
Domenico Bianculli
Radu Calinescu
Bernhard Rumpe (Eds.)

 123

LN
CS

 9
50

9

SEFM 2015 Collocated Workshops:
ATSE, HOFM, MoKMaSD, and VERY*SCART
York, UK, September 7–8, 2015, Revised Selected Papers

Software Engineering
and Formal Methods

Lecture Notes in Computer Science 9509

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Domenico Bianculli • Radu Calinescu
Bernhard Rumpe (Eds.)

Software Engineering
and Formal Methods
SEFM 2015 Collocated Workshops:
ATSE, HOFM, MoKMaSD, and VERY*SCART
York, UK, September 7–8, 2015
Revised Selected Papers

123

Editors
Domenico Bianculli
Interdisciplinary Centre for ICT Se
University of Luxembourg (UL)
Luxembourg

Radu Calinescu
University of York
York
UK

Bernhard Rumpe
LS Software Engineering
RWTH Aachen Universität
Aachen
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-662-49223-9 ISBN 978-3-662-49224-6 (eBook)
DOI 10.1007/978-3-662-49224-6

Library of Congress Control Number: 2015946575

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer-Verlag GmbH Berlin Heidelberg

Preface

This volume contains the technical papers presented in the four workshops collocated
with SEFM 2015, the 13th International Conference on Software Engineering and
Formal Methods 2015. The workshops were held in York, UK, during September 7–8,
2015.

SEFM 2015 brought together researchers and practitioners from academia, industry,
and government to advance the state of the art in formal methods, to facilitate their
uptake in the software industry, and to encourage their integration within practical
software engineering methods and tools. The satellite workshops provided a highly
interactive and collaborative environment for researchers and practitioners from
industry and academia to discuss emerging areas of software engineering and formal
methods.

The four workshops were:

– ATSE 2015 — The 6th Workshop on Automating Test Case Design, Selection and
Evaluation

– HOFM 2015 — The Second Human-Oriented Formal Methods Workshop
– MoKMaSD 2015 — The 4th International Symposium on Modeling and Knowl-

edge Management Applications: Systems and Domains
– VERY*SCART 2015 — The First International Workshop on the Art of Service

Composition and Formal Verification for Self-* Systems.

A brief description of each workshop, written by its organizers, and the abstracts
of the keynote talks follow.

We are grateful to EasyChair for the support with the paper submission and
reviewing process for all workshops, and with the preparation of this volume. For each
of the workshops at SEFM 2015, we thank the organizers for the interesting topics and
resulting talks. We also thank the paper contributors to these workshops and those who
attended them. We would like to extend our thanks to all keynote speakers for their
support and excellent presentations, and also, to the members of each workshop’s
Program Committee.

November 2015 Domenico Bianculli
Radu Calinescu

Bernhard Rumpe

ATSE 2015 Organizers’ Message

The 6th Workshop on Automating Test Case Design, Selection and Evaluation (ATSE
2015), was held this year in conjunction with the 13th International Conference on
Software Engineering and Formal Methods (SEFM), in York, UK, on September 7,
2015. Again we had a very interesting workshop that provided a venue for researchers
as well as industry participants to exchange and discuss trending views, ideas,
state-of-the-art work and work in progress, and scientific results on automated test case
design, selection, and evaluation. In all, 40 % of the workshop participants came from
industry.

We started off with a keynote by Joachim Wegener from Berner & Mattner
(Germany) on “Automatic Generation and Execution of Test Scenarios for
Camera-Based Driver Assistance Systems.” This was followed by the keynote of
Cristina Seceleanu from MDH (Sweden) on “Testing Function and Time for Embedded
Systems.” Subsequently, and based on the submissions received this year for ATSE
2015, the workshop concentrated on three topics:

1. Learning-based testing
2. User experience design and testing
3. Model-based statistical testing

The workshop format was highly interactive. We urged the participants to come to
the workshop prepared by having already read the papers. This way we could focus the
discussions on the topics and start to set an agenda and lay the foundation for future
development.

We enjoyed ATSE 2015 greatly and look forward to the next edition! The program
chairs would like to thank all of the reviewers for their excellent work and are grateful
to everybody involved in the ATSE 2015 workshop for their support before, during,
and after the workshop.

November 2015 Tanja E.J. Vos
Sigrid Eldh

Wishnu Prasetya

Program Committee

Pekka Aho VTT, Finland
Alessandra Bagnato Softeam, France
Maria Alpuente Universidad Politécnica de Valencia, Spain
Arie van Deursen TU Delft, The Netherlands
John Derrick University of Sheffield, UK
Maria Jose Escalona Universidad de Sevilla, Spain
Gordon Fraser University of Sheffield, UK

Herman Geuvers Radboud University Nijmegen, The Netherlands
Marieke Huisman Universiteit van Twente, The Netherlands
Teemu Kanstrén VTT, Finland
Peter M. Kruse Berner & Mattner, Germany
Beatriz Marin Universidad Diego Portales, Chile
Karl Meinke KTH, Sweden
Mehrdad Saadatmand Mälardalen University, Sweden
Marielle Stoelinga Universiteit van Twente, The Netherlands
Jan Tretmans TNO, The Netherlands
Javier Tuya Universidad de Oviedo, Spain
Marc-Florian Wendland Fraunhofer, Germany
Carsten Weise imbus AG, Germany
Burkhart Wolff LRI, France

Sponsoring Institutions

Universidad Politécnica de Valencia, Spain
Berner & Mattner GmbH, Germany
Ericsson, Sweden

VIII ATSE 2015 Organizers’ Message

HOFM 2015 Organizers’ Message

The aim of the Human-Oriented Formal Methods (HOFM) workshop series is to bring
together researchers and practitioners from academia and industry to exchange ideas and
experience in the field of the application of human factors to the analysis and to the
optimization of formal methods, as well as to present ongoing research and emerging
results in this field. HOFM also aims to develop a future vision and roadmap of usability
and automation of formal methods, focusing especially on readability and ease of use.

The Second Human-Oriented Formal Methods (HOFM) Workshop was held on
September 7, 2015, in York, UK. This international workshop was affiliated to the 13th
International Conference on Software Engineering and Formal Methods (SEFM 2015).
The aim of the HOFM workshop series is to establish a community that will investigate
the field of application of human factors to the analysis and to the optimization of formal
methods. Formal methods (FMs) have been successfully applied in software engineering
research for several decades. However, many software engineers largely reject FMs as
“too hard to understand and use in practice” while admitting that they are powerful and
precise. The reason for this rejection is the lack of usability features: If usability is
compromised, methods cannot fit in a real software development process.

There are many applications of FMs to analyze human–machine interaction and to
construct user interfaces. However, the field of application of human factors to the
analysis and to the optimization of FMs in the sense of usability is almost unexplored.
The first and second editions of the workshop showed that there is interest in
collaborations and discussions on this topic, and that there are currently more questions
than answers in this field. Bad design of interfaces and languages can induce
unnecessary human error, cf., e.g., [7]; however, the error information can be used to
improve the quality of software and the corresponding development artifacts, also
including FMs [1, 2, 5, 8]. “Formal” does not mean “unreadable,” and the readability
and usability of FMs might be increased by analyzing human factors related to the
specification, modeling, and verification [4].

HOFM 2015 received submissions from 15 authors, affiliated with universities and
industry from the UK, Germany, Israel, Norway, Australia, The Netherlands, and
Tunisia. Each submission was reviewed by at least three Program Committee members,
and five regular papers were accepted for presentation at HOFM 2015.

The HOFM 2015 pre-workshop proceedings, which include all papers presented at
the workshop, are available online at the workshop site [3]. All HOFM authors were
invited to submit extended versions of their peer-reviewed papers to the post-workshop
proceedings, taking into account the feedback from the HOFM reviewers as well as the
discussions during the workshop.

An introduction to the second HOFM workshop was given by the keynote talk
“Beating Error with Formal Methods,” given by Harold Thimbleby, Swansea
University, Wales, UK. In this presentation, Thimbleby emphasized that FMs provide
another point of view, namely, mathematical reasoning, on software engineering
problems, and this special point of view can help to identify issues that normal human

thinking misses. This introduction led the workshop discussion on the point that FMs
are very important for software engineering, especially for the field of safety-critical
systems, but their limited understandability might become an obstacle for the broad
application of FMs.

The workshop was concluded by an open discussion on the topics of the regular
paper talks and the keynote talk as well as on the roadmap for research on human
factors in formal methods.

The goal of the open discussion was to stimulate collaboration between researchers
and to develop a future vision and roadmap of usability, automation, and other human-
oriented aspects of FMs, focusing especially on readability and understandability.

The main focus of the discussion was on the teaching of FMs and the human factors
that are related to this learning and teaching activity. Workshop presenters and
participants agreed that in order to make progress toward adoption of FMs in industry,
we have to work on the popularization of FMs as a part of the university curriculum,
also taking into account the different backgrounds and aims of the students.
The discussion further focused on the following questions:

– How can we influence the readability, understandability, and perception of FMs?
– How can we deal with collaborative aspects of specification and verification?
– How can we contribute to the sustainability of the FMs (and through FMs)?

One of the early results of this discussion is paper [6], accepted for presentation at
the International Workshop on Automated Testing of Cyber-Physical Systems in the
Cloud.

We would like to thank all authors who contributed to HOFM 2015 as well as all
workshop participants. We hope that the participants found the program inspiring and
relevant to their interests. We also thank the SEFM workshop chairs and local
organizers for their help. We would like to express our gratitude to the Program
Committee members for their support and thorough reviews.

November 2015 Maria Spichkova
Heinz Schmidt

Program Committee

Katherine Blashki Noroff University College, Norway
Manfred Broy Technical University München, Germany
Pedro Isaías Universidade Aberta, Portugal
Lalchandani Jayprakash IIIT Bangalore, India
Peter Herrmann NTNU Trondheim, Norway
Tim Miller The University of Melbourne, Australia
Srini Ramaswamy ABB, USA
Daniel Ratiu Siemens AG, Germany
Guillermo Rodriguez-Navas Mälardalen University, Sweden
Bernhard Rumpe RWTH Aachen, Germany
Bernhard Schätz fortiss GmbH, Germany

X HOFM 2015 Organizers’ Message

Heinz Schmidt RMIT University, Australia (Chair)
Ruimin Shen Shanghai Jiao Tong University, China
Maria Spichkova RMIT University, Australia (Chair)
Judith Stafford University of Colorado, USA

References

1. Dhillon, B.: Engineering Usability: Fundamentals, Applications, Human Factors,
and Human Error. American Scientific Publishers (2004)

2. Redmill, F., Rajan, J.: Human Factors in Safety-Critical Systems. Butterworth-
Heinemann (1997)

3. Second International Human-Oriented Formal Methods (HOFM) Workshop. https://
hofm2015.wordpress.com/

4. Spichkova, M.: Design of Formal Languages and Interfaces: “Formal” does not
Mean “Unreadable”. IGI Global (2013)

5. Spichkova, M., Liu, H., Laali, M., Schmidt, H.W.: Human factors in software
reliability engineering. In: Workshop on Applications of Human Error Research to
Improve Software Engineering (WAHESE2015) (2015)

6. Spichkova, M., Zamansky, A., Farchi, E.: Towards a human-centred approach in
modelling and testing of cyber-physical systems. In: International Workshop on
Automated Testing of Cyber-Physical Systems in the Cloud (cpsATcloud2015)
(2015) (to appear)

7. Thimbleby, H., Oladimeji, P., Cairns, P.: Unreliable numbers: error and harm
induced by bad design can be reduced by better design. J. R. Soc. Interface.
12(110), 20150685 (2015)

8. Walia, G., Carver, J.: Using error information to improve software quality. In: IEEE
International Symposium on Software Reliability Engineering Workshops
(ISSREW), pp. 107–107 (2013)

HOFM 2015 Organizers’ Message XI

https://hofm2015.wordpress.com/
https://hofm2015.wordpress.com/

MoKMaSD 2015 Organizers’ Message

The 4th International Symposium on Modelling and Knowledge Management Applica-
tions: Systems and Domains (MoKMaSD 2015) was held in York, UK, on September 8,
2015. The aim of the symposium is to bring together practitioners and researchers from
academia, industry, government, and non-government organizations to present research
results and exchange experiences, ideas, and solutions for modelling and analyzing
complex systems and for using knowledge management strategies, technology, and
systems in various domain areas such as ecology, biology, medicine, climate, governance,
education, and social software engineering. In particular, the focus is on synergistic
approaches that integrate modelling and knowledge management/discovery or exploit
knowledge management/discovery to develop/synthesize system models.

After a careful review process, the Program Committee accepted nine papers and
two oral presentations with extended abstracts for the proceedings. The program of
MoKMaSD 2015 was enriched by the keynote speeches by Tias Guns entitled
“Constraint Modelling and Solving for Data Mining” and by Guido Sanguinetti entitled
“Machine Learning Methods for Model Checking in Continuous Time Markov
Chains.”

Several people contributed to the success of MoKMaSD 2015. We are grateful to
Antonio Cerone, who invited us to chair this edition of the symposium and assisted us
in some organizational aspects of the event. We would like to thank the organizers of
SEFM 2015, and in particular the general chair, Jim Woodcock, and the workshops
chair, Domenico Bianculli. We would also like to thank the Program Committee and
the additional reviewers for their work in reviewing the papers. The process of
reviewing and selecting papers was significantly simplified through using EasyChair.

We thank all the symposium attendants and hope that this event will enable a good
exchange of ideas and generate new collaborations among attendees.

The organization of MoKMaSD 2015 was supported by the research project
“Metodologie computazionali per la medicina personalizzata” funded by the University
of Pisa (Project reference: PRA_2015_0058).

November 2015 Paolo Milazzo
Anna Monreale

Program Committee

Luis Barbosa University of Minho, Portugal
Bettina Berendt KU Leuven, Belgium
Luca Bortolussi University of Trieste, Italy
Peter Breuer Birmingham City University, UK
Giulio Caravagna University of Milano-Bicocca, Italy
Antonio Cerone IMT Institute for Advanced Studies Lucca, Italy

Andrea Esuli ISTI-CNR, Pisa, Italy
Alexeis Garcia-Perez Coventry University, UK
Jane Hillston University of Edinbourgh, UK
Joris Hulstijn Delft University of Technology, The Netherlands
Marijn Janssen Delft University of Technology, The Netherlands
Donato Malerba University of Bari, Italy
Stan Matwin University of Ottawa, Canada
Paolo Milazzo University of Pisa, Italy (Co-chair)
Anna Monreale University of Pisa, Italy (Co-chair)
Siegfried Nijssen KU Leuven, Belgium and University of Leiden,

The Netherlands
Adegboyega Ojo DERI, National University of Ireland, Ireland
Giovanni Pardini University of Pisa, Italy
Nikos Pelekis University of Piraeus, Greece
Anna Philippou University of Cyprus, Cyprus
Giulio Rossetti ISTI-CNR and University of Pisa, Italy
Marco Scotti GEOMAR Centre, Kiel, Germany
Filippo Simini Univesity of Bristol, UK
Manolis Terrovitis IMIS, Athena Research Center, Greece
Luca Tesei University of Camerino, Italy

MoKMaSD 2015 Organizers’ Message XIII

VERY*SCART 2015 Organizers’ Message

The First Workshop on The Art of Service Composition and Formal Verification for
Self-* Systems (VERY*SCART) was held in York, UK, on September 8, 2015, and
was affiliated with SEFM 2015. The event originated from the fusion of the second
edition of VERY* and the first edition of SCART and was devised for bringing
together researchers and practitioners from various areas related to service composition
and verification.

In the near future we will be increasingly surrounded by a virtually infinite number
of software/hardware services that can be composed to build new applications and
systems. To cope with the changing requirements and emergent behaviors, system
designers and software engineers need ad-hoc paradigms and technologies to define
suitable reconfigurability mechanisms that allow systems to work correctly with respect
to the new settlement. The production of application programming interfaces (APIs) is
growing exponentially and some companies are accounting for billions of dollars in
revenue per year via API links to their services. Moreover, the “Future Internet” (FI) is
expected to lead to an ultra-large number of available services, hence increasing their
number to billions of services in the near future. Finally, “cyber-physical systems”
(CPS) will lead to the pervasive presence of computing and communication devices in
everyday life. This situation radically changes the way systems will be produced and
used: (a) systems are increasingly produced according to a certain goal and by
integrating existing components; (b) the focus of system development is on integration
of third-parties components that are only provided with an interface that exposes the
available functionalities and, sometimes, the interaction protocol; (c) after deployment
they must be able to cope with dynamically changing requirements and emergent
behaviors caused by uncertainty in the surrounding environment. This calls for new
integration paradigms and patterns, formal composition theories, integration architec-
tures, as well as flexible and dynamic composition and verification mechanisms.
Despite the great interest in software composition and self-* systems, no common
formal methods (FM) and software engineering (SE) approaches have been established
yet. Developing FI applications and self-adaptive, self-reconfiguring, and self-
organizing CPS encompasses a variety of formally grounded and practical aspects,
ranging from modelling and analysis issues, to integration code synthesis, implemen-
tation and run-time management issues, model checking, and formal verification.

VERY*SCART 2015 aimed at providing innovative contributions in the research
and development of novel FM and SE approaches to the design, development,
validation, and execution of FI applications and self*-systems composed of available
components. In particular, the workshop provided the opportunity to discuss how FI
and CPS affect the traditional methods and tools, and how facing complexity in terms
of scalability, heterogeneity, and dynamicity promotes the integration of FM within SE
practices. The goal was to seek answers on how the rigorousness of FM assists
engineers while designing, developing, validating, and operating systems that are built
via correct-by-construction composition. The interplay between SE and FM is by

nature tightly intertwined with the “art” of service composition and formal verification.
In order to make this art effective and elevate its maturity to the “readiness level”
required for its adoption in practical contexts, novel formally grounded approaches,
methods, and tools are required, especially when automation and correctness of the
desired composition is of paramount importance.

The workshop was partially supported by the Italian Chapter of the EATCS, the
INdAM – GNCS Programme 2015, the Italian PRIN Programme 2010–2011, and the
H2020 EU project CHOReVOLUTION. The VERY*SCART workshop received
contributions covering topics related to: run-time adaptive service composition,
run-time adaptation, composite cloud and internet applications, distributed coordination
and adaptation, automatic choreography synthesis and enforcement, fuzzy description
logics for service composition, architectural design for the FI, runtime verification of
self-adaptive systems, automatic decision support, automated protocol synthesis, and
spatio-temporal reasoning. Each paper was formally peer reviewed by at least three
Program Committee members.

Many people contributed to the success of the VERY*SCART 2015 workshop at
SEFM 2015. We would like to acknowledge the SEFM workshop chair for his
impeccable support and all Program Committee members for the timely delivery of
reviews and constructive discussions given the very tight review schedule. Finally, we
would like to thank the authors—without them the event simply would not exist.

November 2015 Marco Autili
Davide Bresolin

Marcello M. Bersani
Luca Ferrucci

Alfredo Goldman
Manuel Mazzara
Massimo Tivoli

Program Committee

Luciano Baresi Politecnico di Milano, Italy
Bert van Beek Technical University of Eindhoven, The Netherlands
Maurice ter Beek ISTI-CNR, Pisa, Italy
Carlo Bellettini Università degli studi di Milano, Italy
Domenico Bianculli University of Luxembourg, Luxembourg
Kelly Rosa Braghetto University of São Paulo, Brazil
Laura Bocchi University of Kent, UK
Radu Calinescu University of York, UK
Mauro Caporuscio Linnaeus University, Sweden
Miriam Capretz Faculty of Western Engineering, Canada
Vincenzo Ciancia ISTI-CNR, Pisa, Italy
Michele Ciavotta Politecnico di Milano, Italy
Alexander Chichigin Innopolis University, Russia
Ivica Crnkovic Mälardalen University, Sweden

VERY*SCART 2015 Organizers’ Message XV

Guglielmo De Angelis CNR-IASI/ISTI, Italy
Stéphane Demri New York University and CNRS, France
Schahram Dustdar Vienna University of Technology, Austria
Leo Freitas Newcastle University, UK
Carlo Alberto Furia ETH Zürich, Switzerland
Nikolaos Georgantas Inria, Paris, France
Silvio Ghilardi Università degli studi di Milano, Italy
Paola Inverardi University of L’Aquila, Italy
Wojtek Jamroga Polish Academy of Science, Poland
Alberto Lluch Lafuente Technical University of Denmark, Denmark
Alexandr Naumchev Innopolis University, Russia
Luca Pardini Università di Pisa, Italy
Pascal Poizat University of Paris Ouest, France
Gwen Salaün Inria, Grenoble-Rhone-Alpes, France
César Sánchez IMDEA Software Institute, Madrid, Spain
Nelson Souto Rosa UFPE, Brazil

XVI VERY*SCART 2015 Organizers’ Message

Keynote Speakers

Automatic Generation and Execution of Test Scenarios
for Camera-Based Driver Assistance Systems

Joachim Wegener
Berner and Mattner, Germany

Keynote Speaker of ATSE 2015

Advanced driver-assistance systems (ADAS) are one of the key technologies for future
innovations in cars and commercial vehicles. Increasingly, these systems take over
safety-related functions, e.g., autonomous braking and autonomous steering. Typically,
the systems are based on radar sensors or cameras continuously monitoring the vehicle
environment. These sensor technologies cannot provide completely reliable detection
rates of objects. Correspondingly, the quality assurance for advanced driver-assistance
systems is of high importance. In this keynote an approach for automatically testing
camera-based driver-assistance systems will be presented. Systematic test design and
test scenario generation is based on the classification-tree method, environment
simulation and image generation are supported using vehicle dynamics and virtual test
drive simulations, such as veDyna or CarMaker, and test execution and test evaluation
are performed using the test environment MESSINA. The proposed test solution
enables functional testing of ADAS features in different testing phases, e.g., software in
the loop for testing functional models in early development phases, hardware in the
loop for testing the electronic control units (ECU) with the integrated software, as well
as back-to-back tests between functional models and ECUs. Additionally, the high
degree of automation enables efficient regression testing.

Testing Function and Time for Embedded
Systems: From EAST-ADL to Code

Cristina Seceleanu

Mälardalen University, Sweden

Keynote Speaker of ATSE 2015

Architectural description languages, such as EAST-ADL, provide a comprehensive
approach when describing complex automotive embedded systems, as standardized
models that encapsulate structural, functional, and extra-functional information. The
aim of architectural models is to enable the system’s documentation, design, early
verification, and even code implementation.

In this talk, we show how the use of such models can be extended further, by
proposing a methodology that provides code verification based on the EAST-ADL
architectural models. Our methodology relies on the automated model-based test-case
generation for both functional and timing requirements of EAST-ADL models exten-
ded with timed automata semantics, and validation of system implementation by
generating Python test scripts from the abstract test-cases. The Python scripts represent
concrete test-cases that are then executed on the system implementation. The entire
methodology is implemented as a tool chain, consisting of the ViTAL and Farkle tools,
and is validated on an industrial prototype, namely, the Brake-by-Wire system.

Beating Error with Formal Methods

Harold Thimbleby

Swansea University, Wales, UK

Keynote Speaker of HOFM 2015

The reason we use formal methods is because humans make errors, and formal methods
provides another point of view, namely, mathematical reasoning, which picks up issues
that normal human thinking misses. Nevertheless, there are still residual errors: pro-
grammers may think some programming is so obvious that formal methods are not
needed, programmers may correctly specify the wrong thing, and programmers may
fail to specify all of the behavior of the program. Ironically, user error is rarely handled
using formal methods.

We will give some concrete examples from medical systems. Error in hospitals is
the third biggest killer (after heart disease and cancer), and inadequate health IT is not
helping! It is time to make formal methods more accessible, to use formal methods
more, and also to use additional methods to help manage error: formal methods are not
sufficient.

Constraint Modelling and Solving
for Data Mining

Tias Guns

Declarative Languages and Artificial Intelligence Laboratory,
KU Leuven, Belgium

Keynote Speaker of MoKMaSD 2015

The use of constraints is prevalent in data mining, most often to express background
knowledge or feedback from the user. Constraints are also a well-studied formalism for
modelling and solving combinatorial problems, as exemplified by the constraint pro-
gramming community. In recent years, such constraint technology is increasingly used
in the field of (symbolic) data mining. Many challenges exist, however, at the level of
modelling the problem (encodings, high-level and declarative languages, new primi-
tives) as well as at the solving level (scalability, redundant constraints, search strate-
gies). We review motivations and recent advances in the use of constraint programming
for data-mining problems.

Machine Learning Methods for Model
Checking in Continuous Time Markov Chains

Guido Sanguinetti

School of Informatics, University of Edinburgh, UK

Keynote Speaker of MoKMaSD 2015

Model checking of temporal properties on stochastic processes is one of the major
success stories of formal modelling. The applicability of model checking methods has
been greatly extended by the availability of randomized, statistical algorithms such as
statistical model checking (SMC). Nevertheless, all of these methods require that a
model is specified quantitatively, including a parametrization of the transition rates.
Such prior knowledge is often unavailable in many important application fields such as
systems biology. In this talk, I will discuss how an SMC procedure can be defined also
for models with uncertain rates, by formalizing the task in Bayesian framework and
placing a non-parametric prior distribution over how the satisfaction probability of a
formula depends on the model parameters. I will introduce the notion of Gaussian
process, and show how machine learning ideas can be used also for parameter synthesis
and model design. I will also show how similar ideas can be used in more general
reachability problems.

Automated Integration of Service-Oriented
Software Systems

Paola Inverardi

University of L’Aquila, L’Aquila, Italy

Keynote Speaker of VERY*SCART 2015

In the near future we will be surrounded by a virtually infinite number of software
applications that provide services in the digital space. This situation radically changes
the way software will be produced and used: (a) software is increasingly produced
according to specific goals and by integrating existing software; (b) the focus of
software production will be shifted toward reuse of third-party software, typically
black-box, that is often provided without a machine-readable documentation. The
evidence underlying this scenario is that the price to pay for this software availability is
a lack of knowledge of the software itself, notably of its interaction behavior. A pro-
ducer will operate with software artifacts that are not completely known in terms
of their functional and non-functional characteristics. The general problem is therefore
directed to the ability of interacting with the artifacts to the extent the goal is reached.
This is not a trivial problem given the virtually infinite interaction protocols that can be
defined at application level. Different software artifacts with heterogeneous interaction
protocols may need to interoperate in order to reach the goal. This talk focuses on
techniques and tools for integration code synthesis, which are able to deal with partial
knowledge and automatically produce correct-by-construction service-oriented systems
with respect to functional goals. The research approach we propose builds around two
phases that elicit and integrate. The first concerns observation theories and techniques
to elicit functional behavioral models of the interaction protocol of black-box services.
The second deals with compositional theories and techniques to automatically
synthesize appropriate integration means to compose the services together in order to
realize a service choreography that satisfies the goal.

Formal Methods for Cyber-Physical systems

Davide Bresolin

Alma Mater University of Bologna, Bologna, Italy

Keynote Speaker of VERY*SCART 2015

Cyber-physical systems are systems integrating computational devices in a physical
environment. Examples of such systems are autonomous robotic systems, multi-agent
and embedded systems, control systems for aerospace, and automotive, medical, and
health-care systems. They all operate under strong safety, performance, reliability, and
timing constraints, and are characterized by a dual nature: the computational kernels
behave following discrete laws, while the physical components follow the continuous
laws of nature. We review some of the challenges that the application of formal
verification and design methodologies to cyber-physical systems poses to the academic
community. In particular, the definition of suitable temporal logics and other require-
ment specification languages, and the development of efficient reachability analysis and
other algorithmic manipulation techniques.

Contents

ATSE 2015

Learning-Based Testing of Distributed Microservice Architectures:
Correctness and Fault Injection . 3

Karl Meinke and Peter Nycander

The Synergy Between User Experience Design and Software Testing 11
A.P. van der Meer, R. Kherrazi, N. Noroozi, and A. Wierda

Combining Time and Concurrency in Model-Based Statistical Testing
of Embedded Real-Time Systems . 22

Daniel Homm, Jürgen Eckert, and Reinhard German

HOFM 2015

Helping the Tester Get It Right: Towards Supporting Agile
Combinatorial Test Design . 35

Anna Zamansky and Eitan Farchi

Behavioral Types for Component-Based Development
of Cyber-Physical Systems . 43

Jan Olaf Blech and Peter Herrmann

Refactoring Proofs with Tactician . 53
Mark Adams

Exploring the Role of Logic and Formal Methods in Information
Systems Education . 68

Anna Zamansky and Eitan Farchi

GuideForce: Type-Based Enforcement of Programming Guidelines 75
Serdar Erbatur and Martin Hofmann

MoKMaSD 2015

Clustering Formulation Using Constraint Optimization. 93
Valerio Grossi, Anna Monreale, Mirco Nanni, Dino Pedreschi,
and Franco Turini

Towards a Boosted Route Planner Using Individual Mobility Models 108
Riccardo Guidotti and Paolo Cintia

http://dx.doi.org/10.1007/978-3-662-49224-6_1
http://dx.doi.org/10.1007/978-3-662-49224-6_1
http://dx.doi.org/10.1007/978-3-662-49224-6_2
http://dx.doi.org/10.1007/978-3-662-49224-6_3
http://dx.doi.org/10.1007/978-3-662-49224-6_3
http://dx.doi.org/10.1007/978-3-662-49224-6_4
http://dx.doi.org/10.1007/978-3-662-49224-6_4
http://dx.doi.org/10.1007/978-3-662-49224-6_5
http://dx.doi.org/10.1007/978-3-662-49224-6_5
http://dx.doi.org/10.1007/978-3-662-49224-6_6
http://dx.doi.org/10.1007/978-3-662-49224-6_7
http://dx.doi.org/10.1007/978-3-662-49224-6_7
http://dx.doi.org/10.1007/978-3-662-49224-6_8
http://dx.doi.org/10.1007/978-3-662-49224-6_9
http://dx.doi.org/10.1007/978-3-662-49224-6_10

Design of a Business-to-Government Information Sharing Architecture
Using Business Rules . 124

Sélinde van Engelenburg, Marijn Janssen, and Bram Klievink

Process Mining as a Modelling Tool: Beyond the Domain
of Business Process Management . 139

Antonio Cerone

On Integrating Social and Sensor Networks for Emergency Management 145
Farshad Shams, Antonio Cerone, and Rocco De Nicola

Quantitative Modelling of Residential Smart Grids 161
Vashti Galpin

Attributed Probabilistic P Systems and Their Application
to the Modelling of Social Interactions in Primates 176

Roberto Barbuti, Alessandro Bompadre, Pasquale Bove,
Paolo Milazzo, and Giovanni Pardini

Probabilistic Modelling and Analysis of a Fish Population 192
Chiara Cini, Luca Tesei, Giuseppe Scarcella, Cesar A. Nieto Coria,
and Emanuela Merelli

A Tool for the Modelling and Simulation of Ecological Systems Based
on Grid Systems . 198

Suryana Setiawan, Antonio Cerone, and Paolo Milazzo

VERY*SCART 2015

Distributed Coordinated Adaptation of Cloud-Based Applications 215
Luciano Baresi, Sam Guinea, and Giovanni Quattrocchi

Fuzzy Description Logics for Component Selection in Software Design 228
Tommaso Di Noia, Marina Mongiello, and Umberto Straccia

Towards Adapting Choreography-Based Service Compositions
Through Enterprise Integration Patterns . 240

Amleto Di Salle, Francesco Gallo, and Alexander Perucci

An Experimental Evaluation on Runtime Verification of Self-adaptive
Systems in the Presence of Uncertain Transition Probabilities 253

Kento Ogawa, Hiroyuki Nakagawa, and Tatsuhiro Tsuchiya

Towards Automatic Decision Support for Bike-Sharing System Design 266
Maurice H. ter Beek, Stefania Gnesi, Diego Latella, and Mieke Massink

Automated Synthesis of Protocol Converters with BALM-II 281
Giovanni Castagnetti, Matteo Piccolo, Tiziano Villa, Nina Yevtushenko,
Robert Brayton, and Alan Mishchenko

XXVIII Contents

http://dx.doi.org/10.1007/978-3-662-49224-6_11
http://dx.doi.org/10.1007/978-3-662-49224-6_11
http://dx.doi.org/10.1007/978-3-662-49224-6_12
http://dx.doi.org/10.1007/978-3-662-49224-6_12
http://dx.doi.org/10.1007/978-3-662-49224-6_13
http://dx.doi.org/10.1007/978-3-662-49224-6_14
http://dx.doi.org/10.1007/978-3-662-49224-6_15
http://dx.doi.org/10.1007/978-3-662-49224-6_15
http://dx.doi.org/10.1007/978-3-662-49224-6_16
http://dx.doi.org/10.1007/978-3-662-49224-6_17
http://dx.doi.org/10.1007/978-3-662-49224-6_17
http://dx.doi.org/10.1007/978-3-662-49224-6_18
http://dx.doi.org/10.1007/978-3-662-49224-6_19
http://dx.doi.org/10.1007/978-3-662-49224-6_20
http://dx.doi.org/10.1007/978-3-662-49224-6_20
http://dx.doi.org/10.1007/978-3-662-49224-6_21
http://dx.doi.org/10.1007/978-3-662-49224-6_21
http://dx.doi.org/10.1007/978-3-662-49224-6_22
http://dx.doi.org/10.1007/978-3-662-49224-6_23

An Experimental Spatio-Temporal Model Checker 297
Vincenzo Ciancia, Gianluca Grilletti, Diego Latella, Michele Loreti,
and Mieke Massink

Dependable Composition of Software and Services in the Internet
of Things: A Biological Approach. 312

Amleto Di Salle, Francesco Gallo, and Alexander Perucci

Author Index . 325

Contents XXIX

http://dx.doi.org/10.1007/978-3-662-49224-6_24
http://dx.doi.org/10.1007/978-3-662-49224-6_25
http://dx.doi.org/10.1007/978-3-662-49224-6_25

ATSE 2015

Learning-Based Testing of Distributed
Microservice Architectures:

Correctness and Fault Injection

Karl Meinke(B) and Peter Nycander

KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
{karlm,peternyc}@kth.se

Abstract. We report on early results in a long term project to apply
learning-based testing (LBT) to evaluate the functional correctness of dis-
tributed systems and their robustness to injected faults. We present a case
study of a commercial product for counter-party credit risk implemented
as a distributed microservice architecture. We describe the experimen-
tal set-up, as well as test results. From this experiment, we draw some
conclusions about prospects for future research in learning-based testing.

Keywords: Automated test case generation · Fault injection ·
Learning-based testing · Microservice · Requirements testing · Robust-
ness testing

1 Introduction

1.1 Overview

Functional testing of distributed systems presents one of the greatest challenges
to any test automation tool. Significant execution problems exist, such as: system
latency for individual test cases, global state reset, non-determinism leading to
unrepeatable errors, and the existence of faults in communication infrastructure,
to name but a few.

Learning-based testing [5] (LBT) is an emerging paradigm for fully auto-
mated black-box requirements testing. The basic idea of LBT is to combine
machine learning with model checking, integrated in a feedback loop with the
system under test (SUT). An LBT architecture iteratively refines and extends
an initial model of the SUT by incremental learning, using test cases as learner
queries. During this process, it model checks for violation of user requirements.
Current LBT technology can construct and judge thousands of test cases per
hour (depending on SUT latency), which is potentially useful both for testing
complex distributed systems and for fault injection.

1.2 Problem Formulation

We consider the problem of applying LBT to black-box testing the functional
correctness of distributed systems and testing their robustness to injected faults.
c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 3–10, 2015.
DOI: 10.1007/978-3-662-49224-6 1

4 K. Meinke and P. Nycander

We describe an experiment to perform requirements testing and fault injection
on a distributed microservice architecture for counter-party credit risk analysis
known as triCalculate. This application is a commercial product developed by
TriOptima AB for the Over-The-Counter (OTC) derivatives market. Our exper-
iment had several goals, including an evaluation of:

1. ease of formal modeling of correctness and robustness requirements,
2. ease and efficiency of fault injection and test case tear-down in a distributed

system through the use of LBT wrapper constructs
3. success in detecting SUT errors using low fidelity inferred models.

Furthermore, our experiments were made using an existing tool LBTest [6], which
lacks any optimisation for distributed system testing. Thus an additional goal
was: 4. to evaluate what architectural changes could be made to LBTest, that
might improve its performance in this context. In Sect. 5 we make some sugges-
tions for future tool improvement.

2 Background

2.1 Microservice Architectural Style

The microservice architectural style [4] implements a single application as a suite
of many small services that communicate using a language agnostic mechanism
such as HTTP. The style is a new approach to Service Oriented Architecture
(SOA). The benefits of this style include: technology independence, resilience,
scalability and ease of deployment. In triCalculate, network communication is
event-based, using the open source message broker RabbitMQ.

2.2 Fault Injection

Fault injection (FI) has traditionally been deployed to evaluate the robustness
of software in the presence of hardware faults (such as bit-flip errors). A classifi-
cation in [9] includes: hardware implemented (HIFI), software (SIFI) and model
implemented (MIFI). Our approach here is closest to SIFI, but LBT can also
support MIFI, through its model inference. A characteristic of fault injection is
the combinatorial growth of faults1, and large test suites are typically needed.
The potential of LBT to rapidly generate test cases may therefore be beneficial
in this context. Interesting high-level faults that were considered to inject into
triCalculate included: restarting services, starting up several service instances,
communication faults, and killing service instances.
1 A fault is a triple consisting of a type, a location and a time [9].

Learning-Based Testing of Distributed Microservice Architectures 5

2.3 Learning-Based Testing

For this experiment, we used LBTest version 1.3.2 [6] which is an LBT tool for
testing reactive systems. The architecture of LBTest is illustrated in Fig. 1. It
has previously been successfully used to test monolithic financial applications [3].
Reactive systems are modeled and learned as deterministic finite state machines,
specified using propositional linear temporal logic (PLTL), and model checked
with NuSMV [2]. LBTest has a modular architecture to support a variety of
learning algorithms, model checkers and equivalence checkers.

Noteworthy in Fig. 1 is the communication wrapper around the SUT, which is
responsible for communication and data translation. Wrappers are also responsi-
ble for test set-up and tear-down between individual test case executions. These
activities can be problematic for distributed systems, requiring complex network
management and reset actions. Furthermore, wrappers support the abstraction
of infinite state systems into finite state models, through data partitioning. Using
the same data abstraction principles, wrappers can also be used to support fault
injection. However, to date, there has been no research published on LBT for
robustness testing. A more general open question is how to extend LBT to dif-
ferent types of distributed systems, which is a long-term goal of the project [10].

Fig. 1. LBTest architecture

3 Experimental Set-up

The SUT triCalculate calculates counter-party credit risks using distributed
microservices to host different parts of the calculation. It consists of about
100 KLoC. Figure 2 illustrates the triCalculate architecture in terms of separate
microservices and their intercommunication.

6 K. Meinke and P. Nycander

Fig. 2. triCalculate microservice architecture

The system has just one use case: a user uploads files and eventually receives
output.

To manage service scheduling and concurrency, we took a grey-box testing
approach, by opening up the RabbitMQ message broker to the LBTest wrapper.
In particular, the wrapper made non-trivial use of the RabbitMQ API in order
to efficiently and reliably tear down inter-service message queues after each test
case execution. In [3] we have also shown that efficient tear-down is an important
step to fully exploit the high test throughput of LBT methods.

The most relevant correctness property to be tested is that the end-to-end
calculation finishes in a successful way, i.e. when a file is uploaded then some-
time in the future results will be published. Such end-to-end requirements for
microservices are quite difficult to test by traditional (i.e. non-formal, manual)
methods. We also focused on a single fault scenario: SUT restart, to verify that
triCalculate handles system crashes and recovery in a robust way. To control
fault injection at each use case step, we introduced a single meta-input variable
with symbolic input values continue and restart. These values were inputs
to the wrapper (which executed the fault injection) rather than the SUT itself.
This seems like a flexible and generic approach to SIFI.

Learning-Based Testing of Distributed Microservice Architectures 7

The SUT state variables for each observation were obtained from database
entries in the central storage unit. These state variables were returned by the
wrapper as 6 symbolic output variables, each of which flagged the completion of
one use case step (i.e. calculation step). Using these output variables, we could
express each of the 6 sunny day use case steps, e.g. step 1:

G(session = session none & input = continue ->
X(session = session ok))

This sunny day use case model then had to be extended with alternative
rainy day use case steps, to model SUT robustness under restart, e.g. step 1.b

G(session = session none & input = restart ->
X(session = session none))

To continuously monitor the internal SUT status, an additional output
warning variable was used, specified by: G(warning = warning none)

4 Test Results

In benchmarking LBT methods, our main arbiter of success is the capability to
identify known errors (i.e. injected mutations) as well as previously unknown
SUT errors within a reasonable time frame. Since LBT is a fully automated
testing process, it is feasible to run a tool such as LBTest for several hours.

A secondary measure of testing success is the number of test cases (queries)
executed and the size of the inferred state machine model. However, LBT meth-
ods always produce a finite abstraction of the SUT, which is usually an infinite
state system. It can be difficult to predict the size of this abstraction a pri-
ori. Therefore besides its absolute size, the degree of convergence of the learned
model is another important test performance indicator. Convergence is mea-
sured indirectly through stochastic equivalence checking, and can be regarded
as a black-box coverage model.

Note that test suite size and inferred model size are both heavily influenced
by the choice of learning algorithm. Since LBT is still an emerging technique,
it is instructive to experiment with different learning algorithms and compare
their performance on the same SUT.

To begin our testing experiment, ad-hoc SUT mutations were injected and
successfully detected. These helped to confirm the correct construction of both
the user requirements and the wrapper.

Testing was then performed on the unmodified SUT using two different
automata learning algorithms: IKL [5] and L*Mealy [7]. L*Mealy is a straightfor-
ward generalisation of Angluin’s well-known L* algorithm [1] to deal with multi-
valued output alphabets. The two algorithms have similar asymptotic complexity
properties. IKL is an incremental learning algorithm that produces hypothesis
automata with much greater frequency than L*Mealy. It is well adapted to test-
ing systems that are too big to be completely learned. The heuristic used for
stochastic equivalence checking was first difference, which is the only heuristic
that is practically feasible for SUTs with long test case latency.

8 K. Meinke and P. Nycander

Using IKL, a testing session was conducted for 4 h and 3 min. During this
time LBTest made a total of 139 queries leading to 7 warnings. A 24 state model
was learned after 16 iterations. Using L*Mealy, a testing session was conducted
for 7 h and 32 min. During that time LBTest made a total of 280 queries leading
to 2 warnings. A 38 state model was produced after 3 iterations.

In this case study, IKL is slightly more efficient requiring 5.8 queries per
learned state versus L*Mealy’s 7.4 queries. Furthermore, IKL produces about 5
times as many hypothesis automata as L*Mealy. Thus, IKL allows the model
checker a significantly greater role in predicting errors through inductive infer-
ence principles.

The final model produced by L*Mealy was slightly better converged than the
final model produced by IKL, as measured by stochastic equivalence checking
with the SUT. However, this improvement was marginal given that twice as
many queries were used. In fact this small difference suggests that the models
produced by both learning algorithms were still highly non-converged.

In this case study, the use-case structure of our PLTL user requirements
allowed us to measure requirements coverage in a precise way using graph cover-
age. This approach is similar to the requirement coverage model of [11]. Here the
results were quite positive. Every simple path through the use case is covered by
at least one path through the final learned model, in both the IKL and L*Mealy
inferred models.

The latency time of the triCalulate SUT was relatively long, on average
1.6 min per test case. Therefore, the inferred models have quite low fidelity (con-
vergence), based on a small set of samples. This latency could be attributed
primarily to the computationally intensive SUT, and not to the overhead of
machine learning, model checking or message broker communication.

5 Conclusions and Future Research

Regarding experimental goal 1, we confirmed the viability of modeling correct-
ness and robustness requirements in a single use-case model, consisting of sunny
and rainy day scenarios. The user requirements were captured and formalised
using propositional linear temporal logic by a test engineer with no previous
experience of using temporal logic.

Regarding goal 2, fault injection was achieved by the use of metavariables to
describe environmental behaviour. This approach is simple and supports fault
modeling at a high-level of abstraction using symbolic data types. The actual
semantics of fault injection (which can be complex) was efficiently implemented
in wrapper constructions. This overall approach to SIFI and robustness testing
seems generic, powerful and flexible. However, the onus is on the test engineer
to make correct and perhaps complex wrapper constructions.

Regarding goal 3, the performance of LBTest compares favourably with cur-
rent manual techniques to perform end-to-end testing. LBTest was able to dis-
cover multiple failed test cases within a reasonable time frame. Although the
inferred models had low convergence, at least a high level of user requirements
coverage could be achieved.

Learning-Based Testing of Distributed Microservice Architectures 9

With respect to goal 4, the non-determinism exhibited by triCalculate showed
that new approaches are necessary to improve the inference and modeling of dis-
tributed systems. Adapting automata learning algorithms to non-deterministic
SUTs is technically straightforward. However, problems may arise with conver-
gence of learning, since some non-deterministic behaviours may have very low
probability of occurrence (unrepeatable errors).

In our case study, the problem of poorly converged models was primarily
due to high test case latency, which arose from a computationally intensive
SUT rather than slow network communication. The general situation for other
microservice architectures merits further investigation. However, an important
conclusion is that improving the coverage of distributed systems (as measured by
learned state space size) is one of the most important and challenging problems
for learning-based testing.

One possible approach to improving coverage might be to distribute learn-
ing across the network. We could try to infer a set of local automaton models
that can be combined by asynchronous parallel composition into a single global
model. This approach might be well-suited to microservice architectures, since
using microservers should reduce the difficulty of learning the individual local
models. Another approach might be to try to re-use inferred models from unit
and integration testing within system testing. These two approaches may even
be mutually compatible.

An interesting recent evaluation of machine learning in the related context
of fault prediction is [8], which takes a less optimistic perspective. It would be
interesting to compare the static classifier-based prediction methods considered
there, with our own execution-based inductive inference methods.

Acknowledgement. K. Meinke wishes to thank VINNOVA and Scania AB for finan-
cial support of this research within [10], and R. Svenningson for valuable discussions
on fault injection. P. Nycander wishes to thank TriOptima AB for hosting his Masters
thesis research.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75, 87–106 (1987)

2. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: NuSMV 2: an OpenSource tool for symbolic
model checking. In: Proceedings of International Conference on Computer-Aided
Verification (CAV 2002) (2002)

3. Feng, L., Lundmark, S., Meinke, K., Niu, F., Sindhu, M.A., Wong, P.Y.H.: Case
studies in learning-based testing. In: Yenigün, H., Yilmaz, C., Ulrich, A. (eds.)
ICTSS 2013. LNCS, vol. 8254, pp. 164–179. Springer, Heidelberg (2013)

4. Fowler, M.: Microservices (2014). http://martinfowler.com/articles/microservices.
html

5. Meinke, K., Sindhu, M.A.: Incremental learning-based testing for reactive systems.
In: Gogolla, M., Wolff, B. (eds.) TAP 2011. LNCS, vol. 6706, pp. 134–151. Springer,
Heidelberg (2011)

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html

10 K. Meinke and P. Nycander

6. Meinke, K., Sindhu, M.: LBTest: a learning-based testing tool for reactive systems.
In: Proceedings of Sixth International IEEE Conference on Software Testing, Ver-
ification and Validation (ICST 2013) (2013)

7. Niese, O.: An Integrated Approach to Testing Complex Systems. Ph.D. thesis,
University of Dortmund (2003)

8. Shepperd, M., Bowes, D., Hall, T.: Researcher bias: the use of machine learning in
software defect prediction. IEEE Trans. Software Eng. 40(6), 603–616 (2014)

9. Svenningson, R.: Model Implemented Fault-injection for Robustness Assessment.
Licentiate Thesis, KTH, Stockholm (2011)

10. VINNOVA FFI project, VIRTUES (Virtualized Embedded Systems for Testing
and Development). http://www.csc.kth.se/∼karlm/virtues/

11. Whalen, M., Rajan, A, Heimdahl, M., Miller, S.: Coverage metrics for
requirements-based testing. In: Proceedings of International Symposium on Soft-
ware Testing and Analysis, ISSTA 2006, pp 25–35. ACM Press (2006)

http://www.csc.kth.se/~karlm/virtues/

The Synergy Between User Experience
Design and Software Testing

A.P. van der Meer, R. Kherrazi, N. Noroozi(B), and A. Wierda

Nspyre B.V., Eindhoven, The Netherlands
neda.noroozi@nspyre.nl

Abstract. Formal methods and testing are two important approaches
that assist in the development of high quality software. Model-based test-
ing (MBT) is a systematic approach to testing where using formal mod-
els enables automatic generation of test cases and test oracle. Although
the results of applying MBT in practice are promising, creating formal
models is an obstacle for wide-spread use of MBT in industry. In this
paper we address how the cooperation between testers and user experi-
ence designers can help with the overall challenge of applying MBT. We
present a test automation approach based on Task Models and Microsoft
Spec Explorer model-based testing tool to improve software testing. Task
Model is a formal model to specify the high-level interaction between the
user and the graphical user interface (GUI). We developed a tool, called
UXSpec, to convert Task Models to the input models of Spec Explorer,
allowing us to do functional testing with little modeling effort, due to
usage of already existing models. We demonstrate this by applying our
approach to a case study.

Keywords: Model-based testing · Spec Explorer · ConcurTaskTrees

1 Introduction

The speed of software development increases steadily. As a consequence the chal-
lenges that each discipline faces increase. For User eXperience (UX) designers
a challenge is to ensure that UX designs get implemented correctly, including
aspects of performance, exception handling, etc. For software testers the chal-
lenge is to build a full understanding of what the correct system is in a lim-
ited amount of time. On a high level the solution we have found is to reuse the
requirements efforts from UX as input for model-based testing to improve overall
development speed and testing quality. Using this approach allows us to benefit
from all powerful features of MBT tools without facing issues related to creation
of complex test models.

UX work contributes to requirements creation by adding the user perspective;
who is the user, what are the tasks that (s)he will use the system for? A tool to
create this understanding is making a task analysis. The widely used notation
for this is Concurtasktree (CTT) [10]. We found that we can reuse CTT models,

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 11–21, 2015.
DOI: 10.1007/978-3-662-49224-6 2

12 A.P. van der Meer et al.

which capture the UI requirements, as basis for model-based testing of the final
implementation. For this we have developed the UXSpec tool which converts
CTT models to the test models used by Microsoft Spec Explorer tool [1].

Furthermore we have found that the discussions between testers and UX-
ers is useful to better coordinate usability testing effort, e.g. what are the most
critical scenarios, and which user tasks should be included in a usability test.
This qualitative testing complements the testing efforts aimed at coverage and
completeness and improves the overall system quality.

In this paper, we first introduce Task Models and Spec Explorer in Sect. 2.
We describe some technical details of the implementation of our approach in
Sect. 3. In Sect. 4, we report on a case study to demonstrate the feasibility of
our tool chain and present some empirical results. We discuss related work in
Sect. 5, and finally we write the conclusions in Sect. 6.

2 Preliminaries

2.1 Task Models

Task Models are useful in designing and developing interactive systems. They
describe the logical activities (tasks) that have to be carried out in order to reach
the users goals [11]. A widely used notation for Task Models is ConcurTaskTtree
(CTT) [10], which we use in this paper. Four different types of tasks which are
supported by CTT models are as follows:

– interaction task represent events initiated by a user of the systems
– application tasks represent system responses
– user tasks represent decision points on the user side
– abstract tasks which are further subdivided in other tasks

Connections between tasks are annotated with the temporal operators that
describes the dependencies between tasks. Providing a rich set of operators,
a set of temporal relationships between tasks such as enabling, disabling, choice,
and synchronization are formally defined. A part of the CTT model of a car
reservation which will be used as the case study in Sect. 4 is shown in Fig. 1.
The sub-tree depicted in Fig. 1 shows the task model for adding a new car to
the car reservation system. This CTT model consists of six interaction tasks
including navigation to the desired interface and providing the required data,
and three application tasks showing the responses of the system. Semantic of
the model is defined by the possible exploration of the model which is governed
by the temporal operators. The task of adding a car is decomposed to two inter-
action tasks: first executing task ‘Navigate to Cars Mng’ and then performing
task ‘Add Car X’ (enabling operator: �). To navigate to the ‘Cars’ tab, the
cars tab must first be selected (interaction task ‘Click Cars tab’) and then the
system shows the Cars tab (application task ‘Show Cars tab’). A new car is now
added by selecting the add car option (interaction task ‘Select Add Car’) which
yields a pop-up window is opened (application task ‘Show Pop-up Win’). At this

The Synergy Between User Experience Design and Software Testing 13

point the user can enter the information of the new car by entering two possible
data (choice operator: []): Select the car model or Select the station. Task ‘Enter
Car Information’ is an iterative task (iterative operator: *), meaning that it can
be repeatedly executed. Once, the user confirm the entered information, (s)he
cannot change those information anymore (disabling operator: [>). Eventually,
the updated list of the cars is shown to the user (application task: Update Car
List). For a complete list of the operators and their meaning see [11].

Fig. 1. Fragment of a car reservation system ConcurTaskTree model (in MARIAE tool)

Although it is not visible in Fig. 1, the task model is enriched with some
constraints to ensure the availability of certain actions at different states of the
system. These constraints are expressed as pre/post conditions of an atomic task.
For example, the task named select station in Fig. 1 has a post-condition which
guarantees that a station is always selected as one of the requirements of the
system. To this end, a string variable named station with the initial value empty
is defined in the task. The post-condition, then, is presented by the expression
station != empty where station variable shows the name of selected station.
A similar post-condition is added to task ‘select car model’ to ensure that the
mandatory field of car model is always set to a non-empty value.

2.2 Spec Explorer

Spec Explorer [1] is an extension to Microsoft Visual Studio intended to pro-
vide support for MBT. In Spec Explorer, we define a model that describes the
expected behavior of the system under test together with a configuration file in
which we describe parameters of test cases. The modeling language used in Spec
Explorer is an extension to C# with modeling annotation and construction like
pre/post condition, final states, variables, etc. The model of a system described
by the Spec Explorer modeling language is a possibly infinite state transition
system in which the states comprise the possible states of the system variables
and transitions between the states are modeled by methods annotated as Action.
There are two different types of actions in Spec Explorer: controllable and observ-
able actions. Controllable actions defines actions that are under the control of
the user (inputs of the system under test), and observable actions describes the
(asynchronous) responses of the system. Once the model of a system is complete

14 A.P. van der Meer et al.

in Spec Explorer, different predefined test strategies can be applied to generate
test cases, which can be executed directly on the implemented system. Each
path in the state space of the defined state transition system represents a possi-
ble test, a sequence of controllable and observable actions that the system under
test has to be able to follow. More information on Spec Explorer can be found
in [9].

3 Using Task Models in Model-Based Testing

In order to generate tests for a system in Spec Explorer, we need a model that
describes the expected behavior and a script file that defines test scenarios,
i.e. the kind of tests to be executed. Creating behavioral models is a non-
trivial process which typically requires considerable time and efforts in MBT
approaches. When we design a system by using CTT models, we already have a
model that describes the desired behavior of the system under test. This suggests
that if we reuse this model, we will make testing with Spec Explorer easier and
cheaper.

Since CTT models cannot be directly used in Spec Explorer, we need to create
a Spec Explorer model based on a given Task model in a way that does not affect
the semantic of the given CTT model. From a global perspective, we observe that
both CTT model and Spec Explorer are fundamentally state-transition-system-
based formalisms. This means a system at all times has a well-defined state,
which changes in response to triggers received from the environment. In particu-
lar, this implies that we can consider a Spec Explorer model compliant to a CTT
model if the state machines involved are equivalent in behavior. More precise, we
need to make sure that the tests that are constructed by Spec Explorer contain
all possible sequences of event triggers that are legal in the CTT model state
machine. On the other hand, illegal events should never occur in tests, because
the behavior of the component is undefined in such cases, which means that the
test can never be failed or passed.

The state transition system of a CTT model can be extracted by identifying
its states and the transitions between them. This can be done by simulating
the execution of task models: each set of enabled tasks at a same time, called
Presentation Task Sets (PTS), in the execution of the task model represents a
state of the model, and the relation between tasks defines transitions between
states. This step is automatically carried out in MARIAE tool.

In Spec Explorer, the model of the system under test is defined in one or
more C# classes with methods which describe events that the system responds
to or produces in the response to another event. By analyzing the effects of
the methods on the state of the system, Spec Explorer can identify states and
the transitions between them. Thus, to reconstruct a CTT model state machine
in a Spec Explorer model, we have to create model classes that implement all
possible events of the CTT model, in such a way that the resulting state space
matches the one in the CTT model. The former is simply achieved by creating
a method (defined as a controllable action) for every interaction task in CTT

The Synergy Between User Experience Design and Software Testing 15

Fig. 2. UXSpec workflow and tool chain

models. We achieve the latter by constructing the model, based on an explicit
state machine pattern, thus ensuring that all states are explicitly present in the
model. In the same way, all events are explicitly covered in methods, ensuring
the full coverage of all transitions of CTT models. Furthermore, application of
tasks in the task model are translated as probe methods in the Spec Explorer
model to check if the effect of user interaction is as expected. The generated Spec
Explorer model can be later enriched by further details to each state or/and by
defining data constraints in the model which are not available in CTT models.
To do the translation from CTT models to Spec Explorer models automatically,
we developed a tool, which is named UXSpec. The general work flow around this
tool chain is shown in Fig. 2. The UXSpec tool takes the CTT models as input
and combines them with some configuration data that are not presented in CTT
models, for example how the user interface implementation can be started and
stopped. The output of the tool is a Spec Explorer model that can then be used
to generate test cases.

UXSpec uses a model transformation in QVTo [5,8], an Eclipse Modeling
Framework (EMF) implementation of QVT Operational, to carry out the trans-
formation of task models in CTT notation to models used by Spec Explorer.
Because QVTo is based on EMF [3], we translate CTT models into EMF model
first. For this, we used an existing tool based on the XML schema provided by
the HIIS Laboratory for MARIAE [15], describing the structure of CTT models.
This tool was developed by Nspyre as part of an earlier project. In the same
project, a transformation was developed that abstracts from format-specific fea-
tures of CTT models to a generic, more abstract representation. We use this
representation as a basis for further processing.

The next step is to generate the C# model file and the Cord Script file,
which is implemented by means of two QVTo transformations. The first one
generates an EMF C# model based on a C# meta-model created by the MoDisco
[4] project. The second generates an EMF Cord Script model based on a Cord
Script meta-model of our own design. Because these are both in EMF format,
we then have to use templates, in our case based on the Acceleo [2] template
engine, to create the textual representations that can be used by Spec Explorer.
These templates are generic, in the sense that they can be used for all EMF C#
and Cord Script models that use our meta-models.

16 A.P. van der Meer et al.

4 Case Study

In this section we demonstrate the feasibility of our approach with an example.
The application being used for this purpose is a car reservation system which
is based on a large industrial system co-developed by Nspyre. The car reserva-
tion system in this section is developed for car rental agencies for booking and
managing rental cars. It consists of various user interfaces and each of them has
several GUI components. We focus on the functionality of adding a new car to
the system. A car is added to the system by identifying its model and the station
to which it is assigned as the mandatory fields and its type as an optional field.

To evaluate our approach, we tested the above functionality of the car reserva-
tion system with two different techniques: Traditional test automation approach
(capture/replay) and (conventional) model-based testing. Capture/replay tools
are widely adopted for automatic test execution in which a test is designed and
executed for the first time by a human and then a test executor executes scripted
tests that record the human interactions with the system under test. For this
purpose, we designed test scenarios by using decision table technique. After-
wards, scripted tests of each logical test case are generated by hand. Regarding
the system under test was a windows application in this case study, we devel-
oped an automatic test executor based on UI Automation framework [12] which
translated abstract user interactions of scripted tests to actual UI events, and
vice versa.

In the second approach, test cases are automatically generated in Spec
Explorer from test models that are manually created. As the common prac-
tice in MBT, in order to execute the generated test cases on the system under
test, we developed an adapter based on UI Automation framework to connect
to the system under test. Finally, we test the system by reusing the CTT model
depicted in Fig. 1 and using UXSpec tool to automatically translate the CTT
model to a test model in Spec Explorer.

In the remainder of this section, we first explain all steps of the process
of automatic generation of test cases in our approach by using UXSpec tool.
Afterwards, we compare our approach with the other two approaches.

4.1 Testing with UXSpec Tool

Having the task model, the state transition system of the CTT model is auto-
matically generated by MARIAE tool. UXSpec tool starts with the generated
state transition system. However, all information of CTT models like pre/post
condition of tasks, is not available in the transition system. Therefore, UXSpec
use the actual CTT model to extract the necessary information. The output of
UXSpec is the preliminary Spec Explorer model in C# format together with a
script file, which represents the intended behavior of the system. Figure 3 shows
the graphical representation of the Spec Explorer model generated by UXSpec
from the task model in Fig. 1. The gray state shows the initial state and each arc
shows an enabled interaction task at each state which is translated to a method
in the C# model. For example consider the initial state in the CTT model at

The Synergy Between User Experience Design and Software Testing 17

which the user can only click on Cars tab (interaction task ‘click cars tab’).
This interaction task translated in Spec Explorer model as controllable method
‘P2 Click Cars Tab()’. Moreover, to check the effect of tasks (post condition),
probe methods are created in the generated Spec Explorer model. For instance,
the interaction task ‘select station’ in Fig. 1 has a post-condition which guaran-
tees that a station is always selected. This post-condition is defined in the CTT
model by the expression “station != empty” where “station” variable shows the
name of selected station. This post-condition is checked by probe method ‘get-
Station()’ in the Spec Explorer model. The generated model can be later enriched
by further details to each state or/and by defining data constraints in C# model
which are not available in task models. For instance, we restricted the set of
possible stations and car models to two certain sets of values. These modifica-
tions took a small amount of time, i.e. less than half a man-hour. Finally from
the modified model, test cases are automatically generated by Spec Explorer. To
enable automatic execution of generated test cases over the system under test,
we reused the developed adapter from the previous model-based testing project.

Fig. 3. A part of generated Spec Explorer model of the car reservation system

4.2 Results

Based on the case study, we have drawn several conclusions on the approaches
discussed in this paper

Modeling. Task Models concentrate on activities that a user intends to perform
over an interactive application together with temporal relationships between
them. Task Models are created in early phases of software development by user
experience designer. In cooperation with software architecture, these models
are translated into detailed design in later phases. C# models created in Spec
Explorer are intended to use for test case generation. They model some parts of

18 A.P. van der Meer et al.

the functionalities of the system under test that are relevant in testing. These
models are created by testers to be used only for testing the actual implemen-
tation. In our approach, UXSpec reuses existing CTT models to automatically
generate C# models in Spec Explorer.

Technique. Using the formally defined semantics of temporal relationships
between tasks, a designer is able to simulate the flow of the activities of a CTT
model before designing the user interface to check if users goal is supported.
In contrast, conventional MBT creates tests based on manually created models.
UXSpec creates automatically primarily test models from existing CTT models.

Effort. Task Models are constructed by user experience designer by focusing
on user interactions and abstracting from design and implementation details. In
contrast, test models are created by testers to cover only those parts of the func-
tionalities of system which are relevant to testing. UXSpec creates test models
by reusing existing task models. Thus, it decreases effort needed for testing.

Requirement Coverage of Generated Test Cases. In order to give an indi-
cation of the efficiency of our approach; we look at the number of test cases
generated by each approach in a same amount of time. In the first approach
where the manual scripted tests are used, the number of generated test cases
in one hour is 2. This number of test cases partially covered the required test
scenarios. In the second approach, the test model of the system was manually
developed in Spec Explorer in one hour. Afterwards, 13 test cases were gener-
ated in some milliseconds, which cover all possible scenarios. In our approach,
the creation of the task model has taken about half an hour. Reusing the task
model, UXSpec automatically generates a preliminary model in Spec Explorer.
After customizing the generated model, 13 test cases were generated which have
a same coverage as those generated in the pure MBT approach. Therefore, by
using UXSpec we can reduce time and cost of modeling while preserving the
requirement coverage.

5 Related Work

In this paper, we focus on improving and accelerating the use of model-based
testing for applications interacted via their user interfaces. There are several
works on using models in testing user interfaces [13–18]. Challenges of using
model-based testing in GUI testing are comprehensively studied in [16,18]. A
pure model-based testing approach is presented in [16]. Similarly, [15] reported
on a model-based GUI testing approach in which Uppaal models are used as test
models. In contrast to our approach, in both approaches in [15,16] test models
need to be manually developed. Creating test models is not a trivial process
and most of the time is time-consuming, particularly when the system under
test is large. To overcome this problem in [17], a model-based tool, GUITAR,
is developed which automatically creates test models as an event-flow graphs
by extracting structures and API calls. This approach can be used only in the
final phases of software development, when the system under test is developed.

The Synergy Between User Experience Design and Software Testing 19

However, using CTT models enables us to generate test cases in the early phase
even before graphical user interfaces of the system with their implementation
details are designed and implemented. Analogous to our approach in [13,14],
CTT models are used as input for generating test models of graphical user inter-
faces. Instead of testing the desired behaviors modeled in task models, the focus
of presented approach in [14] is on testing unexpected and undefined behavior
by generating task mutations based on a classification of the user errors. The
most similar work to the approach presented in this paper is [13], in which cus-
tomized concureTaskTree models are automatically converted to C# models in
Spec Explorer. CTT models used in [13] are enriched by some implementation
details that are used later in development of the adapter and for checking the
effect of interaction tasks. Including some implementation details in test models
restricted the approach in [13] to testing Windows Form applications. Moreover,
in [13] only ‘interaction’ tasks are taken in the transformation. But by using stan-
dard CTT models, our approach has general applications and it is not limited to
a specific type of application and platform. Furthermore, instead of customizing
CTT models with some data tag to express the effect of interaction tasks, the
approach taken in [13], we use the post-conditions defined for atomic tasks. The
post-conditions are then translated as the probe method in Spec Explorer mod-
els. Therefore, in contrast with [13], no customization of CTT models is needed
in our approach.

6 Conclusions

In this paper, we described an approach to automatic testing that is based on
combining Task models and model-based testing. We showed that creating the
models needed for MBT could be done in a way that builds further on mate-
rial that is already created earlier in the development process. This reduces
rework, improves the understanding for all people involved in the system devel-
opment and most importantly increases the total software development speed.
Task models become shared models that are understood by all disciplines in
the project from user experience designers to system architects to developers to
testers. Besides improving the communications in software development team,
the consistency between requirements defined in the early phases of software
development with test cases executed in the later phases is improved as well.

To use Task models in model-based testing, we develop UXSpec tool which
via some QVTo transformers translates task models from the MARIAE tool to
test models used by Microsoft Spec Explorer tool. This enabled us to automat-
ically create test cases based on a Task models. Although creating this custom
connection takes a little bit of time we found that it significantly reduced time
and efforts needed for test generation and maintenance. Moreover, the QVTo
transformers of UXSpec support transition-based models as the target model.
Therefore, the approach we demonstrated in this paper is not limited to a spe-
cific test tool and can be used with other MBT tools, such as NModel [6] or
PyModel [7] as well.

20 A.P. van der Meer et al.

To demonstrate the feasibility of our approach, we tested a simple part of
a car reservation system with different testing techniques: the traditional test
automation approach, and the conventional model-based testing in which test
models are manually created. Although the scope of our case study is small, our
obtained results are promising and showed reduction in time and effort needed
for creating models in model-based testing. However, to strengthen our results
and to have a better evaluation, we consider applying our approach on a real
large industrial system in future.

References

1. Veanes, M., Campbell, C., Grieskamp, W., Schulte, W., Tillmann, N., Nachmanson,
L.: Model-based testing of object-oriented reactive systems with Spec explorer. In:
Hierons, R.M., Bowen, J.P., Harman, M. (eds.) FORTEST. LNCS, vol. 4949, pp.
39–76. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78917-8 2

2. The Eclipse Foundation: Acceleo. http://www.eclipse.org/acceleo/
3. The Eclipse Foundation: Eclipse Modeling Framework Project (EMF). http://

www.eclipse.org/modeling/emf/
4. The Eclipse Foundation: MoDisco Homepage. http://www.eclipse.org/MoDisco/
5. The Eclipse Foundation: QVTo. http://wiki.eclipse.org/QVTo
6. Microsoft: NModel. https://nmodel.codeplex.com/
7. Jacky, J: PyModel: model-based testing in Python. In: Proceedings of the 10th

Python in Science Conference, pp. 43–48 (2011)
8. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Frame-Work 2.0, 2nd edn. Addison-Wesley Professional, Reading (2009)
9. Model-based Testing with SpecExplorer. http://research.microsoft.com/en-us/

projects/specexplorer
10. Manca, M., Patern, F., Santoro, C., Spano, L.D.: Considering task pre-conditions in

model-based user interface design and generation. In: Symposium on Engineering
Interactive Computing Systems, pp. 149–154. ACM (2014)

11. Patern, F., Santoro, C., Spano, L.D., Raggett, D.: MBUI - Task Models, W3C
Working Group Note 08 April 2014

12. Windows Automation API: UI Automation. http://msdn.microsoft.com/enus/
library/windows/desktop/ee684009(v=vs.85).aspx

13. Silva, J.L., Campos, J.C., Paiva, A.C.R.: Model-based user interface testing with
Spec explorer and ConcurTaskTrees. Electron. Notes Theor. Comput. Sci. 208,
77–93 (2008). doi:10.1016/j.entcs.2008.03.108

14. Barbosa, A., Paiva, A.C.R., Campos, J.C.: Test case generation from mutated
task models. In : Proceedings of the 3rd ACM SIGCHI Symposium on Engineering
Interactive Computing Systems (EICS 2011), pp. 175–184. ACM (2011). doi:10.
1145/1996461.1996516

15. Hjort, U.H., Illum, J., Larsen, K.G., Petersen, M.A., Skou, A.: Model-based GUI
testing using Uppaal at Novo Nordisk. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 814–818. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-05089-3 53

16. Paiva, A.C.R.: Automated Specification-based Testing of Graphical User Inter-
faces, Ph.D. thesis, Faculty of Engineering, Porto University, Porto, Portugal
(1997)

http://dx.doi.org/10.1007/978-3-540-78917-8_2
http://www.eclipse.org/acceleo/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/MoDisco/
http://wiki.eclipse.org/QVTo
https://nmodel.codeplex.com/
http://research.microsoft.com/en-us/projects/specexplorer
http://research.microsoft.com/en-us/projects/specexplorer
http://msdn.microsoft.com/enus/library/windows/desktop/ee684009(v=vs.85).aspx
http://msdn.microsoft.com/enus/library/windows/desktop/ee684009(v=vs.85).aspx
http://dx.doi.org/10.1016/j.entcs.2008.03.108
http://dx.doi.org/10.1145/1996461.1996516
http://dx.doi.org/10.1145/1996461.1996516
http://dx.doi.org/10.1007/978-3-642-05089-3_53
http://dx.doi.org/10.1007/978-3-642-05089-3_53

The Synergy Between User Experience Design and Software Testing 21

17. Nguyen, B., Robbins, B., Banerjee, I., Memon, A.: GUITAR: an innovative tool
for AU-tomated testing of GUI-driven software. Autom. Softw. Eng. 21, 65–105
(2013). doi:10.1007/s10515-013-0128-9

18. Alsmadi, I., Samarah, S., Saifan, A., AL Zamil, M.G.: Automatic model based
methods to improve test effectiveness. Univ. J. Comput. Sci. Eng. Technol. 1(1),
41–49 (2010)

http://dx.doi.org/10.1007/s10515-013-0128-9

Combining Time and Concurrency
in Model-Based Statistical Testing
of Embedded Real-Time Systems

Daniel Homm(B), Jürgen Eckert, and Reinhard German

Department of Computer Science 7, University Erlangen-Nuremberg,
Martensstr. 3, 91058 Erlangen, Germany

{daniel.homm,juergen.eckert,reinhard.german}@fau.de

Abstract. Timed usage models (TUMs) represent a model-based sta-
tistical approach for system testing of real-time embedded systems. They
enable an automatic test case generation and the calculation of parame-
ters that aid the test process. However, a classical TUM only supports
sequential uses of the system under test (SUT). It is not capable of deal-
ing with concurrency, which is required for state of the art real-time
embedded systems. Therefore, we introduce TUMs with parallel regions.
They also allow automatic test case generation, which is carried out sim-
ilarly to classical TUMs. But, the semi-Markov process (SMP) that is
usually used for analysis is not suitable here. We apply Markov renewal
theory and define an SMP with parallel regions, which is used to calculate
parameters. We validated our analytical approach by simulations.

Keywords: System testing · Timed usage models · Concurrency

1 Introduction

Timed usage models (TUMs) are applied in the field of system testing for model-
based statistical testing of real-time embedded systems [10,12]. A TUM repre-
sents an extension of a Markov chain usage model (MCUM) [13] by time aspects.
It specifies possible uses of the system under test (SUT) in a notation similar to
state machines. But, it also considers time dependencies related to the use of the
SUT. TUMs enable an automatic generation of test cases [12] and the calcula-
tion of parameters that aid the test process [11], e.g., they help to decide when
to stop testing [9]. Test case generation is achieved by a random walk through
the model. Parameters are calculated by mapping the TUM to a semi-Markov
process (SMP), which is analyzed subsequently.

Modeling uses in a TUM is restricted to sequences of stimuli (events, inter-
rupts, etc.). Concurrent streams of use are not supported. However, the rising
complexity of embedded systems leads to an increase of concurrent aspects. For
example, customer requirements in the automotive domain enforce the develop-
ment of more sophisticated systems [3]. Neglecting concurrent uses during the
test of the SUT increases the risk of failures being undetected prior to the release.
c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 22–31, 2015.
DOI: 10.1007/978-3-662-49224-6 3

Combining Time and Concurrency in Model-Based Statistical Testing 23

In this paper we extend the concept of TUMs by parallel regions. Thus, it is
possible to handle both, sequential and concurrent uses of the SUT, with their
respective time dependencies and the model stays similar to state machines. Test
cases still can be generated automatically from the model by a random walk.
But the calculation of parameters becomes a non-trivial task: the SMP used to
analyze a TUM assumes a sequential execution of the process in time, which
is no longer given due to the introduction of concurrency. Therefore, we apply
Markov renewal theory and define an SMP with parallel regions. The calculation
of parameters for a TUM with parallel regions is carried out by an analysis of a
respective SMP with parallel regions.

2 Related Work

Research in the area of model-based testing already tackled the issue of combin-
ing time and concurrency aspects of the SUT [2]. There are also commercial tools
available, e.g., TPT1. However, the results are not transferable to model-based
statistical testing.

Model-based statistical testing aims at testing the expected use of the SUT.
Test cases are sampled and executed from the set of possible test cases. Statisti-
cal methods are used to draw inferences. This has to be considered by concepts
that extend the methodology. To the best knowledge of the authors, only one
related work deals with the combination of time and concurrency in the field of
model-based statistical testing: usage nets [1]. A usage net is a Discrete Deter-
ministic and Stochastic Petri net with colored transitions. Prior to test case
generation or parameter calculation, it is transformed into a respective MCUM.
Any time dependencies are thereby discretized, i.e., a single state or transition
in a usage net is represented by a set of states and transitions in the underlying
usage model. Deploying usage nets in practice may cause increased efforts for
training, as the notation for most model-based approaches in the field of system
testing is similar to state machines [4]. Additionally, the discretization of time
dependencies increases the effort that is required to carry out the analysis, as it
provokes a state space explosion in the underlying MCUM.

Our approach is based on a notation similar to state machines. This reduces
the effort to deploy it in practice. Test case generation is directly carried out on a
TUM with parallel regions. For the analysis, discretization of time dependencies
is avoided. Instead, we define and use an SMP with parallel regions: a stochastic
process suitable as foundation for the calculation of parameters from a TUM
with parallel regions.

3 Semi-Markov Processes with Parallel Regions

We define an SMP with parallel regions as natural extension of an SMP [6] by
composite states. It is represented by a state machine with simple and composite
1 Time Partition Testing: Systematic automated testing of embedded systems, http://

www.piketec.com, accessed on May 22, 2015.

http://www.piketec.com
http://www.piketec.com

24 D. Homm et al.

states si ∈ S at the top level. The stochastic matrix P = [pi,j] holds the branch-
ing probabilities after leaving a state at the top level. The sojourn time of each
state si is given by the random variable Xi with Fi(t) as distribution, and the
steady-state probability is denoted by the respective entry in vector π = [πi].
Different sojourn times can be configured for each state by attaching a respective
distribution. However, a composite state is not annotated with a distribution.

A composite state si holds ri parallel regions si,j . Each region owns a state
machine with a final state. A sub-state k of region j of composite state si is
referred to as si,j,k. Besides final states, each sub-state has a distribution anno-
tated. If a composite state is entered, then each region will enter its initial state.
A composite state will be left, if all regions have reached their final state. There
are no further synchronizations between the regions. An exemplary SMP with
parallel regions is depicted in Fig. 1. Note that, we call a final state an absorbing
state and refer to it as si,j,m with m = |si,j | (si,j can also be interpreted as set
of its sub-states).

s1

s2

s3

F1(t) F6(t)

s2,1,1 s2,1,2

F2,1,1(t)1

s2,2,1 s2,2,2

F2,2,1(t)2

1.0 1.0

1.0

1.0

1.0

Fig. 1. Exemplary SMP with parallel regions.

3.1 Analysis

The analysis focuses on the calculation of the steady-state probabilities. They
represent the fraction of time spent in each state in the long run and are used
to calculate further parameters (see Sect. 3.2).

Prior to analysis it is necessary to define regeneration points, i.e., time
instants when the process is memoryless [6]. We set regeneration points upon
leaving a state at top level. This yields an embedded Markov chain (EMC) that
consist of top level states only. A solution to the steady-state probabilities in the
EMC can be obtained by solving the linear system of equations u = uP with
the normalization condition ue = 1 [6]. For the final solution at top level it is
necessary to consider the mean sojourn times for each EMC state. Therefore, we
define matrix C = [ci,j].

ci,j =
{

E[Xi] , if i = j
0 , otherwise (1)

Combining Time and Concurrency in Model-Based Statistical Testing 25

For simple states, the mean sojourn time is derived by E[Xi] =
∞∫
0

F i(t)dt. For

composite states, it is derived by a transient analysis of the regions, which is
stated below. Finally, the solution to the steady-state probabilities with regard
to the individual mean sojourn times is obtained by solving

π =
uC
uCe

. (2)

The mean sojourn time in a composite state depends on the time spent in
each region in isolation until absorption. Its calculation requires the definition
of some parameters:

– the mean sojourn time in a region si,j is given by the random variable Xi,j

with distribution σi,j(t)
– the time spent in a region si,j depends on the sojourn times of its sub-states

si,j,k, which is given by the random variable Xi,j,k with distribution Fi,j,k(t)
– the vector Fi,j(t) holds the distributions of the sojourn time in each state in

region si,j

– the vector f i,j(t) holds the respective density function for each state in si,j

– the branching probabilities after leaving state k and entering state l in region
si,j are given by the stochastic matrix Δi,j = [δi,j,k,l]

– the steady-state probabilities for sub-states are given by vector πi,j = [πi,j,k]
– the transient probabilities of states in region si,j in isolation are given by the

vector vi,j(t) = [vi,j,k(t)], starting at t = 0
– the matrix Vi,j(t) = [vi,j,k,l(t)] holds the conditional transient probabilities

in isolation, i.e., the probability that region si,j is in state l at time t given it
was in state k at time 0

– the mean sojourn times in states of region si,j are given by vector σi,j = [σi,j,k]
– the matrix Σi,j = [σi,j,k,l] holds the conditional mean sojourn times in si,j

Note that, we denote vectors and matrices that are restricted to non-absorbing
states with a bar ◦, e.g., the vector σi,j denotes the mean sojourn times for all
states in region si,j except for its final state. This does not affect distributions,
i.e., the complement of a distribution is still given as F (t) = 1 − F (t).

For the calculation of the mean sojourn time spent in a composite state we
consider three stochastic processes: Continuous Time Markov Chains (CTMCs)
with exponentially distributed sojourn times, Discrete Time Markov Chains
(DTMCs) with geometrically distributed sojourn times with time step τ , and
SMPs with sojourn times described by general distributions.

First, the mean sojourn time is calculated for all non-absorbing states. In
case composite state si contains only one region, i.e., ri = 1, the mean sojourn
times in non-absorbing states is determined by solving only a linear system of
equations. For a CTMC, it is given by solving −vi,j(0) = σi,jQi,j , with Qi,j as
generator matrix. For a DTMC, the equation

− vi,j(0) = σi,j(Pi,j − I) (3)

26 D. Homm et al.

has to be solved, with Pi,j as transition matrix. In case of an SMP, it is necessary
to derive the conditional mean sojourn times Σi,j first. The mean sojourn times
σi,j are calculated subsequently.

Σi,j = diag

⎛
⎝

∞∫
0

Fi,j(t)

⎞
⎠ + Δi,jΣi,j (4)

σi,j = vi,j(0)Σi,j (5)

In case a composite state si contains multiple parallel regions, i.e., ri > 1, a
transient analysis has to be performed for each region separately. If a region is
described by a CTMC, the transient analysis is concerned with solving the tran-
sient probabilities vi,j(t) = vi,j(0)eQi,jt of that region. If a region is described
by a DTMC, the transient analysis has to consider the branching probabilities
in the calculation of the transient probabilities vi,j(kτ) = vi,j(0)Δ

k

i,j . In case
a region is described by an SMP, its transient probabilities vi,j(t) are retrieved
based on Markov renewal theory [6] by calculating the conditional transient
probabilities Vi,j(t) first, with global kernel matrix Ei,j(t) = diag(Fi,j(t)), local
kernel K′

i,j(t) = diag(f i,j(t))Δi,j and ∗ as convolution operation.

Vi,j(t) = Ei,j(t) + K′
i,j(t) ∗ Vi,j(t) (6)

vi,j(t) = vi,j(0)Vi,j(t) (7)

The effort required to calculate the transient probabilities in case of an SMP is
given by O(|si,j |2). It can be reduced by using supplementary variables [6]. Note
that, in call cases (CTMC, DTMC, SMP) it is possible to derive a closed form
solution if the topology is acyclic.

The mean sojourn times σi,j spent in non-absorbing states in region si,j can
be derived directly from the transient probabilities.

σi,j =

∞∫
0

vi,j(t)dt (8)

The complement of the sum over all transient distributions for non-absorbing
states yields the distribution Gi,j(t), which specifies the time to absorption in
isolation within region si,j .

Gi,j(t) = 1 − vi,j(t)e (9)

Due to the synchronization upon leaving a composite state si, its mean sojourn
time E[Xi] is given as maximum over the distributions that specify the time to
absorption in isolation for each region.

E[Xi] =

∞∫
0

1 −
ri∏

j=1

Gi,j(t)dt (10)

Combining Time and Concurrency in Model-Based Statistical Testing 27

The value derived for E[Xi] is used as entry ci,i in matrix C from (2).
With the solution to (2), the steady-state probability can be calculated for

any sub-state at composite state level. It represents a fraction of the steady-state
probability for the composite state and depends on the mean sojourn time spent
in the sub-state with regard to the mean sojourn time in the composite state:

πi,j = πi
σi,j

ci,i
. (11)

Note that, the mean sojourn time for the final state of a region is given as
σi,j,m = E[Xi]−σi,je, the difference between the mean sojourn time spent in the
composite state si and the sum of mean sojourn times spent in non-absorbing
states in region si,j .

3.2 Calculation of Parameters

The SMP can be used to calculate parameters related to durations. For example,
the mean time E[d] until the final state of the SMP is reached. It is calculate as
the average waiting time W by means of Little’s Law L = λW [7]. As long-term
average number of customers L in our process we use the fraction of time spent
in non-absorbing states of the SMP in the long run, which is given by 1 − πn

with πn as steady-state probability of the final state at top level. The long-term
arrival rate is given by λ = πn

E[Xn]
.

E[d] = W =
L

λ
=

1 − πn

πn
E[Xn] (12)

The introduction of parallel regions to an SMP enables the calculation of two
new parameters. The mean active time within a region si,j of a composite state
si can be derived as E[ai,j] = σi,je, the sum over the mean sojourn times of
its non-absorbing states. The mean sojourn time σi,j,m that is spent in the final
state of a region si,j can be interpreted as mean waiting time E[wi,j] within that
region.

4 Timed Usage Models with Parallel Regions

A TUM with parallel regions consists of states si ∈ S and transitions ai,j ∈ A
that originate in state si and have state sj as target. A state represents the
externally visible state of the SUT while it is used and is either a simple or
a composite state. Each simple state has a distribution Fi(t) annotated that
describes the sojourn time. Each composite state contains parallel regions, i.e.,
it specifies concurrent streams of use. No distribution is added to a composite
state, as its sojourn time depends on the evolution within its regions. Each
region specifies again a TUM that may utilize composite states with parallel
regions. This allows to nest concurrent streams of use. Final states are used
to terminate a region. A transition specifies a stimulus y, i.e., an input that is

28 D. Homm et al.

applied to the SUT. Additionally, each transition consists of a probability pi,j

and a distribution Fi,j(t) describing the sojourn time. An example TUM with
parallel regions is depicted in Fig. 2a. It is explained in more detail in Sect. 5.

Test cases can be derived automatically from a TUM with parallel regions.
The process is straightforward: A random walk is applied, beginning at the start
state and ending at the final state at top level. If a simple state is reached, a
sojourn time will be sampled from its distribution. Subsequently, an outgoing
transition is selected with regard to the branching probabilities together with
a respective firing time from the annotated distribution. If a composite state is
encountered, a path is sampled from each of its regions analog to the top level.

Parameters can be calculated prior to any test case generation. Therefore, it
is required to map the model to an SMP with parallel regions.

