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Abstract. Functional magnetic resonance imaging (fMRI) can be used to
predict the states of the human brain. However, solving the learning problem in
multi-subjects is difficult, because of the inter-subject variability. In this paper,
we use the synchronization of fMRI voxels when the brain responds to a
stimulus in order to construct features for achieving better data representation
and more efficient classification. With a simple definition of synchronization, the
proposed method is insensitive to the reasonable choices over a broad range of
thresholds. We also demonstrate a new unbiased method to compare multiple
subjects by applying the singular value decomposition (SVD) to the discrimi-
nation matrix, which enumerates the different patterns. The method for ana-
lyzing the fMRI data works well for identifying the meaningful functional
differences between subjects.
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1 Introduction

Functional magnetic resonance imaging (fMRI) is a powerful tool to study the brain
activity. The common method to analyze fMRI data is to find non-zero blood oxygen
level dependent (BOLD) signal in a large cross section of voxels and apply statistical
parametric models to create images of brain activation [1]. Recently, using patterns of
the brain activity measured by fMRI data to predict the cognitive states of the subject
have been receiving much attention of the neuroscience community [2, 3]. In this
approach, one expects brain activation patterns to largely similar for lower-level brain
functions, such as vision or motor responses in order to find a common activity model.
Thereafter, all subjects are spatially normalized to a common template for creating the
voxel correspondence [4]. However, empirical evidence reveals that the activation
varies strongly from subject to subject [5, 6] and from group to group [7]. Therefore,
simply normalizing data across subjects and pooling the normalized data into region of
interest (ROI) super-voxels might not be the best option [8]. We believe that averaging
multiple fMRI time series should only be performed after we understand the sources of
variations in the data.
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When analyzing multiple subjects, a widely used method is to average data across
subjects in the same task [8, 9]. However, for an inhomogeneous group of subjects, this
method gives incorrect description of subject-to-subject variation. Most fMRI studies
do not concentrate on diagnostic classification and utilize group averaging in order to
differentiate subject classes, such as age or clinical conditions. Moreover, since the
group-averaged activation profiles cannot be used for a high demanding problem of
classification, there is simply no prediction accuracy. When a fMRI dataset becomes
larger, the classification will be more severe, because some manually curated classifiers
can be statistically meaningful, but other classifiers cannot. In general, these mean-
ingful classifiers are not known beforehand. Thus, there is a need to develop automatic
classification algorithms that can exploit the ever-growing of fMRI dataset for
knowledge discovery.

The structure of the rest of this paper is as follows. In Sect. 2, we describe the
synchronization method for analysis of the fMRI data and show how the synchro-
nization patterns were constructed. Section 3 presents experimental results of the
proposed method. Finally, we conclude the paper in Sect. 4.

2 Proposed Method

2.1 Synchronization Approach

An fMRI signal consists of activated signals and uninterested signals, such as
physiology-related or motion-related signals. To extract the activation areas, we
employ the independent component analysis (ICA) [10] to a group of Alzheimer’s
disease and normal subjects which we described in Sect. 3. The sensory-motor
experiment suggests that the ROIs are those associated with visual processing and
motor response. Next, we created a brain mask consisting of the regions using the
Brodmann template. After applying the ICA, an activation map consisting of voxels,
whose spatial map of highest correlation was selected. The ROIs which can be iden-
tified are the primary motor cortex (PMC), the supplementary motor area (SMA), the
primary visual cortex (PVC), and the extrastriate visual cortical areas (EVC) (Fig. 1).

For a particular active region, many voxels must be activated simultaneously in
order to make a strong response. This implies that a large cross section of voxels should
be synchronized for reaction to a stimulus. These cross sections of voxels can be
discovered through statistical clustering that is based on the magnitude of their
responses to the experiments [11]. The similarity between voxel time series are com-
monly measured with linear techniques, such as the coherence [12] and the duration of
coupling between a pair of neurophysiological processes [13].

Coherence measures the synchronization in the frequency domain, by comparing
the average cross and power spectra of the two time series across the low-frequency
band. At the same time, the duration of coupling between a pair of neurophysiological
processes is the length of time that their band-pass filtered signals are in phase syn-
chronization with each other. The color maps of the coherence and the duration of
coupling between a pair of neurophysiological processes of four Brodmann areas are
shown in Fig. 2.
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Although these approaches can measure the synchronization, they have some
limitations. First, we have to choose a time window for measuring frequency spec-
trums. Moreover, no assumption is made for the synchronized cross section, i.e. as long
as the synchronization is persistent in time, it can be detected even if only two of
K voxels are synchronized. Another method, which applies a grapth theory on resting
state fMRI and uses graph measured as features for classification [14]. However, as we
mentioned, physiologically meaningful synchronizations present large spatial cross
sections. In this paper, we show how one can take advantage of this large spatial cross
section of synchronized voxels in order to detect brief synchronizations.

