
Chapter 18
Train Rolling Bearing Degradation
Condition Assessment Based on Local
Mean Decomposition and Support Vector
Data Description

Dandan Wang, Yong Qin, Xiaoqing Cheng, Zhilong Zhang,
Hengkui Li and Xiaojun Deng

Abstract For effective utilization of a large amount of vibration data which are
collected during the normal operation of train rolling bearing, this paper puts for-
ward a new method for rolling bearing degradation condition assessment which
combines the local mean decomposition (LMD) and support vector data description
(SVDD). LMD is used to decompose the vibration signal, after the decomposition,
we extract feature vector from three points of view: time–frequency, energy and
entropy, statistical characteristic value. Principal component analysis can help to
reduce dimension. Therefore, we just need to collect the data when rolling bearing
normally operates to establish the evaluation model, and then realize the rolling
bearing degradation status quantitative evaluation.

Keywords Support vector data description � Local mean decomposition �
Principal component analysis � Degradation condition assessment � Rolling bearing

18.1 Introduction

Rolling bearing is the key component of urban rail train, whose performance
directly affects the safety operation of train. In recent years, most research focus on
status identification based on failure data. However, under normal working con-
ditions, failure data is difficult to obtain. So how to use the bearing data during
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normal operation to assess the state of rolling bearing degradation performance has
become a popular method for research these years.

In the 1970s, Jay Lee put forward the concept of equipment performance
degradation. It aims to forecast the fault of product and manage its health. This
study attracted much attention since it appeared both at home and abroad. In 2001,
the University of Wisconsin and Michigan joined with nearly 40 companies to build
an intelligent maintenance system research center; some performance degradation
assessment methods are put forward in succession, such as the cerebellum model of
neural network [1], the self-organizing neural network [2], logistic regression [3],
hidden markov models [4], etc.

In order to extract more comprehensive signal features, in this paper, we extract
feature vector from three aspects separately after local mean decomposition (LMD):
time–frequency, energy and entropy, statistical characteristic value. Principal
component analysis can be used to reduce the dimension and save most of the
effective information at the same time. Then we build a hypersphere to measure the
degradation degree by support vector data description (SVDD).

18.2 Basic Principle of the Research

18.2.1 Local Mean Decomposition

In recent years, Jonathan S. Smith put forward a new adaptive nonstationary signal
processing method called LMD, which was used to analyze the computer signal and
achieved a good result. After that, some scholars applied this method to the field of
mechanical vibration and obtained good effect too [5]. In this paper, we use the
LMD based on cubic spline function to process the vibration data. Here are the
steps for LMD [6].

Step 1: x(t) is the original signal, find all local extreme values and connect them
with cubic spline curve, get the up envelope Emax(t) and low envelope
Emin(t);

Step 2: m11(t) is the local mean function and the envelope estimation function
c11(t);

m11ðtÞ ¼ EmaxðtÞþEminðtÞ
2

ð18:2:1Þ

c11ðtÞ ¼ EmaxðtÞ � EminðtÞj j
2

ð18:2:2Þ
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Step 3: m11(t) is subtracted from the original data x(t);

h11 tð Þ ¼ x tð Þ � m11ðtÞ ð18:2:3Þ
Step 4: h11(t) is shown as amplitude demodulated by dividing it by c11(t);

s11ðtÞ ¼ h11 tð Þ
c11ðtÞ ð18:2:4Þ

Step 5: A smoothed local mean m12ðtÞ is calculated for s11ðtÞ, subtracted from
demodulated using s11ðtÞ, and the resulting function is amplitude
demodulated using c12ðtÞ. This iteration process continues n times until a
purely frequency modulated signal s1nðtÞ is obtained. So

h11 tð Þ ¼ x tð Þ � m11ðtÞ
h12 tð Þ ¼ s11 tð Þ � m12ðtÞ
..
.

h1n tð Þ ¼ s1ðn�1Þ tð Þ � m1nðtÞ

8>>><
>>>:

ð18:2:5Þ

where

s11ðtÞ ¼ h11 tð Þ
c11ðtÞ

s12ðtÞ ¼ h12 tð Þ
c12ðtÞ

..

.

s1nðtÞ ¼ h1n tð Þ
c1nðtÞ

8>>>>><
>>>>>:

ð18:2:6Þ

where the objective is that lim
n!1 c1nðtÞ ¼ 1.

Step 6: c1ðtÞ is the envelope;

c1ðtÞ ¼ c11ðtÞ � c12ðtÞ � � � c1nðtÞ ¼
Yn
i¼1

c1iðtÞ ð18:2:7Þ

Step 7: PF1 tð Þ is the component of the decomposition;

PF1ðtÞ ¼ c1ðtÞ � s1nðtÞ ð18:2:8Þ
Step 8: r1ðtÞ now becomes the new data and the whole process is repeated k times

until rkðtÞ is a constant or contains no more oscillations;

r1 tð Þ ¼ x tð Þ � PF1ðtÞ
r2 tð Þ ¼ r1 tð Þ � PF2ðtÞ
..
.

rk tð Þ ¼ rk�1 tð Þ � PFkðtÞ

8>>><
>>>:

ð18:2:9Þ

The scheme is complete in the sense that the original signal can be reconstructed
according to
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xðtÞ ¼
Xk
v¼1

PFvðtÞþ rkðtÞ ð18:2:10Þ

18.2.2 Support Vector Data Description

SVDD, proposed by Tax and Duin [7] in the year 2004, is a model which aims at
finding spherically shaped boundary around a dataset. Given a set of training data
x ið Þ 2 Rn; i ¼ 1; 2; . . .; l; Tax and Duin solved the following optimization problem:

min
R;a;n

R2 þC
Xl
i¼1

n2
 !