4.1 Mapping to an SMP with Parallel Regions

The mapping represents a natural extension of the mapping known for classical
TUMs. Each simple state si is mapped to a simple state s′

i in the SMP. The
distribution Fi(t) is added to state s′

i. Each composite state si is mapped to a
composite state s′

i in the SMP. No distribution is attached to composite state
s′

i, as there is none available at the original state si.
Each transition ai,j is mapped as follows: First, a new state s′

ij is introduced
in the SMP with distribution Fi,j(t). A transition a′

i,ij is created with transition
probability equal to pi,j . Afterwards, a new transition a′

ij,j with probability 1
is created, it leads from state s′

ij to state s′
j . Note that, it is not required to

consider stimuli in the mapping. They are not required for the analysis.
Finally, the parallel regions of each composite state si are mapped to corre-

sponding parallel regions of composite state s′
i in the SMP. The same mapping

rules apply to the contents of each region as for the top level of the TUM.

4.2 Calculation of Parameters

The analysis of the SMP underlying a TUM with parallel regions yields the
steady-state probabilities and the mean sojourn times (see Sect. 3). They can aid
the test process. The mean active time E[ai,j] and mean waiting time E[wi,j] of
a region si,j in a TUM, under the condition that the respective composite state
is entered, and the mean test case duration E[d] are direct results of the analysis
of the underlying SMP. Note that, the mean sojourn time of the final state is
not included in the test case duration.

The expected number of occurrences of a state in a test case, given one starts
in the start state of the usage model, is no direct result of the SMP analysis. In
order to calculate it, we make use of its definition: For a state si in a DTMC
with final state sn the expected number of occurrences E[n1,i] within a test case,
given one starts in the start state s1 of the usage model, is obtained via (13) [8].
It holds for DTMCs, as the same fixed time step τ is spent in each state upon
entry and the final state occurs exactly once within a test case.

E[n1,i] =
πi

πn
(13)

Combining Time and Concurrency in Model-Based Statistical Testing 29

We apply the underlying idea to an SMP with parallel regions. All attached times
are ignored and the whole process is considered as DTMC. This also applies to
regions of composite states. The expected number of occurrences E[n1,i] for any
state si within the EMC is obtained via (13) with the steady-state probabilities
u calculated for the EMC (see Sect. 3.1). In order to calculate the expected
number of occurrences for a sub-state si,j,k, we consider a reduced process where
only the top level and the respective region si,j of the composite state si are
considered, i.e., we blend out all other parallel regions and regions of different
composite states. Leveraging (1), (2) and (11), we obtain the expected number
of occurrences for a sub-state si,j,k as

E[n1,ijk] =
πi,j,k

πn
=

πi
σi,j,k

E[Xi]
un·cn,n

uCe

=
ui · ci,i · σi,j,k

uCe · ci,i

uCe
un · cn,n

=
ui · σi,j,k

un · cn,n
. (14)

The value E[n1,ijk] only depends on: the steady-state probabilities from the
EMC which are the same for the original and the reduced process and therefore
only have to be calculated once, the mean sojourn time of the final state in
the usage model which is equal to the chosen step size τ as we consider the
whole process as DTMC, and the mean sojourn time of the respective sub-state
which is obtained via (3). Note that, the mean sojourn time for the final state of
region si,j can also be obtained by (3), since we blend out other parallel regions.
The expected number of occurrences of a transition in a test case is obtained in
the same way, as transitions in a TUM are extended to states/sub-states in the
underlying SMP (see Sect. 4.1).

The mean residence time of a state si in a test case is given by Er[si] =
E[n1,i] · E[Xi], i.e., its number of occurrences within a test case multiplied with
its mean sojourn time. Of course, the mean sojourn time used here is derived
with regard to the distribution attached to the state. The mean residence time
of a transition in a test case is calculated in the same way. The expected execu-
tion time for a stimulus is derived as sum over all expected residence times for
transitions, that have the stimulus attached.

5 Validation

We applied our approach to an example system from the automotive domain: the
adaptive cruise control (ACC). It provides comfort to the driver by automatically
maintaining a defined velocity. If a vehicle in front prohibits to drive at desired
speed, it will slow down in order to maintain a safe distance. The ACC allows
concurrent streams of use, e.g., the driver may change the speed and/or distance,
while the vehicle in front may break or accelerate. We specified a respective
TUM with parallel regions. It is depicted in Fig. 2a. After initialization, the
ACC maintains a safe distance to the vehicle in front at a velocity that is lower
than configured by the driver. In the first region of composite state s2, the driver
changes the distance to be maintained to the vehicle in front. The second region
specifies the actions of the vehicle in front. Test cases generated from the model

30 D. Homm et al.

examine whether the acceleration induced by the ACC stays below a defined
threshold. The aim of this threshold is to avoid abrupt movements. Distributions
for sojourn times in states and firing times of transitions are omitted in the figure
to keep it clear. We used exponential distributions for non-absorbing states and
geometrical distributions for transitions. Of course, different times may be used.

We carried out the analysis on the example usage model and calculated all
metrics from Sect. 4.2. In order to validate the analysis, we built a simulation.
Therefore, we used Papyrus2 to specify the model and Syntony [5] to transform
it to the simulation framework OMNeT++3. The simulation was run multiple
times. The results, some shown in Fig. 2b, confirmed the values that had been
obtained by our approach. Parameters related to the expected number of occur-
rences of a state/transition were identical. We measured a marginal deviation
between the simulation and analysis results only for parameters related to dura-
tions. The difference is depicted in Fig. 2b. The value for E[w2,2] stands out. This
is due to the non-deterministic synchronization effects in the simulation upon
exit of the composite state. However, the absolute value is negligibly small.

s1

s2

s3

s2,1,1

s2,1,2

1

s2,2,1

s2,2,2 s2,2,3

s2,2,4

2

1.0, init

1.0, deInit

1.0, dist

0.5, break 0.5, acc

1.0, acc 1.0, break

(a)

E[a2,1] E[a2,2] E[w2,1] E[w2,2] E[d]

0
1

2
3

4
5

D
iff

er
en

ce
in

%

(b)

Fig. 2. (a) TUM with parallel regions for ACC example and (b) relative difference
between simulation and analysis results.

6 Conclusions and Future Work

With the introduction of parallel regions to TUMs we were able to model both,
sequential and concurrent uses of the SUT, with regard to time dependencies.
2 Papyrus: Graphical editing tool for UML 2, http://www.eclipse.org/modeling/mdt/

papyrus, accessed on May 22, 2015.
3 OMNeT++: An object-oriented modular discrete event network simulation frame-

work, http://www.omnetpp.org, accessed on May 22, 2015.

http://www.eclipse.org/modeling/mdt/papyrus
http://www.eclipse.org/modeling/mdt/papyrus
http://www.omnetpp.org

Combining Time and Concurrency in Model-Based Statistical Testing 31

This was previously not possible due to restrictions in classical TUM. Thereby,
we preserved the major properties of the model: the automatic test case gen-
eration and calculation of parameters that aid the test process. The test case
generation stayed a straightforward process. For the analysis, we avoided dis-
cretization of time dependencies and introduced an SMP with parallel regions
instead.

In our future work we plan to provide an additional test stop criteria that
considers the variability of possible uses resulting from concurrent aspects.

References

1. Böhr, F.: Model based statistical testing of embedded systems. In: Proceedings of
the 4th International Conference on Software Testing, Verification and Validation
Workshops (ICSTW 2011), Berlin, Germany, pp. 18–25, March 2011

2. Bringmann, E., Kramer, A.: Model-based testing of automotive systems. In: Pro-
ceedings of the 1st International Conference on Software Testing, Verification, and
Validation (ICST 2008), Lillehammer, Norway, pp. 485–493, April 2008

3. Broy, M.: Challenges in automotive software engineering. In: Proceedings of the
28th International Conference on Software Engineering (ICSE 2006), Shanghai,
China, pp. 33–42, May 2006

4. Dias Neto, A.C., Subramanyan, R., Vieira, M., Travassos, G.H.: A survey on model-
based testing approaches: a systematic review. In: Proceedings of the 1st ACM
International Workshop on Empirical Assessment of Software Engineering Lan-
guages and Technologies (WEASELTech 2007), Atlanta, Georgia, USA, pp. 31–36
(2007). http://doi.acm.org/10.1145/1353673.1353681

5. Dietrich, I.: Syntony: A Framework for UML-Based Simulation, Analysis and Test
with Applications in Wireless Networks. Dr. Hut, Germany (2010)

6. German, R.: Performance Analysis of Communication Systems. Wiley, Chichester
(2000)

7. Little, J.D.C.: A proof for the queuing formula: L = λ W. Oper. Res. 9(3), 383–387
(1961)

8. Prowell, S.J.: Computations for Markov chain usage models. University of Ten-
nessee, Tech. report (2003)

9. Prowell, S.J.: A stopping criterion for statistical testing. In: Proceedings of the 37th
Hawaii International Conference on Systems Sciences (HICSS 2004), Big Island,
Hawaii, USA, January 2004

10. Siegl, S., Dulz, W., German, R., Kiffe, G.: Model-driven testing based on markov
chain usage models in the automotive domain. In: Proceedings of the 12th Euro-
pean Workshop on Dependable Computing (EWDC 2009), Toulouse, France, May
2009

11. Siegl, S., German, R.: Model-driven testing with timed usage models in the auto-
motive domain. In: Proceedings of the 20th International Symposium on Software
Reliability Engineering (ISSRE 2009), Mysuru, India, November 2009

12. Siegl, S., Hielscher, K.S., German, R.: Introduction of time dependencies in usage
model based testing of complex systems. In: 4th Annual IEEE Systems Conference
(SysCon 2010), San Diego, California, USA, pp. 622–627, April 2010

13. Whittaker, J.A., Poore, J.H.: Markov analysis of software specifications. ACM
Trans. Softw. Eng. Methodol. 2(1), 93–106 (1993)

http://doi.acm.org/10.1145/1353673.1353681

HOFM 2015

Helping the Tester Get It Right: Towards
Supporting Agile Combinatorial Test Design

Anna Zamansky(B) and Eitan Farchi

University of Haifa, Haifa, Israel
annazam@gmail.com

Abstract. Combinatorial test design (CTD) is an effective test plan-
ning technique that reveals faulty feature interaction in a given system.
CTD takes a systematic approach to formally model the system to be
tested, and propose test cases ensuring coverage of given conditions or
interactions between parameters. In this position paper we propose a
framework for supporting agile CTD, a human-centered methodology,
which takes into account the human tester’s possible mistakes and sup-
ports revision and refinement. In this approach a combinatorial model of
the system and test plans are constructed in an incremental and itera-
tive way, providing the tester with the ability to refine and validate the
constructions. We propose a formal framework which can be used as a
theoretical foundation for the development of agile CTD support tools,
and describe a use case of an envisioned tool.

1 Introduction

As software systems become increasingly complex, verifying their correctness
becomes more challenging. Formal verification approaches are highly sensitive
to the size of complexity of software, and might require extremely expensive
resources. Functional testing, on the other hand, is prone to omissions, as it
always involves a selection of what to test from a potentially enormous space
of scenarios, configurations or conditions that is typically exponential in nature.
The process of test planning refers to the design and selection of tests out of
a test space aiming at reducing the risk of bugs while minimizing redundancy
of tests. Combinatorial Test Design (CTD) [6,10] is an effective test planning
technique, in which the space to be tested, called a combinatorial model, is
represented by a set of parameters, their respective values and restrictions on
the value combinations [8]. CTD approaches can be applied at different phases
and scopes of testing, including end-to-end and system-level testing and feature-,
service- and application program interface-level testing.

The main challenge of CTD consists of finding a small (and ideally minimal)
set of test cases (a subset of the space to be tested), which ensures coverage
of given conditions, or interactions between variables (such as pairs, three-way,
etc.) Experiments show that a test set that covers all possible pairs of parameter
values can typically detect between 50 to 75 % of the bugs in a program [9].

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 35–42, 2015.
DOI: 10.1007/978-3-662-49224-6 4

36 A. Zamansky and E. Farchi

Other experimental work has shown that typically all bugs can be revealed by
covering the interaction of between 4 to 6 parameters [3].

One important task in CTD is the construction of a combinatorial model of
a system, which includes a set of parameters, their respective values and logi-
cal restrictions on value combinations. Typically, the parameters of the model
do not map directly to user inputs of the system, but are rather a high-level
abstraction of them. Identifying correctly the set of parameters for the model,
their values - and most importantly - the restrictions on them is a laborious
task which requires abstract thinking and a considerable level of familiarity with
formal logic. Another task is the planning of tests over the constructed model,
which satisfy a chosen coverage requirement (e.g., pairwise coverage). The com-
plex and error-prone nature of both of these tasks leads to the need for automatic
tools supporting the human tester.

While there are numerous studies on human errors (see, e.g. [1,5]), and in
particular on human factors in software development [4,7], they have been only
marginally addressed in the context of combinatorial test design. In this position
paper we propose an explicitly human-centered methodology for CTD, which
takes into account the possibility of the tester’s error and provides the tester with
systematic tools to refine and validate the constructed models and test plans.
We propose the term ‘agile test design’ to refer to such approach, reflecting the
incremental and iterative way in which models and test plans are constructed.
We propose a formal framework which can be used as a theoretical foundation
for the development of agile CTD tools, and describe a use case of an envisioned
tool.

2 A Vision for Agile Test Design

Typically, the CTD methodology is applied in the following stages. First the
tester constructs a combinatorial model of the system by providing a set scenarios
which are executable in the system. After choosing the coverage requirements,
the second stage is constructing a test plan, i.e., proposing a set of tests over
the model, so that full coverage with respect to a chosen coverage strategy is
achieved. In practice, taking into account the human factor [1,5], errors are
possible at both of these stages. Moreover, error discovery in the test plan may
cause the tester to return to the model and refine it, and vice versa. To reflect the
iterative and incremental nature of the two stages of CTD, we propose the term
‘agile test planning’. This notion is based on the assumption that the tester’s
activity is not errorproof: errors can happen, both in the model and the test plan,
and should be taken into account. Therefore, correctness of the combinatorial
model is not assumed at the stage of test planning, and the tester may go back
to refining the model at any point.

The basic unit manipulated by the tester is a test. A test is represented by
a vector of values assigned to systems’ parameters. The combinatorial model of
the system is a set of all tests which describe possible (or executable) behaviors
of the system. A test plan is a set of tests out of the model space which satisfy
some chosen coverage policy (such as pairwise testing).

Helping the Tester Get It Right 37

We divide the space of tests into three basic types, according to the informa-
tion available from the tester:

1. validated - these are the tests that the tester confirmed as executable (accord-
ing to some chosen confirmation strategy).

2. rejected - these are the tests that the tester rejected as impossible, either by
explicitly removing them from the model, or by providing a logical condition
that rules them out.

3. uncertain - these are the tests for which not enough information has been
provided to classify them as validated/rejected.

Agile test design, therefore, can be thought of as an iterative process, the
goal of which is to validate or reject each possible test, arriving at a coherent
combinatorial model of the system, together with a test plan satisfying the cho-
sen coverage. Referring to the above three types of tests as colors: green, red
and yellow respectively, the goal is eliminating all yellow tests by turning them
either to green or to red. This can be done by raising a series of questions to
the tester, which help determine if tests are missing in the test plan (and so
the combinatorial model should be expanded, turning yellow to green), or the
combinatorial model contains non-executable tests (and so it should be reduced,
turning some yellow tests to red).

The methodology described above allows for a great amount of flexibility,
both for user querying strategies, and for validation/rejection strategies. For
instance, we may want to minimize the time it takes the tester to arrive to a
coherent solution, or the cognitive load of the tester (by presenting him only
small portions of tests in each interation).

3 The Formal Framework

3.1 Combinatorial Models and Test Plans

Definition 1 (System space). A system space is a finite set of system para-
meters P = {A1, . . . ,An} together with their corresponding associated values
{V(A1), . . . ,V(An)}. For any value a ∈ V(Ai), we say that a has type Ai,
denoted by type(a) = Ai.

Definition 2 (Interactions, scenarios). An interaction is an element I ⊆⋃m
1 V(Ai) such that for distinct a, b ∈ I, type(a) �= type(b). An interaction of

size n (where n is the number of system parameters) is called a scenario.

Example 1. As our running example, let us consider a system in which there
are two servers S1 and S2, which can be either active (up) or inactive (down).
Moreover, there are two operations Send and Ping, which can be performed by
either one of the servers. We can set the system parameters to P = {S1, S2, Op},
where:

V (S1) = {up1, down1}

38 A. Zamansky and E. Farchi

V (S2) = {up2, down2}
V (Op) = {Send1, Send2, P ing1, P ing2}

So, e.g., an assignment S1 = up1, S2 = down2 and Op = Send1 represents a
situation where the first server is up, performing the send operation and the
second is down.

Moreover, {up1, Send0} and {up1, down2, P ing0} are interactions; the latter
is also a scenario.

Definition 3 (Coverage). We say that a set of scenarios T covers a set of
interactions C if for every c ∈ C there is some t ∈ T , such that c ⊆ t.

Example 2. Let the global system space be P = {FileOps,PathName,OS}, where

V(FileOps) = {open, close, read,write}

V(PathName) = {relative, absolute}
V(OS) = {unix,windows}

Then we can define interactions I1 = {open, relative} and I2 = {close,
absolute}. We can define further define scenarios t1 = {open, relative, unix}
and t2 = {close, absolute, windows}. Note that {t1, t2} covers {I1, I2}.

Definition 4 (Combinatorial model). A combinatorial model E is a set of
scenarios (which defines all scenarios executable in the system).

Definition 5 (Test plan). A test plan is a triple P = (E , C, T), where E is a
combinatorial model, C is a set of interactions called coverage requirements, and
T is a set of scenarios called tests, where T covers C.

Example 3. The most standard coverage requirement in the domain of combina-
torial test design is pairwise testing [9,10]: considering every (executable) pair of
possible values of system parameters. In terms of the above definition, a pairwise
test plan can be formulated as any pair of the form P = (E , Cpair(E), T), where
Cpair is the set of all interactions of size 2 which can be extended to scenarios
from E .

3.2 Representing Models and Plans as Logical Theories

Recall that P = {A1, . . . ,An} is our set of system parameters and
{V(A1), . . . ,V(An)} their corresponding ranges of values.

Definition 6. FP, the set of well formed formulas of P is defined inductively
as follows:

– Ai : a ∈ F for every 1 ≤ i ≤ n and a ∈ VP(Ai). We call such formulas
atomic.

– If ψ,ϕ ∈ FP, then ¬ψ, (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ) ∈ FP.

Helping the Tester Get It Right 39

When the parameter is clear from context, we shall write just a instead of Ai : a.
So examples of formulas for P defined in Example 1 are: open, relative, ((open∧
relative) → ¬unix).

Every formula of FP naturally induces a set of scenarios (i.e., assignments to
all system parameters, or in other words, tests) in the following sense:

Definition 7. Let ψ ∈ FP and let s be some scenario. We say that s satisfies
ψ, denoted by s |= ψ iff:

– ψ = Ai : a and a ∈ s.
– ψ = ϕ1 ∧ ϕ2, s |= ϕ1 and s |= ϕ2.
– The rest of the cases are defined similarly.

For a formula ψ, we define mod(ψ) = {s |s |= ψ}. For a theory Γ =
{ψ1, . . . , ψn}, we denote mod(Γ) = mod(ψ1) ∩ . . . ∩ mod(ψn).

The above definition provides a useful link between logical theories and sets
of tests: a set of formulas Γ naturally defines a subset of tests by mod(Γ). Thus
the tester may use formulas pf the above form to specify sets of tests of interest.

3.3 Agile CTD: Iterative Uncertainty Elimination

Let us now describe the framework of agile CTD more formally, using the notions
introduced above. The goal of the tester is to provide a valid test plan P =
(E , C, T). By a validity we mean here that (i) T satisfies all coverage requirements
in C, and (ii) T is a subset of E . A coherent solution is reached when both (i)
and (ii) are satisfied, if one of them is violated our envisioned tool supports an
interative resolution of such violations.

It is important to note that in our framework we do not assume the availabil-
ity of E , the combinatorial model, rather it is extracted when the tester specifies
a set of specific test cases T , as well as some logical restrictions (in the form
of formulas as defined above) on the combinatorial model, which provide only
partial information about E . Once the tester is satisfied with the constructed
plan, a support tool may be invoked. The tool may automatically extract the
combinatorial model from the provided tests and logical restrictions. Each test
in the model has a status: those appearing in the test plan are validated (green),
those ruled out by the logical conditions are rejected (red), the remaining ones
are uncertain (yellow). The tool then may raise a sequence of questions that help
determine the status of each of the yellow tests in the model. Different sequences
may be proposed according to different considerations.

3.4 A Possible Use Case

Let us describe a possible agile test planning use case. Suppose the coverage
requirement is pairwise coverage. Returning to the system from Example 1, sup-
pose that not all test cases are executable and further restrictions should be
imposed. For instance, assume that server 1 can perform both send and ping

40 A. Zamansky and E. Farchi

operations, while server 2 can only perform ping operations. Moreover, only one
of the servers can be up at the same time. If these are the only restrictions, the
set of the executable scenarios can be described (in the sense of Definition 7) by
the logical theory Γ = {up1 ↔ down2, up2 → Ping0 ∨ Ping1}.

Suppose, however, that the tester erroneously thinks that all combinations
are possible and provides no logical restrictions for the model at this point.
This induces the whole set E0 = V (S1) × V (S2) × V (Op) as the underlying
combinatorial model. The tester further proposes the following test cases:

S1 S2 Op
down1 up2 Ping0
down1 up2 Ping1
up1 down2 Send0
up1 down2 Send1
up1 down2 Ping0
up1 down2 Ping1

Once the tester submits the test plan, the six tests above are colored green
(validated) in the model, the rest remaining yellow as no additional restriction
ruling them out have been provided. At this point the tester’s mistake may
be discovered, as pairwise coverage is not achieved: the following interactions
remain uncovered:

{up1, up2}, {down1, down2}, {up2, Send0}, {up2, Send1}
This could be either due to the fact that the tester forgot to add some tests, or
he intentionally left them out as they are not executable in the system. In the
former case he will add further concrete test cases, which will turn green in the
model. In the latter case, however, he needs to refine the combinatorial model
of the system, either explicitly or by adding logical restrictions, which will make
some tests red in the model. In any case, the level of uncertainty (the number
of yellow-colored tests) will be reduced at each interation.

To maintain scalability to large parameter sets, a useful strategy can be to
consider smaller projections at each iteraction. So, e,g, the tool may focus on the
projection {S1, S2}, asking the tester whether he wants to add tests to cover the
interactions {up1, up2}, {down1, down2}. A negative answer implies that some
scenarios should be excluded from the model. In this case a logical condition
up1 ↔ down2 “explaining”this discrepancy can be suggested to refine the model.
It is an interesting direction for further investigation to investigate strategies for
looking for the logical conditions which would “make the most sense” to the
tester. Suppose that the user may now accept this model refinement, leading to
further yellow tests turning red.

The remaining missing interactions {up2, Send0}, {up2, Send1} are in the
projection {S2, Op}, on which the tool may focus next. We can again ask the
tester whether he wants to add tests to cover them. He replies negatively, and
the logical condition up2 → Ping0 ∨Ping1 “explaining” this discrepancy can be
suggested to refine the model.

Helping the Tester Get It Right 41

4 Summary and Future Work

The tester’s main tasks in combinatorial test design, which include modelling
the system and test planning, are laborious and error-prone. In this position
paper we presented a vision for automatic support tools for CTD testers, which
support an ‘agile’ iterative test design. This approach takes into account the
errorprone nature of the human tester’s tasks, and supports the tester in refining
and correcting his outputs by proposing a series of queries. We proposed here
a framework for formalization of agile CTD, which can be used as a theoretical
basis for developing future automatic support tools.

An immediate direction for further research is an implementation of a pro-
totype of the proposed tool. We plan to implement it using the environment
of IBM Functional Coverage Unified Solution (FoCuS [2]), which is a tool for
test-oriented system modeling, for model based test planning, and for functional
coverage analysis. Another challenge is proposing methods to quantify the added
value such tool may provide to the human testers. A starting point here could be
proposing measurable criteria for the quality of combinatorial models. These cri-
teria could then be used to compare manually constructed combinatorial models
to models constructed with the help of our tool.

When developing tools to support agile CTD, there is a level of freedom when
considering different minimization strategies, which in their turn induce the order
and type of questions posed by the tool to the user. One possible strategy is the
minimization of time to complete a test plan. In this case questions answers to
which make more tests certain should be preferred. Another strategy could be
minimization of the cognitive load of the tester. In this case we may propose
first logical restrictions involving a small number of parameters, or capturing a
small number of tests which can be vizualized on screen.

Human factors have so far received little attention in combinatorial test
design. It is our hope that this paper will start a discourse on the practical needs
of testers in the process of test design and combinatorial system modelling.

References

1. Dhillon, B.S.: Engineering product usability: a review and analysis techniques.
WSEAS Trans. Circuits Syst. 2, 86–94 (2005)

2. http://researcher.watson.ibm.com/researcher/view group.php?id=1871
3. Kuhn, D.R., Wallace, D.R., Gallo, Jr., A.M.: Software fault interactions and impli-

cations for software testing. IEEE Trans. Softw. Eng. 30(6), 418–421 (2004)
4. Malz, C., Sommer, K., Göhner, P., Vogel-Heuser, B.: Consideration of human fac-

tors for prioritizing test cases for the software system test. In: Harris, D. (ed.) HCII
2011. LNCS, vol. 6781, pp. 303–312. Springer, Heidelberg (2011)

5. Mioch, T., Osterloh, J.-P., Javaux, D.: Selecting human error types for cognitive
modelling and simulation. In: Cacciabue, P.C., Hjälmdahl, M., Luedtke, A., Ricci-
oli, C. (eds.) Human Modelling in Assisted Transportation, pp. 129–138. Springer,
Heidelberg (2011)

6. Nie, C., Leung, H.: A survey of combinatorial testing. ACM Comput. Surv. (CSUR)
43(2), 11 (2011)

http://researcher.watson.ibm.com/researcher/view_group.php?id=1871

42 A. Zamansky and E. Farchi

7. Pirzadeh, L.: Human factors in software development: a systematic literature
review. M.Sc thesis, Chalmers University of Technology (2010)

8. Segall, I., Tzoref-Brill, R., Zlotnick, A.: Common patterns in combinatorial models.
In: Proceedings of the IEEE Fifth International Conference on Software Testing,
Verification and Validation (ICST), pp. 624–629. IEEE (2012)

9. Tai, K.C., Lie, Y.: A test generation strategy for pairwise testing. IEEE Trans.
Software Eng. 28(1), 109–111 (2002)

10. Zhang, J., Zhang, Z., Ma, F.: Introduction to combinatorial testing. In: Zhang, J.,
Zhang, Z., Ma, F. (eds.) Automatic Generation of Combinatorial Test Data, pp.
1–16. Springer, Heidelberg (2014)

Behavioral Types for Component-Based
Development of Cyber-Physical Systems

Jan Olaf Blech1(B) and Peter Herrmann2

1 RMIT University, Melbourne, Australia
janolaf.blech@rmit.edu.au
2 NTNU, Trondheim, Norway

herrmann@item.ntnu.no

Abstract. Spatial behavioral types encode information on the tempo-
spatial behavior of components acting in the physical space. That makes
it possible to utilize the well established concept of type systems with
its well studied benefits for programming languages, e.g., fast automatic
detection of incompatibilities and coercion, also in the cyber-physical
world of domains such as embedded systems. So, spatial behavioral types
support development and better maintenance of systems leading to a
reduction of errors, improvement of safety and, in consequence, lower
expenditure. In this position paper, we summarize existing work and
develop our ideas for a spatial behavioral type concept. In particular, we
turn our attention to making the spatial behavioral types easily usable by
non-experts. Besides of a semantics that resembles traditional types sys-
tems, our method offers a syntax based on easily comprehensible regular
expressions while systems can be verified using fully-automatic tools.

1 Introduction

Most programming languages use type systems that facilitate the automatic
analysis of program code for errors. Behavioral types [3,4] are an enhancement
of this well-known concept. In contrast to simple type systems, they do not
only model interfaces on a purely syntactical level but also take the behavior of
software into consideration (see [8]). Behavioral types support Human Factors
in two ways:

– They provide an easily comprehensible modeling language for abstract com-
ponent specifications. This can rely on formal specification mechanisms such
as regular expressions that are frequently used by non-experts.

– In the context of developing component-based software, behavioral types pro-
vide means to specify and check component contracts that consider the cur-
rent states of a component and its environment. This makes an easy and
mostly fully automatic analysis of the conformance of a component with its
environment possible (see, e.g., [14,32]). The checks may run in the back-
ground of development environments or deployed systems and interact with
user-interfaces in an intuitive way.

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 43–52, 2015.
DOI: 10.1007/978-3-662-49224-6 5

44 J.O. Blech and P. Herrmann

In the approach presented here, we bring the spatial behavior of cyber-
physical components into the type system world. In domains such as the auto-
motive industry and industrial automation, standards like ISO 26262 and IEC
61499 gain increasing popularity. Since several of these standards support a com-
ponent view, we believe that the behavioral types concept can play an important
role in supporting the development, maintenance and service activities of the
components in a supportive and user-friendly way.

We continue with a summary of related work in Sect. 2. To ease the under-
standing of our approach, we introduce a motivating example in Sect. 3 followed
by a description of the core concepts of the behavioral types in Sect. 4. There-
after, we discuss the particular properties of the spatial behavioral types in
Sect. 5. The text is completed by some concluding remarks.

2 Existing Approaches

Different behavioral type-like approaches to specify interfaces of component sys-
tems and reason about these specifications have been proposed in the past. The
current state-of-the-art, however, focusses almost exclusively on software aspects.

Interface automata [3] are one form of behavioral types. Component descrip-
tions are based on timed automata. The focus of interface automata is on com-
munication protocols between components. Interface automata do not target all
type relevant aspects discussed in this paper, e.g., physical and spatial aspects
or the checking the behavior at runtime of a component by using some form of
monitoring. The main focus is an compatibility checks of software components
interacting at compile time. Behavioral types are part of the Ptolemy frame-
work [35]. Here, one focus is on the software part of real-time systems such as
execution time of code.

The idea of having well defined specifications defining interfaces of soft-
ware component systems has been made popular by design-by-contract [36] like
approaches during the late 80 s and early 90s. The focus of the classical approach
is on contracts for object oriented systems. Other work that is related to our
behavioral types comprises specification and contract languages for component
based systems that have been studied in the context of web services. For exam-
ple, the approach presented in [2] comprises request and response operations
as a means for specifying behavior. Process algebra-like approaches including
deductive techniques are presented for web services [18,20]. In [18], emphasis of
the formalism is put on compliance, a correctness guaranty for properties like
deadlock and livelock freedom. Another algebraic approach to service composi-
tion is described in [23]. Means restricting the interface behavior of OSGi for
facilitating analysis are featured in [16].

A variant is used in the model-based system engineering technique
SPACE [34] and its tool-set Reactive Blocks. Using UML activities, systems
are modeled by composing descriptions of subfunctions that are arranged in so-
called building blocks. A building block is provided by an External State Machine
(ESM) [32] that is a UML state machine describing the interface behavior of

Behavioral Types for Component-Based Development 45

the building block. Due to formal semantics of the UML activities and state
machines [33], one can verify by model checking at design time that a building
block complies with both its own ESM and those of the blocks it incorporates in
its behavioral description. The approach has already been used in the context
of cyber-physical systems [27,30].

JML [22] can be applied to specify pre- and postconditions for Java programs.
Although not a type system, it can be utilized to specify aspects of behavior for
Java based systems. In addition, assertion like behavioral specifications have
been studied for access permissions [21]. Behavioral types comprising behav-
ioral checks at runtime for component based systems were proposed in [4]. The
focus is on the definition of a suitable formal representation expressing types and
investigating their methodical application in the context of a model-based devel-
opment process. A language for behavioral specification of software components,
in particular of object oriented systems, is introduced in [31]. Compared to the
more requirement-based descriptions proposed in our paper, the specifications
used in [31] are still relatively close to an implementation. Additional work on
refinement of automata based specifications is studied in [38]. A survey with a
focus on pre-/postcondition and invariant-based annotations for programming
languages can be found in [28].

The runtime verification community has developed frameworks which can
be used to generate monitors checking behavioral type conformance at runtime
in order to detect and report type violations. The MOP framework [37] pro-
vides the integration of specifications into Java source code files and generates
AspectJ aspects realizing runtime monitoring. A framework that regards the
trade-off between checking specifications at runtime and at development time is
provided in [17]. The framework described in [6] facilitates also the generation of
Java monitors but leaves the instrumentation aspect, i.e., the connection of the
monitor to the deployed system, to the implementation. Other topics explored
in this context comprise the efficiency and expressiveness of monitoring [5,7].
Monitoring of performance and availability attributes of Java/OSGi-based sys-
tems has been studied in [41]. A focus is on the dynamic reconfiguration ability
of OSGi. Work building on the. Net framework for runtime monitor integration
is described in [26]. Runtime monitors for interface specifications of web-service
in the context of a concrete e-commerce service are described in [25]. Behav-
ioral conformance of web-services and corresponding runtime verification were
investigated in [19]. Furthermore, in [24] runtime monitoring of web-services is
studied, in which runtime monitors are derived from UML diagrams. Runtime
enforcement of safety properties is especially important in the context of cyber-
physical systems, since a deviation is not only reported, but a countermeasure is
provided. In [39], security automata are used enforce security properties. These
automata are able to halt the underlying program when a deviation from the
expected behaviors is detected. A similar approach to protect software com-
ponents against malicious behavior, is provided in [29]. Behavioral types-based
runtime monitoring for industrial automation is also studied in [44], where the

46 J.O. Blech and P. Herrmann

Fig. 1. Behavioral types for a robot

abstract behavioral types specification yields a monitor that runs directly on
PLC.

Tangible user interfaces [40] provide a good way of exemplifying underly-
ing principles of cyber-physical behavioral types. Here, each component in the
interface may bear cyber-physical characteristics and can be described with a
behavioral specification, e.g., using a domain specific language.

3 Motivating Example

Figure 1 shows the interaction of a robot with a vehicle. Both components may
change their positions, directions and orientations over time. We can repre-
sent the spatial attributes of a component as subtypes of its spatial behavioral
type. For instance, the position of the vehicle at a certain point of time can
be expressed by the space it physically occupies. The space may be represented
by coordinates in a geometric coordinate system stored in the behavioral type.
Using theses subtypes, one can verify spatial properties, e.g., two components
do not collide if their physically occupied spaces never overlap at any point of
time.

Cyber-physical components can be made up of other components. For exam-
ple, the robot consists of three segments and a tool that are attached via joint
devices. Each subcomponent has its own spatial behavior that can be repre-
sented by a separate spatial behavioral type. The type encodes the movement
of its sub-component which depends on the spatial behavior of the attached
devices. Similar subcomponents like the lower two segments of the robot may
be represented by the same types. The two type instances relate to different
attached segments which leads to different positions and orientations.

The picture on the right side of Fig. 1 depicts the composition of the behav-
ioral types of the three segments and the tool to a single type that superimposes
the spatial movements of the subcomponents and represents the spatial behav-
ior of the overall robot. The composition makes it easier to check if the spatial
behaviors of the robot and vehicle are compatible, e.g., that the vehicle is in a
certain distance when the robot loads something onto it.

Behavioral Types for Component-Based Development 47

The concept facilitates also the reconstruction of cyber-physical components.
For instance, when a segment of the robot is replaced by another one, only its
local behavioral type has to be exchanged. If the type of the replacing component
is a refinement of the one of the replaced component, one can assure certain
spatial properties without demanding a new proof. E.g., if we could prove that
a certain vehicle cannot collide with the robot since it never passes an area
reachable by the robot arm, this property will also hold if a robot segment is
replaced by a shorter one.

4 Core Concepts of Behavioral Types

We present some core concepts on behavioral types to support a development
process of component based systems. To ease their application for users familiar
with traditional type systems, (spatial) behavioral types should provide a number
of features [14]:

– Abstraction: Behavioral types represent aspects of programs, components,
or systems. They provide an abstraction from details concerning interaction
with their environment as well as their internal structure [14]. For example,
the driver of a physical component may require that the interaction with
its environment follows a particular protocol that may form a part of the
abstract view of the component provided by its behavioral type. According to
the classification in [8], abstraction is a typical example of behavioral contracts
that one can find, e.g., in UML and programming languages like Eiffel. It is
also alike to the ESMs used in SPACE and Reactive Blocks [32] (see Sect. 2).

– Type conformance: Type conformance is used to relate a component to
its own behavioral type. For instance, one can check whether a component
interacting with its environment obeys the protocol listed in its behavioral
type under all circumstances. These proofs can be taken at development time
of a system, during changes of its component structure, or at runtime. Type
conformance resembles classical static type checks performed by compilers of
imperative programming languages.

– Type refinement: Behavioral types should support stepwise refinement, i.e.,
developing systems by making their models gradually more detailed using cor-
rectness preserving steps [1]. Thus, they have to be based on a formal seman-
tics that allows to ensure the correct implementation of abstract specifications
by concrete components [14]. This is quite similar to inheritance in object-
oriented programming languages in which, as long as a program is developed
“top-down”, first more abstract functionality is created using super classes,
while later on the functionality is refined by applying inherited classes.

– Type compatibility: To facilitate the composition of components to sys-
tems, one has to check whether a component fulfills not only its one behav-
ioral type but also those of its environment in order to guarantee that the
components interact with each other in the desired way. This can be investi-
gated at development time and at runtime when dynamically reconfiguring a
system. The development time-based analysis is alike static type checks while

48 J.O. Blech and P. Herrmann

the dynamic tests resemble introspection in component-structured software
(see [43]) as well as runtime monitoring.

– Type inference: As shown in the example description, subsystems can con-
sist of various components. Often, type compatibility proofs can be easier if a
subsystem is represented by a single behavioral type. Therefore, the formalism
of behavioral types should allow to infer the type of a composed component
from the types of its constituents [14]. Type inference corresponds to com-
bining various software components to more comprehensive blocks resp. the
composition of various building blocks to more extensive ones in Reactive
Blocks [34].

To fulfill all these properties, the selected formalism has to take certain depen-
dencies into consideration. For instance, type conformance has to guarantee with
respect to type refinement that for a pair of components A and Â conforming
to a pair of behavioral types TA and T

̂A with A subsuming the behavior of Â,
T
̂A should be a refinement of TA. Moreover, type refinement, type compatibility

and type inference should agree that if a type TA compatible to a given type TB

is refined by another type T
̂A, also T

̂A should be compatible to TB by definition.
Similarly, if in a composed type TS one type TA is replaced by a refined type
T
̂A leading to a new composed type T

̂S , then T
̂S should be a refinement of TS .

Also, for application in a development process, a behavioral type should not
only be explicitly provided for a component and checked for conformance, but
may be specifically constructed for this component. This is desirable in a seam-
less model-based development process. Finally, as type checking of expressive
behavioral types is in general undecidable, an adequate level of expressiveness is
needed making type checking feasible without over-restricting the expressiveness
of the behavioral types.

We have studied behavioral types in the context of the OSGi framework
[10–13]. Here, we use a simple finite automaton model (Σ,L, l0, E) that consists
of an alphabet Σ of labels, a set L of locations, an initial location l0 and a
set E of transitions. A transition is a tuple (l, σ, l′) with l, l′ ∈ L and σ ∈ Σ.
This formalism allows, e.g., runtime checking of type conformance [9]. Further,
it is suitable to theorem proving as discussed in [14]. Nevertheless, the concept of
behavioral types is suited to a diversity of formalisms. For instance, we currently
experiment with temporal logic for cyber-physical systems (see [42]).

Behavioral types can be used for runtime-verification of systems, supplying a
monitor being executed in parallel with a system implementation. The monitor
corresponds to a behavioral type and checks all behavioral constraints specified
via the type. It observes the system behavior and reports violations. The gener-
ation of the monitors from behavioral types can be performed automatically.

Furthermore, as already mentioned, the use of behavioral types facilitates the
dynamic reconfiguration of systems based on type information and the discovery
(both at runtime and development time) of components in a SOA like setting.

Behavioral Types for Component-Based Development 49

5 Spatial Behavioral Types

Spatial behavioral types extend the notion of behavioral types to cyber-physical
components. Such components can comprise physical structures like the arms
and tools attached to a robot as shown in the introductory example. Further-
more, controllers, network infrastructure elements, sensors and actuators are
good candidates for spatial behavioral types.

Like purely software-related behavioral types, the spatial types comprise gen-
eral aspects, e.g., protocols defining the interaction of a component with its
environment. In addition, they define specific spatial aspects like the physical
occupation of a physical components as well as its position, direction and speed.
Depending on the application domain, further aspects as the acceleration of an
object can be added. The representation of the spatial behavior is usually quite
simple since we can restrict ourselves to describe positions by coordinates in the
x, y and z axes in the Euclidian space.

An advantage of this proceeding is that, similar to software components,
we do not need to model a physical unit with its full complexity from scratch.
Instead, we can start with relatively abstract spatial behavioral types that are
stepwise refined to more complex ones until we finally get one that considers all
relevant spatial properties of the real component. This facilitates the handling
of complexity in the development process vastly. Moreover, we can verify crucial
spatial type compatibility properties, e.g., freedom of collisions or keeping a
certain distance between the robot tool and the vehicle when a good is loaded
or unloaded, based on the abstract models.

Of course, we have to guarantee that these proofs stay valid also for the
refined models. For that, we use over- and underapproximation of physical prop-
erties. For example, in abstract models of a component, we can overapproximate
the spatial area occupied by a component. That allows us to perform type com-
patibility proofs already with the coarse-grained models that will also hold for
more detailed ones as long as the refined models do not exceed the overapprox-
imated elongation of the original ones. An example for underapproximation is
the assumption of low sensor ranges in abstract models. Thus, we can refine the
sensor models reusing proofs for the original ones as long as their ranges is not
shorter than those of the refinements.

Behavioral types are applicable for the specification of software controlled
cyber-physical entities. Furthermore, they can be used to describe other enti-
ties such as overapproximations of human behavior, or elements in an environ-
ment where a cyber-physical system is deployed. Such elements can comprise
static descriptions of obstacles such as walls and pillars in closed spaces or open-
environment features such as lakes and mountains or infrastructures such as
roads or rail-lines.

6 Conclusion

We motivated spatial behavioral types as an advanced concept for type systems.
In the context of component-based system development, spatial behavioral types

50 J.O. Blech and P. Herrmann

lift type systems to the component level also taking behavior of the underlying
component into account. Thereby, they provide user-friendly means to specify
and check contracts since easily comprehensible syntactical constructs are used,
the core features of the method resemble techniques well-known from program-
ming languages resp. component-based development, and the verification tools
work automatically. In the past, realization of behavioral type systems for soft-
ware was studied. In this publication, we propose the use of these type concepts
also for components that comprise physical aspects which can be expressed using
the concepts of Euclidian geometry.

Currently, we integrate spatial behavioral types into the model-based engi-
neering technique SPACE [34] in order to facilitate the design of controllers for
cyber-physical systems. Moreover, we work on the combination of spatial behav-
ioral types with the verification tool-suite BeSpaceD [15] such that a highly
automatic analysis of spatiotemporal properties will be possible. This will ease
the application of the behavioral types for cyber-physical components further.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991)

2. Acciai, L., Boreale, M., Zavattaro, G.: Behavioural contracts with request-response
operations. Sci. Comput. Program. 78(2), 248–267 (2013)

3. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Symposium on Foundations
of Software Engineering. ACM (2001)

4. Arbab, F.: Abstract behavior types: a foundation model for components and their
composition. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2002. LNCS, vol. 2852, pp. 33–70. Springer, Heidelberg (2003)

5. Barringer, H., Falcone, Y., Havelund, K., Reger, G., Rydeheard, D.: Quantified
event automata: towards expressive and efficient runtime monitors. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 68–84. Springer,
Heidelberg (2012)

6. Barringer, H., Goldberg, A., Havelund, K., Sen, K.: Rule-based runtime verifica-
tion. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 44–57.
Springer, Heidelberg (2004)

7. Bauer, A., Leucker, M.: The theory and practice of SALT. In: Bobaru, M.,
Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp.
13–40. Springer, Heidelberg (2011)

8. Beugnard, A., Jézéquel, J.-M., Plouzeau, N., Watkins, D.: Making components
contract aware. Computer 32(7), 38–45 (1999)

9. Blech, J.O.: Ensuring OSGi component based properties at runtime with behav-
ioral types. In: 10th Workshop on Model Design, Verification and Validation Inte-
grating Verification and Validation in MDE (2013)

10. Blech, J.O.: Towards a Formalization of the OSGi Component Framework (2012).
arxiv.org/abs/1208.2563v1

11. Blech, J.O.: Towards a framework for behavioral specifications of OSGi compo-
nents. In: 10th International Workshop on Formal Engineering Approaches to
Software Components and Architectures. Electronic Proceedings in Theoretical
Computer Science (2013)

http://arxiv.org/abs/org/abs/1208.2563v1

Behavioral Types for Component-Based Development 51

12. Blech, J.O., Falcone, Y., Rueß, H., Schätz, B.: Behavioral specification based run-
time monitors for OSGi services. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part I. LNCS, vol. 7609, pp. 405–419. Springer, Heidelberg (2012)

13. Blech, J.O., Rueß, H., Schätz, B.: On Behavioral Types for OSGi: From Theory to
Implementation (2013). arxiv.org/abs/1306.6115

14. Blech, J.O., Schätz, B.: Towards a formal foundation of behavioral types for UML
state-machines. In: 5th International Workshop UML and Formal Methods, Paris.
ACM SIGSOFT Software Engineering Notes (2012)

15. Blech, J.O., Schmidt, H.: Towards modeling and checking the spatial and interac-
tion behavior of widely distributed systems. In: Improving Systems and Software
Engineering Conference, Melbourne (2013)

16. Bliudze, S., Mavridou, A., Szymanek, R., Zolotukhina, A.: Coordination of software
components with BIP: application to OSGi. In: 6th International Workshop on
Modeling in Software Engineering. ACM (2014)

17. Bodden, E., Hendren, L.: The clara framework for hybrid typestate analysis. Int.
J. Softw. Tools Technol. Transf. (STTT) 14, 307–326 (2012)

18. Bravetti, M., Zavattaro, G.: A theory of contracts for strong service compliance.
Math. Struct. Comput. Sci. 19(3), 601–638 (2009)

19. Cao, T.D., Phan-Quang, T.T., Félix, P., Castanet, R.: Automated runtime ver-
ification for web services. In: International Conference on Web Services. IEEE
Computer Society (2010)

20. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Tran. Program. Lang. Syst. 31(5), 1–61 (2009)

21. Cataño, N., Ahmed, I.: Lightweight verification of a multi-task threaded server:
a case study with the plural tool. In: Salaün, G., Schätz, B. (eds.) FMICS 2011.
LNCS, vol. 6959, pp. 6–20. Springer, Heidelberg (2011)

22. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: advanced spec-
ification and verification with JML and ESC/Java2. In: de Boer, F.S., Bonsangue,
M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 342–363.
Springer, Heidelberg (2006)

23. Fiadeiro, J.L., Lopes, A.: Consistency of service composition. In: de Lara, J.,
Zisman, A. (eds.) Fundamental Approaches to Software Engineering. LNCS, vol.
7212, pp. 63–77. Springer, Heidelberg (2012)

24. Gan, Y., Chechik, M., Nejati, S., Bennett, J., O’Farrell, B., Waterhouse, J.: Run-
time monitoring of web service conversations. In: 2007 Conference of the Center
for Advanced Studies on Collaborative Research. ACM (2007)

25. Hallé, S., Bultan, T., Hughes, G., Alkhalaf, M., Villemaire, R.: Runtime verification
of web service interface contracts. Computer 43, 59–66 (2010)

26. Hamlen, K.W., Morrisett, G., Schneider, F.B.: Certified in-lined reference moni-
toring on.NET. In: 2006 Workshop on Programming languages and Analysis for
Security. ACM (2006)

27. Han, F., Blech, J.O., Herrmann, P., Schmidt, H.: Model-based engineering and
analysis of space-aware systems communicating via IEEE 802.11. In: To appear
in 39th Annual International Computers, Software & Applications Conference
(COMPSAC). IEEE Computer (2015)

28. Hatcliff, J., Leavens, G.T., Leino, K.R.M., Müller, P., Parkinson, M.: Behavioral
interface specification languages. ACM Comput. Surv. 44(3), 16:1–16:58 (2012).
Article 16

29. Herrmann, P.: Trust-based protection of software component users and designers.
In: Nixon, P., Terzis, S. (eds.) iTrust 2003. LNCS, vol. 2692, pp. 75–90. Springer,
Heidelberg (2003)

http://arxiv.org/abs/org/abs/1306.6115

52 J.O. Blech and P. Herrmann

30. Herrmann, P., Blech, J.O., Han, F., Schmidt, H.: A model-based toolchain to verify
spatial behavior of cyber-physical systems. In: 2014 Asia-Pacific Services Comput-
ing Conference (APSCC). IEEE Computer (2014)

31. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., Boer, F.S., Bon-
sangue, M.M. (eds.) Formal Methods for Components and Objects. LNCS, vol.
6957, pp. 142–164. Springer, Heidelberg (2011)

32. Kraemer, F.A., Herrmann, P.: Automated encapsulation of UML activities for
incremental development and verification. In: Schürr, A., Selic, B. (eds.) MODELS
2009. LNCS, vol. 5795, pp. 571–585. Springer, Heidelberg (2009)

33. Kraemer, F.A., Herrmann, P.: Reactive semantics for distributed UML activities.
In: Hatcliff, J., Zucca, E. (eds.) FMOODS 2010, Part II. LNCS, vol. 6117, pp.
17–31. Springer, Heidelberg (2010)

34. Kraemer, F.A., Sl̊atten, V., Herrmann, P.: Tool support for the rapid composition,
analysis and implementation of reactive services. J. Syst. Softw. 82(12), 2068–2080
(2009)

35. Lee, E.A., Xiong, Y.: A behavioral type system and its application in ptolemy II.
Formal Aspects Comput. 16(3), 210–237 (2004)

36. Meyer, B.: Applying ”design by contract”. Computer 25(10), 40–51 (1992)
37. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Roşu, G.: An overview of the MOP

runtime verification framework. Int. J. Softw. Tech. Technol. Transfer 14, 249–289
(2011)

38. Prehofer, C.: Behavioral refinement and compatibility of statechart extensions.
In: Formal Engineering Approaches to Software Components and Architectures.
Electronic Notes in Theoretical Computer Science (2012)

39. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3,
30–50 (2000)

40. Shaer, O., Hornecker, E.: Tangible user interfaces: past, present, and future direc-
tions. Found. Trends Hum. Comput. Inter. 3(12), 1–137 (2010)

41. Souza, F., Lopes, D., Gama, K., Rosa, N., Lima, R.: Dynamic event-based moni-
toring in a SOA environment. In: Meersman, R., et al. (eds.) OTM 2011, Part II.
LNCS, vol. 7045, pp. 498–506. Springer, Heidelberg (2011)

42. Spichkova, M., Blech, J.O., Herrmann, P., Schmidt, H.: Modeling spatial aspects of
safety-critical systems with FOCUSST . In: Model-Driven Engineering, Verification,
and Validation in MDE, Satellite Event of MoDELS2014, CUR-WS Proceedings,
vol. 1235, pp. 49–58, Valencia (2014)

43. Szyperski, C.: Component Software - Beyond Object Oriented Programming.
Addison-Wesley Longman, New York (1997)

44. Wenger, M., Blech, J.O., Zoitl, A.: Behavioral type-based monitoring for IEC
61499. To appear in Emerging Technologies and Factory Automation (ETFA).
IEEE (2015)

Refactoring Proofs with Tactician

Mark Adams1,2(B)

1 Proof Technologies Ltd., Worcester, UK
Mark@proof-technologies.com

2 Radboud University, Nijmegen, The Netherlands

Abstract. Tactician is a tool for refactoring tactic proof scripts for the
HOL Light theorem prover. Its core operations are packaging up a series
of tactic steps into a compact proof with tactical connectives, and the
reverse operation of unravelling compact proofs into interactive steps.
This can be useful for novices learning from legacy proof scripts, as well
as for experienced users maintaining their proofs. In this paper, we give
an overview of Tactician’s core capabilities and provide insight into how
it is implemented.

1 Introduction

Although now over 30 years old, Paulson’s subgoal package [9] is still the pre-
dominant mode of interactive proof in various contemporary theorem provers,
including Coq [4], HOL4 [10], HOL Light [6] and ProofPower [2], and is still used
by some in the Isabelle [11] community. In recent years it was used extensively in
the verification of the seL4 operating system microkernel [7] in Isabelle/HOL [8],
and in the Flyspeck mathematics formalisation project [5] in HOL Light, for
example.

Despite its widespread use, user facilities remain basic and lack useful
extended features. One desirable facility is automated proof refactoring, for
transforming a proof script into a more suitable form, where “more suitable”
depends on the user’s needs, and might mean more compact, more efficient, more
readable, more maintainable or easier to step through interactively. The under-
standability of various large proof scripts from Flyspeck, for example, would
improve greatly if their tactic proofs could be cleaned up to be more coherent
and easier to step through.

In this paper, we describe Tactician, a tool for refactoring HOL Light tactic
proof scripts, explaining how key parts of its implementation work. In Sect. 2,
we provide the motivation for automated proof refactoring. In Sect. 3, we show
examples of Tactician’s two main refactoring operations. In Sect. 4, we explain
how Tactician refactors proofs. In Sect. 5, we explain how it captures tactic
proofs in state. In Sect. 6, we report on experiences and limitations. In Sect. 7,
we present our conclusions. This paper extends an earlier workshop paper [1], by
explaining the proof refactoring mechanism, filling out more detail about how
tactic proofs are captured, and covering experiences and limitations.

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 53–67, 2015.
DOI: 10.1007/978-3-662-49224-6 6

54 M. Adams

Tactician is open source and can be downloaded from [12]. We explain how
it works with extracts from its implementation in the OCaml dialect of ML,
although these extracts are simplified for illustrative purposes.

2 Background and Motivation

The subgoal package is simple in concept and yet remarkably effective in practice.
The user starts with a single main goal to prove. They then apply a series of tactic
steps to break down the goal into hopefully simpler-to-prove subgoals. Each
tactic application results in one or more new subgoals, or otherwise completes
its subgoal, in which case focus shifts to the next subgoal. The proof is complete
when each leaf in the tree of subgoals has been proved.

Behind the scenes, the subgoal package is keeping everything organised by
maintaining a proof state that includes a list of remaining subgoals and a jus-
tification function for constructing the formal proof of the main goal from the
formal proofs of the remaining subgoals. Tactics are implemented as functions
that take a goal and return a subgoal list plus a justification function. The proof
state is updated every time a tactic is applied, incorporating the tactic’s result-
ing subgoals and justification function. Once the proof is complete, a theorem
stating the main goal can be extracted using the final justification function.

g ‘!f:A->B. (!y. ?x. f x = y) <=> (!P. (?x. P(f x)) <=> (?y. P y))‘;;

e (GEN_TAC);;

e (EQ_TAC);;

e (MESON_TAC []);;

e (DISCH_THEN (MP_TAC o SPEC ‘\y:B. !x:A. ~(f x = y)‘));;

e (MESON_TAC []);;

top_thm ();;

Fig. 1. An interactive “g and e” style proof of HOL Light’s SURJECTIVE EXISTS THM.

The user writes their proof script as a series of commands in the ML program-
ming language. The first draft is typically written in the interactive proof style,
which starts with the command to set the proof goal (called g in HOL Light),
proceeds with a potentially long series of tactic steps each using the tactic appli-
cation command (called e in HOL Light), and often ends with a command to
extract the theorem result (called top thm in HOL Light), as illustrated in Fig. 1.
This version is usually not beautiful, but does the job of proving the theorem.
For clarity, the user may have inserted indentations and/or ML comment anno-
tations to make explicit where the proof branches, but if not the proof script
does not convey any information about the structure of the proof. Worse still,
the proof steps may be interspersed with other, unrelated ML commands in the
script, further obscuring the proof.

What often happens next is that the proof script is cleaned up, or refactored,
to become more succinct. This refactoring will typically involve packaging-up

Refactoring Proofs with Tactician 55

the tactic steps into a single, compound tactic, and then using the batch proof
command (called prove in HOL Light) for performing the completed proof and
extracting the theorem result, as illustrated in Fig. 2. If done well, the result-
ing compound tactic will be neater and more concise because it can factor out
repeated use of tactics, for example when the same tactic is applied to each
subgoal of a given goal.

prove

(‘!f:A->B. (!y. ?x. f x = y) <=> (!P. (?x. P(f x)) <=> (?y. P y))‘,

GEN_TAC THEN

EQ_TAC THENL

[ALL_TAC; DISCH_THEN (MP_TAC o SPEC ‘\y:B. !x:A. ~(f x = y)‘)] THEN

MESON_TAC []);;

Fig. 2. A batch “prove” style proof of SURJECTIVE EXISTS THM.

Tactic connectives are used to package up steps into compound tactics. The
binary THEN connective applies its right-hand side (RHS) tactic to all of the
subgoals resulting from its left-hand side (LHS) tactic. The binary THENL differs
in that its RHS argument is a list of tactics rather than a single tactic, where
the nth tactic in this list gets applied to the nth subgoal resulting from the LHS
tactic. The identity tactic ALL TAC makes no change to the goal, which can be
useful in the RHS list of a THENL to make a branch skip the list.

These packaged-up proofs feature heavily in the source code building up the
standard theory library of the HOL4 and HOL Light systems. They were also
used in Flyspeck for a few years, because they bring the proof together as a
single ML statement, making it easier to manage.

In light of this, one can see that a capability for automatically refactoring
tactic proof scripts between the interactive “g and e” style and the packaged-up
“prove” style would be valuable to the user, for three reasons:

Tidying. Having created a new interactive proof, the process of tidying it and
packaging it up into a batch proof can be long and tedious, and for proofs
that run into dozens of lines it can be easy to miss opportunities to make
the proof more concise or readable. Doing this automatically could both save
effort and result in better proofs;

Learning. Most of the best examples of tactic proofs are stored as packaged-
up batch proofs. Novice users currently have to laboriously unravel these
into interactive proofs if they want to step through these masterpieces and
learn how the experts prove their theorems. This can be even more tedious
than packaging a proof up, because the user does not know which tactics
apply to more than one subgoal and thus need to occur more than once in
the unpackaged proof. Automation would improve access to the wealth of
experience that is held in legacy proof scripts;

56 M. Adams

prove

(‘!x. &0 < x ==> &0 < inv(x)‘,

GEN_TAC THEN

REPEAT_TCL DISJ_CASES_THEN

ASSUME_TAC (SPEC ‘inv(x)‘ REAL_LT_NEGTOTAL) THEN

ASM_REWRITE_TAC[] THENL

[RULE_ASSUM_TAC(REWRITE_RULE[REAL_INV_EQ_0]) THEN ASM_REWRITE_TAC[];

DISCH_TAC THEN

SUBGOAL_THEN ‘&0 < --(inv x) * x‘ MP_TAC THENL

[MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC[];

REWRITE_TAC[REAL_MUL_LNEG]]] THEN

SUBGOAL_THEN ‘inv(x) * x = &1‘ SUBST1_TAC THENL

[MATCH_MP_TAC REAL_MUL_LINV THEN

UNDISCH_TAC ‘&0 < x‘ THEN REAL_ARITH_TAC;

REWRITE_TAC [REAL_LT_RNEG; REAL_ADD_LID; REAL_OF_NUM_LT; ARITH]]);;

Fig. 3. The original batch proof of REAL LT INV from HOL Light’s real.ml.

Maintenance. Proofs need to be maintained over time, due to changes in the
theory context in which the theorems are proved. If the proofs are packaged
up, then they will need to be unpackaged, debugged and then repackaged,
which again would be considerably easier with automated support.

3 Usage

Tactician can be loaded into a HOL Light session at any stage, and from that
point onwards silently captures proofs as they are executed, outputting refac-
tored versions upon request. We illustrate it usage here with REAL LT INV, proved
in the HOL Light standard theory library (see Fig. 3).

3.1 Proof Unravelling

Trying to manually unpick the original packaged proof of REAL LT INV is an
arduous task. From looking at the text of the script, use of THENL reveals that
the proof branches at various points, but it is not clear exactly where these
branches start, which tactics get applied to more than one branch, and which
branches are finished off within the RHS of the THENL connectives rather than
carry on further into the proof script.

Using Tactician, the proof can be automatically unravelled into “g and e”
style, with branch points optionally annotated to reveal its true structure (see
Fig. 4). We can see that the application of REPEAT TCL resulted in three subgoals,
with the first finishing in the first branch of the first THENL, the second finished off
by ASM REWRITE TAC prior to the first THENL, and the third continuing beyond
the second branch of the first THENL to split and continue to the end of the
packaged proof. Once expressed in “g and e” style, the proof is ready to be
replayed interactively by stepping through individual tactic applications.

Refactoring Proofs with Tactician 57

g ‘!x. &0 < x ==> &0 < inv(x)‘;;

e (GEN_TAC);;

e (REPEAT_TCL DISJ_CASES_THEN

ASSUME_TAC (SPEC ‘inv x‘ REAL_LT_NEGTOTAL));;

(* *** Branch 1 *** *)

e (ASM_REWRITE_TAC []);;

e (RULE_ASSUM_TAC (REWRITE_RULE [REAL_INV_EQ_0]));;

e (ASM_REWRITE_TAC []);;

(* *** Branch 2 *** *)

e (ASM_REWRITE_TAC []);;

(* *** Branch 3 *** *)

e (ASM_REWRITE_TAC []);;

e (DISCH_TAC);;

e (SUBGOAL_THEN ‘&0 < --inv x * x‘ MP_TAC);;

(* *** Branch 3.1 *** *)

e (MATCH_MP_TAC REAL_LT_MUL);;

e (ASM_REWRITE_TAC []);;

(* *** Branch 3.2 *** *)

e (REWRITE_TAC [REAL_MUL_LNEG]);;

e (SUBGOAL_THEN ‘inv x * x = &1‘ SUBST1_TAC);;

(* *** Branch 3.2.1 *** *)

e (MATCH_MP_TAC REAL_MUL_LINV);;

e (UNDISCH_TAC ‘&0 < x‘);;

e (CONV_TAC REAL_ARITH);;

(* *** Branch 3.2.2 *** *)

e (REWRITE_TAC [REAL_LT_RNEG;REAL_ADD_LID;REAL_OF_NUM_LT;ARITH]);;

Fig. 4. An interactive version of REAL LT INV.

3.2 Proof Packaging

Tactician can automatically package up a “g and e” style proof into a batch
proof, identifying opportunities to factor out repeated use of tactics to make the
batch proof more concise. We concentrate here on how it can do a better job at
making the batch proof readable than what has been done manually in the HOL
Light standard theory library.

A good technique to be used in packaging up a tactic proof is to make the
main branch of the proof clear by separating it out from minor branches that
get discharged in relatively few steps. This is done by completing any minor
branches within the RHS of a THENL connective as soon as they arise in the
proof, but keeping the proof of the main branch outside of this by performing
a null step in its corresponding place in the THENL RHS by use of the identity
tactic ALL TAC. Thus all subsequent steps after the THENL RHS are concerned
only with the main branch, and the THENL RHS is only concerned with the minor
branches.

This technique is used throughout the HOL Light standard theory library,
although various opportunities to use it have been missed, as is the case with

58 M. Adams

prove

(‘!x. &0 < x ==> &0 < inv(x)‘,

GEN_TAC THEN

REPEAT_TCL DISJ_CASES_THEN

ASSUME_TAC (SPEC ‘inv(x)‘ REAL_LT_NEGTOTAL) THEN

ASM_REWRITE_TAC [] THENL

[RULE_ASSUM_TAC (REWRITE_RULE [REAL_INV_EQ_0]) THEN

ASM_REWRITE_TAC [];

ALL_TAC] THEN

DISCH_TAC THEN SUBGOAL_THEN ‘&0 < --(inv x) * x‘ MP_TAC THENL

[MATCH_MP_TAC REAL_LT_MUL THEN ASM_REWRITE_TAC []; ALL_TAC] THEN

REWRITE_TAC [REAL_MUL_LNEG] THEN

SUBGOAL_THEN ‘inv(x) * x = &1‘ SUBST1_TAC THENL

[MATCH_MP_TAC REAL_MUL_LINV THEN UNDISCH_TAC ‘&0 < x‘ THEN

REAL_ARITH_TAC;

REWRITE_TAC [REAL_LT_RNEG; REAL_ADD_LID; REAL_OF_NUM_LT; ARITH]]);;

Fig. 5. A repackaged version of REAL LT INV, making use of ALL TAC.

REAL LT INV. We can see from its unravelled proof in Fig. 4 that Branch 3 and
subsequently Branch 3.2 represent the main branch of the proof, although from
Fig. 3 we can see that these branches are partly worked on inside the RHSs of
THENL connectives and partly worked on outside.

As can be seen in Fig. 5, when using Tactician to package up the unravelled
proof, the two opportunities to separate out the main branch are not missed, as
is evident by the two occurrences of ALL TAC. Thus the packaged proof is easier
to follow, as well as keeping a better shape.

3.3 Output

The most common usage of Tactician is to output to screen an individual refac-
tored proof. However, there are various extended features to support the man-
agement of large proof projects. It is capable of bulk processing a file of proof
scripts and exporting refactored versions of each to disk. There are also com-
mands for exporting the graph of a proof to help visualise its goal tree, for
presenting statistics about each proof including size and usage metrics, and for
exporting a graph showing the dependencies between theorems.

4 Implementing Proof Refactoring

We now explain the mechanism by which tactic proofs are refactored. This
is based around combining basic transformation operations performed on an
abstract representation of a tactic proof called a hiproof.

Refactoring Proofs with Tactician 59

4.1 Hiproofs

In order for a proof script to be refactored, it should first be represented in a
suitable form that holds all necessary information about its structure, so that it
can be correctly transformed, and sufficient information about its components,
so that the result can be outputted as a standalone proof script that can be
executed as a substitute for the original.

Hiproofs (see [3]) are an algebraic representation of tactic proofs that we find
are at just the right level of abstraction for our purposes. They represent a proof
in terms of the goal structure resulting from the execution of the proof, with
each goal represented by the tactic applied to it. There is an atomic class for
a tactic application on an individual goal, an identity hiproof for a null tactic
application, an empty hiproof for a completed subgoal, a binary sequential com-
position operator written as semicolon, a binary tensor operator ⊗ for grouping
hiproofs in parallel (for goals with multiple subgoals) and a labelling operator.
The grammar is given by:

h ::= tactic | id | empty | h;h | h ⊗ h | [label] h

Our representation differs from the algebra in [3] to better fit implementation
of proof refactoring. There is an additional atomic class for an active subgoal, to
cater for incomplete proofs. Another difference is that our tensor operator groups
a list of hiproofs rather than a pair, enabling the empty hiproof to be replaced
with a tensor of length 0. Note that we write our hiproof notation differently, so
that tensor is written with angled brackets and comma separators.

h ::= tactic | active | id | h;h | 〈h, h, ..〉 | [label] h

In Tactician, the labelling construct is used differently from its original
intended use, where the label is supposed to represent an abstract view of a
subproof that can be “zoomed in” to show the detail of the hiproof inside if
desired. Instead we use labelling primarily to capture usage of the THEN and
THENL tactic connectives (which both represent sequential composition).

In Fig. 6, we show a toy example of a packaged proof script and its hiproof
representation. Note that, unlike the proof script, the hiproof conveys the full
structure of the proof, explicitly showing that REFL TAC gets applied to the two
subgoals resulting from CONJ TAC. For illustrative purposes, we have kept the
parentheses around compound sequential composition. Note that these brackets
accumulate on the left in packaged proofs, because the THEN and THENL con-
nectives are left-associative, because they are normally used to apply their RHS
argument to all of the remaining subgoals in the proof.

In Fig. 7, we show an interactive version of the toy example. The hiproof has
no labels since tactic connectives are not used. Note that the sequential compo-
sition brackets accumulate on the right in “g and e” style proofs, because the
LHS argument reflects a single goal in interactive proof, and the RHS argument
gets applied just to its subgoals.

Each hiproof has an input and output arity, corresponding to the number
of input and output goals of the hiproof respectively. To be well-formed, the

60 M. Adams

prove (‘!x. x = x /\ x = x‘,

GEN_TAC THEN CONJ_TAC THEN REFL_TAC‘);;

[Label THEN]

([Label THEN] (Tactic GEN_TAC; Tactic CONJ_TAC);

<Tactic REFL_TAC, Tactic REFL_TAC>)

Fig. 6. A toy example of a packaged proof, together with its hiproof.

g ‘!x. x = x /\ x = x‘;;

e (GEN_TAC);;

e (CONJ_TAC);;

e (REFL_TAC);;

e (REFL_TAC);;

Tactic GEN_TAC; (Tactic CONJ_TAC; <Tactic REFL_TAC, Tactic REFL_TAC>)

Fig. 7. An interactive version of the toy proof, together with its hiproof.

output arity of the LHS of a sequential composition must equal the input arity
of the RHS. The arity of a hiproof can be calculated from its atoms. Tactic
application has input arity 1 and output arity depending on the application. An
active subgoal has input arity 1 and undefined output arity. The identity hiproof
has input and output arity 1. Sequential composition has input arity of the LHS
hiproof and output arity of the RHS hiproof. Tensor has input and output arity
of the sum of its hiproofs’ input and output arities respectively. And a labelled
hiproof has the input and output arity of its hiproof.

4.2 Hiproof Transformations

The insight into the different way in which the brackets accumulate between
packaged and interactive proofs provides the basis for the refactoring operations.
To convert between one style and the other, the brackets need to be shifted from
one side to the other. In reality, the refactoring operations have to do much more
than simply shift brackets, and are compositions are various primitive refactoring
transformations, but the shifting of brackets is the most fundamental aspect.

Unravelling a Hiproof. To refactor into an unravelled proof, it is first nec-
essary to remove any labels from the hiproof, that capture the use of THEN and
THENL connectives, that would be present if the original proof were a packaged
proof. Then it is possible to recursively apply the associativity rule for sequential
composition in the left-to-right direction (1), to group the sequential composition
brackets on the right.

(h1;h2);h3 −→ h1; (h2;h3) (1)

Refactoring Proofs with Tactician 61

However, the ultimate aim is to output an interactive proof, which cannot
involve tensors as the LHS of a sequential composition. Thus part of the right-
grouping operation is to remove any such tensors by distributing them through
their sequential composition RHS (2). This distribution must preserve the well-
formedness of the hiproof, and the components of the resulting tensor must be
lined-up so that arities match (thus h3a below is not necessarily simply h1a;h2a).

〈h1a, h1b, ..〉; 〈h2a, h2b, ..〉 −→ 〈h3a, h3b, ..〉 (2)

The hiproof is then ready to be printed out as ML, with the option of inserting
a comment for every branching point to show the structure of the proof.

Packaging-Up a Hiproof. To refactor into a packaged proof, we first remove
any labels, since the original proof might also be a packaged proof. The next
task is to compact the hiproof by spotting opportunities for performing the
same tactic in parallel to each component of a tensor, enabling THEN to be used
in place of THENL and thus making the proof more concise. These common tactics
can be at the start or the end of tensors, corresponding to the initial few tactics
after a proof branches or the final few tactics at the end of each of a branch’s
subbranches respectively. Thus we first group sequential composition brackets
on the right and compare initial segments of a tensor’s hiproofs, separating out
any common initial segments. We then do the same for common final segments
of a tensor’s hiproofs by left-grouping sequential composition brackets, using the
associativity rule in the right-to-left direction (3).

(h1;h2);h3 ←− h1; (h2;h3) (3)

Next, if there is a branch in a tensor that is much longer than its sibling
branches, then it is extracted out of the tensor using the ALL TAC technique
explained in Sect. 3.2. The heuristic we use for identifying a “much longer”
branch is that the branch has size of at least five, and this size is at least three
times the maximum size of its siblings, where size is calculated as the number
of ML atoms in its ML text. Experience has shown that this heuristic delivers
good results. Having applied the heuristic, the hiproof has been optimised with
separated tensors for parallel application of the same tactic. Each sequential
composition is then labelled with THENL unless its RHS has input arity 1 or if
the RHS is a tensor with the same tactic as each component, in which case it is
labelled as THEN. The packaged hiproof is then ready to be printed out as ML.

5 Implementing Tactic Recording

In the last section, we explained how a tactic proof represented as a hiproof is
refactored in Tactician. However, this assumes that the proof has been appro-
priately captured in program state. In this section, we explain how Tactician
captures proofs, which accounts for the bulk of its implementation. First we
briefly discuss the requirements for capturing tactic proofs in a suitable form.

62 M. Adams

5.1 Requirements for Capturing Tactic Proofs

It is not particularly important that the original text of the proof can be recre-
ated in every last detail, including those parts that are redundant or that don’t
get executed. For our purposes, we are more interested in what does get exe-
cuted, and what happens when it gets executed, which tells us more about which
proof refactorings would be valid. Thus capturing the proof by a static syntactic
transformation of the original proof script would not suit our purposes. Rather,
the proof needs to somehow be dynamically recorded as it is executed, to capture
what is actually used. We call this tactic proof recording.

Note that the subgoal package already dynamically captures interactive tactic
proofs, simply as a list of subgoals (or actually a stack of such lists, so that
interactive steps can be undone if required). However, this form is not suitable
for our purposes because it does not explicitly capture the structure of the tree
of goals, and neither does it carry the names of tactics used or their arguments,
which we require in order to output a proof script.

We identify seven main requirements for our tactic recording mechanism:

1. To fully capture all the information needed to recreate a proof script;
2. To capture the parts of the proof script that actually get used;
3. To capture the information in a form that suitably reflects the full structure

of the original proof, including the structure of the goal tree and hierarchy
corresponding to the explicit use of tactic connectives in the proof script;

4. To capture information at a level that is meaningful to the user, i.e. with
atoms corresponding to the ML binding names for the tactics and other
objects mentioned in the proof script;

5. To be capable of capturing both complete and incomplete proofs;
6. To work both for both interactive and packaged-up proofs;
7. To work for legacy proofs, without requiring modification to the original proof

script.

5.2 The Basic Recording Mechanism

Our recording mechanism is designed to meet the above requirements. It main-
tains a proof tree in program state, in parallel with the subgoal package’s normal
state. The proof tree has nodes corresponding to the initial and intermediate
goals in the proof, and branches from each node corresponding to the goals’
subgoals, reflecting the structure of the executed proof. Each node carries infor-
mation about its goal, including a statement of the goal, an abstract represen-
tation of the ML text of the tactic that got applied to the goal, and a unique
goal identity number. Active subgoals are labelled as such in place of the tactic’s
abstract ML text, thus enabling incomplete proofs to be represented. The tree
gets added to as interactive tactic steps are executed, and deleted from if steps
are undone. A hiproof that captures the proof’s structure and the ML text of
the tactic applied in each goal can thus be dumped from the proof tree at any
stage, from which the proof can be refactored and printed (see Sect. 4).

Refactoring Proofs with Tactician 63

The crucial means by which the stored proof tree is updated in line with the
subgoal package state is based on the goal ids. HOL Light’s existing datatype
for goals is extended to carry such an identity number. These identity-carrying
goals are called xgoals.

type goalid = int;;
type xgoal = goal ∗ goalid;;

Tactics are adjusted, or promoted, to work with xgoal inputs and outputs.
These promoted tactics, called xtactics, have a datatype that is a trivial variant of
HOL Light’s original, with xgoals instead of goals. Proofs are performed using
xtactics in place of tactics. The pretty printer for xgoals in written to ignore
the goal id and print xgoals like goals, so that users see normal feedback when
performing subgoal package proofs.

type xgoalstate = xgoal list ∗ justification;;
type xtactic = xgoal →xgoalstate;;

The implementation of a promoted tactic first involves breaking up its xgoal
argument into the original unpromoted goal and its goal id. The original, unpro-
moted tactic then gets applied to the unpromoted goal to result in a list of new
subgoals and a justification function. These new subgoals are promoted into
xgoals with unique ids, which then get inserted as branches of the node in the
proof tree at the location determined by the input goal’s id, along with abstract
ML text for the tactic, based on the tactic’s name. The promoted new subgoals
and the justification function are returned as the result of the xtactic.

Rather than individually promote each tactic, we write a generic wrapper
function for automatically promoting a supplied tactic of a given ML type, that
takes the name of the tactic and the tactic itself as arguments. Below is the
wrapper function for basic tactics that take no other arguments. The local value
obj captures the abstract ML text of the tactic (see Sect. 5.3).

let tactic wrap name (tac:tactic) : xtactic =
fun (xg:xgoal) →
let (g,id) = dest xgoal xg in
let (gs,just) = tac g in
let obj = Mname name in
let xgs = extend gtree id (Gatom obj) gs in
(xgs,just);;

This wrapper gets used to overwrite unpromoted tactics with their promoted
versions, so that existing proof scripts can be replayed without adjustment.

let REFL TAC = tactic wrap”REFL TAC” REFL TAC;;
let STRIP TAC = tactic wrap ”STRIP TAC” STRIP TAC;;

It is necessary to write wrapper functions for each ML type of tactic that
can occur in a proof script. As the datatypes become more complex, so does the
implementation of their corresponding wrapper functions. Slightly more complex
than tactic wrap is term tactic wrap, a function for promoting tactics that take

64 M. Adams

a term argument. Its implementation is similar to tactic wrap, except that here
obj has the expression syntax of an ML name binding applied to a HOL term,
enabling a refactored proof to refer to the term argument supplied in the proof.

let term tactic wrap name (tac:term→tactic) : term→xtactic =
fun (tm:term) (xg:xgoal) →
let (g,id) = dest xgoal xg in
let (gs,just) = tac g in
let obj = Mapp (Mname name, [Mterm tm]) in
let xgs = extend gtree id (Gatom obj) gs in
(xgs,just);;

Similar wrapper functions can be written for tactics that take other basic
arguments, such as integers, strings or HOL types, or even structures of such
arguments, such as a list of terms. Each time, the form of the obj local value
varies to reflect the ML text of the tactic written with its arguments.

5.3 The Abstract ML Datatype

We use a datatype for capturing the ML text of how a tactic is written in a proof
script, so that we can print out our refactored proof. We want this datatype to
be capable of representing all the ML expression forms that commonly occur in
tactic proofs, and to represent these as abstract syntax, so that we can easily per-
form syntax-based operations on these expressions when needed. Thus we define
our recursive mlobject datatype. It is capable of referring to ML binding names,
literals of basic datatypes (such as integers, strings, booleans, HOL terms and
HOL types), structures (such as lists and tuples), function application, anony-
mous functions and local variables. It also supports the function composition
operator separately, since this is often treated specially.

type mlobject =
Mname of string

| Mint of int
| Mstring of string
| Mbool of bool
| Mterm of term
| Mtype of hol type
| Mtuple of mlobject list
| Mlist of mlobject list
| Mapp of mlobject ∗ mlobject list
| Mfcomp of mlobject list
| Mlambda of lvarid ∗ mltype ∗ mlobject
| Mlvar of lvarid ∗ mltype;;

5.4 Capturing Theorems

HOL theorems have no literal representation in the mlobject datatype. This is
because, unlike for HOL types and HOL terms, printing the value of a theorem

Refactoring Proofs with Tactician 65

in an outputted proof script is of no use to the user, because it cannot be parsed
in to recreate the theorem (in LCF-style theorem provers, at least). Instead it
is necessary to print a theorem using its ML binding name, if it has one, or
otherwise the ML text of its proof. Thus the theorem datatype thm is extended
to carry abstract ML text. We call these extended theorems xthms. Like for
xgoals, the pretty printer for xthms ignores the extension and prints an xthm
in the same way as a thm, so that users see normal theorems when they view
xthms.

type xthm = thm ∗ mlobject;;

Each existing named theorem is promoted to have the xthm datatype, with
its ML binding name for its abstract ML text, using the following wrapper:

let thm wrap name (th:thm) : xthm =
let obj = Mname name in
mk xthm (th,obj);;

All functions that take or return theorems also need to be promoted to work
with xthms. We write wrapper functions for promoting any such functions of
a given type, in a similar way to the wrapper functions for promoting tactics,
although xthm wrappers are simpler to write because they do not need to incor-
porate their results into the proof tree.

let term rule wrap name (r:term→thm→thm) : (tm→xthm→xthm) =
fun (tm:term) (xth:xthm) →
let (th0,obj0) = dest xthm xth in
let th = r tm th0 in
let obj = Mapp (Mname name, [Mterm tm; obj0]) in
mk xthm (th,obj);;

5.5 Automated Promotion

To avoid the user having to adapt proof scripts to explicitly promote ML values,
Tactician automatically promotes all values. For values existing in the ML session
when Tactician is loaded, this is done by executing a promotion function for each
value in the OCaml environment, which is available to the user via the OCaml
Toploop module and use of Obj.magic.1 For values entered after Tactician has
loaded, this is done by adjusting the OCaml toploop to execute a hook each time
a value is added in the session.

6 Experiences and Limitations

Tactician has been tested on tens of thousands of lines of proof script files from
the HOL Light theory libraries, including the Multivariate library, and the Fly-
speck project. Tests involve running a proof script through a HOL Light session
1 This is similar to a trick used in HOL Light to capture the theorem values in the
ML session, implemented in HOL Light’s update database.ml.

66 M. Adams

with Tactician loaded, exporting the refactored proof script from the session,
and replaying the exported script in a separate HOL Light session.

In typical usage, Tactician comfortably handles the large (30 lines) and very
large (100+ lines) proof scripts found in HOL Light and Flyspeck. For exam-
ple NADD COMPLETE (100 lines) from the standard theory library’s realarith.ml,
and PROPER MAP (115 lines) from Multivariate’s topology.ml. However, process-
ing thousand-line proof script files often fails, not due to the size of the script, but
due to the likelihood of hitting one of the four current limitations of Tactician.
We list the limitations in decreasing order of their frequency of occurrence:

Concrete Manipulation of the Goal. Since Tactician works on a different
concrete goal datatype, it cannot process ML that uses the usual concrete
constructors and destructors that manipulate goals as ML pairs (e.g. fst
and snd). These need to be replaced with the abstract goal constructors and
destructors provided by Tactician (e.g. goal hyp and goal concl).

ML Type Annotations. Tactician cannot process ML with type annotations
for the “promotable” datatypes (i.e. thm, conv, goal, tactic, etc.). Any such
type annotations must either have such datatypes changed to their promoted
equivalents (i.e. xthm, xconv, xgoal, xtactic, etc.), or be removed.

Promotion of Obscure ML Datatypes. Tactician cannot automatically pro-
mote bindings with some obscure ML datatypes. However, these are very
rarely encountered, and it is easy to write new promotion functions for them.

Promotion of “Unpromotable” ML Datatypes. Tactician cannot properly
promote bindings that take a function as an argument if the function does
not return a promotable datatype. The only common example of this in
HOL Light is PART MATCH, whose first argument is a term-to-term function.
It outputs “<???>” in place of this argument, and warns the user.

We have found that it is always easy to overcome these limitations, either
by manually adjusting the files, or, in the case of obscure ML datatypes, to
extend Tactician. This usually takes about a minute per thousand-line file that
fails, or a few minutes for multi-thousand line files. Tactician has been enhanced
over the past few years to solve other limitations, and there is prospect of further
enhancement to reduce further the frequency of hitting limitations. For example,
the ML type annotations limitation can be solved by giving promoted datatypes
the same name as their unpromoted equivalents, since there is no need for the
unpromoted datatypes at the user level once Tactician has been loaded.

7 Conclusions

Tactic proofs are still used extensively in theorem proving, including in recent
ground-breaking projects. However, there is little to help users refactor tactic
proof scripts for maintenance or understanding. Tactician is a tool designed
specifically to cater for this need.

In this paper we have explained the basics of how Tactician works, including
how it captures proofs in memory, and how it transforms these proofs into suit-
able refactored forms. These facilities have been shown to work on the largest

Refactoring Proofs with Tactician 67

proof scripts from the HOL Light theory libraries and the Flyspeck project,
although four current limitations mean that it is often necessary to perform a
minute or two of manual preparation on large proof script files.

The principles explained have been implemented for the HOL Light system,
but also apply to any implementation of the subgoal package. Most parts of Tac-
tician should be straightforward to port to other systems, although the automatic
promotion mechanism is specific to OCaml implementations, and adaptions to
the subgoal package main functions are specific to HOL Light.

References

1. Adams, M., Aspinall, D.: Recording and refactoring HOL light tactic proofs. In:
Workshop on Automated Theory eXploration, in Association with the 6th Inter-
national Conference on Automated Reasoning (2012)

2. Arthan, R., Jones, R.: Z in HOL in ProofPower. In Issue 2005-1 of the British
Computer Society Specialist Group Newsletter on Formal Aspects of Computing
Science (2005)

3. Aspinall, D., Denney, E., Lüth, C.: Tactics for hierarchical proof. Math. Comput.
Sci. 3(3), 309–330 (2010). Springer

4. Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science an EATCS Series. Springer, Heidelberg (2004)

5. Hales, T., Adams, M., Bauer, G., Dat, T.D., Harrison, J., Truong, H.L., Kaliszyk,
C., Magron, V., McLaughlin, S., Thang, N.T., Truong, N.Q., Nipkow, T., Obua, S.,
Pleso, J., Rute, J., Solovyev, A., An, T.H., Trung, T.N., Diep, T.T., Urban, J., Ky,
V.K., Zumkeller, R.: A Formal Proof of the Kepler Conjecture. arXiv:1501.02155v1
[math.MG]. arxiv.org (2015)

6. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009)

7. Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin, P.,
Elkaduwe, D., EngelHardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an OS Kernel. In: Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, pp. 207–220.
ACM (2009)

8. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)

9. Paulson, L.: Logic and Computation: Interactive proof with Cambridge LCF.
Cambridge University Press, Cambridge (1987)

10. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008)

11. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle framework. In: Mohamed,
O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 33–38.
Springer, Heidelberg (2008)

12. Tactician homepage: http://www.proof-technologies.com/tactician/

http://arxiv.org/abs/1501.02155v1
http://arxiv.org/abs/org
http://www.proof-technologies.com/tactician/

Exploring the Role of Logic and Formal
Methods in Information Systems Education

Anna Zamansky1,2(B) and Eitan Farchi1,2

1 University of Haifa, Haifa, Israel
annaz@is.haifa.ac.il

2 IBM Research Labs, Haifa, Israel
farchi@il.ibm.com

Abstract. This position paper contributes to the ongoing debate on
the role played by logic and formal methods courses in the computing
curricula. We report on an exploratory empirical study investigating the
perceptions of Information Systems students on the benefits of a com-
pleted course on logic and formal specification. Participants indicated
that the course had fostered their analytical thinking abilities and pro-
vided them with tools to handle abstraction and decomposition. This
provides a starting point for a discourse on the benefits of formal meth-
ods courses for IS practitioners.

