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Abstract. ECDSA is one of the most important public-key signature
scheme, however it is vulnerable to lattice attack once a few bits of the
nonces are leaked. To protect Elliptic Curve Cryptography (ECC) against
Simple Power Analysis, many countermeasures have been proposed. Dou-
bling and Additions of points on the given elliptic curve require several
additions and multiplications in the base field and this number is not
the same for the two operations. The idea of the atomicity protection is
to use a fixed pattern, i.e. a small number of instructions and rewrite
the two basic operations of ECC using this pattern. Dummy operations
are introduced so that the different elliptic curve operations might be
written with the same atomic pattern. In an adversary point of view,
the attacker only sees a succession of patterns and is no longer able to
distinguish which one corresponds to addition and doubling. Chevallier-
Mames, Ciet and Joye were the first to introduce such countermeasure.
In this paper, we are interested in studying this countermeasure and we
show a new vulnerability since the ECDSA implementation succumbs now
to C Safe-Error attacks. Then, we propose an effective solution to pre-
vent against C Safe-Error attacks when using the Side-Channel Atom-
icity. The dummy operations are used in such a way that if a fault is
introduced on one of them, it can be detected. Finally, our countermea-
sure method is generic, meaning that it can be adapted to all formulse.
We apply our methods to different formulae presented for Side-Channel
Atomicity.
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1 Introduction

As well as most of cryptosystems, Elliptic Curve Cryptography (ECC) is vulner-
able to side-channel attacks. One of the first reported attack on ECC was the
Simple Side-Channel Analysis (SSCA) [6]. It consists in analyzing a single trace
of the execution of the Elliptic Curve Scalar Multiplication and attempts to dis-
tinguish the power consumption between a doubling and an addition of elliptic
curve points.

Numerous countermeasures exist against the SSCA. The side-channel Atom-
icity is one of them and was proposed by Chevallier-Mames, Ciet, Joye in 2004 [4].
It consists in writing the different elliptic curve operations, such as doubling and
addition, with identical block of field operations, which makes SSCA infeasible.
Inspired from this paper [4], different formulae that are more efficient, or more
suitable for particular scalar multiplications, have been proposed [7,10,15]. Up
to now, all these formulae contain at least one dummy operation.

One of the most popular elliptic curve cryptographic scheme is the signature
scheme ECDSA and it is well-known that this scheme is sensible to lattice attacks
once some information on the most significant bits of the nonces k are known.
Many attacks have been proposed since [3,8,12,13].

It is possible to use C Safe-Errors on the dummy operations added purportedly
for the atomicity formulae as Yen et al. proposed against the CRT-RSA imple-
mentation in [18]. The attacker introduces a fault during a possibly dummy field
operation. If the result is still correct, the operation was indeed dummy and the
elliptic curve operation can be deduced. As a consequence, the current target bit
of the secret scalar can be learned. However, such way of attacking discloses only
a small number of bits of the nonce per ECsM if we allow multiple faults. Liu and
Nguyen at CT-RSA 2013 in [9] show that it is possible to recover the secret key
on DSA as soon as we have at least 2 bits of the nonces for 160-bit modulus. This
lower bound has been proven in [14]. The number of bits increases with the size of
the modulus and for 192-bit and 256-bit moduli we do not know how many bits
are required. Thus, C safe errors must be improved, otherwise not enough infor-
mation is collected to extract the secret key. Another alternative to lattice-based
attacks consists in using Bleichenbacher attack that has been recently proposed
by De Mulder et al. at CHES 2013 [11]. This attack allows in theory to recover the
secret key as soon as a few bits of the nonces is known and according to the modu-
lus size, it could be preferable to use this attack in comparison with lattice attacks.
The main drawback of this attack is that if we want to use a very small number
of bits, then the number of needed signature becomes quite large. For instance, in
order to attack ECDSA on 160-bit finite field knowing only one bit of the nonce, the
number of signatures is about 233. We use an interesting idea introduced in [1] to
reduce the number of faulty signatures to 22 if one bit is known for 160-bit moduli
and to 2! if two bits are known and in this case we can attack 160-bit and 192-bit
moduli by increasing the time and memory complexity. When more bits are avail-
able, it is not easy to tell which one of lattice attacks and Bleichenbacher attacks
is the most efficient as shown in [11] since lattice attack can also be used to makes
Bleichenbacher attack more efficient.
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In this paper, we also present a countermeasure against this attack for the
atomicity implementations. The formulse are rewritten such that the dummy
operations no longer occur. We define some processes such that every fault
induced will inevitably be detected.

