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Abstract. In the Future Internet era, the way software will be produced
and used will more and more depend on the new challenges deriving from
the virtually infinite number of software services that can be composed
to build new applications. The integration and composition of existing
software, components and services is now gaining a crucial role in the
software modeling and production and encompasses several aspects rang-
ing from theoretical issues like modeling and analysis, to practical and
implementation ones like run-time management and integration. In the
wide set of issues concerning software composition, in this position paper
we propose a formalization via a Fuzzy Description Logic for modeling
architectural aspects of a software system.

The formalism models architectural patterns and non-functional
requirements about quality attributes where both the relationships
among patterns and the set non-functional requirements are modelled
together with their mutual interactions. The declarative approach pro-
posed here would make possible to formally represent and maintain the
above mentioned knowledge by keeping the flexibility and fuzziness of
modeling thanks to the use of fuzzy concepts as high, low, fair, etc. We
also identify the need for a reasoning task able to exploit the fuzzy nature
of the adopted logic to retrieve a ranked list of set of patterns covering
given user requirements represented in terms of NFRs and families of
patterns.

1 Introduction

The way software will be produced in the next Future Internet era —according
to given goals and by integration and compositions of existing services and
components— calls for new formally grounded and formalized aspects and meth-
ods to support the conceptual modeling of system specifications.

Important issues concerning software architectures, design decisions, quality
and goals evaluations are closely linked, anyway any formal definition is available
to get relevant information and support in software modeling based on this
set of features. In defining and modeling software systems a set of related but
complex issues must be considered when composing pieces of reusable artifacts
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through design or architectural patterns driven by non functional requirements
satisfaction.

In this paper we propose a formalization via a Fuzzy Description Logic
for modeling architectural aspects of a software system. The formalism models
architectural patterns and non-functional requirements about quality attributes
where both the relationships among patterns and the set non-functional require-
ments are modeled together with their interactions. The framework we propose
enables to represent and reason on mutual relationships among non functional
requirements by means of fuzzy Description Logics (DL). The fuzzy version of
DLs is needed in order to represent both ontological relations and factual ones.
In the former case we may model that “portability and adaptability are directly
proportionate” while “stability and adaptability are inversely proportionate”. For
the latter we may represent that “the Adapter pattern has a high portability”.
We see that the combination of ontological and factual knowledge allows a rea-
soning procedure to infer new information about a pattern. With reference to the
previous example, we may infer that “the Adapter pattern has a high adaptabil-
ity and a low stability”. In the framework we propose here we are allowed also
to formally define that “a high adaptability implies a medium maintainability1”.
Once the knowledge about non functional requirements has been modeled via a
formal language and encoded in a knowledge base, we need a tool to query and
retrieve data related to a specific task. In our case, the task we propose to solve
is the following: given a set of non functional requirements R = {r1, . . . , rn},
retrieve the minimal subset of patterns that better satisfies them. This means
that we prefer patterns with a high value of a specific functional requirement ri
to those with a medium or low one. If there is no pattern with high value for ri,
than we prefer patterns with a medium value to those with a low one. In such
patterns, fuzziness is evident: in fact, terms such as high, medium and low can
be defined in terms of fuzzy sets [29].

The remaining of this paper is organized as follows. In the next section we
motivate our proposal. Section 3 describes the approach we use to model the
ontology and defines a theoretical algorithm. Section 4 presents a case study to
explain the proposed idea. Conclusions and future works close the paper.

2 Motivation

Since Anton Jansen and Jan Bosch [15] gave a modern definition of Software
Architecture, several important issues concerning software architectures, design
decisions, quality and goals evaluations have been dominating the scientific lit-
erature in this field as comprehensively and systematically provided by Tofan
et al. [27]. Designing the software architecture of non-trivial systems belonging to
several application domains, namely industrial automation, defense and telecom-
munication financial services, and so on, is not an easy task, and requires highly
1 In this case we do not have a high maintainability as the system adapts its configu-

ration to context (or requirements) variations. At the same time the maintainability
is not low as it has its own internal logic.
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skilled and experienced people. Beyond these, new challenges in the design and
in architectural models are derived from self-managing and self-adaptive capabil-
ities that are typical of many modern and emerging software systems, including
the industrial internet of things, cyber-physical systems, cloud computing, and
mobile computing. The satisfaction of quality requirements and the appropriate
options for future changes are among the major goals of software architectures,
even more important than functional requirements. Quality goals often compete
or even conflict with each other and with functional requirements. In defining
and modeling software architecture through patterns, a challenging issue is also
concerned with the number of different available decisions depending on the
fact that patterns can cooperate, are composable, are complementary or exclu-
sive with respect to a given problem [9,19]. To solve the challenging problem of
choosing a set of patterns, some structures have been proposed supported by
pattern languages with a given syntax and style [5].