1 Introduction

Several ways in which formal methods should be incorporated into the com-
puting curricula have been proposed (see, e.g., [1,10,12–16,18,19]), but there
is still no consensus on what and how to teach. Moreover, there is an ongoing
debate on the role of the very foundations of formal methods - logic and dis-
crete mathematics in CS education. While the early CS curricula were strongly
mathematically oriented, many voices are recently calling for a less mathemat-
ically rigorous curriculum, claiming this type of knowledge is not really used
by practitioners in industry [2,8]). In the Information Systems discipline, which
draws a large portion of its body of knowledge from CS, the importance of logic
and formal methods is even less recognized. Indeed, the ACM IS curriculum
guidelines [17] mention statistics and probability as required core IS topics and
discrete mathematics only as an optional one, leaving logic and formal methods
outside mainstream IS topics.

We believe that this state of affairs is most unfortunate. Although we tend to
agree that a typical IS major may need a less extensive mathematical background
than a CS major, formal methods are an essential tool for software quality con-
trol, i.e., activities for checking (by proof, analysis or testing) that a software
system meets specifications and that it fulfills its intended purpose. But - even
more importantly - learning formal methods fosters analytical thinking, pro-
vides the tools to deal with abstractions, and makes the students comfortable
with complex mathematical notations. As stated by J. Wing in [19]: “Thinking

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 68–74, 2015.
DOI: 10.1007/978-3-662-49224-6 7

Exploring the Role of Logic and Formal Methods 69

in terms of formal methods concepts forces the designer to take a more abstract
perspective of a system than that taken with an algorithmic or operational app-
roach. This more abstract thinking invariably provides the designer with new
insights and a deeper understanding of the systems desired behavior”.

As convincing as this may sound, as noted by Wing, “the biggest obstacle is
getting “buy-in” from our colleagues: convincing co-instructors, curricula com-
mittees and administrators that integrating formal methods is a good thing to
do”. This requires collecting empirical evidence on the above mentioned bene-
fits of studying formal methods. In this position paper we take a step towards
filling this gap by reporting on our findings collected when teaching a gradu-
ate course “Logic and Formal Specification”, taught at the Information Systems
Department of the University of Haifa. The details of the course design and
implementation are provided in [21]. Here we focus on the human factor, namely
the students’ perceptions of the benefits of the course. We present the results
of our exploratory study involving 22 participants who completed our course.
The students were asked about their perception of its benefits, both for an IS
practitioner in general, and for them personally. The most striking observation
emerging from our data analysis was that most of the students reported an effect
on their cognitive processes: fostering analytical thinking, mental decomposition
of complex problems into simpler ones, and using abstraction. This provides a
starting point for collecting further empirical data on the benefits of teaching
formal methods to IS practitioners.

2 Related Work

Several works address the relevance of discrete mathematics, logic and formal
methods for practitioners, mainly in the context of Computer Science and Soft-
ware Engineering (to the best of our knowledge, no work addressed the IS domain
in this context). In [9] the suitability of the standard logic syllabus to the needs
of CS practitioners is questioned: “The current syllabus is often justified more
by the traditional narrative than by the practitioners needs... The proof of the
Completeness Theorem is a waste of time at the expense of teaching more the
important skills of understanding the manipulation and meaning of formulas”.
According to [9], the needs of CS practitioners are to: (i) understand the meaning
and implications of modeling the environment as precise mathematical objects
and relations; (ii) understand and be able to distinguish intended properties of
this modeling and side-effects; (iii) be able to discern different level of abstrac-
tion, and (iv) understand what it means to prove properties of modeled objects.

In [18,19], J. Wing stresses the importance of integrating formal methods
into the existing CS curriculum by teaching their common conceptual elements,
including state machines, invariants, abstraction, composition, induction, speci-
fication and verification. She states discrete mathematics and mathematical logic
as crucial prerequisites. Further concrete proposals on the integration of formal
methods into CS curriculum are made in [1,10,12–16]. Some of these studies
include some form of empirical evaluation. Their methodology is mainly based

70 A. Zamansky and E. Farchi

on objective assessment, comparing the performance of some control group to
other groups of students with respect to programming skills [10] and general
problem-solving skills, including using abstraction [13,14]. However, empirical
evidence for the benefits of formal methods courses is still very sparse.

In this paper we take a different approach to providing such evidence. Instead
of directly assessing the students’ skills and abilities, we turn to them for help
with our investigation. After all, investigating the students’ perceptions may pro-
vide new insights into the way in which taking the course affected their cognitive
processes. Moreover, their attitudes towards the practical value of such courses
may be helpful with the prediction of their future acceptance of formal methods
in industry. It should be noted that we apply a qualitative research approach
using open-ended questionnaires, as opposed to the quantitative approach taken
in [8], which also surveyed “what subject matter practitioners themselves actu-
ally find most important in their work”, but used a closed-ended questionnaire,
with questions such as “How useful have the details of this specific material been
to you in your career as a software developer?” using a scale from 0 to 5, leaving
no place for exploring cognitive aspects affected by the taught courses.

3 The Exploratory Study of Students Perceptions

The course “Logic and Formal Specification” has been taught at the IS depart-
ment at the University of Haifa for several years by both of the authors1.
The course is a mandatory course for graduate students, and its length is one
semester, 4 h per week. Many of the students return to their studies after several
years in the industry. This poses a twofold challenge when designing a course
in logic and formal methods. First, they have a solid understanding of topics
that have direct relevance to practice and are reluctant to study topics whose
relevance to their daily practice is indirect. Secondly, they have forgotten the
basic concepts of discrete mathematics which they studied years ago.

Our course design is based on previous proposals on the adaptation of the
traditional logic and formal methods syllabi to the needs of modern practition-
ers [4,9,10,16,19]. As such, the course aims to equip the students with the fol-
lowing abilities: (1) read, write and understand formal specifications, (2) be able
to formalize informal specifications, (3) analyze specifications and detect sources
of incompleteness, inconsistency and complexity, (4) reason about specifications,
and (5) check a system against a specification. Based on the above, the taught
material includes (a) Basic principles for reasoning about sets; (b) Induction

1 Perhaps it is important to mention here the authors’ relevant background. The first
author is an associate professor at the Information Systems Department at the Uni-
versity of Haifa with active research interests in applied logic. The second author is
the manager of the Software Performance and Quality research group at the IBM
Haifa Research Laboratory, and a member of the IBM corporate Board of Software
Quality. Both of the authors have several years of experience in teaching logic and
formal methods to various audiences of students.

Exploring the Role of Logic and Formal Methods 71

and invariants; (c) Propositional and first-order logic and (d) Formal specifica-
tion using the Z language. Further details about the course and the ways we
propose to overcome the above mentioned challenges with respect to the target
audience are provided in [21].

In what follows we describe the results of an exploratory interview we car-
ried out in orderto gain a deeper understanding into the students’ perception of
the benefits of studying formal methods for IS practitioners. For this purpose,
we chose an open-ended questionnaire [11] over indepth interviews to ensure
the anonymity of our participants, which was an important concern in our con-
text. We used an open-ended questionnaire as we wanted to minimize any pre-
suppositions on the participants’ responses (as opposed to e.g., the closed-ended
questionnaire of [8]).

The answers were collected by the first author from twenty two graduate
students who completed the course in the years 2013–2014. This sample included
8 female and 15 male students; 12 students out of 22 had no prior experience in
industry. The questionnaire included the following open-ended questions.

Q1. Is it important for practitioners whose work is related to software develop-
ment to study logic and formal methods? Why?

Q2. In what way (if at all) is the course’s content useful for Information Systems
practitioners?

Q3. What (if at all) were the course’s contributions for you personally?
Q4. How relevant was your background from Discrete Mathematics course? In

what way (if at all) was it helpful?
Q5. In what ways would you recommend to improve the course?

In what follows we refer mainly to the answers received to questions Q2 and
Q3. Only three students responded that logic and formal methods are not useful
(Q2):

1. I worked at two different places in industry, and never have I seen the courses’
content put to any use...

2. It is not necessary for software development.
3. It depends on the work environment. I think it’s not useful.

Two of them thought the course was not useful for them personally (Q3).
Out of those who responded positively to both questions, one of the most

striking observations was the extensive use of formulations related to men-
tal processes, such as “thinking”, in particular “analytical/logical thinking” in
answers to both questions.

E.g., answers to question Q2 included:

1. It improves thinking about problem modeling.
2. I think that it opens directions for thinking about how things really work under

the surface.
3. The world of software is based on understanding the needs and modeling them

in precise terms. Many such models require logical thinking.

72 A. Zamansky and E. Farchi

4. The course’s contents develop and deepen ways of thinking.
5. The course helps shaping thinking that can help in programming.
6. The course improves analytical thinking.
7. The course is very helpful in improving thinking that is not necessarily

algorithmic. A different one, out of the box.
8. Of course! Correct and systematic thinking of IS practitioners helps in

requirements specification.

Notably, no participants provided concrete examples of direct use of the
courses’ content in answering Q2. Yet several of them took a confident stand
when speaking of their own personal experience in Q3:

1. I have already applied the new skills at work, using truth tables and proofs.
2. It improved my modeling skills. I’m certain!
3. I am now using the tools when reading scientific papers.
4. I was surprised to see how helpful the tools we studied are in practice.

Moreover, when answering question Q3, several participants referred again
(implicitly or explicitly) to an improvement in their mental processes:

1. The course introduced order into complex topics. It gave me tools to simplify
complex problems and find easy and efficient solutions.

2. It made me think in a modular way, providing me with the ability to grasp more
complex models.

3. It improved my ability to refer to problems schematically.
4. It provided me with an abstract view on the problems of software design.
5. It made me realize there are systematic solutions to problems that seem unsolvable

at first.
6. I learned to reduce complex problems to simpler ones.

Table 1 summarizes the main skill categories that emerged during text analy-
sis of questions Q2 and Q3, providing the number of students that used formu-
lations related to these categories.

Table 1. Categories emerging from answers to Q2 and Q3 and number of students
using each category

Q2 (general IS practitioner) Q3 (personal experience)

Thinking 8 8

Understanding 7 8

Formulation 5 3

Modelling 1 0

Research 0 3

General knowledge 0 5

Exploring the Role of Logic and Formal Methods 73

4 Summary and Future Research

To make logic and formal methods more central in the IS curriculum, further
empirical evidence on the benefits of such courses for practitioners is required.
While IS practitioners rarely apply formal methods directly, but rather use tools
where they are “hidden” [5], exploring the effect of such courses on the cognitive
processes of students seems the most fruitful direction. Our results highlights
the potential of the methodology of exploring students’ perceptions and atti-
tudes in this context. This could be beneficiary for the education community
also from another aspect. While the key role of abstract thinking for acquiring
computation-related skills has been stressed by Kramer [6], ways of teaching it
are still not well understood (some relevant general suggestions can be found
in [7]). The positive effect formal methods courses may have on the cognitive
processes of the students provides a good starting point for exploring concrete
ways in which we abstract thinking can be taught.

We plan to further extend the data collection and analysis to larger student
populations, including both undergraduate and graduate students taking rele-
vant courses, as well as to experienced IS practitioners. In future research we
plan to further investigate the impact of factors such as industrial experience and
maturity of the subjects of the study. We also plan to reformulate the questions
to allow a further sharper quantitative analysis.

The observations of this paper also bring forward the somewhat controversial
notion of computational thinking (CT). This is a term introduced by J. Wing
in 2006 [20], describing the mental activity in formulating a problem to admit
a computational solution, which is crucial for many disciplines at our times.
Naturally, it has also been pointed out as a key capability for future IS practi-
tioners [3]. Note the striking relation of some of the above mentioned responses
to key attributes of what J. Wing classifies as computational thinking [20]:
(i) reformulating a seemingly difficult problem into one we know how to solve;
(ii) using abstraction and decomposition when attacking a large complex task
or designing a large complex system; and (iii) choosing an appropriate repre-
sentation for a problem or modeling the relevant aspects of a problem to make
it tractable. The link between teaching formal methods and the development
of computational thinking skills deserves further exploration (also due to the
increasing public interest in CT).

References

1. Barland, I., Felleisen, M., Fisler, K., Kolaitis, P., Vardi, M.Y.: Integrating logic
into the computer science curriculum. In: Annual Joint Conference on Integrating
Technology into Computer Science Education (2000)

2. Glass, R.L.: A new answer to how important is mathematics to the software prac-
titioner? IEEE Softw. 17(6), 136 (2000)

3. Hardy, G.M., Everett, D.L.: Shaping the Future of Business Education: Relevance,
Rigor, and Life Preparation. Palgrave Macmillan, London (2013)

74 A. Zamansky and E. Farchi

4. Harvey, V.J., Wu, P.Y., Turchek, J.C., Longenecker, H.E.: Coordinated topic
presentations for information systems core curriculum and discrete mathematics
courses. In: Proceedings of ISECON 2005 (2005)

5. Hussmann, H.: Indirect use of formal methods in software engineering. In: ICSE-
17 Workshop on Formal Methods Application in Software Engineering Practice,
Seattle (WA), USA, pp. 126–133. Citeseer (1995)

6. Kramer, J.: Is abstraction the key to computing? Commun. ACM 50(4), 36–42
(2007)

7. Kramer, J., Hazzan, O.: The role of abstraction in software engineering. In: Pro-
ceedings of the 28th International Conference on Software Engineering, pp. 1017–
1018. ACM (2006)

8. Lethbridge, T.C.: What knowledge is important to a software professional? Com-
puter 33(5), 44–50 (2000)

9. Makowsky, J.A.: From Hilberts program to a logic tool box. Ann. Math. Artif.
Intell. 53(1–4), 225–250 (2008)

10. Page, R.L.: Software is discrete mathematics. ACM SIGPLAN Not. 38, 79–86
(2003)

11. Patten, M.L.: Questionnaire Research: A Practical Guide. Pyrczak Publisher,
Glendale (2001)

12. Skevoulis, S., Makarov, V.: Integrating formal methods tools into undergraduate
computer science curriculum. In: 36th Annual on Frontiers in Education Confer-
ence, pp. 1–6. IEEE (2006)

13. Kelley Sobel, A.E.: Empirical results of a software engineering curriculum incor-
porating formal methods. ACM SIGCSE Bull. 32(1), 157–161 (2000)

14. Kelley Sobel, A.E., Clarkson, M.R.: Formal methods application: an empirical tale
of software development. IEEE Trans. Software Eng. 28(3), 308–320 (2002)

15. Sotiriadou, A., Kefalas, P.: Teaching formal methods in computer science under-
graduates. In: International Conference on Applied and Theoretical Mathematics
(2000)

16. Tavolato, P., Vogt, F.: Integrating formal methods into computer science curricula
at a university of applied sciences. In: TLA+ Workshop at the 18th International
Symposium on Formal Methods, Paris, Frankreich (2012)

17. Topi, H., Valacich, J.S., Wright, R.T., Kaiser, K., Nunamaker, Jr., J.F., Sipior,
J.C., de Vreede, G.J.: Is 2010: Curriculum guidelines for undergraduate degree
programs in information systems. Commun. Assoc. Inf. Syst. 26(1), 18 (2010)

18. Wing, J.M.: Teaching mathematics to software engineers. In: Alagar, V.S., Nivat,
M. (eds.) AMAST 1995. LNCS, vol. 936, pp. 18–40. Springer, Heidelberg (1995)

19. Wing, J.M.: Weaving formal methods into the undergraduate computer science
curriculum. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 2–7. Springer,
Heidelberg (2000)

20. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
21. Zamansky, A., Farchi, E.: Teaching logic to information systems students: chal-

lenges and opportunities. In: Tools for Teaching Logic (2015)

GuideForce: Type-Based Enforcement
of Programming Guidelines

Serdar Erbatur(B) and Martin Hofmann

Ludwig-Maximilians-Universität, Munich, Bavaria, Germany
{serdar.erbatur,hofmann}@ifi.lmu.edu

Abstract. In this paper, we introduce the GuideForce project, whose
aim is to develop automatic methods based on type systems and abstract
interpretation that are capable of checking that programming guidelines
related to secure web programming are correctly and reasonably applied.
We outline the project plan and motivation and then describe a pilot
study carried out with Soot, a Java-based program analysis framework.
While still maintaining high accuracy and efficiency, the focus on guide-
lines adds a new human-oriented component to static analysis.

Keywords: Program analysis · Type systems · Language-based secu-
rity · String analysis

1 Introduction

Modern software typically must be able to interact with the whole world. While
until recently such worldwide interaction was quite rare now almost any business
software has a web interface allowing anyone to interact with the software be it
only by entering something into the username/password fields that are openly
accessible to anyone.

Since almost anyone writes software exposed to the resulting security threats,
one can no longer rely on high skill and experience of specialists who were for-
merly only having to deal with such risks. To address this issue programming
guidelines and best practices have been developed, see e.g. www.owasp.org, that
summarise and condense the expert knowledge and make it available to a larger
community (secure coding) [30]. Whether or not such programming guidelines
are applied and whether they have been correctly applied, is however left to the
good will of the programmers.

For this reason, we have proposed the project GuideForce (funded by DFG
since 11/2014) in which we want to develop automatic methods based on type
systems that are capable of checking that programming guidelines have been
correctly and reasonable applied without compromising the flexibility of writing
code. Besides further developing type system methodology this also requires us

This research is funded by the German Research Foundation (DFG) under research
grant 250888164 (GuideForce).

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 75–89, 2015.
DOI: 10.1007/978-3-662-49224-6 8

www.owasp.org

76 S. Erbatur and M. Hofmann

to devise a formalism to rigorously define such policies which typically are given
in plain English and by examples. In order that users will actually trust the
system and perceive it as a useful tool it will be necessary to achieve a rather
high degree of accuracy. For example, if an already sanitized user input is stored
in a string buffer and later on read out it is not necessary to re-sanitize it. If
the system does not recognize such a situation users will neglect its warnings
in the future. Similarly, to ensure appropriate authorization prior to accessing
sensitive data then, if such access happens within a method of a class admit-
ting the invariant that authorization has taken place prior to creation of any of
its objects then the system must be able to discover this. All this means that
cutting edge techniques such as careful analysis of strings, objects, and control
flow, must be harnessed and further developed in this project. In order to guar-
antee appropriate feedback to the user and to achieve seamless integration we
will use type-theoretic formulations of these methods resulting then in a single
customizable type system capable of enforcing a large span of guidelines and
best practices for secure web programming.

In [15], we developed a type-based string analysis for the enforcement of
guidelines to detect code injection attacks, and a tool has been implemented
using OCaml [7].

For GuideForce, however, we plan not to rely on a standalone implementa-
tion, but rather to build our tools on top of the Soot framework or one of its
competitors. Soot is a Java-based program analysis framework developed by the
Sable research group in McGill University [6,23,39]. To gain some experience we
developed a small pilot study in Soot that we describe in Sect. 4 below. This will
allow us to take profit of Soot’s front end and to base our analyses on interme-
diate code. We also hope that the use of a well-established framework will ease
maintenance and changes in the development team. Furthermore, we will be able
to take profit of Soot’s built-in fixpoint engines for dataflow analysis. While our
analyses will mostly be type-based it is well-known that type inference can be
understood as a dataflow problem, see e.g. [29].

The key scientific innovations of the project are the focus on guidelines rather
than risks and the development of a configurable type system. In Sect. 3 we
describe the GuideForce project in more detail and provide examples of guide-
lines to illustrate our approach. In Sect. 4 we describe our pilot study which is a
taintedness analysis for the prevention of Xpath injection and developed on top
of Soot.

We stress that the purpose of this project-start paper is not so much to
describe finished results, but to motivate and advertise the goals of our recently
begun project so as to create opportunities for interaction.

Human orientation. The focus on guidelines and the use of type systems are thus
what distinguishes our approach from most existing ones. While still maintaining
high accuracy and efficiency which are the traditional objectives in static analysis
this adds a new human-oriented component to the field. Types present even the
intermediate results of a static analysis in a concise yet human-readable manner
and also allow, in the form of manually provided type annotation for interaction

GuideForce: Type-Based Enforcement of Programming Guidelines 77

with the analysis process. Guidelines, on the other hand, have been designed
by human experts with human users in mind. Enforcing guidelines not only
helps to prevent vulnerabilities and attacks, but also has a forensic and thus
human-oriented component: if a programmer or subcontractor can show that
all guidelines have been followed they might not be responsible for a possible
unforeseen attack.

2 Related Work

The use of formal approaches to guarantee adherence to a secure coding guideline
rather than directly preventing the absence of vulnerabilities is a recent idea; the
only directly related work we are aware of is [8] where guidelines are formalised as
temporal logic formulas. The novel aspects of our approach in comparison with
[8] are the precise tracking of control flow, even interprocedural, the analysis
of string values as is required to model guidelines for preventing code injection
attacks [9,15], the tracking of class invariants, and the presentation as a type
system akin to the Java type system which will allow for meaningful feedback
to the user.

There is a huge body of literature on the use of formal methods, in particular
type systems for directly preventing attacks rather than enforcing a guideline and
the methods used there are also relevant for us and, indeed, without the progress
in those areas in the last 10 years a project like ours could not be carried out.
In the following summary we focus on our running example, namely prevention
of code injection attacks.

Test-based techniques [20] identify points in an application that are subject to
code injection attacks, and build attacks that target such points using knowledge
about typical attack patterns. Black-box testing in particular does not make any
assumption about the implementation of an application. By design, this method
in general cannot guarantee the absence of attack possibilities; they rather aim
to decrease their occurrences by applying reasonable testing heuristics.

Another approach to prevent code injection is to monitor or instrument a
program. The goal is to raise an exception if an action is detected that does not
conform to a certain policy. Since it is in general hard to decide which parts of
a generated code are intended by the program and which are injected by the
user, the program is either instrumented to mark user-dependent parts [37] or
combined with a static analysis [16].

The most interesting approach for us is to statically analyse a program in
order to verify that code injection attacks cannot occur during the execution of
a program [9,21,26,41,42]. These approaches usually rely on string analysis to
compute the possible values that a string variable can take during runtime, or
on taint analysis to determine the origin of a string object, or most commonly
on a combination of both.

The work we referred so far comes mainly from academia. On the indus-
try side, many static analysis tools that help with secure web programming
have been developed such as CheckMarx [1], AppScan [4], Coverity [2] and For-
tify [3]. These tools protect against vulnerabilities for various languages (e.g. C,

78 S. Erbatur and M. Hofmann

Java) and also claim compliance with guidelines offered by institutions such as
OWASP, MISRA, SANS, and Mitre CWE up to different levels. Despite this
fact expressed in their data sheets, the question of how the commercial tools for-
malize the guidelines differs from one tool to another and the common practice
is to hardwire a given guideline into the tool. One of our goals is to develop a
configuration mechanism to formalize the guidelines so that they will be written
separately from GuideForce source code and are open to independent review by
experts.

Furthermore such a configuration mechanism will make design parametric
with respect to guidelines. A developer will only need to write down the config-
uration file when analyzing their code and be able to check the code against as
many guidelines as they want at any point of software development cycle. We
also aim at bringing the guidelines rather than vulnerabilities into the focus of
academic study.

Type systems. One may note that none of these methods provides a formal
guarantee. While guaranteeing the complete absence of vulnerabilities is not
feasible one can very well guarantee that a particular guideline has been enforced.
Type systems [32] are particularly apt for establishing rigorous guarantees for
they draw a clear distinction between the declarative statement of a program
property by means of a typability relation, and the automatic verification of the
property using a type inference algorithm. Type systems have been successfully
used not only to prove data type safety, but also to enforce security requirements
such as non-interference properties used in information flow security [24,25,27,
36]. Of special interest are also the recent works on providing strong typing
guarantees for scripting languages such as [17,18]. In another recent work [19],
the authors define a type system along with an inference system and implement
a type-based taint analysis on top of Checker Framework to analyze Java web
applications.

One may note that strong type systems are used in mainstream languages
such as Java, C# and play a central role in new programming languages such
as Scala and F# which come originally from research and are now beginning
to be used in the productive sector. One may thus argue that programmers are
familiar with the form of feedback offered by types.

An early work proposing the use of type systems in the context of secure
programming is [40] where a type system is used to check runs of functional
programs against a security automaton [34].

Human-oriented approaches. Several researchers have already pointed out that
the benefits of static analysis go beyond finding bugs in source code. In [28],
various applications of static analysis to other than finding bugs such as code-
review and computing human-readable properties of the software were outlined.
The Agile Manifesto [5] emphasized that the focus should be human and interac-
tions among others. In [14] authors give a detailed explanation of static analysis
as part of code review, explain secure programming guidelines(for web applica-
tions etc.) and provide exercises with Fortify code analyzer [3]. The industrial

GuideForce: Type-Based Enforcement of Programming Guidelines 79

tools including Fortify, mentioned earlier in this section, allow user interaction;
developer receives highlighted source code in a human-readable format.

3 Our Method

In this section we sketch how the final outcome of this project might look like.
The workflow of our system is depicted in Fig. 1.

Fig. 1. GuideForce (Type-Based Guideline Enforcement)

The input to the GuideForce system (Type-Based Guideline Enforcement)
consists of two parts: an annotation file formalising a guideline and contain-
ing instrumentation information and an automaton (“guideline automaton”)
expressing the required behaviours and a source program in Java (or an appro-
priate subset thereof). The program is then automatically annotated according
to the annotation instructions in the annotation file and subjected to inference
of effect types, the effects being derived from the guideline automaton. We note
that automata have been used in the past to describe program properties to
prevent bugs, i.e., in SLAM project from Microsoft [11] and in Metal project
from Stanford [13] both of which are used to analyze C code. However, the dif-
ference of our approach is that we later construct type and effect systems from
automata in the next phases. This process results in a list of constraints typi-
cally over finite sets whose solutions correspond to valid typing derivations. If a
solution can be found then this implies that the source program definitely abides

80 S. Erbatur and M. Hofmann

by the formalised guideline. If no solution can be found then the program might
violate the guideline and the reason for this belief can be clearly pinpointed in
the form of a typing error that will be reported to the user.

To illustrate the format and the workflow of our approach we now describe
two simple concrete instances. The first one about sanitization of user input is
modelled after [15] and related to prevention of SQL injection attack.

Example 1. Sanitization In order to avoid code injection, programmers are
required to sanitize strings to be output through a browser window by calling
appropriate framework methods that remove potentially dangerous components
such as JavaScript code or dangerous URLs. Strings that stem from the user
are regarded as potentially dangerous and in need of sanitization whereas string
literals contained in the program are regarded as safe. The guideline in plain
English is as follows:

String output must be sanitized.

The following code gives an example which follows this guideline.

class Sanitization {

void main () {

String input = getUserInput();

String s ="<script>"+ escapeToJs(input)

+"</script>";

output(s);

s ="<body>"+ escapeToHtml(input) +"</body>";

output(s);}}

Output strings within tags <script> and </script> must be sanitized by
calling the framework method escapeToJs and those within tags <html> and
</html> must be sanitized by calling the framework method escapeToHtml.

We decorate strings with labels describing their origin, whether they contain
tags like <script>, </html>, etc., and if any sanitization they have undergone.

Given this (imaginary) instrumentation we can then specify the guideline by
the following automaton:

Lit, /Script, e2JS, e2Html
�� Script

Lit, Script, e2Html, e2Js
��

Here e2JS tags the output of escapeToJs and e2Html tags the output of
escapeToHtml. String literals 〈script〉 and 〈/script〉 are mapped to Script
and /Script respectively. All other strings are tagged as Lit. It is not hard
to see that in the above code snippet, the tags of strings to be output will be
Script · e2JS · /Script and Lit · e2Html · Lit respectively. They are accepted
by the above automaton. This information is supplied by users and stored in the
annotation file whose details we omit here for lack of space.

Example 2. Authorization Let us consider the following guideline:

Any access to sensitive data must be done after authorization.

GuideForce: Type-Based Enforcement of Programming Guidelines 81

This guideline requires the programmer to call function auth before access. The
following code fragment follows the guideline:

class Authorization {

void main () {

String s;

while(true) {

try {

auth();s = access();

}

catch (AuthorizationFailed e) {

s ="Invalid access";

}

output(s);}}}

Assuming that any successful call to the framework method auth issues an
Auth event and that every call of framework method access issues an Access
event we can specify the policy with the following finite state machine.

��

The guidelines that we formalised here are only two examples and by no
means restricted to sanitization and authorization. Other examples include
appropriate initialisation and finalisation of data structures and resources, appro-
priate bounds checking, integrity checking of downloaded code, execution with
appropriate privileges, etc.

The Soot-based implementation lets us design a human-readable output file
from a given source file. Using built-in visualization tools in Soot, we will be
able to reproduce the source code with highlighted lines where the (formalized)
guidelines might be violated. Furthermore, we plan to provide the user a detailed
explanation of the guideline and also how the highlighted lines violate it. Thus,
this mechanism increases the readability and understandability of output of the
analysis by human developers.

4 Taintedness Analysis for XPath Injection

To see whether Soot fits our purpose, we decided to develop an analysis with it
for a very simple but still meaningful guideline. For this purpose, we selected a
guideline from OWASP [31] to prevent XPath injection. XPath injection is a type
of code injection that allows structured access to a node in a XML document
tree. In this simple example the use of types was not necessary; instead we
employed a rather straightforward taintedness analysis.

In the rest of this section, we first explain a sample XPath injection attack,
and then explain our implementation according to flow analysis framework pro-
vided by Soot. Our analysis is twofold. First, we develop an intraprocedural

82 S. Erbatur and M. Hofmann

analysis to analyze method bodies based on forward flow analysis provided by
Soot. Second we develop extend the intraprocedural analysis to an interproce-
dural analysis to analyze Java classes and methods of an application that uses
XML documents to store sensitive data.

In fact our interprocedural analysis can be seen as an instance of the
summary-based (also called functional) approach introduced by Pnueli and
Sharir [35]. An efficient framework that is based on the work in [35] is IFDS
given by Reps, Horwitz and Sagiv [33] which is based on graph reachability.
Soot has an extension, called Heros1, that implements the IFDS framework;
however, we preferred to implement our own interprocedural analysis directly
within Soot since this is considerably simpler and also, as we believe, will facili-
tate the extension to later more complex type-based disciplines.

We also remark that recently several tools for taint analysis have appeared,
notably Andromeda [38] for Java programs and Flowdroid [10] for Android appli-
cations.

4.1 XPath Injection Example

Similar to other types of code injection, an attacker enters (malicious) strings
such that the resulting XPath query grants unintended access to XML data. We
reproduce here the Java-based example given in the OWASP XPath injection
page [31]. For more general information and other possible attacks and coun-
termeasures, see [22]. According to the scenario in the OWASP example, an
application includes the following XML document to keep personal data:

<?xml version="1.0"encoding="utf-8"?>

<employees>

<employee id="AS789"fname="John"lname="Doo"salary="70000"/>

<employee id="AS719"fname="Isabela"lname="Dobora"salary="90000"/>

<employee id="AS219"fname="Eric"lname="Lambert"salary="65000"/>

</employees>

An XPath query to select the nodes in the XML document2 is:

/employees/employee[@id=’employeeID’]

The example uses the following lines of code to embed this query into source
code to select nodes from the document:

String eID = request.getParameter("employeeID");

String xpathExpr ="/employees/employee[@id=’ +eID +"’]";

compile(xpathExpr); /* shortened */

This implementation is vulnerable to attacks that exploit XPath syntax and
allow attackers to enter malicious input. For instance, a user could enter ’ or
’1’=’1 into the field employeeID . Then, the query formed by the application
amounts to
1 https://github.com/Sable/heros.
2 Above, fname is shorthand for first name, lname for last name and salary for annual

salary.

https://github.com/Sable/heros

GuideForce: Type-Based Enforcement of Programming Guidelines 83

/employees/employee[@id=’ ’ or ’1’=’1’]

which in turn returns all the records in the XML document.
A programming guideline to avoid XPath injection is to sanitize the user

input as for other kinds of injection attacks. As explained earlier, checking if
this guideline is followed can be reformulated as a taint analysis. This example
is actually simpler than the one described in the introduction as there is only
one way to sanitize input rather than several ones depending on the context.

4.2 Soot Implementation

We explain the first part of implementation, namely an intraprocedural forward
flow analysis for which Soot provides a framework. To analyze a method body,
we use Soot’s Jimple intermediate representation.

In a Jimple body, we call a variable tainted (i) if it is a string variable whose
value is obtained through user input (i.e. the getParameter() method in the
previous subsection) or (ii) if it is a concatenation of two strings where one or
both of them are tainted. If we restrict ourselves to intraprocedural analysis we
must also deem all return values of method calls tainted as well as contents of
fields (object variables). Below, we describe an interprocedural extension that
deals with the first restriction; dealing with the second one will be left for the
future.

We use the standard Java class Boolean to represent the values tainted
and untainted, i.e., true for tainted and false for untainted. Each (local)
variable in a Jimple body is mapped to a boolean taintedness value. To
model the mapping between variables and boolean values, we define a
map as TreeMap<Value, Boolean> and implement flowsets with a new class
AbstractState that includes the map as a field. The reason that the key set is
Value rather than Local stems from the fact that Value is the least common
superclass of Local (local variables) and IdentityRef (formal parameters). Our
abstract state also contains a boolean field broken indicating whether or not the
guideline has been violated up to this point. This would be the case, if we apply
the framework method compile to a tainted argument.

class AbstractState{

TreeMap<Value, Boolean> locals;

Boolean broken;

}

Then, we instantiate ForwardFlowAnalysis<N,A> in Soot as
ForwardFlowAnalysis<Unit, AbstractState>. According to the Soot
framework, flow analysis requires to implement some methods after extend-
ing the flow analysis class; a constructor and the methods copy(), merge()
newInitialFlow(), entryInitialFlow() and flowThrough().

Merging is implemented using union and disjunction. The analysis starts with
the assumption that all variables are untainted and that we are not broken yet.
The method flowThrough() describes how the abstract state is changed upon
the execution of basic statements, i.e. assignments and method calls.

84 S. Erbatur and M. Hofmann

java.lang.String r1, r2, r6;

r1 := @parameter0: java.lang.String;

r2 = "abdce";

r3 = ... getParameter(java.lang.String)>("employeeID");

r6 = ... m(...);

At the end of the execution of this block the “values” r1, r2 will be untainted
whereas r3 and r6 will be. The field broken will be false, however.

Interprocedural Analysis. The local variable r6 in the example above was
deemed tainted just because we did not track taintedness across method bound-
aries. In order to achieve that in a meaningful way we need to track the depen-
dency of taintedness of locals (and also broken-ness) on the taintedness of para-
meters.

We therefore use a more refined abstract state where Booleans are replaced
by elements of the lattice L = P(P) ∪ {�} where P is the set of formal parame-
ters including this, IdentityRef in Soot. A lattice element {x, y, z} represents
taintedness if one of x, y, z are tainted or rather definite untaintedness if none
of x, y, z are tainted.

class Lattice {

TreeSet<IdentityRef> params;

Boolean isTop; /* if this is set can ignore params */

}

class AbstractState{

TreeMap<Value, Lattice> locals;

Lattice broken;

}

In this case, the initial abstract state will set each formal parameter x to {x}
whereas the other locals are set to ∅.

public String m(String x, String y){

int t;

String z;

z = x + y;

compile(x)

return z; }

In this example, the abstract state is initially ({x �→ {x}, y �→ {y}, z �→
∅, t �→ ∅}, ∅). The resulting abstract state is expected to be ({x �→ {x}, y �→
{y}, z �→ {x, y}, t �→ ∅}, {x}) signifying in particular that z is tainted if either of
the arguments is and running the body will violate the guideline if x is tainted.

We then obtain the desired interprocedural analysis by making iterated calls
to the intraprocedural analysis class. First, we set up a table; a treemap that
maps each method to a summary, where a summary comprises two lattice ele-
ments, one explaining the taintedness of the return value of the method and
another its broken-ness, i.e., under what conditions on the taintedness of the
formal parameters running the method might violate the guideline.

GuideForce: Type-Based Enforcement of Programming Guidelines 85

class Summary { Lattice ret; Lattice broken; }

The summaries for the built-in methods append, compile and getParameter
are as follows:

ret broken
append {this, p0} ∅
compile ∅ {p0}
getParameter � ∅

Thus, getParameter in itself never violates the guideline (broken = ∅), but
its return value is always tainted (ret = �). Similarly, running append does
not per se violate the guideline, but its result is tainted once this or p0 are.
Running compile on a tainted input violates the guideline, (broken = {p0};
here p0 denotes the first (and only) formal parameter of the method), the return
value of compile is never tainted.

Next, for each method body and its control flow graph we compute the
abstract states at exit points by using getTail() and getFlowAfter().

for (SootClass c : cls) {

for (SootMethod m : c.getMethods()) {

Body b = m.retrieveActiveBody();

UnitGraph graph = new ExceptionalUnitGraph(b);

XPathIntra intra = new XPathIntra(graph, mtable);

Lattice ret = Lattice.latticeZero();

Lattice broken = Lattice.latticeZero();

for (Unit s : graph.getTails()) {

AbstractState abs = intra.getFlowAfter(s);

broken.union(abs.getBroken());

if(s instanceof ReturnStmt){

Value loc = ((ReturnStmt) s).getOpBox().getValue();

ret.union(abs.getLocals().get(loc));}}

newmtable.put(m,new Summary(ret, broken));}}

Herein, cls refers to the entire set of classes comprising an application to
be analysed. After the above code has been executed we then check whether
the updated method table newtable is equal to mtable (in the extensional
sense) in which case we have reached a fixpoint and mtable contains the results
of our interprocedural analysis. Otherwise, we replace mtable with newmtable
and start over. It is easy to see by induction on the number of iterations that
newmtable is pointwise a superset of mtable so that a fixpoint will be reached
and the iteration is guaranteed to terminate.

We also remark that interprocedural analysis required us to implement
flowsets (for intraprocedural analysis) with a tree-like structure, whereas it is
common to implement flowsets with hash sets. This was due to strange interac-
tions with hashing that occurred during interprocedural analysis.

Example 3. The current implementation successfully handles the motivating
example above and also the following more artificial one which demonstrates
that we support method polymorphism.

86 S. Erbatur and M. Hofmann

class D{

public static void main(String[] args){

m(getParameter());

compile(m("a"));

}

public String m(String s){

return s;

}

}

However, as already mentioned, we do not presently handle class fields. To
do that properly, a region typing [12] or a points-to analysis would be necessary.
The following example is therefore rejected since we over-cautiously consider all
content of fields potentially tainted.

Example 4

class E{

public static void main(String[] args){

F f1 = new F(getParameter());

F f2 = new F("test");

compile(f2.s);

}

class F{

public String s;

public F(String s){this.s=s;}

}

}

5 Conclusion

We have described our plans for a configurable, type-based analysis for the
enforcement of programming guidelines. In contrast to most existing uses of
formal methods in the context of secure programming, we aim at an easily con-
figurable analysis that guarantees adherence to well-specified guidelines rather
than the absence of vulnerabilities. While guidelines often implicitly form the
basis of code analysis tools they are here the primary goal of the analysis. While
of course the ultimate goal is to avoid attacks we find that it may, not least
for reasons of ultimate responsibility, be better to ensure automatically that
expert advice has been followed and that it is crystal-clear which piece of advice
(guideline) has been followed. We therefore consider the precise formalisation of
guidelines an important concept which is now, of course to be demonstrated as
feasible. Our approach focuses not only finding bugs but also human factors of
analysis. One of our goals is to provide human-readable output which presents
detailed information about how the guideline is violated in the source code. Our
decision to implement on top of Soot framework complies with this goal since
Soot has built-in visualization tools.

As a first starting point in this direction we have developed, within Soot,
a concrete analysis enforcing adherence to a guideline against XPath injection

GuideForce: Type-Based Enforcement of Programming Guidelines 87

proposed by the OWASP consortium. The next steps will consist of implementing
the region-based type system from [12] within Soot which will improve context
sensitivity of our analysis. On top of that, we can then develop further guidelines
including those described semi-formally in Sect. 3.

References

1. Checkmarx CxSAST. https://www.checkmarx.com/
2. Coverity. http://www.coverity.com/
3. Fortify Static Code Analyzer. http://www8.hp.com/us/en/software-solutions/

static-code-analysis-sast/index.html
4. IBM Secure AppScan Source. http://www-03.ibm.com/software/products/en/

appscan-source
5. Manifesto for Agile Software Development. http://agilemanifesto.org/
6. Soot - A framework for analyzing and transforming Java and Android Applications.

http://sable.github.io/soot/
7. Type-Based Java String Analysis (2012). http://jsa.tcs.ifi.lmu.de/
8. Aderhold, M., Cuellar, J., Mantel, H., Sudbrock, H.: Exemplary formalization of

secure coding guidelines. Technical report TUD-CS-2010-0060, TU Darmstadt,
Germany (2010)

9. Annamaa, A., Breslav, A., Kabanov, J., Vene, V.: An interactive tool for analyzing
embedded SQL queries. In: Ueda, K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 131–
138. Springer, Heidelberg (2010)

10. Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y.,
Octeau, D., McDaniel, P.: Flowdroid: precise context, flow, field, object-sensitive
and lifecycle-aware taint analysis for android apps. In: O’Boyle, M.F.P., Pingali, K.
(eds.) ACM Conference on Programming Language Design and Implementation,
PLDI 2014, Edinburgh, United Kingdom, 09–11 June 2014, p. 29. ACM (2014)

11. Ball, T., Rajamani, S.K.: The SLAM project: debugging system software via static
analysis. In: Launchbury, J., Mitchell, J.C. (eds.) The 29th ACM Symposium on
Principles of Programming Languages, Portland, OR, USA, 16–18 January 2002,
pp. 1–3. ACM (2002)

12. Beringer, L., Grabowski, R., Hofmann, M.: Verifying pointer and string analyses
with region type systems. In: Clarke, E.M., Voronkov, A. (eds.) LPAR-16 2010.
LNCS, vol. 6355, pp. 82–102. Springer, Heidelberg (2010)

13. Chelf, B., Engler, D.R., Hallem, S.: How to write system-specific, static checkers
in metal. In: Dwyer, M.B., Palsberg, J. (eds.) Proceedings of the Workshop on
Program Analysis for Software Tools and Engineering, PASTE 2002, Charleston,
South Carolina, USA, 18–19 November 2002, pp. 51–60. ACM (2002)

14. Chess, B., West, J.: Secure Programming with Static Analysis, 1st edn. Addison-
Wesley Professional, Reading (2007)

15. Grabowski, R., Hofmann, M., Li, K.: Type-based enforcement of secure program-
ming guidelines — code injection prevention at SAP. In: Barthe, G., Datta, A.,
Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 182–197. Springer, Heidelberg
(2012)

16. Halfond, W.G.J., Orso, A.: Preventing SQL injection attacks using AMNESIA. In:
28th IEEE and ACM SIGSOFT International Conference on Software Engineering
(ICSE 2006) - Formal Demos track (May 2006)

https://www.checkmarx.com/
http://www.coverity.com/
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/index.html
http://www-03.ibm.com/software/products/en/appscan-source
http://www-03.ibm.com/software/products/en/appscan-source
http://agilemanifesto.org/
http://sable.github.io/soot/
http://jsa.tcs.ifi.lmu.de/

88 S. Erbatur and M. Hofmann

17. Heidegger P., Bieniusa, A., Thiemann, P.: Access permission contracts for scripting
languages. In: Field, J., Hicks, M. (eds.) Proceedings of the 39th ACM Symposium
on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,
USA, 22–28 January 2012, pp. 111–122. ACM (2012)

18. Heidegger, P., Thiemann, P.: Recency types for analyzing scripting languages.
In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 200–224. Springer,
Heidelberg (2010)

19. Huang, W., Dong, Y., Milanova, A.: Type-based taint analysis for Java web appli-
cations. In: Gnesi, S., Rensink, A. (eds.) FASE 2014 (ETAPS). LNCS, vol. 8411,
pp. 140–154. Springer, Heidelberg (2014)

20. Huang, Y.-W., Huang, S.-K., Lin, T.-P., Tsai, C.-H.: Web application security
assessment by fault injection and behavior monitoring. In: WWW 2003: Proceed-
ings of the 12th International Conference on World Wide Web, pp. 148–159. ACM,
New York, NY, USA (2003)

21. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: a static analysis tool for detecting
web application vulnerabilities (short paper). In: SP 2006: Proceedings of the 2006
IEEE Symposium on Security and Privacy, pp. 258–263. IEEE Computer Society,
Washington, DC, USA (2006)

22. Klein, A.: Blind XPath Injection (2004). http://www.packetstormsecurity.org/
papers/bypass/Blind XPath Injection 20040518.pdf

23. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The soot framework for java pro-
gram analysis: a retrospective. In: Cetus Users and Compiler Infastructure Work-
shop (CETUS 2011) (2011)

24. Laud, P.: Secrecy types for a simulatable cryptographic library. In: Atluri, V.,
Meadows, C., Juels, A. (eds.) ACM Conference on Computer and Communications
Security, pp. 26–35. ACM (2005)

25. Laud, P., Uustalu, T., Vene, V.: Type systems equivalent to data-flow analyses for
imperative languages. Theor. Comput. Sci. 364(3), 292–310 (2006)

26. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with
static analysis. In: SSYM 2005: Proceedings of the 14th Conference on USENIX
Security Symposium, pp. 18–18. USENIX Association, Berkeley, CA, USA (2005)

27. Mantel, H., Sudbrock, H.: Types vs. PDGs in information flow analysis. In: Albert,
E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 106–121. Springer, Heidelberg (2013)

28. Moy, Y.: Static analysis is not just for finding bugs. CrossTalk J. Defense Softw.
Eng. 23(5), 5–8 (2010)

29. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Berlin (1999)

30. The owasp application security verification standard project. http://www.owasp.
org/index.php/ASVS. Accessed 23 June 2013

31. OWASP. XPATH Injection Java (2012). https://www.owasp.org/index.php/
XPATH Injection Java

32. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
33. Reps, T.W., Horwitz, S., Sagiv, S.: Precise interprocedural dataflow analysis via

graph reachability. In: Cytron, R.K., Lee, P. (eds.) POPL 1995: 22nd ACM Sym-
posium on Principles of Programming Languages, San Francisco, California, USA,
23–25 January 1995, pp. 49–61. ACM Press (1995)

34. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3(1),
30–50 (2000)

35. Sharir, M., Pnueli, A.: Two approaches to interprocedural data flow analysis. In:
Muchnick, S.S., Jones, N.D. (eds.) Program Flow Analysis - Theory and Applica-
tions, pp. 189–233. Prentice-Hall, Englewood Cliffs (1981)

http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf
http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf
http://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ASVS
https://www.owasp.org/index.php/XPATH_Injection_Java
https://www.owasp.org/index.php/XPATH_Injection_Java

GuideForce: Type-Based Enforcement of Programming Guidelines 89

36. Smith, G.: A new type system for secure information flow. In: CSFW, pp. 115–125.
IEEE Computer Society (2001)

37. Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-
cations. In: Proceedings of the 33rd Annual Symposium on Principles of Pro-
gramming Languages, pp. 372–382, Charleston, SC, January 2006. ACM Press,
New York, NY, USA

38. Tripp, O., Pistoia, M., Cousot, P., Cousot, R., Guarnieri, S.: Andromeda: accu-
rate and scalable security analysis of web applications. In: Cortellessa, V., Varró,
D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 210–225. Springer,
Heidelberg (2013)

39. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L.J., Lam, P., Sundaresan, V.: Soot -
a java bytecode optimization framework. In: MacKay, S.A., Johnson, J.H. (eds.)
Proceedings of the Conference of the Centre for Advanced Studies on Collaborative
Research, 8–11 November 1999, Mississauga, Ontario, Canada, pp. 13. IBM (1999)

40. Walker, D.: A type system for expressive security policies. In: Wegman, M.N., Reps,
T.W. (eds.) POPL 2000, Proceedings of the 27th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, Boston, Massachusetts, USA,
19–21 January 2000, pp. 254–267. ACM (2000)

41. Wassermann, G., Su, Z.: Sound and precise analysis of web applications for injec-
tion vulnerabilities. In: Proceedings of the ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation, San Diego, CA, June 2007.
ACM Press, New York, NY, USA

42. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:
Proceedings of the 30th International Conference on Software Engineering, Leipzig,
Germany, May 2008. ACM Press, New York, NY, USA

MoKMaSD 2015

Clustering Formulation Using Constraint
Optimization

Valerio Grossi1(B), Anna Monreale1,2, Mirco Nanni2,
Dino Pedreschi1, and Franco Turini1

1 KDDLab, University of Pisa, Largo B. Pontecorvo, 3, Pisa, Italy
{valerio.grossi,anna.monreale,dino.pedreschi,franco.turini}@di.unipi.it

2 KDDLab, ISTI-CNR, Via G. Moruzzi, 1, Pisa, Italy
{anna.monreale,mirco.nanni}@isti.cnr.it

Abstract. The problem of clustering a set of data is a textbook machine
learning problem, but at the same time, at heart, a typical optimiza-
tion problem. Given an objective function, such as minimizing the intra-
cluster distances or maximizing the inter-cluster distances, the task is to
find an assignment of data points to clusters that achieves this objective.
In this paper, we present a constraint programming model for a centroid
based clustering and one for a density based clustering. In particular,
as a key contribution, we show how the expressivity introduced by the
formulation of the problem by constraint programming makes the stan-
dard problem easy to be extended with other constraints that permit
to generate interesting variants of the problem. We show this important
aspect in two different ways: first, we show how the formulation of the
density-based clustering by constraint programming makes it very simi-
lar to the label propagation problem and then, we propose a variant of
the standard label propagation approach.

1 Introduction

One of the most important and more diffuse task in data mining and machine
learning is clustering. This data mining method partitions a set of data objects
into subsets without any supervisory information such as data labels. Each subset
is called cluster and contains objects very similar to each other, and dissimilar
to objects in other clusters. The set of clusters resulting from a cluster analysis
can be referred to as a clustering. In the literature different clustering algorithms
have been proposed suitable to operate on various kind of data objects such as
text, multimedia, databases, spatio-temporal databases, networks and so on [8,
15,18,23]. Most of the clustering algorithms can be seen as typical optimization
problems since they try to optimize a criterion specifying the clustering quality.

In this paper, we propose a formalization of some clustering problems using
the constraint programming (CP) paradigm. In particular, we introduce a CP
model for K-medoids, a prototype-based clustering, DBSCAN, a density-based
clustering and Label Propagation a community discovery algorithm (i.e., a cluster
algorithm working on network data). The advantage that derives from the use
c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 93–107, 2015.
DOI: 10.1007/978-3-662-49224-6 9

94 V. Grossi et al.

of this kind models is twofold. On one side, relying on CP paradigm we are able
to find clustering representing the optimal solution. This is an important aspect
because often imperative algorithms find local optima due to the high complexity
of the clustering problems. On the other side, by using these models we can
exploit the expressive power of the constraint programming formulation that
makes it easy to extend standard clustering problems with new user-specified
constraints, that can express some background knowledge about the application
domain or the data set, improving the clustering results.

The key contribution of this paper is focused on the fact that by our CP mod-
els we show how by slightly changing some constraints in the formulation of the
standard problems we can easily obtain new and interesting variants that capture
new properties and characteristics of the clusters. In particular, we introduce a
new variant of the Label Propagation algorithm and we show that by formulat-
ing the DBSCAN as a community discovery problem it become very similar to
Label Propagation.

The remaining of the paper is organized as follows. Section 2 discusses
the clustering problem and describes the imperative algorithms of K-medoids,
DBSCAN and Label Propagation. In Sect. 3, we introduce the constraint pro-
gramming model for the three clustering algorithms. Section 4 shows the expres-
sive power of CP formulation of the clustering models by introducing some vari-
ants of the standard clustering methods. Section 5 discusses the state-of-the-art
and, lastly Sect. 6 concludes the paper.

2 Clustering Problem

Clustering is one of the most important and well-known data mining methods.
The goal of a cluster algorithm is to group together data objects according to
some notion of similarity. Therefore, it assigns data objects to different groups
(clusters) so that objects that were assigned to the same groups are more similar
to each other than to objects assigned to another clusters.

Clustering algorithms can work on different types of data such as text, mul-
timedia, databases, spatio-temporal databases, networks and so on. The main
requirement is to have objects described by a set of features or relationships that
the algorithm uses to measure the similarity between objects and determine the
object’s cluster. In the literature, different algorithms have been proposed and
each one is designed to find clusters with specific properties [6,14,15,18]. Other
clustering algorithms have been designed to work in particular data having a
specific structure such as network data. In this field, the clustering algorithms
are commonly called community discovery algorithms. The concept of a “com-
munity” in a (web, social, or informational) network is intuitively understood as
a set of individuals that are very similar, or close, to each other, more than to
anybody else outside the community. An exhaustive survey about this kind of
algorithms are discussed in [8].

Most of the clustering algorithms can be seen as typical optimization prob-
lems because in their search of finding a grouping of data objects, they try to

Clustering Formulation Using Constraint Optimization 95

optimize a criterion, such as minimizing the intra-cluster distances or maximiz-
ing the inter-cluster distances.

We formally define a clustering C as a set of clusters C1, . . . , Ck that represent
a partition of a set of data points P = {p1, . . . , pn} obtained by optimizing a
specific criterion; so we have C ⊆ P , ∀C ∈ C : C ⊆ D,

⋃ C = D,
⋂ C = ∅. Note

that we consider non-overlapping clusters. Each point pi is represented by an
m-dimensional vector. In order to determine the similarity between data objects
we consider a distance function d(pi, pj) between two data objects. The data
objects are described by attributes, which may be qualitative or quantitative. In
case of quantitative attributes, we consider the euclidean distance between two
m-dimensional vectors.

The optimization criterion determines the quality of the clustering. There
are many different ways to measure the goodness of a clustering:

Sum of Squared Inter-cluster Distances. Given some distance function d(·, ·) over
points, e.g., the Euclidean distance, we can measure the sum of squared distances
over each cluster as follows:

∑
C∈C

∑
i,j∈|C|,i<j d2(pi, pj).

Sum of Squared Error to Centroid. A more common measure is the “error”
of each cluster, that is, the distance of each point in the cluster to the mean
(centroid) of that cluster.

Considering the centroid of a cluster as the mean of the data points that

belong to it, i.e., mC =

∑
p∈C p

|C| then, the sum of squared error is measured as:∑
C∈C

∑
p∈C d2(p,mC).

Sum of Squared Error to Medoids. Instead of using the mean (centroid) of the
cluster, we can also use the medoid of the cluster, that is, the point that is
most representative of the cluster. Let the medoid of a cluster be the point with

smallest average distance to the other points: mC = argminy∈C

∑

p∈C d2 (p,y)

|C | .

The sum of squared error to the medoids is then measured as follows:∑
C∈C

∑
p∈C d2(p,mC).

Cluster Diameter. Another measure of coherence is to measure the diameter
of the largest cluster, where the diameter is the largest distance between any
two points of a cluster. This leads to the following measure of maximum cluster
diameter: maxC∈C maxi,j∈|C|,i<j d(pi, pj).

Inter-cluster Margin. The margin between two clusters is the minimal distance
between any two points that belong to the different clusters. The margin gives
an indication of how different the clusters are from each other (e.g. how far
apart they are). This can be optimized using the following measure of minimum
inter-cluster margin: mini,j∈|C|,i<j minp1∈Ci,p2∈Cj

d(p1, p2).

2.1 Prototype-Based Clustering

Among the most studied and applied clustering methods there are the prototype-
based ones that require the number of clusters to be known in advance. These

96 V. Grossi et al.

techniques create a partitioning of the data where each cluster (partition) is
represented by a prototype called the centroid of the cluster. Two popular algo-
rithms employing this approach are K-means and K-medoids. K-means repre-
sents each centroid as the average of all points in the cluster, while K-medoids
considers the most representative actual point in the cluster. Both methods are
heuristic algorithms, that operate as follows: given a user-specified value k, the
algorithm selects k initial centroids. Successively, each point is assigned to the
closest centroid based on a distance measure. Finally, the centroids are updated
iteratively based on the points assigned to the clusters. This process stops when
centroids do not change. The quality of the clustering is computed as the sum
of squared distances of each cluster compared to its centroid. The goal is to
minimize this value. Therefore, given a set of n points, and a k value, the aim
is to find an assignment of points that minimizes the Sum of Squared Error to
centroid (SSE):

SSE =
∑
C∈C

∑
p∈C

d2(p,mC)

where mC is the centroid of the cluster C (i.e., the mean of the data points that
belong to C in K-means while the medoid in K-medoids).

2.2 Density-Based Clustering

The approaches presented in Sect. 2.1 require to know in advance the number
of clusters to be found. Moreover, they tend to provide clusters with globu-
lar shapes. Unfortunately, in many real applications, we are in the presence of
non-globular regions or regions that are quite dense surrounded by areas with
low density, typically formed by noise. In this perspective, clusters can also be
defined implicitly by the regions of higher data density, separated from each
other by regions of lower density. The price for this flexibility is a difficult inter-
pretation of the obtained clusters. One of the most famous algorithm based on
the notion of density of regions is DBSCAN [15]. This approach does not rely on
an optimization algorithm, it is based on measuring the data density at a certain
region of the data space and then, defining clusters as regions that exceed a cer-
tain density threshold. The final clusters are obtained by connecting neighboring
dense regions. Figure 1 shows an example for the two-dimensional space. Four
groups are recognized as clusters and they are separated by an area where the
data density is too low. DBSCAN identifies three different classes of points:

Core points. These points are in the interior of a density-based cluster. A
point is a core point if the number of points within a given neighborhood
around the point as determined by the distance function and a user- specified
distance parameter, ε, exceeds a certain threshold, MinPts, which is also a
user-specified parameter.
Border points. These points are not core points, but fall within the neigh-
borhood of a core point. A border point can fall within the neighborhoods
of several core points.

Clustering Formulation Using Constraint Optimization 97

Fig. 1. Example of density-based clusters [5].

Noise points. A noise point is any point that is neither a core point nor a
border point.

The DBSCAN algorithm is the following:

1. Label all points as core, border, or noise points.
2. Eliminate noise points.
3. Put an edge between all core points that are within ε of each other.
4. Make each group of connected core points into a separate cluster.
5. Assign each border point to one of the clusters of its associated core points.

2.3 Label Propagation

In the network field a task very similar to clustering is community discovery,
which can be seen as a network variant of standard data clustering. The con-
cept of a “community” in a (web, social, or informational) network is intuitively
understood as a set of individuals that are very similar, or close, to each other,
more than to anybody else outside the community [8]. This has often been trans-
lated in network terms into finding sets of nodes densely connected to each other
and sparsely connected with the rest of the network. An interesting community
discovery algorithm is the Label Propagation algorithm [23] that detects com-
munities by spreading labels through the edges of the graph and then labeling
nodes according to the majority of the labels attached to their neighbors, iter-
ating until a general consensus is reached.

Iterative Label Propagation (LP). Suppose that a node v has neighbors
v1, v2, . . . , vk and that each neighbor carries a label denoting the community
that it belongs to. Then, v determines its community based on the labels of
its neighbors. [23] assumes that each node in the network chooses to join the
community to which the maximum number of its neighbors belong to. As the
labels propagate, densely connected groups of nodes quickly reach a consensus
on a unique label. At the end of the propagation process, nodes with the same

98 V. Grossi et al.

labels are grouped together as one community. Clearly, a node with an equal
maximum number of neighbors in two or more communities will take one of the
two labels by a random choice. For clarity, we report here the procedure of the
LP algorithm. Note that, in the following Cv(t) denotes the label assigned to the
node v at time (or iteration) t.

1. Initialize the labels at all nodes in the network. For any node v, Cv(0) = v.
2. Set t = 1.
3. Arrange the nodes in the network in a random order and set it to V .
4. For each vi ∈ V , in the specific order, let Cvi

(t) = f(Cvi1(t−1), . . . , Cvik
(t−1).

f here returns the label occurring with the highest frequency among neighbors
and ties are broken uniformly randomly.

5. If every node has a label that the maximum number of their neighbors have,
or t hits a maximum number of iterations tmax then stop the algorithm. Else,
set t = t + 1 and go to (3).

The drawback of this algorithm is the fact that ties are broken uniformly
randomly. This random behavior can lead to different results for different execu-
tions and some of these results cannot be optimal. In Fig. 2, we show how given
the same network as input of LP we obtain four different results.

Fig. 2. The result of four executions of LP Algorithm.

2.4 Constraint-Based Clustering

Clustering algorithms are generally used in an unsupervised way, i.e., they do not
require any external knowledge to be run. However, sometimes in real application

Clustering Formulation Using Constraint Optimization 99

domains, it is often the case that the data analyst possesses some background
knowledge (about the application domain or the data set) that could be useful
in clustering the data. Therefore, incorporating user knowledge into algorithms
could make them better both in terms of efficiency and quality of results. These
constraints help to reduce the task complexity and to find clusters that satisfy
user-specified constraints.

The introduction of user-specified constraints in the standard algorithms
leads to the study of a new branch of clustering algorithms [3,22,24,27]. The
possible constraints that can be specified are cluster-level constraints, that define
some specific requirements on clusters such as the minimum or the maximum
number of elements, and instance-level constraints, that define a property of
two data object such as the fact that they must be or cannot be in the same
cluster [25]. In the following we recall the definition of the most important user
constraints:

– Must-link constraint requires that two points belong to the same cluster, so
given two points pi and pj it is expressed by: ∃C ∈ C : pi ∈ C ∧ pj ∈ C.

– Cannot-link constraint requires that two points belong to a different clusters,
so given two points pi and pj it is expressed by: ∀C ∈ C : ¬(pi ∈ C ∧pj ∈ C).

– Cluster size constraints require that the found clusters have a minimum or a
maximum numbers of elements. These constraints are respectively expressed
by: ∀C ∈ C : |C| ≥ α and ∀C ∈ C : |C| ≤ α.

– Cluster diameter constraint requires that each cluster must have a diameter
at most β. In this case, we express this constraint by: ∀C ∈ C,∀pi, pj ∈ C :
d(pi, pj) ≤ β.

– Margin constraint requires that the margin between any two different clusters
to be above a certain threshold δ. This constraint is also called δ-constraint
and is expressed as follows: ∀C,C ′ ∈ C,∀pi ∈ C, pj ∈ C ′ : d(pi, pj) ≥ δ.

3 Modeling Clustering by Constraint Programming

This paper proposes a constraint programming formulation of some of the most
famous clustering methods: K-medoids, DBSCAN and Label Propagation.
Constraint Programming (CP) is a declarative programming paradigm where
the relations between variables are defined in terms of constraints. Constraints
do not specify a step or sequence of steps to be executed (as in imperative pro-
gramming), but rather the properties of a solution to be found. CP is a powerful
paradigm in solving combinatorial search problems. A Constraint Satisfaction
Problem (CSP) is a triple (V,D, Y) composed of a set of variables V , a set of
domains D and a set of constraints Y over the variables V . Sometimes a CSP
can be associated to an objective function to be optimized to find a solution.
In this case we have a Constraint Optimization Problem that is a quadruple
(V,D, Y, f), where we have also the objective function f that must be mini-
mized or maximized.

100 V. Grossi et al.

The clustering problems, described as an optimization problem, must opti-
mize one of the criterion specified in Sect. 2 representing the quality of the clus-
tering.

In this paper, we introduce the formalization of some clustering methods as
optimization problems by using constraint programming formulation. We denote
by A the matrix representing the possible clusters where ai,j = 1 if data point
pi belongs to the cluster j and ai,j = 0 otherwise.

Clearly, we re-define all the user-specified constraints described above by
using the constraint programming formulation. Therefore, we have:

– Must-link constraint between two points pi and pj can be expressed by: ∃t ∈
C : ai,t + aj,t = 2.

– Cannot-link constraint between two points pi and pj can be expressed by:
∀t ∈ C : ai,t + aj,t ≤ 1.

– Cluster size constraints can be expressed as follows: ∀t ∈ C :
∑

∀i ai,t ≥ α and
∀t ∈ C :

∑
∀i ai,t ≤ α.

– Cluster diameter constraint, given a threshold β, can be formulate as:
∀pi, pj . i < j and d(pi, pj) ≥ β → ∀t ∈ C ai,t + aj,t = 2.

– Margin constraint, given a threshold δ, can be expressed as: ∀pi, pj . i < j and
d(pi, pj) ≥ δ → ∀t ∈ C ai,t + aj,t ≤ 1.

3.1 CP Model for K-medoid Clustering

In this section, we provide a constraint formalization of the K-medoid clustering
starting from the definition of SSE to medoids introduced in Sect. 2. In this
context, given a set of points and a parameter K specifying the number of
clusters to find, the aim is to find an assignment of points as well as medoids
such that the sum of squared error to medoids is minimized. We recall that the
problem of finding clusters providing an optimal solution considering Euclidean
metric measure for a general value of K, e.g. minimizing SSE, is a NP Hard
problem [17].

The proposed model assumes that both the assignment of points to clusters
and the actual medoids are discovered during solution search. More precisely
we do not explicitly constrain the medoid according to its cluster and inversely,
we do not impose any constraints among the points. As shown in Table 1, we
introduce all the variables representing point membership (4) and medoids (5).
The matrix A stores the clustering partition. In particular, the final model is
represented by an assignment of the points to the clusters. Moreover, the model
provides the selection of most representative points as medoids in mi,j . The
K-medoid algorithm is based on euclidean distance computed by the function
d(i, j).

Our formalization defines the optimization function, as proposed in Sect. 2,
i.e. it sums for all points i ∈ P and cluster Cj ∈ C, the squared distance between
i and the medoid of j. Furthermore, two additional constraints are required to
enforce that a point can only belong to one cluster (7) implying that Ci ∩ Cj =
∅, ∀Ci, Cj ∈ C, and each cluster can have only one medoid (8).

Clustering Formulation Using Constraint Optimization 101

Table 1. A K-medoid based clustering formulation.

minimize
C

SSE(C), (1)

s.t.

P is the set of points (2)

K number of required clusters (3)

ai,Cj ∈ {0, 1} : ai,Cj = 1 iff point i ∈ P is assigned to cluster Cj ∈ C (4)

mi,Cj ∈ {0, 1} : mi,Cj = 1 iff point i ∈ P is the medoid of cluster Cj ∈ C
(5)

SSE(Cj ∈ C) =
∑

i∈P

ai,Cj

∑

h∈P&h�=i

mh,Cj d2(i, h) (6)

∑

Cj∈C
ai,Cj = 1 ∀i ∈ P (7)

∑

i∈P

mi,Cj = 1 ∀Cj ∈ C (8)

|
⋃

C∈C
C| = |P | (9)

|C| = K (10)

Table 2. DBSCAN formulation.

maximize(
∑

lj∈L

min(1,
∑

i∈P

ki,lj)), (11)

s.t.

P is the set of points (12)

L = {l1, . . . , ln, ln+1} is an ordered set of colors (or labels) (13)

ai,j ∈ {0, 1} : ai,j = 1 iff distance between points i,j ∈ P : d(i, j) ≤ ε (14)

ki,lj ∈ {0, 1} : ki,lj = 1 iff point i ∈ P has color lj ∈ L (15)

ri ∈ {0, 1} : ri = 1 iff point i ∈ P is a core point, i.e.,
∑

j∈P

ai,j ≥ minp

(16)
∑

lj∈L

ki,lj = 1 ∀i ∈ P (17)

rh = 1 ∧ rp = 1 ∧ ah,p = 1 ∧ kh,lj = 1 ⇒ kp,lj = 1 (18)

ri = 0 ⇒ ki,lj)91(1=

where lj = min{{lj ∈ L \ {ln+1}|ah,i = 1 ∧ rh = 1 ∧ kh,lj = 1} ∪ {ln+1}}

102 V. Grossi et al.

3.2 CP Model for DBSCAN Clustering

Let us now introduce a constraint programming model for the density-based
clustering DBSCAN. In particular, we reformulate the problem in the context
of networks by considering the set of points P as nodes and setting an edge
between two nodes i and j, if the distance between i and j is less than a given
ε. Clearly, in this way we have that the neighbors of a node (point) i are the set
of points within a distance ε. Our intended objective is to capture the basic idea
of that “each node has the same label of all its neighbors”.

DBSCAN algorithm does not rely on an optimization algorithm however,
its constraint programming formulation shows how, re-defining this task as a
community discovery problem in a network, this approach becomes very similar
to the Label Propagation approach that finds clusters of nodes in networks [23].
Moreover, we show how the expressivity introduced by the formulation of the
problem by constraint programming makes the standard problem easy to be
extended with other constraints that permit to generate interesting variants of
the same problem.

More in detail, the model in Table 2 is described as follows. Variables ki,lj
denotes the color (label lj) of a point (node i). Variable ai,j indicates the presence
or absence of an edge between two nodes i and j. Variables ri denote whether
node i is a core point or not.

We also consider two domains: (a) the set of points P , and (b) the ordered
set of colors L. Note that in the set of colors we have the color ln+1 that is an
additional color used for coloring the noise points. The model imposes that a
point has one and only one color, and that all the connected core points must
have the same color (18). Another requirement is that each point that is not a
core point takes the same color of the core points that are connected to it. If it
does not have any core point around, then this point takes the additional color
ln+1 because it is a noise (19). Such a constraint also captures the special case in
which the point i can be connected to more than one core with different colors.
In this case, the model assigns to i the color of the core point that in the ordered
set C \ {ln+1} has a lower rank. Finally, the model is intended to maximize the
number of different colors. Notice that a solution where all points have distinct
colors does not satisfy Constraint (18) because connected points do not have the
same color.

3.3 CP Model for Label Propagation

Let us now propose a constraint programming model for the community discov-
ering problem based on label propagation. Our aim is to capture the basic idea
that “each node takes the label of the majority of its neighborhood”. The model
is reported in Table 3 and described as follows. Variables ai,j indicate the pres-
ence of an edge between nodes i and j. Variables ki,lj denote the color (label) lj
of a node i in the network. There are three domains: (a) the set of nodes N , (b)
the set of edges E, and (c) an ordered set of colors L. A node can be assigned
one and only one color. Variables ni,lh denote the number of neighbors of node

Clustering Formulation Using Constraint Optimization 103

Table 3. Label Propagation formulation.

maximize(
∑

lj∈L

min(1,
∑

i∈N

ki,lj)), (20)

s.t.

E is the set of edges (21)

N is the set of nodes (22)

L = {l1, . . . , ln} is an ordered set of colors (or labels) (23)

ai,j ∈ {0, 1} : ai,j = 1 iff the edge between nodes i and j, (i, j) ∈ E (24)

ki,lj ∈ {0, 1} : ki,lj = 1 iff node i ∈ N has color lj ∈ L (25)
∑

lj∈L

ki,lj = 1 ∀i ∈ N (26)

∑

∀j.ai,j=1

kj,lh = ni,lh lh ∈ L (27)

∀i ∈ N : ki,lj = 1 where lj = min{lj ∈ L|max{ni,l1 , . . . , ni,ln} = ni,lj}
(28)

i with assigned color lh. The model assigns to the node i the color lh if it is
the most popular among its neighbors, as shown in (28). Such a constraint also
captures the case of ties. In such a case, node i is assigned the color that has
the lowest rank in the ordered set L. Finally, the model maximizes the number
of different colors in the network, as shown in (20).

Fig. 3. The result of the execution of CP-LP model.

This model highlights the similarity between Label Propagation and the
Density-based clustering problem, and thanks to the constraint programming
formulation we can notice that the model for density-based clustering is a vari-
ant of the standard label propagation. Indeed, the only difference is due to the
fact that the Density-based model requires that “each node has the same label

104 V. Grossi et al.

Table 4. Formulation of a variant of standard Label Propagation.

maximize(
∑

lj∈L

min(1,
∑

i∈N

ki,cj)), (29)

s.t.

E is the set of edges (30)

N is the set of nodes (31)

L = {l1, . . . , ln} is an ordered set of colors (or labels) (32)

ai,j ∈ {0, 1} : ai,j = 1 iff the edge between nodes i and j, (i, j) ∈ E (33)

ki,lj ∈ {0, 1} : ki,lj = 1 iff node i ∈ N has color lj ∈ L (34)

gi ∈ {0, 1} : gi = 1 iff the node i has degree ≥ γ (35)
∑

lj∈L

ki,lj = 1 ∀i ∈ N (36)

∑

∀j.ai,j=1

kj,lhgj = ni,lh lh ∈ L (37)

∀i ∈ N : ki,lj = 1 where lj = min{lj ∈ L|max{ni,l1 , . . . , ni,ln} = ni,lj}
(38)

of all its neighbors”, and not the most frequent label. Constraints (18) and (19)
in Table 2 and Constraint (28) in Table 3 express this difference. By executing
our model we obtain the optimal solution depicted in Fig. 3, where we consider
as input the same network in Fig. 2.

4 Variants of the Standard Clustering Algorithms

The expressivity introduced by the formulation of the problems by constraint
programming makes the standard methods easy to be extended with other con-
straints that permit to generate interesting variants.

For each formulation of the clustering problems introduced above, we could
easily specify some constraints on the cluster size, or on the maximum diam-
eter of the clusters and so on, by adding one of the user-specified constraints
defined in Sect. 3. However, we can also extend the problems by changing one
of the constraints of the standard formulation. We extended the standard Label
propagation problem as follows.

Given the neighborhood of a node, we give to each node an importance on
the basis of its degree; more specifically, in order to compute the most frequent
label of its neighborhood the nodes with a degree less than a specific threshold
γ are not considered. This means that the propagation of labels is guaranteed
by important nodes (i.e., nodes with a minimum degree equal to γ), while the
nodes with a low degree takes a label in a passive way. We recall that the degree
of a node i is the number of nodes that are directly connected to i.

Clustering Formulation Using Constraint Optimization 105

As reported in Table 4, the model presented in Sect. 3.3 can be easily trans-
formed in order to consider this new constraint. We can simply add a variable gi
that is equal to 0 if the node i has a degree less then γ (Constraint (35)); then,
the computation of the neighborhood takes into consideration also this variable
to filter out the nodes with low degree (37).

5 Related Work

Initial approaches in constrained clustering focused on the introduction of
instance-level constraints, especially must- and cannot-link [26,27]. Several prop-
erties are related to instance-level constraints [11]. Furthermore, [10,12,13] define
δ and ε-constraint forcing clustering with specific spatial properties among items.
COP-KMeans [27] represents a popular approach for the integration of instance
level constraints in the classical K-means approach. The algorithm takes as input
the data, the number of cluster required, a set of must-link, and a set of cannot-
link. COP-KMeans ensures that when the clustering is updated none of the
specified constraints is violated, performing a hard constraint satisfaction. [22]
proposes a modification of COP-KMeans introducing an ensemble approach for
managing constraint priorities in order to provide a model even though all the
constraints cannot be satisfied. Similarly, PC-KMeans [3] permits that some con-
straints can be violated enabling a soft constraint satisfaction. In this case every
must- and cannot-link has a weight w associated to it. By setting the value w, the
algorithm looks for a trade-off between minimizing the total distance between
points and cluster centroids, and the cost of violating the constraints. Other
approaches do not require that any constraint must be satisfied but they per-
form metric learning from constraints or adopt an hybrid solution including both
constraints satisfaction and metric learning [4]. The set of constraints is mapped
into distance measures [2]. The basic idea of these approaches is to weight the
features differently, based on their importance in the computation of the dis-
tance measure based on the available constraints [7,28]. E.g. [28] parametrizes
the Euclidean distance using a symmetric positive-definite matrix, simultane-
ously minimizing the distance between must-linked instances and maximizing
the distance between cannot-linked instances. A probabilistic model based on
Hidden Markov Random Fields (HMRF) can be used for incorporating con-
straints into prototype-based clustering. In [4] the objective function is derived
from the posterior energy of the HMRF framework, and the authors propose a
EM-based clustering algorithm (HMRF-KMeans) for finding (local) minimum
of this objective function. The distance measure is estimated during clustering
to validate the user-specified constraints as well as to incorporate data variance.
MPCK-Means [7] learns an individual metric for each cluster allowing violations
by imposing penalties. Recently, [16,21] proposed the use of constraint program-
ming for modeling data mining tasks. In particular, [16] addressed the problem of
searching frequent k-patterns, that cover the whole dataset, while [21] proposed
a CP formulation of the constraint-based sequence mining task, that has the
goal to find sequences of symbols in a large number of input sequences and that

106 V. Grossi et al.

satisfies some constraints specified by the user. In [20], instead authors proposed
an approach based on Integer Linear Programming where the model, knowing
a set of candidate clusters, searches for the best clustering among the subset of
clusters. Integer Linear programming is also used in [1], where a constraint-based
approach for K-means is investigated by using column generation; this work is
based on [19]. In [9] authors proposed a declarative and generic framework, based
on CP, which enables to design clustering tasks by specifying an optimization
criterion and some constraints either on the clusters or on pairs of objects.

6 Conclusion

In this paper, we have introduced a CP model for a medoid based clustering.
Moreover, we have proposed a model for a density based clustering and one for a
community discovery problem corresponding to a clustering algorithm in network
data. We showed the powerful of the expressivity introduced by the constraint
programming formulation that enables an easy integration of the standard clus-
tering problems with other constraints. We presented this aspect in two different
ways: first, we showed how the formulation of the density-based clustering by
constraint programming makes it very similar to the label propagation problem
and then, we proposes a variant of the standard label propagation approach.

Acknowledgements. This work was supported by the European Commission under
the project Inductive Constraint Programming (ICON) contract number FP7-284715.

References

1. Babaki, B., Guns, T., Nijssen, S.: Constrained clustering using column genera-
tion. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 438–454. Springer,
Heidelberg (2014)

2. Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions
using equivalence relations. In: ICML, pp. 11–18 (2003)

3. Basu, S., Banerjee, A., Mooney, R.J.: Active semi-supervision for pairwise con-
strained clustering. In: SDM (2004)

4. Basu, S., Bilenko, M., Mooney, R.J.: A probabilistic framework for semi-supervised
clustering. In: KDD, pp. 59–68 (2004)

5. Berthold, M.R., Borgelt, C., Hppner, F., Klawonn, F.: Guide to Intelligent Data
Analysis: How to Intelligently Make Sense of Real Data, 1st edn. Springer, London
(2010)

6. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
Kluwer Academic Publishers, Norwell (1981)

7. Bilenko, M., Basu, S., Mooney, R.J.: Integrating constraints and metric learning
in semi-supervised clustering. In: ICML, ACM (2004)

8. Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery
methods in complex networks. Stat. Anal. Data Min. 4(5), 512–546 (2011)

9. Dao, T.-B.-H., Duong, K.-C., Vrain, C.: A declarative framework for constrained
clustering. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML
PKDD 2013, Part III. LNCS, vol. 8190, pp. 419–434. Springer, Heidelberg (2013)

Clustering Formulation Using Constraint Optimization 107

10. Davidson, I., Ravi, S.S.: Clustering with constraints: feasibility issues and the k-
means algorithm. In: SDM (2005)

11. Davidson, I., Ravi, S.S.: Identifying and generating easy sets of constraints for
clustering. In: Proceedings, The Twenty-First National Conference on Artificial
Intelligence and the Eighteenth Innovative Applications of Artificial Intelligence
Conference (AAAI), pp. 336–341 (2006)

12. Davidson, I., Ravi, S.S.: The complexity of non-hierarchical clustering with instance
and cluster level constraints. DMKD 14(1), 25–61 (2007)

13. Davidson, I., Ravi, S.S.: Using instance-level constraints in agglomerative hierarchi-
cal clustering: theoretical and empirical results. Data Min. Knowl. Discov. 18(2),
257–282 (2009)

14. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters. J. Cybern. 3(3), 32–57 (1974)

15. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In: Simoudis, E., Han, J.,
Fayyad, U.M. (eds.) KDD, pp. 226–231. AAAI Press (1996)

16. Guns, T., Nijssen, S., Raedt, L.D.: k-pattern set mining under constraints. IEEE
Trans. Knowl. Data Eng. 25(2), 402–418 (2013)

17. Hansen, P., Aloise, D.: A survey on exact methods for minimum sum-of-squares
clustering. http://www.math.iit.edu/Buck65files/msscStLouis.pdf, pp. 1–2,
January 2009

18. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a k-means clustering algorithm.
J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

19. Merle, O.D., Hansen, P., Jaumard, B., Mladenović, N.: An interior point algorithm
for minimum sum of squares clustering. SIAM J. Sci. Comput. 21, 1485–1505
(1997)

20. Mueller, M., Kramer, S.: Integer linear programming models for constrained clus-
tering. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS, vol.
6332, pp. 159–173. Springer, Heidelberg (2010)

21. Negrevergne, B., Guns, T.: Constraint-based sequence mining using constraint
programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 288–305.
Springer, Heidelberg (2015)

22. Okabe, M., Yamada, S.: Clustering by learning constraints priorities. In: ICDM,
pp. 1050–1055 (2012)

23. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E 76(2), 036106+ (2007)

24. Ruiz, C., Spiliopoulou, M., Menasalvas, E.: C-DBSCAN: density-based clustering
with constraints. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W.,
Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 216–223. Springer,
Heidelberg (2007)

25. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: ICML, pp.
1103–1110 (2000)

26. Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In:
AAAI/IAAI, p. 1097 (2000)

27. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering
with background knowledge. In: ICML, pp. 577–584 (2001)

28. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with
application to clustering with side-information. In: Advances in Neural Information
Processing Systems, vol. 15, pp. 505–512. MIT Press (2002)

http://www.math.iit.edu/Buck65files/msscStLouis.pdf

Towards a Boosted Route Planner
Using Individual Mobility Models

Riccardo Guidotti1,2(B) and Paolo Cintia1,2

1 KDDLab, University of Pisa, Largo B. Pontecorvo, 3, Pisa, Italy
{riccardo.guidotti,paolo.cintia}@di.unipi.it

2 KDDLab, ISTI-CNR, Via G. Moruzzi, 1, Pisa, Italy
{riccardo.guidotti,paolo.cintia}@isti.cnr.it

Abstract. Route planners generally return routes that minimize either
the distance covered or the time traveled. However, these routes are
rarely considered by people who move in a certain area systematically.
Indeed, due to their expertise, they very often prefer different solutions.
In this paper we provide an analytic model to study the deviations of
the systematic movements from the paths proposed by a route planner.
As proxy of human mobility we use real GPS traces and we analyze a set
of users which act in Pisa and Florence province. By using appropriate
mobility data mining techniques, we extract the GPS systematic move-
ments and we transform them into sequences of road segments. Finally,
we calculate the shortest and fastest path from the origin to the destina-
tion of each systematic movement and we compare them with the routes
mapped on the road network. Our results show that about 30–35 % of
the systematic movements follow the shortest paths, while the others fol-
low routes which are on average 7 km longer. In addition, we divided the
area object of study in cells and we analyzed the deviations in the flows
of systematic movements. We found that, these deviations are not only
driven by individual mobility behaviors but are a signal of an existing
common sense that could be exploited by a route planner.

1 Introduction

Route planners are systems which help users selecting a route between two loca-
tions. When providing directions, web and mobile mapping services generally
suggest the shortest route. Popular route planning system such as Google Maps,
Open Street Maps etc. generate diverging directions using powerful libraries of
roads and road attributes [16]. However, they often ignore both the time at which
a route is to be traveled and, more important, the preferences of the users they
serve. Since cities are becoming crowded and jammed, smart route planning are
gathering an increasing interest. In such a context, a route planner which takes
into account users’ preferences [8], and which exploits the crowd expertise w.r.t
urban mobility in order to identify the best route, can be more desirable and
helpful than an ordinary route planner [6].

A route planner which exploits individual mobility models to improve the
planning will have a real advantage from these models only if the users do not
c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 108–123, 2015.
DOI: 10.1007/978-3-662-49224-6 10

Towards a Boosted Route Planner Using Individual Mobility Models 109

follow the shortest path in their systematic movements but deviate from them.
Consequently, the target of this work is twofold. The first one is to understand
and estimate how much the systematic movements of a user are different from
the shortest paths between the origin and destination locations. The intuition is
that a user which lives and acts in a certain territory do not automatically select
the shortest path. This can happen for many reasons: e.g. traffic conditions,
road quality, for passing close to the cheapest petrol station, for avoiding roads
with control of speed etc. However, independently from the reasons, if there is
a divergence between the systematic route with origin point o and destination
point d, and the shortest route from o to d suggested by a route planner, then
also other users could benefit from this kind of knowledge which comes from
individual expertise on a certain area. This lead to the second and main target:
a boosted route planner that, when is possible, proposes as alternative to the
shortest path a route which is frequently followed by someone. This planner
would be a route planner coming from the wisdom of the crowd in mobility.

By exploiting individual mobility profile models [15] and trajectory map-
matching [5] for a set of users in Pisa and Florence province, we retrieved the
systematical movements of the users, named routines, and we mapped these rou-
tines along a road network. By calculating the shortest path from the origin o to
the destination d of each routine with an ordinary route planner we obtained the
movements a user would have followed when there is not expertise of the area.
Then we compared the routines with the corresponding shortest path. Thanks to
this analysis we are able to (i) quantify how much human mobility differs from
the shortest path and, on the other hand how good can be an approximation of
human mobility made with the shortest paths, (ii) at which level appears the
divergence between the routine and the shortest path w.r.t. origin/destination,
and (iii) which are the road intersections, areas and flows of movements in which
users mobility detaches more in comparison with the shortest paths.