The rest of the paper is organized as follows. In Sect. 2, we recall background
on ECC, side-channel attacks, and the side-channel atomicity countermeasures.
The attacks on protected implementations are given in Sect. 3. The classical C
safe-errors when the exponent is static and our new attack when the exponent
is ephemeral using previous algorithms [1,11]. Section4 presents our proposed
solution that can be applied to any formulee. Finally, we conclude in Sect. 5.

2 Background

In this section, we present the required background to understand the attack on
the Side-Channel Atomicity and the protection that we suggest.

2.1 Elliptic Curve Cryptography

An elliptic curve over a finite prime field F,, of characteristic p > 3 can be
described by its reduced Weierstrafl form:

E:y*=2%+ax +b. (1)

We denote by E(F),) the set of points (z,y) € IFZ satisfying Eq. (1), plus the
point at infinity O.

The points on E(F,) define an additive Abelian group given by the following
addition law. Let P = (z1,y1) # O and Q = (22,y2) € {O,—P} be two points
on E(F,). Point addition R = (z3,y3) = P + @ is defined by the formula:

_ )\2 _ _ Y1—Yy2 if P ;
w3 T where A = {xl‘” #Q

Q.2
ys = AMa1 — z3) =y Mt i p=Q.

The inverse of point P is defined as —P = (x1, —y1).

To avoid modular inversions, implementers frequently work in the Jacobian
projective coordinates system. The equation of an elliptic curve in the Jacobian
projective coordinates system in the reduced Weierstraf3 form is:

EJ:Y?=X34+aXZ*+bZ5.

The projective point (X,Y,Z) corresponds to the affine point (X/Z2,Y/Z?).
The point (X,Y, Z) is equivalent to any point (r2X,r3Y,rZ) with r € Fy.

Let P1 = (Xl, Yl, Zl)7 P2 = (XQ, YQ, ZQ) be two points on EJ(IFP) with Pl 7é
O,ord(Py) > 2 and P, ¢ {O,—P;}. Point doubling and points addition are
defined by the following formulee:
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— ECDBL. P; = (X3,Y3,Z3) = 2P, can be computed as:
X3=T, Ys=—-8Y}+M(S—T), Z3 =2Y,Z;, where
S=4X1Y? M =3X?+aZ{, T =25+ M?>
— ECADD. P; = (X3,Y3,Z3) = P, + P> can be computed as:
X3 = —H? — 2U1H2 + R27 Y; = —SlHS + R(U1H2 — Xg), Z3y = Z1Z5H,
where
Uy =X172, Uy = X272, S1 =173, So =Y2Z3, H=Uy—Uy, R=5,—-5;

2.2 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a signature scheme.
It has been standardized in [17]. Given the following curve parameters:

— E, an elliptic curve over a prime field F,,
— @, a generator of a subgroup of E of order ¢,

the signature process is as follows:

Algorithm 1. ECDSA Signature

Input: private key d, an encoded integer m € {0,p — 1} representing a message
Output: Signature (7, s)
k{1, t—1})
r«—xg modt
if r =0 then

go to line 1
end if
s« k7' (dr +m) mod t
if s =0 then

go to line 1
: end if
: return (r,s)

20X wy

—_

2.3 Side-Channel Atomicity

In ECC, one has to compute scalar multiplications, i.e. compute [k] P, given P and
an integer k. The Left-to-Right Double-and-Add and Right-to-Left algorithms
(Algorithms 2 and 3) are ways of doing so.
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Algorithm 2. Left-to-Right Double-and-Add
Input: a point P and an integer k = (1, kn—2,...,ko)2
Output: [k]P
Ry — P
for i = n — 2 downto 0 do
Ry <— 2Ry > Ro = [(kn_1,...,ki+1,0)2]P
if k&, =1 then Ry «— Ry + P > Ro = [(knfh RN k¢+1,ki)2]P
end for
return Ry

Algorithm 3. Right-to-Left Double-and-Add
Input: k= (kn-1,...,k1,1)2, P
Output: [k|P
Ry — P
Ry < 2P
fori=1ton—1do
if k; =1 then Ry +— Ro + R > Ry = [(k‘i,...,ko)Q]P
Ry « 2R, > Ry = [27T1P
end for
return Ry

Both algorithms exist when the scalar is given by its Non-Adjacent Form
(NAF) representation. They are given in Appendix A.

