For all k, n ∈ Z
+ and all (pp, sp) ∈ [SampP(1k, n)], we require

(Projective.) For all h ∈ H and all possible random coins s, SampGT(μ(h); s) =
e(SampG0(pp; s), h).

(Associative.) For all (g0, g1, . . . , gn) ∈ [SampG(pp)] and all (h0, h1, . . . , hn) ∈
[SampH(pp)], e(g0, hi) = e(gi, h0) for i ∈ [n].
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Security. For all k, n ∈ Z
+ and all (pp, sp) ∈ [SampP(1k, n)], we require

(Orthogonality.) For all ̂h∗ ∈ [ŜampH
∗
(pp, sp)] and all ˜h∗ ∈ [S̃ampH

∗
(pp, sp)],

1. μ(̂h∗) = μ(˜h∗) = 1;
2. e(ĝ0,˜h∗) = 1 for all ĝ0 ∈ [ŜampG0(pp, sp)];
3. e(g̃0,̂h∗) = 1 for all g̃0 ∈ [S̃ampG0(pp, sp)];
The first requirement implies that e(g0,˜h∗) = e(g0,̂h∗) = 1 for all g0 ∈
[SampG0(pp)] by the projective property (c.f. Sect. 3.2 in [15]).

(Non-degeneracy.) Over the probability space defined by ĝ0 ←
ŜampG0(pp, sp), with overwhelming probability 1 − 2−Ω(k), e(ĝ0,̂h∗) is dis-
tributed uniformly over GT when sampling ̂h∗ ← ŜampH

∗
(pp, sp).

(H-subgroup.) The output of SampH(pp) is distributed uniformly over some

subgroup of H
n+1, while those of ŜampH

∗
(pp, sp) and S̃ampH

∗
(pp, sp) are

distributed uniformly over some subgroup of H, respectively.
(Left subgroup indistinguishability 1 (LS1).) For any p.p.t. adversary A,

the following advantage function is negligible in k,

AdvLS1A (k, q) := |Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]| ,

where
D := (pp) , T0 := {gj}j∈[q] , T1 :=

{

gj · ĝj

}

j∈[q]

and gj ← SampG(pp) and ĝj ← ŜampG(pp, sp).
(Left subgroup indistinguishability 2 (LS2).) For any p.p.t. adversary A,

the following advantage function is negligible in k,

AdvLS2A (k, q, q′) := |Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]| ,

where

D :=
(

pp,
{

̂h∗
j · ˜h∗

j

}

j∈[q+q′]
,
{

g′
j · ĝ′

j

}

j∈[q]

)

,

T0 := {gj · ĝj}j∈[q] , T1 :=
{

gj · g̃j

}

j∈[q]

and ̂h∗
j ← ŜampH

∗
(pp, sp), ˜h∗

j ← S̃ampH
∗
(pp, sp), g′

j ← SampG(pp),

ĝ′
j ← ŜampG(pp, sp), gj ← SampG(pp), ĝj ← ŜampG(pp, sp), g̃j ←

S̃ampG(pp, sp).
(Nested-hiding indistinguishability (NH).) For any η ∈ [�n/2�] and any

p.p.t. adversary A, the following advantage function is negligible in k,

Adv
NH(η)
A (k, q, q′) := |Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]| ,

where

D :=
(

pp,
{

̂h∗
j

}

j∈[q+q′]
,
{

˜h∗
j

}

j∈[q+q′]
,
{

(ĝj)−(2η−1)

}

j∈[q]
, {(g̃j)−2η}j∈[q]

)

,
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T0 := {hj}j∈[q′] , T1 :=
{

hj · (̂h∗∗
j )e2η−1 · (˜h∗∗

j )e2η

}

j∈[q′]

and ̂h∗
j ← ŜampH

∗
(pp, sp), ˜h∗

j ← S̃ampH
∗
(pp, sp), ĝj ← ŜampG(pp, sp),

g̃j ← S̃ampG(pp, sp), hj ← SampH(pp), ̂h∗∗
j ← ŜampH

∗
(pp, sp), ˜h∗∗

j ←
S̃ampH

∗
(pp, sp). We let AdvNH

A (k, q, q′) := maxη∈[�n/2�]

{

Adv
NH(η)
A (k, q, q′)

}

.

Remark 1 (notations). ENDSG is mainly defined for building IBE. We remark
that, in the description of LS1, LS2, and NH, the parameter q and q′ roughly
correspond to the maximum number of challenge queries and key extraction
queries, respectively.

Remark 2 (sampling ̂h∗ and ˜h∗, and H-subgroup). We model the process of sam-
pling over subgroup generated by ̂h∗ and ˜h∗ (in [21]) as algorithm ŜampH

∗
and

S̃ampH
∗
, respectively. This allows us to employ more complex algebraic struc-

ture (say, subspaces of higher dimensions), which is crucial for our prime-order
instantiation in Sect. 4. Accordingly, we extend H-subgroup property to take
ŜampH

∗
and S̃ampH

∗
into account.

Remark 3 (G-subgroup and H-subgroup). Since we provide adequate samples of
G

n+1 directly in the last three computational security requirements and further
re-randomization is not necessary in the proof, the G-subgroup in the original
definition could be safely removed. However this won’t let the revised ENDSG
free from H-subgroup property. The simulator still need the property to re-
randomize T0 or T1 in NH(η) using SampH(pp) to maintain the consistency of
truly random functions on two identities sharing the same η-bit prefix.

On one hand, our revised definition for ENDSG is essentially consistent with
Hofheinz et al.’s definition [21]. In particular, it is not hard to see that one
may use Hofheinz et al.’s ENDSG [21] to realize this revised version. Therefore
their instantiation using composite-order bilinear groups can also be taken as
an instantiation of the revised version above. On the other hand, our revised
definition still almost-tightly implies an IBE in the MIMC setting. In fact, the
construction, the security result and its proof are nearly the same as those pre-
sented in [21]. One may consider them as rewriting Hofheinz et al.’s results [21]
in the language of our revised ENDSG. We present the construction and sketch
of the proof in the full version of the paper. It is worth noting that the con-
struction only achieves weak adaptive security. We will show how to enhance
non-degeneracy to reach full adaptive security in Sect. 6.

4 Instantiating ENDSG from d-Linear Assumption

This section gives an instantiation of our revised ENDSG (defined in Sect. 3)
using prime-order bilinear groups. See Sect. 1 for more motivation.
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4.1 Prime-Order Bilinear Groups and Computational Assumptions

A prime-order bilinear group generator GrpGen(1k) takes security parameter 1k

as input and outputs G := (p,G1, G2, GT , e), where G1, G2 and GT are finite
cyclic groups of prime order p, and e : G1 × G2 → GT is a non-degenerated
and efficiently computable bilinear map. We let g1, g2 and gT := e(g1, g2) be
a generator of G1, G2 and GT , respectively. We state the (standard) d-linear
assumption (d-Lin) in G1 (see Assumption 1), the analogous assumption in G2

can be defined by exchanging the role of G1 and G2.

Assumption 1 (d-Linear Assumption in G1). For any p.p.t. adversary A,
the following advantage function is negligible in k,

Advd-Lin
A (k) := |Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]| ,

where
D :=

(

G, g1, g2, g
a1
1 , . . . , gad

1 , g
ad+1
1 , ga1s1

1 , . . . , gadsd
1

)

,

T0 := g
ad+1(s1+···+sd)
1 , T1 := g

ad+1(s1+···+sd)+ sd+1

1

and G ← GrpGen(1k), a1, . . . , ad, ad+1, sd+1 ← Z
∗
p and s1, . . . , sd ← Zp.

“Matrix-in-the-exponent” Notation. For an m × n matrix X = (xi,j) over
Zp and a group element g of G, we define gX := (gxi,j ), an m × n matrix over
G. We extend pairing e as: given two matrices A ∈ Z

t×m
p and B ∈ Z

t×n
p , we

define e(gA1 , gB2 ) := e(g1, g2)A
�B ∈ Gm×n

T . For vectors x and y over Zp of the
same length, we have e(gx1 , gy2 ) := e(g1, g2)x

�y ∈ GT , the standard inner product
〈x,y〉 in the exponent. We will use 0 to denote both vectors and matrices with
only zero entries, and give out its dimension or size in the subscript if necessary.

An Extended Version of d-Lifted Linear Assumption. We describe an
extension of the d-Lifted Linear (d-LLin) assumption [23] for improving the
readability of our proofs, which is called (d, �, q)-Lifted Linear ((d, �, q)-LLin)
Assumption. We present the assumption in G1 and the counterpart in G2 is
readily derived. We then give Lemma 1 showing that the (d, �, q)-LLin assump-
tion is tightly implied by the d-Lin assumption following [15,23]. The proof could
be found in the full version of the paper. We remark that, since � corresponds
to a relatively small parameter, say 2, in our construction and q corresponds to
the amount of adversary’s queries which may be 230, we prove the Lemma under
the assumption that � < q for simplicity.

Assumption 2 ((d, �, q)-Lifted Linear Assumption in G1). For any p.p.t.
adversary A, the following advantage function is negligible in k,

Adv
(d,�,q)-LLin
A (k) := |Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]| ,

where

D :=
(

G, g1, g2, g
a1
1 , . . . , gad

1 ,
{

g
bi,j

1

}

i∈[�],j∈[d]
,
{

g
a1s1,j

1 , . . . , g
adsd,j

1

}

j∈[q]

)

,
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T0 :=
{

g
bi,1s1,j+···+bi,dsd,j

1

}

i∈[�],j∈[q]
, T1 :=

{

g
bi,1s1,j+···+bi,dsd,j+ sd+i,j

1

}

i∈[�],j∈[q]

and G ← GrpGen(1k), a1, . . . , ad, bi,j , sd+i,j ← Z
∗
p, s1,j , . . . , sd,j ← Zp.

Lemma 1 (d-Lin ⇒ (d, �, q)-LLin). For any p.p.t. adversary A, there exists
an adversary B such that

Adv
(d,�,q)-LLin
A (k) � � · Advd-Lin

B (k) + 1/(p − 1),

and Time(B) ≈ Time(A)+�2d ·poly(k) where poly(k) is independent of Time(A).

4.2 Construction

We let πL(·), πM(·), and πR(·) be functions mapping from a 3d × 3d matrix to
its left-most d columns, its middle d columns, and its right-most d columns,
respectively. Algorithms of our revised ENDSG are shown as follows.

– SampP(1k, n): Run (p,G1, G2, GT , e) ← GrpGen(1k) and set (G, H, GT , e) :=
(G3d

1 , G3d
2 , GT , e). Sample B,R ← GL3d(Zp) and A1, . . . ,An ← Z

3d×3d
p . Set

B∗ := (B−1)�. Define

D := πL(B), Di = πL(BAi); E := πM(B), Ei = πM(BAi);
D∗ := B∗R, D∗

i = B∗A�
i R; F := πR(B), Fi = πR(BAi);

for i ∈ [n]. Define μ(gk2 ) := e(gD1 , gk2 ) = e(g1, g2)D
�k for all k ∈ Z

3d
p . Output

pp :=

(

gD1 , gD1
1 , . . . , gDn

1

gD
∗

2 , g
D∗

1
2 , . . . , g

D∗
n

2

)

and sp :=

(

g
πM(B∗)
2 , gE1 , gE1

1 , . . . , gEn
1

g
πR(B∗)
2 , gF1 , gF1

1 , . . . , gFn
1

)

.

We assume pp always contains G, H, GT , e, μ and group order p.
– SampGT(gpT ): Sample s ← Z

d
p and output gs

�p
T ∈ GT .

– SampG(pp): Sample s ← Z
d
p and output

(

gDs
1 , gD1s

1 , . . . , gDns
1

)

∈ (G3d
1 )n+1.

– SampH(pp): Sample r ← Z
3d
p and output

(

gD
∗r

2 , g
D∗

1r
2 , . . . , g

D∗
nr

2

)

∈ (G3d
2 )n+1.

– ŜampG(pp, sp): Sample ŝ ← Z
d
p and output

(

gEŝ
1 , gE1ŝ

1 , . . . , gEnŝ
1

)

∈ (G3d
1 )n+1.

– S̃ampG(pp, sp): Sample s̃ ← Z
d
p and output

(

gFs̃
1 , gF1s̃

1 , . . . , gFns̃
1

)

∈ (G3d
1 )n+1.

– ŜampH
∗
(pp, sp): Sample r̂ ← Z

d
p and output g

πM(B∗)r̂
2 ∈ G3d

2 .

– S̃ampH
∗
(pp, sp): Sample r̃ ← Z

d
p and output g

πR(B∗)r̃
2 ∈ G3d

2 .

4.3 Security Analysis

One can easily check the projective, associative, orthogonality, non-degeneracy,
H-subgroup, and LS1 properties following [15]. Due to lack of space, we just
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give the proof of left subgroup indistinguishability 2 (LS2) and sketch the proof
of nested-hiding indistinguishability (NH), and leave detailed proofs in the full
version of the paper. We emphasize that all three computational properties are
tightly reduced to the d-Lin assumption.

Left Subgroup Indistinguishability 2. We first rewrite entries involved in
the LS2 advantage function AdvLS2A (k, q, q′) in terms of B,B∗,Ai,R as follows

pp :=

(

g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BAn)
1

gB
∗R

2 , g
B∗A�

1 R
2 , . . . , g

B∗A�
n R

2

)

;

̂h∗
j · ˜h∗

j := g

B∗
( 0d

r̂j

r̃j

)

2 ;

g′
j · ĝ′

j :=
(

g

B

⎛

⎝

s′
j

ŝ′
j

0d

⎞

⎠

1 , g

BA1

⎛

⎝

s′
j

ŝ′
j

0d

⎞

⎠

1 , . . . , g

BAn

⎛

⎝

s′
j

ŝ′
j

0d

⎞

⎠

1

)

;

gj · ĝj :=
(

g
B

( sj

ŝj

0d

)

1 , g
BA1

( sj

ŝj

0d

)

1 , . . . , g
BAn

( sj

ŝj

0d

)

1

)

;

gj · g̃j :=
(

g
B

( sj

0d

s̃j

)

1 , g
BA1

( sj

0d

s̃j

)

1 , . . . , g
BAn

( sj

0d

s̃j

)

1

)

;

where r̂j , r̃j , s′
j , ŝ

′
j , sj , ŝj , s̃j ← Z

d
p. Then we prove the following lemma.

Lemma 2 ((d, d, q)-LLin ⇒ LS2). For any p.p.t. adversary A, there exists an
adversary B such that

AdvLS2A (k, q, q′) � 2 · Adv(d,d,q)-LLin
B (k),

and Time(B) ≈ Time(A)+(q +q′)d2 ·poly(k, n). (poly(k, n) is independent of A)

Overview of Proof. We will prove Lemma 2 in two steps with the help of a
transitional distribution T1/2 = {gj · ĝj · g̃j}j∈[q] where

gj · ĝj · g̃j := (g
B

( sj

ŝj

s̃j

)

1 , g

BA1

( sj

ŝj

s̃j

)

1 , . . . , g

BAn

( sj

ŝj

s̃j

)

1 ).

In particular, we prove that, given D, distribution T0 and T1/2 are computational
indistinguishable under the (d, d, q)-LLin assumption (see Lemma 3), and so do
T1/2 and T1 (see Lemma 4). These immediately prove Lemma 2.

Lemma 3 (from T0 to T1/2). For any p.p.t. adversary A, there exists an adver-
sary B such that

∣

∣Pr[A(D,T0) = 1] − Pr[A(D,T1/2) = 1]
∣

∣ � Adv
(d,d,q)-LLin
B (k),

and Time(B) ≈ Time(A)+(q +q′)d2 ·poly(k, n). (poly(k, n) is independent of A)
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Proof Given an instance of (d, d, q)-LLin problem (i.e., set � = d)
⎛

⎜

⎝

g1, g2, g
a1
1 , . . . , gad

1 ,
{

g
bi,j

1

}

i,j∈[d]
,
{

g
a1s1,j

1 , . . . , g
adsd,j

1

}

j∈[q]
,

{

g
bi,1s1,j+···+bi,dsd,j+sd+i,j

1

}

i∈[d],j∈[q]

⎞

⎟

⎠

as input where either sd+i,j = 0 or sd+i,j ← Z
∗
p, adversary B works as follows:

Programming ŝj and s̃j for j ∈ [q]. Adversary B implicitly sets

ŝj := (s1,j , . . . , sd,j)� and s̃j := (sd+1,j , . . . , s2d,j)�.

Programming B,B∗,A1, . . . ,An,R. We define W as

W :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
. . .

1
a1

. . .
ad

b1,1 · · · b1,d 1
...

...
. . .

bd,1 · · · bd,d 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ Z
3d×3d
p

and set W∗ := (W−1)�. Sample3 B̄, R̄ ← GL3d(Zp) and set B̄∗ := (B̄−1)�.
Also sample Ā1, . . . , Ān ← Z

3d×3d
p , and implicitly set

(B,B∗) := (B̄W, B̄∗W∗), R := W�R̄, Ai := W−1ĀiW, (1)

for i ∈ [n]. Observe that B,B∗,R and all Ai are distributed properly, and

BAi = B̄ĀiW, B∗R = B̄∗R̄, B∗A�
i R = B̄∗Ā�

i R̄. (2)

Simulating pp. B can simulate

g
πL(B)
1 = g

πL(B̄W)
1 = g

B̄πL(W)
1 and g

πL(BAi)
1 = g

πL(B̄ĀiW)
1 = g

B̄ĀiπL(W)
1 ,

gB
∗R

2 = gB̄
∗R̄

2 and g
B∗A�

i R
2 = g

B̄∗Ā�
i R̄

2 ,

for i ∈ [n] using the knowledge of πL(W) and B̄, B̄∗, Ā1, . . . , Ān, R̄.

3 In our symbol system, a variable with a bar on the top, say B̄, is sampled by the
simulator (i.e., B) and is completely known to it.
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Simulating ̂h∗
j · ˜h∗

j for j ∈ [q + q′]. It is not hard to compute W∗ ∈ Z
3d×3d
p as

W∗ :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
. . .

1
a−1
1 −a−1

1 b1,1 · · · −a−1
1 bd,1

. . .
...

...
a−1

d −a−1
d b1,d · · · −a−1

d bd,d

1
. . .

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

For all j ∈ [q + q′], we sample r̄j ← Z
2d
p and implicitly set

⎛

⎝

0d

r̂j

r̃j

⎞

⎠ = (W∗)−1

(

0d

r̄j

)

= W�
(

0d

r̄j

)

.

Since the right-bottom 2d × 2d sub-matrix of W∗ is full-rank with over-
whelming probability, r̂j and r̃j are distributed properly and B can simulate

̂h∗
j · ˜h∗

j = g

B∗
( 0d

r̂j

r̃j

)

2 = g

B̄∗W∗
( 0d

r̂j

r̃j

)

2 = g
B̄∗
(

0d
r̄j

)

2

using the knowledge of B̄∗ and r̄j .
Simulating g′

j · ĝ′
j for j ∈ [q]. B can sample s′

j , ŝ
′
j ← Z

d
p and simulate

g

B

⎛

⎝

s′
j

ŝ′
j

0d

⎞

⎠

1 = g

B̄W

⎛

⎝

s′
j

ŝ′
j

0d

⎞

⎠

1 and g

BAi

⎛

⎝

s′
j

ŝ′
j

0d

⎞

⎠

1 = g

B̄ĀiW

⎛

⎝

s′
j

ŝ′
j

0d

⎞

⎠

1

for i ∈ [n] and using the knowledge of gW1 and B̄, Ā1, . . . , Ān.
Simulating the challenge. Algorithm B can sample sj ← Z

d
p and simulate

g

B

( sj

ŝj

s̃j

)

1 = g

B̄W

( sj

ŝj

s̃j

)

1 and g

BAi

( sj

ŝj

s̃j

)

1 = g

B̄ĀiW

( sj

ŝj

s̃j

)

1

for i ∈ [n] and j ∈ [q] using the knowledge of B̄, Ā1, . . . , Ān and

g

W

( sj

ŝj

s̃j

)

1 = g

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

sj
a1s1,j

...
adsd,j

b1,1s1,j+···+b1,dsd,j+sd+1,j

...
bd,1s1,j+···+bd,dsd,j+s2d,j

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

1 .
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Analysis. Observe that if all sd+i,j = 0, then all s̃j = 0 and the output challenge
is distributed as {gj · ĝj}j∈[q]; otherwise, if all sd+i,j ← Z

∗
p, then all s̃j ← (Z∗

p)
d

and the output challenge is distributed as {gj · ĝj · g̃j}j∈[q]. Therefore we may

conclude that
∣

∣Pr[A(D,T0) = 1] − Pr[A(D,T1/2) = 1]
∣

∣ � Adv
(d,d,q)-LLin
B (k). �

Lemma 4 (from T1/2 to T1). For any p.p.t. adversary A, there exists an adver-
sary B such that

∣

∣Pr[A(D,T1/2) = 1] − Pr[A(D,T1) = 1]
∣

∣ � Adv
(d,d,q)-LLin
B (k),

and Time(B) ≈ Time(A)+(q +q′)d2 ·poly(k, n). (poly(k, n) is independent of A)

Proof. Given an instance of (d, d, q)-LLin problem, adversary B behaves in a
similar manner to B in the proof of Lemma3 with the differences that:

Programming ŝj and s̃j for j ∈ [q]. Adversary B implicitly sets

ŝj = (s2d,j , . . . , sd+1,j)� and s̃j = (sd,j , . . . , s1,j)�.

Defining W. Adversary B defines W as

W :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
. . .

1
1 bd,d · · · bd,1

. . .
...

...
1 b1,d · · · b1,1

ad

. . .
a1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ Z
3d×3d
p .

In fact, B,B∗,Ai,R are programmed as Eq. (1). All entries in pp and {g′
j · ĝ′

j}
can be simulated exactly as in the proof of Lemma 3. The strategy for creating
{̂h∗

j · ˜h∗
j} and the challenge there also works well. �

Combining Lemmas 1 and 2, we have Corollary 1 showing that our instanti-
ation satisfies left subgroup indistinguishability 2 requirement with tight reduc-
tion, i.e., with security loss 2d, to the d-Lin assumption.

Corollary 1 (d-Lin ⇒ LS2). For any p.p.t. adversary A, there exists an adver-
sary B such that

AdvLS2A (k, q, q′) � 2d · Advd-Lin
B (k) + 2/(p − 1),

and Time(B) ≈ Time(A)+(q +q′)d2 ·poly(k, n). (poly(k, n) is independent of A)
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Nested-Hiding indistinguishability. Since ̂h∗∗
j and ˜h∗∗

j are respective random

vectors in d-dimensional subspace g
πM(B∗)
2 and g

πR(B∗)
2 now, we must “create”

more entropy from hj than Chen and Wee did in [15]. To do so, we establish a
generalized version of many-tuple lemma (see Lemma 5) in [15], which takes the
(d, d, d)-LLin assumption as starting point instead of the d-Lin assumption.

Lemma 5 (Generalized Many-Tuple Lemma). There exists an efficient
algorithm that on input q ∈ Z

+, a finite cyclic group G generated by g ∈ G
and

(

g, ga1 , . . . , gad ,
{

gbi,j
}

i,j∈[d]
, {ga1r1,j , . . . , gadrd,j }j∈[d] ,

{

gbi,1r1,j+···+bi,drd,j+rd+i,j
}

i,j∈[d]

)

,

outputs
(

gVZ, gZ
)

for some matrix V ∈ Z
d×d
p along with

{(

gtj , gVtj+τ j
)}

j∈[q]
,

where tj ← Z
d
p, all τ j are either 0d or uniformly distributed over Z

d
p. And Z

is an invertible diagonal matrix.

Then the proof for the NH property can be obtained by properly embedding
matrix V into A2η−1 and A2η and matrix Z into R, and naturally extending
Chen and Wee’s simulation strategy [15].

5 Concrete IBE from d-Linear Assumption

This section describes the concrete IBE scheme derived from our prime-order
instantiation in Sect. 4 following Hofheinz et al.’s framework [21]. Let GrpGen
be the bilinear group generator described in Sect. 4.1 and πL(·) be the function
mapping from a 3d × 3d matrix to its left-most d columns.

– Param(1k, n): Run (p,G1, G2, GT , e) ← GrpGen(1k). Sample B,R ←
GL3d(Zp) and A1, . . . ,A2n ← Z

3d×3d
p , and set B∗ := (B−1)�. Output

gp :=

(

g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BA2n)
1

gB
∗R

2 , g
B∗A�

1 R
2 , . . . , g

B∗A�
2nR

2

)

.

– Setup(gp): Sample k ← Z
3d
p and output

mpk :=
(
g

πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BA2n)
1 ; e(g1, g2)

πL(B)�k
)

∈ (G3d×d
1 )2n+1 × Gd

T ;

msk :=

(
gB

∗R
2 , g

B∗A�
1 R

2 , . . . , g
B∗A�

2nR
2 ; gk2

)
∈ (G3d×3d

2 )2n+1 × G3d
2 .

– KeyGen(mpk,msk,y): Let y = (y1, . . . , yn) ∈ {0, 1}n. Sample r ← Z
3d
p and

output

sky :=
(

gB
∗Rr

2 , g
k+B∗(A2−y1+···+A2n−yn )�Rr
2

)

∈ G3d
2 × G3d

2 .



Extended Nested Dual System Groups, Revisited 153

– Enc(mpk,x,m): Let x = (x1, . . . , xn) ∈ {0, 1}n and m ∈ GT . Sample s ← Z
d
p

and output

ctx :=
(

g
πL(B)s
1 , g

πL(B(A2−x1+···+A2n−xn ))s
1 , e(g1, g2)s

�πL(B)�k · m
)

∈ G3d
1 × G3d

1 × GT .

– Dec(mpk, sk,ct): Let sk = (K0,K1) and ct = (C0, C1, C2). Output

m := C2 · e(C1,K0)/e(C0,K1).

Note that we only put necessary entries for Enc into mpk, while entries from gp

(or pp) for running KeyGen are put into msk. We describe the following theorem.

Theorem 1. For any p.p.t. adversary A making at most qK key extraction
queries and at most qC challenge queries for pairwise distinct challenge iden-
tity against at most λ instances, there exists adversary B such that

AdvIBE
A (k, λ, qK , qC , 1) � d · (5n + 1) · Advd-Lin

B (k) + 2−Ω(k),

where Time(B) ≈ Time(A) + (λ + qC + qK) · d2 · poly(k, n) and poly(k, n) is
independent of Time(A).

6 Achieving Stronger Security Guarantee

This section will investigate two flavors of stronger adaptive security: B-weak and
full adaptive security (see Sect. 2) by enhancing the non-degeneracy property and
updating the proof of “ENDSG implies IBE”.

6.1 Warmup: Achieving B-weak Adaptive Security

Recall that the original non-degeneracy property said that:

(Non-degeneracy (Recalled).) Over the probability space defined by ĝ0 ←
ŜampG0(pp, sp), with overwhelming probability 1 − 2−Ω(k), e(ĝ0,̂h∗) is dis-
tributed uniformly over GT when sampling ̂h∗ ← ŜampH

∗
(pp, sp).

We observe that ̂h∗ in our prime-order instantiation (see Sect. 4) actually con-
tains higher entropy than those in Hofheinz et al.’s composite-order instantia-
tion [21]. In particular, ̂h∗ is uniformly distributed over a d-dimension subspace
of G3d

2 containing pd elements (vectors), while e(ĝ0,̂h∗) is an element in GT

containing just p elements. This suggests that, given e(ĝ0,̂h∗), there may be
leftover entropy in ̂h∗, and our prime-order instantiation may achieve stronger
non-degeneracy even relying on no computational assumption.

To formally investigate the above idea, we describe the notion of B-bounded
non-degeneracy which roughly ensures the non-degeneracy when a single ̂h∗ is
paired with at most B ĝ0’s.
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(B-bounded non-degeneracy.) Over the probability space defined by sam-

pling (ĝ0,1, . . . , ĝ0,B) ← ŜampG
B

0 (pp, sp), with overwhelming probability
1 − 2−Ω(k), (e(ĝ0,1,̂h

∗), . . . , e(ĝ0,B ,̂h∗)) is distributed uniformly over G
B
T

when sampling ̂h∗ ← ŜampH
∗
(pp, sp).

It is obvious that the ENDSG with B-bounded non-degeneracy almost-tightly
implies a B-weak adaptively secure IBE in the MIMC setting. We now prove
that our prime-order instantiation in Sect. 4 indeed reaches this stronger version
of non-degeneracy.

Lemma 6. Our prime-order instantiation of ENDSG in Sect. 4 based on the
d-Lin assumption is d-bounded non-degenerated.

Proof. The proof is just a simple statistical argument extended from the proof
for the original non-degeneracy. For ŝ1, . . . , ŝd ← Z

d
p and r̂ ← Z

d
p, we have that

⎛

⎜

⎜

⎝

e(gEŝ1
1 , g

πM(B∗)r̂
2 )
...

e(gEŝd
1 , g

πM(B∗)r̂
2 )

⎞

⎟

⎟

⎠

=

⎛

⎜

⎝

e(g1, g2)ŝ
�
1 r̂

...
e(g1, g2)ŝ

�
d r̂

⎞

⎟

⎠ = e(g1, g2)

⎛

⎜

⎜

⎝

ŝ�
1

...
ŝ�

d

⎞

⎟

⎟

⎠

r̂

.

With probability at least 1 − 1
p−1 , the matrix (ŝ1, . . . , ŝd)� is full-rank, in which

case (ŝ1, . . . , ŝd)�r̂ is distributed uniformly over Z
d
p when picking r̂ ← Z

d
p. �

Therefore, when we build our instantiation with parameter d > 1, we actu-
ally obtain an IBE with strictly stronger security guarantee which ensures the
confidentiality of at most d ciphertexts for each identity. As a special case, if we
set d = 1 (i.e., the SXDH assumption), the resulting IBE is still weak secure.

6.2 Computational Non-degeneracy and Full Adaptive Security

The attempt in the previous subsection more or less suggests that it is probably
inevitable to introduce additional computational arguments in order to achieve
fully adaptive security where a single ̂h∗ can be paired with polynomially many
ĝ0’s without violating the non-degeneracy property.

As a first step, we describe a computational version of non-degeneracy which
is essentially similar to the s-BDDH assumption [21]. Our presentation follows
the style of our revised ENDSG (in Sect. 3) in order to keep generality.

(Computational non-degeneracy (ND).) For any p.p.t. adversary A, the
following advantage function is negligible in k,

AdvND
A (k, q, q′, q′′) := |Pr[A(D,T0) = 1] − Pr[A(D,T1) = 1]| ,

where

D :=
(

pp,
{

̂h∗
j · ˜h∗

j

}

j∈[q′]
, {ĝj,j′}j∈[q],j′∈[q′′]

)

,
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T0 :=
{

e(ĝ0,j,j′ ,̂h∗∗
j )

}

j∈[q],j′∈[q′′]
, T1 := {Rj,j′}j∈[q],j′∈[q′′]

and ̂h∗
j ← ŜampH

∗
(pp, sp), ˜h∗

j ← S̃ampH
∗
(pp, sp), ̂h∗∗

j ← ŜampH
∗
(pp, sp),

ĝj,j′ = (ĝ0,j,j′ , ĝ1,j,j′ , . . . , ĝn,j,j′) ← ŜampG(pp, sp) and Rj,j′ ← GT .

It is not hard to see that an ENDSG with computational non-degeneracy
property almost-tightly implies a fully adaptively secure IBE in MIMC setting,
where we ensure the confidentiality of polynomial-many ciphertexts for each
identity. The detailed proof can be found in the full version of the paper.

6.3 Computational Non-degeneracy from d-Linear Assumption

We now prove that the prime-order instantiation proposed in Sect. 4 has real-
ized the computational non-degeneracy. And this immediately implies that the
concrete IBE scheme shown in Sect. 5 is fully adaptively secure in MIMC setting
with almost-tight reduction.

As before, we first rewrite all entries involved in the ND advantage function
AdvND

A (k, q, q′, q′′) in terms of B,B∗,Ai,R as follows

pp :=

(

g
πL(B)
1 , g

πL(BA1)
1 , . . . , g

πL(BAn)
1

gB
∗R

2 , g
B∗A�

1 R
2 , . . . , g

B∗A�
n R

2

)

;

̂h∗
j · ˜h∗

j := g

B∗

⎛

⎝

0d

r̂′
j

r̃′
j

⎞

⎠

2 ;

ĝj,j′ :=
(

g
πM(B)ŝj,j′
1 , g

πM(BA1 )̂sj,j′
1 , . . . , g

πM(BAn )̂sj,j′
1

)

;

e(ĝ0,j,j′ ,̂h∗∗
j ) := e(g

πM(B)ŝj,j′
1 , g

πM(B∗)r̂j

2 ) = e(g1, g2)
ŝ�

j,j′ r̂j ;

Rj,j′ := e(ĝ0,j,j′ ,̂h∗∗
j ) · e(g1, g2)γ̂j,j′ = e(g1, g2)

ŝ�
j,j′ r̂j · e(g1, g2)γ̂j,j′ ;

where r̂′
j , r̃

′
j , r̂j , ŝj,j′ ← Z

d
p and γ̂j,j′ ← Zp. Then we prove the following lemma.

Lemma 7. ((d, 1, qq′′)-LLin ⇒ ND). For any p.p.t. adversary A, there exists
an adversary B such that

AdvND
A (k, q, q′, q′′) � Adv

(d,1,qq′′)-LLin
B (k),

and Time(B) ≈ Time(A) + (qq′′ + q′)d2 · poly(k, n). (poly(k, n) is independent
of A)

Overview of Proof. From the observation that all ̂h∗∗
j = g

πM(B∗)r̂j

2 are inde-
pendently distributed and will never be given to A individually, we essentially
prove a stronger result:

“Given D, g
ŝ�

j,j′ r̂j

1 are computationally indistinguishable from g
ŝ�

j,j′ r̂j+γ̂j,j′
1 .”
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It is direct to based the pseudo-randomness of the challenge terms on the
(d, q, q′′)-LLin assumption. However the assumption is reduced to d-Lin assump-
tion with reduction loss O(q). In order to obtain a tight reduction, we further
rewrite the challenge term as

g
ŝ�

j,j′ r̂j

1 = g
ŝ�

j,j′V�r̄j

1 = g
r̄�

j Vŝj,j′
1

where V is a (d + 1) × d matrix over Zp of rank d and r̄j ← Z
d+1
p . Clearly, we

implicitly define r̂j := V�r̄j . Since the matrix V is shared by all r̂j ’s in challenge
terms, we could now deal with polynomially many distinct r̂j ’s uniformly which
results in a proof with constant security loss.

Proof. Given an instance of (d, 1, qq′′)-LLin problem (i.e., set � = 1 and q = qq′′)
⎛

⎜

⎝

g1, g2, g
a1
1 , . . . , gad

1 ,
{

gbi
1

}

i∈[d]
,
{

g
a1s1,j,j′
1 , . . . , g

adsd,j,j′
1

}

j∈[q],j′∈[q′′]
,

{

g
b1s1,j,j′+···+bdsd,j,j′+sd+1,j,j′
1

}

j∈[q],j′∈[q′′]

⎞

⎟

⎠

as input where either sd+1,j,j′ = 0 or sd+1,j,j′ ← Z
∗
p, B works as follows:

Programming ŝj,j′ for j ∈ [q], j′ ∈ [q′]. Adversary B implicitly sets

ŝj,j′ := (s1,j,j′ , . . . , sd,j,j′)�.

Programming B,B∗,A1, . . . ,An,R. Define W as

W :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
. . .

1
a1

. . .
ad

1
. . .

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∈ Z
3d×3d
p

and set W∗ := (W−1)�. Sample B̄, R̄ ← GL3d(Zp) and set B̄∗ := (B̄−1)�.
Sample Ā1, . . . , Ān ← Z

3d×3d
p , and implicitly set B, B∗, R, and all Ai as

Eq. (1). Of course, we also have the same relation as Eq. (2).
Simulating pp. Algorithm B can simulate

g
πL(B)
1 = g

πL(B̄W)
1 = g

B̄πL(W)
1 and g

πL(BAi)
1 = g

πL(B̄ĀiW)
1 = g

B̄ĀiπL(W)
1 ,

gB
∗R

2 = gB̄
∗R̄

2 and g
B∗A�

1 R
2 = g

B̄∗Ā�
i R̄

2 ,

for i ∈ [n] using the knowledge of πL(W) and B̄, B̄∗, Ā1, . . . , Ān, R̄.
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Simulating ̂h∗
j · ˜h∗

j for j ∈ [q′]. It is not hard to compute W∗ ∈ Z
3d×3d
p as

W∗ :=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
. . .

1
a−1
1

. . .
a−1

d

1
. . .

1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Observe that the right-bottom 2d × 2d sub-matrix of W∗ is full-rank with
overwhelming probability, adversary B can simulate all ̂h∗

j ·˜h∗
j as in the proof

of Lemma 3 for the same reason.
Simulating ĝj,j′ for j ∈ [q], j′ ∈ [q′]. Algorithm B can simulate

g

B

(

0d

ŝj,j′
0d

)

1 = g

B̄W

(

0d

ŝj,j′
0d

)

1 and g

BAi

(

0d

ŝj,j′
0d

)

1 = g

B̄ĀiW

(

0d

ŝj,j′
0d

)

1

for i ∈ [n] using the knowledge of B̄, Ā1, . . . , Ān and

g

W

(

0d

ŝj,j′
0d

)

1 = g

⎛

⎜

⎜

⎜

⎜

⎝

0d
a1s1,j,j′

...
adsd,j,j′

0d

⎞

⎟

⎟

⎟

⎟

⎠

1 .

Simulating the challenge. Define matrix V ∈ Z
(d+1)×d
p of rank d as

V :=

⎛

⎜

⎜

⎜

⎝

a1

. . .
ad

b1 · · · bd

⎞

⎟

⎟

⎟

⎠

.

For all j ∈ [q], algorithm B samples r̄j ← Z
d+1
p and implicitly set r̂�

j := r̄�
j V.

Algorithm B computes

g
r̂�

j ŝj,j′+γ̂j,j′
1 = g

r̄�
j

⎛

⎜

⎜

⎜

⎝

a1s1,j,j′

...
adsd,j,j′

b1s1,j,j′+···+bdsd,j,j′+sd+1,j,j′

⎞

⎟

⎟

⎟

⎠

1

and outputs e(g
r̂�

j ŝj,j′+γ̂j,j′
1 , g2) as challenges.
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Analysis. Observe that, if sd+1,j,j′ = 0, the output challenge is distributed as

e(g
r̄�

j (Vŝj,j′ )
1 , g2) = e(g1, g2)

ŝ�
j,j′ r̂j

which is identical to T0 where γ̂j,j′ = 0; if sd+1,j,j′ ← Z
∗
p, the output challenge

is distributed as

e(g
r̄�

j (Vŝj,j′+ed+1sd+1,j,j′ )
1 , g2) = e(g1, g2)

ŝ�
j,j′ r̂j · e(g1, g2)sd+1,j,j′e�

d+1r̄j

which is identical to T1 where γ̂j,j′ := sd+1,j,j′e�
d+1r̄j (in the box) is uni-

formly distributed over Zp. Therefore we may conclude that AdvND
A (k, q, q′, q′′) �

Adv
(d,1,qq′′)-LLin
B (k). �

Applying Lemma 1, we obtain the following corollary.

Corollary 2. (d-Lin ⇒ ND). For any p.p.t. adversary A, there exists an
adversary B such that

AdvND
A (k, q, q′, q′′) � Advd-Lin

B (k) + 1/(p − 1),

and Time(B) ≈ Time(A) + (qq′′ + q′)d2 · poly(k, n). (poly(k, n) is independent of
A)

7 Towards More Efficient Solution: An Overview

7.1 Motivation and Technique

To obtain more efficient solutions, a promising idea is to reduce the dimension of
two semi-functional spaces. Because we hope to continue to base our construc-
tion on the standard d-Lin assumption, we found the attempt gives rise to two
technical problems due to the lack of dimensions.

– We can not prove Left Subgroup Indistinguishability 2 (LS2) property using
the technique provided by Chen and Wee in [16]. In particular, the simulator
will need some elements in another source group (i.e., G2) to simulate ̂h∗ · ˜h∗

which is not given in the standard d-Lin assumption.
– We can not prove Computational Non-degeneracy (ND) property as before

since neither ĝ0 nor ̂h∗ has enough dimensions to program the d-Lin problem
during the simulation.

The second issue is easy to solve by the observation that there are two semi-
functional spaces and we only use one of them so far. We first define a variant of
computational non-degeneracy property taking the ∼-semi-functional space into
account. As long as two semi-functional spaces together has at least d dimensions,
this computational non-degeneracy property should be proved as before. On
the other hand, from the view of IBE, we could use the pseudo-randomness
of e(ĝ0 · g̃0,̂h

∗ · ˜h∗) to prove the security (decoupling challenge messages and
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ciphertexts) instead of just e(ĝ0,̂h∗). To make the intuition explicit and general,
we define three Left-subgroup indistinguishability (LS) requirements as: (1) LS1:
g ≈ g · ĝ · g̃; (2) LS2: g · ĝ · g̃ ≈ g · g̃; (3) LS3: g · ĝ · g̃ ≈ g · ĝ, where ≈ stands
for “computationally indistinguishable”.

In contrast, the first issue is seemingly hard to circumvent. Therefore, we
decide to prove the LS2 property under an enhanced d-Lin assumption where we
give adversary more elements on another source group G2 for simulating ̂h∗ ·˜h∗,
which is called d-linear assumption with auxiliary input (d-LinAI) for an even
positive integer d. Even though this assumption is non-standard in general, we
point out that the concrete assumption with d = 2 is implied by the external
decision linear assumption (XDLIN) [1] (see below), which has been formally
introduced and used to build other cryptographic primitives.

We further fine-tune the ENDSG by hiding public parameters for SampH
from the adversary when defining computational requirements, including LS1,
LS2, LS3, NH, and ND. We argue that the absence of this part of public para-
meters will not arise difficulty in building IBE since they always correspond to
the master secret key which is not necessary to be public according to the secu-
rity model. Instead, we give the adversary enough samples from H

n+1 which is
sufficient for answering key extraction queries in the proof of “ENDSG implies
IBE”. We hope it will bring us a simple, clean and efficient solution.

In summary, we have fine-tuned the ENDSG in three aspects: (1) update
non-degeneracy requirement; (2) re-define LS requirements; (3) hide parameters
for SampH. Due to the lack of space, the fine-tuned ENDSG is given in the full
version of the paper and we also verify there that these modifications won’t pre-
vent ENDSG from almost-tightly deriving a fully secure IBE in MIMC setting.

The starting point of instantiating the fine-tuned ENDSG is the prime-order
instantiation of dual system groups recently proposed by Chen et al. [13], which is
quite simple due to a new basis randomizing technique. We technically work with
2d×2d matrix (for even positive integer d) and generate the basis using the dual
pairing vector space method [26,29,30]. The first d-dimension subspace is nor-
mal space, the remaining two d/2-dimension subspaces act as ∧-semi-functional
subspace and ∼-semi-functional subspace, respectively. Note that the latter two
are now smaller but enough for our proof (the entire semi-functional space has d
dimensions). Finally, the basis is then randomized following [13]. Its security is
tightly based on the d-LinAI assumption, which leads to an almost-tightly secure
IBE in the MIMC setting with full security and higher efficiency. We describe,
in the next subsection, the d-LinAI assumption and the resulting IBE scheme.
More details could be found in the full version of the paper.

7.2 Concrete IBE from d-Linear Assumption with Auxiliary Input

Assume a prime-order bilinear group generator GrpGen(1k) as defined in Sect. 4.
The d-linear assumption in G1 with auxiliary input in G2 (d-LinAI) is defined
as follows, the analogous assumption in G2 can be defined by exchanging the
role of G1 and G2. We prove that the assumption holds in the generic model [34]
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in the full version of the paper. Note that we always let d be an even positive
integer.

Assumption 3 (d-Linear Assumption in G1 with Auxiliary Input). For
any p.p.t. adversary A, the following advantage function is negligible in k,

Advd-LinAI
A (k) := |Pr[A(D,Aux, T0) = 1] − Pr[A(D,Aux, T1) = 1]| ,

where

D :=
(

G, g1, g2, g
a1
1 , . . . , gad

1 , g
ad+1
1 , ga1s1

1 , . . . , gadsd
1

)

Aux :=
(

g
aa−1

1 ad+1
2 , . . . , g

aa−1
d/2ad+1

2 , ga
2

)

T0 := g
ad+1(s1+···+sd)
1 , T1 := g

ad+1(s1+···+sd)+ sd+1

1

and G ← GrpGen(1k), a1, . . . , ad+1, sd+1 ← Z
∗
p, a := a1 · · · ad/2, s1, . . . , sd ← Zp.

Let πL(·) be the function mapping from a 2d × 2d matrix to its left-most d
columns. Given an bilinear group generator GrpGen such that d-LinAI assump-
tion holds, the resulting IBE scheme built according to the main idea shown in
the previous subsection is defined as follows.

– Param(1k, n): Run (p,G1, G2, GT , e) ← GrpGen(1k). Sample D ← GL2d(Zp)
and W1, . . . ,W2n ← Z

2d×2d
p , and set D∗ := (D−1)�. Output

gp :=

(

g
πL(D)
1 , g

W�
1 πL(D)

1 , . . . , g
W�

2nπL(D)
1

g
πL(D

∗)
2 , g

W1πL(D
∗)

2 , . . . , g
W2nπL(D

∗)
2

)

.

– Setup(gp): Sample k ← Z
2d
p and output

mpk :=

(
g

πL(D)
1 , g

W�
1 πL(D)

1 , . . . , g
W�

2nπL(D)
1 ; e(g1, g2)

πL(D)�k

)
∈ (G2d×d

1 )2n+1 × Gd
T ;

msk :=
(
g

πL(D∗)
2 , g

W1πL(D∗)
2 , . . . , g

W2nπL(D∗)
2 ; gk2

)
∈ (G2d×d

2 )2n+1 × G2d
2 .

– KeyGen(mpk,msk,y): Let y = (y1, . . . , yn) ∈ {0, 1}n. Sample r ← Z
d
p and

output

sky :=
(

g
πL(D

∗)r
2 , g

k+(W2−y1+···+W2n−yn )πL(D
∗)r

2

)

∈ G2d
2 × G2d

2 .

– Enc(mpk,x,m): Let x = (x1, . . . , xn) ∈ {0, 1}n and m ∈ GT . Sample s ← Z
d
p

and output

ctx :=
(

g
πL(D)s
1 , g

(W2−x1+···+W2n−xn )�πL(D)s
1 , e(g1, g2)s

�πL(D)�k · m
)

∈ G2d
1 × G2d

1 × GT .
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– Dec(mpk, sk,ct). Let sk = (K0,K1) and ct = (C0, C1, C2). Output

m := C2 · e(C1,K0)/e(C0,K1).

One may argue that the d-LinAI assumption is not standard and complex. We
show that, by setting d = 2, we derive the DLIN assumption with auxiliary input
Aux := (ga3

2 , ga1
2 ). It is easy to verify that this special instantiation is implied

by the External Decision Linear Assumption [1]. Motivated by this observation,
we remark that we may build the above IBE system using symmetric bilinear
pairings and base the security on the well-known and standard Decisional Linear
Assumption, where G1 = G2 and Aux in G2 is automatically revealed.
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Abstract. Functional encryption (FE) supports constrained decryption
keys that allow decrypters to learn specific functions of encrypted mes-
sages. In numerous practical applications of FE, confidentiality must be
assured not only for the encrypted data but also for the functions for
which functional keys are provided. This paper presents a non-generic
simple private key FE scheme for the inner product functionality, also
known as inner product encryption (IPE). In contrast to the existing sim-
ilar schemes, our construction achieves the strongest indistinguishability-
based notion of function privacy in the private key setting without
employing any computationally expensive cryptographic tool or non-
standard complexity assumption. Our construction is built in the asym-
metric bilinear pairing group setting of prime order. The security of our
scheme is based on the well-studied Symmetric External Diffie-Hellman
(SXDH) assumption.

Keywords: Functional encryption · Inner product · Function privacy ·
Asymmetric bilinear group

1 Introduction

The recent advancement in cloud technology has triggered an emerging trend
among individuals and organizations to outsource potentially sensitive private
informations to external untrustworthy servers and remotely carry out various
computations on the outsourced data at some later point in time by querying
the server. Functional encryption (FE) is an ambitious vision of modern cryptog-
raphy that attempts to preserve confidentiality of externally stored data while
allowing entities to delegate computations on the outsourced data in such cloud
computing platforms. FE supports “restricted” decryption keys, also known
as “functional keys”, that enable decrypters to learn specific functions of the
encrypted data and nothing else. More precisely, in an FE scheme for certain
function family F , it is possible to derive functional keys skf for any function
f ∈ F from a master secret key. Any party given such a functional key skf and
a ciphertext ctz encrypting some message z, should be able to learn f(z) and
nothing beyond that about z.

c© International Association for Cryptologic Research 2016
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A principle focus of research on FE has been to identify what class of functions
F can be supported and what notion of security can be achieved. In terms of
functionality, starting with the seminal notions of identity-based encryption (IBE)
and attribute-based encryption (ABE), FE has progressively evolved through a
series of distinguished works to support more and more expressive function fam-
ilies culminating into the recent state of the art schemes which are now able to
realize computation of arbitrary polynomial-size circuits [6,7,10–12]. Regarding
security, the vast majority of research on FE so far has concentrated on protecting
privacy of the encrypted contents [6,15].

1.1 Function Privacy in Functional Encryption

A wide range of practical applications, however, demands not only privacy of
the encrypted messages but also privacy of the functions for which functional
keys are provided. This is especially desirable whenever the function embedded
in the functional key itself contains sensitive informations.

Consider the following motivating scenario: Assume that a health organiza-
tion subscribes to a cloud service provider to store medical records of its patients.
To ensure confidentiality of informations, the organization encrypts those records
locally using an FE scheme prior to uploading them to the cloud server. Now,
using the inherent feature of FE, later on the organization can request the cloud
server to perform some analysis on the encrypted records by providing the server
the functional key for the respective function. However, if the FE scheme in use
does not guarantee any hiding for the functions, which may include sensitive
contents, embedded in the functional keys, then the functional keys might reveal
the functions completely to the cloud, thereby leaking sensitive informations.

Private key vs public key setup: Countless real-life applications have driven
the research on function privacy in the context of FE, using the private key
setting first by Shen et al. [16] followed by the works of [2,8], while in the pub-
lic key setting by Boneh et al. [4,5]. Intuitively, function privacy requires that
functional keys reveal no unnecessary information on their functionality. How-
ever, the extent to which function privacy can be satisfied differs dramatically
between the private key and public key regimes. Specifically, in the public key
domain, where anyone can encrypt messages, only a limited form of function
privacy can be attained. To formulate a meaningful security definition, a frame-
work must assume that the functions come from a distribution having sufficient
entropy [4,5]. On the contrary, in the private key setting, function privacy has
been shown to have tremendously greater potential compared to the public key
domain, both as a stand-alone feature and as a very useful building block.

Full-hiding security model for private key FE: For private key FE schemes,
the strongest (indistinguishability-based) notion of function privacy, also known
as full-hiding security, formulated in [2,8] considers both privacy of functional
keys and privacy of encrypted data in a perfectly symmetric manner. More pre-
cisely, full-hiding security considers adversaries that interact with
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(I) a left-or-right functional key generation oracle and
(II) a left-or-right encryption oracle,

where both oracles operate using the same bit c ∈ {0, 1}. The adversaries sub-
mit a pair of functions (f (j,0), f (j,1)) to the functional key generation oracle
in order to make the j-th functional key query while they submit a pair of
messages (z(�,0), z(�,1)) to the encryption oracle for making the �-th ciphertext
query. Depending on the bit c, the functional key generation oracle returns the
functional key skf(j,c) whereas the encryption oracle sends back the ciphertext
ctz(�,c) . The adversaries are allowed to interact with these oracles for any polyno-
mial number of queries and the adversaries’ goal is to distinguish the cases c = 0
and c = 1. The constraint on the adversaries is that for all (f (j,0), f (j,1)) and
(z(�,0), z(�,1)) with which they query the functional key generation and encryp-
tion oracles respectively, it should hold that f (j,0)(z(�,0)) = f (j,1)(z(�,1)). This
is clearly the minimum necessary restriction as otherwise the adversaries can
trivially determine the bit c used by the oracles.

Regarding the construction of function private FE schemes in the private key
setting, recently Brakerski and Segev [8] have presented a generic transforma-
tion from any private key (possibly non-function-private) FE scheme for general
polynomial-size circuits into one that achieves function privacy in the strongest
model discussed above. Then by combining [8] with the works of [11,12], or [10],
one can obtain private key function-private FE scheme supporting general cir-
cuits with strong security guarantee. However, the most significant drawback of
the resulting constructions is that they would employ computationally intensive
tools for secure computation such as fully homomorphic encryption or program
obfuscation and their security would rely on strong assumptions such as indis-
tinguishability obfuscation, extractability obfuscation, or polynomial hardness
of simple assumptions on multilinear maps. Consequently, these solutions are
far from being practical.

1.2 Inner Product Encryption and Function Privacy

A current motivation of cryptographic research community is to design direct and
efficient FE schemes for functionalities of practical interest which are still expres-
sive enough for real-life applications. As a first attempt, researchers have focused
on the inner product functionality which is an extremely useful functionality in
the context of descriptive statistics, for example, to compute the weighted mean
of a collection of informations. Further, the inner product enables computation
of conjunctions, disjunctions, polynomial evaluations, and exact thresholds.

An inner product function family IPp is parameterized by a prime integer
p. A function ip�y ∈ IPp is associated with a vector �y ∈ Z

n
p of length n over the

finite field Zp. On a message �x ∈ Z
n
p , ip�y(�x) is defined to be the inner product

〈�x, �y〉 modulo p of the vectors �x and �y. We stress that this formulation of inner-
product FE, also referred to as inner product encryption (IPE) is distinct from
[2,13,14,16] which study inner product in the context of predicate encryption
(PE). In inner product PE, a message M is encrypted along with a tag �x ∈ Z

n
p
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and decryption with a key corresponding to a vector �y ∈ Z
n
p yields M if and

only if 〈�x, �y〉 = 0. In contrast, the objective in the IPE formulation is to learn
the actual inner product value in Zp itself.

The first construction of IPE was presented by Abdalla et al. [1] who devel-
oped a selectively secure construction in traditional discrete log groups. However,
this construction is built in public key domain and do not support any form of
function privacy. Very recently, Bishop et al. [3] have taken a first step forward
towards exploring the possibility of attaining function privacy in the context
of IPE utilizing efficient and well-studied primitives. In fact, they have con-
structed a function-private IPE scheme in private key domain that withstands
any polynomial number of ciphertext and functional key queries. Their construc-
tion makes use of asymmetric bilinear pairing groups and derives its security from
the well-studied Symmetric External Diffie-Hellman (SXDH) assumption albeit
in a rather weak and unrealistic security model.

1.3 Our Contribution

The current state of the art leaves open the problem of constructing a private key
IPE scheme achieving the strongest practical notion of full-hiding security under
standard assumptions without employing any heavy-duty cryptographic tool. In
this paper we provide a positive answer to this challenging problem. In partic-
ular, we develop a simple and efficient private key IPE scheme achieving the
strongest notion of function privacy based on well-studied complexity assump-
tion. As in [3], our construction utilizes asymmetric bilinear pairing groups of
prime order and we are able to establish the stronger form of security under the
SXDH assumption. In order to ensure correctness of our construction, like [1,3],
we assume that the target inner products will be contained within a range of
polynomial-size. As pointed out in [1,3], this assumption is quite reasonable for
statistical applications, where, for instance, the average of some bounded quan-
tity over a polynomial-size database will naturally be included in a polynomial
range.

Although our construction has some resemblance to that of [3], we highlight
several differences below:

– We innovate new technical ideas in order to realize the strongest notion of
full-hiding security while maintaining the simplicity of the scheme. For all
(�y(j,0), �y(j,1)) and (�x(�,0), �x(�,1)) with which the adversaries query the func-
tional key generation and encryption oracles respectively, the security frame-
work of [3] assumes that

〈�x(�,0), �y(j,0)〉 = 〈�x(�,0), �y(j,1)〉 = 〈�x(�,1), �y(j,0)〉 = 〈�x(�,1), �y(j,1)〉 (1)

whereas according to the full-hiding security framework of [2,8], the only
constraint should be

〈�x(�,0), �y(j,0)〉 = 〈�x(�,1), �y(j,1)〉. (2)
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The additional restriction in the security model of [3] has not only weakened
the security of their construction significantly but also it has rendered the
security model itself rather unrealistic. Our security framework is free from
any such restriction beyond that specified in Eq. (2), therefore, much more
practical compared to that of [3].

– As in [3], we make use of the concept of dual pairing vector spaces (DPVS)
introduced in [13,14] to obtain the features of hidden subspaces in prime
order bilinear group setting. However, our two DPVS have dimensions 4n + 2
and 6 respectively while those of [3] have dimensions 2n and 2 respectively.
Here n is the dimension of vectors for functional keys and ciphertexts. This
results in some loss in efficiency. However, this seems rather unavoidable for
strengthening the security both from theoretical and practical point of view.

– Analogous to [3], we consider two pairs of dual orthonormal bases, one for
each of the two dimensions considered. But instead of including the complete
bases like [3], we put certain portions of them in the master secret key while
preserve the remaining dimensions for the security reduction. Specifically, we
employ 3n and 3 hidden dimensions of the pairs of bases of dimensions 4n+2
and 6 respectively to move things forward in our hybrid security argument.

– At a technical level, [3] used each component of the vectors twice while encod-
ing the vectors in ciphertexts and functional keys by coupling them with the
basis vectors included in the master secret key. On the contrary, in our con-
struction, we utilize the components of these vectors only once in the process
of encoding with the basis vectors of the master secret key.

– Although similar to [3], we treat ciphertexts and functional keys in a symmet-
ric fashion in our construction, our hybrid security proof does not maintain
any such symmetry. Specifically, the approach of [3] first established the pri-
vacy of encrypted messages in the multiple ciphertext framework and then
leveraged the symmetry between the structures of ciphertexts and functional
keys to flip the same reasoning to argue for function privacy. In doing so, they
relied on an information theoretic step that required the additional constraint
as in Eq. (1) on the queries of the adversaries. In order to remove the extra
restriction, we face several challenges. For our security analysis, we design
our hybrid argument differently using a different information theoretic prop-
erty of DPVS proven by [13] in a non-trivial way. We begin our hybrid game
transition by changing the form of the queried ciphertexts and instead of fin-
ishing it off completely, at some appropriate point, we initiate change in the
queried functional keys. Since then the transformations of functional keys and
ciphertexts proceed hand in hand.

2 Preliminaries

Throughout this paper we will follow notations presented in Fig. 1.
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Fig. 1. Notations

2.1 The Notion of Private Key Function-Private IPE

We adopt the general notion of function-private functional encryption in the pri-
vate key setting, introduced in [2,8], to the particular functionality of computing
inner products of n-length vectors over Zp for some prime integer p and some
positive integer n. We will consider only non-zero vectors. Note that this is a
reasonable consideration for all practical applications of inner products.

� Syntax: A private key function-private IPE (PKFP-IPE) scheme consists of
the following probabilistic polynomial-time algorithms:

PKFP-IPE.Setup(1λ, n): The data owner takes as input the security parameter
1λ and a positive integer n (polynomial in λ) specifying the desired length of
vectors for the functional keys and ciphertexts. It generates a master secret
key msk for itself while publishes public parameters pp. (Note that we are
not dealing with a public key scheme, so pp are not sufficient to encrypt –
those are just parameters that need not be kept secret.)

PKFP-IPE.Encrypt(msk,pp, �x): On input the master secret key msk, the public
parameters pp, and a vector �x ∈ Z

n
p\{�0}, where �0 denotes the all zero vector

in Z
n
p , the data owner produces a ciphertext ct�x.

PKFP-IPE.KeyGen(msk,pp, �y): Taking as input the master secret key msk, the
public parameters pp, and a vector �y ∈ Z

n
p\{�0}, the data owner provides a

functional key sk�y to a legitimate decrypter.
PKFP-IPE.Decrypt(pp,ct�x, sk�y): A decrypter takes as input the public parame-

ters pp, a ciphertext ct�x encrypting some vector �x, and a functional key
sk�y corresponding to some vector �y. It outputs either a value m ∈ Zp or the
distinguished symbol ⊥.
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� Correctness: The correctness of an PKFP-IPE scheme requires the following:
For all �x, �y ∈ Z

n
p\{�0},

Pr
[

(msk,pp) $←− PKFP-IPE.Setup(1λ, n);ct�x
$←− PKFP-IPE.Encrypt(msk,pp, �x);

sk�y
$←− PKFP-IPE.KeyGen(msk,pp, �y) :

PKFP-IPE.Decrypt(pp,ct�x, sk�y) = 〈�x, �y〉
]

> 1 − ε(λ)

for some negligible function ε. As in [1,3], in our construction as well we would
only require that the above holds when 〈�x, �y〉 is from a fixed polynomial range
of values inside Zp.

� Security: The indistinguishability-based full hiding security notion for a
PKFP-IPE scheme is defined by the following game between a probabilistic adver-
sary A and a probabilistic challenger C:

Setup: C generates (msk,pp) $←− PKFP-IPE.Setup(1λ, n). It gives pp to A. It

also selects c
$←− {0, 1}.

Query Phase: Throughout the game, A may adaptively make any polynomial
number of queries of the following two types:

– Functional key query : To make the j-th functional key query, A submits a
pair of vectors (�y(j,0), �y(j,1)) ∈

(

Z
n
p\{�0}

)2 to C. C creates a functional key

sk
(j) $←− PKFP-IPE.KeyGen(msk, pp, �y(j,c)) and hands sk

(j) to A.
– Ciphertext query : To make the �-th ciphertext query, A sends a pair of vectors

(�x(�,0), �x(�,1)) ∈
(

Z
n
p\{�0}

)2 to C. C forms ct
(�) $←− PKFP-IPE.Encrypt(msk,

pp, �x(�,c)) and returns ct
(�) to A.

Suppose that A makes q1 number of functional key queries and q2 number of
ciphertext queries during the game. The restriction on the queries is that for all
j = 1, . . . , q1 and for all � = 1, . . . , q2, 〈�x(�,0), �y(j,0)〉 = 〈�x(�,1), �y(j,1)〉.
Guess: A eventually outputs a bit c′ ∈ {0, 1}.

Let ViewA(c) denotes the view of A in the above game when the c ∈ {0, 1} is
the random bit selected by C in the setup phase.

Definition 1. A PKFP-IPE is said to achieve (full) indistinguishability-based
full hiding security if for any probabilistic polynomial-time adversary A, for any
security parameter λ, the advantage of A in the above game, AdvPKFP−IPE

A (λ) =
∣

∣Pr
[

A(ViewA(0)) = 1
]

− Pr
[

A(ViewA(1)) = 1
]∣

∣ < ε(λ) for some negligible func-
tion ε.

2.2 Asymmetric Bilinear Group and SXDH Assumption

Definition 2 (Asymmetric Bilinear Pairing Group). An asymmetric
bilinear pairing group (p,G1,G2,GT , g1, g2, e) is a tuple of a prime integer p;
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cyclic multiplicative groups G1,G2,GT of order p each with polynomial-time com-
putable group operations; generators g1 ∈ G1, g2 ∈ G2; and a polynomial-time
computable non-degenerate bilinear pairing e : G1 × G2 → GT , i.e., e satisfies

– (bilinearity) e(gs
1, g

s̆
2) = e(g1, g2)ss̆ for all s, s̆ ∈ Zp and

– (non-degeneracy) e(g1, g2) �= 1GT
, where 1GT

denotes the identity element of
the group GT .

Let GABPG be an algorithm that on input the security parameter 1λ, outputs a
description (p,G1,G2,GT , g1, g2, e) of an asymmetric bilinear pairing group.

Assumption 1 (Symmetric External Diffie-Hellman: SXDH). The SXDH
problem is to distinguish between the distributions �β =

(

(p,G1,G2,GT , g1, g2, e),

gμ
1 , gν

1 ,	β ,
)

for β ∈ {0, 1} such that (p,G1,G2,GT , g1, g2, e)
$←− GABPG(1λ),

μ, ν
$←− Zp, and 	β = gμν+r

1 where r = 0 or r
$←− Zp according as β = 0 or

1 respectively.
The SXDH assumption states that for any probabilistic polynomial-time algo-

rithm C, for any security parameter λ, AdvSXDH
C (λ) =

∣

∣Pr
[

C(�0) = 1
]

−
Pr

[

C(�1) = 1
]∣

∣ < ε(λ) for some negligible function ε. It also states that the
same is true for the analogous distributions obtained from switching the roles of
G1 and G2, i.e., �̆β =

(

(p,G1,G2,GT , g1, g2, e), g
μ̆
2 , gν̆

2 , 	̆β

)

for β ∈ {0, 1} such

that μ̆, ν̆
$←− Zp, and 	̆β = gμ̆ν̆+r̆

2 where r̆ = 0 or r̆
$←− Zp according as β = 0 or

1 respectively.

2.3 Dual Pairing Vector Spaces

Definition 3 (Dual Pairing Vector Spaces (DPVS)). A dual pairing vector
space (DPVS) (p,V1,V2,GT ,A1,A2, E) by a direct product of asymmetric pairing
groups (p,G1,G2,GT , g1, g2, e) is a tuple of a prime integer p; n-dimensional
vector space Vh = G

n
h over Zp under vector addition ⊕ and scalar multiplication

⊗ defined respectively as g�v
h ⊕ g �w

h = g�v+�w
h and a ⊗ g�v

h = ga�v
h , for h = 1, 2, where

�v, �w ∈ Z
n
p , and a ∈ Zp; canonical bases Ah = {g�ei

h }i=1,...,n of Vh, for h = 1, 2,

where �ei = (
i−1

︷ ︸︸ ︷

0, . . . , 0, 1,

n−i
︷ ︸︸ ︷

0, . . . , 0) ∈ Z
n
p ; and a pairing E : V1 × V2 → GT . The

pairing E is defined by E(g�v
1 , g �w

2 ) =
n

∏

i=1

e(gvi
1 , gwi

2 ) = e(g1, g2)〈�v,�w〉 ∈ GT , where

�v, �w ∈ Z
n
p . Observe that the map E is non-degenerate bilinear, i.e., E satisfies

– (bilinearity) E(s⊗g�v
1 , s̆⊗g �w

2 ) = E(gs�v
1 , gs̆ �w

2 ) = E(g�v
1 , g �w

2 )ss̆ for s, s̆ ∈ Zp, �v, �w ∈
Z

n
p and

– (non-degeneracy) if E(g�v
1 , g �w

2 ) = 1GT
for all �w ∈ Z

n
p , then �v = �0.

When clear from the context, we will often omit the symbols ⊕ and ⊗ for vector
addition and scalar multiplication respectively in DPVS’s. The DPVS generation
algorithm GDPVS takes input a positive integer n together with (p,G1,G2,GT , g1,
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g2, e)
$←− GABPG(1λ) and outputs a description (p,V1,V2, GT ,A1,A2, E) of DPVS

with n-dimensional vector spaces Vh for h = 1, 2.

In Fig. 2 we describe random dual orthonormal basis generator GOB(Zn
p ) for

some prime integer p and positive integer n. This algorithm would be utilized as
a subroutine in our PKFP-IPE construction.

Fig. 2. Dual orthonormal basis generator GOB(Z
n
p )

3 Our PKFP-IPE Scheme

� Construction:

PKFP-IPE.Setup(1λ, n): The data owner takes as input the security parameter
1λ and a positive integer n specifying the desired length of vectors for the
keys and ciphertexts. It proceeds as follows:
1. It first generates an asymmetric bilinear group

(p,G1,G2,GT , g1, g2, e)
$←− GABPG(1λ).

2. Then it forms

(p,V1,V2,GT ,A1,A2, E) $←− GDPVS

(

4n + 2, (p,G1,G2,GT , g1, g2, e)
)

and

(p,V′
1,V

′
2,GT ,A′

1,A
′
2, E

′) $←− GDPVS

(

6, (p,G1,G2,GT , g1, g2, e)
)

.

3. Next, it samples dual orthonormal bases
(

B = {�b1, . . . ,�b4n+2},B∗ = {�b∗
1, . . . ,

�b∗
4n+2}

) $←− GOB(Z4n+2
p ) and

(

D = {�d1, . . . , �d6},D∗ = {�d∗
1, . . . ,

�d∗
6}

) $←− GOB(Z6
p).

It defines ̂B = {�b1, . . . ,�bn,�b4n+2}, ̂B
∗ = {�b∗

1, . . . ,
�b∗

n, �b∗
4n+1}, ̂D = {�d1, �d6},

and ̂D
∗ = {�d∗

1,
�d∗
5}.
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4. It keeps the master secret key msk = (̂B, ̂B
∗, ̂D, ̂D

∗) to itself while publishes
the public parameters pp =

(

p, {Vh,V′
h}h=1,2,GT , {Ah,A′

h}h=1,2, E,E′).
PKFP-IPE.Encrypt(msk,pp, �x): Taking as input the master secret key msk, the

public parameters pp, and a vector �x ∈ Z
n
p\{�0}, the data owner prepares the

ciphertext as follows:
1. It selects α, ξ, ξ0

$←− Zp and computes

c1 = g
α
∑n

i=1 xi
�bi+ξ�b4n+2

1 = g
α
∑

i xi
�bi+ξ�b4n+2

1 , c2 = gα�d1+ξ0 �d6
1 (3)

utilizing ̂B and ̂D respectively from msk, where a sum over index i ranges
from i = 1 to i = n unless explicitly specified otherwise. We will follow
the same convention in the sequel as well.

2. It outputs the ciphertext ct�x = (c1, c2).
PKFP-IPE.KeyGen(msk,pp, �y): On input the master secret key msk, the pub-

lic parameters pp, and a vector �y ∈ Z
n
p\{�0}, the data owner performs the

following:
1. It picks γ, η, η0

$←− Zp and computes

k∗
1 = g

γ
∑

i yi
�b∗

i +η�b∗
4n+1

2 , k∗
2 = g

γ �d∗
1+η0 �d∗

5
2 (4)

utilizing ̂B
∗ and ̂D

∗ respectively from msk.
2. It provides the functional key sk�y = (k∗

1, k
∗
2) to a legitimate decrypter.

PKFP-IPE.Decrypt(pp,ct�x, sk�y): A decrypter takes as input the public parame-
ters pp, a ciphertext ct�x = (c1, c2), and a functional key sk�y = (k∗

1, k
∗
2). It

proceeds as follows:
1. It computes T1 = E(c1, k

∗
1), T2 = E′(c2, k

∗
2).

2. It then attempts to determine a value m ∈ Zp such that Tm
2 = T1 as

elements of GT by checking a specified polynomial-size range of possible
values. If it is successful, then it outputs m. Otherwise it outputs ⊥.

We stress that the polynomial running time of our decryption algorithm is
ensured by restricting the output to lie within a fixed polynomial-size range.

� Correctness: The correctness of the above PKFP-IPE construction can be
verified as follows: Observe that for any ciphertext ct�x = (c1, c2) encrypting
some vector �x and any functional key sk�y = (k∗

1, k
∗
2) corresponding to some

vector �y, we have

T1 = E(c1, k
∗
1) = e(g1, g2)αγ〈�x,�y〉, T2 = E′(c2, k

∗
2) = e(g1, g2)αγ .

This follows from the expressions of c1, c2, k
∗
1, k

∗
2 together with the fact that

(B,B∗) and (D,D∗) are dual orthonormal bases. Thus if 〈�x, �y〉 is contained in the
specified polynomial-size range of possible values that the decryption algorithm
checks, it would output 〈�x, �y〉 as desired.

� Discussion: In our PKFP-IPE construction, we begin with the intuition of [3]
to use an asymmetric bilinear group setting (p,G1,G2,GT , g1, g2, e), visualizing
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G1 as the ciphertext space whereas G2 as the functional key space. The plaintext
vectors are encrypted in the exponent of g1 while the functional key vectors are
encapsulated in the exponent of g2, so that the bilinearity of the pairing e can
be employed to compute the inner product of the plaintext and functional key
vectors in the exponent without the explicit knowledge of the vectors.

As discussed earlier in this paper, the only PKFP-IPE scheme available in
the literature so far [3] achieves a rather limited and unrealistic form of function
privacy. In particular, for the sake of managing the hybrid security proof of their
construction, they put further restrictions on the queries of the adversaries, as
shown in Eq. (1), beyond those specified in the strongest framework of full-hiding
security described in Sect. 2.1. This additional constraint not only leads to a weak
security but it is also not conformal with the intuitive spirit of function privacy.
With the motivation to remove such an undesirable restriction we recourse to
an information theoretic step that uses a nice property of DPVS introduced in
[13] that enables to hide a pair of ciphertext and functional key vectors perfectly
among all vectors having the same inner product.

To generate space for our hybrid proof, we consider two pairs of dual ortho-
normal bases, namely, (B,B∗) of dimension 4n + 2 and (D,D∗) of dimension 6,
where n is the length of vectors for ciphertexts and functional keys. The n + 2
dimensions of the first pair of bases and 3 of the second pair are used in the
actual scheme while the remaining dimensions are preserved to move things for-
ward in the security proof. As displayed in Eq. (3), to encode a vector �x in the
ciphertext, we construct a linear combination of the first n vectors together with
the (4n+2)-th vector of B, where the n components of �x masked with a random
scalar α are used as coefficients of the first n vectors of B. The resulting vector is
then placed in the exponent of g1 ∈ G1. After that, the randomness α is encoded
by forming another linear combination of the first and sixth members of D in
the exponent of g1 using the masking factor α as coefficient of the first vector
of D. The (4n + 2)-th dimension of B and the sixth dimension of D are utilized
to supply additional randomization for strengthening the security of our cipher-
texts. The encoding of a vector for the functional key is performed in a directly
symmetric fashion utilizing bases B

∗,D∗, and g2 ∈ G2 in place of B,D, and g1
respectively, as can be seen from Eq. (4), where the additional randomization is
provided by the (4n + 1)-th dimension of B∗ and the fifth dimension of D∗.

In contrast, the construction of [3] considers two pairs of dual orthonormal
bases, one of dimension 2n and the other of dimension 2. Moreover, they make
use of the complete bases in their construction itself and employ each component
of a vector as coefficient twice during formation of the linear combinations in
the process of encoding the vector for ciphertext or functional key, once for
basis vectors in the range 1 to n and again for the basis vectors ranging from
n + 1 to 2n. Further, [3] rely on the orthogonality of all the queried functional
key vectors (respectively all queried ciphertext vectors) to the difference of a
pair of queried ciphertext vectors (respectively a pair of queried functional key
vectors) to simulate a hidden dimension in the bases in the security proof that
they employ to switch from one vector of the pair to the other. However, it
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is precisely this approach which necessitates the additional constraint imposed
by them on the adversaries’ queries as in Eq. (1). Furthermore, increasing the
dimensions of the DPVS’s in use seems rather unavoidable for managing the
security reduction without requiring the extra restriction. In fact the 3n and 3
hidden dimensions of our two pairs of bases respectively that we keep aside for
the security argument play a vital role to elegantly isolate a pair of ciphertext
and functional key vectors in an n-dimensional hidden subspace in order to apply
our information theoretic argument.

In summery, although our construction has some kind of resemblance to that
of [3], our proof idea is widely apart. The most significant contribution of our
work lies in a rigorous proof of full-hiding security of a fairly simple construction.
The detail security reduction is presented in the next section.

In terms of communication cum storage complexity, observe that both the
ciphertexts and functional keys of our PKFP-IPE construction consist of 4n + 8
group elements while our master secret key contains 8n2 + 12n + 28 members
of the finite field Zp. In contrast, the ciphertexts and functional keys in the
construction of [3] are comprised of 2n + 2 group elements each whereas the
master secret key is composed of 8n2 + 8 Zp components.

Regarding computation complexity, note that both our encryption and func-
tional key generation algorithms require 4n+8 exponentiations while the decryp-
tion algorithm involves 4n+8 pairing operations followed by an exhaustive search
over a polynomial range of values in order to solve a discrete log. On the con-
trary, the encryption and functional key generation algorithms of [3] amount to
2n + 2 exponentiations each. Other than a similar exhaustive search step, their
decryption algorithm incurs 2n + 2 pairings.

It is evident that our scheme loses a constant factor of 2 compared to that of
[3] in both communication cum storage and computation efficiency. However, the
additional cost is compensated with stronger and realistic data as well as function
privacy guarantees provided by our construction as opposed to a rather limited
form of security achieved by [3]. Given the rapid advancements in computing
technology and the growing security breaches, high security is often desirable
even at the expense of an admissible increase in complexity.

The ciphertexts and master public key of the only known IPE scheme in public
key setup [1] involve n+1 and n elements respectively in a discrete log group of
prime order p while the master secret key and functional keys are comprised of n
and 1 Zp components respectively. The encryption and decryption algorithms of
[1] respectively incur 2n+1 exponentiations and n+1 exponentiations followed by
an analogous exhaustive search step towards determining a discrete log. However,
the scheme of [1] offers no function privacy and, moreover, provides only selective
data privacy.

4 Security Analysis

Theorem 1. The PKFP-IPE scheme described in Sect. 3 is secure as per the
security model of Sect. 2.1 under the SXDH assumption.
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Proof. The proof of Theorem 1 is structured as a hybrid argument over a series
of games which differ in the construction of the functional keys and ciphertexts
queried by the adversary A in the security game described in Sect. 2.1. In the
first game, the queried functional keys and ciphertexts are constructed as those
in the security game of Sect. 2.1 where the bit used by the challenger is c = 0.
We then progressively change the functional keys and ciphertexts in multiple
hybrid games to those in the security game of Sect. 2.1 where the bit used by
the challenger is c = 1. We prove that each game is indistinguishable from
the previous one, thus proving our PKFP-IPE construction to be secure in the
security model of Sect. 2.1. Let q1 be the number of A’s functional key queries
and q2 the number of A’s ciphertext queries. The hybrid game transition is
described below. In these games, a portion of an exponent framed by a white
box indicates those terms which were added or modified in a transition from the
previous game, unless explicitly specified otherwise, while a part of an exponent
which was deleted in the transformation from the earlier game is highlighted in
the text.

� Sequence of Hybrid Games:

〈I〉 Game 0 : This game corresponds to the real security game of Sect. 2.1 where
the bit used by the challenger to generate queried functional keys and ciphertexts
is c = 0. More precisely, for j = 1, . . . , q1, the response to the j-th functional key
query for vectors (�y(j,0), �y(j,1)) is created as sk

(j) = (k∗(j)
1 , k

∗(j)
2 ) such that

k
∗(j)
1 = g

γj

∑

i y
(j,0)
i

�b∗
i +ηj

�b∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�d∗
1+ηj,0 �d∗

5
2 ,

}

(5)

where γj , ηj , ηj,0
$←− Zp. On the other hand, for � = 1, . . . , q2, the reply to the �-th

ciphertext query of A for vectors (�x(�,0), �x(�,1)) is generated as ct(�) = (c(�)
1 , c

(�)
2 )

such that
c
(�)
1 = g

α�

∑

i x
(�,0)
i

�bi+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�d1+ξ�,0 �d6

1 ,

}

(6)

where α�, ξ�, ξ�,0
$←− Zp.

〈II〉 Game 1 Sequence
[

Game 1-κ-1, . . . , Game 1-κ-4 (κ = 1, . . . , q2)
]

Game 1-κ-1: Game 1-0-4 coincides with Game 0. Game 1-κ-1 is the same as
Game 1-(κ − 1)-4 except that the components of the κ-th queried ciphertext for
vectors (�x(κ,0), �x(κ,1)) are computed as

c
(κ)
1 = g

ακ

∑

i x
(κ,0)
i

�bi+ α′′
κ

∑

i x
(κ,0)
i

�b2n+i +ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ α′′

κ
�d3 +ξκ,0 �d6

1 ,

⎫

⎪

⎬

⎪

⎭

(7)
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where ακ
$←− Zp and all the other variables are generated as in Game 1-(κ− 1)-4.

Game 1-κ-2: This game is identical to Game 1-κ-1 with the only exception
that the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are formed as

c
(κ)
1 = g

ακ

∑

i x
(κ,0)
i

�bi+α′′
κ

∑

i x
(κ,1)
i

�b2n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′′

κ
�d3+ξκ,0 �d6

1 ,

⎫

⎬

⎭

(8)

where all the variables are generated as in Game 1-κ-1.

Game 1-κ-3: This game is analogous to Game 1-κ-2 except that the components
of the κ-th queried ciphertext for vectors (�x(κ,0), �x(κ,1)) are created as

c
(κ)
1 = g

ακ
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i

�bi+α′′
κ
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⎪
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⎭

(9)

where α′′′
κ

$←− Zp and all the other variables are generated as in Game 1-κ-2.

Game 1-κ-4: This game is the same as Game 1-κ-3 except that the components
of the κ-th queried ciphertext for vectors (�x(κ,0), �x(κ,1)) are computed as

c
(κ)
1 = g

ακ

∑

i x
(κ,0)
i

�bi+α′′′
κ

∑

i x
(κ,1)
i
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1 ,

c
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2 = g

ακ
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κ
�d4+ξκ,0 �d6

1 ,

}

(10)

where all the variables are generated as in Game 1-κ-3, i.e., in this game c
(κ)
1 and

c
(κ)
2 are modified from those in the last game by dropping the terms involving

α′′
κ in the exponent of g1.

〈III〉 Game 2 Sequence
[

Game 2-ω-1, . . . , Game 2-ω-6 (ω = 1, . . . , q1)
]

Game 2-ω-1: Game 2-0-6 coincides with Game 1-q2-4. Game 2-ω-1 is the similar
to Game 2-(ω − 1)-6 except that the components of the ω-th queried functional
key corresponding to vectors (�y(ω,0), �y(ω,1)) are formed as

k
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γω
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⎫

⎪
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⎬

⎪

⎪

⎭

(11)

where γ′
ω, γ′′

ω
$←− Zp, and all the other variables are generated as in Game 2-(ω −

1)-6.

Sequence of Subgames of Game 2-ω-2
[

Game 2-ω-2-κ-1, . . . ,Game 2-ω-

2-κ-5 (κ = 1, . . . , q2)
]
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Game 2-ω-2-κ-1: Game 2-ω-2-0-5 coincides with Game 2-ω-1. Game 2-ω-2-κ-1 is
analogous to Game 2-ω-2-(κ− 1)-5 with the only exception that the components
of the ω-th queried functional key corresponding to vectors (�y(ω,0), �y(ω,1)) are
formed as

k
∗(ω)
1 = g

γω
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i
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i +γ′
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⎫
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(12)

where all the variables are generated as in Game 2-ω-2-(κ − 1)-5. Here a part
of the exponent framed by a white box (respectively light gray box) indicates
those terms which were changed in the transition from the previous game when
κ ≥ 2 (respectively κ = 1). More specifically, when κ = 1, k∗(ω)

1 in Eq. (12) is
transformed from that in Eq. (11), which is the form of k∗(ω)

1 in Game 2-ω-2-0-5,
by changing the portion of the exponent framed by a light gray box. On the
other hand, when κ ≥ 2, k

∗(ω)
1 in Eq. (12) is obtained from that in Eq. (14),

which is the form of k∗(ω)
1 in Game 2-ω-2-(κ − 1)-5, by applying modification in

the portion of the exponent framed by a white box.

Game 2-ω-2-κ-2: This game is identical to Game 2-ω-2-κ-1 except that the com-
ponents of the κ-th queried ciphertext for vectors (�x(κ,0), �x(κ,1)) are computed as

c
(κ)
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ακ
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i x
(κ,0)
i

�bi+ α′
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(κ,0)
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∑
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⎭

(13)

where α′
κ

$←− Zp and all the other variables are generated as in Game 2-ω-2-κ-1.

Game 2-ω-2-κ-3: This game is similar to Game 2-ω-2-κ-2 with the only excep-
tion that the components of the ω-th queried functional key corresponding to
vectors (�y(ω,0), �y(ω,1)) are formed as
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(14)

while the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are created as

c
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(15)

where all the variables are generated as in Game 2-ω-2-κ-2.

Game 2-ω-2-κ-4: This game is the same as Game 2-ω-2-κ-3 except that the com-
ponents of the κ-th queried ciphertext corresponding to vectors (�x(κ,0), �x(κ,1))
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are computed as

c
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1 = g
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where ᾰ′′
κ

$←− Zp and all the other variables are generated as in Game 2-ω-2-κ-3.

Game 2-ω-2-κ-5: This game is analogous to Game 2-ω-2-κ-4 with the only
exception that the components of the κ-th queried ciphertext corresponding to
vectors (�x(κ,0), �x(κ,1)) are formed as
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(17)

where all the variables are generated as in Game 2-ω-2-κ-4, i.e., in this game c
(κ)
1

and c
(κ)
2 are transformed from those in the earlier game by removing the terms

involving α′
κ in the exponent of g1.

Game 2-ω-3: This game is identical to Game 2-ω-2-q2-5 with the only exception
that the components of the ω-th queried functional key for vectors (�y(ω,0), �y(ω,1))
are computed as
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(18)

where all the variables are generated as in Game 2-ω-2-q2-5, i.e., in this game
k

∗(ω)
1 and k

∗(ω)
2 are changed from those in the last game by deleting the terms

involving γ′
ω in the exponent of g2.

Game 2-ω-4: This game is the same as Game 2-ω-3 except that the components
of the ω-th queried functional key for vectors (�y(ω,0), �y(ω,1)) are created as
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where γ′′′
ω

$←− Zp and all the other variables are generated as in Game 2-ω-3.

Game 2-ω-5: This game is similar to Game 2-ω-4 with the only exception that
for � = 1, . . . , q2, the components of the �-th queried ciphertext for vectors
(�x(�,0), �x(�,1)) are computed as

c
(�)
1 = g

α�

∑

i x
(�,0)
i

�bi+α′′′
�

∑

i x
(�,1)
i

�b3n+i+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�d1+α′′′

�
�d4+ξ�,0 �d6

1 ,

}

(20)



180 P. Datta et al.

where all the variables are generated as in Game 2-ω-4, i.e., Eq. (20) resets c
(�)
1

and c
(�)
2 , for � = 1, . . . , q2, as those in Eq. (10) by dropping the terms involving

ᾰ′′
� in the exponent of g1.

Game 2-ω-6: This game is the same as Game 2-ω-5 except that the components
of the ω-th queried functional key for vectors (�y(ω,0), �y(ω,1)) are created as
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where all the variables are generated as in Game 2-ω-5, i.e., in this game k
∗(ω)
1

and k
∗(ω)
2 are changed from those in the earlier game by deleting the terms

involving γ′′
ω in the exponent of g2.

〈IV〉 Game 3 : This game is analogous to Game 2-q1-6 except that for j =
1, . . . , q1, the components of the j-th queried functional key corresponding to
vectors (�y(j,0), �y(j,1)) are computed as
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while for � = 1, . . . , q2, the components of the �-th queried ciphertext for vectors
(�x(�,0), �x(�,1)) are computed as

c
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where all the variables are generated as in Game 2-q1-6.

〈V〉 Game 4 Sequence
[

Game 4-ω-1, . . . , Game 4-ω-6 (ω = 1, . . . , q1)
]

Game 4-ω-1: Game 4-0-6 coincides with Game 3. Game 4-ω-1 is the same as
Game 4-(ω − 1)-6 except that the components of the ω-th queried functional key
for vectors (�y(ω,0), �y(ω,1)) are created as
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where γ̆′′
ω

$←− Zp and all the other variables are generated as in Game 4-(ω −1)-6.

Game 4-ω-2: This game is identical to Game 4-ω-1 with the only exception that
for � = 1, . . . , q2, the components of the �-th queried ciphertext corresponding
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to vectors (�x(�,0), �x(�,1)) are computed as
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where α̌′′
�

$←− Zp and all the other variables are generated as in Game 4-ω-1.

Game 4-ω-3: This game is the same as Game 4-ω-2 with the only exception that
the components of the ω-th queried functional key for vectors (�y(ω,0), �y(ω,1)) are
computed as
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where all the variables are generated as in Game 4-ω-2, i.e., in this game k
∗(ω)
1

and k
∗(ω)
2 are transformed from those in the previous game by dropping the

terms involving γ′′′
ω in the exponent of g2.

Game 4-ω-4: This game is analogous to Game 4-ω-3 except that the components
of the ω-th queried functional key corresponding to vectors (�y(ω,0), �y(ω,1)) are
formed as
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where γ̆′
ω

$←− Zp and all the other variables are generated as in Game 4-ω-3.

Sequence of Subgames of Game 4-ω-5
[

Game 4-ω-5-κ-1, . . . ,Game 4-ω-

5-κ-5 (κ = 1, . . . , q2)
]

Game 4-ω-5-κ-1: Game 4-ω-5-0-5 coincides with Game 4-ω-4. Game 4-ω-5-κ-1 is
identical to Game 4-ω-5-(κ−1)-5 except that the components of the κ-th queried
ciphertext corresponding to vectors (�x(κ,0), �x(κ,1)) are computed as
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where ᾰ′
κ

$←− Zp and all the other variables are generated as in Game 4-ω-5-
(κ − 1)-5.

Game 4-ω-5-κ-2: This game is the same as Game 4-ω-5-κ-1 except that the com-
ponents of the κ-th queried ciphertext for vectors (�x(κ,0), �x(κ,1)) are formed as

c
(κ)
1 = g

ακ

∑

i x
(κ,1)
i

�bi+ᾰ′
κ

∑

i x
(κ,0)
i

�bn+i+α′′′
κ

∑

i x
(κ,0)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ᾰ′

κ
�d2+α′′′

κ
�d4+ξκ,0 �d6

1 ,

}

(29)
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where all the variables are generated as in Game 4-ω-5-κ-1, i.e., in this game c
(κ)
1

and c
(κ)
2 are changed from those in the last game by deleting the terms involving

α̌′′
κ in the exponent of g1.

Game 4-ω-5-κ-3: This game is similar to Game 4-ω-5-κ-2 with the only excep-
tion that the components of the ω-th queried functional key corresponding to
vectors (�y(ω,0), �y(ω,1)) are computed as

k
∗(ω)
1 = g

γω

∑

i y
(ω,1)
i

�b∗
i +γ̆′

ω

∑

i y
(ω,1)
i

�b∗
n+i+γ̆′′

ω

∑

i y
(ω,0)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ̆′

ω
�d∗
2+γ̆′′

ω
�d∗
3+ηω,0 �d∗

5
2 ,

⎫

⎬

⎭

(30)

while the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are created as

c
(κ)
1 = g

ακ

∑

i x
(κ,1)
i

�bi+ᾰ′
κ

∑

i x
(κ,1)
i

�bn+i+α′′′
κ

∑

i x
(κ,0)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ᾰ′

κ
�d2+α′′′

κ
�d4+ξκ,0 �d6

1 ,

⎫

⎬

⎭

(31)

where all the variables are generated as in Game 4-ω-5-κ-2.

Game 4-ω-5-κ-4: This game is the same as Game 4-ω-5-κ-3 except that the com-
ponents of the κ-th queried ciphertext for vectors (�x(κ,0), �x(κ,1)) are computed
as

c
(κ)
1 = g

ακ

∑

i x
(κ,1)
i

�bi+α′′′
κ

∑

i x
(κ,0)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′′′

κ
�d4+ξκ,0 �d6

1 ,

}

(32)

where all the variables are generated as in Game 4-ω-5-κ-3, i.e., in this game c
(κ)
1

and c
(κ)
2 are transformed from those in the earlier game by removing the terms

involving ᾰ′
κ in the exponent of g1.

Game 4-ω-5-κ-5: This game is analogous to Game 4-ω-5-κ-4 with the only
exception that the components of the ω-th queried functional key corresponding
to vectors (�y(ω,0), �y(ω,1)) are formed as

k
∗(ω)
1 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

g
γω

∑

i y
(ω,1)
i

�b∗
i +γ̆′

ω

∑

i y
(ω,0)
i

�b∗
n+i+γ̆′′

ω

∑

i y
(ω,0)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

if κ ≤ q2 − 1

g
γω

∑

i y
(ω,1)
i

�b∗
i +γ̆′

ω

∑

i y
(ω,1)
i

�b∗
n+i+γ̆′′

ω

∑

i y
(ω,1)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

if κ = q2

(33a)

(33b)

k
∗(ω)
2 = g

γω
�d∗
1+γ̆′

ω
�d∗
2+γ̆′′

ω
�d∗
3+ηω,0 �d∗

5
2 (33c)
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where all the variables are generated as in Game 4-ω-5-κ-4. Here a part of the
exponent framed by a white box (respectively light gray box) indicates those
terms which were changed from the previous game when κ ≤ q2−1 (respectively
κ = q2). More precisely, for κ ≤ q2 − 1, Eq. (33a) resets k

∗(ω)
1 as in Eq. (27) by

changing the portion of the exponent framed by a white box before executing
the sequence of subgames Game 4-ω-5-κ-1 – Game 4-ω-5-κ-5 for the next value
of κ. Equation (33b) modifies k

∗(ω)
1 only once for κ = q2 by applying change in

the portion of the exponent framed by a light gray box and comes out of the
sequence of subgames of Game 4-ω-5.

Game 4-ω-6: This game is the same as Game 4-ω-5-q2-5 with the only exception
that the components of the ω-th queried functional key corresponding to vectors
(�y(ω,0), �y(ω,1)) are formed as

k
∗(ω)
1 = g

γω

∑

i y
(ω,1)
i

�b∗
i +ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+ηω,0 �d∗

5
2 ,

}

(34)

where all the variables are generated as in Game 4-ω-5-q2-5, i.e., in this game
k

∗(ω)
1 and k

∗(ω)
2 are changed from those in the previous game by deleting the

terms involving γ̆′
ω and γ̆′′

ω in the exponent of g2.

〈VI〉 Game 5 Sequence
[

Game 5-κ-1, . . . , Game 5-κ-4 (κ = 1, . . . , q2)
]

Game 5-κ-1: Game 5-0-4 coincides with Game 4-q1-6. Game 5-κ-1 is similar to
Game 5-(κ − 1)-4 except that the components of the κ-th queried ciphertext for
vectors (�x(κ,0), �x(κ,1)) are created as

c
(κ)
1 = g

ακ

∑

i x
(κ,1)
i

�bi+ ὰ′′
κ

∑

i x
(κ,0)
i

�b2n+i +α′′′
κ

∑

i x
(κ,0)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ ὰ′′

κ
�d3 +α′′′

κ
�d4+ξκ,0 �d6

1 ,

⎫

⎪

⎬

⎪

⎭

(35)

where ὰ′′
κ

$←− Zp and all the other variables are generated as in Game 5-(κ− 1)-4.

