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Mechanism
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Abstract Reliability sensitivity analysis (SA) is a method to identify the rela-
tionship between the change in reliability and the change in the characteristics of
uncertain variables. Very few methods can be applied for the reliability SA for
long-term degeneracy mechanism, especially when the time-dependent limit state
function regarding the interested performance is implicit. This paper proposes a
new method to compute the reliability sensitivity measures. First, a surrogate model
called time-dependent polynomial chaos expansion (PCE) is employed to approx-
imate the uncertain output of the model and the extensive probabilistic collocation
method (PCM) and moving least squares (MLS) method-based algorithm is pro-
posed to compute the coefficients of the time-dependent PCE. Then, the explicit
time-dependent limit state function can be obtained and the reliability sensitivity
measures can be calculated straightforwardly. Finally, this approach is applied to an
engineering case and the time-dependent reliability sensitivity measures are
obtained for the long-term degeneracy mechanism model.
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5.1 Introduction

Reliability of the mechanism is defined as the probability that a kinematic mech-
anism will perform its intended movement function during a specified period of
time under stated conditions. From a design engineering viewpoint, in order to
maximize the mechanism performance under constrains of target mechanism reli-
ability, the reliability-based design optimization (RBDO) should be employed [1].
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However, the computation time for RBDO greatly depends on the number of
random design variables [2]. Reliability sensitivity analysis (SA) aims at quanti-
fying the respective effects of uncertain parameters onto the reliability of a model,
and helps the designer to answer the following question: (1) Which uncertain
parameters have the highest contribution to reliability, (2) which uncertain
parameters are not so important to reliability that can be ignored when selecting the
design variables, and (3) how will reliability be affected if the mean or the standard
deviation of a particular variable is changed [3]? Thus, the RBDO for kinematic
mechanism can benefit from the answers of the above questions.

In recent decades, many studies have been devoted to time-dependent RBDO [1,
4, 5]. The inputs (such as design parameters, loads) of mechanism vary with time,
so the interested output and reliability is time-dependent consequently. In this case,
calculating the time-dependent mechanism reliability sensitivity measures is much
more time-consuming than static mechanism reliability SA.

However, the time-dependent reliability SA for performance degradation
mechanism is rarely investigated so far, some literatures propose [6, 7] the dynamic
reliability SA concentrating on the structural reliability of mechanical components.
This is based on the assumption that the distribution of the load or the maximum
load is known, thus the time-dependent limit state function is explicit. But it is
hardly applicable for performance degradation mechanism, because the distribution
of the performance is unknown since it is affected by a lot of uncertain factors.

In order to meet the needs of time-dependent RBDO for performance degradation
mechanism, this paper proposes a polynomial chaos expansion (PCE)-based method
to compute the time-dependent mechanism reliability sensitivity measures. First, the
complicated and computational model can be replaced by the surrogate model of
time-dependent PCE, the performance of the mechanism can be computed analyti-
cally. Then, the limit state function can be constructed. After that, time-dependent
mechanism reliability sensitivity measures can be obtained straightforwardly.

5.2 Time-Dependent Reliability Sensitivity Analysis

5.2.1 Performance Degradation Model for the Mechanism

For the performance degradation model, the interested output of mechanism G may
be influenced and changed with time. This can be defined in Eq. (5.1.1), where G is
a vector of performance variables, X ¼ ½X1;X2; . . .;Xn� is a vector of random
variables, YðtÞ ¼ ½Y1ðtÞ; Y2ðtÞ; . . .; YmðtÞ� is a vector of stochastic process of the
degradation parameters, and t ¼ ð1; 2; . . .; nÞ is the vector of the number of tasks.