If an adversary is able to distinguish the power consumption of an addition
and a doubling during the execution of such algorithm, then she is able to recover
the secret scalar k [6]. In order to prevent this attack called the Simple-Power
Analysis, Chevallier-Mames, Ciet and Joye suggest to write the elliptic curve for-
mule with sequences of identical atomic patterns. An atomic pattern is defined
in [4] as the sequence of the following (possibly dummy) operations:

1. modular multiplication or square
2. modular addition
3. modular opposite
4. modular addition

A point doubling requires 10 of these atomic patterns, while an addition requires
16 in the Jacobian coordinates systems. It has been later improved several times
by Longa in [10], Giraud and Verneuil in [7] and Rondepierre in [15]. Hereafter,
we recall Giraud and Verneuil’s pattern, the state-of-the-art best atomic pat-
tern when applied with the Right-to-Left Double-and-Add, and Rondepierre’s
pattern, the state-of-the-art best atomic pattern when applied with the Left-to-
Right Double-and-Add.
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2.4 Giraud and Verneuil’s pattern [7]

Giraud and Verneuil suggest a pattern composed of two squares, six multi-
plications, six additions and four subtractions. An addition of points requires
two patterns while a doubling requires only one. The points are given in
modified Jacobian coordinates: P = (X1,Y1,Z1, W = aZt), for faster dou-
bling [5]. These coordinates are suitable for the Right-to-Left Double-and-
Add algorithms (Algorithms3 and 5). We recall the formule in Fig.1. From
P =(X1,Y1,71) and Q = (X2,Ys, Z5), one can compute P 4+ Q = (X3,Y3, Z3)
and 2P = (Xg, Yg, Zg, W3 = CLZ:%)

1. Ty « 72 T, — T Ty — X7

2. * — Kk + % * — Kk + x To—Y1+Y:
3. T2<—§/1><ZQ T4<—T5XT1 Zg<—T2><Zl
4. * — % + % * — Kk + % Ty «— TV +Th
5. T5<—Yv2><Zl T5<—T1XTG TgHTQXYi
6. * — x + % * — *x + x Te — T5+ Ty
7. T3<—T1><T2 T1<—Zl><T6 T2<—T6><T3
8. * — %+ % * — K+ T1<—T4+T1
9. * — k4 % * — K%+ * T T+ W
10. Ty — 73 Ts — T3 T3 «— T?

11. T5<—T5><T4 Z3<—T1><ZQ T4<—T6><X1
12. * — % + % Ty «— Ty + Ty Ts — Wy + Wy
13. Ty — Ty — T3 Te — Ts — 11 T3 — T35 —Ty
14. T5<—T1><X1 T1<—T5><T3 W3<—T2><T5
15. * — Kk — % X3<—T6—T5 X3<—T3—T4
16. * — Kk — % T4<—T4—X3 T6<—T4—X3
17. T6<—X2><T4 T3<—T4><T2 T4<—T6><T1
18. T6<—T6—T5 Y3<—T3—T1 Y3<—T4—T2

Fig. 1. Addition and doubling operations written with Giraud and Verneuil’s pattern
(* represents a dummy operand). Each column is an atomic pattern.