Game 5-κ-2: This game is analogous to Game 5-κ-1 with the only exception
that the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are computed as

c
(κ)
1 = g

ακ

∑

i x
(κ,1)
i

�bi+ὰ′′
κ

∑

i x
(κ,0)
i

�b2n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ὰ′′

κ
�d3+ξκ,0 �d6

1 ,

}

(36)

where all the variables are generated as in Game 5-κ-1, i.e., in this game c
(κ)
1 and

c
(κ)
2 are modified from those in the last game by dropping the terms involving

α′′′
κ in the exponent of g1.
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Game 5-κ-3: This game is identical to Game 5-κ-2 except that the components
of the κ-th queried ciphertext corresponding to vectors (�x(κ,0), �x(κ,1)) are com-
puted as

c
(κ)
1 = g

ακ

∑

i x
(κ,1)
i

�bi+ὰ′′
κ

∑

i x
(κ,1)
i

�b2n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ὰ′′

κ
�d3+ξκ,0 �d6

1 ,

⎫

⎬

⎭

(37)

where all the variables are generated as in Game 5-κ-2.

Game 5-κ-4: This game is similar to Game 5-κ-3 with the only exception
that the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are computed as

c
(κ)
1 = g

ακ

∑

i x
(κ,1)
i

�bi+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+ξκ,0 �d6

1 ,

}

(38)

where all the variables are generated as in Game 5-κ-3, i.e., in this game c
(κ)
1 and

c
(κ)
2 are changed from those in the earlier game by deleting the terms involv-

ing ὰ′′
κ in the exponent of g1. Note that in the final game, i.e., Game 5-q2-4, all

the queried functional keys sk
(j) = (k∗(j)

1 , k
∗(j)
2 ), for j = 1, . . . , q1, and all the

queried ciphertexts ct
(�) = (c(�)

1 , c
(�)
2 ), for � = 1, . . . , q2, corresponds to func-

tional keys and ciphertexts in the real security game of Sect. 2.1 where the bit
used by the challenger is c = 1.

� Advantages of Adversary in Hybrid Games: Denote View
(0)
A ; View(1-κ-h)

A ,
for h = 1, . . . , 4; View(2-ω-h)

A , for h = 1, 3, . . . , 6; View(2-ω-2-κ-h)
A , for h = 1, . . . , 5;

View
(3)
A ; View(4-ω-h)

A , for h = 1, . . . , 4, 6; View(4-ω-5-κ-h)
A , for h = 1, . . . , 5; and

View
(5-κ-h)
A , for h = 1, . . . , 4 to be the views of the adversary A in Game 0;

Game 1-κ-h, for h = 1, . . . , 4; Game 2-ω-h, for h = 1, 3, . . . , 6; Game 2-ω-2-κ-h,
for h = 1, . . . , 5; Game 3; Game 4-ω-h, for h = 1, . . . , 4, 6; Game 4-ω-5-κ-h,
for h = 1, . . . , 5; and Game 5-κ-h, for h = 1, . . . , 4 respectively. We define the
advantage of A in Game ι as

Adv
(ι)
A (λ) = Pr

[

A(View(ι)
A ) = 1

]

,

for ι ∈ {0, 1-κ-h (h = 1, . . . , 4), 2-ω-h (h = 1, 3, . . . , 6), 2-ω-2-κ-h (h =
1, . . . , 5), 3, 4-ω-h (h = 1, . . . , 4, 6), 4-ω-5-κ-h (h = 1, . . . , 5), 5-κ-h (h =
1, . . . , 4)}.

To complete the proof of the theorem, we must show that the difference in
the advantage of the adversary A between each pair of neighbouring games of
the game sequence described above is at most negligible. Here, observe that the
transition from Game 3 to Game 5-q2-4 is actually the reverse of the transfor-
mation from Game 0 to Game 2-q1-6 with the roles of (�x(0)

� , �y
(0)
j ) exchange with

that of (�x(1)
� , �y

(1)
j ), for j = 1, . . . , q1; � = 1, . . . , q2. Therefore, it is sufficient to

consider the transition from Game 0 to Game 3.
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Indeed, in the full version of this paper [9] we have presented the complete
sequence of arguments showing that the adversary A could experience at most
a negligible difference in advantage between the neighbouring games from Game
0 to Game 3. Due to space consideration, in the next subsection we only pro-
vide those arguments which are significantly apart from one another and will
demonstrate in detail our main technical ideas. Thus, it follows that

AdvPKFP-IPEA (λ) =
∣

∣Adv
(0)
A (λ) − Adv

(5-q2-4)
A (λ)

∣

∣

is negligible under the SXDH assumption. Hence the theorem. ��

� Technically Distinguished Lemmas for Proof of Theorem 1:

Lemma 1. For any probabilistic adversary A, there exists a probabilistic algo-
rithm C1-1, whose running time is essentially the same as that of A, such that
for any security parameter λ,

∣

∣Adv
(1-(κ−1)-4)
A (λ) − Adv

(1-κ-1)
A (λ)

∣

∣ ≤ AdvSXDH
C1-κ-1

(λ),
where C1-κ-1(·) = C1-1(κ, ·).

Proof. Suppose that there is a probabilistic adversary A that achieves a non-
negligible difference in advantage between Game 1-(κ − 1)-4 and Game 1-κ-1.
We construct a probabilistic algorithm C1-1 that attempts to decide the SXDH
problem using A as a subroutine. C1-1 is given a positive integer κ and an instance
of the SXDH problem �β =

(

(p,G1,G2,GT , g1, g2, e), g
μ
1 , gν

1 ,	β = gμν+r
1

)

, where

μ, ν
$←− Zp, and r = 0 or r

$←− Zp according as β = 0 or 1. C1-1 plays the role of
the challenger in the security game of Sect. 2.1 and interacts with A as follows:

• C1-1 forms (p,V1,V2,GT ,A1,A2, E) $←− GDPVS

(

4n+2, (p,G1,G2,GT , g1, g2, e)
)

and (p,V′
1,V

′
2,GT ,A′

1,A
′
2, E

′) $←− GDPVS

(

6, (p,G1,G2,GT , g1, g2, e)
)

. Next,
it samples dual orthonormal bases

(

F = {�f1, . . . , �f4n+2},F∗ = {�f∗
1 , . . . ,

�f∗
4n+2}

) $←− GOB(Z4n+2
p ) and

(

H = {�h1, . . . ,�h6},H∗ = {�h∗
1, . . . ,

�h∗
6}

) $←−
GOB(Z6

p). It implicitly defines

�bi = �fi + μ�f2n+i (i = 1, . . . , n), �bi = �fi (i = n + 1, . . . , 4n + 2),
�b∗
2n+i = �f∗

2n+i − μ�f∗
i (i = 1, . . . , n), �b∗

i = �f∗
i (i = 1, . . . , 2n, 3n + 1, . . . , 4n + 2),

�d1 = �h1 + μ�h3, �di = �hi (i = 2, . . . , 6),
�d∗
3 = �h∗

3 − μ�h∗
1,

�d∗
i = �h∗

i (i = 1, 2, 4, . . . , 6).

It implicitly sets B = {�b1, . . . ,�b4n+2},B∗ = {�b∗
1, . . . ,

�b∗
4n+2},D = {�d1, . . . , �d6},

and D
∗ = {�d∗

1, . . . ,
�d∗
6}. Note that (B,B∗) and (D,D∗) are dual orthonormal

bases since those are obtained by applying an invertible linear transformation
to the output of GOB(Z4n+2

p ) and GOB(Z6
p) respectively. For instance, observe

that for i = 1, . . . , n,

〈�bi,�b
∗
2n+i〉 =

0

〈�fi, �f∗
2n+i〉 −μ

1

〈�fi, �f∗
i 〉 +μ

1

〈�f2n+i, �f∗
2n+i〉 −μ2

0

〈�f2n+i, �f∗
i 〉= 0,

〈�bi,�b
∗
i 〉 =

1

〈�fi, �f∗
i 〉 +μ

0

〈�f2n+i, �f∗
i 〉= 1, etc.



186 P. Datta et al.

It hands the public parameters pp =
(

p, {Vh,V′
h}h=1,2,GT , {Ah,A′

h}h=1,2,

E,E′) to A.
• In response to the j-th functional key query of A corresponding to vectors

(�y(j,0), �y(j,1)), for j = 1, . . . , q1, C1-1 chooses γj , ηj , ηj,0
$←− Zp, computes

k
∗(j)
1 = g

γj

∑

i y
(j,0)
i

�f∗
i +ηj

�f∗
4n+1

2 = g
γj

∑

i y
(j,0)
i

�b∗
i +ηj

�b∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�h∗

1+ηj,0�h
∗
5

2 = g
γj

�d∗
1+ηj,0 �d∗

5
2 ,

and gives the functional key sk
(j) = (k∗(j)

1 , k
∗(j)
2 ) to A.

• In reply to A’s �-th ciphertext query corresponding to vectors (�x(�,0), �x(�,1)),
C1-1 proceeds as follows:
(a) (� < κ) C1-1 picks α�, α

′′′
� , ξ�, ξ�,0

$←− Zp and computes

c
(�)
1 = g

α�

∑

i x
(�,0)
i

�fi+α′′′
�

∑

i x
(�,1)
i

�f3n+i+ξ�
�f4n+2

1 (gμ
1 )α�

∑

i x
(�,0)
i

�f2n+i

= g
α�

∑

i x
(�,0)
i

�bi+α′′′
�

∑

i x
(�,1)
i

�b3n+i+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�h1+α′′′

�
�h4+ξ�,0�h6

1 (gμ
1 )α�

�h3 = g
α�

�d1+α′′′
�

�d4+ξ�,0 �d6
1 .

(b) (� = κ) C1-1 selects ξκ, ξκ,0
$←− Zp and computes

c
(κ)
1 = (gν

1 )
∑

i x
(κ,0)
i

�fi(	β)
∑

i x
(κ,0)
i

�f2n+ig
ξκ

�f4n+2
1

= g
ν
∑

i x
(κ,0)
i (�fi+μ�f2n+i)+r

∑

i x
(κ,0)
i

�f2n+i+ξκ
�f4n+2

1

= g
ν
∑

i x
(κ,0)
i

�bi+r
∑

i x
(κ,0)
i

�b2n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = (gν

1 )�h1(	β)�h3g
ξκ,0�h6
1 = g

ν(�h1+μ�h3)+r�h3+ξκ,0�h6
1 = g

ν �d1+r�d3+ξκ,0 �d6
1 .

(c) (� > κ) C1-1 chooses α�, ξ�, ξ�,0
$←− Zp and computes

c
(�)
1 = g

α�

∑

i x
(�,0)
i

�fi+ξ�
�f4n+2

1 (gμ
1 )α�

∑

i x
(�,0)
i

�f2n+i = g
α�

∑

i x
(�,0)
i

�bi+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�h1+ξ�,0�h6

1 (gμ
1 )α�

�h3 = g
α�

�d1+ξ�,0 �d6
1 .

C1-1 provides the ciphertext ct
(�) = (c(�)

1 , c
(�)
2 ) to A.

• Finally, A outputs a bit c′. C1-1 outputs β′ = c′.

Observe that if β = 0, i.e., r = 0, the κ-th answered ciphertext is of the form
(Eq. 6), as in Game 1-(κ − 1)-4, where ακ = ν. On the other hand, if β = 1, i.e.,

r
$←− Zp, the κ-th answered ciphertext is of the form (Eq. 7), as in Game 1-κ-1,

where ακ = ν and α′′
κ = r. Further, for � < κ, the �-th answered ciphertext is

of the form (Eq. 10) corresponding to Game 1-�-4, which is its proper form in
both Game 1-(κ−1)-4 and Game 1-κ-1 since the full sequence of transformations
Game 1-�-1 – Game 1-�-4 has already been executed, whereas for � > κ, the �-th
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answered ciphertext is of the form (Eq. 6) corresponding to Game 0, which is its
proper form since the sequence of transitions Game 1-�-1 – Game 1-�-4 has not yet
been taken place. Additionally, for j = 1, . . . , q1, the j-th answered functional
key is of the form (Eq. 5) corresponding to Game 0, which is its proper form
since in the game transition so far no change is made in the form of the queried
functional keys. Thus the view of A simulated by C1-1 is distributed as in Game
1-(κ − 1)-4 or Game 1-κ-1 according as β = 0 or 1. This completes the proof of
Lemma 1. ��
Lemma 2. For any probabilistic adversary A, for any security parameter λ,
Adv

(1-κ-1)
A (λ) = Adv

(1-κ-2)
A (λ).

Proof. In order to prove Lemma 2, we define an intermediate game, namely, Game
1-κ-1’ as follows and show the equivalence of the distributions of the views of the
adversary A in Game 1-κ-1 and that in Game 1-κ-1’ (Claim 1) as well as those
in Game 1-κ-2 and in Game 1-κ-1’ (Claim 2).

Game 1-κ-1’ (κ = 1, . . . , q2): This game is identical to Game 1-κ-1 with the
only exception that the components of the κ-th queried ciphertext corresponding
to vectors (�x(κ,0), �x(κ,1)) are formed as

c
(κ)
1 = g

ακ

∑

i x
(κ,0)
i

�bi+α′′
κ

∑

i θ
(κ)
i

�b2n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′′

κ
�d3+ξκ,0 �d6

1 ,

}

(39)

where �θ(κ)
$←− Z

n
p\{�0} and all the other variables are generated as in Game 1-κ-1.

Claim 1. The distribution of the view of the adversary A in Game 1-κ-1 and
that in Game 1-κ-1’ are equivalent.

Proof. Consider the distribution of the view of A in Game 1-κ-1. We define new
dual orthonormal bases (U,U∗) of Z4n+2

p using (B,B∗) $←− GOB(Z4n+2
p ) below. We

generate M
$←− GL(n,Zp) and define

⎛

⎜

⎝

�u2n+1

...
�u3n

⎞

⎟

⎠ = M−1 ·

⎛

⎜

⎝

�b2n+1

...
�b3n

⎞

⎟

⎠ ,

⎛

⎜

⎝

�u∗
2n+1
...

�u∗
3n

⎞

⎟

⎠ = Mᵀ ·

⎛

⎜

⎝

�b∗
2n+1
...

�b∗
3n

⎞

⎟

⎠ ,

�ui = �bi, �u∗
i = �b∗

i ,
(i = 1, . . . , 2n, 3n + 1, . . . , 4n + 2).

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(40)

We set U = {�u1, . . . , �u4n+2},U∗ = {�u∗
1, . . . , �u

∗
4n+2}. Note that (U,U∗) are indeed

dual orthonormal bases since those are obtained from the dual orthonormal bases
(B,B∗) by applying an invertible linear transformation. The components of the
κ-th queried ciphertext corresponding to vectors (�x(κ,0), �x(κ,1)) are expressed as

c
(κ)
1 = g

ακ

∑

i x
(κ,0)
i

�bi+α′′
κ

∑

i x
(κ,0)
i

�b2n+i+ξκ
�b4n+2

1

= g
ακ

∑

i x
(κ,0)
i �ui+α′′

κ

∑

i θ
(κ)
i �u2n+i+ξκ�u4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′′

κ
�d3+ξκ,0 �d6

1 ,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(41)
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where ακ, α′′
κ, ξκ, ξκ,0

$←− Zp, and �θ(κ) = �x(κ,0) · M .
Since �x(κ,0) �= �0 and M is uniformly selected from GL(n,Zp), �θ(κ) is uni-

formly distributed in Z
n
p\{�0} and it is independent from all the other variables.

The components of any other �-th queried ciphertext corresponding to vectors
(�x(�,0), �x(�,1)) are expressed as

(a) (� < κ)

c
(�)
1 = g

α�

∑

i x
(�,0)
i

�bi+α′′′
�

∑

i x
(�,1)
i

�b3n+i+ξ�
�b4n+2

1

= g
α�

∑

i x
(�,0)
i �ui+α′′′

�

∑

i x
(�,1)
i �u3n+i+ξ��u4n+2

1 ,

c
(�)
2 = g

α�
�d1+α′′′

�
�d4+ξ�,0 �d6

1 ,

(b) (� > κ)

c
(�)
1 = g

α�

∑

i x
(�,0)
i

�bi+ξ�
�b4n+2

1 = g
α�

∑

i x
(�,0)
i �ui+ξ��u4n+2

1 , c
(�)
2 = g

α�
�d1+ξ�,0 �d6

1 ,

and for all j = 1, . . . , q1, the components of the j-th queried functional key for
vectors (�y(j,0), �y(j,1)) are expressed as

k
∗(j)
1 = g

γj

∑

i y
(j,0)
i

�b∗
i +ηj

�b∗
4n+1

2 = g
γj

∑

i y
(j,0)
i �u∗

i +ηj�u∗
4n+1

2 , k
∗(j)
2 = g

γj
�d∗
1+ηj,0 �d∗

5
2 ,

where all the variables are generated as in Game 1-κ-1.
Observe that in the light of the adversary A’s view, both (B,B∗) and (U,U∗)

are consistent with respect to pp. Also, this transformation of bases maintains
the form (Eq. 5) of the j-th answered functional key sk

(j) = (k∗(j)
1 , k

∗(j)
2 ) corre-

sponding to Game 0, for j = 1, . . . , q1. Additionally, for � < κ, the �-th answered
ciphertext ct

(�) = (c(�)
1 , c

(�)
2 ) preserves its form as in Eq. (10) corresponding to

Game 1-�-4 while for � > κ, ct(�) = (c(�)
1 , c

(�)
2 ) remains the same as in Eq. (6)

corresponding to Game 0 under the basis transformation. Moreover, since the
RHS of Eq. (41) and that of Eq. (39) are of the same form, the answered cipher-
text ct

(κ) = (c(κ)
1 , c

(κ)
2 ) is Game 1-κ-1 can be conceptually changed to that in

Game 1-κ-1’. ��

Claim 2. The distribution of the view of adversary A in Game 1-κ-2 and that
in Game 1-κ-1’ are equivalent.

Proof. Claim 2 is proven in a similar manner to Claim 1, using new dual ortho-
normal bases (U,U∗) as in (Eq. 40). ��

From Claims 1 and 2, it follows that adversary A’s view in Game 1-κ-1 can
be conceptually changed to that in Game 1-κ-2. This completes the proof of
Lemma 2. ��

Lemma 3. For any probabilistic adversary A, there exists a probabilistic algo-
rithm C2-1, whose running time is essentially the same as that of A, such that
for any security parameter λ,

∣

∣Adv
(2-(ω−1)-6)
A (λ) − Adv

(2-ω-1)
A (λ)

∣

∣ ≤ AdvSXDH
C2-ω-1

(λ),
where C2-ω-1(·) = C2-1(ω, ·).



Functional Encryption for Inner Product with Full Function Privacy 189

Proof. Suppose that there is a probabilistic adversary A that achieves a non-
negligible difference in advantage between Game 2-(ω − 1)-6 and Game 2-ω-1.
We construct a probabilistic algorithm C2-1 that attempts to decide the SXDH
problem using A as a subroutine. C2-1 is given a positive integer ω and an instance
of the SXDH problem �̆β =

(

(p,G1,G2,GT , g1, g2, e), g
μ̆
2 , gν̆

2 , 	̆β = gμ̆ν̆+r̆
2

)

, where

μ̆, ν̆
$←− Zp, and r̆ = 0 or r̆

$←− Zp according as β = 0 or 1. C2-1 plays the role of
the challenger in the security game of Sect. 2.1 and interacts with A as follows:

• The setup phase is executed by C2-1 in an analogous fashion as that per-
formed by C1-1 in the proof of Lemma 1 except that C2-1 sets the dual
orthonormal bases

(

B = {�b1, . . . ,�b4n+2},B∗ = {�b∗
1, . . . ,

�b∗
4n+2}

)

and
(

D =
{�d1, . . . , �d6},D∗ = {�d∗

1, . . . ,
�d∗
6}

)

implicitly from
(

F = {�f1, . . . , �f4n+2},F∗ =

{�f∗
1 , . . . , �f∗

4n+2}
) $←− GOB(Z4n+2

p ) and
(

H = {�h1, . . . ,�h6},H∗ = {�h∗
1, . . . ,

�h∗
6}

)

$←− GOB(Z6
p) respectively by selecting δ, σ

$←− Zp and implicitly defining the
following:

�bn+i = �fn+i − δμ̆ �fi (i = 1, . . . , n),�b2n+i = �f2n+i − σμ̆�fi (i = 1, . . . , n),
�bi = �fi (i = 1, . . . , n, 3n + 1, . . . , 4n + 2),
�b∗

i = �f∗
i + δμ̆ �f∗

n+i + σμ̆�f∗
2n+i (i = 1, . . . , n),�b∗

i = �f∗
i (i = n + 1, . . . , 4n + 2),

�d2 = �h2 − δμ̆�h1, �d3 = �h3 − σμ̆�h1, �di = �hi (i = 1, 4, . . . , 6),
�d∗
1 = �h∗

1 + δμ̆�h∗
2 + σμ̆�h∗

3,
�d∗
i = �h∗

i (i = 2, . . . , 6).

• In response to the j-th functional key query of A corresponding to vectors
(�y(j,0), �y(j,1)), C2-1 proceeds as follows:

(a) (j < ω) C2-1 picks γj , γ
′′′
j , ηj , ηj,0

$←− Zp and computes

k
∗(j)
1 = g

∑

i(γjy
(j,0)
i

�f∗
i +γ′′′

j y
(j,1)
i

�f∗
3n+i)+ηj

�f∗
4n+1

2 ⊕

(gμ̆
2 )
∑

i(δγjy
(j,0)
i

�f∗
n+i+σγjy

(j,0)
i

�f∗
2n+i)

= g
γj

∑

i y
(j,0)
i

�b∗
i +γ′′′

j

∑

i y
(j,1)
i

�b∗
3n+i+ηj

�b∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�h∗

1+γ′′′
j

�h∗
4+ηj,0�h

∗
5

2 (gμ̆
2 )δγj

�h∗
2+σγj

�h∗
3 = g

γj
�d∗
1+γ′′′

j
�d∗
4+ηj,0 �d∗

5
2 .

(b) (j = ω) C2-1 chooses ηω, ηω,0
$←− Zp and computes

k
∗(ω)
1 = (gν̆

2 )
∑

i y
(ω,0)
i

�f∗
i (	̆β)

∑

i(δy
(ω,0)
i

�f∗
n+i+σy

(ω,0)
i

�f∗
2n+i)g

ηω
�f∗
4n+1

2

= g
∑

i

(

ν̆y
(ω,0)
i (�f∗

i +δμ̆�f∗
n+i+σμ̆�f∗

2n+i)+δr̆y
(ω,0)
i

�f∗
n+i+σr̆y

(ω,0)
i

�f∗
2n+i

)

+ηω
�f∗
4n+1

2

= g
ν̆
∑

i y
(ω,0)
i

�b∗
i +δr̆

∑

i y
(ω,0)
i

�b∗
n+i+σr̆

∑

i y
(ω,0)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = (gν̆

2 )�h
∗
1 (	̆β)δ�h∗

2+σ�h∗
3g

ηω,0�h
∗
5

2 = g
ν̆(�h∗

1+δμ̆�h∗
2+σμ̆�h∗

3)+δr̆�h∗
2+σr̆�h∗

3+ηω,0�h
∗
5

2

= g
ν̆ �d∗

1+δr̆�d∗
2+σr̆�d∗

3+ηω,0 �d∗
5

2 .
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(c) (j > ω) C2-1 selects γj , ηj , ηj,0
$←− Zp and computes

k
∗(j)
1 = g

γj

∑

i y
(j,0)
i

�f∗
i +ηj

�f∗
4n+1

2 (gμ̆
2 )δγj

∑

i y
(j,0)
i

�f∗
n+i+σγj

∑

i y
(j,0)
i

�f∗
2n+i

= g
γj

∑

i y
(j,0)
i

�b∗
i +ηj

�b∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�h∗

1+ηj,0�h
∗
5

2 (gμ̆
2 )δγj

�h∗
2+σγj

�h∗
3 = g

γj
�d∗
1+ηj,0 �d∗

5
2 .

C2-1 hands the functional key sk
(j) = (k∗(j)

1 , k
∗(j)
2 ) to A.

• In reply to the �-th ciphertext query of A for vectors (�x(�,0), �x(�,1)), for

� = 1, . . . , q2, C2-1 selects α�, α
′′′
� , ξ�, ξ�,0

$←− Zp and computes

c
(�)
1 = g

α�

∑

i x
(�,0)
i

�fi+α′′′
�

∑

i x
(�,1)
i

�f3n+i+ξ�
�f4n+2

1

= g
α�

∑

i x
(�,0)
i

�bi+α′′′
�

∑

i x
(�,1)
i

�b3n+i+ξ�
�b4n+2

1 ,

c
(�)
2 = g

α�
�h1+α′′′

�
�h4+ξ�,0�h6

1 = g
α�

�d1+α′′′
�

�d4+ξ�,0 �d6
1 ,

and provides the ciphertext ct
(�) = (c(�)

1 , c
(�)
2 ) to A.

• Finally, A outputs a bit c′. C2-1 outputs β′ = c′.

Observe that if β = 0, i.e., r̆ = 0, the ω-th answered functional key is of the
form (Eq. 5), as in Game 2-(ω −1)-6, where γω = ν̆. On the other hand, if β = 1,

i.e., r̆
$←− Zp, the ω-th answered functional key is of the form (Eq. 11), as in Game

2-ω-1, where γω = ν̆, γ′
ω = δr̆, and γ′′

ω = σr̆. Further, for j < ω, the j-th answered
functional key is of the form (Eq. 21) as in Game 2-j-6, which is its proper form
in both Game 2-(ω−1)-6 and Game 2-ω-1 since the sequence of transitions Game
2-j-1 – Game 2-j-6 has already been completed, whereas for j > ω, the j-th
answered functional key is of the form (Eq. 5) corresponding to Game 0, which is
its proper form since during Game 1 sequence of transformations no change was
made to the queried functional keys and the sequence of hybrids Game 2-j-1 –
Game 2-j-6 has not yet been executed. Additionally, for � = 1, . . . , q2, the �-th
answered ciphertext is of the form (Eq. 10) as in Game 1-q2-4, which is the proper
form since for ω = 1, no more alteration in the form of these ciphertexts has
occurred after Game 1-q2-4 and for ω ≥ 2, these ciphertexts have been reset to
this form by Eq. (20) in Game 2-(ω − 1)-5. Thus the view of A simulated by C2-1

is distributed as in Game 2-(ω − 1)-6 or Game 2-ω-1 according as β = 0 or 1.
This completes the proof of Lemma 3. ��
Lemma 4. For any probabilistic adversary A, for any security parameter λ,
Adv

(2-ω-2-κ-2)
A (λ) = Adv

(2-ω-2-κ-3)
A (λ).

Proof. The proof of Lemma 4 utilizes the following result:

Lemma 5. (Lemma 3 in [13]). For τ ∈ Zp, let Sτ = {(�χ, �ϑ) | 〈�χ, �ϑ〉 = τ} ⊂
Z

n
p × Z

n
p , where p is a prime integer and n is some positive integer. For all

(�χ, �ϑ) ∈ Sτ , for all (�ζ, �υ) ∈ Sτ ,

Pr
[

�χ · F = �ζ
∧

�ϑ · F ∗ = �υ
]

= Pr
[

�χ · F ∗ = �ζ
∧

�ϑ · F = �υ
]

= 1/�Sτ ,
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where F
$←− GL(n,Zp),F ∗ = (F ᵀ)−1, and for any set A, �A denotes the cardi-

nality of the set A.

In order to prove Lemma 4, we define an intermediate game, namely, Game
2-ω-2-κ-2’ and show the equivalence of the distribution of the view of the adver-
sary A in Game 2-ω-2-κ-2 and that in Game 2-ω-2-κ-2’ (Claim 3) as well as those
in Game 2-ω-2-κ-3 and in Game 2-ω-2-κ-2’ (Claim 4).

Game 2-ω-2-κ-2’ (ω = 1, . . . , q1; κ = 1, . . . , q2): This game is similar to
Game 2-ω-2-κ-2 with the only exception that the components of the ω-th queried
functional key corresponding to vectors (�y(ω,0), �y(ω,1)) are formed as

k
∗(ω)
1 = g

γω

∑

i y
(ω,0)
i

�b∗
i +γ′

ω

∑

i ϑ
(ω)
i

�b∗
n+i+γ′′

ω

∑

i y
(ω,1)
i

�b∗
2n+i+ηω

�b∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ′

ω
�d∗
2+γ′′

ω
�d∗
3+ηω,0 �d∗

5
2 ,

}

(42)

while the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are created as

c
(κ)
1 = g

ακ

∑

i x
(κ,0)
i

�bi+α′
κ

∑

i χ
(κ)
i

�bn+i+α′′′
κ

∑

i x
(κ,1)
i

�b3n+i+ξκ
�b4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′

κ
�d2+α′′′

κ
�d4+ξκ,0 �d6

1 ,

}

(43)

such that (�χ(κ), �ϑ(ω)) $←− Sτω,κ
= {(�χ, �ϑ) | 〈�χ, �ϑ〉 = τω,κ} ⊂ Z

n
p × Z

n
p , where τω,κ =

〈�x(κ,0), �y(ω,0)〉
(

= 〈�x(κ,1), �y(ω,1)〉according to the restriction of the security game
)

,
and all the other variables are generated as in Game 2-ω-2-κ-2.

Claim 3. The distribution of the view of adversary A in Game 2-ω-2-κ-2 and
that in Game 2-ω-2-κ-2’ are equivalent.

Proof. Consider the distribution of the view of A in Game 2-ω-2-κ-2. We define
new dual orthonormal bases (U,U∗) of Z4n+2

p using (B,B∗) $←− GOB(Z4n+2
p ) below.

We generate W
$←− GL(n,Zp) and set

⎛

⎜

⎝

�un+1

...
�u2n

⎞

⎟

⎠ = W −1 ·

⎛

⎜

⎝

�bn+1

...
�b2n

⎞

⎟

⎠ ,

⎛

⎜

⎝

�u∗
n+1
...

�u∗
2n

⎞

⎟

⎠ = W ᵀ ·

⎛

⎜

⎝

�b∗
n+1
...

�b∗
2n

⎞

⎟

⎠ ,

�ui = �bi, �u∗
i = �b∗

i ,
(i = 1, . . . , n, 2n + 1, . . . , 4n + 2).

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

(44)

We define U = {�u1, . . . , �u4n+2},U∗ = {�u∗
1, . . . , �u

∗
4n+2}. Note that (U,U∗) are

indeed dual orthonormal bases since those are obtained from the dual orthonor-
mal bases (B,B∗) by applying an invertible linear transformation. The compo-
nents of the ω-th queried functional key corresponding to vectors (�y(ω,0), �y(ω,1))
are expressed as

k
∗(ω)
1 = g

γω

∑

i y
(ω,0)
i

�b∗
i +γ′

ω

∑

i y
(ω,0)
i

�b∗
n+i+γ′′

ω

∑

i y
(ω,1)
i

�b∗
2n+i+ηω

�b∗
4n+1

2

= g
γω

∑

i y
(ω,0)
i �u∗

i +γ′
ω

∑

i ϑ
(ω)
i �u∗

n+i+γ′′
ω

∑

i y
(ω,1)
i �u∗

2n+i+ηω�u∗
4n+1

2 ,

k
∗(ω)
2 = g

γω
�d∗
1+γ′

ω
�d∗
2+γ′′

ω
�d∗
3+ηω,0 �d∗

5
2 ,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(45)
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while the components of the κ-th queried ciphertext corresponding to vectors
(�x(κ,0), �x(κ,1)) are expressed as

c
(κ)
1 = g

ακ

∑

i x
(κ,0)
i

�bi+α′
κ

∑

i x
(κ,0)
i

�bn+i+α′′′
κ

∑

i x
(κ,1)
i

�b3n+i+ξκ
�b4n+2

1

= g
ακ

∑

i x
(κ,0)
i �ui+α′

κ

∑

i χ
(κ)
i �un+i+α′′′

κ

∑

i x
(κ,1)
i �u3n+i+ξκ�u4n+2

1 ,

c
(κ)
2 = g

ακ
�d1+α′

κ
�d2+α′′′

κ
�d4+ξκ,0 �d6

1 ,

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(46)

where γω, γ′
ω, γ′′

ω, ηω, ηω,0, ακ, α′
κ, α′′′

κ , ξκ, ξκ,0
$←− Zp, and �ϑω = �y(ω,0) · (W ᵀ)−1,

�χ(κ) = �x(κ,0) · W .
From Lemma 5 it follows that (�χ(κ), �ϑ(ω)) are uniformly distributed in Sτω,κ

,
where 〈�x(κ,0), �y(ω,0)〉 = τω,κ, and are independent from all the other variables.

The components of any other j-th queried functional key corresponding to
vectors (�y(j,0), �y(j,1)) are expressed as follows

(a) (j < ω)

k
∗(j)
1 = g

γj

∑

i y
(j,0)
i

�b∗
i +γ′′′

j

∑

i y
(j,1)
i

�b∗
3n+i+ηj

�b∗
4n+1

2

= g
γj

∑

i y
(j,0)
i �u∗

i +γ′′′
j

∑

i y
(j,1)
i �u∗

3n+i+ηj�u∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�d∗
1+γ′′′

j
�d∗
4+ηj,0 �d∗

5
2 ,

(b) (j > ω)

k
∗(j)
1 = g

γj

∑

i y
(j,0)
i

�b∗
i +ηj

�b∗
4n+1

2 = g
γj

∑

i y
(j,0)
i �u∗

i +ηj�u∗
4n+1

2 ,

k
∗(j)
2 = g

γj
�d∗
1+ηj,0 �d∗

5
2 ,

while the components of any other �-th queried ciphertext corresponding to
vectors (�x(�,0), �x(�,1)) are expressed as

(a) (� < κ)

c
(�)
1 = g

α�

∑

i x
(�,0)
i

�bi+ᾰ′′
�

∑

i x
(�,1)
i

�b2n+i+α′′′
�

∑

i x
(�,1)
i

�b3n+i+ξ�
�b4n+2

1

= g
α�

∑

i x
(�,0)
i �ui+ᾰ′′

�

∑

i x
(�,1)
i �u2n+i+α′′′

�

∑

i x
(�,1)
i �u3n+i+ξ��u4n+2

1 ,

c
(�)
2 = g

α�
�d1+ᾰ′′

�
�d3+α′′′

�
�d4+ξ�,0 �d6

1 ,

(b) (� > κ)

c
(�)
1 = g

α�

∑

i x
(�,0)
i

�bi+α′′′
�

∑

i x
(�,1)
i

�b3n+i+ξ�
�b4n+2

1

= g
α�

∑

i x
(�,0)
i �ui+α′′′

�

∑

i x
(�,1)
i �u3n+i+ξ��u4n+2

1 ,

c
(�)
2 = g

α�
�d1+α′′′

�
�d4+ξ�,0 �d6

1 ,

where all the variables are generated as in Game 2-ω-2-κ-2.
Observe that in the light of the adversary A’s view, both (B,B∗) and (U,U∗)

are consistent with respect to pp. Also, for j < ω, the j-th answered functional
key sk

(j) = (k∗(j)
1 , k

∗(j)
2 ) preserves its form as in Eq. (21) corresponding to Game

2-j-6 while for j > ω, sk
(j) = (k∗(j)

1 , k
∗(j)
2 ) remains the same as in Eq. (5)
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corresponding to Game 0, and for � < κ, the �-th answered ciphertext ct
(�) =

(c(�)
1 , c

(�)
2 ) preserves its form as in Eq. (17) corresponding to Game 2-ω-2-�-5 while

for � > κ, ct(�) = (c(�)
1 , c

(�)
2 ) remains the same as in Eq. (10) corresponding to

Game 1-q2-4 (or equivalently of the form (Eq. 20) as in Game 2-(ω − 1)-5, for
ω ≥ 2) under the basis transformation. Moreover, since the RHS of Eq. (45)
(respectively Eq. (46)) and that of Eq. (42) (respectively Eq. (43)) are of the
same form, the ω-th queried functional key sk

(ω) = (k∗(ω)
1 , k

∗(ω)
2 ) and the κ-th

queried ciphertext ct
(κ) = (c(κ)

1 , c
(κ)
2 ) in Game 2-ω-2-κ-2 can be conceptually

changed to those in Game 2-ω-2-κ-2’. ��
Claim 4. The distribution of the view of the adversary A in Game 2-ω-2-κ-3
and that in Game 2-ω-2-κ-2’ are equivalent.

Proof. Claim 4 is proven in an analogous manner to Claim 3 using new dual
orthonormal bases (U,U∗) as in Eq. (44). ��
From Claims 3 and 4 it follows that adversary A’s view in Game 2-ω-2-κ-2 can
be conceptually changed to that in Game 2-ω-2-κ-3. This completes the proof of
Lemma 4. ��
Lemma 6. For any probabilistic adversary A, for any security parameter λ,
Adv

(2-q1-6)
A (λ) = Adv

(3)
A (λ).

Proof. In Game 2-q1-6, for j = 1, . . . , q1, the components of the j-th queried
functional key corresponding to vectors (�y(j,0), �y(j,1)) have the form

k
∗(j)
1 = g

γj

∑

i y
(j,0)
i

�b∗
i +γ′′′

j

∑

i y
(j,1)
i

�b∗
3n+i+ηj

�b∗
4n+1

2 , k
∗(j)
2 = g

γj
�d∗
1+γ′′′

j
�d∗
4+ηj,0 �d∗

5
2 ,

as in Eq. (21), where γj , γ
′′′
j , ηj , ηj,0

$←− Zp, while for � = 1, . . . , q2, the components
of the �-th queried ciphertext for vectors (�x(�,0), �x(�,1)) of the form

c
(�)
1 = g

α�

∑

i x
(�,0)
i

�bi+α′′′
�

∑

i x
(�,1)
i

�b3n+i+ξ�
�b4n+2

1 , c
(�)
2 = g

α�
�d1+α′′′

�
�d4+ξ�,0 �d6

1 ,

as in Eq. (20), where α�, α
′′′
� , ξ�, ξ�,0

$←− Zp.
Therefore, by swapping the components of the dual orthonormal bases

(

B = {�b1, . . . ,�b4n+2},B∗ = {�b∗
1, . . . ,

�b∗
4n+2}

) (

respectively
(

D = {�d1, . . . , �d6},

D
∗ = {�d∗

1, . . . ,
�d∗
6}

))

in the first block, i.e., in the range i = 1, . . . , n (respec-
tively i = 1) and in the fourth block, i.e., in the range i = 3n + 1, . . . , 4n
(respectively i = 4), we obtain the distribution in Game 3. More precisely,
we define new dual orthonormal bases (U,U∗) of Z

4n+2
p and (W,W∗) of Z

6
p

using (B,B∗) $←− GOB(Z4n+2
p ) and (D,D∗) $←− GOB(Z6

p) as follows: We set

�u3n+i = �bi, �u∗
3n+i = �b∗

i (i = 1, . . . , n),
�ui = �b3n+i, �u∗

i = �b∗
3n+i (i = 1, . . . n),

�ui = �bi, �u∗
i = �b∗

i (i = n + 1, . . . , 3n, 4n + 1, 4n + 2),
�w4 = �d1, �w∗

4 = �d∗
1, �w1 = �d4, �w∗

1 = �d∗
4,

�wi = �di, �w∗
i = �d∗

i (i = 2, 3, 5, 6).



194 P. Datta et al.

We define U = {�u1, . . . , �u4n+2},U∗ = {�u∗
1, . . . , �u

∗
4n+2},W = {�w1, . . . , �w6},

W
∗ = {�w∗

1 , . . . , �w∗
6}. It is clear that (U,U∗) and (W,W∗) are indeed dual ortho-

normal bases since those are obtained from the dual orthonormal bases (B,B∗)
and (D,D∗) respectively by means of invertible linear transformations.

Observe that in light of the adversary A’s view, both (B,B∗) (respectively
(D,D∗)) and (U,U∗) (respectively (W,W∗)) are consistent with respect to pp.
Moreover, it readily follows that the components of the queried functional keys
and ciphertexts in Game 2-q1-6 over bases (B,B∗) and (D,D∗) are expressed as
those in Eqs. (22) and (23) of Game 3 over bases (U,U∗) and (W,W∗). This
completes the proof of Lemma 6. ��

5 Conclusion

In this paper, we have presented the first non-generic private key FE scheme for
the inner product functionality achieving the strongest indistinguishability-based
notion of function privacy, namely, the full-hiding security [2,8]. Our construction
has utilized the standard asymmetric bilinear pairing group of prime order and
has derived its security from the SXDH assumption. A significant future direction
of research in this area would be to explore simulation-based notion of function
privacy [2] in the context of IPE in the private key setting.
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Abstract. Deniable encryption, first introduced by Canetti et al. [14],
allows a sender and/or receiver of encrypted communication to produce
fake but authentic-looking coins and/or secret keys that “open” the com-
munication to a different message. Here we initiate its study for the more
general case of functional encryption (FE), as introduced by Boneh et
al. [12], wherein a receiver in possession of a key k can compute from any
encryption of a message x the value F (k, x) according to the scheme’s
functionality F . Our results are summarized as follows: We put forth and
motivate the concept of deniable FE, for which we consider two mod-
els. In the first model, as previously considered by O’Neill et al. [31] in
the case of identity-based encryption, a receiver gets assistance from the
master authority to generate a fake secret key. In the second model, there
are “normal” and “deniable” secret keys, and a receiver in possession of a
deniable secret key can produce a fake but authentic-looking normal key
on its own. This parallels the “multi-distributional” model of deniability
previously considered for public-key encryption.

In the first model, we show that any FE scheme for the general
circuit functionality (as several recent candidate construction achieve)
can be converted into an FE scheme having receiver deniability, without
introducing any additional assumptions. In addition we show an efficient
receiver deniable FE for Boolean Formulae from bilinear maps. In the
second (multi-distributional) model, we show a specific FE scheme for
the general circuit functionality having receiver deniability. This result
additionally assumes differing-inputs obfuscation and relies on a new
technique we call delayed trapdoor circuits. To our knowledge, a scheme
in the multi-distributional model was not previously known even in the
simpler case of identity-based encryption.

Finally, we show that receiver deniability for FE implies some form of
simulation security, further motivating study of the latter and implying
optimality of our results.
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1 Introduction

Encryption schemes meeting standard security notions (e.g., semantic secu-
rity [22]) may be committing in the sense that they tie the sender and receiver
to having communicated a particular message. This is potentially damaging in
the context of coercion, whereby for example the receiver’s secret key becomes
revealed (say under subpoena). Deniable encryption, formalized by Canetti et al.
in 1997 [14], mitigates this threat by allowing the sender and/or receiver, after
having already exchanged an encrypted message, to produce fake but authentic-
looking random coins that “open” the ciphertext to a different message. That
is, they can produce random coins (from which in particular a secret key can be
computed) that make it look like they communicated some other message. The
study of deniable encryption has seen a renewed interest. In particular, O’Neill
et al. [31] construct “bideniable” public-key encryption schemes, namely where
the sender and receiver can simultaneously equivocate without coordination,
albeit in a relaxed, “multidistributional” model where there are special “deni-
able” algorithms that the sender and receiver must run in order to later be able
to do so (in which case it looks like they ran the “normal” prescribed algorithms
all along). Following [14,31], we call schemes where only the sender can equiv-
ocate “sender deniable,” where only the receiver can equivocate “receiver deni-
able,” and where both can equivocate “bideniable”. Bendlin et al. [8] show that
(non-interactive) receiver-deniable public-key encryption is impossible unless one
works in the multidistributional model. Finally, a recent breakthrough work of
Sahai and Waters [32] constructs sender-deniable public-key encryption without
relying on the multidistributional model.

Deniability for Functional Encryption. In this paper, we initiate the study
of deniability for much more advanced cryptosystems, as captured under the
umbrella concept of functional encryption (FE) [12]. (Deniability for identity-
based encryption was also previously considered by [31].) Whereas in traditional
public-key encryption decryption is an all-or-nothing affair (i.e., a receiver is
either able to recover the entire message using its key, or nothing), in FE is pos-
sible to finely control the amount of information that is revealed by a ciphertext
to a given receiver. Somewhat more precisely, in a functional encryption scheme
for functionality F , each secret key (generated by a master authority) is associ-
ated with some value k. Anyone can encrypt via the public parameters. When a
ciphertext Ctx that encrypts x is decrypted using a secret key Skk for value k, the
result is F (k, x). Intuitively, security requires that a receiver in possession of Skk

learns nothing beyond this. We contend that deniability is an important prop-
erty to consider in the context of FE. For example, consider a large organization
using FE in which members have different keys. Suppose the police coerces one
of the members of the organization into revealing its key or requesting a key for
some value k. A deniable FE scheme in the sense we consider would allow this
member to provide the police with a key ˜SKk that “opens” a ciphertext Ctx
as above to any apparent value of F (k, x) it likes. Another interesting applica-
tion would be an encrypted email server that uses FE, where the server is in
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possession of keys that allow it to do searches, spam filtering, targeted advertis-
ing, etc. If the government coerces the email server to provide its keys or requests
additional keys from the client, the server can do so in a way that again reveals
any apparent values it likes. As another scenario, consider a secure routing pro-
tocol implemented with FE, where any node receives an encrypted packet and
using a secret key corresponding to its routing table can forward the packet to
the right port without knowing the next destinations of the packet. The NSA
could coerce the nodes to reveal their respective routing tables to trace the final
destinations of the packet. If the FE system is receiver deniable, there is no
reason for the NSA to coerce them as the nodes could reveal a fake secret key.

Model and Definitions. More specifically, we propose the concept of receiver-
deniable FE. For intuition, suppose the coercer has observed Ctx as above. Infor-
mally, receiver-deniable FE allows the sender to produce “fake” secret key Sk′

k

(we assume the coercer knows k) that makes equivocate Ctx as encryption of any
other x′ so that the secret key decrypts to F (k, x′). But this intuition for the
definition hides several points. First, what if the coercer is able to coerce many
receivers, thus seeing many secret keys? In the case of identity-based encryp-
tion, it was previously observed by O’Neill et al. [31] that this case is equivalent
via a hybrid argument to equivocation of a single ciphertext and secret key.
However, this hybrid argument fails in our more general setting. Therefore, in
our modeling we consider what we call (nc, nk)-receiver-deniability, meaning the
coercer requests nc challenge ciphertexts (for which no underlying randomness
is revealed) and nk secret keys (i.e., receiver-coerce queries) adaptively. Sec-
ond, and more interesting, O’Neill et al. [31] noted that an impossibility result
of [8] implies that, even in the simpler case of identity-based encryption, “full”
receiver deniability inherently requires that a receiver get assistance from the
master authority to produce a fake secret key. While this may seem like the
strongest possible model (indeed, [31] conveys the intuition that it is necessary
for deniability), we propose an alternative, “multi-distributional” model as well,
where there are “normal” and “deniable” secret keys, and a receiver in posses-
sion of a deniable secret key can produce a fake but authentic-looking normal
one without any assistance. Here we envision that a user tells the authority ini-
tially whether it wants a normal or deniable secret key, and can later claim to
a coercer that it requested a normal one even if it did not. We consider both
models for deniable FE in this work. Note that the models are incomparable: on
the one hand, the first (“full”) model requires the receiver to get assistance from
the master authority, but a receiver does not have to choose one or the other
type of key to request initially as in the second (“multi-distributional”) model.
Getting assistance from the master authority to equivocate may not be feasible
in many cases, making the second model particularly compelling, especially in
light of the arguments of [31] for the meaningfulness of the multi-distributional
model in the basic case of public-key encryption.

“Full” Receiver Deniability from Trapdoor Circuits. Next we show how
to transform any “IND-secure” FE scheme for general circuits (i.e., where its
functionality F computes general boolean circuits on some input length) into a
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FE for the same functionality that is (nc, poly)-receiver-deniable in the full model
(but where the receiver gets assistance from the master authority to equivo-
cate) without introducing any additional assumption. In particular, recent works
[13,19,21,34] show IND-secure FE for general circuits whose security is based
either on indistinguishable obfuscation and its variants or polynomial hardness
of simple assumptions on multi-linear maps. We can use any of these schemes in
our construction. We present a direct black-box transformation, making use of
the “trapdoor circuits” technique, introduced by De Caro et al. [17] to show how
to bootstrap IND-secure for circuits to the stronger notion of simulation security
(SIM-security). The idea of the trapdoor mechanism is to replace the original
circuit C with a trapdoor circuit Trap[C] that the receiver faking algorithm can
then use to program the output in some way.

To give some intuition, let us consider for simplicity the case of equivocating
a single ciphertext and secret key. Then, a plaintext will have two slots where
the first slot will be the actual message x. The second slot will be a random
string s, some sort of tag used to identify the ciphertext. On the other hand,
Trap[C], where for simplicity we restrict C to be one-bit output circuit, will have
two slots embedded in it, let us call them trapdoor values. Both the slots will be
random strings r1, r2 used as formal variables to represent Boolean values 0 and
1. Now, if it happens that s = r1 then Trap[C] returns 0, if s = r2 then it returns
1, otherwise Trap[C] returns C(x). Notice that, when s, r1 and r2 are chosen
uniformly and independently at the random then the above events happen with
negligible probability thus this trapdoor mechanism does not influence the cor-
rectness of the scheme. On the other hand, it is easy to see how the receiver
faking algorithm works by setting r1 or r2 to s depending on the expected faked
output. Clearly, the receiver needs the master authority to generate a new secret
key, corresponding to circuit Trap[C], with tailored embedded r1 and r2. More-
over, the above solution fails when more secret keys have to be equivocated. In
fact, s then would appear in all the faked secret keys and this would be eas-
ily recognizable by the adversary. A trivial fix is to put in the ciphertexts as
many different s’s as the number of secret keys to be faked but this will create
an unnecessary dependence that can be removed by using a PRF as a compact
source of randomness. In Sect. 3 we present the result in full details.

Efficient Receiver Deniable FE for Boolean Formulae. We explore the
possibility of achieving receiver deniability for weaker classes of functionalities
that still support some form of trapdoor mechanism and for which a functional
encryption scheme can be constructed assuming standard assumptions. We show
how to do this for Boolean formulae, namely we show how to transform any
IND-secure FE scheme for Boolean formulate into one that is (nc, nd)-receiver
deniable. Note that Katz, Sahai and Waters [27] show how to construct an
FE scheme for Boolean formulae given an FE scheme for the inner-product
predicate whose security, by the result of Okamoto and Takashima [29], can be
based on the Decisional Linear Assumption in bilinear groups. An interesting
point, however, is that these schemes for boolean formulae allow polynomials in
t variables with degree at most d in each variable, as long as dt is polynomial
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in the security parameter. This will mean that in order for our scheme to be
efficient the trapdoor mechanism will have a non-negligible probability of being
activated by an honest encryption (i.e., completeness is non-negligible). We fix
this issue by using parallel repetition. The resulting scheme is (nc, nk)-receiver
deniable but we do not know how to achieve nk = poly. The result is presented
in Sect. 4.

“Multi-distributional” Receiver Deniability from “Delayed Trapdoor
Circuits”. In our first result, the receiver crucially relies on the assistance of the
master authority to generate a new secret key with tailored embedded r1 and r2,
the trapdoor values. To avoid this, we need to find a way for the central authority
to release a fake key that allows the receiver to modify the trapdoor values later
on when required. This is solved using the new technique of delayed trapdoor cir-
cuits. Instead of embedding directly the trapdoor values in the Trap[C], they are
externalised. The trapdoor values are encrypted using an IND-CCA encryption
scheme to avoid that the adversary can maul those values and learn something
it should not learn. The resulting ciphertext, let us call it Ct′, is then linked to
the corresponding Trap[C] by using a one-way function f in this way: a fresh
random value z in the domain of f will be encrypted together with the trapdoor
values, t = f(z) will be embedded in trapdoor circuit. Trap[C] then will take
in input also Ct′ and verify that it encrypts a pre-image of t, before proceeding
more. It is easy to see then that the fake key we were looking for is z. Knowing z
allows to generate a new Ct′ for different trapdoor values. Our construction starts
from that of Garg et al. [19] but departs from it in many technicalities needed
to face the challenges met in the hybrid experiments. Namely, a ciphertext of
the functional encryption scheme for x corresponds to a double encryption, à
la Naor-Yung [28], of x, using a statistical simulation-soundness NIZK. A secret
key for circuit C is the differing-input obfuscation [2,4,13] of a trapdoor circuit
Trap[C] that takes in input the double encryption of x and the double encryption
of the trapdoor values related to Trap[C]. Intuitively, differing-input obfuscation
is required because there are certain Ct′ that allows to understand, for example,
which secret key Trap[C] is using to decrypt the double encryption of x. The
actual construction is much more complicated, and is presented in full details
in Sect. 3. We point out that in a concurrent work Apon et al. [3] construct a
bi-deniable FE scheme for the inner-product predicate in the multidistributional
model from LWE.

Relation to Simulation-Based Security. As observed by [31], in the case
of PKE, deniability implies a scheme is also non-committing [15,16] and secure
under key-revealing selective-opening attacks (SOA-K) [6,18]. On the other hand,
it was recently observed by [7] that the notion of simulation-based (SIM) secu-
rity for FE implicitly incorporates SOA-K. SIM-security is a stronger notion of
security for FE than IND-security and has been the subject of multiple recent
works [1,5,7,12,17,23,30]. Very roughly, in both notions the adversary makes
key-derivation queries, then queries for challenge ciphertexts, then again makes
key-derivation queries. SIM-security asks that the “view” of the adversary can
be simulated by a simulator given neither ciphertexts nor keys but only the
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corresponding outputs of the functionality on the underlying plaintexts, whereas
IND-security only asks that it cannot distinguish the encryptions of messages
that it cannot trivially distinguish using its requested keys. This leads to the
interesting result that a receiver-deniable FE scheme necessarily achieves some
form of SIM-security. To formalize it, recall from [17] that (q1, �, q2)-SIM secu-
rity denotes SIM-security where the adversary is allowed to make at most q1
non-adaptive key queries, � encryption queries (challenge ciphertexts), and q2
adaptive key queries. We show that an (nc, nk)-receiver deniable FE scheme is
also (0, nc, nk)-SIM-secure (see Appendix A for a formal theorem and proof).
On the other hand we stress deniability is stronger in the respect that equivoca-
ble ciphertexts and keys must decrypt correctly in the real system. Our results
on receiver deniability can be seen as showing that the techniques of [17] are
sufficient not just for achieving SIM-security but for deniability as well. More-
over, this implication implies that known impossibility results for SIM-secure FE
[1,7,12,17] mean that in the receiver deniable case (nc, poly)-deniability (which
we achieve assuming IND-secure FE for the circuit functionality) is in fact opti-
mal. These impossibility results hold only in the standard model and not in the
(programmable) RO model [26], but in the case of deniability it is unclear how
programmable ROs could help since programmability only helps in a simulation
whereas deniability refers to the behaviour of the real system.

What About Sender Deniability? In this work we choose to focus on receiver
deniability rather than sender deniability. Receiver deniability is arguably more
important than sender deniability in practice — it is plausible that the sender
erases its coins, but not that the receiver erases its key. We believe sender deni-
ability can also be added to our schemes, however, by applying the techniques
of Sahai and Waters [32] used to achieve sender-deniable public-key encryption.
We investigated sender deniability for FE but we did not include the results in
this version.

2 Definitions

We start by giving formal definition of functional encryption [12,20], and its
security, and deniable functional encryption and its security. Due to space con-
straints we defer to [2,4,13] for definitions of differing-inputs obfuscation, and to
Garg et al. [19] for the definition of statistical simulation-sound non-interactive
zero-knowledge proofs (SSS-NIZK, in short).

Functional Encryption. We define the primitive and its security following
Boneh et al. [12] notation.

Definition 1. [Functionality] A functionality F = {Fn}n>0 is a family of func-
tions Fn : Kn × Xn → Σ where Kn is the key space for parameter n, Xn is the
message space for parameter n and Σ is the output space. Sometimes we will
refer to functionality F as a function from F : K ×X → Σ with K = ∪nKn and
X = ∪nXn.
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Notice that, when x = (x1, . . . , x�) is a vector of messages, for any k ∈ K,
we denote by F (k,x) the vector of evaluations (F (k, x1), . . . , F (k, x�)).

Definition 2. [Functional Encryption Scheme] A functional encryption scheme
for functionality F defined over (K,X) is a tuple FE = (Setup,KeyGen,Enc,Dec)
of 4 algorithms with the following syntax:

1. Setup(1λ, 1n) outputs public and master secret keys (Mpk,Msk) for security
parameter λ and length parameter n that are polynomially related.

2. KeyGen(Msk, k), on input Msk and k ∈ Kn outputs secret key Sk.
3. Enc(Mpk, x), on input Mpk and x ∈ Xn outputs ciphertext Ct;
4. Dec(Mpk,Ct,Sk) outputs y ∈ Σ ∪ {⊥}.

In addition we make the following correctness requirement: for all (Mpk,Msk) ←
Setup(1λ, 1n), all k ∈ Kn and x ∈ Xn, for Sk ← KeyGen(Msk, k) and Ct ←
Enc(Mpk, x), we have that Dec(Mpk,Ct,Sk) = F (k, x) whenever F (k, x) �= ⊥,
except with negligible probability. (See [7] for a discussion about this condition.)

Definition 3. [Circuit Functionality] The Circuit functionality has key space Kn

equals to the set of all n-input Boolean circuits and message space Xn the set
{0, 1}n of n-bit strings. For C ∈ Kn and x ∈ Xn, we have Circuit(C, x) = C(x),
that is, the output of circuit C on input x.

Indistinguishability-Based Security. The indistinguishability-based notion
of security for functional encryption scheme FE = (Setup,KeyGen,Enc,Dec) for
functionality F defined over (K,X) is formalized by means of the following game
INDFE

A between an adversary A = (A0,A1) and a challenger C.

INDFE
A (1λ)

1. C generates (Mpk,Msk) ← Setup(1λ) and runs A0 on input Mpk;
2. A0, during its computation, issues q1 non-adaptive key-generation queries. C on

input key k ∈ K computes Sk = KeyGen(Msk, k) and sends it to A0.
When A0 stops, it outputs two challenge messages vectors, of length �, x0,x1 ∈
X� and its internal state st.

3. C picks b ∈ {0, 1} at random, and, for i ∈ �, computes the challenge ciphertexts
Cti = Enc(Mpk, xb[i]). Then C sends (Cti)i∈[�] to A1 that resumes its computa-
tion from state st.

4. A1, during its computation, issues q2 adaptive key-generation queries. C on input
key k ∈ K computes Sk = KeyGen(Msk, k) and sends it to A1.

5. When A1 stops, it outputs b′.
6. Output: if b = b′, for each i ∈ [�], |xi

0| = |xi
1|, and F (k,x0) = F (k,x1) for each

k for which A has issued a key-generation query, then output 1 else output 0.

The advantage of adversary A in the above game is defined as

AdvFE,IND
A (1λ) = Prob[INDFE

A (1λ) = 1] − 1/2
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Definition 4. We say that FE is (q1, �, q2)-indistinguishably secure ((q1, �, q2)-
IND-Secure, for short) where q1 = q1(λ), � = �(λ)q2 = q2(λ) are polynomials in
the security parameter λ that are fixed a priori, if all probabilistic polynomial-
time adversaries A issuing at most q1 non-adaptive key queries, q2 adaptive
key queries and output challenge message vectors of length and most �, have at
most negligible advantage in the above game. Notice that, in the case that a
parameter is an unbounded polynomial we use the notation poly. If a parameter
is not specified then it assumed to be poly.

Receiver-Deniable Functional Encryption Scheme. We define the primi-
tive and its security in the following way:

Definition 5. [Receiver-Deniable Functional Encryption Scheme] A (nc, nk)-
receiver-deniable functional encryption scheme for functionality F defined over
(K,X), where nc = nc(λ), nk = nk(λ) are polynomials in the security para-
meter λ that are fixed a priori, is made up of the algorithms RecDenFE =
(Setup,Enc,KeyGen,Dec) of a standard FE scheme for F (Definition 2) and in
addition the following algorithm:

• RecFake(Msk, k,Ct,x). The receiver faking algorithm, on input the master
secret key Msk, a key k, at most nc ciphertexts Ct = (Ct1, . . . ,Ctnc

) and
messages x = (x1, . . . , xnc

), outputs faked secret key SkC .

Correctness is defined as in Definition 2 and indistinguishability as in Defini-
tion 4.

Definition 6. [Receiver-Deniability] We require that for every PPT adversary
A = (A0,A1), issuing at most nk receiver-coerce oracle queries, the following
two experiments are computationally indistinguishable.

RealRecDenExpRecDenFE
A (1λ)

(Mpk,Msk) ← Setup(1λ);

(x�,y�, st) ← AO1,O2
0 (Mpk);

(Ct�i ← Enc(Mpk, xi; ri))i∈[nc];

Output: AO1,O2,K1(·,Ct�,x�)
1 (Ct�, st)

FakeRecDenExpRecDenFE
A (1λ)

(Mpk,Msk) ← Setup(1λ);

(x�,y�, st) ← AO1,O2
0 (Mpk);

(Ct�i ← Enc(Mpk, yi; ri))i∈[nc];

Output: AO1,O2,K2(·,Ct�,x�)
1 (Ct�, st)

where x� = (x�
1, . . . , x

�
nc

), y� = (y�
1 , . . . , y

�
nc

), and Ct� = (Ct�1, . . . ,Ct
�
nc

).
(K1,K2) are the receiver-coerce oracles.

All the oracles declared above are defined as follows:

K1(k,Ct,x)
Skk ← KeyGen(Msk, k);
Output: Skk

K2(k,Ct,x)
Skk ← RecFake(Msk, k,Ct,x);
Output: Skk
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O1(k, x, y)
Ct ← Enc(Mpk, x; r);
Skk ← KeyGen(Msk, k);
Output: (Ct, Skk)

O2(k, x, y)
Ct ← Enc(Mpk, y; r);
Skk ← RecFake(Msk, k,Ct, x);
Output: (Ct, Skk)

In the above experiments, we require the following:

1. There is no query (k, x, y) issued to O1 and at same time a query (k,Ct�,x)
for some x issued to K1 and there is no query (k, x, y) issued to O2 and at
same time a query (k,Ct�,x) for some x issued to K2, where we consider all
queries issued during the entire course of the experiment; i.e., when counting
all the queries made by A0 and A1 together.

2. For any query issued by A1 to its oracle K1 or K2 oracle for key k�, neither
A0 nor A1 query k� to either of their oracles O1,O2; i.e., they do not make
any query (k�, x, y) for any x, y to O1 or O2.

3. For each key k different from any of the challenge keys k�
i queried by A0 and

A1 to oracles O1 or O2, it holds that F (k,x�) = F (k,y�).

2.1 Multi-distributional Receiver-Deniable Functional Encryption
Scheme

Definition 7. [Multi-Distributional Receiver-Deniable FE] A (nc, nk)-multi-
distributional receiver-deniable functional encryption scheme for functionality
F defined over (K,X), where nc = nc(λ), nk = nk(λ) are polynomials in the
security parameter λ that are fixed a priori, is made up of the algorithms
MDRecDenFE = (Setup,Enc,KeyGen,Dec) of a standard FE scheme for F (Defi-
nition 2) and in addition the following two algorithms:

• DenKeyGen(Msk, k). The deniable key generation algorithm, on input the mas-
ter secret key Msk, and key k, outputs secret key Skk and fake key Fkk.

• RecFake(Skk,Fkk,Ct,x). The receiver faking algorithm, on input secret key
and fake key Skk,Fkk for key k, at most nc ciphertexts Ct = (Ct1, . . . ,Ctnc

)
and messages x = (x1, . . . , xnc

), outputs faked secret key Sk′
k.

Correctness is defined as in Definition 2 and indistinguishability as in Defini-
tion 4. We also require the following security property.

Definition 8. [Multi-Distributional Receiver Deniability] We require that for
every PPT adversary A = (A0,A1), issuing at most nk receiver-coerce oracle
queries, the following two experiments are computationally indistinguishable.

RealMDRecDenExpRecDenFE
A (1λ)

(x�,y�, st) ← A0(1λ);
(Mpk,Msk) ← Setup(1λ);
(Ct�i ← Enc(Mpk, xi; ri))i∈[nc];

Output: AO1,O2,K1(·,Ct�,x�)
1 (Mpk,Ct�, st)

FakeMDRecDenExpRecDenFE
A (1λ)

(x�,y�, st) ← A0(1λ);
(Mpk,Msk) ← Setup(1λ);
(Ct�i ← Enc(Mpk, yi; ri))i∈[nc];

Output: AO1,O2,K2(·,Ct�,x�)
1 (Mpk,Ct�, st)
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where x� = (x�
1, . . . , x

�
nc

), y� = (y�
1 , . . . , y

�
nc

), and Ct� = (Ct�1, . . . ,Ct
�
nc

).
(K1,K2) are the receiver-coerce oracles.

All the oracle declared above are defined as follows:

K1(k,Ct,x)
Skk ← KeyGen(Msk, k);
Output: Skk

K2(k,Ct,x)
(Skk,Fkk) ← DenKeyGen(Msk, k);
Sk′

k ← RecFake(Skk,Fkk,Ct,x);
Output: Sk′

k

O1(k, x, y)
Ct ← Enc(Mpk, x; r);
Skk ← KeyGen(Msk, k);
Output: (Ct, Skk)

O2(k, x, y)
Ct ← Enc(Mpk, y; r);
(Skk,Fkk) ← DenKeyGen(Msk, k);
Sk′

k ← RecFake(Skk,Fkk,Ct, x);
Output: (Ct, Sk′

k)

In the above experiments, we require the following:

1. There is no query (k, x, y) issued to O1 and at same time a query (k,Ct�,x)
for some x issued to K1 and there is no query (k, x, y) issued to O2 and at
same time a query (k,Ct�,x) for some x issued to K2, where we consider all
queries issued during the entire course of the experiment; i.e., when counting
all the queries made by A0 and A1 together.

2. For any query issued by A1 to its oracle K1 or K2 for key k�, neither A0 nor
A1 query k� to either of their oracles O1,O2; i.e., they do not make any query
(k�, x, y) for any x, y to O1 or O2.

3. For each key k different from any of the challenge keys k�
i queried by A to

oracles O1 or O2, it holds that F (k,x�) = F (k,y�).

Remark 9. Our security notion is selective, in that the adversary commits to
(x, y) before it sees Mpk. It is possible to bootstrap selectively-secure scheme to
full security using standard complexity leveraging arguments [10,24] at the price
of a 2|x| loss in the security reduction.

3 Receiver Deniable FE from Trapdoor Circuits

In this section, we present a construction of a (nc, poly)-receiver deniable func-
tional encryption scheme for Circuit, RecDenFE.

Overview. To construct our RecDenFE scheme, we start from an IND-Secure FE
scheme for Circuit. During the key generation, we replace the original circuit with
a trapdoor one that the receiver faking algorithm can then use to program the
output in some way. More specifically, we put additional “slots” in the plaintexts
and secret keys that will be critically used by the receiver faking algorithm. A
plaintext will have two slots where the first slot will be the actual message x.
The second slot will be a random string s, some sort of tag used to identify the
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ciphertext that will serve as seed of a PRF. On the other hand, a secret key for
circuit C has 4 · nc slots consisting of random strings ti, zi, t

′
i, z

′
i, for i ∈ [nc],

used as formal variables to represent Boolean values 0 and 1. Specifically:

Definition 10. [Trapdoor Circuit] Let C be a Boolean circuit on n-bits and
1-bit output, F = {fs : s ∈ {0, 1}λ}λ∈N be a (l(λ), L(λ))-pseudo-random func-
tion family. For any t = (ti ∈ {0, 1}l(λ))i∈[nc], z = (zi ∈ {0, 1}L(λ))i∈[nc] and
t′ = (t′i ∈ {0, 1}l(λ))i∈[nc], z

′ = (z′
i ∈ {0, 1}L(λ))i∈[nc], define the correspond-

ing trapdoor circuit Trap[C,F ]t,z,t′,z′
on (n + λ)-bit inputs and 1-bit output as

follows:

Circuit Trap[C, F ]t,z,t′,z′
(x′)

(x, s) ← x′

If fs(ti) = zi for some i ∈ [nc] Then Return 1
Else If fs(t

′
i) = z′

i for some i ∈ [nc] Then Return 0
Else Return C(x)

We are now ready to present our RecDenFE scheme.

Construction 11. [Receiver Deniable Functional Encryption] Let FE =
(FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) be a functional encryption scheme for the
functionality Circuit and F = {fs : s ∈ {0, 1}λ}λ∈N be a (l(λ), L(λ))-pseudo-
random function family. We define our receiver deniable functional encryption
schemeRecDenFE = (Setup,KeyGen,Enc,Dec,RecFake) for Circuit as follows.

• Setup(1λ, 1n) runs FE.Setup(1λ, 1n+λ) to get the pair (FE.Mpk,FE.Msk). Then,
the master public key is Mpk = FE.Mpk and the master secret key is Msk =
FE.Msk. The algorithm returns the pair (Mpk,Msk).

• Enc(Mpk, x) on input master public key Mpk = FE.Mpk, and message x ∈
{0, 1}n, chooses a random s ∈ {0, 1}λ and sets x′ = (x, s). Then the algorithm
computes and returns the ciphertext Ct = FE.Enc(FE.Mpk, x′).

• KeyGen(Msk, C) on input master secret key Msk = FE.Msk and a
n-input Boolean circuit C, chooses, for i ∈ [nc], random strings
ti, t

′
i ∈ {0, 1}l(λ), zi, z

′
i ∈ {0, 1}L(λ) and computes FE.SkC =

FE.KeyGen(FE.Msk,Trap[C,F ]t,z,t′,z′
). The algorithm returns the secret key

SkC = (t, z, t′, z′,FE.SkC).
• Dec(Mpk,Ct,SkC) on input master public key Mpk = FE.Mpk, Ct and

secret key SkC = (t, z, t′, z′,FE.SkC) for circuit C, returns the output of
FE.Dec(FE.Mpk,Ct,FE.SkC).

• RecFake(Msk, C,Ct,x) on input the master secret key Msk = FE.Msk, a
Boolean circuit C on n-bits input and 1-bit output, at most nc ciphertexts
Ct = (Ct1, . . . ,Ct�) and messages x = (x1, . . . , x�), extracts si from each
ciphertext Cti by using FE.Msk. Then, for each i ∈ [�], RecFake chooses ran-
dom ti and t′i in {0, 1}l(λ) and distinguishes between the following two case:

• If C(xi) = 1, it sets zi = fsi
(ti) and chooses random z′

i ∈ {0, 1}L(λ).
• If C(xi) = 0, it sets z′

i = fsi
(t′i) and chooses random zi ∈ {0, 1}L(λ).

Finally, RecFake computes FE.SkC = FE.KeyGen(FE.Msk,Trap[C,F ]t,z,t′,z′
),

and returns secret key SkC = (t, z, t′, z′,FE.SkC).
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Correctness of our RecDenFE scheme follows from the correctness of FE and
from the observation that, for randomly chosen t, z, t′, z′ and s and for all x,
Trap[C,F ]t,z,t′,z′

(x, s) = C(x) except with negligible probability.

Security. The proof of security can be found in Appendix B.

4 Receiver Deniable FE for Boolean Formulae

We have seen in the previous section how to construct a receiver deniable func-
tional encryption scheme for circuits assuming the existence of an IND-Secure
FE scheme for the same functionality. To the best of our knowledge, the only
way to construct an IND-Secure FE for circuits is by using obfuscation and its
variants.

In this section we explore the possibility of achieving receiver deniability for
weaker classes of functionalities that still support some form of trapdoor mech-
anism and for which a functional encryption scheme can be constructed assum-
ing standard assumptions. Namely, we are interested in constructing a receiver
deniable FE for Boolean formulae. In [27], Katz et al, show how to construct a
functional encryption scheme for Boolean formulae given a functional encryp-
tion scheme for the inner-product whose security, by the result of Okamoto and
Takashima [29], can be based on the Decisional Linear Assumption in bilinear
groups. To construct a functional encryption scheme for Boolean formulae, [27]
first shows how to construct functional encryption schemes for predicates corre-
sponding to univariate polynomials whose degree d is polynomial in the security
parameter. This can be generalized to the case of polynomials in t variables,
and degree at most d in each variable, as long as dt is polynomial in the security
parameter. Given the polynomial-based construction, [27] shows that for Boolean
variables it is possible to handle arbitrary CNF or DNF formulas by noting that
the predicate ORI1,I2 , where ORI1,I2(x1, x2) = 1 iff either x1 = I1 or x2 = I2,
can be encoded as the bivariate polynomial p(x1, x2) = (x1 − I1) · (x2 − I2) and
the predicate ANDI1,I2 , where ANDI1,I2(x1, x2) = 1 if both x1 = I1 and x2 = I2,
correspond to the polynomial p(x1, x2) = (x1 − I1) + (x2 − I2). (Notice that,
for non-Boolean variables it is not known how to directly handle negation.) The
complexity of the resulting scheme depends polynomially on dt, where t is the
number of variables and d is the maximum degree of the resulting polynomial
in each variable. This bound will critically influence our construction of receiver
deniable scheme as we will show in the next section. Specifically, the length of
the additional slots used in trapdoor mechanism of the previous section will be
fixed and independent of the security parameter to avoid the exponential blowup
of the complexity of the resulting scheme. As a consequence, the trapdoor mech-
anism has a non-negligible probability of being active in the real scheme thus
influencing the decryption error probability. Parallel repetition will fix this issue.

4.1 Our Construction

Overview. The trapdoor formula will follow the same design lines of the trapdoor
circuit we used in the previous section with the main difference being the length
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of the slots which will be here constant and independent from the security para-
meter to avoid the exponential blowup in the [27] construction. Thus, as in the
previous section, we will have additional slots in the plaintexts and secret keys
that will be critically used by the receiver faking algorithm. The plaintext will
have two slots where the first slot will be the actual message x. The second slot
will be a random string s. On the other hand, a secret key for Boolean formula
f will also have two slots to represent Boolean values 0 and 1. Specifically:

Construction 12. [Trapdoor Boolean Formula] Let f be a Boolean for-
mula on n-bits. For any two strings r0, r1 ∈ {0, 1}�, define the correspond-
ing trapdoor boolean formula Trap[f ]r0,r1 on (n + �)-bit inputs as follows:
FormulaTrap[f ]r0,r1(x, s) := (s = r1) ∨ [f(x) ∧ ¬(s = r0)], where the expres-
sion (s = r) is the comparison bit-a-bit.

We are now ready to present our RecDenFE scheme.

Construction 13. [Receiver Deniable Functional Encryption for Boolean For-
mulae] Let FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Eval) be the functional
encryption scheme for the functionality Boolean Formulae. For any constant
� > 3, we define our receiver deniable functional encryption scheme RecDenFE =
(Setup,KeyGen,Enc,Dec,RecFake) for Boolean formulae as follows.

• Setup(1λ, 1n, 1m), for each i ∈ [m], runs FE.Setup(1λ, 1n+�) to get the pair
(FE.Mpki,FE.Mski). Then, the master public key is Mpk = (FE.Mpk)i∈[m] and
the master secret key is Msk = (FE.Msk)i∈[m]. The algorithm returns the pair
(Mpk,Msk).

• Enc(Mpk, x), on input master public key Mpk = (FE.Mpki)i∈[m] and mes-
sage x ∈ {0, 1}n, for each i ∈ [m], chooses a random si ∈ {0, 1}� and
sets Cti = FE.Enc(FE.Mpki, (x, si)). The algorithm returns the ciphertext
Ct = (Cti)i∈[m].

• KeyGen(Msk, f), on input master secret key Msk = (FE.Msk)i∈[m] and a n-
input Boolean formula f , for each i ∈ [m], chooses two random strings
ri
0, r

i
1 ∈ {0, 1}�, such that ri

0 �= ri
1, and computes secret key FE.Ski

f =
FE.KeyGen(FE.Mski,Trap[f ]r

i
0,ri

1). The algorithm returns the secret key Skf =
(ri

0, r
i
1,FE.Ski

f )i∈[m].
• Dec(Mpk,Ct,Skf ), on input master public key Mpk = (FE.Mpk)i∈[m], Ct =

(Cti)i∈[m] and secret key Skf = (ri
0, r

i
1,FE.Ski

f )i∈[m] for Boolean formula f ,
for i ∈ [m], computes Boolean value bi = FE.Eval(FE.Mpki,Cti,FE.Ski

f ), and
returns as output the Boolean value on which the majority of bi’s have agreed
on.

• RecFake(Msk, f,Ct, x′), on input the master secret key Msk = (FE.Mski)i∈[m],
an n-input Boolean formula f , ciphertext Ct = (Cti)i∈[m] and message x′,
for all i ∈ [m], the algorithm extracts si from Cti by using FE.Mski. Now,
RecFake chooses the ri

0’s and ri
1’s by following a binomial distribution with

number of trials equals to m and success probability p = (1−2−�). Specifically,
RecFake distinguishes between the following two cases. Let b′ = f(x′), for each
i ∈ [m], if there is a success in the i-th trial then RecFake sets ri

b′ = si and
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ri
1−b to a random value different from si. Otherwise, RecFake sets ri

1−b′ = si

and rb to a random value different from si. Finally, RecFake computes secret
key FE.Ski

f = FE.KeyGen(FE.Mski,Trap[f ]r
i
0,ri

1), and returns the secret key
Skf = (ri

0, r
i
1,FE.Ski

f )i∈[m] as faking key.

Correctness. Notice that for any i ∈ [m], the probability that si = ri
0 ∨

si = ri
1 is at most 2−�+1. Thus the output of the decryption is correct, i.e.

Trap[f ]r
i
0,ri

1(x, si) = f(x), with probability at least 1 − 2−�+1.
Thus on average, an (1−2−�+1) fraction of the ciphertexts will be decrypted

to the correct value and for large enough m, the Chernoff bound guarantees that
the correctness of RecDenFE hold with overwhelming probability.

Security. The proof that RecDenFE is a (1, 1)-receiver deniable functional
encryption scheme for Boolean formulae is essentially that of Theorem 20 and
we omit further details.

We note that one can extend the scheme to (nc, nk)-receiver deniability in a
simple way but we cannot achieve nk = poly in this case, however, because we
cannot use symmetric encryption (at least in a straightforward way).

5 Multi-distributional Receiver Deniable FE from diO
In order to avoid to overburden the notation and to make the presentation easy to
follow, we present a construction of a (1, 1)-multi-distributional receiver deniable
functional encryption scheme for Circuit.

Overview. Our construction resembles that of Garg et al. [19]. Namely, a cipher-
text of the functional encryption scheme for x corresponds to a double encryp-
tion, à la Naor-Yung [28], of x, using a statistical simulation-soundness NIZK.
A secret key for circuit C is the differing-input obfuscation of a trapdoor circuit
Trap[C] that takes in input the double encryption of x and the double encryption
of the trapdoor values.

Construction 14. [Multi-Distributional Receiver Deniable FE] Given an
IND-CPA PKE system E = (E .Setup, E .Enc, E .Dec) with perfect correct-
ness, a differing-inputs obfuscator diO, an SSS-NIZK proof system NIZK =
(NIZK.Setup,NIZK.Prove,NIZK.Verify,NIZK.Sim) and a one-way function f ,
we define our multi-distributional receiver deniable functional encryption
MDRecDenFE = (Setup,KeyGen,Enc,DenKeyGen,RecFake,Dec) as follows:

1. Setup(1λ) takes in input the security parameter λ and computes the follow-
ing: For i ∈ [4], (pki, ski) ← E .Setup(1λ). Then, crs ← NIZK.Setup(1λ). The
algorithm sets Mpk = ((pki)i∈[4], f, crs), Msk = ((ski)i∈[4]).

2. KeyGen(Msk, C) takes in input master secret key Msk = ((ski)i∈[4]), and cir-
cuit C, and does the following: Computes common reference string crs′ ←
NIZK.Setup(1λ). Then, sample random z in the domain of f and set t = f(z)
and compute Ct′ := (ct3, ct4, π2), where ct3 ← E .Enc(pk3, (z, 0n, 0λ); r3) and
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ct4 ← E .Enc(pk4, (z, 0n, 0λ); r4), and π2 is a NIZK proof of Eq. 2. Finally, the
algorithm computes a differing-input obfuscation diOTrap1,3

for the trapdoor
circuit Trap1,3[C, crs, crs′, ski, skj , f, t]. The algorithm outputs secret key for
the circuit C, SkC = (diOTrap1,3

, t,Ct′).
3. DenKeyGen(Msk, C) takes in inputMsk = ((ski)i∈[4]) and circuit C, and com-

putes SkC = KeyGen(Msk, C). The algorithm outputs SkC as the secret key
for the circuit C and FkC = z.

4. Enc(Mpk, x), on input master public key Mpk = ((pki)i∈[4], f, crs) and mes-
sages x ∈ Xn, computes Ct = (ct1, ct2, π1), where ct1 ← E .Enc(pk1, x; r1)
and ct2 ← E .Enc(pk2, x; r2) and π1 is a NIZK proof of Eq. 1. The algorithm
outputs ciphertext Ct.

5. Dec(SkC ,Ct) on input secret key SkC = (diOTrap1,3
, t,Ct′) and ciphertext Ct,

the algorithm outputs diOTrap1,3
(Ct,Ct′).

6. RecFake(SkC ,FkC ,Ct, x) on input secret key SkC = (diOTrap1,3
, t,Ct′), fake key

FkC = z, where t = f(z), ciphertext Ct = (ct1, ct2, π1) and message x, does the
following: Compute Ĉt := (ĉt3, ĉt4, π̂2), where ĉt3 ← E .Enc(pk3, (z,Ct, x); r3)
and ĉt4 ← E .Enc(pk4, (z,Ct, x); r4) and π̂2 is a NIZK proof of Eq. 2. The new
secret key for circuit C is SkC = (diOTrap1,3

, t, Ĉt).

Correctness follows immediately from the correctness of the diO, PKE, SSS-
NIZK, and the description of the trapdoor circuits described below.

Trapi,j [C, crs, crs′, ski, skj , f, t](Ct = (ct1, ct2, π1),Ct
′ = (ct3, ct4, π2))

The algorithm does the following:

1. Check that π1 is valid NIZK proof (using the NIZK.Verify algorithm and crs)
for the NP-statement

∃x, r1, r2 :

ct1 = E .Enc(pk1, x; r1) and ct2 = E .Enc(pk2, x; r2)
(1)

2. Check that π2 is valid NIZK proof (using the NIZK.Verify algorithm and crs′)
for the NP-statement

∃z, c, x, r3, r4 :

ct3 = E .Enc(pk3, (z, c, x); r3) and ct4 = E .Enc(pk4, (z, c, x); r4) and f(z) = t

(2)
3. If any checks fail output 0.
4. (z′, c′, x′) ← E .Dec(skj , ctj)
5. if c′ = Ct then output C(x′); otherwise output C(E .Dec(ski, cti)).
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Remark 15. To allow a secret key to support faking against nc ciphertexts,
like we do in Sect. 3, we attach to a secret key nc ciphertexts Ct′i each being the
double encryption of (zi, 0n, 0λ) for different zi’s. Then, Trapi,j will contain the
images under f of all zi’s.

Proof of Security. We prove the following main theorem.

Theorem 16. If diO is an differing-input obfuscator, E is IND-CPA and f is
a one-way function then MDRecDenFE is a (1, 1)-multi-distributional receiver
deniable in the sense of Definition 6.

To prove the above theorem, we prove the indistinguishability of the following
hybrid experiments. Recall that, for simplicity, we prove (1, 1)-security. Extend-
ing the proof of security to nc being any constant and nk = poly resorts to add
more hybrids to switch the challenge ciphertexts and the secret keys generated
by the receiver-coerce oracle to the target distribution.

Hybrid H 1. This is the RealMDRecDenExp experiment where the receiver-
coerce oracle is K1.

Hybrid H 2. It is identical to H1 except that: (1) (crs, π�
1) is simulated

as (crs, π�
1) ← NIZK.Sim(1λ,∃x, r1, r2 : ct�1 = E .Enc(pk1, x; r1) and ct�2 =

E .Enc(pk2, x; r2)) where ct�1, ct
�
2 is part of the challenge ciphertext. Note that,

in the selective security game the challenge ciphertext can be given out simul-
taneously with the public parameters. (2) (crs′, π2), generated by the receiver-
coerce oracle, is simulated as (crs′, π2) ← NIZK.Sim(1λ,∃z, c, x, r3, r4 : ct3 =
E .Enc(pk3, (z, c, x); r3) ∧ ct4 = E .Enc(pk4, (z, c, x); r4) ∧ f(z) = t). Notice that
the crs of the secret keys generated by O1 and O2 are not simulated. The indis-
tinguishability of H2 from H1 follows from the ZK property of the NIZK system
and by a standard hybrid argument.

Hybrid H 3. It is identical to H2 except that ct�2 encrypts y. The NIZK’s are still
simulated. The indistinguishability of H3 from H2 follows from the IND-CPA
security of (pk2, sk2).

Hybrid H 4. It is identical to H3 except that ct4, generated by the receiver-
coerce oracle, encrypts (0k,Ct�, x). The NIZK’s are still simulated. The indistin-
guishability of H4 from H3 follows from the IND-CPA security of (pk4, sk4).

Hybrid H 5. It is identical to H4 except that the secret keys, generated by the
receiver-coerce oracle, contain the differing-input obfuscation of the program
Trap1,4. The indistinguishability of H5 from H4 follows from the security of diO
noticing that Trap1,3 and Trap1,4 compute the same function. This follows: (1)
by the statistical simulation-soundness of the NIZK system that guarantees that
Ct′, as generated by the receiver-coerce oracle, used in both experiments, is the
only one to contain a NIZK proof for a false statement accepted by the veri-
fier and (2) by the fact that by definition of Trap1,3, Trap1,4 and Ct′, it holds
that: Trap1,3(Ct

�,Ct′) = C(E .Dec(sk1, ct1)) = C(x) = C(E .Dec(sk4, ct4)) =
Trap1,4(Ct

�,Ct′).
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Hybrid H 6. It is identical to H5 except that the secret keys, generated by
O1 and O2, contain the differing-input obfuscation of the program Trap1,4. The
indistinguishability of H6 from H5 follows from the security of diO noticing
that Trap1,3 and Trap1,4 compute the same function. The statistical simulation-
soundness of the NIZK system guarantees that there is no Ct′ for a false state-
ment that the verifier accepts.

Hybrid H 7. It is identical to H6 except that ct3, generated by the receiver-
coerce oracle, encrypts (0k,Ct�, x). The NIZK’s are still simulated. The indistin-
guishability of H7 from H6 follows from the IND-CPA security of (pk3, sk3).

Hybrid H 8. It is identical to H7 except that the secret keys, generated by the
receiver-coerce oracle, contain the differing-input obfuscation of the program
Trap1,3. The indistinguishability of H8 from H7 is symmetrical to that of H5

from H4.

Hybrid H 9. It is identical to H8 except that the secret keys, generated by the
receiver-coerce oracle, contain the differing-input obfuscation of the program
Trap2,3.

Overview: by the statistical simulation-soundness of the NIZK proof system
and by definition of Trap2,3, the inputs that distinguish Trap2,3 from Trap1,3 have
the form (Ct�, Ĉt) where: (1) Ĉt = (ĉt3, ĉt4, π̂2) �= Ct′. (2) ĉt3 and ĉt4 encrypt
the same value (this follows by the statistical simulation-soundness of the NIZK
system and from the fact that, being Ct′ the only false statement with accepting
proof, it must hold that Ĉt �= Ct′), and (3) ĉt3 encrypts a string of the form
(z′, c′, x′) with f(z′) = t.

To prove the indistinguishability of H8 from H7, we proceed in two steps:
Let A = (A0,A1) be any multi-distributional receiver deniability adversary, in
the first step we show that there exists a sampling algorithm SamplerA that
samples a circuit family C (containing Trap2,3 and Trap1,3), that it is differing-
inputs under the one-wayness of f . In the second step, we show that if A can
distinguish the two experiments, then it is possible to construct a distinguisher
that breaks the security of diO.

First Step: We define a circuit family C associated with a PPT SamplerA and
show that it is differing-inputs under the one-wayness of f . SamplerA takes in
input the security parameter, the description of the OWF f and the challenge
of the one-way security game t�, and does the following:

1. Runs A0 on input 1λ to obtain (x�, y�, stA).
2. Computes, for i ∈ [4], (pki, ski) ← E .Setup(1λ), and ct�1 = E .Enc

(pk1, x�) and ct�2 = E .Enc(pk1, y�) and (crs, π�
1) ← NIZK.Sim(1λ,∃x, r1, r2 :

ct�1 = E .Enc(pk1, x; r1) and ct�2 = E .Enc(pk2, x; r2)). Sets the master pub-
lic key and the challenge ciphertext as Mpk = ((pki)i∈[4], f, crs), Ct� =
(ct�1, ct

�
2, π

�
1). The master secret key is then Msk = (ski).

Finally, runs A1 on input (Mpk,Ct�, stA), simulating oracles O1,O2 and
K(·,Ct�, x�) in the following way:
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1. O1(k, x, y),O2(k, x, y): Given Mpk and Msk, the output distributions of
these oracles is easy to generate.

2. K(C,Ct�, x�): SamplerA computes ct3 = E .Enc(pk3, (0λ,Ct�, x�)) and
ct4 = E .Enc(pk4, (0λ,Ct�, x�)), and (crs′, π2) ← NIZK.Sim(∃z, c, x,
r3, r4 : ct3 = E .Enc(pk3, (z, c, x); r3) and ct4 = E .Enc(pk4, (z, c, x);
r4) and f(z) = t�). At this point the algorithm interrupts the execu-
tion of A and returns (Trap1,3[C, crs, crs′, sk1, sk3, f, t],Trap2,3[C, crs, crs′,
sk2, sk3, f, t], st), where st contains its entire computation.

This terminates the description of SamplerA. Now, suppose there exists an adver-
sary B that takes in input (1λ,Trap1,3,Trap2,3, st) and finds an input on which
Trap1,3,Trap2,3 are different, meaning B finds a Ĉt = (ĉt3, ĉt4, π̂2) as defined above.
Then, by using sk3 in st, B can decrypt ĉt3 and extract a pre-image of t�.

Second Step: Suppose that A distinguishes H9 and H8 with non-negligible
advantage then we can construct a distinguisher DA, for the differing-input cir-
cuit family defined above, that breaks the security of diO. The distinguisher DA

taks in (C, st) where C is the differing-input obfuscation of either Trap1,3 or
Trap2,3 and does the following: (1) Restart from the position where SamplerA

stopped and uses C to generate the output of the receiver-coerce oracle. Specifi-
cally, D returns (C, t�,Ct′), where Ct′ = (ct3, ct4, π2). (2) D continues to respond
to the oracle invocations as SamplerA does. (3) Finally, when A has completed
its execution, it returns a bit that become D’s output.

This terminates the description of DA. Now, if C is the differing-input obfus-
cation of Trap1,3 then (SamplerA,DA) have simulated H8. On the other hand, if
C is the differing-input obfuscation of Trap2,3 then (SamplerA,DA) have simu-
lated H9.

Hybrid H 10. It is identical to H9 except that the secret keys, generated by
the O1 and O2, contain the differing-input obfuscation of the program Trap2,4.
The indistinguishability of H10 from H9 follows from the security of diO noticing
that Trap1,4 and Trap2,4 compute the same function. The statistical simulation-
soundness of the NIZK system guarantees that there is no Ct for a false statement
that the verifier accepts. Moreover when considering Ct�, the security game
constraints guarantee that the secret keys asked to O1 and O2 evaluate to the
same value on the challenge messages.

Hybrid H 11. It is identical to H10 except that ct�1 encrypts y, The indistin-
guishability of H11 from H10 follows from the IND-CPA security of (pk1, sk1).

Hybrid H 12. It is identical to H11 except that the secret keys, generated by
the O1 and O2, contain the differing-input obfuscation of the program Trap2,3.
The indistinguishability of H12 from H11 is symmetrical to that of H6 from H5.
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Hybrid H 13. It is identical to H12 except that ct4, generated by the receiver-
coerce oracle, encrypts (z,Ct�, x), The indistinguishability of H13 from H12 fol-
lows from the IND-CPA security of (pk4, sk4).

Hybrid H 14. It is identical to H13 except that the secret keys, generated by
the receiver-coerce oracle, contain the differing-input obfuscation of the program
Trap2,4. The indistinguishability of H14 from H13 is symmetrical to that of H5

from H4.

Hybrid H 15. It is identical to H14 except that the secret keys, generated by
the O1 and O2, contain the differing-input obfuscation of the program Trap2,4.
The indistinguishability of H15 from H14 is symmetrical to that of H6 from H5.

Hybrid H 16. It is identical to H15 except that ct3, generated by the receiver-
coerce oracle, encrypts (z,Ct�, x). The indistinguishability of H16 from H15 fol-
lows from the IND-CPA security of (pk3, sk3).

Hybrid H 17. It is identical to H16 except that the secret keys, generated by
the receiver-coerce oracle, contain the differing-input obfuscation of the program
Trap2,3. The indistinguishability of H17 from H16 is symmetrical to that of H5

from H4.

Hybrid H 18. It is identical to H17 except that the secret keys, generated by
the receiver-coerce oracle, contain the differing-input obfuscation of the program
Trap1,3. The indistinguishability of H18 from H17 is symmetrical to that of H5

from H4.

Hybrid H 19. It is identical to H18 except that the secret keys, generated by
the O1 and O2, contain the differing-input obfuscation of the program Trap2,3.
The indistinguishability of H19 from H18 is symmetrical to that of H6 from H5.

Hybrid H 20. It is identical to H19 except that the secret keys, generated by
the O1 and O2, contain the differing-input obfuscation of the program Trap1,3.
The indistinguishability of H20 from H19 is symmetrical to that of H10 from H9.

Hybrid H 21. It is identical to H20 except that all crs’s are honestly generated.
The indistinguishability of H21 from H20 follows from the zero-knowledge of the
NIZK system and by a standard hybrid argument. It remains to notice that H21

corresponds to FakeDenExp where the receiver-coerce oracle is K2.

6 Open Problems and Future Work

Our work leaves open the problem of a construction of a multidistributional
deniable FE for general functionalities that avoid the use of diO. It is also worthy
to investigate whether our techniques can be used to add deniability to other
flavors of FE, e.g., [9,11,25,33].
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A Simulation-Based Security for FE and Its Relation to
Receiver-Deniability

Definition 17. [De Caro et al. [17] Simulation-Based Definition] A FE scheme
FE = (Setup,KeyGen,Enc,Eval) for functionality F defined over (K,X)
is (q1, �, q2)-simulation-secure ((q1, �, q2)-SIM-Secure, for short), where q1 =
q1(λ), � = �(λ), q2 = q2(λ) are polynomials in the security parameter λ that
are fixed a priori, if there exists a PPT simulator algorithm Sim = (Sim0,Sim1)
such that for all PPT adversary algorithms A = (A0,A1), issuing at most q1
non-adaptive key queries, q2 adaptive key queries and output challenge message
vector of length and most �, the outputs of the following two experiments are
computationally indistinguishable.

