
Exploring the Role of Logic and Formal
Methods in Information Systems Education

Anna Zamansky1,2(B) and Eitan Farchi1,2

1 University of Haifa, Haifa, Israel
annaz@is.haifa.ac.il

2 IBM Research Labs, Haifa, Israel
farchi@il.ibm.com

Abstract. This position paper contributes to the ongoing debate on
the role played by logic and formal methods courses in the computing
curricula. We report on an exploratory empirical study investigating the
perceptions of Information Systems students on the benefits of a com-
pleted course on logic and formal specification. Participants indicated
that the course had fostered their analytical thinking abilities and pro-
vided them with tools to handle abstraction and decomposition. This
provides a starting point for a discourse on the benefits of formal meth-
ods courses for IS practitioners.

1 Introduction

Several ways in which formal methods should be incorporated into the com-
puting curricula have been proposed (see, e.g., [1,10,12–16,18,19]), but there
is still no consensus on what and how to teach. Moreover, there is an ongoing
debate on the role of the very foundations of formal methods - logic and dis-
crete mathematics in CS education. While the early CS curricula were strongly
mathematically oriented, many voices are recently calling for a less mathemat-
ically rigorous curriculum, claiming this type of knowledge is not really used
by practitioners in industry [2,8]). In the Information Systems discipline, which
draws a large portion of its body of knowledge from CS, the importance of logic
and formal methods is even less recognized. Indeed, the ACM IS curriculum
guidelines [17] mention statistics and probability as required core IS topics and
discrete mathematics only as an optional one, leaving logic and formal methods
outside mainstream IS topics.

We believe that this state of affairs is most unfortunate. Although we tend to
agree that a typical IS major may need a less extensive mathematical background
than a CS major, formal methods are an essential tool for software quality con-
trol, i.e., activities for checking (by proof, analysis or testing) that a software
system meets specifications and that it fulfills its intended purpose. But - even
more importantly - learning formal methods fosters analytical thinking, pro-
vides the tools to deal with abstractions, and makes the students comfortable
with complex mathematical notations. As stated by J. Wing in [19]: “Thinking

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 68–74, 2015.
DOI: 10.1007/978-3-662-49224-6 7



Exploring the Role of Logic and Formal Methods 69

in terms of formal methods concepts forces the designer to take a more abstract
perspective of a system than that taken with an algorithmic or operational app-
roach. This more abstract thinking invariably provides the designer with new
insights and a deeper understanding of the systems desired behavior”.

As convincing as this may sound, as noted by Wing, “the biggest obstacle is
getting “buy-in” from our colleagues: convincing co-instructors, curricula com-
mittees and administrators that integrating formal methods is a good thing to
do”. This requires collecting empirical evidence on the above mentioned bene-
fits of studying formal methods. In this position paper we take a step towards
filling this gap by reporting on our findings collected when teaching a gradu-
ate course “Logic and Formal Specification”, taught at the Information Systems
Department of the University of Haifa. The details of the course design and
implementation are provided in [21]. Here we focus on the human factor, namely
the students’ perceptions of the benefits of the course. We present the results
of our exploratory study involving 22 participants who completed our course.
The students were asked about their perception of its benefits, both for an IS
practitioner in general, and for them personally. The most striking observation
emerging from our data analysis was that most of the students reported an effect
on their cognitive processes: fostering analytical thinking, mental decomposition
of complex problems into simpler ones, and using abstraction. This provides a
starting point for collecting further empirical data on the benefits of teaching
formal methods to IS practitioners.

2 Related Work

Several works address the relevance of discrete mathematics, logic and formal
methods for practitioners, mainly in the context of Computer Science and Soft-
ware Engineering (to the best of our knowledge, no work addressed the IS domain
in this context). In [9] the suitability of the standard logic syllabus to the needs
of CS practitioners is questioned: “The current syllabus is often justified more
by the traditional narrative than by the practitioners needs... The proof of the
Completeness Theorem is a waste of time at the expense of teaching more the
important skills of understanding the manipulation and meaning of formulas”.
According to [9], the needs of CS practitioners are to: (i) understand the meaning
and implications of modeling the environment as precise mathematical objects
and relations; (ii) understand and be able to distinguish intended properties of
this modeling and side-effects; (iii) be able to discern different level of abstrac-
tion, and (iv) understand what it means to prove properties of modeled objects.