2.5 Rondepierre’s pattern [15]

Rondepierre suggests a pattern composed of two squares, eight multiplications,
five additions and five subtractions. An addition of points requires one pat-
tern, as well as a doubling. From P = (X1,Yy,721,2%,73),Q = (Xa,Ys,1)
and I = +/—a3~!, Rondepierre proposes formule to compute P + Q =
(Xg, Yg, Zg, Zg, Zé)’), P — Q = (Xg, Yg, Z3, Zg, Zé)’) or 2P = (Xg, Yg, Zg, Zg, Zg)
The subtraction of points is suitable for the Right-to-Left method (Algorithms 3
and 5). The formulae are suitable for the Right-to-Left Double-and-Add algo-
rithms (Algorithms 3 and 5). They are given in Fig. 2.
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1. T, — Xo X Z3 T, «— Xy X Z? To — I x Z3
2. T1<—T1—X1 T1<—T1—X1 T1<_X1_TO
3. * — %+ % 72 — Y14+ Y11 T — Y1+ Y1
4. Ty — Ty x Ty Ty — Ty x Ty 72 — Y1 x Ty
5. * — %+ % * — * + % Y3 — Z2+ 72
6. T3<—X1XT2 T3<—X1><T2 T3<—T2><Z1
7. To — Ya X Z3 Ty — Ya x Z3 Ty — Ys x X1
8. * =k 4k To — Z% +To X3 — X1+ Tp
9. 73— T x Ty 73 — Ty x Ty To — T1 X X3
10. T2H21><T1 Tg%leTl T1<*Z§><Y3
11. X3 — T3+ T3 X3 —T3+1T3 Ty «— Ty +To
12, |Xs < Z} + X3 X3 — Z7 + X3 To «— To+ T
13, |ZF — (To)? 73 — (To)? X3« (To)?
14. T0<—T0—Yi T0<—T0—Y1 X3<—X3—T2
15. T « (To)? Ty « (To)? 73 — (T3)?
16. X3<—T1—X3 X3<—T1—X3 X3<—X3—T2
17. T1<—T3—X3 T1<—T3—X3 T2<—T2—X3
18. Ts — Ty x Ty Tz — Ty x T 72 — Z2x Ty
19. To — Y1 x Z3 To — Y1 x Z3 Ys «— Ty X T
20. Yz — T35 —Tp Yz — T35 — 1T, Yz —Ys—T)
21. Z3 — T2 Z3 — T2 Zg — T3

Fig. 2. Addition, subtraction and doubling operations written with Rondepierre’s pat-
tern (x represents a dummy operand). Each column is an atomic pattern.

3 Attacks on Side-Channel Atomicity

3.1 C Safe-Error

The C Safe-Error attack was first published by Yen, Kim, Lim and Moon [18].
They target an RSA implementation which contains dummy operations to prevent
the SPA. A fault is introduced during an operation which is possibly a dummy
one. If the result of the cryptographic operation is correct, the operation was
indeed a dummy operation and some information on the private key can be
deduced.

C Safe-Error on the side-channel atomicity countermeasure for ECC relies on
the same principle.

C Safe-Error on Giraud and Verneuil’s Pattern. Suppose that the Right-
to-Left Double-and-Add (Algorithm3) is used, with the patterns of Fig.1.
Regarding the Right-to-Left Double-and-Add, the last pattern is necessarily a
doubling. However, regarding the trace during the execution of the penultimate
pattern, the attacker cannot deduce that it is a doubling or the second part of
an addition.

Suppose that the attacker injects a fault on the arithmetic module unit during
the execution of the first addition of the penultimate pattern (line 6 of Fig.1).
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If the pattern is indeed the second part of an addition, the error has no effect
on the result. The fault is safe. In this case, the most significant bit of the scalar
is 1.

On the other hand, if the result is incorrect, the pattern was a doubling and
the most significant bit is 0.

The attacker can repetitively perform this attack during several ECDSA sig-
nature generations. She can collect several signatures and keep only the correct
ones (the ones where the error was safe). She then got several signatures knowing
that the most significant bit of the ephemeral scalar is 1.

C Safe-Error on Rondepierre’s Pattern. The attack on this pattern is
analogous to the previous one.

Suppose that the Left-to-Right Double-and-Add (Algorithm 2) is used, with
the patterns of Fig. 2. Regarding the trace during the execution of the last pat-
tern, the attacker cannot deduce that it is a doubling an addition.

Suppose that the attacker injects a fault on the arithmetic module unit during
the execution of the first subtraction of the last pattern (line 3 of Fig.2). If the
pattern is indeed an addition, the error has no effect on the result. The fault is
safe. In this case, the least significant bit of the scalar is 1.

On the other hand, if the result is incorrect, the pattern was a doubling and
the least significant bit is 0.