RealExpFE,A(1λ, 1n)

(Mpk,Msk) ← Setup(1λ, 1n);

(x, st) ← AKeyGen(Msk,·)
0 (Mpk);

Ct ← Enc(Mpk,x);

α ← AKeyGen(Msk,·)
1 (Mpk,Ct, st);

Output: (Mpk,x, α)

IdealExpFE,A
Sim (1λ, 1n)

(Mpk,Msk) ← Setup(1λ, 1n);

(x, st) ← AKeyGen(Msk,·)
0 (Mpk);

(Ct, st′) ← Sim0(Mpk, |x|, (ki, Skki , F (ki,x)));

α ← AO(·)
1 (Mpk,Ct, st);

Output: (Mpk,x, α)

Here, the (ki)’s correspond to the key-generation queries of the adversary.
Further, oracle O(·) is the second stage of the simulator, namely algorithm
Sim1(Msk, st′, ·, ·). Algorithm Sim1 receives as third argument a key kj for which
the adversary queries a secret key, and as fourth argument the output value
F (kj ,x). Further, note that the simulator algorithm Sim1 is stateful in that
after each invocation, it updates the state st′ which is carried over to its next
invocation. (Notice that, in the case that a parameter is an unbounded polyno-
mial we use the notation poly.)

(nc, nk)-receiver-deniability =⇒ (0, nc, nk)-SIM-Security.

Theorem 18. Suppose that RecDenFE is a (nc, nk)-receiver-deniable functional
encryption scheme for functionality F defined over (K,X) then RecDenFE is
(0, nc, nk)-SIM-Secure (Definition 17) as well.

Proof. We start by constructing the simulator required by the SIM-Security.
Sim = (Sim0,Sim1) is defined as follow. Sim0 on input master public key Mpk,
remember that non-adaptive key generation queries are not allowed in the setting
we are considering, chooses random vector x� of nc messages and, for i ∈ nc,
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generated ciphertext Ct�i = Enc(Mpk, x�
i ) and returns (Ct�, st = (Ct�)). Sim1

on input master secret key Msk, status st′, and tuple (k,SkC , F (k,x))) does the
following. Sim1 invokes the receiver faking algorithm to generate the secret key
for k, namely Skk = RecFake(Msk, k,Ct�, F (k,x)). Finally, Sim1 returns Skk as
its own output.

Now, for the sake of contradiction, let A = (A0,A1) and D be an adversary
and a distinguisher that break the (0, nc, nk)-SIM-Security of RecDenFE, meaning
that (A,D) can distinguish between RealExp and IdealExp. Then, we construct
and adversary B = (B0,B1) and distinguisher D′ that break the (nc, nk)-receiver-
deniable security of RecDenFE. Specifically, B is defined as follows: B0 on input
master public key Mpk runs A0 on input Mpk. Notice that, A0 does not issue
any key generation query. At some point A0 returns challenge messages x and
status stA. B0 chooses random messages x′ and returns (x,x′, st = (stA,x)).

B1 on input Ct� and status st (notice that in this case rS is a zero-length
vector) runs A1 on input Ct� and status stA. When A1 issue a key-generation
query for key k, B invokes its OK oracle on input k, Ct� and F (k,x) to obtain
Skk that is given back to A1. At some point A1 returns some output α and B1

returns α as its own output.
On the other hand, the distinguisher D′ is exactly D.
Now notice that, if B is playing the RealRecDenExp experiment then A is play-

ing the RealExp. On the other side, if B is playing the FakeRecDenExp experiment
then A is playing the IdealExp. This concludes the proof.

B Proof of Security of Construction 11

In this section, we prove the following main theorems

Theorem 19. If FE is IND-Secure, then RecDenFE is IND-Secure as well.

The proof of Theorem 19 is straightforward and we omit it.

Theorem 20. If FE is (poly, 1, poly)-IND-Secure then RecDenFE is a (nc, poly)-
receiver deniable in the sense of Definition 6, for any constant nc.

Proof. We prove security via a sequence of hybrid experiments. To do so, we will
make use of the following simulation receiver faking algorithm.

Sim.RecFakeFE.KeyGen(FE.Msk,·)(C,x, s)

The algorithm takes in input a circuit C, messages x = (x1, . . . , x�), strings
s = (s1, . . . , s�) each in {0, 1}λ, and oracle access to the FE key generation
algorithm. Then, for each i ∈ [�], the algorithm chooses random ti and t′

i in
{0, 1}l(λ) and distinguishes between the following two case:

• If C(xi) = 1, it sets zi = fsi(ti) and chooses random z′
i ∈ {0, 1}L(λ).

• If C(xi) = 0, it sets z′
i = fsi(t

′
i) and chooses random zi ∈ {0, 1}L(λ).

Finally, the algorithm computes FE.SkC = FE.KeyGen(FE.Msk,Trap[C, F ]t,z,t′,z′
),

and returns secret key SkC = (t, z, t′, z′,FE.SkC).
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We are now ready to describe the hybrids. The change between the presented
hybrid and the previous will be denoted by boxing the modified parts.

Hybrid H 1: Consider the following two oracles:

E�
1 (x,y)

(si ← {0, 1}λ)i∈[nc]

(Cti ← FE.Enc(Mpk, (xi, si)))i∈[nc]

Output: ((Cti), ∅)

K�
1(C,Ct,x)

SkC ← KeyGen(Msk, C);
Output: Skk

Then, hybrid H1 is the real experiment RealDenExp where the challenge
ciphertexts are created by oracle E�

1 , and the receiver-coerce oracle is K�
1.

Notice that E�
1 is exactly E1 with the only difference that we have unrolled the

call to the RecDenFE encryption algorithm for the sake of clarity, and K�
1 = K1.

Hybrid H 2: Consider the following oracles:

E�
2 (x,y)

(si ← {0, 1}λ)i∈[nc]

(s′
i ← {0, 1}λ)i∈[nc]

(Cti ← FE.Enc(Mpk, (xi, si)))i∈[nc]

Output: ((Cti), ∅)

K�
2(C,Ct,x)

SkC ← Sim.RecFakeFE.KeyGen(FE.Msk,·)(C,x, s′)

Output: SkC

where s′ = (s′
1, . . . , s

′
nc

) is the randomness sampled by E�
2 .

Then, experiment H2 is the same as H1 except that the oracle E�
1 is replaced

by E�
2 and receiver-coerce oracle is modified as above.

Hybrid H 3: Consider the following oracles:

E�
3 (x,y)

(s′
i ← {0, 1}λ)i∈[nc]

(Cti ← FE.Enc(Mpk, (yi, s
′
i)))i∈[nc]

Output: ((Cti), ∅)

K�
3(C,Ct,x)

SkC ← Sim.RecFakeFE.KeyGen(FE.Msk,·)(C,x, s′)

Output: SkC

Then, experiment H3 is the same as H2 except that the oracle E�
2 is replaced

by E�
3 and receiver-coerce oracle is modified as above.

Finally, notice that H3 is exactly the faking experiment FakeDenExp where
E2 = E�

3 and K2 = K�
3.

We now show that the relevant distinguishing probabilities between adjacent
hybrids are negligible, which completes the proof.

Indistinguishability of H 1 and H 2: To prove indistinguishability we use the
following sequence of hybrid experiments.

• Hybrid H1,j , for 1 ≤ j ≤ nc + 1: This is the same as H1 except that E�
2 is

used instead of E�
1 and the following new receiver-coercer oracle is used:
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K�
1,j(C,Ct,x)

SkC ← Sim.RecFake
FE.KeyGen(FE.Msk,·)
2,j (C,x, s′)

Output: SkC

where s′ is chosen by oracle E�
1 and Sim.RecFake2 is defined as follow:

Sim.RecFake
FE.KeyGen(FE.Msk,·)
2,j (C,x, s)

The algorithm takes in input a circuit C, messages x = (x1, . . . , x�), strings
s = (s1, . . . , s�) each in {0, 1}λ, and oracle access to the FE key generation
algorithm. Then, for each i ∈ [�], the algorithm chooses random ti and t′

i in
{0, 1}l(λ).
Now we have two cases:

1. i < j : then the algorithm distinguishes between the following two cases:
• If C(xi) = 1, it sets zi = fsi(ti) and chooses random z′

i ∈ {0, 1}L(λ).
• If C(xi) = 0, it sets z′

i = fsi(t
′
i) and chooses random zi ∈ {0, 1}L(λ).

2. i ≥ j : then the algorithm chooses random zi, z
′
i ∈ {0, 1}L(λ).

Finally, the algorithm computes FE.SkC = FE.KeyGen(FE.Msk,Trap[C,

F ]t,z,t′,z′
), and returns secret key SkC = (t, z, t′, z′,FE.SkC).

Then, notice that H1 = H1,1 and H2 = H1,nc+1. Thus, it is sufficient to
prove that H1,k is computational indistinguishable from H1,k+1. This can be
reduced to the security of the family of pseudo-random functions. In fact, notice
that H1,k+1 is the same as H1,k except that to set zk (or z′

k deeding on C(xk)),
the PRF is used on input seed s′

k which is never used in any other part of the
simulation.

More formally, suppose there exists a distinguisher D and adversary
A = (A0,A1) for which H1,k and H1,k+1 are not computationally indistinguish-
able. Then A and D can be used to construct a successful adversary B for the
pseudo-randomness of F .

Specifically, B on input the security parameter λ an having oracle access to a
function f̂ which is either fs for random seed s ← {0, 1}λ or F ← R(l(λ), L(λ))
where R(l(λ), L(λ)) is the space of all possible functions F : {0, 1}l(λ) →
{0, 1}L(λ), does the following.

• B, generates (Mpk,Msk) by invoking the setup algorithm of FE. B runs A0 on
input master public key Mpk and answers A0’s queries to O1 and O2 by using
(Mpk,Msk). Eventually, A0 outputs x� = (x�

1, . . . , x
�
nc

),y� = (y�
1 , . . . , y

�
nc

)
and its state st. Then B, generates the challenge ciphertexts Ct�1, . . . ,Ct

�
nc

by
using Mpk, encrypting x or y depending on a chosen random bit b. Finally, B
runs A1 on input challenge ciphertexts Ct�1, . . . ,Ct

�
nc

and answers A1’s queries
to O1 and O2 by using (Mpk,Msk). To answer receiver-coerce oracle queries,
B first chooses (s′

i ← {0, 1}λ)i∈[nc]\{k}, then on input a receiver-coerce query
of the form (C,Ct,x), where x = (x1, . . . , xnc

), B does the following: For each
i ∈ [nc] \ {k}, B chooses random ti and t′i in {0, 1}l(λ). Then,
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1. i < k: B distinguishes between the following two cases: (a) If C(xi) = 1,
it sets zi = fs′

i
(ti) and chooses random z′

i ∈ {0, 1}L(λ). (b) If C(xi) = 0,
it sets z′

i = fs′
i
(t′i) and chooses random zi ∈ {0, 1}L(λ).

2. i = k: B uses its own oracle f̂ as follows:
• If C(xi) = 1, it sets zi = f̂(ti) and chooses random z′

i ∈ {0, 1}L(λ).
• If C(xi) = 0, it sets z′

i = f̂(t′i) and chooses random zi ∈ {0, 1}L(λ).
3. i ≥ k: B chooses random zi, z

′
i ∈ {0, 1}L(λ).

Finally, B computes FE.SkC = FE.KeyGen(FE.Msk,Trap[C,F ]t,z,t′,z′
), and

returns secret key SkC = (t, z, t′, z′,FE.SkC) as the answer of oracle E�
1 . Even-

tually, A1 returns its output and B passes it to the distinguisher D and returns
D’s output as its own output.

Now notice that if f̂ = F then B is simulating Game H1,k. On the other
hand, if f̂ = fs then B is simulating Game H1,k+1

Indistinguishability of H 2 and H 3: To prove indistinguishability we use the
following sequence of hybrid experiments.

• Hybrid H2,j , for 1 ≤ j ≤ nc + 1: This is the same as H2 except that the
following new oracle E�

2,j is used:

E�
2,j(x,y)

(si ← {0, 1}λ)i∈[nc]

(s′
i ← {0, 1}λ)i∈[nc]

Then, for i ∈ [nc], we have two cases:

1. i < j : Cti ← FE.Enc(Mpk, (yi, s
′
i)),

2. i ≥ j : Cti ← FE.Enc(Mpk, (xi, si)).

Output: ((Cti), ∅)

Then, notice then that H2 = H2,1 and H3 = H2,nc+1. Thus, it is sufficient to
prove that H2,k is computational indistinguishable from H2,k+1. This follows
from the assumed IND-Security of FE. In fact, notice that H2,k+1 is the same as
H2,k except that the k-th challenge ciphertext is for message (yk, s′

k) instead of
(xk, sk). Moreover, notice that for all the faked secret keys generated using the
algorithm Sim.RecFake2,nc+1 it holds than Trap[C,F ]t,z,t′,z′

(xk, sk) = C(xk) =
Trap[C,F ]t,z,t′,z′

(yk, s′
k).

More formally, suppose there exists a distinguisher D and adversary
A = (A0,A1) for which H2,k and H2,k+1 are not computationally indistinguish-
able. Then A and D can be used to construct a successful IND adversary B for
FE. Specifically, B = (B0,B1) does the following.

• B0 on input FE master public key Mpk and having oracle access to the FE key
generation algorithm, runs A0 on input master public key Mpk and answers
A0’s queries to O1 and O2 by using Mpk and its key generation oracle. Even-
tually, A0 outputs x� = (x�

1, . . . , x
�
nc

),y� = (y�
1 , . . . , y

�
nc

) and its state st.
Them B0, chooses (si ← {0, 1}λ)i∈[nc] and (s′

i ← {0, 1}λ)i∈[nc], and returns
as its challenge messages (y�

k, s′
k) and (x�

k, sk) and put in its state the state of
A0 and its entire computation.
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• B1 on input ciphertext Ct�, which is the encryption of (y�
k, s′

k) or (x�
k, sk),

and having oracle access to the FE key generation algorithm, generates
challenge ciphertexts in the following way: For j < k, B1 sets Ct�j =
Encrypt(Mpk, (y�

j , s′
j)), for j > k, B1 sets Ct�j = Encrypt(Mpk, (x�

j , sj)), and for
j = k, B0 set Ct�k = Ct�. Finally, B1 runs A1 on input challenge ciphertexts
Ct�1, . . . ,Ct

�
nc

and answers A1’s queries to O1 and O2 and to the receiver-coerce
oracle K, which is implemented at this stage by Sim.RecFake2,nc+1, by using
Mpk and its own key generation oracle. Eventually, A1 returns its output and
B1 passes it to the distinguisher D and returns D’s output as its own output.

It remains to verify that B is valid IND adversary, meaning that all the key
queries issued by B satisfy the game constraints with the respect to the chal-
lenge messages (y�

k, s′
k) and (x�

k, sk). We have the following two cases: (1) For
query made by A to O1 or O2 of the form (C, x, y), B generates a ciphertext
with the respect to a freshly chosen seed ŝ and issues a secret key query to its
oracle for circuit Trap[C,F ]t,z,t′,z′

, where z and z′ are related to ŝ It holds then,
under the constraints of the receiver deniable security game, C(y�

k) = C(x�
k) then

with overwhelming probability Trap[C,F ]t,z,t′,z′
((y�

k, s′
k)) = C(y�

k) = C(x�
k) =

Trap[C,F ]t,z,t′,z′
((x�

k, sk)), by definition of the trapdoor circuit and by noting
that sk, s′

k, t, z, t′, z′ are uncorrelated. (2) For a query issued to the receiver-
coerce oracle for a circuit C, the corresponding secret key is generated by
the algorithm Sim.RecFake2,nc+1. By definition of this algorithm it holds that
Trap[C,F ]t,z,t′,z′

(x�
k, sk) = C(xk) = Trap[C,F ]t,z,t′,z′

(y�
k, s′

k). This concludes
the proof.
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Abstract. Three approaches are currently used for devising identity-
based encryption schemes. They respectively build on pairings, quadratic
residues (QR), and lattices. Among them, the QR-based scheme proposed
by Cocks in 2001 is notable in that it works in standard RSA groups: its
security relies on the standard quadratic residuosity assumption. But it
has also a number of deficiencies, some of them have been subsequently
addressed in follow-up works. Currently, one of the main limitations of
Cocks’ scheme resides in its apparent lack of structure. This considerably
restricts the range of possible applications. For example, given two Cocks
ciphertexts, it is unknown how to evaluate of a function thereof.

Cocks’ scheme is believed to be non-homomorphic. This paper dis-
proves this conjecture and proposes a constructive method for computing
over Cocks ciphertexts. The discovery of the hidden algebraic structure
behind Cocks encryption is at the core of the method. It offers a better
understanding of Cocks’ scheme. As a further illustration of the impor-
tance of the knowledge of the underlying structure, this paper shows how
to anonymize Cocks ciphertexts without increasing their size or sacrific-
ing the security.

Finally and of independent interest, this paper presents a simplified
version of the abstract identity-based cryptosystem with short cipher-
texts of Boneh, Gentry, and Hamburg.

Keywords: Public-key cryptography · Identity-based encryption ·
Cocks’ scheme · Homomorphic encryption · Anonymous encryption ·
Public-key encryption with keyword search · Quadratic residuosity

1 Introduction

Identity-based cryptography is an extension of the public-key paradigm which
was first put forward by Shamir [25]. As discussed in [20, Chapter 1], a major
issue with public-key cryptography is the management of trust. Another issue
to be dealt with is to recover the public key and accompanying certificate, verify
it, and then only encrypt and send messages. Identity-based cryptography aims
at solving these practical issues by simplifying the key management.

While identity-based signature schemes were quickly proposed (already in his
1984 paper, Shamir presented such a scheme), identity-based encryption (IBE)
c© International Association for Cryptologic Research 2016
C.-M. Cheng et al. (Eds.): PKC 2016, Part I, LNCS 9614, pp. 225–254, 2016.
DOI: 10.1007/978-3-662-49384-7 9
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schemes seem harder to develop and only came later. The first implementation
of an IBE scheme was proposed by Desmedt and Quisquater [13] in 1986. It is
however non-standard in the sense that it requires tamper-proof hardware for its
security. The realization of a truly practical IBE scheme remained elusive until
a breakthrough paper by Boneh and Franklin [7] in 2001, and concurrently by
Sakai et al. [24]. The Boneh-Franklin IBE scheme makes use of bilinear maps. Its
publication was quickly followed up by a large number of works. More recently,
lattices were considered as a building block for constructing IBE schemes [16].
Again this gave rise to a number of follow-up works.

A totally different approach was described back in 2001 by Cocks in a short
4-page paper [12]. Cocks’ IBE scheme only requires elementary mathematics.
Encryption merely involves a couple of operations modulo an RSA modulus and
the evaluation of Jacobi symbols. Its security rests on the standard quadratic
residuosity assumption in the random oracle model. Despite its simplicity, Cocks’
scheme received less attention from the research community, compared to the
pairing-based or lattice-based constructions. We believe that this is mainly due
to the apparent lack of structure behind Cocks’ scheme. In this paper, we identify
Cocks ciphertexts as elements of a certain algebraic group. This makes Cocks’
scheme amenable to applications that were previously not possible. In particular,
it can now be used in applications where computing over ciphertexts is required.
Typical applications include electronic voting, auction systems, private informa-
tion retrieval, or cloud computing.

Related Work. Since it appeared in 2001, a handful of variants of Cocks’
IBE scheme have been proposed in the literature, aiming at enhancing certain
features of the original scheme or offering extra properties.

Cocks’ scheme is known not to be anonymous. The ciphertexts leak informa-
tion about their recipient’s identity. The anonymity aspect in Cocks-like cryp-
tosystems was first considered by Di Crescenzo and Saraswat in [14] (and inci-
dentally in [8]). Subsequently, Ateniese and Gasti [2] and, more recently, Clear
et al. [11] proposed concurrent anonymous cryptosystems derived from Cocks’
scheme. Table 1 in [11] gives a comparison of these two latter schemes. The
scheme by Clear et al. features the best encryption and decryption times (i.e.,
79 ms and 27 ms for a 128-bit message with a key-size of 1024 bits in their set-
ting). The Ateniese-Gasti scheme is slower but has a smaller ciphertext expan-
sion.

Cocks’ scheme is mostly attractive when used with the hybrid encryption
paradigm encrypting a short session key. Indeed messages are encrypted in a
bit-by-bit fashion with Cocks’ IBE scheme. It therefore looses its practicability
when long messages need to be encrypted. The ciphertext expansion issue was
addressed by Boneh, Gentry, and Hamburg [8]. They propose a space-efficient,
anonymous IBE scheme based on the quadratic residuosity. However, the encryp-
tion in their scheme is time-consuming. Encryption time is quartic in the secu-
rity parameter per message bit. Several possible trade-offs are discussed in
[8, Sect. 5.3] and [19].
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The work closest to ours is a recent paper by Clear, Hughes, and Tewari [10].
They develop a xor-homomorphic variant of Cocks’ scheme. This is elegantly
achieved by seeing ciphertexts as elements (of the multiplicative group) in a
certain quotient ring. The homomorphism property then naturally pops up as
an application of the corresponding multiplication operation. A similar scheme
was independently found —and generalized to higher power residue symbols—
by Boneh, LaVigne, and Sabin [9]. As explained in [9], these schemes are however
less efficient, bandwidth-wise, than the original Cocks’ scheme.

Our Contributions. Motivated by the work of [10], we were interested in find-
ing the exact algebraic structure behind Cocks’ scheme. We quote from [23]:

“We believe that studying and understanding the mathematics that
underlies the associated cryptosystems is a useful aid to better under-
stand their properties and their security.”

Interestingly, the results of Rubin and Silverberg [23] (appearing earlier in [22])
were instrumental in our work. In a nutshell, we consider the torus T1(Fp) = F

×
p

viewed as a ‘degenerate’ representation of the torus T2(Fp) where Fp2 is replaced
with Fp(δ) where δ ∈ F

×
p . We then extend the setting modulo an RSA composite

through Chinese remaindering. We show that the Cocks ciphertexts are squares
in the so-obtained algebraic structure and form a quasi-group. The underly-
ing group law yields the sought-after homomorphism. Compared to the app-
roach in [10] there is no ciphertext expansion —the ciphertexts in [10] are twice
longer. More importantly, it directly applies to Cocks’ scheme. This is some-
what surprising. It points out that the original Cocks’ IBE scheme is inherently
homomorphic. In this regard, it shares similarities with the Goldwasser-Micali
[public-key] encryption scheme [17]. We note that both schemes are semanti-
cally secure under the quadratic residuosity assumption and have comparable
performance.

Another contribution is an anonymous variant of Cocks’s scheme. Anonymous
identity-based schemes are important cryptographic tools as they constitute the
central building block for public-key encryption with keyword search (PEKS).
The companion PEKS scheme derived from our anonymous IBE scheme is
detailed in AppendixD. Compared to the earlier QR-based1 scheme by Di
Crescenzo and Saraswat [14], it reduces the size of the searchable ciphertexts
by a typical factor of 2 without sacrificing the security.

Of independent interest, we present in AppendixE a simplified version of the
abstract IBE system with short ciphertexts of Boneh, Gentry, and Hamburg [8].

2 Definitions and Notation

In this section, we review the classical notions of semantic security and of
anonymity for identity-based encryption. We also formally present the quadratic
residuosity assumption and a variant thereof.
1 We note that the new security assumption introduced in [14] was later shown in [2]

to be equivalent to the QR assumption.



228 M. Joye

2.1 Identity-Based Encryption

An identity-based encryption scheme [7] (or IBE in short) is defined as a tuple
of four polynomial-time algorithms (SETUP, EXTRACT, ENCRYPT, DECRYPT):

Setup. The setup algorithm SETUP is a randomized algorithm that, taking a
security parameter 1κ as input, outputs the system parameters mpk together
with the master secret key msk: (mpk,msk) R← SETUP(1κ). The message space
is denoted by M.

Key derivation. The key derivation algorithm EXTRACT takes as input an iden-
tity id and, using the master secret key msk, returns a secret key for the user
with identity id: usk ← EXTRACTmsk(id).

Encryption. The encryption algorithm ENCRYPT is a randomized algorithm
that takes as input an identity id and a plaintext m ∈ M, and returns a
ciphertext C. We write C ← ENCRYPTmpk(id,m).

Decryption. The decryption algorithm DECRYPT takes as input secret key usk
(corresponding to identity id) and a ciphertext C and returns the corre-
sponding plaintext m or a special symbol ⊥ indicating that the ciphertext
is invalid. We write m ← DECRYPTusk(C) if C is a valid ciphertext and
⊥ ← DECRYPTusk(C) if it is not.

It is required that DECRYPTusk(ENCRYPTmpk(id,m)) = m for any identity id and

all messages m ∈ M, where (mpk,msk) R← SETUP(1κ) and usk ← EXTRACTmsk(id).

2.2 Security Notions

Semantic Security. The notion of indistinguishability of encryptions [17] cap-
tures a strong notion of data-privacy: The adversary should not learn anything
about a plaintext given its encryption, beyond the length of the plaintext. The
definitions for the public-key setting naturally extend to the identity-based para-
digm. The standard definition is strengthened by allowing the adversary to issue
chosen private-key extraction queries [7].

We view an adversary A as a pair (A1,A2) of probabilistic algorithms. This
corresponds to adversary A running in two stages. Upon receiving the system
parameters mpk, in the “find” stage, algorithm A1 issues private-key extrac-
tion queries id1, . . . , idn1 and receives back the private key uski corresponding to
identity idi: uski ← EXTRACTmsk(idi). The queries may be asked adaptively. Once
the adversary decides not to make further oracle queries, it outputs a challenge
identity id∗ (with id∗ �= idi, 1 ≤ i ≤ n1), two (different) equal-size messages
m0 and m1 ∈ M (where M denotes the message space), and some state infor-
mation s. In the “guess” stage, algorithm A2 receives a challenge ciphertext C
which is the encryption of mb for identity id∗ where b is chosen uniformly at
random in {0, 1}. Algorithm A2 can issue more private-key extraction queries
idn1+1, . . . , idn2 ; the only restriction is that idi �= id∗, n1 < i ≤ n2. The goal of
A2 is to guess the value of b from s and C. Formally, a public-key encryption
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scheme is said indistinguishable (or semantically secure) if

Pr

⎡

⎢

⎣

(mpk,msk) R← SETUP(1κ),
(id∗,m0,m1, s) ← AEXTRACTmsk(·)

1 (mpk),
b

R← {0, 1}, C ← ENCRYPTmpk(id∗,mb)

: AEXTRACTmsk(·)
2 (s, C) = b

⎤

⎥

⎦− 1
2

is negligible in the security parameter for any polynomial-time adversary A; the
probability is taken over the random coins of the experiment according to the
distribution induced by SETUP and over the random coins of the adversary.

Adversary A = (A1,A2) can encrypt any message of its choice, for any
identity of its choice. In other words, the adversary can mount chosen-identity,
chosen-plaintext attacks (ID-CPA). Hence, we write IND-ID-CPAthe security
notion achieved by a semantically secure identity-based encryption scheme.

Remark 1. When the message space is M = {0, 1}, the previous probability
simplifies to

Pr

⎡

⎢

⎣

(mpk,msk) R← SETUP(1κ),
(id∗, s) ← AEXTRACTmsk(·)

1 (mpk),
b

R← {0, 1}, C ← ENCRYPTmpk(id∗, b)

: AEXTRACTmsk(·)
2 (s, C) = b

⎤

⎥

⎦− 1
2
.

Anonymity. Analogously, the notion of anonymity captures a strong require-
ment about privacy: a ciphertext should not reveal the identity of the recipient.
More formally, it is defined as a straightforward adaptation of key privacy [4] to
the identity-based paradigm [1].

As before, we view an adversary A as a pair (A1,A2) of probabilistic algo-
rithms. In the “find” stage, algorithm A1 issues private-key extraction queries
id1, . . . , idn1 and receives back the private key uski corresponding to identity idi:
uski ← EXTRACTmsk(idi). The queries may be asked adaptively. Once the adver-
sary decides not to make further oracle queries, it outputs two (different) chal-
lenge identities id∗

0 and id∗
1 (with id∗

0, id
∗
1 �= idi, 1 ≤ i ≤ n1), a message m ∈ M,

and some state information s. In the “guess” stage, algorithm A2 receives a
challenge ciphertext C which is the encryption of m for identity id∗

b where b
is chosen uniformly at random in {0, 1}. Algorithm A2 can issue more private-
key extraction queries idn1+1, . . . , idn2 ; the only restriction is that idi �= id∗

0, id
∗
1,

n1 < i ≤ n2. The goal of A2 is to recover the value of b from s and C.
An IBE scheme is said to be anonymous if

Pr

⎡

⎢

⎣

(mpk,msk) R← SETUP(1κ),
(id∗

0, id
∗
1,m, s) ← AEXTRACTmsk(·)

1 (mpk),
b

R← {0, 1}, C ← ENCRYPTmpk(id∗
b ,m)

: AEXTRACTmsk(·)
2 (s, C) = b

⎤

⎥

⎦− 1
2

is negligible in the security parameter for any polynomial-time adversary A; the
probability is taken over the random coins of the experiment according to the
distribution induced by SETUP and over the random coins of the adversary. We
write ANO-ID-CPA the corresponding security notion achieved by an anonymous
IBE scheme.
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Semantic Security and Anonymity. Of course, the goals of indistinguisha-
bility and anonymity can be combined to give rise to the ANO-IND-ID-CPA
security notion. Halevi’s sufficient condition [18] was extended to IBE schemes
in [1]. Namely, an IBE scheme is ANO-IND-ID-CPA if it is IND-ID-CPA and if

Pr

⎡

⎢

⎢

⎢

⎣

(mpk,msk) R← SETUP(1κ),
(id∗

0, id
∗
1,m, s) ← AEXTRACTmsk(·)

1 (mpk),
b

R← {0, 1}, r
R← M and |r|2 = |m|2,

C ← ENCRYPTmpk(id∗
b , r)

: AEXTRACTmsk(·)
2 (s, C) = b

⎤

⎥

⎥

⎥

⎦

− 1
2

is negligible in the security parameter for any polynomial-time adversary A; the
probability is taken over the random coins of the experiment according to the
distribution induced by SETUP and over the random coins of the adversary. The
difference is that a random message r is encrypted as opposed to the message m
chosen by A; the only restriction being that r and m must be of equal length.

2.3 Complexity Assumptions

It is useful to introduce some notation. Let N = pq be the product of two
primes p and q. The set of integers whose Jacobi symbol is 1 is denoted by JN ,
JN =
{

a ∈ Z
∗
N |
(

a
N

)

= 1
}

; the set of quadratic residues is denoted by QRN ,

QRN =
{

a ∈ Z
∗
N |
(

a
p

)

=
(

a
q

)

= 1
}

. Notice that QRN is a subset of JN .
This leads to the following computational assumption [17]. Basically, it says

that quadratic residues cannot be distinguished from quadratic non-residues
modulo an RSA composite N = pq.

Definition 1 (Quadratic Residuosity Assumption). Let RSAgen be a prob-
abilistic algorithm which, given a security parameter κ, outputs primes p and q
and their product N = pq. The Quadratic Residuosity (QR) assumption relative
to RSAgen asserts that the success probability defined as the distance
∣

∣

∣Pr[D(x,N) = 1 | x
R← QRN ] − Pr[D(x,N) = 1 | x

R← JN \ QRN ]
∣

∣

∣

is negligible for any probabilistic polynomial-time distinguisher D; the proba-
bilities are taken over the experiment of running (N, p, q) ← RSAgen(1κ) and
choosing at random x ∈ QRN and x ∈ JN \ QRN .

A stronger assumption is introduced in [8]. It says that the QR assumption
holds in the presence of a hash square-root oracle. More formally, the assumption
is defined as follows.

Definition 2 (Interactive Quadratic Residuosity Assumption). Again
let RSAgen be a probabilistic algorithm which, given a security parameter κ,
outputs primes p and q and their product N = pq. Let also H be a hash function
that on input an arbitrary bit-string returns an element in JN and let O be a
hash square-root oracle that maps an input pair (N, s) to one of H(s)1/2 mod
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N or (uH(x))1/2 mod N, for some quadratic non-residue u ∈ JN . The Interac-
tive Quadratic Residuosity (IQR) assumption asserts that the success probability
defined as the distance
∣

∣

∣Pr[DO(x,N) = 1 | x
R← QRN ] − Pr[DO(x,N) = 1 | x

R← JN \ QRN ]
∣

∣

∣

is negligible for any probabilistic polynomial-time distinguisher D; the probabili-
ties are taken over the experiment of running (N, p, q) ← RSAgen(1κ), choosing
at random oracle O, and choosing at random x ∈ QRN and x ∈ JN \ QRN .

Remark 2. As noted in [8] the IQR assumption is equivalent to the QR assump-
tion in the random oracle model [5].

3 Review of Cocks’ Scheme

In 2001, Cocks published an identity-based encryption scheme that does not
rely on pairings over elliptic curves [12]. Cocks’ scheme works in standard RSA
groups and its security relies on the quadratic residuosity assumption (in the
random oracle model). The encryption processes one bit at a time. To simplify
the presentation, we assume that messages being encrypted are in the set {−1, 1}.
For example, the map μ : {0, 1} → {−1, 1}, b �→ m = (−1)b maps a bit b to a
message m ∈ M = {±1}. The inverse map is given by μ−1(m) = (1 − m)/2.

3.1 Description

Cocks’ scheme proceeds as follows.

SETUP(1κ). Given a security parameter κ, SETUP generates an RSA modulus
N = pq where p and q are prime. It also selects an element u ∈ JN \QRN . The
system parameters are mpk = {N,u,H} where H is a cryptographic hash
function mapping bit-strings to JN . The master secret key is msk = {p, q}.

EXTRACTmsk(id). Using hash function H, EXTRACT sets Rid = H(id). If Rid ∈ QRN

it computes rid = Rid
1/2 mod N; otherwise it computes rid = (uRid)1/2 N.

EXTRACT returns user’s private key usk = {rid}.
ENCRYPT(id,m) To encrypt a message m ∈ {±1} for user with identity id,

ENCRYPT chooses at random t, t̄ ∈ Z/NZ such that
(

t
N

)

=
(

t̄
N

)

= m. It
then computes

c = t +
Rid

t
mod N and c̄ = t̄ +

uRid

t̄
mod N

where Rid = H(id). The returned ciphertext is C = (c, c̄).
DECRYPTusk(C). From usk = {rid} and C = (c, c̄), if rid

2 ≡
H(id)(mod N), DECRYPT sets γ = c; otherwise it sets γ = c̄. Plaintext m
is then recovered as

m =
(

γ + 2rid

N

)

.
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Remark 3. The above description is a generalization of the original scheme.
In [12], Cocks considers Blum integers; namely, RSA moduli N = pq with
p, q ≡ 3 (mod 4). Doing so, it follows that

(

−1
p

)

=
(

−1
q

)

= −1 and therefore
−1 ∈ JN \ QRN . The original scheme corresponds to the choice u = −1. The
above description also slightly generalizes the one offered in [8, Appendix A] in
that parameter u is not necessarily chosen as a random quadratic non-residue
in JN .

Remark 4. Alternatively, the decryption algorithm can recover plaintext m as
m =
(

γ−2rid

N

)

. The correctness of the decryption follows by remarking that when

rid
2 ≡ H(id) (mod N), γ ± 2rid ≡ t(1 ± rid

t )2 (mod N) yielding
(

γ±2rid

N

)

=
(

t
N

)

=

m. Likewise, when rid
2 ≡ uH(id) (mod N), γ ± 2rid ≡ t̄(1 ± rid

t̄ )2 (mod N) and

thus
(

γ±2rid

N

)

=
(

t̄
N

)

= m.

3.2 Security Analysis

The next proposition shows that the generalized Cocks’ scheme is semantically
secure under the QR assumption in the random oracle model. Equivalently, as
mentioned in Remark 2, the scheme is semantically secure under the IQR assump-
tion in the standard model.

Proposition 1. The scheme of Sect. 3.1 is IND-ID-CPA under the quadratic
residuosity assumption in the random oracle model.

Proof. The proof can be found in AppendixA. 
�

4 A Useful Representation

Let Fq denote the finite field with q elements, where q = pr is a prime power.
The order of the multiplicative group F

×
pr = Fpr \ {0} is pr − 1. Note that

pr − 1 =
∏

d|r Φd(p) where Φd(x) represents the d-th cyclotomic polynomial. We
let Gp,r ⊆ F

×
pr denote the cyclic subgroup of order Φr(p). In [22], Rubin and

Silverberg identify Gp,r with the Fp-points of an algebraic torus. Namely, they
consider

Tr(Fp) = {α ∈ F
×
pr | NFpr /F (α) = 1 whenever Fp ⊆ F � Fpr} ,

that is, the elements of F
×
pr whose norm is one down to every intermediate sub-

field F . Their key observation is that Tr(Fp) forms a group whose elements can
be represented with only φ(r) elements of Fp, where φ denotes Euler’s totient
function. The compression factor is thus of r/φ(r) over the field representa-
tion [15,22].
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4.1 Parametrization of T2(Fp)

This corresponds to the case r = 2. We review the explicit representation for
T2(Fp) presented in [22, Sect. 5.2].

For simplicity, we assume that p is an odd prime. Let Δ = δ2 ∈ F
×
p with

δ /∈ Fp. Then T2(Fp) is the multiplicative group given by

T2(Fp) =
{

x + δy | x, y ∈ Fp and x2 − Δy2 = 1
}

.

Define the map ψ : Fp → T2(Fp), u �→ u+δ
u−delta = u2+Δ

u2−Δ + δ 2u
u2−Δ . The inverse

map is given by ψ−1 : T2(Fp) \ {1} → Fp, v �→ δ(v+1)
v−1 . By augmenting Fp with

a special symbol ∞ and defining ψ(∞) = 1, maps ψ and ψ−1 extend naturally
to give an isomorphism T2(Fp)

∼→ Fp ∪ {∞}.

4.2 An Alternative Representation For (Z/NZ)×

One may wonder what happens if Δ is chosen as a quadratic residue in the Rubin-
Silverberg representation for T2(Fp). As will become apparent in Sect. 4.3, this
seemingly useless setting has practical consequences. We start with the multi-
plicative group F

×
p and then extend our results to (Z/NZ)× through Chinese

remaindering.

The Group Fp,Δ. Let p be an odd prime. We henceforth assume that δ ∈ F
×
p

and thus that Δ = δ2 ∈ QRp. In this case, the torus T2(Fp) becomes isomorphic
to T1(Fp) = F

×
p . Note also that map ψ as given in Sect. 4.1 is no longer defined at

u = δ. Moreover, when δ ∈ F
×
p , ψ(−δ) = 0 cannot be expressed as ψ(−δ) = x+δy

for some x, y ∈ Fp with x2 − Δy2 = 1. So, we define the set

Fp,Δ = (Fp \ {±δ}) ∪ {∞} = {u ∈ Fp | u2 �= Δ} ∪ {∞}

and restrict map ψ to Fp,Δ:

ψ : Fp,Δ → F
×
p , u �→

{

u+δ
u−δ if u �= ∞ ,

1 otherwise .

For completeness, we show that Fp,Δ equipped with the group law � (defined
hereafter) and F

×
p are isomorphic. Clearly, the map ψ : Fp,Δ → F

×
p is injective

and thus defines a bijection. Indeed, suppose ψ(u1) = ψ(u2) for some u1, u2 ∈
Fp,Δ. If ψ(u1) �= 1, this implies (u1 + δ)(u2 − δ) = (u2 + δ)(u1 − δ) and in
turn u1 = u2; it ψ(u1) = 1 then again this implies u1 = u2 (= ∞) since
(u + δ)/(u − δ) �= 1 for every u ∈ Fp,Δ. The inverse map is given by

ψ−1 : F
×
p → Fp,Δ, v �→

{

δ(v+1)
v−1 if v �= 1 ,

∞ otherwise.
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Furthermore, map ψ yields a homomorphism from Fp,Δ to F
×
p . Let u1, u2 ∈

Fp,Δ \ {∞} with u1 �= −u2. Then we have

ψ(u1) · ψ(u2) =
(u1 + δ)(u2 + δ)
(u1 − δ)(u2 − δ)

=
u1u2 + Δ + δ(u1 + u2)
u1u2 + Δ − δ(u1 + u2)

=
u1u2+Δ
u1+u2

+ δ
u1u2+Δ
u1+u2

− δ

= ψ(u3) where u3 = u1u2+Δ
u1+u2

.

Note also that ψ(∞) = 1 and that 1
ψ(u1)

= u1−δ
u1+δ = −u1+δ

−u1−δ = ψ(−u1).

We write Fp,Δ multiplicatively and use � to denote its group law. In more
detail, we have:

– the neutral element is ∞: u � ∞ = ∞ � u = u for all u ∈ Fp,Δ ;
– the inverse of u ∈ Fp,Δ \ {∞} is −u: u � (−u) = (−u) � u = ∞ ;
– given u1, u2 ∈ Fp,Δ \ {∞}, their product is given by:

u1 � u2 =

{

u1u2+Δ
u1+u2

if u1 �= −u2 ,

∞ otherwise.

The Group ZN,Δ. The previous setting naturally extends through Chinese
remaindering. Let N = pq be an RSA modulus. Then

ZN,Δ := Fp,Δ × Fq,Δ
∼= (Z/NZ)× (1)

is a group w.r.t. � and has order φ(N).
For each element u ∈ ZN,Δ, there exists a unique pair of elements up ∈ Fp,Δ

and uq ∈ Fq,Δ such that u mod p = up and u mod q = uq. We denote this
equivalence by u = [up, uq] and let ∞ = [∞p,∞q] represent the neutral element.
We also define the subset ˜ZN,Δ :=

(

(Fp,Δ \ {∞p}) × (Fq,Δ \ {∞q})
)

∪ {∞}.
Efficient methods for working in ZN,Δ are discussed in AppendixB.

Remark 5. Please note that 0 is of order 2 as an element of ZN,Δ, namely 0�0 =
∞. Note also that for any u ∈ ZN,Δ, u �= 0,∞, we have u � 0 = Δ/u.

4.3 The Subset SN,Δ of Squares in ˜ZN,Δ

We now have all ingredients to introduce the useful quasi-group SN,δ. Let N = pq

be an RSA modulus and let Δ = δ2 ∈ QRN . Consider the set of squares in ˜ZN,Δ,
namely ( ˜ZN,Δ)2 = {u � u | u ∈ ˜ZN,Δ} ⊂ (ZN,Δ)2, or more exactly, the subset

SN,Δ
def=
{

u2+Δ
2u | u ∈ (Z/NZ)× and gcd(u2 − Δ,N) = 1

}

(2)

= ( ˜ZN,Δ)2 \ {∞}.

The set SN,Δ almost defines a group: it contains all elements s of the group
(ZN,Δ)2 = {s = u � u | u ∈ ZN,Δ} minus elements of the form [sp,∞q] or
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[∞p, sq] (and ∞ = [∞p,∞q]). Since it is a subset of (ZN,Δ)2, SN,Δ is endowed
with the �-law. In practice, for cryptographic applications, working in ( ˜ZN,Δ)2 =
SN,Δ ∪ {∞} rather than in (ZN,Δ)2 does not really matter since the probability
that operation � is not defined on ( ˜ZN,Δ)2 is negligible.

What makes the quasi-group SN,Δ special is that, up to a scaling factor of
two, it represents the set of all valid [components of] Cocks ciphertexts. Before
making this statement clear, we need to explain what is meant by ‘valid compo-
nent’. This follows from the next lemma, adapted from [12, Sect. 5]. Basically, it
shows that, given a (generalized) Cocks ciphertext C = (c, c̄), among its two com-
ponents c and c̄, one carries no information whatsoever about the corresponding
plaintext. The component that yields the plaintext is called valid component.

Lemma 1. Using the notations of Sect. 3.1, let C = (c, c̄) be a (generalized)
Cocks ciphertext. If H(id) /∈ QRN then the component c corresponds with the
same probability to the encryption of message m = 1 or m = −1. Conversely, if
u H(id) /∈ QRN then the component c̄ corresponds with the same probability to
the encryption of message m = 1 or m = −1.

Proof. Suppose that H(id) /∈ QRN (i.e., H(id) ∈ JN \ QRN ). Let Rid = H(id).
We have c = t + Rid

t mod N for some random t ∈ (Z/NZ)× such
(

t
N

)

= m.
Consider also t1, t2, t3 ∈ (Z/NZ)× such that

– t1 ≡ t (mod p), t1 ≡ Rid/t (mod q);
– t2 ≡ Rid/t (mod p), t2 ≡ t (mod q);
– t3 ≡ Rid/t (mod p), t3 ≡ Rid/t (mod q).

Note that the condition
(

t
N

)

= m implies
(

t1
N

)

=
(

t2
N

)

=
(

t3
N

)

= m. The four
possible values t, t1, t2, and t3 are equally likely since c ≡ t+Rid/t ≡ t1+Rid/t1 ≡
t2 + Rid/t2 ≡ t3 + Rid/t3 (mod N). At the same time, since Rid ∈ JN \ QRN we
also have

(

t
N

)

=
(

t3
N

)

�=
(

t1
N

)

=
(

t2
N

)

. Hence, component c leaks no information

about
(

t
N

)

; it has the same probability to be 1 or −1.
The case u H(id) /∈ QRN is proved similarly. 
�
With the notations of Sect. 3.1, from a ciphertext C = (c, c̄), letting Δ =

H(id) ∈ QRN (resp. Δ = u H(id) ∈ QRN ) and γ = c (resp. c̄), we have
γ

2
∈ SN,Δ =⇒ ∃τ ∈ (Z/NZ)× with gcd(τ2 − Δ,N) = 1 such that γ = τ2+Δ

τ .

In other words, up to a factor of two, the valid component of C is an element of
SN,Δ; i.e., γ

2 ∈ SN,Δ. By Lemma 1, the other component does not matter. Note
also that the condition gcd(τ2 −Δ,N) = 1 is implicit in the (generalized) Cocks
encryption since

(

τ
N

)

= m ∈ {±1} where τ = t (resp. τ = t̄) and decryption is
obtained as

(

γ ± 2δ

N

)

which is 0 when gcd(τ2 − Δ,N) �= 1 ⇐⇒ τ ≡ ±δ(mod {p, q}). The condition
τ ∈ (Z/NZ)× (instead of t, t̄ ∈ Z/NZ) is trivially satisfied since

(

τ
N

)

∈ {±1}.
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5 Computing over Cocks Ciphertexts

Homomorphic encryption is a form of encryption which allows combining two
ciphertexts through a non-private operation that results in a third ciphertext
which, when decrypted, yields a plaintext that is the combination of the corre-
sponding two plaintexts through a specific operation. Mathematically, for two
ciphertexts C1 = ENCRYPT(m1) and C2 = ENCRYPT(m2), there exists a non-
private operation ∂ such that C1 ∂ C2 = ENCRYPT(m1 � m2) for some specific
operation �. Examples of known operations � include (modular) addition and
(modular) multiplication.

5.1 HOM Procedure

Consider the following procedure HOM. It takes as input two elements x1, x2 ∈
Z/NZ and an element Γ ∈ JN , and outputs an element z ∈ Z/NZ. We write
z = HOM(x1, x2, Γ ).

1: procedure HOM(x1, x2, Γ )
2: Define D = x1x2 + 4Γ mod N and U = x1 + x2 mod N;
3: Select t ∈ Z/NZ such that

(

θ
N

)

= 1 where

θ = t D + (t2 + Γ )U mod N ;

4: Evaluate

z =
(t2 + Γ )D + 4ΓtU

θ
mod N ;

5: Return z.
6: end procedure

Remark 6. Note that when
(

U
N

)

=
(

x1+x2

N

)

= 1, we can take t = 0 (in Procedure
HOM, Line 3). This yields θ = ΓU modN (∈ JN ) and in turn z = D/U mod N.

5.2 Application

The HOM procedure allows for computing over two Cocks ciphertexts.
Specifically, suppose we are given two ciphertexts C1 = {c1, c̄1} and C2 =

{c2, c̄2} that are the respective encryption of two messages m1 and m2 for a same
identity, say id. The system parameters are mpk = {N,u,H} where N = pq is
an RSA modulus, u is a quadratic non-residue in JN , and H is a hash function
mapping bit-strings to JN . As in the description given in Sect. 3.1, we assume
that the message space is M = {±1}.

Let Rid = H(id). Two applications of the HOM procedure yields a third
ciphertext C3 = (c3, c̄3) obtained as

c3 = HOM(c1, c2, Rid) and c̄3 = HOM(c̄1, c̄2, uRid).

A simple calculation shows that C3 is the encryption of m3 = m1 · m2.
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Proof. Suppose first that Rid ∈ QRN . Then, letting rid = Rid
1/2 mod N, we

have:
(

c3+2rid

N

)

=
(

θ
N

)

(

c3+2rid

N

)

=
(

(t2+Rid)D+4RidtU+2rid(tD+(t2+Rid)U)

N

)

=
(

(t2+Rid+2ridt)D+(2ridt+t2+Rid)(2ridU)

N

)

=
(

(t+rid)
2(D+2ridU)

N

)

=
(

D+2ridU

N

)

=
(

(c1c2+4Rid)+2rid(c1+c2)

N

)

=
(

c1+2rid

N

)(

c2+2rid

N

)

as desired.
The case Rid ∈ JN \ QRN is similar. Letting rid = (uRid)1/2 modN, we then

have
(

c̄3+2rid

N

)

=
(

c̄1+2rid

N

)(

c̄2+2rid

N

)

. 
�

Why Does It Work? At first sight, the HOM procedure may appear cum-
bersome. Actually it is not. Without loss of generality, assume that input
Γ ← Rid = rid

2 ∈ QRN . A straightforward application of the homomorphism
induced by the underlying � law will not get the correct result. Clearly, if we
call c3 = HOM(c1, c2, Rid) and let

c′
3

2
=

c1
2

� c2
2

⇐⇒ c′
3 =

c1c2 + 4Rid

c1 + c2

then
(

c3+2rid

N

)

=
(

c′
3+2rid

N

)

if and only if
(

c1+c2
N

)

= 1. Indeed, the above definition
of c′

3 immediately yields

(

c3 + 2rid

N

)

:=
(

c1 + 2rid

N

)(

c2 + 2rid

N

)

=
(

c1 + c2

N

)

(

c′
3 + 2rid

N

)

.

In other words, c′
3 is the encryption of m1 · m2 if and only if

(

c1+c2
N

)

= 1.
This problem is resolved by randomizing one of the input ciphertexts using the
homomorphism. One way to achieve this is to replace ciphertext c1 with an
equivalent randomized ciphertext,

c1
2

← c1
2

� 1l
2

until
(

c1+c2
N

)

= 1, where 1l = ENCRYPTmsk(id, 1) is a random Cocks encryption
(w.r.t. Rid) of message m = 1. Note that no secret is involved in the randomiza-
tion of c1. This is the design strategy behind the HOM procedure.

We have seen that the HOM procedure can be used to randomize cipher-
texts. Likewise, it can be used to flip the value of a plaintext message m1 ∈ {±1}
corresponding to a given Cocks ciphertext C1 = (c1, c̄1) by taking the encryption
of m2 = −1 for ciphertext C2 = (c2, c̄2).
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A variant of Cocks’ scheme that makes easier the computation over cipher-
texts can be found in AppendixC.

It is also worth noting that when the message space is {0, 1} rather than
{±1} then the scheme is homomorphic with respect the xor operator. Indeed,
letting b1 = μ−1(m1) and b2 = μ−1(m2), we have μ−1(m1 · m2) = b1 ⊕ b2,
where μ−1(mi) = (1 − mi)/2 —see Sect. 3. We so get μ(b1 ⊕ b2) = (−1)b1⊕b2 =
(−1)b1+b2 = m1 · m2.

6 An Anonymous IBE Scheme

In numerous scenarios, the recipient’s identity in a transmission needs to be kept
anonymous. This allows users to maintain some privacy. Protecting communi-
cation content may be not enough, as already observed in, e.g., [3,4,21]. For
example, by analyzing the traffic between an antenna and a mobile device, one
can recover some information about [at least] user’s position and some details
about the use of her mobile device. This information leaks easily during all day:
it is a common habit, indeed, to use a mobile phone every day and to keep it
(almost) always switched on.

As pointed out by Galbraith (see [6, Sect. 4], Cocks’ scheme is not anony-
mous. A detailed discussion on the so-called Galbraith’s test can be found in
[2, Sect. 2.3]). In the same paper, Ateniese and Gasti also show that Galbraith’s
is the “best test” possible against the anonymity of Cocks’ scheme.

In this section, we rephrase Galbraith’s test using our representation. We then
build on an original technique developed in [11] to get anonymized Cocks cipher-
texts. However, unlike [11], there is no ciphertext expansion. Anonymized Cocks
ciphertexts have the same size as non-anonymized ciphertexts. The decryption
algorithm is modified accordingly by first de-anonymizing the ciphertext and
then applying the regular decryption process. The resulting scheme is shown
to meet the ANO-IND-ID-CPA security notion under the QR assumption in the
random oracle model or, equivalently, under the IQR assumption in the standard
model (cf. Remark 2).

6.1 Making Cocks Ciphertexts Anonymous

As Eq. (6) indicates, the subset ˜ZN,Δ ⊂ ZN,Δ can be defined as

˜ZN,Δ = {u ∈ Z/NZ | gcd(u2 − Δ,N) = 1} ∪ {∞}

where N = pq and Δ ∈ QRN . The following subsets of ˜ZN,Δ will be useful:

– ̂ZN,Δ :=
{

u ∈ Z/NZ | gcd(u2 − Δ,N) = 1
}

⊂ ˜ZN,Δ;

– ̂Z [−1]
N,Δ :=

{

u ∈ Z/NZ |
(

u2−Δ
N

)

= −1
}

⊂ ̂ZN,Δ;

– ̂Z [+1]
N,Δ :=

{

u ∈ Z/NZ |
(

u2−Δ
N

)

= 1
}

⊂ ̂ZN,Δ;

– ( ̂ZN,Δ)2 :=
{

u ∈ Z/NZ |
(

u2−Δ
p

)

=
(

u2−Δ
q

)

= 1
}

⊂ ̂Z [+1]
N,Δ.
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We have

̂ZN,Δ = ˜ZN,Δ \ {∞} = (Fp,Δ \ {∞p}) × (Fq,Δ \ {∞q})

from Eq. (5). By definition (see Sect. 4.2), for u ∈ Fp,Δ \ {∞p}, we have ψ(u) =
u+δ
u−δ , and ψ(∞p) = 1. Multiplying both sides by (u − δ)2, the latter identity
yields

ψ(u) · (u − δ)2 = u2 − Δ. (3)

The group (Fp,Δ)2 = {u � u | u ∈ Fp,Δ} is the subgroup of squares in Fp,Δ.

Therefore, if u ∈ (Fp,Δ)2 then ψ(u) is a quadratic residue modulo p; i.e.,
(

ψ(u)

p

)

=

1. Together with Eq. (3) it follows that u2 − Δ is a quadratic residue modulo
p when u ∈ (Fp,Δ)2, u �= ∞p. This gives an alternative definition for the group

(Fp,Δ)2, namely (Fp,Δ)2 =
{

u ∈ Fp,Δ |
(

u2−Δ
p

)

= 1
}

∪ {∞p} =
{

u ∈ Fp |
(

u2−Δ
p

)

= 1
}

∪ {∞p}. Hence, using Chinese remaindering, we get

( ̂ZN,Δ)2 =
(

(Fp,Δ)2 \ {∞p}
)

×
(

(Fq,Δ)2 \ {∞q}
)

.

This means that ( ̂ZN,Δ)2 is an alternative representation for the subset SN,Δ

of squares in ˜ZN,Δ. Likewise, ̂Z [−1]
N,Δ denotes the subset of elements that are

squares modulo p and non-squares modulo q, or vice-versa; and ̂Z [+1]
N,Δ denotes

the subset of elements that are either both squares modulo p and modulo q, or
both non-squares modulo p and modulo q.

We have shown that:

Proposition 2. Let N = pq be an RSA modulus and let w ∈ ̂ZN,Δ. If
(

w2 − Δ

N

)

= −1

then w /∈ SN,Δ. 
�
This is nothing but Galbraith’s test. Back to the anonymity problem, letting
u ∈ JN \ QRN , it implies that elements of the form c

2 = t2+Rid

2t mod N (respec-
tively, c̄

2 = t̄2+uRid

2t̄ mod N) —where Rid = H(id) is derived from some user’s iden-
tity id— cannot be used as part of a ciphertext for user with identity id′ because
if
(

(c/2)2−Rid′
N

)

= −1 (respectively, if
(

(c̄/2)2−uRid′
N

)

= −1) —where Rid′ = H(id′)

for some other identity id′— then one can conclude that the identity of the recip-
ient of the ciphertext is not id′. This clearly violates the anonymity requirement.

This issue is easily solved by �-multiplying with probability 1/2 the value

of c
2 (resp. c̄

2 ) by an element d
2 satisfying

(

(d/2)2−Δ

N

)

= −1 (resp.
(

(d/2)2−uΔ

N

)

=
−1). The decryption algorithm, assuming it is the legitimate recipient of the
ciphertext, can then �-divide by d

2 the ciphertext in the case it were �-multiplied
by d

2 ; letting e
2 (resp. ē

2 ) the received part of the ciphertext, it is easy for the
decryption algorithm to know if e

2 = c
2 or e

2 = c
2 � d

2 (resp. ē
2 = c̄

2 or ē
2 = c̄

2 � d
2 )

by checking if
(

(e/2)2−Δ

N

)

= 1 or −1 (resp.
(

(ē/2)2−uΔ

N

)

= 1 or −1), respectively.
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6.2 Anonymous IBE Without Ciphertext Expansion

There is a variety of possible instantiations of the above methodology. An efficient
implementation can be achieved by specializing hash function H. Instead of
considering a function mapping bit-strings to any element of JN , we require that,
in addition, on input id, the output must satisfy the extra condition

(

d2−4Rid

N

)

=
(

d2−4uRid

N

)

= −1 for some given d:

Hd : {0, 1}∗ → JN , id �→ Hd(id) s.t.
(

d2−4Hd(id)

N

)

=
(

d2−4uHd(id)

N

)

= −1. (4)

Here is the resulting scheme.

SETUP(1κ). Given a security parameter κ, SETUP generates an RSA modulus
N = pq where p and q are prime. It also selects an element u ∈ JN \ QRN

and a global integer d. The public system parameters are mpk = {N,u, d, Hd}
where Hd is a cryptographic hash function as per Eq. (4). The master secret
key is msk = {p, q}.

EXTRACTmsk(id). Given identity id, algorithm EXTRACT sets Rid = Hd(id). Then
if Rid ∈ QRN it computes rid = Rid

1/2 mod N ; otherwise it computes rid =
(uRid)1/2 mod N . EXTRACT returns user’s private key usk = {rid}.

ENCRYPTmpk(id,m). To encrypt a message m ∈ {±1} for a user with identity id,
ENCRYPT defines Rid = Hd(id). It chooses at random t, t̄ ∈ Z/NZ such that
(

t
N

)

=
(

t̄
N

)

= m and lets

c(0) = t +
Rid

t
mod N , c(1) =

c(0)d + 4Rid

c(0) + d
mod N ,

c̄(0) = t̄ +
uRid

t̄
mod N , c̄(1) =

c̄(0)d + 4uRid

c̄(0) + d
mod N.

It chooses random bits β1, β2 ∈ {0, 1} and sets c = c(β1) and c̄ = c̄(β2). The
returned ciphertext is C = (c, c̄).

DECRYPTusk(C) Let Rid = Hd(id). From usk = {rid} and C = (c, c̄), if rid
2 ≡

Rid(mod N), DECRYPT sets γ = c and Δ = Rid; otherwise it sets γ = c̄ and
Δ = uRid. Next, it computes σ =

(

γ2−4Δ

N

)

. Finally, it returns plaintext m
as

m =

⎧

⎨

⎩

(

γ+2rid

N

)

if σ = 1 ,
(

(γ+2rid)(d−2rid)(d−γ)

N

)

if σ = −1.

Remark 7. The choice p ≡ −q (mod 4) (or equivalently N ≡ 3 (mod 4)) simplifies
the setting. In this case, we know that

(

−1
p

)

= −
(

−1
q

)

and therefore
(

−1
N

)

= −1.
A nice observation is that d = 0 is a valid parameter when N ≡ 3 (mod 4) since

then
(

d2−4H(id)

N

)

=
(

d2−4uH(id)

N

)

=
(

−1
N

)

= −1 as desired. Any cryptographic
hash function H mapping bit-strings to JN can be used.
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6.3 Security Analysis

The two next propositions assess the security of the scheme under the quadratic
residuosity assumption.

Proposition 3. The scheme of Sect. 6.2 is IND-ID-CPA under the quadratic
residuosity assumption in the random oracle model.

Proof. Assume there exists an IND-ID-CPA adversary A against the previous
scheme (Sect. 6.2). We can then use A to break the semantic security of the
generalized Cocks’ scheme (Sect. 3.1), which in turn will contradict the quadratic
residuosity assumption. This is readily verified by observing that if C = (c, c̄)
is a valid ciphertext for the scheme of Sect. 3.1 for some user i with identity id
then C ′ = (c′, c̄′) is a valid ciphertext for the scheme of Sect. 6.2, where c′ = c
with probability 1/2 and c′ = cd+4Rid

c+d mod N with probability 1/2 and, likewise,
c̄′ = c̄ with probability 1/2 and c̄′ = c̄d+4Rid

c̄+d mod N with probability 1/2. 
�

Before proving that the scheme is anonymous, we need the following lemma.

Lemma 2. Let RSAgen be a probabilistic algorithm which, given a security para-
meter κ, outputs primes p and q and their product N = pq. Let also δ be a random
element in (Z/NZ)× and Δ = δ2 mod N . Then, under the quadratic residuosity
assumption,
∣

∣

∣Pr
[

D(x, Δ, N) = 1 | x
R← ( ̂ZN,Δ)2

]

− Pr
[

D(x, Δ, N) = 1 | x
R← ̂Z [+1]

N,Δ \ ( ̂ZN,Δ)2
]

∣

∣

∣

is negligible for any probabilistic polynomial-time distinguisher D; the probabili-
ties are taken over the experiment of running (N, p, q) ← RSAgen(1κ), sampling
δ

R← (Z/NZ)×, and choosing at random x ∈ ( ̂ZN,Δ)2 and x ∈ ̂Z [+1]
N,Δ \ ( ̂ZN,Δ)2.

Proof. As previously shown in Sect. 6.1, we have that ( ̂ZN,Δ)2 = SN,Δ (i.e., the
set of all valid components of Cocks ciphertexts). The lemma now follows as an
immediate application of [2, Lemma 2]. 
�

Proposition 4. The scheme Sect. 6.2 is ANO-ID-CPA under the quadratic resid-
uosity assumption in the random oracle model.

Proof. As mentioned in Sect. 2.2, since the scheme is already known to be IND-
ID-CPA, it suffices to prove that the statistical distance between the two distri-
butions

D0 =
{

(id∗
0, id

∗
1, ENCRYPTmpk(id∗

0,m)) | m
R← {±1}

}

and

D1 =
{

(id∗
0, id

∗
1, ENCRYPTmpk(id∗

1,m)) | m
R← {±1}

}

is negligible. In our case, a ciphertext encrypted for identity id∗
b (with b ∈ {0, 1})

is of the form Cb = (cb, c̄b). From Lemma 1, only the valid component can help in
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distinguishing D0 from D1. Without loss of generality, we assume that H(id∗
0) =

H(id∗
1) ∈ QRN . Letting Δb = H(id∗

b), the valid component is then

cb := c
(0)
b = t +

Δb

t
mod N or cb := c

(1)
b =

c
(0)
b d + 4Δb

c
(0)
b + d

mod N

where
(

t
N

)

= m.
Omitting id∗

0, id
∗
1 to ease the reading, the above criterion requires that the

distributions D0 = {c
(β)
0 | β

R← {0, 1}} and D1 = {c
(β)
1 | β

R← {0, 1}} —or
equivalently rescaling by a factor of two, that the distributions

D∗
0 =
{ c

(β)
0
2 | β

R← {0, 1}
}

and D∗
1 =
{ c

(β)
1
2 | β

R← {0, 1}
}

must be indistinguishable with overwhelming probability. Using the � operator,
the elements of D∗

b (for b ∈ {0, 1}) are

c
(β)
b

2 =

⎧

⎪

⎨

⎪

⎩

1
2

(

t + Δb

t

)

= t2+Δb

2t = t � t when β = 0

1
2

( c
(0)
b d+4Δb

c
(0)
b +d

)

=
c
(0)
b
2

d
2+Δb

c
(0)
b
2 + d

2

= c
(0)
b

2 � d
2 = (t � t) � d

2 when β = 1

where t
R← {t ∈ (Z/NZ)× | gcd(t2 − Δb, N) = 1}. Hence, we can see that

D∗
b =

{
{

u | u
R← ( ̂ZN,Δb

)2
} c≡
{

u | u
R← ̂Z [+1]

N,Δb

}

when β = 0
{

u | u
R← ̂Z [−1]

N,Δb

}

when β = 1
.

The first assertion (when β = 0) follows from Lemma 2 (the notation
c≡ means

computationally equivalent —under the QR assumption in this case). The second

assertion (when β = 1) follows by noting that the Jacobi symbol
(

d2
4 −Δb

N

)

= −1

and thus d
2 ∈ ̂Z [−1]

N,Δb
.

As a consequence, under the QR assumption, the distribution D∗
b appears

indistinguishable from the uniform distribution over ̂Z [+1]
N,Δb

∪ ̂Z [−1]
N,Δb

= ̂ZN,Δb
.

This concludes the proof by noting that D∗
0 and D∗

1 are essentially the same sets:
any random element is D∗

0 is also an element in D∗
1 , and vice-versa. 
�

Altogether, this proves that the scheme achieves ANO-IND-ID-CPA under the
quadratic residuosity assumption in the random oracle model.

7 Conclusion

Somewhat surprisingly, we identified and detailed the algebraic group structure
underlying Cocks encryption. The knowledge of this structure gives a better
understanding of Cocks’ scheme and allows one to see it differently. In particu-
lar, the hidden homomorphism opens the way to applications that were before
not readily available or possible with Cocks’ scheme, including homomorphic
computations or anonymous encryption.
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A Proof of Proposition 1

Let A = (A1,A2) be adversary that can break the IND-ID-CPA security of the
generalized scheme described in Sect. 3.1 with probability ε. We will use A to
decide whether a random element w in JN is quadratic residue modulo N or not.

A.1 First Case: u Is Universally Fixed

The first case assumes that system parameter u is a universally fixed parameter.
It covers the original Cocks’ scheme wherein p, q ≡ 3 (mod 4) and u = −1 ∈
JN \ QRN .

Let H : {0, 1}∗ → JN be a hash function viewed as a random oracle. Consider
the following distinguisher2 D(w, u,N) for solving the QR problem. The goal
of D is to distinguish a random element w ∈ QRN from a random element
w ∈ JN \ QRN .

1. Set mpk = {N,u,H}, and give mpk to AEXTRACTmsk(·),H(·)
1 —A1 has

oracle access to EXTRACTmsk(·) and H(·), it may issue a number of
extraction and hash queries, after what it selects a target identity id∗;

2. Depending on id∗:
(a) If H(id∗) = w then

i. Choose a random bit b ∈ {0, 1}, let Rid∗ = H(id∗), and com-
pute the encryption of (−1)b as Cb = (cb, c̄b) where

cb = t +
Rid∗

t
mod N , c̄b = t̄ +

uRid∗

t̄
mod N ,

for some random elements t, t̄ ∈ Z/NZ such that
(

t
N

)

= (−1)b

and
(

t̄
N

)

= (−1)1−b;

ii. Give s and Cb = (cb, c̄b) to AEXTRACTmsk(·),H(·)
2 —A2 may issue

more extraction and hash queries, after what it returns its
guess b′;

iii. If b′ = b return 1; otherwise return 0.
(b) If H(id∗) �= w then

i. Choose a random bit b′ ∈ {0, 1};
ii. Return b′.

It remains to detail how D simulates answers to oracle queries. D maintains
a history list Hist[H] composed of triplets. The list is initialized to ∅. It also
maintains a counter k initialized to 0. Let qH1 denote the number of hash queries
that are not followed by extract queries and let qE1 denote the number of extract

2 Note that D is given u ∈ JN \ QRN as it is universally fixed.
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queries, made by A1. Without loss of generality, we assume that A1 issues a hash
query on id∗. Finally, we let k1 denote a random integer in {1, . . . , qH1 + qE1}
chosen by D.

Hash Queries. When A queries oracle H on some id, D checks whether there
is an entry of the form (id, h, r) in Hist[H]; i.e., a triplet with id as the first
component. If so, it returns h. Otherwise, it does the following:
1. Increment k;
2. Depending on k:

(a) If k = k1, define h = w and append (id, h,⊥) to Hist[H];
(b) Else (if k �= k1), define h = u−j r2 mod N with r

R← (Z/NZ)× and
j

R← {0, 1} and append (id, h, r) to Hist[H];
3. Return h.

Extraction Queries. When A queries oracle EXTRACT on some id, D checks
whether there is an entry of the form (id, h, r) in Hist[H]. If not, it calls
H(id) so that there is an entry. Let (id, h, r) denote the entry in Hist[H]
corresponding to id. Depending on it, D does the following:
1. If r �= ⊥ then return r;
2. If r = ⊥ then abort.

We now analyze the success probability of D in solving the QR challenge.
Since u is an element in JN \ QRN , the resulting mpk appear as valid system
parameters. Three subcases can be distinguished.

Subcase i. The first subcase supposes w = H(id∗) ∈ QRN . The condition
w = H(id∗) requires that id∗ is the k1-th query to H. Further, since H(id∗) ∈
QRN , Lemma 1 teaches that Cb = (cb, c̄b) is a valid ciphertext for b. Namely,
component cb correctly decrypts to (−1)b and component c̄b is of no use.
Hence, D returns 1 exactly when A wins in the IND-ID-CPA game, provided
that there is no abort. But since A is not allowed to submit id∗ to EXTRACT
(and so there is no abort when id∗ is the k1-th query), we get Pr[D(w, u,N) =
1 | w ∈ QRN ∧ w = H(id∗)] = ε.

Subcase ii. The second subcase supposes w = H(id∗) ∈ JN \ QRN . Since
H(id∗) ∈ JN \ QRN , Lemma 1 teaches that Cb = (cb, c̄b) is a valid cipher-
text for (−1)(1−b) —it is worth noticing that

(

t̄
N

)

= (−1)1−b. Hence, D
returns 1 exactly when A looses in the IND-ID-CPA game. We therefore get
Pr[D(w, u,N) = 1 | w ∈ JN \ QRN ∧ w = H(id∗)] = 1 − ε.

Subcase iii. The last subcase supposes w �= H(id∗). In this case D returns a ran-
dom bit, regardless of w. Therefore, we have Pr[D(w, u,N) = 1 | w ∈ QRN ∧
w �= H(id∗)] = Pr[D(w, u,N) = 1 | w ∈ JN \ QRN ∧ w �= H(id∗)] = 1/2.

We so obtain:

Pr
[

D(w, u,N) = 1 | w ∈ QRN

]

= Pr
[

w = H(id∗)
]

· Pr
[

D(w, u,N) = 1 | w ∈ QRN ∧ w = H(id∗)
]

+ Pr
[

w �= H(id∗)
]

· Pr
[

D(w, u,N) = 1 | w ∈ QRN ∧ w �= H(id∗)
]

=
1

qH1

· ε +
(

1 − 1
qH1

)

· 1
2

=
1
2

+
ε − 1

2

qH1
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and similarly,

Pr
[

D(w, u,N) = 1 | w ∈ JN \ QRN

]

=
1

qH1

· (1 − ε) +
(

1 − 1
qH1

)

· 1
2

=
1
2

+
1
2 − ε

qH1

.

Putting all together, we get:

∣

∣Pr
[

D(w, u, N) = 1 | w ∈ QRN

]

− Pr
[

D(w, u, N) = 1 | w ∈ JN \ QRN

]∣

∣ =
2

qH1

∣

∣

∣

∣

ε − 1

2

∣

∣

∣

∣

which must be negligible by the QR assumption. As a consequence, |ε− 1
2 | must

be negligible, which means that the scheme is IND-ID-CPA secure under the QR
assumption.

A.2 Second Case: u Is Random

In this case, the proof can be obtained along the lines of the proof offered in [8,
Appendix B.2] for the Boneh-Gentry-Hamburg scheme. The proof features a
tight reduction. It however crucially requires that parameter u is defined as a
random element in JN \ QRN .

B Arithmetic in ZN,Δ

As mentioned in Sect. 4.2, each element u of the group ZN,Δ = Fp,Δ × Fq,Δ

can be uniquely represented by a pair [up, uq] with up ∈ Fp,Δ and uq ∈ Fq,Δ,
and ∞ = [∞p,∞q]. There is a slight complication when doing arithmetic in
ZN,Δ as we need to deal with the elements of the form [up,∞q] or [∞p, uq].
This can be circumvented by adopting a projective representation. An element
u ∈ ZN,Δ can be written as a pair (U : Z). We say that two elements u = (U : Z)
and u′ = (U ′ : Z ′) are equivalent if there exists some λ ∈ (Z/NZ)× such that
U ′ = λU and Z ′ = λZ. Hence, from the definition of ψ−1, we can represent
ZN,Δ as

ZN,Δ =
{

(δ(v + 1) : v − 1) | v ∈ (Z/NZ)×}.

The neutral element is ∞ = (1 : 0). The inverse of an element (U : Z) is
(−U : Z). The product of two elements (U1 : Z1), (U2, Z2) ∈ ZN,Δ is given by

(U1 : Z1) � (U2, Z2) = (U1U2 + ΔZ1Z2 : U1Z2 + U2Z1).

Observe that the group law is complete with the projective representation: it
works for all inputs.

Another way to deal with the elements of the form [up,∞q] or [∞p, uq] is
simply to ignore them and to work in the subset

˜ZN,Δ =
(

(Fp,Δ \ {∞p}) × (Fq,Δ \ {∞q})
)

∪ {∞} (5)

= {u ∈ Z/NZ | gcd(u2 − Δ,N) = 1} ∪ {∞}. (6)
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wherever it is defined, the �-law in ˜ZN,Δ coincides with the group law on ZN,Δ:

u1 � u2 =

{

u1u2+Δ
u1+u2

(mod N) if u1 �= −u2

∞ otherwise
.

(If u1 = ∞ then u1 � u2 = u2; if u2 = ∞ then u1 � u2 = u1.)

C Some Variants of Cocks’ Scheme

The HOM is dependent of the cryptosystem. We propose below some variants
of Cocks’ scheme that leads to better efficiency. In particular, obtaining the
encryption of the complementary value is almost free.

C.1 Basic Scheme

SETUP(1κ). Given a security parameter κ, SETUP generates an RSA modulus
N = pq where p and q are prime. It also selects an element u ∈ JN \QRN . The
public system parameters are mpk = {N,u,H} where H is a cryptographic
hash function mapping bit-strings to JN ; i.e., H : {0, 1}∗ → JN . The master
secret key is msk = {p, q}.

EXTRACTmsk(id). Given identity id, key derivation algorithm EXTRACT sets Rid =
H(id). If Rid ∈ QRN it computes rid = Rid

1/2 mod N ; otherwise it computes
rid = (uRid)1/2 mod N . EXTRACT returns user’s private key usk = {rid}.

ENCRYPTmpk(id,m). To encrypt a message m ∈ {±1} for a user with identity
id, ENCRYPT defines Rid = H(id). It chooses at random t, t̄ ∈ Z/NZ and
computes

ε = m ·
(

t

N

)

, c = t +
Rid

t
mod N , ε̄ = m ·

(

t̄

N

)

, c̄ = t̄ +
uRid

t̄
mod N.

The returned ciphertext is C = (ε, c, ε̄, c̄).
DECRYPTusk(C) From usk = {rid} and C = (ε, c, ε̄, c̄), if rid

2 ≡ H(id) (mod N),
DECRYPT sets ν = ε and γ = c; otherwise it sets ν = ε̄ and γ = c̄. Next it
computes τ =

(

γ+2rid

N

)

using secret key rid and returns plaintext m = ν · τ .

Homomorphic Computation. Let C1 = (ε1, c1, ε̄1, c̄1) and C2 =
(ε2, c2, ε̄2, c̄2) be the respective encryption of messages m1 and m2 for a user
with identity id. Then, letting Rid = H(id) and R̄id = u · H(id)mod N , we get
that C3 = (ε3, c3, ε̄3, c̄3) with

ε3 = ε1 · ε2 ·
(

c1 + c2

N

)

, c3 =
c1c2 + 4Rid

c1 + c2
mod N ,

ε̄3 = ε̄1 · ε̄2 ·
(

c̄1 + c̄2

N

)

, and c̄3 =
c̄1c̄2 + 4R̄id

c̄1 + c̄2
mod N

is the encryption of message m3 = m1 · m2 (for the user with identity id).
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Complementary Encryption. Given the encryption of a message m ∈ {±1},
it is easy to get the encryption of the complementary value. If C = (ε, c, ε̄, c̄) is
the encryption of m ∈ {±1} then C ′ = (−ε, c,−ε̄, c̄) is the encryption of −m.

C.2 Compact Variant

As an illustration, suppose that Rid = H(id) ∈ QRN in the previous scheme. If
C = (ε, c) with ε = m ·

(

t
N

)

and c = t + Rid/t mod N is a valid encryption for

message m ∈ {±1} then so is C ′ := (ε′, c′) where ε′ = ε ·
(

−1
N

)

and c′ = N − c.
Indeed, letting t′ = −tmod N , we have

c′ ≡ −c ≡ −
(

t +
Ri

t

)

≡ t′ +
Ri

t′
(mod N) and

ε′ = m ·
(

t′

N

)

= m ·
(−t

N

)

= ε ·
(−1

N

)

.

One of the two equivalent ciphertexts C = (ε, c) and C ′ = (ε′, c′) is (at least)
one bit shorter than the other one.

As a result, if � represents the bit-length of RSA modulus N this allows
reducing the size a whole ciphertext to at most 2� bits, as in Cocks’ scheme.

SETUP(1κ). Given a security parameter κ, SETUP generates an RSA modulus
N = pq where p and q are prime. It also selects an element u ∈ JN \QRN . The
public system parameters are mpk = {N,u,H} where H is a cryptographic
hash function mapping bit-strings to JN ; i.e., H : {0, 1}∗ → JN . The master
secret key is msk = {p, q}.

EXTRACTmsk(id). Given identity id, key derivation algorithm EXTRACT sets Rid =
H(id). If Rid ∈ QRN it computes rid = Rid

1/2 mod N ; otherwise it computes
rid = (uRid)1/2 mod N . EXTRACT returns user’s private key usk = {rid}.

ENCRYPTmpk(id,m). To encrypt a message m ∈ {±1} for a user with identity
id, ENCRYPT defines Rid = H(id). It chooses at random t, t̄ ∈ Z/NZ and
computes

ε′ = m ·
(

t

N

)

, c′ = t +
Rid

t
mod N , ε̄′ = m ·

(

t̄

N

)

, c̄′ = t̄ +
uRid

t̄
mod N.

Define c = min(c′, N − c′) and c̄ = min(c̄′, N − c̄′). If c = c′ then define
ε = ε′; otherwise define ε = ε′ ·

(

−1
N

)

. Similarly, if c̄ = c̄′ then define ε̄ = ε̄′;

otherwise define ε̄ = ε̄′ ·
(

−1
N

)

. The returned ciphertext is C = (ε, c, ε̄, c̄).

DECRYPTusk(C) From usk = {rid} and C = (ε, c, ε̄, c̄), if rid
2 ≡ H(id) (mod N),

DECRYPT sets ν = ε and γ = c; otherwise it sets ν = ε̄ and γ = c̄. Next it
computes τ =

(

γ+2rid

N

)

using secret key rid and returns plaintext m = ν · τ .
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Remark 8. Assuming that primes p and q satisfy the extra condition p ≡
q (mod 4) (for example if N = pq is a Blum integer) —in which case

(

−1
N

)

= 1—
the encryption algorithm can then form the ciphertext C = (ε, c, ε̄, c̄) more sim-
ply by defining ε = m ·

(

t
N

)

and ε̄ = m ·
(

t̄
N

)

.

D Public-Key Encryption with Keyword Search

A prominent application of anonymous IBE scheme resides in public-key encryp-
tion with keyword search (or PEKS) [6]. Basically, PEKS is a form of encryption
that allows searching on data that is encrypted using a public-key system. A
typical application is for an email gateway to test whether or not the keyword
“urgent” is present in an email. The gateway then routes the email if it is the
case. Of course the gateway should only learn whether the word “urgent” is
present but nothing else about the email. In the email use-case, another practi-
cal application is to test the sender’s name of the email and to route the emails
accordingly. Further applications for PEKS can be found in [1,6]. Of particular
interest is the concept of temporarily searchable encryption [1, Sect. 6].

D.1 Definition

A public-key encryption with keyword search scheme [7] is defined as a tuple of
four algorithms (KEYGEN, PEKS, TRAPDOOR, TEST):

Key Generation. The key generation algorithm KEYGEN is a randomized algo-
rithm that takes as input some security parameter 1κ and outputs a matching
pair (upk, usk) of public key and private key: (upk, usk) R← KEYGEN(1κ).

Public-Key Encryption With Keyword Search (PEKS). Let W denote
the keyword space. The PEKS algorithm PEKS takes as input a public key
upk and a keyword w ∈ W, and returns a searchable ciphertext S. We write
S ← PEKSupk(w).

Trapdoor. The trapdoor algorithm TRAPDOOR takes as input the private key
usk (corresponding to upk) and a keyword w, and returns a trapdoor Tw for
keyword w. We write Tw ← TRAPDOORusk(w).

Test. The test algorithm TEST takes as input a searchable ciphertext S and a
trapdoor Tw, and returns a bit b. A bit b with 1 means “accept” or “yes”,
and a bit b with 0 means “reject” or “no”. We write b ← TEST(S, Tw).

It is required that TEST(PEKSupk(w), TRAPDOORusk(w)) = 1 for all keywords
w ∈ W.

D.2 Public-Key Encryption with Keyword Search from Quadratic
Residuosity

In a PEKS scheme, a sender can send messages in encrypted form to a receiver
so that the receiver can allow a designated proxy to search keywords in the
encrypted messages without incurring any (additional) loss of privacy. In [6],
Boneh et al. suggest the following methodology:
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– The sender encrypts the message being sent with a (regular) public-key cryp-
tosystem;

– She appends to the resulting ciphertext a PEKS for each keyword.

In more detail, to encrypt a message m with searchable keywords w1, . . . , wn for
the receiver with public key upk, the sender computes and sends

c = ENCRYPTupk(m) , S1 = PEKSupk(w1) , . . . , Sn = PEKSupk(wn).

The whole ciphertext is C = {c, S1, . . . , Sn}. Now if the receiver has given a
proxy a trapdoor Twj

for keyword wj then this proxy can test whether the
corresponding plaintext m contains the keyword wj , but nothing more.

A conversion to turn an anonymous identity-based scheme (under certain
conditions) into a PEKS scheme is developed in [6]. Some subsequent refinements
are described in [1]. Applied to the scheme of Sect. 6.2 as a building block,
we so obtain a PEKS scheme based on the quadratic residuosity. For slightly
better efficiency, instead of verifying whether xi = μ−1(νi · τi) (∈ {0, 1}), for
0 ≤ i ≤ k−1, the TEST algorithm equivalently verifies whether τi = νi · (1−2xi).
In detail, the scheme is as follows.

KEYGEN(1κ). Given a security parameter κ, KEYGEN generates an RSA modulus
N = pq where p and q are prime. It defines a security parameter k depending
on κ. It also selects an element u ∈ JN \ QRN and a global integer d. The
user’s public key is upk = {N, k, u, d,Hd} where Hd is a cryptographic hash
function mapping bit-strings to JN as per Eq. (4). The user’s private key is
usk = {p, q}.

PEKSupk(w). To encrypt a keyword w ∈ {0, 1}∗, PEKS selects a k-bit integer
x =
∑k−1

i=0 xi2i (with xi ∈ {0, 1}). It defines R = Hd(w).
For i = 0, . . . , k − 1, it does the following:
1. choose at random ti, t̄i ∈ Z/NZ;
2. let

εi = (−1)xi

(

ti

N

)

, ci
(0) = ti + R

ti
mod N , ci

(1) = ci
(0)d+4R
ci

(0)+d
mod N ,

ε̄i = (−1)xi

(

t̄i

N

)

, c̄
(0)
i = t̄i + uR

t̄i
mod N , c̄

(1)
i = c̄

(0)
i d+4uR

c̄
(0)
i +d

mod N ;

3. choose random bits β1,i, β2,i ∈ {0, 1} and set ci = ci
(β1,i) and c̄i = c̄

(β2,i)
i .

PEKS returns the searchable ciphertext S = {x, ε0, c0, ε̄0, c̄0, . . . , εk−1, ck−1,
ε̄k−1, c̄k−1}.

TRAPDOORusk(w) Given keyword w, trapdoor algorithm TRAPDOOR sets R = H(w).
If R ∈ QRN it computes Tw = R1/2 mod N; otherwise it computes Tw =
(uR)1/2 mod N . TRAPDOOR returns Tw.

TEST(S, Tw) For keyword w, TEST uses the trapdoor Tw. Let R = Hd(w). Given
a searchable ciphertext S = {x, ε0, c0, ε̄0, c̄0, . . . , εk−1, ck−1, ε̄k−1, c̄k−1}, if
Tw

2 ≡ R (mod N), TEST sets νi = εi, γi = ci for 0 ≤ i ≤ k − 1, and Δ = R;
otherwise it sets νi = ε̄i, γi = c̄i for 0 ≤ i ≤ k − 1, and Δ = uR.
Next, for i = 0, . . . , k − 1, it does the following:
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1. set σi =
(

γi
2−4Δ

N

)

;
2. set

τi =

⎧

⎨

⎩

(

γi+2Tw

N

)

if σi = 1
(

(γi+2Tw)(d−2Tw)(d−γi)

N

)

if σi = −1
;

3. set bi = 1 if τi = νi · (1 − 2xi); set bi = 0 otherwise;
TEST returns 1 if and only if bi = 1 for all 0 ≤ i ≤ k − 1; and 0 otherwise.

E A Remark on Boneh-Gentry-Hamburg Abstract IBE
System

Cocks’ scheme was subsequently revisited by Boneh, Gentry, and Hamburg [8].
The advantage of their scheme resides in the length of the ciphertexts. While
the encryption of an �-bit message requires 2� · log2 N bits with Cocks’ scheme,
ciphertext size in Boneh-Gentry-Hamburg scheme is about � + log2 N bits.

This section simplifies the abstract IBE system with short ciphertexts as
presented in [8, Sect. 3].

E.1 Description

SETUP and EXTRACT are similar to Cocks’ scheme. ENCRYPT and DECRYPT require
a deterministic algorithm Q taking as input an RSA modulus N and three ele-
ments u,R, S ∈ Z/NZ and returning four IBE-compatible polynomials f, g, f̄ , τ ∈
Z/NZ[X]. Polynomials f, f̄ , g, τ are said IBE-compatible if and only if the fol-
lowing conditions are met:

c1. If R,S ∈ QRN then f(r)g(s) ∈ QRN for all square roots r of R and s of S;
c2. If R ∈ QRN then f(r)f(−r)S ∈ QRN for all square roots r of R;
c3. If uR, S ∈ QRN then f̄(r̄)g(s)τ(s) ∈ QRN for all square roots r̄ of uR and

s of S;
c4. If uR ∈ QRN then f̄(r̄)f̄(−r̄)S ∈ QRN for all square roots r̄ of uR;
c5. If S ∈ QRN then τ(s)τ(−s)u ∈ QRN for all square roots s of S;
c6. Polynomial τ is independent of R.

In more detail, the Boneh-Gentry-Hamburg scheme goes as follows.

SETUP(1κ). Given a security parameter κ, SETUP generates an RSA modulus
N = pq where p and q are prime. It also generates a random element u ∈
JN \ QRN . The public system parameters are {N,u,H,Q} where H is a
cryptographic hash function mapping bitstrings to JN . The master secret
key is msk = {p, q}.

EXTRACTmsk(id). Using hash function H, EXTRACT sets Rid = H(id). If Rid ∈
QRN it computes rid = Rid

1/2 mod N ; otherwise it computes rid =
(uRid)1/2 mod N . EXTRACT returns user’s private key usk = {rid}.
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ENCRYPT(id,m). To encrypt a message m ∈ {±1} for user with identity id,
ENCRYPT

– chooses at random s ∈ Z/NZ and computes S = s2 mod N ;
– runs Q(N,u,Rid, S) where Rid = H(id) to obtain g and τ ;
– computes k =

(

τ(s)

N

)

;

– forms w = m ·
(

g(s)

N

)

;
– returns ciphertext C = (S, k, w).

DECRYPT(usk, C). To decrypt C = (S, k, w), intended for user with identity id,
DECRYPT runs Q(N,u,Rid, S) to obtain f and f̄ . Plaintext m is then recov-
ered as

m =

⎧

⎨

⎩

w ·
(

f(rid)

N

)

if rid
2 ≡ Rid (mod N)

w · k ·
(

f̄(rid)

N

)

otherwise
,

using the user’s private key usk = {rid}.

The correctness of the decryption follows from conditions c1–c6 imposed to
polynomials f, f̄ , g, τ .

The encryption of an �-bit message m = (m1,m2, . . . , m
) ∈ {±1}
 pro-
ceeds broadly in the same way except that the user’s private key is now
usk = {rid,1, rid,2, . . . , rid,
} where rid,j

2 ≡ Rid,j (mod N) if Rid,j ∈ QRN and
rid,j

2 ≡ uRid,j (mod N) if Rid,j ∈ JN \ QRN , and where Rid,j = H(id, j) for
1 ≤ j ≤ �. In other words, identity id is hashed � times so as to produce � values
Rid,j for 1 ≤ j ≤ �. Now, each pair (S,Rid,j) (with the same S) is used to encrypt

one message bit mj ; namely, wj = mj ·
(

gj(s)

N

)

where gj is obtained by running
Q(N,u,Rid,j , S). By the last condition, polynomial τ is always the same for all
values of Rid,j . The ciphertext corresponding to message m = (m1,m2, . . . , m
)
is therefore given by C = {S, k, (w1, w2, . . . , w
)}. Plaintext message m is
recovered from C bit-by-bit using private key usk = {rid,1, rid,2, . . . , rid,
} as

mj = wj ·
(

f(rid,j)

N

)

if rid,j
2 ≡ Rid,j (mod N) and as mj = wj · k ·

(

f̄(rid,j)

N

)

other-
wise, for 1 ≤ j ≤ �.

E.2 A Simplified Abstract IBE

As described in the previous section, the abstract Boneh-Gentry-Hamburg sys-
tem makes use of polynomials f, f̄ , g, τ ∈ Z/NZ[X]. To simplify the notation, we
consider one-bit messages but the discussion readily extends to �-bit messages,
� > 1.

We observe that polynomials f and f̄ are evaluated at rid and that polyno-
mials g and τ are evaluated at s. Furthermore, we note that the values of Rid
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and of S are publicly known. So, letting δ denote the degree of polynomial f
and f(X) =

∑δ
k=0 fk Xk with fk ∈ Z/NZ, we can write

f(rid) =
δ
∑

k=0

fk rid
k = Arid + B (mod N) (7)

where

A =
∑

0≤k≤δ
k odd

fk rid
(k−1) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∑

0≤k≤δ
k odd

fk Rid
(k−1)/2 (mod N) if rid

2 ≡
Rid (mod N)

∑

0≤k≤δ
k odd

fk (uRid)(k−1)/2 (mod N) otherwise

and

B =
∑

0≤k≤δ
k even

fk rid
k =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∑

0≤k≤δ
k even

fk Rid
k/2 (mod N) if rid

2 ≡ Rid (mod N)

∑

0≤k≤δ
k even

fk (uRid)k/2 (mod N) otherwise
.

There is therefore no loss of generality to consider degree-1 polynomials for f .
The same conclusion holds for polynomials f̄ (evaluated at rid), and for polyno-
mials g and τ (evaluated at s).

As a result, we define f(X) = f1 X +f0, f̄(X) = f̄1 X + f̄0, g(X) = g1 X +g0,
and τ(X) = τ1 X + τ0. These four polynomials returned by public algorithm Q
must be IBE-compatible.

For example, given Rid and S, one can select parameters f0, f1, g0, g1 ∈ Z/NZ

such that

2f0g0 ∈ QR(N) and Rid

(

f1
f0

)2 + S
(

g1
g0

)2 = 1 (mod N). (8)

This ensures that compatibility conditions c1 and c2 are satisfied.

Proof. Multiplying the second equation through f0
2 yields Sf0

2( g1
g0

)2 = f0
2 −

Ridf1
2 = f(rid)f(−rid) for any square root rid of Rid. Consequently, we have

f(rid)f(−rid)S =
(

Sf0
g1
g0

)2 ∈ QR(N). We also have
(

rid
f1
f0

+ s g1
g0

+ 1
)2 =

Rid

(

f1
f0

)2 + S
(

g1
g0

)2 + 1 + 2rids
f1
f0

g1
g0

+ 2rid
f1
f0

+ 2s g1
g0

= 2
f0g0

(f0g0 + ridsf1g1 +
ridf1g0 + sg1f0) = 2

f0g0
f(rid)g(s) for any square root rid of Rid and any

square root s of S. Since 2f0g0 ∈ QR(N), it thus follows that f(rid)g(s) =
2f0g0

4

(

rid
f1
f0

+ s g1
g0

+ 1
)2 ∈ QR(N), as required. 
�

We also define polynomial ḡ ∈ Z/NZ[X] given by ḡ(X) = ḡ1 X + ḡ0 where
ḡ1 = g1τ0 + g0τ1 mod N and ḡ0 = g1τ1S + g0τ0 mod N . It is worth noticing that
evaluated at s we have ḡ(s) ≡ g(s)τ(s) (mod N). Analogously, we require

2f̄0ḡ0 ∈ QR(N) and uRid

(

f̄1
f̄0

)2 + S
(

ḡ1
ḡ0

)2

= 1 (mod N) (9)
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so as to fulfill compatibility conditions c3 and c4. Compatibility conditions c5

and c6 are automatically satisfied from the product formula in [8, Lemma 5.1]. If
(f0, f1, g0, g1) is a solution to Eq. (8) and if (α, β) is a solution to uα2 +Sβ2 = 1
then (f̄0, f̄1, ḡ0, ḡ1) is a solution to Eq. (9) provided that

f̄1
f̄0

=
f1
f0

α

S g1
g0

β + 1
(mod N) and

ḡ1
ḡ0

def≡ g1τ0 + g0τ1
g1τ1S + g0τ0

≡
g1
g0

+ β

S g1
g0

β + 1
(mod N)

(10)
with 2f̄0ḡ0 ∈ QR(N).