In self-adaptable models but also in classical software architectures, the link
between architecture and design-time features modeling and the relationship
between non-functional requirements, patterns and design decisions should be
made more flexible. The idea is to provide an approach to more faithfully repro-
duce the existing relationships in order to formalize the extent to which they are
guaranteed in the design of software architecture.

3 Problem Statement and Approach

In software design domain, a typical problem to solve is the following:

“Given a set of requirements define the software design that (better)
models the given requirements”

In order to solve such a problem, adopted empirical approaches generally depend
on the designer’s know-how and experience.

According to modern software production and modeling, mainly based on
component integration and/or composition and according to the modern def-
inition of software architecture [15], the above problem is that of finding the
architectural model as a solution to a decision making problem. The architec-
tural model can hence be defined using design or architectural patterns selected
according to Non-functional Requirements (NRFs) satisfaction. The selection of
the right NFRs may result crucial in the initial design of a software system. It
may happen that the designer is looking for the best design solution given a set
of non functional requirements and some problem areas and/or pattern families
related to the system. Design patterns give proven solutions to recurrent prob-
lems based on typical situations. Therefore, they are a first attempt to formalize
the knowledge about NFRs and to give a somewhat structured approach to their
compliance in the software design [5,6,11].

With respect to the general problem stated at the beginning of this section,
we restrict our interest to the connection among patterns, problem areas/families
and NFRs. More in detail we are aiming to finding a solution to the following
design problem:
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“Given a software design to model, a set of NFRs and the problem areas
the software refers to, which are the components/patterns that best fit
them?”

The task is non-trivial as: NFRs may be disjoint with each other and cannot
be satisfied at the same time; some families may not contain patterns satisfying
some of the NFRs. Moreover, the designer may not be aware of all the patterns
available given a NFR or given a pattern family.

To the best of our knowledge, the software design theory misses a for-
mal superstructure to integrate and relate the elements of the given sets and
implicit or explicit relationships between elements. The approach we propose
here, exploits a Fuzzy Description Logic and related reasoning tasks in order
both (i) to provide a formal representation of the relations intercurring among
design areas, NFRs and design patterns and (ii) to reason with such a represen-
tation to help the designer during the selection of the right set of patterns that
best match the initial requirements. Full and exaustive background in Descrip-
tion Logics and Fuzzy Description Logic are available in literature ([2] for DLs
and [22–24] for fuzzy DLs).

We will illustrate how to encode the information by leveraging on:

– Fuzzy DL statements to have a high level model of the domain we are dealing
with and to represent relations among non-functional properties;

– Fuzzy DL reasoning to infer new knowledge about NFRs mutual relations and
to retrieve sets of patterns satisfying specific requirements;

We next describe the role played by each of the above indicated technologies in
the decision process.

Fuzzy DL statements. In order to encode all the information related to NFRs,
patterns and corresponding families, we need a formalization of the domain
knowledge. The ontology we use to cope with this task can be seen as composed
by two main modules: the one describing, at a high level, the connections between
patterns and families and between patterns and NFRs; the other one modeling
the relations intercurring among NFRs. The formal definition of the ontology is
encoded in Fuzzy DL as:

∃isInFamily � SoftwareDesignPattern
∃nFR � SoftwareDesignPattern
� � ∀isInFamily.Families
� � ∀nFR.NonFunctionalRequirement

The first two statements represent domain restrictions while the last
two represent range ones. In other words we say that the role isInFamily
connects instances of the concept SoftwareDesignPattern to instances
of the concept Families while the role isInFamily relates instances of
SoftwareDesignPattern to instances of NonFunctionalRequirement.
Please note that the structure of the high level ontology we model makes it
possible to easily extend it to deal also with other elements, such as Functional
Requirements.
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Given the ontology, we can state explicit facts about the description of a
pattern in terms of pattern family it belongs to and NFRs it guarantees. These
statements form the ABox of our knowledge base. Specifically, let us consider
the following Fuzzy DL assertions:

proxyPattern:SoftwareDesignPattern
resourceManagement:Families

reliability:NonFunctionalRequirement

loadBalancing:NonFunctionalRequirement

reusability:NonFunctionalRequirement

(proxyPattern,resourceManagement):isInFamily

That is, we introduced the pattern proxyPattern, the family resource
Management and the non-functional requirements reliability,
loadBalancing, reusability as instances/individuals of the classes
SoftwareDesignPattern, Families and NonFunctionalRequirement respec-
tively.