The attacker can repetitively performs this attack during several ECDSA sig-
nature generations. She can collect several signatures and keep only the correct
ones (the ones where the error was safe). Hence she has got several signatures
such that the least significant bit is 1.

Extension to Several Bits. Of course, the attacker can inject several faults
at different times during the algorithm.

For Giraud and Verneuil’s patterns, two patterns are required for the addi-
tion. The attacker can inject one fault on the penultimate pattern and one fault
on the fifth last pattern. If the result is correct, it means that the last patterns
are Al; A2; D; Al; A2; D, thus the two most significant bits are 1.

For Rondepierre’s patterns, the attacker can inject a fault on the last pattern
and on the third last pattern. If the result is correct, it means that the last
patterns are A; D; A, thus the two least significant bits are 1.

Injecting the Fault at the Right Time. We describe here the issue of inject-
ing the fault at the right time. As a matter of fact, we said before that the
attacker needs to inject a fault on the last or penultimate pattern. How does she
know that this is the last or penultimate pattern before the end of the ECcsm?
Indeed, a fault cannot be injected retrospectively, i.e., after noticing that the
ECSM is finished.

In fact, she can suppose that the Hamming weight of the n-bit scalar is n/2
which happens with high probability. In this case, there will be n doubling and
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n/2 additions. This gives a total of 2n Giraud and Verneuil’s pattern (because
two patterns are required for the addition) and n + n/2 Rondepierre’s pattern.
The last pattern is thus the 2n!* pattern (Giraud and Verneuil) and the (n +
n/2)t" pattern (Rondepierre).

The attacker can verify afterwards that the Hamming weight of the scalar
was is indeed n/2 counting the patterns by SPA. If it is not the case, she throws
out the signature'.

3.2 Lattice Attacks Knowing only Two Bits per Value of the
Ephemeral Nonces

The attack works as follows: in a first step, a small number of bits £ (e.g.,
¢ =1,2,3,4,5, or 6) is gathered about the nonce k used in ECDSA. Namely,
one bit is tested through the effectiveness (or not) of an injection at a given
field operation in one ECDBL or ECADD atomic pattern. Then, a lattice attack is
launched using only these ¢ bits of information about the ephemeral nonce per
ECSM.

There are basically two different strategies to recover the secret key d. The
first one consists in solving the Hidden Number Problem (HNP), which can be
described as follows: given (¢;,u;) pairs of integers such that

|dt; — wilq < (]/2“17

where ¢ denotes the number of bits we recovered by C Safe-Errors, d denotes
the hidden number we are looking for and | - |, denotes the distance to ¢Z, i.e.
|z]g = mingez |z — ag|. Such problem can be cast as a Closest Vector Problem
(CVP) in a lattice and the LLL algorithm can be used to solve it in practice very
efficiently. We recall the basic attack in Appendix 5 and its extensive presentation
can be found in [14]. The main advantage of this technique is that the number
of signatures required is usually very small, but it cannot be used all the time
when the number of bits becomes very small. Indeed, in this case for 160-bit
modulus for instance, Liu and Nguyen used BKZ 2.0 to solve such lattice and
the dimension becomes very high for lattice algorithms [9].
When the number of bits is very small, which is the case here if we try to
reduce the number of faults, another technique due to Bleichenbacher can be
used. This technique has been described in [11] for attacking a smartcard using
ECDSA on 384-bit modulus. The idea is that there is a bias on distribution of the
nonces k;. If we correctly guess the value of the secret d is large and all other
biases are small (close to 0) according to the correct definition of bias B,(D) =
E(exp™P / ) where E is the expectation of the random variable exp?™P/4 and
D is the random variable representing the choice of d. We can approximate
this bias experimentally using many signatures by computing B,(d) = (1/m) -
Z;n::)l exp?m(hiteid)/a where h; = H(m;)/s; mod g and ¢; = r;/s; mod g for
! Notice that the atomicity countermeasure does not execute in constant time. How-
ever, the only information that is leaked is the Hamming weight of the scalar, which
is not enough to design an attack (at least with state-of-the-art knowledge).
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signature (r;,s;) of message m; and m the number of such signatures. The idea
is just to compute all the bias B,(d) for all possible values of d and pick the
largest one. Due to the special form of the bias, it is possible to perform all these
computations using Fast Fourier Transform, however the time complexity of this
task is out of reach since there are 2'69 different values for d. Bleichenbacher
proposes a first phase which consists in reducing the range of the value d (we
are looking for the, say 32 most significant bits of d, by reducing the bias of
d. This operation will also widen the width of the pick of the bias d in the
frequence domain. In the first stage of this attack, we are looking for a linear
combination of the values c¢; which is small, less than 32 bits. In this case, it has
been shown in [11] that we can recover the 32 most significant bits of d. However,
the number of required signatures becomes very high and De Mulder et al. use
a lattice reduction technique to reduce the number of signature contrary to
Bleichenbacher original attack which uses more Generalized Birthday Paradox
(GBP) ideas [16]. For instance, given (hj,c;) such that h; 4+ dc; = kj, if ¢; and
¢; have 32 bits in common, then h; —h; +d(c; —cj ) = k; —kj is a new relation
where the new value (¢; — ¢j/) has been reduced by 32 bits and since we add
the kjs, the initial bias b is increased to b? according to the Piling-up lemma.
In [1], the authors show that it is possible to recover a 160-bit secret value with
only one bit of the nonces. However, the number of required signatures grows
up to 233, They also show that it is possible to reduce the number of signatures
required in Bleichenbacher algorithm by using time-memory /signature tradeoff.