The instantiation presented in [8, Sect. 4] corresponds to the choice f0 = 1,
f1 = x, g0 = 2, g1 = 2y, f̄0 = Syβ + 1, f̄1 = xα, τ0 = 1 and τ1 = β, for some
(x, y) satisfying Ridx

2 + Sy2 = 1 (mod N) and (α, β) satisfying uα2 + Sβ2 = 1
(mod N).
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Abstract. Key-insulated encryption is one of the effective solutions to
a key exposure problem. Recently, identity-based encryption (IBE) has
been used as one of fundamental cryptographic primitives in a wide range
of various applications, and it is considered that the identity-based key-
insulated security has a huge influence on the resulting applications. At
Asiacrypt’05, Hanaoka et al. proposed an identity-based hierarchical key-
insulated encryption (hierarchical IKE) scheme. Although their scheme
is secure in the random oracle model, it has a “hierarchical key-updating
structure,” which is attractive functionality that enhances key exposure
resistance.

In this paper, we first propose the hierarchical IKE scheme without
random oracles. Our hierarchical IKE scheme is secure under the sym-
metric external Diffie–Hellman (SXDH) assumption, which is known as
the simple and static one. Furthermore, when the hierarchy depth is
one (i.e. not hierarchical case), our scheme is the first IKE scheme that
achieves constant-size parameters including public parameters, secret
keys, and ciphertexts.

Keywords: Key-insulated encryption · Identity-based hierarchical key-
insulated encryption · Hierarchical identity-based encryption · Asym-
metric pairing

1 Introduction

1.1 Background

A key exposure problem is unavoidable since human errors cannot seem to be
eliminated in the future, and many researchers have tackled this problem in
modern cryptography area so far. Key-insulation, which is introduced by Dodis
et al. [12], is one solution to this problem. Specifically, they proposed public
key encryption with the key-insulated property, which is called public-key-based
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key-insulated encryption (PK-KIE). In PK-KIE, a user has two kinds of secret
keys, so-called a decryption key and a helper key. The decryption key is used
for decrypting ciphertexts and assumed to be stored in a powerful but insecure
device such as laptops and smartphones. Meanwhile, the helper key is used for
updating the decryption key and assumed to be stored in a physically-secure
but computationally-limited device such as USB pen drives. Traditionally, in
key-insulated cryptography, the following two kinds of security notions are con-
sidered:

1. If a number of decryption keys are exposed, the fact does not affect decryption
keys at other time-periods.

2. Even if a helper key is exposed, the security is not compromised unless at
least one decryption key is exposed.

We say a key-insulated system is secure if it satisfies 1; and it is strongly secure
if it satisfies both 1 and 2. Specifically, the lifetime of the system is divided
into discrete time-periods, and the user can decrypt the ciphertext encrypted at
some time-period t by using a decryption key updated at the same time-period
t. Therefore, even if the decryption key at t is exposed, the fact does not affect
decryption keys at other time-periods, and hence the impact of the exposure can
be significantly reduced.

Following a seminal work by Dodis et al. [12], symmetric-key-based key-
insulated encryption [14], key-insulated signatures [13], and parallel key-
insulated encryption [17,18,23] have been proposed so far. In addition to key-
insulated cryptography, researchers have tackled the key exposure problem in
various flavors. In forward-secure cryptography [1,8], users update their own
secret keys at the beginning of each time-period. Even if the secret key is
exposed, an adversary cannot get any information of ciphertexts encrypted at
previous time-periods. Intrusion-resilient cryptography [10,11,20] realizes both
key-insulated security and forward security simultaneously at the sacrifice of
efficiency and practicality.

In this paper, we focus on the key-insulation paradigm in the identity-based
setting. Since identity-based encryption (IBE) has been used as one of funda-
mental cryptographic primitives in a wide range of various applications, we
believe that the identity-based key-insulated security has a huge influence on
the resulting applications. Also, developing key-insulated cryptography in the
identity-based area is the first step to consider the key-insulated security in
the attribute-based [3,26] and functional encryption [7] settings. Thus, we con-
sider that it is important to consider the identity-based key-insulated security.
However, in the IBE context, there are only few researches on key-insulation.
Hanaoka et al. [19] proposed the first identity-based (hierarchical) key-insulated
encryption (IKE) scheme in the random oracle model. In their hierarchical IKE
scheme, the key-updating mechanism has the hierarchical structure (and the
scheme does not have a delegating property). Namely, not only a decryption key
but also a helper key can be updated by a higher-level helper key. Since this
“hierarchy” is not the same as that of hierarchical IBE (HIBE) [16], only apply-
ing techniques used in the HIBE context is insufficient for constructing secure
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(in particular, strongly secure) IKE schemes. The hierarchical property is attrac-
tive since it enhances resistance to key exposure and there seem to be various
applications due to progress in information technology (e.g., the popularization
of smartphones). Let us consider an example: Suppose that each employee has a
smartphone for business use, a laptop, and a PC at his office. A decryption key
is stored in the smartphone, and it is updated by a 1-st level helper key stored
in his laptop every day. However, the 1-st level helper key might be leaked since
he carries around the laptop, and connects to the Internet via the laptop. Thus,
the 1-st level helper key is also updated by a 2-nd level helper key stored in his
PC every two–three months. Since the PC is not completely isolated from the
Internet, every half a year, his boss updates the 2-nd level helper key is updated
by 3-rd level helper key stored in an isolated private device. Thus, we believe
hierarchical IKE has many potential applications.

After the proposal of hierarchical IBE by Hanaoka et al., two (not hier-
archical) IKE schemes with additional properties in the standard model were
proposed. One is the so-called parallel IKE scheme, which was proposed by
Weng et al. [31]. The other is the so-called threshold IKE scheme, which was
proposed by Weng et al. [32]. These two schemes enhance the resistance to
helper key exposure by splitting a helper key into multiple ones. However, once
the (divided) helper key is leaked, the security cannot be recovered. We now
emphasize that the hierarchical key-updating structure is useful since even if
some helper key is exposed, the helper key can be updated. However, there have
been no hierarchical IKE schemes without random oracles so far.

1.2 Our Contribution

In this paper, our aim is to construct a hierarchical IKE scheme such that:
(1) we can prove the security in the standard model from simple computational
assumptions; and (2) when the hierarchy depth is one (i.e., not hierarchical case),
the scheme achieves all constant-size parameters including public parameters,
secret keys, and ciphertexts.

As a result, we propose the first hierarchical IKE scheme in the standard
model. Specifically, we construct the hierarchical IKE scheme from the symmetric
external Diffie–Hellman (SXDH) assumption, which is a static and simple one.
Further, the proposed scheme achieves the constant-size parameters when the
hierarchy is one, whereas public parameters of the (not hierarchical) existing
scheme [32] depend on sizes of identity spaces (also see Sect. 4.1 for comparison).
This is due to differences of base IBE schemes of each scheme. Our (hierarchical)
IKE scheme is based on the Jutla–Roy IBE [22] and its variant [25], whereas the
existing scheme (but not hierarchical one) [32] is based on the Waters IBE [29].
In the following, we explain why a naive solution is insufficient and why achieving
(1) and (2) is challenging.
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Why a (Trivial) Hierarchical IKE Scheme from HIBE is Insufficient.1

One may think that a hierarchical IKE scheme can be easily obtained from
an arbitrary HIBE scheme. However, the resulting IKE scheme is insecure in
our security model, which was first formalized in [19]. The reason for this is
that our security model includes the strong security model, and hence the fact
makes a hierarchical IKE scheme from HIBE insecure. More specifically, a trivial
construction is as follows. Let skI be a secret key for some identity I in HIBE,
and hk

(�)
I be an �-th level helper key for I in IKE. We set skI as hk

(�)
I , and

lower-level helper and decryption keys can be obtained from skI by regarding
time-periods as descendants’ identity. However, it is easy to see that if �-th level
helper key is exposed, then an adversary can obtain all lower-level keys, and
thus, the resulting scheme does not meet the strong security. In fact, Bellare and
Palacio [2] showed that not strongly secure PK-KIE is equivalent to IBE for a
similar reason.

Difficulties in Constructing a Constant-Size IKE Scheme from Simple
Computational Assumptions. The main difficulty in constructing an IKE
scheme is that an adversary can get various keys regarding a target identity I∗,
whereas in (H)IBE, the adversary cannot get any information on a secret key
for I∗. This point makes a construction methodology non-trivial. Actually, it
seems difficult to apply the Waters dual-system IBE [30] (and its variant [24]) as
the underlying basis of IKE schemes. Technically, in their scheme each of secret
keys and ciphertexts contains some random exponent, so-called tagK and tagC ,
respectively. In their proof, these tags for some I are needed to be generated
by inputting I into some pairwise independent function, which is embedded
into public parameters in advance. This generating procedure is necessary for
cancellation of values and hence the security proof. Although it holds tagK =
tagC for the same identity I, the proof works well since it is enough to generate
only tagK for all identities I �= I∗ and only tagC for the target identity I∗.
However, in the IKE setting, not only tagC but also tagK for I∗ have to be
generated since an adversary can get leaked decryption and helper keys for I∗,
and hence, the proof does not go well. To overcome this challenging point, we set
(the variant of) the Jutla–Roy IBE [22,25], which is another type of constant-
size IBE schemes, as the basis of our IKE scheme, and thus we can realize the
first constant-size IKE scheme under the SXDH assumption. Further, we can
also obtain the hierarchical IKE scheme by extending the technique into the
hierarchical setting.

Organization of This Paper. In Sect. 2, we describe the notation used in this
paper, asymmetric pairings, complexity assumptions, and functions which map
time to discrete time-periods. In Sect. 3, we give a model and security definition of
hierarchical IKE. In Sect. 4, we propose a direct construction of our hierarchical
IKE scheme, and give the efficiency comparison among our scheme and existing
schemes. In Sect. 5, we show the security proof of our scheme. In Sect. 6, we show
a CCA-secure hierarchical IKE scheme. In Sect. 7, we conclude this paper.
1 This fact was also mentioned in [19].
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2 Preliminaries

Notation. In this paper, “probabilistic polynomial-time” is abbreviated as
“PPT”. Let Zp := {0, 1, . . . , p − 1} and Z

×
p := Zp\{0}. If we write

(y1, y2, . . . , ym) ← A(x1, x2, . . . , xn) for an algorithm A having n inputs and
m outputs, it means to input x1, x2, . . . , xn into A and to get the resulting out-
put y1, y2, . . . , ym. We write (y1, y2, . . . , ym) ← AO(x1, x2, . . . , xn) to indicate
that an algorithm A that is allowed to access an oracle O takes x1, x2, . . . , xn

as input and outputs (y1, y2, . . . , ym). If X is a set, we write x
$←X to mean the

operation of picking an element x of X uniformly at random. We use λ as a
security parameter. M and I denote sets of plaintexts and IDs, respectively,
which are determined by a security parameter λ.

Bilinear Group. A bilinear group generator G is an algorithm that takes a secu-
rity parameter λ as input and outputs a bilinear group (p,G1,G2,GT , g1, g2, e),
where p is a prime, G1, G2, and GT are multiplicative cyclic groups of order p, g1
and g2 are (random) generators of G1 and G2, respectively, and e is an efficiently
computable and non-degenerate bilinear map e : G1 ×G2 → GT with the follow-
ing bilinear property: For any u, u′ ∈ G1 and v, v′ ∈ G2, e(uu′, v) = e(u, v)e(u′, v)
and e(u, vv′) = e(u, v)e(u, v′), and for any u ∈ G1 and v ∈ G2 and any a ∈ Zp,
e(ua, v) = e(u, va) = e(u, v)a.

A bilinear map e is called symmetric or a “Type-1” pairing if G1 = G2.
Otherwise, it is called asymmetric. In the asymmetric setting, e is called a “Type-
2” pairing if there is an efficiently computable isomorphism either from G1 to
G2 or from G2 to G1. If no efficiently computable isomorphisms are known, then
it is called a “Type-3” pairing. In this paper, we focus on the Type-3 pairing,
which is the most efficient setting (For details, see [9,15]).

Symmetric External Diffie–Hellman (SXDH) Assumption. We give the
definition of the decisional Diffie–Hellman (DDH) assumption in G1 and G2,
which are called the DDH1 and DDH2 assumptions, respectively.

Let A be a PPT adversary and we consider A’s advantage against the DDH1
problem as follows.

AdvDDH1
G,A (λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎢

⎣

b′ = b

D := (p,G1,G2,GT , g1, g2, e) ← G,

c1, c2
$← Zp, b

$← {0, 1},
if b = 0 then T := gc1c2

1 ,

else T
$← G1,

b′ ← A(λ,D, g1, g2, g
c1
1 , gc2

1 , T )

⎤

⎥

⎥

⎥

⎥

⎦

− 1
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Definition 1 (DDH1 Assumption). The DDH1 assumption relative to a gen-
erator G holds if for all PPT adversaries A, AdvDDH1

G,A (λ) is negligible in λ.
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Fig. 1. Intuition of time-period map functions.

Similarly, we define the DDH2 problem. Let A be a PPT adversary and we
consider A’s advantage against the DDH2 problem as follows.

AdvDDH2
G,A (λ) :=
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∣

∣

∣

∣
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∣

Pr
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⎢
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⎣

b′ = b

D := (p,G1,G2,GT , g1, g2, e) ← G,

c1, c2
$← Zp, b

$← {0, 1},
if b = 0 then T := gc1c2

2 ,

else T
$← G2,

b′ ← A(λ,D, g1, g2, g
c1
2 , gc2
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Definition 2 (DDH2 Assumption). The DDH2 assumption relative to a gen-
erator G holds if for all PPT adversaries A, AdvDDH2

G,A (λ) is negligible in λ.

Definition 3 (SXDH Assumption). We say that the SXDH assumption rel-
ative to a generator G holds if both the DDH1 and DDH2 assumptions relative
to G hold.

Time-Period Map Functions. In this paper, we deal with several kinds of
time-periods since we consider that update intervals of each level key are dif-
ferent. For example, in some practical applications, it might be suitable that a
decryption key (i.e. 0-th level key) and a 1-st level helper key should be updated
every day and every three months, respectively. To describe such different update
intervals of each level key, we use functions, which is so-called time-period map
functions. This functions were also used in [19]. Now, let T be a (possibly infi-
nite) set of time, and Tj (0 ≤ j ≤ � − 1) be a finite set of time-periods. We
assume |T0| ≥ |T1| ≥ · · · ≥ |T�−1|. This means that a lower-level key is updated
more frequently than the higher-level keys. Then, we assume there exists a func-
tion Tj (0 ≤ j ≤ � − 1) which map time time ∈ T to a time-period tj ∈ Tj .
For the understanding of readers, by letting time = 9:59/7th/Oct./2015
and � := 4, we give an example in Fig. 1 and below. For example, we have
T0(time) = t

(19)
0 = 1st-15th/Oct./2015, T1(time) = t

(10)
1 = Oct./2015,

T2(time) = t
(5)
2 = Oct.-Dec./2015, and T3(time) = t

(2)
3 = Jul.-Dec./2015.

Namely, in this example, it is assumed that the decryption key, and 1-st, 2-nd,
and 3-rd helper keys are updated every half a month, every month, every three
months, and every half a year. Further, we can also define a function T� such
that T�(time) = 0 for all time ∈ T .
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3 Identity-Based Hierarchical Key-Insulated Encryption

3.1 The Model

In �-level hierarchical IKE, a key generation center (KGC) generates an initial
decryption key dkI,0 and � initial helper keys hk

(1)
I,0 , . . . , hk

(�)
I,0 as a secret key for a

user I. Suppose that all time-period map functions T0, . . . , T�−1 are available to
all users. The key-updating procedure when the user wants to get a decryption
key at current time time ∈ T from the initial helper keys is as follows. The �-th
level helper key hk

(�)
I,0 is a long-term one and is never updated. First, the user

generates key update δ
(�−1)
t�−1

for the (� − 1)-th level helper key from hk
(�)
I,0 and

a time-period t�−1 := T�−1(time) ∈ T�−1. Then, the (� − 1)-th level helper key
hk

(�−1)
I,0 can be updated by the key update δ

(�−1)
t�−1

, and the user get the helper

key hk
(�−1)
I,t�−1

at the time-period t�−1. Similarly, the i-th level helper key hk
(i)
I,ti

at

the time-period ti := Ti(time) ∈ Ti can be obtained from hk
(i)
I,0 and δ

(i)
ti

, where

δ
(i)
ti

is generated from the (i+1)-th level helper key hk
(i+1)
I,ti+1

. The user can finally
get the decryption key dkI,t0 at a time-period t0 := T0(time) ∈ T0 from the
1-st level helper key hk

(1)
I,T1(time)

. Anyone can encrypt a plaintext M with the
identity I and current time time∗, and the user can decrypt the ciphertext C
with his decryption key dkI,t0 only if t0 = T0(time∗). At time′ ∈ T , the user
can update the time-period of the decryption key from any time-period t0 to
t′0 := T0(time′) ∈ T0 by using key update δ

(0)
T0(time′). The key update δ

(0)
T0(time′)

can be obtained from hk
(1)
I,t′

1
only if t′1 = T1(time′). If not, it is necessary to get

δ
(1)
T1(time′) and update hk

(1)
I,t′

1
. In this manner, the decryption and helper keys are

updated.

An �-level hierarchical IKE scheme ΠIKE consists of six-tuple algorithms
(PGen, Gen, Δ-Gen, Upd, Enc, Dec) defined as follows. For simplicity, we omit a
public parameter in the input of all algorithms except for the PGen algorithm.

– (pp,mk) ← PGen(λ, �): A probabilistic algorithm for parameter generation. It
takes a security parameter λ and the maximum hierarchy depth � as input,
and outputs a public parameter pp and a master key mk.

– (dkI,0, hk
(1)
I,0 , . . . , hk

(�)
I,0) ← Gen(mk, I): An algorithm for user key generation.

It takes mk and an identity I ∈ I as input, and outputs an initial secret
key dkI,0 associated with I and initial helper keys hk

(1)
I,0 , . . . , hk

(�)
I,0, where

hk
(i)
I,0 (1 ≤ i ≤ �) is assumed to be stored user’s i-th level private device.

– δ
(i−1)
Ti−1(time)

or ⊥ ← Δ-Gen(hk
(i)
I,ti

, time): An algorithm for key update genera-

tion. It takes an i-th helper key hk
(i)
I,ti

at a time period ti ∈ Ti and current time

time as input, and outputs key update δ
(i−1)
Ti−1(time)

if ti = Ti(time); otherwise,
it outputs ⊥.

– hk
(i)
I,τi

← Upd(hk
(i)
I,ti

, δ
(i)
τi ): A probabilistic algorithm for decryption key gener-

ation. It takes an i-th helper key hk
(i)
I,ti

at a time-period ti ∈ Ti and key update
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δ
(i)
τi at a time-period τi ∈ Ti as input, and outputs a renewal i-th helper key

hk
(i)
I,τi

at τi. Note that for any t0 ∈ T0, hk
(0)
I,t0 means dkI,t0 .

– 〈C, time〉 ← Enc(I, time,M): A probabilistic algorithm for encryption. It
takes an identity I, current time time, and a plaintext M ∈ M as input,
and outputs a pair of a ciphertext and current time 〈C, time〉.

– M or ⊥ ← Dec(dkI,t0 , 〈C, time〉): A deterministic algorithm for decryption. It
takes dkI,t0 and 〈C, time〉 as input, and outputs M or ⊥, where ⊥ indicates
decryption failure.

In the above model, we assume that ΠIKE meets the following correctness
property: For all security parameter λ, all � := poly(λ), all (mk, pp) ←
PGen(λ, �), all M ∈ M, all (dkI,0, hk

(1)
I,0 , . . . , hk

(�)
I,0) ← Gen(mk, I), and all

time ∈ T , it holds that M ← Dec(dkI,T0(time),Enc(I, time,M)), where
dkI,T0(time) is generated as follows: For i = �, . . . , 1, hk

(i−1)
I,Ti−1(time)

←
Upd(hk

(i−1)
I,ti−1

,Δ-Gen(hk
(i)
I,Ti(time)

, time)), where some ti ∈ Ti and hk
(0)
I,T0(time)

:=
dkI,T0(time).

3.2 Security Definition

We consider a security notion for indistinguishability against key exposure and
chosen plaintext attack for IKE (IND-KE-CPA). Let A be a PPT adversary, and
A’s advantage against IND-KE-CPA security is defined by

AdvIND-KE-CPA
ΠIKE,A (λ) :=
∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎣

b′ = b

(pp,mk) ← PGen(λ),
(M∗

0 ,M∗
1 , I∗, time∗, state) ← AKG(·),KI(·,·,·)(find, pp),

b
$← {0, 1}, C∗ ← Enc(I∗, time∗,M∗

b ),
b′ ← AKG(·),KI(·,·,·)(guess, C∗, state)

⎤

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

.

where KG(·) and KI (·, ·, ·) are defined as follows.

KG(·): For a query I ∈ I, it stores and returns (dkI,0, hk
(1)
I,0 , . . . , hk

(�)
I,0) by

running Gen(mk, I).
KI (·, ·, ·): For a query (i, I, time) ∈ {0, 1, . . . , �} × I × T , it returns hk

(i)
I,Ti(time)

by running δ
(j−1)
Tj−1(time)

← Δ-Gen(hk
(j)
I,Tj(time)

, time) and hk
(j−1)
I,Tj−1(time)

←
Upd(hk

(j−1)
I,t , δ

(j−1)
Tj−1(time)

) for j = �, . . . , i + 1 (if (dkI,0, hk
(1)
I,0 , . . . , hk

(�)
I,0) is

not stored, it first generates and stores them by running Gen).

I∗ is never issued to the KG oracle. A can issue any queries (i, I, time) to the
KI oracle if there exists at least one special level j ∈ {0, 1, . . . , �} such that

1. For any time ∈ T , (j, I∗, time) is never issued to KI.
2. For any (i, time) ∈ {0, 1, . . . , j − 1} × T such that Ti(time) = Ti(time∗),

(i, I∗, time) is never issued to KI.
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Fig. 2. Pictorial representation of secret keys for I∗ that A can obtain by issuing to
KI.

In Fig. 2, we give intuition of keys that A can obtain by issuing to the KI oracle.
In this example, let � = 4 and a special level j = 2.

Definition 4 (IND-KE-CPA [19]). An IKE scheme ΠIKE is said to be IND-
KE-CPA secure if for all PPT adversaries A, AdvIND-KE-CPA

ΠIKE ,A (λ) is negligible in
λ.

Remark 1. As also noted in [19], there is no need to consider key update expo-
sure explicitly (i.e. consider an oracle which returns any key update as much as
possible) since in the above definition, A can get such key update from helper
keys obtained from the KI oracle.

Remark 2. As explained in Sect. 1, in key-insulated cryptography including the
public key setting [2,12,17] and the identity-based setting [19,31,32], two kinds
of security notions have been traditionally considered: standard security and
strong security. In most of previous works [2,12,17–19,23,31,32], authors have
considered how their scheme could achieve the strong security. We note that
IND-KE-CPA security actually includes the strong security, and the fact is easily
checked by setting � = 1.

By modifying the above IND-KE-CPA game so that A can access to the
decryption oracle Dec(·, ·), which receives (I, 〈C, time〉) and returns M or ⊥, we
can also define indistinguishability against key exposure and chosen ciphertext
attack for IKE (IND-KE-CCA). A is not allowed to issue (I∗, 〈C∗, time〉) such
that T0(time) = T0(time∗) to Dec. Let AdvIND-KE-CCA

ΠIKE ,A (λ) be A’s advantage
against IND-KE-CCA security.

Definition 5 (IND-KE-CCA [19]). An IKE scheme ΠIKE is said to be IND-
KE-CCA secure if for all PPT adversaries A, AdvIND-KE-CCA

ΠIKE ,A (λ) is negligible
in λ.
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4 Our Construction

Our basic idea is a combination of (the variant of) the Jutla–Roy HIBE
[22,25] and threshold secret sharing schemes [4,27]. A secret B is divided into
� shares β0, . . . , β�−1, and both the secret and shares are used in exponent of a
generator g2 ∈ G2. B is embedded into the exponent of a secret key for I∗ of the
Jutla–Roy HIBE, and the resulting key is an �-th level initial helper key hk

(�)
I,0.

Roughly speaking, B works as “noise”. Other initial helper keys hk
(i)
I,0 and an

initial decryption key contain g−βi

2 and g−β0
2 , respectively. As a lower-level key

is generated, shares are eliminated from the secret B, and finally B is entirely
removed when generating (or updating) a decryption key. Intuitively, since no
secret keys at some special level j ∈ {0, . . . , �} are exposed, an adversary cannot
get all βi. Hence, he cannot generate valid decryption keys that can decrypt the
challenge ciphertext for I∗ at time∗.

An IKE scheme ΠIKE =(PGen, Gen, Δ-Gen, Upd, Enc, Dec) is constructed
as follows.

– PGen(λ, �): It runs (G1,G2,GT , p, g1, g2, e) ← G. It chooses
x0, y0, {(x1,j , y1,j)}�

j=0, x2, y2, x3, y3
$← Zp and α

$← Z
×
p , and sets

z = e(g1, g2)−x0α+y0 , u1,j := g
−x1,jα+y1,j

1 (0 ≤ j ≤ �),

w1 := g−x2α+y2
1 , h1 := g−x3α+y3

1 .

It outputs

pp := (g1, gα
1 , {u1,j}�

j=0, w1, h1, g2, {(gx1,j

2 , g
y1,j

2 )}�
j=0, g

x2
2 , gx3

2 , gy2
2 , gy3

2 , z),

mk := (x0, y0).

– Gen(mk, ID): It chooses β0, . . . , β�−1, r
$← Zp, and let B :=

∑�−1
i=0 βi. It com-

putes

Rj := g
−βj

2 (0 ≤ j < �),

D1 := (gy2
2 )r, D′

1 := gy0
2

(

(gy1,�

2 )Igy3
2

)r

,

D2 := (gx2
2 )−r, D′

2 := g−x0
2

(

(gx1,�

2 )Igx3
2

)−r

,

D3 := gr+B
2 ,

Kj := (gy1,j

2 )r (0 ≤ j ≤ � − 1), K ′
j := (gx1,j

2 )−r (0 ≤ j ≤ � − 1).

It outputs

dkI,0 := R0, hk
(i)
I,0 := Ri (1 ≤ i ≤ � − 1),

hk
(�)
I,0 := (D1,D

′
1,D2,D

′
2,D3, {(Kj ,K

′
j)}�−1

j=0).
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– Δ-Gen(hk
(i)
I,ti

, time): If ti �= Ti(time), it outputs ⊥. Otherwise, parse hk
(i)
I,ti

as (Ri,D1,D
′
1,D2,D

′
2,D3, {(Kj ,K

′
j)}i−1

j=0).
2 It chooses r̂ ← Zp, and let tj :=

Tj(time) (i − 1 ≤ j ≤ � − 1). It computes

d̂1 := D1(g
y2
2 )r̂, d̂′

1 := D′
1(Ki−1)ti−1

(

(gy1,�

2 )I
�−1
∏

j=i−1

(

(gy1,j

2 )tj
)

gy3
2

)r̂

,

d̂2 := D2(gx2
2 )−r̂, d̂′

2 := D′
2(K

′
i−1)

ti−1

(

(gx1,�

2 )I
�−1
∏

j=i−1

(

(gx1,j

2 )tj
)

gx3
2

)−r̂

,

d̂3 := D3g
r̂
2,

k̂j := Kj(g
y1,j

2 )r̂ (0 ≤ j ≤ i − 2), k̂′
j := K ′

j(g
x1,j

2 )−r̂ (0 ≤ j ≤ i − 2).

It outputs δ
(i−1)
ti−1

:= (d̂1, d̂′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂

′
j)}i−2

j=0).
3

– Upd(hk
(i)
I,ti

, δ
(i)
τi ): Parse hk

(i)
I,ti

and δ
(i)
τi as (Ri,D1,D

′
1,D2,D

′
2,D3,

{(Kj ,K
′
j)}i−1

j=0) and (d̂1, d̂′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂

′
j)}i−1

j=0), respectively. It com-
putes D3 := d̂3Ri, and sets (Dj ,D

′
j) := (d̂j , d̂

′
j) (j = 1, 2) and

(Kj ,K
′
j) := (k̂j , k̂

′
j) (0 ≤ j ≤ i − 1). Finally, it outputs hk

(i)
I,τi

:=
(Ri,D1,D

′
1,D2,D

′
2,D3, {(Kj ,K

′
j)}i−1

j=0).

– Enc(I, time,M): It chooses s, tag
$← Zp. For M ∈ GT , it computes

C0 := Mzs, C1 := gs
1, C2 := (gα

1 )s, C3 :=
(

�−1
∏

j=0

(

u
tj

1,j

)

uI
1,�w

tag
1 h1

)s

,

where tj := Tj(time) (0 ≤ j ≤ � − 1). It outputs C := (C0, C1, C2, C3, tag).
– Dec(dkI,t0 , 〈C, time〉): If t0 �= T0(time), then it outputs ⊥. Otherwise, parse

dkI,t0 and C as (R0,D1,D
′
1,D2,D

′
2,D3) and (C0, C1, C2, C3, tag), respec-

tively. It computes

M =
C0e(C3,D3)

e(C1,D
tag
1 D′

1)e(C2,D
tag
2 D′

2)
.

We show the correctness of our ΠIKE. Suppose that r denotes internal ran-
domness of hk

(�)
I,0, which are generated when running Gen(mk, I), and r(j) denotes

internal randomness of δ
(j−1)
I,tj−1

(1 ≤ j ≤ �), which is generated when running Δ-

Gen(hk
(j)
I,tj

, time). Then we can write dkI,τ0 := (R0,D1,D
′
1,D2,D

′
2,D3) as

D1 := gy2r̃
2 , D′

1 := g
y0+r̃(Iy1,�+

∑�−1
j=0

(

tjy1,j

)

+y3)

2 ,

2 In the case i = �, R� means an empty string, namely we have hk
(�)
I,0 := (D1, D

′
1, D2,

D′
2, D3, {(Kj , K

′
j)}�−1

j=0).
3 In the case i = 1, {(k̂j , k̂

′
j)}�−1

j=0 means an empty string, namely we have δ
(0)
I,t0

:= (d̂1,

. . . , d̂5).
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D2 := gx2r̃
2 , D′

2 := g
−x0−r̃(Ix1,�+

∑�−1
j=0

(

tjx1,j

)

+x3)

2 , D3 := gr̃
2,

where r̃ := r +
∑�

i=1 r(j).
Suppose that dkI,t0 = (R0,D1,D

′
1,D2,D

′
2,D3) and C = (C0, C1, C2, C3, tag)

are correctly generated. Then, we have

C0e(C3, D3)

e(C1, D
tag
1 D′

1)e(C2, D
tag
2 D′

2)

= Me(g1, g2)
(−x0α+y0)s

· e(g
s(
∑�−1

j=0 tj(−x1,jα+y1,j)+I(−x1,�α+y1,�)+tag(−x2α+y2)−x3α+y3)

1 , gr̃
2)

e(gs
1, g

y2r̃tag+y0+r̃(Iy1,�+
∑�−1

j=0

(

tjy1,j

)

+y3)

2 )e(gαs
1 , g

−x2r̃tag−x0−r̃(Ix1,�+
∑�−1

j=0

(

tjx1,j

)

+x3)

2 )

= Me(g1, g2)
(−x0α+y0)s 1

e(gs
1, g

y0
2 )e(gαs

1 , g−x0
2 )

= M.

We obtain the following theorem. The proof is postponed to Sect. 5.

Theorem 1. If the SXDH assumption holds, then the resulting �-level hierar-
chical IKE scheme ΠIKE is IND-KE-CPA secure.

4.1 Parameters Evaluation and Comparison

First, we show the parameter sizes and computational costs of our hierarchical
IKE scheme in Table 1.

Table 1. Parameters evaluation of our �-level hierarchical IKE scheme. G1, G2, and
GT are cyclic groups of order p, and |G| denotes the bit-length of a group element
in G1, G2, or GT , for simplicity. |M| and |Zp| also denote the bit-length of plaintext
and an element in Zp, respectively. #pp, #dk, #hki, and #C denote sizes of public
parameters, decryption keys, i-th helper keys, and ciphertexts, respectively. In com-
putational cost analysis, [·, ·, ·, ·] means the number of [pairing, multi-exponentiation,
regular exponentiation, fixed-based exponentiation]. For comparison we mention that
relative tunings for the various operations are as follows: [pairing ≈ 5, multi-exp ≈ 1.5,
regular-exp := 1, fixed-based-exp � 0.2].

Scheme #pp #dk #hki #C Enc. cost Dec. cost Assumption

Ours (3� + 13)|G| 6|G| (2i + 6)|G| 4|G|+ |Zp| [0, 0, � + 4, 1] [3, 0, 2, 0] SXDH

Table 2. Efficiency comparison between our construction and existing schemes. The
notation used here is the same as that in Table 1 except for #hk, which denotes the
helper key size. What n appears in public-parameter sizes means that the public-
parameter size depends on the size of its identity space.

Scheme #pp #dk #hk #C Enc. cost Dec. cost Assumption

HHSI05 [19] (� = 1) 2|G| 3|G| |G| 3|G| + |M| [1, 0, 2, 1] [4, 0, 2, 1] CBDH (in ROM)

WLC+08 [32] (2n + 5)|G| 4|G| 2|G| 4|G| [0, 1, 3, 1] [3, 0, 0, 0] DBDH

Ours (� = 1) 16|G| 6|G| 7|G| 4|G| + |Zp| [0, 0, 5, 1] [3, 0, 2, 0] SXDH
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Also, an efficiency comparison between our IKE scheme and the existing IKE
schemes [19,32] is given in Table 2. In fact, the WLC+08 scheme [32] has the
threshold property and does not have a hierarchical structure, and therefore,
we set the threshold value is one in the WLC+08 scheme and the hierarchy
depth is one in the HHSI05 scheme [19] and our scheme for the fair compari-
son. The HHSI05 scheme meets the IND-KE-CCA security, however the scheme
is secure only in the random oracle model (ROM). Both the WLC+08 scheme
and ours meet the IND-KE-CPA security in the standard model (i.e. without
random oracles). Although assumptions behind these schemes (i.e. the com-
putational bilinear Diffie–Hellman (CBDH), decisional bilinear Diffie–Hellman
(DBDH),4 and SXDH assumptions) are different, they all are static and simple.
We emphasize that the threshold structure does not strengthen the underlying
DBDH assumption of the WLC+08 scheme since the structure was realized via
only threshold secret sharing techniques [4,27]. Note that we do not take into
account the parallel IKE scheme [31] since the model of the scheme is slightly
different from those of the above schemes. However, the public parameter size
of the parallel IKE scheme also depends on the size of its identity space, and
we mention that this is due to the underlying Waters IBE [29], not due to the
parallel property.

As can be seen, we first achieve the IKE scheme with constant-size parameters
in the standard model. Again, we also get the first IKE scheme in the hierarchical
setting without random oracles.

5 Proof of Security

We describe how semi-functional ciphertexts and secret keys are generated as
follows.

Semi-functional Ciphertext: Parse a normal ciphertext C as (C0, C1, C2, C3,

tag). A semi-functional ciphertext ˜C := (C̃0, C̃1, C̃2, C̃3, ˜tag) is computed as
follows:

C̃0 := C0e(g1, g2)−x0μ = Me(g1, g2)−x0(αs+μ)+y0s,

C̃1 := C1,

C̃2 := C2g
μ
1 = gαs+μ

1 ,

C̃3 := C3

(

(gx1,�

1 )I
�−1
∏

j=0

(

(gx1,j

1 )tj
)

(gx2
1 )taggx3

1

)−μ

= C3g
−μ(Ix1,�+

∑�−1
j=0(tjx1,j)+x2tag+x3)

1

= g
−(αs+μ)(Ix1,�+

∑�−1
j=0(tjx1,j)+x2tag+x3)

1 g
s(Iy1,�+

∑�−1
j=0(tjy1,j)+y2tag+y3)

1 ,

4 The formal definitions of the CBDH and DBDH assumptions are given in Appen-
dix A.
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and ˜tag := tag, where μ
$← Zp.

Semi-functional Decryption and Helper Key: Parse a normal helper key
hk

(i)
I,ti

as (Ri,D1,D
′
1,D2,D

′
2,D3, {(Kj ,K

′
j)}i−1

j=0). A semi-functional helper

key ˜hk
(i)

I,ti
:= (R̃i, D̃1, D̃

′
1, D̃2, D̃

′
2, D̃3, {(K̃j , K̃

′
j)}i−1

j=0) is computed as follows:
Ri := R̃i,

D̃1 := D1g
γ
2 = gy2r+γ

2 ,

D̃′
1 := D1g

γφ
2 = g

y0+r(Iy1,�+
∑�−1

j=i (tjy1,j)+y3)+γφ

2 ,

D̃2 := D2g
− γ

α
2 = g

−rx2− γ
α

2 ,

D̃′
2 := D2g

− γφ
α

2 = g
−x0−r(Ix1,�+

∑�−1
j=i (tjx1,j)+x3)− γφ

α

2 ,

D̃3 := D3,

K̃j := Kjg
γφj

2 = g
ry1,j+γφj

2 (0 ≤ j ≤ i − 1),

K̃ ′
j := K ′

jg
− γφj

α
2 = g

−rx1,j− γφj
α

2 (0 ≤ j ≤ i − 1),

where γ, φ, {φj}i−1
j=0

$← Zp. Note that hk
(0)
I,t0 means dkI,t0 for any t0 ∈ T0. In

particular, ˜hk
(0)

I,t0 (= ˜dkI,t0) is called a semi-functional decryption key. We
also note that in order to generate the semi-functional decryption or helper
key, g

1
α
2 is needed in addition to the public parameter.

A semi-functional ciphertext can be decrypted with a normal key. This fact can
be easily checked by

e(g
μ(Iy1,�+

∑�−1
j=0(tjy1,j)+y2tag+y3)

1 ,D3)e(g1, g2)−x0μ

e(gμ
1 ,D

tag
1 D′

1)
= 1.

Also, a normal ciphertext can be decrypted with a semi-functional decryption

key since it holds e(C1, g
γtag
2 gγφ

2 )e(C2, g
− γ

α tag

2 g
− γφ

α
2 ) = 1.

A helper or decryption key obtained by running the Δ-Gen and Upd algo-
rithms with a semi-functional helper key is also semi-functional.

Proof (of Theorem 1). Based on [22,25], we prove the theorem through a
sequence of games. We first define the following games:

GameReal: This is the same as the IND-KE-CPA game described in Sect. 3.
Game0: This is the same as GameReal except that the challenge ciphertext is

semi-functional.
Gamek (1 ≤ k ≤ q): This is the same as Game0 except for the following mod-

ification: Let q be the maximum number of identities issued to the KG or
KI oracles, and Ii (1 ≤ i ≤ q) be an i-th identity issued to the oracles.
If queries regarding the first k identities I1, . . . , Ik are issued, then semi-
functional decryption and/or helper keys are returned. The rest of keys (i.e.,
keys regarding Ik+1, . . . , Iq) are normal.
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GameFinal: This is the same as Gameq except that the challenge ciphertext is a
semi-functional one of a random element of GT .

Let SReal, Sk (0 ≤ k ≤ q), and SFinal be the probabilities that the event b′ = b
occurs in GameReal, Gamek, and GameFinal, respectively. Then, we have

AdvIND-KE-CPA
ΠIKE ,A (λ) ≤ |SReal − S0| +

q
∑

i=1

|Si−1 − Si| + |Sq − SFinal| + |SFinal −
1
2
|.

The rest of the proof follows from the following lemmas.

Lemma 1. If the DDH1 assumption holds, then it holds that |SReal − S0| ≤
AdvDDH1

G,B (λ).

Proof. At the beginning, a PPT adversary B receives an instance
(g1, gc1

1 , gc2
1 , g2, T ) of the DDH1 problem. Then, B randomly chooses

x0, y0, {(x1,j , y1,j)}�
j=0, x2, y2, x3, y3

$← Zp, and creates

z := e(gc1
1 , g2)−x0e(g1, g2)y0 , u1,j := (gc1

1 )−x1,j g
y1,j

1 (0 ≤ j ≤ �),

w1 := (gc1
1 )−x2gy2

1 , h1 := (gc1
1 )−x3gy3

1 .

B sends pp := (g1, gα
1 , {u1,j}�

j=0, w1, h1, g2, {(gx1,j

2 , g
y1,j

2 )}�
j=0, g

x2
2 , gx3

2 , gy2
2 , gy3

2 , z)
to A. Note that B knows a master key mk := (x0, y0) and we implicitly set
α := c1.

B can simulate the KG and KI oracles since B knows the master key.

In the challenge phase, B receives (M∗
0 ,M∗

1 , I∗, time∗) from A. B chooses
d

$← {0, 1}. B chooses tag
$← Zp, and let t∗j := Tj(time∗) (0 ≤ j ≤ � − 1). B

computes

C∗
0 := Mde(T, g2)−x0e(gc2

1 , g2)y0 , C∗
1 := gc2

1 , C∗
2 := T,

C∗
3 := T−I∗x1,�−

∑�−1
j=0(t

∗
j x1,j)−x2tag

∗−x3(gc2
1 )I

∗y1,�+
∑�−1

j=0(t
∗
j y1,j)+y2tag

∗+y3 .

B sends C∗ := (C∗
0 , C∗

1 , C∗
2 , C∗

3 , tag∗) to A.
If b = 0, then the above ciphertext is normal by setting s := c2. If b = 1,

then the above ciphertext is semi-functional since it holds

C∗
0 = Mde(g1, g2)−x0(c1c2+μ)+y0c2 = Mde(g1, g2)−x0(αs+μ)+y0s,

C∗
2 = gc1c2+μ

1 = gαs+μ
1 ,

C∗
3 = g−(c1c2+μ)(I∗x1,�+

∑�−1
j=0(t

∗
j x1,j)+x2tag

∗+x3)g
c2(I

∗y1,�+
∑�−1

j=0(t
∗
j y1,j)+y2tag

∗+y3)

1

= g−(αs+μ)(I∗x1,�+
∑�−1

j=0(t
∗
j x1,j)+x2tag

∗+x3)g
s(I∗y1,�+

∑�−1
j=0(t

∗
j y1,j)+y2tag

∗+y3)

1 .

After receiving d′ from A, B sends b′ = 1 to the challenger of the DDH1
problem if d′ = d. Otherwise, B sends b′ = 0 to the challenger. ��
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Lemma 2. For every k ∈ {1, . . . , q}, if the DDH2 assumption holds, then it
holds that |Sk−1 − Sk| ≤ AdvDDH2

G,B (λ).

Proof. At the beginning, a PPT adversary B receives an instance
(g1, g2, gc1

2 , gc2
2 , T ) of the DDH2 problem. Then, B randomly chooses

x′
0, y0, {(x′

1,j , y
′
1,j , y

′′
1,j)}�

j=0, x
′
2, x

′
3, y′

3, y
′′
3

$← Zp and α
$← Z

×
p , and (implicitly)

sets

x0 :=
x′
0 + y0

α
, x1,j :=

x′
1,j + y1,j

α
, where y1,j := y′

1,j + c2y
′′
1,j (0 ≤ j ≤ �),

x2 :=
x′
2 + c2

α
, y2 := c2,

x3 :=
x′
3 + y3

α
, where y3 := y′

3 + c2y
′′
3 .

B creates

z := e(g1, g2)−x′
0 , u1,j := g

−x′
1,j

1 (0 ≤ j ≤ �), w1 := g
−x′

2
1 , h1 := g

−x′
3

1 ,

g
x1,j

2 := g
x′
1,j+y′

1,j
α

2 (gc2
2 )

y′′
1,j
α (0 ≤ j ≤ �), g

y1,j

2 := g
y′
1,j

2 (gc2
2 )y′′

1,j (0 ≤ j ≤ �),

gx2
2 := g

x′
2

α
2 (gc2

2 )
1
α , gy2

2 := gc2
2 , gx3

2 := g
x′
3+y′

3
α

2 (gc2
2 )

y′′
3
α , gy3

2 := g
y′
3

2 (gc2
2 )y′′

3 .

B sends pp := (g1, gα
1 , {u1,j}�

j=0, w1, h1, g2, {(gx1,j

2 , g
y1,j

2 )}�
j=0, g

x2
2 , gy2

2 , gx3
2 , gy3

2 , z)
to A. Note that B knows a master key mk := (x0, y0).

We show how B simulates the KG and KI oracles. Let Ii (1 ≤ i ≤ q) be
an i-th identity issued to the oracles. Without loss of generality, we consider A
issues all identities Ii �= I∗ to the KG oracle, and issues only queries regarding
I∗ to the KI oracle.

KG Oracle. B creates k − 1 semi-functional decryption and helper keys, and
embeds T into the k-th keys. The rest of keys are normal.

Case i < k: After receiving Ii, B creates and returns semi-functional keys. Since
B knows the master key and α, B can create both normal and semi-functional
keys.

Case i = k: After receiving Ik, B creates semi functional keys by embedding T

as follows: B chooses β0, . . . , β�−1
$← Zp and sets B :=

∑�−1
j=0 βj . B computes

Rj := g
−βj

2 (0 ≤ j < �),
D1 := T,

D′
1 := gy0

2 (gc1
2 )Iky′

1,�+y′
3T Iky′′

1,�+y′′
3 ,

D2 :=
(

(gc1
2 )x′

2T
)− 1

α

,

D′
2 := g

− x′
0

α
2 (gc1

2 )−
Ik(x′

1,�+y′
1,�)+x′

3+y′
3

α g
− y0

α
2 T−

Iky′′
1,�+y′′

3
α ,
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D3 := gc1
2 gB

2 ,

Kj := (gc1
2 )y′

1,j (T )y′′
1,j (0 ≤ j ≤ � − 1),

K ′
j := (gc1

2 )−
x′
1,j+y′

1,j
α T−

y′′
1,j
α (0 ≤ j ≤ � − 1).

B sets dkI,0 := R0, hk
(i)
I,0 := Ri (1 ≤ i ≤ �− 1), hk

(�)
I,0 := (D1,D

′
1,D2,D

′
2,D3,

{(Kj ,K
′
j)}�−1

j=0). If b = 0, then it is easy to see that the above keys are normal
by setting r := c1. If b = 1, then the above ciphertext is semi-functional since
it holds

D1 := T = gc1c2+γ
2 = gy2r+γ

2 ,

D′
1 := gy0

2 (gc1
2 )Iky′

1,�+y′
3T Iky′′

1,�+y′′
3

= g
y0+c1(Ik(y

′
1,�+c2y′′

1,�)+y′
3+c2y′′

3 )

2 g
γ(Iky′′

1,�+y′′
3 )

2 = g
y0+r(Iky1,�+y3)
2 gγφ

2 ,

D2 :=
(

(gc1
2 )x′

2T
)− 1

α

= g
− c1(x′

2+c2)
α

2 g
− γ

α
2 = g−rx2

2 g
− γ

α
2 ,

D′
2 := g

− x′
0

α
2 (gc1

2 )−
Ik(x′

1,�+y′
1,�)+x′

3+y′
3

α g
− y0

α
2 T−

Iky′′
1,�+y′′

3
α

= g
−

(x′
0+y0)+c1(Ik(x′

1,�+y′
1,�+c2y′′

1,�)+(x′
3+y′

3+c2y′′
3 ))

α
2 g

−
γ(Iky′′

1,�+y′′
3 )

α
2

= g
−x0−r(Ikx1,�+x3)
2 g

− γφ
α

2 ,

Kj := (gc1
2 )y′

1,j (T )y′′
1,j = g

c1(y
′
1,j+c2y′′

1,j)

2 g
γy′′

1,j

2 = g
ry1,j

2 g
γφj

2 (0 ≤ j ≤ � − 1),

K ′
j := (gc1

2 )−
x′
1,j+y′

1,j
α T−

y′′
1,j
α

= g
−

c1(x′
1,j+y′

1,j+c2y′′
1,j)

α
2 g

−
γy′′

1,j
α

2 = g
−rx1,j

2 g
− γφj

α
2 (0 ≤ j ≤ � − 1),

where T := gc1c2+γ
2 , r := c1, φ := Iky′′

1,� + y′′
3 , and φj := y′′

1,j (0 ≤ j ≤ �− 1).
Since y′′

1,j and y′′
3 are chosen uniformly at random, φ and φj are also uniformly

distributed.

Case i > k: After receiving Ii, B creates and returns normal keys by using the
master key.

KI Oracle. Suppose that A issues k − 1 identities I1, . . . , Ik−1 to the KG
oracle, and then issues a query (i, I∗, time) (i.e., I∗(= Ik)) to the KI ora-
cle. Note that for some special level j ∈ {0, . . . , �}, A cannot issue time
such that Ti(time) = Ti(time∗) if i < j (B does not need to know where
level is special one in advance). B creates and stores semi-functional decryp-

tion and helper keys (˜dI∗,0, ˜hk
(1)

I∗,0, . . . ,
˜hk

(�)

I∗,0) as in the case i = k of the
KG oracle. We also note that from the second query, B answers queries by
using the stored keys. Then, B repeatedly runs δ

(j−1)
tj−1

← Δ-Gen(hk
(j)
I∗,tj

, time∗)

and hk
(j−1)
I∗,t∗

j−1
Upd(hk

(j−1)
I∗,0 , δ

(j−1)
tj−1

) for j = �, . . . , i + 1, where t� := 0 and
tj := Tj(time) (0 ≤ j ≤ � − 1). Again, the key generated by semi-functional
helper keys is also semi-functional. B returns hk

(i)
I∗,ti

to A.
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In the challenge phase, B receives (M∗
0 ,M∗

1 , I∗, time∗) from A. B chooses
d

$← {0, 1}, and sets t∗j := Tj(time∗) (0 ≤ j ≤ � − 1). However, B cannot
create the semi-functional ciphertext for I∗ without knowledge of c2 (and hence
y1,j (0 ≤ j ≤ �) and y3). To generate the semi-functional ciphertext without the
knowledge, B sets

˜tag
∗

:= −
�−1
∑

j=0

(t∗jy
′′
1,j) − I∗y′′

1,� − y′′
3 .

Since y′′
1,0, . . . , y

′′
1,� and y′′

3 are chosen uniformly at random, probability distri-
bution of ˜tag

∗
is also uniformly at random from A’s view.5 Then, B chooses

s, μ
$← Zp, and computes

C̃∗
0 := M∗

d zse(g1, g2)−x0μ = M∗
d e(g1, g2)−x0(αs+μ)+y0s,

C̃∗
1 := gs

1,

C̃∗
2 := gαs+μ

1

C̃∗
3 :=

(
�−1
∏

j=0

(

u
t∗
j

1,j

)

uI
1,�w

˜tag
∗

1 h1

)s

g
μ(y′

3+
∑�−1

j=0(t
∗
j y′

1,j)+I∗y′
1,�)

1

=
(

�−1
∏

j=0

(

u
t∗
j

1,j

)

uI
1,�w

˜tag
∗

1 h1

)s

· g
μ(
∑�−1

j=0(t
∗
j (y

′
1,j+c2y′′

1,j))+I∗(y′
1,�+c2y′′

1,�)+c2˜tag
∗
+y′

3+c2y′′
3 )

1

· g
−c2μ(

∑�−1
j=0(t

∗
j y′′

1,j)+I∗y′′
1,�+˜tag

∗
+y′′

3 )

1

=
(

�−1
∏

j=0

(

u
t∗
j

1,j

)

uI
1,�w

˜tag
∗

1 h1

)s

g
μ(
∑�−1

j=0(t
∗
j y1,j)+I∗y1,�+y2˜tag

∗
+y3)

1 .

B sends ˜C∗ := (C̃∗
0 , C̃∗

1 , C̃∗
2 , C̃∗

3 , ˜tag
∗
) to A.

After receiving d′ from A, B sends b′ = 1 to the challenger of the DDH2
problem if d′ = d. Otherwise, B sends b′ = 0 to the challenger. ��

Lemma 3. |Sq − SFinal| ≤ q
p .

Proof. We modify the setup procedure and the semi-functional keys genera-
tion procedure in Gameq, and the modification turns out GameFinal. We show
that before and after the modification are statistically indistinguishable without
probability q

p .

5 The fact that the formula in such a form is uniformly distributed was tradition-
ally studied in the context of unconditionally secure authentication protocols (e.g.,
[5,21,28]).
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In the setup phase, we randomly choose x′
0, y0, {(x′

1,j , y1,j)}�
j=0, x

′
2, y2,

x′
3, y3

$← Zp and α
$← Z

×
p , and set

x0 :=
x′
0 + y0

α
, x1,j :=

x′
1,j + y1,j

α
(0 ≤ j ≤ �), x2 :=

x′
2 + y2

α
, x3 :=

x′
3 + y3

α
.

B creates

z := e(g1, g2)−x′
0 , u1,j := g

−x′
1,j

1 (0 ≤ j ≤ �), w1 := g
−x′

2
1 , h1 := g

−x′
3

1 ,

g
x1,j

2 := g
x′
1,j+y1,j

α
2 (0 ≤ j ≤ �), gx2

2 := g
x′
2+y2

α
2 , gx3

2 := g
x′
3+y3

α
2 .

We set pp := (g1, gα
1 , {u1,j}�

j=0, w1, h1, g2, {(gx1,j

2 , g
y1,j

2 )}�
j=0, g

x2
2 , gy2

2 , gx3
2 , gy3

2 , z)
and mk := (x0, y0).

When generating (initial) semi-functional keys, we choose β0, . . . , β�−1, r,

φ′, φ′
0, . . . , φ′

�−1, γ
$← Zp, and (implicitly) set B :=

∑�−1
j=0 βi, φ′ := y0 + r(Iy1,� +

y3) + γφ, and φ′
j := ry1,j + γφj (0 ≤ j ≤ � − 1). We compute

R̃j := g
−βj

2 (0 ≤ j ≤ � − 1),

D̃1 := gy2r+γ
2 ,

D̃′
1 := gφ′

2 = g
y0+r(Iy1,�+y3)+γφ
2 ,

D̃2 := g
−r

x′
2+y2

α − γ
α

2 = g
−rx2− γ

α
2 ,

D̃′
2 := g

− 1
α (φ′+x′

0+r(x′
3+Ix′

1,�))

2

= g
− 1

α (x′
0+y0+rI(x′

1,�+y1,�)+γφ+r(x′
3+y3))

2 = g
−x0−r(Ix1,�+x3)− γφ

α
2 ,

D̃3 := gr+B
2 ,

K̃j := g
φ′

j

2 = g
ry1,j+γφj

2 (0 ≤ j ≤ � − 1),

K̃ ′
j := g

−
rx′

1,j+φ′
j

α
2 = g

−
r(x′

1,j+y1,j)+γφj

α
2 = g

−rx1,j− γφj
α

2 (0 ≤ j ≤ � − 1).

We set dkI,0 := R̃0, hk
(j)
I,0 := R̃j (1 ≤ j ≤ �−1), and hk

(�)
I,0 := (D̃1, D̃

′
1, D̃2, D̃

′
2, D̃3,

{(K̃j , K̃
′
j)}�−1

j=0). We emphasize that although the above secret keys are well-
formed, y0, {y1,j}�

j=0, and y3 are not used in the above procedure.
On the other hand, the first component of the challenge ciphertext is gen-

erated as C̃∗
0 := Mbz

se(g1, g2)−x0μ = Mbe(g1, g2)−x0(αs+μ)+y0 . This means that
y0, which is independent of secret keys and public parameters, masks C̃∗

0 , and
hence C̃∗

0 becomes the ciphertext of a random element of GT .
Since γ is chosen uniformly at random, φ and φj are distributed uniformly at

random if γ �= 0. An event that γ = 0 occurs with probability 1/p. Every
query regarding Ii (1 ≤ i ≤ q) may cause this event, and hence, we have
|Sq − SFinal| ≤ q

p . ��
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Proof of Theorem 1. From Lemmas 1, 2, and 3, we have AdvIND-KE-CPA
ΠIKE ,A (λ) ≤

|SReal − S0| +
∑q

i=1 |Si−1 − Si| + |Sq − SFinal| + |SFinal − 1
2 | ≤ AdvDDH1

G,B (λ) + q ·
AdvDDH2

G,B (λ) + q
p . ��

6 Chosen-Ciphertext Security

Boneh et al. [6] proposed an well-known transformation from � + 1-level CPA-
secure HIBE (and one-time signature (OTS)) to �-level CCA-secure HIBE. We
cannot apply this transformation to a hierarchical IKE scheme in a generic way
since it does not have delegating functionality. However, we can apply their tech-
niques to the underlying Jutla–Roy HIBE of our hierarchical IKE, and therefore
we obtain CCA-secure scheme. We show the detailed construction as follows. We
assume a verification key vk is appropriately encoded as an element of Zp when
it is used in exponent of ciphertexts.

Let ΠOTS = (KGen,Sign,Ver) be an OTS scheme.6 An �-level hierarchical
IKE scheme ΠIKE =(PGen, Gen, Δ-Gen, Upd, Enc, Dec) is constructed as follows.

– PGen(λ, �): It runs (G1,G2,GT , p, g1, g2, e) ← G. It chooses x0, y0,

{(x1,j , y1,j)}�
j=0, x̂1, ŷ1, x2, y2, x3, y3

$← Zp and α
$← Z

×
p , and sets

z = e(g1, g2)−x0α+y0 , u1,j := g
−x1,jα+y1,j

1 (0 ≤ j ≤ �),

û1 := g−x̂1α+ŷ1
1 , w1 := g−x2α+y2

1 , h1 := g−x3α+y3
1 .

It outputs

pp := (g1, gα
1 , {u1,j}�

j=0, û1, w1, h1, g2, {(gx1,j

2 , g
y1,j

2 )}�
j=0,

gx̂1
2 , gŷ1

2 , gx2
2 , gx3

2 , gy2
2 , gy3

2 , z),
msk := (x0, y0).

– Gen(mk, ID): It chooses β0, . . . , β�−1, r
$← Zp, and let B :=

∑�−1
i=0 βi. It com-

putes

Rj := g
−βj

2 (0 ≤ j < �),

D1 := (gy2
2 )r, D′

1 := gy0
2

(

(gy1,�

2 )Igy3
2

)r

,

D2 := (gx2
2 )−r, D′

2 := g−x0
2

(

(gx1,�

2 )Igx3
2

)−r

,

D3 := gr+B
2 ,

Kj := (gy1,j

2 )r (0 ≤ j ≤ � − 1), K ′
j := (gx1,j

2 )−r (0 ≤ j ≤ � − 1),

Kvk := (gŷ1
2 )r, K ′

vk := (gx̂1
2 )−r.

6 The formal description of the OTS is given in Appendix A.
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It outputs

dkI,0 := R0, hk
(i)
I,0 := Ri (1 ≤ i ≤ � − 1),

hk
(�)
I,0 := (D1,D

′
1,D2,D

′
2,D3, {(Kj ,K

′
j)}�−1

j=0,Kvk,K ′
vk).

– Δ-Gen(hk
(i)
I,ti

, time): If ti �= Ti(time), it outputs ⊥. Otherwise, parse hk
(i)
I,ti

as
(Ri,D1,D

′
1, D2,D

′
2,D3, {(Kj ,K

′
j)}i−1

j=0,Kvk,K ′
vk). It chooses r̂ ← Zp, and let

tj := Tj(time) (i − 1 ≤ j ≤ � − 1). It computes

d̂1 := D1(g
y2
2 )r̂, d̂′

1 := D′
1(Ki−1)ti−1

(

(gy1,�

2 )I
�−1
∏

j=i−1

(

(gy1,j

2 )tj
)

gy3
2

)r̂

,

d̂2 := D2(gx2
2 )−r̂, d̂′

2 := D′
2(K

′
i−1)

ti−1

(

(gx1,�

2 )I
�−1
∏

j=i−1

(

(gx1,j

2 )tj
)

gx3
2

)−r̂

,

d̂3 := D3g
r̂
2,

k̂j := Kj(g
y1,j

2 )r̂ (0 ≤ j ≤ i − 2), k̂′
j := K ′

j(g
x1,j

2 )−r̂ (0 ≤ j ≤ i − 2),

k̂vk := Kvk(gŷ1
2 )r̂, k̂′

vk := K ′
vk(gx̂1

2 )r̂.

It outputs δ
(i−1)
ti−1

:= (d̂1, d̂′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂

′
j)}i−2

j=0, k̂vk, k̂′
vk).

– Upd(hk
(i)
I,ti

, δ
(i)
τi ):

Parse hk
(i)
I,ti

and δ
(i)
τi as (Ri,D1,D

′
1,D2,D

′
2,D3, {(Kj ,K

′
j)}i−1

j=0, Kvk,K ′
vk)

and (d̂1, d̂′
1, d̂2, d̂

′
2, d̂3, {(k̂j , k̂

′
j)}i−1

j=0, k̂vk, k̂vk), respectively. It computes D3 :=
d̂3Ri, and sets (Dj ,D

′
j) := (d̂j , d̂

′
j) (j = 1, 2), (Kj ,K

′
j) := (k̂j , k̂

′
j) (0 ≤

j ≤ i − 1), and (Kvk,K ′
vk) := (k̂vk, k̂′

vk). Finally, it outputs hk
(i)
I,τi

:=
(Ri,D1,D

′
1,D2,D

′
2, D3, {(Kj ,K

′
j)}i−1

j=0,Kvk,K ′
vk).

– Enc(I, time,M): It first runs (vk, sk) ← KGen(λ). It chooses s, tag
$← Zp. For

M ∈ GT , it computes

C0 := Mzs, C1 := gs
1, C2 := (gα

1 )s, C3 :=
(

�−1
∏

j=0

(

u
tj

1,j

)

uI
1,�û

vk
1 w

tag
1 h1

)s

,

where tj := Tj(time) (0 ≤ j ≤ �−1). It also runs σ ← Sign(sk, (C0, C1, C2, C3,
tag)), and outputs C := (vk,C0, C1, C2, C3, tag, σ).

– Dec(dkI,t0 , 〈C, time〉): If t0 �= T0(time), then it outputs ⊥. Otherwise, parse
dkI,t0 and C as (R0,D1,D

′
1,D2,D

′
2,D3,Kvk,K ′

vk) and (vk,C0, C1, C2, C3,
tag, σ), respectively. If Ver(vk,C0, C1, C2, C3, tag, σ) → 0, then it outputs
⊥. Otherwise, it computes

D̂′
1 := D′

1(Kvk)vk, D̂′
2 := D′

2(K
′
vk)vk.

Finally, it outputs

M =
C0e(C3,D3)

e(C1,D
tag
1 D̂′

1)e(C2,D
tag
2 D̂′

2)
.
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The correctness of the above IKE scheme ΠIKE can be checked as in our CPA-
secure IKE scheme described in Sect. 4.

We obtain the following theorem. The proof is omitted since this theorem
can be easily proved by combining Boneh et al.’s techniques [6] and our proof
techniques of Theorem 1.

Theorem 2. If the underlying OTS scheme ΠOTS is sUF-OT secure and the
SXDH assumption holds, then the resulting �-level hierarchical IKE scheme ΠIKE

is IND-KE-CCA secure.

7 Conclusion

In this paper, we first proposed hierarchical IKE scheme in the standard model.
When the hierarchy is one, our scheme achieves constant-size parameters includ-
ing public parameters, decryption and helper keys, and ciphertexts, and hence
our scheme is more efficient than the existing scheme [32] in the sense of parame-
ter sizes. Our scheme is based on the Jutla–Roy HIBE [22] (and its variant [25])
and techniques of threshold secret sharing schemes [4,27].

Acknowledgments. We would like to thank anonymous PKC 2016 referees for their
helpful comments. The first author is supported by JSPS Research Fellowships for
Young Scientists. This work (Yohei Watanabe) was supported by Grant-in-Aid for
JSPS Fellows Grant Number 25·3998. This work (Junji Shikata) was partially con-
ducted under the auspices of the MEXT Program for Promoting the Reform of National
Universities.

A Definitions

We give the formal definitions of the CBDH and DBDH assumptions and OTS.
In the following, we assume the Type-1 pairing (i.e., G := G1 = G2).

Computational Bilinear Diffie–Hellman (CBDH) Assumption. Let A
be a PPT adversary and we consider A’s advantage against the CBDH problem
as follows.

AdvCBDH
G,A (λ) := Pr

⎡

⎣T = e(g, g)c1c2c3

(p,G,GT , g, e) ← G,

c1, c2, c3
$← Zp,

T ← A(λ, g, gc1 , gc2 , gc3)

⎤

⎦ .

Definition 6. The CBDH assumption relative to a generator G holds if for all
PPT adversaries A, AdvCBDH

G,A (λ) is negligible in λ.
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Decisional Bilinear Diffie–Hellman (DBDH) Assumption. Let A be a
PPT adversary and we consider A’s advantage against the DBDH problem as
follows.

AdvDBDH
G,A (λ) :=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Pr

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b′ = b

(p,G,GT , g, e) ← G,

c1, c2, c3
$← Zp,

b
$← {0, 1},

if b = 1 then W := ê(g, g)c1c2c3 ,

else W
$← GT ,

b′ ← A(λ, g, gc1 , gc2 , gc3 ,W )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

− 1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Definition 7. The DBDH assumption relative to a generator G holds if for all
PPT adversaries A, AdvDBDH

G,A (λ) is negligible in λ.

One-Time Signature. An OTS scheme ΠOTS consists of three-tuple algo-
rithms (KGen, Sign, Ver) defined as follows.

– (vk, sk) ← KGen(λ): It takes a security parameter λ and outputs a pair of a
public key and a secret key (vk, sk).

– σ ← Sign(sk,m): It takes the secret key sk and a message m ∈ M and outputs
a signature σ.

– 1 or 0 ← Ver(vk,m, σ): It takes the public key vk and a pair of a message and
a signature (m,σ), and then outputs 1 or 0.

We assume that ΠOTS meets the following correctness property: For all λ ∈ N, all
(vk, sk) ← KGen(λ), and all m ∈ M, it holds that 1 ← Ver(vk, (m,Sign(sk,m))).

We describe the notion of strong unforgeability against one-time attack (sUF-
OT). Let A be a PPT adversary, and A’s advantage against sUF-OT security is
defined by

AdvsUF-OT
ΠOTS,A (λ) :=

Pr
[

1 ← Ver(vk,m∗, σ∗) ∧ (m∗, σ∗) �= (m,σ) (vk, sk) ← KGen(λ),
(m∗, σ∗) ← ASign(·)(vk)

]

.

Sign(·) is a signing oracle which takes a message m as input, and then returns
σ by running Sign(sk,m). A is allowed to access to the above oracle only once.

Definition 8. An OTS scheme ΠOTS is said to be sUF-OT secure if for all
PPT adversaries A, AdvsUF-OT

ΠOT S ,A(λ) is negligible in λ.
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Abstract. In attribute-based signatures, each signer receives a signing
key from the authority, which is associated with the signer’s attribute,
and using the signing key, the signer can issue a signature on any message
under a predicate, if his attribute satisfies the predicate. One of the
ultimate goals in this area is to support a wide class of predicates, such
as the class of arbitrary circuits, with practical efficiency from a simple
assumption, since these three aspects determine the usefulness of the
scheme. We present an attribute-based signature scheme which allows
us to use an arbitrary circuit as the predicate with practical efficiency
from the symmetric external Diffie-Hellman assumption. We achieve this
by combining the efficiency of Groth-Sahai proofs, which allow us to
prove algebraic equations efficiently, and the expressiveness of Groth-
Ostrovsky-Sahai proofs, which allow us to prove any NP relation via
circuit satisfiability.

Keywords: Attribute-based signatures · Groth-Sahai proofs ·
Groth-Ostrovsky-Sahai proofs

1 Introduction

1.1 Attribute-Based Signatures

In an ordinary digital signature scheme, a signer has a signing key and publicizes
its corresponding verification key. The verification is performed with respect to
such a public key, and hence during the verification process, those who made
the signature is uniquely determined. In other words, digital signatures provide
nothing for privacy or anonymity requirements.

The concept of attribute-based signatures is introduced by Maji, Prab-
hakaran, and Rosulek [21], in order to relax this firm correspondence between
a signer and a signature. In an attribute-based signature scheme, there is an
attribute authority, and each signer receives from the authority a signing key
associated with his attribute. Once a signer receives a signing key, he is able to
issue a signature on any message, under a predicate satisfied by his attribute.
The signature is anonymous, that is, the signature tells a verifier that the party
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who generates the signature has an attribute satisfying the predicate, but fur-
ther information on the signer’s identity or attribute is completely hidden from
the verifier.

One of the active lines of research on attribute-based signatures is to support
a larger class of predicates with practical efficiency. The state-of-the-art results
along this line is the scheme by Okamoto and Takashima for non-monotone span
programs from bilinear groups [24] and the scheme by Tang, Li, and Liang for
any circuits from multilinear maps [27]. The ultimate goal in this line is achieving
a large class of predicate, such as the class of arbitrary circuits, while keeping the
scheme practically efficient and relying on a simple assumption, since these three
aspects determine the usefulness of the scheme in practice. However, neither of
above two schemes and in fact neither of any existing scheme does not achieve
this ultimate goal.

Bellare and Fuchsbauer proposed a versatile cryptographic primitive called
policy-based signatures [2]. They showed a generic construction of an attribute-
based signature scheme from a policy-based signature scheme. There are two
ways of instantiating their generic construction. Namely, the one is an instanti-
ation with NIZK for general NP languages such as the Groth-Ostrovsky-Sahai
proof system [13], and the other is an instantiation with NIZK for specific alge-
braic equations such as the Groth-Sahai proof system [14]. Although the authors
of [2] did not explicitly mention (they only dealt with monotone predicates), the
former may be extended to support the class of arbitrary circuits. However,
it suffers from a large overhead of the signature size due to a Karp reduction
to an NP-complete problem. The latter can be instantiated efficiently, but the
supported class is restricted to conjunctions and disjunctions of pairing-product
equations.

In summary, it still remains open whether it is possible to construct an
attribute-based signature scheme that supports circuit predicates with practical
efficiency from simple assumptions.

1.2 Efficient Non-interactive Zero-Knowledge

In this section we review non-interactive zero-knowledge (NIZK) proofs, which
can be useful building blocks for constructing attribute-based signatures.

NIZK proofs allow us to prove that a secret information satisfies a public
condition without revealing the secret beyond the truth of the condition. This
primitive is extremely useful and widely studied in the area of cryptography. It
has been an important research topic to expand the class of the predicate that
proof systems support, as well as to improve the efficiency of proof systems.

Recent developments in zero-knowledge proofs include the proof system by
Groth, Ostrovsky, and Sahai [13] and the one by Groth and Sahai [14]. The
former can prove any NP relation via circuit satisfiability, but it suffers from
large overhead due to a Karp reduction. The latter is very efficient, but the class
of the relation is restricted to algebraic equations, and hence it cannot treat
arbitrary NP relation in general.
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A natural question is whether it is possible to construct a proof system which
is as expressive as the Groth-Ostrovsky-Sahai proof system, and is at the same
time as efficient as the Groth-Sahai proof system. In this paper, we investigate a
case study of a fusion of Groth-Ostrovsky-Sahai and Groth-Sahai proofs in case
of attribute-based signatures, and show that by this idea, we can construct a
practical attribute-based signature for circuits from bilinear maps.

1.3 Our Contribution

In this paper, we present an attribute-based signature scheme for arbitrary
circuits of unbounded size and depth with practical efficiency, from a simple
assumption over bilinear groups. Our attribute-based signature scheme satisfies
perfect privacy and adaptive unforgeability. The scheme is based on a witness
indistinguishable and extractable non-interactive proof system and an existen-
tially unforgeable signature scheme. All the building blocks can be instantiated
solely from the symmetric external Diffie-Hellman (SXDH) assumption [14,16],
and thus we can obtain a perfectly private and adaptively unforgeable scheme
from the same assumption.

Our scheme is fairly practical. The signature size grows as around one kilobyte
per each gate, which is comparable to the existing schemes such as the schemes
by Maji et al. [21] and the scheme by Okamoto and Takashima [24]. We note
that Maji et al.’s schemes and the Okamoto-Takashima scheme are less expres-
sive than ours, namely, Maji et al.’s schemes support monotone span programs,
while the Okamoto-Takashima scheme supports non-monotone span programs.
In addition, our scheme drastically improves efficiency when we compare it with
related schemes of Bellare and Fuchsbauer [2] and Tang, Li, and Liang [27]. As
stated above, the former scheme is a generic construction of attribute-based sig-
natures from policy-based signatures and the latter scheme is an attribute-based
signature scheme for circuits from multilinear maps.

It would be interesting to note the contrast between our scheme and its
encryption counterparts, namely, the attribute-based encryption schemes for
circuits [9,11,12]. We highlight that our scheme only requires a simple and
popular bilinear map assumption, namely the SXDH assumption to prove its
security, whereas the encryption counterparts require powerful lattice assump-
tions or multilinear maps. This is reminiscent of the fact that an identity-based
signature scheme can be constructed only from a standard digital signature
scheme [3,17,22], while identity-based encryption requires a very strong assump-
tion [5].

1.4 Technique

The basic idea behind our construction is simple: to sign anonymously, a signer
receives a signature on his attribute from the authority, and proves the knowledge
of this signature together with a proof that shows the signed attribute satisfies
a public circuit. The signature that the signer receives works as a certificate,
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which certifies the signer having the attribute, and forbids the third party from
signing in the name of his attribute.

To implement this idea, we need to overcome two difficulties. The first dif-
ficulty is (1) simultaneously and efficiently proving circuit satisfiability of the
attribute and the validity of the certificate on that attribute. The other difficulty
is (2) binding the proof from the first part to a message to be signed. In the fol-
lowing we give more detailed explanations on these difficulties and our idea for
overcoming them.

(1) Proving Circuit Satisfiability and Certificate Validity. The first dif-
ficulty is expressing circuit satisfiability of an attribute in zero-knowledge, while
keeping the entire proof system efficient. We need to prove not only circuit satis-
fiability of an attribute, but also validity of a certificate. The Groth-Ostrovsky-
Sahai proof system enables us to prove circuit satisfiability, but its direct use
does not allow us to prove the validity of the certificate efficiently, since, if we
were to use the Groth-Ostrovsky-Sahai proof system, we must represent validity
of a certificate in a circuit via a Karp reduction, which is highly inefficient.

Nevertheless, our starting point is still the technique of Groth, Ostrovsky,
and Sahai [13]. In this technique, to prove circuit satisfiability, the prover first
computes commitments to assignments to each wire, and then proves that for
each gate the incoming wires u and v and the outgoing wire w satisfy the NAND
relation ¬(u ∧ v) = w.

We instantiate this idea with Groth-Sahai proofs. We need Groth-Sahai
proofs, rather than a simple adoption of the Groth-Ostrovsky-Sahai proof sys-
tem because we need to handle not only Boolean relations (for the NAND gates
as above), but also algebraic equations at the same time. The need for algebraic
equations comes from the necessity to certifying attributes. As stated above, the
authority signs on attributes to certify that each signer can sign in the name
of his attribute. Hence we need to prove the validity of the certificate, and for
this purpose we employ Groth-Sahai proofs, together with structure-preserving
signatures [1].

Therefore, we need to translate the idea of the Groth-Ostrovsky-Sahai proof
system into the Groth-Sahai proof system. Namely, we need to translate the
NAND relation ¬(u ∧ v) = w into a bilinear equation, which is what the Groth-
Sahai proofs can prove. We do this by arithmetizing the relation. That is, let u
and v be the assignments to incoming wires then w be the assignment to the
outgoing wire, and the prover proves the equation 1 − u · v = w to prove the
NAND relation.

(2) Binding the Proof to a Message. The other difficulty is binding the
proof to a single message in order to resist chosen-message attacks. Although we
want to prove knowledge of certificates to sign anonymously, this dose not suffice
for resisting chosen-message attacks. This is because the proof is not bound to
the message, and hence the adversary can reuse the signature (the proof) on
some message to a signature on another message.
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To overcome this difficulty, we introduce an OR-proof technique, following
Maji et al. [21]. In this technique, the signer proves the knowledge of the certifi-
cate or a signature on a dummy attribute, which is an extra attribute unused
in the real protocol, and differs message by message.

The point is that different messages have different dummy attributes. To be
more specific, an (attribute-based) signature on message M proves the knowledge
of a signature on some attribute or a signature on a dummy attribute x, while
a signature on a different message M∗ proves the knowledge of a signature on
an attribute or a signature on another dummy attribute x∗. By this means,
if an adversary sees a signature on M and forges a signature on M∗, then a
reduction extracts a witness from the forgery and obtains a signature on x∗ of
the underlying signature scheme. With this x∗ the reduction reduces the forgery
for the attribute-based signature scheme to a forgery for the underlying signature
scheme.

1.5 Related Work

Maji et al. [20,21] introduced the notion of attribute-based signatures, and pre-
sented three constructions which have perfect privacy and adaptive unforgeabil-
ity. The first two schemes combine a digital signature scheme and Groth-Sahai
proofs. These two schemes are instantiated respectively with the Boneh-Boyen
signature scheme [4] and with the Waters signature scheme [29]. The third con-
struction is proven secure in the generic group model. Following Maji et al.’s
results, Li and Kim [19], Siamak and Safavi-Naini [26], and Li et al. [18] pre-
sented attribute-based signature schemes, which are proven secure only in the
selective model of unforgeability. Another drawback of these schemes is relatively
narrow class of the supported predicates. Namely Li and Kim’s scheme [19] only
supports conjunction predicates, while Siamak and Safavi-Naini’s scheme [26]
and Li et al.’s scheme [18] support threshold predicates. Escala, Herranz, and
Morillo presented an attribute-based signature with adaptive unforgeability [8].
Okamoto and Takashima presented an attribute-based signature scheme which
is adaptively unforgeable and supports non-monotone span programs as predi-
cates [24]. Recently, Herranz et al. [15], followed by Chen et al. [6], presented
attribute-based signature schemes with constant-size signatures for threshold
predicates. The former has selective unforgeability while the latter has adap-
tive unforgeability. Wang and Chen [28] presented an attribute-based signature
scheme from a lattice assumption with selective unforgeability. Tang, Li, and
Liang [27] presented an attribute-based signature scheme for bounded-depth cir-
cuits from multilinear maps. Most recently, Mridul and Pandit presented various
attribute-based signature schemes such as for Boolean formulas or for regular
languages from q-type assumptions [23].

Escala, Herranz, and Morillo presented a traceable attribute-based signa-
ture scheme (under the name of “revocable” attribute-based signatures) [8],
which allows a trusted authority to identify who made a signatures. Okamoto
and Takashima presented a decentralized attribute-based signature scheme [25],
which removes the necessity of any trusted setup in the system. Following these



288 Y. Sakai et al.

works, El Kaafarani, Ghadafi, and Khader presented a decentralized traceable
attribute-based signature scheme [7]. Ghadafi revisited the security notion of
decentralized traceable attribute-based signatures, and introduced, among other
things, a new security notion of non-frameability [10].

As for attribute-based encryption for circuits, Gorbunov, Vaikuntanathan,
and Wee [11] presented the first attribute-based encryption scheme for circuits.
After that, Garg et al. [9] presented an attribute-based encryption scheme for
circuits from multilinear maps. Recently, Gorbunov, Vaikuntanathan, and Wee
presented a predicate encryption scheme for circuits from a class of learning-
with-errors assumptions [12].

2 Preliminary

We say that a function f : N → R is negligible if for all c ∈ N there exists x0 ∈ N

such that f(x) ≤ x−c for all x ≥ x0.

Representation of Circuit. Here we explain notation for circuits, especially
how we identify a circuit. Let C be a circuit with L-bit input and N gates.
We assume C is entirely represented by NAND gates. We distinguish the input
wires, the internal wires, and the output wire by indices 1, . . ., L, L + 1, . . .,
L+ N , where 1, . . ., L are the input wires, L + 1, . . ., L + N − 1 are the internal
wires, and L + N is the output wire. The topology of the circuit is specified by
two functions I1, I2 : {L + 1, . . . , L + N} → {1, . . . , L + N − 1}. They map a
non-input wire to its first and second incoming wires in which these three wires
are connected by a NAND gate. We require that I1(i) < i and I2(i) < i.

Bilinear Groups. Let G be a probabilistic polynomial-time algorithm that on
input 1k outputs a group description gk = (p,G1,G2,GT , e, g, g̃) where p is a
prime, G1 and G2 are multiplicative groups generated by g and g̃, respectively,
GT is a multiplicative group of order p, and e : G1×G2 → GT is a non-degenerate
efficiently computable bilinear map.

We say that the decision Diffie-Hellman assumption on G1 holds if for any
probabilistic polynomial-time adversary A

|Pr[gk = (p,G1,G2, e, g, g̃) ← G(1k);x, y ← Zp : A(gk, gx, gy, gxy) = 1]
−Pr[gk = (p,G1,G2, e, g, g̃) ← G(1k);x, y, z ← Zp : A(gk, gx, gy, gz) = 1]|

is negligible. The decision Diffie-Hellman assumption on G2 is defined similarly.
Namely, we say the decision Diffie-Hellman assumption holds on G2 if

|Pr[gk = (p,G1,G2, e, g, g̃) ← G(1k);x, y ← Zp : A(gk, g̃x, g̃y, g̃xy) = 1]
−Pr[gk = (p,G1,G2, e, g, g̃) ← G(1k);x, y, z ← Zp : A(gk, g̃x, g̃y, g̃z) = 1]|

is negligible. We say that the symmetric external Diffie-Hellman (SXDH)
assumption holds if the decision Diffie-Hellman assumptions on both G1 and
G2 hold.
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Groth-Sahai and Groth-Ostrovsky-Sahai Proofs. A non-interactive proof
system for the NP relation R ⊂ {0, 1}∗ × {0, 1}∗ is defined by following three
algorithms (WISetup,WIProve,WIVerify): the setup algorithm WISetup takes as
input the security parameter 1k and outputs a common reference string crs; the
proof algorithm takes as input the common reference string crs, a statement x,
and a witness w, and outputs a proof π; the verification algorithm WIVerify takes
as input the common reference string crs, the statement x, and the proof π, and
outputs 1 or 0 which indicate validity of the proof. As a correctness condition,
we require that for all k ∈ N, (x,w) ∈ R, and crs ← WISetup(1k), it holds that
WIVerify(crs, x,WIProve(crs, x, w)) = 1.

We require a proof system to be perfectly witness indistinguishable (WI) and
perfectly extractable. A proof system is perfectly witness indistinguishable if for
any crs ← WISetup(1k), x ∈ {0, 1}∗, w0 ∈ {0, 1}∗, w1 ∈ {0, 1}∗ such that (x,w0),
(x,w1) ∈ R, the two distributions WIProve(crs, x, w0) and WIProve(crs, x, w1)
distributes identically. The proof system is perfectly extractable if there are two
algorithms ExtSetup and Extract that satisfy the following two properties: (1) for
any probabilistic polynomial-time adversary A,

|Pr[crs ← WISetup(1k) : A(crs) = 1]
−Pr[(crs, ek) ← ExtSetup(1k) : A(crs) = 1]|

is negligible, and (2) for any probabilistic polynomial-time adversary A,

Pr[(crs, ek) ← ExtSetup(1k); (x, π) ← A(crs);
w ← Extract(crs, ek, x, π) : WIVerify(crs, x, π) = 1 and (x,w) 	∈ R] = 0.

The Groth-Sahai proof system [14] is a proof system which can prove sat-
isfiability of a set of algebraic equations called pairing-product equations in a
witness-indistinguishable and extractable manner under the SXDH assumption.
In particular the Groth-Sahai proof system can prove satisfiability of a set of
pairing-product equations, which are the equation of the form

n
∏

i=1

e(Ai,Yi)
m
∏

j=1

e(Xj ,Bj)
n

∏

i=1

m
∏

j=1

e(Xi,Yj)γi,j = T

in which Ai ∈ G1, Bj ∈ G2, γi,j ∈ Zp, and T ∈ GT are public constants, and
Xi ∈ G1 and Yj ∈ G2 are private variables (witness). To prove the knowledge of
a satisfying assignment, the prover first computes commitments to each witness
(we call this the Groth-Sahai commitment), and then computes proofs demon-
strating the witness satisfies the equations. The commitment consists of the two
group elements in the same group as the witness. For proving a pairing-product
equation, Groth-Sahai proofs require eight group elements, in particular four ele-
ments in G1 and four elements in G2, for each equation. In the case that n = 0
and thus the equation to be proved has the form

m
∏

j=1

e(Xj ,Bj) = T,

it only requires two group elements in G2. See [14] for further detail.
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Groth-Ostrovsky-Sahai proofs are the proof system which can prove satisfi-
ability of a circuit which solely consists of NAND gates. The proof algorithm
proceeds with a similar way to the Groth-Sahai proofs. Namely, the prover first
computes commitments to the assignments to the wires, and then proves each
triple (u, v, w) of wires connected by a NAND gate satisfies the NAND relation
¬(u ∧ v) = w. See [13] for further detail.

Structure-Preserving Signatures. A signature scheme consists of the fol-
lowing three algorithms (Kg,Sign,Verify): the key generation algorithm takes as
input a security parameter 1k and outputs a pair (vk, sk) of the verification key
and the signing key; the signing algorithm Sign takes as input the signing key
sk and a message m and outputs a signature θ; the verification algorithm Verify
takes as input the verification key vk, the message m, and the signature θ, and
outputs 1 or 0 indicating validity of the signature. As the correctness condition,
it is required to hold that for all k ∈ N, (vk, sk) ← Kg(1k), and m ∈ {0, 1}∗, it
Verify(vk,m,Sign(sk,m)) = 1.

A signature scheme (Kg,Sign,Verify) is said to be existentially unforge-
able, if the probability Pr[(vk, sk) ← Kg(1k); (m∗, θ∗) ← ASign(sk,·)(vk) :
Verify(vk,m∗, θ∗) = 1 ∧ m∗ is not queried] is negligible for all probabilistic
polynomial-time adversaries A.

Our scheme can be instantiated using any structure-preserving signature
scheme. For concreteness, we employ the recent scheme by Kiltz, Pan, and Wee
(KPW) [16], which is efficient and based on the SXDH assumption. For com-
pleteness, we describe the KPW signature scheme below. In the description, for
a matrix A = (ai,j) ∈ Zp

n×m we denote by [A]1

[A]1 =

⎛

⎜

⎝

ga1,1 · · · ga1,m

...
. . .

...
gan,1 · · · gan,m

⎞

⎟

⎠ ∈ G1
n×m,

and similarly for [A]2 ∈ G2
n×m with generator g̃, and [A]T with generator e(g, g̃).

For two matrices A and B, we denote e([A]1, [B]2) = [AB]T .

Kg(gk, 1L). Given a description gk = (p,G1,G2,GT , e, g, g̃) of bilinear groups
and a message length L, choose a, b ← Zp, K ← Zp

(L+1)×2, let A =
(1|a)� ∈ Zp

2×1, B = (1|b)� ∈ Zp
2×1, choose K0, K1 ← Zp

2×2, let
C ← KA, C0 ← K0A, C1 ← K1A, P0 ← B�K0, P1 ← B�K1. Let
vkSign ← ([C0]2, [C1]2, [C]2, [A]2) and skSign ← (vkSign,K, [P0]1, [P1]1, [B]1),
and output (vkSign, skSign).

Sign(skSign, [m]1). Given a signing key skSign ← (vkSign,K, [P0]1, [P1]1, [B]1) and
a message [m]1 ∈ G1

L, choose r ← Zp
2 and τ ← Zp, compute

θ1 ← [(1|m�)K + r�(P0 + τP1)]1 ∈ G1
1×2,

θ2 ← [r�B�]1 ∈ G1
1×2,

θ3 ← [r�B�τ ]1 ∈ G1
1×2,

θ4 ← [τ ]2 ∈ G2.

Let θ ← (θ1, θ2, θ3, θ4) and output θ.
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Verify(vkSign, θ). Given the verification key vkSign = ([C0]2, [C1]2, [C]2, [A]2), a
message [m]1 ∈ G1

L, and a signature θ = (θ1, θ2, θ3, θ4), check

e(θ1, [A]2) = e([(1|m)]1, [C]2)e(θ2, [C0]2)e(θ3, [C1]2),
e(θ2, θ4) = e(θ3, [1]2).

If they hold, output 1. Otherwise output 0.

Collision-Resistant Hash Functions. A collision-resistant hash function
family is defined as a pair (H,Hash) of two algorithms: the hash key generation
algorithm H is a probabilistic polynomial-time algorithm that on input security
parameter 1k outputs a hash key hk; the hash algorithm Hash is a determinis-
tic polynomial-time algorithm that on input the hash key hk and a message M
outputs a hash value h; a collision-resistant hash function family is required to
satisfy that for all probabilistic polynomial-time algorithms A the probability
Pr[hk ← H(1k); (M,M ′) ← A(hk) : Hash(hk,M) = Hash(hk,M ′)] is negligible in
k. We assume that the length of the hash value h is determined by the security
parameter 1k and denote �H = �H(k).

Attribute-Based Signatures. An attribute-based signature scheme is defined
by the following four algorithms:

AttrSetup(1k, 1�) → (pp,msk). The setup algorithm takes as input the security
parameter 1k and the length � of attributes, and outputs the public parameter
pp and the master secret key msk.

AttrGen(pp,msk, x) → skx. The signing key generation algorithm takes as input
the public parameter pp, the master secret key msk, and the attribute x, and
outputs the signing key skx for x.

AttrSign(pp, skx,M,C) → σ. The signing algorithm takes as input the public
parameter pp, the signing key skx, the message M , and the circuit C, and
outputs the signature σ.

AttrVerify(pp,M,C, σ) → 1/0. The verification algorithm takes as input the
public parameter pp, the message M , the circuit C, and the signature σ,
and outputs 1 or 0 indicating the validity of the signature.

As the correctness condition, it is required to satisfy that for all
k, � ∈ N, (pp,msk) ← AttrSetup(1k, 1�), x ∈ {0, 1}�, skx ←
AttrGen(pp,msk, x), M ∈ {0, 1}∗, and C such that C(x) = 1, it holds that
AttrVerify(pp,M,C,AttrSign(pp, skx,M,C)) = 1.

We define two security notions for attribute-based signatures. The first notion
is privacy, which requires the signature to not leak any information on the signer’s
identity and attribute beyond the fact that the attribute satisfies the predicate.
The other notion is unforgeability, which requires any collusion of signers is
unable to forge a new signature with a predicate which is not satisfied by any
attribute in the collusion even if they see signatures on messages of their choice.
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Definition 1. An attribute-based signature scheme is perfectly private, if for all
k, � ∈ N, (pp,msk) ← AttrSetup(1k, 1�), x0, x1 ∈ {0, 1}�, C such that C(x0) =
C(x1) = 1, sk0 ← AttrGen(pp,msk, x0), sk1 ← AttrGen(pp,msk, x1), and
M ∈ {0, 1}∗, the distribution AttrSign(pp, sk0,M,C) and AttrSign(pp, sk1,M,C)
distributes identically.

Definition 2. An attribute-based signature scheme is adaptively unforgeable if
the probability that the adversary wins in the following experiment is negligible
in k:

1. The experiment sets up a public parameter and a master secret key as
(pp,msk) ← AttrSetup(1k, 1�). Then the experiment sends the adversary pp.

2. The adversary is allowed to access the key reveal oracle and the signing oracle:
the former, given a query x, returns skx ← AttrGen(pp,msk, x); the latter,
given a query (M,C), returns σ ← AttrSign(pp, sk,M,C) with arbitrary sk ←
AttrGen(pp,msk, x) such that C(x) = 1.

3. The adversary halts with output (M∗, C∗, σ∗).
4. The adversary wins if the following three conditions

hold: (i) AttrVerify(pp,M∗, C∗, σ∗) = 1, (ii) the adversary did not query x
such that C∗(x) = 1, and (iii) the adversary did not query (M∗, C∗) to the
signing oracle.

3 Attribute-Based Signatures for Circuits

In this section we present our attribute-based signature scheme. We assume
the input length � is longer than or equal to the output length �H of the hash
function, i.e., � ≥ �H. If it does not, we can simply think of a circuit that ignores
the extra inputs.

Before presenting the concrete scheme, we explain an overview of the scheme.
As stated in the introduction, the basic idea is that the authority issues a sig-

nature (a certificate) on an attribute to certify that the corresponding signer is
allowed to sign in the name of his attribute. This corresponds to the AttrGen algo-
rithm, which computes a structure-preserving signature on the given attribute.

To sign anonymously, the signer proves the knowledge of the certificate
received from the authority, as well as proves that the certified attribute sat-
isfies the public circuit. To do this, the signer computes commitments to all
the assignments to each wire. Then for each triple (u, v, w) which are connected
by a NAND gate, the signer proves that the triple satisfies the NAND relation
1 − u · v = w. This is implemented by Eqs. (2), (5), and (6).

Since we are instantiating our scheme with a Type III pairing, for each wire
we need two commitments in both G1 and G2. This is because we need to take
a pairing of two wire assignments (Eqs. (5) and (6)) for proving the NAND
relation of the three wires. This further requires the signer to prove that two
commitments are commitments to the same message. This is done by proving
Eqs. (3) and (4), which ensure that the exponents of Wi and W̃i are identical.
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Lastly, the OR-proof technique is implemented by modifying the circuit C
into Ĉ as in Eq. (1). This circuit ensures that the input (X2, . . . , Xl+1) is either
a satisfying assignment of C or the hash value h. Equation (2) ensures that θ is
a valid signature on (X2, . . . , Xl+1). They constitute a proof of knowledge of a
signature on an attribute or a signature on the dummy attribute determined by
the message.

The full description of our scheme is as follows.

AttrSetup(1k, 1�). Given a security parameter 1k and an input size 1� for cir-
cuit, generate bilinear group parameter gk = (p,G1,G2,GT , e, g, g̃) ← G(1k),
a witness indistinguishable common reference string crs ← WISetup(gk), a
verification key and a signing key (vkSign, skSign) ← Kg(gk, 1�+1) and a hash
key hk ← H(1k). Set pp = (�, crs, vkSign, hk) and msk ← skSign, and output
(pp,msk).

AttrGen(pp,msk, x). Parse x as (x1, . . . , x�). Generate a structure-preserving sig-
nature θ on the message

(g0, gx1 , . . . , gx�) ∈ G1
�+1.

Set skx ← (x, θ) and output skx.
AttrSign(pp, skx,M,C). Parse skx into ((x1, . . . , x�), θ) and proceed as follows:

1. Let h ← Hash(hk, 〈M,C〉). Expand the circuit C into a larger circuit Ĉ
with � + 1-bit input as

Ĉ(X1,X2, . . . , X�+1) = 1

⇐⇒
(

X1 = 0 ∧ C(X2, . . . , X�+1) = 1
)

∨
(

X1 = 1 ∧ X2‖ · · · ‖X�H+1 = h
)

(1)

where the hash value h is hard-wired into Ĉ. Let N be the number of
gates in Ĉ and I1 and I2 be the functions that specify the topology of Ĉ.

2. Let X1 ← 0, X2 ← x1, . . ., X�+1 ← x�, and then compute the assignment
to each non-input wires in Ĉ: for all i = (� + 1) + 1, . . ., (� + 1) + (N − 1)

Xi ← 1 − XI1(i) · XI2(i).