ð18:2:11Þ

subject to UðxiÞ � ak k2 �R2 þ ni; i ¼ 1; . . .; l;
ni � 0; i ¼ 1; . . .; l

where U is a function mapping the data to a higher dimensional space, and C > 0 is
a user-specified parameter. After (18.2.11) is solved, a hyperspherical model is
characterized by the center a and the radius R. A testing instance x is detected as an
outlier if

U xð Þ � ak k2 �R2 ð18:2:12Þ

As can been seen from the formula, what we need to do is to find a smallest super
ball to obtain all of the normal data. During this process, there must be some point far
away form the center of the sphere, controlling the value of ξ could help adjust the
size of the sphere. Figure 18.8 shows a sphere of SVDD in two-dimensional space,
the data come from a banana dataset, the red points are the support vector.

18.3 Train Rolling Bearing Degradation Condition
Assessment

18.3.1 Data Sources and the Technology Roadmap

The data which this paper used was generated by the NSF I/UCR Center for
Intelligent Maintenance Systems with support from Rexnord Corp. in Milwaukee,
WI. The rotation speed was kept constant at 2000 RPM by an AC motor coupled to
the shaft via rub belts. A radial load of 6000 lbs is applied onto the shaft and
bearing by a spring mechanism. Each dataset consists of individual files that are 1-s
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vibration signal snapshots recorded at specific intervals. Each file consists of 20,480
points with the sampling rate set at 20 kHz. Figure 18.1 is the technology roadmap.

18.3.2 Example of Train Rolling Bearing Degradation
Condition Assessment

Based on the technology roadmap mentioned, decomposing signal is the first step
to processing the data. 1-s vibration signal can be divided into 34 pieces
(600 points/piece, one revolution), every piece of data is decomposed by LMD.
From the result of the decomposition, amount of the PF is not constant, some pieces
are five, but the others are six. To solve this problem, we pick the minimum number
of the PF, and cancel the other PF.

Figure 18.2 provides a process of decomposition which comes from one piece of
data. As we can see from it, LMD could obtain less PF, it is convenient for
extracting feature vectors. And for strengthening the difference, we add the 34
pieces feature together.

Normal data 

LMD

Feature extraction form three aspets

SVDD hypersphere

Test data

LMD

Feature extraction form three aspets

SVDD modeling Status assenment

Result of the assenment

Fig. 18.1 The technology roadmap of this research
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Fig. 18.2 A vibration signal and its PFs
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1. Time–frequency domain: root mean square (RMS), peak, kurtosis, Xr, mean,
crest factor, kurtosis factor, shape factor;

2. Energy and entropy: energy, Shanon entropy, energy moment;
3. Statistical characteristic value: Weibull shape parameter, Weibull scale parameters.

Figures 18.3, 18.4, and 18.6 are the features from three domains which obtain
the whole life signal of the first PF.

Before fitting statistical distribution type, the original PF signal should be pro-
cessed. Here the original vibration data is transferred by Hilbert to easily to detect
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Fig. 18.3 Time–frequency feature
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an early failure, and then get the spectral envelope [8]. Figure 18.5 is checking for
fitting, if the relationship is linear, the processed data is supposed to fit the statistical
distribution, as we can see in the picture, it fits the distribution well (Fig. 18.6).

PCA is a method to reduce the dimension at the same time without losing
important information. The principle to choose the main component is the cumu-
lative variance contribution rate, according to it, we pick the component that
occupies most of the information to be a feature vector and put it into the SVDD
(Fig. 18.7).

In this paper, the first 200 pieces (here every 34 groups become one piece, which
represent the status of one second) of signal data (test data) are put into the SVDD
to build a hypersphere, Gauss is chosen to be the kernel function. And the last 515
pieces of the whole life data are the test data. Here the problem is, the points and
hypersphere of two-dimensional feature can be seen, but if the amount of feature
dimension is above two, we cannot see any feature points and boundary, so how to
adjust the parameter is the key point. Figure 18.8 is an example to show different
parameters C and kernel and makes different borders, and the differences between
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Fig. 18.5 Weibull distribution fitting check
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Fig. 18.6 Statistical characteristic feature
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them are obviously (the remarked points are the support vectors). From the figure,
we can see that the parameter of kernel affects the shape most, to choose an
appropriate parameter, this paper uses the test data to check if these points in the
hypersphere we build, and change the parameter of kernel to check the error rate
and then find 12.4 is the appropriate parameter kernel, as can be seen from the
Fig. 18.9.

Degradation condition assessment can be measured by the distance between the
spot of the test data in the space and the center of the super ball. Figure 18.10 is the
SVDD distance for the whole rolling bearing life. As we can see from Fig. 18.10,
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Fig. 18.7 The whole life signal of the principal components
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Fig. 18.8 A sphere of SVDD in two-dimensional space
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the bearing begins to degenerate at the point 700, and from the point 1600, the
bearing degenerates deeply.

18.4 Conclusion

In this paper, the method of assessing train rolling bearing degradation status is
investigated. The result show that the way we extract feature vector could better
save the most of the key information, and it is also convenient for computing. What
is more, SVDD can help to realize the rolling bearing degradation status
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quantitative evaluation using the normal operation data before the bearing com-
pletely runs out, then it is important to ensure the safety of passengers’ life and
property.
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