The idea is that the first iteration will allow us to make many signature
samples (h;,c;) by increasing the bias. For instance, given m signatures, we
can generate m? samples by performing addition and subtraction mod ¢ of the
initial signatures.

In Fig. 3, we give the minimal number m of signatures required for number
of known bits ¢ of the nonce.

q 160 bits 192 bits|256 bits

l 1 2 2 2 3

m 926 ol4 200 916 916
Tech. |Bleich.|Bleich.| Latt. | Bleich. | Bleich.
Compl.| 2 228 |Few hr| 233 233

Fig. 3. Minimal number of signatures d required depending on the number of bits ¢
using Brainpool curves.
4 Our Protection

We propose in this section our protection. It consists in using the dummy oper-
ations to perform a check at the end of the ECSMm.
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4.1 Generalized Protection

In the patterns of all known atomic side-channel protections, the dummy oper-
ations are either field additions or field subtractions and are only on patterns
of the addition and subtraction of points. The underlying reason is that those
operations are more furtive than multiplications. Thus, it is unlikely that an
attacker manages to distinguish between dummy and functional operations in
the patterns.

Our idea is to perform a check at the end of the ECsSM such that if an error
occurred, the circuit detects it and no result is returned.

Let addition and doubling formule using some patterns such that an addition
of points contains | dummy field additions and m dummy subtractions. This
means that, at the end of the ECsM, there are (I times the number of additions
of points) dummy field additions and (m times the number of additions of points)
dummy field subtractions.

We propose to add two temporary registers T, qq and T, first initialized with
Tudd < Tadds Tsub < —Tsub; Tadd, T'sub D€ing two random integers. Every dummy
addition x « % + % is replaced by Thqq < Tudd + Tadd and every subtraction
* «— x —x is replaced by Tsup < Tsub — T'sup- In this way, at the end of the ECSM,
Taaqq should be equal to I X 7444 times the number of additions performed during
the ECsM and T, should be equal to m X 74, times the number of additions.

A counter is added for each pattern to count the number of additions and
doubling performed. Another method is that the number of patterns is related
to the Hamming weight (HW) of the scalar used.

The protection consists in verifying that the equality is satisfied at the end
of the ECSM.

4.2 The Protection with Giraud and Verneuil’s Pattern

With those formulee, there are 11 dummy additions and 2 dummy subtractions
for the addition of points. The number of addition of points is HW(k) for the
Right-to-Left Double-and-Add algorithm (Algorithms 3), & being the scalar.

Thus the protection consists in verifying that T,44 is equal to 11 x HW (k) x
Tadd and Tsyp is equal to 2 x HW(k) X rg,p at the end of the ECsM.

4.3 The Protection with Rondepierre’s Pattern

With those formulee, there are 3 dummy additions for the addition of points. The
number of addition of points is HW (k) for the Left-to-Right Double-and-Add
algorithm (Algorithm 2), k being the scalar.

