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Abstract. Discrete event systems (DES) control based on interpreted
Petri nets (IPN) is presented in this paper. While place/transition Petri
nets (P/T PN) are usually used for modelling and control in case of
controllable transitions and measurable places, the IPN-based models
yield the possibility for the control synthesis also in case when P/T PN
models contain some uncontrollable transitions and unmeasurable places.
The creation of the IPN model from such a P/T PN model is introduced
and the control synthesis is performed. The illustrative examples as well
as the case study on a robotized assembly cell are introduced.
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1 Introduction

Petri nets (PN) [1,2,6–8] are a special kind of bipartite directed graphs. Namely,
they have two kinds of nodes (places and transitions) and two kinds of edges
(from places to transitions and conversely). The PN structure [1] is a triple
N = 〈P, T,B〉, where P is a finite set of n places and T is a finite set of m
transitions. B represents the PN edges. Thus,

P ∪ T �= ∅; P ∩ T = ∅ (1)
B ⊆ (P × T ) ∪ (T × P ) (2)

where B = F ∪ G with F ⊆ (P × T ) and G ⊆ (T × P ).
Except the structure PN have also their dynamics. Thus, the complete PN

definition is PN = (N,M0) with M0 being the initial marking (represented
below in (3) by the initial state vector x0).

A transition t ∈ T may be fired at a marking M if it is enabled - i.e. if
all of its input places have at least one token. The firing of t removes one
token from each of its input places and adds one token to each of its output
places. After firing t a new PN marking M ′ is reached. This process is expressed
below by the state Eq. (3). The set R(M0) expresses all markings reachable
from the initial marking M0. The PN marking development can be understood
to be PN dynamics, formally expressed [1] by the quadruplet 〈X,U, δ,x0〉. Here,
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378 F. Čapkovič

δ : X ×U → X, where X is a set of state vectors xk and U is a set of control vec-
tors uk. While the entries of state vectors xk express states of elementary places
σk
pi

, i = 1, . . . , n (i.e. the number of tokens), in different steps k = 0, 1, . . . , K,
the entries of control vectors uk represent the states of elementary transitions
γk
tj , j = 1, . . . , m (i.e. their disabling or enabling). The sets B, F , G can be

replaced by the incidence matrices B, F, G of PN edges. Here, B = GT − F.
Consequently, PN dynamics can be described by the restricted linear discrete
integer system (all of its parameters and variables are non-negative integers) as
follows

xk+1 = xk + B.uk; k = 0, 1, . . . , K (3)
F.uk ≤ xk (4)

Here, xk = (σk
p1

, . . . , σk
pn

)T with σpi
∈ {0, 1, . . . , ∞}, i = 1, . . . , n, and uk =

(γk
t1 , . . . , γk

tm)T with γtj ∈ {0, 1}, j = 1, . . . , m.
The mathematical model (3) - (4) describes the PN marking development. It

can be successfully used for modelling DES when all places are measurable and all
transitions are controllable. However, in PN models of real systems unmeasurable
places and uncontrollable transitions can occur. In such a case Interpreted PN
(IPN), being an extension of PN, are applied. IPN were defined e.g. in [3–5,9,10]
and in other sources.

1.1 Interpreted Petri Nets

In the sense of the definition introduced in [10] the IPN is the following sextuplet

Q = 〈(N,x0), Σ, Φ, λ, Ψ, ϕ〉 (5)

where,
PN = (N,x0) is the original PN;
Σ = {α1, α2, . . . , αr} is the input alphabet with αi, i = 1, . . . , r, being the

input symbols;
Φ = {δ1, δ2, . . . , δs} is the output alphabet with δi, i = 1, . . . , s, being the

output symbols;
λ : T → Σ ∪{ε} labels the transitions. Either an input symbol αi ∈ Σ or the

internal event ε is assigned to each PN transition by this function. Thus, two
sets of transitions arise - the set Tc of controllable transitions and the set Tu of
uncontrollable transitions. Of course, T = Tc ∪ Tu.

Ψ : P → Φ∪{ε} labels the places. Either an output symbol δi ∈ Φ or the null
event ε is assigned to each PN place by this function. Thus, two sets of places
arise - the set Pm of the measurable places and the set Pnm of unmeasurable
places. P = Pm ∪ Pnm.
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ϕ is the output function assigning the output vector yk = ϕ.xk to the PN
state vector xk. The entries of the output vector yk represent the states of
measurable places.

More details about the functions are introduced in [10].

2 IPN in Modelling and Control

To indicate the importance of IPN models for DES control, let us introduce two
illustrative examples concerning (i) the principle of creating the IPN model of
DES at existence of uncontrollable transitions and unmeasurable places; (ii) the
principle of its control.