3. For all i = 1, . . ., (� + 1) + (N − 1), let

Wi ← gXi , W̃i ← g̃Xi .

4. Compute a Groth-Sahai commitment comθ to θ.
5. For all i = 1, . . ., (� + 1) + (N − 1), compute Groth-Sahai commitments

comWi
to Wi and comW̃i

to W̃i.
6. Generate a proof πSign for the verification equation

Verify(vkSign, (W1, . . . , W�+1), θ) = 1. (2)
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7. For all i = 1, . . ., � + 1, generate proofs πi proving the equation

e(g, W̃i) = e(Wi, g̃). (3)

8. For all i = (� + 1) + 1, . . ., (� + 1) + (N − 1), generate proofs πi proving
the equations

e(g, W̃i) = e(Wi, g̃), (4)

e(WI1(i), W̃I2(i))e(Wi, g̃) = e(g, g̃). (5)

9. Generate a proofs π(�+1)+N proving

e(WI1((�+1)+N), W̃I2((�+1)+N)) = 1. (6)

10. Let

σ = (comθ, comW1 , . . . , comW(�+1)+(N−1) ,

comW̃1
, . . . , comW̃(�+1)+(N−1)

,

πSign, π1, . . . , π(�+1)+N )

and output σ.
AttrVerify(pp,M,C, σ). Verify the proofs with respect to the circuit Ĉ in Eq. (1)

and its topology I1, I2 defined by given M and C. Output 1 if all the proofs
are verified as valid. Otherwise output 0.

Theorem 1. Provided the proof system is perfectly witness indistinguishable,
the above attribute-based signature scheme is perfectly private. Provided the proof
system is perfectly extractable and perfectly witness indistinguishable, the signa-
ture scheme is existentially unforgeable, and the hash function family is collision
resistant, the above attribute-based signature scheme is adaptively unforgeable.

Proof. Perfect privacy directly followed from witness indistinguishability of the
proof system.

For adaptive unforgeability, the proof proceeds with the following sequence
of games:

Game 1. This game is identical to the experiment for adaptive unforgeability.
Game 2. In this game, the behavior of the signing oracle is modified as fol-

lows. Given a signing query (M,C), the experiment computes the hash value
h ← Hash(hk, 〈M,C〉), let (h1‖ · · · ‖h�H) ← h, compute a signature θ on the
message

(g1, gh1 , . . . , gh�H , 1, . . . , 1) ∈ G2
�+1

with the master secret key msk = skSign, and then use θ as the witness to
compute a signature σ.

Game 3. In this game, the common reference string crs in pp is switched to the
extractable common reference string crs generated by the ExtSetup algorithm
as (crs, ek) ← ExtSetup(1k).
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We denote by succi the event that the adversary wins in Game i. We hereafter
bound Pr[succ1] to be negligible. From the triangle inequality,

Pr[succ1] = Pr[succ1] − Pr[succ2] + Pr[succ2] − Pr[succ3] + Pr[succ3]
≤ |Pr[succ1] − Pr[succ2]| + |Pr[succ2] − Pr[succ3]| + Pr[succ3].

We bound these three terms. The first term |Pr[succ1] − Pr[succ2]| is negligible,
due to the witness indistinguishability of the Groth-Sahai proof system. The
second term |Pr[succ2] − Pr[succ3]| is also negligible, because the two types of
common reference string are indistinguishable.

For the last term, we introduce an event coll. The event coll denotes the event
that Hash(hk, 〈M∗, C∗〉) collides to some of Hash(hk, 〈M,C〉) where (M,C) is one
of the signing queries. Now we have that

Pr[succ3] = Pr[succ3 ∧ coll] + Pr[succ3 ∧ ¬coll].

The probability Pr[succ3 ∧ coll] is negligible due to the collision-resistance of
the hash function. For a formal proof, we construct a simulator that attacks the
collision resistance of the hash function family.

Setup. The simulator receives a hash key hk from the experiment. The simu-
lator then generates an extractable common reference string as (crs, ek) ←
ExtSetup(1k) and verification and signing keys (vkSign, skSign) ← Kg(1k), and
then sets pp ← (�, crs, vk, hk) and sends pp to the adversary.

Key reveal query. When the adversary requests the signing key for x =
(x1, . . . , x�), the simulator runs the signing algorithm to obtain a signature
θ ← Sign(skSign, (g0, gx1 , . . . , gx�)). The simulator responds with skx = (x, θ).

Signing query. When the adversary requests a signature on M under a cir-
cuit C, the simulator computes the hash value h ← Hash(hk, 〈M,C〉),
lets (h1‖ · · · ‖h�H) ← h, then further computes the signature θ ←
Sign(skSign, (g1, gh1 , . . . , gh�H , 1, . . . , 1)), the circuit Ĉ as in Eq. (1), and proof
π using θ as the witness. The simulator responds with σ = π.

Forgery. When the adversary outputs a tuple (M∗, C∗, σ∗), the simulator
searches for a signing query (M,C) that satisfies Hash(hk, 〈M,C〉) =
Hash(hk, 〈M∗, C∗〉). If it is found and the winning condition (i)–(iii) in Defi-
nition 2 is satisfied, the simulator outputs (〈M,C〉, 〈M∗, C∗〉) as a collision.
Otherwise, the simulator outputs (⊥,⊥).

The simulator successfully outputs a collision, if the event succ3 ∧ coll occurs.
In particular, whenever the simulator outputs (〈M,C〉, 〈M∗, C∗〉), we have that
〈M,C〉 	= 〈M∗, C∗〉. This is because the winning condition forbids the adversary
to output M∗ and C∗ which are queried to the signing oracle, and thus (M,C)
differs from (M∗, C∗). Hence Pr[succ3 ∧ coll] is negligible.

For Pr[succ3 ∧ ¬coll], we construct a simulator that attacks the existential
unforgeability of the underlying signature scheme. The construction of the sim-
ulator is as follows.
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Setup. The simulator is given a verification key vkSign of the signature scheme.
The simulator sets up the extractable common reference string of the
proof system as (crs, ek) ← ExtSetup(1k). The simulator sends pp =
(�, crs, vkSign, hk) to the adversary.

Key reveal query. When the adversary requests the signing key for an attribute
x = (x1, . . . , x�), the simulator requests, to its signing oracle, a signature on
the message

(g0, gx1 , . . . , gx�) ∈ G1
�+1.

Then the simulator receives a signature θ. The simulator sends skx = θ to
the adversary.

Signing query. When the adversary requests a signature on a message M under
the circuit C, the simulator computes the hash value h = (h1‖ · · · ‖h�H) ←
Hash(hk, 〈M,C〉), then requests a signature on the message

(g1, gh1 , . . . , gh�H , 1, . . . , 1) ∈ G1
�+1

to its signing oracle. The simulator receives a signature θ. The simulator
computes a proof π using the signature θ as the witness. The simulator sends
σ = π to the adversary.

Forgery. When the adversary outputs a forgery (M∗, C∗, σ∗), the simulator
extracts the witness

θ,W1, . . . , W(�+1)+(N−1), W̃1, . . . , W̃(�+1)+(N−1).

Due to the extractability of the Groth-Sahai proof system, we can assume
that the witness satisfies Eqs. (2)–(6).
Now below we argue that the pair

((W1, . . . , W�+1), θ)

constitutes a legitimate forgery for the underlying signature scheme. We have
three cases to be dealt with.
1. Assume that (W1, . . . , W�+1) is of the form

(gX1 , . . . gX�+1) ∈ G2
�+1 where X1 = 0and X2, . . . , X�+1 ∈ {0, 1}.

In this case, due to Eqs. (3)–(6), we have that Ĉ(X1, . . . , X�+1) = 1, and
hence we also have that C(X2, . . . X�+1) = 1. Because the experiment
forbids the adversary to query such (X2, . . . , X�+1) as a key reveal query,
we can conclude that the simulator has not queried (g0, gX2 , . . . gX�+1)
to its signing oracle. Hence, due to the equation Eq. (2), the pair
((g0, gX2 , . . . , gX�+1), θ) constitutes a legitimate forgery to the signature
scheme.

2. Assume that (W1, . . . , W�+1) is of the form

(gX1 , . . . , gX�+1) ∈ G2
�+1

where X1 = 1,X2, . . . , X�H+1 ∈ {0, 1},X�H+2 = · · · = X�+1 = 0
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In this case, due to Eqs. (3)–(6), we have that (X2‖ · · · ‖X�H+1) =
Hash(hk, 〈C∗,M∗〉). Since we are now considering the event ¬coll, we have
that the adversary has not queried (C,M) such that Hash(hk, 〈C,M〉) =
Hash(hk, 〈C∗,M∗〉) to the signing oracle. Therefore the simulator has
not queried (g1, gX2 , · · · gX�H , 1, . . . , 1) to its signing oracle, and thus
((g1, gX2 , · · · gX�H , 1, . . . , 1), θ) constitutes a legitimate forgery.

3. Assume that (W1, . . . , W�+1) is neither of the above two forms. In this
case, the simulator does not issue any query of this form at all, and thus
((W1, . . . , X�+1), θ) is a legitimate forgery.

In any case, the pair ((W1, . . . , X�+1), θ) constitutes the forgery, and thus the
simulator outputs this pair as a forgery.

The above construction shows that whenever the event succ3 ∧ ¬coll occurs, the
simulator succeeds in producing the forgery of the signature scheme. It implies
that Pr[succ3 ∧ ¬coll] is negligible. ��

4 Performance

In this section we compare our scheme with the Maji et al. (MPR11) schemes [21]
and the Okamoto-Takashima (OT11) scheme [24]. Table 1 shows a brief compar-
ison among the existing schemes and our scheme. In the table the three MPR11
schemes (1)–(3) are respectively the Boneh-Boyen signature based scheme, the
Waters signature based scheme, and the scheme proven secure in the generic
group model. For the first two schemes, we show the performance in the SXDH
setting. Our scheme is instantiated with the Kiltz-Pan-Wee structure-preserving
signature scheme from the SXDH assumption [16] and the Groth-Sahai proof
system in the SXDH setting [14]. We also note that all the five schemes in the
table are instantiated in prime order groups.

Table 2 shows a detailed calculation of the signature size of our scheme. The
center and right columns respectively show the number of the group elements of
G1 and G2 that is required for each component of a signature.

Table 1. Comparison among pairing-based attribute-based signature schemes.

Scheme Signature size Assumption Predicate

MPR11 (1) [21] 36s + 2t + 24ks q-SDH, SXDH Monotone span program

MPR11 (2) [21] 28s + 2t + 12k + 8 SXDH Monotone span program

MPR11 (3) [21] s + t + 2 Generic group Monotone span program

OT11 [24] 9s + 11 DLIN Non-monotone span program

Ours 12� + 20N + 26 SXDH Non-monotone circuit

k: The security parameter
s × t: The size of the monotone span program
�: The input length of the circuit
N : The number of the gate in the circuit
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Table 2. Signature size of our scheme.

G1 G2

comθ 12 2

comWi 2(� + N)

comW̃i
2(� + N)

πSign 4 8

π1, . . ., π�+1 4(� + 1) 4(� + 1)

π(�+1)+1, . . ., π(�+1)+(N−1) 8(N − 1) 8(N − 1)

π(�+1)+N 4 4

Total 6� + 10N + 16 6� + 10N + 10

�: The input length of the circuit
N : The number of the gates in the circuit

As the table shows, our scheme achieves a comparable performance with the
existing schemes, while the class of supported predicates is drastically wider
than the existing schemes. In addition, the assumption from which the scheme
is proven secure is also comparable with or in some case identical to the existing
schemes.

References

1. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
preserving signatures and commitments to group elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

2. Bellare, M., Fuchsbauer, G.: Policy-based signatures. In: Krawczyk, H. (ed.) PKC
2014. LNCS, vol. 8383, pp. 520–537. Springer, Heidelberg (2014)

3. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identifi-
cation and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

4. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH
assumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

5. Boneh, D., Papakonstantinou, P.A., Rackoff, C., Vahlis, Y., Waters, B.: On the
impossibility of basing identity based encryption on trapdoor permutations. In:
49th Annual Symposium on Foundations of Computer Science, pp. 283–292. IEEE
(2008)

6. Chen, C., Chen, J., Lim, H.W., Zhang, Z., Feng, D., Ling, S., Wang, H.: Fully
secure attribute-based systems with short ciphertexts/signatures and threshold
access structures. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 50–67.
Springer, Heidelberg (2013)

7. El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based
signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348.
Springer, Heidelberg (2014)

8. Escala, A., Herranz, J., Morillo, P.: Revocable attribute-based signatures with
adaptive security in the standard model. In: Nitaj, A., Pointcheval, D. (eds.)
AFRICACRYPT 2011. LNCS, vol. 6737, pp. 224–241. Springer, Heidelberg (2011)



Attribute-Based Signatures for Circuits from Bilinear Map 299

9. Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption
for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO
2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)

10. Ghadafi, E.: Stronger security notions for decentralized traceable attribute-based
signatures and more efficient constructions. In: Nyberg, K. (ed.) CT-RSA 2015.
LNCS, vol. 9048. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16715-2

11. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of
Computing, pp. 545–554. ACM (2013)

12. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part II. LNCS, vol.
9216, pp. 503–523. Springer, Heidelberg (2015)

13. Groth, J., Ostrovsky, R., Sahai, A.: New techniques for noninteractive zero-
knowledge. J. ACM 59(3), 11: 1–11: 35 (2012)

14. Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM J. Comput. 41(5), 1193–1232 (2012)

15. Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based signa-
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Abstract. In a sanitizable signature scheme the signer allows a desig-
nated third party, called the sanitizer, to modify certain parts of the
message and adapt the signature accordingly. Ateniese et al. (ESORICS
2005) introduced this primitive and proposed five security properties
which were formalized by Brzuska et al. (PKC 2009). Subsequently,
Brzuska et al. (PKC 2010) suggested an additional security notion, called
unlinkability which says that one cannot link sanitized message-signature
pairs of the same document. Moreover, the authors gave a generic con-
struction based on group signatures that have a certain structure. How-
ever, the special structure required from the group signature scheme only
allows for inefficient instantiations.

Here, we present the first efficient instantiation of unlinkable sanitiz-
able signatures. Our construction is based on a novel type of signature
schemes with re-randomizable keys. Intuitively, this property allows to
re-randomize both the signing and the verification key separately but
consistently. This allows us to sign the message with a re-randomized
key and to prove in zero-knowledge that the derived key originates from
either the signer or the sanitizer. We instantiate this generic idea with
Schnorr signatures and efficient Σ-protocols, which we convert into non-
interactive zero-knowledge proofs via the Fiat-Shamir transformation.
Our construction is at least one order of magnitude faster than instanti-
ating the generic scheme of Brzuska et al. with the most efficient group
signature schemes.

1 Introduction

Sanitizable signature schemes were introduced by Ateniese et al. [1] and simi-
lar primitives were concurrently proposed by Steinfeld et al. [42], by Miyazaki
et al. [36], and by Johnson et al. [34]. The basic idea of this primitive is that the
signer specifies parts of a (signed) message such that a dedicated third party,
called the sanitizer, can change the message and adapt the signature accord-
ingly. Sanitizable signatures have numerous applications, such as the anonymiza-
tion of medical data, replacing commercials in authenticated media streams, or
updates of reliable routing information [1]. After the first introduction of sani-
tizable signatures in [1], the desired security properties were later formalized by
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Brzuska et al. [11]. At PKC 2010, Brzuska et al. [12] identified an important miss-
ing property called unlinkability. Loosely speaking, this notion ensures that one
cannot link sanitized message-signature pairs of the same document. This prop-
erty is essential in applications like the sanitization of medical records because
it prevents the attacker from combining information of several sanitized versions
of a document in order to reconstruct (parts of) the original document. The
authors also showed that unlinkable sanitizable signatures can be constructed
from group signatures [4] having the property that the keys of the signers can
be computed independently, and in particular before the keys of the group man-
ager. However, to this date, no efficient group signature scheme that has the
required properties is known, which also means that no efficient unlinkable sani-
tizable signature scheme is known. This leaves us in an unsatisfactory situation.
Either we use efficient sanitizable signature schemes that only achieve a subset
of the security properties [1,11] or we have to rely on an inefficient black-box
construction of unlinkable sanitizable signatures.

In this work, we close this gap by presenting the first efficient unlinkable san-
itizable signature scheme that achieves all security properties. The instantiation
of our scheme only requires 15 exponentiations for signing, 17 for the verifica-
tion, and 14 for sanitizing a message-signature pair. This is at least one order of
magnitude faster than the fastest previously known construction. For a detailed
performance comparison, refer to Sect. 1.2.

1.1 Overview of Our Construction

In this section, we describe the main idea of our construction and the under-
lying techniques. Our solution is based on a novel type of digital signature
schemes called signatures with perfectly re-randomizable keys. This type of sig-
nature schemes allows to re-randomize both the signing and the verification
key separately. It is required that the re-randomization is perfect, meaning that
re-randomized keys must have the same distribution as the original key. The
new unforgeability notion for this type of signature scheme requires that it is
infeasible for an attacker to output a forgery under either the original or a
re-randomized key, even if the randomness is controlled by the attacker.

We show that this notion does not trivially follow from the regular notion
of unforgeability. In fact, only a few signature schemes having this property
achieve our notion of unforgeability under re-randomizable keys. We demon-
strate this fact by showing concrete attacks against some well known unforgeable
signature schemes that have re-randomizable keys. In particular, we show that
the signature scheme of Boneh and Boyen [6] and the one of Camenisch and
Lysyanskaya [15] have re-randomizable keys, but are insecure with respect to
our stronger security notion. We stress that these attacks have no implications
on the original security proof, but that they cannot be used as an instantiation.
On the positive side, we prove that Schnorr’s signature scheme [40,41] has re-
randomizable keys and fulfills our security notion. It is well known that Schnorr’s
signature scheme [40,41] is one of the most efficient signature schemes based on
the discrete logarithm assumption. Moreover, we also propose an instantiation of
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signature schemes with re-randomizable keys in the standard model by slightly
modifying the signature scheme of Hofheinz and Kiltz [31,32].

Apart from their usefulness in constructing highly efficient sanitizable signa-
tures, this primitive may also be of independent interest. A second possible appli-
cation of signature schemes with re-randomizable keys are stealth addresses [27]
in Bitcoin or other cryptocurrencies. On a very high level, Bitcoin replaces bank
accounts with keys of a signature scheme. Money transactions in Bitcoin transfer
money from one public key to another and are only valid if they are signed with
the secret key of the payer. All transactions are logged in a public log data struc-
ture, the block chain, which can be used to verify the validity of new transactions
as well as to track money flow in Bitcoin. Our signatures with re-randomizable
keys provide a conceptually very simple solution for so called stealth addresses.
Consider a Bitcoin donation address on a website to support the host of the web-
site or donate money to the website for a good cause. A donor may be unwilling
to donate money if he can be linked to the website or other donors by the block
chain. Using signatures with re-randomizable keys a donor can take the dona-
tion address, re-randomize it, and pay the money to the re-randomized address
and transmit the re-randomization factor to the recipient through a non-public
channel, such as email. The recipient can use the given re-randomization fac-
tor to re-randomize his corresponding secret key to further transfer the received
money. Such addresses that are related in some invisible way to the recipient
are called stealth addresses. For a more detailed treatment of Bitcoin and the
existing stealth address mechanism see [27].

Construction of Unlinkable Sanitizable Signature Schemes. Our construction is
based on signature schemes that have perfectly re-randomizable keys. To sign
a message m, the signer first splits the message into the parts that cannot be
modified by the sanitizer and those that may be changed. Subsequently, the
signer authenticates the entire messages using a signature scheme with re-ran-
domized keys. However, the signer cannot sign this part directly as this would
reveal the identity of the signer. Instead, the signer chooses a randomness ρ, re-
randomizes their key-pair, and then proves, in zero-knowledge, that the derived
public key is a re-randomization of either the signer’s or the sanitizer’s key.

Sanitizing a message follows the same idea: the sanitizer modifies the message
and signs it with a re-randomized version of their key pair and appends a zero-
knowledge proof for the same language.

To turn this idea into an efficient scheme, we propose an efficient sigma proto-
col tailored to our problem that we then convert via the Fiat-Shamir transforma-
tion [24] into an efficient non-interactive zero-knowledge proof. The main obser-
vation is that our zero-knowledge proofs prove only simple statements about the
keys and not about encrypted signatures that verify under either the signer or
the sanitizers public-key. Since the corresponding language is much simpler than
this standard “encrypt-and-proof” approach, it has much shorter statements and
thus the resulting zero-knowledge proofs are significantly more efficient.
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1.2 Evaluation and Comparison

To demonstrate the efficiency of our approach, we compare both the compu-
tational and the storage complexity of our construction to the one of Brzuska
et al. [12], where we use the currently most efficient instantiations of the underly-
ing (group) signature scheme. Somewhat surprisingly, only a few group signature
schemes have the property that the user keys can be generated independently of
and, in particular, before the group manager’s key — a property that is required
by [12]. This property originates from the definitions of Bellare et al. [4] and only
very few group signature schemes, such as [29,30], can be adapted to have this
property and at the same time fulfill all security requirements needed in [12].
In most cases the group member’s keys depend on some information published
by the group manager. Finally, we instantiate the signature scheme in [12] using
a deterministic version of Schnorr’s signature scheme. Thus, in our compari-
son shown in Table 1, we instantiate [12] with the group signature schemes of
Groth [30] and of Furukawa and Yonezawa [29], which are to the best of our
knowledge the two most efficient group signature schemes that can be adapted
to allow an instantiation of [12]. Our comparison shows that in the most impor-
tant algorithms, i.e., signing, sanitizing, and verification, our construction is at
least one order of magnitude faster than both instantiations of [12]. Similarly,
Table 2 provides an overview of the storage complexity of the different construc-
tions. Although our keys are slightly larger than the other instances, it also shows
that our signatures are significantly smaller than the ones of the other instances.
Note that both the number of exponentiations and the number of group ele-
ments for Furukawa and Yonezawa’s group signature scheme depend linearly on
the security parameter. In our comparison, the scheme is instantiated with 100
bit security.

Thus, it is easy to see that our solutions is the first scheme that is efficient
enough to be used in practice today.

1.3 Related Work

Ateniese et al. [1] first introduced sanitizable signatures and gave an informal
description of the following properties: Unforgeability ensures that only the hon-
est signer and sanitizer can create valid signatures. Immutability says that the

Table 1. Comparison of the dominant operations in our construction instantiated
as described in Sect. 5 with the construction of Brzuska et al. [12] instantiated with
Schnorr signatures and the group signature schemes of Groth [30] and Furukawa and
Yonezawa [29] respectively. E and P stand for group exponentiations and pairing eval-
uations respectively.

KGensig KGensan Sign Sanit Verify Proof Judge

This paper 7E 1E 15E 14E 17E 23E 6E

[12] using [30] 1E 1E 194E+2P 186E+1P 207E+62P 14E+1P 1E+2P

[12] using [29] 1E 4E 2831E 2814E 2011E 18E 2E
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Table 2. Comparison of the key, signature, and proof sizes in our construction instan-
tiated as described in Sect. 5 with the construction of Brzuska et al. [12] instantiated
with Schnorr signatures and the group signature schemes of Groth [30] and Furukawa
and Yonezawa [29] respectively. Here pksig, sksig, pksan, and sksan refer to the signer’s
and sanitizer’s public and secret keys, while σ refers to the signature, and π refers to
the proof that is used to determine accountability. The sizes are measured in group
elements. For the sake of simplicity we do not distinguish between elements of different
groups such as Zq and G. This simplification slightly favors [12] using [30], since group
signatures in this scheme consist exclusively of G-elements.

pksig sksig pksan sksan σ π

This paper 7 14 1 1 14 4

[12] using [30] 1 1 1 1 69 1

[12] using [29] 1 1 5 1 1620 3

(malicious) sanitizer can only modify designated parts of the message. Trans-
parency guarantees that signatures computed by the signer and the sanitizer are
indistinguishable. Accountability demands that, with the help of the signer, a
proof of authorship can be generated, such that neither the malicious signer nor
the malicious sanitizer can deny authorship of the message. These properties were
later formalized by Brzuska et al. [11] and the Unlinkability property was intro-
duced by Brzuska et al. in [12]. Later, in [13], Brzuska et al. introduce the notion
of non-interactive public accountability, which allows a third party, without help
from the signer, to determine, whether a message originates from the signer or
the sanitizer. In [14], the same authors provide a slightly stronger unlinkability
notion and an instantiation that has non-interactive public accountability and
achieves their new unlinkability notion. However, non-interactive accountability
and transparency are mutually exclusive. That is, no scheme can fulfill both
properties at the same time. In this work we focus on schemes that have (inter-
active) accountability and transparency. Another line of research initiated by
Klonowski and Lauks [35] and continued by Canard and Jambert [16] consid-
ers different methods for limiting the allowed operations of the sanitizer. That
is, they show how to limit the set of possible modifications on one single block
and how to enforce the same modifications on different message blocks. In [17],
Canard et al. extend sanitizable signatures to the setting with multiple signers
and sanitizers. Recently, Derler and Slamanig suggested a security notion that
is stronger than privacy but weaker than unlinkability [23].

Other closely related types of malleable signature schemes, such as homo-
morphic signatures [2,8,18,28,33,34] or redactable signatures [10,19,34,37,42],
where parts of the signed message can be removed, are closely related to saniti-
zable signatures, but aim to solve related but different problems, have different
security notions, and are not directly applicable to solve the problem of effi-
cient unlinkable sanitizable signatures. In [5] Boldyreva et al. deal with proxy
signature schemes for delegating signing rights. In such signature schemes a des-
ignator can delegate signing rights to a proxy signer, who can then sign messages
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on behalf of the designator. However, in such a scheme the proxy signatures are
publicly distinguishable from signatures created by the designator. This would
break the transparency property of sanitizable signature schemes. Policy-based
signatures [3] allows a signer to delegate signing rights in connection with a
policy that specifies, which messages can be signed with the delegated signing
key. In addition, they require that they delegation policy shall remain hidden.
In a similar vein to [3] in [9] the authors explore the possibilities of delegating
signing keys for arbitrary functions. That is, using the delegated signing key one
can sign functions of the message that correspond to the key. These works show
theoretical solutions to the discussed problems, but are too slow for practical
use due to the cryptographic tools they use.

2 Sanitizable Signatures

Sanitizable signature schemes allow the delegation of signing capabilities to a des-
ignated third party, called the sanitizer. These delegation capabilities are realized
by letting the signer “attach” a description of the admissible modifications Adm

for this particular message and sanitizer. The sanitizer may then change the
message according to some modification Mod and update the signature using
their private key. More formally, the signer holds a key pair (sksig, pksig) and
signs a message m and the description of the admissible modifications Adm for
some sanitizer pksan with its private key sksig. The sanitizer, having a matching
private key sksan, can update the message according to some modification Mod

and compute a signature using his secret key sksan. In case of a dispute about the
origin of a message-signature pair, the signer can compute a proof π (using an
algorithm Proof) from previously signed messages that proves that a signature
has been created by the sanitizer. The verification of this proof is done by an
algorithm Judge (that only decides the origin of a valid message-signature pair
in question; for invalid pairs such decisions are in general impossible).

Admissible Modifications. Following [11,12] closely, we assume that Adm and
Mod are (descriptions of) efficient deterministic algorithms such that Mod maps
any message m to the modified message m′ = Mod(m), and Adm(Mod) ∈ {0, 1}
indicates if the modification is admissible and matches Adm, in which case
Adm(Mod) = 1. By FixAdm we denote an efficient deterministic algorithm
that is uniquely determined by Adm and which maps m to the immutable
message part FixAdm(m), e.g., for block-divided messages FixAdm(m) is the
concatenation of all blocks not appearing in Adm. We require that admissible
modifications leave the fixed part of a message unchanged, i.e., FixAdm(m) =
FixAdm(Mod(m)) for all m ∈ {0, 1}∗ and all Mod with Adm(Mod) = 1. Anal-
ogously, to avoid choices like FixAdm having empty output, we also require that
the fixed part must be “maximal” given Adm, i.e., FixAdm(m′) �= FixAdm(m)
for m′ /∈ {Mod(m) | Mod with Adm(Mod) = 1}.

2.1 Definition of Sanitizable Signatures

The following definition of sanitizable signature schemes is taken in verbatim
from [11,12].
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Definition 1 (Sanitizable Signature Scheme). A sanitizable signature
scheme SanS = (KGensig,KGensan,Sign,Sanit,Verify,Proof, Judge) consists of
seven algorithms:

Key Generation. There are two key generation algorithms, one for the signer
and one for the sanitizer. Both create a pair of keys, a private and the corre-
sponding public key:

(sksig, pksig) ← KGensig(1κ) and (sksan, pksan) ← KGensan(1κ).

Signing. The signing algorithm takes as input a message m ∈ {0, 1}∗, a signer
secret key sksig, a sanitizer public key pksan, as well as a description Adm of
the admissible modifications to m by the sanitizer and outputs a signature σ. We
assume that Adm can be recovered from any signature:

σ ← Sign(m, sksig, pksan,Adm).

Sanitizing. The sanitizing algorithm takes as input a message m ∈ {0, 1}∗, a
description Mod of the desired modifications to m, a signature σ, the signer’s
public key pksig, and a sanitizer secret key sksan. It modifies the message m
according to the modification instruction Mod and outputs a new signature σ′

for the modified message m′ = Mod(m) or possibly ⊥ in case of an error:

{(m′, σ′),⊥} ← Sanit(m,Mod, σ, pksig, sksan).

Verification. The verification algorithm takes as input a message m, a can-
didate signature σ, a signer public key pksig, as well as a sanitizer public key
pksan and outputs a bit b:

b ← Verify(m,σ, pksig, pksan).

Proof. The proof algorithm takes as input a signer secret key sksig, a message
m, a signature σ, and a sanitizer public key pksan and outputs a proof π:

π ← Proof(sksig,m, σ, pksan).

Judge. The judge algorithm takes as input a message m, a signature σ, signer
and sanitizer public keys pksig, pksan, and proof π. It outputs a decision d ∈
{Sign, San} indicating whether the message-signature pair was created by the
signer or the sanitizer:

d ← Judge(m,σ, pksig, pksan, π).

For a sanitizable signature scheme the usual correctness properties should hold,
saying that genuinely signed or sanitized messages are accepted and that a gen-
uinely created proof by the signer leads the judge to decide in favor of the signer.
For a formal approach to correctness see [11].
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2.2 Security of Sanitizable Signatures

In this section we recall the security notions of sanitizable signatures given
by Brzuska et al. [11,12] and we follow their description closely. The authors
defined unforgeability, privacy, immutability, accountability, transparency, and
unlinkability and showed that signer and sanitizer accountability together implies
unforgeability and that unlinkability implies privacy. Therefore, we only focus
on the necessary definitions and omit unforgeability and privacy.

Immutability. Informally, this property says that a malicious sanitizer cannot
change inadmissible blocks. This is formalized in a model where the malicious
sanitizer A interacts with the signer to obtain signatures σi for messages mi,
descriptions Admi and keys pksan,i of its choice. Eventually, the attacker stops,
outputting a valid pair (pk∗

san,m∗, σ∗) such that message m∗ is not a “legiti-
mate” transformation of one of the mi’s under the same key pk∗

san = pksan,i.
The latter is formalized by requiring that for each query pk∗

san �= pksan,i or
m∗ /∈ {Mod(mi) | Mod with Admi(Mod) = 1} for the value Admi in σi. This
requirement enforces that for block-divided messages m∗ and mi differ in at
least one inadmissible block. Observe that this definition covers also the case
where the adversary interact with several sanitizers simultaneously, because it
can query the signer for several sanitizer keys pksan,i.

Definition 2 (Immutability). A sanitizable signature scheme SanS is said to
be immutable if for all PPT adversaries A the probability that the experiment
ImmutSanSA (κ) evaluates to 1 is negligible (in κ), where

Experiment ImmutSanSA (κ)
(sksig, pksig) ← KGensig(1κ)
(pk∗

san,m∗, σ∗) ← ASign(·,sksig,·,·),Proof(sksig,·,·,·)(pksig)
letting (mi,Admi, pksan,i) and σi denote the
queries and answers to and from oracle Sign.

Output 1 if Verify(m∗, σ∗, pksig, pk
∗
san) = 1 and for all i the following holds:

pk∗
san �= pksan,i or m∗ /∈ {Mod(mi) | Mod with Admi(Mod) = 1}

Else output 0.

Accountability. This property demands that the origin of a (possibly sanitized)
signature should be undeniable. We distinguish between sanitizer-accountability
and signer-accountability and formalize each security property in the following.
Signer-accountability says that, if a message and its signature have not been
sanitized, then even a malicious signer should not be able to make the judge
accuse the sanitizer.

In the sanitizer-accountability game let ASanit be an efficient adversary play-
ing the role of the malicious sanitizer. Adversary ASanit has access to a Sign and
Proof oracle and it succeeds if it outputs a valid message signature pair such
that m∗, σ∗, together with a key pk∗

san (with (pk∗
san,m∗) such that the output

is different from pairs (pksan,i,mi) previously queried to the Sign oracle). More-
over, it is required that the proof produced by the signer via Proof still leads the
judge to decide “Sign”, i.e., that the signature has been created by the signer.
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Definition 3 (Sanitizer-Accountability). A sanitizable signature scheme
SanS is sanitizer-accountable if for all PPT adversaries A the probability that
the experiment San-AccSanSA (κ) evaluates to 1 is negligible (in κ), where

Experiment San-AccSanSA (κ)
(sksig, pksig) ← KGensig(1κ)

(pk∗
san,m∗, σ∗) ← A

Sign(·,sksig,·,·),
Proof(sksig,·,·,·)(pksig)

letting (mi,Admi, pksan,i) and σi

denote the queries and answers to
and from oracle Sign

π ← Proof(sksig,m
∗, σ∗, pk∗

san)
Output 1 if for all i the following holds:

(pk∗
san,m∗) �= (pksan,i,mi) and

Verify(m∗, σ∗, pksig, pk
∗
san) = 1 and

Judge(m∗, σ∗, pksig, pk
∗
san, π) �= San

In the signer-accountability game a malicious signer ASign gets a public sani-
tizing key pksan as input and has access to a sanitizing oracle, which takes as
input tuples (mi,Modi, σi, pksig,i

) and returns (m′
i, σ

′
i). Eventually, the adver-

sary ASign outputs a tuple (pk∗
sig,m

∗, σ∗, π∗) and is considered successful if Judge
accuses the sanitizer for the new key-message pair pk∗

sig,m
∗ with a valid signa-

ture σ∗.

Definition 4 (Signer-Accountability). A sanitizable signature scheme SanS
is said to be signer-accountable if for all PPT adversaries A the probability that
the experiment Sig-AccSanSA (κ) evaluates to 1 is negligible (in κ), where

Experiment Sig-AccSanSA (κ)
(sksan, pksan) ← KGensan(1n)
(pk∗

sig,m
∗, σ∗, π∗) ← ASanit(·,·,·,·,sksan)(pksan)

letting (mi,Modi, σi, pksig,i) and
(m′

i, σ
′
i) denote the queries and

answers to and from oracle Sanit.
Output 1 if for all i the following holds:

(pk∗
sig,m

∗) �= (pksig,i,m
′
i) and

Verify(m∗, σ∗, pk∗
sig, pksan) = 1 and

Judge(m∗, σ∗, pk∗
sig, pksan, π∗) �= Sign

else output 0.

Transparency. Informally, this property says that one cannot decide whether a
signature has been sanitized or not. Formally, this is defined in a game where an
adversary A has access to Sign, Sanit, and Proof oracles with which the adversary
can create signatures for (sanitized) messages and learn proofs. In addition, A
gets access to a Sanit/Sign box which contains a secret random bit b ∈ {0, 1} and
which, on input a message m, a modification information Mod and a description
Adm behaves as follows:
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– for b = 0 runs the signer algorithm to create σ ← Sign(m, sksig, pksig,Adm),
then runs the sanitizer algorithm and returns the sanitized message m′ with
the new signature σ′, and

– for b = 1 acts as in the case b = 0 but also signs m′ from scratch with the
signing algorithm to create a signature σ′ and returns the pair (m′, σ′).

Adversary A eventually produces an output a, the guess for b. A sanitizable
signature is now transparent if for all efficient algorithms A the probability for
a right guess a = b in the above game is negligibly close to 1

2 . Below we also
define a relaxed version called proof-restricted transparency.

Definition 5 ((Proof-Restricted) Transparency). A sanitizable signature
scheme SanS is said to be proof-restrictedly transparent if for all PPT adver-
saries A the probability that the experiment TransSanSA (κ) evaluates to 1 is negli-
gibly bigger than 1/2 (in κ), where

Experiment TransSanSA (κ)
(sksig, pksig) ← KGensig(1κ)
(sksan, pksan) ← KGensan(1κ)
b ← {0, 1}

a ← A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),
Proof(sksig,·,·,·),Sanit/Sign(·,·,·) (pksig, pksan)

letting MSanit/Sign and MProof denote
the sets of messages output by the Sanit/Sign
and queried to the Proof oracle respectively.

Output 1 if
(

a = b and MSanit/Sign ∩ MProof = ∅
)

Else output 0

Unlinkability. This security notion demands that it is not feasible to use the sig-
natures to identify sanitized message-signature pairs originating from the same
source. This should even hold if the adversary itself provides the two source
message-signature pairs and modifications of which one is sanitized. It is required
that the two modifications yield the same sanitized message, because otherwise
predicting the source is easy, of course. This, however, is beyond the scope of
signature schemes: the scheme should only prevent that signatures can be used
to link data. In the formalization of [12], the adversary is given access to a sign-
ing oracle and a sanitizer oracle (and a proof oracle since this step depends on
the signer’s secret key and may leak valuable information). The adversary is also
allowed to query a left-or-right oracle LoRSanit which is initialized with a secret
random bit b and keys pksig, sksan. The adversary may query this oracle on tuples
((m0,Mod0, σ0), (m1,Mod1, σ1)) and returns Sanit(mb,Modb, σb, pksig, sksan)
if Verify(mi, σi, pksig, pksan) = 1 for i = 0, 1, Adm0 = Adm1 and if the modi-
fications map to the same message, i.e., Adm0(Mod0) = 1, Adm1(Mod1) = 1
and Mod0(m0) = Mod1(m1). Otherwise, the oracle returns ⊥. The adversary
should eventually predict the bit b significantly better than with the guessing
probability of 1

2 .
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Definition 6 (Unlinkability). A sanitizable signature scheme SanS is unlink-
able if for all PPT adversaries A the probability that the experiment LinkSanSA (κ)
evaluates to 1 is negligibly bigger than 1/2 (in κ), where

Experiment LinkSanSA (κ)
(sksig, pksig) ← KGensig(1κ)
(sksan, pksan) ← KGensan(1κ)
b ← {0, 1}

a ← A
Sign(·,sksig,·,·),Sanit(·,·,·,·,sksan),

Proof(sksig,·,·,·),LoRSanit(·,·) (pksig, pksan)
if a = b then output 1, else output 0.

3 Signatures Schemes with Re-randomizable Keys

In this section, we introduce signature schemes that have re-randomizable keys
and which serve as the main building block for our construction. Signature
schemes with this property have the advantage that one can re-randomize the
key-pair (sk, pk) to a key-pair (sk′, pk′) and sign a message m with a seemingly
unrelated key. Jumping ahead, this property allows us to sign messages with
a fresh key and prove, in zero-knowledge, the origin of the key. For one of the
signature schemes we require bilinear maps, which are defined as follows. Let
e : G1 × G2 → Gt be an efficient, non-degenerate bilinear map, for system-wide
available groups, where g1 and g2 are generators of G1 and G2, respectively.

3.1 Defining Signature Schemes with Re-randomizable Keys

To define this property and the corresponding security notion formally, we denote
by Σ = (SSetup,SGen,SSign,SVerify) a standard digital signature scheme, where
pp ← SSetup(1κ), (sk, pk) ← SGen(1κ), σ ← SSign(sk,m), b ← SVerify(pk,m, σ)
are the standard algorithms of a digital signature scheme.

Definition 7 (Signatures with Perfectly Re-randomizable Keys). A sig-
nature scheme Σ = (SSetup,SGen,SSign,SVerify) has perfectly re-randomizable
keys if there exist two PPT algorithms (RandSK,RandPK) and a randomness
space χ such that:

RandSK(sk, ρ): The secret key re-randomization algorithm takes as input a secret
key sk and a randomness ρ ∈ χ and outputs a new secret key sk′.

RandPK(pk, ρ): The public key re-randomization algorithm takes as input a pub-
lic key pk and a randomness ρ ∈ χ and outputs a new public key pk′.

Correctness. The scheme is correct if and only if all of the following holds:

1. For all κ ∈ N, all key-pairs (sk, pk) ← SGen(1κ), all messages m ∈ {0, 1}∗,
and all signatures σ ← SSign(sk,m), it holds that SVerify(pk,m, σ) = 1.
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2. For all κ ∈ N, all key-pairs (sk, pk) ← SGen(1κ), all randomness ρ ∈ χ,
all messages m ∈ {0, 1}∗, and σ ← SSign(RandSK(sk, ρ),m), it holds that
SVerify(RandPK(pk, ρ),m, σ) = 1.

3. For all key pairs (sk, pk), and a uniformly chosen randomness ρ ∈ χ, the dis-
tribution of (sk′, pk′) and (sk′′, pk′′) is identical, where pk′ ← RandPK(pk, ρ),
sk′ ← RandSK(sk, ρ), and (sk′′, pk′′) ← SGen(1κ)

3.2 Security of Signature Schemes with Re-randomizable Keys

The security of signature scheme with re-randomizable keys is defined analo-
gously to the unforgeability of regular signature schemes, but allows the adver-
sary to learn message/signature pairs under re-randomized keys. This should
even hold if the randomness to re-randomize the keys is chosen by the attacker.
In this definition, the adversary has access to two oracles. The first one, denoted
by O1 is a regular signing oracle. The second one, denoted by O2 is an oracle
that takes as input a message m and some randomness ρ. It then re-randomizes
the private key according to ρ and signs the message using this key.

Definition 8 (Unforgeability under Re-randomized Keys). A signa-
ture scheme with perfectly re-randomizable keys Σ = (SGen,SSign,SVerify,
RandSK,RandPK) is unforgeable under re-randomized keys (UFRK) if for all
PPT adversaries A the probability that the experiment UFRKΣ

A(κ) evaluates to
1 is negligible (in κ), where

Experiment UFRKΣ
A(κ):

(sk, pk) ← SGen(1κ)
Q := ∅
(m∗, σ∗, ρ∗) ← AO1(sk,·),O2(sk,·,·)(pk)
Output 1 if one of the two conditions is fulfilled
1. If SVerify(pk,m∗, σ∗) = 1

and m∗ �∈ Q
2. If SVerify(RandPK(pk, ρ∗),m∗, σ∗) = 1

and m∗ �∈ Q
else output 0

O1(sk,m):
Q := Q ∪ {m}
σ ← SSign(sk,m)
output σ

O2(sk,m, ρ):
Q := Q ∪ {m}
sk′ ← RandSK(sk, ρ)
σ ← SSign(sk′,m)
output σ

Given this definition of unforgeability, one can easily obtain the “standard”
notion of existential unforgeability by giving the adversary only access to O1

and only checking the first condition.

Definition 9 (Existential Unforgeability). A signature scheme with per-
fectly re-randomizable keys Σ = (SGen,SSign,SVerify,RandSK,RandPK) is said
to be existentially unforgeable under chosen message attacks (EUF) if for all
PPT adversaries A the probability that the experiment EUFΣ

A(κ) evaluates to 1
is negligible (in κ), where EUFΣ

A(κ) is defined as UFRKΣ
A(κ), but the adversary

only gets access to O1 and wins if the first condition is fulfilled.
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For our construction, we also need signature schemes that are strongly unforge-
able, meaning that it is computationally hard to compute a new signature σ∗ on
a message m, i.e., the adversary is allowed to submit m to the oracle and learn
a signature σ and wins the game if σ∗ is valid but different from σ.

Definition 10 (Strong Existential Unforgeability). A signature scheme
with perfectly re-randomizable keys Σ = (SGen,SSign,SVerify,RandSK,RandPK)
is strongly existentially unforgeable under chosen message attacks (s-EUF) if
for all PPT adversaries A the probability that the experiment s-EUFΣ

A(κ) eval-
uates to 1 is negligible (in κ), where s-EUFΣ

A(κ) is defined as UFRKΣ
A(κ), but

the adversary only gets access to O1 and O1 maintains Q := Q ∪ {m,σ}. The
adversary wins only if the following condition is fulfilled: SVerify(pk,m∗, σ∗) =
1 and (m∗, σ∗) �∈ Q.

3.3 Counter Examples

In this section, we show that unforgeability under re-randomizable keys
(Definition 8) does not trivially follow from regular unforgeability (Definition 9).
In fact, very few standard model signatures, that have re-randomizable keys,
are unforgeable under re-randomizable keys. We demonstrate this by giving con-
crete attacks against some well known schemes, such as the Boneh and Boyen [7]
and Camenisch and Lysyanskaya [15] signature schemes. We remark that these
attacks have no implications on the original security proof and that our attacks
are outside of the regular unforgeability model.

Boneh-Boyen Signature Scheme. The scheme of Boneh and Boyen [7] works
in a bilinear groups setting and is existentially unforgeable under the q-SDH
assumption. The scheme works as follows: The secret key consists of x, y ∈ Z

∗
q

and the public key consists of the corresponding G2 elements u := gx
2 and v := gy

2 .
To sign a message m ∈ Z

∗
q , the signer chooses a random r ← Z

∗
q , computes

s := g
1/(x+m+yr)
1 , and outputs the signature σ = (r, s). To verify that a signature

is valid, the verifier checks that e(s, u · gm
2 · vr) = e(g1, g2) holds. The keys of the

scheme can be re-randomized additively, i.e., given randomness (ρ1, ρ2) ∈ Z
2
q,

secret keys are randomized as (x′, y′) := (x + ρ1, y + ρ2) and public keys are
randomized as (u′, v′) := (u · gρ1

2 , v · gρ2
2 ).

Even though this scheme is existentially unforgeable under the q-SDH
assumption and has perfectly re-randomizable keys, it is forgeable under re-ran-
domized keys. The attack is as follows: The adversary A on input the public key
(u, v) chooses a random message m ∈ Z

∗
q as well as a random value ρ1 ∈ Z

∗
q . It

then queries (m, (ρ1, 0)) to its signing oracle receiving back a signature σ = (r, s).
Then, it computes m′ := m + ρ1 and outputs σ,m′, (0, 0) as a forgery. It is easy
to verify, that the verification equation actually holds for the output of A:
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e(s, u · gm′
2 · vr) = e(g1, g2)

⇔ e(s, gx+m+ρ1+yr
2 ) = e(g1, g2)

⇔ e(g
1

(x+ρ1)+m+yr

1 , gx+ρ1+m+yr
2 ) = e(g1, g2)

⇔ e(g1, g2)
x+ρ1+m+yr
x+ρ1+m+yr = e(g1, g2)

⇔ e(g1, g2) = e(g1, g2)

Furthermore, the adversary is efficient and the only message queried to the sign-
ing oracle is m, and m′ �= m. Therefore, it follows that A breaks the unforge-
ability under re-randomizable keys with probability 1.

Camenisch-Lysyanskaya Signature Scheme. The signature scheme of
Camenisch and Lysyanskaya [15] works in a symmetric bilinear groups setting
and is existentially unforgeable under the LRSW assumption. The scheme works
as follows: The secret key consists of x, y ∈ Zq and the public key consists of the
corresponding group elements X := gx and Y := gy. To sign a message m ∈ Zq,
the signer chooses a random a ← G, computes b := ay and c := ax+mxy, and
outputs the signature σ = (a, b, c). To verify that a signature is valid, the veri-
fier checks that e(a, Y ) = e(g, b) and e(X, a) · e(X, b)m = e(g, c) hold. The keys
of the scheme can be re-randomized multiplicatively1. I.e., given randomness
(ρ1, ρ2) ∈ Z

2
q, secret keys are randomized as (x′, y′) := (x · ρ1, y · ρ2) and public

keys are randomized as (X ′, Y ′) := (Xρ1 , Y ρ2).
This scheme is also existentially unforgeable and has perfectly re-random-

izable keys. Nevertheless it also is forgeable under re-randomized keys and the
corresponding attack works as follows: The adversary A on input the public
key (X,Y ) chooses a random message m ∈ Z

∗
q as well as a random value ρ2 ∈

Z
∗
q\{1}. It then queries (m, (1, ρ2)) to its signing oracle receiving back a signature

σ = (a, b, c). It it finally computes m′ := m · ρ2 and b′ := b(ρ
−1
2 ) and outputs

(a, b′, c),m′, (1, 1) as a forgery. It is easy to verify, that the verification equation
actually holds for the output of A. For the first check equation we have:

e(a, Y ) = e(g, b′)

⇔ e(a, gy) = e(g, b(ρ
−1
2 ))

⇔ e(gy, a) = e(g, a(yρ2)·ρ−1
2 )

⇔ e(gy, a) = e(g, ay)
⇔ e(g, a)y = e(g, a)y.

1 The keys can also be re-randomized additively, however in that case neither a proof
of security nor an attack are apparent.
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For the second verification equation we have:

e(X, a) · e(X, b′)m′
= e(g, c)

⇔ e(gx, a) · e(gx, bρ−1
2 )m·ρ2 = e(g, ax+mxyρ2)

⇔ e(g, a)x · e(gx, ayρ2ρ−1
2 )mρ2 = e(g, a)x+mxyρ2

⇔ e(g, a)x · e(g, a)mxyρ2 = e(g, a)x+mxyρ2

⇔ e(g, a)x+mxyρ2 = e(g, a)x+mxyρ2 .

Furthermore, the adversary is efficient and the only message queried to the
signing oracle is m, and m′ �= m, since ρ2 �= 1. Therefore, it follows that A wins
the unforgeability game with re-randomizable keys with probability 1.

3.4 Instantiations

In this section, we show that our security notion is achievable in the random
oracle and the standard model. In the random oracle model, we prove that
Schnorr’s signature scheme [40,41] is unforgeable under re-randomized keys and
in the standard model we show that a slightly modified version of the signature
scheme due to Hofheinz and Kiltz [31,32] satisfies our notion.

Random Oracle Model. We show that Schnorr’s signature scheme [40,41]
is unforgeable under re-randomized keys. Our proof technique relies on an idea
that was previously observed by Fischlin and Fleischhacker [25] in the context
of an impossibility result. The core of this technique, that we call randomness
switching technique, allows moving a signature from one public key to another
one knowing only the difference between the two corresponding secret keys.

Definition 11 (Schnorr Signature Scheme). Let G be a cyclic group of
prime order q with generator g and let H : {0, 1}∗ → Zq be a hash function. The
Schnorr signature scheme SSS, working over G, is defined as follows:

SGen(1κ): Pick sk ← Zq at random, compute pk := gsk, and output (sk, pk).

SSign(sk,m): Pick r ← Zq at random and compute R := gr, compute c :=
H(R,m) and y := r + sk · c mod q. Output σ := (c, y).

SVerify(pk,m, σ): Parse σ as (c, y). If c = H(pk−cgy,m), then output 1, other-
wise output 0.

RandSK(sk, ρ): Compute sk′ := sk + ρ mod q and output sk′.

RandPK(pk, ρ): Compute pk′ := pk · gρ and output pk′.

Obviously all three correctness conditions hold. It remains to show that SSS is
unforgeable under re-randomized keys.

Theorem 1 (Unforgeability of Schnorr Signatures Under Re-random-
ized Keys). The signature scheme SSS (Definition 11) is unforgeable under
re-randomized keys (Definition 8) in the random oracle model if the discrete log-
arithm problem in G is hard.
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Proof. Assume towards contradiction that there exists an efficient adversary
A against the unforgeability under re-randomized keys. Then, we construct an
adversary B against the existential unforgeability of SSS, which runs A as a
black-box and simulates both oracles with its own signing oracle. More pre-
cisely, B answers all queries to O1(sk,m) with its own signing oracle and it
simulates O2(sk, ρ,m) by first querying its own signing oracle on m, obtaining a
signature (c, y), and then adapting the signatures by adding the value ρ · c to y.
Eventually, the adversary A outputs a forgery (σ∗,m∗, ρ∗) with σ∗ = (c, y).
The reduction B adapts the signature in order to serve as a forgery under
the key pk by subtracting ρ∗ · c from y. A formal description of the adver-
sary and the simulation of the oracle O2(sk, ρ,m) is given in the following:

BO1(sk,·)(pk) :

(σ∗,m∗, ρ∗) ← AO1(sk,·),O2(sk,·,·)(pk)
Parse σ∗ as (c, y)
y′ := y − ρ∗c

output (c, y′),m∗

O2(sk, ρ,m) :

(c, y) ← O1(sk,m)
y′ := y + ρc

output (c, y′)

For the analysis, let us assume that A’s success probability in the experiment
UFRKSSS

A is greater than 1/poly(κ). It is easy to see that B is efficient and that
the simulation of A’s signing oracle O1 is perfect. Now, we show that B also
provides a perfect simulation of the oracle O2. The signature under pk received
by O2 consists of c and y. The c value is independent of the signing key, therefore
only the y value needs to be adapted. The adapted value is computed as

y′ = y + ρc = r + sk · c + ρc = r + (sk + ρ) · c.

Obviously (c, y′) is therefore a signature on m under pk · gρ with the same
randomness as (c, y). It follows that the answers to signing queries are distributed
exactly as in the UFRKSSS

A (κ) experiment.
Similarly the output of B is computed from the output of A. Whenever A

outputs a valid signature, message, randomness triple (σ∗,m∗, ρ∗), we have that
σ∗ = (c, y) where c = H(gr,m) and y = r + (sk + ρ∗) · c for some r ∈ Zq. We
therefore have

y′ := y − ρ∗c = r + (sk + ρ∗) · c − ρ∗c = r + sk · c

and thus (c, y′) is a valid signature on m under pk. Further, in answering signing
queries for A, the adversary B queries the exact same messages as A and there-
fore whenever A wins in the UFRKSSS

A (κ) experiment, B wins in the EUFSSS
A (κ)

experiment. Combining this with the well known proof of existential unforgeabil-
ity of Schnorr signatures by Pointcheval and Stern [38,39] rules out the existence
of A under the discrete logarithm assumption in the random oracle model.



Efficient Unlinkable Sanitizable Signatures from Signatures 317

Standard Model. In the following we show that a modified version of the
signature schemes due to Hofheinz and Kiltz [31,32] is unforgeable under re-
randomized keys. The original construction of Hofheinz and Kiltz works on type
1 and type 2 pairings and the element s in their scheme is a random bit string.
However, in our case we choose s as a random element from Zq. This modifi-
cation slightly increases the signature’s size, but does not influence the original
functionality or security proof. To prove the security formally, we adapt the
randomness switching technique to this setting, which allows us to reduce the
unforgeability under re-randomized keys to standard existential unforgeability.
The scheme of Hofheinz and Kiltz requires a programmable hash function [31,32],
but since security properties of programmable hash functions are not relevant
to our proofs, we omit them here and refer the interested reader to [31,32].

Definition 12 (Programmable Hash Function [31,32]). A programmable
hash function (Gen,Eval) consists of two algorithms:

k ← Gen(1κ): The key generation algorithm takes as input the security parameter
1κ and generates a public key k.

y ← Eval(k,m): The deterministic evaluation algorithm takes as input a key k
and a message m ∈ {0, 1}� and outputs a hash value y.

Given the definition of programmable hash functions, we define the slightly mod-
ified signature scheme due to Hofheinz Kiltz and define the re-randomization
algorithms.

Definition 13 (Hofheinz Kiltz Signature Scheme [31,32]). Let PHF =
(Gen,Eval) be a programmable hash function with domain {0, 1}∗ and range G1.
The signature scheme HKSS is defined as follows:

SSetup(1κ): Generate a key for PHF as k ← Gen(1κ) and output pp = k.

SGen(1κ): Pick sk ← Zq at random, compute pk := gsk2 , and output (sk, pk).

SSign(sk,m): Parse k from pp. Pick s ← Zq uniformly at random and compute
y := Eval(k,m)

1
sk+s . Output σ := (s, y).

SVerify(pk,m, σ): Parse σ as (s, y). If e(y, pk · gs
2) = e(Eval(k,m), g2)

then output 1, otherwise output 0.

RandSK(sk, ρ): Compute sk′ := sk + ρ mod q and output sk′.

RandPK(pk, ρ): Compute pk′ := pk · gρ
2 and output pk′.

Obviously all three correctness conditions hold. It remains to show that HKSS
is unforgeable under re-randomized keys.

Theorem 2 (Unforgeability of HKSS Under Re-randomized Keys). The
signature scheme HKSS as defined in Definition 13 is unforgeable under re-
randomized keys (Definition 8) in the standard model, if HKSS is unforgeable
under chosen message attacks (Definition 9).
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Proof. Assume towards contradiction that there exists an efficient adversary A
against the unforgeability under re-randomizable keys. Then, we construct an
adversary B against the existential unforgeability of the underlying signature
scheme, which runs A as a black-box. The algorithm B simulates the oracle
O1 by simply forwarding the query to its own signing oracle and it uses the
randomness switching technique for the simulation of O2. That is, whenever A
sends a message-randomness pair (m, ρ) to O2, then A queries its signing oracle
on m and adjusts the key by subtracting ρ from s. The formal description of B
and the oracle O2 is given in the following:

BO(sk,·)(pk):

(σ∗,m∗, ρ∗) ← AO1(sk,·),O2(sk,·,·)(pk)
Parse σ∗ as (s, y)
s′ := s + ρ∗

output (s′, y),m∗

O2(sk, ρ,m):

(s, y) ← O(m)
s′ := s − ρ

output (s′, y)

For the analysis, let us assume that A’s success probability in the experiment
UFRKHKSS

A (κ) is bigger than 1/poly(κ). It is easy to see that B is efficient and
that the simulation of A’s signing oracle O1 is perfect. Now, we show that B
also provides a perfect simulation of the oracle O2. Whenever A sends (ρ,m)
to O2, then B returns a signature (s′, y) for which it holds that e(y, pk · gρ

2 ·
gs′
2 ) = e(Eval(k,m)

1
sk+s , g

sk+ρ+(s−ρ)
2 ) = e(Eval(k,m), g2), which has obviously

the correct distribution.
Finally, we argue that B outputs a valid signature whenever A outputs a

valid forgery. To see this, note that (s′ = s + ρ∗, y) for m∗ under pk, whenever
A returns a valid signature (s, y) for m∗ under the re-randomized key pk · gρ

2 ,
since e(y, (pk · gρ

2) · gs
2) = e(y, pk · gρ+s

2 ) = e(y, pk · gs′
2 ). Combining this with the

proof of existential unforgeability of the modified version of the Hofheinz Kiltz
signature schemes from [31,32] rules out the existence of A.

4 Efficient Sanitizable Signatures

In this section we show how to build efficient unlinkable sanitizable signatures
from signatures with perfectly re-randomizable keys.

4.1 Preliminaries

We recall the definitions and security notions of the other building blocks
required for our construction of sanitizable signatures. Namely we recall the
definitions of CCA secure public key-encryption and non-interactive zero-
knowledge proof systems.
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CCA Secure Public-Key Encryption. A public key encryption scheme
E = (EGen,Enc,Dec) consists of a key generation algorithm (dk, ek) ← EGen(1κ),
an encryption algorithm c ← Enc(ek,m), and a decryption algorithm m ←
Dec(dk, c). We omit the standard correctness condition and recall the standard
notion of CCA security.

Definition 14 (Indistinguishability under Chosen Ciphertext Attacks).
A public key encryption scheme E = (EGen,Enc,Dec) has indistinguishable
encryptions under chosen ciphertext attacks (IND-CCA) if for all (possibly
stateful) PPT adversaries A = (A0,A1) the probability that the experiment
IND-CCAE

A(κ) evaluates to 1 is negligibly bigger than 1/2 (in κ), where

Experiment IND-CCAE
A(κ):

(dk, ek) ← EGen(1κ)
b ← {0, 1}
m0,m1 ← ADec(dk,·)

0 (ek)
cb ← Enc(ek,mb)
a ← ADec′(dk,cb,·)

1 (cb)
if a = b, then output 1
else output 0

Dec′(dk, cb, c):
if c �= cb

then output Dec(dk, c)
else output ⊥

Non-interactive Zero-Knowledge Proof System. We recall the definitions
of non-interactive zero-knowledge proof systems. A non-interactive zero-know-
ledge proof system (SetupZK,PZK,VZK) for a language L with the corresponding
relation R consists of a setup algorithm crs ← SetupZK(1κ) that generates a
common reference string, a prover algorithm π ← PZK(crs, x, w) that takes as
input the common reference string crs, a statement x, and a witness w and
outputs a zero-knowledge proof π; and a verification algorithm b ← VZK(crs, x, π)
that outputs 1 iff x ∈ L and 0 otherwise. We omit the standard definition of
correctness and recall the definitions of (perfect) soundness, zero-knowledge, and
proof of knowledge.

Definition 15 (Perfect Soundness). A NIZK scheme has perfect soundness
if and only if for all κ ∈ N and all adversaries A it holds that

Pr[ crs ← SetupZK(1κ); (x, π) ← A(crs) : VZK(crs, x, π) = 0 | x �∈ L ] = 1

Definition 16 (Zero-knowledge). A NIZK scheme has computational zero-
knowledge if for all κ ∈ N there exists an efficient simulator S = (S0,S1) such
that for all adversaries A it holds that

∣

∣

∣

∣

∣

Pr
[

crs ← SetupZK(1κ) : APZK(crs,·,·)(crs) = 1
]

−Pr
[

(crs,T) ← S0(1κ) : AS′(crs,T,·,·)(crs) = 1
]

∣

∣

∣

∣

∣

≤ negl(κ),

where S′(crs,T, x, w) = S1(crs,T, x) if (x,w) ∈ R and outputs failure otherwise.
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Definition 17 (Proof of Knowledge). A NIZK scheme is a proof of knowl-
edge if there exists an efficient extractor Ext = (Ext0,Ext1) such that the follow-
ing conditions hold:
For all polynomial time adversaries A it holds that

∣

∣

∣

∣

Pr[ crs ← SetupZK(1κ) : A(crs) = 1]
−Pr[ (crs,T) ← Ext0(1κ) : A(crs) = 1]

∣

∣

∣

∣

≤ negl(κ).

For all polynomial time adversaries A it holds that

Pr
[

(crs,T) ← Ext0(1κ); (x, π) ← A(crs);
w ← Ext1(crs,T, x, π) : (x,w) ∈ R |VZK(crs, x, π) = 1

]

≥ 1
poly(κ)

.

4.2 Our Construction

In the following, we describe our construction of a sanitizable signature scheme
based on signatures with re-randomizable keys. Similar to previous construc-
tions [11,12], we sign the parts of the message that cannot be changed by the
sanitizer and a description of valid modifications Adm with a separate signature
scheme. The main part of our construction, and which is very different from all
previous schemes, is the computation of the signature on the parts that can be
modified by the sanitizer. The basic idea here is that we compute this signature
using a signature scheme with re-randomizable keys. That is, we compute this
signature using a re-randomized private and public key-pair (sk′, pk′), which was
either re-randomized by the signer or the sanitizer. To allow for an easy Proof
and Judge algorithm and avoid rewinding in the proof, we have to provide a way
to check that pk′ is in fact the re-randomization of the signer’s or the sanitizer’s
public key. Therefore, we also include an encryption of the actual public key. In
the Proof algorithm the signer can then decrypt and return this public key along
with a proof of correct decryption.

In the following, for the sake of brevity all algorithms are assumed to implic-
itly take the public parameters as input.

Construction 1. Let Σ = (SSetup,SGen,SSign,SVerify,RandSK,RandPK) be
a signature scheme with perfectly re-randomizable keys, ΣFix = (SSetupFix,
SGenFix,SSignFix,SVerifyFix) be a deterministic signature scheme, E = (EGen,
Enc,Dec) be a public key encryption scheme, and ΠPoK = (SetupPoK,PPoK,VPoK)
as well as ΠZK = (SetupZK,PZK,VZK) be two non-interactive zero-knowledge
proof systems for the languages L1 and L2, where the language L1, used in Sign,
Sanit, and Verify, contains tuples (ek, c, pk′, pksan, pk) for which there exists wit-
ness w = (ω, ρ) such that

c = Enc(ek, pk;ω) ∧ pk′ = RandPK(pk, ρ)

or
c = Enc(ek, pksan;ω) ∧ pk′ = RandPK(pksan, ρ).
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The second language L2, used in Proof and Judge, contains tuples (ek, c, ̂pk) for
which there exists witness w = (ψ, dk) such that

(ek, dk) = EGen(1κ;ψ) ∧ ̂pk = Dec(dk, c).

Define our sanitizable signature scheme SanS = (KGensig,KGensan,Sign,
Sanit,Verify,Proof, Judge) as follows:

Setup and Key Generation. The setup algorithm generates two common
reference strings for the two different zero-knowledge proofs (of knowledge) and
the key generation algorithm the required keys. They are formally defined as
follows:

Setup(1κ):

crsPoK ← SetupPoK(1κ)
crsZK ← SetupZK(1κ)
pps ← SSetup(1κ)
pp = (crsPoK, crsZK, pps)
output pp

KGensan(1κ):

(sksan, pksan) ← SGen(1κ)
output (sksan, pksan)

KGensig(1κ):

(sk, pk) ← SGen(1κ)
(skFix, pkFix) ← SGenFix(1κ)
(dk, ek) ← EGen(1κ; ψ)

sksig :=
(

skFix, sk, dk,
pkFix, pk, ek, ψ

)

pksig := (pkFix, pk, ek)

output (sksig, pksig)

Signing and Sanitizing. The signing and sanitizing algorithms first parse their
inputs and Sanit further checks that Mod is actually an admissible modification
and modifies the message accordingly. The Sign algorithm now signs the fixed
part with skFix, while Sanit can simply reuse the σFix of the input signature.
The remainder of the two algorithms proceeds identically, by re-randomizing
the respective key, encrypting the original key, proving that sk′ is indeed a re-
randomization and signing the full message together with signer’s and sanitizer’s
public keys as seen in the following:
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Sign(m, sksig, pksan,Adm):

Parse sksig as
(skFix, sk, dk, pkFix, pk, ek, ψ)
pksig := (pkFix, pk, ek)

mFix := (FixAdm(m),Adm, pksan)
σFix := SSignFix(skFix,mFix)
ρ ← χ

sk′ ← RandSK(sk, ρ)
pk′ ← RandPK(pk, ρ)
c ← Enc(ek, pk;ω)
x := (c, ek, pk, pksan, pk′)
τ ← PPoK(crs, x, (ρ, ω))
σ′ := SSign(sk′, (m, pksig, pksan))

output σ = (σFix, σ
′,Adm, pk′, c, τ)

Sanit(m,Mod, σ, pksig, sksan):

Parse pksig as (pkFix, pk, ek)

Parse σ as (σFix, σ
′,Adm, pk′, c, τ)

If Adm(Mod) = 0
output ⊥

m̂ := Mod(m)
ρ ← χ

̂sk′ ← RandSK(sksan, ρ)
̂pk′ ← RandPK(pksan, ρ)
ĉ ← Enc(ek, pksan; ω)

x := (ĉ, ek, pk, pksan, ̂pk′)
τ̂ ← PPoK(crs, x, (ρ, ω))

σ̂′ := SSign(̂sk
′
, (m̂, pksig, pksan))

output (m̂, σ̂ = (σFix, σ̂
′,Adm, ̂pk′, ĉ, τ̂))

Verification. The verification algorithm checks that both signatures and the
proof of knowledge verify:

Verify(m,σ, pksig, pksan):

Parse pksig as (pkFix, pk, ek).

Parse σ as (σFix, σ
′,Adm, pk′, c, τ).

mFix := (FixAdm(m),Adm, pksan)
x := (c, ek, pk, pksan, pk′)

if

⎛

⎝

SVerifyFix(pkFix,mFix, σFix) = 1
and SVerify(pk′, (m, pksig, pksan), σ′) = 1
and VPoK(crs, x, τ) = 1

⎞

⎠

then output 1
else output 0

Proving and Judging. The algorithm Proof first verifies that the given signa-
ture is indeed valid. It then parses its inputs and decrypts the ciphertext c, thus
revealing who computed the signature. Moreover, it computes a zero-knowledge
proof asserting that the decryption was performed correctly. The Judge checks
whether the proof of decryption is correct. If the proof π contains pksan, then
the Judge algorithm outputs San. In all other cases, Judge returns Sign.
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Proof(sksig,m, σ, pksan):

If Verify(m,σ, pksig, pksan) = 0

output ⊥
Parse sksig as

(skFix, sk, dk, pkFix, pk, ek, ψ)
Parse σ as (σFix, σ

′,Adm, pk′, c, τ)
̂pk ← Dec(dk, c)

x := (ek, c, ̂pk)
φ ← PZK(crs, x, (ψ, dk))

output (̂pk, φ)

Judge(m,σ, pksig, pksan, π):

Parse pksig as (pkFix, pk, ek)

Parse σ as (σFix, σ
′,Adm, pk′, c, τ)

Parse π as (̂pk, φ)

x := (ek, c, ̂pk)

if
(

pksan = ̂pk
and VZK(crs, x, φ) = 1

)

then output San

else output Sign

4.3 Security Proof

We are now ready to state the main theorem about the security of the construc-
tion described above.

Theorem 3. If Σ = (SSetup,SGen,SSign,SVerify,RandSK,RandPK) is a signa-
ture scheme that is unforgeable under re-randomized keys, ΣFix = (SSetupFix,
SGenFix,SSignFix,SVerifyFix) is a signature scheme that is strongly existentially
unforgeable, ΠPoK = (SetupPoK,PPoK,VPoK) is a computationally zero-knowledge
perfectly sound proof of knowledge system, ΠZK = (SetupZK,PZK,VZK) is a com-
putationally zero-knowledge perfectly sound proof system, E = (EGen,Enc,Dec)
is a CCA-secure public key encryption scheme, then Construction 1 is sanitizer-
accountable, signer-accountable, immutable, (proof-restrictedly) transparent, and
unlinkable.

We sketch the basic ideas of the proofs here. The full proofs for each security
property are deferred to the [26].

Sanitizer Accountability. Consider an efficient adversary A against the sani-
tizer accountability of SanS, whose final output is a tuple (pk∗

san,m∗, σ∗). The
signature σ∗ can be parsed as (σFix, σ

′,Adm, pk′, c, τ) and the public-key as
pksig = (pkFix, pk, ek). Whenever A wins, then A never queried (pk∗

san,m∗) to
its sign oracle Sign, the signature verifies, and Judge outputs Sign. This implies
that

SVerify(pk′, (m∗, pksig, pk
∗
san), σ′) = 1

and
̂pk = pk.

Since (pk∗
san,m∗) is fresh and the re-randomization factor ρ∗ can be extracted

from the proof τ , it follows that (m∗, pksig, pk
∗
san), σ′, ρ∗ is a valid forgery

under a re-randomization of pk, which contradicts the unforgeability under re-
randomized keys of Σ.
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Signer Accountability. Let A be an efficient adversary against the signer account-
ability of SanS, whose final output is a tuple (pk∗

sig,m
∗, σ∗, π∗), where pk∗

sig can
be parsed as (pkFix∗, pk∗, ek∗), the signature σ∗ as (σFix, σ

′,Adm, pk′, c, τ), and
π∗ as (̂pk, φ). Whenever A wins, then A never queried (pk∗

sig,m
∗) to its sanitizer

oracle Sanit, the signature is valid, and Judge outputs San. This implies that

SVerify(pk′, (m∗, pk∗
sig, pksan), σ′) = 1

and
̂pk = pksan.

Since (pk∗
sig,m

∗) is fresh and the re-randomization factor ρ∗ can be extracted
from the proof τ , it follows that (m∗, pk∗

sig, pksan), σ′, ρ∗ is a valid forgery under
a re-randomization of pksan, which contradicts the unforgeability under re-
randomized keys of Σ.

Immutability. Let A be an efficient adversary against the immutability of SanS,
whose final output is tuple (pk∗

san,m∗, σ∗). The signature σ∗ can be parsed as
(σFix, σ

′,Adm, pk′, c, τ). From the winning conditions of A we can conclude, that
the tuple (FixAdm(m∗),Adm, pk∗

san) is different from any such tuple correspond-
ing to one of the Sanit queries and that

SVerifyFix(pkFix, (FixAdm(m∗),Adm, pk∗
san), σFix).

However, then it follows that (FixAdm(m∗),Adm, pk∗
san), σFix is a valid forgery

under pkFix, which contradicts the strong existential unforgeability of ΣFix.

(Proof Restricted) Transparency. The proof of transparency is the most involved
one and proceeds in several game-hops. We start with the transparency game
with the bit b = 0. Then, first, we use the simulatability of the zero knowledge
proofs, to switch to a game, where all proofs are simulated. We can then change
the Sanit/Sign oracle to no longer encrypt the re-randomized public key, but
an independently chosen public key instead. The answers of Proof queries can
be changed accordingly. The difference between the two games can be bounded
by reducing it to the CCA security of the encryption scheme. Next, the bit
b is flipped to 1. Due to the simulated proofs, the outputs of Sanit/Sign are
distributed identically before and after the switch. The outputs of the Proof
oracle, however, may differ, if the attacker manages to ask a valid query, such
that the signature reuses one of the ciphertexts computed by Sanit/Sign. This
leads to two different cases. If the attacker uses a new pk′

san in its query, then it
must also compute a new proof of knowledge, which means that it has to know
the content of the ciphertext, leading to a trivial reduction to CCA security (or
even one-wayness) of the encryption scheme. In the other case, the fact that the
signature must verify, leads to a forgery under a re-randomized key, which would
contradict the unforgeability under re-randomized keys of Σ. Finally, we can
switch back to real ciphertexts instead of random ones and undo the simulation
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of the zero knowledge proofs, thus arriving at the transparency game with the
bit b = 1.

Since the distances between all hops can be bounded by negligible functions,
the difference between the two cases of the game is also negligible.

Unlinkability. Let A be an efficient adversary against the signer unlinkability of
SanS and consider a query

((m0
i ,Mod

0
i , σ

0
i ), (m1

i ,Mod
1
i , σ

1
i ))

by A to the LoRSanit oracle. We parse the signature σb
i as (σb

Fix,i, σ
′
i
b
,

Adm
b
i , pk

′b
i , c

b
i , τ

b
i ) and denote by (m∗

b , σ
∗
b ) the answer to this query depend-

ing on the choice of b in the experiment. The signature σ∗
b can be parsed as

(σFix,b, σ
′
b,Admb, pk

′
b, cb, τb). The conditions required for the LoRSanit oracle to

provide such an answer implies that the distribution of (σ′
0,Adm0, pk

′
0, c0, τ0)

and (σ′
1,Adm1, pk

′
1, c1, τ1) are identical. Therefore, the only way to distinguish

between the two cases is if it holds that σ0
Fix,i �= σ1

Fix,i. However, since ΣFix is
deterministic, such a query would imply that one of (m0

Fix
, σ0

Fix
) and (m1

Fix
, σ1

Fix
)

must necessarily be a valid forgery under pkFix, which contradicts the strong
existential unforgeability of ΣFix.

5 Instantiating the Construction

We instantiate our generic construction with compatible and efficient instanti-
ations in the random oracle model. For the two signature schemes, we choose
standard Schnorr signatures as defined in Definition 11 for Σ, as well as a deran-
domized2 version of Schnorr signatures for ΣFix

3. The encryption scheme and
proof systems are instantiated with the Cramer Shoup encryption scheme [22],
and Σ-protocols that we convert into a non-interactive zero-knowledge proof via
the Fiat-Shamir transform [24]. The Cramer Shoup encryption scheme is defined
as follows:

Definition 18 (Cramer Shoup Encryption Scheme). Let G be a cyclic
group of prime order q with two random generators g1, g2 and let H : {0, 1}∗ →
Zq be a hash function. The Cramer Shoup encryption scheme, working over G,
is defined as follows:

EGen(1κ): The key generation algorithm proceeds as follows: Pick x, y, a, b,
a′, b′ ← Zq uniformly at random, compute h := gx

1gy
2 , h := ga

1gb
2, h := ga′

1 gb′
2 ,

set dk := (x, y, a, b, a′, b′) and ek := (h, c, d) and output (dk, ek).

2 The randomness is generated by a PRF.
3 Note, that while the original security proof [38,39] for Schnorr signatures only proves

standard existential unforgeability, it can be easily adapted to prove strong existen-
tial unforgeability.
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Enc(ek,m): The encryption algorithm proceeds as follows: Parse ek as (h, c, d)
and choose r ← Zq uniformly at random. Compute α := H(gr

1, g
r
2, h

r · m)
and C := (gr

1, g
r
2, h

r · m, (cdα)r). Output C.
Dec(dk, C): The decryption algorithm proceeds as follows: Parse dk as

(x, y, a, b, a′, b′) and C as (u, v, w, e). Compute α := H(u, v, w) and check
if ua+αa′ · vb+ab′

= e holds. If it holds output w/(ux · vy). Otherwise output
⊥.

The remaining building blocks for our construction are two non-interactive
zero-knowledge proof systems that we instantiate with specific Fiat-Shamir
transformed [24] Σ-protocols. The first proof system is for the language L1

and the statement that we want to prove in our concrete instantiation looks
as follows:

x := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), pk′, pksan, pk)

PoK

{

(ω, ρ) :
gω
1 = c1 ∧ gω

2 = c2 ∧ (cdα)ω = c4

∧ hω

gρ = c3
pk′ ∧

(

gρ
1 = pk′

pk ∨ gρ
1 = pk′

pksan

)

}

.

Fig. 1. Σ-Protocol for Encryption of Public Key
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Note that the statement that we are proving can be expressed as a logical
combination of discrete logarithm proofs of knowledge. For the design of each
single discrete logarithm proofs we deploy Schnorr’s Σ-protocols from [40]. We
then formulate the complete proof using standard parallel composition tech-
niques, first introduced in [20,21]. The complete protocol is depicted in Fig. 1. It
is worth mentioning that, in order to express the logical disjunction of our state-
ment, the prover must run the simulator S provided by the zero-knowledge prop-
erty (Definition 16). For the specific case of Σ-protocols SΣ works by randomly
sampling zi, si from Zq and computing Ti as gsi

1 /( pk
′

pk )zi (or gsi
1 /( pk′

pksan
)zi , respec-

tively). Finally, as mentioned above, the protocol can be made non-interactive
by using the Fiat-Shamir transformation. Note that this allow us to drop the
first tuple of elements (T0, . . . , T5) since they can be simply recomputed from the
public parameters and the further messages of the protocol and their integrity
can be checked by recomputing the hash function.

In the following, we show how to instantiate the proof of knowledge for the
language L2. We prove the following statement:

x := (ek := (g1, g2, h, c, d), C := (c1, c2, c3, c4), p̂k)

ZK

{

(χ, ψ) : gχ
1 gψ

2 = h ∧ cχ
1 cψ

2 =
c3

p̂k

}

.

Again, for the concrete instantiation in Figure 2 we deploy parallel compo-
sition of Σ-protocols made non-interactive via the Fiat-Shamir transformation.
Combining these building blocks yields a highly efficient sanitizable signature
scheme.

Fig. 2. Σ-Protocol for Proof of Decryption

6 Conclusion

In this paper, we formalized the novel notion of signature schemes that are
unforgeable under re-randomized keys. Furthermore, we showed that Schnorr’s
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signature scheme [40,41] is unforgeable under re-randomized keys in the random
oracle model and that Hofheinz’ and Kiltz’ signature scheme [31,32] is unforge-
able under re-randomized keys in the standard model.

Based on signature schemes with re-randomizable keys we then gave a con-
struction of unlinkable sanitizable signatures and an instantiation, which is at
least one order of magnitude faster than all previously known schemes.
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Abstract. Aggregate signature schemes allow for the creation of a short
aggregate of multiple signatures. This feature leads to significant reduc-
tions of bandwidth and storage space in sensor networks, secure routing
protocols, certificate chains, software authentication, and secure logging
mechanisms. Unfortunately, in all prior schemes, adding a single invalid
signature to a valid aggregate renders the whole aggregate invalid. Veri-
fying such an invalid aggregate provides no information on the validity of
any individual signature. Hence, adding a single faulty signature destroys
the proof of integrity and authenticity for a possibly large amount of data.
This is largely impractical in a range of scenarios, e.g. secure logging,
where a single tampered log entry would render the aggregate signature
of all log entries invalid.

In this paper, we introduce the notion of fault-tolerant aggregate sig-
nature schemes. In such a scheme, the verification algorithm is able to
determine the subset of all messages belonging to an aggregate that were
signed correctly, provided that the number of aggregated faulty signa-
tures does not exceed a certain bound.

We give a generic construction of fault-tolerant aggregate signatures
from ordinary aggregate signatures based on cover-free families. A sig-
nature in our scheme is a small vector of aggregated signatures of the
underlying scheme. Our scheme is bounded, i.e. the number of signatures
that can be aggregated into one signature must be fixed in advance. How-
ever the length of an aggregate signature is logarithmic in this number.
We also present an unbounded construction, where the size of the aggre-
gate signature grows linearly in the number of aggregated messages, but
the factor in this linear function can be made arbitrarily small.

The additional information encoded in our signatures can also be used
to speed up verification (compared to ordinary aggregate signatures) in
cases where one is only interested in verifying the validity of a single
message in an aggregate, a feature beyond fault-tolerance that might be
of independent interest. For concreteness, we give an instantiation using
a suitable cover-free family.
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1 Introduction

Aggregate signature schemes allow anyone to aggregate multiple signatures by
different signers into a single combined signature, which is considerably smaller
than the size of the individual signatures. This type of digital signature schemes
was first proposed and instantiated by Boneh, Gentry, Lynn and Shacham
[Bon+03], and has since evolved into a diverse and active research area.

Applications of Aggregate Signatures. The main motivation for aggregate
signature schemes is to save bandwidth and storage space. Therefore, their appli-
cations are manifold [AGH10].

A well-known field of application are sensor networks, which consist of sev-
eral small sensors that measure an aspect of their physical environment and send
their findings to a central base station. Digital signatures ensure the integrity and
authenticity of the measurements during transfer from the sensors to the base
station. Using a conventional digital signature scheme, the verifying base station
would need to receive each signature separately, which is bandwidth-intensive.
However, if the signatures were aggregated beforehand using an aggregate sig-
nature scheme, the bandwidth consumption on the side of the base station is
reduced drastically. Also, verifying an aggregate signature is typically consider-
ably faster than verifying all individual signatures.

Another application is secure logging. Log files are used to record events like
user actions, system errors, failed log-in attempts as well as general information,
and play an important role in computer security by providing, for example,
accountability and a basis for intrusion detection. Log files are usually kept for
very long periods of time, which means that thousands or even millions of log
entries need to be stored. Digital signatures are used to ensure the integrity of
the log data. For aggregate signature schemes, it is sufficient to store one single
aggregate signature over all log entries, instead of an individual signature per
log entry as with a normal digital signature scheme. Whenever a new log entry
is added to the log file, one simply calculates a signature for the new entry and
aggregates it into the already existing aggregate signature.

Aggregate signatures can also be useful for authenticating software. To ensure
the validity of software libraries and programs it has become common to sign
their code and/or compiled binaries. Mobile operating systems often only allow
signed programs to be executed. Again, it is advantageous to use an aggregate
signature to save download bandwidth and verification overhead upon execu-
tion, e.g. if all programs are verified at boot time. Like in the logging scenario,
aggregate signatures allow for installation of new applications without having to
store the individual signatures of all installed programs.

Problem Statement. In all known aggregate signature schemes an aggregate
signature is invalid (i.e., verification fails) if just one invalid message–signature
pair is contained in the aggregate. Note that either this pair was already invalid
(i.e., the individual signature was not valid for this particular message) when the
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aggregate was created or a “wrong” message is included for verification. In any
case, the verification algorithm can give no information about which message–
signature pair is the reason for the failure or if other message–signature pairs were
valid. This essentially renders the aggregate useless after an invalid signature is
added, even though the majority of the messages might have been correctly
signed.

For sensor networks, this means that the measurements of all sensors are lost
even if only a single sensor sends an invalid signature, for example because of
calculation glitches or transmission errors. Usually it is not feasible for compu-
tationally weak sensors to ensure the validity of their signature before sending
it, since many signature schemes use expensive operations like pairings for ver-
ification. An aggregator could ensure the validity of the individual signatures
before aggregation, but this would undo one of the advantages of the aggregate
signature scheme altogether.

The same problem occurs in the logging scenario: If one log entry is not
correctly signed, is tampered with, or is lost (for example through hard disk
errors or crashes), the signature for the whole log file becomes invalid. In [MT09]
Ma and Tsudik state that this is one of the reasons why they still need to
store individual signatures for every log entry, although they use an aggregated
signature for the complete log. This is undesirable, since one of the motivations
for using the aggregate signature schemes for logging is to save storage space.

This problem also affects the software authentication scenario. If a new pro-
gram is installed and its signature is invalid or the code of an already installed
program gets changed (through hard disk problems etc.), the whole aggregated
signature used for authenticating the software becomes invalid. In the worst
case this would mean that no program can be executed anymore, because the
operating system might block every unauthenticated program.

Contribution. To solve the above mentioned problems, we introduce the con-
cept of fault-tolerant aggregate signature schemes, which are able to tolerate
a specific number of invalid (or faulty) signatures while aggregating. In such a
scheme, the verification algorithm does not output boolean values like “valid”
and “invalid” but instead outputs a list of validly signed messages and will leave
out all messages that are invalid.

Note that in contrast to ordinary aggregate signatures, fault-tolerant aggre-
gate signatures cannot offer an aggregate signature size which is independent
of the number of individual signatures to be aggregated. In other words, we
cannot hope to aggregate an unlimited number of individual signatures using a
constant-size aggregate. This easily follows from an information-theoretic argu-
ment: Let us assume we fix the size of an aggregate signature to l bits. This l-bit
string then needs to be used by the verification algorithm (as the only “source of
information”) to determine which of its input messages are valid. Hence, based
on the l-bit string, the algorithm can distinguish at most 2l different outputs.
However, considering n messages and corresponding individual signatures, d of
which are invalid, there are

(

n
n−d

)

possible different subsets (and thus outputs)
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which should be distinguishable by the verification algorithm by considering
this string. So n is upper bounded by

(

n
n−d

)

≤ 2l. (For a more formal argument
using the notation of fault-tolerant aggregate signature introduced later, refer
to Appendix A.)

Besides a formal framework for fault-tolerant aggregate signatures, we also
present a generic construction which can be used to turn any aggregate signature
scheme into a fault-tolerant scheme. This construction makes use of cover-free
families [KS64] to provide fault-tolerance and comes with a tight security reduc-
tion to the underlying signature scheme. For concreteness, we explicitly describe
how to instantiate our scheme with a cover-free family based on polynomials
over a finite field [KRS99], which has a compact representation. (We generalize
the known family to multivariate polynomials in AppendixB.) This leads to an
instantiation featuring short aggregate signatures relative to the number n of
individual signatures that are aggregated (provided that the maximal number
of faults the scheme should tolerate is relatively small compared to n).

As an additional feature, our construction allows the verification of an indi-
vidual signature in a fashion that is more efficient (e.g., saving a number of costly
pairing operations in the case of pairing-based aggregate signatures) than veri-
fying the complete aggregate. This provides a level of flexibility to the signature
scheme as demanded by certain applications such as secure logging [MT09].

As a shortcoming of our scheme, we need to assume that aggregates may
only contain a previously fixed upper bound d of invalid individual signatures.
If for some reason this bound is exceeded, the faulty signatures may affect the
verifiability of other messages, as is the case for common aggregate signatures.
This is also analogous to error-correction codes (which are related to cover-free
families), where only a specific number of errors can be located.

Basic Idea of Our Construction. To get a glimpse of our generic construc-
tion of a fault-tolerant aggregate signature scheme, we now informally illustrate
the basic idea. Let an ordinary aggregate signature scheme (e.g., BGLS) and n
individual signatures σ1, . . . , σn generated using this scheme be given. Our goal
is to detect d = 1 faulty individual signatures. To achieve this, our approach
is to choose m subsets T1, . . . , Tm ⊂ {σ1, . . . , σn} of individual signatures and
aggregate the signatures of each subset, thereby yielding aggregate signatures
τ1, . . . , τm, such that

1. m is (significantly) smaller than n and
2. even if one of the individual signatures is faulty and the corresponding aggre-

gate signatures τi will be invalid, all other individual signatures σj are aggre-
gated into at least one different, valid signature τk.

For example, consider the following binary 4 × 6 matrix for which n = 6 and
m = 4.

A := (ai,j) :=

⎛

⎜

⎜

⎝

1 0 0 1 0 1
1 1 0 0 1 0
0 1 1 1 0 0
0 0 1 0 1 1

⎞

⎟

⎟

⎠
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A describes a solution to the above mentioned problem as follows: The
1 entries in column j indicate in which Ti the individual signature σj is con-
tained. Consequently, the 1-entries in row i indicate the σj contained in Ti. More
precisely, Ti := {σj : ai,j = 1} and τi is the aggregate of all σj ∈ Ti. Observe that
while it is usually unnecessary for the verification to know the order of the claims
from the aggregation process, in our fault-tolerant scheme, specifying the correct
order is inevitable.

For the matrix above, an aggregate signature τ = (τ1, τ2, τ3, τ4) for individual
signatures σ1, . . . , σ6 would be formed in the following manner:

τ =

⎛

⎜

⎜

⎝

τ1
τ2
τ3
τ4

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

Agg(σ1, σ4, σ6)
Agg(σ1, σ2, σ5)
Agg(σ2, σ3, σ4)
Agg(σ3, σ5, σ6)

⎞

⎟

⎟

⎠

=̂

⎛

⎜

⎜

⎝

σ1 σ4 σ6

σ1 σ2 σ5

σ2 σ3 σ4

σ3 σ5 σ6

⎞

⎟

⎟

⎠

,

where Agg informally denotes the aggregation function of the underlying aggre-
gate signature scheme.

Let us assume that only one signature σj is faulty. Then all τi are faulty
where ai,j = 1. However, because all other σk were also aggregated into at least
one different τi, we can still derive the validity of σk.

For a concrete example, suppose σ1 is faulty. Then τ1 and τ2 will be faulty,
whereas τ3 and τ4 are valid. We see that σ2, σ3 and σ4 occur in τ3, and σ5, σ6

occur in τ4, and so we may be sure that the corresponding messages were signed.
The matrix A defined above has the property that it can tolerate one faulty

signature, i.e., if just one signature is faulty, then all other messages can still
be verified. Unfortunately, this is not possible if two or more faulty signatures
are aggregated. Lets assume that σ1 and σ2 are faulty. In this case, τ1, τ2 and
τ3 become invalid and τ4 is the only valid signature. We could still derive the
validity of σ3, σ5, σ6, because τ4 is valid. However, the validity of σ1, σ2 and σ4

can no longer be verified, since they were never aggregated to τ4.
Note that our scheme does not support fully flexible aggregation: Each col-

umn of A can only be used to hold one individual signature, as can be seen in
the example above. Two aggregate signatures where the same column is used
can not be aggregated further without losing the guarantee of fault-tolerance.
However, our scheme still supports a notion of aggregation which is only slightly
restricted: Individual signatures can always be aggregated, while aggregate sig-
natures can only be aggregated if no column is used in both. As long as this
requirement is met, signatures can be aggregated in any order. This notion is
sufficient for many use cases, we discuss this further in Sect. 3.

The construction of matrices that can tolerate d > 1 faulty signatures is more
intricate, but incidence matrices belonging to d-cover-free families turned out to
imply the desired property. Informally speaking, in such a matrix the “superpo-
sition” s of up to d arbitrary column vectors ai1 , . . . ,aid , i.e., the vector s which
has a 1 at position � if at least one of the vectors ai1 , . . . ,aid has a 1 at this
position, does not “cover” any other distinct column vector aj (j �∈ {i1, . . . , id}).
In other words, there is at least one position � such that aj has a 1 at this posi-
tion but s shows a 0. This implies that if at most d individual signatures (each



336 G. Hartung et al.

belonging to one column) are invalid, then each distinct individual signature
is contained in at least one valid aggregate signature, and the corresponding
message can therefore be trusted. Hence applying such a matrix, as sketched
above, implies that any subset of faulty individual signatures of size up to d will
not compromise the trustworthiness of any other message. There are different
constructions of d-cover-free families for d and n of unlimited size (where these
parameters need to satisfy certain conditions depending on the family) featuring
m � n for choices of the parameters n, d with d � n.

Related Work. The first full aggregate scheme was constructed by Boneh
et al. [Bon+03] in the random oracle model. Full aggregate schemes allow any
user to aggregate signatures of different signers, i.e., aggregation is a public
operation. Furthermore it is possible to aggregate individual signatures as well
as already aggregated signatures in any order. In [HSW13] Hohenberger, Sahai
and Waters give the first construction of such a scheme in the standard model
using multilinear maps. Recently, Hohenberger, Koppula, and Waters [HKW15]
have constructed a “universal signature aggregator” based on indistinguishability
obfuscation. A universal signature aggregator can aggregate signatures from any
set of signing algorithms, even if they use different algebraic settings. In [ZS11]
Zaverucha and Stinson construct an aggregate one-time-signature.

Since it has proven difficult to construct full aggregate schemes in the stan-
dard model, a lot of research was focused on signature schemes with some form
of restricted aggregation. One major type of restricted aggregation is sequen-
tial aggregation, as proposed by Lysyanskaya et al. [Lys+04]. In these schemes,
the aggregate is sequentially sent from signer to signer and each signer can
add new information to the aggregate. Multiple constructions are known, both
in the random oracle [Lys+04,Nev08,Bol+07,Ger+12] and the standard model
[Lu+06,Sch11,LLY15]. Another type of aggregation is synchronized aggregation,
as proposed by Gentry and Ramzan [GR06]. Here, a special synchronization
information, like the current time period, is used while signing. All signatures
sharing the same synchronizing information behave like signatures of a full aggre-
gate scheme, i.e., both individual and aggregated signatures can be aggregated
in any order. Again, schemes in the random oracle [AGH10,GR06] and stan-
dard model [AGH10] are known. Other authors considered aggregate signature
schemes that need interaction between the signers [BN07,BJ10] or can only par-
tially aggregate the signatures [Her06,BGR14].

Our construction is based on cover-free families, which are a combina-
torial structure that was first introduced by Kautz and Singleton [KS64]
in the language of coding theory. They have several applications in cryp-
tography, for example group testing [STW97], multireceiver authentica-
tion codes [SW99], encryption [Cra+07,Dod+02,HK04] and traitor-tracing
[TS06]. There are multiple constructions of signature schemes using cover-
free families. Hofheinz, Jager, and Kiltz [HJK11] use cover-free families to
construct a (m, 1)-programmable hash function. They then use this hash
function to construct conventional digital signature schemes from weak assump-
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tions. Zaverucha and Stinson [ZS11] construct an aggregate one-time-signature
using cover-free families.