G ¼ gðX; YðtÞ; tÞ ð5:1:1Þ
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5.2.2 Time-Dependent Reliability

As for performance degradation models, the reliability of the model is time
dependent. In Eq. (5.1.1), since the G is a random variable, if we define the
threshold of a failure is z, then the time-dependent limit state function can
be defined as:

F ¼ G� z ¼ gðX;YðtÞ; tÞ � z ð5:1:2Þ

The failure state and safe state can also be defined as follows:

F[ 0 failure state
F� 0 safe state

�
ð5:1:3Þ

The time-dependent probability of failure over time interval ½t0; ts� can be
written as

Pf ðt0; tsÞ ¼ PrfF ¼ gðX;YðtÞ; tÞ � z[ 0; 9t 2 ½t0; ts�g ð5:1:4Þ

Thus, the time-dependent reliability can defined as follows correspondingly:

Rðt0; tsÞ ¼ PrfF ¼ gðX;YðtÞ; tÞ � z� 0; 8t 2 ½t0; ts�g ð5:1:5Þ

5.2.3 Time-Dependent Reliability Sensitivity Measures

The reliability sensitivity measures are defined as the derivative of the failure
probability with respect to distribution parameters. When the time factor t is
involved, the time-dependent reliability sensitivity measures can be defined as

SlxiðtÞ ¼
@Pf ðt0; tsÞ

@lxi
; t 2 ½t0; ts� ð5:1:6Þ

SrxiðtÞ ¼
@Pf ðt0; tsÞ

@rxi
; t 2 ½t0; ts� ð5:1:7Þ

where SlxiðtÞ=SrxiðtÞ means the reliability sensitivity of the mean/the standard
deviation of variable xi at the time instant t. lxi and rxi represent the mean and the
standard deviation of the variable, respectively.

There are a number of ways to compute the reliability sensitivity measures, e.g.,
the first order and second moment method (FOSM), Monte Carlo simulation
(MCS) based on linear regression method, MC integration method, and finite dif-
ference method. Among these methods, FOSM is a widely used method. At each
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time instant, Eqs. (5.1.6) and (5.1.7) can be seen as the point reliability sensitivity.
If the random variables are mutually independent, it is easily shown that [8]:

@pf
@lxi

¼ �
@F
@xi

� �
lxffiffiffiffiffiffi

2p
p

rF
exp � 1

2
lF
rF

� �2
" #

ð5:1:8Þ

@pf
@rxi

¼
@F
@xi

� �2

lx

rxilFffiffiffiffiffiffi
2p

p
r3F

exp � 1
2

lF
rF

� �2
" #

ð5:1:9Þ

where lx ¼ ðlx1 ; lx2 ; . . .; lxnÞ stands for the mean of the variables, lF=rF means
the mean/the standard deviation of the limit state function.

lF ¼ Fðlx1 ; lx2 ; . . .; lxnÞ ð5:1:10Þ

rF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

@F
@xi

� �2

lx

r2xi

vuut ð5:1:11Þ

And the reliability indicator can be defined as

b ¼ lF
rF

ð5:1:12Þ

Thus, the time-dependent reliability sensitivity can be calculated as follows:

SlxiðtÞ ¼ �
@F
@xi

� �
lxffiffiffiffiffiffi

2p
p

rFðtÞ
exp � 1
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lFðtÞ
rFðtÞ
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ð5:1:13Þ

SrxiðtÞ ¼
@F
@xi

� �2
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rxilFðtÞffiffiffiffiffiffi
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r3FðtÞ

exp � 1
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rFðtÞ

� �2
" #

ð5:1:14Þ

5.3 Time-Dependent PCE for the Model Output

In Eqs. (5.1.13) and (5.1.14), the performance function G must be evaluated to
obtain the time-dependent reliability sensitivity measures. As a performance
degradation mechanism, the performance function is implicit or is too complex for
explicit evaluation. Thus, a surrogate model called PCE is employed here.
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5.3.1 Time-Dependent PCE

PCE is a promising surrogate model that uses a set of orthogonal polynomial basis
to approximate the random space of the system response. It is more accurate and
effective to deal with the uncertainty compared to the conventional surrogate
models, e.g., response surface method (RSM), Kriging method, and artificial neural
networks method (ANN) [9]. The polynomial chaos of a performance degradation
model response can be described as follows:

G ¼ gðt; nÞ ¼ a0ðtÞþ
X1
i1¼1

ai1ðtÞC1ðni1Þ þ
X1
i1¼1

Xi1
i2¼1

ai1i2ðtÞC2ðni1 ; ni2Þ

þ
X1
i1¼1

Xi1
i2¼1

Xi2
i3¼1

ai1i2i3ðtÞC3ðni1 ; ni2 ; ni3Þ ð5:1:15Þ

where G ¼ gðt; nÞ is the random system response, aiðtÞ is the coefficient of PCE,
Cpðni1 ; . . .; nipÞ is the polynomial of the selected basis, and p is the polynomial
degree. In practical engineering, Eq. (5.1.15) can be simplified as follows:

gðt; nÞ ¼
XNc�1

j¼0

ajðtÞwjðnÞ; ð5:1:16Þ

where wjðnÞ ¼
Qp

i¼1 w
j
mi
ðniÞ ¼ Cpðni1 ; . . .; nipÞ and Nc is the total number of PCE

coefficients, which can be calculated as:

Nc ¼ 1þ n!
ðn� 1Þ! þ

ðnþ 1Þ!
ðn� 1Þ!2! þ � � � þ ðn� 1þ pÞ!

ðn� 1Þ!p! ¼ ðnþ pÞ!
n!p!

; ð5:1:17Þ

where n is the number of random variables in the model.

5.3.2 Computation of the Time-Dependent PCE Coefficients

The probabilistic collocation method (PCM) is a widely used method to compute
the PCE coefficient, however, collocation methods are inherently unstable, espe-
cially with PCE of high order [10]. This paper proposes an extensive PCM based on
regression, which needs to select a number of points equaling twice the number of
coefficients, and it is more stable than the conventional method.

Suppose the mechanism will perform Nc tasks. The proposed method requires
choosing m time points among the Nc tasks, i.e., T ¼ T ¼ t1; t2; . . .; tmf g; and
constructing PCEs at each point. At t ðt 2 TÞ time point, we can use the extensive
PCM to compute the coefficients of PCE and the matrix form is Eq. (5.1.18), where
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n
j
represents the jth set of collocation points. Equation (5.1.18) can be written in a

compact form of Eq. (5.1.19). The vector of coefficients can be derived as
Eq. (5.1.20). At each time point, the coefficients of PCE can be calculated according
to Eq. (5.1.20) (see Eq. 5.1.21), where rtiðNÞ is the vector of responses at ti, and ati
is the vector of the coefficients of PCE at ti. Equation (5.1.21) can be simplified as
Eq (5.1.22).

gðt; n1Þ
gðt; n2Þ

..

.

gðt; n2Nc
Þ

26664
37775 ¼

w0ðn1Þ w1ðn1Þ � � � wNc�1ðn1Þ
w0ðn2Þ w1ðn2Þ ..

.
wNc�1ðn2Þ

..

. ..
. . .

. ..
.

w0ðn2Nc
Þ w1ðn2Nc

Þ � � � wNc�1ðn2Nc
Þ

266664
377775 �

a0ðtÞ
a1ðtÞ
..
.

aNc�1ðtÞ

26664
37775

ð5:1:18Þ

rðt;NÞ ¼ wðNÞaðtÞ ð5:1:19Þ

aðtÞ ¼ w�1ðNÞ ¼ DðNÞ rðt;NÞ ð5:1:20Þ

at1 ¼ DðNÞ rt1ðNÞ;
at2 ¼ DðNÞ rt2ðNÞ;

..