In [18,19], J. Wing stresses the importance of integrating formal methods
into the existing CS curriculum by teaching their common conceptual elements,
including state machines, invariants, abstraction, composition, induction, speci-
fication and verification. She states discrete mathematics and mathematical logic
as crucial prerequisites. Further concrete proposals on the integration of formal
methods into CS curriculum are made in [1,10,12–16]. Some of these studies
include some form of empirical evaluation. Their methodology is mainly based



70 A. Zamansky and E. Farchi

on objective assessment, comparing the performance of some control group to
other groups of students with respect to programming skills [10] and general
problem-solving skills, including using abstraction [13,14]. However, empirical
evidence for the benefits of formal methods courses is still very sparse.

In this paper we take a different approach to providing such evidence. Instead
of directly assessing the students’ skills and abilities, we turn to them for help
with our investigation. After all, investigating the students’ perceptions may pro-
vide new insights into the way in which taking the course affected their cognitive
processes. Moreover, their attitudes towards the practical value of such courses
may be helpful with the prediction of their future acceptance of formal methods
in industry. It should be noted that we apply a qualitative research approach
using open-ended questionnaires, as opposed to the quantitative approach taken
in [8], which also surveyed “what subject matter practitioners themselves actu-
ally find most important in their work”, but used a closed-ended questionnaire,
with questions such as “How useful have the details of this specific material been
to you in your career as a software developer?” using a scale from 0 to 5, leaving
no place for exploring cognitive aspects affected by the taught courses.

3 The Exploratory Study of Students Perceptions

The course “Logic and Formal Specification” has been taught at the IS depart-
ment at the University of Haifa for several years by both of the authors1.
The course is a mandatory course for graduate students, and its length is one
semester, 4 h per week. Many of the students return to their studies after several
years in the industry. This poses a twofold challenge when designing a course
in logic and formal methods. First, they have a solid understanding of topics
that have direct relevance to practice and are reluctant to study topics whose
relevance to their daily practice is indirect. Secondly, they have forgotten the
basic concepts of discrete mathematics which they studied years ago.

Our course design is based on previous proposals on the adaptation of the
traditional logic and formal methods syllabi to the needs of modern practition-
ers [4,9,10,16,19]. As such, the course aims to equip the students with the fol-
lowing abilities: (1) read, write and understand formal specifications, (2) be able
to formalize informal specifications, (3) analyze specifications and detect sources
of incompleteness, inconsistency and complexity, (4) reason about specifications,
and (5) check a system against a specification. Based on the above, the taught
material includes (a) Basic principles for reasoning about sets; (b) Induction

1 Perhaps it is important to mention here the authors’ relevant background. The first
author is an associate professor at the Information Systems Department at the Uni-
versity of Haifa with active research interests in applied logic. The second author is
the manager of the Software Performance and Quality research group at the IBM
Haifa Research Laboratory, and a member of the IBM corporate Board of Software
Quality. Both of the authors have several years of experience in teaching logic and
formal methods to various audiences of students.



Exploring the Role of Logic and Formal Methods 71

and invariants; (c) Propositional and first-order logic and (d) Formal specifica-
tion using the Z language. Further details about the course and the ways we
propose to overcome the above mentioned challenges with respect to the target
audience are provided in [21].

In what follows we describe the results of an exploratory interview we car-
ried out in orderto gain a deeper understanding into the students’ perception of
the benefits of studying formal methods for IS practitioners. For this purpose,
we chose an open-ended questionnaire [11] over indepth interviews to ensure
the anonymity of our participants, which was an important concern in our con-
text. We used an open-ended questionnaire as we wanted to minimize any pre-
suppositions on the participants’ responses (as opposed to e.g., the closed-ended
questionnaire of [8]).

The answers were collected by the first author from twenty two graduate
students who completed the course in the years 2013–2014. This sample included
8 female and 15 male students; 12 students out of 22 had no prior experience in
industry. The questionnaire included the following open-ended questions.

Q1. Is it important for practitioners whose work is related to software develop-
ment to study logic and formal methods? Why?

Q2. In what way (if at all) is the course’s content useful for Information Systems
practitioners?