Outline. Section 2 introduces some notations, conventions, and preliminary def-
initions. Section 3 presents a general definition of fault-tolerant aggregate signa-
ture schemes and some properties of such schemes, such as the security definition.
Our construction is presented and analyzed in Sect. 4. Afterwards, we discuss an
instantiation of our scheme with a specific class of cover-free families in Sect. 5.

2 Preliminaries

Let [n] :={1, . . . , n}. The multiplicity of an element m in a multiset M is the
number of occurrences of m in M . For two multisets M1,M2, the union M1∪M2

is defined as the multiset where the multiplicity of each element is the sum of
the multiplicities in M1, M2.

If v is a vector or a tuple, v[i] refers to the i-th entry of v. If M is a matrix,
rows(M) and cols(M) denote the number of rows and columns of M , respectively.
For i ∈ [rows(M)], j ∈ [cols(M)], M [i, j] is the entry in the i-th row and j-th
column of M .

Throughout the paper, κ ∈ N is the security parameter. We say an algorithm
A is probabilistic polynomial time (PPT) if the running time of A is polynomial
in κ and A is a probabilistic algorithm. All algorithms are implicitly given 1κ as
input, even when not noted explicitly.

In this work, σ usually refers to signatures of standard aggregate signature
schemes, whereas τ mostly refers to signatures of a fault-tolerant aggregate sig-
nature scheme.

2.1 Aggregate Signatures

Let us quickly review the definition of aggregate signature schemes and the asso-
ciated security notion, as defined in [Bon+03]. An aggregate signature scheme is
a tuple of four PPT algorithms:

– KeyGen(1κ) creates a key pair (pk, sk).
– Sign(sk,m) creates a signature for message m under secret key sk.
– Agg(C1, C2, σ1, σ2) takes as input two multisets of public-key and message

pairs C1 and C2 and corresponding signatures σ1 and σ2 and creates an aggre-
gate signature σ, certifying the validity of the messages in C1 ∪ C2 under the
corresponding public keys.

– Verify(C, σ) takes as input a multiset of public-key and message pairs C and
an aggregate signature σ for C and outputs 1, if the signature is valid, and 0
otherwise.

For correctness we require that any signature that is generated by the sig-
nature scheme by applications of Sign and Agg using key pairs of the scheme, is
valid, i.e. Verify outputs 1.
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Security Notion for Aggregate Signatures. The security experiment for
aggregate signatures consists of three phases [Bon+03]:

– Setup Phase. The challenger generates a pair of keys (pk, sk) := KeyGen(1κ)
and gives the public key pk to the adversary.

– Query Phase. The adversary A may (adaptively) issue signature queries mi

to the challenger, who responds with σi := Sign(sk,mi).
– Forgery Phase. Finally, A outputs a multiset of public-key and message pairs

C∗ and a signature σ∗.

The adversary wins the experiment iff there is a message m∗ such that c∗ =
(pk,m∗) is in C∗, Verify(C∗, σ∗) = 1, and m∗ has never been submitted to the
signature oracle.

An aggregate signature scheme Σ is (t, q, ε)-secure if there is no adversary
A running in time at most t, making at most q queries to the signature oracle
and winning in the above experiment with probability at least ε.

2.2 Cover-Free Families

For our construction of a fault-tolerant aggregate signature scheme in Sect. 3 we
need a d-cover-free family, which allows us to detect up to d invalid individual
signatures in our aggregate signature.

Definition 1. A d -cover-free family F = (S,B) (denoted by d-CFF) consists of
a set S of m elements and a set B of n subsets of S, where d < m < n, such
that: For any d subsets Bi1 , . . . , Bid ∈ B and all distinct B ∈ B \ {Bi1 , . . . , Bid},
it holds that

|B \
d

⋃

k=1

Bik| ≥1.

So, it is not possible to cover a single subset with at most d different subsets.
To get a better representation of a d-CFF and to simplify the handling of it, we
will use a matrix in the following way:

Definition 2. For a d-CFF F = (S,B), where the elements of S and B have a
well-defined order, such that we can write S = {s1, . . . , sm}, B = {B1, . . . , Bn},
we define its incidence matrix M as follows:

M[i, j] =

{

1, if si ∈ Bj ,

0, otherwise.

The i-th row of M is denoted by Mi ∈ {0, 1}n, for i ∈ [m].

So, si ∈ S corresponds to row i and Bj ∈ B corresponds to column j, i.e. M has
m rows and n columns.
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3 Fault-Tolerant Aggregate Signatures

Claims and Claim Sequences. As a notational convenience, we introduce
the concept of claims. A claim c is simply a pair (pk,m) of a public key and
a message, conveying the meaning that the owner of pk has authenticated the
message m. In this sense, a signature σ for m that is valid under pk is a proof
for the claim c. This definition allows for a more compact representation of our
algorithms.

The signature scheme we introduce in Sect. 4 critically requires an order
among the claims. While the actual order is arbitrary, it must be maintained
by the aggregation and verification algorithms. We therefore define the fault-
tolerant signature schemes based on sequences of claims, instead of multisets.

More precisely, when an individual signature τ ′ for a claim c is first aggre-
gated into an aggregate signature τ , one must assign a unique “position” j to
c. If one wishes to verify τ , one must call Verify with a sequence of claims C
that has c at its j-th position, i.e. C[j] = c. Therefore, two aggregate signatures
τ1, τ2 for two sequences of claims C1, C2 can not be aggregated if C1[j] �= C2[j]
for some j.

Thus, our scheme does not support fully flexible, arbitrary aggregation. How-
ever, if the signers agree in advance on the positions j of their claims, they can
aggregate all their signatures into a single combined signature τ . This prereq-
uisite can easily be fulfilled in many applications. In wireless sensor networks
for example, one only has to configure each sensor to use a different position j.
Moreover, it is always possible to use our scheme as a sequential aggregate sig-
nature scheme, since the position j of a claim needs only be determined when
it is first aggregated. Our scheme is therefore suitable for all applications where
sequential aggregate signatures are sufficient, too, such as secure logging [MT09].

For the general aggregation setting, we will have to deal with “incomplete”
claim sequences, i.e. if a claim sequence does not yet contain a claim at posi-
tion j. We therefore assume the existence of a claim placeholder ⊥ that may
be contained in claim sequences. When aggregating the signatures of two such
incomplete claim sequences C1, C2, the claim sequences will be merged, mean-
ing that claim placeholders in C1 are replaced by actual claims from C2, for
each position j where C1[j] = ⊥ and C2[j] �= ⊥, and vice versa. (This merg-
ing operation replaces the multiset union used by common aggregate signature
schemes.)

For technical reasons, we also require that there is no position where C1 and
C2 both contain a claim, even if the claims are identical. As a consequence, if
a signature τ is aggregated into two different aggregate signatures τ1, τ2 using
the same position j, τ1 and τ2 can not be aggregated later. Note, however, that
this does not preclude the possibility to aggregate τ into τ1 and τ2 at different
positions.

We now move to the formal definition. A claim sequence is a tuple of claims
and claim placeholders ⊥. The multiset of elements of a claim sequence C exclud-
ing ⊥ is denoted by elem(C). Two claim sequences C1, C2 are mergeable if for
all i ∈ [min(|C1|, |C2|)] it holds that C1[i] = ⊥ or C2[i] = ⊥ or C1[i] = C2[i].
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C1, C2 are called exclusively mergeable, if for all such i it holds that C1[i] = ⊥ or
C2[i] = ⊥. (In particular, two exclusively mergeable sequences are mergeable.)
For example, for distinct claims c1, c2, c3, define C1 = (⊥, c2, c3), C2 = (c1,⊥,⊥),
C ′

2 = (c1, c2,⊥), C ′′
2 = (c1, c3, c2). Then, C1, C2 are exclusively mergeable, C1, C

′
2

are mergeable, but not exclusively mergeable, and C1, C
′′
2 are not mergeable.

Let C1 and C2 be two mergeable claim sequences of length k and l, respec-
tively. Without loss of generality, assume k ≥ l. Then the merged claim sequence
C1 
 C2 is (c1, . . . , ck), where

ci :=

{

C1[i], if C2[i] = ⊥, C2[i] = C1[i] or i > l,

C2[i], otherwise.

The empty signature λ is a signature valid for exactly the claim sequences con-
taining only ⊥ and the empty claim sequence.

Subsequences. Let C = (c1, . . . , cn) be a tuple and b ∈ {0, 1}n be a bit
sequence specifying a selection of indices. Then C[b] is the subsequence of C
containing exactly the elements cj where b[j] = 1, replacing all other claims
by ⊥. In particular, if M is an incidence matrix of a cover-free family, then
C[Mi] is the subsequence containing all cj where M[i, j] = 1 and ⊥ at all other
positions.

Syntax of Fault-Tolerant Signature Schemes. We are now ready to define
fault-tolerant aggregate signature schemes. The intuitive difference of such a
scheme to an ordinary aggregate signature scheme is that its verification algo-
rithm does not only output a boolean value 1 or 0 that determines if either all
claims are valid or at least one claim is invalid, but it gives (some) information
on which claims in C are valid. In particular, it outputs the set of valid claims.
If the signature contains more errors than the scheme can cope with, Verify may
output just a subset of the valid claims. Other claims may be clearly false or
just not certainly true. (The verification algorithm ought to be conservative and
reject a claim in case of uncertainty.)

The aggregation algorithm is called with two claim sequences, hence, before
aggregating, a single claim c must be converted to a claim sequence C =
(⊥, . . . ,⊥, c) by assigning a position to c.

Definition 3. An aggregate signature scheme with list verification1 is a tuple
of four PPT algorithms Σ = (KeyGen,Sign,Agg,Verify), where

– KeyGen(1κ) creates a key pair (pk, sk).
– Sign(sk,m) creates a signature for message m under secret key sk.
– Agg(C1, C2, τ1, τ2) takes as input two exclusively mergeable claim sequences

C1 and C2 and corresponding signatures τ1 and τ2 and creates an aggregate
signature τ , certifying the validity of the claim sequence C1 
 C2.

1 The name “list verification” is chosen to indicate the changes in syntax, in particular
that the verification algorithm outputs a multiset (list) instead of just 1 or 0.



Fault-Tolerant Aggregate Signatures 341

– Verify(C, τ) takes as input a claim sequence C and an aggregate signature τ
for C and outputs a multiset of claims Cvalid ⊆ elem(C) specifying the valid
claims in τ . Note that this may be a proper subset of elem(C), or even empty,
if none of the claims can be derived from τ (for certain). Again, here, C may
contain ⊥ as a claim placeholder.

Σ is required to be correct as defined in the following paragraphs.

Regular Signatures. Informally, a signature is regular if it is created by run-
ning the algorithms of Σ. More formally, let C be a claim sequence and τ be a
signature. We recursively define what it means for τ to be regular for C:

– If (pk, sk) is in the image of KeyGen(1κ) and C = ((pk,m)) for a message m,
and if τ is in the image of Sign(sk,m), then τ is said to be regular for C and
for any claim sequence obtained by prepending any number of ⊥ symbols to
C.

– If τ1 is regular for a claim sequence C1, τ2 is regular for another claim sequence
C2, and C1, C2 are exclusively mergeable, then τ is regular for C1 
C2 if τ is
in the image of Agg(C1, C2, τ1, τ2).

– The empty signature λ is regular for the claim sequences containing only ⊥
and the empty claim sequence ().

If a signature τ is not regular for a claim sequence C, it is called irregular for C.

Fault Tolerance. Let M = {(c1, τ1), . . . , (cn, τn)} be a multiset of claim and
signature pairs, which is partitioned into two multisets Mirreg and Mreg, contain-
ing the pairs for which τi is irregular for C = (ci) and regular for C, respectively.2

Then the multiset M contains d errors, if |Mirreg| is d. An aggregate signature
scheme Σ with list verification is tolerant against d errors, if for any such multiset
M containing at most d errors, for any signature τ that was aggregated from the
signatures in M (in arbitrary order) and the corresponding claim sequence C,
which may additionally contain any number of claim placeholders ⊥, we have

R ⊆ Σ.Verify(C, τ),

where R is the multiset of all the claims (i.e. the first component of the pairs)
in Mreg. In other words, Verify outputs at least all claims of regular signatures.3

A d-fault-tolerant aggregate signature scheme is an aggregate signature
scheme with list verification that is tolerant against d errors. A fault-tolerant
aggregate signature scheme is a scheme that is d -fault-tolerant for some d > 0.
2 While there may be schemes with valid signatures which are not regularly gener-

ated, like in the usual correctness properties, our guarantees do only concern regular
signatures.

3 Intuitively, one would expect R = Σ.Verify(C, τ). However, this is not achievable
in general, as the aggregation of multiple irregular signatures may contain a new
valid claim ci corresponding to an irregular signature σi. This does not contradict
security, as crafting such irregular signatures may be hard if one does not know σi.
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Correctness. Observe that 0-fault-tolerance means that if M contains only reg-
ularly created signatures, then Verify must output all claims in M (or C, respec-
tively). This is analogous to the common definition of correctness for aggregate
signature schemes. We therefore call an aggregate signature scheme with list
verification correct, if it is tolerant against 0 errors.

Errors During Aggregation. Our definitions above assume that aggregation
is always done correctly. This is a necessary assumption, since it is impossible to
give guarantees for arbitrary errors that happen during aggregation. Consider for
example a faulty aggregation algorithm that ignores its input and just outputs a
random string. It is an interesting open question to find a fault-tolerant signature
scheme that can tolerate certain types of aggregation errors, too.

Compression Ratio. Denote by size(σ) the size of a signature σ. Let C be
a claim sequence of length n, and σ∗ an aggregate signature of maximum size4

which is regular for C. We say that an aggregate signature scheme has compres-
sion ratio ρ(n) iff

n

size(σ∗)
∈ Θ(ρ(n)).

Note that if size(σ∗) is upper bounded by a constant, then the compression
ratio is ρ(n) = n, which is optimal for common aggregate signature schemes.
As argued in the introduction this is not possible for fault-tolerant aggregate
signatures, cf. AppendixA.

Security Experiment. The security experiment for aggregate signatures with
list verification, which is a direct adaption of the standard security experiment
of [Bon+03], consists of three phases:

– Setup Phase. The challenger generates a pair of keys (pk, sk) := KeyGen(1κ)
and gives the public key pk to the adversary.

– Query Phase. The adversary A may (adaptively) issue signature queries mi

to the challenger, who responds with τi := Sign(sk,mi).
– Forgery Phase. Finally, A outputs a claim sequence C∗ and a signature τ∗.

The adversary wins the experiment iff there is a message m∗ such that c∗ =
(pk,m∗) ∈ Verify(C∗, τ∗), and m∗ has never been submitted to the signature
oracle.

Definition 4. An aggregate signature scheme with list verification is (t, q, ε)-
secure if there is no adversary A running in time at most t, making at most q
queries to the signature oracle and winning in the above experiment with proba-
bility at least ε.
4 The size of an aggregated signature might depend on the aggregation order.



Fault-Tolerant Aggregate Signatures 343

4 Generic Construction of Fault-Tolerant Aggregate
Signatures

In this section, we present our generic construction of fault-tolerant aggregate
signature schemes. It is based on an arbitrary aggregate signature scheme Σ,
which is used as a black box, and a cover-free family. Our scheme inherits its
security from Σ, and can tolerate d faults if it uses a d-cover-free family.

Our Construction. In the following we describe a generic construction of
our fault-tolerant aggregate signature scheme. For this let Σ be an ordinary
aggregate signature scheme. Moreover, let M be the incidence matrix of a d-
cover-free family F = (S,B), as defined in Sect. 2.2. For the sake of presentation,
we first show our bounded construction. In this version of our construction, the
maximum number of signatures that can be aggregated is cols(M). We discuss
in Sect. 4.1 how to remove this restriction.

In our scheme, signatures for just one claim are simply signatures of the
underlying scheme Σ, whereas aggregate signatures are short vectors of signa-
tures of Σ. We identify each element of the universe S with a position in this
vector, and each subset B ∈ B with an individual signature of the underlying
scheme Σ.

Here, we require also that the underlying scheme Σ supports claim sequences
and claim placeholders as an input to Agg and Verify, contrary to just multisets,
as in the definition of Sect. 2.1. Moreover, we assume that Σ supports the empty
signature λ as an input to Agg and Verify. However, these are not essential
restrictions, as for instance any normal aggregate scheme may be easily adapted
to a scheme of the modified syntax, by ignoring any order and claim placeholders,
i.e. applying elem(·) on the claim sequences before they are passed to the Agg
and Verify algorithm.

– KeyGen(1κ) creates a key pair (pk, sk) by using the KeyGen algorithm of Σ.
– Sign(sk,m) takes as input a secret key sk and a message m and outputs the

signature as given by Σ.Sign(sk,m).
– Agg(C1, C2, τ1, τ2) takes as input two exclusively mergeable claim sequences

C1 and C2 and corresponding signatures τ1 and τ2. It proceeds as follows:
1. If one or both of the claim sequences Ck (k ∈ {1, 2}) contains only one

(proper) claim c, i.e. τk is an individual signature, then σk is initialized
as τk, the corresponding signature given to Agg. Then τk is expanded to
a vector, by setting

τk[i] :=

{

σk, if M[i, j] = 1,

λ, otherwise,
for i = 1, . . . , m,

where j is the index of c in the claim sequence.
2. Then the signatures τ1, τ2, which are both vectors now, are aggregated

component-wise, i.e.

τ [i] = Σ.Agg(C1[Mi], C2[Mi], τ1[i], τ2[i]).
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Finally, Agg outputs τ .
– Verify(C, τ) takes as input a claim sequence C and an aggregate signature τ

for C. For each component τ [i] of τ it computes bi :=Σ.Verify(C[Mi], τ [i]) and
outputs the multiset of valid claims

Cvalid := elem

⎛

⎝

⊔

i∈[k],bi=1

C[Mi]

⎞

⎠ . (1)

We now prove the security of our scheme.

Theorem 1. If Σ is a (t, q, ε)-secure aggregate signature scheme, then the
scheme defined above is a (t′, q, ε)-secure aggregate signature scheme with list
verification, where t′ is approximately the same as t.

Proof. Let Σ′ be the scheme described above. The following argument is rather
direct. Assume that A is an adversary breaking the (t′, q, ε)-security of Σ′. We
construct an attacker B breaking the (t, q, ε)-security of Σ.

B simulates A as follows. In the setup phase B starts executing A and passes
its own input pk on to A. Whenever A makes a signature query for a message
m, B obtains the signature σ by forwarding m to the challenger. B then passes
σ to A and continues the simulation. When A outputs a claim sequence C∗ and
a signature τ∗, B checks if there is a claim c∗ = (pk,m∗) in C∗, such that m∗

was never queried by A.
If this is not the case, then B outputs ⊥ and terminates. Otherwise, by

definition of Σ′.Verify, there must be an index i such that

Σ.Verify(C∗[Mi], τ∗[i]) = 1 (2)

and m∗ ∈ elem(C∗[Mi]). B outputs C∗[Mi] and τ∗[i]. This is a valid signature,
because of (2).

Note that B’s queries are exactly the same as A’s. Therefore, if A did not
query m∗, then neither did B. Thus, B wins exactly iff A wins, and therefore
B also has success probability ε. We also see that B makes at most q queries.
Finally, it is easy to verify that the running time of B is approximately the same
as the running time of A. �


We now turn to proving the fault-tolerance of our scheme.

Theorem 2. Let Σ be the aggregate signature scheme with list verification
defined above. If Σ is based on a d-CFF, then it is tolerant against d errors,
and in particular, it is correct.

Proof. Let M = {(c1, τ1), . . . , (cm, τm)} be a multiset of claim and signature
pairs, which is partitioned into two multisets Mirreg and Mreg, containing the
pairs for which τi is irregular for Ci = (ci) or regular for Ci, respectively. Let
M contain at most d errors, i.e., |Mirreg| ≤ d. Moreover, let τ be a signature
that was aggregated from the signatures in M (in arbitrary order) and C the
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corresponding claim sequence. To simplify the proof, we assume without loss
of generality that C = (c1, . . . , cn), i.e., the order in the claim sequence is the
same as in the indexing of the signatures in M and it does not include any
claim placeholders ⊥. Finally, let F = (S,B) be a d-cover-free family used by
the scheme above, where S = {s1, . . . , sm} and B = {B1, . . . , Bn}.

We need to show that R ⊆ Σ.Verify(C, τ)=:V , where R is the multiset of
all the claims in Mreg. Recall that rows(M) and cols(M) denote the number
of rows and columns of M, respectively. Let bi :=Σ′.Verify(C[Mi], τ [i]) for all
i ∈ [rows(M)].

Assume for a contradiction that there is a claim c∗ that is contained strictly
more often in R than in V . Then there exists an index j∗ such that C[j∗] = c∗

and bi = 0 for all i ∈ [rows(M)] with M[i, j∗] = 1.
In the following, let I := {i ∈ [rows(M)] : M[i, j∗] = 1} be the set of these

indices I, and observe that these are the indices of all rows where the signature
for c∗ is aggregated into τ [i].

We now try to obtain a contradiction by showing that the set Bj∗ , which
corresponds to the column j∗ of M, is covered by the sets Bk, corresponding to
the columns of the claims with irregular signatures.

For each i ∈ I, since bi = 0 and using the correctness of Σ′, there must be
some k ∈ [n] such that (ck, σk) ∈ Mirreg and M[i, k] = 1. Since M contains at
most d errors, there are at most d such indices k in total. Let K denote the
set of these indices. Note that j∗ /∈ K, since (c∗, σ∗) ∈ Mreg, according to our
assumption.

We now have established that for each i ∈ I, there exists a k with (ck, σk) ∈
Mirreg and M[i, k] = 1, and |K| ≤ d. Recall that by definition of the incidence
matrix M, we have for all i ∈ [rows(M)] and j ∈ [cols(M)]:

M[i, j] = 1 ⇐⇒ si ∈ Bj .

Restating the fact from the above paragraph using this equivalence yields that
for all i with si ∈ Bj∗ , there exists a k with si ∈ Bk, where there are at most d
distinct indices k ∈ K in total. But this means that Bj∗ ⊆

⋃

k∈K Bk, where the
union is over at most d different subsets Bk of S. This is a direct contradiction to
the d-cover-freeness of F , so our assumption must be false, and we must therefore
have R ⊆ V . �


Compression Ratio. Let C be a claim sequence of length n ∈ N, and τ be an
aggregate signature regular for C. We assume in the following that the length
of all signatures of the underlying scheme Σ′ is bounded by a constant s and is
at least 1. Then the compression ratio of our scheme is ρ(n) = n

rows(M) , since

n

size(τ)
≤ n

rows(M) · s
∈ O(ρ(n)) and

n

size(τ)
≥ n

rows(M)
∈ Ω(ρ(n)). (3)

Clearly, the compression ratio ρ(n) of our scheme is less than 1 if n < rows(M),
and the resulting aggregate signature is larger than the sum of the individual sig-
nature sizes when only few signatures have been aggregated so far. Our scheme can
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be easily adapted to fix this behavior, by simply storing all individual signatures
instead of immediately aggregating them, until n = rows(M). When the n + 1-st
signature is added, the individual signatures are aggregated using the aggregation
algorithm defined above. When further signatures are added, the size of the aggre-
gate signature remains bounded by rows(M) · s.

4.1 Achieving Unbounded Aggregation

In order to achieve unbounded aggregation, we do not need just one cover-free fam-
ily, but a sequence of cover-free families increasing in size, such that we can jump to
the next larger one, as soon as we exceed the capacity for the number of aggregat-
able signatures. This sequence needs to exhibit a monotonicity property, in order
to work with our scheme, which we define next.

Definition 5. We consider a family (M(l))l of incidence matrices of correspond-
ing d-cover-free families (Fl)l := (Sl,Bl)l, where rows(l) denotes the num-
ber of rows and cols(l) denotes the number of columns of M(l). (M(l))l is a
monotone family of incidence matrices of (Fl)l, if Sl ⊆ Sl+1, Bl ⊆ Bl+1,
l ≥ 1, s.t. Sl+1 = {s1, . . . , srows(l), srows(l)+1, . . . , srows(l+1)} and Bl+1 =
{B1, . . . , Bcols(l), Bcols(l)+1, . . . , Bcols(l+1)}, where Sl = {s1, . . . , srows(l)} and Bl =
{B1, . . . , Bcols(l)}.

Note that Definition 5 implies that

M(l+1) =
(

M(l) A
0 B

)

where for i = 1, . . . , rows(l), j = cols(l) + 1, . . . , cols(l + 1)

A[i, j] =

{

1, if si ∈ Bj ,

0, otherwise

and for i = rows(l), . . . , rows(l + 1), j = cols(l) + 1, . . . , cols(l + 1)

B[i, j] =

{

1, if si ∈ Bj ,

0, otherwise.

So, each M(l) contains all previous M(1), . . . ,M(l−1).
Now, we are able to achieve unbounded aggregation, i.e. our construction

is able to aggregate an arbitrary number of signatures, by replacing the fixed
incidence matrix M of a d-CFF in our construction with a monotone family of
incidence matrices (M(l))l. For this, a run of our aggregation algorithm Agg on
inputs C1, C2, τ1, τ2 first has to determine the smallest l, such that cols(l) ≥
max(|C1|, |C2|) and then proceeds with the corresponding incidence matrix M(l).
Analogously, our verification algorithm Verify on inputs C, τ first determines the
smallest l such that cols(l) ≥ |C|.
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Compression Ratio. The compression ratio of our unbounded scheme is ρ(n) =
n/rows(l), where l is the minimum index such that cols(l) ≥ n.

4.2 Additional Features of Our Construction

Selective Verification. Let τ be a regular signature with corresponding claim
sequence C = (c1, . . . , cn). Assume we would want to know whether a signature
for a specific claim c∗ was aggregated into τ , but we want to avoid verifying all the
claims in C to save verification time, especially if C is large. It is a unique feature of
our fault-tolerant aggregate signature scheme that there is an additional algorithm
SelectiveVerify(C, τ, c∗) that outputs the number of occurrences of c∗ in C that have
a valid signature in τ , i.e., the number of occurrences of c∗ in Verify(C, τ), while
being faster than actually calling Verify(C, τ).

Let Σ be the aggregate signature scheme with list verification defined above
and Σ′ be the underlying aggregate signature scheme. Then SelectiveVerify works
as follows. First, it determines the set J of indices j where c∗ occurs in C, i.e. cj =
c∗. Then it determines the set I := {i ∈ rows(M) : M[i, j] = 1 for a j ∈ J}, i.e. the
set of indices of all rows where an individual signature for c∗ should have been
aggregated. Then, it initializes M := () and iterates over all i ∈ I, checking if
bi := Σ′.Verify(C[Mi], τ [i]) = 1. If this is the case for an i, it sets

M := M 
 C[Mi].

As soon as M contains |J | occurrences of c∗, SelectiveVerify skips all remaining
i ∈ I. After the loop is done, SelectiveVerify outputs the number of occurrences of
c∗ in M .

Since Σ.Verify returns all claims that are contained in a subsequence C[Mi]
with bi = 1, the output of SelectiveVerify is exactly the number of occurrences
of c∗ in Σ.Verify. SelectiveVerify therefore inherits the fault-tolerance and security
properties already proven for Σ.Verify.

In the best case, SelectiveVerify requires only one call to the underlying verifi-
cation algorithm Σ′.Verify. In the worst case, it still only requires |I| ≤

∑

j∈J |Bj |
calls to Σ′.Verify, where Bj is the set from the cover-free family corresponding to
column j.

Going a little further, it is even possible to create a “subsignature” for c∗

that allows everyone to check that c∗ has a valid signature without requiring the
complete claim sequence C and the complete signature τ : It is sufficient to give
C ′ :=

⊔

i∈I C[Mi] and the signatures τ [i] for i ∈ I to the verifier.

5 AConcrete Instantiation of Our Scheme

In this section, we consider a concrete construction of a d-CFF which can
be used to instantiate our generic d-fault-tolerant aggregate signature scheme.
There are several d-CFF constructions in the literature, for instance, construc-
tions based on concatenated codes [LVY01,DMR00b,DMR00a], polynomials,
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algebraic-geometric Goppa codes as well as randomized constructions [KRS99].
The following theorem gives a lower bound for the number of rows of the incidence
matrix in terms of parameter d and the number of columns. Proofs can be found
in [DR82,Fur96,Rus94].

Theorem 3. For a d-CFF F = (S,B), where |S| = m, |B| = n, it holds

m ≥ c
d2

log d
log n

for some constant c ∈ (0, 1).

In the following constructionwe use for concreteness only a single incidencematrix,
but the next lemma by [LVW06] shows a generic construction to get a monotone
family of incidence matrices.

Lemma 1. If F = (S,B) and F ′ = (S ′,B′) are d-CFFs, then there exist a d-CFF
F∗ = (S∗,B∗) with |S∗| = |S| + |S ′| and |B∗| = |B| + |B′|.

Proof. Suppose M and M′ are the incidence matrices of d-CFFs F = (S,B) and
F ′ = (S ′,B′), respectively. Then

M∗ =
(

M 0
0 M′

)

is an incidence matrix for a d-CFF F∗ = (S∗,B∗) with |S∗| = |S| + |S ′| and
|B∗| = |B| + |B′|. �


For our approach we could use a deterministic construction of a d-CFF based
on polynomials like [KRS99] did in the following way and for which we propose a
generalization to the multivariate case in AppendixB.

For our d-CFF F = (S,B) let Fq = {x1, . . . , xq} be a finite field and

S := F
2
q = {(xi, xj) : i, j = 1, . . . , q} , with |S| = q2.

For ease of presentation, we assume that q is a prime (as opposed to a prime power),
so we may write Fq = {0, . . . , q − 1}. We consider the set of all univariate polyno-
mials f ∈ Fq[X] of degree at most k, denoted by Fq[X]≤k. So,

Fq[X]≤k :=
{

akXk + · · · + a1X + a0 : ai ∈ Fq, i = 0, . . . , k
}

.

We have |Fq[X]≤k| = qk+1. Now, for every f ∈ Fq[X]≤k, we consider the sub-
sets

Bf = {(x1, f(x1)), . . . , (xq, f(xq))} ⊂ S of size q,

consisting of all tuples (x, y) ∈ S which lie on the graph of f ∈ Fq[X]≤k, i.e. for
which f(x) = y. From this we obtain

B := {Bf : f ∈ Fq[X]≤k} , which is of size qk+1.
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For any distinct Bf , Bf1 , . . . , Bfd
∈ B it holds that

|Bf ∩ Bfi
| ≤ k,

since the degree of each polynomial gi := f − fi is at most k and hence they have
at most k zeros. Thus, we have

∣

∣

∣

∣

∣

Bf \
d

⋃

i=1

Bfi

∣

∣

∣

∣

∣

≥ q − d · k

To achieve a d-CFF with this construction, q ≥ d · k + 1 must be fulfilled.
Now, we consider the incidence matrix M of a d-CFF, which consists of |S| rows

and |B| columns. Each row corresponds to an element of S and each column to an
element of B. In the construction above each row corresponds to a tuple (x, y) ∈ F

2
q,

where the order is (0, 0), (0, 1), . . . , (q−1, q−1). In the following, let (xi, yi) denote
the corresponding tuple for row i, i = 0, . . . , q2 − 1. We start counting from 0 for
simplicity, hence,

(x0, y0) = (0, 0), . . . , (xq−1, yq−1) = (0, q − 1),
(xq, yq) = (1, 0), . . . , (x2q−1, y2q−1) = (1, q − 1),

. . .

(xq2−q, yq2−q) = (q − 1, 0), . . . , (xq2−1, yq2−1) = (q − 1, q − 1).

Each column of the incidence matrix M corresponds to a polynomial of degree
at most k, where we decide to start with constant polynomials and end with poly-
nomials of degree k, i.e. f0 := 0, f1 := 1, f2 := 2, . . . , fq := X, fq+1 := X + 1,
fq+2 := X + 2, . . . , f2q := 2X, f2q+1 := 2X + 1, . . . , fqk+1−1 := (q − 1)Xk + (q −
1)Xk−1 + · · · + (q − 1)X + q − 1.

By fj we will denote the corresponding polynomial for column j, for j =
0, . . . , qk+1 − 1, again starting from 0. Now, the incidence matrix is built as

M[i, j] =

{

1, if fj(xi) = yi,

0, otherwise.

Example. For q = 5, d = 2 and k = 2 we have a 2-CFF with

S = {(0, 0), (0, 1), . . . , (4, 3), (4, 4)}, |S| = 25.

We have
B = {Bf0 , . . . , Bf124},

since |F5[X]≤2| = 53 = 125, where

Bfj
= {(0, fj(0)), (1, fj(1)), . . . , (4, fj(4))}, |Bfj

| = 5, j = 0, . . . , 53 − 1
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and f0 := 0, f1 := 1, . . . , f124 := 4X2 + 4X + 4. Thus, we obtain our incidence
matrix M:

⎛

⎜

⎜

⎜

⎝

0 1 . . . X . . . 4X2 + 4X + 4
(0, 0) 1 0 . . . 1 . . . 0
(0, 1) 0 1 . . . 0 . . . 0

...
...

...
. . .

...
. . .

...
(4, 4) 0 0 . . . 1 . . . 1

⎞

⎟

⎟

⎟

⎠

= M

Remark. With this univariate polynomial-based construction of a d-CFF it is very
easy to generate our incidence matrix or only some parts of it, which we need for
our verification algorithm or if we want to check some information separately.

If, for example, one is interested to verify the validity of only one single claim–
signature pair (cj , σj) in an aggregate signature, it is not necessary to generate the
whole matrix but only the rows where the related column j has 1-entries. So, you
have to know which polynomial corresponds to column j.

For this, we can use the fact, that each positive number n = 0, . . . , qk+1−1 can
be written as ak · qk +ak−1 · qk−1 + · · ·+a0, where ak, . . . , a0 ∈ {0, . . . , q − 1}. So,
each n corresponds to a (k + 1)-tuple denoted by (a(n)

k , . . . , a
(n)
0 ). For the sake of

convenience, we start to count the rows and columns of our matrix by 0, as before.
Thus, for column j = 0, . . . , qk+1−1 we assign the polynomial fj = a

(j)
k Xk + · · ·+

a
(j)
0 .

Analogously, for each row i = 0, . . . , q2 −1, we assign the tuple (b(i)1 , b
(i)
0 ) ∈ F

2
q,

where i = b
(i)
1 · q + b

(i)
0 . Let I ′

j ⊂ {0, . . . q2 − 1} be the subset of all rows i′ where

fj(b
(i′)
1 ) = b

(i′)
0 . So, it suffices to generate only the rows i′ ∈ I ′

j to verify the validity
of σj . To get the 1-entries of these rows, you have to check for each i′ ∈ I ′

j which

polynomials f ∈ Fq[X]≤k fulfill f(b(i
′)

1 ) = b
(i′)
0 . For all arbitrary, but fixed values

ak, . . . a1 ∈ {0, . . . , q−1} compute an appropriate a0. This results in qk polynomi-
als, accordingly columns, per row. If the coefficients of the appropriate polynomi-
als are known then we can use them to compute the number of the corresponding
columns with 1-entries.

Compression Ratio of Our Bounded Scheme. If our bounded scheme is instanti-
ated with this CFF, and we assume that the length of signatures of the underlying
scheme Σ′ is bounded by a constant s, then, as shown in (3), the compression ratio
is

ρ(n) =
n

rows(M)
=

n

|S| =
n

q2
.

For n = |B|, we therefore have

ρ(n) =
|B|
|S| =

qk+1

q2
.

Since q ≥ dk + 1, we have that |B| grows exponentially in k, whereas |S| grows
only quadratically in k. Hence, |B| is exponential in |S|, or, stated differently, |S|
is logarithmic in |B|.
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Compression Ratio of Our Unbounded Scheme. When our unbounded scheme is
instantiated with the monotone family of CFFs obtained by fixing an incidence
matrix M and repeatedly using Lemma 1 on M, then the asymptotic compression
ratio is ρ(n) = 1, since

n

rows(l)
≤ cols(l)

rows(l)
=

cols(M)
rows(M)

for all l,

which is constant. Therefore, the size of an aggregate signature is linear in the
length of the claim sequence.

However, if we assume that all signatures of the underlying scheme Σ′ have a
size bounded by s, then the concrete size of an aggregate signature is at most

rows(l)s ≤ l rows(M)s
≤ (n/cols(M) + 1) rows(M)s

=
(

rows(M)
cols(M)

n + rows(M)
)

s ,

since rows(l) = l rows(M) for the construction of the monotone family of CFFs,
and l = �n/cols(M)� ≤ n/cols(M) + 1.

Therefore we see that the length of the aggregate signature is linear in n, but
the factor rows(M)/cols(M) can be made arbitrarily small by choosing a proper
CFF, such as the one described above.

It is an interesting open problem to construct an unbounded fault-tolerant
scheme with better compression ratio, for example by finding a better monotone
family of CFFs. A generalization of the above construction to multivariate poly-
nomials, which might be advantageous in some scenarios, is given in AppendixB.

Example Instantiations. Table 1 shows parameters of several cover-free families
based on the construction described in this section. For each of the rows given
there, there is an instance of our fault-tolerant signature scheme that can com-
press signatures for up to n claims to a vector of m aggregates, while tolerating

Table 1. Example parameters for cover-free families.

q k d m = |S| n = |B|
5 2 2 25 125

11 2 5 121 1331

17 2 8 289 4913

17 4 4 289 ≈ 1.42 · 106

29 2 14 841 24389

53 2 26 2809 148877

101 2 50 10201 ≈ 1.03 · 106

251 3 83 63001 ≈ 3.97 · 109

1021 2 510 1042441 ≈ 1.06 · 109
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up to d errors. (The numbers q and k are needed for the instantiation of the CFF,
but do not immediately reflect a property of our fault-tolerant aggregate signature
scheme.) Of course, our scheme can be instantiated with different parameters and
completely different constructions of CFFs as well.

Acknowledgements. We wish to thank our colleague and friend Julia Hesse for rais-
ing the initial research question that led to this work. We would also like to thank the
anonymous reviewers for their helpful comments.

A Discussion on Signature Size

A typical requirement for aggregate signatures is that the length of an aggregate
signature is the same as that of any of the individual signatures [HSW13]. Also,
the number of signatures that can be aggregated into a single signature should be
unbounded.

We show that these goals are mutually exclusive for an “ideal” fault-tolerant
aggregate signature schemes if one wishes to maintain a constant d ≥ 1.

Proposition 1. Let n, d ∈ N, and Σ be a d-fault-tolerant signature scheme.
Assume that Σ.Verify(C, τ) = R for all claim sequences C and corresponding sig-
natures τ constructed from an arbitrary multiset M = {(c1, τ1), . . . , (cn, τn)} of
n claim–signature pairs and containing at most d errors, and where R is the mul-
tiset of all claims ci accompanied by a regular signature τi in M . Then we have
|τ | ≥ Ω(log2 n) as a function of n, where d is considered constant, and |τ | is the
length of the signature τ in bits.

Proof. Call an output O of Σ.Verify in accordance with C, if O is a sub-multiset of
elem(C) and |O| ≥ |elem(C) | − d.

Now, let n, d,Σ,C, τ,M,R be as in the theorem statement. Clearly, since we
assumed that Verify always outputs R, Σ.Verify’s output must be in accordance
with C. For a fixed number of errors i ∈ {0, . . . , d}, there are

(

n
i

)

distinct outputs
in accordance with C. Thus, for up to d errors, there are up to

s(n) :=
d

∑

i=0

(

n

i

)

≥
(

n

d

)

≥ (n − d)d

d!

distinct outputs in accordance with C.
Σ.Verifymust use τ to determine the correct output R among the set of outputs

in accordance with C. If the signature size |τ | is at most l ∈ N bits, then Σ.Verify
can distinguish at most 2l cases based on τ . Thus, we must have 2l ≥ s(n), or,
equivalently,

l ≥ log2 s(n) ≥ log2
(n − d)d

d!
= d log2(n − d) − log2(d!) ∈ Ω(log2 n) .

This concludes the proof. �
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Note that the assumption that Σ.Verify(C, τ) = R is somewhat artificial: We
assume an ideal d-fault-tolerant signature scheme, where Σ.Verify always “magi-
cally” outputs the correctmultisetR, when calledwith a claim sequence containing
n claims.

On the one hand, Σ.Verify(C, τ) ⊇ R is required by the d-fault-tolerance of Σ.
Intuitively, one would expect the other Σ.Verify(C, τ) ⊆ R direction to follow from
the security of Σ. However, this does not appear to follow in general, due to two
reasons:

The first reason is that security is only required against adversaries that have
running time polynomial in κ, i.e. adversaries that can create at most a polynomial
number of claims.

The second reason is that if for two fixed C, τ there is a claim c = (pk,m) in
Σ.Verify(C, τ) that is not in R, then this does only violate the security definition if
the challenge public key randomly drawn by the security experiment happens to
be equal to pk by chance.

B Cover-Free Families UsingMultivariate Polynomials

For our polynomial based construction, we can also use multivariate polynomials
f ∈ Fq[X1, . . . , Xt], t ∈ N, of degree at most k. Each multivariate polynomial
f with degree ≤ k consists of monomials in terms of ai1,...,itX

i1
1 · · · Xit

t , where
ai1,...,it ∈ Fq and i1 + · · · + it ≤ k. We denote by Fq[X1, . . . , Xt]≤k the set of
all multivariate polynomials f ∈ Fq[X1, . . . , Xt] of degree at most k, i.e.

Fq[X1, . . . , Xt]≤k :=

⎧

⎨

⎩

∑

i1+···+in≤k

ai1,...,itX
i1
1 · · · Xit

t : ai1,...,it ∈ Fq

⎫

⎬

⎭

.

For the maximal number of monomials of degree exactly k, we obtain
(

t+k−1
k

)

.
Hence, for degree at most k, we have

k
∑

i=0

(

t + i − 1
i

)

=
(

t + k

k

)

, and hence, |Fq[X1, . . . , Xt]≤k| = q(
t+k
k ).

We can now define

Bf :=
{

(x, f(x)) : x ∈ F
t
q

}

, with |Bf | = qt,

and
B := {Bf : f ∈ Fq[X1, . . . , Xt]≤k} , with |B| = q(

t+k
k ).

Now, we set
S := F

t+1
q , which is of size qt+1.

The number of zeros is at most k ·qt−1 and thus, for different Bf , Bf1 , . . . , Bfd
∈ B

it holds
∣

∣

∣

∣

∣

Bf \
d

⋃

i=1

Bfi

∣

∣

∣

∣

∣

≥ qt − d · k · qt−1.

To achieve a d-CFF with this construction, qt ≥ d · k · qt−1 + 1 must be fulfilled.
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CompressionRatio ofOurBounded Scheme. If our bounded scheme is instantiated
with thismultivariateCFF, andwe assume for simplicity, that the size of signatures
of the underlying scheme Σ′ is bounded by a constant, then as shown in (3), the
compression ratio is

ρ(n) =
n

rows(M)
=

n

|S| =
n

qt+1
.

For n = |B|, we therefore have

ρ(n) =
|B|
|S| =

q(
t+k
k )

qt+1
.

Compression Ratio of Our Unbounded Scheme. By using Lemma 1 on M we can
also obtain a monotone CFF based on multivariate polynomials and use it to
instantiate our unbounded scheme. The discussion about the compression ratio
of the unbounded scheme in Sect. 5 also applies to this instantiation.

References

[AGH10] Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures:
new definitions, constructions and applications. In: Al-Shaer, E., Keromytis,
A.D., Shmatikov, V. (eds.) CCS 2010, pp. 473–484. ACM Press, October
2010

[BGR14] Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with
lazy verification from trapdoor permutations. Inf. Comput. 239, 356–376
(2014). doi:10.1016/j.ic.2014.07.001

[BJ10] Bagherzandi, A., Jarecki, S.: Identity-based aggregate and multi-signature
schemes based on RSA. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010.
LNCS, vol. 6056, pp. 480–498. Springer, Heidelberg (2010)

[BN07] Bellare, M., Neven, G.: Identity-based multi-signatures from RSA. In: Abe,
M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 145–162. Springer, Heidelberg
(2006)

[Bol+07] Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisigna-
tures and identity-based sequential aggregate signatures, with applications
to secure routing. In: Ning, P., di Vimercati, S.D.C., Syverson, P.F. (eds.)
CCS 2007, pp. 276–285. ACM Press, October 2007

[Bon+03] Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably
encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT
2003, vol. 2656. LNCS, pp. 416–432. Springer, Heidelberg (2003)

[Cra+07] Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat,
A., Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa,
K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidel-
berg (2007)

[DMR00a] Dyachkov, A.G., Macula, A.J., Rykov, V.V.: New applications and results of
superimposed code theory arising from the potentialities of molecular biol-
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Abstract. We introduce delegatable functional signatures (DFS) which
support the delegation of signing capabilities to another party, called the
evaluator, with respect to a functionality F . In a DFS, the signer of a
message can choose an evaluator, specify how the evaluator can mod-
ify the signature without voiding its validity, allow additional input, and
decide how the evaluator can further delegate its capabilities. Techni-
cally, DFS unify several seemingly different signature primitives, including
functional signatures and policy-based signatures (PKC’14), sanitizable
signatures, identity based signatures, and blind signatures. We charac-
terize the instantiability of DFS with respect to the corresponding secu-
rity notions of unforgeability and privacy. On the positive side we show
that privacy-free DFS can be constructed from one-way functions. Fur-
thermore, we show that unforgeable and private DFS can be constructed
from doubly-enhanced trapdoor permutations. On the negative side we
show that the previous result is optimal regarding its underlying assump-
tions presenting an impossibility result for unforgeable private DFS from
one-way permutations.

1 Introduction

Digital signature schemes resemble the idea of a hand written signature in the
sense that a signer signs messages with his private key sksig and anybody can
check the validity of the signature using the corresponding public key pksig.
The elementary security property is unforgeability under chosen message attacks
which says that an adversary cannot compute a signature on a fresh message,
even if he has observed q signatures on q messages of his choice [31]. This secu-
rity definition models the idea of non-malleability for digital signatures: The
adversary should not be able to modify any signature such that it verifies for a
different message.

For many emerging applications, such as the delegation of computation on
authenticated data, the basic notion is insufficient and a controlled form of mal-
leability would be desirable. Consider as an example a company S that wishes to
outsource the computation on authenticated data to untrusted parties (resp. to
parties that may further delegate the computation to sub-contractors), called the
evaluators, without handing out any secret key. For each data, S chooses a set
of allowed functions F that can be applied. The evaluators are organized hierar-
chically, where each evaluator receives an intermediate result and can compute
c© International Association for Cryptologic Research 2016
C.-M. Cheng et al. (Eds.): PKC 2016, Part I, LNCS 9614, pp. 357–386, 2016.
DOI: 10.1007/978-3-662-49384-7 14
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A

A1 An

B

B1 B2

FA

FA1 ⊆ FA FAn ⊆ FA

FB ⊆ FA

FB1 ⊆ FB

FB2 ⊆ FB1

FC ⊆ FB

Fig. 1. Example hierarchical application of DFS.

any function f ∈ F chosen by S, or delegate subsets F ′ ⊆ F to other evaluators.
We allow S to restrict the number of delegations, as well as the order in which
functions can be applied. The chain computation should be publicly verifiable
which means that everybody can verify that:

– The computation was based on the original data of S.
– Only the functions chosen by S were applied to the data (in the right order,

if specified).
– Any delegation of computation by an evaluator A to another evaluator (a

third party B or any sub-contractor Ai) has been authorized by S and A.

We refer to Fig. 1 for an example structure of delegation. We consider the
following security notions: Unforgeability says that malicious evaluators can only
apply the functions(s) they were allowed to apply, e.g.: B1 can only apply
FB1 ⊆ FB ⊆ FA and further delegate sets of functions FB2 ⊆ FB1 . Privacy
says that given the result of a computation, it is not possible to gain informa-
tion about the computed functions or their input (or the parties that did the
computation): To an observer, the signature σB2 computed by B2 for a message
mB2 is indistinguisable from a signature σ for mB2 computed by S. Privacy is
a useful and desirable property in many applications as it hides the business
structure of the (sub-)contractor and still allows to verify the correctness of the
computation. Traditional signature schemes as well as their malleable variants
are not suitable in this setting. In this paper we close this gap by introducing
the concept of delegatable functional signatures.

1.1 Our Contribution

Our main contributions are as follows. First, we introduce delegatable functional
signatures (DFS). This primitive supports highly controlled, fine-grained dele-
gation of signing capabilities to designated third parties and is general enough
to cover several malleable signature schemes. Second, we present strong security
notions for unforgeability and privacy that also take into account insider adver-
saries. Third, we provide a complete characterization regarding the achievability
of our security notions based on general complexity assumptions. In the following
we discuss each contribution comprehensively.

Delegatable Functional Signatures. Delegatable functional signatures sup-
port the delegation of signing capabilities to another party, called the evaluator,
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with respect to a functionality F . The evaluator may compute valid signatures
on messages m′ and delegate capabilities f ′ to another evaluator with key k
whenever (f ′,m′) ← F(f, α, k,m) for a value α of the evaluators choice. Thus,
the functionality describes how an evaluator can perform the following two tasks.

Malleability. The designated evaluator can derive a signature on m′ from a sig-
nature on m, if (f ′,m′) ← F(f, α, k,m), where the evaluator picks α and k
himself.

Delegatability. The designated evaluator can delegate signing capabilities f ′ on
his signature on m′, to other parties, if (f ′,m′) ← F(f, α, k,m), where k is the
key of another evaluator (or his own key, if he wants to apply several functions
successively) and where the evaluator picks α himself.

Example 1 (Malleability). Suppose that a sender S wants to sign a document,
but allow another entity A to fill in information in a few fields. S chooses f to
describe the places where information can be added, as well as which information
can be added (e.g., 16 characters) without harming the validity of the signature.
A chooses the fields and the information it wishes to fill in by choosing the
corresponding value for α, and he derives a signature on m′, where (·,m′) ←
F(f, α, k,m).

Example 2 (Delegatability). Suppose that a sender S wants to restrict how A can
delegate further capabilities. Her choice of f additionally describes that after
filling in information, certain parts of the document can be censored without
harming the validity of the signature, but no further information can be added.1

After filling in information, A may delegate the censoring to B, but impose
restrictions on which part of the document may be censored by choosing the
corresponding value for α. Then, A and delegates the corresponding capabilities
f ′ to B, where (f ′, ·) ← F(f, α, kB ,m).

Our definition also covers signing capabilities for fresh messages. If a sender S
wants to give A the capability to sign certain messages in his name, he can simply
generate a signature σfresh for a new (empty) message and use f to specify which
capabilities A has, i.e., which signatures he can derive from σfresh.

Security Model for DFS. A central contribution of this paper are the for-
mal definitions of unforgeability and privacy. On an abstract level, these notions
resemble the well known intuition: Unforgeability means that no signatures can
be forged, except on messages within a certain class. Privacy means that derived
signatures are indistinguishable from fresh signatures. However, finding mean-
ingful and achievable definitions for DFS is rather challenging, because the sig-
natures are malleable by nature and we are also considering the multi-party
setting:
1 If a PKI exists, S can additionally add descriptions of the evaluators that are allowed

to do this second round of processing.
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Unforgeability: In a DFS scheme the signer specifies for every signature the
degree of malleability and how this malleability can be delegated. Unforge-
ability is then captured by a transitive closure that contains all messages
that can trivially be derived.

Privacy: Our notion of privacy follows the idea that all information about
signatures should be hidden (except for the message). This is captured in
an indistinguishability game where the adversary can hand in a signature of
his own. Either this signature is treated exactly as the adversary specifies it
(modified by evaluators of his choice, possibly under keys of the adversary
possesses) or a new signature for the same (resulting) message is created.

For both unforgeability and privacy we present three different security
notions for DFS schemes: The weakest one, unforgeability/privacy against out-
sider attacks, holds only for adversaries that do not have access to the private key
of an evaluator. The second one, unforgeability/privacy against insider attacks,
assumes that an evaluator is malicious and possesses a honestly generated eval-
uator key. The third one, unforgeability/privacy against strong insider attacks
assumes a malicious evaluator that might generate its own keys.

Unifying Signature Primitives. Delegatable functional signatures are very
versatile and imply several seemingly different signature primitives. These
include functional signatures, which were recently introduced by Boyle, Gold-
wasser, and Ivan [15], policy-based signatures, which were recently introduced
by Bellare and Fuchsbauer [11], blind signatures, identity based signatures, san-
itizable signatures and redactable signatures.

Instantiability of DFS. We give a complete characterization of the instan-
tiability of DFS from general complexity based assumptions presenting both
positive and negative results.

Possibility of DFS. On the positive side we show that DFS can be constructed
from one-way functions in a black-box way if one gives up privacy.

Theorem 1 (Possibility, informal). Unforgeable delegatable functional signa-
tures exist if one-way functions exist.

Furthermore, we show that unforgeable and private DFS schemes can be con-
structed from (doubly enhanced) trapdoor permutations in a black-box way.
Our scheme shows that our strong definitions for unforgeability and privacy are
achievable for arbitrary, efficiently computable, choices of F .

Theorem 3 (Possibility, informal). Private unforgeable delegatable functional
signatures exist if doubly enhanced trapdoor permutations exist.

Impossibility of DFS. We show that the previous result is optimal w.r.t. the
underlying assumptions. We show that unforgeable and private delegatable func-
tional signatures cannot be constructed from one-way functions. The basic idea
is to construct a blind signature scheme out of any functional signature scheme
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in a black-box way. Recently, Katz, Schröder, and Yerukhimovich have shown
that blind signature schemes cannot be build from one-way permutations using
black-box techniques only [34]. A construction of DFS based on OWFs would
yield a black-box construction of blind signature schemes based on OWFs. How-
ever, this would directly contradict the result of [34].

Theorem 2 (Impossibility, informal). Private unforgeable delegatable functional
signatures secure against insider adversaries cannot be constructed from one-way
functions in a black-box way.

1.2 Related Work

(Delegatable) Anonymous Credentials. In anonymous credential systems
users can prove the possession of a credential without revealing their identity. We
view this very successful line of research as orthogonal to our work: Credentials
can be applied on top of a signature scheme in order to prove properties that are
specified in an external logic. In fact, one could combine delegatable functional
signatures with credentials in order to partially leak the delegation chain, while
allowing to issue or modify credentials in an anonymous but controlled way.
Anonymous credential systems have been investigated extensively, e.g., [10,16,
17,20–23,28]. The main difference between delegatable anonymous credential
schemes, such as [1,9], and our approach is that delegation is done by extending
the proof chain (and thus leaking information about the chain). Restricting the
properties of the issuer in a credential system has been considered in [8]. However,
they only focus on access control proofs and their proof chain is necessarily
visible, whereas our primitive allows for privacy-preserving schemes.

Malleable Signature Schemes. A limited degree of malleability for digital
signatures has been considered in many different ways (we refer to [24] for a nice
overview). We group malleable signature schemes into three categories: pub-
licly modifiable signatures, sanitizable signatures and proxy signatures. Publicly
modifiable signatures do not consider a special secret key for modifying signa-
tures, which means that everyone with access to the correct public key and one
or more valid message-signature pairs can derive new valid message-signature
pairs. There are schemes that allow for redacting signatures [18,33,36,37] that
allow for deriving valid signatures on parts (or subsets) of the message m. There
are schemes that allow for deriving subset and union relations on signed sets
[33], linearly homomorphic signature schemes [5,14,29] and schemes that allow
for evaluating polynomial functions [13,25]. Libert et al. combine linearly homo-
morphic signatures with structure preserving signatures [35]. However, known
publicly modifiable signature schemes only consider static functions or predicates
(one function or predicate for every scheme) and leave the signer little room for
bounding a class of functions to a specific message. As the signatures can be
modified by everyone with access to public information, they do not allow for a
concept of controlled delegation.
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Sanitizable signature schemes [3,19] extend the concept of malleable signa-
tures by a new secret key skSan for the evaluator. Only a party in possession
of this key can modify signatures. In general, this primitive allows the signer
to specify which blocks of the message can be changed, without restricting the
possible content. However, they do not consider delegation and they do not allow
for computing arbitrary functions on signed data.

Anonymous Proxy Signatures [30] consider delegation of signing rights in a
specific context. For example, the delegator may choose a subset of signing rights
for the tasks of quoting. Their notion of privacy makes sure that all delegators
remain anonymous. The main difference to our work is that they only allow del-
egation on the basis of the keys and that they do not support restricting further
delegation, whereas we support restricting delegation capabilities depending on
each message.

Constructing delegatable anonymous credentials out of malleable signatures
was investigated by Chase et al. [27]. The main contribution is an efficient scheme
based on malleable zero-knowledge proofs [26] and the question regarding the
minimal assumptions was left open.

1.3 Closely Related Work

The general framework by Ahn et al. [2] is versatile and, like delegatable func-
tional signatures, unifies a variety of signature notions. A variety of instantiations
can be captured in their framework using their predicate P to describe a complex
functionality for deriving signatures. In fact, it seems possible to describe dele-
gatable functional signatures in their framework by encoding the functionality
in a complex predicate and by encoding the keys of the evaluators as specifi-
cally structured signatures. However, so far there exist no construction for their
framework that is capable of dealing with such predicates (their constructions
support single element sets M, but to encode our scheme, at least sets of size
two are required). Attrapadung et al. [4] discuss and refine this framework. Both
works do not explore the minimal computational assumptions.

The works of Boyle et al. [15] (introducing functional digital signatures) and
of Bellare and Fuchsbauer [11] (introducing policy-based signatures) are closely
related to our notion of DFS.

In a functional signature scheme, the signer hands out keys skf for functions
f to allow the recipient to sign all messages in the range of f . Similar to our
contributions, they define notions of unforgeability and privacy (called function
privacy) and present several constructions for functional digital signatures. One
of their constructions also shows that functional signatures can be build from
one-way functions provided that one is willing to give up privacy. They further-
more show how to construct one-round delegation schemes out of a functional
digital signature scheme.

While our work is closely related to both works, it differs in several aspects:
First, we not only consider the controlled malleability of the signature, but also
support the delegation of signing capabilities. Second, while we also show for
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our notions that unforgeable-only DFS schemes can be build from one-way func-
tions, we additionally show that private DFS schemes can not be constructed
from from one-way permutations (see Sect. 4). We believe that our impossibility
result should also hold for functional signatures [15], as well as for policy-based
signatures [11], because our impossibility result does not rely on the delegation
property of our scheme. Furthermore, DFS signatures allow for authenticated
chain computations. In the extended version [6] we compare delegatable func-
tional signature schemes to functional digital signature schemes and policy-based
signature schemes and show how to construct them out of a delegatable func-
tional signature scheme. Whether the converse is possible is unknown.

2 Delegatable Functional Signatures

Delegatable functional signatures support the delegation of signing capabilities
to another party, called the evaluator, with respect to a functionality F . The
evaluator may compute valid signatures on messages m′ and delegate capabilities
f ′ to another evaluator with key k whenever (f ′,m′) ← F(f, α, k,m) for a value
α of the evaluators choice.

Our definition of DFS limits the delegation capabilities of the evaluator. In
particular, the signer specifies how an evaluator may delegate his signing rights.

2.1 Formal Description of a DFS Scheme

A delegatable functional signature (DFS) scheme over a message space M, a key
space K, and parameter spaces Pf and Pα is a signature scheme that additionally
supports a controlled form of malleability and delegation. A DFS is described
by a functionality F : N × Pf × Pα × K × M → (Pf × M) ∪ {⊥} that specifies
how messages can be changed and how capabilities can be delegated. Once the
signer received a message-signature pair, it can compute signatures on messages
of its choice (that are legitimate w.r.t. F) and can partially delegate his signing
capabilities to another evaluator. We model this property by introducing an
algorithm EvalF for evaluating functions on signatures. This algorithm takes as
input the parameter α that defines the evaluator’s own input to the function f ,
the message m, and a key pk′

ev. The algorithm EvalF outputs a signature σ′ on
m′, where (f ′,m′) ← F(λ, f, α, pk′

ev,m). This new signature σ′ can be changed
by an evaluator that owns a (possibly different) key sk′

ev and this evaluator can
transform it further with the new capability f ′.

Definition 1 (Delegatable functional signatures). A delegatable functional sig-
nature scheme DFSS is a tuple of efficient algorithms DFSS = (Setup,KGensig,
KGenev,Sig,EvalF ,Vf) defined as follows:

(pp, msk) ← Setup(λ): The setup algorithm Setup outputs public parameters
pp and a master secret key msk.

(sksig,pksig) ← KGensig(pp,msk): The signature key generation algorithm out-
puts a secret signing key sksig and a public signing key pksig.
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(skev,pkev) ← KGenev(pp, msk): The evaluation key generation algorithm
KGenev outputs a secret evaluator key skev and a public evaluator key pkev.

σ ← Sig(pp, sksig,pkev, f,m): The signing algorithm Sig outputs a signature σ
on m, on which functions from the class f can be applied (or an error symbol
⊥).

σ̂ ← EvalF (pp, skev,pksig, α,m,pk′
ev, σ): The evaluation algorithm outputs a

derived signature σ̂ for m′ on the capability f ′, that can be modified using the
evaluator key sk′

ev associated with pk′
ev, where (f ′,m′) ← F(λ, f, α, pk′

ev,m)
(or an error symbol ⊥).

b ← Vf(pp,pksig,pkev,m, σ): The verification algorithm Vf outputs a bit b ∈
{0, 1}.

A DFS is correct if the verification algorithm outputs 1 for all honestly gener-
ated signatures and for all valid transformations of honestly generated signatures.
We refer to the extended edition [6] for a formal definition of our correctness.

3 Security Notions for DFS

In this section we define unforgeability and privacy for delegatable functional
signatures. In both cases we distinguish between outsider and insider attacks:
In an outsider attack, the adversary only knows both public keys, whereas an
adversary launching an insider attack knows the private key of the evaluator.
Informally we say that a delegatable functional signature scheme provides pri-
vacy if it is computationally hard to distinguish whether a signature was created
by the signer or whether it was modified by the evaluator. In the following
subsections we discuss the intuition behind each definition in more detail and
provide formal definitions.

For the following security definitions we follow the concept of Bellare and
Rogaway in defining the security notions as a game G(DFSS,F ,A, λ) [12]. Each
game G behaves as follows: First, it invokes an algorithm Initialize with the
security parameter and sends its output to the algorithm A. Then it simulates
A with oracle access to all specified algorithms Query[x] that are defined for G.
It also allows A to call the algorithm Finalize once and ends as soon as Finalize
is called. The output of Finalize is a boolean value and is also the output of G.
Note that G is allowed to maintain state. We say that A “wins” the game if
G(DFSS,F ,A, λ) = 1.

3.1 Unforgeability

Intuitively, a delegatable functional signature scheme is unforgeable, if no adver-
sary A is able to compute a fresh message-signature pair that is not trivially
deducible from its knowledge. In the case of regular signature schemes this means
that the attacker needs to compute a signature on a fresh message. The situation
here is more complex, because our signatures are malleable and because several
parties are involved (and they may even use malicious keys). We present three
different unforgeability notions:
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Unforgeability Against Outsider Attacks. We model the outsider as an
active adversary that knows the public keys (pksig, pkev) and has oracle access
to both the Sig and the EvalF algorithm. Our definition of unforgeability against
outsider attacks resembles the traditional definition of unforgeability for signa-
ture schemes [32], where the adversary knows the public-key and has access to
a signing oracle.

Unforgeability Against (Weak/Strong) Insider Attacks. Our second defi-
nition considers the case where the evaluator is malicious. We define two different
notions depending on the capabilities of the adversary. That is, our first defi-
nition that we call unforgeability against weak insider attacks (or just insider
attacks), gives the attacker access to an honestly generated private key skev. The
second notion allows the adversary to choose its own private key(s) maliciously.
Note, that the attacker might choose these keys adaptively. We refer to this
notion as unforgeability against strong insider attacks.

We model our notions by giving the adversary access to three different KGen
oracles. An adversary that can only access Query[KGenP] to retrieve public keys is
considered an outsider ; an adversary that can access the oracle Query[KGenS] to
retrieve one or more secret evaluator keys is considered an insider ; an adversary
that additionally can access the oracle Query[RegKey] to (adaptively) register
its own (possibly malicious) evaluator keys is considered a strong insider (S-
Insider). All adversaries have access to the honestly generated public signer key
pksig. We keep track of the following sets: KC stores all key pairs, KA stores all
public keys for which the adversaries knows the private key, and Q stores A’s
queries to both Query[Sign] and Query[Eval]. To handle the information that an
adversary can trivially deduce from its queries, we define the transitive closure
for functionalities.

Definition 2 (Transitive closure of functionality F). Given a functionality F ,
we define the n-transitive closure Fn of F on parameters (λ, (f,m)) recursively
as follows:

– For n = 0, F0(λ, (f,m)) := {(f,m)}.
– For n > 0, Fn(λ, (f,m)) := {(f,m)}

⋃

α,pk′
ev

Fn−1(λ,F(λ, f, α, pk′
ev,m))

We define the transitive closure F∗ of F on parameters (λ, (f,m)) as

F∗(λ, (f,m)) :=
∞
⋃

i=0

F i(λ, (f,m)).

Note that the transitive closure F∗ on (λ, (f,m)) might not be efficiently com-
putable (and thus a challenger for Unf might not be efficient).

Although it is not necessary to compute the closure explicitly in our case,
one could require a DFSS to provide an efficient algorithm Check−F such that
Check−F(λ, f,m,m∗) = 1 iff m ∈ F∗(λ, (f,m)).

Definition 3 (Unforgeability Against X ∈ {Outsider, Insider, S − Insider}
Attacks). Let DFSS = (Setup,KGensig,KGenev,Sig,EvalF ,Vf) be a delegatable
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Fig. 2. Unforgeability for delegatable functional signature schemes.

functional signature scheme. The definition uses the game Unf(DFSS,F ,A, λ)
defined in Fig. 2. We say that DFSS is existential unforgeable against X-attacks
(EU-X-A) for the functionality F if for all PPT adversaries AX

AdvEU-X-A
DFSS,F,AX

= Pr [Unf(DFSS,F ,AX , λ) = 1]

is negligible in λ, where AOutsider can neither invoke the oracles Query[KGenS]
nor Query[RegKey]; the attacker AInsider can not make use of Query[RegKey] and
the adversary AS-Insider is not restricted in its queries.

Remark: We assume implicitly that f can be extracted from σ using skev

from any valid query to EvalF . We believe that this is a reasonable assump-
tion, because the evaluator that transforms a signature should learn the value f ,
as it describes the capabilities of the evaluator. In fact, our construction (Sect. 5)
satisfies this property.

Remark on Measuring the Success of A: The success of the adversary is
determined by the challenger and measured in the Finalize algorithm. Within
the oracles Query[Sign] and Query[Eval], the challenger only allows to delegate to
known keys k ∈ KC . Note that his does not restrict the adversary, but allows the
challenger to distinguish between weak insider and strong insider. All messages
m signed either by Query[Sign] or Query[Eval] are added to Q, together with the
respective function f and the public key of the evaluator to whom the message
was delegated.

For both outsiders (KA = ∅) and insiders (KA 	= ∅), we require that the
forgery message m∗ is a fresh message, i.e., it has not been signed by the
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challenger, which is formally expressed by (·,m∗, ·, ·) 	= Q. Moreover, for insider
adversaries, the forgery must not be trivially deducible from previously issued
signatures (f,m, pkev

∗, σ) for keys pkev
∗ ∈ KA. Observe that a different public

key pkev might have been used when signing a message as compared to when
verifying the resulting signature.

We leave it up to the signature scheme to decide whether a signature can
verify under different evaluator keys. As a matter of fact: There can be schemes
where Vf does not need to receive pkev at all.

3.2 Relations Between the Unforgeability Notions

The three notions of unforgeability describe a hierarchy of adversaries. It is
intuitive, that security against outsider attacks does not imply security against
insider attacks, as the key skev of the evaluator can indeed leak enough informa-
tion to construct the signature key sksig out of it.

However, although an insider adversary is stronger than an outsider adver-
sary, making use of the additional oracle can weaken an adversary. Consider a
scheme that leaks the secret signing key sksig with every signature, and that has
only one valid public evaluator key pkev, that allows an insider with the respec-
tive secret key skev to change messages inside signatures to arbitrary values. An
insider that received skev can not create a forgery, since every message he cre-
ates after receiving at least one signature is not considered a forgery: he could
have computed them trivially using EvalF . Without invoking Query[KGenS], the
adversary can request a signature and subsequently forge signatures for arbitrary
messages, using the key sksig he received with the signature.

An S-Insider is again stronger than an insider or an outsider. A scheme can
become insecure if a certain key pair (skev, pkev) is used that is highly unlikely
to be an output of KGenev (e.g., one of them is 0λ).

Proposition 1 (EU-X-A-Implications). Let DFSS be a functional signature
scheme.

(i) For all PPT adversaries AOutsider there exists a PPT adversary AInsider

s.t. AdvEU-IA
DFSS,F,AInsider

≥ AdvEU-OA
DFSS,F,AOutsider

(ii) For all PPT adversaries AInsider there exists a PPT adversary AS-Insider

s.t. AdvEU-SIA
DFSS,F,AS-Insider

≥ AdvEU-IA
DFSS,F,AInsider

Proof. The proposition follows trivially. For (i), the adversary AInsider runs a
black-box simulation of AOutsider and makes no use of the additional oracle. For
(ii) the proposition follows analogously.

3.3 Privacy

Our privacy notion for DFS says that it should be hard to distinguish the fol-
lowing two signatures:

– a signature on a message m′ that has been derived from a signature on a
challenge message m by one or more applications of EvalF .
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– a fresh signature on m′, where (·,m′) ← F(. . .) was computed via one or more
applications of F to m.

This indistinguishability should hold even against an adversary with oracle access
to KGenev, Sig and EvalF that can choose which transformations are to be applied
to which challenge message m and under which evaluator keys (even if they are
known to the adversary), as long as the resulting signature is not delegated to
the adversary.

Analogously to our definitions of unforgeability, we distinguish between three
different types of adversaries, depending on their strength: outsiders, insiders and
strong insiders. We model this by giving the adversary access to three different
KGen oracles that are defined analogously to Definition 3 in Sect. 3.1. In the
following definition, the set KC stores all key pairs, KA contains all public keys
for which the adversaries knows the private key, and KX stores the keys used in
the challenge oracle Query[Sign-F ].

Fig. 3. Privacy under chosen functionality attacks CFA for delegatable functional sig-
nature schemes.

Definition 4. (Privacy under chosen function attacks (CFA)) against X ∈
{Outsider, Insider, S-Insider}. Let DFSS = (Setup,KGensig,KGenev,Sig,EvalF ,
Vf) be a delegatable functional signature scheme. The definition uses the game
CFA(DFSS,F ,A, λ) defined in Fig. 3. We say that DFSS is privacy-preserving
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under chosen function attacks (X-CFA) for the functionality F if for all PPT
adversaries AX

AdvPP-X-CFA
DFSS,F,AX

=
∣

∣

∣

∣

Pr [CFA(DFSS,F ,A, λ) = 1] − 1
2

∣

∣

∣

∣

is negligible in λ, where AOutsider can neither invoke the oracles Query[KGenS]
nor Query[RegKey]; the attacker AInsider can not make use of Query[RegKey] and
the adversary AS-Insider is not restricted in its queries.

Remark on Measuring the Success of A: The adversary may choose an
arbitrary challenge message m0, together with a signature σ0 that allows the
capability f0 (technically the adversary can invoke proc Query[Sign] for com-
puting σ0), and a list of t public keys of evaluators together with evaluator inputs
α. The chosen keys must be known to the challenger to distinguishing between
outsiders, insiders and strong insiders. The challenger repeatedly applies EvalF
to σ0, using the specified parameters αi keys pkev[i]. Additionally, C computes
the derived valued mi and fi for the resulting signature via direct application
of F . If all transformations succeed,2 C yields a signature σt, on a message mt

delegated to pkev[t] with capability ft. Depending on the bit b, C either sends
σt or a fresh signature on mt delegated to pkev[t] with capability ft to A and
adds the key pkev[t] to the set KX that contains all keys to which the signatures
in challenges were (finally) delegated. If at the end of the game KA ∩ KX 	= ∅,
the challenger outputs 0. This way we allow a scheme to leak some information
to the evaluator to which a signature is delegated. For security against insider
attacks only “local” information is allowed. After one delegation, this informa-
tion has to vanish, since an insider adversary A can delegate the signature σt to
a key pk∗

ev ∈ KA by using the Query[Eval] oracle.

3.4 Relations Between the Privacy Notions

For privacy, we have the same hierarchy as for unforgeability: A scheme that is
secure against outsiders may be insecure against insiders, as the key skev of an
evaluator can help to distinguish between delegated and fresh signatures. Again,
calling Query[KGenS] might weaken the adversary. Consider a scheme that does
not preserve privacy against outsiders and that only has one valid evaluator key.
An insider that calls both Query[KGenS] and Query[Sign-F ] is discarded, because
it knows the only valid evaluator key (and thus KX ∩ KA 	= ∅).

Analogously to the hierarchy for unforgeability, an S-Insider is stronger an
insider or an outsider. A scheme can leak information about delegation if a
certain key pair (skev, pkev) is used that is highly unlikely to be an output of
KGenev (e.g., one of them is 0λ).

2 If one of the transformations failed Query[Sign-F ] outputs ⊥ independently from the
value of b, as we only want to give guarantees for valid signatures and not extend
the notion of correctness.
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Proposition 2 (PP-X-CFA-Implications). Let DFSS be a functional signature
scheme.

(i) For all PPT adversaries AOutsider there exists a PPT adversary AInsider

s.t. AdvPP-I-CFA
DFSS,F,AInsider

≥ AdvPP-O-CFA
DFSS,F,AOutsider

(ii) For all PPT adversaries AInsider there exists a PPT adversary AS-Insider

s.t. AdvPP-SI-CFA
DFSS,F,AS-Insider

≥ AdvPP-I-CFA
DFSS,F,AInsider

Proof. The proposition follows analogously to the proof for Proposition 1.

4 Possibility and Impossibility of DFS from OWFs

In this section we investigate the instantiability of DFS. In particular, we are
interested in understanding which security property is “harder” to achieve. If
we counter-intuitively are not interested in unforgeability, naturally we can con-
struct a delegatable functional signature scheme DFSS unconditionally. A signa-
ture on m simply consists of the string “this is a signature for m”. Obviously, this
construction satisfies privacy against strong insiders in the sense of Definition 4
but not even unforgeability against outsiders.

Similarly, if we are not interested in privacy, DFS schemes can easily be
constructed similarly to the construction in [15]. We assume a signature scheme
S that is based on any one-way function. Now, the idea is that the signer simply
signs a tuple consisting of the message together with the capability f and the
public verification key of an evaluator. When evaluating, an evaluator adds his
own signature on the previous signature together with α and the key of the
following evaluator to the original signature. The verification procedure only
accepts a signature if the signed trace of evaluations and delegations is legitimate
w.r.t. the functionality F . This scheme trivially satisfies unforgeability against
strong insiders (cf. Definition 3) but none of our privacy notions. Thus, we obtain
the following simple result:

Theorem 1. If one-way functions exist, then there exists an unforgeable dele-
gatable functional signature scheme.

4.1 Impossibility of DFS from OWPs

In this section we prove an impossibility result showing that (D)FS cannot be
constructed from OWP in a black-box way. The basic idea of our impossibility is
to build a blind signature scheme in a black-box way. Since it is known that blind
signature cannot be constructed from OWP only using black-box techniques [34],
this implies that (D)FS cannot be constructed from OWF as well.

Blind Signatures and Their Security. A blind signature scheme is an interactive
protocol between a signer S, holding a secret key skBS and a user U who wishes
to obtain a signature on a message m such that the user cannot create any
additional signatures and such that S remains oblivious about this message. We
refer to the extended edition [6] for formal definitions of commitment schemes
and blind signatures.
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Building Blind Signatures from (D)FS. The basic idea of our construction is
as follows. The user chooses a message m, commits to the message and sends
the commitment c on m to the signer. The signer signs the commitment, using
a delegatable functional signature scheme and sends the signature σc back to
the user. The user then calls EvalF with the open information om to derive a
signature on m.

Given a commitment scheme C = (Commit,Open) and a delegatable func-
tional signature scheme DFSS = (Setup,KGensig,KGenev,Sig,EvalF ,Vf) for func-
tionality FC , where FC(λ, 1, α, pkev,m) := (0,Open(α,m)), we construct a blind
signature scheme BS = (KGBS, 〈S,U〉 ,VfBS) as follows.3

(skBS, pkBS) ← KGBS(1λ). The key generation algorithm KGBS(1λ) performs
the following steps:

(msk, pp) ← Setup(λ)
(sksig, pksig) ← KGensig(pp,msk)
(skev, pkev) ← KGenev(pp,msk)
(skBS, pkBS) ← (sksig, (pp, pksig, pkev, skev))

Signing. The protocol for U to obtain a signature on message m is depicted in
Fig. 4 and consists of the following steps:
U → S The user sends a commitment c to the signer, where (c, om) :=

Commit(λ,m).
S → U The signer signs c together with the capability f and the public

evaluator key of the user, obtaining σc ← Sig(sksig, pkev, 1, c). It sends
σc to U . The user calls EvalF with the open information om to derive
a signature on m, as σm ← EvalF (skev, pksig, om, pk′

ev, σc) and outputs
(m,σ′).

b ← VfBS(pkBS, σ,m). The verification algorithm VfBS(pkBS, σ,m) immediately
returns Vf(pp, pksig, pkev,m, σ).

Fig. 4. Issue protocol of the two move blind signature scheme.

Theorem 2. If DFSS = (Setup,KGensig,KGenev,Sig,EvalF ,Vf) is an unforge-
able and private delegatable signature scheme (both against insider attacks) and
C = (Commit,Open) is a commitment scheme which is both computationally
binding and hiding, then the interactive signature scheme BS = (KGBS, 〈S,U〉 ,
VfBS) as defined above is unforgeable and blind.
3 FC outputs ⊥ whenever f �= 1.
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Intuitively, unforgeability holds because the user can only obtain a signature
on m if he calls EvalF on an authenticated commitment. This follows from the
binding of the commitment scheme and from the unforgeability of the DFS.
Blindness follows directly from the hiding property of the commitment scheme
and from the privacy of our DFS. Note that the impossibility result of [34] rules
out blind signature schemes that are secure against semi-honest adversaries.

We prove this theorem with the following two propositions.

Proposition 3. If DFSS = (Setup,KGensig,KGenev,Sig,EvalF ,Vf) is an
unforgeable delegatable signature scheme and C = (Commit,Open) is a com-
mitment scheme which is binding, then the interactive signature scheme BS =
(KGBS, 〈S,U〉 ,VfBS) as defined above is unforgeable.

Proof. Assume there is an efficient algorithm A that forges a signature for
BS. We use A to construct an efficient adversary B against the unforgeabil-
ity of DFSS. First, B receives (pp, pksig) from the Initialize algorithm of the
UnfI challenger. Then it calls Query[KGenS]() to receive an evaluator key pair
(skev, pkev), sets pkBS := (pp, pksig, pkev, skev) and simulates A(pkBS). Whenever
A interacts with its signature oracle with a (blinded) message ci, then B calls
Query[Sign](pkev, f, ci) and returns the resulting signature σi to A.

Eventually, A stops, outputting k + 1 message-signature pairs (m∗
i , σ

∗
i ) after

k successful interactive signing procedures, B chooses one of them at random
and outputs it as a (possible) forgery.

For the analysis observe that the functionality FC only applies the Open
algorithm to the signed message and only if f = 1 has been set. So for every
signature σi that A received, only one application of EvalF is allowed and only the
Open algorithm can be applied. Since C is a binding commitment scheme, every
commitment can only be opened to a unique message, except for a negligible
error probability. However, this means that one of the signatures σ∗

i must be a
forgery for DFSS as it is either a signature on a new message, or an evaluation
of a function that has not been allowed (and thus is not in the transitive hull
F∗ of any message that has been signed via Query[Sign]).

If A constructs a forgery, B chooses the right message-signature pair (m∗
i , σ

∗
i )

with probability at least 1
k , so the probability that B constructs a forgery is at

least 1
k times the probability that A constructs a forgery.

Remark. Note that f is necessary to ensure that EvalF is only called once,
otherwise there is a simple attack against the scheme: The adversary A picks a
message m and computes (c1, o1) ← Commit(m). Then A computes (c2, o2) ←
Commit(c1) and sends c2 to the signer. Upon receiving a signature σc2 , the
algorithm A uses EvalF to get a signature on c1 = Open(c2, o2). Now A uses
EvalF again to derive a signature on m = Open(c1, o1) and it outputs both
signatures. Since A outputs two valid message-signature pairs (with two distinct
messages) after one successful interaction it breaks the unforgeability of BS.

Proposition 4. If DFSS = (Setup,KGensig,KGenev,Sig,EvalF ,Vf) is a private
delegatable signature scheme and C = (Commit,Open) is a commitment scheme
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which is hiding, then the interactive signature scheme BS = (KGBS, 〈S,U〉 ,VfBS)
as defined above is blind.

Proof. We show this proposition via a game-based proof. We start with the
original game BlindBSS∗(λ) for blindness and modify it until we reach a game in
which the adversary can not observe any information that might help him in
guessing the bit b.

In the following proof, as well as in subsequent proofs, we assign a number
to each line where the first digit marks the game and the remaining digits the
line in this game (e.g., 234 marks the 34th line of game 2). All lines that are not
explicitly stated are as they were defined in the last game that defined them.
We refer to Fig. 5 for a description of the games.

Fig. 5. The games for our proof for Proposition 4.

Game G0 ⇒ Game G1: Since DFSS is private, we can create new signatures
instead of calling EvalF on the signature of A.

Claim. Game G0 and Game G1 are computationally indistinguishable.

Proof. Assume there is an efficient, malicious signer A, which is able to
distinguish both games. We show how to use A to build a distinguisher
B that breaks the privacy property of DFSS. The algorithm B simulates
Game G0, but instead of calling EvalF in lines 10 and 11, it respectively queries
Query[Sign − F ]((pkev,⊥), (pkev, o0), 1, c0, σc0) and Query[Sign − F ]((pkev,⊥),
(pkev, o1), 1, c1, σc1). If A distinguishes Game G0 and Game G1 with proba-
bility noticeably larger than 1

2 , then B breaks the privacy property of DFSS by
guessing the bit b of the challenger for CFA with probability noticeably larger
than 1

2 .
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Game G1 ⇒ Game G2: In Game G1 the signature of the adversary is not used
anymore and thus the commitment is not opened anymore. Consequently we
can replace the commitments by commitments to zero.

Claim. Game G1 and Game G2 are computationally indistinguishable.

Proof. This follows from the hiding property of the commitment scheme. If there
is an efficient, malicious signer A, which is able to distinguish the two games,
then we can use it to break the hiding property of C.

In Game G2 the bit b is never used. The commitments and all signatures
are completely independent of b. Thus, the probability that A guesses b∗ = b in
Game G2 is exactly 1

2 . Since the games are (pairwise) computationally indistin-
guishable, the proposition holds.

Combining Theorem 2 and the impossibility result of [34] (which is based on the
work of Barak and Mahmoody [7]), we obtain the following result.

Corollary 1. (Delegatable) functional signature schemes that are unforgeable
and private against insider adversaries cannot be build from one-way permuta-
tions in a black-box way.

Remark. Since this construction did not use the delegation property of the del-
egatable functional signature scheme, it should be possible to construct blind
signatures from functional signatures, as defined by [15]. A DFS that is unforge-
able and private against outsider adversaries is not ruled out by this corollary.
Exploring whether the impossibility also holds in this case would be interesting.

5 Bounded DFS from Trapdoor Permutations

In this section we construct a bounded delegatable functional signature scheme
DFSS as defined in Sect. 2.1, where we put an a-priori bound on the num-
ber of evaluations. Our construction is based on (regular) unforgeable signature
schemes, a public-key encryption scheme, and a non-interactive zero-knowledge
proof system. It is well known that these primitives can be constructed from
(doubly enhanced) trapdoor permutations. Formal definition of the underlying
primitives can be found in the extended edition of this paper [6].

5.1 Our Scheme

Our construction follows the encrypt and proof strategy and is completely gen-
eral with respect to efficiently computable functionalities F with the exception
that F may allow only for up to n applications of EvalF . We let the signer choose
how many applications he allows by defining f as a tuple (f ′, k) ∈ Pf×{0, . . . , n}.
We achieve the strong notion of privacy under chosen function attack (CFA)
according to Definition 4 by applying the following idea : If the signer choses a
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number of k possible applications of EvalF , we still create n+1 encryptions, but
place the encryption a signature on m at the k + 1th position (and only encryp-
tions of zero-strings at the other positions). The evaluators fill up the encryptions
from the kth position to the first one. Although each evaluator receives infor-
mation from his predecessor in the chain of delegations (the first evaluator will
know, that the signature originates from the signer), even the second evaluator
in the chain will be unable to find out more than its predecessor and the number
of applications of EvalF that are still allowed. Figure 6 shows the construction
in more detail.

Fig. 6. Construction of a DFSS.

Given a signature scheme S = (SetupS ,KGenS ,SigS ,VfS) with a simple
key generation algorithm and with signatures of equal length, an encryp-
tion scheme E = (SetupE ,KGenE ,EncE ,DecE) and a zero-knowledge scheme
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NIZK = (KGenNIZK, PNIZK,VfNIZK) for languages in NP we construct a delegat-
able functional signature scheme DFSS as follows: We define a recursive class
of languages Li, where Ln : xn = (ppS , ppE , pksig, pkev, S,m,CRS, f, σ) ∈ Ln

means that there exists a witness ωn = (r, k) such that pksig = (vkS , ˜ek) ∧ sk =
EncE(ppE , ˜ek, (σ, (f,m, pkev, k)); r) ∧ VfS(ppS , vkS , (f,m, pkev, k), σ) = 1 and
where Li for 0 ≤ i < n : xi = (ppS , ppE , pksig, pkev, S,m,CRS, f, σ) ∈ Li if there
exists a witness ωi = (r,Π, pk′

ev,m′, f ′, α) s.t. pksig = (vkS , ˜ek) and

∧ si = EncE(ppE , ˜ek, (σ, (f,m, pkev, k)); r) ∧ VfS(ppS , vk′, (f,m, pkev, k), σ) = 1
∧ x′ := (ppS , ppE , pksig, pk

′
ev, S′,m′,CRS, f ′) ∧ S = S′ {s′

i := si}
∧ pk′

ev = (vk′, ·) ∧ (f,m) = F(λ, f ′, α, pk′
ev,m′)

∧
(

VfNIZKi+1(CRS, x′) = 1 ∨ VfNIZKn
(CRS, x′) = 1

)

.

The signer proves that x = (pp = (CRS, ppS , ppE), pksig, pkev = (vkF , ek), S,
d,m) ∈ L, where L contains tuples for which there exists a witness ω =
(f, i, rd) such that VfNIZKi

(CRS, (ppS , ppE , pksig, pkev, S,m,CRS, f, σ)) = 1∧d ←
EncE(ppE , ek, (f, i, σ); rd).

5.2 Security

Concerning security, we show the following theorem.

Theorem 3. If E is a public key encryption scheme that is secure against chosen
ciphertext attacks (CCA-2), S a length preserving unforgeable signature scheme
with a simple key generation, and NIZK is a sound non-interactive proof scheme
that is zero knowledge, the construction presented in this section is unforgeable
against outsider and (strong) insider attacks and secure against chosen function
attacks (CFA) against outsiders and (strong) insiders

Proof. The theorem follows directly from Lemmas 1 and 2.

Lemma 1. If E is a public key encryption scheme, S a length preserving
unforgeable signature scheme with a simple key generation (i.e., not requiring
a master secret key), and NIZK is a sound non-interactive proof scheme, then
the construction DFSS presented in Sect. 5 is unforgeable against outsider and
(strong) insider attacks according to Definition 3.

Given an adversary A that breaks the unforgeability of our construction we
construct an efficient adversary B that breaks the underlying signature scheme.

Proof. By Proposition 1 it suffices to show unforgeability against an S-Insider
adversary. Assume towards contradiction that DFSS is not unforgeable against
strong insider attacks. Then there exists an efficient adversary A := AS-Insider

that makes at most p(λ) many steps for a polynomial p and that wins the game
Unf(DFSS,F ,AS-Insider, λ), formalized in Definition 3, with non-negligible proba-
bility. Since A makes at most p(λ) many steps, A invokes the oracle Query[KgenP]
at most p(λ) many times. We show how to build an adversary B that runs A in a
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black-box way in order to break the unforgeability of S with non-negligible prob-
ability. In the following we denote the values and the oracles that the challenger
C from the game Unf(S,B, λ) provides to B with the index C.

The algorithm B, upon receiving as input a tuple (ppC , vkC) from InitializeC ,
simulates a challenger for the game Unf(DFSS,F ,A, λ). First, the algorithm B
generates the public parameters and the master public/private key-pair, com-
puting (ppE ,mskE) ← SetupE(1λ),CRS ← KGenNIZK(1λ)and setting pp := (CRS,

ppC , ppE),msk := (ε,mskE). Subsequently, B computes ( ˜dk, ˜ek) ← KGenE(ppE ,
mskE), (skS , vkS) ← KGenS(ppC , ε) and sets pksig := vkS .

The algorithm B embeds its own challenge key vkC in a randomly cho-
sen position z ∈ {0, . . . , p(λ)}; if z = 0, then B replaces vkS by vkC .
Finally, B runs a black-box simulation of A on input (pp, pksig), where
pksig = vkS or pksig = vkC , depending on z and B simulates the four oracles
Query[Sign],Query[Trans],Query[KGenP] and Query[Finalize]. The inputs of these
oracles are provided by A upon calling them and are thus sent to B. The algo-
rithm B handles the oracle queries from A as follows:

Query[KGenP](): The algorithm B answers the ith invocation of Query[KgenP]
as follows. First, B generates a key pair for encryption and decryption
(dk, ek) ← KGenE(ppE ,mskE). Then it behaves differently depending on i:
If i = z, then B sends vkC to A. Otherwise, B generates a new key-pair
(skev, pkev) ← KGenS(ppC , ε), stores this pair, and sends pkev to A.

Query[Sign](pk∗
ev, f, g,m): If z 	= 0, the algorithm B computes all neces-

sary values locally exactly as a challenger for Unf(DFSS,F ,A, λ) would.
For computing the values locally, B needs to know pp (publicly known),
sksig = (sskS , vkS) (generated by B since z 	= 0) and the values pk∗

ev, f and
m (provided to B by A).
If z = 0, this local computation is not possible since B replaced vkS with vkC .
Thus, the algorithm B sets hk := (f,m, pkev, k) and invokes Query[Sig]C(hk).
It sets σk to the output of the challenger and otherwise proceeds as above.

Query[Eval](pk∗
ev, α,m,pk ′

ev, σ): Parse pk∗
ev = (vk, ek). B behaves differently

depending on the value of vk.
If the key pk∗

ev is a key for which B knows a secret key (in particular it
does not contain the challenge key vkC), B computes all necessary values
locally exactly as a challenger for Unf(DFSS,F ,A, λ) would. For computing
the values locally, B needs to know pp (publicly known), a value for sk∗

ev

corresponding to pk∗
ev (discussed below), pksig (known to B) and the values

for α,m, pk′
ev and σ (provided by A). There are four cases for sk∗

ev. If pk∗
ev was

output by Query[KGenP] (and since vk 	= vkC , this was not the zth invocation
of Query[KGenP]), B has generated the value sk∗

ev = (sskF , dk) itself. The
same applies if pk∗

ev was output by Query[KGenS]. If pk∗
ev was registered by

A via Query[RegKey], B uses the corresponding (registered) key sk∗
ev. If none

of the three cases applies, then the key pk∗
ev is unknown and B returns ⊥

instead.
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If the key pk∗
ev is the key in which B has embedded its own challenge key

(vk = vkC), a corresponding value sskF (the first part of the secret key sk∗
ev

corresponding to pk∗
ev) is not known to B. This key is necessary to sign the

value h = (f̂ , m̂, pk′
ev, k − 1). Thus, instead of computing a signature with

some key sskF , B calls its own oracle Query[Sig]C(h) and otherwise proceeds
as above.

Finalize (m∗, σ∗, pk∗
ev): Eventually, A invokes Finalize on a tuple (m∗, σ∗, pk∗

ev),
then B parses σ∗ = (S, d, π) with S = (s0, . . . , sn+1). Now, the algorithm B
checks the validity of the signature computing Vf(pp, pksig, pk

∗
ev,m∗, σ∗). If

the verification algorithm outputs 0, then B stops. Otherwise B decrypts all
signatures (σi, hi) := DecE(ppE , ˜dk, si). B tries to find a pair (σx, hx) that
verifies under the key vkC and that has not been sent to Query[Sign]C by B,
then B sends (hx, σx) to its own FinalizeC oracle. Otherwise it halts.

Claim. The algorithm B perfectly simulates a challenger for Unf(DFSS,F ,A, λ).

Proof (for Claim 5.2). We investigate the simulation of all oracles and local
computations.

Simulation of Initialize: Observe that by construction and by the fact that S
the values pp and msk are identically distributed to values for pp and msk
generated by a challenger for Unf(DFSS,F ,A, λ). Thus, the keys generated
out of them are also identically distributed. If z 	= 0 then B uses only pp
and msk to compute the keys (sksig, pksig) and thus they are identically
distributed as keys (sksig, pksig) generated by Unf(DFSS,F ,A, λ).
If z = 0, then B replaces the verification vkS of the signer with the verification
key vkC of the challenger. However, since S does not require a master secret
key, the key vkC is identically distributed as the key vkS . Moreover, B does
not use the corresponding signing key sskS in any way and queries its own
signing oracle instead.

Simulation of Query[KGenP]: On any but the zth invocation, B perfectly
simulates a challenger for Unf(DFSS,F ,A, λ) and computes a new key pair
based on pp and msk. As pp and msk are identically distributed as for a
challenger, the resulting keys are also identically distributed.
On the zth invocation, however, B replaces the verification key vkF with
the verification key vkC of the challenger. However, since S does not require
a master secret key, the key vkC is identically distributed as the key vkS .
Moreover, B does not use the corresponding signing key sskF in any way
and queries its own signing oracle instead.

Simulation of Query[KGenS]: B uses the values pp and msk that
are identically distributed to the corresponding values of a challenger
for Unf(DFSS,F ,A, λ). On them it performs a perfect simulation of
Query[KGenS]. Thus, the resulting keys have the same distribution as the
keys output by Query[KGenS] of the challenger.

Simulation of Query[RegKey]: This oracle does not return an answer.
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Simulation of Query[Sign] and Query[Eval: B perfectly simulates these ora-
cles as long as it does not have to create a signature with the key corre-
sponding to vkC . However, in these cases B calls its own signature oracle.
Since the keys are identically distributed, this still is a perfect simulation.