Our experiments show that about 30–35% of the routines follow the short-
est paths, while the others follow routes which are on average 7 km longer. In
addition, 20 % of the routines deviate at the very beginning from the suggested
paths. Despite these differences, 60 % of the route returned by the planner would
belong to the individual mobility profiles. Consequently, even if the analyzed
drivers follow routines quite similar to the routes suggested by a route planner,
they deviate from them not to minimize the travel distance but for some other
unknown reasons. Finally, we discovered a sort of collective “common sense”:
when moving from a certain origin to a certain destination nearly all the drivers
deviate in the same area. This indicates that different users which systematically
drive along the same roads develop similar individual mobility behaviors.

Preliminary techniques are illustrated in Sect. 2. In Sect. 3 we propose our
analytic model. We show in Sect. 4 the results of our analysis. In Sect. 5 we sum-
marize some related works on route planning. Finally, Sect. 6 reports a summary
of the contributions of the paper and possible future works.

110 R. Guidotti and P. Cintia

2 Preliminaries

Movements are usually performed by people in specific areas and time instants.
These people are called users or drivers and each movement is composed by a
sequence of spatio-temporal points (x, y, t) where x and y are the coordinates,
while t is the time stamp. We call trajectory the movements of a user described
by a sequence of spatio-temporal points:

Definition 1 (Trajectory). A trajectory m is a sequence of spatio-temporal
points m = [(x1, y1, t1), . . . , (xn, yn, tn)] where the spatial points (xi, yi) are
sorted by increasing time ti, i.e., ∀1 ≤ i ≤ k we have ti < ti+1

The set of all the trajectories traveled by a user u makes her individual history :

Definition 2 (Individual History). Given a user u, we define the individual
history of u as the set of traveled trajectories denoted by Hu = {m1, . . . , mk}.

2.1 Individual Mobility Profiles

It is possible to extract the systematic movements of a user u by following the
profiling procedure proposed in [15]. This approach groups the trajectories using
a clustering algorithm equipped with a distance function defining the concept of
trajectory similarity:

Definition 3 (Trajectory Similarity). Given two trajectories m′ and m′′, a
trajectory distance function dist and a distance threshold ε, we say that m′ is
similar to m′′ (m′ ∼ m′′) iff dist(m′,m′′) ≤ ε.

The result is a partitioning of the original dataset from which the clusters with
few trajectories and those containing noise are filtered out. Finally, the represen-
tative trajectory are extracted from the remaining clusters. These representative
trajectories are called routines and the set of routines is called mobility profile:

Definition 4 (Routine and Mobility Profile). Let Hu the individual history
of a user u, ms a minimum size threshold, dist a distance function and ε a
distance threshold. Given a grouping function M = group(Hu,ms, ε, dist), such
that M = {M1 . . . Mk} where Mi ⊂ Hu, we define a routine ri as the medoid
trajectory of a group Mi. The set of routines extracted from M is called mobility
profile and is denoted by Pu = {r1 . . . rk}.
A mobility profile describes an abstraction in space and time of the systematic
movements: the user’s real movements are represented by a set of trajectories
delineating the generic paths followed. Moreover, the exceptional movements are
ignored due to the fact they will not be part of the profile. Figure 1 depicts an
example of mobility profile extraction. We name getmedoids(M) the function
that takes in input the output of group() and returns the routines, i.e. the medoid
trajectories {r1 . . . rk} of the groups in M describing the mobility profile Pu.

Towards a Boosted Route Planner Using Individual Mobility Models 111

Fig. 1. The user individual history (Hu), the clusters identified by the grouping func-
tion (M1,M2,M3) and the extracted individual routines (Pu = {r1, r2}) forming the
individual mobility profile.

2.2 Trajectory Map Matching

A trajectory m coming from GPS or GSM dataset generally does not contain the
relative raversed road network segments. Such enrichment might not be straight-
forward, especially when raw trajectory data have a high sampling rate. This
lack of information can be restored by means of some map matching techniques.
We adopted the gravity model [5] as method to match each single trajectory
point to the road segment it belongs to:

Definition 5 (Gravity Force Attraction). Given a point pi and a set of road
segments describing the road network S = {s1, . . . , sr} where sj = {pstart, pend},
we define the gravity force attraction of a segment sj for a point pi as:

GFA(pi, sj) = w(pi,sj) = wd
(pi,sj)

· wθ
(pi,sj)

where wd
(pi,sj)

= 1− dist(pi,sj)
∑

sk∈S

dist(pi,sk)
, wθ

(pi,sj)
= 1− ang(pi,rj)

∑

sk∈S

ang(pi,sk)
, dist is the euclid-

ean distance between a point and a segment, and ang is the absolute difference
between the direction of the point and the direction of the segment.

This model can be applied over the whole road network segments. However,
in real applications the set of segments S to be considered can be very large. For
this reason, it is possible to use a nearest neighbor approach and consider only
a subset Sk ⊂ S containing the k segments closest to a given point.

Given a GPS trajectory m = {p1, . . . , pn} and a set of road segments S, it
is possible to assign each point pi to the segment with the most powerful force
s̄j = σ(pi, S, k) = argmaxsj∈Sk

(GFA(pi, sj)). The Gravity Model adopted has
also been used to estimate the traveltime of each matched road segment; once
every trajectory point have been matched, the typical travel time of a segment
s, given P the set of points matched to s, is defined as

∑

pi∈Pspeed(pi)∗GFA(pi,s)
∑

pi∈PGFA(pi,s)
.

Road network travel times have been estimated from a dataset composed by 9.8
millions car travel.

Definition 6 (Trajectory Map Matching). Given a trajectory m and a set
of road segments S, we refer to m∗ as the trajectory m on the road segment
network S, i.e. the points of m∗ belong to the segments in S:

m∗ = mapmatch(m,S, k)

where m∗ = [p∗
1, . . . , p

∗
n] = [s̄1, . . . , ¯sn−1] and [p∗

i , p
∗
i+1] = s̄j = σ(pi, S, k)

112 R. Guidotti and P. Cintia

Thus, m can be transformed in the map matched version m∗ = [p∗
1, . . . , p

∗
n] con-

taining points which belong to the road segments S, where p∗
1, . . . , p

∗
n maximize

the attractions with p1, . . . , pn, i.e. m∗ is the best representation of m on S. Note
that it is sufficient to set k greater than one to guarantee the denominators be
different to zero. A refinement is needed to obtain the map matched trajectory
m∗, i.e. a path must be added for each couple of points which are not directly
connected. This is a common case when low sampled GPS data are involved: in
this scenario, a GPS point every ∼90 s is recorded. To find such path followed
by the driver, we used a Time-Aware heuristic as described in [4]. This map-
matching method takes the GPS travel time between the two consecutive GPS
point as input and returns the path connecting the two points that better fit
the input travel time. It is worth to consider that the road network is a directed
graph, thus including and correctly recognizing one way segments.

3 Proposed Analytic Model

In the following we describe the analytic model adopted to discover how much
the shortest/fastest path can approximate the systematic movements of a user,
and how much a route planner could improve its performances by using the
wisdom of systematic drivers.

Given a set of users U and set of road segments S, for each user u ∈ U , we
calculate the individual mobility profile

Pu = getmedoids(group(Hu,ms, ε,dist))

Then for each routine ri ∈ Pu, we map match the routine on the road network

r∗
i = mapmatch(ri, S, k)

We name map matched individual mobility profile P ∗
u = {r∗

1 , . . . , r
∗
k} the

profile of a user u containing the routines mapped on the road network.
We define a route planner

m̄ = routeplannertype(o, d, S)

as a function which returns the best path m̄ = [o, p̄2, . . . , p̄n−1, d] w.r.t. the type
of search type ∈ {s, f} (where s stands for shortest and f stands for fastest) on
the road segments S where o is the origin point and d is the destination point.

Finally, for each routine r∗
i = [oi, . . . , di] ∈ P ∗

u we calculate the path returned
by the route planner r̄i = routeplannertype(oi, di, S) on the origin and desti-
nation. We indicate with P̄ type

u = {r̄1, . . . , r̄k} the shortest/fastest individual
mobility profile of a user u containing the paths returned by the route planner.

Summing up, given a set of users U and their individual history Hu∀ u ∈ U ,
and the road network segments set S we obtain:

1. Pu ∀ u ∈ U with the Mobility Profiles step as result of the application of
group() and getmedoids() using Hu for each u ∈ U ;

Towards a Boosted Route Planner Using Individual Mobility Models 113

2. P ∗
u ∀ u ∈ U through the Map Matching step as result of the application of

mapmatch() for each ri ∈ Pu, ∀ u ∈ U ;
3. P̄ type

u ∀ u ∈ U by means of the Route Planner step as result of the application
of routeplanner() on the origin and destination points oi, di of for each r∗

i ∈
P ∗

u , ∀ u ∈ U .

Figure 2 shows the steps of the analytic mobility model. In the next section we
will observe the differences between P ∗

u and P̄ s
u , P̄ f

u . We remark that the shortest
path is the path which minimizes the distance, while the fastest path is the path
which minimizes the travel time.

Fig. 2. Steps of the analytic mobility model. Input: individual history Hu, road net-
work segments set S. Output: individual map matched mobility profile P ∗

u , individual
shortest/fastest mobility profile P̄ type

u . Pu is calculated by using the Mobility Profiling
functions. Then, the Map Matching module produces P ∗

u by using the routines in Pu.
Finally, P̄ type

u is obtained by using the Route Planner on the origin and destination
points (highlighted in the red dotted circles) of the routines in P ∗

u .

4 Experiments

In the following we evaluate how much systematic users described by their map
matched individual mobility profile P ∗

u deviate from the shortest and fastest
routes contained in the shortest mobility profile P s

u and fastest mobility profile
P f

u for the provinces of Pisa and Florence. Moreover we analyze which are the
nodes on the road network S, the areas and the flows more affected by deviations.

4.1 Dataset

As a proxy of human mobility, we use real GPS traces collected for insurance
purposes by Octo Telematics S.p.A1. This dataset contains 9.8 million car travels
1 http://www.octotelematics.com/it.

http://www.octotelematics.com/it

114 R. Guidotti and P. Cintia

Fig. 3. (Left) A sample of the considered trajectories in Pisa province. (Right) Mobility
profiles extracted in Pisa province.

Fig. 4. Distributions of number of trajectories (top - left), number of routines (top -
right), routine relative support (bottom - left), trajectories and routines starting time
(bottom - right).

performed by about 160, 000 vehicles active in a geographical area focused on
Tuscany (Italy) in a period from 1st May to 31st May 2011. Figure 3-left depicts
a sample of the considered trajectories. In our analysis we split geographically
the dataset in provinces to consider the fact that each area has its type of
mobility with characteristics depending on the surface, on the topology and on
the number of inhabitants. In this paper we present the results obtained for the
provinces of Pisa and Florence. A user is analyzed in one province if at least one
of his/her trajectories passes through that province. In particular we analyzed a
subset of 3, 000 representative users which have traveled along a total of about
500.000 trajectories. The individual history Hu represents our input data.

4.2 Mobility Profiles Analysis

To perform the Mobility Profiling step, we used as profiling function profile()
the clustering algorithm Optics [1], and as distance function dist() a function
which compares the points distances along the trajectories (or an interpolation of

Towards a Boosted Route Planner Using Individual Mobility Models 115

Fig. 5. (Left) Space difference distribution in km between the routines in P ∗
u and the

corresponding routines in P̄ s
u . (Right) Time difference distribution in minutes between

the routines in P ∗
u and the corresponding routines in P̄ f

u .

them) and returns the average of these comparisons. In order to obtain sound and
reliable routines we performed some preliminary tests to set the best parameters
to extract the mobility profiles Pu. We choose ε = 500m and ms = 8 since a
routine is a movement that must be repeated a significant number of time during
a month. Figure 3-right depicts an example of profile extracted in Pisa province
modeling the users’ systematic movements.

In Fig. 4(top) we can observe the distributions of the number of trajecto-
ries and number of routines per user (left and right respectively). All the users
selected have more than 150 trajectories and most of them has 160 with an aver-
age of about 200 trajectories. Most of the individual mobility profiles Pu contain
1 − 4 routines. The average length of a routine is about 8.87 km (± 8.96 km of
standard deviation), while the average duration is about 20 min (± 12 min stan-
dard deviation). In Fig. 4(bottom - left) we can observe that most of the routines
have a relative support of 0.2 of the trajectories. This means for example that
given a user with 160 trajectories and a routine with support equals to 0.2, then
that routine is supported by about 30 trajectories, i.e. a trajectory per day on
average in the observation period. Finally, the starting time distributions of tra-
jectories and routines is depicted in Fig. 4(bottom - right). Note how the starting
time distribution of the routines, more than the starting time distribution of the
trajectories, follows a clear M-shape pattern. This highlight how the routines
capture the systematic movements from home to work in the morning and from
work to home in the afternoon.

4.3 Deviation Analysis

As first experiment we analyzed the deviation in term of space difference from the
routines in P ∗

u to those in shortest path P̄ s
u , and the deviation in term of time

difference from the routines in P ∗
u to those in fastest path P̄ f

u . In particular,
for each user u ∈ U analyzed, for each routine in r∗

i = {oi, . . . di} ∈ P ∗
u , we

calculated the difference in length with the corresponding route in P̄
{s,f}
u , i.e.

the route r̄i which starts in oi and ends in di. Note that the following results

116 R. Guidotti and P. Cintia

Fig. 6. (Left) Distribution of the percentage of road traveled before the routine deviates
from the shortest/fastest path. (Right) Ratio of shortest and fastest routes belonging
to the clusters of the corresponding routines by varying the minsize parameter.

Table 1. median, average and standard deviation of the space difference (km), time
difference (min) and relative percentage of road traveled before the deviation (pbd).

Short - space diff Fast - time diff Short - pbd Fast - pbd

med avg std med avg std med avg std med avg std

Pisa 02.31 07.16 13.56 07.42 26.92 58.13 07.07 25.14 35.52 07.96 23.19 32.33

Florence 03.64 10.22 18.45 07.31 19.06 29.90 02.97 07.58 13.54 01.05 01.58 21.58

are biased by the route planner used: by applying different route planners the
shortest and fastest path obtained could be different.

In Fig. 5 we can observe the space and time differences distributions. With
respect to the shortest path (left in the figure), in both dataset there is a con-
sistent set of routines with space difference equals to zero. This indicates that
30–35 % of the routines (for Pisa and Florence respectively) follow the shortest
path suggested by the route planner. The remaining routines differentiate on
average of 7 km (see Table 1). On the other hand, in Fig. 5(right) none of the
routines follows exactly the fastest path. Just few routines, i.e. the 10 %, follow
the fastest routes with less than a minute of difference. All the others differenti-
ate consistently (20 min on average Table 1). In addition, we observed that 15 %
of the drivers in Pisa and 10 % of the drivers in Florence have the individual
mobility profile exactly equal to the shortest mobility profile (P ∗

u = P̄ s
u). On

the contrary, none of the user has all the routines equal to the fastest path, i.e.
P ∗

u = P̄ f
u

In Fig. 6 left is reported the percentage of road traveled before the deviation
(pbd), both for Pisa and Florence. It is obtained by observing after how much r∗

i

deviates from r̄i after the start point oi (for r̄i ∈ P̄ s
u and r̄i ∈ P̄ f

u). We can notice
how 20 % of the systematic movements deviate from the shortest/fastest paths
at the very beginning. The distribution is a long tailed power law with average
percentage before deviation of 7 % and 3 % for Pisa and Florence respectively
(see Table 1). Furthermore, how already observed, there is a consistent subset of
routines (12–15%) which do not deviate from the shortest path. This does not
occur for the fastest path.

Towards a Boosted Route Planner Using Individual Mobility Models 117

Finally, we studied the percentage of shortest/fastest movements which would
have belonged to the clusters by varying the minsize (ms) parameter (Fig. 6
right). We calculated for each user u ∈ U the trajectory distance (using the same
distance function dist applied for the clustering) between the short/fast paths
r̄1 . . . r̄k and the trajectories belonging to the corresponding cluster M1 . . . Mk.
For minsize = 8 (the value used for the clustering), 60 % of the movements
returned by the route planner would have belonged to the clusters in both short-
est and fastest path. This indicates that the movements returned by the route
planner are similar enough to the trajectories belonging to the cluster to be con-
sidered part of them. This fact is quite interesting if we consider that the space
and time difference between routines and suggested routes are in some cases not
negligible, and that the routines generally deviate not far from the origin point.

Fig. 7. Deviation nodes supported by with at least 100 deviations.

The conclusion is that systematic drivers generally deviate from the routes
suggested by a route planner at the very beginning of their movements, and that
in general they do not optimize their travel time but try to minimize the travel
distance. However, even the drivers deviate from the short/fast routes, these
routes are in many cases very similar to the routines systematically followed.

4.4 Towards a Boosted Route Planner

Before presenting the analysis of this section we remark that routines are move-
ments repeated many times (on average 15 times) during the observation period.
Thus, if drivers systematically deviate from what is supposed to be the shortest

118 R. Guidotti and P. Cintia

(or the fastest) path there should be a valid reason. Given a user moving for the
first time in a certain area, it could be better for him/her to follow the routines
described by “expert driver” instead of the routes suggested by a route planner.

A route planner could be boosted by exploiting the knowledge given by the
individual mobility models. Such a route planner should consider various infor-
mation: (i) the road intersections where the systematic drivers deviate more, (ii)
the areas where those intersections are concentrated, and (iii) the main flows of
movement containing deviations. In the following we analyze these three factors
to understand their impact and which are their possible uses. Due to lack of
space in the following we focus the analysis only on the deviation of the routines
against the shortest path.

We refer to the road intersections as deviation nodes. They correspond to
the first nodes in the set of road segments S from which the routines in P ∗

u

deviate from the route in P̄ s
u . To count the number of deviations, instead of

considering only the number of routines, we weighted each routine r∗
i ∈ P ∗

u with
the number of trajectories that support it. In Fig. 7 we can observe the deviation
nodes in which there are at least 100 trajectories which deviate. The darker and
the bigger is a marker, the higher is the number of deviations performed by
the routines on that node. As expected, for both cities, the highest numbers of
deviation nodes appear into the city center. This confirms the fact that in the
city is very difficult to follow the shortest paths. Moreover, in both cities we can
observe some particular areas not in the city center (those highlighted in the
green dotted squares) with an high number of deviations. They correspond in
both cases (i) to the main access points to/from the city center, and (ii) to the
roads close to the airports. This is a signal that these areas are probably affected
by consistent traffic and the systematic users which have to pass through them
prefer longer but less stressful routes.

To analyze the deviations’ areas we divided the territory using a grid with
cells of 2.5 km of radius. The heatmap of the deviations is shown in Fig. 8. The
darker is a cell, the higher is the number of trajectories which support the rou-
tines deviating there. For these images no filters are applied. The first insight
is that the users acting in province of Florence have an active role even in the
mobility of Pisa but the viceversa is not true. Indeed, most of the cells with more
deviation in Pisa occur also in the Florence heatmap. From the intersection of
the two images emerges that most of the systematic deviations take place along
the main road between Pisa and Florence (named SGC Fi-Pi-Li) with a con-
centration in the area around Empoli. This probably happens because most of
the people living in Empoli, which is in province of Florence, go systematically
to Pisa for working. For example, instead of following SGC Fi-Pi-Li that is an
highway but has a lot of traffic, many drivers could prefer as alternative the
road SS67 which runs along SGC Fi-Pi-Li but has much more turns and is not
an highway. In Fig. 9(left) we report the distribution of the number of cells per
routines’ deviations. It is a power low distribution indicating that there are few
cells where most of the systematic users decide to take alternative routes. Those
are the cells that more than the others the boosted root planner should consider
when suggesting the routes which exploit the wisdom of the crowd.

Towards a Boosted Route Planner Using Individual Mobility Models 119

Fig. 8. Heatmap of the deviation cells.

Fig. 9. Distributions of the number of cells with deviations (left), and of the number
of flows with deviation (right).

We defined a flow as a triple of cells (origin, deviation, destination) where
origin is the cell origin of the routine, deviation is the cell where r∗

i deviates
from r̄i, and destination is the ending cell of the routine. In Fig. 10 we can
observe the flows containing the routines supported by at least 100 trajectories.
Through this approach we can observe the main flows along with most of the
drivers deviate from the shortest paths. We can observe how in Pisa province
there are various flows of entrance to and exit from the city center. The flow with
more deviations (the purple biggest arrows) are just under the city center starting
from the airport area up to the suburbs. They are surrounded by a large number
of in-coming and out-coming flows. We remark that in many cases the deviation
from the shortest path appears at the very beginning of the movement. Thus the
flows reported mainly highlight the part of the movement after the deviation.

120 R. Guidotti and P. Cintia

Some deviation flows do not have a mutual reverse flow of the same importance.
For these cases the deviation is more evident only in one direction. On the other
hand, in province of Florence, the flows in the city center are on average shorter
than those outside. In addition, the biggest flows are present in the airport area
(big green arrow in the center) and close to the exit of the highways (big blue
arrow bottom right and big aqua green arrow in the center). Figure 9(right)
shows the distribution of the number of flows per routines’ deviations. Similarly
to the cells, the distribution is long tailed indicating a small set of flows where
many routines deviates from the shortest/fastest path. A route planner having
this kind of knowledge should recommend paths which run along these flows and
are similar to the individual routines. Indeed, by applying appropriate weights
on the road network segments in S the route planner could provide solutions
boosted by the routes systematically followed by expert drivers.

Fig. 10. Deviation flows supported by with at least 100 deviations.

Finally, we analyzed the difference between the flows described above and
the flows built using only origins and destinations. In other words given a
origin-destination flow (origin, destination) how many flows (origin, deviation,
destination) pass through the same deviation? We name this indicator flow sim-
ilarity in deviation. This value give us a hint of how much a certain deviation is
stable along a flow. A flow similarity in deviation of X% indicates the percent-
age of (origin, deviation, destination) flow on the number of origin-destination
flows (origin, destination) which pass through the same deviation cell. E.g.
given the following origin-destination flows {A → B,X → Y } and the flows
{A → C → B,A → C → B,A → D → B,X → Z → Y,X → Z → Y }, then

Towards a Boosted Route Planner Using Individual Mobility Models 121

the percentage of flow difference is 80 %. In our dataset of Pisa and Florence
we obtained the following results: Pisa: 83 % (short), 78 % (fast), Florence: 87 %
(short), 85 % (fast). These high percentages are a clear signal that the deviation
along the various flows are not a matter of individuals, but that are known and
subscribed from the majority of the drivers. It is a sort of “common sense” which
surprisingly emerges at collective level even though all the mobility models used
in the proposed analysis are individual.

5 Related Work

Route planners are designed to provide information about the possible journeys
in a certain area. Generally route planners refer to means of transportation which
are either private or public. However, the application prompts a user to input an
origin and a destination and it recommends some routes which are considered
to be the best for that query.

Route planners generally use some smart variations of well known short-
est path algorithms to search a graph of nodes (modeling access points to the
network) and edges (modeling links between nodes) [8]. Different cost weights
such as distance, cost etc. can be associated with edges and nodes. However,
it is generally quite difficult to plan high quality routes [11]: (i) the notion of
“route quality” is different from person to person, and (ii) available route net-
works rarely contain all the information needed for proposing the best route
(e.g. traffic information, road quality etc.). Thus, even though the search can be
optimized w.r.t. different criteria, e.g. the shortest, the fastest, the cheapest [13]
and even the happiest ones [14], there is not guarantee that the route provided
will be considered “the best” by the majority of the users.

Various effort in different directions have been made to improve route plan-
ning applications. In particular, personalized route services able to deal with
individual users preferences have been investigated recently. For example in [12]
complex users preferences were modeled into a route planner by means of the
fuzzy set theory. In [9] the authors provided improved individual route plans
for Dublin inhabitants by exploiting both historical data and estimated traffic
flows. Still according to an estimation of future travels obtained by mining public
transport data, in [7] were recommended personalized tickets for London public
transport network. Another framework for personalized trip recommendations
considering user preferences and temporal properties was proposed in [10]. In [16]
were introduced real-time information coming from GPS-equipped taxi together
with historical data for an improved route planner which uses traffic conditions
and driver behavior for selecting the best path. Finally, a multi-modal journey
planner can consider at the same time various means of transport and minimize
the uncertainty of catching a certain means [3], or it can provide for the same
journey personalized public and private transportation solutions [2].

122 R. Guidotti and P. Cintia

6 Conclusion

In this work we analyzed the deviation of the systematic movements from the
shortest and fastest paths suggested by a route planer on a set of drivers in
Pisa and Florence provinces. We found that systematic drivers deviate from the
routes suggested by a route planner at the very beginning of their movements,
and that they generally try to minimize the travel distance more than the travel
time. Moreover, we observed that the shortest paths are in many cases very
similar to the systematic movements from which they deviate. Through our
analytic model we were able to select the areas and the flows with the highest
number of systematic deviation. We discovered that given a flow from an origin
o to a destination d nearly all the users which systematically move from o to d
deviate in the same area. Our analysis shows that, for some unknown reasons,
the traveled systematic movements give to the drivers a feeling that their route is
better than the shortest or fastest paths suggested by a route planner. This kind
of knowledge can be exploited by a route planner which can weight the cost on
the edges with the number of supported trajectories instead of with the length
or with travel time. Following this approach, a user which travels for the first
time in a certain area could be helped in selecting the route by the wisdom of the
drivers which systematically pass there. Also a city manager could gain worth
information from our analysis. Indeed, he/she could favor the cars circulation
along the routes followed by systematic drivers and improve the others which
are in fact not exploited enough.

Acknowledgements. This work has been partially supported by the European Com-
mission under the SMARTCITIES Project n. FP7-ICT-609042, PETRA. We thank
Roberto Trasarti and Mirco Nanni for the help that lead to the creation of this paper.

References

1. Ankerst, M., Breunig, M.M., Kriegel, H.-P., Sander, J.: Optics: ordering points to
identify the clustering structure. In: ACM SIGMOD, vol. 28. ACM (1999)

2. Botea, A., Braghin, S., Lopes, N., Guidotti, R., Pratesi, F.: Managing travels with
petra: the rome use case. In: ICDE. IEEE (2015)

3. Botea, A., Nikolova, E., Berlingerio, M.: Multi-modal journey planning in the pres-
ence of uncertainty. In: ICAPS (2013)

4. Cintia, P., Nanni, M.: An effective time-aware map matching process for low sam-
pling GPS data. Technical report cnr.isti/2015-TR-011

5. Cintia, P., Trasarti, R., Cruz, L., Costa, C., de Macedo, J.A.F.: A gravity model for
speed estimation over road network. In: 2013 IEEE 14th International Conference
on Mobile Data Management (MDM), vol. 2, pp. 136–141. IEEE (2013)

6. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S.,
Trasarti, R.: Unveiling the complexity of human mobility by querying and mining
massive trajectory data. VLDB J. 20(5), 695–719 (2011)

7. Lathia, N., Capra, L.: Mining mobility data to minimise travellers’ spending on
public transport. In: Proceedings of the 17th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 1181–1189. ACM (2011)

Towards a Boosted Route Planner Using Individual Mobility Models 123

8. Letchner, J., Krumm, J., Horvitz, E.: Trip router with individualized preferences
(trip): incorporating personalization into route planning. In: Proceedings of the
National Conference on Artificial Intelligence, vol. 21, p. 1795. AAAI Press/MIT
Press, Menlo Park/Cambridge/London (1999, 2006)

9. Liebig, T., Piatkowski, N., Bockermann, C., Morik, K.: Predictive trip planning-
smart routing in smart cities. In: EDBT/ICDT Workshops, pp. 331–338 (2014)

10. Lu, E.H.-C., Chen, C.-Y., Tseng, V.S.: Personalized trip recommendation with
multiple constraints by mining user check-in behaviors. In: ICAGIS, pp. 209–218.
ACM (2012)

11. McGinty, L., Smyth, B.: TURAS: a personalised route planning system. In:
Mizoguchi, R., Slaney, J.K. (eds.) PRICAI 2000. LNCS, vol. 1886, p. 791. Springer,
Heidelberg (2000)

12. Mokhtari, A., Pivert, O., Hadjali, A.: Integrating complex user preferences into a
route planner: a fuzzy-set-based approach (2009)

13. Pelletier, M.-P., Trépanier, M., Morency, C.: Smart card data use in public transit:
a literature review. Transp. Res. Part C Emerg. Technol. 19(4), 557–568 (2011)

14. Quercia, D., Schifanella, R., Aiello, L.M.: The shortest path to happiness: recom-
mending beautiful, quiet, and happy routes in the city. In: Conference on Hypertext
and Social Media, pp. 116–125. ACM (2014)

15. Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for
car pooling. In: KDD. ACM (2011)

16. Yuan, J., Zheng, Y., Xie, X., Sun, G.: Driving with knowledge from the physical
world. In: KDD, pp. 316–324. ACM (2011)

Design of a Business-to-Government
Information Sharing Architecture Using

Business Rules

Sélinde van Engelenburg(&), Marijn Janssen, and Bram Klievink

Faculty of Technology, Policy and Management,
Delft University of Technology, Delft, The Netherlands
{S.H.vanEngelenburg,M.F.W.H.A.Janssen,

A.J.Klievink}@tudelft.nl

Abstract. Information sharing between businesses and government agencies is
of vital importance, yet business are often reluctant to share information, e.g. as
it might be misused. Taking this into account is however often overlooked in the
design of software architectures. In this research we apply a design science
approach to develop an software architecture that is acceptable by businesses.
From a case study we derive the requirements an architecture should meet in
order to contribute to increasing willingness to share information. In this paper
the architecture is developed and evaluated according to the requirements. We
recommend the use of different types of business rules that provide businesses
with control over their data, in combination with encryption and decryption of
data to provide access to parts of the data within an organization.

Keywords: Software-architecture � Information sharing � Business rules �
Encryption � Decryption � Supply chain � Customs

1 Introduction

Easy and seamless information sharing can have advantages for both businesses and
government agencies [1–3]. There are however some factors, such as the competitive
advantage of having information that other parties do not have, that might make
businesses unwilling to share their information [2]. Some research has been conducted
on building trust between stakeholders and on governance and identifying gains of
using architectures facilitating information sharing, in order to support the adoption of
such architectures [3–5]. In this paper, the main premise is that in order for businesses
to be willing to share information, businesses and government agencies first will want
to make sure that the sharing and use of information does not harm their interests and
that it complies with legislation [2, 6]. An architecture could very well help to ensure
businesses of this, but currently, there is no knowledge about what such an architecture
should look like.

In this research, we take a design science approach to develop a software archi-
tecture facilitating information sharing between businesses and government agencies.
This architecture should have properties such that businesses are more willing to share
information when they use the architecture, than when they share information directly.

© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 124–138, 2015.
DOI: 10.1007/978-3-662-49224-6_11

Usually the focus of research is on finding explanations or predictions for e.g.
human or organizational behaviour. However, in design science ways of expanding the
boundaries of human and organizational capabilities are looked for by creating new and
innovative artefacts [7]. Central is the development and evaluation of IT-artefacts with
the intention to solve organizational problems [7]. The evaluation of IT-artefacts
provides feedback information that is used to improve the quality of the product [7].
The IT-artefact developed in this research is a software architecture. The organizational
problem we intend to solve is that of the unwillingness of businesses to share infor-
mation in cases when it could be advantageous for the them or for the government
agencies. The organizational problem was studied based on literature and this resulted
in requirements for the architecture. The architecture was then developed and evaluated
based on these requirements. For the kernel theories of our research, we want to refer to
the related research in Sect. 3.

The research in this paper is related to research from many different domains, e.g.,
knowledge management and research on confidentiality and trust. Some of the inno-
vative nature of this research results from not limiting its scope to a single domain or
point of view. Concerning the organizational problem, the scope is limited to the case
of information sharing between companies in an international supply chain and cus-
toms. This case is appropriate for our research due to its complexity and the
involvement of various types of actors, amongst others. For the architecture, the scope
is limited to the flow of data and its structure. The contents and form of data and the
components are outside of the scope of this paper. These would be highly complex and
therefore it is important to first determine whether the structure of the architecture will
result in meeting the requirements. The evaluation of the architecture is restricted to the
requirements we determined. Of course there may be other requirements that are of
importance as well, but they are subject to further research.

In Sect. 2 of this paper, we sketch the case of information sharing between busi-
nesses in a supply chain and customs. In addition, the requirements will be elicited
from the point of view of both businesses and government agencies. In the following
section, we will start by discussing related research. Subsequently, we present the
aforementioned software-architecture. In Sect. 5 we make the connection between the
requirements and the architecture and we evaluate the architecture.

2 Requirements to Share Information

2.1 Companies in a Supply Chain and Customs

A supply chain can be described as complex network, which consists of many different
stakeholders, including shippers, deep-sea carriers, port operators, and customs orga-
nizations [8]. Mentzer et al. [9] argue that supply chains can be defined in various
ways. According to Tsay et al. [10] modern usage of the term supply chain is consistent
with the following: “a supply chain is two or more parties linked by a flow of goods,
information and funds” [10]. In concurrence with this description, with companies in a
supply chain, we refer to the companies that are linked by a flow of goods, information
and funds. However, our main focus will be on the companies that have a role in

Design of a Business-to-Government Information Sharing 125

transporting containerized goods, such as shippers, carriers and freight forwarders.
These companies are especially interesting for our case, since they deal more directly
with customs and the use of containers increases the need for information sharing. We
will elaborate on this below. The government agency in this case is customs. The role
of customs is that of a gate-keeper, excises-, duties- and tax-collector and they are
responsible for monitoring the flow of goods and interfere with it if there are safety,
security and other public policy reasons to do so [6].

We selected this case because of its complexity, amongst others, which is due to the
inclusion of various types of actors, both from government and business. These parties
have different roles and interests. Adding to the complexity is the international char-
acter, due to which visibility on the whole chain is limited and various legislations may
play a role.

The limited visibility presents a particular problem, as in containerized transport it
is not feasible to open each container to look what is inside [11]. This poses a problem
for customs who try to monitor the flow of goods and try to determine whether
companies comply with regulation [12]. To companies it is often also very important to
know what is in containers. Just like customs, companies want to reduce security and
safety risks. For instance carriers want to know the weight of goods in containers so
that they can make a stowage plan that ensures the stability of the ship. Better data may
also help actors in optimizing supply chains [13].

Good quality information on what is inside containers is therefore very important to
the companies in the supply chain as well as to customs. The information that customs
and companies need often is available in other places in the supply chain. For instance
the manufacturer of the goods that are transported has a lot of details on them, such as
their weight. The shipper who packed the box has information on the contents of
containers [12]. However, much of the information that companies have and that could
benefit customs is not provided to customs [13]. Companies often only have access to
information that is altered, inaccurate and vague as well [4, 12, 14].

Governments seek to reduce the administrative burden to attract economic activity
to their country. Consequently, the sharing of additional information is often voluntary,
which requires that businesses are willing to do so. This is of course very important for
our research, since it focusses on the willingness to share information. As this com-
plexity and these tensions have been studied before, there is material available for use
in this study.

2.2 Requirements

A way to provide both companies in a supply chain and customs with high quality
information, is by making it possible and easier for them to share information that
already is available. Research by Fawcett et al. [2] suggests that willingness is key to
information sharing in supply chains, but is often overlooked and misunderstood. An
important factor influencing the willingness to share information is the need to keep
information confidential [15]. For competitive (e.g. fear of being bypassed in the chain)
or security (e.g. confidentiality on high value goods) reasons, companies may be
hesitant to share information with others [2, 3].

126 S. van Engelenburg et al.

There may also be a challenge in the willingness to receive additional information.
For example, according to international rules, the description of goods carriers receive
from the shipper influences their liability in case of damage or loss. If a shipper does
not provide the carrier with information on the value of goods and a full description,
then the liability of the carriers is limited to a certain amount per package. This has as a
result that carriers may not even want to have this information. [12] Therefore they
cannot provide this information to customs or other companies in the supply chain that
they are in direct contact with, who might benefit from this information.

The last factor influencing the willingness to share information is the confidence
that the sharing of information or its use is in compliance with legislation. The legal
status of information gathering and sharing is often unclear, since different legal
considerations may play a role [6]. This is a barrier for companies to share information
with customs. Clarity is not improved by the fact that with whom data can be shared
legally, depends on the country in which the goods are moving in [16] and that different
sources of law, such as national and European law, might be applicable at the same
time. Moreover, legislation may change frequently [17]. Uncertainty about the legal
status of information, as well as the legality of the methods for obtaining it, may lead
for instance carriers to shielding their data from other parties [6].

From analysing the literature on information sharing between companies in a
supply chain and customs discussed above, we can abstract three requirements that
influence the willingness to share information, namely:

• Keeping information confidential when needed.
• Ensuring there is no obstruction for information sharing from the possible increase

of liability when businesses receive information.
• Ensuring the sharing of information and its use is in compliance with legislation.

3 Related Background

There exists a vast amount of research related to the research in this paper. This makes
it impossible to discuss the related research from all different domains in its entirety.
We do want to discuss some different kinds of architectures that are related to the
architecture in this paper. For a more comprehensive overview of related research we
refer to the work of Sahin and Robinson [18] and Yang and Maxwell [19].

Bharosa et al. [1] present two different software architectures for information
sharing. The first is called Standard Business Reporting in which a standardized data
representation format and semantics are used by businesses to file official reports. It
incorporates a government gateway that is used to move messages from businesses to
the appropriate government agency and return a receipt. The other architecture they
discuss is a Continuous Control Monitoring architecture. This architecture incorporates
an intermediary platform that the business uses to push key performance data to, which
are then monitored by the government agencies. While in both cases in this study
monitoring compliance by government agencies and limiting administrative burden do
play a role, the architectures themselves are very different, which has likely to do with

Design of a Business-to-Government Information Sharing 127

the fact that they are applied in different domains, namely mainly in the financial
domain and in a meat supply chain.

In the domain of our case of information sharing a notable concept that has been
proposed is that of a data pipeline. The purpose of the data pipeline is to capture data at
the source and to improve the coordination of border management and reduce
administrative burden for businesses [12, 13, 20]. This architecture differs in structure
and flow of data from the architectures described above as well.

The description of the different possible architectures above shows that architec-
tures for facilitating information sharing can be quite different from each other. This
implies that the architecture we develop should be very flexible in order to be of use in
different circumstances. Our solution to this is to make the architecture such that it can
be incorporated in architectures in which the flow of data itself is central (such as those
described above) in order to increase the willingness to share information.

Our research is related to some research on the use of business rules to capture legal
knowledge, which is relevant as in our architecture business rules are used to capture
legal knowledge as well. Gong and Janssen [17] propose a framework that can be used
to automatically derive business processes from such business rules.

4 Towards a Software Architecture

The Software Engineering Standards Committee [21] defines an architecture as “The
fundamental organization of a system embodied in its components, their relationships
to each other, and to the environment, and the principles guiding its design and
evolution”. The architecture we developed, consists of a decision component and a
component that allows access to data according to the decision. Metadata, business
rules, global rules and context information on the requester of access to data is used as
input for the decision component to reach a decision. Access to data is prevented or
granted by respectively encrypting parts of data and decrypting parts of data using
decryption keys.

In this section we will describe the architecture we developed. Section 5 contains an
overview of the requirements and the solutions in the architecture.

4.1 The Decision Component and Providing of Decryption Keys

The decision component can be used by businesses or government agencies that have
received encrypted data to request a key to decrypt the parts of the data that they are
allowed to see according to the decision. A decision in this case should not be viewed
as a simple yes or no, but contains a specification on which parts of the data the
requester is allowed to access and which not. Based on the decision of the decision
component, a key is provided to the requester which they can use to decrypt the parts of
the data they are allowed access to according to the decision.

The decision of the decision component is based on business rules that are provided
by the owners and by the senders of the data. When a decision is requested, these
business rules are requested by the decision component from the owners and senders of

128 S. van Engelenburg et al.

the data. In addition to the business rules, the decisions are based on global rules as
well. The global rules play a role in all decisions and are element of the decision
component itself. Furthermore, the requesters of access provide context information on
themselves and their intention to use the data as input to the decision component. They
also provide metadata on the data they want to receive a decryption key for.

After the decision component has received all required rules, metadata and context
information and has reached a decision using these, there are two possibilities. The first
is that according to the decision the requester is not allowed access to any part of the
data, in which case the requester is informed of this. The second possibility is that
according to the decision the requester is allowed access to parts of the data. In that
case the decision and other needed information is send to a component that generates a
decryption key that can be used only by the requester of the information to decrypt
exactly the parts of the information they are allowed access to according to the deci-
sion. This key is then send to the business or government agency that has requested
access and they can use this key to get access to the appropriate parts of the data.

4.2 Business Rules

In order to make a decision on whether a business or government agency can have
access to parts of data, the decision component needs the business rules that are
specified by the owners and previous senders of the data. The decision component
obtains these business rules by requesting them from these owners and senders. In
order for the decision component to do this, the metadata that the requesters send the
decision component with their request, should contain information for each part of the
data on who the owners and previous senders are. If the business rules are requested
each time a decision has to be made, it is possible for owners and senders of data to
change their business rules and thereby influencing all decisions subsequent to this
adaptation.

A business rule can be defined in various ways. Graham [22] defines business rules
with an emphasis on the form and expressive power as follows: “A business rule is a
compact, atomic, well-formed, declarative statement about an aspect of a business that
can be expressed in terms that can be directly related to the business and its collab-
orators, using simple unambiguous language that is accessible to all interested parties:
business owner, business analyst, technical architect, customer, and so on. This simple
language may include domain-specific jargon.”. However, since the focus of this paper
is more on the function of the business rules in the architecture, the definition of Ross
[23] fits our purposes better. He defines business rules as a directive intended to
influence or guide business process behaviour.

Business rules in the described architecture can be used by owners and senders of
information to specify who does and does not have access to which parts of the data
they own or send and in what cases. Since they are used by the decision component to
reach a decision, they can control access to their data by specifying these rules.

Business rules can be general, e.g. specifying that all information can be used by
anyone if they have a certain goal. They could also be very specific and e.g. specify that
only a certain company gets access to a specific part of the data. To illustrate some

Design of a Business-to-Government Information Sharing 129

ways in which business rules could be used, we provided some examples. It is
important to mention that the use of first order logic (FOL) in the example is not meant
as a recommendation to use FOL to express the rules in the architecture since their form
is outside of the scope of this paper. FOL was chosen to make the example intelligible
to most readers. In the example, symbols have their usual meaning and arguments that
are capitalized denote variables.

HasRole X; customerð Þ ^ Has Role Z;manufacturerð Þ^
InformationOnðY ; ZÞ ! :AccessðX; YÞ ð1Þ

GoalðX; Y ; security checkÞ ! AccesðX; YÞ ð2Þ

Example (1) shows a business rule that might be specified by a seller who does not
want customers to access information on the manufacturer of goods. In example (2),
there is a business rule that could be used to express that if the goal of the requester of
access to part of the data is to perform a security check, access to that part of the data is
allowed.

Global businesses rules are basic rules that the decision component includes for
each decision and that are not organization specific. They could be used to incorporate
some general common sense in the decision process and to make sure that access to
data is allowed only in accordance with legislation. We provided some examples
below. It is important to note that they are not meant as a proposal for a specific design
as well. The global rules are expressed in FOL, symbols have their usual meaning and
arguments that are capitalized denote variables.

GoalGatheredðX; YÞ ^ GoalUseðZ;X;QÞ ^ Y 6¼ Q ! :AccessðZ;XÞ ð3Þ

SecurityStatusðemergencyÞ ^ HasRoleðX; customsÞ ! AccessðX; allÞ ð4Þ

The global rule in (3) expresses that access to data is not allowed for a requester if
their goal for using the data is different from the goal for which it was gathered. In (4) a
global rule is expressed that is used to grant customs access to all information in case of
an emergency situation.

Since global rules are the same for all data, they all could be saved in the same
location and be retrieved when needed in the decision process. If they are changed, e.g.
because of changes in regulation, this change influences all subsequent decisions.

4.3 Metadata and Context Information

In order to make decisions based on the rules, metadata and context information are
needed to determine which rules are applicable. Ma [24] provides a comparison of
twenty-seven definitions of metadata. Zuiderwijk et al. [25] defines metadata as
“structured, encoded data that describes characteristics of information bearing entities
to aid in the identification, discovery, assessment, and management of the described
entities”. Often, metadata is simply defined as “data about data” [26, 27]. Examples of

130 S. van Engelenburg et al.

metadata that could be sent with the encrypted data, is information on the owners and
previous senders of the encrypted data or the goals for which parts of the data initially
was gathered. It also could be important to incorporate for instance information on the
way in which different parts of data are linked.

The metadata should be send with the encrypted data itself. There are several
reasons for this. The receivers of encrypted data probably would like to receive at least
some basic information on the data that they have received and it is easiest to send this
together with the data itself. Furthermore, information on the owners and previous
senders of the data is metadata as well and is needed for the decision component in
order to determine from who business rules should be requested. Of course there might
be cases in which it is not desirable for receivers of information to have access to all
metadata. In that case, parts of the metadata could be encrypted. The decision com-
ponent should receive the metadata, together with the request for access to data itself
from the business or government agency that is the requester.

The last input that is needed for a decision by the decision component is context
information on the requester of access to the data and their intent to use the data. Such
context information of course is available with the requesters of access to data them-
selves. Businesses and government agencies making a request should send this context
information together with their request to the decision component. Some sort of
authentication could be send as part of the context information as well.

4.4 Regulating Access via Encryption and Decryption of Parts of Data

In many cases, access to data is regulated by sending or not sending data to others or by
allowing or not allowing others access to a database. This differs for the architecture we
developed. Namely, in this architecture, encryption and decryption of parts of data is
used to regulate access to data. This means that it is possible for businesses to send
encrypted data to each other and to government agencies directly without thereby
automatically granting them access to all the data they are sending. As a result, the
access to data and the location where the data is saved are not linked. In other words,
physical access to information does not imply logical access in this case.

Because of the use of encryption and decryption to regulate access to data, the flow
of encrypted data itself can be very flexible and can be adapted to specific needs and
circumstances. There is no obvious obstruction to using any kind of flow of information
between businesses and government agencies. It is for instance possible that there is a
direct data flow between the users of the architecture. In that case, businesses and
government agencies could announce that they have data and send it upon request or
they can take the initiative to send data when they think it is necessary. Another
possible example is using a physical shared data space.

The fact that access and location are no longer linked, means that it is possible for
businesses and government agencies to share the information that they have received
with others as well, without automatically granting them access. This allows for the
possibility for organizations to enrich data or combine the data that they have received
in useful ways and to share it with others. In order for this to work, the enriched data or
combined data should be encrypted as well before sending and the rules of the owners

Design of a Business-to-Government Information Sharing 131

of the original data, previous senders and the new sender should be applicable on the
new data that is based on them. An example of the enrichment of data could be if a
company added the weight of containers to the data, based on received information on
the weight of goods and their own information on in which containers goods are. If
they would send the enriched data, the business rules of the owner of the information
on the weight of the goods, as well as the previous senders of this information would be
applicable, in addition to of course the business rules of the company itself.

5 Evaluation of the Architecture

5.1 An Illustration

To illustrate the way in which the architecture we developed works and how the
components and users relate to each other, we have provided an example related to our
case study. Figure 1 shows the flow of information in the architecture, while Fig. 2 is an
UML sequence diagram. In the figures, there are two businesses and a government
agency. Other ways of sharing information than shown in the example are possible, but
sending information directly is the most simple and thus the clearest way to illustrate
the structure of our architecture. The flow of the encrypted data follows the physical
flow of goods in the supply chain. Business 1 sends encrypted information to business
2. Business 2 enriches the information with their own and sends the enriched infor-
mation to the government agency. Of course, usually, business 2 would in this case
request access to the information as well. This request is left out of the diagrams to
guard their intelligibility, as is the encryption of the data and generation of rules and
such. After the government agency has received the encrypted data, it uses the decision
component to obtain a decision. Then a key is generated and shared with customs based
on the decision. Note that the decision process pulls the business rules from the
businesses and that this happens after the data is requested.

Fig. 1. The flow of information in an example for the described architecture

132 S. van Engelenburg et al.

In Fig. 2 the procedures that are executed by the architecture and its users can be
observed as well as what happens in case access to data is not allowed according to the
decision process. To guard the intelligibility of the diagram, the components of the
architecture itself are not shown separately as is done in Fig. 1.

Next we will evaluate the architecture presented in the previous subsection by
analysing the way the requirements are met by the architecture. In addition, we discuss
some other advantages and disadvantages of the architecture described.

5.2 Keeping Information Confidential When Needed

In the architecture businesses and government agencies can control who does and does
not have access to their information by specifying business rules. The responsibility to
specify these rules so that their interests are not hurt, lie with the parties themselves. If
they think that certain information for instance will be of competitive advantage, they

Fig. 2. UML sequence diagram for the example for the described architecture

Design of a Business-to-Government Information Sharing 133

can specify business rules which deny their competitors access to this information.
Since each time a decision is made by the decision component, the appropriate business
rules are pulled from the systems of the owners and senders of data, businesses can
modify, add or remove them if this is needed and this will result in changes on who gets
access to information. Businesses are thus provided with a means to control their data
and to make sure it is kept confidential when needed.

At first sight, the level of control businesses can exert over access to their data in
the architecture is not much unlike other situations in which businesses or government
agencies for instance choose to send data that is not encrypted to some parties and not
to others. There are however some important differences. The first is that in the
described architecture, the rules for who gets access to what parts of data and who does
not are explicit and applied in a consistent manner. Making a refined specification,
might make businesses and government agencies realize more clearly what parts of
their data actually needs to be kept confidential and for whom. A consequence of this is
a more refined distinction between data that other parties can and cannot have access to,
which in turn results in increased willingness to share data. A problem with the fact that
businesses and government agencies have to specify business rules is that it could be a
lot of work and they might not want to make such an investment if it is not clear how
they could benefit from it.

The second difference is that parties sending received data to others, do not need to
be afraid of breaking confidentiality or damaging trust between parties, if the data that
they send is encrypted. When access to data and the location where data is saved are no
longer linked, sending data to others does not automatically mean granting them
access. Even if data is received from other sources, access to data is still controlled by
the owners of data and the previous senders because their business rules stay appli-
cable. This makes it easier for parties to send data that they have received and enriched
or combined with their own data, since it no longer has the consequence of breaking
confidentiality. As access to data is no longer needed to make sure that resending it
does not break confidentiality, businesses that cannot access data themselves can
resend it easier as well. For these reasons, it is expected that willingness to share
information will increase.

To the original owners of information, it might be reassuring to know that wherever
their data is, their business rules are applicable and access is only granted following
these rules. Furthermore, they might be reassured by the fact that these rules are as well
applicable on enriched or combined data that is based on their data, eliminating the risk
that their data can be abstracted from this by parties from who the data should be kept
confidential. This might increase their willingness to share their information. Of course
there is still a possibility that other parties might send decrypted information to others
and breaking confidentiality in that way. The risks of this are not higher than parties
sharing data illicitly when businesses or government agencies granted them access to
data directly themselves. In the case of the described architecture, there clearly is the
option of sending information encrypted and thereby respecting the rules that are
specified by the owners and senders of the data. Therefore, when information is send
decrypted, the attempt to circumnavigate the control of the owners and senders of
information on their data is much more clear.

134 S. van Engelenburg et al.

5.3 Ensuring There is No Obstruction for Information Sharing
from the Possible Increase of Liability When Businesses Receive
Information

For the second requirement, it is not completely clear how liability is influenced by the
use of the architecture. When businesses or government agencies receive certain
information, it could increase their liability. In the case of the architecture, they could
receive and store such information, but not have access to it, or even know that it exists
and that that they have it stored. While it is not completely clear from a legal point of
view whether they are still liable, we could look at what is reasonable. One could say in
this case that in a sense they did not receive or do not possess the information that is in
the data. It is reasonable that in that case the receiving and storage of the encrypted data
should not make them liable. In consequence, the willingness to store this information
and subsequently share it with others would probably improve. A decision by the
decision component could serve as proof that data indeed cannot be accessed if needed.
There of course is a difference between cases in which encrypted data cannot be
accessed and cases in which the business or government agency chooses not to access
the data. In the second case, the position that receiving and storing this data should not
increase liability is harder to defend.

5.4 Ensuring the Sharing of Information and Its Use is in Compliance
with Legislation

The last requirement has to do with the confidence that the sharing of information and
its use is in compliance with legislation. The global rules that the decision component
uses, could be used to make sure that access is only granted to parts of data if this
complies with legislation. These rules could be adapted in case legislation changes,
without users having to keep track of such changes in legislation and their influence on
whether they can or cannot share information themselves. At the moment, it is unclear
whether the same legislation that is applicable to data that is directly accessible is
applicable to data that is encrypted and cannot directly be accessed. However, for the
same reasons as in the situation with the increase of liability, it might be reasonable to
say that this should not be the case. If encrypted data could be shared freely and access
is only granted to parts of data when this is in compliance with legislation, it is
reasonable for users of the architecture to be confident that they comply with legislation
if they only send encrypted information and only access information according to the
decisions of the decision component. This in turn might lead to an increase in their
willingness to share information.

While at first sight this would be an ideal situation for the users of the architecture,
there might be some problems as well. The responsibility to be compliant in a sense
shifts from the users of the architecture to the organization that specifies the global
rules, resulting in some ethical and legal difficulties. Furthermore, the organization
specifying the global rules, has a lot of power, since they have an influence on all
requests for access and this may not be desirable. A solution could be to let the decision

Design of a Business-to-Government Information Sharing 135

component be governed by the users themselves, solving some of the ethical difficulties
with responsibility and distribute the power between the users.

5.5 Other Properties of the Architecture

The described architecture has some other interesting properties worth discussing. The
first is the security of the data in the architecture. If encrypted data falls in the wrong
hands, someone can attempt to decrypt it themselves illegally. Since in our architecture
they can have the encrypted data stored in their own systems, they could go about their
business uninterruptedly. The data should thus be encrypted well enough to make it not
worth attempting to decrypt it illegally or so that this takes such a long time that by the
time they succeed, the data has lost its worth. Hence, the quality of encryption is vital.
There are some advantages of the described architecture considering security as well. If
someone decrypts data illegally, they can only access that data and e.g., not a full
database. Furthermore, there does not need to be a single component through which all
data passes, which would have possessed its own risks.

Another property of the described architecture is that it is very flexible. There is no
clear obstacle for the architecture to be part of any information sharing architecture,
since the way information is send to others is and does not need to be specified.
Furthermore, it allows for the constant adaptation of business rules and global rules to
new (legal) circumstances, and changes of interests and needs.

6 Conclusion and Suggestions for Further Research

The architecture we developed empowers business by providing them control of their
information sharing. The fact that business rules can be specified by the owners and
senders of information and that these are applicable even when information is not
received directly from its original source or when it is combined or enriched, gives
owners the control to keep their data confidential when needed. In addition, in the
architecture the sharing of data that is received by others, that is enriched or combined,
is especially made easier by using the combination of business rules and encryption.
Furthermore, it seems that using global rules to make sure that data access complies
with legislation, is an option for increasing willingness to share information.

Overall, an architecture incorporating business rules, global rules, a decision
component and encrypted data has enough potential to merit further investigation.
Especially since the proposed architecture is very flexible and could be combined with
other architectures, combining their advantages as well. We do recommend that this is
coupled with investigating the legal framework such an architecture would exist in.

The subject of control management and especially role based access and attribute
based access such as described in [28, 29] seems very relevant for future research, in
particular when working out what the different kinds of business rules and global rules
should look like. Metadata and context information plays an important role in the
architecture as well, making it an important topic for further research. Research on
knowledge representation as well as existing formats and standards for metadata are

136 S. van Engelenburg et al.

relevant for this. In order to reason with the rules and information, theories from the
domain of automated reasoning and decision support are significant as well and should
be taken into account. Generating and distributing keys and encryption of data is vital
for the architecture, but far from trivial. Research on encryption and computer security
should therefore have an important part in future research. Other ways of increasing
security, e.g., by using authentication or signing of data, for this architecture should be
investigated as well.

References

1. Bharosa, N., Janssen, M., van Wijk, R., de Winne, N., van der Voort, H., Hulstijn, J., Tan,
Y.-H: Tapping into existing information flows: The transformation to compliance by design
in business-to-government information exchange. Gov. Inf. Q. 30, S9–S18 (2013)

2. Fawcett, S.E., Osterhaus, P., Magnan, G.M., Brau, J.C., McCarter, M.W.: Information
sharing and supply chain performance: the role of connectivity and willingness. Supply
Chain Manag. Int. J. 12, 358–368 (2007)

3. Klievink, B., Janssen, M., Tan, Y.-H.: A stakeholder analysis of business-to-government
information sharing: the governance of a public-private platform. Int. J. Electron. Gov. Res.
8, 54 (2012)

4. Klievink, B., Lucassen, I.: Facilitating adoption of international information infrastructures:
a living labs approach. In: Wimmer, M.A., Janssen, M., Scholl, H.J. (eds.) EGOV 2013.
LNCS, vol. 8074, pp. 250–261. Springer, Heidelberg (2013)

5. Overbeek, S., Klievink, B., Hesketh, D., Heijmann, F., Tan, Y.-H.: A Web-based data
pipeline for compliance in international trade. In: Proceedings of the CEUR Workshop, vol.
769, pp. 32–48 (2011)

6. Janssen, M., Smeele, F.: JUridical and context-aware Sharing of informaTion for ensuring
compliance (JUST) (2013)

7. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in information systems
research. MIS Q. 28, 75–105 (2004)

8. Van Baalen, P., Zuidwijk, R., van Nunen, J.: Port inter-organizational information systems:
capabilities to service global supply chains. Found. Trends® Technol. Inf. Oper. Manag. 2,
81–241 (2009)

9. Mentzer, J.T., DeWitt, W., Keebler, J.S., Min, S., Nix, N.W., Smith, C.D., Zacharia, Z.G.:
Defining supply chain management. J. Bus. Logist. 22, 1–25 (2001)

10. Tsay, A.A., Nahmias, S., Agrawal, N.: Modeling supply chain contracts: a review. In: Tayur,
S., Ganeshan, R., Magazine, M. (eds.) Quantitative Models for Supply Chain Management,
pp. 299–336. Springer, New York (1999)

11. Levinson, M.: The world the box made. In: The Box: How the Shipping Container Made the
World Smaller and the World Economy Bigger. Princeton University Press, Princeton
(2010)

12. Hesketh, D.: Weaknesses in the supply chain: who packed the box. World Cust. J. 4, 3–20
(2010)

13. Klievink, B., van Stijn, E., Hesketh, D., Aldewereld, H., Overbeek, S., Heijmann, F., Tan,
Y.-H.: Enhancing visibility in international supply chains: the data pipeline concept. Int.
J. Electron. Gov. Res. 8, 14–33 (2012)

14. Lee, H.L.H., Whang, S.: Information sharing in a supply chain. Int. J. Manuf. Technol. 1,
79–93 (2000)

Design of a Business-to-Government Information Sharing 137

15. Urciuoli, L., Hintsa, J., Ahokas, J.: Drivers and barriers affecting usage of e-Customs — a
global survey with customs administrations using multivariate analysis techniques. Gov. Inf.
Q. 30, 473–485 (2013)

16. van Stijn, E., Hesketh, D., Tan, Y.-H., Klievink, B., Overbeek, S., Heijmann, F., Pikart, M.,
Butterly, T.: Annex 3: The Data Pipeline. Connecting International Trade?: Single Windows
and Supply Chains in the Next Decade, pp. 158–183. United Nations Economic
Commission for Europe (2011)

17. Gong, Y., Janssen, M.: A framework for translating legal knowledge into administrative
processes: dynamic adaption of business processes. In: Cerone, A., Persico, D., Fernandes,
S., Garcia-Perez, A., Katsaros, P., Ahmed Shaikh, S., Stamelos, I. (eds.) SEFM 2012
Satellite Events. LNCS, vol. 7991, pp. 204–211. Springer, Heidelberg (2014)

18. Sahin, F., Robinson, E.P.: Flow coordination and information sharing in supply chains:
review. Implications Dir. Future Res. 33, 1–32 (2002)

19. Yang, T.-M., Maxwell, T.A.: Information-sharing in public organizations: A literature
review of interpersonal, intra-organizational and inter-organizational success factors. Gov.
Inf. Q. 28, 164–175 (2011)

20. Stijn, E. Van, Klievink, B., Janssen, M., Tan, Y.-H..: Enhancing business and government
interactions in global trade. In: Third International Engineering Systems Symposium CESUN
2012. pp. 18–20 (2012)

21. Software Engineering Standards Committee: IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems (2000)

22. Graham, I.: Business Rules Management & Service Oriented Architecture. Wiley,
Chichester (2006)

23. Ross, R.G.: Principles of the Business Rule Approach. Addison-Wesley Longman
Publishing Co., Inc., Boston (2003)

24. Ma, J.: Managing metadata for digital projects. Libr. Collect. Acquis. Tech. Serv. 30, 3–17
(2006)

25. Zuiderwijk, A., Jeffery, K.G., Janssen, M.: The potential of metadata for linked open data
and its value for users and publishers. JeDEM-e-J. e-Democracy Open Gov. 4, 2012 (2012)

26. Jeffery, K.G.: Metadata: the future of information systems. In: Brinkkemper, J.,
Lindencrona, E., Sølvberg, A. (eds.) Information Systems Engineering: State of the art
and research themes. Springer, London (2000)

27. Schuurman, N., Deshpande, A., Allen, D.M.: Data integration across borders: a case study of
the Abbotsford-Sumas aquifer (British Columbia/Washington State) 1. JAWRA J. Am.
Water Resour. Assoc. 44, 921–934 (2008)

28. Sandhu, R.R.S., Coynek, E., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access
control models. Comput. (Long. Beach. Calif) 29, 38–47 (1996)

29. Hu, V.C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin, K., Miller, R., Scarfone, K.: Guide
to attribute based access control (ABAC) definition and considerations. NIST Spec. Publ.
800, 162 (2014)

138 S. van Engelenburg et al.

Process Mining as a Modelling Tool: Beyond
the Domain of Business Process Management

Antonio Cerone(B)

IMT Institute for Advanced Studies, Lucca, Italy
antonio.cerone@imtlucca.it

Abstract. Process mining emerged in the field of business process man-
agement (BPM) as an innovative technique to exploit the large amount
of data recorded by information systems in the form of event logs. It
allows to discover not only relations and structure in data but also con-
trol flow, and produces a process model, which can then be visualised
as a process map. In addition to discovery, process mining supports con-
formance analysis, a technique to compare an a priori model with the
event logs to detect deviations and inconsistencies.

In this paper we go beyond the domain of BPM and illustrate how
process mining and conformance analysis can be used in a number of
contexts, in and across the areas of human-computer interaction and
learning.

1 Introduction

Process mining is an emerging discipline based on model-driven approaches and
data mining. It is a process management technique used to extract information
from event logs consisting of activities (business activities, communication activ-
ities, collaboration activities, etc.) and then produce a graphical representation
of the process control flow, detect relations between components/individuals
involved in the process and infer data dependencies between process activi-
ties [11].

In order to be successfully processed, event logs have to meet a number of
structural properties, that is, to contain adequately organised and clustered data.
This level of structural organisation can be attained by applying text mining
techniques, in particular semantic indexing, that is, by assigning a meaningful
subject to the data. Recently, incremental fully automatic semantic mining algo-
rithms have been developed within the semantic platform associated with the
2012 SQL Server: they produce weighted physical indexes, which can then be
queried through the SQL interface [5]. Using the semantic platform associated
with the SQL Server, queries can be defined based on a catalog in which key-
words, key-phrases and conditional activities are categorised in terms of states
of a process. The resultant output is a pre-processed log to be fed to a process
mining tool, such as DISCO (Discover Your Process) [2], to produce a process
model, presented as a Petri net-like visualisation (often called process map) and
its associated PNML representation, possibly together with relevant statistical
c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 139–144, 2015.
DOI: 10.1007/978-3-662-49224-6 12

140 A. Cerone

data. The capability of discovering statistical data about the analysed process
makes process mining a useful tool in performance evaluation.

In the area of business process management (BPM), process mining has been
used not only to discover a process model and represent it as a process map, but
also to extend a pre-existing a priori model by enriching it with new aspects
and perspectives illustrated by the discovered a posteriori process model, and to
compare, by using a technique called conformance analysis, the a priori model
with the event logs (and thus implicitly with the a posteriori process model).

Conformance analysis originated from Rozinat and van der Aalst’s work in
the area of BPM [7]. Conformance analysis, also called conformance checking,
is the detection of deviations and inconsistencies between an a priori model,
which is based on theoretical perspectives and/or data collected and analysed
using social science research methods, and the traces generated by the event
logs. In fact, conformance checking seems appropriate well beyond BPM. In par-
ticular, it can be applied to the analysis of social networks and peer-production
systems, and the first attempts in this direction have being done in the areas of
collaborative learning and Free/Libre Open Source Software (FLOSS) develop-
ment [3,4].

In this paper we go beyond the domain of BPM and illustrate how process
mining and conformance analysis can be used in a number of contexts, in and
across the areas of human-computer interaction (HCI) and learning. Section 2
illustrates how to apply process mining to social networks in order to extract
behavioral patterns that provide evidence of learning processes (Sect. 2.1) and
skill acquisition (Sect. 2.2). Section 3 concerns real-time applications of process
mining. Section 4 concludes the paper.

2 Modelling from Observed Behavioural Patterns

One important application of cognitive psychology to HCI is the observation of
human behaviour, during interaction with interfaces, devices or within online
communities, to extract behavioral patterns of users or control operators. In
this section we present a case study on the extraction of learning processes
from behavioral patterns of FLOSS contributors and propose how to extend our
approach to modelling skill acquisition not only in FLOSS communities but,
generally, in interacting with a specific device/interface/application.

2.1 Modelling Learning Processes: The FLOSS Case Study

Social Networks can be seen as collaborative environments in which interactions
among peers support the building of knowledge both at individual and com-
munity level. Learning processes occur naturally within such environments and
produce evidences of their existence in the contents of communications between
community members and in the digital artifacts shared or produced by the com-
munity, such as web pages, documents, audio and video clips, software, etc.

Process Mining as a Modelling Tool 141

FLOSS communities also present this learning potential. They are open par-
ticipatory ecosystems in which actors not only create source code but also
produce and organise a large variety of resources that include implicit and
explicit knowledge, communication logs, documentation and tools. Collaboration
in FLOSS projects is highly mediated by the usage of tools, such as versioning
systems, mailing lists, reporting systems, etc. These tools serve as repositories
which can be data mined to understand the identities of the individuals involved
in a communication, the topics of their communication, the amount of informa-
tion exchanged in each direction, as well as the amount of their contribution
in terms of code commits, bug fixing, produced reports and documentation,
sent emails and posted comments/messages. This large amount of data can be
selectively collected and then analysed not only by using inferential statistics to
identify activity patterns but also by using ontology engineering formalisms that
support the extraction of semantic information [8,9].

In recent work [3], we identify three phases of the learning process occurring
in a FLOSS environment, initiation, progression and maturation, and two cat-
egories of FLOSS contributors, novice and expert. For each phase and category
of contributor, we make use of semantic search in SQL to retrieve data from
posts and emails, in order to identify those activities, carried out by FLOSS
members, that may contribute to the members’ learning processes. The choice
of the key-words and key-phrases that drive the semantic search is based on a
number of studies that analyse FLOSS communities using social science means
to identify questions and answers that normally occur during collaboration and
communication in FLOSS environments [8]. States of the process are associated
with lists of generic key-words/key-phrases while specific activities are associated
with lists of more discriminative key-words/key-phrases. Examples of states are:
observation and contact establishment, for the initiation phase; revert, post and
apply, for the progression phase; analyse, commit, develop, revert and review,
for the maturation phase. Example of activities are: formulate question, iden-
tify expert and post message as novice’s activities of the observation state; run
source code as expert’s activity of the apply state; submit code and submit bug
report as novice’s activities of the commit state; write source code as novice’s
activity of the develop state. The resultant three catalogs, one for each phase of
the learning process, are used to build organised event logs out of the unstruc-
tured data. Using DISCO process mining tool [2], a visual representation of a
process model is extracted from the event log [3].

A number of pilot studies have analysed communications in FLOSS commu-
nities in terms of participants, quantity and sometimes topics by using ques-
tionnaires and surveys or written student reports describing the encountered
risks as research instruments. These previous works were the basis for our defin-
ition of a priori models of the collaboration and learning processes occurring in
FLOSS communities [1]. Using conformance analysis, these a priori models are
compared with the event logs, thus detecting a number of deviations. Finally,
such deviations are interpreted on the discovered a posteriori model in order to
reconcile it with the corresponding original a priori model.

142 A. Cerone

2.2 Modelling Skill Acquisition

The modelling and conformance analysis approach described in Sect. 2.1 refers to
the learning process at a specific phase of the contributor’s growth as a member
of the FLOSS community, according to the two points of view of the novice look-
ing for guidance and the expert providing support. However, transition between
learning phases is not instantaneous but proceeds as a gradual evolution deter-
mined by the acquisition of new skills and their exploration in the social and
productive contexts of the FLOSS community.

Understanding the aspects of skill acquisition, its individual variations and
the social, technological and organisational factors that naturally encourage,
constrain or hinder it is essential to design an appropriate learning model based
on the exploitation of FLOSS projects. Given the diversity with which skill
acquisition occurs for different individuals, and the consequent difficulties in
collecting comprehensive data through social science research methods, it is hard
to develop an a priori model of this important learning process.

In this context, process mining could be used as a primary modelling tool.
As we have seen in Sect. 2.1, in order to produce catalogs for semantic search,
appropriate key-words and key-phrases can be identified and associated with
states and activities. However, states would now describe acquired skills, such
as coding, reviewing, testing and documenting, while activities would still be the
same as we identified in our previous work [3]. Furthermore, process mining
could be used to associate quantitative information, such as frequency, number
of repetition and approval rate, with activities. Quantitative information would
be then integrated by functions that evaluate the level of skill acquisition. For
example, the transition to the state coding can occur only if the ratio between
the frequencies of commit source code and write source code is sufficiently high.
Transition between states is triggered when the value of the function associated
with the skill represented by the target state is above a given threshold.

Social networks are an important source of information about learning and
other cognitive processes not only in the case of interaction within an online com-
munity, as in the case of FLOSS communities, but also in the context of the usage
of a specific device/interface/application. Similarly to the diversity with which
skill acquisition occurs for different individuals, users show large varieties in the
modality of interacting with or using the device/interface/application/online
resource. Moreover, the large number of features offered by these kinds of hard-
ware and software artifacts gives users plenty of choices in developing strategies
for using a specific artifact to achieve their goals. Furthermore, on the one hand,
user’s creativity results in modalities of use and exploitation that were not con-
sidered by the artifact designers and developers. For example, short message
service (sms) was initially introduced in the 1980 s as an additional feature of
mobile phones, but has nowadays become, for many users, the main or only pur-
pose of using a mobile phone. On the other hand, artifact “pseudo-intelligence”
tries to anticipate user’s (unpredictable) behaviour, thus leading to unexpected
errors. For example, a text processing program might continuously rearrange
the order of the items in a toolbar depending on the frequency of their use, thus

Process Mining as a Modelling Tool 143

confusing users and inducing errors. This complex situation cannot be captured
by collecting data through social science research methods. As a consequence,
also in modelling usage or tasks or task failures it is basically impossible to
develop comprehensive a priori models. Thus, the application of process mining
to online reviews and user community communications could extract important
information about behavioral patterns underlying usage strategies, task perfor-
mance and task failure.

Finally, online reviews of products contain a large amount of information
about their standard and non-standard usage as well as their pitfalls and fail-
ures. Moreover, new hardware and software products give rise to new online
communities of users who exchange opinions on the product, report their usage
experiences, post requests for help, reply by providing advices and, most impor-
tant, learn from each other, thus improving their skills and evolving from being
novices to being experts. We claim that both online reviews and user community
communications can be mined to extract information about user’s skill acqui-
sition in using the product. Therefore, a process mining based approach could
be used also in this context to define a skill acquisition model to be used for
evaluating the quality of the product and improving new releases in terms of
learnability and usability.

3 Towards Real-Time Process Mining

In various domains a large amount of data is collected using geographical infor-
mation system (GIS) in association with a wireless sensor network. This is the
case, for example, in: ethology, by equipping individuals of animal species with
tracking devices in order to monitor animal behaviour and migration routes;
transportation, by exploiting GPS devices on cellphones or cars; ecology, where
wireless sensor networks are used to collect real-time information about envi-
ronmental conditions. In some cases, such as in ethology, data processing occurs
normally only after data collection has been completed, whereas, in other cases,
data must be processed in real time in order to decide corrective or emergency
action to be carried out promptly. For example, in transportation, traffic may
be redirected in real time to avoid congestion, while, in ecology, real-time data
flow allows researchers to react rapidly to events, thus extending the laboratory
to the field [6].

We envisage the use of real-time process mining to produce visual presen-
tations of bottlenecks and alternative routes, from traffic event logs, for traffic
management, as well as informed, visual presentations of the real-time situations,
from sensor network and social network logs, for emergency management.

4 Conclusion

In this paper we have extensively discussed the possible use of process mining as
an effective modelling and validation tool to support the design and validation
of a number of frameworks and systems spanning across various application

144 A. Cerone

domains. We have envisaged that process mining could be effectively applied
to a variety of domains other than BPM: learning, HCI, cognitive modelling,
traffic management and emergency management. As a support to our claims,
we have shown the successful use of process mining and conformance analysis
in the area of learning, by referring to our previous work on process mining
FLOSS repositories, which aimed to validate an a priori model of the learning
processes naturally occurring within FLOSS communities [3,4]. In our approach,
process mining is applied to FLOSS communities to discover dynamic processes
(learning processes, that is, processes that produce learning). This is different
from van der Aalst and Song’s approach to discover and analyse social networks
from event logs [10]. In fact, their approach consists in extracting information
about the activity performers described by the event logs, whereas ours consists
in extracting information about control flow and building statistics about the
occurrence of activities.

References

1. Cerone, A.: Learning and activity patterns in OSS communities and their impact
on software quality. In: Proceedings of OpenCert 2011, ECEASST, vol. 48 (2012)

2. Günther, C., Rozinat, A.: DISCO: discover your process. In: Proceedings of the
Demonstration Track of BPM 2012, CEUR Workshop Proceedings, vol. 940, pp.
40–44. CEUR-WS.org (2012)

3. Mukala, P., Cerone, A., Turini, F.: Mining learning processes from FLOSS mailing
archives. In: Janssen, M., Mäntymäki, M., Hidders, J., Klievink, B., Lamersdorf,
W., van Loenen, B., Zuiderwijk, A. (eds.) I3E 2015. LNCS, vol. 9373, pp. 287–298.
Springer, Heidelberg (2015)

4. Mukala, P., Cerone, A., Turini, F.: Process mining event logs from FLOSS data:
state of the art and perspectives. In: Canal, C., Idani, A. (eds.) SEFM 2014 Work-
shops. LNCS, vol. 8938, pp. 182–198. Springer, Heidelberg (2015)

5. Mukerjee, K., Porter, T., Gherman, S.: Linear scale semantic mining algorithms
in Microsoft SQL server’s semantics platform. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
213–221. ACM (2011)

6. Porter, J., et al.: Wireless sensor networks for ecology. BioScience 55(7), 561–572
(2005)

7. Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on
monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)

8. Scacchi, W., Feller, J., Fitzgerald, B., Hissam, S.A., Lakhani, K.: Understanding
free/open source software development processes. Softw. Process Improv. Pract.
11(2), 95–105 (2006)

9. Sowe, S.K., Cerone, A.: Integrating data from multiple repositories to analyze pat-
terns of contribution in FOSS projects. In: Proceedings of OpenCert 2010, ECE-
ASST, vol. 33 (2010)

10. van der Aalst, W.M.P., Song, M.S.: Mining social networks: uncovering interaction
patterns in business processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM
2004. LNCS, vol. 3080, pp. 244–260. Springer, Heidelberg (2004)

11. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes: A Petri Net-
Oriented Approach. The MIT Press, Cambridge (2011)

On Integrating Social and Sensor Networks
for Emergency Management

Farshad Shams, Antonio Cerone(B), and Rocco De Nicola

IMT Institute for Advanced Studies, Lucca, Italy
{farshad.shams,antonio.cerone,rocco.denicola}@imtlucca.it

Abstract. The 2010 earthquake in Haiti is often referred to as the turn-
ing point that changed the way social media can be used during disas-
ters. The development of strategies, technologies and tools to enhance
user collaboration around disasters has become an emergent field, and
their integration with appropriate sensor networks presents itself as an
effective solution to drive decision making in emergency management.

In this paper, we present a review of existing disaster management
systems and their underlying strategies and technologies, and identify
the limitations of the tools in which they are implemented. We then pro-
pose an architecture for disaster management that integrates the mining
of social networks and the use of sensor networks as two complemen-
tary technologies to overcome the limitations of the current emergency
management tools.

1 Introduction

Crisis response activities include undertaking measures to protect lives and prop-
erties immediately before, during, and immediately after the occurrence of a
disaster. Such activities may span from a few hours to days or even months,
depending upon the magnitude of the event. Disaster management using the
World Wide Web is an emergent field that uses technology to enhance users
collaboration around disasters. While there exist a number of dedicated “dis-
aster portals” [6,12,13], large social networks such as Twitter, Facebook, and
Google-plus can facilitate the analysis and sharing of a collective intelligence
regarding disaster information on a much greater scale. Recent disasters (e.g.
Haiti, Australia, Japan, Mexico, etc.) have demonstrated their real potential in
providing support to emergency operations for crisis management [38]. Social
networks have the potential to increase accessibility to eyewitness’ information,
and exploiting their input to gain awareness of an incident is an important
research topic. Reaching populations by means of customised and timely alerts
through multiple channels (Internet technologies, hand-held devices, and social
networks) can help inform those at risk and assure those not at risk with mes-
sages that accurately reflect the levels of vulnerability of the target population.

From the earthquake in Haiti in 2010 to the terrorist attack in Boston in
2013, Facebook, Twitter and other social media have shown ability to provide
valuable support to civil protection in emergency situations. The earthquake in
c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 145–160, 2015.
DOI: 10.1007/978-3-662-49224-6 13

146 F. Shams et al.

Haiti is often referred to as the turning point that changed the way social media
can be used during disasters. The size and emotional impact of disasters have
created the right motivations for the integration of social media in emergency
management. In 2005, when the hurricane Katrina devastated the US coast of
the Gulf of Mexico, Facebook was one year old, there was no Twitter, and smart
phones were not common yet. In 2012, when hurricane Sandy hit the east coast
of the US, social media had become an integral part of the response to disasters:
millions of Americans used social media to follow the news, look for persons, and
send requests to the authorities. Researchers have now begun to publish reports
on the use of social media during disasters, and law and security experts have
started to evaluate how to best exploit social media in emergency management.

In 2011, the Australian state of Queensland was impacted by floods and a
severe tropical cyclone. While there was significant media coverage, social net-
works were also inundated with posts related to the floods. A government social
media outlet, “@QPSmedia” was created and utilised for community interac-
tion regarding the disaster. In 2012, the Department of Health and Human Ser-
vices (HHS) in USA sponsored a challenge for software application developers to
design a Facebook application called the Personal Emergency Preparedness Plan
(PEPP) [34]. Riskr [31] is a low-technological project which applies a Web2.0
[46] solution to creating disaster portals fed by social networking messages; the
system has been implemented using Twitter and tested by users to determine
the advantages of having interoperability between social networks and disaster
portals. Farber et al. [31] state that almost all Riskr users have no problem with
predefined hash-tags and they are satisfied about the received information. There
are some challenges to process posts in socials networks. The social networks are
not optimised and specialised for emergency management and the posts may
include sentimental words, emoticons, links, and personal and untrustable opin-
ions. Extraction of related posts, categorisation of heterogenous messages, and
determination of the trustworthiness of messages are some of the challenges to
face when using social media for managing catastrophic events. Efficient meth-
ods of handling subjective information, uncertainty, different level of credibility,
extraction of exact location (position), and sentiment context should be used to
make the utmost use of the data collected through a stream of posts.

In this paper we present a review of existing disaster management systems.
In particular, we consider strategies and technologies for the analysis of informa-
tion collected by mining social networks and information provided by a wireless
sensor network, as well as the use of geo-spatial technologies. We claim that the
integration of information from these different sources is essential to implement
a decision making system aiming at promptly disseminating alerts, efficiently
organising rescue activities and providing effective support. Section 2 defines
terminology and phases of emergency management. Section 3 reviews existing
disaster management systems. In Sect. 4, we propose an architecture for disaster
management that integrates the mining of social networks and the use of sensor
networks. Finally Sect. 5 clarifies which parts of the proposed architecture have
already been implemented.

On Integrating Social and Sensor Networks for Emergency Management 147

2 Emergency Management

The term emergency, or disaster or crisis, refers to a situation that poses an
immediate risk to health, life, property or the environment. Thus emergency
management, or disaster management, is used to encompass all plans defined
by national or local agencies, called Emergency Management Agencies (EMAs)
and the consequent activities carried out to tackle an emergency situation, or
disaster, with the goal of reducing harm to life, property and the environment,
and then return to a normal functional condition [26]. Emergency management
is an interdisciplinary field of study, which involves intertwined social, politi-
cal, technological, economic and cultural aspects. Moreover, there is a general
consensus in identifying four phases in handling disasters [26]:

mitigation often called prevention or risk reduction, aims to reduce the likeli-
hood or consequence of a hazard risk by defining appropriate measures and
procedures before the occurrence of a disaster;

preparedness is defined as actions taken in advance of a disaster, as imple-
mentation of mitigation measures and procedures, together with roles and
responsibility assignments as well as service availability, to ensure adequate
response to its impacts and the relief and recovery from its consequences;

response when the disaster occurs, all involved actors promptly contribute,
according to their roles and within the confines of their limited funding,
resources, ability and time, to the search and rescue, with the coordination
of the appropriate EMAs that activate and manage measures and procedures;

recovery is the process of rebuilding, reconstructing and repairing damages and
destruction caused by the disaster, and finally restoring the normal situation.

Mitigation is often considered the “cornerstone of disaster management”. It has
been for a long time perceived as a luxury of the wealthy countries, but has
now started to gain recognition and practical application also in the developing
world. Recently, prevention has been distinguished from mitigation to better
characterise pro-active measures designed to provide permanent protection [10].
Response is usually subject to extensive media coverage and is therefore the
most visible disaster management function at the international level. The effec-
tiveness of the response phase not only depends on the promptness in carrying
out search and rescue actions, but also on the definition, during mitigation, of
measures and procedures that facilitate data selection, aggregation, integration
and availability, and optimal scheduling of actions, as well as on their efficient
implementation, during preparedness.

3 Literature Review on Disaster Management Systems

Some of the current disaster management solutions are inadequate to help man-
age disaster due to manual data collection and entry, which result in delayed
dissemination of information. Sahana [22] is an open source disaster manage-
ment system that has been widely used. It has a modular structure for effective

148 F. Shams et al.

communication and information sharing among various stakeholders including
government, NGOs and affected people. However, being a traditional database
management system, it requires manual data entry. Global Disaster Information
Network (GDIN) [7] is another conventional web based information system that
provides effective communication. However, it lacks in the effective management
of disaster data. Other notable disaster management systems are Queensland
Disaster Management System [6] and Disaster Management Information System
(DMIS) [5]. All these systems provide no support for automatic information col-
lection and this is a severe limitation in situations where time is one of the most
precious entities and even seconds can save lives.

In this section we review a number of disaster management systems that
adopt technologies for automatic information collection. We starts with systems
based on the analysis of social networks. Then we consider systems that use
wireless sensor networks. We conclude with discussing the use of Geographical
Information System (GIS) and Global Positioning System (GPS).

3.1 Systems Based on Analysis of Social Networks

Recently, Twitter has played an increasing role as a clearinghouse for informa-
tion related to emergencies and disasters. Sakaki et al. [49] propose an algorithm
for tweets monitoring and real-time target detection. To detect a target event,
the authors devise a classifier of tweets based on features such as the keywords
in a tweet, the number of words, and their context. They then produce a proba-
bilistic spatiotemporal model for the target event that can find the center of the
event location. They apply a particle filtering for each Twitter user to achieve
a better estimation of target event location. Nguyen et al. [45] define an event
by five attributes for each Twitter message: actor, action, object, time and loca-
tion. They build a collective, readable and intelligence-based web ontology tool
that understands the meaning of Japanese text messages and extracts semantic
data about incidents. The authors propose a novel approach which can automat-
ically build an earthquake semantic network by mining human activities from
Twitter. By using this semantic network, computers can recommend suitable
action patterns for victims. This approach automatically makes its own train-
ing data and uses linear-chain conditional random field as a learning model. In
the project conducted by Nguyen et al., the text extractor architecture consists
of two modules: “self-supervised learner” and “activity extractor”. Firstly, the
learner uses basic Japanese syntax patterns to select analysable activity sen-
tences. Then, it uses deep linguistic parsing to extract activity attributes and
relationships between activities in these sentences. Secondly, a “decision mod-
ule” uses extracted actions and objects to create search keywords for Twitter
API.

Although news information is widely available through social media such
as Twitter, the credibility of such information may be questionable. To assess
the credibility of information propagated through Twitter, Castillo et al. [23]
propose a mechanism using features from the content of posts and from citations

On Integrating Social and Sensor Networks for Emergency Management 149

to external sources. The study conducted by Westerman [53] found a curvilinear
pattern between the number of followers and Twitter user’s credibility.