Consider xi(t) and xj(t) are the BOLD signals from two voxels i and j. Their
standardized fMRI activities can be defined as follows:

Fig. 1. Slices of the standardized anatomical brain showing the most strongly activated voxels
obtained by ICA on the group of 27 subjects, over a brain mask comprising the visual processing
and motor response Brodmann areas.

Fig. 2. Color maps of the (a) coherence matrices and (b) phase difference matrices between
voxels within (left to right) the primary motor cortex (PMC, 1267 voxels), the supplementary
motor area (SMA, 3601 voxels), the primary visual cortex (PVC, 1137 voxels), and the
extrastriate visual cortical areas (EVC, 5949 voxels) of Alzheimer subject 2. The average
coherences over all voxels over all times are 0.35 ± 0.29 (PMC), 0.32 ± 0.27 (SMA), 0.48 ± 0.31
(PVC), and 0.33 ± 0.29 (EVC). The average phase differences between all voxel pairs over all
times are −0.06 ± 0.74 (PMC), 1.3 ± 1.5 (SMA), 0.02 ± 0.55 (PVC), and 0.01 ± 0.52 (EVC).
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The two voxels i and j are instantaneously synchronized if both of the standardized
fMRI activities fi tð Þ and fj tð Þ achieve a given threshold at the same time t. In exper-
iments, this synchronization is robust because it does not depend on a particular
selected threshold.

From the standardized fMRI activities, we can calculate the dynamic standard
deviation as below:

rðtÞ ¼ 1
N

XN
i¼1

ðfiðtÞ � lðtÞÞ2:

This equation gives us a sense of the varying of the BOLD signals across voxels at
any given point of time. The dynamic standard deviation is mostly constant except
when the episodes of activation are very differential.

To ensure that only stimulation signals were picked up, we considered two voxels
as being instantaneously synchronized only if they emerge together from a rejection
band. The rejection band in ð�r; þ rÞ for the rest of the paper is the time average of
the dynamic standard deviation. It can be computed as follows:

r ¼ 1
T

XT
t¼1

rðtÞ

Next, we define the positive synchronization and negative synchronization fractions
at time t:

qþ ðtÞ ¼
1
N

XN
i¼1

hðfiðtÞ � rÞ;

q�ðtÞ ¼
1
N

XN
i¼1

hð�fiðtÞ � rÞ

where the fractions of voxels whose standardized fMRI signals rise above or fall below
þ r ð�rÞ and the unit step function can be computed as follows.
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h xð Þ ¼ 1; x[ 0;
0; otherwise

�
:

It is noted that qþ ðtÞ and q�ðtÞ represent the spatial cross sections of positive and
negative synchronizations.

In Fig. 3, the positive and negative synchronization fractions can be seen on the top
and in the middle row. The relative strengths of the positive synchronization peaks
coincide with troughs of the negative synchronization. It ensures the synchronization
patterns observed are functionally meaningful, or at least as meaningful as the mean
time course in measuring cognitive functions. These synchronization patterns in the
four ROIs can be better visualized in a single color map (bottom row), where the blue
area indicates strong negative synchronization and the red area indicates strong positive
synchronization. In this color map, the green area indicates the absence of strong
positive or negative synchronizations.

2.2 Feature Selection

We look for the described above differentiated responses in different ROIs in the brain.
There are two ways for the responses of different ROIs to be discriminated: (1) syn-
chronizing a ROI before synchronizing another ROI, (2) synchronizing a ROI is
stronger than another ROI. In fMRI experiments, it may be difficult to see the first type
of differentiation because of low time resolution, so we concentrate on looking for the
second type of differentiated response, as shown in Fig. 3.

Fig. 3. Positive and negative synchronization patterns of four Brodmann areas: primary motor
cortex (PMC) (red), supplementary motor area (SMA) (green), primary visual cortex
(PVC) (blue), and extrastriate visual cortical areas (EVC) (cyan) in Alzheimer subject 2 (Color
figure online).
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In Fig. 4, we show the synchronization fractions of all ROIs in 13 Alzheimer and 14
normal subjects. If the subjects were given the same task sequence, we would be able to
directly compare functional differences in their responses to the tasks. In this figure, the
task sequence varies from subject to subject. Therefore, though the synchronization
patterns are interesting, the functional responses of different subjects can not be directly
compared. For such fMRI data, we must perform functional comparison indirectly
between different subjects. To this end, a discrimination matrix has been constructive.