Since all messages that B sends to A are identically distributed to the mes-
sages that Unf(DFSS,F ,A, λ) sends to A, the algorithm B perfectly simulates a
challenger for Unf(DFSS,F ,A, λ).

Claim. Whenever A produces a forgery, then with probability at least 1
p(λ)+1 B

also produces a forgery.

Proof (Proof of Claim 2.5). First we show the following statement: Whenever A
produces a forgery (m∗, σ∗, pk∗

ev), then σ∗ is of the form σ∗ = (S, d, π). Moreover,
S = (s0, . . . , sn+1) contains the encryption sx of a signature σx such that:

– σx verifies for a message mx under a key vk∗

– vk∗ either equals pksig or that has been sent to A as an answer to an oracle
query Query[KGenP]

– mx a message that has not been sent to Query[Sign] or achieved as result of
Query[Eval].

Assume that A invokes Finalize with (m∗, σ∗, pk∗
ev) such that (m∗, σ∗, pk∗

ev)
constitutes a forgery for DFSS. Technically: If our algorithm B would simulate
the Finalize algorithm (as in Fig. 7), it would output 1.4

Fig. 7. A simulated version of Finalize for our construction DFSS.

If Finalize would output 1, (·,m∗, ·, ·) /∈ Q. This especially means that σ∗ can
not be output of Query[Sign] or Query[Eval]. Moreover, there was no query to
4 Note that simulating Finalize is not necessarily possible in polynomial time, which

is of no concern, since B does not simulate Finalize.
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Query[Sign](pk′
ev, f,m) for an adversary key pk′

ev such that m∗ is in the transitive
hull F∗(λ, (f,m)). Also, there was no query to Query[Eval](pkev, α,m, pk′

ev, σ′)
for an adversary key pk′

ev such that f was extracted from σ′ and such that m∗

is in the transitive hull F∗(λ, (f ′,m′)) for (f ′,m′) := F(λ, f, α, pk′
ev,m).

If the NIZK Π verifies then there is a signature that verifies under pksig

and that marks the start of the delegation chain. Let σk be this signature for a
value hk = (f,m, pkev, k). The NIZK makes sure that m∗ is in the transitive hull
F∗(λ, (f,m)) and that all transformations are legitimized by the previous ones
(depending on the intermediate α’s).

We distinguish the following cases:

i = 0: There was no call to Query[Sig] with parameters (pkev, (f, k),m). Thus, B
never sent hk to Query[Sig]C . and thus, S contains a signature σx = σk that
verifies with pksig for the message hk.

0 < i < k: There was a call to Query[Sig] with parameters (pkev, (f, k),m).
And for all 0 < j ≤ i there was a call to Query[Eval] with parame-
ters (pkevj , αj ,mj , pk′

evj , σ
′
j), such that hk−j = (fj ,mj , pk′

evj , k − j) with
(fj ,mj) = F(λ, fj−1, αj , pk′

evj ,mj−1), but there was no call to Query[Eval]

with parameters (pkevi, αi,mi, pk′
evi, σ

′
i), such that hk−i = (fi,mi, pk′

evi, k −
i) with (fi,mi) = F(λ, fi−1, αi, pk′

evi,mi−1), where f0 = f and m0 = m.
Thus, B never sent hi to Query[Sig]C and thus, σi and hi fulfill our claim.

i = k: There was a call to Query[Sig] with parameters (pkev, (f, k),m). And
for all 0 < j ≤ k there was a call to Query[Eval] with parameters
(pkevj , αj , βj ,mj , pk′

evj , σ
′
j), such that hk−j = (fj ,mj , pk′

evj , k − j) with
(fj ,mj) = F(λ, fj−1, αj , pk′

evj ,mj−1. The NIZK makes sure that at most
k transformations of the original message exist. Thus, all transformations
have been done via calls to Query[Eval], which means that (m∗, σ∗, pk∗

ev) is
not a forgery.

Thus, each forgery of A constitutes a forgery of a signature σx that verifies
with a key vk∗ that either equals pksig or a key that has been given to A as
answer to an oracle query Query[KGenP]. Note that if, by chance, vk∗ = vkC ,
then σx is a valid forgery for the message hx. By Claim, Sect. 5.2, B performs
a perfect simulation of a challenger for Unf(DFSS,F ,A, λ) (from A’s point of
view), independent of the value z that B has chosen in the beginning. As vkC is
randomly placed in the set of possible honest keys (p(λ) many), B produces a
forgery for vkC with probability at least 1

p(λ)+1 .
For the analysis of the success of B let us assume that A produces a forgery

with a non-negligible probability. However, by Claim 5.2, whenever A produces
a forgery, there is a chance of 1

p(λ)+1 that B will produce a forgery. Since A is
assumed to succeed with a non-negligible probability, B will also succeed with a
non-negligible probability, losing a polynomial factor of p(λ) + 1. Since B is an
efficient algorithm, this concludes the proof.

Lemma 2. If E is a public key encryption scheme that is secure against cho-
sen ciphertext attacks (CCA-2), and the interactive proof scheme NIZK is zero
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knowledge, then the construction DFSS presented in Sect. 5 is secure against
chosen function attacks (CFA) as in Definition 4.

For showing this lemma we will first give a game-based proof for an adver-
sary that only uses the oracle Query[Sign-F ] once. We proceed using a hybrid
argument that shows that the existence of a successful adversary that makes
polynomially many calls to Query[Sign-F ] implies the existence of a successful
adversary that only makes one call.

Proof. Let DFSS = (Setup,KGensig,KGenev,Sig,EvalF ,Vf) be our construction
for functionalities F and G. Assume towards contradiction that DFSS is not
secure against chosen function attacks against a strong insider. Then there exists
an efficient adversary AS-Insider that wins the game CFA(DFSS,F ,AS-Insider, λ)

Fig. 8. Definition of Game G0 for Sect. 5.2.
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from Definition 4 with non negligible advantage. For simplicity we will write A
for AS-Insider in this proof.

Claim. If A invokes the challenge oracle Query[Sign-F ] at most once, then the
advantage of A is negligible.

Proof (Proof of Claim 5.2). The challenger uses the uniformly distributed value
b only when Query[Sign-F ] is called. Thus, if A does not call Query[Sign-F ], the
advantage of A is 0.

For the case that A calls Query[Sign-F ] exactly once, we show the claim via a
series of indistinguishable games that start with a game where b = 0 and end with
a game b = 1. Our proof shows that all intermediate games are indistinguishable.

Let Game G0 be the original game from Definition 4 where b = 0, as defined
in Fig. 8. As by our claim A calls Query[Sign-F ] only once we will simplify the
notation of the game by making the call to Query[Sign-F ] explicit. Moreover we
make the invokation of Initialize explicit as we will modify it in the following
games. The oracles that A can access (aside from Query[Sign-F ]) are as they are
formalized in Definition 4. As before, we annotate each line with the game (first
digit) and the line within the game (remaining digits).

Game G0 ⇒ Game G1: Since NIZK is zero knowledge, there exists an effi-
cient simulator S = (S0,S1). In Game G1, Initialize calls this simulator
S0 to compute the common reference string CRS, instead of the algorithm
SetupNIZK. The simulator is allowed to keep state from S0 to S1. Moreover,
in Query[Sign-F ] we call S1 to simulate the proof Π instead of computing it
by calling the prover P.

Claim. Game G0 and Game G1 are computationally indistinguishable.

Proof. The indistinguishability follows from the fact that NIZK is zero knowl-
edge. If a PPT distinguisher could distinguish between Game G0 and Game G1,
we could construct an efficient distinguisher for NIZK.

Game G1 ⇒ Game G2: The game Game G2 is identical to Game G1 except
for the fact that now S and d contain only descriptions of zero-strings: we
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put encryptions of zero strings in all sj for j ∈ {0, . . . , n} instead of leaving
an encryption of a signature ςk−t together with its message hk−t at position
k − t and in an encryption of a zero string in d instead of an encryption of
ςk−t together with ft and k − t.
To compensate for the loss of information in d, we store the tuple (ft, k −
t, ςk−t) together with the (supposed) ciphertext d. Whenever Query[Eval] is
called and within the call one of the ciphertexts d is placed, we look up
the values (ft, k − t, ςk−t) instead of decrypting d. The same applies to the
decryption in line 22 of our game.

Claim. Game G1 and Game G2 are computationally indistinguishable.

Proof. If the games could be distinguished by a PPT distinguisher, then we
could construct an efficient distinguisher that breaks the CCA-2 security of E .
We distinguish two cases:

– The simulator S = (S0,S1) behaves differently. Although the simulatability
of the NIZK only is defined for valid statements x ∈ LR, a simulator that can
distinguish with a non-negligible probability between a “normal” S or d (as
in Game G1) and an S or d that consists only of encryptions of zero-strings
(as in Game G2) can also be used to break the CCA-2 security of E .

– The adversary distinguishes the games. If the adversary is able to distinguish
Game G1 and Game G2 with a non-negligible probability, it can be used to
break the CCA-2 security of E .

Thus, Game G1 and Game G2 are computationally indistinguishable.

Game G2 ⇒ Game G3: In Game G3, the bit b is set to 1 instead of 0. However,
b is never used explicitly in the game. Moreover we always use the signature
generated by EvalF (from line 33) instead of the fresh signature (from line
50).

Claim. Game G2 and Game G3 are computationally indistinguishable.

Proof. In both cases S and d are encryptions of zero strings (under the same
keys) and in both cases Π is a proof generated by S1 for the same statement
x = (pp, pksig, pkev[t], S, d,mt). Since S1 does not receive a witness, the proofs
are based on the same arguments.

Game G3 ⇒ Game G4: The game Game G4 is identical to Game G3 except
for the fact that S and d are “normal” encryptions again (not encryptions
of zero strings).

Claim. Game G3 and Game G4 are computationally indistinguishable.

Proof. The same argument as for Game G1 and Game G2 applies here. If the
games could be distinguished, we could construct an efficient distinguisher for
the encryption scheme.
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Note that we do not need to revert the encryptions in lines 39 and 44 as they
are within the “if false”-block.

Game G4 ⇒ Game G5: In Game G5 we replace the simulator S = (S0,S1)
with the original SetupNIZK and P algorithms again.

Claim. Game G4 and Game G5 are computationally indistinguishable.

Proof. As for Claim 5.2, the indistinguishability again follows from the fact
that NIZK is zero knowledge. If a PPT distinguisher could distinguish between
Game G4 and Game G5, we could construct an efficient distinguisher for NIZK.

As we have shown, the games Game G0 and Game G5 are computation-
ally indistinguishable. However, Game G0 perfectly models the case, where an
adversary plays against a challenger for CFA when b = 0, whereas Game G5

perfectly models the case, where an adversary plays against a challenger for CFA
when b = 1. Since the games are (pairwise) computationally distinguishable, the
cases are also computationally indistinguishable and thus the advantage of A is
negligible. This concludes the proof for Claim 5.2.

Via hybrid argument we reduce the case in which the adversary might make
polynomially many calls to Query[Sign-F ] to the case of Claim 5.2 where the
adversary makes at most one call to Query[Sign-F ]. We can simulate the calls to
Query[Sign-F ] both for b = 0 and for b = 1 using the oracle access to Sig and to
EvalF .
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ported by an Intel Early Career Faculty Honor Program Award.

References

1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Cata-
lano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571,
pp. 423–440. Springer, Heidelberg (2011)

2. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 1–20. Springer, Heidelberg (2012)

3. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
di Vimercati, S.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005)

http://www.cispa-security.org


Delegatable Functional Signatures 385

4. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012)

5. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013)
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1 Introduction

Hash-based signatures are considered the most promising post-quantum alter-
native to existing schemes RSA and ECDSA which are vulnerable to quan-
tum attacks. This is especially because the security of cryptographic hash func-
tions has been well understood under intensive scrutinization. In addition, there
are exact reductionist proofs relating the hardness of breaking the schemes to
the hardness of breaking security properties of the hash functions used in the
schemes. This allows precise estimation on the security of specific parameter sets.

Traditionally, the security of hash-based signature schemes was related to
collision-resistance of the used hash function. In recent years several works
focused on basing security on milder assumptions [5,11,12,15,20,22], such as
second-preimage resistance and one-wayness. There are two fundamental reasons
driving this trend. On the one hand, the attacks against the collision-resistance
of SHA1 and MD5 motivated researchers to develop collision-resilient signature
schemes [19,26]. On the other hand, collision resistance is subject to birthday
attacks while (second-)preimage resistance is not. Hence, to reach a security level
of λ bits, a hash function with n = 2λ bit digests is needed if collision resistance
is required whereas for (second-)preimage resistance only n = λ bit digests are
needed. Halving the output size of the used hash function immediately halves
the signature and key sizes of hash-based signatures.

Multi-target Attacks. The above statement is only half the truth because
it bears on the implicit assumption that a hash function is used only once.
Clearly, for many cryptographic constructions this is not the case. Consider
for example preimage resistance (aka. one-wayness). For many cryptographic
constructions, an adversary will be able to learn a magnitude of function values
and security breach may occur once he finds a preimage for just one of them.
More specifically, suppose that a hash function with n bit outputs is used d
times in a cryptographic construction. If it suffices to invert the hash function
on any one out of the d outputs to break the security of the scheme, then the
attack complexity is downgraded to O(2n/d) instead of O(2n). Intuitively this is
because every input value that an adversary tries has probability d/2n of being a
solution instead of 1/2n, if we treat the hash function as a random function. For
theoretical (asymptotic) security this worries nobody as d is normally at most
polynomial in n. However, when choosing parameters in practice this can easily
cause serious consequences.

This issue is indeed very pertinent to hash-based signatures. Consider for
example the hash-based signature scheme XMSS [12] and its multi-tree version
XMSSMT [22] (see Sect. 4) with parameters that allow to use a keypair for a
virtually unlimited amount of signatures (e.g. a total tree height of h = 60). In
this case, an attacker can learn about 266 images under the same hash function
and will succeed in forging a signature if he finds a single preimage for any one
of the 266 values. Consequently, to achieve for example security of 256 bits one
cannot use a 256 bit hash function but has to use one with output length 322.
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This does not only imply the use of a hash function with a bigger output length
(and hence a slowdown), it also increases the signature size by roughly 25%.

This Work. In this work we introduce a new hash-based signature scheme
XMSS-T that is not vulnerable to multi-target attacks. Towards this end, we
propose two new multi-target notions for preimage and second-preimage resis-
tance. We then analyze the generic security of hash functions with regard to
these new properties against classical and quantum adversaries, proving upper
and lower bounds on the query complexity of generic attacks. More specifically,
the first type of notions (single-function multi-target) models a notion that is
implicitly used by recent collision-resilient hash-based signature schemes like
XMSS, XMSSMT and SPHINCS [5,12,22]. In these notions, an adversary A
receives p target values and a random function from the hash function family.
Then, A is asked to find a preimage (or second-preimage, respectively) for one of
the target values under the given function. We prove that compared to standard
(second-)preimage resistance, the query complexity of generic attacks drops by a
factor p for classical and

√
p for quantum adversaries. Then we introduce multi-

function multi-target notions of preimage and second-preimage resistance. For
these notions, A is given multiple pairs of function and target value, drawn inde-
pendently at random. It is now A’s goal to find a preimage (or second-preimage,
respectively) for one of the target values under the associated function. We prove
that in this case the query complexity of generic attacks is exactly the same as
for the standard (single-function, single-target) notions.

Given that multi-function multi-target notions are as hard as the standard
notions of preimage and second-preimage resistance we construct a new hash-
based signature scheme with security based on these new notions. As the basic
construction follows that of XMSS, we call the new scheme XMSS-T, indicating
XMSS with tightened security. While XMSS looses in the bit security an amount
linear in several parameters including the total tree height, XMSS-T looses only
two bits, independent of any parameters. The differences between XMSSMT and
XMSS-T are a different hash tree and one-time signature scheme construction
such that the security can be based on the multi-target multi-function properties.
The basic change is that for every hash function call within a hash tree or a hash
chain, a different hash function key and different bitmasks are used. Note that
XMSS-T is stateful and it may be not suitable in some practical use cases.
The good news is that we can make similar changes to the stateless hash-based
signature scheme SPHINCS easily. Roughly speaking, it amounts to replacing
the used hash trees and one-time signatures by the ones described in this work.

Finally, we present an implementation of XMSS-T and compare it to XMSS
and XMSSMT . We show that the applied changes only have marginal perfor-
mance implications (a factor 3 loss in speed for all algorithms). Our code is
available at https://joostrijneveld.nl/papers/multitarget xmss.

Remarks on Proving Quantum Generic Security. At first sight the tasks
of breaking the various security properties for hash functions seem similar to

https://joostrijneveld.nl/papers/multitarget_xmss
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some standard problems studied in quantum query complexity. However due
to some limitations, existing results such as techniques for proving quantum
query lower bounds [2,3] cannot be applied directly. For example, there are
famous works showing upper and lower bounds on finding collisions in r-to-1
functions [1,9]. Nonetheless, random functions, whose properties our work stud-
ies, are very unlikely to be r-to-1. More generally, quantum query complexity
usually considers worst-case complexity only, whereas in cryptographic settings
we care about average-case complexity. Another issue is that, as observed by
Zhandry [29], quantum query lower bounds often have implications about quan-
tum algorithms with high success probability only. For cryptographic applica-
tions however, an attacker with small but noticeable chance of breaking a scheme
is still relevant. Therefore, a complete lower bound would be bounding the suc-
cess probability of any algorithm making a specified number of queries. It might
be possible to find fixes by digging into existing works, the situation is yet
unclear. We expect that techniques developed in this work can find useful in
other cryptographic settings as well.

Organization. We introduce and discuss the new security notions for hash
function families in Sect. 2, where detailed analysis for quantum generic security
is presented in Section 3. In Sect. 4 we present XMSS-T and discuss its security
in Sect. 5. Finally, we present our implementation results in Sect. 6.

Notation. We write x
$←− X if x is randomly chosen from the set X using

the uniform distribution. We further write log for log2. We denote the uniform
distribution over bit strings of length n by Un. We write m = poly (n) to denote
that m is a function, polynomial in n. We call a function ε(n) : N → [0, 1]
negligible and write ε(n) = negl(n) if for any c ∈ N, c > 0 there exists a nc ∈ N

s.th. ε(n) < n−c for all n > nc.

2 New Security Notions for Hash Function Families

In this section, we recall some known and define several new security notions
for (hash) function families and discuss their security against both classical and
quantum generic attacks. In the following we restrict ourselves to function fami-
lies that operate on bit strings and have a fixed input size, as this is the case in our
constructions. However, the definitions are the same for the more general case.
In the following let n ∈ N be the security parameter, m = poly (n) , k = poly (n),
and Hn = {HK : {0, 1}m → {0, 1}n}K∈{0,1}k be a family of functions. We say
a function family Hn is efficient if there exists a probabilistic polynomial time
(PPT) algorithm that evaluates HK(M) for any M ∈ {0, 1}m and K ∈ {0, 1}k.
We require all used functions to be efficient, unless we state otherwise. For hash-
based signatures we are mainly interested in functions with m, k ≥ n. However,
we try to keep our results as general as possible and make it explicit whenever
we are relying on m, k ≥ n.
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2.1 Defining the Security Notions

Preimage-Resistance (OW). Let’s revisit the standard notion of preimage
resistance (a.k.a. one-wayness). We define the success probability of an adversary
A against the preimage resistance of a hash function family Hn as

SuccowHn
(A) = Pr [ K

$←− {0, 1}k;M $←− {0, 1}m, Y ←− HK(M);

M ′ $←− A(K, Y ) : Y = HK(M ′)] . (1)

Single-Function, Multi-target Preimage Resistance (SM-OW). We now
define the success probability of an adversary against sm-ow. This is the basic
multi-target notion of preimage resistance implicitly used by previous collision
resilient hash-based signature schemes like XMSS. We show in Sect. 3 that this
notion is significantly easier to attack than standard preimage resistance. The
definition takes another parameter p defining the number of targets.

Succsm-owHn,p (A) = Pr [ K
$←− {0, 1}k;Mi

$←− {0, 1}m, Yi ←− HK(Mi), 0 < i ≤ p;

M ′ $←− A(K, (Y1, . . . , Yp)) : ∃0 < i ≤ p, Yi = HK(M ′)] . (2)

Multi-Function, Multi-target Preimage Resistance (MM-OW). Next we
define the success probability of an adversary A against mm-ow. This is the
notion we are aiming for with XMSS-T as it is as hard to break as standard
preimage resistance, as we will show below. Again the definition is parameterized
by the number of targets:

Succmm-owHn,p (A) = Pr [ Ki
$←− {0, 1}k,Mi

$←− {0, 1}m, Yi ←− HKi
(Mi), 0 < i ≤ p;

(j,M ′) $←− A((K1, Y1), . . . , (Kp, Yp)) : Yj = HKj
(M ′)

]

. (3)

The difference between these two new definitions is that for sm-ow all targets
are for the same function while for mm-ow each target has an associated random
function from the family. We decided that A has to output the associated index
i in case of mm-ow as otherwise any reduction would have to search for i and A
knows i for any attack that does better than guessing.

Second-Preimage Resistance (SPR). After presenting the multi-target
notions for one-wayness, we now turn to second-preimage resistance. We start
revisiting the standard notion of second-preimage resistance. We define the suc-
cess probability of an adversary A against the second-preimage resistance (spr)
of a hash function family Hn as

SuccsprHn
(A) = Pr [ K

$←− {0, 1}k;M $←− {0, 1}m;

M ′ $←− A(K, M) : M ′ 	= M ∧ HK(M) = HK(M ′)] . (4)

Note that in this definition the adversary is not promised to receive an M that
actually has a second-preimage. Hence, especially for families Hn with m = n,
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i.e. same size of domain and co-domain, the adversaries success probability is
largely influenced by the probability that a random M actually has a second-
preimage.

Single-Function, Multi-target Second-Preimage Resistance (SM-SPR).
As for one-wayness, we define two multi-target notions: single-function multi-
target second-preimage resistance (sm-spr) and multi-function multi-target
second-preimage resistance (mm-spr). The first one (sm-spr) is the notion
implicitly used in XMSS. The latter is the notion we aim for with XMSS-T
that is as hard to break as standard second-preimage resistance, as we will prove
below. We start defining the success probability of an adversary against sm-spr.
The definition again takes another parameter p defining the number of targets:

Succsm-sprHn,p (A) = Pr [K $←− {0, 1}k;Mi
$←− {0, 1}m, 0 < i ≤ p;

M ′ $←− A(K, (M1, . . . , Mp)) :
∃0 < i ≤ p : M ′ 	= Mi ∧ HK(Mi) = HK(M ′)] . (5)

Multi-function, Multi-target Second-Preimage Resistance (MM-SPR).
Next we define the success probability of an adversary A against mm-spr. Again
the definition is parameterized by the number of targets:

Succmm-sprHn,p (A) = Pr [Ki
$←− {0, 1}k,Mi

$←− {0, 1}m, 0 < i ≤ p;

(j,M ′) $←− A((K1,M1), . . . , (Kp,Mp)) :

M ′ 	= Mj ∧ HKj
(Mj) = HKj

(M ′)
]

. (6)

Extended Target Collision Resistance (eTCR). In [19] Halevi and
Krawczyk introduced extended target collision resistance (eTCR) as a hash func-
tion property that is close to target collision resistance. In the classical target-
collision resistance game, the adversary is allowed to choose a target message M .
Afterwards he learns a function (by learning a key K) and has to find a collision
for the M under this function HK . While the setup of the eTCR game is exactly
the same, the adversary wins if he can present a new message M ′ and a (possibly
new) key K ′ such that HK(M) = HK′(M ′). Formally, the success probability
of an adversary A = (A1,A2), where A1 and A2 have shared memory, against
eTCR is defined as follows:

SucceTCR

Hn
(A) = Pr [M $←− A1(1n);K $←− {0, 1}k; (M ′,K ′) $←− A2(K, M) :

M ′ 	= M ∧ HK(M) = HK′(M ′)] . (7)

Multi-target Extended Target Collision Resistance (m-eTCR). We can
also define a multi target version (eTCR is inherently multi function anyway).
To keep the definition readable we use a challenge oracle Box(·) that on input of a
message outputs a uniformly random function key. This oracle models the ability
of A to adaptively obtain p eTCR challenges for the same function family. We
denote by (Mi,Ki) the ith query-answer pair of Box(·). The success probability
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of an adversary A against m-eTCR that makes no more than p queries to Box(·)
is defined as:

Succm-eTCR

Hn,p (A) = Pr [ (M ′,K ′, i) $←− ABox(·)(1n) :

M ′ 	= Mi ∧ HKi
(Mi) = HK′(M ′)] . (8)

2.2 Generic Security

To determine secure parameters for hash function families or constructions based
on them, their security against generic attacks is analyzed. Generic attacks show
which security level is achievable at all for a given property as they do not take
any possibly existing function specific weaknesses into account. A hash function
family is considered broken if the security level for one property is (significantly)
lower than the generic security.

Classical Generic Security. The standard way to analyze the complexity of
generic attacks against a security property of hash function families is analyzing
the success probability of an adversary A against a random function family to
which it is given black box access. The classical security is well understood in the
literature. The security of the new notions we defined can be easily established
as well. For completeness, we give brief justifications in Appendix A. Table 1
summarizes the classical and quantum generic security.

Quantum Generic Security. When we analyze the properties of hash func-
tions under generic quantum attacks, we treat any hash function as a random
function and the adversary can issue quantum superposition queries to the
function. Namely, we are essentially working under the quantum random-oracle
model [6]. When there are multiple functions, we assume they are independent
random functions and the adversary can query them jointly in superposition.
Namely, queries in the form of

∑

K,M,z

αK,M,z|K, M, z〉 �→
∑

K,M,z

αK,M,z|K, M, z + HK(M)〉,

are permitted1. This choice is meant to capture the fact that in reality all hash
functions are public, and a quantum adversary can certainly evaluate them
jointly in superposition. This is in contrast to the classical setting, where each
query must specify an index, and hence the adversary only gets one value of
one function per query. One can define a similar model in the quantum setting
(i.e., each query must specify one and only one function index K) and study all
the security properties therein. We stress that this model seems weaker than the
one we choose, and in particular our lower bounds results are hence stronger.
Namely, they hold against stronger quantum attacks. It is an interesting theo-
retical question as to determining whether the two models are indeed different.
1 Alternatively, one can think of it as a global random function (K, M) �→ O(K, M).
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Table 1. Security against generic classical and quantum attacks. Entries represent the
success probability of a q-query adversary (upper and lower bound).

ow,mm-ow, spr,mm-spr sm-ow, sm-spr eTCR m-eTCR

Classical q+1
2n

(q+1)p
2n

(q+1)
2n + q

2k
(q+1)p

2n + qp
2k

Quantum Θ( (q+1)2

2n ) Θ( (q+1)2p
2n ) Θ( (q+1)2

2n + q2

2k ) Θ( (q+1)2p
2n + q2p

2k )

We prove our results regarding quantum generic security in Sect. 3. Our find-
ings are summarized in Table 1. Please note that the constant hidden in the Θ
is small, i.e. 16 for the lower bounds.

3 Analyzing Quantum Generic Security

In the following we establish the generic security of hash function families against
quantum attacks on the defined properties. For each security property, we give
attacks and analyze their success probabilities. All attacks are based on Grover’s
quantum search algorithm, but we will need to analyze the complexity for ran-
dom problem instances. More importantly, we establish matching lower bounds
for all cases. The proofs of lower bounds follow a unified structure. Specifically,
we first define a family of distributional search problems and bound the success
probability of quantum algorithms against these problems. Then, we reduce var-
ious instances of the search problem to the task of breaking each of the security
properties we care about. The hardness of the distributional search problems
hence implies the generic security of hash functions for these security properties.

3.1 Toolbox

(Generalized) Grover’s Quantum Search Algorithm. One of the most
useful algorithmic tools in quantum computing is Grover’s quantum search algo-
rithm and its many generalizations (e.g., [7,8,10,18] to name a few). Here we
just need a simple version for searching a universe with multiple marked items.
We state it in the following Lemma.

Lemma 1. Let f : X → {0, 1} be an oracle function and let Xf = {x ∈ X :
f(x) = 1}. Then there is a quantum algorithm QSearch with q queries that
finds an x ∈ Xf with success probability Ω(q2 |Xf |

|X| ).

Most of the attacks we describe later will apply QSearch in a straightfor-
ward way. However, since our problem instances are generated randomly, we will
need to give a new analysis of the average-case performance.

A Hard Average-Case Search Problem. It is well known that Grover’s
search algorithm is also optimal [4]. Namely, adopting notations from Lemma 1,
any q-query algorithm can find a marked item with probability at most
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O(q2 |Xf |
|X| ). However since the security notions we defined all refer to average-case

problems, the worst-case lower bound of Grover’s search is not very useful. Here
we introduce a distributional search problem, and prove a stringent hardness
result.

Definition 1. Let F := {f : {0, 1}m → {0, 1}} be the collection of all boolean
functions on {0, 1}m. Let λ ∈ [0, 1] and ε > 0. Define a family of distributions
Dλ on F such that f ←R Dλ satisfies

f : x �→
{

1 with prob. λ,
0 with prob. 1 − λ

for any x ∈ {0, 1}m.

We define Avg-Search λ to be the problem that given oracle access to f ← Dλ,
finds an x such that f(x) = 1. For any quantum algorithm A that makes q
queries, we define

Succq
λ(A) := Pr

f←Dλ

[f(x) = 1 : x ← Af (·)].

Theorem 1. Succq
λ(A) ≤ 8λ(q + 1)2 holds for any quantum algorithm A with q

queries.

Note that this theorem matches the intuitive argument that for f ← Dλ,
there are 2mλ marked items on average and hence any quantum algorithm needs
Θ(

√

2m/(2mλ)) = Θ(1/
√

λ) queries. We defer its proof to the full version.

Simulating Random Functions. In our reductions to show lower bounds, we
usually assume we have access to some random function f : X → Y. Ultimately,
we will need to simulate f efficiently so that any algorithm with q queries cannot
notice a difference. Fortunately, the following claim allows us to do so by sampling
uniformly from a 2q-wise independent hash function family H.

Lemma 2. [28, Theorem 6.1] For any quantum adversary that makes no more
than q queries to either a truly random function or a function drawn uniformly
from H, the final states are identical.

There exists a vast literature on efficient constructions of t-wise indepen-
dent hash functions. Interested readers are referred to, e.g., [14,23,24]. There
is a technical subtlety though. Most constructions of H consider output space
Y with size being a prime or a prime power. We need one with Y = [N ],
N = 2n − 1. A natural approach is to pick a prime M >> N and construct
a 2q-wise independent family H0 : X → [M ]. Then we would expect that
H : x �→ H0(x) mod N will suffice for our purpose, modulo a tiny error. However
we were unable to identify a rigorous proof in the literature for the correctness
of this “mod” construction, especially with respect to quantum attacks. We give
a formal proof in the full version.
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Sometimes we need a random function f that excludes some output y ∈ Y.
This is easy to realize as follows. We take a random function g : X → [k] where
k = |Y| − 1. Then f(x) will be obtained by applying g on x and then mapping
the outcome to Y\y according to some canonical isomorphism (e.g., any thing
smaller than y remains unchanged, and anything else is incremented by 1.).

3.2 Hardness of Breaking the Security

We analyze in this section the hardness of generic quantum attacks on the var-
ious notions of hash functions. We give upper bounds on the success probabil-
ities of any quantum adversary making at most q queries. Basically, we reduce
Avg-Searchλ with various λ to the task of breaking the security notion generically.
The hardness of Avg-Search then implies the security against generic quantum
attacks. The bounds for ow, spr and their variants are given in Propositions
1 and 2. While the proofs are quite similar we have to deal with a restriction
for the ow notions that we did not figure out how to circumvent. Namely, we
require that 2m  2n (e.g. m = 2n) and p � 2n, which is the case for most rel-
evant hash function families. The complexity for eTCR and m-eTCR involves
additional technical difficulty concerning programming a random oracle, and we
analyze them in Proposition 3.

Proposition 1. Let m = cn for a positive real constant c > 1 and p = o(n).
For any quantum adversary with q queries, it holds that

SuccowHn
(A) = O((q + 1)2/2n),Succsm-owHn

(A) = O((q + 1)2p/2n),

Succmm-owHn
(A) = O((q + 1)2/2n).

The proof is given in the full version.

Proposition 2. For any quantum adversary with q queries, it holds that

SuccsprH (A) = O((q + 1)2/2n),Succsm-sprHn
(A) = O((q + 1)2p/2n),

Succmm-sprHn
(A) = O((q + 1)2/2n).

We give the proof for mm-spr. The others can be proven analogously and
are deferred to the full version.

Proof (Hardness of mm-spr). Given an Avg-Search instance, we construct an
instance of mm-ow in Fig. 1:

Note that the way that f is generated ensures that each constructed H̃i is
distributed identically to a uniformly random function H : {0, 1}m → {0, 1}n.
Therefore the output instance in the reduction is valid according to the definition
Eq. 6. This implies that any q-query attacker solving mm-spr will give rise to a
2q-query algorithm for Avg-Searchλ. As a consequence

Succmm-sprHn
(A) ≤ ADV

2q
A (λ) ≤ 16(q + 1)2/2n,
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Fig. 1. Reducing Avg-Search to mm-spr.

follows by Theorem 1. We remark that, as mentioned in Sect. 3.1, H̃i can be
implemented efficiently.

Proposition 3. Let ε = 8(q + 1)2/2n and δ = 4q2/2k. For any quantum adver-
sary with q queries, it holds that

SucceTCR

Hn
(A) ≤ ε + 2δ, Succm-eTCR

Hn
(A) ≤ p(ε + 2δ).

To prove the proposition, we need a lemma that allows us to adaptively
program a quantum random oracle. The proof follows standard techniques (see
similar analyses for different scenarios in [16,27]). Let A be an arbitrary quantum
algorithm and let H : {0, 1}m×{0, 1}k → {0, 1}n be a random function. Consider
two games as follows:

– Game G0: A gets access to H. In phase 1, after making at most q1 queries
to H, A outputs a message M ∈ {0, 1}m. Then a random K̂ ∈R {0, 1}k is
sampled and (K̂, HK̂(M)) is handed to A. A continues to the second phase
and makes at most q2 queries. A outputs b ∈ {0, 1} at the end.

– Game G1: A gets access to H. After making at most q1 queries to H, A
outputs a message M ∈ {0, 1}m. Then a random K̂ ∈R {0, 1}k is sampled as
well as a random range element y ∈R {0, 1}n. Program HK̂(M) = y and call
the new oracle H ′. A receives (K̂, y = H ′

K̂
(M)) and proceeds to the second

phase. After making at most q2 queries, A outputs b ∈ {0, 1} at the end.

Lemma 3. |Pr[A(G0) = 1] − Pr[A(G1) = 1]| ≤ 2δ, with δ = 4q2/2k.

The proof of the Lemma is described in the full version. Using the Lemma, we
can prove Proposition 3.
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Proof (Proof of Proposition 3). We give a reduction from Avg-Search to break-
ing eTCR. Assume that there is A that breaks eTCR with probability η. We
construct an adversary A′ that solves Avg-Search with probability η − 2δ. Note
that as long as A does not notice that we reprogrammed H, its view would
be identical to that of the standard eTCR game, and by assumption A wins
with probability at least η. By Lemma 3, reprogramming only incurs an addi-
tive error 2δ = 4q2/2k. We claim that Pr[f(K∗,M∗) = 1] ≥ η − 2δ. But we
know that the success probability of Avg-Search is at most ε := 8(q + 1)2/2n by
Theorem 1. Therefore η ≤ ε+2δ and this proves Proposition 3. We can generalize
the arguments above to the multi-target case easily.

Fig. 2. Reducing Avg-Search to eTCR

3.3 Quantum Attacks

In this section, we apply quantum search algorithm QSearch to attack the
various notions generically. In most cases, we get bounds on success probabilities
matching the hardness results we have shown in Sect. 3.2.

Proposition 4. There exist quantum adversaries A1, . . . ,A8 all of which mak-
ing Θ(q) queries, such that

SuccowHn
(A1) = Ω(q2/2n),Succsm-owHn

(A2) = Ω(q2p/2n),

Succmm-owHn
(A3) = Ω(q2/2n); SuccsprHn

(A4) = Ω(q2/2n),

Succsm-sprHn
(A5) = Ω(q2p/2n),Succmm-sprHn

(A6) = Ω(q2/2n);

SucceTCR

Hn
(A7) = Ω(q2/2n),Succm-eTCR

Hn
(A8) = Ω(q2p/2n).
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The proof is adapting standard analysis to the average case. We illustrate
the basic idea by proving the case of preimage-resistance. The others are left to
the full version.

Proof (Quantum attack on ow). We describe a O(q)-query attacker A1 as fol-
lows. Given y and oracle access to H, A1 will apply QSearch to search for
x such that H(x) = y. More specifically, A1 constructs gH : {0, 1}m → {0, 1}
such that gH(x) = 1 iff. H(x) = y. Each evaluation on gH can be realized effi-
ciently by two queries to h. For any h ∈ H, let ph := PrH←H[H = h] and let
XH = |H−1(y)| be the random variable representing the preimage size of y.
Then by Lemma 1 we can see that

SuccowHn
(A1) =

∑

h

ph · Ω(q2
Xh

2m
) = Ω(

q2

2m

∑

h

phXh)

= Ω(
q2

2m
· E(XH)) = Ω(

q2

2n
).

In the last step we observe, by linearity of expectation, that

E(XH) =
∑

x∈X

Pr
H←H

[H(x) = y] = 2m/2n.

4 XMSS-T

The eXtended Merkle Signature Scheme (XMSS) was proposed by Buchmann,
Dahmen, and Hülsing in [12]. The original proposal for XMSS essentially com-
bines a collision-resilient version of the Winternitz one-time signature scheme
(WOTS) from [11] with the collision-resilient hash tree construction from [15]
and adds two different kinds of pseudorandom key generation, one leading an
EU-CMA-secure and one a forward-secure signature scheme. Under the name
XMSSMT Hülsing, Rausch, and Buchmann [22] later proposed a multi-tree ver-
sion of XMSS.

In this work we introduce XMSS-T, XMSS with tightened security. In con-
trast to XMSS, XMSS-T avoids multi-target attacks. To this end, XMSS-T uses
a new hash tree construction and a new WOTS variant WOTS-T. XMSS-T is
based on XMSSMT . The main difference in the construction of XMSSMT and
XMSS-T is the use of independent function keys and bitmasks for every call to
a hash function inside of the hash trees or WOTS-T. XMSSMT used a single
fixed key per function family and the same bitmask per internal tree level or
chain position. The function keys and bitmasks used by XMSS-T are needed for
verification. To keep the public key small these values are generated pseudoran-
domly, using a hash-based pseudorandom function family and a seed value that
becomes part of the public key. In the following we describe XMSS-T.
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Parameters. XMSS-T uses several parameters and several functions. The
main security parameter is n ∈ N, the message digest length m ∈ poly (n).
The functions include two keyed, short-input cryptographic hash functions F :
{0, 1}n × {0, 1}n → {0, 1}n and H : {0, 1}n × {0, 1}2n → {0, 1}n; one arbitrary-
input randomized hash function H : {0, 1}m × {0, 1}∗ → {0, 1}m; and two
ensembles of pseudorandom function families Fn : {0, 1}n × {0, 1}∗ → {0, 1}n,
Fm : {0, 1}n × {0, 1}∗ → {0, 1}m, where we denote by {0, 1}∗ the ability to
handle arbitrary input lengths up to some practical limit (e.g. 264 bits as in the
case of the SHA family). Of course, these functions can all be built from a single
cryptographic hash function, but the security analysis gets easier separating the
functions according to the required properties.

XMSS-T uses a hyper-tree (a tree of trees) of total height h ∈ N, where h is a
multiple of d and the hyper-tree consists of d layers of trees, each having height
h/d. WOTS allows for a space-time trade-off using the Winternitz parameter
w ∈ N, w > 1. The Winternitz parameter w and the length of the bit string that
is signed λ determine 
 the number of function chains for WOTS:


1,λ =
⌈

λ

log(w)

⌉

, 
2,λ =
⌊

log(
1(w − 1))
log(w)

⌋

+ 1, 
λ = 
1 + 
2.

The bit strings signed using WOTS are the m-bit message digests on the lowest
layer and the n-bit root nodes of the layer below on all other layers.

As a running example we present concrete numbers for XMSS-T-256; the
choices are explained in Sect. 6. For XMSS-T-256 we use n = 256,m = 316,
h = 60, d = 3, w = 16 which leads to 
n = 67 and 
m = 82.

Addressing Scheme. XMSS-T requires an addressing scheme for hash function
calls. Every addressing scheme that assigns to every call to either F or H within
the virtual structure of a XMSS-T hyper-tree a unique address can be used (e.g.
numbering all the calls in some order). We suggest to use a recursive addressing
scheme that numbers sub-structures (e.g. a OTS key pair) inside a structure
(e.g. a tree). The addressing scheme generates an address for a substructure,
taking the address of the structure and appending the index of the substructure.
For trees, which contain three different kinds of substructures (OTS key pairs,
L-trees, and nodes), an additional identifier for the type of substructure is added.
Below we assume that a function GenAddr(as, index) exists that takes the
address of the structure and the index of the substructure and outputs a unique
address for this substructure within an XMSS-T key pair. The advantage of this
addressing scheme is that it only uses information that is available when the
hash call is executed.

The addressing scheme is publicly known and the same addresses can be used
for all XMSS-T key pairs. The resulting addresses are used as inputs to PRF Fn

to pseudorandomly generate function keys and bitmasks.

WOTS-T. We now describe the new WOTS version. The construction differs
from [20] in that it uses fresh keys and bitmasks for each hash function call.
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We denote the message length by λ ∈ {n,m} and to improve readability we
write 
, 
1, and 
2 instead of 
λ, 
1,λ, and 
2,λ. We include pseudorandom key
generation, meaning that a seed value takes the place of a secret key in our
description. We describe the algorithms as used by XMSS-T, hence, they take
global secret and public information. For a standalone version, this information
would have to be generated during key generation.

The difference between all WOTS variants is in the way the so called chaining
function is constructed. WOTS-T uses the function F to construct the following
chaining function:

Chaining Function ci,j(x,aC ,Seed): On input of value x ∈ {0, 1}n, iteration
counter i ∈ N, start index j ∈ N, chain address aC , and (public) seed Seed,
the chaining function works the following way. In case i = 0, c returns x, i.e.,
c0,j(x,aC ,Seed) = x. For i > 0 we define c recursively as

ci,j(x,aC ,Seed) = F(ki,j , c
i−1,j(x,aC ,Seed) ⊕ ri,j),

where key ki,j = Fn(Seed,GenAddr(aC , 2 · (j + i))) and bitmask ri,j =
Fn(Seed, GenAddr(aC , 2 · (j + i) + 1)). I.e. in every round, the function first
takes the bitwise xor of the previous value ci−1,j(x,aC ,Seed) and bitmask ri,j

and evaluates F with key ki,j on the result.
Now we describe the three algorithms of WOTS-T.

Key Generation Algorithm ((sk, pk) ←− WOTS.kg(S,aOTS,Seed)): On input
of a global secret key seed S ∈ {0, 1}n (used for every WOTS-T keypair within a
XMSS-T keypair), the address of the WOTS-T keypair within a tree aOTS, and
public seed Seed, the key generation algorithm computes the internal secret key
sk = (sk1, . . . , sk�) as ski ←− Fn(S,GenAddr(aOTS, i)), i.e., the 
 n bit secret
key elements are derived form the secret key seed using the address of the chain
they are contained in. The public key pk is computed as

pk = (pk1, . . . , pk�) = (cw−1,0(sk1,aC1 ,Seed), . . . , cw−1,0(sk�,aC�
,Seed)),

where aCi
= GenAddr(aOTS, i). Note that S requires less storage than sk; thus

we generate sk and pk on the fly when necessary.

Signature Algorithm (σ ←− WOTS.sign(M,S,aOTS,Seed)): On input of a
λ-bit message M , the global secret key seed S ∈ {0, 1}n, the address of the
WOTS-T keypair within a tree aOTS, and public seed Seed, the signature
algorithm first computes a base-w representation of M : M = (M1 . . . M�1),
Mi ∈ {0, . . . , w − 1}. That is, M is treated as the binary representation of a
natural number x and then the w-ary representation of x is computed. Next it
computes the checksum C =

∑�1
i=1(w − 1 − Mi) and its base w representation

C = (C1, . . . , C�2). The length of the base w representation of C is at most 
2
since C ≤ 
1(w − 1). We set B = (b1, . . . , b�) = M ‖ C, the concatenation of the
base w representations of M and C. Then the internal secret key is generated
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Fig. 3. The authentication path for leaf i.

using ski ←− Fn(S,GenAddr(aOTS, i)) the same way as during key generation.
The signature is computed as

σ = (σ1, . . . , σ�) = (cb1,0(sk1,aC1 ,Seed), . . . , cb�,0(sk�,aC�
,Seed)),

where aCi
= GenAddr(aOTS, i) as above.

Verification Algorithm (pk′ ←− WOTS.vf(M,σ,aOTS,Seed)): On input of a
λ-bit message M , a signature σ, the address of the WOTS-T keypair within a
tree aOTS, and public seed Seed, the verification algorithm first computes the
bi, 1 ≤ i ≤ 
 as described above. Then it returns:

pk′ = (pk′
1, . . . , pk

′
�) = (cw−1−b1,b1(σ1,aC�

,Seed), . . . , cw−1−b�,b�(σ�,aC�
,Seed)).

A formally correct verification algorithm would compare pk′ to a given public
key and output true on equality and false otherwise. In XMSS-T this comparison
is delegated to the overall verification algorithm.

Binary Hash Trees. The central elements of a Merkle tree signature scheme
are full binary hash trees. We use a new construction that allows multi-target-
attack resilience. In XMSS-T, a binary hash tree of height h always has 2h leaves
which are n bit strings Li, i ∈ [2h − 1]. Each node Ni,j , for 0 < j ≤ h, 0 ≤ i <
2h−j , of the tree stores an n-bit string. For the leaf nodes define Ni,0 = Li. The
values of the internal nodes Ni,j are computed as

Ni,j = Hki,j
((N2i,j−1‖N2i+1,j−1) ⊕ (ri,j)),

where key ki,j = Fn(Seed,GenAddr(aTree, 4 · (j + i))) and bitmask ri,j =
(Fn(Seed,GenAddr(aC , 4·(j+i)+1))‖Fn(Seed,GenAddr(aC , 4·(j+i)+2))).
We also denote the root as Root = N0,h.

An important notion is the authentication path Authi = (A0, . . . ,Ah−1) of
a leaf Li shown in Fig. 3. Authi consists of all the sibling nodes of the nodes
contained in the path from Li to the root. For a discussion on how to compute
authentication paths, see Sect. 6. Given a leaf Li together with its authentication
path Authi, the root of the tree can be computed using Algorithm 1.
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Input: Leaf index i, leaf Li, authentication path Authi = (A0, . . . ,Ah−1) for Li.
Output: Root node Root of the tree that contains Li.

Set P0 ← Li;
for j ← 1 up to h do

Set i′ =
⌊

i/2j
⌋

;

Pj =

{

Hki′,j
((Pj−1||Aj−1) ⊕ ri′,j), if

⌊

i/2j−1
⌋

≡ 0 mod 2;

Hki′,j
((Aj−1||Pj−1) ⊕ ri′,j), if

⌊

i/2j−1
⌋

≡ 1 mod 2;

end
return Ph

Algorithm 1. Root Computation

L-Tree. In addition to the full binary trees above, we also use unbalanced binary
trees called L-Trees as in [15]. These are exclusively used to hash WOTS-T public
keys. The 
λ leaves of an L-Tree are the elements of a WOTS-T public key and
the tree is constructed as described above but with one difference: A left node
that has no right sibling is lifted to a higher level of the L-Tree until it becomes
the right sibling of another node. Apart from this the computations work the
same as for binary trees. The L-Trees have height �log 
λ�.

4.1 XMSS-T

Given all of the above we can finally describe the algorithms of the XMSS-T
construction. An XMSS-T keypair completely defines a hyper-tree of height h
that consists of d layers of trees of height h/d. Each of these trees looks as follows.
The leaves of a tree are 2h/d L-Tree root nodes that each compress the public
key of a WOTS-T key pair. Hence, a tree can be viewed as a key pair that can
be used to sign 2h/d messages. The hyper-tree is structured into d layers. On
layer d − 1 it has a single tree. On layer d − 2 it has 2h/d trees. The roots of
these trees are signed using the WOTS-T key pairs of the tree on layer d − 1.
In general, layer i consists of 2(d−1−i)(h/d) trees and the roots of these trees are
signed using the WOTS-T key pairs of the trees on layer i + 1. Finally, on layer
0 the WOTS-T key pairs are used to sign the message digests.

To improve readability, we only give a functional description of the algorithms
of XMSS-T. To obtain a practical scheme, this has to be combined with the
distributed signature generation method from [22] which in turn makes use of
the BDS algorithm [13] for efficient tree traversal.

Key Generation Algorithm ((SK,PK) ←− kg(1n)): The key generation algorithm
first samples two secret values (SK1,SK2) ∈ {0, 1}n ×{0, 1}n. The value SK1 = S
is the seed used for pseudorandom key generation in WOTS-T. The value SK2

is used to generate pseudorandom values to randomize the message hash in sign.
Also, the public seed Seed

$←− {0, 1}n is sampled as a uniform random value.
The remaining part of kg consists of generating the root node of the tree

on layer d − 1. Towards this end the WOTS-T key pairs for the single tree on
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layer d − 1 are generated using SK1 as S. The ith leaf Li of the tree is the root
of an L-Tree that compresses pki. Finally, a binary hash tree is built using the
constructed leaves and its root node becomes PK1.

Besides the secret values and Seed, the secret key also contains the index
i of the next WOTS-T key pair to use for message signing. The index takes
h bits and is initialized with the all 0 bit string. The XMSS-T secret key is
SK = (i = 0h,SK1,SK2,Seed), the public key is PK = (PK1,Seed). kg returns
the key pair ((SK1,SK2,Seed), (PK1,Seed)).

Signature Algorithm ((Σ,SK) ←− sign(M,SK)): On input of a message M ∈
{0, 1}∗ and secret key SK = (i,SK1,SK2,Seed), sign computes a randomized
message digest D ∈ {0, 1}m: First, a pseudorandom R ∈ {0, 1}m is computed as
R ←− Fm(SK2,M). Then, D ←− H(R,M) is computed as the randomized hash
of M using R as randomness. Note that signing is deterministic, i.e., we need
no real randomness as all required ‘randomness’ is pseudorandomly generated
using PRF Fm.

Given index i, the ith WOTS-T key pair on layer d = 0 is used to sign D. More
specifically, this is the i0th WOTS-T keypair in the i′0th tree on layer 0, where i0
is given by the last h/d bits of i and i′0 by the remaining (d−1)h/d bits of i. Next,
the authentication path Authi0 for the i0th leaf of the i′0th tree is computed as
well as the root of that tree. Now, for every layer 1 ≤ δ ≤ d−1 the same procedure
is repeated with the difference that i = i′δ−1 and the root computed on layer
δ−1 is signed. So, to sign the root from layer δ−1, the iδth WOTS-T keypair in
the i′δth tree on layer δ is used, where iδ is given by the last h/d bits of i′δ−1 and
i′δ by the remaining (d−1)h/d bits of i′δ−1. Then the authentication path Authiδ

for the iδth leaf of the i′δth tree is computed as well as the root of that tree.
The XMSS-T signature Σ = (i, R, σW,0,Authi0 , . . . , σW,d−1,Authid−1) contains
the used index i, randomness R and one WOTS-T signature – authentication
path pair σW,j ,Authij

, j ∈ [d − 1] per layer.
Finally, sign updates the secret key SK setting i = i + 1 and outputs the

pair(Σ,SK).

Verification Algorithm (b ←− vf(M,Σ,PK)): On input of a message M ∈
{0, 1}∗, a signature Σ, and a public key PK, the algorithm computes the mes-
sage digest D ←− H(R,M) using the randomness R contained in the signature.
Using i, the indices iδ, i

′
δ are computed for 0 ≤ δ ≤ d − 1. The message digest

D and the Seed from PK are used to compute the first WOTS-T public key
pkW,0 ←− WOTS.vf(D,σW,0,aOTS0 ,Seed), where aOTS0 is the address of the
i0th WOTS-T keypair in the i′0th tree on layer 0. An L-Tree is used to compute
Li0 , the leaf corresponding to pkW,0. Then, the root Root0 of the respective
tree is computed using Algorithm 1 with index i0, leaf Li0 and authentication
path Authi0 .

Then, this procedure gets repeated for layers 1 to d−1 with the following two
differences. First, on layer 1 ≤ δ ≤ d−1 the root of the previously processed tree
Rootδ−1 is used to compute the WOTS-T public key pkW,δ. Second, the leaf
computed from pkW,δ using an L-Tree is Liδ

. The result of the final repetition
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on layer d − 1 is a value Rootd−1 for the root node of the single tree on the
top layer. This value is compared to the first element of the public key, i.e.,
PK1

?= Rootd−1. If the comparison holds, vf returns true, otherwise false.

5 Security

In the following we give a security reduction for XMSS-T. First, we review
the required security definitions. Afterwards we give a security reduction for
XMSS-T.

Existential Unforgeability Under Adaptive Chosen Message Attacks.
The standard security notion for digital signature schemes is existential unforge-
ability under adaptive chosen message attacks (EU-CMA) [17] which is defined
using the following experiment. By Dss(1n) we denote a signature scheme with
security parameter n.

Experiment ExpEU-CMA
Dss(1n) (A)

(sk, pk) ←− kg(1n)
(Msg�, σ�) ←− ASign(sk,·)(pk)
Let {(Msgi, σi)}q

1 be the query-answer pairs of sign(sk, ·).
Return 1 iff vf(pk,Msg�, σ�) = 1 and Msg� 	∈ {Msgi}

q
1.

For the success probability of an adversary A in the above experiment we write

Succeu-cma
Dss(1n) (A) = Pr

[

ExpEU-CMA

Dss(1n) (A) = 1
]

.

A signature scheme is called EU-CMA-secure if any PPT adversary has only
negligible success probability:

Definition 2 (EU-CMA). Let n ∈ N, Dss a digital signature scheme as defined
above. We call Dss EU-CMA-secure if for all q, t = poly (n) the maximum suc-
cess probability InSeceu-cma (Dss(1n); t, q) of all possibly probabilistic adversaries
A running in time ≤ t, making at most q queries to Sign in the above experiment,
is negligible in n:

InSeceu-cma (Dss(1n); t, q)
def
= max

A
{Succeu-cma

Dss(1n) (A)} = negl(n).

To be precise, XMSS-T is a so-called key-evolving signature scheme which auto-
matically updates the secret key after each signature. We capture this, assuming
that the oracle sign(sk, ·) in the above experiment replaces the secret key sk
after each signature with the one returned by XMSS-T.sign and that it returns
the empty string when i ≥ 2h, i.e. when the maximum number of signatures
were done.
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Pseudorandom Function Families. In the following we give the missing
definition for the properties of (hash) function families that we use, namely
pseudorandomness. In our definition we use the definition of (hash) function
families from Sect. 2. In the definition of the success probability of an adversary
against pseudorandomness (prf) the adversary gets black-box access to an oracle
Box. Box is either initialized with a function from Hn or a function from the set
G(m, n) of all functions with domain {0, 1}m and range {0, 1}n. The goal of the
adversary is to distinguish both cases:

SuccprfHn
(A) =

∣

∣

∣Pr[Box
$←− Hn : ABox(·) = 1]

−Pr[Box $←− G(m, n) : ABox(·) = 1]
∣

∣

∣ . (9)

Using this success probability, we define a pseudorandom function family the
following way.

Definition 3 (PRF). Let Hn be defined as above. We call Hn a pseudorandom
function family, if it is efficient and for all t = poly (n) the maximum success
probability InSecprf (Hn; t) of all possibly probabilistic adversaries A, running in
time ≤ t, is negligible in n:

InSecprf (Hn; t)
def
= max

A
{SuccprfHn

(A)} = negl(n).

5.1 Security Reduction

We now proof the security of XMSS-T. We will base the security of the core
scheme on the multi-function multi-target second-preimage resistance of F,H,
the pseudorandomness of Fn, the multi-target extended target collision resis-
tance of H and a functional requirement on F defined below in the random
oracle model. Please note that the random oracle model is only required to show
that we can hand out the seed Seed used to generate the public function keys
and bitmasks. Towards this end, we have to split the use of Fn into two parts.
Assume two functions F1

n and F2
n. We assume F1

n is used in place of Fn for
pseudorandom (secret) key generation and generation of the message hash ran-
domness. For F1

n we require standard model pseudorandomness. On the other
hand, F2

n is used to replace Fn when generating the hash keys ki,j and bitmasks
ri,j . In the proof, only F2

n is modeled as random oracle (using the concatenation
of key and input as input to the RO).

As mentioned above we need an additional requirement on F. Informally we
require that every element in the image of F has at least two preimages, i.e.,

(∀k ∈ {0, 1}n)(∀y ∈ IMG(Fk))(∃x, x′ ∈ {0, 1}n) : x 	= x′ ∧Fk(x) = fk(x′). (10)

Please note that this requirement meets the expectation for a random function.
This additional requirement is needed to not having to use the one-wayness of F.
If we had to use the one-wayness of F, we still would have to guess the messages
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an adversary sends to the oracle. The reason is that plugging a challenge image
into a chain means not knowing any previous value of the chain. Hence, we could
not answer a query where the signature contains such a previous value of a chain.
This would imply a security loss of roughly h bits. Given the above property we
can instead extract a second preimage if A inverts F with probability 1/2, loosing
only 1 bit in the security level.

Now we got everything needed for the security reduction. We proof the fol-
lowing theorem:

Theorem 2. XMSS-T is existentially unforgeable under adaptive chosen mes-
sage attacks with respect to the random oracle model if

– F and H are multi-function multi-target second-preimage resistant function
families,

– F fulfills the requirement of Eq. 10,
– F1

n,Fm are pseudorandom function families,
– F2

n is modeled as a random oracle, and
– H is an multi -target extend target collision resistant hash function family.

More specifically, the insecurity function InSecEU-CMA
(

XMSS-T; ξ, 2h
)

describ-
ing the maximum success probability over all adversaries running in time ≤ ξ
against the EU-CMA security of XMSS-T is bounded by

InSeceu-cma (XMSS-T; ξ)

≤ InSecprf
(

F1
n; ξ

)

+ InSecprf (Fm; ξ)

+ max{InSecm-eTCR (H; ξ) , 2InSecmm-spr (F; ξ) , InSecmm-spr (H; ξ)}

The general idea of the proof follows that of previous hash-based schemes.
There are a few mutually exclusive cases what could have happened if an adver-
sary succeeded. First, the attacker could have broken the m-eTCR property of
H. This case is easily detected and can be handled in a straight-forward manner.
Otherwise, the message digests have to differ. In this case the adversary has found
a second preimage or a preimage for F or H with high probability. To extract a
second preimage in this case, the reduction takes one mm-spr challenge (M,K)
per hash function call (H and F). Then, for this call the function is keyed with
K and the bitmask is selected such that the input to the hash function is M .
This means, if the input before the XOR with the bitmask is X, we use X ⊕ M
as bitmask. Then the RO is programmed such that it generates this bitmask
and key for this hash function call. This programming is done adaptively, only
when the adversary queries the RO for a value. Now, any second preimage in
the scheme will be a valid solution for mm-spr of either H or F. The full proof
can be found in Appendix B.

6 Implementation

In Sect. 4, we described XMSS-T, which builds on XMSSMT , altering the func-
tions that are used to construct WOTS chains and hash trees. We now examine
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the cost of this change in terms of computation time. In order to measure the
cost of the additional bitmasks and keys that are required for each application
of the functions F and H, we have implemented and benchmarked XMSS-T
and XMSSMT . We use the BDS tree traversal algorithm [13] to speed up the
authentication path computation, making the scheme practical.

We examine the scheme for two parameter configurations from the current
Internet Draft for XMSSMT [21], obtaining measurements for both a single-tree
and a multi-tree set-up. For both settings, we use w = 16 and m = n = 256.
For the first benchmark, we set h = 20, d = 1. We use the same subtree height
for the second configuration, setting h = 60, d = 3 to construct three layers of
subtrees with a height of twenty nodes each. We set k = 2 as the BDS parameter
for both parameter sets, we rely on the SHA 256 function to construct F and
H, and use ChaCha20 as the pseudorandom generator. These choices are also in
accordance with [21]. For more parameter sets see [21].

For XMSS these parameters lead to a security level of 190 bits classical and
95 bits quantum for h = 60 (230 and 115 for h = 20). Following the security
analysis in the last section and the lower bounds in Sect. 2, these parameters have
a security level of more than 256 bits classical, and 128 bits quantum (assuming
that each hash query requires more than 4 bit operations) for XMSS-T (without
the message digest). With the message digest we get approximately 190 bits
classical and 95 bits quantum like for XMSS as m-eTCR is still vulnerable to
multi-target attacks. However, this can be fixed by increasing just the message
digest size to m = 276 for h = 20 and m = 316 for h = 60. With this change we
get 256 bit classical and 128 bit quantum security. However, to get an insight into
the effects of the changes made in XMSS-T, we decided to run the experiments
for the exact same parameters (m = 256). For more benchmarks with different
parameters see the full version.

To carry out these benchmarks, we have used a single core of an Intel Core
i7-4770K CPU, running at 3.5 GHz, although the implementation was not opti-
mized specifically for this platform.In the first setting, with h = 20, we measure
an average signing time of 12 488 458 clock cycles per signature for XMSS, and
34 862 033 clock cycles for XMSS-T. For the multi-tree version (h = 60), the
scheme takes 13 014 401 clock cycles per signature for XMSS, and 37 025 552
cycles for XMSS-T.

This difference is quite significant. However, this was to be expected as the
running time of the scheme is largely dominated by applications of F and H –
precisely the functions that are changed for XMSS-T. For plain XMSS with the
aforementioned parameters, these functions merely consist of calls to SHA-256
with inputs of 256 and 512 bits, respectively. Each of these inputs fits within
the internal block size of SHA-256 (512 bits). When considering the Merkle-
Damg̊ard construction [25] that defines the structure of SHA-256, this implies
a single application of the internal compression function. When transforming F

and H into keyed hash functions, the input length increases. To ensure that the
key and the input are in separate blocks, the key is prefixed with 256 zero-bits.
This results in inputs of 768 and 1024 bits, respectively, implying the need for
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two blocks, as well as two applications of the compression function. The straight-
forward calls to SHA-256 for F and H run in 1 072 and 1 924 cycles, while the
keyed variants take 1 932 and 2 812 cycles, respectively.

A bigger factor weighing down F and H is the time needed to generate
the keys and bitmasks pseudorandomly. Both these values require calls to the
pseudorandom generator. For F, we require two output blocks of 256 bits each;
H requires three. At an expense of 560 cycles per output block, generating ran-
domness for the masks and keys carries a significant cost.

Altogether, the experiments show that the tightened security comes at the
cost of a factor less than 3 increase in the runtime.
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A Classical Generic Security

Preimage Resistance. For preimage resistance, analysis shows that the suc-
cess probability of any classical A that makes q queries to its oracle is

SuccowHn
(A) =

(

q + 1
2n

)

, (11)

where the probability is taken over the internal coins of the oracle and the
random choices of K and M . An attacker that makes no query but simply
outputs a random domain element has success probability 2−n of hitting the
target Y . An attacker that makes one query can verify the first guess. If that
one did not hit Y he can make another guess which he now can not verify
anymore. Together this gives a success probability of 2/2n. Iterating this gives
the above bound. Consequently, an attacker needs O(2n) queries to reach a
success probability of at least 0.5.

Single-Function Multi-target Preimage Resistance. For sm-ow a similar
analysis shows a bound of

Succsm-owHn,p (A) =
(

(q + 1)p
2n

)

, (12)

The reason is that the success probability of a single guess is now p/2n. Other-
wise, the argument follows along the lines of the above argument. Consequently,
the query complexity of a successful attack is O(2n/p). Please note, we also can
get this result using a reduction from ow. In this case, we replace a random Yi

by the given Y from the ow game. The reduction looses a factor 1/p.

Multi-function Multi-target Preimage Resistance. While the previous
cases are more or less known results, for mm-ow we are not aware of any such
results. The difference to sm-ow is that the adversary now basically plays p
independent ow games at once. In contrast to the ow game A can not use
a query he made to attack Yi for any other Yj for j 	= i. The reason is that
different functions are associated to the different Yi. So, in the classical case we
get a query bound of

Succmm-owHn,p (A) =
(

q + 1
2n

)

, (13)

The reason is that a guess has success probability 1/2n. As one also has to guess
(Ki, Yi), every verification query can only check if a given M fulfills Yi = HKi

(M)
for a single i. Viewed differently, each query has to fix Ki in advance and outputs
the associated Yi only with probability 2−n. Consequently, we get the same query
bound O(2n) as for ow.
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Second-Preimage Resistance. In the case of second-preimage resistance, the
success probability of any A that makes q queries to its oracle is

SuccsprHn
(A) =

(

q + 1
2n

)

, (14)

where the probability is taken over the internal coins of the oracle and the
random choices of K and M . The bound can easily be derived following the
analysis for one-wayness. Consequently, an attacker needs O(2n) queries to reach
a success probability of at least 0.5.

Single-Function Multi-target Second-Preimage resistance. For sm-spr

a similar analysis shows a bound of

Succsm-sprHn,p (A) =
(

(q + 1)p
2n

)

. (15)

Again, the analysis follows along the lines of the respective analysis for sm-ow.
Consequently, the query complexity of a successful attack is O(2n/p).

Multi-function Multi-target Preimage Resistance. While the previous
cases are more or less known results, for mm-spr we are not aware of any such
results. The difference to sm-spr is that the adversary now basically plays p
independent spr games at once. As for mm-ow, in the classical case, we get a
query bound of

Succmm-sprHn,p (A) =
(

q + 1
2n

)

. (16)

Again, the analysis follows along the lines of the respective analysis for mm-ow.
Consequently, the query complexity of a successful attack is O(2n).

Extended Target Collision Resistance. For eTCR, analysis shows that the
success probability of any adversary A that makes no more than q queries to its
oracle is

SucceTCR

Hn
(A) ≤

(

q + 1
2n

+
q

2k

)

, (17)

where the probability is taken over the internal coins of the oracle and the
random choice of K.

Consider an arbitrary adversary A = (A1,A2) attacking eTCR. A1 makes
q1 queries and outputs a message M . Afterwards A2 obtains K and makes q2
queries, with q1+q2 = q. Without loss of generality, we assume that A1 stores all
his query results in the shared memory. When A2 receives K, we can distinguish
two mutually exclusive cases:
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Case 1: A1 already queried the oracle for HK(M). To simplify analysis, we
consider this a success for A. As K is a random key and A1 made queries for
no more than q1 different keys, this case occurs with probability

ε1 ≤ q1
2k

.

Case 2: A1 did not query HK(M) before. In this case, every query made by A1

and every query made by A2 has probability 2−n to hit HK(M) and hence
to be a solution. If A2 does not find a solution using all query results, he
can make another guess that has the same success probability as the queries
before. Hence, the success probability in this case is exactly

ε2 =
q1 + q2

2n
.

The sum of the two bounds ε1 + ε2 takes its maximum for q1 = q. This gives the
claimed bound. Note that the analysis for case 1 above is very rough and could
be tightened (This is only a success if A1 already found a pseudo-collision for
(K, M)). However, in all relevant cases we know k � n and hence tightening is
of little use.

Multi-target-ETCR. Now, switching to m-eTCR the complexities for the two
cases change as follows: In both cases a factor of q is lost. In Case 1 this is caused
by the fact that there are now q keys returned (over the game) that might hit
a previously queried one. In Case 2 this is caused by the fact that each query
works for all q targets (as in the case of mm-spr). This leads to the bound

Succm-eTCR

Hn,p (A) =
(q + 1)p

2n
+

qp

2k
.

B Proof of Theorem 2

In the following we omit indices for the mm-spr challenge pairs to preserve read-
ability. Assume that there exists an adversary A running in time ξ that breaks the
EU-CMA security of XMSS with probability εA. In the following we will prove
that εA ≤ InSecEU-CMA

(

XMSS-T; ξ, 2h
)

. First, consider the following two games:

Game 1. This is the original game.
Game 2. This is the same as Game 1 but instead of using random elements from

F1
n and Fm (by sampling S and SK2 from the key space), two truly random

functions Gn : {0, 1}n × {0, 1}∗ → {0, 1}n and Gm : {0, 1}n × {0, 1}∗ →
{0, 1}m are used.

The difference in the success probability of A playing one of these games
must be bound by InSecprf

(

F1
n; ξ

)

+InSecprf (Fm; ξ), otherwise we could use A
to distinguish F1

n or Fm from a truly random function, breaking the pseudoran-
domness which would contradict the assumption. Hence, it suffices to analyze
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the success probability of A in Game 2. Towards this end, we construct an oracle
machine MA that breaks either the multi-function multi-target second-preimage
resistance of F or of H, or the extended target collision resistance of H. MA

takes q1 challenge pairs {(Ki,Mi)}q1
1 for F and q2 challenge pairs {(K ′

i,M
′
i)}

q2
1

for H where q1 (q2) is the number of calls to F (H) for the XMSS-T key pair.
Each of these challenge pairs gets associated with one specific call to F or H

within the XMSS-T key pair.
MA first samples a random seed Seed

$←− {0, 1}n. The XMSS-T public key
PKbecomes (PK1 = HK′

j
(M ′

j),Seed) for (K ′
j ,M

′
j) – the pair associated with the

call to H that computes the root. Now A is run on this PK. When A makes his
ith query using some message Msgi, MA first sends Msgi to the m-eTCR chal-
lenger, receiving back a function key Ri. Then it computes the message digest as
Di = H(Ri,Msgi) and sets the signature index to i. The next steps are the same
for each tree involved in the signature. First, MA computes the chain indices b.
The WOTS+ signature is collected by selecting the challenge (K, M) for the bjth
call to F in the jth chain and computing the jth signature element as FK(M).
Similarly, the authentication path for the WOTS+ key pair is generated by figur-
ing out the nodes that are required. Then, these nodes are calculated as HK(M)
where (K, M) is the challenge pair associated with the call to H that computes
this authentication path node. The same is done for the root node. Afterwards,
the whole procedure is repeated for the parent tree, until the top tree is done.
Then the XMSS-T signature Σi is sent back to A.

If A queries the RO, the RO is adaptively programmed such that it outputs
the right bitmasks and keys. W.l.o.g., we assume that A makes each query only
once and stores the result. For any query (X1||X2) ∈ {0, 1}n × {0, 1}∗ where
X1 	= Seed or X2 is no valid address of a bitmask or a key for a hash function
call, the RO simply outputs a random value. Otherwise, assume for simplicity
(again w.l.o.g.) that the adversary always queries the RO for the bitmask(s) and
the key of a hash function call at once. Then the RO is programmed as follows:
Assume (K, M) is the challenge pair for the associated hash call. If the address
refers to the first hash call in a WOTS+ function chain, the start value of that
chain is generated as X = G(SK1,a) where a is the address of that function
chain. Next, the RO is programmed to return bitmask r = X ⊕ M and key K.
If the address refers to a hash call in a WOTS+ function chain that is not the
first in that chain, let (K ′,M ′) be the challenge template associated with the
previous hash call in that chain. Then the RO is programmed to return bitmask
r = FK′(M ′) ⊕ M and key K. Finally, if the address refers to a hash call to H,
let (K1,M1), (K2,M2) be the challenge templates associated with the hash calls
computing its two child nodes. Then the RO is programmed to return bitmask
r = (HK1(M1)‖HK2(M2)) ⊕ M and key K (Note that the challenge templates
might be associated with calls to F if the address is associate with the compu-
tation of a node on level 1 in an L-tree. In this case H is replaced by F in the
computation of r).

When A outputs a forgery (Msg, Σ) with Σ = (i, R, σW,0,Authi0 , . . . ,
σW,d−1, Authid−1), MA runs the verification algorithm on (Msg, Σ) and
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(Σi,Msgi). If the forgery is invalid, MA returns ⊥. Otherwise, three mutually
exclusive cases can occur. MA compares the values computed during the two
verification runs in order of computation.

Case 1: If D = H(R,Msg) = H(Ri,Msgi) = Di, i.e., if the digests of the ith
query is the same as that of the forgery, MA broke m-eTCR and returns
(i, R,Msg). Hence, the probability that A outputs a case 1 forgery must be
upper bounded by InSecm-eTCR (H; ξ) per assumption.

If the digests are different, the corresponding bi are also different and hence,
parts of the data computed by the two verification runs must also differ. Now,
MA only compares the computed WOTS+ public keys and the computed root
values. By the pigeonhole principle, the signatures have to agree on one of these
for the first time as they lead to the same root of the top tree.

Case 2: If the data generated verifying the two signatures first agrees on a
WOTS+ public key, the message digests or the root nodes signed with this
WOTS+ keypair where different. Hence, we got a WOTS+ forgery. In this
case, by the construction of the checksum there must be one chain j in this
WOTS+ keypair such that bj < (bj)i, i.e. the jth signature value of the
forgery belongs to an earlier hash call than the one of the answer to the ith
query. As both chains end in the same public key value, they most collide
at the output of some call to F. If this point is not the (bj)ith call it has
to be a later one. In this case, the input to the colliding call to F computed
from the forgery is a second preimage for the challenge template associated
with that call to F and MA outputs it, breaking mm-spr of F. Otherwise,
the two chains collide on the output of the (bj)ith call to F, i.e., on (σj)i,
the jth value of the original signature. Let (K, M) be the challenge pair
associated with the call to F that produced (σj)i. According to Eq. 10, (σj)i

has at least two preimages under Fk. As A has no information about the
preimage, the value X that can be computed from the forgery and that leads
fK(X) = (σj)i is unequal to M with at least probability 1/2. In that case,
MA found a second preimage of M under FK and outputs it. Otherwise
it returns ⊥. Consequently, the probability that A outputs a case 2 forgery
must be upper bounded by 2InSecmm-spr (F; ξ) per assumption.

Case 3: If the data generated verifying the two signatures first agrees on a root
node, the WOTS+ public keys that are used to compute this root node have
to differ. A third time by the pigeonhole principle, there must be one call to H

between the WOTS+ public key and the root node where the output for the
forgery and the correct signature agree for the first time. As the input data
depends on previously computed outputs of H (or F), it must differ. Hence,
for challenge pair (K, M), the input to this call to HK is a second preimage
for M , that MA returns breaking mm-spr of H. Hence, the probability that
A outputs a case 3 forgery must be upper bounded by InSecmm-spr (H; ξ).

Combining the upper bounds from the three cases shows that the success prob-
ability εA of A winning in Game 2 must be upper bounded by

εA ≤ max{InSecm-eTCR (H; ξ) , 2InSecmm-spr (F; ξ) , InSecmm-spr (H; ξ)}.
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Combining this with the result that the difference in A’s success probability
between playing in Game 1 and playing in Game 2 must be upper bounded by
InSecprf

(

F2
n; ξ

)

, we get the claimed bound on the success probability of any
adversary A running in time ξ:

Succeu-cmaXMSS-T (A) ≤ InSecprf
(

F1
n; ξ

)

+ InSecprf (Fm; ξ)

+ max{InSecm-eTCR (H; ξ) , 2InSecmm-spr (F; ξ) , InSecmm-spr (H; ξ)}

��



Nearly Optimal Verifiable Data Streaming

Johannes Krupp1(B), Dominique Schröder1, Mark Simkin1, Dario Fiore2,
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Abstract. The problem of verifiable data streaming (VDS) considers
the setting in which a client outsources a large dataset to an untrusted
server and the integrity of this dataset is publicly verifiable. A special
property of VDS is that the client can append additional elements to the
dataset without changing the public verification key. Furthermore, the
client may also update elements in the dataset. All previous VDS con-
structions follow a hash-tree-based approach, but either have an upper
bound on the size of the database or are only provably secure in the
random oracle model. In this work, we give the first unbounded VDS con-
structions in the standard model. We give two constructions with differ-
ent trade-offs. The first scheme follows the line of hash-tree-constructions
and is based on a new cryptographic primitive called Chameleon Vec-
tor Commitment (CVC), that may be of independent interest. A CVC
is a trapdoor commitment scheme to a vector of messages where both
commitments and openings have constant size. Due to the tree-based
approach, integrity proofs are logarithmic in the size of the dataset. The
second scheme achieves constant size proofs by combining a signature
scheme with cryptographic accumulators, but requires computational
costs on the server-side linear in the number of update-operations.

1 Introduction

In this work we study the problem of verifiable data streaming (VDS) [21], where
a (computationally weak) client outsources a dataset to an untrusted server, such
that the following properties are maintained.

1. Naturally, the space requirement on the client-side should be sublinear in the
size of the dataset.

2. Anyone should be able to retrieve arbitrary subsets of the outsourced data
along with a corresponding proof and verify their integrity using the client’s
public key pk .

3. Notably, such a verification must guarantee that elements have not been
altered and are maintained in the correct position in the dataset.

4. Appending new elements to the outsourced dataset requires only a single
message from the client to the server including the data element and an
authentication information.

c© International Association for Cryptologic Research 2016
C.-M. Cheng et al. (Eds.): PKC 2016, Part I, LNCS 9614, pp. 417–445, 2016.
DOI: 10.1007/978-3-662-49384-7 16
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Table 1. Comparison to previous VDS constructions. Unbounded indicates whether
the construction can authenticate an unbounded amount of elements. M is an upper
bound on the size of the dataset, N denotes the number of elements in the dataset, and
U is the number of update operations. The base of all logarithms is stated explicitly
to highlight the hidden factors.

Unbounded Stand.
model

Assump Append Query Verify Update Size

π pk

[21] ✗ ✓ Dlog O(log2 M) O(log2 M) O(log2 M) O(log2 M) O(log2 M) O(1)

[22] ✓ ✗ Dlog, RO O(log2 N) O(log2 N) O(log2 N) O(log2 N) O(log2 N) O(1)

CVC ✓ ✓ CDH O(1) O(logq N) O(logq N) O(logq N) O(logq N) O(1)

ACC ✓ ✓ q-strong DH O(1) O(U) O(1) O(1) O(1) O(1)

5. The client must be able to update any element in the remote storage effi-
ciently. Any update operation results in a new public key pk ′, which invali-
dates the old data element so as to prevent rollback (aka replay) attacks.

Various applications for VDS protocols have been discussed in [21,22]. In this
work we propose two novel solutions to the problem described above that are
asymptotically and practically faster than all known previous constructions.

1.1 Our Contribution

We propose two novel and fundamentally different approaches to VDS that result
in the first practical verifiable data streaming protocols in the standard model
in which the size of the outsourced dataset is not bounded a priori (see Table 1
for a comparison). Somewhat surprisingly, our schemes are asymptotically more
efficient even compared with solutions in the random oracle model ([22]). Specif-
ically, our contribution consists of the following:

1. We introduce Chameleon Vector Commitments (CVCs), a new cryptographic
primitive that combines properties of chameleon hashes and vector commit-
ments [6]. We believe that CVCs may also be of independent interest in other
contexts and provide a comprehensive formal treatment of this primitive in
the full version [9].

2. We combine CVCs with a novel hash-tree-like structure to build a VDS pro-
tocol, that is faster than all previously known constructions, unbounded and
provably secure in the standard model. This scheme is presented in Sect. 4.

3. We give a second VDS protocol based on signature schemes and cryptographic
accumulators from [15], which achieves constant-size proofs, but has compu-
tational costs on the server-side linear in the number of update-operations
and requires a stronger assumption. This scheme is presented in Sect. 5.

4. We provide a comprehensive evaluation of our schemes based on a full imple-
mentation in Java on Amazon EC2 instances, showing that our two con-
structions achieve practical performances. The results of our performance
evaluation can be found in the full version [9].
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1.2 Related Work

Verifiable data streaming is a generalization of verifiable databases (VDB) [2]
and was first introduced by Schröder and Schröder [21], who also presented a
construction for an a priori fixed number of elements M . In their construction,
all operations have computational cost logarithmic in this upper bound M , and
proofs also have size logarithmic in M . Recently, Schröder and Simkin suggested
the first VDS protocol that gets rid of such an upper bound [22], but is only
provably secure in the random oracle model. Table 1 compares their previous
constructions with ours.

VDBs were first introduced by Benabbas, Gennaro, and Vahlis [2] with the
main difference, compared to VDS, being that the size of the database is already
defined during the setup phase, while in the VDS setting it may be unbounded.
Furthermore, in a VDS protocol, elements can be appended to the dataset non-
interactively by sending a single message to the server. Notably this message
does not affect the verification key of the database. VDBs have been exten-
sively investigated in the context of accumulators [4,5,15] and authenticated
data structures [12,14,17,24]. More recent works, such as [2] or [6], also have an
upper bound on the size of the dataset, and the scheme of [2] is not publicly
verifiable.

Other works like streaming authenticated data structures by Papamanthou
et al. [16] or the Iris cloud file system [23] consider untrusted cloud storage
providers, but require a key update for every appended element.

“Pure” streaming protocols between a sender and possibly multiple clients,
such as TESLA and their variants, e.g. [18,19], require the sender and receiver
to be loosely synchronized. Furthermore, these protocols do not offer public ver-
ifiability. The signature based solution of [19] does not support efficient updates.

Very recently, the underlying technique of chameleon authentication trees has
been applied to the problem of equivocation in distributed systems. In particular,
Ruffing et al. showed that making conflicting statements to others in a distrib-
uted protocol, can be monetarily disincentivized by the use of crypto-currencies
such as Bitcoin [20].

1.3 Straw Man Approaches

In a VDS protocol, the server must be able to prove the authenticity of each
element under the public verification key. Here we discuss two simple approaches
and their drawbacks.

One trivial idea might be to simply sign all elements and their position in
the dataset: The client simply stores a key-pair for a signature scheme and the
number of elements in the dataset. To append a new element to the dataset the
client signs the new element and its position and gives both the new element and
the signature to the server. However, it is not clear how to update an element
in the dataset efficiently. Simply signing the new element is not sufficient, since
the old element is not invalidated, i.e., upon a query for the updated index, the
server could simply return the old element instead of the new one.
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Another idea to construct a VDS protocol might be to use a Merkle tree over
all elements and a signature on the root of this tree: To append a new element,
the client recomputes the new Merkle root, signs it, and gives the new element
and the signed root to the server. To update an existing entry in the dataset, the
client computes the new Merkle root, picks a fresh key-pair for the signature,
signs the root and publishes the new verification key of the signature scheme
as the public verification key. While this approach does indeed work, it requires
computations logarithmic in the size of the dataset on the client-side, whereas
our constructions achieve constant-time.

1.4 Our Approach

Similar to previous approaches [21,22] our first scheme uses a Merkle-Tree-like
structure to authenticate elements. Every node in the tree authenticates one
element in the dataset, and the position in the dataset determines the position
of the node in the tree. The root of the tree serves as the public key, and a
proof that an element is stored at a certain position in the dataset consists of all
nodes along the path from that element’s node to the root. However, in contrast
to a Merkle-Tree, our tree-structure does not distinguish between inner-nodes,
which authenticate their children, and leaf-nodes, which authenticate elements.
Instead, every node in our tree-structure authenticates both, a data element and
its children in the tree. By using CVCs instead of a hash in each node, our tree-
structure also allows us to add new layers to the tree without changing the root
node. Furthermore, CVCs also allow us to increase the arity of the tree without
increasing the size of proofs. Finally, by exploiting the arithmetic structure of
CVCs, our first scheme allows to append new elements by sending a constant
size message from the client to the server.

Our second scheme follows a completely different approach. As in the first
straw man approach, the client holds a key-pair for a signature scheme and signs
elements and their position in the dataset. We solve the problem of updates, by
using a cryptographic accumulator as a black-list for invalidted signatures. To
prevent the rollback attacks, in our scheme, the server has to give a proof-of-non-
membership, to prove that a signature had not been revoked by some previous
update.

2 Preliminaries

In this section we define our notation and describe some cryptographic primitives
and assumptions used in this work.

The security parameter is denoted by λ. a||b refers to an encoding that allows
to uniquely recover the strings a and b. If A is an efficient (possibly randomized)
algorithm, then y ← A(x; r) refers to running A on input x using randomness r
and assigning the output to y.
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2.1 Bilinear Maps

Let G1,G2, and GT be cyclic multiplicative groups of prime order p, generated
by g1 and g2, respectively. Let e : G1 × G2 �→ GT be a bilinear pairing with the
following properties:

1. Bilinearity e(P a, Qb) = e(P,Q)ab for all P ∈ G1 and all Q ∈ G2 and a, b ∈ Zp;
2. Non-degeneracy e(g1, g2) �= 1;
3. Computability: There exists an efficient algorithm to compute e(P,Q) for all

P ∈ G1 and all Q ∈ G2.

If G1 = G2 then the bilinear map is called symmetric. A bilinear instance gener-
ator is an efficient algorithm that takes as input the security parameter 1λ and
outputs a random tuple (p,G1,G2,GT , g1, g2, e).

2.2 Computational Assumptions

Now we briefly recall the definitions of the Computational Diffie-Hellman (CDH)
assumption, the Square-Computational Diffie-Hellman (Square-CDH) assump-
tion, and the q-strong Diffie-Hellman assumption.

Assumption 1 (CDH). Let G be a group of prime order p, let g ∈ G be a
generator, and let a, b be two random elements from Zp. The Computational
Diffie-Hellman assumption holds in G if for every PPT adversary A the proba-
bility Prob

[

A(g, ga, gb) = gab
]

is negligible in λ.

Assumption 2 (Square-CDH assumption). Let G be a group of prime order
p, let g ∈ G be a generator, and let a be a random element from Zp. The Square
Computational Diffie-Hellman assumption holds in G if for every PPT adversary
A the probability Prob

[

A(g, ga) = ga2
]

is negligible in λ.

It is worth noting that the Square-CDH assumption has been shown equiva-
lent to the standard CDH assumption [1,13].

Assumption 3 (q-strong DH assumption). Let (p,G,GT , e, g) be a tuple
generated by a bilinear instance generator, and let s be randomly chosen in Z

∗
p.

We say that the q-Strong DH (q-SDH) assumption holds if every PPT algorithm
A(p,G,GT , e, g, gs, gs2

, . . . , gsq

) has negligible probability (in λ) of returning a
pair (c, g1/(s+c)) ∈ Z

∗
p × G.

2.3 Chameleon Hash Functions

A chameleon hash function is a randomized collision-resistant hash function that
provides a trapdoor to find collisions. This means that given the trapdoor csk ,
a message m, some randomness r and another message m′, it is possible to find
a randomness r′ s.t. Ch(m; r) = Ch(m′; r′).
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Definition 1 (Chameleon Hash Function). A chameleon hash function is
a tuple of PPT algorithms CH = (CHGen,Ch,Col):

CHGen(1λ): The key generation algorithm returns a key-pair (csk , cpk) and sets
Ch(·) := Ch(cpk , ·).

Ch(m; r): The input of the hashing algorithm is a message m and some random-
ness r ∈ {0, 1}λ and it outputs a hash value.

Col(csk ,m, r,m′): Upon input of the trapdoor csk, a message m, some random-
ness r and another message m′, the collision finding algorithm returns some
randomness r′ s.t. Ch(m; r) = Ch(m′; r′).

Uniform Distribution: The output of Ch is uniformly distributed, thus the
output of Ch(m; r) is independent of m. Furthermore, the distribution of
Col(csk ,m, r,m′) is identical to the distribution of r.

A chameleon hash is required to be collision-resistant, i.e., no PPT adversary
should be able to find (m, r) and (m′, r′) s.t. (m, r) �= (m′, r′) and Ch(m; r) =
Ch(m′; r′).

Definition 2 (Collision Resistance). A chameleon hash CH is collision-
resistant if the success probability for any PPT adversary A in the following
game is negligible in λ:

Experiment HashColCH
A (λ)

(csk , cpk) ← CHGen(1λ)
(m,m′, r, r′) ← A(Ch)
if Ch(m; r) = Ch(m′; r′) and (m, r) �= (m′, r′) output 1
else output 0

2.4 Vector Commitments

A vector commitment [6] is a commitment to an ordered sequence of messages,
which can be opened at each position individually. Furthermore, a vector com-
mitment provides an interface to update single messages and their openings.

Definition 3 (Vector Commitment). A vector commitment is a tuple of
PPT algorithms VC = (VGen,VCom,VOpen,VVer,VUpdate,VProofUpdate):

VGen(1λ, q): The key generation algorithm gets as input the security parameter
λ and the size of the vector q and outputs some public parameters pp.

VCompp(m1, . . . , mq): Given q messages, the commitment algorithm returns a
commitment C and some auxiliary information aux, which will be used for
proofs and updates.

VOpenpp(m, i, aux): The opening algorithm takes as input a message m, a posi-
tion i and some auxiliary information aux and returns a proof Λi that m is
the message at position i.

VVerpp(C,m, i, Λi): The verification algorithm outputs 1 only if Λi is a valid
proof that C was created to a sequence with m at position i.
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VUpdatepp(C,m,m′, i): The update algorithm allows to change the i-th message
in C from m to m′. It outputs an updated commitment C ′ and some update-
information U .

VProofUpdatepp(C,Λj ,m
′, i, U): The proof-update algorithm may be run by any-

one holding a proof Λj that is valid w.r.t. C to obtain the updated commit-
ment C ′ and an updated proof Λ′

j that is valid w.r.t. C ′.

The security definition of vector commitments requires a vector commitment
to be position-binding, i.e., no PPT adversary A given pp can open a commit-
ment to two different messages at the same position. Formally:

Definition 4 (Position-Binding). A vector commitment is position-binding
if the success probability for any PPT adversary A in the following game is
negligible in λ:

Experiment PosBdgVC
A (λ)

pp ← VGen(1λ, q)
(C,m,m′, i, Λ, Λ′) ← A(pp)
if m �= m′ ∧ VVerpp(C,m, i, Λ) ∧ VVerpp(C,m′, i, Λ′) output 1
else output 0.

2.5 The Bilinear-Map Accumulator

We briefly recall the accumulator based on bilinear maps first introduced by
Nguyen [15]. For simplicity, we describe the accumulator using symmetric bilin-
ear maps. A version of the accumulator using asymmetric pairings can be
obtained in a straightforward way, and our implementation does indeed work
on asymmetric MNT curves.

For some prime p, the scheme accumulates a set E = {e1, . . . , en} of ele-
ments from Z

∗
p into an element f ′(E) in G. Damg̊ard and Triandopoulos [7]

extended the construction with an algorithm for issuing constant size proofs
of non-membership, i.e., proofs that an element e /∈ E . The public key of the
accumulator is a tuple of elements {gsi |0 ≤ i ≤ q}, where q is an upper bound
on |E| = n that grows polynomially with the security parameter λ = O(log p).
The corresponding secret key is s. More precisely, the accumulated value f ′(E)
is defined as

f ′(E) = g(e1+s)(e2+s)...(en+s).

The proof of membership is a witness Aei
which shows that an element ei belongs

to the set E and it is computed as

Aei
= g

∏

ej ∈ E:ej �= ei
(ej+s)

.

Given the witness Aei
, the element ei, and the accumulated values f ′(E), the

verifier can check that

e(Aei
, gei · gs) = e(f ′(E), g).
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The proof of non-membership, which shows that ei �∈ E , consists of a pair of
witnesses ŵ = (w, u) ∈ G × Z

∗
p with the requirements that:

u �= 0

(ei + s)|[
∏

e∈E
(e + s) + u]

w(ei+s) = f ′(E) · gu

The verification algorithm in this case checks that

e(w, gei · gs) = e(f ′(E) · gu, g).

The authors also show that the proof of non-membership can be computed effi-
ciently without knowing the trapdoor s.

The security of this construction relies on the q-strong Diffie-Hellman
assumption. In particular, Nguyen showed that the accumulator is collision-
resistant under the q-SDH assumption:

Lemma 1 ([15]). Let λ be the security parameter and t = (p,G,GT , e, g) be
a tuple of bilinear pairing parameters. Under the q-SDH assumption, given a
set of elements E, the probability that, for some s chosen at random in Z

∗
p, any

efficient adversary A, knowing only t, g, gs, gs2
, . . . , gsq

(q ≥ |E|), can find a set
E ′ �= E (q ≥ |E ′|) such that f ′(E ′) = f ′(E) is negligible.

Damg̊ard and Triandopoulos showed that:

Lemma 2 ([7]). Under the q-SDH assumption, for any set E there exists a
unique non-membership witness with respect to the accumulated value f ′(E) and
a corresponding efficient and secure proof of non-membership verification test.

2.6 Verifiable Data Streaming

A VDS protocol [21] allows a client, who possesses a private key, to store a large
amount of ordered data d1, d2, . . . on a server in a verifiable manner, i.e., the
server can neither modify the stored data nor append additional data. Further-
more, the client may ask the server about data at a position i, who then has
to return the requested data di along with a publicly verifiable proof π̃i, which
proves that di was actually stored at position i. Formally, a VDS protocol is
defined as follows:

Definition 5 (Verifiable Data Streaming). A verifiable data streaming pro-
tocol VDS = (Setup,Append,Query,Verify,Update) is a protocol between a client
C and a server S, which are both PPT algorithms. The server holds a database
DB.

Setup(1λ): The setup algorithm takes as input the security parameter and gen-
erates a key-pair (pk , sk), gives the public verification key pk to the server S
and the secret key sk to the client C.
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Append(sk , d): The append protocol takes as input the secret key and some data
d. During the protocol, the client C sends a single message to the server S,
who will then store the new item d in DB. This protocol may output a new
secret key sk ′ to the client, but the public key does not change.

Query(pk ,DB , i): The query protocol runs between S(pk ,DB) and C(i). At the
end the client will output the i-th entry of the database DB along with a
proof π̃i.

Verify(pk , i, d, π̃i): The verification algorithm outputs d, iff d is the i-th element
in the database according to π̃i. Otherwise it outputs ⊥.

Update(pk ,DB , sk , i, d′): The update protocol runs between S(pk ,DB) and
C(i, d′). At the end, the server will update the i-th entry of its database DB
to d′ and both parties will update their public key to pk ′. The client may also
update his secret key to sk ′.

Intuitively the security of a VDS protocol demands that an attacker should
not be able to modify stored elements nor should he be able to add further
elements to the database. In addition, the old value of an updated element
should no longer verify. This can be formalized in the following game VDSsec:

Setup: First, the challenger generates a key-pair (sk , pk) ← Setup(1λ). It sets
up an empty database DB and gives the public key vp to the adversary A.