3.2 Systems Based on Wireless Sensor Networks

Sensor networks have the potential to revolutionise the capture, processing and
communication of critical data for use of disaster rescue and early-warning sys-
tems. Event detection functionality of wireless sensors can be of great help and
importance for real-time detection of, for example, meteorological natural haz-
ards and residential fires. The basic idea of event detection is to define some
threshold values and generating an alarm by sensor when input is lower/higher
than a pre-defined threshold value. Due to the fact that disasters cannot be
detected by simple pre-defined thresholds [43], the new trend in event detection
is to use pattern matching or machine learning techniques. Based on the scale of
the network, application requirements and constraints, pattern matching have
been proposed for use in the base station [55], locally in the sensor nodes [19],
or distributed over the network [42]. The RT-HRLE system [32] uses a wireless
sensor network for real-time monitoring, tracking of missed people inside build-
ings and reporting partial or total destruction of buildings to a central database.
Liu et al. [41] present an architectural approach for wireless sensor networks
which can proactively self-adapt to changes and evolution occurring in the pro-
vision of search and rescue capabilities in a dynamic environment. The proposed
model uses the concepts of dynamic workflow management to enable dynamic
service integration for reliable and sustainable provision of rescue capabilities.
This approach is able to identify evolution, evaluate the impact of evolution and
self-configure services to adapt to evolution.

3.3 Systems Based on Geo-Spatial Technologies

Disaster management involves not just crisis-reactive responses to emergencies,
but also finding ways to avoid problems in the first place and preparing for
those that undoubtedly will occur. Natural disaster management is a complex
and critical activity that can be more effectively addressed with the support
of geo-spatial technologies and spatial decision support systems [30,48]. In this
respect, spatial data and related technologies such as GIS and GPS have been
proven crucial for effective disaster management [16,28]. Throughout the first
three phases of disaster management, preparedness, mitigation, and response,
a GIS can effectively facilitate the integration of spatially distributed informa-
tion within a decision support system. The effectiveness and growth of GIS and
GPS is however dependent on the development of a national disaster manage-
ment database underlying the varied scope and activities pertaining to national
emergency management. A national database provides a common frame of ref-
erence for all provincial and local agencies and establishes the framework for
managing and organising the data required to support the disaster risk manage-
ment activities of responsible organisations. Gunes et al. [35] aim at building a
database in a GIS frame that helps emergency management officers in decision

150 F. Shams et al.

making, focusing on Douglas County’s preparedness, mitigation, and response
efforts for its most common disaster: flooding. The system leads to better flood
management by automating the task of determining the probable flood-affected
areas and integrating the results with other spatially distributed information.
This enables emergency management officers to make more informed decisions
before, during, and after a flood situation. Pareta and Pareta [47] address the
need, the technical structure and the potential solutions facilitated by the cre-
ation of an effective database at a national level and draw upon experience from
work in Vietnam and practices from India.

4 Towards an Integrated Server Architecture

In this section we propose a comprehensive server architecture, as illustrated
in Fig. 1, which consists in a “Command, Control, Communication Comput-
ers, and Intelligence” (C4I) [54] unit communicating with the database that
provides a common frame of reference for all local agencies (Agency Data) and
with sensor networks, social networks, etc. The incorporated components include
mechanisms to model event level semantic information, a system for implement-
ing multi-sensor fusion, mechanisms for estimating the veracity of information,
data cleaning to reduce uncertainty and enhance accuracy of event detection
and notification, and spatiotemporal analyses for pattern and trend analyses
for higher level observations. Such a modular architecture makes it possible to
upgrade the platform in the future as needs change or new technologies appear.
The proposed platform is capable of processing information about various types.
Processing can be configured using rules and may include configuration for data
loading, pre-processing, aggregating, statistics building, correlating with other
events and storing in a database.

The architecture consists of services on which data are ingested, cleaned and
analysed to extract information that is customised for emergency services, and
hand-held devices on which alerts are visualised. The disaster portal that inter-
faces the server leverages core features of the platform such as notification and
authorisation dialog for citizens. Citizens can register themselves and their own
socio-economic situations (having car, address, disabilities, situation of building,
etc.) to receive the most appropriate alert messages in pre- and post-catastrophic
events. Citizens can also register themselves as volunteers and encourage other
citizens to participate. The server can send requests to volunteers in a threat-
ened area and volunteers can send their plans to the server. The portal allows
registered users to send their real-time location and situations. Unregistered
users can communicate with the server through different channels, e.g. phone
call and messages through cellphone. Obviously, analysis and visualisation tech-
niques implemented in such tools need to be customised to the specific disaster
management subject domain.

In a disaster management service, deployment scenarios for sensor networks
are countless and diverse. For example, sensors may be used for weather forecast-
ing, tsunami detection, pollution detection, and video surveillance. Normally,

On Integrating Social and Sensor Networks for Emergency Management 151

a disaster management server allows the operator to query a sensor network
and retrieve some resulting data. However, some scenarios may require regular
queries to be scheduled and automatically dispatched without external opera-
tor intervention. Furthermore, there is a growing need to share resources among
diverse network deployments to aid in critical tasks like decision making. For
example, a tsunami warning system may rely on water level information from
two geographically distributed sets of sensors developed by competing hardware
vendors. This presents significant challenges in resource interoperability, fault
tolerance and software reliability. We need to implement a set of uniform oper-
ations and a standard representation for different entities, sensors data and web
services data, which can fulfil the software needs of a network regardless of the
deployment scenario. The proposed platform capabilities include:

– monitoring of sensors and social media for the relevant information;
– semantic enrichment of information through multi-modal analysis (tweets,

sensor, etc.) to create event level representation;
– integration with other information sources such as the agency database;
– querying targeted sensors and rescue agents for recent updates based on their

location;
– making the best decision and generating custom alerts for specific population

groups.

Finally, the choice of an adequate data interchange format can have signifi-
cant consequences on data transmission rates and performance. XML and JSON
(JavaScript Object Notation) serialisation have been widely used in the actual
development of web applications. Compared to XML, JSON has higher parsing
efficiency and the advantages of easy preparation. Since JSON is not just a text
format, but a serialised data structure, Resource Description Framework (RDF)
libraries can support it [15], not just as a format to parse from or output to,
but also internally, as a data structure that can be passed to and returned by
functions and methods.

In Sects. 4.1–4.4 we describe the server components, as shown in Fig. 1.

4.1 Event Collection Module

This module gathers information on crisis-related events from a variety of dis-
perse sources including voice, text, image, video, and sensors. It explores inte-
grated distributed systems, data management, and networking systems that
enable information to seamlessly flow in real-time from sources to collec-
tion points. This is done by periodically querying social networks with dif-
ferent incident related key-words, sending requests to sensors and waiting for
voice/message calls. The received data must be pre-processed and stored accord-
ing to agreed standards to support data sharing with incident management appli-
cations. For instance, sensors data may be labeled with sensor ID and location,
voice calls may be labeled with the phone number and location. Finally, each type
of data is converted to an appropriate low-volume format to facilitate analysis.

152 F. Shams et al.

Command, Control, Communications, Computers, and Intelligence (C4I)

Agency Data

Sensors Data

SMS/MMS

Voice Calls

Social Media
Feeds

Event Collection
Module

Web Portal

Web Portal

Text
Analysis

Sensors
Analysis

Speech
Analysis

Video/Image

Analysis

Event & Location Extraction

Data Accuracy & Reliability

Event & Location Classification
and Data Shrinking

Event Extraction & Analysis Module

Response/Alert

Planning and
Generation

Decision Support
Module

Event DB
(source, event, location, time, ...)

Resource DB (Population,

Hospitals, Food, ...)

Response Plans, Maps,
Citizens Guide, Policies, ...

Command
to Sensors

Feeds
Social Networks

SMS/MMS/

Voices to
Citizens

Alert to
Emergency

Services
Broadcast
Systems

Alert and Command
Dissemination Module

Fig. 1. Server components for data ingestion and enrichment, and alerting tasks.

In geographically spread hazards, such as earthquakes, the amount of result-
ing generated data is voluminous. Real-time analysis and collecting such data
could overwhelm any computing infrastructure. While dynamically acquired
cloud computing alleviates some of the overheads, scaling data collection to
such big data requires additional techniques. One possible technique is the pri-
oritisation of the collection of diverse data by dynamically optimising the overall
situational awareness under resource constraints and source restrictions, e.g. net-
work bandwidth and maximum concurrent queries.

One of the goals in data acquisition is to ensure that the data collected
is relevant for the event under consideration and avoid retrieving too many
irrelevant data. Precision is obtained by ranking and clustering different key-
words and terms relevant for the event. The retrieval challenge is to get as
many relevant messages as possible. The precision challenge is instead tackled by
applying context-based filtering techniques [36]. In addition, boosting methods
[20] are used to collect the initial set of messages related to the event, and then,
based on them, select new frequent key-words as query terms. Such query terms
could also be chosen using ontologies such as SWEET [4].

The server controls several types of sensors and video-surveillances spatially
located in different places. However, such a variety of sensors requires interfac-
ing applications to perform common operations and transformations on sensor
data. As sensor data is time-dependent, the user needs to provide, essentially,
the desired geographic area, the desired time interval, and the desired properties

On Integrating Social and Sensor Networks for Emergency Management 153

to be observed. With the specifications defined through the Sensor Web Enable-
ment (SWE) [8] initiative of the Open Geospatial Consortium (OGC) [9], flexible
integration of sensor data is becoming a reality. The NICTA Open Sensor Web
Architecture (NOSA) infrastructure [2] is built upon the SWE standard defined
by the OGC, which consists of a set of specifications, including sensor model
language, observation, measurement, sensor collection service, sensor planning
service and web notification service. NOSA adopts a Service Oriented Archi-
tecture (SOA) approach to describe, discover and invoke services from a het-
erogeneous platform using XML and SOAP standards. Services are defined for
common operations including data aggregation, scheduling, resource allocation
and resource discovery. Each sensor is registered as a web service that can be
comfortably discovered. Combining sensors and sensor networks with a SOA is
an important step forward in presenting sensors as resources to discover, access
and, where applicable, control via the World Wide Web. It offers the opportunity
of linking geographically distributed sensors and computational resources into a
“sensor-grid”.

The main challenges in sensor networks are the discovery of appropriate
sensor information and the real-time fusion of the discovered information [51].
They are key issues in disaster management, where the flow of information is
overwhelming and sensor data must be easily accessible for non-experts. By reg-
istering every sensor as a web service, sensor discovery and fusion can be carried
out by semantically annotating services with terms from a purposed-designed
ontology. In doing so, several well known techniques from the GIS and seman-
tic web worlds can be employed. Semantically, annotations of geographically
distributed sensors provide an infrastructure with which on-line discovery and
integration of sensor data is not more difficult than using standard GIS applica-
tions. The service discovery is realised by text search combined with taxonomy
browsing [18]. For instance, suppose a number of different types of sensors, e.g.
water/air pollution, water level and water temperature, are placed in different
point of a river. The highest level of taxonomy will be “river” and “sensor”. The
second level connected to river taxonomy will be the different sectors/points
of the river and the second level of the sensor taxonomy will be the different
types of sensors. The third level of the sensor taxonomy will be the different
installed sensors (ID number). Each sensor (ID) is (semantically) connected to a
sector/point of the river. The emergency officer can then query the situation of
the whole river, or of a specific sector of the river. Then, the server commands
the proper sensors, the observed data is integrated/fused together and the result
is finally shown on the GIS map.

4.2 Event Extraction and Analysis Module

This module further analyses the pre-processed data stored in the databases of
an emergency management system to extract meaningful semantic information.
The semantic enrichment is the context of location determination and event
representation. In addition, the semantic information extracted from multiple
data is fused for event classification and disambiguation. In case any ambiguity

154 F. Shams et al.

is found in the received data, the system can ask more information from citizens
to achieve a reliable message. The enriched data is compared with previous
similar events stored in the local database. One important challenge is to develop
technologies and tools to integrate, analyse and visualise multiple information
sources to rapidly assess the nature, composition and pattern of threats, and to
address public safety practitioner requirements.

One of the crucial data enrichment challenges is text (tweets, SMS) analy-
sis to extract disaster related information. The sentences retrieved from social
media, or received through SMS are complex, often structurally varying, syn-
tactically incorrect, and have many user-defined new words. Thus, extracting
activities from these sentences might be very difficult. The Event Extraction and
Analysis Module exploits some known platforms for Natural Language Process-
ing (NLP). GATE [33] is one of the most popular platforms for Natural Language
Processing (NLP) widely used in industry and academia to extract information
from text. The actual processing of the content goes through several steps, start-
ing with tokenisation, sentence splitting and speech tagging. These processing
layers are provided by GATE along with grammars and other standard building
bricks for obtaining sophisticated information extraction applications. ANNIE
(A Nearly New Information Extraction System), a plug-in of GATE, is used
to extract disaster information. ANNIE [27] uses PRs (Processing Resources)
that have been developed using the JAPE (Java Annotation Pattern Engine)
language [52], a pattern/action rule language based on regular expressions.

Another challenge is speech analysis; there have been several recent
announcements surrounding the application of speech-to-text analysis in con-
sumer search settings. Google announced its Political Gadget, enabling visitors
to search the spoken word of content within YouTube Presidential candidate’s
channels. Adobe plans to include speech-to-text features in future versions of its
video authoring applications, such as Premier. Sites such as WEEI [1] and FOX
Sports [3] have been using similar tools to power search and publishing applica-
tions for their multimedia archives. The Event Extraction and Analysis Module
automatically transcribes speech messages and extract meaningful keywords and
then analyses it as a text message.

Detecting the occurrence of an incident-relevant event within a multimedia
clip is another task of this module. The representation of an image/video into
a set of key-words have been successfully used in many detection and recogni-
tion tasks such as object detection [29], scene recognition [39], human action
recognition [40] and semantic concept detection [37].

Another crucial analysis technology supported by this module is the geo-
localisation of data from sensors, cell-phones and social media sources. This can
be done at several levels of complexity, including cellphone location, sensors’
location, extraction from tweet, or complex computer vision algorithms that can
localise images based on skylines or building facades. Having information about
where an event occurs allows for various geo-spatial analyses that can support
alert customisation to subscribers. With the advances in location-aware mobile
devices, location-based social networking applications have been taking shape

On Integrating Social and Sensor Networks for Emergency Management 155

at fast pace. Examples of such applications include Google Buzz Mobile, Loopt,
and Microsoft Geo-Life. Potential applications of these systems include the pos-
sibility for users to receive nearby geo-tagged messages submitted by friends and
to find a new facility within a certain area based on friends’ opinions, and com-
pletely ignore the social aspect in social networking services. GeoSocialDB [25]
provides a holistic framework consisting of three location-based social network-
ing services, namely, location-based news feed, location-based news ranking, and
location-based recommendation. Even though GeoSocialDB is not specialised for
emergency situations, it can certainly be used to generate queries like: “Send me
the k most relevant messages submitted by victims with tagged locations within
d kilometers of my location”, or “Recommend me the best street to go away
within d kilometers of my location based on emergency officers opinions”.

Event data management is concerned with providing data management or
“database like” capabilities for events. It is important to treat events as objects
and provide storage, querying, retrieval and indexing capabilities for them. We
are working on several issues in this regard. For example, concerning event mod-
elling, we are developing a semantic data model for events. A large collection of
distributed reports are generated during a disaster. In its original form, these
data is of limited use, since users can only apply keyword searching to it. It
is therefore necessary to extract events and inter-event relationships to pro-
duce more structured data, in order to be able to apply most of the existing
exploratory and analytical tools.

4.3 Decision Support Module

Decision support is an essential functionality of an emergency management sys-
tem. This module processes the enriched event data to generate targeted alert-
ing. This can be achieved by integrating the structured event representation
with other local data such as demographics and resource availability in differ-
ent areas and organisations. By purposefully utilising collected information, for
instance by a data fusion system, the state of some system-relevant environ-
ment is adequately assessed to support decision-making. Various multimodal
data streams and static environmental information (geo-spatial information) are
fused together to produce a refined decision. The GIS-enhanced information can
enable decision makers to match on-ground situations and determine alerting
requirements in different areas. Pre-defined policies are incorporated into a rule-
base to dictate the kind of guide and information to be provided in an alert. This
is used to generate messages for specific population groups that are categorised
based on location and physical disabilities (elderlies, patients in a hospital). For
instance, in the case of an industrial fire, the alert could be sent to people in
the neighbourhood and this alert should be different from the one sent to people
living at a safe distance from the fire.

Analysis and visualisation are concerned with providing intuitive and visual
analysis and querying capabilities for managers of situational information. It
is reasonable to expect that managers or field commanders would finally like
to see patterns and trends in the information collected and get intuitive and

156 F. Shams et al.

visual views of the information. In this regard, we propose to develop tools
such as a graph based query algebra and language over events. This allows
users to query and analyse events in a graphical manner. The resulting graph
based semantic network can be stored as either a multi dimensional table or an
RDF file. These enable the use of online analytical processing (OLAP) queries
[21,24] and SPARQL (Simple Protocol and RDF Query Language) queries [14],
respectively.

An estimation of the current location and number of people in a disaster area
and a prediction of the future movement of those people could provide critical
information to disaster operation command staff responsible for rescue and evac-
uation, and also to victims looking for the best way to navigate to a safe place.
One important initiative for disaster emergency personnel can be a real-time evac-
uation planning model, which automatically calculates the evacuation time of a
user defined area based upon the transportation network, population data, and
behavioral characteristics to provide emergency planners the ability to effectively
plan for and manage evacuations. “People forecasting” and occupancy analysis in
real-time are crucial to predict freeway traffic information and (future) event pre-
diction. Occupancy analysis could be carried out by extracting information about
human behavior from a variety of sensors such as loop sensors counting cars on a
freeway, people counters at doors of buildings and GPS devices on cellphones or
cars. A “personal traffic assistant” running on mobile devices can help travelers
re-plan their travel when the routes are impacted by failures.

4.4 Alert and Command Dissemination Module

This module focuses on the challenges associated with the timely dissemination
of information to entities participating in disaster response activities, to other
organisations (e.g. mass media organisations), and to the general public. Empir-
ical social science research has focused on issues related to the dissemination of
hazard-related information in both pre- and post-disaster contexts.

A possible strategy for alert dissemination consists in dividing and routing
volunteers to different threatened neighbourhoods based on the event propaga-
tion, the number of victims, and volunteers’ location. Without proper planning
for the route of each volunteer, some places may be visited repeatedly while
others may not be visited at all. Furthermore, repeated visits of some places
may prolong the response time of exploring the whole disaster area. As a con-
sequence, a major limitation of using social networks and broadcast systems to
explore disaster areas is the lack of coordination among volunteers. Google map
API, MapQuest [17] and Quantum GIS [11] open source software provide power-
ful and user friendly tools to find the best GIS platform for spatial management
applications.

This module supports customised delivery of alerts to specific sub-
populations based on location, the current status of the incident and its expected
effects and propagations, status of various locations, needs, etc. A flexible policy
definition mechanism allows customisation based on location and geographical
information and type of event [44]. The policy determines how often an individ-
ual user may be reached as the event evolves and the protective actions change.

On Integrating Social and Sensor Networks for Emergency Management 157

5 Conclusion and Future Work

In this paper we have reviewed a number of technologies and systems for emer-
gency management. To our knowledge, none of the existing disaster manage-
ment systems support the integration of data from sensor networks and social
networks. We have proposed an architecture that combine a number of existing
technologies to achieve such integration.

Some of the functionalities of our proposed architecture have been imple-
mented by the WiLIFE project (Tecnologie WireLess e ICT per un efFiciente
e integrato sistema per la prevenzione e gestione delle situazioni di crisi e
delle Emergenze — http://www.wilife-project.it/) during 2012–2015 [50]. With
respect to the architecture proposed in Sect. 4, the WiLIFE project produced:
an implementation of the Event Collection Module that supports the integration
of events from a wireless sensor networks with data form social networks; some
functionalities of the Event Extraction and Analysis Module, including some
level of geo-localisation of the extracted data; the data presentation aspects
of the Decision Support Module; dissemination of commands to public service
operators and alerts to Twitter users, also through a mobile app available for
Android platforms, which are part of the Alert and Command Dissemination
Module. The implementation of further functionalities of the Alert and Com-
mand Dissemination Module and the prediction aspects of the Decision Support
Module are part of our future work, subject to funding availability.

References

1. http://audio.weei.com/
2. http://gridbus.csse.unimelb.edu.au/sensorweb/
3. http://msn.foxsports.com/topics/
4. http://sweet.jpl.nasa.gov/
5. https://www-secure.ifrc.org/dmisii/
6. http://www.disaster.qld.gov.au/
7. http://www.gdin.org/
8. http://www.ogcnetwork.net/swe
9. http://www.opengeospatial.org/

10. http://www.preventionweb.net/english/hyogo
11. http://www.qgis.org/
12. http://www.un-spider.org/event/6485/2013-05-01/disaster-management
13. http://www.undp.org.ir/drm/en/national disaster portal.asp
14. http://www.w3.org/tr/rdf-sparql-query/
15. Alexander, K.: RDF in JSON: a specification for serialising RDF in JSON. In:

SFSW (2008)
16. Amdahl, G.: Disaster Response: GIS for Public Safety. ESRI, Redlands (2002)
17. M.O.D. APIs and W. Services. http://developer.mapquest.com/web/products/

open

http://www.wilife-project.it/
http://audio.weei.com/
http://gridbus.csse.unimelb.edu.au/sensorweb/
http://msn.foxsports.com/topics/
http://sweet.jpl.nasa.gov/
https://www-secure.ifrc.org/dmisii/
http://www.disaster.qld.gov.au/
http://www.gdin.org/
http://www.ogcnetwork.net/swe
http://www.opengeospatial.org/
http://www.preventionweb.net/english/hyogo
http://www.qgis.org/
http://www.un-spider.org/event/6485/2013-05-01/disaster-management
http://www.undp.org.ir/drm/en/national_disaster_portal.asp
http://www.w3.org/tr/rdf-sparql-query/
http://developer.mapquest.com/web/products/open
http://developer.mapquest.com/web/products/open

158 F. Shams et al.

18. Babitski, G., Bergweiler, S., Hoffmann, J., Schön, D., Stasch, C., Walkowski, A.C.:
Ontology-based integration of sensor web services in disaster management. In:
Janowicz, K., Raubal, M., Levashkin, S. (eds.) GeoS 2009. LNCS, vol. 5892, pp.
103–121. Springer, Heidelberg (2009)

19. Bahrepour, M., Meratnia, N., Havinga, P.: Use of AI techniques for residential fire
detection in wireless sensor networks. In: Artificial Intelligence Applications and
Innovations (AIAI), vol. 475, Greece, July 2009

20. Becker, H., Naaman, M., Gravano, L.: Selecting quality Twitter content for events.
In: Proceedings of the International Conference on Weblogs and Social Media
(ICWSM), Barcelona, Spain, July 2011

21. Berson, A., Smith, S.J.: Data Warehousing, Data Mining, and OLAP, 1st edn.
McGraw-Hill Inc, New York (1997)

22. Careem, M., De Silva, C., De Silva, R., Raschid, L., Weerawarana, S.: Sahana:
overview of a disaster management system. In: International Conference on Infor-
mation and Automation (ICIA), Colombo, Sri Lanka, December 2006

23. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In: Inter-
national World Wide Web Conference, Hydeabad, India, March-April 2011

24. Chaudhuri, S., Dayal, U.: An overview of data warehousing and OLAP technology.
SIGMOD Rec. 26(1), 65–74 (1997)

25. Chow, C.-Y., Bao, J., Mokbel, M.F.: Towards location-based social networking
services. In: Proceedings of the ACM SIGSPATIAL International Workshop on
Location Based Social Networks, San Jose, California (2012)

26. Coppola, D.P.: Introduction to International Disaster Management. Butterworth-
Heinemann, Burlington (2011)

27. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: a framework
and graphical development environment for robust NLP tools and applications. In:
Proceedings of the Annual Meeting of the Association for Computational Linguis-
tics, Philadelphia, PA, USA (2002)

28. Cutter, S.L.: GI science, disasters, and emergency management. Trans. GIS 7(4),
439–446 (2003)

29. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of
flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006.
LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006)

30. Donohue, K.: Using GIS for all-hazard emergency management (2002)
31. Farber, J., Myers, T., Trevathan, J., Atkinson, I., Andersen. T.: Riskr: a low-

technological Web 2.0 disaster service to monitor and share information. In: Inter-
national Conference on Network-Based Information Systems (NBiS), Melbourne,
Australia, September 2012

32. Fawzy, D., Sahin, Y.: RT-HRLE: a system design for real-time hazards reporting
and loss estimation using wireless sensors. In: International Conference on Educa-
tion and Management Technology (ICEMT), Cairo, Egypt, November 2010

33. General Architecture for Text Engineering. http://gate.ac.uk/
34. Greer, M., Ngo, J.: Personal emergency preparedness plan (PEPP) facebook app:

using cloud computing, mobile technology, and social networking services to decom-
press traditional channels of communication during emergencies and disasters. In:
IEEE International Conference on Services Computing (SCC), Hawaii, June 2012

35. Gunes, A., Kovel, J.: Using GIS in emergency management operations. J. Urban
Plan. Dev. 126(3), 136–149 (2000)

http://gate.ac.uk/

On Integrating Social and Sensor Networks for Emergency Management 159

36. Jafarpour, H., Lickfett, J., Kim, K., Xing, B.: A policy driven meta-alert system for
crisis communications. In: Incident, Resources, and Supply Chain Managemernt,
DHS Workshop on Emergency Management (2009)

37. Jiang, Y.-G., Yang, J., Ngo, C.-W., Hauptmann, A.G.: Representations of
keypoint-based semantic concept detection: a comprehensive study. IEEE Trans.
Multimedia 12(1), 42–53 (2010)

38. Kongthon, A., Haruechaiyasak, C., Pailai, J., Kongyoung, S.: The role of Twitter
during a natural disaster: case study of 2011 Thai flood. In: Proceedings of Tech-
nology Management for Emerging Technologies (PICMET), Vancouver, Canada,
July-August 2012

39. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid
matching for recognizing natural scene categories. In: IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Washington,
DC, June 2006

40. Liu, J., Luo, J., Shah, M.: Recognizing realistic actions from videos in the wild. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR), Miami, November 2009

41. Liu, L., Webster, D., Xu, J., Wu, K.: Enabling dynamic workflow for disaster
monitoring and relief through service-oriented sensor networks. In: International
ICST Conference on Communications and Networking in China (CHINACOM),
Beijing, China, August 2010

42. Luo, X., Dong, M., Huang, Y.: On distributed fault-tolerant detection in wireless
sensor networks. IEEE Trans. Comput. 55(1), 58–70 (2006)

43. Majumdar, K., Majumder, D.: Fuzzy differential inclusions in atmospheric and
medical cybernetics. IEEE Trans. Syst. Man Cybern. Part B Cybern. 34(2), 877–
887 (2004)

44. McGinley, M., Turk, A., Benet, D.: Design criteria for public emergency warning
systems. In: 3rd International ISCRAM Conference, Newark, USA, May 2006

45. Nguyen, T.-M., Koshikawa, K., Kawamura, T., Tahara, Y., Ohsuga, A.: Build-
ing earthquake semantic network by mining human activity from Twitter.
In: IEEE International Conference on Granular Computing (GrC), Kaohsiung,
Taiwan, November 2011

46. Oreilly, T.: What is Web 2.0: design patterns and business models for the next
generation of software. Commun. Strat. 65, 17 (2007)

47. Pareta, K., Pareta, U.: Developing a national database framework for natural dis-
aster risk management. In: Proceedings in ESRI International User Conference,
San Diego, California (2011)

48. Radke, J., Cova, T., Sheridan, M.F., Troy, A., Mu, L., Johnson, R.: Challenges for
GIS in emergency preparedness and response. An ESRI white paper, May 2000

49. Sakaki, T., Okazaki, M., Matsuo, Y.: Tweet analysis for real-time event detection
and earthquake reporting system development. IEEE Trans. Knowl. Data Eng.
25(4), 919–931 (2013)

50. Shams, F., Capodieci, P., Cerone, A., Fantacci, R., Marabissi, D., Mariotta, G.,
Sciuto, P., De Nicola, R.: Integration of heterogeneous information sources for an
effective emergency management. Int. J. Emergency Manage. (2015, in press)

51. Tseng, Y.-C., Kuo, S.-P., Lee, H.-W., Huang, C.-F.: Location tracking in a wireless
sensor network by mobile agents and its data fusion strategies. In: Zhao, F., Guibas,
L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 625–641. Springer, Heidelberg (2003)

160 F. Shams et al.

52. G.G. Tutorial. http://gate.ac.uk/sale/thakker-jape-tutorial/gate
53. Westerman, D., Spence, P.R., Heide, B.V.D.: A social network as information:

The effect of system generated reports of connectedness on credibility on Twitter.
Comput. Hum. Behav. 28(1), 199–206 (2012)

54. What is C4I? http://www.c4i.org/whatisc4i.html
55. Xue, W., Luo, Q., Chen, L., Liu, Y.: Contour map matching for event detection in

sensor networks. In: International Conference on Management of Data (COMAD),
Chicago, IL, December 2006

http://gate.ac.uk/sale/thakker-jape-tutorial/gate
http://www.c4i.org/whatisc4i.html

Quantitative Modelling of Residential
Smart Grids

Vashti Galpin(B)

Laboratory for Foundations of Computer Science School of Informatics,
University of Edinburgh, Edinburgh, UK

Vashti.Galpin@ed.ac.uk

Abstract. Generation of electricity has traditionally taken place at a
small number of power stations but with advances in generating technol-
ogy, small-scale generation of energy from wind and sun is now possible
at individual buildings. Additionally, the integration of information tech-
nology into the generation and consumption process provides the notion
of smart grid. Formal modelling of these systems allows for an under-
standing of their dynamic behaviour without building or interacting with
actual systems. This paper reports on using a quantitative process alge-
bra HYPE to model a residential smart grid (microgrid) for a spatially-
extensive suburb of houses where energy is generated by wind power at
each house and where excess energy can be shared with neighbours and
between neighbourhoods. Both demand and wind availability are mod-
elled stochastically, and the goal of the modelling is to understand the
behaviour of the system under different redistribution policies that use
local knowledge with spatial heterogeneity in wind availability.

Keywords: Smart grid · Microgrid · Renewable energy · Process alge-
bra · Quantitative modelling · Stochastic hybrid · Collective adaptive
system

1 Introduction

The way in which electricity is generated is changing. Until recently, there were
a few large producers and many consumers (domestic, commercial and indus-
trial). As it becomes cheaper and easier to install equipment that allows one
to generate electricity from sun and wind power on individual buildings, more
consumers are becoming generators of energy. Furthermore, the introduction of
information technology allows for exchange of information. This paper investi-
gates the possibilities that these changes bring to residential areas consisting
of standalone or semi-detached houses. Currently, some countries allow excess
renewable energy to be fed back into the grid but this is not the only option and
it may be possible to share directly between households. If we consider a large
suburb consisting of groups of houses, each supplied by one transformer from
the grid (called neighbourhoods in this paper) then questions arise about the
best way in which to share this energy between neighbourhoods. Location then
c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 161–175, 2015.
DOI: 10.1007/978-3-662-49224-6 14

162 V. Galpin

becomes important and spatial differences in renewable energy can be inves-
tigated. A novel formal model of this scenario is developed in this paper and
evaluated through simulation.

A smart grid is an example of a collective adaptive system because it consists
of different components that interact and it must adapt to changes in the envi-
ronment in which it operates. Collective adaptive systems are becoming more
common in everyday life, and they are often invisible to users and people affected
by them. Hence it is crucial that formal methods are used to reason about their
behaviour so that we can obtain a good understanding of how they work and how
they may fail. Formal methods can be used to reason about functional properties
of systems (such as liveness and correctness with respect to a specification or
logical property) as well as nonfunctional properties such as performance. This
paper focusses on the quantitative behaviour of smart grids taking into account
spatial distribution of the system.

Stochastic HYPE is a quantitative process algebra developed to model sys-
tems which include continuous evolution of variables, stochastic behaviour and
instantaneous jumps [3,11]. It has been used to model various systems, artificial
and biological and combinations of both [2,8,9,12]. In the case of modelling smart
grids, continuous modelling is required for calculating the energy consumption
from changing energy rates, stochastic modelling is required for natural phe-
nomena such as wind and instantaneous behaviour occurs when policies change
due to events (that themselves may be instantaneous such as a change in the
price of electricity). The expressiveness of stochastic HYPE allows for different
approaches to modelling spatial aspects. It can model both continuous space and
logical space (which is the approach taken here). For the current research, analy-
sis of the model is done by simulation, specifically by considering the averages
of variable trajectories over multiple simulation runs [2].

The paper is structured as follows. First, residential smart grids are described,
and their behaviour quantified in terms of energy flows. Policies for distributing
surplus renewable energy between neighbourhoods are described. Next, stochas-
tic HYPE is introduced and the basic model is presented together with the model
parameters. Results of simulation are presented and discussed. Related work is
assessed and the paper finishes with conclusions and future work.

2 Smart Grids

As mentioned above, energy generation is changing and a number of recent fac-
tors have led to this change and will cause greater changes in the future. Amongst
these factors are concerns about energy scarcity due to finite quantities of fossil
fuels (sustainability), public distrust of nuclear power, desire for sustainability,
availability of equipment for small scale generation from renewable resources,
and integration of information in the electricity network infrastructure which
aids decision making in production and consumption. Thus, some who were his-
torically only the consumers have become producers as well (sometimes referred
to “prosumers”). Producers wish to produce energy to cover demand and no

Quantitative Modelling of Residential Smart Grids 163

more. Consumers on the other hand, want to pay a reasonable cost for their
energy. Information can be used by producer and consumer alike to achieve their
goals. For example, smart meters allow consumers to understand consumption,
and producers can vary prices to shape demand.

An example residential smart grid consists of 4 to 7 houses served by a single
transformer that steps down grid power to domestic voltage. Each house also
has photovoltaic cells and a wind turbine [18]. Additionally, each house may
have a plug-in electric hybrid vehicle (PHEV) which has a battery which is
used both to power the vehicle and to store excess renewable energy. Various
types of information can be used. For example, information about the current
energy price transmitted from the grid can be used to determine how to use
the renewable energy being generated [18], and a limit of the number of vehicles
charging from the grid during peak times can be enforced [17].

The specific scenario envisaged in this paper involves small groups of houses
(each referred to as a neighbourhood) served by a transformer as described
above. There is a wind turbine on each house and no local storage. The focus is
on energy sharing (as opposed to reselling) within and between these groups of
houses. In such a scenario, sharing energy in a fair way between houses within a
neighbourhood where the houses have the same turbine and similar wind speeds
is straightforward, as there is an easy argument for fairness under an assumption
that demand from each house is similar1. In terms of infrastructure, distance
between houses in a neighbourhood is assumed to be similar and hence no spatial
aspects are introduced within a neighbourhood.

Space is introduced when considering sharing between neighbourhoods. This
is more complex, distances vary, and assuming infrastructure for sharing energy
that is distinct from the grid, it does not make sense to connect each neigh-
bourhood directly to every other neighbourhood but rather to directly connect
neighbourhoods. This paper explores different energy sharing policies between
neighbourhoods that use knowledge about the local conditions such demand or
wind strength.

2.1 Quantifying Smart Grids

We consider n neighbourhoods where the number of houses in neighbourhood Ni

is mi. Each house Hij has aij appliances as well as a background energy profile
which is deterministic and distinguishes nighttime when residents are asleep
(after 11pm and before sunrise), evening (from sunset to 11pm) and daytime
(from sunrise to sunset).

For each point in time, the consumption rate (or demand) within a household
can be determined and expressed as ld ij(t) = b(t) +

∑aij

k=1 oijk(t) · appijk where
b(t) is the background consumption rate which is assumed to be the same across

1 Nevertheless one household could get a greater share of the renewable energy by
ensuring their appliance use is at different times to the other households, and there
are other similar actions that some people would consider unfair.

164 V. Galpin

all houses, oijk is an indicator of whether the kth appliance is on in house Hij

and appijk is the energy consumption rate of that appliance.
We define lr i as the available renewable energy rate for a household in neigh-

bourhood Ni (assuming that it is the same for every household in a neighbour-
hood). Three quantities can be calculated for each house.

Use of local renewable energy: lruij(t) = min(ld ij(t), lr i(t))
Local excess demand: lxd ij(t) = ld ij(t) − lruij(t)
Local excess renewable energy: lxr ij(t) = lr i(t) − lruij(t)

Clearly, if lxd ij is nonzero at time t then lxr ij(t) will be zero at that time point,
and if lxr ij(t) is nonzero at time t, lxd ij will be zero.

It is unnecessary to work at the level of individual houses as long as there
is an assumption that surplus renewable energy is allocated maximally between
neighbours, in the sense that all energy is allocated and there is no wastage with
in a neighbourhood (one possibility for maximal allocation is proportionally
with demand). The neighbourhood calculation of demand and renewables are
nd i(t) =

∑mi

j=1 ld ij(t) and nr i(t) = mi · lr i(t) and from this other values can be
calculated, similarly to above.

Use of neighbourhood renewable energy : nrui(t) = min(nd i(t),nr i(t))
Neighbourhood excess demand : nxd i(t) = nd i(t) − nrui(t)
Neighbourhood excess renewable energy : nxr i(t) = nr i(t) − nrui(t)

Owing to the assumption of maximal allocation, we can conclude that nxd ij(t) >
0 ⇒ nxr ij(t) = 0 and nxr ij(t) > 0 ⇒ nxd ij(t) = 0. Without description here
(it will be covered in the next section) we assume a policy that allocates some
of the surplus to each neighbourhood where the allocation is fi (there may be
wastage). Again we assume maximal allocation between the houses which have
excess demand within a neighbourhood and we can determine a neighbourhood-
level excess demand after this allocation that must be satisfied from the grid.

Use of shared renewable energy : nsui(t) = min(nxd i(t), fi(t))
Use of energy from the grid : gi(t) = nxd i(t) − nsui(t)
Wasted renewable energy : wi(t) = fi(t) − nsui(t)

Again, nonzero gi implies zero wi and vice versa. These equations are then the
basic mathematical equations for energy, and describe rates at a point in time.
To determine actual quantities over time, further calculation must be done. For
example, g(t) expresses the rate of grid consumption at time t. To determine
the overall consumption of energy, we need to solve the ordinary differential
equation (ODE) dG(t)/dt = g(t) to give the quantity G(t), the amount of grid
energy consumed up to time t. Furthermore, the calculations do not include
explicitly the losses incurred when converting DC current (from wind turbines)
to AC current (for appliances and background consumption) and hence the rate
of renewable energy obtained from the wind will have these losses deducted.
The issue of losses due to conversion are more important in models that include
battery storage.

Quantitative Modelling of Residential Smart Grids 165

2.2 Policies

As mentioned above, the surplus energy from each neighbourhood nxr i is dis-
tributed to other neighbourhoods, with neighbourhood j receiving the quantity
fj . We consider policies where energy is supplied to all neighbourhoods2.

There are two groups of calculations needed to determine what each neigh-
bourhood receives, associated with two decision phases. The first decision is to
determine how much to supply in each direction. For a 2-dimensional layout,
one can envision “waves” of energy being sent in each direction, considering
either the four main compass points (von Neumann neighbourhood) or eight
compass points (Moore neighbourhood). Each neighbourhood must determine
how its excess is divided up and this division results in expressions denoted by
tr iX where tr iX represents the transfer from Ni in direction X ∈ C where C
is the set of compass points of interest. The value of tr iX is determined from
the excess renewable energy from Ni, nxr i, and some other factors relating to
those neighbourhoods immediately adjacent to Ni for the directions of interest.
Clearly, we require that the amount allocated be less than the amount avail-
able hence we require that

∑
X∈C tr iX ≤ nxr i and a choice that is not equality

results in immediate wasted renewable energy. Examples of functions that use
local knowledge now follow. Let h(C) be the set of all adjacent neighbourhoods
of Ni in the directions of interest.

Split equally between adjacent neighbourhoods:
triX = nxr i/|C| for X ∈ C

Split proportionally by demand in adjacent neighbourhoods:
triX = nxr i · nxd j/(

∑
Nk∈h(C) nxdk) for X ∈ C

Split by relative wind speed in adjacent neighbourhoods:
Let wl i be the number of adjacent neighbourhoods of Ni that have wind
speed less than wind i then, for X ∈ C

triX =

⎧⎪⎨
⎪⎩
nxr i/wl i wl i > 0 ∧ wind j < wind i for Nj in direction X
0 wl i > 0 ∧ wind j ≥ wind i for Nj in direction X
nxr i/|C| otherwise

The second decision is about what energy each neighbourhood receives. To
understand this decision, consider energy being supplied from west to east (or
left to right). The leftmost neighbourhood can only pass on its surplus (if any).
Then for each neighbourhood as one moves eastward, there are two options;
either contribute surplus energy to the supply (if there is excess renewable
energy) or to consume some portion of the energy that has arrived (if there
is excess demand). The maximum amount that can be consumed is determined

2 One can consider policies where energy is only supplied to adjacent neighbourhoods
but this necessarily seems to result in lower use of renewable energy because fewer
neighbourhoods can receive excess renewable energy.

166 V. Galpin

by the excess demand for that neighbourhood, the amount available (the avail-
able energy), any policy restriction on the amount that can be consumed (giving
the allocated energy) and what is actually consumed (giving the actual energy).
In the example that appears later, we will associate with each neighbourhood, a
percentage which will describe the proportion of the excess demand that can be
satisfied and we will illustrate two ways in which this percentage can be chosen.

Expressions of the form trXi describe the energy from each relevant direction
to each neighbourhood. It is not correct to consider the sum of the tr iX and
divide it up because there is directionality and it is necessary to consider the
amount available for each neighbourhood, as described above. Assuming a strip
of neighbours N1 to Nn from west to east, N1 transfers all its excess energy
for the east, hence the amount available at N2 is avX2(t) = tr1X(t). Assuming
that the amount allocated for consumption at N2 is allX2(t) then trX2(t) =
min(avX2(t), allX2(t)) is the actual amount allocated, and the amount available
for N3 is avX3(t) = avX2 − trX2(t) + tr2X(t) where one or more of trX2(t)
and tr2X(t) are zero since if energy is required there will have been no excess to
pass on, and if there is energy to pass on, there can be no demand. The general
definition is then as follows.

avXi(t) =

{
0 i = 1
avX(i−1)(t) − trX(i−1)(t) + tr (i−1)X(t) otherwise

trXi(t) =

{
avXn(t) i = n

min(avXi(t), allXi(t)) otherwise

To keep track of wastage, the last neighbourhood receives all remaining energy
regardless of any allocation. For the other directions, the expressions are defined
similarly. The total of allocated energy for neighbourhood Ni is defined by fi =∑

X∈C trXi. Different allocation policies to determine allXi can be used, and the
simplest is to allocate the same amount as the demand. A slightly more complex
policy is to allocate a proportion of the demand, and other more complex (but
not necessarily better) policies can be developed.

3 Stochastic HYPE Model

Space limitations prevent an introduction to stochastic HYPE and the reader is
referred to [3,11]. In this section, a flavour of the model is given and a very brief
introduction to the semantics of stochastic HYPE are presented. Subcomponents
(see Table 1) define the flows that describe the continuous behaviour of the sys-
tem and they react to events that may change these flows. Underlined events
are instantaneous in nature and occur when a Boolean expression (activation
condition or guard) becomes true. Overlined events are stochastic and complete
after an exponential duration. Each subcomponent must be able respond to
the first event init to ensure that the initial behaviour of the subcomponent is
defined. The characteristics of a flow are described by the influence triples. The

Quantitative Modelling of Residential Smart Grids 167

Table 1. Subcomponents, influence mapping, variables, event conditions, con-
trollers/sequencers and the overall system. GC is a variable which records the current
cost of energy from the grid.

Time = init:(ιt, 1, 1).Time
Appijk = offijk:(ι

a
ijk, 0, 0).Appijk + onijk:(ι

a
ijk, appijk, 1).Appijk +

init:(ιaijk, 0, 0).Appijk

Back ij = night:(ιbij , rn , 1).Back ij + evening:(ιbij , re , 1).Back ij + day:(ιbij , rd , 1).Back ij +
init:(ιbij , rn , 1).Back ij

Grid i = init:(ιgi , 1, gi) Shared i = init:(ιsi , 1,nsui) Wastei = init:(ιwi , 1,wi)
Cost i = init:(ιki ,GC , gi) Renew i = init:(ιri , 1,nxr i + nsui)

iv(ιt) = T iv(ιwi) = W iv(ιri) = E iv(ιaijk) = iv(ιbij) = Di

iv(ιsi) = Si iv(ιri) = Ri iv(ιgi) = Gi iv(ιci) = Ci

T time
W total wastage
E total renewable energy generated
Di total demand in neighbourhood Ni

Si shared renewable energy usage in neighbourhood Ni

Ri total renewable energy usage in neighbourhood Ni

Gi grid energy usage in neighbourhood Ni

Ci cost of grid energy in neighbourhood Ni

ec(init)
def
= (true, (T ′ = 0) ∧ (W ′ = 0) ∧ (P ′ = 0) ∧ . . .)

ec(onijk)
def
= (T = Tonijk , T ′

cijk = T) ec(offijk)
def
= (T = Tcijk+ Tdijk , true)

ec(day)
def
= (T mod 24 = 6, true) ec(peakd)

def
= (T mod 24 = 7,GC ′ = gcp)

ec(evening)
def
= (T mod 24 = 18, true) ec(midpeakd)

def
= (T mod 24 = 10,GC ′ = gcmp)

ec(night)
def
= (T mod 24 = 22, true) ec(peake)

def
= (T mod 24 = 17,GC ′ = gcp)

ec(blow)
def
= (rblow ,WB ′ = 1) ec(midpeake)

def
= (T mod 24 = 20,GC ′ = gcmp)

ec(noblow)
def
= (rnoblow ,WB ′ = 0) ec(offpeak)

def
= (T mod 24 = 23,GC ′ = gcop)

CAppijk

def
= onijk.offijk.CAppijk

SBack def
= day.evening.night.SBack

SWind def
= blow.noblow.SWind

SPeak def
= peakd.midpeakd.peake.midpeake.offpeak.SPeak

RSG def
= Σ ��∗ init.Con

Σ def
= Time ��∗ (. . . ��∗ Appijk ��∗ . . .) ��∗ (. . . ��∗ Back ij ��∗ . . .) ��∗ (. . . ��∗

(Grid i ��∗ Cost i ��∗ Wastei ��∗ Energyi ��∗ Renew i ��∗ Shared i) ��∗ . . .)

Con def
= (. . . ��∗ CAppijk ��∗ . . .) ��∗ SBack ��∗ SWind ��∗ SPeak

first element of a triple is the influence name which identifies the variable that
is affected by the influences in this subcomponent through the mapping iv , as
shown in Table 1. The second and third components describe the flow, with the
second component representing the strength of the flow as a constant value and

168 V. Galpin

the third element describing a function that introduces variables in the flow defi-
nition. A feature of stochastic HYPE is that it allows for multiple flows to affect
a single variable. In the example, this is illustrated by the fact that multiple
influences are mapped to the variable Di, allowing for multiple appliances and
the background level of consumption to determine the ODE that describes the
value of Di over time. The second and third elements are multiplied together
in the ODE that is generated for a variable, so their separation in the model is
purely a syntactic distinction.

Table 1 also lists event conditions for the model. These consist of an activation
condition (in the case of instantaneous events) and a reset of variable values. As
is standard in stochastic HYPE models, the init event initialises all variables
and has the activation condition true. It is the first event that happens because
of the structure of the overall system RSG .

Events that turn appliances on and off are required. The value of Tonijk
is set

at the start of the day using a distribution that describes the probability of that
type of appliance starting at a particular hour of the day, and a random number
of minutes (uniformly chosen from the interval [0, 60)). The duration Tdijk

is a
fixed value for the type of appliance. There are other events that are dependent
on time. There are a number of approaches that could be considered for modelling
wind: a constant wind, a wind defined by a stochastic differential equation as in
[22] and a stochastic wind that may be present (at a fixed strength) or absent
The latter is most appropriate here since goal of the model is to consider energy
sharing, hence the renewable energy provided by the wind may be present or
absent. This are determined by two stochastic events blow and noblow where
the first element of the event condition is the rate. The reset determines the
value of the variable WB which in turn determines lr i for each neighbourhood.

We also require some controllers and sequencers and these are given in
Table 1 with the full model. Both the SBack and SPeak are somewhat redundant
because of the time-based sequencing in the event conditions, however stochastic
HYPE requires that all events should appear in controllers, and this explicitness
expresses the intent of the model. However, the other controller definitions are
required to ensure the correct alternation of events. The semantics of a stochas-
tic HYPE model are defined via structured operational semantics that define
a labelled transition system. In this labelled transition system, a function σ is
required to record the current values associated with each influence name, hence
the operational semantics are defined over pairs 〈P, σ〉. The labelled transition
system can then be mapped to transition-driven stochastic hybrid automata
[5], a subset of piecewise deterministic Markov processes [6]. The states of the
labelled transition system become the modes of the stochastic hybrid automata,
and the ODEs for a mode are defined in terms of the values associated with each
influence name in that mode.

To illustrate the ODEs that are obtained from the model above, the ODE
that defines the demand for neighbourhood Ni is as follows in the case where
there are five houses in Ni, one appliance is on in the third house, two appliances
are on in the fifth house, and it is before 07:00 in the morning, then the equation

Quantitative Modelling of Residential Smart Grids 169

is dDi/dt = 5rn + appi31 + appi51 + appi52. For the total waste, we have the
ODE dW/dt =

∑n
i=1 wastei and for total renewable energy generated, we have

dE/dt =
∑n

i=1 grid i.
The transition-driven stochastic hybrid automaton has the following struc-

ture and associated behaviour.

– Modes and their associated ODEs describe how variable values change.
– Continuous evolution of variable values are determined by the current mode.
– Switching between modes occurs when

1. activation conditions (guards) of instantaneous events become true
2. durations of stochastic events expire

with possible jumps in variable values determined by resets.

A trace of an automaton consists of a continuous trajectory for each variable
interspersed with non-continuous changes in values. The behaviour of stochastic
HYPE models can be explored using the stochastic hybrid simulator described
in [2] and this simulator was used for the results reported here.

3.1 Model Parameters

Appliances: There are two per house, one washing machine (consumption
0.82 kWh, cycle length 1 h) and one dishwasher (consumption 2.46 kWh, cycle
length 1 and a half hours) [18]. Distributions for the probability of being on in
a specific hour are used to determine the starting hour of the appliance [18].

Background Consumption: Using the figures from Fig. 10 in [25] as a guide,
the daytime figure is 0.3 kWh, the evening figure is 0.5 kWh and the nighttime
figure is 0.1 kWh.

Wind: It has been argued that on average in the UK, at any specific point,
the probability of there being wind sufficiently strong to drive a turbine is 80 %
[21]. As mentioned above, to explore the issue of sharing renewable energy, it
is necessary for the wind to be stochastic, and two exponential distributions
are used, one for wind presence and one for wind absence. We consider various
possibilities including that from [21]. The average generation capacity of the
wind in the UK has been calculated to be somewhere between 25 % and 35 %
[21]. This means a turbine with a rating of x kWh will give that percent of its
rated power.

Electricity Cost: Here we follow [18], so at peak times, the cost is 0.272£/kWh,
mid-peak cost is 0.194£/kWh, and off-peak is 0.107£/kWh.

4 Results

A number of different experiments were considered. The two main wind patterns
that were investigated are as follows.

170 V. Galpin

Fig. 1. Stacked graphs of the average instantaneous local renewable usage, shared
renewable usage and grid usage over one day (right: one wind scenario, left: two wind
scenario).

One wind scenario: Seven neighbourhoods in a strip were considered, with
N1 to the west and N7 to the east. N1 and N2 had the full strength of the
wind, N3 and N4 had half strength wind, and N5, N6 and N7 had quarter
strength wind.

Two wind scenario: This had the same strip layout with no wind in the central
neighbourhood N4 and one wind at full strength in N1, half strength in N2

and a quarter strength in N3. The second wind was available in N7 at full
strength, N6 at half strength and N5 with quarter strength.

A number of policies were investigated and are described by the following abbre-
viations.

eq100 Split equally in each direction, allowing 100 % of demand to be satisfied
wn100 Split by relative wind speed, allowing 100 % of demand to be satisfied
dm100 Split proportionally by demand, allowing 100 % of demand to be

satisfied
dminc Split proportionally by demand, with proportion of demand to be sat-

isfied increasing in the direction of supply
dmwnd Split proportionally by demand, with proportion of demand to be sat-

isfied determined by wind level.
dw100 Split proportionally by demand with a weighting factor to favour higher

demand, allowing 100 % of demand to be satisfied
da100 Direction of highest demand receives all excess, allowing 100 % of demand

to be satisfied

Figure 1 shows the instantaneous energy consumption across the day (as a
stacked graph). There is a peak in the early evening capturing the higher back-
ground level at that time and the higher likelihood of appliance being used. There
is more use of shared renewables at night because there is a greater likelihood of
excess renewables due to lower consumption then. The right hand graph shows
that there is more scope for sharing of renewables in the two wind scenario.

Figure 2 provides heatmaps across the neighbourhoods of the parameter space
for wind strength and wind absence (under the dm100 policy in the one wind

Quantitative Modelling of Residential Smart Grids 171

1.
00

1.
00

0.
50

0.
50

0.
25

0.
25

0.
25

W
in
d
m
ul
ti
pl
ie
r

W
in
d
m
ul
ti
pl
ie
r

W
in
d
m
ul
ti
pl
ie
r

W
in
d
m
ul
ti
pl
ie
r

W
in
d
m
ul
ti
pl
ie
r

W
in
d
m
ul
ti
pl
ie
r

W
in
d
m
ul
ti
pl
ie
r

F
ig
.
2
.
H

ea
tm

a
p
s
fo

r
re

n
ew

a
b
le

u
sa

g
e,

sh
a
re

d
u
sa

g
e,

g
ri

d
u
sa

g
e

a
n
d

w
a
st

a
g
e

a
cr

o
ss

n
ei

g
h
b
o
u
rh

o
o
d
s
fo

r
d
iff

er
en

t
m

a
x
im

u
m

w
in

d
st

re
n
g
th

s
a
n
d

w
in

d
a
b
se

n
ce

ra
te

(o
n
e

w
in

d
sc

en
a
ri

o
ov

er
2
4

h
)

fo
r

p
o
li
cy

d
m

1
0
0
.

A
s

th
e

w
in

d
d
ec

re
a
se

s
ov

er
n
ei

g
h
b
o
u
rh

o
o
d
s

fr
o
m

le
ft

to
ri

g
h
t,

re
n
ew

a
b
le

u
sa

g
e

d
ec

re
a
se

s
a
n
d

g
ri

d
u
sa

g
e

in
cr

ea
se

s.
S
h
a
re

d
en

er
g
y

in
cr

ea
se

is
d
ep

en
d
en

t
o
n

th
e

w
in

d
m

u
lt

ip
li
er

o
f
a
d
ja

ce
n
t

n
ei

g
h
b
o
u
r-

h
o
o
d
s.

W
it

h
in

a
n
ei

g
h
b
o
u
rh

o
o
d
,
re

n
ew

a
b
le

u
sa

g
e

in
cr

ea
se

s
a
n
d

g
ri

d
u
sa

g
e

d
ec

re
a
se

s
a
s

th
e

w
in

d
a
b
se

n
ce

ra
te

d
ec

re
a
se

s
a
n
d

th
e

w
in

d
st

re
n
g
th

in
cr

ea
se

s.
S
h
a
re

d
u
sa

g
e

sh
ow

s
th

e
sa

m
e

p
a
tt

er
n

ex
ce

p
t

in
N

1
a
n
d
N

2
w

h
er

e
sh

a
re

d
u
sa

g
e

is
v
er

y
lo

w
.
W

a
st

a
g
e

o
n
ly

sh
ow

s
th

is
p
a
tt

er
n

in
N

1
a
n
d
N

7
a
s

th
is

is
w

h
er

e
u
n
u
se

d
re

n
ew

a
b
le

en
er

g
y

co
ll
ec

ts
.
N

7
h
a
s

h
ig

h
er

w
a
st

a
g
e

b
ec

a
u
se

th
e

d
em

a
n
d

d
ri

v
en

p
o
li
cy

is
li
k
el

y
to

a
ll
o
ca

te
m

o
re

sh
a
re

d
en

er
g
y

to
th

e
n
ei

g
h
b
o
u
rh

o
o
d
s

w
it

h
lo

w
er

w
in

d
.

172 V. Galpin

Fig. 3. Heatmaps for percentage of energy used that is renewable (out of total energy
consumed) and percentage renewable energy wastage (out of total renewable available)
for different maximum wind strengths and wind absence rate (one wind scenario over
24 h) considering different policies.

scenario). The wind strength varies from 0.2 to 1 (and is adjusted by the wind
multiplier for the region). The average wind presence rate is 1.2 h and the average
wind absence varies from 0.3 h (in line with the 80 % presence of [21]) to 1.2 h
(giving a 50 % presence). The heat maps show how the figures vary across regions
and across parameters. Most wastage occurs at the extreme neighbourhoods
since these are supplied with all excess energy not yet allocated.

Heatmaps can also be used to compare policies and Fig. 3 shows different
heatmaps for three policies in the one wind scenario. Note that percentage
wastage appears to only depend on windspeed and be independent of average
wind absence. This occurs because wastage only occurs when the wind is present,
and hence variations in how long the wind is absence have no effect.

For all policies in the one wind scenario, there are no obvious differences, and
thus it appears that using different types of local knowledge have no impact.
These policies were also investigated for a four by four grid of neighbourhoods
with wind multipliers that decreased from the north-west corner to the south-
east corner, and again no major differences were found. This suggests that in
the case of a single wind at the strengths and absences investigated, the different
policies do not make a major difference in how much energy is supplied to other
neighbourhoods and hence no difference is seen. This can be explained by the
fact that most wastage occurs at night when there is low background usage and
a lower chance of appliance use (as illustrated by Fig. 1). Thus when there is high
demand, all available renewable energy is used, regardless of policy; and when
there is low demand, there is sufficient energy to allocate it all (again regardless of
policy). This could be investigated further by reducing the amount of renewable
energy to much lower levels so that all is needed and hence differences in policies

Quantitative Modelling of Residential Smart Grids 173

Table 2. Cost per day for different policies across neighbourhoods with mean and
variance, grid consumption, percentage waste and percentage renewable use (two wind
scenario over 24 h), ordered by average cost.

N1 N2 N3 N4 N5 N6 N7 Mean Variance Grid W% R%

da100 1.09 1.16 1.19 1.46 1.18 1.13 1.11 1.19 0.0130 159.3 15.9% 47.4%

wn100 1.11 1.14 1.22 1.37 1.21 1.16 1.16 1.20 0.0064 158.4 16.2% 47.5%

dw100 1.10 1.14 1.22 1.43 1.20 1.13 1.15 1.20 0.0110 158.6 17.1% 47.6%

eq100 1.15 1.13 1.25 1.44 1.22 1.13 1.13 1.21 0.0111 160.9 18.6% 46.7%

dm100 1.13 1.15 1.28 1.47 1.20 1.19 1.13 1.22 0.0129 163.7 16.8% 45.9%

dmdec 1.07 1.21 1.31 1.48 1.29 1.17 1.06 1.23 0.0192 165.0 19.2% 45.3%

dmdwn 1.07 1.30 1.32 1.30 1.32 1.28 1.10 1.24 0.0101 165.6 19.6% 45.2%

may be demonstrated. Furthermore, introducing the ability to store renewable
energy and use it later might could lead to more significant differences in policies.

Note that all policies described above lead to a greater use of renewable
energy and lower grid usage when compared to the situation where no energy is
shared between neighbourhoods. On average, the amount of renewable energy
consumed (as a percentage of total energy demand) increases to 70 % from 55 %
when neighbourhood sharing is introduced, and the wastage of renewable energy
(as a percentage of all renewable energy produced) drops from 57 % to 27 %
through sharing between neighbourhoods.

Next, we consider the two wind scenario and the various policies described
above. The results are shown in Table 2. The first nine columns of this table
considers the cost of electricity per day. Although the differences are not large,
these can accumulate over a year. The results suggest that using a more extreme
policy where knowledge of demand is used to allocate all surplus in one direction
or the other leads to the lowest average cost per day. However, this policy does
not lead to the lowest variance in cost suggesting that is it not as fair as the wind
based policy which does have the lowest variance. The policies that allocate less
than 100 % of demand, dmdec and dmdwn, seem to be poor in terms of average
cost, although dmdwn leads to a low variance. Note however, that these results
are specific to a particular scenario and hence cannot be generalised without
further experimentation.

5 Related Work

A recent survey of modelling smart grids considers smart grids as complex sys-
tems with emergent behaviour and identifies multi-agent systems as an existing
modelling tool [13]. In [20], a multi-agent systems approach is taken to control-
ling a smart grid and in [15], agents act as elements of the smartgrid. There
are limitations to what can be achieved using this method, because the size of
models is limited computationally. Pretopology and percolation theory applied
to complex systems may be able to successfully model large smart grids [13].

174 V. Galpin

Modelling of smart grids has been done at two main levels: either very
detailed, focussing on modelling the electrical components such as wind tur-
bines and inverters in terms of their performance [14,19,26], or at the level of a
group of houses with various sources of renewable energy [7,10,17,18,22]. Both
of these levels differ from the approach taken here where the focus is on spatial
aspects of redistribution of renewable energy.

Fine-grained models of residential consumption have been developed [1,16,
24,25]. The goal is to build up realistic profiles of consumption using various
data sources about individual human behaviour and from these models estimate
demand. To ensure the stochastic HYPE model presented here has a reasonable
size, this level of detail has not been used. However, the general profile generated
in [25] has been used to provide parameters for the stochastic HYPE model as
mentioned in Sect. 3.1.

6 Conclusions and Further Work

To conclude, a stochastic hybrid model has been developed of smart grid gen-
eration of power to consider spatial aspects of sharing between neighbourhoods.
Different knowledge-based policies for splitting surplus renewable energy appear
to have little effect when there is only one wind but the two wind scenario
does lead to differences. In general, sharing of energy significantly increases the
amount of renewable energy used and reduces costs. Further exploration of wind
patterns and the effect on policies is warranted as it is not possible to generalise
from a single pattern.

This is ongoing research as part of a project on quantified modelling of collec-
tive adaptive systems (see www.quanticol.eu). In this paper, we have developed a
model at an appropriate level for reasoning about distribution of energy through-
out a suburb which can be explored through simulation. However, simulation is
an expensive technique, and we wish to develop scalable approximation tech-
niques that allow us to reason about these systems, similar to various fluid and
mean-field techniques such as [4,23].

Acknowledgements. This work is supported by the EU project QUANTICOL,
600708.

References

1. Ardakanian, O., Keshav, S., Rosenberg, C.: Markovian models for home electricity
consumption. In: Second ACM SIGCOMM Workshop on Green Networking, pp.
31–36. ACM (2011)

2. Bortolussi, L., Galpin, V., Hillston, J.: Hybrid performance modelling of oppor-
tunistic networks. In: QAPL 2012, EPTCS 85, pp. 106–121 (2012)

3. Bortolussi, L., Galpin, V., Hillston, J.: Stochastic HYPE: flow-based modelling of
stochastic hybrid systems. CoRR abs/1411.4433 (2014)

www.quanticol.eu

Quantitative Modelling of Residential Smart Grids 175

4. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective systems behaviour: a tutorial. Perform. Eval. 70, 317–349 (2013)

5. Bortolussi, L., Policriti, A.: Hybrid dynamics of stochastic programs. Theor. Com-
put. Sci. 411, 2052–2077 (2010)

6. Davis, M.: Markov Models and Optimization. Chapman & Hall, London (1993)
7. Delamare, J., Bitachon, B., Peng, Z., Wang, Y., Haverkort, B., Jongerden, M.:

Development of a smart grid simulation environment. In: UKPEW 2014 (2014)
8. Feng, C.: Patch-based hybrid modelling of spatially distributed systems by using

stochastic HYPE - ZebraNet as an example. In: QAPL 2014, EPTCS 154 (2014)
9. Galpin, V.: Modelling a circadian clock with HYPE. In: PASTA 2010, pp. 92–98

(2010)
10. Galpin, V.: Modelling residential smart energy schemes. In: FoCAS@SASO14

(2014)
11. Galpin, V., Bortolussi, L., Hillston, J.: HYPE: hybrid modelling by composition of

flows. Formal Aspects Comput. 25, 503–541 (2013)
12. Galpin, V., Hillston, J., Bortolussi, L.: HYPE applied to the modelling of hybrid

biological systems. ENTCS 218, 33–51 (2008)
13. Guérard, G., Ben Amor, S., Bui, A.: Survey on smart grid modelling. Int. J. Syst.

Control Commun. 4, 262–279 (2012)
14. Kariniotakis, G., Soultanis, N., Tsouchnikas, A., Papathanasiou, S., Hatziargyriou,

N.: Dynamic modeling of microgrids. In: International Conference on Future Power
Systems, p. 7. IEEE (2005)

15. Kremers, E., Viejo, P., Barambones, O., Gonzalez de Durana, J.: A complex sys-
tems modelling approach for decentralised simulation of electrical microgrids. In:
ICECCS 2010, pp. 302–311. IEEE (2010)

16. McQueen, D., Hyland, P., Watson, S.: Monte Carlo simulation of residential elec-
tricity demand for forecasting maximum demand on distribution networks. IEEE
Trans. Power Syst. 19, 1685–1689 (2004)

17. Oviedo, R.M., Fan, Z., Gormus, S., Kulkarni, P.: A residential PHEV load coor-
dination mechanism with renewable sources in smart grids. Int. J. Electr. Power
Energy Syst. 55, 511–521 (2014)

18. Oviedo, R., Fan, Z., Gormus, S., Kulkarni, P., Kaleshi, D.: Residential energy
demand management in smart grids. IEEE PES T&D 2012, 1–8 (2012)

19. Panigrahi, T., Saha, A., Chowdhury, S., Chowdhury, S., Chakraborty, N., Song,
Y., Byabortta, S.: A Simulink-based microgrid modelling & operational analysis
using distributed generators. In: UPEC 2006, pp. 222–226. IEEE (2006)

20. Pipattanasomporn, M., Feroze, H., Rahman, S.: Multi-agent systems in a distrib-
uted smart grid: design and implementation. In: IEEE/PES PSCE 2009, pp. 1–8.
IEEE (2009)

21. Sinden, G.: Characteristics of the UK wind resource: long-term patterns and rela-
tionship to electricity demand. Energy Policy 35, 112–127 (2007)

22. Střelec, M., Macek, K., Abate, A.: Modeling and simulation of a microgrid as a
stochastic hybrid system. In: IEEE PES ISGT Europe, pp. 1–9. IEEE (2012)

23. Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process
algebra models. IEEE Trans. Softw. Eng. 38, 205–219 (2012)

24. Widén, J., Wäckelg̊ard, E.: A high-resolution stochastic model of domestic activity
patterns and electricity demand. Appl. Energy 87, 1880–1892 (2010)

25. Yao, R., Steemers, K.: A method of formulating energy load profile for domestic
buildings in the UK. Energy Buildings 37, 663–671 (2005)

26. Yubing, D., Yulei, G., Qingmin, L., Hui, W.: Modelling and simulation of the
microsources within a microgrid. In: ICEMS 2008, pp. 2667–2671. IEEE (2008)

Attributed Probabilistic P Systems
and Their Application to the Modelling

of Social Interactions in Primates

Roberto Barbuti(B), Alessandro Bompadre, Pasquale Bove, Paolo Milazzo,
and Giovanni Pardini

Dipartimento di Informatica, Università di Pisa,
Largo B. Pontecorvo 3, 56127 Pisa, Italy

{barbuti,bovepas,milazzo,pardinig}@di.unipi.it,
alessandro.bompadre@gmail.com

Abstract. We propose a variant of probabilistic P Systems, Attributed
Probabilistic P systems (APP systems), in which objects are annotated
with attributes. We use APP systems for modelling social behaviours of
some species of primates. In this context attributes can represent posi-
tion of the animals in the environment, age of the animal, dominance
level, aggressiveness, etc. As in standard P systems, the dynamics of
the system is described by multiset rewrite rules that are applied in a
maximally parallel way. Probabilities of rule application, in a maximal
step, are computed according to weight functions associated to rules. As
an application, we develop models to compare despotic and egalitarian
behaviours on different species of primates.

1 Introduction

P systems [29] were introduced as distributed parallel computing devices inspired
by the structure and the functioning of a living cell. A P system consists of a
hierarchy of membranes, each of them containing a multiset of objects, rep-
resenting molecules, a set of evolution rules, representing chemical reactions,
and possibly other membranes. For each evolution rule there are two multisets
of objects, describing the reactants and the products of the chemical reaction.
Evolution rules can be applied more than once to different objects, with maxi-
mal parallelism, namely it cannot happen that some evolution rule is not applied
when the objects needed for its triggering are available and not consumed by
the application of any other rule.

Many variants of P systems exist that include features to increase their
expressiveness or which are based on different evolution strategies [30]. In this
paper we define a variant of P systems (Attributed Probabilistic P systems,
APP systems) which includes features for the description of population dynam-
ics. APP systems are actually the extension of Minimal Probabilistic P Systems
[2] with the possibility of enriching objects with attributes. In the modelling of
populations, such attributes can be used for describing characteristics of the indi-
viduals (position, age, etc.). APP systems include also the probabilistic choice
c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 176–191, 2015.
DOI: 10.1007/978-3-662-49224-6 15

Attributed Probabilistic P Systems and Their Application 177

of the rules to be applied in each maximally parallel step, and the possibility to
include rule promoters to enable/disable rules in different phases of evolution.

We show how APP systems can be used for describing real ecological sys-
tems, such as self-organizing populations of animals. Such models have been
successfully applied for understanding the behaviour of schools of fishes or
flocks of birds [14,19]. Modelling social interactions in primates is an interesting
research field which has been usually tackled by means of agent-based models
[17,18,20,21,25,26,34]. Such models have been often criticized because, in many
cases, they were so poorly documented that the models could not be evaluated.
For these reasons protocols have been defined for creating a standard structure
by which all the agent-based models could be documented [15,16]. Such pro-
tocols document a model by providing a check list of questions which must be
answered by the authors of the model. For example, questions of that check list
include: “Who (i.e. what entity) does what, and in what order?”, “When are
state variables updated?”, “What kind of entities are in the model?”, “By what
state variables, or attributes, are those entities characterized?”.

We present an APP system model of social interactions in primates. The
model is composed of a few unambiguous rules. Such rules can be seen as an
implementation of the rules used in agent-based models which, however, are
usually programmed “ad hoc” and their effect needs to be documented sepa-
rately. On the contrary, the rules of our APP-system-based model are almost
self-explanatory, showing the ease of use of the formalisms for modelling real-
world systems. Simulations of our model are also presented. We show that the
obtained results are compatible with the results of agent-based models described
in the literature.

From a theoretical point of view, the computational expressiveness of APP
systems is the same as that of P systems, since in principle each attributed object
could be replaced with a new symbol by embedding the values of the attributes
in the symbol itself (thus having one symbol for each combination of attribute
values). Nevertheless, the use of APP systems for modelling real systems provides
important advantages, mainly with respect to readability of the models, and the
compact and unambiguous descriptions which can be obtained.

As related work we mention studies in which formal notations are used to
model and simulate population dynamics and ecosystems. In [32,33] a process
algebra is proposed and used to model population dynamics by taking spatial
distribution of the individuals into account. In [11] the Bio-PEPA process algebra
is used to describe epidemiological problems, again by including a notion of
spatiality. In [9] a variant of P systems is used to model the dynamics of some
endangered species in the Pyrenees. In [23,24] the BlenX and LIME languages
are used to compositionally construct models of ecosystems. In [5,6] Spatial
P Systems are proposed and used to model the schooling behaviour of fish. In
[12,31] formal notations are used to model and simulate the population dynamics
of Solea solea in the Adriatic Sea by taking the effect of fishing into account.

The feature that mainly makes a difference between APP systems and other
proposals is the use of maximal parallelism for the application of rules. This

178 R. Barbuti et al.

feature is particularly suitable for the modelling of populations that evolve by
stages (e.g. reproductive stages or stages related with seasons). The usefulness of
maximal parallelism in the context of ecosystems modelling is confirmed by the
recent proposal of S-PALPS [36], an extension of PALPS that incorporates max-
imal parallelism by means of a synchronous parallel composition operator. The
difference between S-PALPS and APP systems is in the modelling approaches,
which are process algebraic and rewrite-based, respectively.

As regards the use of attributes, related works are [8,13,22]. The first pro-
poses an extension of the π-calculus process algebra with attributed processes
and attribute-dependent synchronization. The second defines Stochastic Concur-
rent Constraint Programming, in which the constraint programming constructs
can be used to perform operations similar to those that can be done on attributes.
The third proposes an extension of the Kappa language with annotations repre-
senting geometric information.

As regards spatial formalisms we mention also Spatial CLS [4] and Grid
Systems [3,35]. In particular, the latter is a rich extension of P systems aimed
at the modelling of ecosystems with a focus on population dynamics driven by
properties of the environment and environmental events.

The paper is organized as follows: Sect. 2 introduces the Attributed Prob-
abilistic P systems; Sect. 3 presents a model of social behaviour in primates;
Sect. 4 shows the results of the experiments; Sect. 5 concludes the paper.

2 Attributed Probabilistic P Systems

We denote with {a1, . . . , an} the set of objects a1, . . . , an, and with {|a1, . . . , an|}
the multiset of objects a1, . . . , an. Moreover, we denote with |w| the size (number
of elements) of the multiset w, and with − and + the difference and the union
of multisets, respectively.

Definition 1 (APP System). An Attributed Probabilistic P system, aP , is a
tuple 〈A, arity,Da1 , . . . , Dan

, w0, R〉 where:

– A is an ordered finite alphabet of symbols, {a1, . . . , an};
– arity : A → IN is a function which for each ai ∈ A gives the arity of Dai

;
– each Dai

is a set of tuples, Dai
= I1 × . . . × Iarity(ai), where each Ij is a

(possibly infinite) set of unstructured values; the set Dai
is called the set of

attributes of ai;
– w0 is a multiset of values in Σ = {〈ai, di〉 | ai ∈ A, di ∈ Dai

} describing the
initial state of the system, where Σ is called the set of objects of P . In the
following we will write w0 ∈ Σ∗.

– given a set of variables V , R is a finite set of evolution rules having the form

uV
f−→ vV |prV

where uV, prV ∈ Σ∗
V are multisets (often denoted without brackets) of objects

and variables denoting reactants and promoters, respectively; vV ∈ Σ∗
EV is

Attributed Probabilistic P Systems and Their Application 179

a multiset of objects and expressions with variables denoting products; and
f : Σ∗ �→ IR≥0 is a weight function. Precisely:

ΣV = {(ai, di) | ai ∈ A, di ∈ DV
ai

} ΣEV = {(ai, ei) | ai ∈ A, ei ∈ EV
ai

}

where DV
ai

= (V ∪ I1) × . . . × (V ∪ Iarity(ai)); and EV
ai

= Exp(V, I1) ×
. . . × Exp(V, Iarity(ai)), with Exp(V, I) denoting the set of well-typed expres-
sions built from operators, variables V , and values of I. Moreover, we have
V ars(vV) ⊆ V ars(uV)∪V ars(prV), where V ars(t) denotes the set of variables
occurring in t. Rules without variables are called ground rules.

In what follows we will denote an (attributed) object 〈a, d〉 as a(d). A state (or
configuration) of an APP system is a multiset of objects in Σ∗. By definition,
the initial state is w0, and we denote a generic state as w.

The evolution of an APP system is a sequence of probabilistic maximally
parallel steps. We formally define the semantics of APP systems as a transition
relation in the style of [7]. In each step a maximal multiset of evolution rule
instances is selected and applied as described by the following semantic rules:

(rule application)

ri = u
k−→ v ∈ R u ⊆ w′

K = {|k′|u′ k′−→ v′ ∈ R, u′ ⊆ w′|} p = k/
∑

k′∈K k′

(w′, w′)
ri, p−−−→R (w′ − u,w′ + v)

(single rule sequence)
(w′, w′)

ri, p−−−→R (w′′, w′′)

(w′, w′)
[ri], p−−−−→

+

R (w′′, w′′)

(multiple rules sequence)
(w′, w′)

ri, pi−−−−→R (w′′, w′′) (w′′, w′′)
r, p−−→

+

R (w′′′, w′′′)

(w′, w′)
r@[ri], pi·p−−−−−−−→

+

R (w′′′, w′′′)

(step rule)
(w, ∅)

r, p−−→
+

R(w) (w′, w′) (w′, w′)�R(w)

w
r, p
=⇒R w′ + w′

where [ri] denotes the sequence composed of the single element ri, and @ denotes
the concatenation of sequences.

Given a system state, w, the (step rule) describes the evolution in a new

state by the
r, p
=⇒R relation, where p is the probability of the transition, and r is

the sequence of applied ground rules. (step rule) invokes (w, ∅)
r, p−−→

+

R(w) (w′, w′)
where R(w) is the set of applicable ground rules in the state w, with their
weights, namely:

R(w) =
{

uVσ
f(w)−−−→ vVσ

∣∣∣∣ uV
f−→ vV |prV∈ R, ∃σ. uVσ ⊆ w ∧ prVσ ⊆ w

}

where (i) σ : V → flat(Da1)∪. . .∪flat(Dan
), with flat(Dai

) = I1∪. . .∪Iarity(ai),
for all ai ∈ A; (ii) uVσ (uV ∈ Σ∗

V) is the well-typed multiset obtained by
substituting values for variables in uV according to σ; and (iii) vVσ (vV ∈ Σ∗

EV)

180 R. Barbuti et al.

Fig. 1. APP system modelling protozoans.

p1

p1

(a) move(1), p(1,1,2), p(1,2,0)

p1 p1

(b) move(2), p(1,1,1), p(1,3,1)

p1 p1

(c) repr, p(1,2,1), p(1,2,1)

p1 p1
p0

(d) aging,
p(1,2,1), p(1,2,1), p(0,2,1)

p2 p2
p1

(e) move(1),
p(2,2,1), p(2,2,1), p(1,2,1)

p1

p1p2

(f) move(2),
p(1,1,0), p(1,3,2), p(2,1,2)

Fig. 2. Example of the evolution of the protozoans model, with (a)–(f) representing a
possible sequence of states reached by the system. The caption of each figure contains
the complete multiset of objects present in the system. (For compactness, only the age
attributes are shown for the objects in the figures, that is, p(a,x,y) is depicted as pa.)

Attributed Probabilistic P Systems and Their Application 181

is the well-typed multiset obtained by evaluating the expressions in vV under

the substitution σ. Transition relation
r, p−−→

+

R is the transitive closure of
r, p−−→R.

A transition (w′, w′)
ri, p−−−→R (w′ − u, w′ + v) corresponds to the application

of a single rule. When a rule is selected, its application consists in removing its
reactants from w′ and adding its products to w′. The w′ multiset will collect all
products of all applied rules. Note that R(w) takes into account that each rule
is applied with respect to the weights of the rules computed in the initial state
w. Moreover, R(w) contains only the ground rules the promoters of which are
present in the initial state w (prVσ ⊆ w). Once objects in w′ are such that no
further rule in R(w) can be applied to them, by (step rule) the new system state
is w′ + w′ (where w′ are the unused objects and w′ are the new products).

Intuitively, the semantic definition states that all the rules to be applied are
selected in a probabilistic way from the set of applicable rules, their reactant
are removed for the available reactants, w′, and their product are added to a
suspended multiset w′. When no further rule can be applied to w′ the new state,
which is composed be the unused objects in w′ plus the suspended products
in w′, is produced. Finally we give the probability of a transition between two
states by means of the following rule:

(state transition prob.)

PR = {(r, p)| w
r, p
=⇒R w′} p =

∑
(r,p)∈PR

p

w
p

=⇒R w′

Example 1. We consider a population of sexually reproducing protozoans in
which two individuals are necessary for producing an offspring. Protozoans are
free ranging on a laboratory Petri dish. The Petri dish is abstracted by a n × n
grid and protozoans can move one step at a time on the grid. They can reproduce
if they meet in the same entry of the grid. They have a finite lifespan, at the end
of which they die. Each individual is represented by an attributed object p(a,x,y)
in which p stands for “protozoan”, attribute a is an integer representing the
age of the individual, and attributes x and y are the coordinates of the position
of the individual on the Petri dish. The evolution cycles among three phases:
a movement phase, a reproduction phase, and an aging phase. Each phase is
represented by a different symbol, namely move, repr, and aging, respectively,
which are used as promoters to enable different sets of rules for each phase. The
movement phase has a duration of two maximally-parallel steps, hence the move
symbol has an attribute taking values from the set {1, 2} to allow modelling it.

For the sake of simplicity we assume a 4×4 grid and a lifespan of 3 age units.
We consider an initial configuration in move(1) phase with two individuals, of age
1, in positions (1, 2) and (2, 0), respectively. The APP system is shown in Fig. 1.
Rules r1−r8 model the movement phase, with a different rule for each possible
direction of movement: east for rule r1, north for rule r2, and so on, also allowing
diagonal movement as exemplified by rule r8. Rule r9 handles the reproduction
phase, while rules r10, r11 model the aging phase. Finally, rules r12−r15 are used
to switch phases. Note that all the weights associated with the rules are constant

182 R. Barbuti et al.

and equal to 1, thus for each phase all (and only) the rules specific for that phase
can be applied, and such rules are equiprobable. An example of evolution of the
system is shown in Fig. 2.

3 Modelling Social Interactions in Primates

In this model, we describe the behaviour of male monkeys and how it changes
when a female monkey enters the oestrum. The model is inspired by the social
behaviours of species of prosimians as described in [10,27,28]. The population is
dispersed in an environment, which is modelled as a continuous 2D space, hence
each individual is associated with coordinates (x, y). Male and female monkeys
are represented by symbols MMonkey and FMonkey, respectively, and both have
attributes in the domain R

2 × N. Beyond the actual position, we also keep track
of the dominance level of each individual, which is used to derive the likeliness
of a individual to win (or just engage in) a fight against another individual.

At the beginning, the population is composed only of male monkeys having a
dominance level of 1500. All the male monkeys alternate between two phases: a
movement phase, represented by the special symbol MOV, in which they wander
around slowly and move towards other individuals in order to keep the popula-
tion compact; and a fight phase, represented by FGT, in which they chase other
individuals to fight, yielding to variations in their levels of dominance. Females
alternate between a normal phase, denoted by the symbol NORMAL, and an
oestrum phase, denoted by OEST. In this model, for simplicity, there is only one
female monkey, which is explicitly represented only during the oestrum phase.
In other words, the individual FMonkey appears only at the beginning of the
oestrum phase, and is removed from the model at the end of the phase.

Formally, the model is composed of 6 symbols A = {MMonkey,FMonkey,
MOV,FGT,NORMAL,OEST}, having a corresponding set of attributes defined
as D = {(R2 × N), (R2 × N), N, N, N, N}. As regards symbols MOV,FGT,
NORMAL,OEST, an attribute from N is associated with each of them, denot-
ing the length of those phases in terms of the steps taken by the Attributed P
system. The initial state of the system is the following:

w0 = {MMonkey(x1,y1,1500),MMonkey(x2,y2,1500),MMonkey(x3,y3,1500),

MMonkey(x4,y4,1500),MMonkey(x5,y5,1500),MMonkey(x6,y6,1500),

MMonkey(x7,y7,1500),MMonkey(x8,y8,1500),MOV(1),NORMAL(Snl)}

where the positions of the individuals (xi, yi) ∈ R
2 are randomly generated

within a square area of cage ∈ R side length. Parameter Snl denotes the duration
of the “normal” phase for females.