.

atm ¼ DðNÞ rtmðNÞ;
ð5:1:21Þ

K ¼ DðNÞRðNÞ; ð5:1:22Þ

After the calculation of Λ, a new matrix Η of PCEs coefficients is created. Each
row represents coefficients of the PCE, and each column represents a specific
coefficient varying with steps. Η can be then expressed in a column form

H ¼ ½a0; a1; . . .; aNc�1�; ð5:1:23Þ

where a0 is the vector of the first coefficients of PCEs along with the steps.
According to [11], the approximation functions of coefficients are derived as

f̂ðtÞ ¼ U ðtÞH ð5:1:24Þ

where f̂ðtÞ ¼ ½f̂0ðtÞ; f̂1ðtÞ; . . .; f̂Nc�1ðtÞ�; f̂iðtÞ is defined as the approximation func-
tion of the ith coefficient. Then the conventional PCE can be translated into
time-dependent PCE, which is written as follows:

G ¼ gðt; nÞ ¼
XNc�1

j¼0

bfjðtÞwjðnÞ: ð5:1:25Þ
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5.4 Case Study

The engineering case is an airborne retractable mechanism (see Fig. 5.1). The
process where the mechanism moves from I position to II position and moves back
is defined as a task. At the initial design stage, the positions of and orientation of the
front arm, rear arm, the link in pin-and-lug hinge and hydraulic actuator at
IIposition are determined by requirements from higher level system. Therefore, the
link length of pin-and-lug hinge depends on the XA, the length of the hydraulic
actuator depends on the XB, the length of rear arm and front arm depends on the YC
and YD, respectively. Thus, XA;XB; YC=YD are all significant design variables.
When the system is performing, it is under the weight of the functional device. The
top hinge (pin-and-lug hinge) is working in a nonlubricated environment. As a
result, the radius of the lug Rlug is bigger for the wear of the hinge.

The maximum driving force (MDF) is generated by the hydraulic actuator, while
the output resistance force is resulted from loads and imposed on the hydraulic
actuator. During the whole running process, the resistance force (RF) varies with
the change of input displacement, i.e., the elongation of hydraulic actuator. If the
maximum RF (MRF) is larger than the MDF, the seizure failure will happen. Thus,
the time-dependent limit state function concerning seizure failure can be given as

F ¼ c� QðX;YðtÞ; tÞ ð5:1:26Þ

where QðX;YðtÞ; tÞ is the stochastic process of the MRF, c�Nð78;500; 10Þ is the
distribution of MDF.

In order to compute the wear depth Dh of the top hinge, the multidiscipline
simulation model including kinematics model built by ADAMS, FE model built by
ANSYS, and Archard wear model is constructed (see Fig. 5.2).

Pin-and-lug hinge

( , )A AA X Y

( , )B BB X Y
Hydraulic actuator

Rear arm

Functional device

( , )C CC X Y ( , )D DD X Y

Front arm

position

position

Fig. 5.1 Schematic of the airborne retractable
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In this case, the interested output of the mechanism, MRF, is approximated by
the PCE regardingthe uncertain variables XA;XB; YC=YD and Rlug (listed in
Table 5.1), and the reliability sensitivity of the four parameters is studied.

5.4.1 Time-Dependent PCE for the MRF

It can be seen that the degree of the PCE is p = 3 which is sufficient from Tables 5.2
and 5.3. The responses at every 100 steps are selected to build the PCEs, which
means that the PCE are constructed at Step 1, 100, 200, and so on till 1000.
Figure 5.3 is the first coefficients of time-dependent PCE. The blue points are
computed by the extensive PCM and the red curve is approximated by the moving
least squares (MLS). The other 34 coefficients of time-dependent PCE are also
obtained by the same method.

Then the time-dependent PCEs are constructed completely. The comparative
results of MRF are obtained at selected time steps which are 1, 250, 450, 650, and

Discipline 1 wear model

Discipline 2 kinematics model
 Input: dimensions, motion, 

parameters, etc.
  Output: sliding velocity, 

load, driving force, etc.