Q3. What (if at all) were the course’s contributions for you personally?
Q4. How relevant was your background from Discrete Mathematics course? In

what way (if at all) was it helpful?
Q5. In what ways would you recommend to improve the course?

In what follows we refer mainly to the answers received to questions Q2 and
Q3. Only three students responded that logic and formal methods are not useful
(Q2):

1. I worked at two different places in industry, and never have I seen the courses’
content put to any use...

2. It is not necessary for software development.
3. It depends on the work environment. I think it’s not useful.

Two of them thought the course was not useful for them personally (Q3).
Out of those who responded positively to both questions, one of the most

striking observations was the extensive use of formulations related to men-
tal processes, such as “thinking”, in particular “analytical/logical thinking” in
answers to both questions.

E.g., answers to question Q2 included:

1. It improves thinking about problem modeling.
2. I think that it opens directions for thinking about how things really work under

the surface.
3. The world of software is based on understanding the needs and modeling them

in precise terms. Many such models require logical thinking.



72 A. Zamansky and E. Farchi

4. The course’s contents develop and deepen ways of thinking.
5. The course helps shaping thinking that can help in programming.
6. The course improves analytical thinking.
7. The course is very helpful in improving thinking that is not necessarily

algorithmic. A different one, out of the box.
8. Of course! Correct and systematic thinking of IS practitioners helps in

requirements specification.

Notably, no participants provided concrete examples of direct use of the
courses’ content in answering Q2. Yet several of them took a confident stand
when speaking of their own personal experience in Q3:

1. I have already applied the new skills at work, using truth tables and proofs.
2. It improved my modeling skills. I’m certain!
3. I am now using the tools when reading scientific papers.
4. I was surprised to see how helpful the tools we studied are in practice.

Moreover, when answering question Q3, several participants referred again
(implicitly or explicitly) to an improvement in their mental processes:

1. The course introduced order into complex topics. It gave me tools to simplify
complex problems and find easy and efficient solutions.

2. It made me think in a modular way, providing me with the ability to grasp more
complex models.

3. It improved my ability to refer to problems schematically.
4. It provided me with an abstract view on the problems of software design.
5. It made me realize there are systematic solutions to problems that seem unsolvable

at first.
6. I learned to reduce complex problems to simpler ones.

Table 1 summarizes the main skill categories that emerged during text analy-
sis of questions Q2 and Q3, providing the number of students that used formu-
lations related to these categories.

Table 1. Categories emerging from answers to Q2 and Q3 and number of students
using each category

Q2 (general IS practitioner) Q3 (personal experience)

Thinking 8 8

Understanding 7 8

Formulation 5 3

Modelling 1 0

Research 0 3

General knowledge 0 5



Exploring the Role of Logic and Formal Methods 73

4 Summary and Future Research

To make logic and formal methods more central in the IS curriculum, further
empirical evidence on the benefits of such courses for practitioners is required.
While IS practitioners rarely apply formal methods directly, but rather use tools
where they are “hidden” [5], exploring the effect of such courses on the cognitive
processes of students seems the most fruitful direction. Our results highlights
the potential of the methodology of exploring students’ perceptions and atti-
tudes in this context. This could be beneficiary for the education community
also from another aspect. While the key role of abstract thinking for acquiring
computation-related skills has been stressed by Kramer [6], ways of teaching it
are still not well understood (some relevant general suggestions can be found
in [7]). The positive effect formal methods courses may have on the cognitive
processes of the students provides a good starting point for exploring concrete
ways in which we abstract thinking can be taught.

We plan to further extend the data collection and analysis to larger student
populations, including both undergraduate and graduate students taking rele-
vant courses, as well as to experienced IS practitioners. In future research we
plan to further investigate the impact of factors such as industrial experience and
maturity of the subjects of the study. We also plan to reformulate the questions
to allow a further sharper quantitative analysis.