Fig. 1. An example of the PN-based model

To show how the IPN model can be created consider the simple PN-model
given in Fig. 1. Suppose that the measurable places are Pm = {p1, p5, p6} and
the unmeasurable ones are Pnm = P\Pm = {p2, p3, p4, p7, p8}. Consider that the
controllable transitions are Tc = {t1, t5}, while the uncontrollable ones are Tu =
T\Tc = {t2, t3, t4}. Thus, for such IPN the input alphabet Σ = {α1, α5} and the
output alphabet Φ = {δ1, δ2, δ3}. Consequently, λ(tk)k=1,...,5 = {α1, ε, ε, ε, α5},
Ψ(pi)i=1,...,8 = {δ1, ε, ε, ε, δ2, δ3, ε, ε}. The output equation is as follows

yk = ϕ.xk where ϕ =

⎛
⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

⎞
⎠ (6)

Thus for the initial state x0 = (0, 2, 0, 1, 1, 0, 1, 1)T the output vector is y0 =
(0, 1, 0)T .

In order to explain how the IPN model is controlled, consider a segment
shown in Fig. 2 left. While the upper line containing p4 and t3 represents the
fragment of the model of the control system PNcs (containing the control spec-
ifications), the lower line represents the fragment of the IPN model of the
controlled plant PNpl. The RG of the model is given in Fig. 2 right, where
x0 = (1, 0, 0, 1)T , x1 = (0, 1, 0, 1)T , x2 = (0, 0, 1, 1)T and x3 = (0, 0, 1, 0)T .
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Here, the controllable transition t1 is enabled because it is required to reach the
stated output while p4 represents the state of a sensor. The self-loop between
them represents the relation between the place of the control specification and
the plant controllable discrete event. The transition t3 represents enabling the
event expressing the situation when the plant and control specification have the
same output and p3 represents the state of the sensor. The self-loop between
them expresses the relation between the plant measured place and the control
specification. Note that the fragment of RG accordant with the segment of the
controlled plant is straight-lined. Such fragments occur also in more complicated
structures. Of course, RG of more complicated structures of the plant models will
not be entirely straight-lined as in Fig. 2. Some branchings occur in such cases
as well - it is apparent in Fig. 4 as well as in Fig. 6 introduced in the Sect. 3.
However, they are not so extensive.

Fig. 2. The controlled segment of the IPN-based model (left) and its RG (right)

2.1 Illustrative Example

To illustrate the control process deeper, consider the more complicated config-
uration of the P/T PN model of a plant (without uncontrollable transitions
and unmeasurable places) given in Fig. 3 left. Its reachability graph (RG) is in
Fig. 3 right. The model parameters and the states reachable from the initial state
(columns of XPNpl

reach) are Control of the system can be modelled as it is shown in
Fig. 4 left where the model of the controlled plant together with the controller
are introduced. Corresponding RG is given in Fig. 4 right. The model parameters
and the reachable states are as follows

FPNpl =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

; GPNpl =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

; xPNpl

0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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XPNpl

reach =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 1 0 1 1 0
0 1 0 0 1 0 0 1 0 0
0 0 1 0 1 0 1 0 0 0
1 0 1 0 0 1 0 0 0 0
1 1 0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3. The PN-based model of the plant (left) and its RG (right)

FPN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 | 0 0 1 0
0 1 0 0 0 0 | 0 1 0 0
0 1 0 0 0 0 | 0 1 0 0
0 0 1 0 0 0 | 1 0 0 0
0 0 0 1 0 0 | 1 0 0 0
0 0 0 0 1 0 | 0 0 0 1
0 0 0 0 0 1 | 0 0 0 1
− − − − − − | − − − −
0 0 0 0 1 1 | 1 0 0 0
0 0 1 1 0 0 | 0 1 0 0
0 1 0 0 0 0 | 0 0 1 0
1 0 0 0 0 0 | 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; GPN =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1 | 0 0 0 1
1 0 0 0 0 0 0 | 0 0 1 0
0 1 0 0 0 0 0 | 0 1 0 0
0 0 1 0 0 0 0 | 0 1 0 0
0 0 0 1 0 0 0 | 1 0 0 0
0 0 0 0 1 0 0 | 1 0 0 0
− − − − − − − | − − − −
0 0 0 1 1 0 0 | 0 1 0 0
0 1 1 0 0 0 0 | 0 0 1 0
1 0 0 0 0 0 0 | 0 0 0 1
0 0 0 0 0 1 1 | 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xPN
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1
1
−
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; XPN
reach =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 1 0 1 1 0 1 0 0 0 0 0
0 0 1 1 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0 1
− − − − − − − − − − − −
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Fig. 4. The controlled PN-based model of the plant and its RG

Fig. 5. The scheme of the robotized assembly cell

Comparing RGs introduced in Figs. 3 and 4 it is evident that the latter
RG does not include complicated branching. Thus, the IPN-based approach can
be successfully applied also on P/T PN without uncontrollable transitions and
unmeasurable places.