Attributed Probabilistic P Systems and Their Application 183

The evolution rules of the model are as follows.

r1 : MOV(n)
1−→ MOV(n−1) ∀n > 1

r2 : MOV(1)
1−→ FGT(Nfl)|NORMAL(n)

r3 : MOV(1)
1−→ FGT(Ofl)|OEST(n)

r4 : FGT(n)
1−→ FGT(n−1) ∀n > 1

r5 : FGT(1)
1−→ MOV(Msn)

Rules r1−r5 model the alternation between “movement” and “fight” phases for
males. For both MOV and FGT, their attributes decrease to keep track of the
number of steps passed, until they reach 1 and a phase switch occurs. In par-
ticular, in the switch from MOV and FGT, the number of steps that the fight
phase lasts depend on the phase of the female; namely it is either Nfl or Ofl,
if the female is currently either in the normal phase (NORMAL) or the oestrum
phase (OEST), respectively. The movement phase lasts Msn steps.

r6 : NORMAL(n)
1−→ NORMAL(n−1) ∀n > 1

r7 : NORMAL(1)
1−→

OEST(Sol), FMonkey(FemaleInitX,FemaleInitY,FemaleInitDom)

r8 : OEST(n)
1−→ OEST(n−1) ∀n > 1

r9 : OEST(1),FMonkey(x,y,dom)
1−→ NORMAL(Snl)

Rules r6−r9 model the alternation between “normal” and “oestrum” phases
for the female monkey. The durations of the oestrum phase is modelled by the
parameter Sol. The initial coordinates of the female monkey are denoted by the
parameters FemaleInitX and FemaleInitY , while FemaleInitDom denotes
its initial dominance level.

r10 : MMonkey(x′,y′,dom′)
f10−−→ MMonkey(move(x′,x′′,SMMA),move(y′,y′′,SMMA),dom′)

|MOV(n),NORMAL(m),MMonkey(x′′,y′′,dom′′)

r11 : MMonkey(x′,y′,dom′)
f11−−→ MMonkey(move(x′,x′′,SMMA),move(y′,y′′,SMMA),dom′)

|MOV(n),OEST(m),MMonkey(x′′,y′′,dom′′)

Rules r10−r11 handle the movement of males during either the “normal” or
“oestrum” phase for the female. In both cases, a male (in a position x′, y′) is
allowed to move towards any other male (in position x′′, y′′). The resulting posi-
tion of the male which moves is computed as (move(x′, x′′,SMMA),move(y′, y′′,
SMMA)), where move is a function to move the coordinates (x′, y′) towards coor-
dinates (x′′, y′′) with a given speed factor described by the parameter SMMA
(Speed Male-Male approach). Formally, this function is defined as:

move(a, b, γ) = a + (b − a)/γ

184 R. Barbuti et al.

The most important difference between rules r10 and r11 lies in the weight func-
tions, which are defined as:

f10 =

{
1 if SD/NT < dist((x′, y′), (x′′, y′′)) < SD;
0 otherwise;

f11 =

{
1 if SD/OT < dist((x′, y′), (x′′, y′′)) < SD;
0 otherwise.

where dist((x′, y′), (x′′, y′′)) is a function giving the euclidean distance between
two points, parameter SD (Spot Distance) denotes the maximum visibility dis-
tance of a monkey, and parameters NT (Normal Tolerance) and OT (Oestrum
Tolerance) are used to derive the minimum distance allowed between two mon-
keys to enable the relative movement of one towards the other. In particular,
such a minimum distance depends on the phase of the female, and it is either
SD/NT during the NORMAL phase, and SD/OT during the OEST phase. In
this manner, during the oestrum phase, males are allowed to come closer one
another, hence increasing the possibility to engage in a fight.

r12 : MMonkey(x′,y′,dom′)
f12−−→ MMonkey(move(x′,x′′,SMFA),move(y′,y′′,SMFA),dom′)

|MOV(n),FMonkey(x′′,y′′,dom′′)

Rule r12 models the movement of a male monkey towards the female. In this case,
the speed of the male is denoted by the parameter SMFA. The corresponding
weight function is:

f12 =

{
PfF if dist((x′, y′), (x′′, y′′)) < SD and dom′ + FT > dom′′;
0 otherwise;

which enables the movement only if both (i) their relative distance is less than
SD, and (ii) the dominance level of the male, plus a tolerance value FT (Female
Tolerance), is greater than that of the female. The actual weight used is denoted
by the parameter PfF (Preference for Female).

r13 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
elo rating(dom′,dom′′)−−−−−−−−−−−−−−−→

MMonkey(chase(x′,x′′,CSN),chase(y′,y′′,CSN),elow(dom′,dom′′)),

MMonkey(flee(x′,x′′,FSN),flee(y′,y′′,FSN),elol(dom′′,dom′))|FGT(n),NORMAL(m)

with dom′ ≥ dom′′, dist((x′, y′), (x′′, y′′)) ≤ NAD, and dom′ − dom′′ ≤ AN ,
where NAD (Normal Aggression Distance) and AN (Avoidance Normal) and
model parameters representing the minimum distance and the maximum dif-
ference in dominance that enable an aggression when the female is in normal
condition. In this rule the monkey in position (x′, y′) has a dominance that is
higher or equal to that of the other monkey. The probability that the first mon-
key wins the fight is given by the standard Elo rating method, originally defined

Attributed Probabilistic P Systems and Their Application 185

for applications to games, and then used for the modelling of social interactions.
Such a method is based on a table that gives the probability of success in a
fight depending on the difference of rating (or dominance) of the involved indi-
vidual. The Elo rating table we consider for this model is in [1]. The function
elo rating(Δdom) looks in the table and gives as result the probability of the
victory of the stronger monkey over the weaker one.

Function chase gives the new position of the winner of the fight; function flee
gives the new position of the looser of the fight; elow gives the new dominance
of the winner of the fight following the Elo rating table and method; elol the
new dominance of the looser of the fight. These functions are defined as follows:

chase(a, b, ρ) = a + ρ · (b − a) flee(a, b, ρ) = b + ρ · (b − a)

elow(d′, d′′) = d′ +

{
(1 − elo rating(Δdom)) · stepness if d′ > d′′

elo rating(Δdom) · stepness if d′ < d′′

elol(d′, d′′) = d′ −
{

elo rating(Δdom) · stepness if d′ > d′′

1 − (elo rating(Δdom)) · stepness if d′ < d′′

where Δdom = |d′−d′′|, and stepness is a parameter representing the maximum
increase/decrease of dominance. The parameters CSN(Chase Speed Normal)
and FSN (Flee Speed Normal) used in rule r13 describe how fast the monkeys
move.

r14 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
1−elo rating(dom′,dom′′)−−−−−−−−−−−−−−−−−→

MMonkey(flee(x′,x′′,FSN),flee(y′,y′′,FSN),elol(dom′,dom′′)),

MMonkey(chase(x′,x′′,CSN),chase(y′,y′′,CSN),elow(dom′′,dom′))|FGT(n) NORMAL(m)

with dom′ > dom′′, dist((x′, y′), (x′′, y′′)) ≤ NAD, and |dom′ − dom′′| ≤ AN .
Rule r14 is analogous to rule r13, but describes the case in which the winner

is the weaker monkey.

r15 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
elo rating(dom′,dom′′)−−−−−−−−−−−−−−−→

MMonkey(chase(x′,x′′,CSO),chase(y′,y′′,CSO),elow(dom′,dom′′)),

MMonkey(flee(x′,x′′,FSO),flee(y′,y′′,FSO),elol(dom′′,dom′))|FGT(n),OEST(m)

with dom′ ≥ dom′′, dist((x′, y′), (x′′, y′′)) ≤ OAD, and dom′ − dom′′ ≤ AO.

r16 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
1−elo rating(dom′,dom′′)−−−−−−−−−−−−−−−−−→

MMonkey(flee(x′,x′′,FSO),flee(y′,y′′,FSO),elol(dom′,dom′′)),

MMonkey(chase(x′,x′′,CSO),chase(y′,y′′,CSO),elow(dom′′,dom′))|FGT(n),OEST(m)

with dom′ > dom′′, dist((x′, y′), (x′′, y′′)) ≤ OAD, and |dom′ − dom′′| ≤ AO.
Rules r15 and r16 is analogous to r13 and r14, respectively, but describe

the case in which the female is in oestrum state. Parameters OAD (Oestrum

186 R. Barbuti et al.

Aggression Distance), AO (Avoidance Oestrum), CSO (Chase Speed Oestrum)
and FSO (Flee Speed Oestrum) of these rules are analogous to the corresponding
ones of rules r13 and r14, but with values that depend on the fact that the female
is in oestrum state.

r17 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
1−→

MMonkey(chase(x′,x′′,CSN),chase(y′,y′′,CSN),dom′),

MMonkey(flee(x′,x′′,FSN),flee(y′,y′′,FSN),dom′′)|FGT(n),NORMAL(m)

with dom′ > dom′′, dist((x′, y′), (x′′, y′′)) ≤ NAD and |dom′ − dom′′| > AN .

r18 : MMonkey(x′,y′,dom′),MMonkey(x′′,y′′,dom′′)
1−→

MMonkey(chase(x′,x′′,CSO),chase(y′,y′′,CSO),dom′)

MMonkey(flee(x′,x′′,FSO),flee(y′,y′′,FSO),dom′′)|FGT(n),OEST(m)

with dom′ > dom′′, dist((x′, y′), (x′′, y′′)) ≤ OAD and |dom′ − dom′′| > AO.
Rules r17 and r18 describe the interaction between two individuals when the

difference in dominance is too high to motivate a fight (greater than parameters
AN and AO for the normal and oestrum cases, respectively). In these cases the
monkeys move but do not fight, so there is no change in dominance levels.

4 Experimental Results

We studied the dynamics of the APP model described in the previous section by
running simulations. In particular, we implemented an APP systems interpreter
in C# that allows attributed objects and evolution rules to be represented as
instantiations of specific C# classes. Once an APP systems model is specified,
the interpreter simulates it by performing a number of iterations to be given as
a parameter. In each iteration, a maximally parallel step is performed accord-
ing to the APP systems semantics. The result of a simulation is the sequence of
configurations reached by the interpreter at each iteration. In order for the inter-
esting measurements to be easily readable, we processed the simulation results
and produced graphical representations by using the statistical framework R.

In Fig. 3 and in Fig. 4 we show the dynamics of two groups of monkeys. In
particular, Fig. 3 refers to a group with a low level of aggressiveness (egalitarian),
while Fig. 4 describes a group with a higher level of aggressiveness (despotic).
The upper part of both figures shows the dominance level of each male in the
group during the simulation, while the lower part shows the distance of each
male either from the center of the group or from the female (when present). In
the figures we put in evidence the lines corresponding to both the monkey with
highest dominance level at the end of the simulation (line marked with •) and
the one with the lowest one (marked with +). The main model parameters (that
are different in the two cases) are reported in the figures. The other parameters
have, in both cases, the following values: iteration = 498, Sol = 20, Snl = 80,

Attributed Probabilistic P Systems and Their Application 187

NAD = 5 OAD = 5 FT = 600

AN = 200 AO = 400 FSO = 12 FSN = 8

CSN = 0 CSO = 0 Nfl = 1 Ofl = 2

Fig. 3. Simulation of an egalitarian group.

SMMA = 0.25, SD = 100, NT = 3, OT = 2, SMFA = 0.25, PfF = 8, Msn
= 1 and Stepness = 100. Note that we ran the simulations for 498 iterations.
The time corresponding to an iteration is, in the real world, about a few hours.
Actually, such a time could vary among the different phases described by the
model. However, this is not a problem since we are not interested in precise
description of timing aspects. As regards the other model parameters they have
been estimated from the descriptions in [10,27,28]. The results we obtain are
compatible with the behaviour of prosimians, as described in the above studies.

As regards Fig. 3, initially all the males have the same dominance level. From
the beginning and up to about 210 iterations, the group of monkeys struggles to
define a clear dominance among individuals. Between iteration 210 and 390, the
dotted line is not the dominant of the group, thus its position is not the closest
neither to the group center nor to the female. At the end of the simulation, when
the monkey with dotted line becomes the most dominant (alpha male), we can
observe that it gains a central position in the group.

188 R. Barbuti et al.

NAD = 10 OAD = 10 FT = 400

AN = 350 AO = 700 FSO = 15 FSN = 10

CSN = 1 CSO = 0 Nfl = 2 Ofl = 4

Fig. 4. Simulation of a despotic group.

Figure 4 shows the dynamics of a group with a more rigid hierarchy, due to
the higher level of aggressiveness. The first phase, up to iteration 90, in which
the males establish a first hierarchy, is followed by a phase (up to iteration
320) in which the hierarchy becomes very stable. From iteration 320 onwards,
the monkey with the dotted line becomes the alpha male, it gains the position
which is closer to the center of the group and to the female, and it does not
allow any other monkey to come close.

Normal and oestrum periods last respectively 80 and 20 iterations. In normal
phase monkeys are less willing to fight and they keep a distance from each
other in order to avoid unnecessary conflicts; this corresponds to the more linear
parts of the graphs. In oestrum periods males have the female as the pole of
attraction and they are more willing to fight. Fights can change the dominance
levels of males, thus oestrum periods correspond to more “hectic” parts of the
graphs, where, often, the ranking of dominance changes. When the dominance
levels change, the topology of the group changes accordingly. The results of

Attributed Probabilistic P Systems and Their Application 189

the simulations agree with the behaviour of different species of prosimians as
described in [10,27,28]

5 Conclusions

We proposed an extension of probabilistic P Systems, called Attributed Proba-
bilistic P systems (APP systems), in which objects are annotated with attributes.
APP systems are intended to be used to model the dynamics of populations and
ecosystems. In this context, attributes can be used to represent characteris-
tics of the population individuals such as age, position, and so on. Apart from
attributes, the feature that mainly makes a difference between APP systems and
other proposals is the use of maximal parallelism for the application of rules. This
feature is particularly suitable for the modelling of populations that evolve by
stages (e.g. reproductive stages or stages related with seasons).

We used APP systems for modelling social behaviours of some species of
primates. In particular, as an application we developed a model to compare
despotic and egalitarian behaviours of different species of primates. Such kinds
of social systems are usually approached by means of agent-based models that
are often poorly documented and ambiguous. On the contrary, since both the
syntax and the semantics of APP systems are formally defined, the model based
on APP systems is unambiguous.

The model has been inspired by the behaviour of species of prosimians. We
plan to adapt our general model to the modelling of the behaviour of particular
species of primates by changing the values of the parameters.

References

1. Albers, P.C., de Vries, H.: Elo-rating as a tool in the sequential estimation of
dominance strengths. Anim. Behav. 61(2), 489–495 (2001)

2. Barbuti, R., Bove, P., Schettini, A.M., Milazzo, P., Pardini, G.: A computational
formal model of the invasiveness of eastern species in European water frog popula-
tions. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 329–344.
Springer, Heidelberg (2014)

3. Barbuti, R., Cerone, A., Maggiolo-Schettini, A., Milazzo, P., Setiawan, S.:
Modelling population dynamics using grid systems. In: Cerone, A., Persico, D.,
Fernandes, S., Garcia-Perez, A., Katsaros, P., Ahmed Shaikh, S., Stamelos, I. (eds.)
SEFM 2012 Satellite Events. LNCS, vol. 7991, pp. 172–189. Springer, Heidelberg
(2014)

4. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Spatial calculus of
looping sequences. Theor. Comput. Sci. 412(43), 5976–6001 (2011)

5. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Simulation of spatial
P system models. Theore. Comput. Sci. 529, 11–45 (2014)

6. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P
systems. Nat. Comput. 10(1), 3–16 (2011)

7. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: An overview on oper-
ational semantics in membrane computing. Int. J. Found. Comput. Sci. 22(01),
119–131 (2011)

190 R. Barbuti et al.

8. Bortolussi, L., Policriti, A.: Modeling biological systems in stochastic concurrent
constraint programming. Constraints 13(1–2), 66–90 (2008)

9. Cardona, M., Colomer, M.A., Margalida, A., Palau, A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J., Sanuy, D.: A computational modeling for real ecosystems based on
P systems. Nat. Comput. 10(1), 39–53 (2011)

10. Cavigelli, S.A., Pereira, M.E.: Mating season aggression and fecal testosterone lev-
els in male ring-tailed lemurs (Lemur catta). Horm. Behav. 37(3), 246–255 (2000)

11. Ciocchetta, F., Hillston, J.: Bio-pepa for epidemiological models. Electron. Notes
Theor. Compu. Sci. 261, 43–69 (2010)

12. Nieto Coria, C.A., Tesei, L., Scarcella, G., Russo, T., Merelli, E.: Sea-scale agent-
based simulator of solea solea in the Adriatic sea. In: Canal, C., Idani, A. (eds.)
SEFM 2014 Workshops. LNCS, vol. 8938, pp. 259–275. Springer, Heidelberg (2015)

13. Danos, V., Honorato-Zimmer, R., Jaramillo-Riveri, S., Stucki, S.: Rigid geometric
constraints for Kappa models. Electron. Notes Theor. Comput. Sci. 313, 23–46
(2015)

14. Gautrais, J., Ginelli, F., Fournier, R., Blanco, S., Soria, M., Chaté, H., Theraulaz,
G.: Deciphering interactions in moving animal groups. Plos Comput. Biol. 8(9),
e1002678 (2012)

15. Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-
Custard, J., Grand, T., Heinz, S.K., Huse, G., et al.: A standard protocol for
describing individual-based and agent-based models. Ecol. Model. 198(1), 115–
126 (2006)

16. Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F.:
The odd protocol: a review and first update. Ecol. Model. 221(23), 2760–2768
(2010)

17. Hemelrijk, C.K.: Spatial centrality of dominants without positional preference.
Artif. Life VI 6, 307–315 (1998)

18. Hemelrijk, C.K.: An individual-orientated model of the emergence of despotic and
egalitarian societies. Proc. R. Soc. Lond. B Biol. Sci. 266(1417), 361–369 (1999)

19. Hemelrijk, C.K., Hildenbrandt, H.: Schools of fish and flocks of birds: their shape
and internal structure by self-organization. Interface Focus 2(6), 726–737 (2012)

20. Hemelrijk, C.K., Puga-Gonzalez, I.: An individual-oriented model on the emergence
of support in fights, its reciprocation and exchange. PLoS One 7(5), e37271 (2012)

21. Hemelrijk, C.: Self-organization and natural selection in the evolution of complex
despotic societies. Biol. Bull. 202(3), 283–288 (2002)

22. John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.M.: The attributed pi calcu-
lus. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307,
pp. 83–102. Springer, Heidelberg (2008)

23. Jordán, F., Scotti, M., Priami, C.: Process algebra-based computational tools in
ecological modelling. Ecol. Complex. 8(4), 357–363 (2011)

24. Kahramanoğulları, O., Lynch, J.F., Priami, C.: Algorithmic systems ecology:
experiments on multiple interaction types and patches. In: Cerone, A., Persico,
D., Fernandes, S., Garcia-Perez, A., Katsaros, P., Ahmed Shaikh, S., Stamelos,
I. (eds.) SEFM 2012 Satellite Events. LNCS, vol. 7991, pp. 154–171. Springer,
Heidelberg (2014)

25. Macal, C.M., North, M.J.: Tutorial on agent-based modelling and simulation.
J. Simul. 4(3), 151–162 (2010)

26. McLane, A.J., Semeniuk, C., McDermid, G.J., Marceau, D.J.: The role of agent-
based models in wildlife ecology and management. Ecol. Model. 222(8), 1544–1556
(2011)

Attributed Probabilistic P Systems and Their Application 191

27. Nakamichi, M., Koyama, N.: Social relationships among ring-tailed lemurs (Lemur
catta) in two free-ranging troops at Berenty Reserve. Madagascar Int. J. Primatol.
18(1), 73–93 (1997)

28. Palagi, E., Paoli, T., Tarli, S.B.: Aggression and reconciliation in two captive groups
of Lemur catta. Int. J. Primatol. 26(2), 279–294 (2005)

29. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
30. Paun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting. Oxford University Press, Inc., New York (2010)
31. Penna, P., Paoletti, N., Scarcella, G., Tesei, L., Marini, M., Merelli, E.: DISPAS:

an agent-based tool for the management of fishing effort. In: Counsell, S., Núñez,
M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 362–367. Springer, Heidelberg (2014)

32. Philippou, A., Toro, M.: Process ordering in a process calculus for spatially-explicit
ecological models. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol. 8368,
pp. 345–361. Springer, Heidelberg (2014)

33. Philippou, A., Toro, M., Antonaki, M.: Simulation and verification in a process
calculus for spatially-explicit ecological models. Sci. Ann. Comp. Sci. 23(1), 119–
167 (2013)

34. Puga-Gonzalez, I., Hildenbrandt, H., Hemelrijk, C.K.: Emergent patterns of social
affiliation in primates, a model. PLoS Comput. Biol. 5(12), e1000630 (2009)

35. Setiawan, S., Cerone, A.: Stochastic modelling of seasonal migration using rewriting
systems with spatiality. In: Counsell, S., Núñez, M. (eds.) SEFM 2013. LNCS, vol.
8368, pp. 313–328. Springer, Heidelberg (2014)

36. Toro, M., Philippou, A., Kassara, C., Sfenthourakis, S.: Synchronous parallel com-
position in a process calculus for ecological models. In: Ciobanu, G., Méry, D. (eds.)
ICTAC 2014. LNCS, vol. 8687, pp. 424–441. Springer, Heidelberg (2014)

Probabilistic Modelling and Analysis of a Fish
Population

Chiara Cini4, Luca Tesei1,3(B), Giuseppe Scarcella2, Cesar A. Nieto Coria1,3,
and Emanuela Merelli1,3

1 School of Science and Technology, University of Camerino, Via del Bastione, 1,
62032 Camerino, Italy

{luca.tesei,cesar.nietocoria,emanuela.merelli}@unicam.it
2 National Research Council - Institute of Marine Sciences Ancona,

Largo Fiera della Pesca, 2, 60125 Ancona, Italy
giuseppe.scarcella@an.ismar.cnr.it

3 CINFAI, Consorzio Interuniversitario Nazionale per la Fisica Delle Atmosfere
e delle Idrosfere, Sezione di Camerino, Via del Bastione, 1, 62032 Camerino, Italy

4 e-Lios (e-Linking Online Systems) S.r.l., Via Le Mosse, 22, 62032 Camerino, Italy
chiara.cini@e-lios.eu

Abstract. The fish stock of the common sole in the Adriatic Sea has
been analysed by agent-based modelling and simulation techniques as
an integration of other classical stock assessment models. In this work
we start investigating also about the formal probabilistic modelling of
our case study in order to extract valuable biological information from
available formal verification techniques. In particular, a PRISM model
for the common sole is developed and some initial results are discussed.

Keywords: Fish stock assessment · Common sole · Adriatic Sea · Prob-
abilistic models · PRISM model checker

1 Introduction

One of the most critical aspects about marine ecosystems and fish population
nowadays is the sustainability of the fisheries. Fish stocks, even if they are renew-
able, are not unlimited. In a lot of cases, where the fishing activity is not con-
trolled, fish stocks are overfished. In 2002 the World Summit on Sustainable
Development (WSSD) gave guidelines on how to handle the marine ecosystem
in the future [13]. In the European continent the management of fisheries is
regulated by the Common Fisheries Policy (CFP) whose most recent version
took effect on 1st January 2014 [14]. It stipulates that, between 2015 and 2020,
catches should achieve a sustainable level for maintaining fish stocks in the long
term. Until now, the policy did not have a big impact on the exploitation and
its goal is still far to be achieved, especially in the Mediterranean Sea [15].

This work has been supported by the RITMARE Flagship Project and by the PRIN
Project CINA (prot. 2010LHT4KM), both funded by the Italian MIUR.

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 192–197, 2015.
DOI: 10.1007/978-3-662-49224-6 16

Probabilistic Modelling and Analysis of a Fish Population 193

Some of the authors have been working on models for fish stock evalua-
tion since 2010. The starting idea was to introduce agent-based models as an
alternative for the ODE/PDE-based deterministic mathematical models usually
employed in the field [2]. The use of agent-based models or, more generally, of
individual-based, compositional and stochastic models was, and still is, a promis-
ing approach in the context of ecological modelling [4]. The fish stock on which
we have concentrated our efforts is the one of the common sole, Solea solea
(Linnaeus 1758), in the northern and central Adriatic Sea. Independent scien-
tific surveys in this area have been performed since 2005 by the Solemon Project
[3,10], which allows us to have a suitable collection of data for validation.

In [1] an automata-based formalism was introduced, namely Extended Proba-
bilistic Discrete Timed Automata (EPDTA). This formalism permitted to easily
model the time-dependent and probabilistic basic behaviour of a common sole
and to translate it directly into a Markov decision process. This EPDTA model
was used as a basis for defining the behaviour of an individual agent, represent-
ing a sole, in the development and validation of the version 1.0 of the Demersal
fIsh Stock Probabilistic Agent-based Simulator (DISPAS) [8,9]. The version 2.0
of the simulator, which scales from an average square kilometre of Adriatic Sea
to the whole surface of the sea, was presented in [7] and is under development.

Figure 1 shows the workflow of the studies that we performed so far, which can
be considered an example framework for non-marine biologists who are interested
in a combination of methods to “simulate and test”. Starting from data, the
EPDTA model is derived. On the left (green) side we used it to derive the
probabilistic agent-based model of DISPAS, which required additional data for
handling newborns. The simulated data were statistically analysed and compared
with real data for validation [8,9]. The validated model can be used to get new
information by simulating different future scenarios with different levels of fishing
efforts or different environmental conditions.

In this work we present the initial results of the right (blue) part of the
flow. Starting from the same EPDTA model, a more analytical approach is fol-
lowed. The model is translated into a Discrete Time Markov Chain (DTMC), or
another stochastic formalism, and is given as input to a model checker in order
to be verified against formally expressed properties. The results of this kind of
analysis can be validated with the available data and can also be compared with
those obtained using the simulation-based approach. In particular, in this work
we report on the creation of a DTMC, derived from our initial EPDTA model,
that can be given as input to the PRISM model checker and we report some ini-
tial results obtained verifying properties expressed in Probabilistic Computation
Tree Logic (PCTL) [5]. The far right (orange) part of the flow shows a planned
future work in which the stochastic model is used to verify formal properties by
statistical model checking [6] using tools, among which PRISM itself, that are
now sufficient mature in this relatively new area of semi-formal analysis.

2 Sole Behaviour as DTMC

Figure 2 shows a part of an EPDTA representing the probabilistic and timed
behaviour of a sole [8,9]. Soles are divided in classes according to their length,

194 C. Cini et al.

Fig. 1. Workflow of the studies on the common sole stock: in green the agent-based
modelling and simulation approach (past and present), in blue the model checking app-
roach (present and future), in orange the statistical model checking approach (future)
(Color figure online).

assuming that individuals in the same class are subject to the same probability
of being fished or of dying for natural mortality. The clock x is discrete-time and
measures time in months. The length of the sole is updated each month according
to its age and to environmental conditions summarised by a constant k in the
von Bertanlaffy growth function [12]. Then, in state chkM i, the sole can die
for natural mortality (predators, availability of food, environmental conditions)
with a certain probability PrM(i, t) depending on the class i and on the current
month t. If the sole survives, in state chkF i the sole can be fished with a
certain probability PrF (i, t). If the sole survives then it proceeds to the next
month possibly changing class if a given threshold on the length is reached.

The crucial point of this relatively simple model is the estimation of the prob-
abilities for each class. In order to do so we used the natural mortality index M
and the fishing effort index F calculated in the framework of specific working
groups for the assessment of demersal stocks [10]. These indices represent the
annual exponential decay, e−(M+F), of the population of a class according to the
two causes of mortality. We took the indexes for each class from year 2006 to
year 2013 and calculated the annual fishing mortality probability of each year
y as PrF (i, y) = 1 − e−Fy . To distribute the probability among each month,
according to the Markovian characteristic of the model, we simply divided the
annual probability by 12, i.e., PrF (i, t) = PrF (i, y)/12. It must be mentioned
that, according to information on fishery patterns or on fishing bans, this distri-
bution over months can be refined considerably. The probability that quantifies
natural mortality per year was calculated in the same way but, for the sake of
simplicity, it was considered constant over the years. The following table shows
the values used in the model. Column PrM reports the annual constant mortality
probabilities while the other columns report the values of annual PrF.

Probabilistic Modelling and Analysis of a Fish Population 195

Fig. 2. Part of an EPDTA representing the behaviour of a sole in class i. The double
circled state is the initial one when i = 0. From state chkL i the automaton goes to the
next class i + 1 if the length of the sole is sufficient to be considered in the new class.

Cl PrM 2006 2007 2008 2009 2010 2011 2012 2013

0 0.50341 0.18149 0.15970 0.14053 0.20768 0.15274 0.13822 0.15597 0.07672

1 0.29531 0.62506 0.56932 0.52251 0.67468 0.55412 0.52237 0.57209 0.32942

2 0.24421 0.36292 0.32834 0.27957 0.41247 0.31358 0.30154 0.30531 0.15760

3 0.22119 0.33458 0.30895 0.23496 0.38797 0.29187 0.31524 0.25808 0.13110

4 0.20546 0.28084 0.25701 0.20232 0.32702 0.24283 0.25029 0.22054 0.11068

5+ 0.19748 0.24615 0.22363 0.18184 0.28713 0.21144 0.20794 0.19685 0.09805

In order to translate the EPDTA model into the PRISM model we proceeded
ideally as formally specified in the semantics of EPDTA [1], with some optimisa-
tions. In particular, we used PRISM integer variables month and year to simulate
the discrete clock x in the EPDTA model and we simulated the passage of time
by inserting periodical transitions suitably incrementing these variables. More-
over, in the particular EPDTA model of the sole behaviour, non-determinism
does not arise, thus yielding a DTMC instead of a Markov decision process,
which is, in general, the formal semantics of an EPDTA. All the probabilities in
the PRISM model were expressed as constants and additional states were added
to allow the time elapse after 2013 or after the death of the sole1.

3 Discussion and Conclusions

The first formal analysis done on the model was to determine the survival trend
of the sole during the whole period (from 2006 to 2013). This was done by
exploiting the PRISM capability of calculating the probability of a given PCTL
formula. In particular, the request

P =? [F !state = 4 & !state = 3 & year =y & month =m]
1 The full PRISM model together with some variants with which we experimented is

available at https://dl.dropboxusercontent.com/u/33462615/Soles.zip.

https://dl.dropboxusercontent.com/u/33462615/Soles.zip

196 C. Cini et al.

makes PRISM calculate the probability that a state in which the sole is alive,
i.e. not fished (state 3) and not naturally dead (state 4), is reachable when the
current year is y and the current month is m. Figure 3 shows the values calculated
making the variables y and m vary on the period 2006–2013.

Fig. 3. Plot of the survival probabilities calculated from the PRISM model. On the
x axis the months over the period 2006–2013.

A first interesting evaluation of this result is that the probability of survival
becomes less than 0.5 just after 12 months and becomes less than 0.25 after
22 months. This is in accordance to the evaluation of fishery biologists that the
stock under consideration is not only overfished, but also there is a huge pressure
on juveniles which compromises the stock capacity of replenishment.

Another comparison of this result with the information coming from the same
data but from other models is about longevity. Longevity is the maximum age
reported in years that individuals of a given population would reach. Following
[11], it can be calculated as the age at 95 % of the asymptotic length of the
fish, a parameter of the von Bertalanffy growth equation. Using Solemon data
and this evaluation model, the longevity of the sole in the considered stock was
estimated to be 6.36 years, i.e. about 76 months. However, the probability of sur-
vival at month 76 calculated by the model is 0.023946507, which means that only
2 % of the whole population reaches the age of 76 months. Thus, the longevity
of the stock seems overestimated by the classical model. As a future work, a
probabilistic-based model for longevity could be devised using our approach.

Finally, an experiment that we performed was to determine how the fishing
mortality could be reduced in order to have a survival probability greater than
a certain value after a given number of months. This can be done by changing
the probability constants and re-running the model on the period of interest. For
instance, we found that a reduction of fishing mortality probabilities of 75 % after
1 year and after 2 years (fishing probabilities in year 0 are already low because
of the size of the fish) together with a reduction of 50 % after 3 years, makes the
survival probability after 4 years remain above 0.15. These kinds of experiments
are relatively easy to do on the model and have the potential of revealing new
information regarding the impact of fishing regulations.

As future work we plan to derive more information both from the classical
and the statistical model checking of our model. Moreover, we are working on
the problem of how to correctly compare the different results that we get from
the three approaches followed in Fig. 1.

Probabilistic Modelling and Analysis of a Fish Population 197

References

1. Buti, F., Corradini, F., Merelli, E., Paschini, E., Penna, P., Tesei, L.: An individual-
based probabilistic model for fish stock simulation. Elect. Proc. Theor. Comput.
Sci. 33, 37–55 (2010)

2. Christensen, V., Walters, C.J.: Ecopath with Ecosim: methods, capabilities and
limitations. Ecol. Model. 172(2–4), 109–139 (2004)

3. Grati, F., Scarcella, G., Polidori, P., Domenichetti, F., Bolognini, L., et al.: Multi-
annual investigation of the spatial distributions of juvenile and adult sole (Solea
solea, L.) in the Adriatic Sea (Northern Mediterranean). J. Sea Res. 84, 122–132
(2013)

4. Jordán, F., Scotti, M., Priami, C.: Process algebra-based computational tools in
ecological modelling. Ecol. Complex. 8(4), 357–363 (2011)

5. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic symbolic model
checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002.
LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

6. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010)

7. Nieto Coria, C.A., Tesei, L., Scarcella, G., Russo, T., Merelli, E.: Sea-scale agent-
based simulator of Solea solea in the Adriatic Sea. In: Canal, C., Idani, A. (eds.)
SEFM 2014 Workshops. LNCS, vol. 8938, pp. 259–275. Springer, Heidelberg (2015)

8. Penna, P.: DISPAS: individual-based modelling and simulation for demersal fish
population dynamics. Ph.D. thesis, School of Advanced Studies, Doctoral course
in Information science and complex systems, University of Camerino (2014)

9. Penna, P., Paoletti, N., Scarcella, G., Tesei, L., Marini, M., Merelli, E.: DISPAS:
an agent-based tool for the management of fishing effort. In: Counsell, S., Núñez,
M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 362–367. Springer, Heidelberg (2014)

10. Scarcella, G., Leoni, S., Grati, F., Polidori, P., Pellini, G., et al.: Stock assessment of
common sole in GSA 17. Technical report, Stock assessemtn form for FAO-GFCM
(2014)

11. Taylor, C.C.: Cod growth and temperature. J. Conseil 23(3), 366–370 (1958)
12. von Bertalanffy, L.: A quantitative theory of organic growth (inquiries on growth

laws II). Hum. Biol. 10(2), 181–213 (1938)
13. VV. AA.: Report of the world summit on sustainable development. Techni-

cal report, United Nations (2002). http://www.un.org/jsummit/html/documents/
summit docs/131302 wssd report reissued.pdf

14. VV. AA.: Common Fisheries policy. Technical report, European Commission
(2014). http://ec.europa.eu/fisheries/reform/index en.htm

15. VV. AA.: Fish stocks in Northeast Atlantic recover, whilst serious overfishing in
Mediterranean: commission sets out plans for 2015 fishing opportunities. Tech-
nical report, European Commission (2014). http://europa.eu/rapid/press-release
IP-14-724 en.htm

http://www.un.org/jsummit/html/documents/summit_docs/131302_wssd_report_reissued.pdf
http://www.un.org/jsummit/html/documents/summit_docs/131302_wssd_report_reissued.pdf
http://ec.europa.eu/fisheries/reform/index_en.htm
http://europa.eu/rapid/press-release_IP-14-724_en.htm
http://europa.eu/rapid/press-release_IP-14-724_en.htm

A Tool for the Modelling and Simulation
of Ecological Systems Based on Grid Systems

Suryana Setiawan1,3, Antonio Cerone1,2(B), and Paolo Milazzo1

1 University of Pisa, Pisa, Italy
{setiawan,cerone,milazzo}@di.unipi.it, setiawan@cs.ui.ac.id

2 IMT Institute for Advanced Studies, Lucca, Italy
antonio.cerone@imtlucca.it

3 University of Indonesia, Jakarta, Indonesia

Abstract. Grid Systems is a formalism for modelling population and
ecosystem dynamics that combines features of membrane computing,
such as rewrite rules and maximal parallelism, with a representation
of space similar to that of Cellular Automata. Moreover, Grid Sys-
tems include features for the description of environmental events and
of events that can be associated with frequencies and durations that can
be either deterministic or stochastic. The combination of all of these fea-
tures makes Grid Systems a comprehensive formalism for the modelling
and analysis of ecosystems.

This tool paper describes the implementation and the features of a
simulator for Grid Systems. The simulator is equipped with a graph-
ical user interface for defining and editing models of populations, and
for simulating population dynamics and movement. The aim of this tool
is to allow modellers to construct and analyse models based on a com-
prehensive and rigorous formalism such as Grid Systems with a friendly
interface.

1 Introduction

In order to better understand how to preserve highly endangered species and plan
actions of biodiversity conservation in complex ecological communities, social
scientist need the support of effective tools, equipped with graphical user inter-
faces (GUI) that facilitate visual animation and visual presentation of the output
[9]. Tools would help in modelling the link between local and global processes,
simulating density dependence [7] and dealing with several other challenges of
ecology.

Ecologists emphasised the importance of modelling demographic and envi-
ronmental stochasticity in metapopulation dynamics [8], investigated fluctua-
tions affecting the densities of populations in communities as a consequence
of environmental variability [18], and analysed the effects of random pertur-
bations on cyclic population dynamics [12]. We developed a simulator aiming
to address these important needs by implementing the Grid Systems, a formal
notation for modelling population dynamics, which was inspired by the concepts
c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 198–212, 2015.
DOI: 10.1007/978-3-662-49224-6 17

A Tool for the Modelling and Simulation of Ecological Systems 199

of membrane computing, as in P systems [17], and spatiality dynamics, as in
Cellular Automata (CA) [3] and spatial P systems [5,6].

A Grid System consists of an envelop compartment (the outer membrane)
containing a grid of adjacent inner compartments (inner membranes, also called
cells). Each membrane, characterised by its position in the grid, may represent
a distinct part of the environment with specific parameters and behavioural
rules. Rules can move objects across membranes, thus describing the migration
of resources or individuals.

Our simulator was developed using the Java Netbeans IDE. The latest ver-
sion of the tool was updated to Java 7.6. A GUI was developed using JSwing
and, for the graphical output, AWT. The models created by the user are stored
in XML format. Details on the XML encoding can be found in the simulator
documentation [20]. The simulator was tested on two case studies: population
dynamics of a species of mosquitoes (Aedes albopictus) [4], and seasonal migra-
tion of a wildbeest species in the Serengeti National Park [21]. Such case studies
will be used in this paper to describe the tool functionalities and to include
screenshots of the main tool windows.

As regards related (and competitor) tools, we mention CoSBiLab LIME [11],
Ecopath with Ecosim (EwE) [15], DISPAS [16], and more general tools such as
NetLogo [1] and tools for system dynamics [2]. All of these tools can be used to
model and simulate ecosystems, with different levels of detail on the description
of the individuals and of the environment. The Grid Systems simulator presented
in this paper is a prototype tool based on a formalism that aims at making
the description of events that may happen in the ecosystem unambiguous and
easy. Moreover, the modelling language is designed with the aim of allowing
many aspects of the ecosystem dynamics to be dealt with, such as, in particular,
environemental events and spatial dynamics.

The rest of this paper is organised as follows. Section 2 introduces Grid Sys-
tems [4,19], the formal notation on which the simulator is based. Section 3
describes the implementation by sketching the evolution algorithm that rep-
resents the engine of the tool and briefly presents the software architecture.
Section 4 briefly introduces the two case studies used to show the tool features
in action. Section 5 illustrates the features of the GUI, which include model
definition and editing windows, presentation of the simulation output, visual
animation and debugging. Section 6 concludes the paper.

2 Grid Systems

A grid system models space as a two dimensional grid of cells adopting the idea
of cells in CA. Each cell, also called membrane, is addressed by an ordered pair of
natural numbers: row number and column number. The term “membrane” comes
from P Systems and the term “cell” comes from CA. Objects are represented by
a set of unique symbols Σ and the state of a cell is represented by a multiset over
Σ. Similar to CA and P Systems, the behaviour of Grid Systems is described by
reaction rules, which are defined as in P Systems, with the additional features of

200 S. Setiawan et al.

having a duration and modelling spatially dynamic behaviour. In order to model
spatially dynamic behaviour, the applicability of the rules is defined by means
of a set of associations of rules with membranes.

Definition 1. A Grid System G = (Σ,R,A,C(0)) is defined as follows:

– G is the Grid System name;
– Σ is a finite set of symbols representing the alphabet of object types;
– R is a finite set of reaction rules (see Definition 2);
– A = {(ρ, γ) | ρ ∈ R, γ ∈ {Gi,j | i, j ≥ 0} ∪ {GE}} is the set of associations of

the rules with the membranes, where:
- Gi,j denotes the cell at position (i, j), called local membrane;
- GE is the global membrane surrounding the cells;

– C(0) is the initial configuration of the Grid System (see Definition 3).

2.1 Reaction Rules

The behaviour of a Grid System is defined using reaction rules that rewrite a
given multiset of objects into a new multiset of objects.

Definition 2. Let Σ be the alphabet in a Grid System. A rule ρ is a relation
of multiset α giving multiset β under conditions given by parameters ψ, χ, c, d,
X, and written as

ρ : α
c−−→

d,X
β [ψ | χ]

where

– ρ is the unique identifier of the rule;
– α is a non-empty multiset of reactants, α is a multiset over Σ and α �= λ;
– β, ψ and χ are multisets over Σ of products, promoters and inhibitors, respec-

tively. Elements of these multistes are possibly associated with coordinates of
other membranes

– c ∈ R
+ is the rate with which the rule may be applied to perform a reaction;

– d ∈ R
+ is the (exact or mean) duration of the reaction;

– X ∈ {‘D’, ‘M’} is a marking to the rule; ‘D’ indicates that the duration of the
reaction will take exactly d time units when it is applied; and ‘M’ indicates
that the duration time is an exponentially distributed random variable that has
mean value d time units.

2.2 Configurations and Evolution Algorithm

A configuration C(t) is the state of the system at time point t. It consists of two
parts: current objects and current ongoing reactions. The current objects are
represented as the multisets of existing objects in each membrane. The ongoing
reactions are the reactions that have been applied but due to their durations
they have not been accomplished. For its semantic purpose, the list of ongoing
reactions is sorted according to reactions’ termination time.

A Tool for the Modelling and Simulation of Ecological Systems 201

Definition 3. A Configuration C(t) is a pair

({C(t,m) | m ∈ {Gi,j | i, j ≥ 0} ∪ {GE}}, Ω(t))

where

– C(t,m) is the multiset over objects that exist inside membrane m at time t;
– Ω(t) = {(rk, tk,mk) | k = 1, ..., n and t ≤ t1 ≤ ... ≤ tn} is the set of ongoing

reactions where each (rk, tk,mk), k = 1, ..., n, denotes ongoing reactions that
instantiate rule rk in membrane mk and will terminate at time tk.

The semantics of Grid Systems is described through an algorithm called
Evolution Algorithm of Grid Systems. The algorithm starts from a given initial
configuration C(0) in which Ω(0) is assumed to be an empty set. The config-
uration at time point tk is denoted by C(tk). It contains all the objects and
the membranes where they are located, and a list of on-going reactions: C(tk,m)

represents the objects in membrane m and Ωtk represents the list of ongoing
reactions. Moreover, configuration C(tk,m) contains two multisets over objects:
Avail(t,m) and Committed(t,m). The former represents the objects that are avail-
able for the next reactions and the latter represents the objects that are already
involved in some ongoing reactions. In addition to these dynamic aspects, the
configuration also contains some static entities: the list of objects Σ, the list of
reactions rules R and the association list A.

2.3 Links

Living species have been given by nature the ability to sense and follow the
pathways for movements. Pathways can either result from physical perceptions
(salmons sense the geomagnetic field [14] and sperm cells sense chemotaxes to
locate the ovum [13]) or cognitively created by the individual (wood ants memo-
rize snapshot views and landmarks [10]). In Grid Systems pathways are modelled
using links. A link is defined as a special object that carries pointers. A pointer is
a piece of information that provides a dynamic addressing of a destination mem-
brane. The pointers can be used by rules in referring to the objects in another
cell. Different pointers carried by a link introduce further non-determinism into
the system. In order to resolve this form of non-determinism, a decision is made
stochastically based on the weight of each pointer. Weights are real numbers
between 0 and 1.0, and the total weight in the same cell is 1.0. Like ordinary
objects, the number of links in a cell can be increased or decreased by applying
its related rule.

Definition 4. A pointer is an ordered pair of integers. There are two types
of pointers: relative pointers and absolute pointers. For the relative pointer the
pair of integers is marked by curved brackets, as “ (a, b)”, where a, b ∈ Z. For
the absolute pointer the pair of integers is marked by squared parentheses, as
“ [r, c]”, where r, c ∈ N.

202 S. Setiawan et al.

Links are definitely objects in Grid Systems. Objects are called links when
they carry at least one pointer. When they carry several pointers, the pointers
are equipped with weights that represent a form of priority.

Definition 5. G is a Grid System extended with links when any object in Σ can
carry pointers. A link is an object that carries at least one pointer.

The use of links requires rule replication, that is, each rule has to be instantiated
by an actual rule in which the link is replaced by its pointer. When a link of the
rule has more than one pointer, the rule is instantiated by one actual rule for
each pointer. Furthermore, one rule may have several different links. Replications
for such a rule are based on the combinations of the pointers of each link.

3 Implementation

The semantics of Grid Systems is described operationally in terms of the Evolu-
tion Algorithm of Grid Systems. Such operational semantics has been the basis
for our implementation. However, since the operational semantics is given as a
recursive mathematical function, we need to identify the key aspects that have to
be reworked to implement it using an imperative programming language. First,
we need to categorise Grid Systems in terms of the types of reaction rules used:

– L0 (Stepwise Rule) Grid Systems, whose reaction rules are in the form

ρ : α −→
D

β [ψ | χ].

The absence of values for c and d on the arrow denotes that rate and duration
take default value 1.

– L1 (0-1 Rule) Grid Systems include L0 Grid Systems and the ones whose rules
are in forms

ρ : α
0−−→

1,D
β [ψ | χ].

Each rule has duration of either 0 or 1 time unit.
– L2 (Stochastic) Grid Systems have all possible types of reaction rules as in

Definition 2.

Second, we have to distinguish between Grid Systems without links and Grid
Systems with links.

Third, although Grid Systems are unbounded, as for Definition 2, in our
implementation we consider the dimension of Grid Systems bounded to N × M
cells. Therefore, we will use bounded Grid Systems

G = (N,M,Σ,R,A,C(0)),

where N,M ∈ N, such that the number of membranes is N × M and the asso-
ciation set is A = {(ρ, γ) | ρ ∈ R, γ ∈ {Gi,j | 0 ≤ i < N, 0 ≤ j < M} ∪ {GE}}.

Finally multisets of the configurations are represented as tables. For example,
Ω is represented by Ω-table.

In Sect. 3.1 we sketch the implementation of the evolution algorithm. In
Sect. 3.2 we outline the software architecture of the simulator. Full details of
the implementation are available in the first author’s PhD thesis [19].

A Tool for the Modelling and Simulation of Ecological Systems 203

3.1 Evolution Algorithm Implementation

Let C(tk) be the current configuration where Avail(tk,m) is the multiset of the
objects that are available for the next reactions and Committed(tk,m) is the
multiset of the objects that are already involved in some ongoing reactions. The
following steps are performed iteratively.

1. Find Reaction Candidates
For each membrane m, if Avail(tk,m) = ∅, then the algorithm continues on
the next membrane. Otherwise, the multiset Cand(tk,m) of the candidate
reactions is calculated as follows.
1. for each rule r, calculate the number of times mult(r,m) that rule r is

applicable in m with maximum parallelism;
2. C0 := {(r,mult(r,m)) | r ∈ assoc(m) and mult(r,m) > 0};
3. partition C0 into multiset Cn of the rules that are involved in non-

determinism and multiset Cd of the other rules;
4. calculate multiset Cs of the selected rules by resolving non-determinism

in Cn, using a stochastic rule selection adapted from Gillespie’s Stochastic
Simulation Algorithm;

5. Cand(tk,m) := Cd ∪ Cs.
Grid Systems with links require some additional calculations.

2. Add New Ongoing Reactions to Ω table
For each rule r and membrane m such that (r,mult(r,m)) ∈ Cand(tk,m), a
number mult(r,m) of elapse times elapse(r,m, i), with i = 1, ...,mult(r,m),
is calculated as follows:
– for L0 Grid Systems, elapse(r,m, i) := 1;
– for L1 Grid Systems, elapse(r,m, i) equals the duration of rule r (0 or 1);
– for L2 Grid Systems, if r is a deterministic duration time rule, then

elapse(r,m, i) returns the duration of r, otherwise (r has an exponentially
distributed duration time)

elapse(r,m, i) = −duration(r) ln Xi

where Xi ∼ U [0, 1] (X is a uniformly distributed random variable).
For each (r, n) ∈ Cand(tk,m) and i = 1, ..., n, build the multiset Ω+ of triples
(r, tk + elapse(r,m, i),m). Update the table of ongoing reactions Ω-table by
inserting the triples from Ω+.
For Grid Systems with links, rules are replicated as described in Sect. 2.3.

3. Determine the Earliest Reactions to Remove from Ω -table
For L0 Grid Systems, tk+1 := tk.
For L1 Grid System, if there is a new reaction with duration 0, then tk+1 :=
tk, otherwise tk+1 := tk + 1.
For L2 Grid System, tk+1 is the minimum t such that (r, t,m) has been
added to Ω-table.
Calculate the multiset Ω− of the triple (r, t,m) in Ω-table such that t ≤ tk+1.

4. Generate Products, Remove Reactants and Terminated Reactions
For each membrane m, calculate

204 S. Setiawan et al.

– the new multiset Avail(tk+1,m) from Avail(tk,m) by removing all reactants
of reactions in Ω+ and adding all products of reactions in Ω−;

– the new multiset Committed(tk+1,m) from Committed(tk,m) by removing
all reactants of reactions in Ω− and adding all reactants of reactions in
Ω+

Update the table of ongoing reactions Ω-table by removing the triples in
Ω−. If Ω-table is empty and, for each membrane m, no rule is applicable in
C(tk+1), then the algorithm terminates. Otherwise, the next iteration of the
algorithm starts from Step 1.

In terms of efficiency, for L2 Grid Systems, the Ω-table is implemented by using a
priority queue (heap tree) data structure, which supports insertion and removal
in logarithmic time. In this way the performance is still acceptable in presence
of a large number of ongoing rules.

3.2 Software Architecture

Models are encoded in XML packages. The simulator also uses two internal
data representations: raw data tables, for editing functionalities, and actual data
table, for running the simulation. The software architecture of the simulator
consists of three modules:

XML Data Handler Module. It is the layer that accesses XML packages.
It provides methods for loading the data tables from the XML structures,
updating the structures and load from or save to files.

Editor Module. It contains editing interfaces and methods for verifying the
input. In general, each interface is specialised to handle the editing of a
specific part of the model. Then, when the interface is closed and the update
is accepted, the editor module accesses the XML data handler for updating
that part. Finally, it updates related tables and sends the update to the XML
data handler module. The interfaces implemented by this module define the
four editing modes described in Sect. 5.1

Simulation Module. It implements the Evolution Algorithm of Grid Sys-
tems and visualises the results. There are three simulation modes, which
are described in Sect. 5.2

4 Case Studies

In order to describe, in Sect. 5, the model definition and simulation function-
alities, we consider two case studies of population dynamics that have been
modelled by means of Grid Systems in our previous work [4,21].

The first case study [4] consists in modelling the dynamics of a popula-
tion of a species of mosquitoes, Aedes albopictus. The model includes objects
that represent population individuals at different development phases: egg (E),
immature (I), i.e. pupa/larva, and adult (A). Development takes place in small

A Tool for the Modelling and Simulation of Ecological Systems 205

water containers, and it is influenced by water level and environmental temper-
ature. Hence, the model considers three types of external events, temperature
change, rainfall, and desiccation, which change the behaviour of the species either
directly or indirectly. The ecosystem is modelled as a 3 × 3 grid. Temperature is
represented by the number of objects T in the global membrane, while the water
level in containers is modelled by the number of objects W in the central cell of
the grid. Reaction rules of this model include rules for the movement of adults
into adjacent cells, rules for oviposition, rules for development (E into I, and I
into A) and rules for death.

The second case study [21] consists in the modelling of the seasonal migration
of a wildebeest species in the Serengeti National Park, Tanzania. The area of
the park is modelled as a 50 × 50 grid. In order to precisely describe the shape
of the territory, dummy objects Z are inserted in grid cells that are not included
in the representation of the park. In the other cells, the instances of object
G represent the quantity of available grass, objects A1, . . . , A9 and B1, . . . , B9
represent wildebeests at different stages and in different states (movable/resting).
Instances of object C are used (for modelling purposes) to maintain the total
number of individuals in the population.

The model relies on the observations that wildebeest migration is driven by
the search for grazing areas and water resources, and individuals tend to fol-
low movements of other individuals. Assuming the existence of dynamic guiding
paths, which could be representations of individual or communal memory of wild-
beests, or physical tracks marking the land, we model movement by rewritings
between adjacent cells driven by conditions in the origin and destination cells.
As conditions we consider number of individuals, grass available, and dynamic
paths. Paths are intialised with the patterns of movements observed in reality,
but dynamically change depending on variation of movement caused by other
conditions. In the grid systems model, paths are represented by objects path
carrying links that are dynamically created by reaction rules, and that are used
by other rules to determine the movement of wildebeests. Reaction rules of the
model include rules for birth and death of individuals, for grass growth (that uses
axiliary objects R and H to describe grass growth phases), for feeding of indi-
viduals, for change of stage and state of individuals and for movement according
to grass availability and paths. Moreover, reaction rules for the update of paths
are present.

5 Features of the GUI

5.1 Model Definition and Editing

In this section we briefly illustrate how to define and edit a model by showing
screenshots that refer to the Aedes albopictus case study [4]. Full details are
available in the simulator documentation [19]. There are four editing modes
that allow the user to define and modify a model.

206 S. Setiawan et al.

Fig. 1. The Dashboard: “General Info” Mode

“General Info” Mode. This mode allows the user to create a new model or
select the model to be analysed from a list of models. The user can access
and edit the model general information. As shown in Fig. 1, the list of models
is on the left side while the editable information about the selected model is
visualised on the right side. It is also possible to generate a LaTEX description
of the model.

“Objects and Ranges” Mode. This mode allows the user to define the
objects and the topology of the model. In particular, the following enti-
ties can be created and edited:

object which defines a species or a developmental stage of a species (e.g.
Adult Mosquito, Egg, Pupa/larva), an environmental condition (e.g.
Temperature level and Water level) or a movement constraint (e.g. Mos-
quito movement blocker);

constant which describes fixed values such as thresholds and can be an
expression containing other defined constants and the values associ-
ated with the grid, such as number of rows (NumRows) and number
of columns (NumCol);

region which is interactively defined by means of a dialog box by select-
ing cells and incorporating already defined regions over the canvas that
represents the grid;

A Tool for the Modelling and Simulation of Ecological Systems 207

Fig. 2. The Dashboard: “Objects and Ranges” Mode

Fig. 3. The Dashboard: “Reaction Rules” Mode

208 S. Setiawan et al.

Fig. 4. Output as Chart

range which is defined as a set of discrete values associated to variables.
The dashboard of this mode is shown in Fig. 2.

“Reaction Rules” Mode. This mode allows the user to define reaction rules.
As shown in Fig. 3 the dashboard supports the definition of the rules accord-
ing to Definition 2.1, the selection of the rules to be used in the simulation
and visualises, in a tabular form, all actual rules corresponding to a high-
lighted template rule.

“Initial State Setting” Mode. This mode allows the user to define the list
of datasets for different initial objects, links, external events and rules for
events.

5.2 Simulation and Animation

Simulation can be performed using three different modes as follows.

“Growth” Mode. This mode is intended for observing how the configuration
changes during simulation. There are two different ways to observe such
changes: (1) as textual output, and (2) as a chart. The chart presents a
graphical output using different colours for different objects as shown in
Fig. 4 for a mosquito population (adults in yellow, immatures in dark blue
and eggs in red) and its environment (water level in light blue) [4].

“Animation” Mode. Animating the simulation is essential to observe spatial
aspect. This mode supports the visualisation of object changes in each mem-
brane. It is illustrated on a model of the seasonal migration of a wildebeest
species in the Serengeti National Park, Tanzania [21]. Figure 5 shows a map
of the Serengeti National Park, with the white part, consisting of tiny dots,
showing the density of the individuals of the species.

A Tool for the Modelling and Simulation of Ecological Systems 209

Fig. 5. Animation

Fig. 6. Displaying the Links

The animation can be paused with button “Pause” (as in Fig. 6) to observe
an instantaneous state, possibly saving the current configuration in a
file (button “Save conf”) in order to continue at a later stage (button
“Load conf”), and can be restarted from the initial configuration (button
“Restart”). When the animation is paused it is possible to inspect rule fre-
quency (for both template and actual rules) with button “Rule Freq” and
object numbers (available, committed and total) with button “Population”.

210 S. Setiawan et al.

Fig. 7. The Dashboard: “Trace Reactions” Mode

Fig. 8. State of a Membrane

A Tool for the Modelling and Simulation of Ecological Systems 211

It is also possible to visualise the current links as arrows on the canvas (but-
tons “Show Links” and “Hide Links”), possibly with the objects hidden (but-
ton “Only Links”, which appears after pushing “Show Links”). Since links
have different directions and each direction has its own weight, the interface
provides a sliding bar to set the weight limits so that only directions with
weights above the limits (high priority links) are visualised. Visualisation of
links with objects hidden is shown in Fig. 6 for the wildebeest case study.
Finally, frames of animation can be captured and stored in files.

“Trace Reactions” Mode. This debugging mode supports the modeller in
observing the behaviour of the rules step-by-step during the simulation. As
shown in Fig. 7, in this mode, the initial dashboard shows, for each mem-
brane, the available and committed objects it contains. After selecting a
membrane, it is possible to inspect its state, represented in textual format
organised in tables. The state of a membrane (for rules with available reac-
tants, as shown in Fig. 8, or for all associated reaction rules) includes:
– the available and committed objects;
– the current paths, including their destinations and weights;
– for each considered rule associated with the membrane;

• the identifier of the rule for that reaction;
• the maximum number of times the rule can be applied;
• the existence of other rules competing for the same reaction;
• the number of reactions resulting from the stochastic selection process

applied to the rule;
• the rule rate;
• the percentage of trials, that is, the empirical likelihood that the rule

is selected out of 100 trials;

6 Conclusion and Future Work

We have presented a simulator for ecological systems that is equipped with
a GUI that supports visual animation and visual presentation of the output.
We have illustrated the modelling, editing and analytical functionalities of the
tool presenting screenshots from two case studies: the dynamics of a popula-
tion of a species of mosquitoes, Aedes albopictus, and the seasonal migration
of a wildebeest species in the Serengeti National Park, Tanzania. Simulator
and documentation can be downloaded at http://www.di.unipi.it/msvbio/wiki/
GridSystems/.

In our future work we plan to apply the simulator to other case studies in
ecology and aim to extend it with further analytical functionalities based on
model checking and statistical model checking.

http://www.di.unipi.it/msvbio/wiki/GridSystems/
http://www.di.unipi.it/msvbio/wiki/GridSystems/

212 S. Setiawan et al.

References

1. NetLogo web site. https://ccl.northwestern.edu/netlogo/
2. Tools for system dynamics web site. http://tools.systemdynamics.org/
3. Adamatzky, A.: Identification of Cellular Automata. Taylor & Francis, London

(1994)
4. Barbuti, R., Cerone, A., Maggiolo-Schettini, A., Milazzo, P., Setiawan, S.: Mod-

elling population dynamics using grid systems. In: Cerone, A., Persico, D., Fer-
nandes, S., Garcia-Perez, A., Katsaros, P., Ahmed Shaikh, S., Stamelos, I. (eds.)
SEFM 2012 Satellite Events. LNCS, vol. 7991, pp. 172–189. Springer, Heidelberg
(2014)

5. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G.: Simulation of spatial
P system models. Theor. Comp. Sci. 529, 11–45 (2014)

6. Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Pardini, G., Tesei, L.: Spatial P
systems. Nat. Comput. 10(1), 3–16 (2011)

7. Björnstad, O.N., Fromentin, J.M., Stenseth, N.C., Gjøsæter, J.: Cycles and trends
in cod populations. Proc. Nat. Acad. Sci. U.S.A 96, 5066–5071 (2009)

8. Bonsall, M.B., Hastings, A.: Demographic and environmental stochasticity in
predator-prey metapopulation dynamics. J. Anim. Ecol. 73, 1043–1055 (2004)

9. Cerone, A., Scotti, M.: Research challenges in modelling ecosystems. In: Canal, C.,
Idani, A. (eds.) SEFM 2014 Workshops. LNCS, vol. 8938, pp. 276–293. Springer,
Heidelberg (2015)

10. Durier, V., Graham, P., Collett, T.S.: Snapshot memories and landmark guidance
in wood ants. Curr. Biol. 13, 1614–1618 (2003). Elsevier Science Ltd

11. Kahramanoğulları, O., Jordán, F., Lynch, J.: Cosbilab lime: a language interface
for stochastic dynamical modelling in ecology. Environ. Model. Softw. 26(5), 685–
687 (2011)

12. Kaitala, V., Ranta, E., Lindstroem, J.: Cyclic population dynamics and random
perturbations. J. Anim. Ecol. 65, 249–251 (1996)

13. Kaupp, U.B., Kashikar, N.D., Weyand, I.: Mechanism of sperm chemotaxis. Annu.
Rev. Physiol. 70, 93–117 (2008)

14. Lohmann, K.J., Putman, N.F., Lohmann, C.M.F.: Geomagnetic imprinting: a uni-
fying hypothesis of long-distance natal homing in salmon and sea turtles. Proc.
Nat. Acad. Sci. 105(49), 19096–19101 (2008)

15. Pauly, D., Christensen, V., Walters, C.: Ecopath, ecosim, and ecospace as tools for
evaluating ecosystem impact of fisheries. ICES J. Mar. Sci. 57(3), 697 (2000)

16. Penna, P., Paoletti, N., Scarcella, G., Tesei, L., Marini, M., Merelli, E.: DISPAS:
an agent-based tool for the management of fishing effort. In: Counsell, S., Núñez,
M. (eds.) SEFM 2013. LNCS, vol. 8368, pp. 362–367. Springer, Heidelberg (2014)

17. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
18. Ripa, J., Ives, A.R.: Food web dynamics in correlated and autocorrelated environ-

ments. Theor. Popul. Biol. 64, 369–384 (2003)
19. Setiawan, S.: Formal modelling for population dynamics. Ph.D thesis, Department

of Computer Science, University of Pisa, May 2015
20. Setiawan, S.: The grid systems simulator (version date: 3 June, 2015) 2015. http://

www.di.unipi.it/msvbio/wiki/GridSystems/
21. Setiawan, S., Cerone, A.: Stochastic modelling of seasonal migration using rewriting

systems with spatiality. In: Counsell, S., Núñez, M. (eds.) SEFM 2013 Workshops.
LNCS, vol. 8368, pp. 313–328. Springer, Heidelberg (2014)

https://ccl.northwestern.edu/netlogo/
http://tools.systemdynamics.org/
http://www.di.unipi.it/msvbio/wiki/GridSystems/
http://www.di.unipi.it/msvbio/wiki/GridSystems/

VERY*SCART 2015

Distributed Coordinated Adaptation
of Cloud-Based Applications

Luciano Baresi, Sam Guinea, and Giovanni Quattrocchi(B)

Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria,
Piazza L. da Vinci, 32, 20133 Milano, Italy

{luciano.baresi,sam.guinea,giovanni.quattrocchi}@polimi.it

Abstract. Steering modern Internet applications in the Cloud, given a
set of functional and non-functional requirements, is a complex task. Sys-
tem maintainers need to have a holistic view of the application; they need
to understand the intricate horizontal and vertical dependencies that
exist between the infrastructure, platform, and software constituents. In
this paper we advocate that MAPE control loops can help, and we focus
on coordination of multiple adaptation actions. To this end we have
developed a simple language for describing the adaptation capabilities
of an Internet application. We then use this description to understand
the dependencies that exist among the different adaptations we want to
execute. Finally, we provide a distributed framework that, given a com-
plex adaptation plan, helps our actuators collaborate in a decentralized
fashion. We have validated our approach on an on-line auction applica-
tion, deployed onto a mix of physical servers and Amazon EC2 virtual
machines.

1 Introduction

Dynamic resource allocation techniques in the Cloud have eased the creation of
Internet applications that scale on demand, according to real needs. Horizon-
tal scalability allow us to add new computational resources in a relative short
amount of time, allowing applications to grow with the illusion of infinite scala-
bility [12].

Although Infrastructure as a Service (IaaS) providers, such as Amazon AWS
and OpenStack, offer some automated tools for achieving horizontal scalability,
runtime adaptation remains a complex problem. The current state of practice
is to focus on increasing or reducing the number of computational resources
dedicated to an application (e.g., AWS Autoscaling Groups); this is, at best, a
partial solution. We also need to consider the scaling capabilities of the mid-
dleware and software components that are deployed onto these computational
resources and the dependencies that may exist between them. Platform as a Ser-
vice (PaaS) providers deal with these issues by offering a completely automated

The work presented in this paper has been partially supported by project EEB - Edi-
fici A Zero Consumo Energetico In Distretti Urbani Intelligenti (Italian Technology
Cluster For Smart Communities) - CTN01 00034 594053.

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 215–227, 2015.
DOI: 10.1007/978-3-662-49224-6 18

216 L. Baresi et al.

platform, but they usually lock-in the users with proprietary technologies and
greatly reduce the configuration and personalization of the product.

In this paper we present a general-purpose solution for adapting applications
that are hosted on private, public, and hybrid clouds. The work we present is
part of our ongoing ECoWare initiative. ECoWare is a framework for enriching
Internet and Service-based applications with self-* capabilities; it is based on
the classical notion of MAPE (Monitoring, Analysis, Planning, and Execution)
control loops [9]. The main peculiarity of ECoWare is that it provides a holistic
approach: it considers all the different parts of the application to be intimately
interconnected, meaning it considers all the vertical and horizontal dependencies
that may exist therein. Vertical dependencies concern the relationships between
software components of a single service (e.g. a JBoss server depends on the JVM);
horizontal dependencies refer to the interconnections between different services
(e.g. a JBoss server has to be connected to a MySQL database). ECoWare is
aware of the design-time description of the application, how it is deployed, and
how it evolves at runtime.

After presenting the monitoring and analysis capabilities of ECoWare in [5],
and its planning capabilities in [13], here we concentrate on the Execution phase.
This phase starts when we receive an adaptation plan that consist of a list of
adaptation actions that we want to perform on the application. These actions
can refer to the infrastructural resources (e.g., the VMs, OS containers, etc.),
the platform resources (e.g., application servers, database management systems,
etc.), and/or the actual deployed business logic.

The main contributions of this paper thus are (i) a language for describing the
application and its adaptation capabilities called EADL (EcoWare Application
Description Language), (ii) a language for specifying adaptation strategies called
EPDL (EcoWare Plan Description Language), and (iii) a supporting distributed
and decentralized runtime adaptation framework. We evaluated our solution in
the context of an online auction site that was deployed onto a hybrid cloud
consisting of a mix of 6 physical servers and 300 Amazon EC2 virtual machines.

The rest of this paper is organized as follows. Section 2 introduces our solu-
tion. Section 3 presents both the EADL and the EPDL languages that we have
developed. Section 4 explains the algorithm that we use to create a distributed
adaptation choreography, given a specific EPDL plan, and presents the run-
time framework we have developed for executing the choreographies. Section 5
describes the experiments we ran to evaluate our solution. Section 6 surveys the
state of the art, and Sect. 7 concludes the paper.

2 Solution Overview

Before we start discussing our solution, we need to clarify the kind of applica-
tions we focus on. Modern Internet applications are often built by following a
multi-tier architecture. Tiers allow us to logically and physically separate soft-
ware components that deal with different functional aspects of an application.
Figure 1(a) illustrates a common and simple example in which we have three
tiers: a presentation tier, an application logic tier, and a data management tier.

Distributed Coordinated Adaptation of Cloud-Based Applications 217

Execution
Choreographer

Plan
EPDL

Application
Description

EADL

E
ven

t B
u

s

D
isp

atch
er

A
ctu

ato
r

EAA

N
o

d
e

(b)
D

isp
atch

er

A
ctu

ato
r

EAAApplication Logic

Application Server

Development Runtime
Operating System

(Virtualized)
Infrastructure

N
o

d
e

Presentation Application Logic Data Management

(a)

(c)

node

node

node

node

node

node

Node

Fig. 1. (a) A typical 3-tier application; (b) The multi-level nature of a node; (c) Coor-
dination of distributed adaptations

Each tier in our application contains at least one node; depending on the
workload that we experience at runtime, we can dynamically add, or remove,
nodes to or from a tier. A node is a computing instance (e.g., a VM) running
software components (e.g., the JVM and an application server) that enable the
execution of app-specific code (e.g., a JEE application) or the management of
application data. An example of node is showed in Fig. 1(b). For the sake of
simplicity, we require that nodes within the same tier have the same adaptation
capabilities. Finally, the nodes that exist in the application, across all tiers and
at any given time, make up what we call the application’s topology.

Since adaptation actions are provided by technology- and application-specific
actuators, which are deployed directly onto the system, we enact the adaptation
plan in a decentralized fashion, i.e., through a distributed adaptation choreogra-
phy. This allows us to avoid having a central point of failure, and to optimize
network usage by favoring local and autonomous adaptation as much as possi-
ble. In general, centralized solutions are not desirable in the presence of different
organizational boundaries, which is quite common in hybrid and public clouds.

Figure 1(c) provides an overview of our coordinated adaptation framework.
At the center of our solution lies the Execution Choreographer (EC). It is
responsible for receiving a plan, written in EPDL, and for creating an adaptation
choreography that can be executed by a distributed set of ECoWare Adaptation
Agents (EAAs). The plan it receives could be manually generated by a domain
expert, or passed to the EC by ECoWare planing component [13]. In order to
understand the dependencies that exist among the various adaptation actions,
and to inform the EAAs, the EC is pre-configured with a description of the appli-
cation, written in EADL.

The adaptation choreography is created by using the Choreography
Creation Algorithm (CCA) discussed in Sect. 4.1. The EAA wraps the applica-
tion and technology-specific Actuator that we associate with a specific node. In
our solution we have one EAA per node. The main responsibility of the EAA is to
coordinate its adaptation activities with those performed by other agents. This
means sharing information, and synchronizing adaptations with other EAAs.
This is achieved through the Dispatcher which is connected to the distributed
Event Bus.

218 L. Baresi et al.

Listing 1.1. Example App Description.

app:
tier Loadbalancer: minq: 1 maxq: 1
actions:
alloc (): requirements:

all AppServer where started ==true
updateServerList (): requirements:

all AppServer where started ==true
setAlgorithm(String): critical

tier AppServer: minq: 1 maxq: 10
attributes: port
actions:

alloc (): requirements:
any DB where started ==true

changeDatabase(DB): critical
setMaxThreads(Num): critical
setDBPoolSize(Num , Num): critical

tier DB: minq: 1 maxq: 1
attributes: port , user , password
actions:
alloc ():
modifies: port , user , password

setMaxConnection(Num) : critical
setMemLock(Boolean): critical

3 Models and Languages

In this section we will present ECoWare Application Description Language
(EADL), our language for describing adaptation capabilities of an application,
and ECoWare Plan Description Language (EPDL), our language for defining an
adaptation plan.

3.1 ECoWare Application Description Language

Our application description language was inspired by the OASIS Topology
and Orchestration Specification for Cloud Applications (TOSCA) [6]. TOSCA
focuses on providing interoperable descriptions of application and infrastructure
cloud services, of their relationships, and of their operational behaviors. TOSCA,
unfortunately, does not focus on runtime adaptation; in particular, it does not
help define how multiple actions need to collaborate to reach global adaptation.
As a result we kept some of its main (architectural) ideas and developed EADL,
to focus on the dependencies that exist among different adaptation capabilities.

We use EADL to identify the adaptation capabilities of the nodes of our
application. Listing 1.1 provides the complete EADL description for a 3-tier
application example.

The first thing we need to clarify when defining a tier is the minimum (minq)
and maximum (maxq) number of nodes that it can handle. For instance, in our
example we can say we want between one and ten application servers.

Second, we need to define the attributes that are publicly exposed by the
nodes in a tier. An attribute is a piece of information that is shared by a
node to support the distributed adaptation. Attributes are typically application-
and/or technology-specific, and are defined by the system maintainer. However,
all nodes also expose four pre-defined attributes. id (the unique identifier of a
node), ip (the IP address of a node), started that tells us whether the node’s
application logic is running or not, and configuration that provides a descrip-
tion of the node’s infrastructural resources (e.g. numbers of cores and memory
size). Attribute configuration can be used to change the internal configuration
of software components (e.g., the heap size of the JVM).

Distributed Coordinated Adaptation of Cloud-Based Applications 219

In our running example, the DB tier introduces three technology-specific
attributes: port, username, and password. These attributes represent the data
that the application servers need to know to successfully connect to the DBMS.

Third, we define the adaptation actions that can be performed on the nodes in
a tier. Once again, actions are typically application- and/or technology-specific.
Actions can be targeted at any one of the node’s software components, and
can modify the values of the node’s exposed attributes. The attributes that
are modified by an action are listed in the action’s modifies clause. All nodes
also have five pre-defined actions, which can be overridden by the maintainer if
required. The five predefined actions are: alloc for allocating a node (it assigns
a new ip and sets started to false), start for starting the application logic (it
sets started to true), new for combining alloc and start into a single more
convenient action, stop for stopping the application logic (it sets started to
false), and remove for removing a node from the topology.

Actions support various types of input parameters. A parameter can have a
primitive type (i.e., a string, a number, or a boolean value), or it can be of the
type node. Type node is defined by the tier the node belongs to; it aggregates all
the attributes defined for that tier using a map data structure. Input parameters
can be either explicit or implicit. Explicit parameters are specified in the
adaptation plan that is given to the Execution Choreographer. Implicit parame-
ters, on the other hand, are discovered at run time, while the choreography is in
execution. They are defined by, what we call, action requirements.

A requirement defines a dependency between an adaptation action and the
attributes of a specific node. We support two kinds of requirements: all require-
ments and any requirements both contain a filtering expression. all require-
ments require that all the nodes, in a specific tier, that satisfy the expression,
pass their attributes to the action, under the form of a node parameter. Note
that it is acceptable to receive zero nodes if no node in the tier satisfies the
expression. any requirements require that one, and only one, of the nodes in
the tier satisfy the expression and pass its attributes to the action. Which of
these nodes is actually chosen is irrelevant. Note that we require that at least
one node satisfy the expression. In our example, action alloc exposed by the
tier Loadbalancer requires the attributes of all the application servers that have
their attribute started set to true.

Adaptation actions can also be identified as delayed or critical. delayed
actions are actions that need to be advertised to the topology for safety reasons,
before they can be executed. Therefore the actual action execution starts after a
configurable amount of time. A good example of this is when we want to stop an
application server in our tier AppServer. We need to advertise our intention to
do so, so that the loadbalancer in tier Loadbalancer can avoid sending requests
to that specific application server. If not, we could loose important requests.
critical actions, on the other hand, require that the business logic, or the
underlying platform, be stopped momentarily to perform the adaptation. A good
example of this is when we want to change a configuration parameter of an
application server that is only read during the startup.

220 L. Baresi et al.

Listing 1.2. Example Plan.
LoadBalancer1 updateServerList (); DB1 setMemLock(true);
LoadBalancer1 setAlgorithm (" roundrobin "); AppServer alloc();
let newAppServer = AppServer new(); AppServer new();
newAppServer setMaxThreads (250)

3.2 ECoWare Plan Description Language

Given an application description in EADL, a plan is simply a list of the EADL
actions that need to be performed on the application’s topology. When adding
an action to our plan, we usually want to specify which node should execute it.
This can be done by specifying the node’s unique id. However, there are cases
in which the node’s id is unknown, since it has yet to be created. Actions alloc
and new are good examples of this, since no node exists when they are first
executed. In this case we simply identify the tier in which we want the new
node to be created. The classical let notation can be use to bind a variable to a
node. Actions can be placed within the plan in any order, since the Execution
Choreographer will sort out the dependencies, given the EADL description of
the application. If there are no dependencies, the actions are executed in parallel
for greater efficiency.

Listing 1.2 illustrates a plan taken from our running example that requests
to add three new application servers and to change the configuration of node
Loadbalancer1, DB1, and one of the new application server (using the let nota-
tion).

4 Runtime Adaptation

In this section we focus on the Choreography Creation Algorithm (CCA) and
on the design and implementation of the EcoWare Adaptation Agents (EAAs).

4.1 Choreography Creation Algorithm

The CCA is activated when the EC (see Fig. 2(a)) receives a new plan, and is
achieved by the EC’s Choreographer over five steps.

In step 1 the Choreographer retrieves the application’s current topology
from the Topology Manager (TM). The TM is a component that is responsible
for keeping track of the unique ids of the nodes that exist in the topology, and of
whether the nodes are on or off. In step 2 the Choreographer identifies whether
the plan can be achieved given the topology’s current status and the tier quantity
thresholds described in the application’s EADL. In step 3 the Choreographer
creates and/or removes nodes from the application’s tiers, depending on the new,
alloc, and remove actions that are in the plan. These actions are performed
directly by the EC, through its Allocation/Deallocation Manager (ADM).
The ADM provides a generic interface for interacting with cloud vendors; this is
a design decision that we made to support multi-cloud adaptation in the future.

Distributed Coordinated Adaptation of Cloud-Based Applications 221

In step 4 the Choreographer creates the distributed choreography by assigning
the actions in the plan to the EAAs that will be responsible for performing
them. In this phase the Choreographer also analyzes the synchronization and
data sharing that the EAAs will need to achieve during the actual execution.
Finally, in step 5 the Choreographer sends out the choreography directives to
the application’s EAAs. This is achieved by sending out messages Prepare and
Start Plan.

Step 4 is the most complex step. Its main objective is to produce efficient sub-
plans for the EAAs. This goal requires that the EC understand the dependencies
that exist among the adaptation actions in the plan. If no dependency occurs,
each node can execute its sub-plan in parallel. We have a dependency when,
in order to execute, an action must first know the “finalized” attributes of one
or more nodes in the topology. We say that an attribute has been finalized if
its value will no longer change during the execution of the adaptation plan.
Indirectly, this means that we require that the actions on the interested nodes
be completed before we execute our action (note that we do not support direct
or indirect cyclic dependencies). Given an action a, this means dealing with the
following three cases.

arguments – If action a has arguments that are related to nodes that have
to perform actions in the plan, we know that the values of these attributes
might still change. Therefore, we create a dependency between action a and the
interested nodes. This way we are sure that action a will be executed when the
nodes’ attributes have been finalized.

all requirement – If we have a requirement p of type all, we want a
to receive the attributes of all the nodes that satisfy the filtering expression,
regardless of whether they are involved in the adaptation plan or not. For the
nodes that are involved in the plan we introduce a dependency. In this case,
the filtering expression is evaluated once they have finished executing all their
adaptation actions.

any requirement – If we have a requirement p of type any, and there is
already a node n that can satisfy p, and n is not involved in the plan, there is
no need to introduce a dependency, and action a can proceed immediately, since
n’s attributes will not change. If this is not the case we need to look at the nodes
ni that are involved in the plan. We introduce a dependency between action a
and all these nodes. As the nodes progressively finish executing their actions we
evaluate the filtering expression that is associated with the requirement. As soon
as one of the nodes satisfies the expression, all the dependencies for action a are
removed. If this never happens, the distributed plan fails and must be rolled
back.

4.2 ECoWare Adaptation Agent

When the EAA (see Fig. 2(b)) is initialized it receives a Tier Info message from
the EC containing all the informations required to be a good citizen in a tier.
This includes the node’s unique id, the tier’s name, the lists of critical and

222 L. Baresi et al.

EADL
Parser

EPDL
Parser

Choreographer

Allocation/Deallocation
Manager

Topology
Manager

Prepare Start Plan

Node Completion IaaS
Provider

App
Description

Plan

E
xe

cu
ti

o
n

 Q
u

eu
e

W
ai

ti
n

g
 L

is
t

Action Action

Start Plan
Has

Dependency
No

Dependency

Node
Completion

Tier Info

Prepare

Alloc Start Stop ... Remove

Capabilities

Read/
Write

Service

A
ct

u
at

o
r

(a) (b)

Tier Info

Fig. 2. Architectures of the EC (a), and of the EAA (b).

delayed actions that it is capable of performing, and all the requirements for
the actions provided by the EAA’s Actuator.

Once the choreography has been created, the EAA is sent a Prepare message
by the EC. This message contains the list of actions that it should perform,
together with a map containing the actions’ arguments and dependencies.

When the EC is ready to launch the actual plan execution, it sends the EAA
a Start Plan message. This causes two internal data structures to be filled. The
first is the Execution Queue; it contains all the actions from the plan that have
no dependencies. The actions are queued to ensure consistent access to the EAA’s
attributes. Furthermore, critical actions are reordered and grouped together to
minimize the amount of restarts that need to be performed. The second is the
Waiting List; it contains all the actions from the plan that have dependencies,
and that need other EAAs to complete their actions before being moved to the
Execution Queue. They are moved when the EAA receives a Node Completion
message, which signals that a certain node in the topology has completed all the
actions in its sub-plan.

When the EAA executes a concrete action from the Execution Queue it
needs to interact with the concrete adaptations provided by the EAA’s Actuator.
Before interacting with the Actuator, however, the EAA may need to query other
nodes for attributes or to satisfy the action’s requirements. If the requirements
cannot be satisfied the execution is terminated and the EC is sent a Failure
message. If the requirements are satisfied, the EAA sends a Warning message
to the bus if the action is delayed. This way the interested EAAs can react
accordingly. After a configurable delay the EAA checks whether the action is
critical. If it is, and the service is running, the EAA executes a stop action.
At this point, the EAA proceeds to interact with the Actuator to perform the
adaptation.

Once the action has been completed, the EAA performs the following checks.
If all the critical actions have been executed, and the node needs to be restarted,
the EAA performs a start action. If not, it keeps the service in the “off” state,

Distributed Coordinated Adaptation of Cloud-Based Applications 223

so that additional critical actions can be performed. The EAA also sends out
another Warning message, if needed, to communicate that it has finished exe-
cuting the delayed action.

Finally, once the EAA has completed the execution of all the actions in its
plan, it sends a Completion message to the EC. The EC proceeds to initiate a
Two-Phase Commit (2PC) protocol to reach a distributed consensus on whether
the plan should be committed or rolled back.

5 Evaluation

To evaluate our work we used RUBiS [4], a well-known Internet application
benchmark that simulates an online auction site. Our RUBiS deployment con-
sisted of four tiers. The first tier was a loadbalancer tier, responsible for routing
user requests to either our second or third tier. The second tier was an Apache
tier, containing nodes that served static content (e.g., HTML files, images, etc.).
The third tier was a JBoss tier, containing nodes that served dynamic con-
tent (e.g., servlets). The fourth tier was used for a MySQL database server.
We deployed RUBiS on a hybrid cloud. We used six physical servers equipped
with Intel Xeon processors running Ubuntu 12.04; and adopted Amazon EC2 for
public scaling. In particular we used EC2 to horizontally scale the JBoss tier,
as it was the tier that was most stressed when the client workload increased.
ECoWare’s components, and in particular the Execution Choreographer, were
installed on a seventh private server. The same server was also used to run the
RabbitMQ enterprise service bus that we use for inter-EAA communication.

Our experiments consisted in running 21 different randomly generated plans,
with varying numbers and types of adaptation actions involved. The topology
varied from 6 physical servers to a hybrid cloud of 306 nodes, thanks to AWS EC2
integration. 300 is the maximum number of EC2 instances that we were allowed
to instantiate at the same time, given the nature of our contract with AWS.

During our experiments we used the unix tools ps and top to measure the
resource consumption of our framework. We observed that both the EAA and the
EC had a negligible impact on the node’s CPU and memory. Since our approach
is distributed we also considered the impact that message exchange had on the
network resources. The number of messages per execution was linear with respect
to the number of nodes in the topology, and to the number of node arguments
and requirements that needed to be satisfied; the size of these messages varied
from around a hundred bytes to tens of kilobytes, depending on the type of data
being communicated.

The Choreography Creation Algorithm also produced an overhead between
receiving the plan and initiating its execution. The complexity of our algorithm
is O(n∗m∗p∗t) where n is the number of nodes in the topology, m is the number
of actions for each node, p is the number of requirements for each action, and t
is the number of nodes contained in the tier mentioned in the requirement.

The results of our tests have shown that, on average, 56.2 % of the total time
was spent allocating and deallocating AWS EC2 instances, 35.2 % of the time was

224 L. Baresi et al.

Fig. 3. (a)Execution time; (b) Overhead introduced by the Choreography Creation
Algorithm

spent executing the choreography, 8.1 % of the time was spent discovering the
initial topology and executing the two-phase commit step, and 0.5 % of the time
was spent creating the choreography. The time spent allocating and deallocating
EC2 instances is a variable that is out of our control, and would be the same
for any competing approach that also used AWS EC2. Its amount could change
drastically if we were to adopt a different IaaS cloud provider.

Figure 3a illustrates how the number of actions in the plan impacts the execu-
tion time of the actual choreography. Because of the distributed approach of our
processing model, each EAA can execute its part of the plan in parallel to others
(unless one of the actions contains a dependency). For this reason, depending
on the type of the actions, the execution times of plans containing from 3 to
174 actions oscillate between 10 and 70 seconds, demonstrating the sub-linear
relationship between the two factors.

Figure 3b demonstrates how the overhead produced by the Coreography Cre-
ation Algorithm is influenced by different components. The continuous line refers
to the left y-axis (measured with a logarithmic scale), and represents the product
of the number of actions in the plan and the number of nodes in the topology. The
actual overhead is shown by the vertical bars and is measured in seconds. The
two sets of values have similar trends; however, in some experiments, this is not
true (e.g., the eighth experiment). This is related to the presence of requirements
that cause more bus communication, which in turn can be heavily affected by
networking time, especially if the communication needs to be done on the public
Internet. To satisfy a requirement the CCA needs to start a conversation with
the involved EAAs. Therefore, requirements are a key aspect to consider when
evaluating the overall impact on performance. So, even though the number of
actions and nodes were lower in experiment eight (with respect to experiments
six and seven), we saw a higher overhead; this was due to the fact that its actions
had more requirements.

6 Related Work

The automated runtime management tools provided by IaaS cloud vendors have
always been quite primitive, focusing mainly on how to auto-scale infrastruc-
tural resources. Only recently Amazon AWS has begun providing OpsWorks [1].

Distributed Coordinated Adaptation of Cloud-Based Applications 225

Internally OpsWorks makes use of Chef recipes [2]. Chef, however, does not
allow one to configure the actual virtualized or hardware resources he or she
uses. Cloudify [3] takes application life-cycle automation one step further, by
allowing us to setup the virtualized or hardware resources. Cloudify supports a
primitive monitoring system, and therefore can only easily drive infrastructure
auto-scaling. Instead, with our approach we can drive true multi-layer adapta-
tion, coordinate multiple distributed actuators, and provide both vertical and
horizontal scalability.