Firstly, we go through the synchronization pattern of an individual subject and find
an instance of a particular ordering of synchronization fractions. For example, the
strongest synchronization can be found in the PMC, the next strongest synchronization
in the SMA, followed by the PVC, and then the EVC areas for a particular stimulation
episode. This is a functional pattern we may find in other subjects as well. Thus we
search exhausting functional patterns and list the subjects we find these patterns in the
form of a non-square matrix. In this discrimination matrix, called D the rows represent
different subjects while the columns represent different functional patterns, such that
Dij ¼ 1 if functional pattern j is found in subject i, and Dij ¼ 0 otherwise. After that, we
utilize SVD analysis for the matrix D ðD ¼ URVTÞ, where the columns of U are
eigenvectors of subjects and the columns of V are eigenvectors of functional patterns.

3 Experimental Results

3.1 Data Preparation

We used the publicly-known data of Washington University [15]: 13 subjects (six
males with the mean age of 77.2 years) with very mild to Alzheimer’s Disease con-
ditions and 14 normal subjects (five males with the mean age of 74.9 years) were
scanned in a simple sensory-motor experiment. The functional images were obtained
using asymmetric spin-echo sequence sensitive to BOLD contrast with following
parameters: TR = 2.68 s; 3.75 × 3.75 mm in-plane resolution; T2* evolution
time = 50 ms (ms); alpha = 90°. Whole brain volumes were obtained using 16 con-
tiguous 8-mm think slices with parallel to the plane of the anterior-posterior com-
missure. The raw data were received from the fMRI Data Center at Dartmouth College

Fig. 4. Synchronization color maps of all ROIs in all 13 Alzheimer and 14 normal subjects
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and preprocessed using SPM8 [16]. The images were motion corrected and normalized
to coordinates of Talairach and Tournoux [17]. They were also smoothed with a 4 mm
Gaussian kernel to decrease spatial noise.

3.2 Results

Referring to Fig. 4, we recognized that there is no easy way to directly compare the
synchronization patterns of different subjects since the sequences of tasks that given to
the subjects are different. Therefore, we constructed a discrimination matrix to look for
hidden functional differences between subjects. As we are interested in the functional
classification of subjects, we plot the weights of each subject along the first and second
principal components of U. Clusters that appear in such a plot give a natural classifi-
cation scheme (Fig. 5).

Alternatively, if we are interested in a natural classification scheme for the func-
tional patterns, we can plot the weights of each functional pattern along the first and
second principal components of V. Again clusters that might appear in such a plot
would allow us to naturally classify functional patterns. We found that the Alzheimer
and normal subjects are not differentiated, during positive or negative synchronizations.
Thus, these two pieces of information in the form of a reordered version of the dis-
crimination matrix can be combined. To reorder the discrimination matrix, we make
use of the fact that the second principal component is generally associated with the
greatest difference between subjects. In this second principal component, a subject with
positive weight has similar functional patterns compared to another subject with pos-
itive weight, but dissimilar functional patterns from a subject with negative weight.
Therefore, we reordered the subjects, so that those with positive weights come first,
followed by those with negative weights.

We combined two pieces of information in the form of the reordered version of the
discrimination matrix. In the second principal component, a subject with positive weight
has similar functional patterns compared to another subject with positive weight, but

Fig. 5. Plots of weights of individual subjects (27 subjects, including 13 Alzheimer and 14
normal) of the first and second principal components of the discrimination matrices obtained
from positive synchronization (left) and negative synchronization (right).
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dissimilar functional patterns from a subject with negative weight. From reordered
discrimination matrix, we found mostly nondiscriminatory patterns that appear in all
subjects. However, we recognized discriminatory patterns and the two clusters of
subjects are primarily discriminated by the positive synchronization patterns:

From negative reordered matrix, it is shown that the two clusters of subjects are
primarily discriminated by the negative synchronization patterns:

Here we found the primary motor cortex (BA4) being most frequently the most
negatively synchronized, followed by the primary visual cortex (BA17) and the
extrastriate visual cortical area (BA18/BA19).

4 Conclusion

In this paper, we have presented a new and effective feature selection method for
analyzing fMRI data to find the meaningful functional differences between subjects.
Instead of looking for average activation profiles, we examined synchronization pat-
terns in different parts of the human brain. Based on these patterns we constructed a
discrimination matrix between subjects and between synchronization patterns, whose
matrix elements tell us whether a given pair of subjects can be discriminated by a given
positive or negative synchronization pattern. When subjects can be classified into
natural clusters, we showed that it is possible to identify the most important functional
differences between these subject clusters.
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