3 Case Study on Robotized Assembly Cell

Consider the robotized assembly cell (RAC) displayed schematically in Fig. 5. The
input conveyors C1 and C2 deliver to the RAC, respectively, parts A and parts
B. The robot R takes the part A from C1 and inserts it into the assembly place
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Fig. 6. The controlled IPN-based model of the plant (left) and its RG (right)

(AP). Then R takes the part B from C2 and inserts it into AP. In AP both parts
are assembled into the final configuration. After finishing the assembly process, R
takes the assembled configuration and put it on the output conveyor C3. Such the
progress of work is repeated. The PN-based model of RAC is given in Fig. 6. The
lower dashed box represents the PN model PNpl of the plant, while the upper one
expresses control specifications. The PN places represent the following activities:
p1 - C1 conveys the part A; p2 - C1 is available; p3 - R takes A from C1 and transfers
it to AP; p4 - R inserts A into AP; p5 - C2 conveys the part B; p6 - C2 is available;
p7 - R takes B from C2 and transfers it to AP; p8 - R inserts B into AP; p9 - it
ensures the mutual exclusion, because R cannot take A from C1 and B from C2
simultaneously; p10 - the parts A, B are assembled in AP; p11 - R unloads the
finished configuration from AP; p12 - R transfers the finished configuration from
AP to C3; p13 - R put the finished configuration on C3; p14 - the free place on C3
is available.

In this model the transition t8 is uncontrollable (i.e. PN turns to IPN). The
RG of the uncontrolled PN model has 813 nodes and it is extensively branched.
Consequently, it cannot be introduced here. When only one input part A and
only one input part B are allowed the RG has 28 nodes. But it is also too big
and branched.

3.1 Control of the Robotized Assembly Cell

Let us apply know the IPN-based approach to control the RAC with the uncon-
trollable transition t8. The assembly process is spontaneous and it cannot be
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influenced from outside. Using the controlled IPN model displayed in Fig. 6 left
we obtain the RG in the form given in Fig. 6 right. The incidence matrices of the
PN model, the initial state and the reachable states from it are the following

F =
(
Fpl Fpl→cs

Fcs→pl Fcs

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 | 1 0 0 0
1 0 0 0 0 0 0 0 0 0 0 | 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 | 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 | 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 | 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 | 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 | 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 | 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 | 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 | 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 | 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 | 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 | 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 | 0 0 0 1
−−−−−−−−−−−|−−−−
1 0 0 1 0 0 0 0 0 0 0 | 1 0 0 0
0 1 0 0 1 0 0 0 0 0 0 | 0 1 0 0
0 0 0 0 0 0 1 0 1 0 0 | 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 | 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

GT =
(
GT

pl GT
pl→cs

GT
cs→pl G

T
cs

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 | 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 | 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 | 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 | 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 | 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 | 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 | 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 | 0 1 0 0
0 0 1 0 0 1 0 0 0 0 0 | 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 | 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 | 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 | 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 | 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1 | 0 0 0 1
−−−−−−−−−−−|−−−−
1 0 0 1 0 0 0 0 0 0 0 | 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 | 1 0 0 0
0 0 0 0 0 0 1 0 1 0 0 | 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 | 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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x0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
1
0
0
1
0
0
0
0
1
−
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; Xreach =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0
0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0
1 1 1 1 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1
−−−−−−−−−−−−−−−−−−−
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The first column of the reachability matrix Xreach represents the initial state
x0 and other columns represent the states reachable from x0 - i.e. the feasible
states. As it can be seen from Fig. 6, the PN model of the plant itself has no
feedback - it is straightforward. The working cycle is closed by means of the loop
of the control specifications - see the upper dashed box in Fig. 6.

4 Conclusion

Two main problems were investigated in this paper. Namely, (i) how to replace
the P/T PN model of DES (in our case the assembly manufacturing system) by
the IPN model in case when some uncontrollable transitions and unmeasurable
places occur in the plant model; (ii) the control synthesis of DES at using the
IPN model.

After introducing PN and P/T PN, IPN were introduced. Then, the creation
of the IPN models was explained. To illustrate these techniques in detail, the
simple demonstrative examples were introduced. Simultaneously, the attention
was paid also to RGs. While in case of the P/T PN models RGs are usually
extensively branched and contain a big number of nodes, the proposed approach
yields RGs with fewer nodes and simpler structure. It was shown that the app-
roach proposed for the IPN control can be applied also on the P/T PN (without
the uncontrollable transitions and unmeasurable places). Thus, the simpler RGs
of the P/T PN models can be found. As it is evident from the comparison of RGs



386 F. Čapkovič

displayed in Figs. 3 and 4, the latter RG does not include complicated branching -
i.e. it is more straightforward. Consequently, the proposed IPN-based approach
can be successfully applied also on P/T PN without uncontrollable transitions
and unmeasurable places.

The main part of the paper concerns the case study on modelling and control
of the robotized assembly cell. Here, the transition t8 is uncontrollable, because
its firing cannot be realized till the moment when the parts A, B are assembled
(p10). The assembly process cannot be influenced from outside, it depends only
on the machine realizing the assembly. Namely, on its capability and efficiency.
Moreover, some unexpected (accidental) influences may extend processing time
of the assembly. Only, after finishing the assembly operation, t8 is fired and
the robot can unload the finished configuration from the machine p11 and the
working progress of the RAC can continue.

The presented approach to controlling DES modelled by means of IPN seems
to be useful for practice. Moreover, to a certain extent it is also comparatively
general. It is able to deal with straightforward PN models without any problems.
However, it is necessary to say that at systems, where PN models contain internal
cycles, some problems can occur. Therefore, in future it is necessary to pay
attention to the investigation of such problems in detail.
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