As for research initiatives, Zeginis et al. [14] propose a framework for the
proactive cross-layer adaptation of service-based applications called ECMAF.
They consider the business process management (BPM) level, the service com-
position and coordination (SCC) level, and the service infrastructure (SI) level.
The framework is event-based, and uses Astro [11] and Nagios [8] for service
and infrastructure monitoring, respectively. It uses complex event processing to
identify problems, and to initiate pre-defined adaptation strategies expressed as
BPEL orchestrations. A similar approach is provided by Popescu et al. [10]. They
also define adaptation using BPEL, and they activate adaptation when certain
semantically annotated events that are collected at run time. Their processes
are called templates, and they focus on a single layer; however, they can invoke
WSDL operations exposed by other templates, effectively making the approach
multi-layered. Both approaches chose BPEL to perform adaptation, and are
therefore orchestrations. This means they do not have the advantages of a decen-
tralized approach. Moreover, BPEL uses SOAP messages, which have a higher
impact on network consumption with respect to our approach. Inzinger et al. [7]
present MONINA, a domain-specific language for defining cloud monitoring and
adaptation in an integrated fashion. Much like ourselves, one of their main goals
is to minimize reaction times and overhead by deploying control operators onto
the running system in a distributed fashion. Adaptation is managed using pro-
duction rule engines. Unfortunately, they do not clarify how and if the distributed
control operators can share information and synchronize their actions. Zengin
et al. [15] propose the Cross Layer Adaptation Manager (CLAM). CLAM uses
adaptation trees to calculate adaptation strategies. The nodes in the tree rep-
resent application configurations. The root represents the initial configuration,
while the other nodes are reached by applying specific adaptation actions. Leaf
nodes represent final configurations, in which the desired end-result has been
reached or no further adaptation is possible. Their work is complementary to
ours, in the sense that they do not focus on how the discovered strategy can
actually be executed onto the running system.

7 Conclusions and Future Work

This paper presents a solution for implementing distributed adaptation chore-
ographies for cloud-based applications. We introduce EADL for defining the
adaptation capabilities of an application, and EPDL for creating multi-node
adaptation plans. Furthermore, we discuss our distributed coordination model,
and evaluated our work with experiments in a hybrid-cloud environment.

226 L. Baresi et al.

In the future we will continue to evaluate our approach with a stronger focus
on multi-cloud applications. Technically this will require enriching EADL and
EPDL and extending the QN-based planner we developed in [13], to include a
decision algorithm for selecting the most convenient way to perform horizontal
scalability.

Plan execution is completely distributed. Nevertheless, we use a centralized
node to generate the choreography. To prevent this node from becoming a single
point of failure, we have designed and implemented a leader election mechanism
through which we can dynamically select any node in the topology to act as the
choreographer.

ECoWare currently requires that nodes in the same tier be the same.
Although we do not believe this to be a strong limitation, since we can manage
as many tiers as needed, this solution might not always be ideal. If we have a
master DB and multiple slave DBs, their adaptation would need to be man-
aged through separate tiers. We will further assess the tradeoffs that would be
introduced by allowing different kinds of nodes within the same tier.

References

1. AWS OpsWorks. http://aws.amazon.com/opsworks/
2. Chef. Automation Platform for the new IT. http://www.getchef.com
3. Cloudify: Cloud Orchestration and Automation Made Easy. http://getcloudify.org
4. RUBiS: The Rice University Bidding System. http://rubis.ow2.org
5. Baresi, L., Guinea, S.: Event-based multi-level service monitoring. In: Proceedings

of the 20th International Conference on Web Services, ICWS, pp. 83–90 (2013)
6. Binz, T., Breiter, G., Leyman, F., Spatzier, T.: Portable cloud services using

TOSCA. IEEE Internet Comput. 16(3), 80–85 (2012)
7. Inzinger, C., Hummer, W., Satzger, B., Leitner, P., Dustdar, S.: Generic event-

based monitoring and adaptation methodology for heterogeneous distributed sys-
tems. Softw. Pract. Experience 44(7), 805–822 (2014)

8. Josephsen, D.: Building a monitoring infrastructure with Nagios. Prentice Hall,
Upper Saddle River (2007)

9. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

10. Popescu, R., Staikopoulos, A., Liu, P., Brogi, A., Clarke, S.: Taxonomy-driven
adaptation of multi-layer applications using templates. In: Proceedings of the
4th IEEE International Conference on Self-Adaptive and Self-Organizing Systems,
SASO, pp. 213–222 (2010)

11. Raik, H., Bucchiarone, A., Khurshid, N., Marconi, A., Pistore, M.: ASTRO-
CAptEvo: dynamic context-aware adaptation for service-based systems. In: Pro-
ceedings of the 8th IEEE World Congress on Services, SERVICES, pp. 385–392
(2012)

12. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I., Montero,
R., Wolfsthal, Y., Elmroth, E., Caceres, J., Ben-Yehuda, M., Emmerich, W., Galan,
F.: The reservoir model and architecture for open federated cloud computing. IBM
J. Res. Develop. 53(4), 4:1–4:11 (2009)

http://aws.amazon.com/opsworks/
http://www.getchef.com
http://getcloudify.org
http://rubis.ow2.org

Distributed Coordinated Adaptation of Cloud-Based Applications 227

13. Seracini, F., Menarini, M., Krueger, I., Baresi, L., Guinea, S., Quattrocchi, G.: A
comprehensive resource management solution for web-based systems. In: Proceed-
ings of the 11th International Conference on Autonomic Computing, ICAC (2014,
to appear)

14. Zeginis, C., Konsolaki, K., Kritikos, K., Plexousakis, D.: Towards proactive cross-
layer service adaptation. In: Wang, X., Cruz, I., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 704–711. Springer, Heidelberg (2012)

15. Zengin, A., Kazhamiakin, R., Pistore, M.: CLAM: cross-layer management of adap-
tation decisions for service-based applications. In: Proceedings of the 18th Inter-
national Conference on Web Services, ICWS, pp. 698–699 (2011)

Fuzzy Description Logics for Component
Selection in Software Design

Tommaso Di Noia1, Marina Mongiello1(B), and Umberto Straccia2

1 Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy
{tommaso.di.noia,marina.mongiello}@poliba.it
2 ISTI-CNR, Via G. Moruzzi, 1, 56124 Pisa, Italy

umberto.straccia@isti.cnr.it

Abstract. In the Future Internet era, the way software will be produced
and used will more and more depend on the new challenges deriving from
the virtually infinite number of software services that can be composed
to build new applications. The integration and composition of existing
software, components and services is now gaining a crucial role in the
software modeling and production and encompasses several aspects rang-
ing from theoretical issues like modeling and analysis, to practical and
implementation ones like run-time management and integration. In the
wide set of issues concerning software composition, in this position paper
we propose a formalization via a Fuzzy Description Logic for modeling
architectural aspects of a software system.

The formalism models architectural patterns and non-functional
requirements about quality attributes where both the relationships
among patterns and the set non-functional requirements are modelled
together with their mutual interactions. The declarative approach pro-
posed here would make possible to formally represent and maintain the
above mentioned knowledge by keeping the flexibility and fuzziness of
modeling thanks to the use of fuzzy concepts as high, low, fair, etc. We
also identify the need for a reasoning task able to exploit the fuzzy nature
of the adopted logic to retrieve a ranked list of set of patterns covering
given user requirements represented in terms of NFRs and families of
patterns.

1 Introduction

The way software will be produced in the next Future Internet era —according
to given goals and by integration and compositions of existing services and
components— calls for new formally grounded and formalized aspects and meth-
ods to support the conceptual modeling of system specifications.

Important issues concerning software architectures, design decisions, quality
and goals evaluations are closely linked, anyway any formal definition is available
to get relevant information and support in software modeling based on this
set of features. In defining and modeling software systems a set of related but
complex issues must be considered when composing pieces of reusable artifacts

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 228–239, 2015.
DOI: 10.1007/978-3-662-49224-6 19

Fuzzy Description Logics for Component Selection in Software Design 229

through design or architectural patterns driven by non functional requirements
satisfaction.

In this paper we propose a formalization via a Fuzzy Description Logic
for modeling architectural aspects of a software system. The formalism models
architectural patterns and non-functional requirements about quality attributes
where both the relationships among patterns and the set non-functional require-
ments are modeled together with their interactions. The framework we propose
enables to represent and reason on mutual relationships among non functional
requirements by means of fuzzy Description Logics (DL). The fuzzy version of
DLs is needed in order to represent both ontological relations and factual ones.
In the former case we may model that “portability and adaptability are directly
proportionate” while “stability and adaptability are inversely proportionate”. For
the latter we may represent that “the Adapter pattern has a high portability”.
We see that the combination of ontological and factual knowledge allows a rea-
soning procedure to infer new information about a pattern. With reference to the
previous example, we may infer that “the Adapter pattern has a high adaptabil-
ity and a low stability”. In the framework we propose here we are allowed also
to formally define that “a high adaptability implies a medium maintainability1”.
Once the knowledge about non functional requirements has been modeled via a
formal language and encoded in a knowledge base, we need a tool to query and
retrieve data related to a specific task. In our case, the task we propose to solve
is the following: given a set of non functional requirements R = {r1, . . . , rn},
retrieve the minimal subset of patterns that better satisfies them. This means
that we prefer patterns with a high value of a specific functional requirement ri
to those with a medium or low one. If there is no pattern with high value for ri,
than we prefer patterns with a medium value to those with a low one. In such
patterns, fuzziness is evident: in fact, terms such as high, medium and low can
be defined in terms of fuzzy sets [29].

The remaining of this paper is organized as follows. In the next section we
motivate our proposal. Section 3 describes the approach we use to model the
ontology and defines a theoretical algorithm. Section 4 presents a case study to
explain the proposed idea. Conclusions and future works close the paper.

2 Motivation

Since Anton Jansen and Jan Bosch [15] gave a modern definition of Software
Architecture, several important issues concerning software architectures, design
decisions, quality and goals evaluations have been dominating the scientific lit-
erature in this field as comprehensively and systematically provided by Tofan
et al. [27]. Designing the software architecture of non-trivial systems belonging to
several application domains, namely industrial automation, defense and telecom-
munication financial services, and so on, is not an easy task, and requires highly
1 In this case we do not have a high maintainability as the system adapts its configu-

ration to context (or requirements) variations. At the same time the maintainability
is not low as it has its own internal logic.

230 T. Di Noia et al.

skilled and experienced people. Beyond these, new challenges in the design and
in architectural models are derived from self-managing and self-adaptive capabil-
ities that are typical of many modern and emerging software systems, including
the industrial internet of things, cyber-physical systems, cloud computing, and
mobile computing. The satisfaction of quality requirements and the appropriate
options for future changes are among the major goals of software architectures,
even more important than functional requirements. Quality goals often compete
or even conflict with each other and with functional requirements. In defining
and modeling software architecture through patterns, a challenging issue is also
concerned with the number of different available decisions depending on the
fact that patterns can cooperate, are composable, are complementary or exclu-
sive with respect to a given problem [9,19]. To solve the challenging problem of
choosing a set of patterns, some structures have been proposed supported by
pattern languages with a given syntax and style [5].

In self-adaptable models but also in classical software architectures, the link
between architecture and design-time features modeling and the relationship
between non-functional requirements, patterns and design decisions should be
made more flexible. The idea is to provide an approach to more faithfully repro-
duce the existing relationships in order to formalize the extent to which they are
guaranteed in the design of software architecture.

3 Problem Statement and Approach

In software design domain, a typical problem to solve is the following:

“Given a set of requirements define the software design that (better)
models the given requirements”

In order to solve such a problem, adopted empirical approaches generally depend
on the designer’s know-how and experience.

According to modern software production and modeling, mainly based on
component integration and/or composition and according to the modern def-
inition of software architecture [15], the above problem is that of finding the
architectural model as a solution to a decision making problem. The architec-
tural model can hence be defined using design or architectural patterns selected
according to Non-functional Requirements (NRFs) satisfaction. The selection of
the right NFRs may result crucial in the initial design of a software system. It
may happen that the designer is looking for the best design solution given a set
of non functional requirements and some problem areas and/or pattern families
related to the system. Design patterns give proven solutions to recurrent prob-
lems based on typical situations. Therefore, they are a first attempt to formalize
the knowledge about NFRs and to give a somewhat structured approach to their
compliance in the software design [5,6,11].

With respect to the general problem stated at the beginning of this section,
we restrict our interest to the connection among patterns, problem areas/families
and NFRs. More in detail we are aiming to finding a solution to the following
design problem:

Fuzzy Description Logics for Component Selection in Software Design 231

“Given a software design to model, a set of NFRs and the problem areas
the software refers to, which are the components/patterns that best fit
them?”

The task is non-trivial as: NFRs may be disjoint with each other and cannot
be satisfied at the same time; some families may not contain patterns satisfying
some of the NFRs. Moreover, the designer may not be aware of all the patterns
available given a NFR or given a pattern family.

To the best of our knowledge, the software design theory misses a for-
mal superstructure to integrate and relate the elements of the given sets and
implicit or explicit relationships between elements. The approach we propose
here, exploits a Fuzzy Description Logic and related reasoning tasks in order
both (i) to provide a formal representation of the relations intercurring among
design areas, NFRs and design patterns and (ii) to reason with such a represen-
tation to help the designer during the selection of the right set of patterns that
best match the initial requirements. Full and exaustive background in Descrip-
tion Logics and Fuzzy Description Logic are available in literature ([2] for DLs
and [22–24] for fuzzy DLs).

We will illustrate how to encode the information by leveraging on:

– Fuzzy DL statements to have a high level model of the domain we are dealing
with and to represent relations among non-functional properties;

– Fuzzy DL reasoning to infer new knowledge about NFRs mutual relations and
to retrieve sets of patterns satisfying specific requirements;

We next describe the role played by each of the above indicated technologies in
the decision process.

Fuzzy DL statements. In order to encode all the information related to NFRs,
patterns and corresponding families, we need a formalization of the domain
knowledge. The ontology we use to cope with this task can be seen as composed
by two main modules: the one describing, at a high level, the connections between
patterns and families and between patterns and NFRs; the other one modeling
the relations intercurring among NFRs. The formal definition of the ontology is
encoded in Fuzzy DL as:

∃isInFamily � SoftwareDesignPattern
∃nFR � SoftwareDesignPattern
� � ∀isInFamily.Families
� � ∀nFR.NonFunctionalRequirement

The first two statements represent domain restrictions while the last
two represent range ones. In other words we say that the role isInFamily
connects instances of the concept SoftwareDesignPattern to instances
of the concept Families while the role isInFamily relates instances of
SoftwareDesignPattern to instances of NonFunctionalRequirement.
Please note that the structure of the high level ontology we model makes it
possible to easily extend it to deal also with other elements, such as Functional
Requirements.

232 T. Di Noia et al.

Given the ontology, we can state explicit facts about the description of a
pattern in terms of pattern family it belongs to and NFRs it guarantees. These
statements form the ABox of our knowledge base. Specifically, let us consider
the following Fuzzy DL assertions:

proxyPattern:SoftwareDesignPattern
resourceManagement:Families

reliability:NonFunctionalRequirement

loadBalancing:NonFunctionalRequirement

reusability:NonFunctionalRequirement

(proxyPattern,resourceManagement):isInFamily

That is, we introduced the pattern proxyPattern, the family resource
Management and the non-functional requirements reliability,
loadBalancing, reusability as instances/individuals of the classes
SoftwareDesignPattern, Families and NonFunctionalRequirement respec-
tively.

Based on these individuals and properties we may wish to state that the
Proxy Pattern assures a high Load Balancing and a high Reliability. In order
to formally represent such constraints we need to introduce new datatype prop-
erties, together with the corresponding fuzzy sets, and axioms related to the
non functional requirements we just introduced. In the following we will always
refer to them for every datatype property and we will use R (for rating) to rep-
resent the interval [very bad, bad, medium, good, very good]. The set of axioms
we are going to define are needed in order to exploit the full potential of the
fuzzy DL reasoning. It is noteworthy that in a production scenario, they can be
automatically added to the knowledge base in a straight way. These are:

∃nFR.{reliability} ≡ ∃reliabilityRate. ∈R

∃nFR.{loadBalancing} ≡ ∃loadBalancingRate. ∈R

∃nFR.{reusability} ≡ ∃reusabilityRate. ∈R

In the previous statements we say that whenever we have a pattern with an asso-
ciated non functional requirement we will always have a corresponding degree
and vice versa. Based on the datatype properties just introduced we can state,
for instance, that

proxyPattern:∃loadBalancingRate. =good

proxyPattern:∃reliabilityRate. =good

Besides the modeling of the ABox relations, we use Fuzzy DL also to explicitly
model relations intercurring between NFRs. Consider the non-functional require-
ments load balancing, reliability, reusability previously defined as instances (indi-
viduals) of the class NonFunctionalRequirement. An example of mutual relation
between NFRs is the one between load balancing and reliability. Indeed, they are
directly proportionate, i.e., if the loadBalancing increases (decreases) the same
happens for the reliability. With reference to our ontology, such a relation can
be written in Fuzzy DL as

Fuzzy Description Logics for Component Selection in Software Design 233

∃loadBalancingRate.High � ∃reliabilityRate.High
∃loadBalancingRate.Fair � ∃reliabilityRate.Fair
∃loadBalancingRate.Low � ∃reliabilityRate.Low

We also know that a system cannot be reliable and reusable at the same time.
That is, the two non functional requirements are inversely proportionate. Hence,
if a pattern guarantees reliability it cannot guarantees also reusability. We may
encode such disjoint relations with the following statement:

∃reusabilityRate.High � ∃reliabilityRate.Low

From the two relations explicitly stated before, we may imply that as the Proxy
Pattern guarantees a high degree of load balancing, it cannot guarantee a high
degree of reusability.

By using automated reasoning over Fuzzy DL knowledge bases we automat-
ically infer all these kind of implicit relations thus providing better results while
looking for a design solution. It is noteworthy that the Fuzzy DL we are targeting
is allowed to represent also statements like: “a system with a high adaptability
has a fair maintainability”. Indeed, as the system adapts its own configuration
to context o requirements variations it may not be highly maintainable, i.e.,

∃adaptabilityRate.High � ∃maintainabilityRate.Fair

4 Use Case Scenario

We next illustrate how to apply the proposed framework by means of a use case
scenario. We model the use case of a Cloud-Social-Adaptable System. In the cloud
environment, let us think of an application in social domain in which the various
applications (apps) share data distributed over different clusters or data centres.

The system is allowed to dynamically and extensively load external appli-
cations depending on variations in the context or depending on changes in the
behavior of the user. For example, if the user is travelling for a week-end or
on holiday, an app arranges all stored material related to the destination of
the trip and creates albums, photo collections with captions, stories etc. Other
context-dependent conditions set in the application, enable dynamic loading of
different apps. Dynamically loaded applications might compromise properties of
the entire system, then it is of crucial importance to provide mechanisms work-
ing at run-time and able to check and guarantee the preservation of properties
of interest. All nodes in the application are started exploiting the Cloud virtual-
ization, i.e. the physical hardware is shared between all services but the software
environment is independent, ensuring low coupling between the virtual nodes.
The architecture is flexible since every consumer can access a public service with
the available resources, with a saving in terms of costs. Moreover, being the vari-
ous virtual machines unconnected, the fault of one of them does not compromise
all others, thus ensuring a good fault-tolerance in the overall architecture. Vir-
tual machines are made up and launched directly from the middleware just as a

234 T. Di Noia et al.

consumer requests. The failure of a virtual machine does not affect the others.
The availability of content is ensured by a content delivery network. The request
for more machines avoids the single point of failure.

The implementation of the scenario previously described requires patterns
satisfying characteristics derived both from the running environment and from
the main features of the context. We see that such patterns should belong to
families that manage Cloud features, but also must solve problems about process
communication and middleware. They have to ensure adaptability being the sys-
tem social-adaptable, hence it would be desirable they belong to the Adaptation
and Extension family. Actually, the patterns we are looking for could also be in
the Application Control family. Indeed, given the specific environment of the sys-
tem, it should be necessary to separate the interface from the applications core
functionalities. As for the Non Functional Requirements, the architectural model
must ensure adaptability, being the system a social adaptable and elasticity since
it will work in a cloud environment and will manage a large amount of data. Also
fault tolerance is a requirement to be satisfied in order to ensure a dependable
system. A low level of coupling is also required being the system implemented
in a cloud environment. All these requirements can be summarized as:

– belonging families: Cloud Patterns, Application Control, Adaptation and
Extension, Distribution Infrastructure;

– non functional requirements: high adaptability, high elasticity, high fault tol-
erance, low coupling.

Now suppose we have defined in a knowledge base K (ABox and TBox) infor-
mation about a set of patterns, families and NFRs. That is, the ABox contains

adaptationAndExtension:Families , cloud:Families , distributionInfrastructure:Families

applicationControl:Families

adaptability:NonFunctionalRequirement , stability:NonFunctionalRequirement

maintainability:NonFunctionalRequirement , simplicity:NonFunctionalRequirement

dependability:NonFunctionalRequirement , redundancy:NonFunctionalRequirement

performance:NonFunctionalRequirement , reliability:NonFunctionalRequirement

elasticity:NonFunctionalRequirement , faultTolerance:NonFunctionalRequirement

loadBalancing:NonFunctionalRequirement , security:NonFunctionalRequirement

flexibility:NonFunctionalRequirement , scalability:NonFunctionalRequirement

coupling:NonFunctionalRequirement , robustness:NonFunctionalRequirement

resilience:NonFunctionalRequirement

reflection:SoftwareDesignPattern , strictConsistency:SoftwareDesignPattern
hypervisor:SoftwareDesignPattern , observer:SoftwareDesignPattern
broker:SoftwareDesignPattern
(reflection,adaptationAndExtension):isInFamily , (strictConsistency,cloud):isInFamily

(hypervisor,cloud):isInFamily , (observer,applicationControl):isInFamily

(broker,distributionInfrastructure):isInFamily

reflection:∃adaptabilityRate. =very good , reflection:∃stabilityRate. =bad

reflection:∃maintainabilityRate. =medium , reflection:∃simplcityRate. =bad

Fuzzy Description Logics for Component Selection in Software Design 235

strictConsistency:∃dependabilityRate. =very good , strictConsistency:∃redundancyRate. =medium
strictConsistency:∃performanceRate. =medium , strictConsistency:∃reliabilityRate. =good

hypervisor:∃elasticityRate. =very good , hypervisor:∃redundancyRate. =medium

hypervisor:∃faultToleranceRate. =good, hypervisor:∃loadBalancingRate. =good

hypervisor:∃securityRate. =good

observer:∃flexibilityRate. =good , observer:∃scalabilityRate. =medium

observer:∃adaptabilityRate. =medium

broker:∃loadBalancingRate. =very good , broker:∃robustnessRate. =medium

broker:∃faultToleranceRate. =bad , broker:∃performanceRate. =medium

broker:∃reliabilityRate. =good , broker:∃resilienceRate. =good

Eventually, the TBox contains

∃flexibilityRate.High � ∃couplingRate.Low
∃elasticityRate.High � ∃adaptabilityRate.High
∃elasticityRate.Fair � ∃adaptabilityRate.Fair
∃elasticityRate.Low � ∃adaptabilityRate.Low
∃robustnessRate.High � ∃faultToleranceRate.High
∃robustnessRate.Medium � ∃faultToleranceRate.Medium
∃robustnessRate.Low � ∃faultToleranceRate.Low
∃faultToleranceRate.High � ∃reliabilityRate.High
∃faultToleranceRate.Medium � ∃reliabilityRate.Medium
∃faultToleranceRate.Low � ∃reliabilityRate.Low
∃reliabilityRate.High � ∃dependabilityRate.High
∃reliabilityRate.Medium � ∃dependabilityRate.Medium
∃reliabilityRate.Low � ∃dependabilityRate.Low
∃loadBalancingRate.High � ∃elasticityRate.High
∃loadBalancingRate.Medium � ∃elasticityRate.Medium
∃loadBalancingRate.Low � ∃elasticityRate.Low

In order to get the best set of patterns satisfying the requirements needed to
solve the task, we need a reasoning method for retrieving more suitable patterns
according to given requirements.

The set of retrived pattern should be incrementally built considering subsets
of the original requirements:

Specifically, let us start with the subset

– belonging families: Adaptation and Extension;
– non functional requirements: adaptability.

The formula modeling the previous requirements is thus:

C ′ = ∃isInFamily.{adaptationAndExtension} � ∃adaptabilityRate.High.
Therefore, the retrieved ranked list of top-3 patterns satisfying C ′ would be:
〈reflection, strictConsistency, hypervisor〉 When we defined C ′ we assumed the pat-
terns we were looking for belonged only to the Adaptation and Extension family.

236 T. Di Noia et al.

Actually, we may look also for patterns in other families which satisfy the adapt-
ability NFR. We then extend the previous subset with

– belonging families: Cloud Patterns, Application Control, Adaptation and
Extension, Distribution Infrastructure;

– non functional requirements: adaptability.

In order to model such a more relaxed requirement we modify C ′ in C1 as

C1 = (∃isInFamily.{adaptationAndExtension} � ∃isInFamily.{cloud} �
∃isInFamily.{applicationControl} � ∃isInFamily.{distributionInfrastructure}) �
∃adaptabilityRate.High.

With respect to the newly stated requirements, the retrieved ranked list of pat-
terns is: 〈hypervisor, reflection, observer〉 with hypervisor and reflection in the
same ranking position, and observer that can be equivalently substituted by
broker.
We may also define C2, C3 and C4

C2 = (∃isInFamily.{adaptationAndExtension} � ∃isInFamily.{cloud} �
∃isInFamily.{applicationControl} � ∃isInFamily.{distributionInfrastructure}) �
∃elasticityRate.High.

C3 = (∃isInFamily.{adaptationAndExtension} � ∃isInFamily.{cloud} �
∃isInFamily.{applicationControl} � ∃isInFamily.{distributionInfrastructure}) �
∃faultToleranceRate.High.

C4 = (∃isInFamily.{adaptationAndExtension} � ∃isInFamily.{cloud} �
∃isInFamily.{applicationControl} � ∃isInFamily.{distributionInfrastructure}) �
∃couplingRate.Low.

Hence, the best solution is to adopt both broker and hypervisor, then we
have the pair reflection, broker and eventually observer, broker.

5 Related Work

In this section we briefly review the literature on knowledge representation
approaches architectural concerns such as nonfunctional requirements, design
pattern and service composition.

QoS aspects of Service composition are studied in [7,18]. While Architec-
tural concerns about services and future Internet applications are considered
in [3,14,16]. Temporal behavior of design patterns are modeled in [20] using for-
mal methods. A Balanced Pattern Specification Language (BPSL) is modeled
in [25] based on a subset of First Order Logic and Temporal Logic of Action
to specify both structural and behavioral aspects of patterns [26]. Relationships
among design pattern as architectural tactics and architecture are studied in [13].
Pattern languages connect patterns from a variety of different sources into a
single pattern network [17]; they are supported by trees or directed graphs and

Fuzzy Description Logics for Component Selection in Software Design 237

enable typical search algorithms of depth-first or breadth-first. Anyway the mod-
eling of relationships and sequences of patterns and the taxonomy of the several
issues concerned with their use needs a more structured approach with respect
to data structures such as trees or directed graphs, due to the complex semantics
they convey. A state of the art on the treatment of non-functional requirements
is in [8]. Definitions of non-functional requirements are surveyed in [10,12]. In [4]
a model of non-functional requirements is given.

Mylopoulos et al. propose two complementary approaches for using non-
functional information: process-oriented and product oriented, [21]. State of the
art of Model Driven Development approaches with respect to non-functional
requirements is in [1], where also a framework for integrating NFRs in the core
of Model Driven Development process is given [28].

6 Conclusion and Future Work

In this paper we proposed to use a Fuzzy Description Logic (DL) to model
the knowledge related to NFRs, patterns and related families in order to ease
and support software components integration and composition in architectural
decision making problems.

Although the overall framework has been presented to deal with NFRs,
thanks to its declarative nature, it can be easily extended to other characteristics
such as Functional Requirements.

We are currently working on how to take into account also information related
to temporal interaction among software components thus extending the Fuzzy
DL we propose with temporal operators. We are also performing extensive exper-
iments on a structured benchmark to test the framework functionalities and
performance on simple and on composable schemes also in more advanced archi-
tectural environments.

References

1. Ameller, D., Franch, X., Cabot, J.: Dealing with non-functional requirements in
model-driven development. In: 2010 18th IEEE International Requirements Engi-
neering Conference (RE), pp. 189–198. IEEE (2010)

2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, Cambridge (2003)

3. Baresi, L., Caporuscio, M., Ghezzi, C., Guinea, S.: Model-driven management of
services. In: 2010 IEEE 8th European Conference on Web Services (ECOWS), pp.
147–154. IEEE (2010)

4. Botella, P., Burgues, X., Franch, X., Huerta, M., Salazar, G.: Modeling non-
functional requirements. In: Proceedings of Jornadas de Ingenieria de Requisitos
Aplicada JIRA (2001)

5. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architec-
ture: A Pattern Language for Distributed Computing, vol. 4 (2007)

238 T. Di Noia et al.

6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley & Sons Inc,
New York, NY, USA (1996)

7. Caporuscio, M., Mirandola, R., Trubiani, C.: Qos-based feedback for service com-
positions. In: Proceedings of the 11th International ACM SIGSOFT Conference
on Quality of Software Architectures, pp. 37–42. ACM (2015)

8. Chung, L., do Prado Leite, J.C.S.: On non-functional requirements in software
engineering. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Con-
ceptual Modeling: Foundations and Applications. LNCS, vol. 5600, pp. 363–379.
Springer, Heidelberg (2009)

9. Egyed, A., Grunbacher, P.: Identifying requirements conflicts and cooperation: how
quality attributes and automated traceability can help. IEEE Softw. 21(6), 50–58
(2004)

10. Franch, X.: Systematic formulation of non-functional characteristics of software. In:
1998 Third International Conference on Requirements Engineering, pp. 174–181.
IEEE (1998)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Pearson Education, Massachusetts (1994)

12. Glinz, M.: On non-functional requirements. In: 15th IEEE International Require-
ments Engineering Conference, RE 2007, pp. 21–26. IEEE (2007)

13. Harrison, N.B., Avgeriou, P.: How do architecture patterns and tactics interact? a
model and annotation. J. Syst. Softw. 83(10), 1735–1758 (2010)

14. Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M.,
Gerosa, M.A., Hamida, A.B.: Service-oriented middleware for the future internet:
state of the art and research directions. J. Internet Serv. Appl. 2(1), 23–45 (2011)

15. Jansen, A., Bosch, J.: Software architecture as a set of architectural design deci-
sions. In: 5th Working IEEE/IFIP Conference on Software Architecture, WICSA
2005, pp. 109–120. IEEE (2005)

16. Johnson, K., Calinescu, R.: Efficient re-resolution of smt specifications for evolv-
ing software architectures. In: Proceedings of the 10th International ACM Sigsoft
Conference on Quality of Software Architectures, pp. 93–102. ACM (2014)

17. Li, F.-L., Horkoff, J., Mylopoulos, J., Liu, L., Borgida, A.: Non-functional require-
ments revisited. In: iStar, pp. 109–114. Citeseer (2013)

18. Maiden, N., Lockerbie, J., Zachos, K., Bertolino, A., De Angelis, G., Lonetti, F.:
A requirements-led approach for specifying qos-aware service choreographies: an
experience report. In: Weerd, I., Salinesi, C. (eds.) REFSQ 2014. LNCS, vol. 8396,
pp. 239–253. Springer, Heidelberg (2014)

19. Mairiza, D., Zowghi, D., Nurmuliani, N.: Managing conflicts among non-functional
requirements (2009)

20. Mikkonen, T.: Formalizing design patterns. In: Proceedings of the 20th Interna-
tional Conference on Software Engineering, pp. 115–124. IEEE Computer Society
(1998)

21. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional
requirements: a process-oriented approach. IEEE Trans. Softw. Eng. 18(6), 483–
497 (1992)

22. Straccia, U.: Reasoning within fuzzy description logics. J. Artif. Intell. Res. 14,
137–166 (2001)

23. Straccia, U.: A fuzzy description logic for the semantic web. In: Sanchez, E., (ed.)
Capturing Intelligence: Fuzzy Logic and the Semantic Web, Chapter 4, pp. 73–90.
Elsevier (2006)

Fuzzy Description Logics for Component Selection in Software Design 239

24. Straccia, U.: Foundations of Fuzzy Logic and Semantic Web Languages. CRC Stud-
ies in Informatics Series. Chapman & Hall, Boca Raton (2013)

25. Taibi, T., Ngo, D.C.L.: Formal specification of design patterns - a balanced app-
roach. J. Object Tech. 2(4), 127–140 (2003)

26. Tichy, W.F.: A catalogue of general-purpose software design patterns. In: Proceed-
ings on Technology of Object-Oriented Languages and Systems, TOOLS 23, pp.
330–339. IEEE (1997)

27. Tofan, D., Galster, M., Avgeriou, P., Schuitema, W.: Past and future of software
architectural decisions-a systematic mapping study. Inf. Softw. Tech. 56(8), 850–
872 (2014)

28. Xu, L., Ziv, H., Richardson, D., Liu, Z.: Towards modeling non-functional require-
ments in software architecture. In: Early Aspects (2005)

29. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

Towards Adapting Choreography-Based
Service Compositions Through Enterprise

Integration Patterns

Amleto Di Salle, Francesco Gallo, and Alexander Perucci(B)

University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy
{amleto.disalle,francesco.gallo}@univaq.it,

alexander.perucci@graduate.univaq.it

http://www.univaq.it

Abstract. The Future Internet is becoming a reality, providing a large-
scale computing environments where a virtually infinite number of avail-
able services can be composed so as to fit users’ needs. Modern service-
oriented applications will be more and more often built by reusing and
assembling distributed services. A key enabler for this vision is then the
ability to automatically compose and dynamically coordinate software
services. Service choreographies are an emergent Service Engineering
(SE) approach to compose together and coordinate services in a distrib-
uted way. When mismatching third-party services are to be composed,
obtaining the distributed coordination and adaptation logic required to
suitably realize a choreography is a non-trivial and error prone task.
Automatic support is then needed. In this direction, this paper leverages
previous work on the automatic synthesis of choreography-based sys-
tems, and describes our preliminary steps towards exploiting Enterprise
Integration Patterns to deal with a form of choreography adaptation.

1 Introduction

The Future Internet promotes a distributed computing environment that will
be increasingly surrounded by a large number of software services, which can be
composed to meet user needs. The Future Internet of Services paradigm emerges
from the convergence of the Future Internet (FI) and the Service-Oriented Com-
puting (SOC) paradigm [1]. Services play a central role in this vision as effective
means to achieve interoperability between heterogeneous parties of a business
process, and new value added service-based systems can be built as a chore-
ography of services available in the FI. Service choreography is a decentralized
approach, which provides a loose way to design service composition by speci-
fying the participants (i.e., roles) and the (message-based) interaction protocol
between them, by decoupling the participant tasks from the services that only
later will be bound to the specified roles.

The need for service choreography was recognized in the Business Process
Modeling Notation version 2.01 (BPMN2), which introduced Choreography
1 http://www.omg.org/spec/BPMN/2.0/.

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 240–252, 2015.
DOI: 10.1007/978-3-662-49224-6 20

http://www.omg.org/spec/BPMN/2.0/

Towards Adapting Choreography-Based Service Compositions 241

Diagrams to offer choreography-specific modeling constructs. A choreography
diagram models peer-to-peer communication by defining a multi-party protocol
that, when put in place by the cooperating parties, will permit to reach the
overall choreography objectives in a fully distributed way. In this sense, service
choreographies are quite different from service orchestrations in which a sin-
gle stakeholder centrally plans and decides how an objective should be reached
through the cooperation with other services.

In this paper we leverage the experience on choreography development that
we have been doing so far within the EU CHOReOS project2. Then, being
supported by the EU CHOReVOLUTION (follow-up) project3, we report on
the novel idea we are currently investigating to achieve choreography adaptation
and evolution to face the challenges posed by the heterogeneity of FI services.

In this direction, we propose a way to enhance the previous CHOReOS
approach to the automatic synthesis of choreography-based systems [2–5], and
describes the preliminary steps we are undertaking within CHOReVOLUTION
towards exploiting Enterprise Integration Patterns (EIP) so as to deal with a
form of choreography adaptation. The novel contributions can be summarized as
follow: (i) adoption of EIP to deal with a form of adaptation for choreography-
based systems; (ii) enhancement of our synthesis process by introducing an
adapters generator; (iii) enhancement of the architectural style for including
adapters.

The paper is structured as follow. Section 2 sets the context of our work,
and Sect. 3 introduces an explanatory example. Then, Sect. 4 describes how the
synthesis process can be enhanced to deal with choreography adaptation and
evolution through protocol coordination, protocol adaptation and related com-
plex data mappings, and Sect. 5 describes the proposed enhancement at work on
the explanatory example. Related work is discussed in Sect. 6, and conclusions
are given in Sect. 7.

2 Setting the Context

This section sets the context of our work by describing the problem we want to
address in Sect. 2.1, and the idea underlying the proposed solution in Sect. 2.2.
Then, Sect. 2.3 provides basic notions of the Enterprise Integration Patterns
(EIP) [6] that we propose to exploit to deal with adaptation issues.

2.1 The Problem Space

When considering choreography-based service-oriented systems, the following
problems are mainly considered:

(i) realizability check - checks whether the choreography can be realized by
implementing each participant so that it conforms to the played role;

2 http://www.choreos.eu/.
3 http://www.chorevolution.eu/.

http://www.choreos.eu/
http://www.chorevolution.eu/

242 A. Di Salle et al.

(ii) conformance check - checks whether the set of services satisfies the chore-
ography specification;

(iii) automatic realizability enforcement - given a choreography specification and
a set of existing services, externally coordinate and adapt their interaction
so as to fulfill the collaboration prescribed by the choreography specifica-
tion.

In the literature, the approaches proposed in [7–19] address the problems
(i) and (ii); the approaches proposed in [2,3,5,20] address the problem (iii).
In this paper we concentrate on the automatic realizability enforcement prob-
lem. Specifically, starting from previous work in [2–5], we propose the following
enhancement to deal with a form of choreography adaptation that exploits EIP
to built service adapters.

2.2 The Solution Space

Addressing the automatic realizability enforcement problem calls for solving both
coordination issues and adaptation issues.

Coordination issues are addressed in previous work [2,5], where we propose
an automatic approach to synthesize the global coordination logic to be then dis-
tributed and enforced among the considered services. Preliminary ideas towards
addressing adaptation issues are described in [3,4], where we propose the use of
adapters for solving interaction protocol mismatches deriving from the hetero-
geneity of services not born to be directly composed together.

In this paper we describe the initial steps we have done towards exploit-
ing Enterprise Integration Patterns so as to deal with a form of choreography
adaptation that, in addition to interaction protocol mismatches, also account
for I/O data mismatches. Our mid-term goal within the CHOReVOLUTION
project is to achieve automated data-flow coordination and adaptation, which
means effectively coping with heterogeneous service interfaces and dealing with
as much EIPs [6] as possible in a automatic way. In particular, the idea is to
automatically generate adapters by combining different EIPs based on a notion
of protocol mediation and data similarity.

2.3 Exploiting Enterprise Integration Patterns

From a technical point of view, achieving the above calls for dealing with mis-
matching service signatures and interaction protocols. In particular, to achieve
adaptation, the operations signature and the interaction protocol of the concrete
services may need to be adapted to the roles to be played in the input choreog-
raphy model. This requires to implement a suitable notion of matching between
protocols by means of complex data mappings over both operation names and
I/O messages. Protocol refinement techniques must be developed to bridge the
gap between the abstract protocol of the choreography participant roles and the
protocol of the concrete services. These techniques, together with the ability

Towards Adapting Choreography-Based Service Compositions 243

of dealing with, e.g., appearing and disappearing services at run-time, would
permit to achieve evolution through on-the-fly service binding.

EIPs offer more than one approach for integrating applications, i.e., File
Transfer, Shared Database, Remote Procedure Invocation, and Messaging [6].
We focus on the Messaging approach since we consider Web Services (WSs) as
possible choreography participants, and WSs communicate through messages
passing (e.g., request/response or one-way operation types).

The Messaging approach uses the “pipes-and-filters” architectural style [21]
as base for connecting applications. The Endpoints (Filters) are connected with
one another via Channels (Pipes). The producing endpoint sends messages to
the channel, and the messages are retrieved by the consuming endpoint. There
are different types of pipes and filters patterns, each one of them dedicated to
solve a particular integration aspect.

For the purposes of this paper, we consider: Message Transformation that
converts a message from a format to another one; Message Aggregator that
receives multiple messages and combines them into a single message.

3 Explanatory Example

The explanatory example introduced in this section is a very small portion of an
In-store Marketing and Sale choreography that was used by the EU CHOReOS
project to demonstrate an Adaptive Customer Relationship Booster system. The
whole choreography was aimed at monitoring the activity of a client inside the
shop in order to propose him/her tailored shopping offers and/or advertisements
according to the user information (preferences, current shopping list, etc.) held
by a shopping assistant application service.

Figure 1 reports a simplified choreography diagram realized by using the
Eclipse BPMN2 modeler plugin4. The diagrams also shows the input and out-
put messages of each choreography task. Within the Eclipse BPMN2 modeler,
messages are specified by using the XML schema, which is the default language
for specifying BPMN2 messages.

The choreography is triggered by the Client entering the shop. A Shop
Entrance service (not shown in the figure) detects the presence of a specific
Client inside the store and assigns him a virtual cart. Once subscribed to the
cart, the Client can add and remove products to and from it. Once the Client
finishes shopping, the Smart Cart service allows for executing the payment by
interacting with the a Self Check-out Machine.

4 Method Description

In this section we describe the proposed method by distinguishing between pro-
tocol coordination and protocol adaptation.
4 http://www.eclipse.org/bpmn2-modeler/.

http://www.eclipse.org/bpmn2-modeler/

244 A. Di Salle et al.

Fig. 1. In-store marketing and sale choreography

Protocol coordination allows for preventing undesired interactions among
(possibly adapted) services. That is, interactions not allowed by the choreogra-
phy specification can happen when the services collaborate in an uncontrolled
way. To deal with this problem, additional software entities, called Coordination
Delegates (CDs), are generated and interposed among the services participating
in the specified choreography in order to prevent possible undesired interactions.
Thus, the intent of CDs is to coordinate the interaction of the participant ser-
vices in a way that the resulting collaboration correctly realizes the specified
choreography. For instance, the Client is allowed to perform the Add Product
task to add products to the Smart Cart (see the top of the Fig. 1). However,
after paying and before check-out, an undesired interaction can happen since the
Client might try to add products (see the top-most tasks just before the End
Event), thus avoiding paying for them.

Protocol adaptation allows for dealing with services that do not exactly fit the
choreography roles. That is, adapters are automatically synthesized to mediate
the interaction service-to-CD and CD-to-service according to the choreography
roles (see Fig. 2). Each Adapter is generated so as to bridge/mediate the concrete
service interaction protocol in order to exactly match the abstract participant
interaction protocol. In other words, Adapters realize correct service-role bind-
ing by solving possible interoperability issues (e.g., signature and protocol mis-
matches) between concrete services and abstract participants. By leveraging a
sufficiently accurate notion of behavioral interface refinement, Adapters enforce
service-role similarity, hence binding the concrete services to the abstract roles
defined by the choreography. The synthesized Adapters enforce exact similarity
through complex data mappings and complex protocol mediation patterns. For
instance, Adapters are able to map message data types, or reorder/merge/split
the sequence of operation calls and/or related I/O messages.

Towards Adapting Choreography-Based Service Compositions 245

Fig. 2. Architectural style with adapters

Coordination and adaptation software entities are synthesized in order to
proxify and control the participant services’ interaction. When interposed among
the services, according to the architectural style shown in Fig. 2, coordination
entities still guarantee the collaboration specified by the choreography specifica-
tion through protocol coordination; adaptation entities mediate the interaction
of the participant services so as to fit the choreography roles.

An important aspect here is that the coordination logic performed by the
CDs is service-independent since it is based on the expected behavior of the
participants as specified by the choreography, rather than on the actual con-
crete services to be binded and coordinated. In this way separation of concerns
is realized by separating pure coordination issues (i.e., undesired interactions)
from adaptation/mediation ones (e.g., operation signature mismatches and data
incompatibilities at the service interface level, and behavior mismatches). For
example, the latter can arise whenever a service discovered as a participant does
not exactly match the role to be played.

In order to automatically synthesize adaptation software entities we propose
an extension of our CHOReOSynt tool [22] introducing a new RESTful service
called Synthesis Adapter Generator (see Fig. 3).

By taking as input a BPMN 2.0 specification of the choreography, the exten-
sion we propose allows for deriving service Adapters in addition to CDs (Fig. 3).
To this end, model transformations are employed and interoperation with the
Service Discovery is required (out of the scope of this paper). Both CDs and
Adapters, when deployed by the Enactment Engine (out of the scope of this
paper), allow for enacting the choreography by realizing the distributed coordi-
nation logic between the discovered services.

The tool consists of the following RESTful services, and a set of Eclipse
plugins that have been developed to interact with such services.

M2M Transformator – The Model-to-Model (M2M) Transformator offers a
set of model transformations.

Synthesis Discovery Manager – The Synthesis process and the Discovery
process interact each other to retrieve, from the service base, those candidate
services that are suitable for playing the participant roles required by the chore-

246 A. Di Salle et al.

Fig. 3. REST architecture of the extended synthesis processor

ography specification, and hence, those services whose (offered and required)
operations and behavior are compatible with the expected behavior as extracted
from the choreography through projection.

Behavior Simulator – Once a set of concrete candidate services has been
discovered, the synthesis process has to select them by checking, for each partic-
ipant, if its expected behavior can be simulated by some candidate service. Note
that, for a given participant, behavioral simulation is required since, although
the discovered candidate services for it are able to offer and require (at least)
the operations needed to play the role of the participant, one cannot be sure
that the candidate services are able to support the operations flow as expected
by the choreography.

Coordination Delegate and Adapter Generators – Once the services have
been selected for all the choreography participants, the synthesis processor can
generate the needed CDs and Adapters through the operations generateCD()
and generateAdapter(), respectively.

In the following we introduce an example in the marketing and sale domain
that will be then used in Sect. 5 to describe our method at work.

5 Method at Work

This section describes the proposed enhancement at work on the explanatory
example introduced in Sect. 3. There are several frameworks and/or systems
that implement/use EIPs in order to integrate applications. We have chosen
Spring Integration framework5 since it implements most of the EIPs, and it is
well integrated with the Spring ecosystem. In particular, it is integrated with
the Spring Web Services project6.
5 http://projects.spring.io/spring-integration/.
6 http://projects.spring.io/spring-ws/.

http://projects.spring.io/spring-integration/
http://projects.spring.io/spring-ws/

Towards Adapting Choreography-Based Service Compositions 247

Fig. 4. Adapter architecture

Figure 4 describes the architecture of the generated adapters by using Spring
Web Services and Spring Integration. In particular, the Spring Web Services
Endpoint is the Web Service that mediates the interaction of the Service S1
and the Service S2. When the Service S1 calls an operation op1 by sending a
message m1, the Endpoint receives the operation and put the message into the
input channel by using Inbound Web Service Gateways. The chain of EIPs, from
the Input Channel to the Output Channel, is generated by the synthesis proces-
sor depending of the found interoperability issues (e.g., signature and protocol
mismatches). The chain is made of one or more EIPs handlers to, e.g., Mes-
sage Transformers, used to convert a message from one format to another one;
Message Routers, used to decouple a message source from the ultimate destina-
tion of the message, and so on. Message Routers patterns can be, e.g., Splitter,
Aggregator, Resequencer [6].

Referring to the explanatory example in Fig. 1, we focus on the Subscribe
User Cart and Add Product Choreography Tasks.

Fig. 5. Adapter example

Concerning Subscribe User Cart choreography task, let us suppose that
the Client service is able to invoke a subscribeUserCart operation expecting
as input message three string elements, one for name, one for surname, and one
for email. The XSD schema codifying the input message is shown in Listing 1.1.
Let us also suppose that the SmartCart service offers a subscribeUserCart
operation expecting as input message only one User element. As shown in List-
ing 1.2, this element is a complex type encapsulating the following string ele-
ments: firstname, lastname, and mail.

248 A. Di Salle et al.

In order to let the Client and the SmartCart services to com-
municate, the processor generates an adapter that offers the operation
subscribeUserCart (name, surname, email) so that when the Client
invokes subscribeUserCart (name, surname, email) operation, the adapter
transforms the first message (Listing 1.1) into the second one (Listing 1.2). This
is done by generating an ad-hoc Message Transformer handler and adding it
to the chain. At the end, the adapter invokes the subscribeUserCart(User)
operation offered by the Smart Cart service. This behavior is shown in Fig. 5a.

Listing 1.1. input parameters of subscribeUserCart operation

1 <xsd:schema version="1.0" targetNamespace="http://choreosynth.disim.univaq.it/">
2 <xsd:element name="name" type="xsd:string"></xsd:element>
3 <xsd:element name="surname" type="xsd:string"></xsd:element>
4 <xsd:element name="email" type="xsd:string"></xsd:element>
5 </xsd:schema>

Listing 1.2. input parameters of subscribeUserCart operation discovered

1 <xsd:schema version="1.0" targetNamespace="http://choreosynth.disim.univaq.it/">
2 <xsd:complexType name="User">
3 <xsd:sequence>
4 <xsd:element name="firstname" type="xsd:string"></xsd:element>
5 <xsd:element name="lastname" type="xsd:string"></xsd:element>
6 <xsd:element name="mail" type="xsd:string" minOccurs="0" maxOccurs="unbounded">

↪→</xsd:element>
7 </xsd:sequence>
8 </xsd:complexType>
9 </xsd:schema>

Concerning the Add Product choreography task let us suppose that the
Client service invokes two operations, addProduct(product) and setQuantity
(quantity). Let us also suppose that the SmartCart service offers a addProduct
(product,quantity) operation. Differently from the previous case, the adapter
is now generated by using the Message Router Aggregator pattern. This pat-
tern allows for accumulating the two messages (i.e., product and quantity)
received from the Client, and subsequently invokes the addProduct (product,
quantity) operation offered by SmartCart (as shown in the Fig. 5b).

The method for generating adapters exemplified above requires automated
synthesis of I/O data mappings. To this end, the idea is to exploits a slightly
modified version of the Strawberry tool [23] that allows for automatically infer-
ring data mappings between different messages of two different Web services,
i.e., Client and SmartCart in our case. Strawberry exploits (i) static data type
analysis to analyze the type structure7 of the two different messages; (ii) test-
ing check if the two messages are also semantically correlated (since in general,
considering the messages’ type structure only is not sufficient). Efforts in this
direction will be part of future work.
7 E.g., the type structure of the XML Schema types of the messages in the WSDL of

the considered services.

Towards Adapting Choreography-Based Service Compositions 249

6 Related Work

The mediation/adaptation of protocols have received attention since the early
days of networking. Indeed many efforts have been done in several directions
including for example formal approaches to protocol conversion, like in [24,25].

Recently, with the emergence of web services and advocated universal inter-
operability, the research community has been studying solutions to the automatic
mediation of business processes [26,27]. However, most solutions are discussed
informally, making it difficult to assess their respective advantages and draw-
backs.

Spitznagel and Garlan present an approach for formally specifying adapter
wrappers as protocol transformations, modularizing them, and reasoning about
their properties, with the aim to resolve component mismatches [28]. Although
this formalizations supports modularization, automated synthesis is not treated
at all hence keeping the focus only on adapter design and specification.

Passerone et al. use a game theoretic approach for checking whether incom-
patible component interfaces can be made compatible by inserting a converter
between them which satisfies specified requirements. This approach is able to
automatically synthesize the converter [29]. In contrast to our method, their
method needs as input a deadlock-free specification of the requirements that
should be satisfied by the adapter, hence delegating to the user a non-trivial
specification task.

Recently, Bennaceur and Issarny presented an approach that, exploiting
ontology reasoning and constraint programming, allows for automatically infer-
ring mappings between components interfaces [30]. Importantly, these mappings
guarantee semantic compatibility between the operations and data.

Rahm et al. propose a catalog of criteria for documenting the evaluations of
schema matching systems [31]. In particular, the authors discuss various aspects
that contribute to the match quality obtained as the result of an evaluation.
In [32,33] the authors present a generic schema match system called COMA,
which provides an extensible library of simple and hybrid match algorithms and
supports a powerful framework for combining match results. This framework can
be used for systematically evaluate different aspects of match processing, match
direction, match candidate selection, and computation of combined similarity,
and different matcher usages.

Paolucci et al. propose a base algorithm [34] for semantic matching between
service advertisements and service requests based on DAML-S, a DAML-based
language for service description. The algorithm proposed differentiate between
four degrees of matching and can be used for automatic dynamic discovery,
selection and inter-operation of web services.

7 Conclusion and Future Works

In this paper, we propose a way to enhance the previous CHOReOS approach
to the automatic synthesis of choreography-based systems, and we report on the

250 A. Di Salle et al.

novel idea we are currently investigating within CHOReVOLUTION to achieve
choreography adaptation and evolution. In particular, the idea is to automat-
ically generate adapters by combining different EIPs depending on a notion
of protocol mediation and data similarity. In order to automatically synthesize
the adapters we propose an extension to our CHOReOSynt tool by introducing a
new RESTful service called Synthesis Adapter Generator. Furthermore, we
propose a pipe-and-filter-based architecture of the generated adapters by using
Spring Web Services and Spring Integration frameworks.

An explanatory example has been used to show two types of adaptation based
on the Message Transformation pattern and the Message Aggregator pattern.
The former plays a very important role by allowing the mediation of loose-
coupling Message Producers and Message Consumers, which do not agree on a
common data format. The latter is a type of Message Endpoint that receives
multiple Messages and combines them into a single Message.

As future work, our plan is to fully implement the proposed extension and
validate it on the case studies of the CHOReVOLUTION project.

Moreover, in order to achieve even more ambitious objectives within the
CHOReVOLUTION project and to improve the applicability of the approach,
we plan to extend it so as to deal with security aspects of the choreographies. This
would allow for dealing with multiple services that belong to different security
domains governed by different authorities, and use different identity attributes.
This can be achieved by integrating EIPs with Security Patterns [35].

Acknowledgment. This research work has been supported by the Ministry of Edu-
cation, Universities and Research, prot. 2012E47TM2 (project IDEAS - Integrated
Design and Evolution of Adaptive Systems), by the European Union’s H2020 Pro-
gramme under grant agreement number 644178 (project CHOReVOLUTION - Auto-
mated Synthesis of Dynamic and Secured Choreographies for the Future Internet),
and by the Ministry of Economy and Finance, Cipe resolution n. 135/2012 (project
INCIPICT - INnovating CIty Planning through Information and Communication Tech-
nologies).

References

1. European Commission: Digital Agenda for Europe - Future Internet Research and
Experimentation (FIRE) initiative (2015)

2. Autili, M., Di Ruscio, D., Di Salle, A., Inverardi, P., Tivoli, M.: A model-based
synthesis process for choreography realizability enforcement. In: Cortellessa, V.,
Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 37–52. Springer,
Heidelberg (2013)

3. Autili, M., Di Salle, A., Tivoli, M.: Synthesis of resilient choreographies. In: Gor-
benko, A., Romanovsky, A., Kharchenko, V. (eds.) SERENE 2013. LNCS, vol.
8166, pp. 94–108. Springer, Heidelberg (2013)

4. Salle, A.D., Inverardi, P., Perucci, A.: Towards adaptable and evolving service
choreography in the future Internet. In: IEEE Services, pp. 333–337 (2014)

5. Autili, M., Inverardi, P., Tivoli, M.: Automated synthesis of service choreographies.
IEEE Softw. 32(1), 50–57 (2015)

Towards Adapting Choreography-Based Service Compositions 251

6. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Solutions - Printing 2011. Addison-Wesley Longman, Boston
(2004)

7. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Pro-
ceedings of WWW (2011)

8. Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M., Patrizi, F.: Automatic
service composition and synthesis: the roman model. IEEE Data Eng. Bull. 31(3),
18–22 (2008)

9. Hallé, S., Bultan, T.: Realizability analysis for message-based interactions using
shared-state projections. In: Proceedings of FSE, pp. 27–36 (2010)

10. Pathak, J., Lutz, R., Honavar, V.: Moscoe: an approach for composing web services
through iterative reformulation of functional specifications. Int. J. Artif. Intell.
Tools 17, 109–138 (2008)

11. Salaün, G.: Generation of service wrapper protocols from choreography specifica-
tions. In: Proceedings of SEFM (2008)

12. Poizat, P., Salaün, G.: Checking the realizability of BPMN 2.0 choreographies. In:
Proceedings of SAC 2012 (2012)

13. Gössler, G., Salaün, G.: Realizability of choreographies for services interacting
asynchronously. In: Arbab, F., Ölveczky, P.C. (eds.) FACS 2011. LNCS, vol. 7253,
pp. 151–167. Springer, Heidelberg (2012)

14. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Pro-
ceedings of POPL. ACM (2012)

15. Güdemann, M., Poizat, P., Salaün, G., Dumont, A.: VerChor: a framework for
verifying choreographies. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS
2013). LNCS, vol. 7793, pp. 226–230. Springer, Heidelberg (2013)

16. Salaün, G., Bultan, T., Roohi, N.: Realizability of choreographies using process
algebra encodings. IEEE TSC 5(3), 290–304 (2012)

17. Ouederni, M., Salaün, G., Bultan, T.: Compatibility checking for asynchronously
communicating software. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013.
LNCS, vol. 8348, pp. 310–328. Springer, Heidelberg (2014)

18. Basu, S., Bultan, T.: Automatic verification of interactions in asynchronous sys-
tems with unbounded buffers. In: Proceedings of ASE, pp. 743–754 (2014)

19. Güdemann, M., Poizat, P., Salaün, G., Dumont, A.: VerChor: a framework for
verifying choreographies. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS
2013). LNCS, vol. 7793, pp. 226–230. Springer, Heidelberg (2013)

20. Güdemann, M., Salaün, G., Ouederni, M.: Counterexample guided synthesis of
monitors for realizability enforcement. In: Chakraborty, S., Mukund, M. (eds.)
ATVA 2012. LNCS, vol. 7561, pp. 238–253. Springer, Heidelberg (2012)

21. Shaw, M., Garlan, D.: Software Architecture - Perspectives on an Emerging Disci-
pline. Prentice Hall, Upper Saddle River (1996)

22. Autili, M., Ruscio, D.D., Salle, A.D., Perucci, A.: Choreosynt: enforcing chore-
ography realizability in the future Internet. In: Proceedings of FSE, pp. 723–726
(2014)

23. Bertolino, A., Inverardi, P., Pelliccione, P., Tivoli, M.: Automatic synthesis of
behavior protocols for composable web-services. In: Proceedings of ESEC/FSE
(2009)

24. Calvert, K.L., Lam, S.S.: Formal methods for protocol conversion. IEEE J. Sel.
Areas Commun. 8(1), 16 (1990)

25. Lam, S.S.: Correction to “protocol conversion”. IEEE TSE 14(9), 1376 (1988)
26. Vacuĺın, R., Sycara, K.: Towards automatic mediation of OWL-S process models.

In: Proceedings of IEEE Web Services (2007)

252 A. Di Salle et al.

27. Vacuĺın, R., Neruda, R., Sycara, K.: An agent for asymmetric process mediation
in open environments. In: Kowalczyk, R., Huhns, M.N., Klusch, M., Maamar, Z.,
Vo, Q.B. (eds.) Service-Oriented Computing: Agents, Semantics, and Engineering.
LNCS, vol. 5006, pp. 104–117. Springer, Heidelberg (2008)

28. Spitznagel, B., Garlan, D.: A compositional formalization of connector wrappers.
In: Proceedings of ICSE (2003)

29. Passerone, R., Alfaro, L.D., Henzinger, T.A., Sangiovanni-Vincentelli, A.L.: Con-
vertibility verification and converter synthesis: two faces of the same coin. In: Pro-
ceedings of ICCAD (2002)

30. Bennaceur, A., Issarny, V.: Automated synthesis of mediators to support compo-
nent interoperability. IEEE TSE 41(3), 221–240 (2015)

31. Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:
Web, Web-Services, and Database Systems, pp. 221–237 (2002)

32. Do, H.H., Rahm, E.: COMA - a system for flexible combination of schema matching
approaches. In: Proceedings of VLDB, pp. 610–621 (2002)

33. Massmann, S., Engmann, D., Rahm, E.: COMA++: results for the ontology align-
ment contest OAEI 2006. In: Proceedings of OM/ISWC (2006)

34. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of web
services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol.
2342, pp. 333–347. Springer, Heidelberg (2002)

35. Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommer-
lad, P.: Security Patterns Integrating Security and Systems Engineering. Wiley,
Verlag (2005)

An Experimental Evaluation on Runtime
Verification of Self-adaptive Systems

in the Presence of Uncertain
Transition Probabilities

Kento Ogawa(B), Hiroyuki Nakagawa, and Tatsuhiro Tsuchiya

Graduate School of Information Science and Technology, Osaka University,
1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

{o-kento,nakgawa,t-tutiya}@ist.osaka-u.ac.jp

Abstract. Self-adaptive systems can deal with environmental changes
by changing their own behaviors. Since self-adaptive systems modify their
own behaviors dynamically, runtime verification is necessary to guaran-
tee the correctness of the systems’ behaviors. Discrete time Markov chain
model checking is a promising approach for implementing runtime veri-
fication; however, the computational cost of the current model checking
approach increases as the number of parameterized transition probabili-
ties increases. In this study, we conduct experiments on various instances
of Markov chain models and demonstrate that repeated application of
Laplace expansion leads to the large computational cost. The results
suggest that an approach to reducing the number of times of performing
Laplace expansion should be developed.

1 Introduction

Software systems are required to maintain high performance of the systems
under high reliability. However, the external environment of the systems changes
over time. Since the behaviors of the systems may become inappropriate in the
environment that has changed in some cases, some changes of the environment
prevent the systems from maintaining high performance. Therefore, the imple-
mentation of self-adaptive systems, which change their behaviors to adapt envi-
ronmental changes, has been strongly desired in recent years [1,2].

Self-adaptive systems modify their behaviors to adapt to environmental
changes. Since the new behaviors that the systems have modified lead to bad
results in some cases, the systems that have modified the behaviors do not satisfy
system requirements. Therefore, self-adaptive systems are required to execute
model checking [3] dynamically, which is the method for verifying whether sys-
tems satisfy system requirements or not, that is, runtime model checking [4,5].
Since runtime model checking for self-adaptive systems is executed while the
systems are running, the computation for runtime model checking is required
to be efficient. Various studies about self-adaptive systems are conducted, but

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 253–265, 2015.
DOI: 10.1007/978-3-662-49224-6 21

254 K. Ogawa et al.

the implementation of self-adaptive systems still needs to address the problem
of efficiency in runtime model checking, such as described in [1].

Model checking is the method for verifying whether a system satisfies system
requirements expressed in a formal language. For example, a system is modeled
as a discrete time Markov Chain (DTMC) [6], which is a state-transition dia-
gram that has state transitions represented as probabilities. The requirements are
expressed in probabilistic computational tree logic (PCTL), which can be used
to describe the properties of the system. Filieri et al. [7] proposed an efficient
approach to verify whether DTMC models satisfy the requirements expressed
by PCTL. The advantage of this approach is that it can shift the computational
cost from run time to design time. This approach separates the model checking
activity in two steps. The process of the first step is executed at design time.
In this step, systems are modeled by using DTMC. Uncertain transition proba-
bilities are represented as variables. Then, an expression is generated using the
known values and the variables. The process of the second step is executed at
runtime. The values of the unknown parameters at design time are determined
by observation. These values are substituted for the parameters in the expres-
sion. The satisfaction of the requirements is verified by evaluating the expression.
The computation for model checking becomes efficient by shifting the large part
of the computation from run time to design time.

In this method, a high number of variables lead to a large computational
cost. DTMC models are represented as matrices, and model checking requires
the computation of the determinants. The computation of the determinants
is performed by using Laplace expansion and LU-decomposition. Although the
process of Laplace expansions and LU-decomposition are usually executed at
design time, these processes have to be executed at runtime in some cases. In
these cases, the process of generating an expression also should be efficient since
the expression has to be generated at runtime. In this paper, we conduct experi-
ments on various instance of DTMC models to find factors that largely affect the
computational cost. We demonstrate that the large number of times of Laplace
expansion leads to the large computational time. We will present a possible
approach to reduce the computational cost.

This paper is organized as follows: Sect. 2 describes the overview of general
model checking and the approach proposed in Filieri et al. [7]. Sections 3 and 4
explain DTMC and PCTL, respectively. Section 5 provides a detailed explanation
of the existing approach. Sections 6 and 7 describe the experimental results, the
discussion and research direction in the future. Section 8 concludes this paper.

2 Overview of Existing Approach

This section briefly describes how the existing approach described in [7] is applied
to running systems. Figure 1 shows a flow of general model checking [8,9]. A
system is monitored, and parameters of the system are collected while the system
is running. The system is modeled by using the parameters. Model checking is
executed by using the system model and system requirements. We verify whether

Runtime Verification for Self-adaptive Systems 255

the system model satisfies the requirements. Since self-adaptive systems deal
with the unknown parameters, such a model checking process should be executed
at runtime. However, the computational cost of the model checking is large if
the size of the systems is large.

Fig. 1. Runtime model checking.

On the other hand, Fig. 2 shows the approach proposed in Filieri et al. [7]. In
order to realize requirements at runtime, this approach separates model checking
activity in two steps, executed at design time and runtime. In the step at design
time, expressions are generated from a system model represented in DTMC and
requirements expressed in PCTL; unknown parameters in the DTMC model
at design time are represented as variables. In the second step at runtime, by
monitoring the system, the values of the unknown parameters are collected,
and the collected values are substituted for the variables. As a result, we verify
whether the system model satisfies the requirements or not.

3 Discrete Time Markov Chain

In the existing approach described in [7], a system is modeled using Discrete
Time Model Chain (DTMC) [6]. A DTMC model is a state transition diagram
that has state transitions represented as probabilities. States represent possible
configurations of the system. Transitions among states occur at discrete time
and have associated probabilities. DTMC is a random process that has tran-
sitions from one state to another state on a state space. DTMC must respect
the following property of Markov chains: the probability distribution of the next

256 K. Ogawa et al.

Fig. 2. Existing approach.

state depends only on the current state and not on the sequence of events that
preceded the current state.

Formally, a DTMC is represented as a tuple (S, S0, P, L) where

– S is a set of states
– S0 (⊆ S) is a set of initial states
– P : S × S → [0, 1] is a stochastic matrix. An element of P (si, sj) represents

the probability that the next state of the process will be sj given the current
state is si.

– L : S → 2AP is a labeling function, where is a set of atomic proposition that
represents a basic property.

We call a state s ∈ S with P (s, s) = 1 absorbing state, which is also used in [7].
If a DTMC model contains at least one absorbing state, such a DTMC model is
called an absorbing DTMC. A state that is not absorbing state is called transient
state.

We show an example of a DTMC model in Fig. 3. This model represents a
self-adaptive system model. The transition probabilities of a self-adaptive sys-
tem change due to the behavioral changes. Some of the transition probabilities
cannot be determined at design time. In Fig. 3, transition probabilities that can-
not be determined at design time are represented as variables to use in model
checking. For example, a cleaning robot detects obstacles by using sensors that
the robot has and decides a direction to move by using data collected by the
sensors. The robot moves different directions, such as forward, turning and back-
ward. Transition probabilities of moving are unknown before deciding the path;
therefore, the probabilities are represented as variables.

A DTMC model can be represented as a matrix. An absorbing DTMC that
has r absorbing states and t transient states is represented by the matrix P that
is in the following canonical form:

Runtime Verification for Self-adaptive Systems 257

Fig. 3. An example of DTMC: Cleaning Robot.

P =
(

Q R
O I

)
(1)

where I is an r by r identity matrix, O is an r by t zero matrix, R is a t by
r nonzero matrix and Q is a t by t matrix. The element qij of the matrix Q is
the transition probability from the transient state si to the transient state sj .
The element rik of the matrix R is the transition probability from the transient
state si to the absorbing state sk. An absorbing state has the probability 1 from
the absorbing state to itself. Therefore, the probabilities of absorbing states to
themselves are represented as the identity matrix I. Since transition probability
from an absorbing state to a transient state is 0, O is a zero matrix.

The following matrix represents the DTMC model illustrated in Fig. 3.

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0
0 0 0.8 0.2 0 0 0 0 0
0 0 0 0.2 0 0 0.8 0 0
0 0 1 − x0 0 x0 0 0 0 0
0 0 0 0 0 0.9 0 0.1 0
0 0 x3 x2 0 0 0 0 1 − x2 − x3

0 0 0 0 0 0 x1 0 1 − x1

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

The matrices Q, R, O and I for the matrix P are shown in Fig. 4.
The transition probability from the transient state si to the transient state

sj in two steps is calculated by
∑

sx∈S P (si, sx) · P (sx, sj) =
∑

sx∈S Q(si, sx) ·

258 K. Ogawa et al.

Q(sx, sj). The k-step transition probability, with which the state sj is reached
from the state si in k steps, is the element qij of the matrix Qk. Since the element
qij of the matrix Q0 represents the transition probability from the state si to the
state sj in zero steps, this matrix Q0 is a t by t identity matrix. Due to the fact
that R must be a nonzero matrix, Q has uniform-norm strictly less than 1, thus
Qn → 0 as n → ∞, which implies that eventually the process will be absorbed
with probability 1.

Fig. 4. Matrices Q, R, O, and I of the matrix P illustrated in Exp. (2)

Figure 5 shows a model after adding state and transitions to the model illus-
trated in Fig. 3. This model represents the model of self-adaptive systems that
change their behaviors with adding states and transitions. Here, to match the
matrix of this model with Expression (1), we add the new state s7, illustrated
in Fig. 5. Since the transition probabilities from the state s1 to the state s7 and
from the state s7 to the states s3 and s4 are unknown, the values of the proba-
bilities are represented by the variables. This model has more variables than the
model in Fig. 3. The transition matrix of this model is as follows:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0
0 0 0.8 0.2 0 0 0 x4 0 0
0 0 0 0.2 0 0 0.8 0 0 0
0 0 1 − x0 0 x0 0 0 0 0 0
0 0 0 0 0 0.9 0 0 0.1 0
0 0 x3 x2 0 0 0 0 0 1 − x2 − x3

0 0 0 0 0 0 x1 0 0 1 − x1

0 0 0 x5 1 − x5 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

As shown in Expression (3), the new model has five variables. We study how
computational cost depends on the number of variables in Sect. 6.

Runtime Verification for Self-adaptive Systems 259

Fig. 5. The model added a new state into. To match the matrix of this model with
Expression (1), the state numbers in Fig. 3 do not correspond to the numbers in Fig. 5.

4 Probabilistic Computational Tree Logic

Filieri et al. [7] describe system requirements that the DTMC model should sat-
isfy by using Probabilistic Computational Tree Logic (PCTL), which express
reliability property. PCTL is an extension of Computational Tree Logic (CTL)
that allows for probabilistic quantification of described properties. CTL is a
branching temporal logic and can express branching directly to describe the
specification of the systems for model checking. PCTL is a stochastic time logic
that introduces probabilistic concept to CLT and can describe quantitative for-
mality related to possibility of branching.

PCTL is expressed as P��p (·). This expression represents whether the expres-
sions in parentheses satisfied the constraints �� p or not: p ∈ [0, 1], �� p ∈ {≤, <
,≥, >}. PCTL is defined by the following syntax:

Φ ::= true | a | Φ ∨ Φ | Φ ∧ Φ | ¬ Φ | P��p (ϕ) (4)
ϕ ::= X Φ | Φ U Φ | Φ U≤t Φ (5)

The operators included in Expressions (4) and (5) are as follows:

– X: “next”
– U : “until”
– F : “eventually”(sometimes called “future”)
– G: “always”(sometimes called “globally”)

X and U , which appear in path formulae, represent “next” and “until”, respec-
tively. P<0.01(X s = 1) means that the reachability probability from the current

260 K. Ogawa et al.

state to the next state s1 is less than 0.01. F means that the statement is sat-
isfied in the future. For example, P>0.98(F s = 4) means the probability of
eventually reaching state s4 is more than 0.98. G means “always (globally)”.
P<0.99(G s < 5) means the probability that the state number continues to be
less than 5 is less than 0.05.

We conduct an experiment to compare the computational time for the deter-
mination of reachability property. The reachability property states that a target
state is eventually reached from a given initial state. Since many safety prop-
erties are represented as reachability properties, we focus on reachability in the
experiment. In most cases, the state to be reached is an absorbing state. Below
is an example of a PCTL formula that represents a reachability property.

P≤0.001(true U s = 9) = P≤0.001(F s = 9) (6)

Expression (6) indicates that the probability from an initial state to the absorb-
ing state s9 has to be less than 0.001. In Sect. 6, we verify the requirement of
the reachability property.

5 Existing Approach

As described in Sect. 2, system models generated by modeling self-adaptive sys-
tems by DTMC are represented as matrices. In this section, we describe how to
determine a reachability property expressed by PCTL by using the computation
of matrices.

The probability of moving from the transient state si to the absorbing state
sk is represented as the element pik of the matrix P . Note that this is the
probability of moving in one step. In the case of more than 1 steps, we have
to compute the probability of the transition from a transient state to another
transient state and the transition from the transient state to an absorbing state.
Similarly as for the matrix P , the probability from the transient state si to the
transient state sj in one step is the element qij of the matrix Q. The transition
probability in two steps is the element q2ij of the matrix Q2(= Q × Q), and the
transition probability in k steps is the element qk

ij of the matrix Qk. Therefore,
the probability from the transient state si to the transient state sj is the (i, j)-
th element of the matrix I + Q + Q2 + Q3 + · · · =

∑∞
k=0 Qk. Let N denote

this matrix. Since the other states cannot be reached from absorbing states, the
probability from the transient state sj to the absorbing state sk is the element
rjk of the matrix R. The probability from the transient state si to the absorbing
state sk in some steps is defined as the element bik of the matrix B:

B = N × R (7)

The computation for the matrix B require the computation for the matrix N .
The following expressions hold from N = I + Q + Q2 + Q3 + · · · =

∑∞
k=0 Qk.

Runtime Verification for Self-adaptive Systems 261

N = I + Q + Q2 + Q3 + · · ·

=
∞∑

k=0

Qk

= (I − Q)−1 (8)

Since the matrix N is the inverse of (I − Q), which (I − Q)−1 is defined as N ,
and which is computed by means of Gauss-Jordan elimination algorithm [10],
the element nij of the matrix N is as follows:

nij =
1

det(W)
· αji(W) (9)

where α is the cofactor obtained by multiplying (−1)(i+j) by the determinant of
the matrix with the i-th row and the j-th column removed. Due to Expressions
(7) and (9), the element bij of the matrix is calculated as follows:

bik =
∑

x∈0...t−1

nix · rxj

=
1

det(W)

∑
x∈0...t−1

αxi(W) · rxj (10)

Here, the computation of t determinants with size t − 1 is required. The
computation of the determinants is executed by using Laplace expansion and LU
decomposition. Laplace expansion removes variables from a matrix of a model.
LU-decomposition computes determinants of the matrix containing no variables.
The determinant |A| of the n × n matrix A is the sum of the product of the
element aij by each determinant of n sub-matrices of A with size (n−1)×(n−1)
(Fig. 6), where the expression of |A| in the case expanded in the i-th row is as
follows:

|A|(= detA) =
n∑

j=0

(−1)i+jaijA
′
ij (11)

A′
ij is the (n − 1) × (n − 1) sub-matrix generated by removing the i-th row

and the j-th column of the matrix A.
The computation of determinants is required to compute reachable proba-

bility. The computation of determinants is executed by using LU-decomposition
and Laplace expansion; while the former requires the small computational cost,
the latter requires the large computational cost. The rows that include vari-
ables representing unknown parameters is expanded by using Laplace expansion.
The determinant of the sub-matrix that includes no variables by using Laplace
expansion on several occasions is computed by using LU decomposition. The
high number of times of Laplace expansions leads to the huge computational
cost. However, the models of self-adaptive systems that have their behavioral
changes including state and transition addition include have many variables that
are represented as unknown parameters. The large number of variables leads to

262 K. Ogawa et al.

Fig. 6. An example of Laplace expansion.

the large number of times of Laplace expansions and the large computational
time (Fig. 7). Moreover, when the behavioral models of self-adaptive systems are
largely changed, the pre-computed expressions at the design time no longer cor-
respond to the new behaviors and therefore cannot be applied. In this case, the
systems require to execute the process of pre-computation at runtime. Therefore,
the computational cost of Laplace expansions should be reduced.

6 Experiment

In the previous sections, we pointed out a problem with runtime model check-
ing of self-adaptive systems in the presence of state and transition addition: a
rapid increase in computation time due to a large number of times of Laplace
expansion. We also claimed that the computation cost rapidly increases when
there are many variables in DTMC models of self-adaptive systems. In this
section we evaluate the strength of the relationship between the expression gen-
erated at design time and the computation time. We implemented the existing
approach in Java for the experiments. As problem instances, we randomly gen-
erated DTMC models with the size ranging from 10 to 150 states including

Fig. 7. The number of Laplace expansion (left:3, right:5).

Runtime Verification for Self-adaptive Systems 263

four absorbing states. In these DTMC models, the number of outgoing transi-
tions of each state follows a Gaussian distribution with mean 10 and standard
deviation 2. Each row of the model has one variable. The experiment was con-
ducted as follows. For each problem instance, Laplace expansion was executed
k times. The value of k ranged from two to eight. We compare the averages
of 10 runs for each configuration. In each run, we verified the requirements
specification in PCTL, which represented reachability property to an absorbing
state: P≤0.001(true U s =MAX STATE) = P≤0.001(F s =MAX STATE), where
MAX STATE is the maximum number of states in DTMC.

Fig. 8. Scalability analysis.

Figure 8 shows the results of the experiment. In this figure, the x-axis repre-
sents the number of states in the DTMC models, while the y-axis represents the
computation time required for runtime model checking in logarithmic scale. The
different curves in the graph correspond to different numbers of times of Laplace
expansion. As for the number of times of Laplace expansion greater than four,
the model checking could not finish when the number of states increased. The
results exactly show that the number of times of Laplace expansion and the
number of states greatly affect computation time.

7 Discussion and Direction for Future Work

The results of the experiments described in Sect. 6 showed that the computa-
tional time is large if the number of times of Laplace expansion is large. The

264 K. Ogawa et al.

behaviors of the self-adaptive systems, which we described in this paper, change
according to environmental changes. In some cases, the models of the systems are
largely changed, and as a result, pre-computation, which is usually conducted
at design time, has to be performed at runtime. Therefore, it is important to
construct DTMC models with a small number of parameters.

Our approach is caching, such as [11] for continuous-time Markov chain
(CTMC), to decrease the computational time of generating an expression. When
we deal with a self-adaptive system, which largely changes its behavior, the sys-
tem has to generate an expression of the new model at runtime. In the process
of caching, the system stores the intermediate expressions during generating an
expressions in the pre-computation, and use the stored expressions correspond-
ing to matrices in Laplace expansion at runtime. Our approach still cope with
the problem of long time computation. If the number of the stored expressions
increases, the time of searching the intermediate expression at runtime.

8 Conclusion

In this paper, we experimentally evaluated an existing approach of runtime
model checking for self-adaptive systems. This approach makes runtime model
checking efficient; however, self-adaptive systems have to execute the process of
generating expressions at runtime when the systems largely change their behav-
iors. We conducted experiments and demonstrated that the computational cost
rapidly increased according to the increase of the number of times of Laplace
expansion. To minimize the computational cost, we first need to decline the
number of times of Laplace expansion.

The current approach requires the large computational cost when it is applied
to the self-adaptive systems that largely change their behaviors. In the future,
we plan to construct an algorithm for minimizing the computational time by
caching, in which the intermediate expressions of pre-computation at design
time is used when generating the expressions of the new model after changing
the behavior largely at runtime.

Acknowledgments. This work was supported by JSPS Grants-in-Aid for Scientific
Research (No. 15K00097).

References

1. Iftikhar, M.U., Weyns, D.: Activforms: active formal models for self-adaptation.
In: Proceedings of the 9th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2014, pp. 125–134. ACM, New York
(2014)

2. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: Proceedings of the 28th International Conference on Software Engineer-
ing, ICSE 2006, pp. 371–380. ACM, New York (2006)

Runtime Verification for Self-adaptive Systems 265

3. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind
Series). MIT Press, Cambridge (2008)

4. Blair, G., Bencomo, N., France, R.: Models@ run.time. Computer 42(10), 22–27
(2009)

5. Morin, B., Barais, O., Jezequel, J.M., Fleurey, F., Solberg, A.: Models@ run.time
to support dynamic adaptation. Computer 42(10), 44–51 (2009)

6. Goseva-Popstojanova, K., Trivedi, K.S.: Architecture-based approach to reliability
assessment of software systems. Perform. Eval. 45(2–3), 179–204 (2001)

7. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient probabilistic model
checking. In: Proceedings of the 33rd International Conference on Software Engi-
neering, ICSE 2011, pp. 341–350. ACM, New York (2011)

8. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
J. ACM 42(4), 857–907 (1995)

9. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-
time parameter adaptation. In: Proceedings of the 31st International Confer-
ence on Software Engineering, ICSE 2009, pp. 111–121. IEEE Computer Society,
Washington, D.C. (2009)

10. Althoen, S.C., McLaughlin, R.: Gauss-Jordan reduction: a brief history. Am. Math.
Monthly 94(2), 130–142 (1987)

11. Gerasimou, S., Calinescu, R., Banks, A.: Efficient runtime quantitative verification
using caching, lookahead, and nearly-optimal reconfiguration. In: Proceedings of
the 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS 2014, pp. 115–124. ACM, New York (2014)

Towards Automatic Decision Support
for Bike-Sharing System Design

Maurice H. ter Beek(B), Stefania Gnesi, Diego Latella, and Mieke Massink

ISTI–CNR, Via G. Moruzzi 1, Pisa, Italy
{terbeek,gnesi,latella,massink}@isti.cnr.it

Abstract. Public bike-sharing systems are a popular means of sustain-
able urban mobility, but their successful introduction in a city stands
or falls with their specific designs. What kind of bikes and docking
stations are needed, how many and where to install them? How to
avoid as much as possible that stations are completely empty or full
for some period? Hence, a bike-sharing system can be seen both as a
highly (re)configurable system and as a collective adaptive system. In
this paper, we present two complementary strategies for the evaluation of
bike-sharing system designs by means of automated tool support. We use
the Clafer toolset to perform multi-objective optimisation of attributed
feature models known from software product line engineering and the
recently developed mean field model checker FlyFast to assess perfor-
mance and user satisfaction aspects of variants of large-scale bike-sharing
systems. The combined use of these analysis approaches is a preliminary
step in the direction of automatic decision support for the initial design
of a bike-sharing system as well as its successive adaptations and recon-
figurations that considers both qualitative and performance aspects.

1 Introduction

More and more cities are deploying public bike-sharing systems (BSS) as a sus-
tainable urban mode of transportation [22]. The concept is simple: a user arrives
at a docking station, rents a bike, uses it for a while and returns it to a sta-
tion close to their destination; payment is either per trip or by subscription.
BSS potentially offer multiple benefits, among which the reduction of vehicular
traffic, pollution, noise and energy consumption. To improve the efficiency and
user satisfaction of BSS, the load between different stations should be balanced,
e.g. by using incentive schemes that influence the behaviour of users but also by
efficient redistribution of bikes among stations.

The current third generation technology-based BSS are very different from
the first generation free BSS introduced in Amsterdam roughly half a century
ago. Bicing , the well-known and successful BSS of the city of Barcelona, cur-
rently consists of over 6,000 bikes and 420 stations. There are now similar BSS

Research partly supported by the EU FP7-ICT FET-Proactive project QUANTI-
COL (600708) and by the Italian MIUR project CINA (PRIN 2010LHT4KM).

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 266–280, 2015.
DOI: 10.1007/978-3-662-49224-6 22

Towards Automatic Decision Support for Bike-Sharing System Design 267

in more than 500 cities worldwide. The largest can be found in China with upto
90,000 bikes and over 2,000 stations, one every 100 m. Fourth generation BSS
are already being developed. These include movable and solar-powered stations,
electric bikes and smartphone real-time availability applications [22]. In the con-
text of QUANTICOL (www.quanticol.eu) we collaborate with PisaMo S.p.A., an
in-house public mobility company of the Municipality of Pisa, which introduced
the BSS CicloPi in Pisa two years ago. This BSS, which currently consists of
roughly 140 bikes and 15 stations, was supplied by Bicincittà S.r.l.

The design of a BSS is multi-faceted and complex. First of all, BSS are
composed of many components, among which bikes and stations, but also human
users. The latter form an intrinsic part of the BSS and their individual patterns
of behaviour have a decisive impact on the collective usability and performance
of a BSS, which is highly dynamic. Furthermore, there are questions concerning
costs of installing and running a BSS, maintenance, specific user preferences and
needs and specificities of the city architecture. Hence, BSS can be seen as highly
(re)configurable systems and collective adaptive systems1 (CAS). Our long-term
goal is to be able to provide automatic decision support for the initial design
of a BSS to be deployed in a city, as well as for successive adaptations and
reconfigurations that consider both qualitative and performance aspects. In this
context, it is important to realise that the design and behaviour of the individual
entities from which a BSS is composed, may exhibit variability not only in the
kind of features but also in the quantitative characteristics of features.