Discipline 3 structure FE 
model
 Input: dimension, loads, etc.
 Output: contact pressure, 

etc.

pv

load

Fig. 5.2 Schematic of the
computation of mechanical
system

Table 5.1 The distribution of
the coordinate

Symbol Description Unit Distribution

XA Coordinate X of point A mm N(−524.2641, 32)

XB Coordinate X of point B mm N(49.4975, 0.52)

YC Coordinate Y of point C mm N(148.4924, 12)

Rlug Outer radius of the lug mm U(15, 15.3)

Table 5.2 Comparative results of mean of the MRF along the time axis

Method Samples The mean of MRF (×104)

1 step 250 step 450 step 600 step 850 step

MCS 10,000 3.8263 5.1363 5.4478 7.2875 7.8872

2-order PCE 30 3.8569 5.1542 5.4601 7.2043 7.8635

Relative error – 0.0080 0.0035 0.0023 0.0114 0.0030

3-order PCE 70 3.8344 5.1433 5.4296 7.2786 7.8711

Relative error – 0.0021 0.0014 0.0033 0.0012 0.0020
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850 steps. The MCS with 10,000 samples is employed as a benchmark for the
comparison. The statistics including the mean and the variance of the MRF, are
shown in Tables 5.2 and 5.3, respectively. It can be seen that the results approxi-
mated by the MLS is very close to the results from MCS, which indicates the
proposed method is feasible and efficient.

5.4.2 Time-Dependent Reliability Sensitivity Measures

After the time-dependent PCE for MRF is available, time-dependent limit state
function can be obtained and the time-dependent reliability sensitivity measures of
the four uncertain parameters’ mean values can be calculated according to
Eqs. (5.1.13) and (5.1.14). Figures 5.5 and 5.6 list the four uncertain parameters’
time-dependent sensitivity values, respectively.

From Fig. 5.4, we can see that the reliability indicator is decreasing, which
means the reliability of the mechanism is becoming worse along the time axis.
Figures 5.5 and 5.6 indicate the reliability sensitivity of the four parameters is also

Table 5.3 Comparative results of the variance of the MRF along the time axis

Method Samples The variance of MRF (×105)

1step 250 step 450 step 600 step 850 step

MCS 10,000 7.8452 8.1325 6.9467 7.6652 9.1752

2-order PCE 30 7.1056 7.9413 7.0489 7.3354 9.0854

Relative error – 0.0943 0.0235 0.0147 0.0430 0.0098

3-order PCE 70 7.6955 8.1654 7.0159 7.8857 9.4387

Relative error – 0.0191 0.0040 0.0010 0.0288 0.0287

Fig. 5.3 MLS approximation
curve for a0 of the MRF
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Fig. 5.4 The curve of
reliability indicator b

Fig. 5.5 The curve of the
mean of the reliability
sensitivity

Fig. 5.6 The curve of the
standard deviation of the
reliability sensitivity
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time-dependent. As for the mean reliability sensitivity (see Fig. 5.6), Yc and Rlug

have little effect on the reliability, which means we can ignore these two parameters
in the work of time-dependent RBDO and reduce the dimensionality of the prob-
lem. Besides, the mean value of Yc have a positive effect on the reliability during
1–600 tasks, and have a negative effect on the reliability during 600–1000 tasks
and the designers should pay attention to this phenomenon.

5.5 Conclusion

This paper conducted the time-dependent reliability analysis for long-term degra-
dation mechanism. The research on time-dependent RBDO and time-dependent
reliability analysis can benefit from this work. The time-dependent PCE is
employed when computing the reliability sensitivity measures. The extension PCM
and MLS based time-dependent PCE coefficients computation method is proposed.
The greatest advantage of this method is that only little simulation work is needed
to construct the time-dependent PCE and we can obtain better approximation of the
output of the long-term degradation mechanism. The work of computation of the
reliability measures can also benefit from the proposed algorithm. The future work
of this paper is to analyze more complex mechanism models to test the effectiveness
of the proposed method.
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