Streaming: In this adaptive phase, the adversary A can add new data by giving
some data d to the challenger, which will then run (sk ′, i, π̃i) ← Append(sk , d)
to append d to its database. The challenger then returns (i, π̃i) to the adver-
sary. A may also update existing data by giving a tuple (d′, i) to the chal-
lenger, who will then run the update protocol Update(pk ,DB , sk , i, d′) with
the adversary A. The challenger will always keep the latest public key pk∗

and a ordered sequence of the database Q = {(d1, 1), . . . , (dq(λ), q(λ))}.
Output: To end the game, the adversary A can output a tuple (d∗, i∗, π̂). Let

d̂ ← Verify(pk∗, i∗, d∗, π̂). The adversary wins iff d̂ �= ⊥ and (d̂, i∗) �∈ Q.

Definition 6 (Secure VDS). A VDS protocol is secure, if the success prob-
ability of any PPT adversary in the above game VDSsec is at most negligible
in λ.

3 Chameleon Vector Commitments

In this section we introduce chameleon vector commitments (CVCs). CVCs
extend the notion of vector commitments [6,10]. CVCs allow one to commit
to an ordered sequence of messages in such a way that it is possible to open each
position individually, and the commitment value as well as the openings are
concise, i.e., of size independent of the length of the message vector. In addition
CVCs satisfy a novel chameleon property, meaning that the holder of a trapdoor
may replace messages at individual positions without changing the commitment
value.
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3.1 Defining CVCs

We define CVCs as a tuple of seven efficient algorithms: a key generation algo-
rithm CGen to compute a set of public parameters and a trapdoor, a commitment
algorithm CCom to commit to a vector of messages, an opening algorithm COpen
to open a position of a commitment, a collision finding algorithm CCol that uses
the trapdoor to output the necessary information for opening a commitment to
a different value, an updating algorithm CUpdate to update the values in a com-
mitment without recomputing the entire commitment, a proof update algorithm
CProofUpdate to update proofs accordingly, and a verification algorithm CVer to
verify the correctness of an opening w.r.t. a commitment.

Definition 7 (Chameleon Vector Commitment). A chameleon vector
commitment is a tuple of PPT algorithms CVC = (CGen,CCom,COpen,CVer,
CCol,CUpdate,CProofUpdate) working as follows:

Key Generation CGen(1λ, q): The key generation algorithm takes as inputs the
security parameter λ and the vector size q. It outputs some public parameters
pp and a trapdoor td.

Committing CCompp(m1, . . . , mq): On input of a list of q ordered messages,
the committing algorithm returns a commitment C and some auxiliary infor-
mation aux.

Opening COpenpp(i,m, aux): The opening algorithm returns a proof π that m
is the i-th committed message in a commitment corresponding to aux.

Verification CVerpp(C, i,m, π): The verification algorithm returns 1 iff π is a
valid proof that C was created on a sequence of messages with m at position i.

Collision finding CColpp(C, i,m,m′, td, aux): The collision finding algorithm
returns a new auxiliary information aux′ such that the pair (C, aux′) is indis-
tinguishable from the output of CCompp on a vector of q messages with m′

instead of m at position i.
Updating CUpdatepp(C, i,m,m′): The update-algorithm allows to update the

i-th message from m to m′ in the commitment C. It outputs a new commit-
ment C ′ and an update information U , which can be used to update both aux
and previously generated proofs.

Updating Proofs CProofUpdatepp(C, πj , i, U): The proof-update-algorithm
allows to update a proof πj that is valid for position j w.r.t. C to a new
proof π′

j that is valid w.r.t. C ′ using the update information U .

A tuple CVC of algorithms as defined above is a chameleon vector commit-
ment if it is correct, concise and secure.

Conciseness is a property about the communication efficiency of CVCs which
is defined as follows:

Definition 8 (Concise). A CVC is concise, if both the size of the commitment
C and the size of the proofs πi are independent of the vector size q.

Informally, correctness guarantees that a CVC works as expected when its
algorithms are honestly executed. A formal definition follows:
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Definition 9 (Correctness). A CVC is correct if for all q = poly(λ),
all honestly generated parameters (pp, td) ← CGen(1λ, q) and all messages
(m1, . . . , mq), if (C, aux) ← CCompp(m1, . . . , mq) and π ← COpenpp(i,m, aux),
then the verification algorithm CVerpp(C, i,m, π) outputs 1 with overwhelming
probability. Furthermore, correctness must hold even after some updates occur.
Namely, considering the previous setting, any message m′ and any index i, if
(C ′, U) ← CUpdatepp(C, i,mi,m

′) and π′ ← CProofUpdatepp(C, π, i, U), then
the verification algorithm CVerpp(C ′, i,m′, π′) must output 1 with overwhelming
probability

Security of CVCs. Finally, we discuss the security of CVCs which is defined by
three properties: indistinguishable collisions, position binding and hiding. Infor-
mally speaking, a CVC has indistinguishable collisions if one is not able to find
out if the collision finding algorithm had been used or not. Secondly, a scheme
satisfies position binding if, without knowing the trapdoor, it is not possible to
open a position in the commitment in two different ways. Thirdly, hiding guar-
antees that the commitment does not leak any information about the messages
that the commitment was made to. In what follows we provide formal definitions
of these properties. Since the hiding property is not needed for our application,
we have deferred its definition to the full version.

Indistinguishable Collisions. This is the main novel property of CVCs: one can
use the trapdoor to change a message in the commitment without changing
the commitment itself. Intuitively, however, when seeing proofs, one should not
be able to tell whether the trapdoor has been used or not. We call this notion
indistinguishable collisions, and we formalize it in the game ColInd. Observe that
we require the indistinguishability to hold even when having knowledge of the
trapdoor.

Definition 10 (Indistinguishable Collisions). A CVC has indistinguishable
collisions if the success probability of any stateful PPT adversary A = (A0,A1)
in the game ColInd is only negligibly bigger than 1/2 in λ.

Position-Binding. This property aims to capture that, without knowing the
trapdoor, one should not be able to open the same position of a chameleon
vector commitment to two different messages. In particular, we consider a strong
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definition of this notion in which the adversary is allowed to use an oracle CCol
for computing collisions. Namely, even when seeing collisions for some of the
positions, an adversary must not find two different openings for other positions.
This notion, called position-binding, is formalized as follows:

Definition 11 (Position-Binding). A CVC satisfies position-binding if no
PPT adversary A can output two valid proofs for different messages (m,m′) at
the same position i with non-negligible probability. Formally, the success proba-
bility af any PPT adversary A in the following game PosBdg should be negligible
in λ. Whenever the adversary queries the collision oracle with a commitment,
a position, two messages and some auxiliary information (C, i,m,m′, aux), the
game runs the collision finding algorithm aux′ ← CColpp(C, i,m,m′, td, aux) and
returns aux′ to the adversary.

3.2 Construction of CVCs Based on CDH

In this section we show a direct construction of CVCs based on the Square-
CDH assumption in bilinear groups, which – we note – has been shown equiv-
alent to the standard CDH assumption [1,13]. A generic construction of CVCs
can be found in the fullversion [9]. Our direct construction can be seen as an
aggregated variant of the Krawczyk-Rabin chameleon hash function [8], or as a
generalization of the VC scheme due to Catalano and Fiore [6]. For simplicity
we describe the scheme in symmetric pairings, but we stress that this scheme
can be expressed using asymmetric pairings and our implementation does use
asymmetric pairings.

Construction 1. Let G,GT be two groups of prime order p with a bilinear map
e : G × G → GT .

CGen(1λ, q): Let g ∈ G be a random generator. Choose z1, . . . , zq ← Zp at
random, set hi = gzi for i = 1, . . . , q and hi,j = gzizj for i, j = 1, . . . , q, i �= j.
Finally, set pp = (g, {hi}i=1,...,q, {hi,j}i,j=1,...,q,i �=j) and td = {zi}i=1,...,q.

CCompp(m1, . . . , mq): Choose r ← Zp at random. Set C = hm1
1 · · · hmq

q gr and
aux = (m1, . . . , mq, r).

COpenpp(i,m, aux): Compute π = hr
i ·

q
∏

j=1,j �=i

h
mj

i,j .

CVerpp(C, i,m, π): If e(C/hm
i , hi) = e(π, g) output 1, else output 0.

CColpp(C, i,m,m′, td, aux): Parse aux = (m1, . . . , mq, r). Compute r′ = r +
zi(m − m′) and set aux′ = (m1, . . . , m

′, . . . , mq, r
′).

CUpdatepp(C, i,m,m′): Compute C ′ = C · hm′−m
i , set U = (i, u) = (i,m′ − m).

CProofUpdatepp(C, πj , j, U): Parse U = (i, u). Compute C ′ = C · hu
i . If i �= j

compute π′
j = πj · hu

j,i, else π′
j = πj.

We also show two additional algorithms that allow to “accumulate” several
updates at different positions, and then to apply these updates to a proof in
constant time.
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accumulateUpdatepp(AU,U): Parse AU = (j, au) and U = (i, u). If j �= i, com-
pute au = au · hu

i,j .
CProofUpdate′

pp(πj , AU): Parse AU = (j, au). Compute π′
j = πj · au.

Theorem 1. If the CDH assumption holds, Construction 1 is a chameleon vec-
tor commitment.

Please refer to the fullversion [9] for the proofs.

4 VDS from CVCs

In this section we present our VDS protocol from CVCs. The section is structured
as follows: in Sect. 4.1 we explain the main idea of the construction, the formal
description is then given in Sect. 4.2.

4.1 Intuition

The main idea is to build a q-ary tree where each node of the tree authenticates
a data element and its q children. In our construction, every node is a CVC to a
vector of size q + 1. The first component of this vector is the data element, and
the q remaining components are the node’s q children (or 0 as a dummy value
for children that do not yet exist). The root of the tree is used as the public
verification key, while the CVC trapdoor is the private key which enables the
client to append further elements to the tree.

The tree is constructed in such a way that it grows dynamically from top
to bottom. It works as follows: Initially, the tree consists only of the root node,
which is a CVC to a vector of zeros. Elements are inserted into the tree from left
to right and new children are linked to their parent by computing an opening
for the appropriate position in the parent node.

Consider for example the tree shown in Fig. 1 where q = 2. Blank spaces
denote the fact, that no opening for this position has been computed yet (i.e.
the corresponding child node does not exist yet). On the left side, the structure
is depicted for a dataset that contains three elements (d1, d2, and d3). To add the
next element d4, the client generates a new CVC to a vector of three elements,
where the first component is the new element d4 and all the other components
are set to 0. The new node n4 will be the second child of node n1, thus the client
computes an opening for the third component of n1 to the new CVC n4. It can
compute such an opening by finding a collision. The resulting tree is shown on
the right.

For simplicity, the root node will not authenticate any data element, but only
its children.

The proof that a data element d is stored at a certain position in the tree (and
thereby in a certain position in the dataset) consists of a list of CVC-openings
and intermediate nodes of the tree:

π̃i = (πl, nl, . . . , n1, π0).
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n1 n2

d1 n3 d2

d3

n0 =

n1 = n2 =

n3 =

n1 n2

d1 n3 n4 d2

d3 d4

n0 =

n1 = n2 =

n3 = n4 =

append
element d4

Fig. 1. Appending element d4 to our authenticated datastructure for q = 2

Here πl is an opening of the first component of nl to the element d, πl−1 is an
opening showing that the node nl is a child of node nl−1, and eventually π0 is
an opening showing that node n1 is a child of the root node. The whole proof
π̃i is called an authentication path.

To reduce the amount of data the client has to store, we exploit the key-
features of our CVCs. Adding a new node to the tree requires knowledge of
the parent of the new node, i.e., the value and the corresponding auxiliary
information, but storing the entire tree at the client would defeat the pur-
pose of a VDS protocol. To circumvent this problem, we make nodes recom-
putable. Namely, to create a new node ni for element di, we first derive the
randomness ri of the CVC deterministically using a pseudorandom function,
then compute the node (ni, aux∗

i ) ← CCompp(0, 0, . . . , 0; ri) and find a collision
auxi ← CColpp(ni, 1, 0, d, td, aux∗

i ).
This idea allows us to split the tree between the client and the server in the

following way: The client only stores the secret key sp = (k, td, cnt), whereas the
server simply stores all data d1, d2, . . . and all nodes n1, n2, . . . along with their
openings. Now, whenever the client wants to add a new data element d, it deter-
mines the next free index i = cnt+1 and the level l of the new node, as well as the
index p of its parent and the position j this node will have in its parent. The client
then computes the new node as (ni, aux∗

i ) ← CCompp(0, 0, . . . , 0; ri), where the
randomness ri is computed using the PRF. It adds the new data element by find-
ing a collision for the first component auxi ← CColpp(ni, 1, 0, d, td, aux∗

i ). With
this, the client then can compute an opening of the first component of ni, show-
ing that d is indeed stored in ni in the first component: πl ← COpenpp(1, d, auxi).
To append this new node ni in the tree, the client recomputes the parent node
as (np, aux∗

p) ← CCompp(0, 0, . . . , 0; rp) and finds a collision in the j-th position:
auxp ← CColpp(np, j, 0, ni, td, aux∗

p). From there, the client can then compute an
opening of the parent node to the new node: πl−1 ← COpenpp(j, ni, auxp). We
call (πl, ni, πl−1) an insertion path (since it is a partial authentication path). The
client then sends the new data element and the insertion path (d, (πl, ni, πl−1))
to the server, who stores this tuple in its database.

To answer a query on index i, the server computes a full authentication path
for i by concatenating the insertion paths of all nodes on the path from i to
the root. Note that each insertion path is of constant size due to the conciseness
requirement for CVCs (see Definition 8), and thus the size of a full authentication
path is only in O(logq N), where N is the number of elements in the dataset
so far.
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At first glance, the idea described so far seems to work. However, there is
one more issue that needs to be overcome: The client may perform updates (i.e.,
change a data element from di to d′

i) and continue appending new elements
afterwards. This changes the value of ni, and the client cannot recompute this
value without storing all update-information. However, when appending a new
child of ni, the client has to find an opening of a position of this node ni.

We solve this issue by letting the server store “an aggregate” of all update
information. This way, the client can compute an “outdated” opening (i.e., as
before any update) and then this opening can be updated by the server in con-
stant time. Precisely, in the general case the server has to store a list of all
updates and apply them one by one on incoming openings (in linear time).
However, in the case of our CDH-based CVCs, we can exploit their homomor-
phic property to “accumulate” update-information by only storing its sum, thus
achieving constant insertion time.

4.2 Formal Description of Our Construction

In this section, we present the formal description of our construction.
For better readability, we define the following three functions. The first one

computes the index of the parent of node i, the second one computes in which
component node i is stored in its parent, and the third function computes in
which level of the tree node i can be found.

parent(i) = � i−1
q �

#child(i) = ((i − 1) mod q) + 2
level(i) = logq((q − 1)(i + 1) + 1) − 1�

Construction 2. Let CVC = (CGen,CCom,COpen,CVer,CCol,CUpdate,
CProofUpdate) be a CVC. Define VDS = (Setup,Append,Query,Verify,Update)
as follows:

Setup(1λ, q). This algorithm picks a random PRF key k ← {0, 1}λ, computes a
key-pair for the chameleon vector commitment (pp, td) ← CGen(1λ, q + 1),
and sets the counter cnt := 0. It computes r0 ← f(k, 0), sets the root as
(ρ, auxρ) ← CCompp(0, . . . , 0; r0), the secret key sk := (k, td, cnt), and the
public key pk := (pp, ρ). Finally, the secret key sk is kept by the client while
the public key pk is given to the server.

Before proceeding with the remaining algorithms, we summarize the information
stored by the server. The server maintains a database DB consisting of tuples
(i, di, ni, πi, πp,j , AUi, {AUi,j}q+1

j=1) where: i ≥ 0 is an integer representing the
index of every DB element, di is DB value at index i, ni is a CVC commitment,
πi is a CVC proof that di is the first committed message in ni, πp,j is a CVC
proof that ni is the message at position j +1 committed in np (which is the CVC
of ni’s parent node), AUi is the accumulated update information that can be used
to update the proof πi, and AUi,j are the accumulated update informations that
can be used to update the children’s proofs πi,j.
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Append(sk , d). The algorithm parses sk = (k, td, cnt) and determines the index
i = cnt + 1 of the new element, the index p = parent(i) of its parent
node, the position j = #child(i) that this element will have in its par-
ent, and then increases the counter cnt′ = cnt + 1. Next, it computes
the new node as (ni, aux∗

i ) ← CCompp(0, 0, . . . , 0; ri) where ri ← f(k, i) and
inserts the data d by finding a collision auxi ← CColpp(ni, 1, 0, d, td, aux∗

i ).
To append the node ni to the tree, the algorithm recomputes the parent
node as (np, aux∗

p) ← CCompp(0, 0, . . . , 0; rp) and inserts ni as the j-th
child of np by finding a collision in the parent node at position j, i.e., the
client runs auxp ← CColpp(np, j, 0, ni, td, aux∗

p). It then computes πi,1 ←
COpenpp(1, d, auxi) and πp,j ← COpenpp(j, ni, auxp), and sets the insertion
path (πi,1, ni, πp,j).
The client C sends the above insertion path and the new element d to the
server S. S then applies the accumulated update AUp,j to πp,j (i.e., compute
π′

p,j ← CProofUpdate′
pp(πp,j , AUp,j)) and stores these items in its database

DB.
Query(pk ,DB , i). In the query protocol, the client sends i to the server, who

determines the level l = level(i) and constructs an authentication path:

π̃i ← (πi,1)
a ← i
b ← parent(i)
for h = l − 1, . . . , 0

c ← #child(a)
π̃i ← π̃i :: (na, πb,c)
a ← b
b ← parent(b)

Finally, the server returns π̃i to the client.
Verify(pk , i, d, π̃i). This algorithm parses pk = (pp, ρ) and π̃i = (πl, nl, . . . ,

n1, π0). It then proceeds by verifying all proofs in the authentication path:

v ← CVerpp(ni, 1, d, πl) ∧ ni �= 0
a ← i
b ← parent(i)
for h = l − 1, . . . , 0

c ← #child(a)
v ← v ∧ CVerpp(nb, c, na, πh) ∧ nb �= 0
a ← b
b ← parent(b)

If v = 1 then output d. Otherwise output ⊥.
Update(pk ,DB , sk , i, d′). In the update protocol, the client, given the secret key

sk, sends an index i and a value d′ to the server. The server answers
by sending the value d currently stored at position i and the correspond-
ing authentication path π̃i = (πl, nl, . . . , n1, π0) (this is generated as in the
Query algorithm). The client then checks the correctness of π̃i by running
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Verify(pk , i, d, π̃i). If the verification fails, the client stops running. Other-
wise, it continues as follows. First, it parses sk as (k, td, cnt), it determines
the level of the updated node l ← level(i), and computes the new root ρ′ = n′

0

as follows:

(n′
l, Ul) ← CUpdatepp(ni, 1, d, d′, πl)

a ← i
b ← parent(i)
for h = l − 1, . . . , 0

c ← #child(a)
(n′

h, Uh) ← CUpdatepp(nh, c, nh+1, n
′
h+1, πh)

a ← b
b ← parent(b)

On the other side, after receiving (i, d′), the server runs a similar algorithm
to update all stored elements and proofs along the path of the new node. It
also accumulates the new update information for every node in this path:

(n′
i, Ui) ← CUpdatepp(ni, 1, d, d′)

for j = 1, . . . , q + 1
AUi,j ← accumulateUpdate(AUi,j , Ui)
π′

i,j ← CProofUpdate′
pp(πi,j , AUi,j)

(·, π′
i) ← CProofUpdatepp(ni, πi, i, Ui)

a ← i
b ← parent(a)
for h = l − 1, . . . , 0

c ← ((a − 1) mod q) + 2
(n′

b, Ub) ← CUpdatepp(nb, c, na, n′
a)

for j = 1, . . . , q + 1
AUb,j ← accumulateUpdate(AUb,j , Ub)
π′

b,j ← CProofUpdate′
pp(πb,j , Ub)

a ← b
b ← parent(b)

In the above algorithms, a is the index of the changed node, b the index of
its parent node, and c the position of node a in b. Basically, the algorithms
change the value of node i, and then this change propagates up to the root
(ρ′ = n′

0).

Finally, both the client and the server compute the new public key as pk =
(pp, ρ′).

4.3 Security

In this section, we show that the VDS protocol described in the previous section
is secure.
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Theorem 2. If f is a pseudorandom function and CVC is a secure CVC, then
Construction 2 is a secure VDS.

Proof. We prove the theorem by first defining a hybrid game in which we replace
the PRF with a random function. Such hybrid is computationally indistinguish-
able from the real VDSsec security game by assuming that f is pseudoran-
dom. Then, we proceed to show that any efficient adversary cannot win with
non-negligible probability in the hybrid experiment by assuming that the CVC
scheme is secure. In what follows we use Gmi,A(λ) to denote the experiment
defined by Game i run with adversary A.

Game 0: this identical to the experiment VDSsec.
Game 1: this is the same as Game 0 except that the PRF f is replaced with a

random function (via lazy sampling). It is straightforward to see that this
game is negligibly close to Game 0 under the pseudo randomness of f, i.e.,
Prob[Gm0,A(λ) = 1] − Prob[Gm1,A(λ) = 1] = negl(λ).

Now, consider Game 1. Let (i∗, d∗, π̂) be the tuple returned by the adversary
at the end of the game, d be the value currently stored in the database
at index i∗. Recall that Game 1 outputs 1 if Verify(pk , i∗, d∗, π̂) = 1 and
d �= d∗. Consider a honestly computed authentication path π̃ for (i∗, d) (this
is the path which can be computed by the challenger), and observe that by
construction the sequence in π̂ ends up at the public root. Intuitively, this
means that π̂ and π̃ must deviate at some point in the path from i∗ up to the
root. We define dcol as the event that the two authentication paths deviate
exactly in i∗, i.e., that ni = n∗

i . Dually, if dcol does not occur, it intuitively
means that the adversary managed to return a valid authentication path
that deviates from a honestly computed one in some internal node. Clearly,
we have:

Prob[Gm1,A(λ) = 1] = Prob[Gm1,A(λ) = 1 ∧ dcol]

+ Prob
[

Gm1,A(λ) = 1 ∧ dcol
]

Our proof proceeds by showing that both

Prob[Gm1,A(λ) = 1 ∧ dcol]

and
Prob

[

Gm1,A(λ) = 1 ∧ dcol
]

are negligible under the assumption that the CVC is position-binding.

Case dcol. In this case we build a reduction B against the position-binding prop-
erty of the underlying CVC.

On input pp, the reduction B computes the root node as described in the
catGen algorithm, sets the counter cnt := 0, and sets pk ← (pp, ρ). It then runs
A(vp) by simulating the VDSsec game.
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Whenever the adversary A streams some data element d, the reduction pro-
ceeds as described in the catAdd algorithm (except that pseudorandom values
are now sampled randomly, as per Game 1). However, B does not know the full
secret key sk – it does not know the CVC trapdoor – but it can use its collision-
oracle to compute the necessary collisions in the CVC in order to add new nodes
to the tree. So, the reduction B returns (i, π̃i) to the adversary and stores the
tuple (d, i, π̃i) in a list L.

Whenever the adversary A wants to update the element at position i to the
new value d′, the reduction proceeds as described in the Update algorithm. Note
that the CVC trapdoor is not needed in this phase. B then returns the updated
proof π̃′

i to A and updates the tuple (d′, i, π̃′
i) in L.

Eventually the adversary outputs (d∗, i∗, π̂∗). The reduction then finds the
actual data d and the corresponding proof π̃i for position i by searching for the
tuple (d, i∗, π̃i) in L, parses π̂∗ = (π∗, n∗

i , . . . ) and π̃i = (π, ni, . . . ) and outputs
(ni, 1, d, d∗, π, π∗).

For the analysis now observe that B is efficient as so is A, and searching for
a tuple in an ordered list can be done in polynomial time. It is easy to see that
B perfectly simulates the view for A as in the game VDSsec. Now, whenever
dcol happens, we know that n∗

i = ni. Hence both (π, d) and (π∗, d∗) must verify
correctly whenever A wins. Furthermore, observe that B never uses its collision-
oracle on position 1, since the Append algorithm always uses CCol on index j > 1.
This means essentially means that

Prob[Gm1,A(λ) = 1 ∧ dcol] ≤ Prob[PosBdgB(λ, q) = 1]
= negl(λ)

Case dcol Recall that in this case Game 1 outputs 1 only if the adversary wins
by returning an authentication path which deviates from the correct one at some
internal node in the path from i∗ up to the root. In this case too, we build a
reduction B against the position-binding property of the underlying CVC.

On input pp, the reduction B. It then tries to set an upper limit on the number
of elements the adversary will authenticate in the tree by choosing its depth
l = λ. The reduction then builds a tree of CVCs of size l from bottom to top,
where in each CVC every position which does not point to a child (especially the
first position) is set to 0. Denote the root of this tree by ρ. Finally, the reduction
B sets cnt := 0, sets pk ← (pp, ρ) and runs A(pk) by simulating Game 1 to it.

Whenever the adversary A streams some data element d to the reduction, the
reduction determines the index i = cnt + 1 for the new data element, increases
cnt by one and inserts the new element into the tree by finding a collision
in the first component of node ni using its collision-oracle. It then computes an
authentication path π̃i for d as described in the Append algorithm. The reduction
returns (i, π̃i) to the adversary and stores (d, i, π̃i) in some list L. If the adversary
exceeds the number of elements l, the reduction stops the adversary A, increases
l ← l · λ, and starts again.

Whenever the adversary A wants to update the element at position i to some
new value d′ the reduction proceeds as described in the Update algorithm. It then
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returns the updated proof π̃′
i to the adversary and updates the tuple (d′, i, π̃′

i)
in L.

At the end of the game the adversary outputs (d∗, i∗, π̂∗). The reduction
parses π̂∗ = (π∗

0 , n
∗
0, π

∗
1 , . . . ) and finds the largest j for which n∗

i = nj , i.e., for
which the authentication path π̂∗ still agrees with the actual tree. Also B finds
the authentication path π̃i∗ = (πi∗

0 , ni∗
0 , πi∗

1 , . . . ) up to i∗, if i∗ was streamed by
the adversary, or otherwise up to the deepest ancestor of i∗. Clearly, π∗

i then
must be a proof that n∗

i−1 is “stored” in n∗
i at some position h.

If nj is the deepest node in the path towards i∗ that is stored by the challenger
then the h-th message committed in nj by the challenger is 0. In this case B can
produce a honest proof πh,0 that 0 is the h-th message committed in nj , and
then outputs (nj , h, 0, n∗

i−1, πh,0, π
∗
i ).

Otherwise, if nj is not the deepest node, the honest path π̃i∗ must contain
a node ni∗

k = nj as well as a proof πi∗
k that the node ni∗

k−1 is the h-th child of
nj . In this case B outputs (nj , h, ni∗

k−1, n
∗
i−1, π

i∗
k , π∗

i ). As one can check, this case
also captures the on in which h = 1 and ni∗

k−1 = d �= d∗ = n∗
i−1.

For the analysis see that B is efficient because A is and because the limit
l will be large enough after a polynomial number of times. Now observe that
B perfectly simulates the view of A in Game 1 (otherwise the underlying CVC
would not have indistinguishable collisions). It is easy to see that whenever A
wins the pair (π∗

i , n∗
i−1) verifies w.r.t. nj . As B honestly computed ni∗

k−1 and
πi∗

k , this pair will also verify w.r.t. nj . Note that B only asks for collisions at
position 1, but h > 1. Therefore B wins whenever A does. Since the underlying
CVC is position-binding, this probability is at most negligible.

Prob
[

Gm1,A(λ) = 1 ∧ dcol
]

≤ Prob[PosBdgB(λ, q) = 1]
= negl(λ)

Since both parts are at most negligible in λ, the overall success probability of
any efficient adversary can only be negligible in λ, hence Construction 2 is secure
according to Definition 6.

4.4 Reducing the Public Key Size

Instantiating the scheme from Construction 2 with the CVCs from Construc-
tion 1 results in a public key of size O(q2) due to the values hi,j that are stored
in the public parameters pp, which are part of the VDS public key. As an inter-
esting extension, we show how to reduce the public key size of our VDS protocol
to O(1) by carefully inspecting our usage of the CVC scheme from Construc-
tion 1. In particular, note that the public key of the VDS protocol consists of:
elements that are required for public verifiability of queried data elements, and
elements only needed by the server.

The elements hi,j are only needed for COpen in the Append protocol on the
client-side, and in CProofUpdate in the Update protocol on the server-side. They
are, however, not used for public verifiability in the VDS protocol. Therefore,
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these values hi,j do not need to be part of the public verification key of the VDS
protocol, and can be sent directly to the server only once. This already reduces
the key size from O(q2) to O(q).

To get rid of the remaining elements h1, . . . , hq in the public key, we observe
that during each run of Verify, only one of these hi values is needed at every level.
This allows us to do the following change to the protocol: Instead of storing all
h1, . . . , hq in the public key, we let the client sign each hi, together with its index
i, using a regular signature scheme. For every i one thus obtain a signature σi,
and the server is required to store all pairs (h1, σ1), . . . , (hq, σq). Later when
the server has to provide the answer to a query, we require it to include all the
necessary (hi, σi) pairs in the authentication path. Note that these pairs are
most q, and thus do not increase the asymptotic length of the authentication
path. The verifier will eventually verify that σi is a valid signature on hi||i, before
using hi in CVer. This change allows us to replace the q hi values from the public
key with a single verification key of a signature scheme, and it results in a VDS
protocol with a public key size of size O(1).

5 VDS from Accumulators

Our second construction is conceptually very different from all previous VDS
constructions, since it does not rely on any tree structure. The basic idea is to
let the client sign each element of the dataset with a regular signature scheme,
and to use a cryptographic accumulator to revoke old signatures once an element
gets updated (otherwise the server could perform a rollback attack). For this,
the client has a key-pair of a signature scheme, and his public key serves as
the public verification key. Whenever an element is queried from the server, the
server return the element, its signature, and a proof-of-non-membership, to show
that this signature has not been revoked yet.

However, this idea does not work immediately. One reason is that some accu-
mulators only support the accumulation of an a priori fixed number of elements
such as [15]. Another issue is that the size of the public-key is typically linear
in the number of accumulated values, and thus the client might not be able to
store it.

In our construction we solve this issue by exploiting the specific algebraic
properties of the bilinear-map accumulator as follows: The bilinear-map accu-
mulator [15] and its extension to support non-membership proofs [7] use a private
key s and a public key g, gs, . . . , gsq

, where q is an upper bound on the number
of elements in the accumulator. To compute a proof of (non-)membership for q
accumulated elements, all the values g, gs, . . . , gsq

are needed. However, to verify
a proof of (non-)membership only the values g and gs is required. In our VDS
scheme, we only require that proofs of non-membership can be verified publicly;
they do not need to be publicly computable with only the public key and the
accumulator value. Therefore we only put g and gs into our public key. Only the
client has to add additional items to the accumulator, but he can do so using
his private key s and g to recompute gs, . . . , gsq

. Furthermore, only the server
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has to compute proofs of non-membership and thus needs to know g, gs, . . . , gsq

,
where q is the number of updates so far. Since we do not want to fix an upper
bound on the number of updates a priori, the client extends the list of known
values of the server with each update-operation. E.g. in the update protocol for
the third element the client sends the value gs3

to the server who then appends
this value to a list.

This allows us to reduce the size of the public-key to O(1), and to support
an unbounded number of updates.

5.1 Our Scheme

In this section we show how to use the bilinear-map accumulator described
in Sect. 2.5 in combination with a signature scheme to build a VDS protocol.

Construction 3. Let Sig = (SKg,Sign,Vrfy) be a signature scheme and
H : {0, 1}∗ �→ Z

∗
p be a hash function. The VDS protocol VDS =

(Setup,Append,Query,Verify,Update) is defined as follows:

Setup(1λ). The setup algorithm first generates a tuple of bilinear map para-
meters (p,G,GT , e, g). Second, it chooses s at random from Z

∗
p and com-

putes gs. Next, it generates a key-pair (ssk , vk) ← SKg(1λ), initializes two
counters cnt := 0 and upd := 0, and sets Slast = g. It also generates
an initially empty accumulator f ′(E) := g. Note that during the lifetime
of the scheme, the server will increasingly store g, gs, . . . , gsupd

while the
client only stores Slast = gsupd

. Finally, the algorithm outputs the secret key
sk = (g, p, s, ssk , Slast, cnt, upd) which is kept by the client, and the public
key pk = (p,G,GT , e, g, gs, vk , f ′(E)) which is given to the server.

Append(sk , d). The append algorithm increases the counter cnt := cnt + 1,
chooses a random tag tag ← {0, 1}λ, and signs the value m := d‖tag‖cnt
by computing σ ← Sign(ssk ,m). The pair ((d, tag, cnt), σ) is finally sent to
S, who stores it at position cnt in DB.

Query(pk ,DB , i). To retrieve the i-th element from DB, the client sends i to S,
who computes the response as follows: S retrieves the pair (m,σ) from DB
and computes a proof of non-membership (w, u) for the element ei ← H(σ)
as described in Sect. 2.5. Finally, S returns (d, π) = ((d′, tag, i), (σ,w, u)).

Verify(pk , i, d, π). This algorithm parses pk = (p,G,GT , e, g, gs, vk , f ′(E)), d =
(d′, tag, i), and π = (σ,w, u). It sets ei ← H(σ), and outputs d′ iff
Vrfy(vk , d′||tag||i, σ) = 1 and e(w, gei · gs) = e(f ′(E) · gu, g).

Update(sk ,DB , sk , i, d′). The clients runs (d, π) ← Query(pk ,DB , i) to retrieve
the i-th entry from DB. Afterwards, C verifies the correctness of the
entry by running the verification algorithm Verify(pk , i, d, π). If Verify out-
puts 1, then C increases the counter upd := upd + 1, signs the new ele-
ment σ′ ← Sign(ssk , d′||tag||i) using a random tag tag ← {0, 1}λ, and
adds the old signature to the accumulator as follows. The client computes
gsupd

= Slast := (Slast)s, ei ← H(σ), and f ′′(E) := f ′(E)ei+s. The
client sends (gsupd

, f ′′(E), σ′) to S. The server stores (σ′, d′) at position
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i in DB, and gsupd

in its parameters. The public key is then updated to
pk ′ := (p,G,GT , e, g, gs, vk , f ′′(E)).

Theorem 3. If Sig is a strongly unforgeable signature scheme, H a collision-
resistant hash function, and ACC the collision-resistant accumulator as defined
in Sect. 2.5, then Construction 3 is a secure VDS protocol.

Proof. Let A be an efficient adversary against the security of Construction 3
as defined in game VDSsec, denote by pk∗ := (p,G,GT , ei, g, gs, vk , f∗(E)) the
public-key hold by the challenger at the end of the game, and let

Q := ((d1||tag1||1, σ1), (d2||tag2||2, σ2), . . . , (dn||tagn||n, σn))

be the state of the database DB at the end of the game. By (w1, u1), . . . , (wn, un)
we denote the witnesses of the non-membership proofs that be can be computed
by the challenger using public values only, as discussed in Sect. 2.5, and denote
by Q′ := ((d′

1||tag′
1||i′1, σ′

1), (d
′
2||tag′

2||i′2, σ′
2), . . . , (d

′
n||tag′

n||in, σ′
n)) all queries

sent by A. Clearly, Q ⊆ Q′ and let O := Q′\Q be the set of queries that
have been sent by the adversary and which are not in the current database. Let
A be an efficient adversary that outputs ((d∗, tag∗, i∗), (σ∗, w∗, u∗)) such that
(d̂, i∗) �∈ Q, Vrfy(vk , d∗||tag∗||i∗, σ) = 1, and e(w∗, ge∗

i · gs) = e(f ′(E) · gu∗
, g),

with e∗
i := H(σ∗). Then, we define the following events:

– hcol is the event that there exists an index 1 ≤ i ≤ n such that H(σ∗) = H(σ′
i)

and σ∗ �= σ′
i.

– fake is the event that e(w∗, ge∗
i · gs) = e(f ′(E) · gu∗

, g) and ei ∈ E .

Observe that the case where the adversary finds a collision in the accumulator
and the one where he finds a fake witness for a membership of a non-member of
E , do not help to break the security of the VDS scheme. Given these events, we
can bound A’s success probability as follows:

Prob
[

VDSsecVDS
A (λ) = 1

]

≤ Prob[hcol] + Prob[ fake] +

Prob
[

VDSsecVDS
A (λ) = 1 ∧ hcol ∧ fake

]

In the following we show that the parts of the sum are negligible. The fact
that Prob[hcol] is negligible, follows trivially by the collision-resistance of the
hash function. Furthermore, it is also easy to see that Prob[ fake] is negligible as
well due to proof of non-membership properties of the accumulator.

Claim. Prob
[

VDSsecVDS
A (λ) = 1 ∧ hcol ∧ fake

]

≈ 0.

This claim follows from the strong unforgeability of the underlying signature
scheme. The intuition is that the correct proof non-membership guarantees that
the signature is not stored in the accumulator. Since it is not stored in the
accumulator, the adversary did not receive this signature from the signing oracle
and thus, is a valid forger w.r.t. strong unforgeability.
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More formally, let A be an efficient adversary against the security of the VDS
protocol. Then we construct an algorithm B against the strong unforgeability as
follows. The input of B is a public-key vk and it has access to a signing oracle.
It generates random elements (p,G,GT , e, g, gs) for some s chosen at random
from Z

∗
p, counters cnt := 0 and upd := 0, and B also generates an initially

empty accumulator f ′(E) := g. It runs A on pk = (p,G,GT , e, g, gs, vk , f ′(E)) in
a black-box way. Whenever A wishes to append an element d, then B increments
the counter cnt := cnt + 1, chooses a fresh tag tag, sends m′ := d||tag||cnt to
its signing oracle and forwards the response σ together with the corresponding
proof of non-membership to A.

It is understood that B records all s queries and answers. If A wants to update
the ith element, then B adds the corresponding signature σi to the accumulator,
increases the counter upd := upd + 1, picks a fresh tag tag′ at random, sends
m′ := d′||tag′||cnt to its singing oracle and forwards the response together
with a proof of non-membership and gsupd

to A. Eventually, A stops, outputting
((d∗, tag∗, i∗), (σ∗, w∗, u∗)). The algorithm B then outputs ((d∗||tag∗||i∗), σ∗).

For the analysis, it’s easy to see that B is efficient and performs a perfect sim-
ulation from A’s point of view. In the following, let’s assume that B succeeds with
non-negligible probability, i.e., ((d∗, tag∗, i∗), (σ∗, w∗, u∗)) satisfies the following:
(d̂, i∗) �∈ Q, Vrfy(vk , d∗||tag∗||i∗, σ) = 1, and e(w∗, ge∗

i · gs) = e(f ′(E) · gu∗
, g),

with e∗
i := H(σ∗). We now argue, that B succeeds whenever A does. To see this

observe that (d̂, i∗) �∈ Q and that the proof of non-membership verifies. Thus,
conditioning on fake and on hcol the claim follows.

6 Experimental Results

We implemented the construction based on chameleon vector commitments
(Sect. 4) and on accumulators (Sect. 5) in Java 1.7.

In this section, we provide comprehensive benchmarks of all proposed
schemes to evaluate their practicality. We investigate the computational and
bandwidth overhead induced by our protocols. We use the PBC library [11]
in combination with a java wrapper for pairing-based cryptographic primitives
(using a type D-201 MNT curve), and the Bouncy Castle Cryptographic API
1.50 [3] for all other primitives. For the construction based on accumulators, we
used RSA-PSS with 1024 bit long keys as our underlying signature scheme, and
SHA-1 as our hash function. Our experiments were performed on an Amazon
EC2 r3.large instance equipped with 2 vCPU Intel Xeon Ivy Bridge proces-
sors, 15 GiB of RAM and 32 GB of SSD storage running Ubuntu Server 14.04
LTS (Image ID ami-0307d674).

We stress that this is an unoptimized, prototype implementation, and that
better performance results may be achieved by further optimizations.

Dataset: We evaluated our schemes by outsourcing and then retrieving 8 GB,
using chunk-sizes of 256 kB, 1 MB, and 4 MB. We measured the insertion and
the verification time on the client side, as well as the sizes of all transmitted
proofs.
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Branching Factor: The CVC-based VDS was instantiated with branching
factors of q = 32, 64, 128, and 256, and the public-key consists of q2 elements
that amount to 2.7 MB (for q = 256). This is in contrast to the public key size
in the accumulator-based VDS which is about 350 bytes.

Number of Updates: To quantify the impact of updates on the accumulator-
based construction, we performed separate experimental runs. Therefore, we
performed 0, 10, 50 and 100 updates prior to retrieving and verifying the out-
sourced data set.

Block Sizes: The block size is a parameter which depends heavily on the appli-
cation. Larger block sizes reduce the number of authenticated blocks, and thus
yield a smaller tree with more efficient bandwidth and computation perfor-
mance in the CVC-based VDS. However, larger blocks decrease the granular-
ity of on-the-fly verification, since one has to retrieve an entire block prior to
verification.

We took measurements for block sizes of 256 kB, 1 MB and 4 MB, which we
believe is a sensible range of block sizes for various applications. For example,
consider HD-video streaming with a bandwidth of 8 MB/s. Using a block size of
4 MB means that one can perform a verification every 0.5 s. However, in other
applications such as the verifiable stock market, one may want to only retrieve
a small fraction of the outsourced data set, for which a smaller block size such
as 256 kB might be more desirable.

6.1 Streaming Data

Both proposed constructions have constant client-side insertion times as well
as constant bandwidth overheads. The insertion proofs in the accumulator-
basedand the CVC-based construction are 236 respectively 1070 bytes large.
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Fig. 2. Average insertion time for different block sizes (Color figure online)
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Fig. 4. Accumulated bandwidth overhead for retrieving 8 GB (Color figure online)

Rather than processing each block directly, we first compute its hash value and
pass it to our VDS protocol. Since the insertion time is dominated by this hash
function, we give the average insertion times for our different block sizes in Fig. 2.
As one can see, the accumulator-based construction performs slightly better than
the CVC-based one, and both give rise to quite practical timings for the insertion
phase.
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6.2 Verifying Retrieved Elements

The time needed for verifying the correctness of 8 GB data retrieved from the
server is depicted in Fig. 3. In this figure, various insights about the performance
behavior of our protocols are visible.

Firstly, the block size plays a crucial role for the overall performance, since
the number of verifications needed to authenticate the 8 GB dataset depends
linearly on the inverse of the block size.

Secondly, in the CVC-based construction higher tree arity results in shorter
proofs, and therefore faster verification.

Thirdly, we observe the impact of updates on our accumulator-based con-
struction. While without updates the accumulator-based construction is faster
than the CVC-based one, adding just 10 updates decreases the performance of
the accumulator dramatically. Still, for applications where only a few updates
are expected, our accumulator-based construction is preferable.

6.3 Bandwidth Overhead

The bandwidth overhead incurred by retrieving 8 GB of data is shown in Fig. 4.
As in Fig. 3 the impact of the block size is visible, as is the impact of the
branching factor of the CVC-based construction. This figure also shows that
the accumulator-based construction, although slower when handling updates,
achieves a much smaller bandwidth overhead compared to the CVC-based con-
struction. However, in this scenario for a block-size of 4 MB, both constructions
introduce a total bandwidth overhead of less than 4 MB, or 0.05%.
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Abstract. This paper shows that it is feasible to implement the
stateless hash-based signature scheme SPHINCS-256 on an embedded
microprocessor with memory even smaller than a signature and limited
computing power. We demonstrate that it is possible to generate and
verify the 41 KB signature on an ARM Cortex M3 that only has 16 KB
of memory available. We provide benchmarks for our implementation
which show that this can be used in practice. To analyze the costs of
using the stateless SPHINCS scheme instead of its stateful alternatives,
we also implement XMSSMT on this platform and give a comparison.

Keywords: Post-quantum cryptography · Hash-based signature sche-
mes · Microcontroller · Resource-constrained devices · ARM Cortex M3 ·
SPHINCS-256 · XMSSMT

1 Introduction

It is difficult to precisely predict the future of computing, but once large-scale
quantum computers become feasible in practice, all of the asymmetric cryptogra-
phy that is widely deployed today will be broken. Over the past few years, several
schemes have been proposed that address this issue. One of the most promis-
ing classes of schemes that provide post-quantum secure digital signatures are
hash-based schemes [21].

Hash-based schemes come with well-understood security guarantees, build-
ing only on the assumption of a secure cryptographic hash function. This makes
them a very attractive, confidence inspiring choice. The keys they use and the
signatures they produce are of practical sizes, and signing is reasonably fast.
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Additionally, signature verification is very fast. Until recently, however, all prac-
tical hash-based schemes required a state that must be constantly kept up to
date. In many real-world scenarios, this is a far reach from the signature schemes
that are currently in use.

The introduction of SPHINCS [4] at Eurocrypt 2015 demonstrated that it is
not strictly necessary to maintain a state for a hash-based scheme to be practical.
Lifting this constraint does not come for free; it is paid for by an increase in
signing time as well as signature size. Still, SPHINCS-256 remains fairly efficient
in terms of these dimensions, with signatures of 41 KB and a signing rate of
“hundreds of messages per second on a modern 4-core CPU” [4].

This shows that SPHINCS is a feasible solution on high-end servers and
desktops, but the question remains, whether SPHINCS is also a feasible solution
for small embedded “Internet-of-Things” devices. This is not merely a question
of performance. It is a question of whether it is even possible to compute a
41 KB SPHINCS signature on a device with only little RAM. In this paper we
demonstrate that it possible to compute and verify SPHINCS-256 signatures on
an ARM Cortex M3 microcontroller with only 16 KB of RAM, but the perfor-
mance results indicate that practical applications are limited to non-interactive
contexts (such as sensor nodes sending signed data several times a day).

To illustrate the cost of eliminating the state in hash-based signatures,
we furthermore implement the state-of-the-art stateful hash-based signature
scheme XMSSMT as described in a recent Internet draft [16]. To provide a fair
comparison, we replaced all the used hash functions with similar functions as
SPHINCS-256.

Availability of Software. We place all software described in this paper into
the public domain. It is available online at https://joostrijneveld.nl/papers/
armedsphincs.

1.1 Related Work

In [24], the potential for hash-based signature schemes on constrained micro-
processors was first demonstrated. The authors establish that it is possible, to
implement GMSS [6], an improvement of Merkle’s original hash-based signature
scheme, on an 8-bit AVR microprocessor at a speed comparable to RSA and
ECDSA, although without key generation. The described platform offers 8 KB
of program memory and 4 KB of SRAM.

A variant of XMSS was implemented on a 16-bit smart card [8]. The authors
show that key generation can be done on the device and get even faster speeds
than [24], further demonstrating practicality of (stateful) hash-based signature
schemes on constrained devices.

Extensive side-channel analysis of a fast Merkle signature scheme implemen-
tation on an AVR ATxmega is presented in [10]. This paper introduces a new
algorithm for the computation of authentication paths in a Merkle tree to sig-
nificantly reduce (and actually bound) side-channel leakage during this compu-
tation.

https://joostrijneveld.nl/papers/armedsphincs
https://joostrijneveld.nl/papers/armedsphincs
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Other post-quantum schemes also show promising results on embedded sys-
tems. In [12], a lattice-based signature scheme is shown to produce signatures of
9 KB, with keys of 2 KB and 12 KB in size, beating RSA in terms of speed, on
a Xilinx Spartan-6 FPGA. While memory usage is slightly higher compared to
hash-based schemes, [22] shows that lattice-based signatures can be very fast by
providing an implementation on a Cortex-M4F. Multivariate-quadratic systems
have also been implemented and proven to be practical on low-resource devices
as well as ASICs, with keys of practical size [25].

The software presented in this paper is the first to describe (stateless) sig-
nature software achieving 128 bits of security against quantum attackers on
an embedded microcontroller, which naturally makes comparison to previous
results hard. On the one hand, none of the previous papers targets 128 bits of
post-quantum security, and, unlike our software, both [10] and [8] use hardware
accelerators for fast hashing. On the other hand, 8-bit AVR microcontrollers
used in [6] and [10] and the 16-bit Infineon SLE 78 used in [8] are less pow-
erful (and offer less RAM and ROM) than the more recent Cortex-M3 used
in this paper. For many applications there is a trend to move from 8-bit and
16-bit microcontrollers towards more powerful 32-bit processors like the Cortex-
M; mainly towards the low-end Cortex-M0, which is explicitely advertised to
“achieve 32-bit performance at an 8-bit price point, bypassing the step to 16-bit
devices” [20]. The Cortex-M3 is quite a bit more powerful than the Cortex-M0
and most importantly offers more RAM and ROM than the M0. Our memory
usage suggests that it might be feasible to bring SPHINCS also to the M0 with
8 KB of RAM, but this would not leave any space for other applications and
would thus be a mere academic challenge.

2 The SPHINCS-256 Signature Scheme

This section explains the SPHINCS-256 signature scheme as proposed in [4].
The section follows a top-down approach: we first explain why there is a need
for SPHINCS and present a high-level overview. Then, we fill in details on each
of the components. Rather than discussing the SPHINCS scheme in general, we
will directly and explicitly adhere to the parameters and functions proposed as
SPHINCS-256 in the original paper. Refer to [4] for a more general description.

2.1 Eliminate the State

In [17], Lamport describes a one-time signature scheme (OTS) that forms the
foundation for hash-based signatures. This scheme has later been used and
improved by Merkle [21] to build a many-time signature scheme. This is done
constructing a binary hash tree on top of a series of OTS key pairs, effectively
joining them together under a single long-term public key. When a sequence of
authentication nodes is supplied as part of the signature together with an OTS
public key, a verifier is able to reconstruct the long-term public key at the root
of the authentication tree. See Fig. 1 for an illustration of this. This approach is
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Fig. 1. The authentication nodes needed to authenticate leaf node 5 are coloured grey.

still the main construction used in modern hash-based signature schemes (such
as XMSS [5]).

However, these constructions suffer from a fundamental problem. When using
Merkle trees on top of OTS key pairs, the user should be very careful not to
use a OTS key twice as this would undermine security. This implies that, in
addition to storing the secret key (i.e., the seed that produces all OTS keys
on the leaf nodes), one needs to store some indicator to keep track of the leaf
nodes that have already been used1: the state. While this is not a problem in
some applications, key management can quickly become an issue. In scenarios
where multiple instances of the key are stored in different places (for example,
backups, different machines used for load balancing, or different devices owned
by the same user), the state needs to be constantly kept in sync among those
copies. This makes such a signature scheme highly impractical and incompatible
with many of today’s systems.

Already in 1986, Goldreich recognized this problem and proposed a solu-
tion [11]: create a tree of such depth that, when randomly choosing an OTS key
pair for each signature, the chance of accidentally reusing a certain OTS key
pair becomes insignificantly small. This way, there is no need to keep track of
the already used OTS keys. The obvious problem here is actually creating such a
tree in the first place, but Goldreich is able to avoid this. By not simply hashing
nodes together (as is the typical Merkle tree construction) but instead attaching
an OTS key pair to each tree node and using that to sign the child nodes, it is
never necessary to compute the entire tree. This requires that the OTS keys of
the nodes along the path from a random leaf to the root node are determinis-
tically generated out of order, but this can easily be done using pseudorandom
function with a secret seed and the node index.

While Goldreich’s system solves the issue of having to maintain a state, it
introduces a new problem. As it replaces hashing with signing throughout the
tree, it also replaces hash digests with OTS signatures for the authentication-
path nodes included in each signature. This creates a new hurdle for practical

1 In practice, this could be just the number of messages signed so far, as Merkle showed
that using the keys sequentially is often preferable [21].
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use, as it results in tremendously large signatures (more than 1 MB for reasonable
parameters).

2.2 Overview of SPHINCS-256

As discussed above, the main problem with hash-based signature schemes is
either the need to maintain a state or the size of the signatures. This has pre-
vented hash-based solutions from being a drop-in replacement for the signature
schemes that are currently in use. SPHINCS solves this by combining the app-
roach of Goldreich with traditional Merkle trees in a nested construction and
few-time signatures. This results in a stateless scheme with signatures of 41 KB
and private and public keys of 1 KB each [4]. At “hundreds of messages per sec-
ond on a modern 4-core 3.5 GHz Intel CPU”, it is shown to be sufficiently fast
for many practical applications. In later sections of this paper, we demonstrate
that it is also practical on low-end devices with highly limited resources.

The nested trees construction forms the base of SPHINCS. The complete
structure consists of a total of h = 60 layers, divided over d = 12 layers of
sub-trees. This can be viewed as a hypertree of two levels of abstractions, where
each node in the global tree represents a sub-tree. Each of these sub-trees then
consists of h/d = 5 layers of nodes themselves. Let us refer to the sub-trees
on layer i of the global tree as τi, where i ∈ {1, . . . , d}. We refer to the nodes
in a sub-tree as νi,j , where j ∈ {1, . . . , h/d} is their level in the sub-tree and
i ∈ {0, 2j − 1} the index within that level. There is no need to diversify between
nodes or trees in the same layer at this point, as they each serve an identical
purpose.

The trees τi are binary hash trees, only slightly varying from the original
Merkle tree concept. Each of their nodes νi,j for j ∈ {1, . . . , h/d − 1} contains
a digest of its child nodes, while the leaf nodes on layer h/d each contain the
key of an OTS. For now, let us assume that we have some hash function H that
generates these digests. As with Merkle trees, the digest at the root of the tree is
used to authenticate the entire structure by constructing authentication paths.

All the sub-trees are then chained together as in Goldreich’s system. Using
the OTS keys in the leaf nodes νi,h/d of the trees τi, the root nodes of the trees
τi+1 are signed; a new sub-tree is chained to each of the leaf nodes. See Fig. 2
for a close-up of this construction. Nodes labeled H contain a hash of their child
nodes; nodes labeled OTS include a key pair to authenticate their child node.

The OTS key pairs of the leaves of the trees on the bottom layer are not
used to authenticate more sub-trees. Instead, they are used to authenticate the
public key of a few-time signature scheme (FTS). An FTS behaves similarly to
an OTS, but can be used several times before revealing too much of the secret
key. By using an FTS rather than an OTS, SPHINCS does not require as many
leaf nodes to maintain the same security level: the required maximal probability
of selecting the same node repeatedly can be much higher without breaking the
system. These FTS keys are used to sign the actual messages.

The above describes the basic outline of SPHINCS. This still far from a
working algorithm, though, as we have assumed a number of black boxes: some
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Fig. 2. Linking sub-trees together

hash function H to use in the sub-trees, an OTS to use between sub-trees and an
FTS to sign the actual message at the bottom of the hypertree. In the following
subsections, we will gradually collect the missing pieces.

2.3 Key Generation

Because of the hypertree structure, key generation for SPHINCS is a fairly cheap
operation. We start by selecting some random values SK1 ∈ {0, 1}n and SK2 ∈
{0, 1}n. For SPHINCS-256, n = 256. The first of these values is used for key
generation, while the second is required for signing. This will be illustrated in
the next subsection. Additionally, we generate a tuple Q of random bitmasks,
each one also from {0, 1}n. These masks are used in the hash trees (as described
in Sect. 2.6), as well as in the OTS and FTS – for now, let us merely acknowledge
their existence. Thus SK = (SK1, SK2, Q).

In order to generate the public key, we only need to generate the single tree
in τ1: the tree at the top of the structure. This requires generating the OTS
keys along the bottom of this tree. Note that these keys need to be generated
deterministically; using their address and SK1 as input to some pseudorandom
function we can derive a seed for this key. Then, a binary hash tree can be built
on the public keys of the OTS key pairs, and the root node of this tree is part of
the SPHINCS public key: PK1. As the bitmasks are also needed for verification,
they must also be included in the public key: PK = (PK1, Q).

It is worth noting that, while SK1, SK2 and PK1 are all only 256 bits (or
32 bytes) in size, Q is significantly larger. SPHINCS-256 uses 32 bitmasks in Q,
which add up to a total size of 32 · 32 = 1024 bytes. Bitmasks thus account for
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the largest part of the keys. In general, the number of bitmasks is determined
by the part of the scheme that requires the largest number of them – the FTS,
the OTS or the hash trees.

2.4 Signing

Public-key signature schemes typically compute a hash of the message that is to
be signed, and then sign that hash. This ensures that the input is of a constant,
relatively small length. In a stateless scheme like Goldreich’s, a random key pair
at the bottom of the tree would then be selected to sign the hash. In SPHINCS,
however, the key pair is selected based on the message hash itself. In order to
prevent attackers from specifically targeting certain key pairs, some random or
unknown factor still needs to be included – this is what SK2 is for. We first
compute a bitstring (idx‖R) using a pseudorandom function that takes SK2

and the message as input, and use idx to select an FTS key pair. The second
part R is used to compute a randomized digest D of the message. This digest
is what we will be signing. As a practical result of all this, the selection of an
FTS key pair is completely deterministic with respect to a secret key SK2 and
a message M .

After selecting a particular FTS key pair, the secret key of this key pair
needs to be generated (based on a seed derived from its location and SK1)
and is then used to sign D and produce the signature σFTS . Together with the
message-specific randomness R generated above and the index idx of the selected
key pair, this signature forms the first part of the SPHINCS signature Σ. As
SPHINCS uses an OTS and an FTS for which the public keys can be derived
from their respective signatures (as we will see in Sects. 2.7 and 2.8), there is no
need to include the FTS public key here.

We then generate the OTS key pair for its parent node in νd,h/d in the relevant
sub-tree in τd (again using its position in the tree in combination with SK1),
and use it to sign the FTS public key. Let us refer to the produced signature as
σOTS,d. This signature is also added to Σ. The public key of this OTS needs to be
authenticated, so we compute all nodes along its authentication path throughout
the tree in τd and include those in Σ as well. We refer to the nodes along the
authentication path in the selected tree on layer d as Authd. Upon reaching the
root of the tree in this fashion, we generate the OTS key pair that belongs to its
parent node in νd−1,h/d and use that to sign the root. This procedure continues
all the way up to the root of the one tree in τ1, which is, by construction, included
in PK. While progressing up the hypertree, all OTS signatures and nodes along
the authentication paths need to be added to Σ.

Altogether, the SPHINCS signature Σ now contains the message-specific ran-
domness R, the index idx of the selected FTS key pair, the FTS signature σFTS

and d pairs of OTS signatures and sequences of nodes along the authentica-
tion path (σOTS,i, Authi). Everything combined, Σ = (idx,R, σFTS , (σOTS,1,
Auth1), . . . , (σOTS,d, Authd)).
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2.5 Signature Verification

The procedure for verifying a signature on M is very similar to signing. As
we have seen above, the signature Σ contains the message-specific randomness
R, the FTS signature and the OTS signatures and authentication paths. After
computing D (using R and M), the FTS signature is verified. As mentioned
above, the verification function of the OTS and FTS used in SPHINCS output
the respective public key. Hence, the OTS signature on the FTS public key can
now be verified, resulting in the respective OTS public key. As the authentication
path is also given in Σ, the root node of the tree in τd can now be computed.
Similar to the way the signature was generated, we now continue up the tree
along the authentication paths while verifying the signatures on the root nodes
of each sub-tree.

In the end, the verification eventually arravies at the root node of the single
tree in τ1. This root node should be equal to PK1, included in PK. If this is the
case, the signature is valid.

2.6 Hash Trees

At its core, SPHINCS heavily relies on hash trees. The construction of these trees
is slightly different from the classical binary Merkle trees. After concatenating
the values of the two child nodes, they are not immediately fed to a hash function
to produce the parent node. Instead, two bitmasks are applied first; let Qi, Qi+1

be such bitmasks and h2, h3 child nodes, then h1 = H((h2‖h3) ⊕ (Qi‖Qi+1)).
In [2], XORing with bitmasks is introduced as part of a linear hashing scheme,

and it is employed in [9] in order to construct binary hash trees that do not
require the underlying hash function to be collision resistant. Instead, second-
preimage resistance is sufficient to attain unforgeability. This hash-tree construc-
tion is the one described above, and is used in SPHINCS.

2.7 The FTS: HORST

At the bottom of the hypertree, SPHINCS relies on an few-time signature
scheme. For this, a variation of an FTS called HORS [23] is used. This variant,
referred to as HORST, adds a tree construction to plain HORS [4]. The con-
figuration of HORST consists of two parameters that control the security level,
signature size, and key sizes: t and k, where t is a power of 2. For SPHINCS-256,
we have t = 216 and k = 32.

As mentioned in the overview of SPHINCS, the key is seeded based on SK1

and the location of a particular HORST instance in the hypertree. This seed is
expanded to t secret-key components to form sk = (sk0, . . . , skt), which are then
hashed to create the public-key components pki for i ∈ {0, . . . , t}. In SPHINCS-
256, each ski and pki has 32 bytes. The HORST variation then proceeds to
build a hash tree on top of the public-key components. The root of this tree
is the actual HORST public key pk. For this tree, SPHINCS also makes use of
bitmasks as described in Sect. 2.6.
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Signing a message M using a HORS key pair is done by splitting the message
into k pieces of length log2 t. Each of these pieces Mi is then used as an index
to address a piece of the secret key, skMi

, which is subsequently revealed. For
HORST, the nodes along the authentication path from these hashes to the root
of the tree are also required as part of the signature.

Verification is quite similar: first, the revealed pieces of sk are hashed, and
the message is split into k parts. These parts are then interpreted as integers
and used to place the pieces of sk on the appropriate leaves. Using the nodes
supplied in the signature, the path to the root node can then be computed. This
is done for all nodes and authentication paths checking that all agree on the
same root. If this is not the case, verification fails. The verification algorithm
then outputs this root as the public key – comparing it to the actual public key
will reveal if the signature was valid.

What makes HORS usable as a few-time signature scheme (as opposed to an
OTS) is the choice of a sufficiently large t in relation to k. This implies that only
a small part of the secret key is revealed for each signature, and the chance of
a successful forgery after obtaining just a few signatures diminishes. Note that
this does require that an adversary cannot control the message hash for which
a signature is obtained. As we have seen above, this requirement is satisfied in
SPHINCS. In the original HORS scheme the combined size of public key and
signature would increase linearly with t, but the HORST variation only incurs
logarithmic growth in t, caused by the length of the authentication paths. This
makes it possible to use HORST as the FTS in SPHINCS without dramatically
increasing the key length.

2.8 The OTS: WOTS+

For the OTS that links the sub-trees together, SPHINCS uses WOTS+. This
variation of the Winternitz OTS is proposed in [14], designed to reduce the
signature size even further than other WOTS-based schemes. As in WOTS,
the Winternitz parameter w = 16 is used to configure the efficiency trade-off.
Likewise, one then derives � (consisting of �1 and �2) from this parameter and
the security setting n = 256 as follows.

�1 =
⌈

n

log w

⌉

, �2 =
⌊

log (�1(w − 1))
log w

⌋

+ 1, � = �1 + �2.

For the SPHINCS-256 configuration, it can be readily computed that �1 = 64
and �2 = 3, thus � = 67.

In the plain WOTS scheme, a function F is applied to the secret key several
times to produce a hash chain. In WOTS+, however, we take into account the
bitmasks. In each iteration, before applying F , the input is XORed with a round-
specific bitmask Qi. The chaining function then looks as follows (where the base
case is c0(x) = x):

ci(x) = F (ci−1(x) ⊕ Qi)
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In order to guarantee deterministic signatures here as well, WOTS+ key
pairs are also seeded using SK1 and their location in the tree. This seed is then
expanded to a secret key of � = 67 pieces, sk = (sk1, . . . , sk�). Generating the key
is very similar to traditional WOTS; we simply apply the chaining function c for
a total of w−1 times to each part of sk to obtain (pk1, . . . , pk�). In SPHINCS-256,
each of the ski and pki has again 32 bytes. As the reader might be expecting by
now, we proceed by building a hash tree on top of these public-key parts. These
trees make up the third abstraction level of trees in the hypertree. However, �
is not necessarily a power of two – in fact, as w and n (and thus �1) typically
are a power of two, � is not. This requires the use of a slightly different tree
construction: the L-Tree [9]. The structure is entirely identical to binary hash
trees, except for the rightmost nodes. Whenever the number of nodes on the
current layer is odd, the rightmost node is lifted up to the next layer instead.
See Fig. 3 for an example with five nodes. The root of this tree is the public
key pk.

Fig. 3. An L-Tree with five leaf nodes

In order to sign a message M , we first interpret it as an integer in binary,
and then express it in base w. This effectively splits M into a sequence of values
that can be at most w−1, each. Note how there will be at most �1 values, as per
the construction of �1. We write M = (M1, . . . , M�1). Furthermore, a checksum
needs to be computed to prevent an attacker from being able to forge a signature:
C = Σ�1

i=1(w − 1 − Mi), which is also expressed in base w: C = (C1, . . . , C�2).
The lists M and C are then chained together to form B = (b1, . . . , b�) = M‖C.
These values in B are then used as lengths for the Winternitz chains, producing
the signature (σ1, . . . , σ�) = (cb1(sk1), . . . , cb�(sk�)).

Verifying a WOTS+ signature is very similar to the regular WOTS scheme,
except that one needs to take special care to use the correct bitmasks when
applying the chaining function2. Let us define the function v to account for
this as
2 Note that this approach differs slightly from the one presented in [14]. In the original

definition this is solved by supplying the appropriate set of bitmasks as an argument
to the chaining function.
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vi,j(x) = F (vi,j−1(x) ⊕ Qw−i+j−1).

Like for the original chaining function, the base case is vi,0(x) = x and we
abbreviate vi,i(x) = vi(x).

We then compute B in the same way as in the signing procedure, and then
compute the public key parts (pk1, . . . , pk�) = (vw−1−b1(σ1), . . . , vw−1−b�(σ�)).
As was the case during the key generation step, the last step that remains is
computing an L-Tree over these pieces. The verification algorithm then outputs
the root of this tree. Like in HORST, this can then be compared to the actual
public key to verify that the signature was valid.

2.9 H and F : ChaCha

Two key elements of SPHINCS have not yet been discussed. Practically the
entire scheme consists of computing hashes. In WOTS+, some hash function
F : {0, 1}n → {0, 1}n is used to construct the chaining function, and throughout
the entire hypertree, H : {0, 1}2n → {0, 1}n is used to construct binary hash
trees. The function F is also used to compute the HORST leaf nodes based on the
secret key. For the performance of the scheme, it is crucial that these functions
are sufficiently fast. An important characteristic of both of these functions is
that they do not need to be able to take arbitrarily long input. This makes
it unnecessary (and wasteful) to select a hash function that can. As it turns
out, being able to accept arbitrarily long input is one of the properties that
typically slow down hash functions. Instead, SPHINCS uses a permutation-based
construction following the sponge design using the permutation from the ChaCha
stream-cipher family [3].

The core of ChaCha is a 512-bit permutation, so in order to use it for F ,
the input needs to be padded to extend it. In SPHINCS, the authors chose the
32-byte ASCII string C = “expand 32-byte to 64-byte state!”. The output of F
is obtained by truncating the output of the ChaCha permutation to 256 bits.
H is constructed similarly. Let Chop(M, i) be a function that truncates M to i
bits, M1 and M2 be strings of 256 bits, and O be a string of 256 zero-bits, then

F (M) = Chop(πChaCha(M‖C), 256), and
H(M1‖M2) = Chop(πChaCha(πChaCha(M1‖C) ⊕ (M2‖O)), 256).

Now only a few minor pieces of the puzzle remain. Creating the message-
specific random value R is done by calling BLAKE-512(SK2‖M) [1], and
BLAKE-512 is used once more to create the digest D. In order to derive the
secret keys for the HORST and WOTS+ key pairs based on their location and
SK1, the BLAKE-256 function is used as a pseudo-random function. Along the
bottom of each of the trees, the ChaCha12 stream cipher is used to generate
HORST and WOTS+ keys. An complete overview of the SPHINCS-256 hyper-
tree is shown in Fig. 4.
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Fig. 4. The complete hypertree structure

3 The ARM Cortex-M3 Microcontroller

The platform of choice for this implementation is the ARM Cortex M3, and
development was carried out using the STM32L100C discovery board. The
Cortex M3 is a 32-bit microprocessor with sixteen 32-bit registers, thirteen of
which are available for general-purpose computation (leaving three for the stack
pointer, link register and program counter). This microcontroller is commonly
found in embedded systems used in the automotive industry, small industrial
systems and (wireless) sensors, but as we mentioned in Sect. 1.1, the low-end
32-bit Cortex-M processors are also starting to replace 8-bit and 16-bit micro-
processors (given the similarly low production costs and efficiency, but larger
computational power). As opposed to the ARMv6-M [18] architecture found
among the smaller processors in the Cortex M-series, this processor supports
the ARMv7-M [19] architecture.

The ARMv7-M architecture is aimed at microcontrollers, and is highly opti-
mized for low-cost devices. It only supports the Thumb-2 instruction set (as
opposed to the full ARM instruction set) and its register scheme is very straight-
forward – there are no SIMD instructions or extended register banks. This is
somewhat compensated for by the efficient STM and LDM instructions. While
these cannot be pipelined with other instructions, they provide internal pipelin-
ing when transferring more than one register to or from memory, making it not
so costly to swap out the register contents. In Thumb-32 instructions, there are
some limitations to their use on the SP, PC and LR registers, but none of this
is a direct obstacle in our use-case.

The STM32L100C is part of the STM32 ultra-low-power series. The processor
runs at a clock speed of 32 MHz, and the board offers 16 KB of RAM. This makes
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it a highly constrained platform for the implementation of SPHINCS, given that
the stack usage of the Haswell implementation [4] runs into several megabytes.
Notably, this means that the available RAM is insufficient to store the signature,
which weighs in at 41 KB.

In order to communicate with the device at runtime, we make use of ser-
ial communication over USART. This can be done efficiently using the direct-
memory-access (DMA) controller, to prevent blocking the computation while
waiting for the communication interface. Doing this, we are able to communi-
cate reliably at a baud rate of 921 600 Bd. To be able to configure and use this
from a more abstract level, we made use of the open-source libopencm3 firmware
library.

4 Implementing SPHINCS-256 on the Cortex-M3

The main contribution of this work is to show that SPHINCS-256 can be imple-
mented on resource-constrained devices. The Cortex M3 is quite constrained
both in terms of available volatile memory as well as processor speed, serving as a
proof of concept that this does not render SPHINCS unusable. In this section, we
describe implementation-specific design choices and present the achieved speed
results. It should further be noted that this implementation makes use of code
from the SPHINCS reference implementation [4] as well as (parts of) implemen-
tations of BLAKE-256 and BLAKE-512 [1] and the ChaCha12 stream cipher [3].

4.1 Signing Within 16KB

In a hash-based signature scheme, signing and verification are very similar in
design, but they differ significantly when actually being performed. For verifi-
cation, much of the work has already been done when producing the signature,
and there is no need to construct entire trees from the ground up. The same is
the case for SPHINCS. While verification is fairly straight-forward in terms of
memory use, signing requires more effort to get right.

The general approach is as follows. In order to reduce the memory consump-
tion of the signing operation, we split the computation into disjunct parts, and
process the output of each part before continuing with the next part. This makes
sure that we only have to account for the memory requirements of each such part
at a time, instead of the consumption of the entire operation. The remaining task
is now to find suitable points at which to split the computation such that mem-
ory use is sufficiently low in each of the parts, without introducing too much
performance overhead.

Tree Storage. The SPHINCS scheme consists of a number of clearly distinct
components, with the HORST trees and WOTS+/hash trees as the two most
prominent subdivisions. While the memory usage is typically large at the base
of a tree, it fans in again as one progresses towards the root. As each tree is
stacked on top of the one below, it is not necessary to ever store more than one
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tree in memory at a time before proceeding on to the next – this progression is
highly sequential.

For the WOTS+/hash trees, the available memory is not an immediate prob-
lem. Producing a single WOTS+ signature impacts the available memory for
only 67 bytes. At 32 · 67 = 2144 bytes, the WOTS+ public key itself is slightly
larger, but this can be quickly reduced to a 32 byte root node by applying the
L-Trees we have seen in Fig. 3. This does imply that one really has to perform
this reduction before continuing with the next WOTS+ leaf node, but in the
current context this has no negative impact. After processing all leaf nodes in
this fashion, one is left with 32 leaf nodes of 32 bytes each. Each authentication
tree contains only h/d = 5 layers of hashing, resulting in a total of 26 − 1 = 63
nodes, which can be stored in memory all at once. After computing the entire
tree, the nodes along the authentication path can be conveniently selected.

HORST, on the other hand, is a different beast entirely. With t = 216 and
k = 32, the trees contain 131071 nodes spread over 16 layers of hashing, making
these trees much higher than the hash trees on top of the WOTS+ signatures.
This means that the method of first building the entire tree and then extracting
the authentication path is not feasible. At 32 bytes per node, the nodes alone
would require 4 MB of storage. There is no need to store the entire tree, though,
as only a very specific set of nodes is relevant for the signature: the nodes along
the 32 authentication paths, as well as the root node. As we do require the root
node to authenticate the tree, there is definitely no escaping having to compute
the entire tree.

Treehash. In [4], the authors mention that RAM usage and code size was not
one of the concerns when writing the optimized implementation – the imple-
mentation was optimized for speed on a platform where memory was available
in abundance. They remark that, if saving memory is a concern, the treehash
algorithm could be used. This is what we will now apply in order to compute
the HORST authentication path.

The treehash algorithm is another contribution by Merkle [21, Sect. 7]. It has
since been used in various forms as the basis of tree-traversal algorithms. A com-
mon approach is expressed by the pseudo-code (based on [13]) in Algorithm 1,
and discussed below.

Algorithm 1. One round of the treehash algorithm
Require: Stack, next leaf node N

Output: Stack is updated
1: while Stack.peek() is on same level as N do
2: neighbour ← Stack.pop()
3: N ← H(neighbour ‖ N)
4: end while
5: Stack.push(N)
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The core idea is to grow a tree, using its leaves in subsequent order and
only maintaining a collection of the currently relevant nodes: the ‘heads’ of the
different branches. As new nodes are added, these branches are gradually grown
to completion, and merged when needed. Any nodes that occur deeper in the tree
can safely be forgotten (for the purpose of finding the root node), as each node
is only required once to generate its parent. Each round of treehash consists of
introducing the next leaf node and updating the heads of the branches until no
more new nodes can be computed. For half of the leaves (i.e., the ‘left neighbors’),
their introduction does not allow for the computation of any new parent nodes,
while a quarter of the leaves allows us to compute one parent node, etcetera.

When examining how the set of relevant nodes evolves, there is a strict order-
ing in when these nodes become relevant again, based on their level in the tree.
It can be easily observed that nodes are always consumed in a last-in-first-out
manner – the set is really a stack. After introducing all leaf nodes and com-
pleting the last round, the root node will be the only node left on the stack.
Another important observation here is the fact that there are never two nodes
of the same tree level on the stack at the same time. The nodes on the stack
are inherently ordered by their tree level (nodes that occur higher in the tree
are stored deeper down the stack). As leaves are consumed in subsequent order,
two nodes at the same level have to be neighboring nodes that can immedi-
ately be used to produce their parent node. This allows us to conclude that
using treehash for HORST requires a stack that can hold log(t) = 16 nodes. At
32 bytes per node, this easily fits in the available memory.

Besides computing the root node of a HORST tree, however, we are particu-
larly interested in the nodes along the authentication paths from the leaves used
to produce the signature, to the top of the tree. The position of these nodes on
the stack is less easy to predict, but we do not want to compute parts of the tree
more than once in order to gather all required nodes. Intuitively, a way to resolve
this is by somehow recognizing the nodes that need to be included in the signa-
ture while performing the treehash rounds. Navigating through the tree without
actually computing the node values is cheap, allowing us to trace the authenti-
cation paths from leaf to root and observe which nodes will need to be output.
Rather than compiling a list of these nodes and performing costly lookups, we
can compute and store in which treehash round they will be produced, as well
as their position in the signature3. Algorithm 2 shows how to compute the round
numbers of all nodes along the authentication path for a given leaf-node index.

Consider that the tree consists of 217−1 = 131071 nodes, but only 320 nodes4

are relevant. Because of this, only a small subset of all treehash rounds contains

3 As nodes of the various authentication paths will be generated interleaved, it is
necessary to rearrange them accordingly.

4 One might expect to require 32 · 16 = 512 nodes, as each of the 32 authentication
paths results in 16 neighboring nodes. However, in order to prevent needless dupli-
cation in the top layers, the HORST signature always includes layer 6 in its entirety
and truncates the authentication paths after 10 nodes, leaving it to the verifier to
reconstruct the paths.
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Algorithm 2. Computing treehash round numbers
Require: idx
Output: treehash round numbers of authentication nodes
1: roundno ← idx + t
2: roundnumbers ← [ ]
3: for i ∈ {1, . . . , log(t)} do
4: � Find the neighbour node’s round number..
5: if idx mod 2 = 1 then � (idx is a ‘right-node’)
6: roundno ← roundno − 2i−1

7: idx ← idx − 1
8: else � (idx is a ‘left-node’)
9: roundno ← roundno + 2i−1

10: end if
11: roundnumbers.append(roundno)
12: � ..and move up to the parent node.
13: if idx mod 2 = 0 then
14: roundno ← roundno + 2i−1

15: end if
16: idx ← idx/2
17: end for
18: return roundnumbers

relevant nodes. This makes it especially important to optimize recognizing rele-
vant treehash rounds.

An efficient way to recognize which nodes need to be included in the signature
while performing treehash is by storing bitmasks for each of the relevant rounds.
By sorting these bitmasks by their round index, one can iterate over the mask-
index pairs while processing each of the leaf nodes. Pointing an iterator at the
current mask-index pair and only incrementing it when the index is equal to the
index of the current leaf node will result in an overhead of only one comparison
for each non-relevant round.

Streaming Out Signature Data. In the previous section, we have glossed over
an important aspect of the signing process: constructing the signature. Where an
implementation with an abundance of memory available would simply allocate
41 KB of memory and insert the different pieces of the signature in the right place
as they are computed, this is not possible on our device. Instead, the signature is
streamed out of the board over the serial port throughout the computation. For
many applications, this is not much different from receiving the entire signature
all at once after the entire computation has finished, so we believe this should
not pose any immediate usability concerns.

As was discussed in Sect. 2.4, the SPHINCS signature consists of a number
of different components. Recall that Σ = (idx,R, σH , (σW,1, Auth1), . . . , (σW,d,
Authd)), where, for brevity, H and W now denote the HORST FTS signature
and the WOTS+ OTS signatures, respectively.

The values idx and R are generated at the start of the signing procedure,
and can be written to the output stream immediately. The WOTS+ signatures
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σW,i and sequences of nodes Authi are generated in the same order as the order
in which they are supposed to be arranged in Σ, so this does not lead to any
difficulty, either – instead of storing them in memory, we simply write these
values to the output stream as they are computed.

The HORST signature σH is a bit more complicated. It consists of k pairs of
secret keys belonging to leaf nodes, and sequences of nodes along the path from
each of these leaf nodes towards the top of the tree. As remarked in footnote 4
on page 16, all nodes on layer 6 are always included, so the last 6 nodes of these
sequences are truncated. The issue here is the fact that the node sequences are
not produced one at a time, but are each grown in an interleaved fashion as more
and more of the tree is computed. When storing the hash values in a signature
in memory, this does not pose a problem – each node value can be inserted in
the right place. When streaming the output, however, one cannot go back and
insert a node value. Instead, the node values will have to be tagged with what
should have been their location in the signature, and rearranged accordingly on
the receiving end of the communication. For each 32-byte node value, this adds
an overhead of two bytes. While this may seem significant, in the end it results
in an increase of 832 bytes (640 for the authentication path nodes, 128 for the
nodes on layer 6 and 64 bytes for the secret keys). Considering that the entire
SPHINCS signature is 41 KB, this can be considered acceptable.

HORST Key Material. Similarly, generating a HORST secret key (based on
the seed SK1 and its location in the hypertree) results in too much key material
to fit in memory. With 216 leaf nodes of 32 bytes each, this would amount to
2 MB. Instead, we can once more rely on the fact that treehash rounds consume
the leaf nodes sequentially, and only generate the leaf node values when they are
required. To achieve this, we briefly store the intermediate state of the ChaCha12
stream cipher instead, initially seeding it in the regular fashion for HORST. We
then perform the next iteration based on the stored state whenever more key
data is required. This allows for the generation of leaf node values on the fly. As
ChaCha12 produces output blocks of 512 bits, every other leaf node requires a
new chunk of output to be generated.

Streaming the Message. On the subject of streaming data, it should also be
remarked that for the Cortex M3 to be able to sign messages of a length larger
than the available memory, it is necessary to process the message in a streamed
fashion as well. This is possible, but requires the message to be streamed twice.
In Sect. 2.4, we described that the message is first used together with the secret
key to generate a message-specific random value R, after which the message
digest is generated. As this digest is computed as the hash of the concatenation
of a part of R and the message (in that order), the message needs to be available
twice. As storing it on the device is not an option for large messages, it needs
to be streamed twice. The additional overhead is minimal as it can be streamed
in block by block while performing the BLAKE512 hash using direct memory
access.



ARMed SPHINCS 463

4.2 Performance

The previous subsections show some of the adjustments required to be able to
generate SPHINCS signatures on a platform with only 16 KB of volatile memory.
Besides memory usage, time is also a relevant metric to consider. In fact, the
running time very much determines usability in practice.

ChaCha Permutation. When considering SPHINCS-256, one of the key obser-
vations here is the repeated use of the ChaCha permutation. It is the fundamental
building block in both WOTS+ and HORST, as well as the hash trees that make
up the rest of the hypertree.

Recall that t = 216. In order to generate a HORST key and produce a
signature, ChaCha is used 1

2 · t = 32768 times to expand the seed and generate
the secret keys, as the permutation outputs 512 bits and the keys are 256 bits
each. These secret keys are then hashed using F to construct the leaf nodes at
the cost of another t = 65536 permutations. Subsequently, treehash is used to
hash together t leaf nodes, at a cost of two ChaCha permutations per parent
node (as follows from the construction of the function H in Sect. 2.9), resulting
in another 2 · (t − 1) = 131070 permutations. All in all, this results in 229374
calls for one HORST signature.

WOTS+ is significantly cheaper. Recall that � = 67 and w = 16. Generating a
WOTS+ key pair requires � secret keys, which costs

⌈

1
2 · �

⌉

= 34 permutations to
expand the seed, �·(w−1) = 1005 invocations of F at one permutation each for the
chaining function and 66 invocations of H to build the L-tree, totaling 34+1006+
2 ·66 = 1171 permutations. Each of the trees in the hypertree has 32 WOTS+ leaf
nodes, costing a total of 32 · 1171 = 37472 permutations per tree.

Constructing a tree with WOTS+ key pairs on the leaf nodes costs an addi-
tional 31 invocations of H. One of the WOTS+ nodes is used to produce a
signature on the sub-tree below, at the average cost of

⌈

1
2 · � · (w − 1)

⌉

= 503
more invocations of F . As there are trees 12 in the hypertree, this leads to a
total of 12 · (37472 + 2 · 31 + 503) = 456444. Summing the cost of HORST and
the WOTS+ trees, we arrive at a grand total of 229374 + 456444 = 685818
permutations.

Because we perform so many ChaCha permutations, it is worthwhile to opti-
mize this in ARMv7-M assembly. Internally, the ChaCha permutation operates
on sixteen words of 32 bits each. These fit precisely in the 32-bit registers that
are available to us on this platform, and the arithmetic in ChaCha is very simple
to perform once the words are accessible. There are not enough registers avail-
able for all of these words, though, as register 13, 14 and 15 are reserved for
the stack pointer, link register and program counter, respectively. This would
imply that three of the sixteen words would need to be saved in memory at all
times, at the cost of a load and a store whenever one of these is needed. While
we need the program counter and stack pointer for the code to run properly,
we are not making any function calls that require the link register – the extra
cost of having to pop it from the stack in the end is easily compensated by the
benefit of an extra general purpose register. Now that we have fourteen registers
to work with, we can arrange the order of the round internals of the ChaCha
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permutations such that we only need to switch out the two words on the stack
once every round, on average. Doing so, we arrive at 738 cycles for one permuta-
tion; in the context of the ChaCha12 stream cipher, this corresponds to around
23 cycles per byte.

Key Generation. Generating a SPHINCS-256 key on the device takes
35 423 182 cycles. At 32 MHz, this amounts to just over a second. As one would
expect, virtually all of these cycles can be attributed to WOTS+ key generation.
When it comes to key generation, it should be noted that the STM32L100C dis-
covery board that we used for these benchmarks is not equipped with a random
number generator. Instead, we used a hard-coded 32-byte value that is included
when we flash the device. While in practice, using this board, key generation
would have to be done off the board, our results show that for similar boards
with a TRNG on-board key generation is not only feasible but practical.

Signing. Producing a signature takes 729 942 616 cycles, or approximately
22.81 s. As described above, we cannot store the signature on the board – this
requires communication to a host outside of the board. Using direct memory
access, we can efficiently interleave control of this communication with compu-
tations. If we disable communication and instead discard the signature as it is
being produced, the signing procedure requires 725 933 925 cycles (for messages
of small length, so as to focus the benchmark on penalty of signature output).
This shows that the overhead is noticeable but not significant. In practice, this is
a factor that may vary slightly depending on the specific context and interfaces
available.

In terms of RAM usage, the signing procedure ends up using 8 755 bytes of
stack space. Note that some of this stack usage is the result of function inlining
by the compiler, to prevent having to perform function calls. When disabling this
behavior, the stack space consumption is reduced to 6 619 bytes. Furthermore,
we observe that the current implementation requires 25 KB of flash memory (or
19 KB, without inlining). These results show that there is a sufficient amount of
memory left on the device (in terms of both RAM and ROM) for other applica-
tions, but also indicate that moving to even smaller devices (such as the Cortex
M0) would be quite challenging.

Verification. Verification is much more straight-forward. The memory limit
does not necessitate any significant changes like it did for signature genera-
tion, as the verification procedure never requires the construction of a full tree.
The signature needs to be streamed to the device, but this does not compli-
cate processing, as the node values arrive in the order in which they are to
be consumed. At 17 707 814 cycles, verification takes roughly 553 milliseconds.
When ignoring the communication and operating on bogus data instead, ver-
ification requires 8 263 801 cycles. The communication penalty is in the same
ballpark as the one incurred when signing, but still noticeably different. This
can be accounted for by the way in which communication and computation
can be interleaved in the two procedures: for verification, the windows in which
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communication can be performed are much smaller, making it more difficult to
schedule the computation and communication efficiently.

5 The Cost of Eliminating the State

As has been discussed earlier, being able to compute digital signatures in a
stateless configuration has definite advantages over a scheme that has to maintain
a state. The advantages are generally focused around practical applicability. In
order to be able to get rid of the state, however, SPHINCS pays a significant
price. In this section, we will review just how much it costs to get rid of the
state. We do this by comparing the performance of SPHINCS on the Cortex M3
to that of Multi Tree XMSS [16] on the same platform, configured in such a way
that both schemes offer a similar security level using similar primitives.

5.1 XMSSMT

XMSSMT [16] uses the XMSS construction [5] in such a way that it is possible
to sign a much larger number of messages before having to generate a new key.
Depending on the specific parameters and practical application, this limit is
virtually non-existent.

In essence, XMSS (and, by extension, XMSSMT ) is the stateful counterpart
of SPHINCS. The high-level design is very similar, using WOTS+ leaf nodes to
sign messages and including the authentication path in the signature, as well as
adding bitmasks to the hash tree layers. The differences originate from the fact
that XMSS uses the leaf nodes sequentially to guarantee that they are only used
once, while SPHINCS selects them at random with a negligible chance of dupli-
cation. As we have discussed earlier, SPHINCS reduces this chance by adding a
layer of HORST nodes underneath the WOTS+ leaves and by greatly increas-
ing the tree size. In order to feasibly operate on such a large tree, SPHINCS
includes layers of WOTS+ signatures to link different subtrees together. These
linked subtrees are precisely how XMSSMT is also able to increase its tree size
(and thus the number of available leaf nodes).

Besides being able to work with a smaller, more efficient tree, going through
the leaf nodes sequentially also allows us to re-use parts of the previous authen-
tication path when generating a new signature. By storing the authentication
path and the WOTS+ signature, only very few new nodes need to be computed
when the next signature is generated. The amount of work that needs to be
done to update the authentication path varies wildly for the different leaf nodes,
however, making the signing cost very diverse. In order to be able to efficiently
compute each signature at the same costs, the authors of XMSSMT suggest the
use of the BDS traversal algorithm [7] with a distributed signature generation
method5.

5 Where the costs for signature generation are equally distributed among all signature
generations.
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BDS Traversal. While this is not the right place to go into the precise details of
the BDS algorithm [7], it is relevant and necessary to have a basic intuition. The
goal of this algorithm is to have all the nodes for a certain authentication path
available right when it is required, while still keeping the storage requirement
to a minimum. This is done by maintaining an elaborate state and allocating
‘updates’ to each round (i.e. to be performed whenever an authentication path
is returned). The state consists, among other structures, of instances of the
treehash algorithm progressing through the current subtree, but also of work-
in-progress instances of the next subtree, for each layer in the hypertree. The
allocated updates are assigned to the treehash instances that have the most
work to do relative to their deadline, guaranteeing that each node is produced
when needed. Additionally, the algorithm configuration allows for a trade-off
between the amount of work per update and the storage requirement by caching
particularly expensive nodes high up in the trees.

For now, the main detail we need to make note of is the fact that in order
to initialize the state and initial authentication path, it is necessary to com-
pute the first full subtree on every layer. Additionally, it is relevant to remark
that changing from one subtree to the next is a more costly operation, as this
requires a new WOTS+ signature to effectively link the new tree to the existing
parent tree.

5.2 Parameters

XMSSMT offers a diverse set of parameters to make different trade-offs between
the runtime and storage requirements. For the parameters selection, we tried to
conform to the settings proposed in the XMSSMT Internet-Draft [15]. This let
to the choice of m = 32 and n = 32 for the function output sizes, a tree with a
total height of h = 20, d = 2 subtree layers and a Winternitz parameter w = 16
(resulting in a length of � = 67).

In terms of running time, the performance would have benefited significantly
from a larger number of subtree layers, d. However, each layer d implies the
need to store an additional WOTS+ signature, quickly exceeding our memory
constraint. Moreover, a signature contains one WOTS+ signature per layer,
increasing the signature size significantly. For the BDS algorithm, we choose
k = 6. This allows us to cache a fairly large number of expensive nodes in the
limited memory that is available.

In order to be able fairly compare XMSSMT to SPHINCS-256, we do not use
SHA-256 and SHA-512 to compute the message digest or the parent nodes in the
hash trees. Instead, we rely on the BLAKE hash functions [1] for the message
digest, and use a construction based on the ChaCha permutation similar to
the ones described in Sect. 2.9 for the functions H and F , listed below. As in
SPHINCS, let C = “expand 32-byte to 64-byte state!”, let Chop(M, i) be a
function that truncates M to i bits, π the ChaCha permutation, Mi strings of
256 bits and O a string of 256 zero-bits, then:
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F (K,M) = Chop(π(π(K‖C) ⊕ (M‖O)), 256)
H(K,M1,M2) = Chop(π(π(π(K‖C) ⊕ (M1‖O)) ⊕ (M2‖O)), 256)

For pseudo-random number generation, we replace ChaCha20 with
ChaCha12, as this matches the choice for SPHINCS-256. All of this implies
that we can use the same ARMv7-M assembly implementation of the ChaCha
permutation that we used for SPHINCS.

5.3 Performance

The difficulty with an accurate performance estimate for XMSSMT is that it
highly depends on the practicalities of the platform it is deployed on, as well
as the precise use-case. This is a result of the extra administration that comes
with dealing with the state. As suggested above, part of the state is crucial for
the security of the scheme (namely the index of the last processed leaf node),
and while the structures that need to be stored for BDS traversal are needed
for signing time optimization purposes. Writing persistent data is a relatively
costly operation on most platforms, so different decisions will need to be made
depending on use case specific requirements. On the STM32L100C, writing a
well-aligned 4-byte word to non-volatile memory costs roughly 216 500 cycles on
average, and scales linearly with the number of words written.

For our experiments, we assume that the device is powered on for a longer
period of time, and is being queried for multiple signatures over this interval.
This is an especially relevant scenario for XMSSMT , as this is where the benefit
of the BDS state comes into play most prominently.

Before outputting each new signature, it is necessary to write the updated
secret key to persistent memory. This prevents re-use of a leaf node (and thus
compromise of the key) when the power gets cut. As the BDS state is much larger
and thus more expensive to store, it is only written to persistent memory when
a graceful power-off occurs. In case this state is lost, it can be reinitialized based
on the secret key seed and leaf node index. For the purpose of this comparison,
this is considered out of scope.

Key Generation and Initialization. Compared to SPHINCS, the key gen-
eration phase for XMSSMT is much more expensive, especially in the setting
described here. The main reason for this is the fact that the two trees consist
of 10 levels each, resulting in the computation of 2048 WOTS+ leaves (1024 on
each level). As mentioned above, the generation of two trees is necessary to ini-
tialize the BDS state. Additionally, a WOTS+ signature needs to be computed
for the bottom tree. For the specified parameters, the initialization phase takes
10 590 816 803 cycles. Each WOTS+ leaf computation costs 5 160 791 cycles, and
the WOTS+ signature costs 1 922 418 cycles. This accounts for most of the work,
leaving only a small fraction for the hash trees.

Signing and Verification. For signing, the cycle count is not precisely identical
for each signature. The BDS algorithm tries to distribute costs equally among
signature generations by running a fixed amount of treehash ‘updates’ for each
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signature. However, for the first few signatures not all these updates are needed
as all structures are initialized during key generation and only few values have
to be computed during each signature generation. It turns out that during this
“start-up phase” it is slightly more costly to update the state for ‘right’ leaf
nodes than for their ‘left’ neighbors, signatures using a left leaf node come in
at 25 289 355 cycles, while right nodes cost 20 135 696 cycles. Transitioning from
one tree to the next does cost significantly more cycles than a regular signature:
Signatures that require renewing the WOTS+ signature that binds the subtrees
together cost 33 003 958 cycles. Overall, the average signing time is 22 725 092
cycles.

As one would expect of a hash-based signature scheme, verification is a much
cheaper operation. At only 5 528 712 cycles, the relative gain in comparison to
SPHINCS is not as dramatic as it is for the signing procedure, but it is still a
significant difference.

6 Conclusions

Having to maintain a state for digital signature schemes can have several negative
consequences. With this work, we have shown that it is feasible to run stateless
hash-based signatures on a microcontroller, both in terms of performance and
memory use. The fact that a SPHINCS signature itself does not fit in memory has
proven to be a surmountable obstacle. This could make SPHINCS-256 well-suited
as a cross-platform post-quantum signature scheme, especially when keeping a
state is not a viable option.

However, we have also shown that eliminating the state does not come for
free. While verification is fast for stateful and stateless schemes, signing with
stateful XMSS is about 32 times faster than signing with stateless SPHINCS.
The 729 942 616 cycles used by SPHINCs may be acceptable for non-interactive
applications that need long term security and cannot maintain a state, but we
believe that further algorithmic improvements to stateless hash-based signatures
will be needed to enable deployment on a broader scale.
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