Based on these individuals and properties we may wish to state that the
Proxy Pattern assures a high Load Balancing and a high Reliability. In order
to formally represent such constraints we need to introduce new datatype prop-
erties, together with the corresponding fuzzy sets, and axioms related to the
non functional requirements we just introduced. In the following we will always
refer to them for every datatype property and we will use R (for rating) to rep-
resent the interval [very bad, bad, medium, good, very good]. The set of axioms
we are going to define are needed in order to exploit the full potential of the
fuzzy DL reasoning. It is noteworthy that in a production scenario, they can be
automatically added to the knowledge base in a straight way. These are:

∃nFR.{reliability} ≡ ∃reliabilityRate. ∈R

∃nFR.{loadBalancing} ≡ ∃loadBalancingRate. ∈R

∃nFR.{reusability} ≡ ∃reusabilityRate. ∈R

In the previous statements we say that whenever we have a pattern with an asso-
ciated non functional requirement we will always have a corresponding degree
and vice versa. Based on the datatype properties just introduced we can state,
for instance, that

proxyPattern:∃loadBalancingRate. =good

proxyPattern:∃reliabilityRate. =good

Besides the modeling of the ABox relations, we use Fuzzy DL also to explicitly
model relations intercurring between NFRs. Consider the non-functional require-
ments load balancing, reliability, reusability previously defined as instances (indi-
viduals) of the class NonFunctionalRequirement. An example of mutual relation
between NFRs is the one between load balancing and reliability. Indeed, they are
directly proportionate, i.e., if the loadBalancing increases (decreases) the same
happens for the reliability. With reference to our ontology, such a relation can
be written in Fuzzy DL as
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∃loadBalancingRate.High � ∃reliabilityRate.High
∃loadBalancingRate.Fair � ∃reliabilityRate.Fair
∃loadBalancingRate.Low � ∃reliabilityRate.Low

We also know that a system cannot be reliable and reusable at the same time.
That is, the two non functional requirements are inversely proportionate. Hence,
if a pattern guarantees reliability it cannot guarantees also reusability. We may
encode such disjoint relations with the following statement:

∃reusabilityRate.High � ∃reliabilityRate.Low

From the two relations explicitly stated before, we may imply that as the Proxy
Pattern guarantees a high degree of load balancing, it cannot guarantee a high
degree of reusability.

By using automated reasoning over Fuzzy DL knowledge bases we automat-
ically infer all these kind of implicit relations thus providing better results while
looking for a design solution. It is noteworthy that the Fuzzy DL we are targeting
is allowed to represent also statements like: “a system with a high adaptability
has a fair maintainability”. Indeed, as the system adapts its own configuration
to context o requirements variations it may not be highly maintainable, i.e.,

∃adaptabilityRate.High � ∃maintainabilityRate.Fair

4 Use Case Scenario

We next illustrate how to apply the proposed framework by means of a use case
scenario. We model the use case of a Cloud-Social-Adaptable System. In the cloud
environment, let us think of an application in social domain in which the various
applications (apps) share data distributed over different clusters or data centres.

The system is allowed to dynamically and extensively load external appli-
cations depending on variations in the context or depending on changes in the
behavior of the user. For example, if the user is travelling for a week-end or
on holiday, an app arranges all stored material related to the destination of
the trip and creates albums, photo collections with captions, stories etc. Other
context-dependent conditions set in the application, enable dynamic loading of
different apps. Dynamically loaded applications might compromise properties of
the entire system, then it is of crucial importance to provide mechanisms work-
ing at run-time and able to check and guarantee the preservation of properties
of interest. All nodes in the application are started exploiting the Cloud virtual-
ization, i.e. the physical hardware is shared between all services but the software
environment is independent, ensuring low coupling between the virtual nodes.
The architecture is flexible since every consumer can access a public service with
the available resources, with a saving in terms of costs. Moreover, being the vari-
ous virtual machines unconnected, the fault of one of them does not compromise
all others, thus ensuring a good fault-tolerance in the overall architecture. Vir-
tual machines are made up and launched directly from the middleware just as a
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consumer requests. The failure of a virtual machine does not affect the others.
The availability of content is ensured by a content delivery network. The request
for more machines avoids the single point of failure.