Thus the protection consists in verifying that Thqq is equal to 3 x HW(k) x
Tadd-
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5 Conclusion

In this paper, we show how to use C Safe-Errors on the atomicity side-channel
countermeasure to recover a few bits of ephemeral scalars used during ECDSA
signatures. With only two bits of the scalar, we are able to recover the secret
key.

Then, we propose a protection to thwart C Safe-Errors that target the atom-
icity countermeasure. The method consists in replacing the dummy operations
of the atomic patterns by chained secret operations that are verified in a final
check. In this case, the C Safe-error is no longer applicable.
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Reminder About the Lattice-Based Attack on ECDSA

Using the ¢ least significant bits of k (the attack also works with the most
significant bits), we can write k = 2¢(k > () + Isbyk = 2°b + Isby k for some
integer b > 0. We then get from dr = sk —h mod ¢:

dr-27 %% 1 =b—h-27%"1+1sbik-27% mod gq.

Now let t and u two values which can be computed from known or retrieved
information, such as:

t=7r-27%"1 modgq, u=—h-2" "1 4+1sbyk-27% mod q.
The inequality b < ¢/2° can be expressed in terms of ¢ and u as:
0<dt—u modq< q/2"

Therefore, if we denote by | - |, the distance to Z/qZ, i.e. |z|; = min,ez |z — aq],
we have:

|dt —u— q/2€+1|q S Q/2Z+1,
|dt o ,U/2€+1|q S q/2l+1’

where v is the integer 2*1u + ¢. Given a number of faulty signatures (r;,s;) of
various messages, say m of them, the same method yields pairs of integers (¢;, v;)
such that

|dt; —v; /2T, < q/2° (2)

The goal is to recover d from this data. The problem is very similar to the hidden
number problem considered by Boneh and Venkatesan in [2], and is approached
by transforming it into a lattice closest vector problem.
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More precisely, consider the (m + 1)-dimensional lattice L spanned by the
rows of the following matrix:

24lg 0 -~ 0 0
0 22+1q : :
: o0
0 -0 2%1g 0
AR SN, K SV |

Inequality (2) implies the existence of an integer ¢; such that:
1267 dt; — vy — 2 ey < g (3)
Now note that the row vector, called hidden vector,
c= (2t + 2 erg, - -+ 2 dt, + 25 g, d)

belongs to L and c is very close to the row vector v = (vy,- - , U, 0). Indeed,
by (3), the distance from ¢ to v is bounded as:

v —cl < gvm+1.

We thus have a CVP to solve. In practice, we use an embedding technique
to reduce CVP to SVP. This technique consists in computing the (m + 2)-
dimensional lattice L’ spanned by the rows of the matrix

L0

vl
The row vector (v — ¢, 1) is short, belongs to L’ and we hope this is the shortest
vector of L’. This assumption implies a condition on the required number of

signatures depending on the parameter ¢ and the modulus. An estimate which
makes it possible to recover the private key is:

n

£ —logy /me/2

The above estimate is heuristic, but it is possible to give parameters for which
attacks of this kind can be proved rigorously [13].

A Elliptic Curve Scalar Multiplications in NAF
We recall the definition and the NAF of integers.

Definition 1. A non-adjacent form (NAF) of a positive integer k is an expres-
sion k = Zi;é k2t where k; € {—1,0,1}, k;_1 # 0, and no two consecutive
digits k; are nonzero. The length of the NAF is . The NAF of an integer k is
denoted NAF(k) or (ki—1,...,ko)NaF-
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Algorithm 4. Left-to-Right NAF scalar multiplication
Input: k= (1,ki—2,...,ko)nar, P
Output: [k]P
Q<P
t—1—2
while i > 0 do
Q< 2Q
if k=1 thenQ — Q+ P
if k;, =—-1thenQ — Q—P
t—1—1
end while
return

The following algorithm computes the width NAF representation of the scalar
on the fly.

Algorithm 5. Right-to-Left NAF scalar multiplication
Input: k= (kn-1,...,ko)2, P
Output: [k|P
R~ P
Q0
while £ > 1 do
if kg = 1 then
u — (k mod 4)
k—k—u
if u =1 then
Q—Q+R
else
Q—Q—-R
end if
end if
R «— 2R
k «— k/Z
end while
Q—Q+R

return @
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