The observations of this paper also bring forward the somewhat controversial
notion of computational thinking (CT). This is a term introduced by J. Wing
in 2006 [20], describing the mental activity in formulating a problem to admit
a computational solution, which is crucial for many disciplines at our times.
Naturally, it has also been pointed out as a key capability for future IS practi-
tioners [3]. Note the striking relation of some of the above mentioned responses
to key attributes of what J. Wing classifies as computational thinking [20]:
(i) reformulating a seemingly difficult problem into one we know how to solve;
(ii) using abstraction and decomposition when attacking a large complex task
or designing a large complex system; and (iii) choosing an appropriate repre-
sentation for a problem or modeling the relevant aspects of a problem to make
it tractable. The link between teaching formal methods and the development
of computational thinking skills deserves further exploration (also due to the
increasing public interest in CT).

References

1. Barland, I., Felleisen, M., Fisler, K., Kolaitis, P., Vardi, M.Y.: Integrating logic
into the computer science curriculum. In: Annual Joint Conference on Integrating
Technology into Computer Science Education (2000)

2. Glass, R.L.: A new answer to how important is mathematics to the software prac-
titioner? IEEE Softw. 17(6), 136 (2000)

3. Hardy, G.M., Everett, D.L.: Shaping the Future of Business Education: Relevance,
Rigor, and Life Preparation. Palgrave Macmillan, London (2013)



74 A. Zamansky and E. Farchi

4. Harvey, V.J., Wu, P.Y., Turchek, J.C., Longenecker, H.E.: Coordinated topic
presentations for information systems core curriculum and discrete mathematics
courses. In: Proceedings of ISECON 2005 (2005)

5. Hussmann, H.: Indirect use of formal methods in software engineering. In: ICSE-
17 Workshop on Formal Methods Application in Software Engineering Practice,
Seattle (WA), USA, pp. 126–133. Citeseer (1995)

6. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4), 36–42
(2007)

7. Kramer, J., Hazzan, O.: The role of abstraction in software engineering. In: Pro-
ceedings of the 28th International Conference on Software Engineering, pp. 1017–
1018. ACM (2006)

8. Lethbridge, T.C.: What knowledge is important to a software professional? Com-
puter 33(5), 44–50 (2000)

9. Makowsky, J.A.: From Hilberts program to a logic tool box. Ann. Math. Artif.
Intell. 53(1–4), 225–250 (2008)

10. Page, R.L.: Software is discrete mathematics. ACM SIGPLAN Not. 38, 79–86
(2003)

11. Patten, M.L.: Questionnaire Research: A Practical Guide. Pyrczak Publisher,
Glendale (2001)

12. Skevoulis, S., Makarov, V.: Integrating formal methods tools into undergraduate
computer science curriculum. In: 36th Annual on Frontiers in Education Confer-
ence, pp. 1–6. IEEE (2006)

13. Kelley Sobel, A.E.: Empirical results of a software engineering curriculum incor-
porating formal methods. ACM SIGCSE Bull. 32(1), 157–161 (2000)

14. Kelley Sobel, A.E., Clarkson, M.R.: Formal methods application: an empirical tale
of software development. IEEE Trans. Software Eng. 28(3), 308–320 (2002)

15. Sotiriadou, A., Kefalas, P.: Teaching formal methods in computer science under-
graduates. In: International Conference on Applied and Theoretical Mathematics
(2000)

16. Tavolato, P., Vogt, F.: Integrating formal methods into computer science curricula
at a university of applied sciences. In: TLA+ Workshop at the 18th International
Symposium on Formal Methods, Paris, Frankreich (2012)

17. Topi, H., Valacich, J.S., Wright, R.T., Kaiser, K., Nunamaker, Jr., J.F., Sipior,
J.C., de Vreede, G.J.: Is 2010: Curriculum guidelines for undergraduate degree
programs in information systems. Commun. Assoc. Inf. Syst. 26(1), 18 (2010)

18. Wing, J.M.: Teaching mathematics to software engineers. In: Alagar, V.S., Nivat,
M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 18–40. Springer, Heidelberg (1995)

19. Wing, J.M.: Weaving formal methods into the undergraduate computer science
curriculum. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 2–7. Springer,
Heidelberg (2000)

20. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
21. Zamansky, A., Farchi, E.: Teaching logic to information systems students: chal-

lenges and opportunities. In: Tools for Teaching Logic (2015)


	Exploring the Role of Logic and Formal Methods in Information Systems Education
	1 Introduction
	2 Related Work
	3 The Exploratory Study of Students Perceptions
	4 Summary and Future Research
	References