The implementation of the scenario previously described requires patterns
satisfying characteristics derived both from the running environment and from
the main features of the context. We see that such patterns should belong to
families that manage Cloud features, but also must solve problems about process
communication and middleware. They have to ensure adaptability being the sys-
tem social-adaptable, hence it would be desirable they belong to the Adaptation
and Extension family. Actually, the patterns we are looking for could also be in
the Application Control family. Indeed, given the specific environment of the sys-
tem, it should be necessary to separate the interface from the applications core
functionalities. As for the Non Functional Requirements, the architectural model
must ensure adaptability, being the system a social adaptable and elasticity since
it will work in a cloud environment and will manage a large amount of data. Also
fault tolerance is a requirement to be satisfied in order to ensure a dependable
system. A low level of coupling is also required being the system implemented
in a cloud environment. All these requirements can be summarized as:

– belonging families: Cloud Patterns, Application Control, Adaptation and
Extension, Distribution Infrastructure;

– non functional requirements: high adaptability, high elasticity, high fault tol-
erance, low coupling.

Now suppose we have defined in a knowledge base K (ABox and TBox) infor-
mation about a set of patterns, families and NFRs. That is, the ABox contains

adaptationAndExtension:Families , cloud:Families , distributionInfrastructure:Families

applicationControl:Families

adaptability:NonFunctionalRequirement , stability:NonFunctionalRequirement

maintainability:NonFunctionalRequirement , simplicity:NonFunctionalRequirement

dependability:NonFunctionalRequirement , redundancy:NonFunctionalRequirement

performance:NonFunctionalRequirement , reliability:NonFunctionalRequirement

elasticity:NonFunctionalRequirement , faultTolerance:NonFunctionalRequirement

loadBalancing:NonFunctionalRequirement , security:NonFunctionalRequirement

flexibility:NonFunctionalRequirement , scalability:NonFunctionalRequirement

coupling:NonFunctionalRequirement , robustness:NonFunctionalRequirement

resilience:NonFunctionalRequirement

reflection:SoftwareDesignPattern , strictConsistency:SoftwareDesignPattern
hypervisor:SoftwareDesignPattern , observer:SoftwareDesignPattern
broker:SoftwareDesignPattern
(reflection,adaptationAndExtension):isInFamily , (strictConsistency,cloud):isInFamily

(hypervisor,cloud):isInFamily , (observer,applicationControl):isInFamily

(broker,distributionInfrastructure):isInFamily

reflection:∃adaptabilityRate. =very good , reflection:∃stabilityRate. =bad

reflection:∃maintainabilityRate. =medium , reflection:∃simplcityRate. =bad
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strictConsistency:∃dependabilityRate. =very good , strictConsistency:∃redundancyRate. =medium

strictConsistency:∃performanceRate. =medium , strictConsistency:∃reliabilityRate. =good

hypervisor:∃elasticityRate. =very good , hypervisor:∃redundancyRate. =medium

hypervisor:∃faultToleranceRate. =good, hypervisor:∃loadBalancingRate. =good

hypervisor:∃securityRate. =good

observer:∃flexibilityRate. =good , observer:∃scalabilityRate. =medium

observer:∃adaptabilityRate. =medium

broker:∃loadBalancingRate. =very good , broker:∃robustnessRate. =medium

broker:∃faultToleranceRate. =bad , broker:∃performanceRate. =medium

broker:∃reliabilityRate. =good , broker:∃resilienceRate. =good

Eventually, the TBox contains

∃flexibilityRate.High � ∃couplingRate.Low
∃elasticityRate.High � ∃adaptabilityRate.High
∃elasticityRate.Fair � ∃adaptabilityRate.Fair
∃elasticityRate.Low � ∃adaptabilityRate.Low
∃robustnessRate.High � ∃faultToleranceRate.High
∃robustnessRate.Medium � ∃faultToleranceRate.Medium
∃robustnessRate.Low � ∃faultToleranceRate.Low
∃faultToleranceRate.High � ∃reliabilityRate.High
∃faultToleranceRate.Medium � ∃reliabilityRate.Medium
∃faultToleranceRate.Low � ∃reliabilityRate.Low
∃reliabilityRate.High � ∃dependabilityRate.High
∃reliabilityRate.Medium � ∃dependabilityRate.Medium
∃reliabilityRate.Low � ∃dependabilityRate.Low
∃loadBalancingRate.High � ∃elasticityRate.High
∃loadBalancingRate.Medium � ∃elasticityRate.Medium
∃loadBalancingRate.Low � ∃elasticityRate.Low

In order to get the best set of patterns satisfying the requirements needed to
solve the task, we need a reasoning method for retrieving more suitable patterns
according to given requirements.

The set of retrived pattern should be incrementally built considering subsets
of the original requirements:

Specifically, let us start with the subset

– belonging families: Adaptation and Extension;
– non functional requirements: adaptability.

The formula modeling the previous requirements is thus:

C ′ = ∃isInFamily.{adaptationAndExtension} � ∃adaptabilityRate.High.
Therefore, the retrieved ranked list of top-3 patterns satisfying C ′ would be:
〈reflection, strictConsistency, hypervisor〉 When we defined C ′ we assumed the pat-
terns we were looking for belonged only to the Adaptation and Extension family.
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Actually, we may look also for patterns in other families which satisfy the adapt-
ability NFR. We then extend the previous subset with

– belonging families: Cloud Patterns, Application Control, Adaptation and
Extension, Distribution Infrastructure;

– non functional requirements: adaptability.

In order to model such a more relaxed requirement we modify C ′ in C1 as

C1 = (∃isInFamily.{adaptationAndExtension} � ∃isInFamily.{cloud} �
∃isInFamily.{applicationControl} � ∃isInFamily.{distributionInfrastructure}) �
∃adaptabilityRate.High.

With respect to the newly stated requirements, the retrieved ranked list of pat-
terns is: 〈hypervisor, reflection, observer〉 with hypervisor and reflection in the
same ranking position, and observer that can be equivalently substituted by
broker.
We may also define C2, C3 and C4

C2 = (∃isInFamily.{adaptationAndExtension} � ∃isInFamily.{cloud} �
∃isInFamily.{applicationControl} � ∃isInFamily.{distributionInfrastructure}) �
∃elasticityRate.High.

C3 = (∃isInFamily.{adaptationAndExtension} � ∃isInFamily.{cloud} �
∃isInFamily.{applicationControl} � ∃isInFamily.{distributionInfrastructure}) �
∃faultToleranceRate.High.

C4 = (∃isInFamily.{adaptationAndExtension} � ∃isInFamily.{cloud} �
∃isInFamily.{applicationControl} � ∃isInFamily.{distributionInfrastructure}) �
∃couplingRate.Low.

Hence, the best solution is to adopt both broker and hypervisor, then we
have the pair reflection, broker and eventually observer, broker.

5 Related Work

In this section we briefly review the literature on knowledge representation
approaches architectural concerns such as nonfunctional requirements, design
pattern and service composition.

QoS aspects of Service composition are studied in [7,18]. While Architec-
tural concerns about services and future Internet applications are considered
in [3,14,16]. Temporal behavior of design patterns are modeled in [20] using for-
mal methods. A Balanced Pattern Specification Language (BPSL) is modeled
in [25] based on a subset of First Order Logic and Temporal Logic of Action
to specify both structural and behavioral aspects of patterns [26]. Relationships
among design pattern as architectural tactics and architecture are studied in [13].
Pattern languages connect patterns from a variety of different sources into a
single pattern network [17]; they are supported by trees or directed graphs and
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enable typical search algorithms of depth-first or breadth-first. Anyway the mod-
eling of relationships and sequences of patterns and the taxonomy of the several
issues concerned with their use needs a more structured approach with respect
to data structures such as trees or directed graphs, due to the complex semantics
they convey. A state of the art on the treatment of non-functional requirements
is in [8]. Definitions of non-functional requirements are surveyed in [10,12]. In [4]
a model of non-functional requirements is given.

Mylopoulos et al. propose two complementary approaches for using non-
functional information: process-oriented and product oriented, [21]. State of the
art of Model Driven Development approaches with respect to non-functional
requirements is in [1], where also a framework for integrating NFRs in the core
of Model Driven Development process is given [28].

6 Conclusion and Future Work

In this paper we proposed to use a Fuzzy Description Logic (DL) to model
the knowledge related to NFRs, patterns and related families in order to ease
and support software components integration and composition in architectural
decision making problems.

Although the overall framework has been presented to deal with NFRs,
thanks to its declarative nature, it can be easily extended to other characteristics
such as Functional Requirements.

We are currently working on how to take into account also information related
to temporal interaction among software components thus extending the Fuzzy
DL we propose with temporal operators. We are also performing extensive exper-
iments on a structured benchmark to test the framework functionalities and
performance on simple and on composable schemes also in more advanced archi-
tectural environments.
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