In [3–6], we studied product lines of BSS and their bikes, respectively. In this
paper, we make use of these product lines to analyse different configurations.
Software product line engineering (SPLE) is an engineering approach aimed
at cost-effectively developing a variety of (software-intensive) products from a
common reference model or architecture, i.e. that together form a (software)
product line. Commonalities and differences are defined in terms of features
and variability models encode exactly those combinations of features forming
valid products. Actual product configuration during application engineering is
thus reduced to selecting desired options in the variability model. We extend
the product lines from [3,4,6] by explicitly taking feature attributes and feature
cardinalities into account. The former enrich variability models with quantitative
constraints, while the latter allow us to explicitly distinguish BSS configurations
by the specific number of stations and bikes of each variant that are used.

We will first perform multi-objective optimisation of a BSS variability model
with the recently developed toolset Clafer [1], after which we will study the use
of the recently developed on-the-fly mean field model checker FlyFast [18,20]
to analyse behavioural and performance aspects of BSS configurations. Clafer-
MOO(Visualizer) [23] allows to compare system configurations (variants) with
respect to various quality dimensions (e.g. cost), select the most desirable one
and analyse the impact of reconfigurations on a variant’s quality dimensions.
1 These are systems consisting of a large number of spatially distributed heteroge-

neous entities with decentralised control and varying degrees of complex autonomous
behaviour able to adapt to changing circumstances.

www.quanticol.eu

268 M.H. ter Beek et al.

Model checking is a widely used, powerful approach to the automatic veri-
fication of concurrent, distributed systems, including performance aspects. It is
an efficient procedure that, given an abstract system model M, decides whether
M satisfies a (temporal) logic formula Φ. Currently, the integration of mean
field and fluid approximation techniques with model-checking [8,9,17,18,20] is
receiving increased attention as a way to obtain highly scalable formal meth-
ods supporting the design of large-scale CAS for which performance aspects
are essential to their desired behaviour. Mean field approximation techniques
originate in statistical physics and biochemistry where they are used to analyse
large-scale phenomena like particle interaction and chemical reactions between
molecules of different substances. The key idea of such approximation techniques
is to replace the actual stochastic or probabilistic interactions in a system, which
often lead to a combinatorial explosion of possibilities, by an approximation of
the average system behaviour over time in terms of the numbers (fractions) of
elements present in a population. In our setting, we assume that the elements
have a small number of local states, and we consider the number (fraction) of
elements (agents) that are in a particular local state [16,21]. The change over
time of these fractions can be defined as the solution of a set of ordinary differ-
ential equations or, in our case, difference equations, given an initial state of the
overall system, and approximate its evolution over time. Informally speaking,
the larger the populations in the system, the better the quality of the approxi-
mation. Typically their size is in the order of hundreds, thousands or even better,
millions.

A more technical introduction to mean field and fluid approximation can
be found in [10]. For what concerns mean field model checking, the idea is to
analyse the properties of the behaviour of a single agent in the context of the
overall system behaviour (approximated as described before). The difficulty in
model-checking the properties of such an agent is that the probabilities involved
in its behaviour are not constant but may, e.g., depend on the changing fractions
of specific agents in the system over time. So the probabilities in the model of the
agent under study are time-dependent or time-inhomogeneous, or more formally
time-inhomogeneous discrete time Markov chains (IDTMC). In [20], we analysed
performance aspects of a BSS with homogeneously distributed resources.

An important characteristic of BSS is the probability that stations are empty
or full, since these situations generate distress among users and discourage them
to use the BSS. In an online survey conducted by Froehlich [13] on the Bicing
BSS in Barcelona in 2009 about the experience of users with bike sharing, it
turned out that 75 % of the users stated commuting as a motivation to sign
up for membership. Moreover, the same users identified “finding an available
bike and a parking slot” as the two most important problems encountered (76 %
and 66 % of the 212 respondents, respectively). These problems should therefore
be addressed in the best possible way within the obvious budget constraints of
cities, and at the same time keeping the number of kilometres made by vans that
are involved in the (unavoidable) redistribution of bikes as small as possible.

Towards Automatic Decision Support for Bike-Sharing System Design 269

We thus use the on-the-fly mean field model checker FlyFast [18,20] for the
analysis of properties of selected stations in a BSS and for a mean field analysis
of the BSS [21]. This prototypical tool was developed for the analysis of dis-
crete time Markov population models. This differs from fluid model-checking
approaches developed for the analysis of continuous time Markov population
models as in [8,9,17] which moreover use a global model-checking approach,
i.e. an approach in which a formula is analysed for all states. The latter app-
roach always requires a full state space search, whereas an on-the-fly approach
generates only as much of the state space as necessary to analyse the prop-
erty. Especially in case of conditional reachability properties this may be much
more efficient. On-the-fly mean field model checking on discrete time Markov
population models can also be used to approximate global fluid model checking
of continuous Markov population models under certain conditions (see [19] for
further details).

The paper is organised as follows. In Sect. 2 we define a variability model of
a BSS and analyse it with ClaferMOOVisualizer in Sect. 3. In Sect. 4 we capture
BSS behaviour in a Markov population model and analyse it with FlyFast in
Sect. 5. Section 6 outlines how to combine these approaches in a future decision
support system for BSS design.

2 Attributed Feature Model of BSS

The de facto standard variability model in SPLE is a feature model [24]. A feature
characterises a stakeholder visible piece of functionality of a product or system
and a feature model provides a compact representation of all possible products of
a product line or configurable system in terms of their features (behaviour is not
captured). However, there may be hundreds of features or configurable options,
which easily leads to superfluous or contradictory variability information (e.g.
‘false’ optional or ‘dead’ features). There is a lot of work on computer-aided
analyses of variability models to extract valid products and detect anomalies [7].

Graphically, features are nodes of a rooted tree and relations between them
regulate their presence in products: optional features may be present provided
their parent is; mandatory features must be present provided their parent is;
exactly one alternative feature must be present provided their parent is; at least
one or feature must be present whenever their parent is; a requires constraint
indicates that the presence of a feature requires that of another; an excludes con-
straint indicates that two features are mutually exclusive. We identify a product
P from the product line with a non-empty subset PF of the set F of features.
Deciding whether a product satisfies a feature model can be reduced to Boolean
satisfiability (SAT), which can be effectively computed with SAT solvers [2].

In this paper we consider a BSS with three types of stations. We assume
stations with capacity 15 to be located in the city centre (C), those with capacity
5 in the periphery (P) and those with capacity 10 in between (M, for middle).
We define configuration 1 of a size in the order of that of the BSS in Barcelona
in 2009 [13]: 330 stations of which 100 of type P, 150 of type M and 80 of type C.

270 M.H. ter Beek et al.

Fig. 1. Attributed feature model of a BSS.

Subsequently, we present analyses of reconfiguring it into 397 stations of which
200 of type P, 150 of type M and 47 of type C (defined as configuration 2).

Once we equip features with attributes (e.g. capacity(Centre) = 15) we
obtain an attributed feature model [7]. Now a product P is a non-empty subset
PF ⊆ F that moreover satisfies the additional quantitative constraints over fea-
ture attributes (e.g. capacity(DockingStation) ≤ 10). Complex quantitative
constraints require satisfiability modulo theories (SMT) solvers like Z3 [11].

We consider the attributed feature model of a BSS depicted in Fig. 1, which
we obtained by adding attributes to the feature model of the bike-sharing prod-
uct line of [3,4] (ignoring, mainly, the user feature) and replacing its Bike feature
with the attributed feature model of the bikes product line of [6] (ignoring the
computational unit feature). We extracted all features and values for the cost
(in euros) and capacity attributes from documents received from Bicincittà. The
values for customer satisfaction (c sat) instead are estimates based on discus-
sions with PisaMo and Bicincittà. Our research aims to replace them by more
realistic values obtained from performance analyses like those we perform in
Sect. 5.

3 Variability Analysis of BSS

In this section, we present initial variability analyses over the above BSS model.
We use the attributed feature modelling capabilities of the lightweight textual
SPL modelling language Clafer [1] and its extension ClaferMOO(Visualizer) [23].
Each feature can have attributes and quality constraints can be specified globally
or in the context of a feature. Hence we can associate a price to each feature and
a global constraint that only allows products (feature configurations) whose total

Towards Automatic Decision Support for Bike-Sharing System Design 271

Fig. 2. Bubble graphs of Pareto fronts for Bike configurations (left) and the BSS (right).

costs remain within a predefined threshold value. If more than one attribute is
associated with a feature this may result in multiple such optimisation objectives.

The ClaferMOO extension of Clafer was specifically introduced to support
attributed feature models with complex multi-objective optimisation goals. The
latter have a set of solutions, known as the Pareto front, that represents the
trade-offs between several conflicting objectives. Intuitively, a Pareto-optimal
solution is such that no objective can be improved without worsening another.
A set of Pareto-optimal variants generated by ClaferMOO can be visualised
(as a multi-dimensional space of optimal variants) and explored in the inter-
active online tool ClaferMOOVisualizer, which was specifically designed for SPL
scenarios.

We first focus on the bike feature in Fig. 1 in isolation. Figure 2(left) depicts
the result of optimising it by minimising the cost of a product while at the same
time maximising customer satisfaction. If we inspect the nine resulting variants
in detail, we see that variants 1 and 7 are very costly, since these concern electric
bikes. We conclude that variants 2–5 offer reasonable customer satisfaction at an
affordable cost. These are exactly the variants without Engine but with Energy.

Now that we selected the bike configuration(s), we turn to the rest of the
BSS in Fig. 1. Recall that we are interested in comparing BSS configurations
with different distributions of docking stations over a city. Therefore, we make
use of the possibility to add feature cardinalities to a feature model specified in
Clafer. We allow between 33 and 39 docking stations,2 upto 10 stations of type P,
15 of type M and 8 of type C for the first configuration, upto 20 stations of type P,
15 of type M and 4 of type C for the second configuration and we use additional
constraints to prohibit mixing the two configurations of docking stations. For
this to work, we actually clone the features Periphery, Middle and Centre thus
allowing us to distinguish the stations used in one configuration from those used
in the other. This is a novel use of feature cardinalities and feature cloning.

Figure 2(right) depicts the result of optimising the model just described by
minimising a product’s cost while at the same time maximising both customer
satisfaction and capacity. This results in 84 variant configurations, coming from
2 There is no technical limitation, but for ease of presentation and to speed up the

computation we divided the number of stations and all costs by a factor 10.

272 M.H. ter Beek et al.

the three optional features Maintenance, Redistribution and Reward and all
possibilities to reconfigure configuration 1 (33 stations: 10 of type P, 15 of type
M, 8 of type C) into a variant configuration with upto 39 stations, of which
upto 20 of type P, upto 15 of type M and upto 4 of type C, thus including
configuration 2. Variants 1–5 all concern configuration 2, while variants 80–84
all concern configuration 1. If we inspect these variants in detail, it turns out
that configuration 2 has slightly less capacity than configuration 1 (310 vs. 320),
offers much higher user satisfaction (732–782 vs. 654–704) at a generally higher
cost (50500–57500 vs. 48500–55500). Note that the actual cost of a BSS with
configuration 1 or 2 must be multiplied by 10 and, moreover, the cost of the
bikes must be added. For capacities of 3100–3200 parking slots, some 1550–1600
bikes are needed [12]. Bike variants 2–5 cost between 223 and 403 euro per bike.

4 BSS as a Markov Population Model

For the analysis of performance-related aspects we now define the BSS as a
Markov population model. Our model is inspired by the bike-sharing model of
Fricker and Gast [12], which is a continuous time model based on homogeneous
space where all locations are equally accessible to the users. We however use
discrete time variants of this model. In the simple case, the model consists of
N stations, each with a capacity of K parking slots. The number of bikes in
the system is constant at s bikes per station on average, amounting to sN bikes
in total. In every time step each station has the same probability that a user
requests a bike. The probability that a bike is returned to a station depends on
the number of bikes in circulation (i.e. not parked). Figure 3 shows a graphical
representation of the model of a single bike station with K parking slots.

Fig. 3. A bike station.

Following [12], we denote the stochastic process composed of N stations in
parallel by Y N (i) = (Y N

0 (i), . . . , Y N
K (i)), but in our case this denotes a discrete

time Markov process where i denotes the discrete time step. Each element Y N
k (i)

in the vector denotes a random variable that gives the fraction of the total
number of stations that have k bikes parked in it at time step i. In the following
we address the request and return rates, assuming that we reached the system
state (y0, y1, . . . , yK).

Towards Automatic Decision Support for Bike-Sharing System Design 273

Bikes Requested. Assume there is one request of a bike per time unit per station
on average, and for simplicity, assume that one time unit corresponds to 1 h.
Then we have in total, for the whole system, on average, N requests for bikes
per hour. The arrival of requests to the set of stations in which exactly k bikes are
parked is then Nyk. If such a request indeed arrives at a station with k parked
bikes, then the fraction of stations yk decreases with 1/N and the fraction of
stations yk−1 increases with 1/N . For technical reasons a time unit of 1 h is too
long to obtain accurate results using a mean field approximation in discrete time
in the context of this BSS model. In what follows we therefore rescale the time
units to smaller ones, adjusting the probabilities of occurrences of requests per
time unit accordingly. In particular, we use λ to denote the number of requests
per hour and assume time units of two minutes, obtaining the probability of a
request for a bike in a time unit as λ/30.

Bikes Returned. The number of bikes that can be returned depends on the
number of bikes in use, which can be obtained as the total number of bikes
minus those that are parked in the stations. The total number of bikes is sN ,
where s is the average number of bikes per station and N the total number of
stations. The average number of bikes parked in the stations is

∑N
k=1 kyk, so

the number of bikes in transit can be expressed as N(s−∑N
k=1 kyk). We further

assume that the average travel times, i.e. the time during which a bike is used
for one trip, is 1/μ and that stations to which bikes are returned are selected
at random. Under these assumptions, assuming for simplicity that μ = 1, a bike
is returned to a station with k ≤ K − 1 bikes with rate ykμN(s − ∑N

k=1 kyk)
per hour. If such a bike is indeed returned to a station with k ≤ K − 1 bikes,
then yk is decreased by 1/N and yk+1 is increased by 1/N . As before, we will
work with time steps of two minutes, which means that we work with μ/30 and
that the probability to return a bike to a station with k bikes in one time step
is yk(μ/30)N(s − ∑N

k=1 kyk). In all experiments in the sequel, one time unit
corresponds to 1/30th of an hour (i.e. 2 min).

We extend this basic model by introducing the populations P, M and C of
stations, as anticipated in Sect. 2. Recall that next to a different capacity, each
also has a different location in the city. These locations are characterised by
different usage patterns of bikes by commuters. Such patterns were observed in
data about usage in real BSS such as the one in Barcelona [13]. Most commuters
live in the suburbs and take the bike in the morning to go to their work or to
school in the centre and go homewards somewhere in the afternoon or towards
the evening. This leads to clearly distinguishable usage patterns that show com-
plementary behaviour: stations in the periphery have a high request rate in the
morning whereas those in the centre, with some delay, have a high return rate.
These flows are reversed in the afternoon and towards the evening. The sta-
tions in the middle show a more stable pattern as requests and returns are more
balanced.

We model the flow of commuters between the periphery and the centre dur-
ing daytime by a combination of oscillating functions. The latter are modelled

274 M.H. ter Beek et al.

as populations within the same specification framework3. Their definition is
inspired by the oscillatory process defined in [15]. Figure 4(left) shows three peri-
ods of 12 h each, reflecting periods during which the BSS is most used (we omit
night time). The early morning of the first day period starts around time step
100. The curves show the change in request and return rates in the periphery and
centre stations over the period, with a clear peak in the morning and a smaller,
more distributed peak during the afternoon and evening hours. The rates oscil-
late around the average request rate λ = 1 and return rate μ = 4. For request
rate 1 this means 330(= N) requests per hour for the total system. When mod-
ulated by the oscillations, the number of requests varies between 0.5 × N = 115
and 1.3 × N = 440 per hour, assuming that each request corresponds to finding
a bike. In data about the BSS in Barcelona (which has twice as many bikes and
total capacity than in our model) the number of requests goes up to 1000 per
hour in the morning. So given the capacity and number of bikes used in our
model, these numbers seem in line with those in the literature.

Besides the modulation of request and returns during day in the various
locations, also the number of stations located in the various parts of the city is of
importance. Recall that we defined two configurations in Sect. 2. We furthermore
assume that initially each station of type P is filled with 3 bikes, those of type
M with 5 bikes, and those of type C with 7 bikes, leading to an average number
of s = 3×100 + 5×150 + 80×7

330 = 1610
330 ≈ 4.8788 bikes per station.

Figure 5 shows the variation of the fraction of stations of type P with 0, 1,
2, 3, 4 and 5 bikes parked, respectively, over a time horizon of 300 time units,
comparing the average of 500 stochastic simulation runs in Fig. 5(left) with a
mean field approximation of the model in Fig. 5(right). The results show a good
correspondence. For the precise conditions of the model under which this happens
we refer to [21]. In the case of the BSS model these conditions are satisfied as
long as the population sizes used in the model are sufficiently large4. Recall that
mean field models provide an approximative result on the average behaviour of
a system. Individual simulations, in particular of models with relatively small
populations, may show varying behaviour due to stochastic variability.

5 Examples of Performance Features of BSS

This section contains exemplary performance analyses over the BSS model of
Sect. 4.
3 The input language of the FlyFast model-checker used for the analysis is described

in [18,20] and consists of a simple high level language for Markov population models
from which the mathematical structures on which the model-checking algorithms
are based are automatically generated in an on-the-fly fashion.

4 In the simulation we used population sizes multiplied by a factor 10, so considering
3300 stations instead of 330. This has nothing to do with the factor 10 scaling in
Sect. 3.

Towards Automatic Decision Support for Bike-Sharing System Design 275

Fig. 4. (left) Request and return rates per hour for stations of types P and C for three
cycles of one day (night omitted) and (right) time dependent probability of property
P2 for a model with λ = 1 and μ = 4 per hour and of type configuration 1, i.e. with
N = 330 stations, of which 100 with capacity 5 in P and each holding 3 bikes initially;
150 with capacity 10 in M and 5 bikes; 80 with capacity 15 in C and 7 bikes (cf.
Sect. 5.2).

Fig. 5. Fractions of stations of type P with 0 to 5 bikes, indicated respectively by YP0
to YP5: (left) simulation average over 500 runs and (right) mean field approximation.

5.1 Normalised Activity/Bicycle Data

One way to characterise usage patterns of stations is by their average filling
degree over time. Froehlich et al. call this normalised activity/bicycle (NAB)
data [13]. These filling degrees are usually collected from data observed in real
systems, but we obtain them from the mean field analysis of the model as follows:

NAB =
∑Ki

k=1 yikk

Ki
× N

Ni

where i ∈ {P,M,C} denotes the type of stations, Ki the capacity of stations of
type i, yik the fraction of type-i stations with k bikes parked in it of the total
number of stations N and Ni the number of stations of type i. The multiplication
with N

Ni
is because we are interested in the filling degree of type-i stations and

not in the total number of stations N , whereas yik gives the fraction with respect
to the total number of stations N . For instance, let YP1, . . . ,YP5 denote the

276 M.H. ter Beek et al.

fractions of the total number of stations N of stations of type P with 1, 2, 3, 4
and 5 bikes, respectively, where Kp = 5 is the capacity of such stations. Then
BP = YP1×N + 2×YP2×N + 3×YP3×N + 4×YP4×N + 5×YP5×N
is the total number of bikes parked in stations of type P. This gives on average
ABP = BP/NP bikes parked per station, where NP is the number of stations
of type P, and ABP/Kp is the filling degree of such a station of type P.

We now compare the NAB of configurations 1 and 2 defined in Sect. 2. The
NAB of configuration 1, for an average request rate of one bike per station per
hour and an average trip duration of 15 min, is shown in Fig. 6(left) for a period
of approximately 3 days of 12 h each (night time is omitted). We clearly see
the pattern of fluctuations of request rates also appear in the fluctuations in
the filling degrees of the stations. Furthermore, a decrease in filling degree in
the stations in the periphery in the morning corresponds to a slightly delayed
increase in filling degree in the stations in the centre. The delay is due to the
time it takes to cycle from the periphery to the centre. The reverse is happening
in the evening when commuters go back home. Interestingly, the stations in the
middle area show a more stable filling degree than those in the centre and in the
periphery. Both patterns have been observed also in real data from the BSS in
Barcelona [13].

The NAB of configuration 2 is shown in Fig. 6(right). In order to compare
the configurations under the same assumptions on bike requests we have to cor-
rect for this fact in the model of configuration 2 because the request of bikes
in the model are expressed per station. So we divide the requests (and returns)
in the periphery for each station by 2, and double the requests (and returns)
per station for those in the centre. Under these assumptions, the figure shows
that in configuration 1 the stations in the periphery are in general less empty,
but that the filling degree of those in the centre now fluctuates much more.
Larger fluctuations might require more frequent interventions from BSS opera-
tors to rebalance the distribution of bikes. The situation in the periphery seems
improved, but perhaps there are now more stations and bikes than really nec-
essary. Many other BSS configurations and situations can be investigated. For
example the effect on the average filling degree of an increase in requests for
bikes when the density and number of stations and bikes is increased or the
effect on resource usage and related implications on user satisfaction and costs
of different distributions of stations over the various areas of the city. We limited
ourselves here to only some examples due to space limitations.

Mean field based models provide an approximation of the average behaviour
in a computationally efficient way compared to a simulation based approach.
Moreover, the analysis time is independent of the number of stations in the
BSS, meaning that the approach easily scales to BSS with a size in the order
of those found in Chinese cities. The approximations are actually better for
BSS with more stations because this reduces the stochastic variability of system
behaviour. Just as an indication of the evaluation times we would like to mention
that the analysis in Fig. 6 takes less than a second to perform.

Towards Automatic Decision Support for Bike-Sharing System Design 277

Fig. 6. NAB for station types P (pink dashes), M (blue line) and C (green dots), with
λ = 1 and μ = 4 per hour: (left) for configuration 1 (see Sect. 2), with P-stations each
holding 3 bikes initially; M-stations 5 bikes; and C-stations 7 bikes, and (right) for
configuration 2 (see Sect. 2), with the same initial distribution of bikes over stations
(Color figure online).

Fig. 7. Time dependent probability to be full (left) or empty (right) within 30 min for
the station types P (pink dashes), M (blue line) and C (green dots), with λ = 1 and
μ = 4 per hour, for configuration 1 (Color figure online).

5.2 Properties of Individual Stations in the Context of the System

In the previous section, we analysed performance aspects of the BSS as a whole.
However, also the behaviour of individual stations in the context of the overall
BSS can provide valuable insight into the level of service that is provided to its
customers. We provide some examples of properties of individual stations that
may be relevant and that have been obtained by applying the mean field model
checker FlyFast, developed by some of the authors of the current paper [18,20].

Probability of a Station Getting Full or Empty Within the Time
of Arrival. An example of a property of an individual station, operating in
the context of the global system, is the question of how likely it is that a station
gets full (or empty, respectively) within approximately 30 min (corresponding to

278 M.H. ter Beek et al.

15 time steps) corresponding to the usual maximal free allowance in a BSS, i.e.
no fee is due for trips shorter than 30 min. In other words, this property could
provide some insight in the likelihood that a station selected as destination by a
user gets full between the time the user departs and the maximal free allowance.
For a station in the periphery with a capacity of 5 parking slots, this property
can be formalised in PCTL [14] as

P=?(tt U≤15 YP5) (P1)

where YP5 a periphery station that is full, i.e. having 5 bikes parked. A similar
property can be formulated for a station getting empty replacing YP5 by YP0.
Figure 7(left) shows the results for a selected destination station in state YP3, so
there are still 5− 3 = 2 parking slots free at the destination at the time the user
departs. Note that this probability depends on the time at which property P1 is
evaluated because of the evolution of the system over time and that the figure
shows its evaluation at times ranging from 0 to 1000 time units. The interested
reader is referred to [20] for further details on the mean field model-checking
algorithms for such properties. Similarly, Fig. 7(right) shows the probabilities
for a destination station to get empty within 30 min when it currently has two
bikes parked in its slots.

A more sophisticated nested property, P2, considers the situation in which,
within 30 min a destination station in the periphery: (i) gets full, but then, with
high probability (≥0.99) has a free slot within 6 min, or (ii) does not get full,
but then, with low probability (≤0.01) gets full within 6 min.

This property can be formalised in PCTL as follows:

P=?(tt U≤15 ((YP5 ∧ P≥0.99(YP5 U≤3 ¬YP5)) ∨ (P2)

(¬YP5 ∧ P≤0.01(¬YP5 U≤3 YP5))))

The result of checking P2 against a BSS with an initial state of the selected
individual destination station and which has two empty parking slots available
(i.e. the local state is YP3) is shown in Fig. 4(right). Property P2 is evaluated
at times ranging from 0 to 1000 time units. We clearly see that there are periods
during which the likelihood to find a free slot at the destination station in the
periphery is 1, which thus indicates a very good level of service indeed. But there
are also periods during which this likelihood reduces considerably. These are
peak times when the level of service for what concerns finding free slots to park
a bike in the periphery drops to a much lower level. Note that P2 formalises the
probability with which a user can expect to find a free parking slot at a station
in the periphery within 30 min from departure. Similar properties can be verified
for stations in other parts of the city. Property P2 took just a few seconds to be
analysed, which is a very good result given the size of the system and the nested
form of the formula.

6 Discussion and Future Work

In this paper, we presented two approaches for the evaluation of BSS designs by
means of automated tools in a rather orthogonal way. We performed

Towards Automatic Decision Support for Bike-Sharing System Design 279

variability analysis (by multi-objective optimisation) on system configurations
and performance analysis (by mean field model checking) on behavioural models.
We focussed on a simplistic comparison of two different BSS configurations with
respect to their cost, user satisfaction and capacity (in terms of parking slots)
to illustrate the ideas. In the future, we intend to strengthen the integration of
these two approaches and use the outcome of performance analyses as input for
variability modeling. Think, e.g., of measuring the user satisfaction for specific
configurations and feeding the resulting values into the variability model. Clearly,
the probability of finding an empty (or full) docking station, based on the capac-
ity of a BSS configuration, may directly impact user satisfaction. The resulting
combined use of analysis approaches can trigger the development of automatic
decision support for the design of BSS as well as for successive adaptations and
reconfigurations. This is not merely an utopia, since we showed that the use of
recently developed scalable performance analysis methods (i.e. on-the-fly mean
field model checking in discrete time) proposed in this paper easily scale to BSS
of realistic size.

Acknowledgements. We thank Michele Loreti, who is the developer of FlyFast. We
also thank Bicincittà S.r.l. and Marco Bertini from PisaMo S.p.A. for generously shar-
ing with us relevant information concerning bike-sharing systems in general and Pisa’s
CicloPi bike-sharing system in particular.

References

1. B ↪ak, K., Diskin, Z., Antkiewicz, M., Czarnecki, K., W ↪asowski, A.: Clafer: uni-
fying class and feature modeling. Softw. Syst. Model. 1–35 (2015). doi:10.1007/
s10270-014-0441-1

2. Batory, D.: Feature models, grammars, and propositional formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

3. ter Beek, M.H., Fantechi, A., Gnesi, S.: Challenges in modelling and analyzing
quantitative aspects of bike-sharing systems. In: Margaria, T., Steffen, B. (eds.)
ISoLA 2014, Part I. LNCS, vol. 8802, pp. 351–367. Springer, Heidelberg (2014)

4. ter Beek, M.H., Fantechi, A., Gnesi, S.: Applying the product lines paradigm to
the quantitative analysis of collective adaptive systems. In: Proceedings 19th Inter-
national Conference on Software Product Lines (SPLC 2015), pp. 321–326. ACM
(2015)

5. ter Beek, M.H., Gnesi, S., Mazzanti, F.: Model checking value-passing modal spec-
ifications. In: Voronkov, A., Virbitskaite, I. (eds.) PSI 2014. LNCS, vol. 8974, pp.
304–319. Springer, Heidelberg (2015)

6. ter Beek, M.H., Legay, A., Lluch Lafuente, A., Vandin, A.: Statistical analysis of
probabilistic models of software product lines with quantitative constraints. In:
Proceedings of 19th Software Product Line Conference (SPLC 2015), pp. 11–15.
ACM (2015)

7. Benavides, D., Segura, S., Ruiz-Cortés, A.: Automated analysis of feature models
20 years later: a literature review. Inf. Syst. 35(6), 615–636 (2010)

8. Bortolussi, L., Hillston, J.: Fluid model checking. In: Koutny, M., Ulidowski, I.
(eds.) CONCUR 2012. LNCS, vol. 7454, pp. 333–347. Springer, Heidelberg (2012)

http://dx.doi.org/10.1007/s10270-014-0441-1
http://dx.doi.org/10.1007/s10270-014-0441-1

280 M.H. ter Beek et al.

9. Bortolussi, L., Hillston, J.: Fluid Model Checking (2013). arXiv:1203.0920v2
10. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of

collective system behaviour: A tutorial. Perf. Eval. 70, 317–349 (2013)
11. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,

Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

12. Fricker, C., Gast, N.: Incentives and redistribution in homogeneous bike-sharing
systems with stations of finite capacity. EURO J. Transp. Logistics, 1–31 (2014).
doi:10.1007/s13676-014-0053-5

13. Froehlich, J., Neumann, J., Oliver, N.: Sensing and predicting the pulse of the city
through shared bicycling. In: Boutilier, C. (ed.) Proceedings of 21st International
Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 1420–1426. Morgan
Kaufmann, San Francisco (2009)

14. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects Comput. 6, 512–535 (1994)

15. Hayden, R.: Scalable Performance Analysis of Massively Parallel Stochastic Sys-
tems. Ph.D. thesis, Imperial College London, April 2011

16. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of 2nd
Conference on the Quantitative Evaluation of Systems (QEST 2005), pp. 33–43.
IEEE (2005)

17. Kolesnichenko, A., de Boer, P.-T., Remke, A., Haverkort, B.R.: A logic for model-
checking mean-field models. In: Proceedings of 43rd Conference on Dependable
Systems and Networks (DSN 2013), pp. 1–12. IEEE (2013)

18. Latella, D., Loreti, M., Massink, M.: On-the-fly fast mean-field model-checking. In:
Abadi, M., Lluch Lafuente, A. (eds.) TGC 2013. LNCS, vol. 8358, pp. 297–314.
Springer, Heidelberg (2014)

19. Latella, D., Loreti, M., Massink, M.: On-the-fly fluid model checking via discrete
time population models. In: Beltrán, M., Knottenbelt, W., Bradley, J. (eds.) EPEW
2015. LNCS, vol. 9272, pp. 193–207. Springer, Heidelberg (2016)

20. Latella, D., Loreti, M., Massink, M.: On-the-fly PCTL fast mean-field approxi-
mated model-checking for self-organising coordination. Sci. Comput. Prog. 110,
23–50 (2015)

21. Le Boudec, J.-Y., McDonald, D., Mundinger, J.: A generic mean field convergence
result for systems of interacting objects. In: Proceedings of 4th Conference on the
Quantitative Evaluation of Systems (QEST 2007), pp. 3–18. IEEE (2007)

22. Midgley, P.: Bicycle-Sharing Schemes: Enhancing Sustainable Mobility in Urban
Areas. Background Paper CSD19/2011/BP8, Commission on Sustainable Devel-
opment, United Nations Department of Economic and Social Affairs, May 2011

23. Murashkin, A., Antkiewicz, M., Rayside, D., Czarnecki, K.: Visualization and
exploration of optimal variants in product line engineering. In: Proceedings of
17th International Software Product Line Conference (SPLC 2013), pp. 111–115.
ACM (2013)

24. Schobbens, P., Heymans, P., Trigaux, J.: Feature diagrams: a survey and a formal
semantics. In: Proceedings of 14th Conference on Requirements Engineering (RE
2006), pp. 136–145. IEEE (2006)

http://arxiv.org/abs/1203.0920v2
http://dx.doi.org/10.1007/s13676-014-0053-5

Automated Synthesis of Protocol
Converters with BALM-II

Giovanni Castagnetti1, Matteo Piccolo1, Tiziano Villa1(B),
Nina Yevtushenko2, Robert Brayton3, and Alan Mishchenko3

1 Dipartimento d’Informatica, Università di Verona, Verona, Italy
tiziano.villa@univr.it

2 Computer Science Laboratory, Tomsk State University, Tomsk, Russia
3 Department of EECS, University of California, Berkeley, CA, USA

Abstract. We address the problem of the automatic design of automata
to translate between different protocols, and we reduce it to the solu-
tion of equations defined over regular languages and finite automata
(FA)/finite state machines (FSMs). The largest solution of the defined
language equations includes all protocol converters that solve the prob-
lem; this is a strong advantage over computational techniques that deliver
only one or a few solutions, which might lead to suboptimal implemen-
tations (e.g., as sequential circuits). Our model is versatile, because it
can handle different topologies and constraints on the solutions. We pro-
pose a fully automatic procedure implemented inside a software pack-
age BALM-II which solves language equations. For illustration we show
examples of setting up and solving language equations for classical pro-
tocol mismatch problems, aiming at the design of protocol converters
to interface an alternating-bit (AB) sender and a non-sequenced (NS)
receiver. Our automatic converter synthesis procedure yields a complete
solution for automata and FSMs, and may serve as a core engine to
embed into any full-fledged interface synthesis tool.

1 Introduction

In electronic system level design, an important step is the implementation of com-
munication, e.g., consider a design scenario based on the composition of reusable
Intellectual Property (IP) cores that realize different communication protocols
(as in [1]). This problem may be addressed either by interface template instan-
tation (customization of a set of templates from functional and performance
requirements), or by interface synthesis [2]. The latter aims to adapt incompati-
ble transmitters and receivers of data, by designing a converter (if it exists) that
makes them compatible within the given constraints of the implementation.

For instance, consider the example (from [2,3]) of a producer and a consumer
communicating complex data each partitioned into two parts. The producer
(handshake protocol) can wait an unbounded amount of time between sending
the two parts, whereas the consumer (serial protocol) must receive the second
part just after the first one with no intermediate wait. The further specification is
c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 281–296, 2015.
DOI: 10.1007/978-3-662-49224-6 23

282 G. Castagnetti et al.

that data - to be transmitted in the same order - are neither lost nor duplicated.
The goal is to synthesize a converter that takes the first part of a datum sent
by the producer and delivers it to the consumer, only after it receives also the
second part of the datum.

In this paper we address automatic interface synthesis when the protocols and
specification are expressed by automata and regular languages, and obey an FSM
semantics to be specified according to the composition operators: given protocols
P and Q, synthesize the most general converter X such that the composition of
P , Q and X behaves like a required specification C.

We model the problem of synthesizing a converter as follows: given a module
A (the context, i..e, the product of the two protocols P and Q) and a specification
module C, synthesize the unknown converter X such that the composition of A
and X conforms to or refines C. We allow any communication topology between
the protocols and the converter.

The main contributions of this paper are:

1. We reduce the problem to solving inequalities and equations over regular lan-
guages/automata (FA) and finite state machines (FSMs), for which there are
closed-form solutions, with respect to the synchronous and parallel composi-
tion operators (see [4–9]).

2. We describe a new package - BALM-II (see [10,11]) - for solving inequalities
and equations over FA/FSMs, which we developed to extend to equations over
parallel composition the previous software package BALM (see [12]) that was
restricted to equations over synchronous composition.

In Sect. 2 we survey briefly the previous work, whereas in Sect. 3 we outline
the theory and practice of solving inequalities and equations over FA/FSMs with
BALM-II, a software package that solves synchronous and parallel equations. In
Sect. 4 we apply this synthesis technique to an example of protocol mismatch
problem modeled with parallel equations. We conclude in Sect. 5 by summarizing
a comparison with other approaches and mentioning future work.

2 Previous Work

The problem of protocol converter synthesis received recently a lot of attention
in the literature (for instance, see the references [1,2,13–23]).

In [15–18], Passerone et al. considered as composition any binary operator
that satisfies appropriate algebraic properties; the proposed definition includes
parallel and synchronous composition of automata as special cases (see Sect. 3 for
their formal definition). Moreover, they considered various preorder conformance
relations of which containment is the simplest case (it is only required that
the composition is monotonic). To synthesize a converter, they introduced a
mirror function that is not unique for an agent, and instead satisfies appropriate
properties depending on the composition operator and conformance relation.

This general setting reduces to our model when protocols are described by
automata. For instance, for parallel inequalities/equations over automata with

Automated Synthesis of Protocol Converters with BALM-II 283

respect to the containment relation, the complement operator appearing in the
closed-form X = A � C is exactly the mirror function, and so both approaches
capture all solutions.

Further requirements on the synthesized converter are mentioned in [17]: one
is the extraction of a deterministic solution for the serial topology (for which it
is known that selecting a complete submachine is sufficient), and the other is
about enforcing progressiveness. About the latter, defined as the property that
each action defined by the specification should be provided by the composition,
it is suggested to enforce it by deleting transitions from the largest solution;
however, there is no discussion that in general (in the rectification topology, for
example) this trimming operation is sufficient only when the largest solution is
represented by a perfect automaton (see [24,25] for details).

Jiang and Jin studied in [14] a variant where the composition of the given
protocols and of the converter behaves like a FIFO with a buffer of size k.

In [20], Bhaduri and Ramesh solved the problem of converter synthesis for
interface automata with respect to an alternating simulation relation, i.e., a rela-
tion ρ from P to Q for which (s, t) ∈ ρ implies that all input moves from t can
be simulated by s and all output moves from s can be simulated by t. A refine-
ment between interface automata is defined as the existence of an alternating
simulation between the initial states, i.e., an interface automaton P refines an
interface automaton Q, P � Q, if (1) the set of input actions of Q is a subset
of the input actions of P , (2) the set of output actions of P is a subset of the
output actions of Q, and (3) there is an alternating simulation ρ from P to Q
such that (s0, t0) ∈ ρ, where s0 and t0 are initial states, respectively, of P and
Q. The most abstract solution under alternating simulation of P ‖ R � Q is
given by R = (P ‖ Q⊥)⊥, where P⊥ is the same as P , except that the input
actions in P become the output actions in P⊥ and similarly the output actions
in P are the input actions in P⊥. This P⊥ operator reminds of the inverse FSM
introduced in the solution of the model matching problem discussed in [26].

In [21] Avnit and Sowmya discussed a variant of the converter synthesis prob-
lem, in which, instead of requiring that the composition satisfies the specification,
the objective is to insure what is called a correct conversion: a correct converter
is compatible with both protocols, and never causes an overflow or an under-
flow of its buffers. The problem is solved by deleting redundant transitions; the
authors do not discuss the fact that when dealing with sequential systems one
should rather delete redundant sequences than redundant transitions, otherwise,
some solutions may be lost.

Given two automata representing two protocols, in [19] Watanabe et al. intro-
duced a synthesizer that judges whether each state of the product automaton
is legal or not in terms of data dependency. The output transducer is an FSM
which is the subset of the product automaton that consists of legal states. A
transducer is required to satisfy the property that illegal tuples are removed
according to the following rules: (a) a data word which has not been received
must not be sent; (b) if a state from the master automaton is a final state, all the
states from the slave automaton must be final states; (c) tuples which inevitably

284 G. Castagnetti et al.

transit to an illegal tuple are also illegal. The first rule does not care about which
automaton has received or sent a data word. The resulting solution is a subma-
chine of the product automaton, i.e., all machines have the same set of actions.
There is no explicit mention of the overall specification, similar to a case-study
in [17], where the transducer is a given. Notice that each component protocol is
represented as a composition of smaller automata, so that there is no need of
a monolithic component automaton when deriving a transducer. In summary,
they construct the whole transducer from a set of partial transducers, and the
synthesized transducer consists of several FSMs to handle parallel transactions.

Cao and Nymeyer presented in [27] a theoretical model of a converter includ-
ing buffers and allowing the specification by the designer of CTL conditions, to
be verified by means of a model checker.

Sinha et al. developed in [1,23,28–30] a compositional approach for the inte-
gration of multiple components with a wide range of protocol mismatches into a
single System-on-Chip (SoC). They construct the SoC either in a single step or
incrementally, and discuss the pros and cons of the two approaches; the latter
has advantages with respect to scalability, reuse, wiring congestion and latency
errors. They can handle mismatches such as multiple clocks, multi-directional
IP communication, control and data-width mismatches, but not yet complex
mismatches such as interface inconsistencies. They also ensure the satisfaction
of multiple constraints (specifications) on the behaviour of the SoC, which are
specified as properties in temporal logic CTL; these properties are classified as
control constraints over the state labels in the protocols, data constraints over
the data counters used to track down the data communication between IPs, and
control-data constraints using state labels and counter values in the same CTL
formula. Protocols are described as Synchronous Kripke Structures (SKS) which
are Finite State Machines (FSMs), augmented with a set of propositions (denot-
ing control labels and data labels) that label each state to describe its control
and data input/output status. In the proposed methodology, a clock automa-
ton is introduced to handle multiple clocks, i.e., each protocol is oversampled
to describe its behaviour with respect to the fastest clock in the SoC. Then the
parallel composition of all the SKSs is computed, and finally inputs and outputs
are partitioned as follows: uncontrollable signals passed to/from the protocols as
soon as available, shared signals emitted and read by protocols, missing control
signals to be generated by the converter. The synthesis of converters is based
on a recursive algorithm originally presented in [31], which is extended to con-
struct a graph corresponding to all the valid behaviours of the protocols such
that the given constraints are satisfied (the original algorithm did not enumerate
all possible ways in which an assertion may be satisfied). Then a deterministic
converter is obtained by extracting a sub-graph from the previous graph rep-
resenting the maximal non-deterministic converter. The converter behaves acts
as follows: it forwards all uncontrollable signals to the environment/protocols in
the same clock tick; it buffers shared signals from the protocols and forwards
them after one or more clock ticks; it maintains a 1-place buffer for each shared
signal; it may hide a buffered signal from the protocols in a tick to disable an

Automated Synthesis of Protocol Converters with BALM-II 285

undesirable transition, and it may generate some control signals emitted nei-
ther by the environment nor by the protocols. The converter executes based on
the fastest clock of the SoC, and at each step it follows a precise sequence of
micro-steps with the environment and the protocols: it reads the uncontrollable
signals from the environment as an input formula, it forwards the uncontrollable
signals and converter-controlled signals (buffered or generated) to the protocols,
it reads the signals generated by the IPs emitting any uncontrollable outputs to
the environment and buffering relevant control signals. All together these actions
form a macro-step; the result is a converter SKS (CSKS), whose parallel compo-
sition with the protocols defines the matched system. Results are reported with
SKS abstractions of IP protocols extracted from Advanced Microcontroller Bus
Architecture (AMBA) white papers and Hardware Description Language (HDL)
implementations.

In [32] Autili et al. survey the automatic synthesis of connectors at the level
of networked systems to achieve protocol interoperability, i.e., the ability to com-
municate and coordinate correctly. The challenge is for heterogeneous protocols
in an ubiquitous computing environment to cooperate to reach some common
goals, even though meeting dynamically and without a priori knowledge of each
other. Connectors may be either coordinators (the networked systems are already
able to communicate, but they need to be coordinated) or mediators (the require-
ment is both to enable communication and achieve coordination). Even though
automated and run-time interoperability is still an open challenge for networked
systems, the paper reports the state-of-art on formal methods for the automatic
synthesis of coordinators and mediators, concluding with necessary and sufficient
interoperability conditions to guarantee the existence of correct mediators. Auto-
matic synthesis of a secure orchestrator for a set of BPMN (Business Process
Model and Notation) processes is presented in [33], based on synthesis by partial
model checking.

In the following sections, we will present a theoretical approach and a soft-
ware tool to synthesize all protocol converters for any topology of parallel and
synchronous composition, when the components to interface are modeled by
finite automata and finite state machines; we will compare in Sect. 5 with the
most relevant previous work.

3 Equations over Languages and Automata

Consider a composition topology, shown in Fig. 1, where the composition of two
interconnected components (the context or plant A, and the unknown component
X) defines a behaviour contained or equal to the one defined by the specification
C; the context and the unknown interact through internal signals, and commu-
nicate with the environment with external input and output signals. According
to what connections are present, one may define simplified topologies, e.g., the
rectification topology when the unknown component has no external input and
output signals. Our goal is to find the most general unknown component that
contains all the behaviours such that the composition is included in the spec-
ification. In the next subsections, we will introduce two types of composition:

286 G. Castagnetti et al.

Fig. 1. General topology.

parallel composition (a.k.a. as asynchronous composition) and synchro-
nous composition.

3.1 Equations with Parallel Composition

In order to introduce parallel composition we must define two new operators:
expansion and restriction. The first one, denoted by the symbol ⇑, is used to
extend the alphabet of the automaton, while the second one, denoted by the
symbol ⇓, is used to restrict the alphabet of the automaton.

Definition 1. Given a language L over alphabet X and an alphabet V , consider
the mapping e : X → 2(X∪V)�

defined as e(x) = {αxβ | α, β ∈ (V \ X)�}, then
the language L⇑V = {e(α) | α ∈ L} over alphabet X ∪ V is the expansion of
language L to alphabet V , or V -expansion of L, i.e., words in L⇑V are obtained
from those in L by inserting anywhere in them words from (V \X)�. Notice that
e(ε) = {α | α ∈ (V \ X)�}.
Definition 2. Given a language L over alphabet X ∪V , consider the homomor-
phism r : X ∪ V → V � defined as r(y) = y if y ∈ V, r(y) = ε if y ∈ X \ V ,
then the language L⇓V = {r(α) | α ∈ L} over alphabet V is the restriction of
language L to alphabet V , or V -restriction of L, i.e., words in L⇓V are obtained
from those in L by deleting all the symbols in X that are not in V . Notice that
r(ε) = ε.

Definition 3. Given the pairwise disjoint alphabets I, U,O, language L1 over
I ∪ U and language L2 over U ∪ O, the parallel composition of languages L1

and L2 is the language [(L1)⇑O ∩ (L2)⇑I]⇓I∪O, denoted by L1 �I∪O L2, defined
over I ∪ O.

With these operators it is possible to define an equation over languages and
write a closed form for its solution.

Automated Synthesis of Protocol Converters with BALM-II 287

Definition 4. Given the pairwise disjoint alphabets I, U,O, a language A over
alphabet I ∪ U and a language C over alphabet I ∪ O, language B over alphabet
U ∪ O is called a solution of the equation A � X ⊆ C iff A � B ⊆ C.

Definition 5. The largest solution is a solution that contains any other solu-
tion.

Theorem 1. (proof in [9], Theorem 2.16, p. 24) The largest solution of the
equation A � X ⊆ C is the language S = A � C.

Language equations can be solved effectively when their languages have fini-
tary representations, usually by means of automata generating them, e.g., finite
automata for regular languages. In that case, we can interpret a given language
equation as denoting an equation over the automata generating the given lan-
guages. So, we talk interchangeably of language equation or automaton equation
(where the automata generate the languages).

Definition 6. A finite automaton (FA) is a 5-tuple F = 〈S,Σ,Δ, r,Q〉. S
represents the finite state space, Σ represents the finite alphabet of actions, and
Δ ⊆ Σ × S × S is the next state relation, such that (σ, p, n) ∈ Δ iff n ∈ S is
a next state of present state p ∈ S on action i ∈ Σ. The initial or reset state
is r ∈ S and Q ⊆ S is the set of final or accepting states. The automaton F is
deterministic, if for each state s ∈ S and any action σ ∈ Σ there exists at most
one state s′, such that (σ, s, s′) ∈ Δ, otherwise it is nondeterministic. A variant
of FA allows the introduction of ε-moves, meaning that Δ ⊆ (Σ ∪ {ε)} × S × S;
by the closure procedure one obtains an equivalent deterministic FA without ε-
moves [34].

Finally, we introduce equations over FSMs, by interpreting them as equa-
tions over languages produced by FSMs; these languages are regular and so are
generated by finite automata.

Definition 7. A finite state machine (FSM) is a 5-tuple M = 〈S, I,O, T, r〉
where S represents the finite state space, I represents the finite input space, O
represents the finite output space and T ⊆ I×S×S×O is the transition relation.
On input i, the FSM at present state p may transit to next state n and produce
output o iff (i, p, n, o) ∈ T . State r ∈ S represents the initial or reset state.

For ease of discussion, we assume that FSMs are complete, i.e., at least one
transition is specified for each present state and input pair.

There are different ways of associating a language to an FSM, by considering
the automaton underlying the FSM, according to the semantics of choice. Here
we introduce an interleaving semantics, naturally associated with parallel com-
position, where the language of an FSM is defined over the alphabet I ∪ O. as
follows.

Definition 8. Given an FSM M = 〈S, I,O, T, r〉, consider the finite automaton
F (M) = 〈S ∪ (S × I), I ∪ O,Δ, r, S〉, where (i, s, (s, i)) ∈ Δ ∧ (o, (s, i), s′) ∈ Δ
iff (i, s, s′, o) ∈ T . The language accepted by F (M) is denoted L∪

r (M), and by

288 G. Castagnetti et al.

definition is the ∪-language of M at state r. Similarly L∪
s (M) denotes the

language accepted by F (M) when started at state s, and by definition is the
∪-language of M at state s. By construction, L∪

s (M) ⊆ (IO)�, where IO denotes
the set {io | i ∈ I, o ∈ O}.

In short, the automaton is obtained from the original FSM, by replacing each
edge (i, s, s′, o) by the pair of edges (i, s, (s, i)) and (o, (s, i), s′) where (s, i) is
a new node (non-accepting state). All original states are made accepting. This
automaton generates the language that we associate to the FSM, and it can be
interpreted as an Input/Output Automaton [35].

Similarly, we can define the composition of FSMs and equations over FSMs.

Definition 9. The parallel composition of FSMs MA and MB yields a
reduced observable FSM MA � MB with language

L(MA � MB) = L(MA) � L(MB) ∩ (IO)�.

The previous definition relies on the fact that L(MA �MB) = L(MA) �L(MB)∩
(IO)� is a unique FSM language to which corresponds any FSM whose associated
automaton accepts such language (there are many such behaviorally equivalent
FSMs). The resulting FSM may be made unique by standard operations like
subset construction and state minimization, which produce a reduced observable
FSM. By definition, an FSM is observable if for each triple (i, p.o) ∈ I × S × O
there is at most one next state n such that (i, p, n, o) ∈ T , i.e., for each input,
present state and output there is a unique next state, equivalent to the fact that
the underlying finite automaton is deterministic; an FSM is reduced if there
are no two equivalent states, i.e., states that cannot be distinguished by their
external behaviour.

Definition 10. The parallel FSM equation

MA � MX � MC ,

corresponds to the related language equation

L(MA) � L(MX) ⊆ L(MC) ∪ (IO)�,

where L(MA) and L(MC) are the FSM languages associated with FSMs MA and
MC .

In the following, we summarize the steps to solve parallel FSM equations. For
ease of notation, given an FSM MX we denote by X its associated automaton
and generated language.

Given the parallel FSM equation

MA �I1∪I2∪O1∪O2 MXI2∪U∪V ∪O2
⊆ MC , (1)

one derives the corresponding automata A and C and solves the automaton
equation

A �I1∪I2∪O1∪O2 XI2∪U∪V ∪O2 ⊆ C, (2)

Automated Synthesis of Protocol Converters with BALM-II 289

equivalent to

((AI1∪V ∪U∪O1)⇑I2∪O2 ∩ (XI2∪U∪V ∪O2)⇑I1∪O1)⇓I1∪I2∪O1∪O2 ⊆ CI1∪I2∪O1∪O2 .

The largest automaton solution is given by

X = A �I2∪U∪V ∪O2 C (3)

equivalent to

XI2∪U∪V ∪O2 = ((AI1∪V ∪U∪O1)⇑I2∪O2 ∩ (CI1∪I2∪O1∪O2)⇑U∪V)⇓I2∪U∪V ∪O2 . (4)

The Eq. (3) is intuitively derived as follows: we take the unwanted behaviours
(the complement of the specification) and we compose them with the context
in order to obtain only the behaviours that we want to delete from our system.
Then we complement this result and so we obtain all the acceptable behaviours;
by construction this is the largest automaton solution of the Eq. (2). In a similar
it way is possible to obtain the largest FSM solution of the Eq. (1), as follows.

The largest FSM solution requires enforcing the hypothesis that an input
must be followed by an output before another input can be produced. This
particular constraint is necessary because we do not assume any extension of
the FSM model to store symbols (i.e., FSMs with buffers).

Setting I = I1 ∪ I2 and O = O1 ∪ O2, the largest FSM solution is given by

X = A �I2∪U∪V ∪O2 (C ∩ (IO)�) ∩ (UV)� (5)

that is equivalent to

XI2∪U∪V ∪O2 = ((AI1∪V ∪U∪O1)⇑I2∪O2 ∩ (CI1∪I2∪O1∪O2 ∩ (IO)�)⇑U∪V)⇓I2∪U∪V ∪O2

∩((UV)�)⇑I2∪O2 . (6)

Once the unknown X has been computed, as a sanity check one may verify
whether the computed X satisfies the inequality (2)

A �I1∪I2∪O1∪O2 XI2∪U∪V ∪O2 ⊆ C,

equivalent to

((AI1∪U∪V ∪O1)⇑I2∪O2 ∩ (XI2∪U∪V ∪O2)⇑I1∪O1)⇓I1∪I2∪O1∪O2 ⊆ CI1∪I2∪O1∪O2 . (7)

If the composition is equivalent to the specification then the equation is
solvable, otherwise a solution of the inequality yields a strict refinement of the
specification. Similar formulas can be derived for the simplified topology or other
topologies, introducing the appropriate supports of variables.

290 G. Castagnetti et al.

3.2 Equations with Synchronous Composition

We can repeat the previous steps to define equations with respect to synchronous
composition and obtain dual results in terms of characterization of the solutions.
To save space, we will not go through again the all derivation, but only point
out the main differences, and refer to [9] for the details.

To define synchronous composition, instead of the operators of expansion and
restriction, we need lifting and projection.

Definition 11. Given a language L over alphabet X × V , consider the homo-
morphism p : X × V → V � defined as p((x, v)) = v, then the language
L↓V = {p(α) | α ∈ L} over alphabet V is the projection of language L to
alphabet V , or V -projection of L. By definition of substitution p(ε) = ε.

Definition 12. Given a language L over alphabet X and an alphabet V , con-
sider the substitution l : X → 2(X×V)�

defined as l(x) = {(x, v) | v ∈ V }, then
the language L↑V = {l(α) | α ∈ L} over alphabet X×V is the lifting of language
L to alphabet V , or V -lifting of L. By definition of substitution l(ε) = {ε}.

The given substitution operators change a language and its alphabet of defi-
nition; in particular the operators ↑ and ↓ vary the components that are present
in the Cartesian product defining the language alphabet.

Definition 13. Given the alphabets I, U,O, language L1 over I × U and lan-
guage L2 over U × O, the synchronous composition of languages L1 and L2

is the language [(L1)↑O ∩(L2)↑I]↓I×O, denoted by L1•I×O L2, defined over I ×O.

Finally, the language associated to an FSM under the semantics of synchro-
nous composition is the one generated by the automaton coinciding with the
original FSM where all states are made accepting and the edges carry a label of
the type (i, o).

Definition 14. Given an FSM M = 〈S, I,O, T, r〉, consider the finite automa-
ton F (M) = 〈S, I × O,Δ, r, S〉, where ((i, o), s, s′) ∈ Δ iff (i, s, s′, o) ∈ T .
The language accepted by F (M) is denoted L×

r (M), and by definition is the
×-language of M at state r. Similarly L×

s (M) denotes the language accepted
by F (M) when started at state s, and by definition is the ×-language of M at
state s.

The rest follows by mimicking the steps described in Sect. 3.1.

3.3 BALM-II

All these operations are available in the new software package BALM-II [11],
which is an extension of an existent software called BALM [12].

BALM, a branch of the MVSIS [36] project, implements many operations to
solve synchronous inequalities and equations over automata and FSMs, like lift-
ing and projection, which can be used in the synthesis/resynthesis of sequential

Automated Synthesis of Protocol Converters with BALM-II 291

circuits. However, the original version of BALM did not handle inequalities and
equations with respect to parallel composition; therefore BALM was upgraded
to BALM-II, a version extended with new procedures and commands to solve
parallel equations (see the User’s manual in [10]).

BALM-II inherits all the representation formats and commands from BALM,
and extends it with features to represent and manipulate automata encoding
FSMs interpreted with the semantics of parallel composition, (i.e., expansion,
restriction, etc.). Notice that, under the semantics of synchronous composition,
FSMs are translated into automata simply by merging the input and output
variables of the FSM into the “inputs” of the automaton, since the automata
are defined over the cartesian product A1 ×A2 × . . .×An, where A1, . . . , An are
the FSM’s alphabets; instead, under the semantics of parallel composition, the
translation is less straightforward, and it requires splitting the transitions of the
FSM and introducing new states, because the resulting automata are defined
over the union of alphabets A1 ∪A2 ∪ . . .∪An (see [9,10] for a description of the
transformation procedure). BALM-II makes available the commands to translate
FSMs into the corresponding automata, then to operate on the automata to solve
the equations, and finally to extract from the automata the resulting FSMs (of
course, if the original problem is specified directly by means of automata, there
is no need of this round trip from and to FSMs). This can be done for both the
synchronous and parallel semantics. We refer to [9] for a theoretical exposition,
and to [10] for implementation details and examples of usage.

In the next section we will apply this computational framework to the syn-
thesis of the largest protocol converter on case-studies from the literature. For
simplicity, we will describe examples modeled directly by automata, and refer the
reader to [10] for examples with FSMs showing also the conversion procedures
from FSMs to automata and viceversa.

4 An Example of Asynchronous Protocol

We define and solve an equation over finite automata to solve a problem of
converter synthesis, i.e., the design of an automaton translating between two
different protocols. A communication system has a sending part and a receiving
part that exchange data through a specific protocol. A mismatch occurs when
two systems with different protocols try to communicate. The mismatch problem
is solved by designing a converter that translates between the receiver and the
sender, while respecting the overall service specification of the behavior of the
composed communication system with respect to the environment. It is very
unlikely that both parts send and receive a message at the same time instant
(unless there is a special reason for forcing it), so the behaviour of the overall
system is described by the parallel composition of the receiving and sending
modules, together with the converter to be synthesized. Therefore, we formulate
the problem as a parallel language equation: given the service specification C
of a communication system, a component sender and a component receiver, the
goal is to find a converter X whose composition with the sender and receiver A
meets the system specification after hiding the internal signals: A � X ⊆ C.

292 G. Castagnetti et al.

Fig. 2. Communication system described in Sect. 4.

As an example we consider the problem of designing a protocol converter
to interface: an alternating-bit (AB) sender and a non-sequenced (NS) receiver.
This problem was proposed originally in [22,37], and this exposition is adapted
from [9]. A communication system based on an alternating bit protocol is com-
posed of two processes, a sender and a receiver, which communicate over a half
duplex channel that can transfer data in either directions, but not simultane-
ously. Each process uses a control bit called the alternating bit, whose value is
updated by each message sent over the channel in either direction. The acknowl-
edgment is also based on the alternating bit: each message received by either
process in the system corresponds to an acknowledgment message that depends
on the bit value. If the acknowledgment received by a process does not cor-
respond to the message sent originally, the message is resent until the correct
acknowledgment is received. On the other hand, a communication system is non-
sequenced when no distinction is made among the consecutive messages received,
or their corresponding acknowledgments. This means that neither messages nor
their acknowledgments are distinguished by any flags as it happens with the
alternating bit.

Figure 2 shows the block diagram of the composed system. Each component
is represented by a rectangle with incoming and outgoing labeled arrows to indi-
cate the inputs and outputs, respectively. The sender consists of an AB protocol
sender (PS) and of an AB protocol channel (PC). Meanwhile, the receiving part
includes an NS protocol receiver (PR). The converter X must interface the two
mismatched protocols and guarantee that its composition with PS, PC and
PR refines the service specification (SS) of the composed system. The events
Acc (Accept) and Del (Deliver) represent the interfaces of the communication
system with the environment (the users). The converter X translates the mes-
sages delivered by the sender PS (using the alternating bit protocol) into a for-
mat that the receiver PR understands (using the non-sequenced protocol). For
example, acknowledgment messages a delivered to the converter by the receiver

Automated Synthesis of Protocol Converters with BALM-II 293

are transformed into acknowledgments of the alternating bit protocol (a0xc to
acknowledge a 0 bit and a1xc to acknowledge a 1 bit) and passed to the sender
by the channel (a0cs to acknowledge a 0 bit and a1cs to acknowledge a 1 bit);
data messages are passed from the sender to the channel (d0sc for a message
controlled by a 0 bit and d1sc for a message controlled by a 1 bit) and then from
the channel to the converter (d0cx for a message controlled by a 0 bit and d1cx
for a message controlled by a 1 bit) to be transformed by the converter into a
data message d for the receiver.

We model the components as finite automata which recognize prefix-closed
regular languages, and solve the language equation PS � PC � PR � X ⊆ SS,
where PS � PC � PR is the context, X is the unknown protocol converter and
SS is the specification.

The largest automaton solution of the previous equation is obtained by the
computation S = PS � PC � PR � SS, that is the instantiation of the equation
(3). The automaton solution can be obtained by running a few simple com-
mands on BALM-II (like complement, product (i.e., intersection), expansion
and restriction).

The automata of the components of the communication system and of the
largest prefix-closed solution of the converter problem can be found in [10], with
a comparison with respect to the other solutions reported in the literature.

The protocol conversion problem was addressed in [22], as an instance of
supervisory control of discrete event systems, where the converter language is
restricted to be a sublanguage of the context A, and in [37] with the formalism of
input-output automata. In [22] the problem is modeled by the equation A�X = C
over regular languages with the rectification topology. The solution is given as a
sublanguage of A of the form A�C\A�C (not the largest solution). An algorithm
to obtain the largest compositionally progressive solution is provided that first
splits the states of the automaton of the unrestricted solution (refining procedure,
exponential step due to the restriction operator), and then deletes the states
that violate the desired requirement of progressive composition (linear step).
This algorithm does not generalize, as it is, to topologies where the unknown
component depends also on signals that do not appear in the component A.

5 Conclusions

We transformed the protocol converter synthesis problem into solving inequa-
tions and equations over regular languages represented by finite automata and
finite state machines. The solutions are computed with BALM-II, a software
package that finds the largest solution of parallel and synchronous inequations
and equations over automata and FSMs. For illustration we showed how to solve
a classical problem to design a protocol converter for interfacing an alternating-
bit sender and a non-sequenced receiver; we reported an example with parallel
composition and one with synchronous composition. The ability to derive all
protocol converters that solve the problem is an advantage over computational
techniques that deliver only one or a few solutions (which might yield inferior

294 G. Castagnetti et al.

implementations, e.g., as sequential circuits). For simplicity in this paper we dealt
only with inequations, but we could filter out the solutions that do not satisfy the
strict equality, thus solving strict equations and avoiding trivial empty solutions.
Notice that our approach works as it is also for non-deterministic specifications,
and in general delivers a non-deterministic result representing a collection of
deterministic solutions. Our current algorithm deals only with FA and FSMs,
where all data are represented explicitly. In order to deal with real protocols
having data words (with 8, 16, 32, 64 bits) there must be some abstraction
mechanism, which is out of scope for this paper, which is focussed on proposing
an automatic converter synthesis procedure for the control part. We will investi-
gate as future work how to handle data paths on top of our proposed approach
for control logic, starting from the techniques proposed in the literature. Another
related practical issue is scalability. The worst-case of the proposed algorithm
is exponential in the input state space, however this worst-case in practice is
achieved only in pathological examples. To assess the practicality of the pro-
posed methods and compare them, the availability of an established collection
of shared benchmarks would help the research community.

References

1. Sinha, R., Roop, P.S., Salcic, Z., Basu, S.: Correct-by-construction multi-
component SoC design. In: Proceedings of the Conference on Design, Automa-
tion and Test in Europe, DATE 2012, San Jose, CA, USA. EDA Consortium, pp.
647–652 (2012)

2. Martin, G., Bailey, B., Piziali, A.: ESL Design and Verification: A Prescription for
Electronic System Level Methodology. Morgan Kaufmann, San Mateo (2007)

3. Passerone, R., Rowson, J.A., Sangiovanni-Vincentelli, A.: Automatic synthesis of
interfaces between incompatible protocols. In: Proceedings of the 35th Annual
Design Automation Conference, DAC 1998. ACM, New York (1998). http://doi.
acm.org/10.1145/277044.277047

4. Petrenko, A., Yevtushenko, N.: Solving asynchronous equations. In: Budkowski, S.,
Cavalli, A., Najm, E. (eds.) FORTE XI/PSTV XVIII 1998, pp. 231–247. Kluwer
Academic Publishers, Dordrecht (1998)

5. Yevtushenko, N., Villa, T., Brayton, R., Petrenko, A., Sangiovanni-Vincentelli, A.:
Solution of parallel language equations for logic synthesis. In: The Proceedings of
the International Conference on Computer-Aided Design, pp. 103–110, November
2001

6. Yevtushenko, N., Villa, T., Brayton, R., Petrenko, A., Sangiovanni-Vincentelli, A.:
Solution of synchronous language equations for logic synthesis. In: The Biannual
4th Russian Conference with Foreign Participation on Computer-Aided Technolo-
gies in Applied Mathematics, September 2002

7. Yevtushenko, N., Villa, T., Brayton, R., Petrenko, A., Sangiovanni-Vincentelli, A.:
Sequential synthesis by language equation solving, Tech. Report No. UCB/ERL
M03/9, Berkeley, CA, April 2003

http://doi.acm.org/10.1145/277044.277047
http://doi.acm.org/10.1145/277044.277047

Automated Synthesis of Protocol Converters with BALM-II 295

8. Yevtushenko, N., Villa, T., Zharikova, S.: Solving language equations over syn-
chronous and parallel composition operators. In: Kunc, M., Okhotin, A. (eds.)
Proceedings of the 1st International Workshop on Theory and Applications of
Language Equations, TALE 2007, Turku, Finland, 2 July 2007, pp. 14–32. Turku
Centre for Computer Science (2007)

9. Villa, T., Yevtushenko, N., Brayton, R., Mishchenko, A., Petrenko, A.,
Sangiovanni-Vincentelli, A.: The Unknown Component Problem: Theory and
Applications. Springer, New York (2012)

10. Castagnetti, G., Piccolo, M., Villa, T., Yevtushenko, N., Mishchenko, A., Brayton,
R.K. : Solving parallel equations with BALM-II, EECS Department, University of
California, Berkeley, Tech. Report UCB/EECS-2012-181, July 2012. http://www.
eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-181.html

11. Castagnetti, G., Piccolo, M., Villa, T.: BALM-II. http://esd.scienze.univr.it/index.
php/it/balm-ii.html

12. B. R. Group.: BALM, website and User’s Manual. http://embedded.eecs.berkeley.
edu/Respep/Research/mvsis/balm.html

13. Androutsopoulos, V., Brookes, D., Clarke, T.: Protocol converter synthesis. Com-
put. Digital Tech. IEE Proc. 151(6), 391–401 (2004)

14. Jiang, Y., Jin, Y.: Protocol converter sysnthesis: an application of control synthesis,
EE219C Class Project Report, December 1999

15. Passerone, R., Rowson, J.A., Sangiovanni-Vincentelli, A.L.: Automatic synthesis
of interfaces between incompatible protocols. In: DAC, pp. 8–13 (1998)

16. Passerone, R., de Alfaro, L., Henzinger, T.A., Sangiovanni-Vincentelli, A.L.: Con-
vertibility verification and converter synthesis: two faces of the same coin. In:
ICCAD, pp. 132–139 (2002)

17. Passerone, R.: Semantic foundations for heterogeneous systems, Ph.D. dissertation,
EECS Department, University of California, Berkeley, Tech. Report No. UCB/ERL
M98/30 (2004). http://www.eecs.berkeley.edu/Pubs/TechRpts/1998/3445.html

18. Passerone, R.: Interface specification and converter synthesis. In: Zurawski, R. (ed.)
Embedded Systems Handbook. CRC Press, Taylor and Francis Group, Boca Raton
(2005)

19. Watanabe, S., Seto, K., Ishikawa, Y., Komatsu, S., Fujita, M.: Protocol transducer
synthesis using divide and conquer approach. In: Design Automation Conference,
2007, ASP-DAC 2007, Asia, South Pacific, pp. 280–285, January 2007

20. Bhaduri, P., Ramesh, S.: Interface synthesis and protocol conversion. Formal
Aspects Comput. 20, 205–224 (2008)

21. Avnit, K., Sowmya, A.: A formal approach to design space exploration of protocol
converters. In: The Proceedings of the Design, Automation and Test in Europe
Conference, pp. 129–134, April 2009

22. Kumar, R., Nelvagal, S., Marcus, S.: A discrete event systems approach for protocol
conversion. Discrete Event Dyn. Syst. Theory Appl. 7(3), 295–315 (1997)

23. Sinha, R., Girault, A., Goessler, G., Roop, P.S.: A formal approach to incremental
converter synthesis for system-on-chip design. ACM Trans. Des. Autom. Electron.
Syst. 20(1), 13:1–13:30 (2014). http://doi.acm.org/10.1145/2663344

24. Buffalov, S., El-Fakih, K., Yevtushenko, N., Bochmann, G.: Progressive solutions to
a parallel automata equation. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE
2003. LNCS, vol. 2767. Springer, Heidelberg (2003)

25. El-Fakih, K., Buffalov, S., Yevtushenko, N., Bochmann, G.: Progressive solutions
to a parallel automata equation. Theoret. Comput. Sci. 362, 17–32 (2006)

26. DiBenedetto, M.D., Sangiovanni-Vincentelli, A., Villa, T.: Model matching for
finite state machines. IEEE Trans. Autom. Control 46(11), 1726–1743 (2001)

http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-181.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-181.html
http://esd.scienze.univr.it/index.php/it/balm-ii.html
http://esd.scienze.univr.it/index.php/it/balm-ii.html
http://embedded.eecs.berkeley.edu/Respep/Research/mvsis/balm.html
http://embedded.eecs.berkeley.edu/Respep/Research/mvsis/balm.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/1998/3445.html
http://doi.acm.org/10.1145/2663344

296 G. Castagnetti et al.

27. Cao, J., Nymeyer, A.: Formal model of a protocol converter. In: Downey, R.,
Manyem, P. (eds.) Fifteenth Computing: The Australasian Theory Symposium
(CATS 2009), CRPIT, vol. 94. ACS, Wellington, pp. 107–117 (2009)

28. Sinha, R., Roop, P., Basu, S.: A model checking approach to protocol conver-
sion. In: Workshop on Model-driven High-level Programming of Embedded Sys-
tems (2007)

29. Sinha, R., Roop, P.S., Basu, S.: SoC design approach using convertibility verifica-
tion. EURASIP J. Emb. Sys. 2008 (2008)

30. Sinha, R., Roop, P.S., Basu, S., Salcic, Z.: Multi-clock SoC design using protocol
conversion. In: Proceedings of the Conference on Design, Automation and Test in
Europe, DATE 2009. European Design and Automation Association, pp. 123–128
(2009)

31. Sinha, R.: Automated techniques for formal verification of SoCs, Ph.D. disserta-
tion, University of Auckland, New Zealand (2009)

32. Autili, M., Inverardi, P., Mignosi, F., Spalazzese, R., Tivoli, M.: Automated synthe-
sis of application-layer connectors from automata-based specifications. In: Dediu,
A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol.
8977, pp. 3–24. Springer, Heidelberg (2015)

33. Ciancia, V., Martin, J., Martinelli, F., Matteucci, I., Petrocchi, M., Pimentel, E.:
Automated synthesis and ranking of secure BPMN orchestrators. Int. J. Secur.
Softw. Eng. 5(2), 44–64 (2014). http://dx.doi.org/10.4018/ijsse.2014040103

34. Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley Publishing Company, Reading (2001)

35. Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI-Q. 2(3),
219–246 (1989)

36. M. R. Group: MVSIS, software package. http://embedded.eecs.berkeley.edu/
Respep/Research/mvsis/software.html

37. Hallal, H., Negulescu, R., Petrenko, A.: Design of divergence-free protocol convert-
ers using supervisory control techniques. In: 7th IEEE International Conference
on Electronics, Circuits and Systems, ICECS 2000, vol. 2, pp. 705–708, December
2000

38. Avnit, K., D’Silva, V., Sowmya, A., Ramesh, S., Parameswaran, S.: A formal app-
roach to the protocol converter problem. In: DATE, pp. 294–299 (2008)

39. D’Silva, V., Ramesh, S., Sowmya, A.: Bridge over troubled wrappers: Automated
interface synthesis. In: Proceedings of the 17th International Conference on VLSI
Design, VLSID 2004. IEEE Computer Society, Washington, D.C., p. 189 (2004).
http://dl.acm.org/citation.cfm?id=962758.963411

40. Tivoli, M., Fradet, P., Girault, A., Gößler, G.: Adaptor synthesis for real-time
components. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424,
pp. 185–200. Springer, Heidelberg (2007)

http://dx.doi.org/10.4018/ijsse.2014040103
http://embedded.eecs.berkeley.edu/Respep/Research/mvsis/software.html
http://embedded.eecs.berkeley.edu/Respep/Research/mvsis/software.html
http://dl.acm.org/citation.cfm?id=962758.963411

An Experimental Spatio-Temporal
Model Checker

Vincenzo Ciancia1(B), Gianluca Grilletti2, Diego Latella1,
Michele Loreti3,4, and Mieke Massink1

1 Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, CNR, Pisa, Italy
vincenzoml@gmail.com

2 Scuola Normale Superiore, Pisa, Italy
3 Università di Firenze, Florence, Italy

4 IMT Alti Studi, Lucca, Italy

Abstract. In this work we present a spatial extension of the global
model checking algorithm of the temporal logic CTL. This classical veri-
fication framework is augmented with ideas coming from the tradition of
topological spatial logics. More precisely, we add to CTL the operators of
the Spatial Logic of Closure Spaces, including the surrounded operator,
with its intended meaning of a point being surrounded by entities sat-
isfying a specific property. The interplay of space and time permits one
to define complex spatio-temporal properties. The model checking algo-
rithm that we propose features no particular efficiency optimisations, as
it is meant to be a reference specification of a family of more efficient
algorithms that are planned for future work. Its complexity depends on
the product of temporal states and points of the space. Nevertheless,
a prototype model checker has been implemented, made available, and
used for experimentation of the application of spatio-temporal verifica-
tion in the field of collective adaptive systems.

1 Introduction

A collective system consists of a large set of interacting individuals. The tempo-
ral evolution of the system is not only determined by the decisions taken by the
individuals at the local level, but also by their interactions, that are observable
at the global level. By their own nature, such systems feature a “spatial” distrib-
ution of the individuals (e.g., locations in physical space, or nodes of some digital
or social network), affecting interaction possibilities and patterns. Verification of
collective systems and of their adaptation mechanisms requires one to take such
spatial constraints into account.

In this work, we provide a preliminary study on the feasibility of model
checking as a fully automated analysis of spatio-temporal models. Our work is
grounded on the so-called snapshot models (see [12] for an introduction). Spatial

Research partially funded by EU project QUANTICOL (nr. 600708) and IT MIUR
project CINA.

c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 297–311, 2015.
DOI: 10.1007/978-3-662-49224-6 24

298 V. Ciancia et al.

information is encoded by some topological structure, in the tradition of topo-
logical spatial logics [1], whereas temporal information is described by a Kripke
frame. The valuation of atomic propositions is a function of temporal states,
and spatial locations. We employ Čech closure spaces for the spatial part of the
modelling, following the research line initiated in [6] with the definition of the
Spatial Logic of Closure Spaces (SLCS). Čech closure spaces are a generalisation
of topological spaces also encompassing directed graphs.

Starting from a spatial and a temporal formalism, spatio-temporal logics
may be defined, by introducing some mutually recursive nesting of spatial and
temporal operators. Several combinations can be obtained, depending on the
chosen spatial and temporal fragments, and the permitted forms of nesting of
the two. A great deal of possibilities are explored in [12], for spatial logics based
on topological spaces. We investigate one such structure, in the setting of closure
spaces, namely the combination of the temporal logic Computation Tree Logic
(CTL) and of SLCS, resulting in the Spatio-Temporal Logic of Closure Spaces
(STLCS). STLCS permits arbitrary mutual nesting of its spatial and temporal
fragments. As a proof of concept, we define a simple model checking algorithm,
which is a variant of the classical CTL labelling algorithm [2,8], augmented with
the algorithm in [6] for the spatial fragment. The algorithm, which operates
on finite spaces, has been implemented as a prototype [10], that we discuss in
the current paper. The same algorithm is also currently implemented in the
tool topochecker [4], which is meant to be further developed and maintained,
and was used in [7] in order to check spatio-temporal properties of bike sharing
systems.

Related Work. The literature on topological spatial logics is rich (see [1]). How-
ever, model checking is typically not taken into account; this is discussed in
detail in [6]. Relevant exceptions are the recent works [11], where statistical
model checking is used on a (linear) spatio-temporal logics of signals, and [13],
also developing a model checker for a linear spatio-temporal logic of signals,
augmented with some metric information, and inheriting the approach of clo-
sure spaces from [6]. Our work diverts from these research lines in that the
underlying temporal model is branching, thus permitting thorough evaluation of
system properties in the presence of information about nondeterministic choice
in the model. In computer science, the term spatial logics has also been used for
logics that predicate about the internal structure of processes in process calculi.
A model checker for such kind of logics was developed in [3]. Indeed, the theory
and tool we present are linked to topological spatial logics rather than the area
of process calculi, thus the developed algorithms are very different in nature.

2 Motivating Example: Adaptive Smart Transport
Network

This work is part of a larger research effort aimed at formal verification of spatio-
temporal requirements of collective adaptive systems, in the scope of the EU FP7

An Experimental Spatio-Temporal Model Checker 299

QUANTICOL project1. In order to motivate the proposed tool in the theory of
verification of adaptive systems, we briefly report on a recent case study, detailed
in [5], where the STLCS model checker has been used in the context of adaptive
systems, and in particular of smart transport networks. The context is the bus
network of a city. The model checker is primarily used to identify occurrences of
clumping of buses, that is, buses of the same line that are “too close in space-
time” to each other, resulting in several buses of the same line passing by the
same stops within a short amount of time, and longer intervals without any buses
at certain stops. More precisely, a bus is part of a clump if it is close to a point
where another bus of the same line will be very soon. This statement is inherently
spatio-temporal, and classical temporal logics do not have the ability to directly
express it. It turns out that there is some ambiguity in the formalisation of
this sentence, resulting in different possible STLCS formulas characterising it.
Once established these formulas, the bus coordination system is equipped with an
adaptation layer, enabling buses to wait for some time at a stop, in order to avoid
the emergence of clumps at the expenses of some additional delay on the line.
The underlying hypothesis is that clumping happens when some buses are forced
to delay (e.g. because of traffic conditions) but the system evolves immediately
afterwards, in such a way that subsequent buses of the same line do not delay. The
STLCS model checker is used to define an analysis methodology that estimates
the impact of adaptation, before deployment, starting from existing traces (logs)
of the system. Each trace, in the form of a series of GPS coordinates for each bus,
is considered as a deterministic system. For traces featuring clumping (checked
using the model checker), the expected non-deterministic behaviour of the system
under the effect of the adaptation layer is then computed as a spatio-temporal
model, by augmenting the existing trace with the possible “wait” steps of each
bus. The counterexample-generation capabilities of the model checker are finally
used on such Kripke frame to analyse the impact of the adaptation, by identifying
new traces containing wait instructions that correct the problem. By doing this,
one is able to check if, and under what conditions, the adaptation strategy
succeeds in mitigating or eliminating the clumping problem, and confirm or
disprove (depending on the actual situation) the hypothesis underlying the choice
of the adaptation strategy. For more details on the specific case study, we refer
the reader to [5]; in the remainder of the paper, we shall focus on the formal
definition of the STLCS logic, and its model checking algorithm, as both were
not presented in [5].

3 Closure Spaces

In this work, we use closure spaces to define basic concepts of space. Below, we
recall several definitions, most of which are explained in [9]. See also [6] for a
thorough description of SLCS, the spatial logic of closure spaces, and its model-
checking algorithm. A closure space is a set equipped with a closure operator
1 See the web site http://www.quanticol.eu.

http://www.quanticol.eu

300 V. Ciancia et al.

obeying to certain laws. In the finite case, closure spaces are graphs, but also
(infinite) topological spaces are an instance of the more general constructions.

Definition 1. A closure space is a pair (X, C) where X is a set, and the closure
operator C : 2X → 2X assigns to each subset of X its closure, obeying to the
following laws, for all A,B ⊆ X:

1. C(∅) = ∅;
2. A ⊆ C(A);
3. C(A ∪ B) = C(A) ∪ C(B).

The notion of interior, dual to closure, is defined as I(A) = X \ C(X \ A).
Closure spaces are a generalisation of topological spaces. The axioms defining
a closure space are also part of the definition of a Kuratowski closure space,
which is one of the possible alternative definitions of a topological space. More
precisely, a topological space is a closure space where the axiom C(C(A)) = C(A)
(idempotency) holds. We refer the reader to, e.g., [9] for more information.

Various notions of boundary can be defined. The closure boundary (often
called frontier) is used for the surrounded operator in STLCS.

Definition 2. In a closure space (X, C), the boundary of A ⊆ X is defined
as B(A) = C(A) \ I(A). The interior boundary is B−(A) = A \ I(A), and the
closure boundary is B+(A) = C(A) \ A.

A closure space may be derived starting from a binary relation, that is, a graph.
In particular all finite spaces are in this form. This is easily seen by the equivalent
characterization of quasi-discrete closure spaces.

Definition 3. Consider a set X and a relation R ⊆ X × X. A closure operator
is obtained from R as CR(A) = A ∪ {x ∈ X | ∃a ∈ A.(a, x) ∈ R}.

Closure spaces derived from a relation can be characterised as quasi-discrete
spaces (see also Lemma 9 of [9] and the subsequent statements).

Definition 4. A closure space is quasi-discrete if and only if one of the follow-
ing equivalent conditions holds: (i) each x ∈ X has a minimal neighbourhood2

Nx; (ii) for each A ⊆ X, C(A) =
⋃

a∈A C({a}).

Proposition 1. A closure space (X, C) is quasi-discrete if and only if there is
a relation R ⊆ X × X such that C = CR.

Summing up, a closure space enjoys minimal neighbourhoods, and the closure
of A is determined by the closure of the singletons composing A, if and only if
the space is derived from a relation using Definition 3.
2 A minimal neighbourhood of x is a set A that is a neighbourhood of x, namely,

x ∈ I(A), and is included in all other neighbourhoods of x.

An Experimental Spatio-Temporal Model Checker 301

4 The Spatio-Temporal Logic of Closure Spaces

We define a logic interpreted on a variant of Kripke models, where valuations
are interpreted at points of a closure space. Fix a set P of proposition letters.

Definition 5. STLCS formulas are defined by the following grammar, where p
ranges over P :

Φ ::= � [True]
| p [Atomic predicate]
| ¬Φ [Not]
| Φ ∨ Φ [Or]
| N Φ [Close]
| ΦS Φ [Surrounded]
| Aϕ [All Futures]
| Eϕ [Some Future]

ϕ ::= X Φ [Next]
| Φ U Φ [Until]

The logic STLCS features the CTL path quantifiers A (“for all paths”), and
E (“there exists a path”). As in CTL, such quantifiers must necessarily be fol-
lowed by one of the path-specific temporal operators, such as3 XΦ (“next”), FΦ
(“eventually”), GΦ (“globally”), Φ1 UΦ2 (“until”), but unlike CTL, in this case Φ,
Φ1 and Φ2 are STLCS formulas that may make use of spatial operators. Further
operators of the logic are the boolean connectives, and the spatial operators NΦ,
denoting closeness to points satisfying Φ, and Φ1SΦ2, denoting that a specific
point satisfying Φ1 is surrounded, via points satisfying Φ1, by points satisfying
Φ2. The mutual nesting of such operators permits one to express spatial proper-
ties in which the involved points are constrained to certain temporal behaviours.
Let us proceed with a few examples. Consider the STLCS formula EG (green
S blue). This formula is satisfied in a point x in the graph, associated to the
initial state s0, if there exists a (possible) evolution of the system, starting from
s0, in which point x, in every state in the path, satisfies green and is surrounded
by blue. A further, nested, example is the STLCS formula EF (green S (AX
blue)). This formula is satisfied by a point x in the graph, in the initial state
s0, if there is a (possible) evolution of the system, starting from s0, in which
point x is eventually green and surrounded by points y that, for every possible
evolution of the system from then on, will be blue in the next time step.

A model M is composed of a Kripke structure (S, T), where S is a non-empty
set of states, and T is a non-empty accessibility relation on states, and a closure
space (X, C), where X is a set of points and C the closure operator. Every state s
has an associated valuation Vs, making ((X, C),Vs) a closure model according to

3 Some operators may be derived from others; for this reason, e.g., in Definition 5,
and Sect. 5, we use a minimal set of connectives. As usual in logics, there are several
different choices for such a set.

302 V. Ciancia et al.

Definition 6 of [6]. Equivalently, valuations have type S×X → 2P , where P is the
set of atomic propositions, thus, the valuation of atomic propositions depends
both on states and points of the space. Intuitively, there is a set of possible worlds,
i.e. the states in S, and a spatial structure represented by a closure space. In
each possible world there is a different valuation of atomic propositions, inducing
a different “snapshot” of the spatial situation which “evolves” over time. In this
paper we assume that the spatial structure (X, C) does not change over time.
Other options are indeed possible. For instance, when space depends on S, one
may consider an S-indexed family (Xs, Cs)s∈S of closure spaces.

Definition 6. A model is a structure M = ((X, C), (S, T),Vs∈S) where (X, C)
is a closure space, (S, T) is a Kripke frame, and V is a family of valuations,
indexed by states. For each s ∈ S, we have Vs : P → P(X).

A path in the Kripke structure is a sequence of spatial models (in the sense
of [6]) indexed by instants of time; see Fig. 1, where space is a two-dimensional
structure, and valuations at each state are depicted by different colours.

Fig. 1. In spatio-temporal logics, a temporal path represents a sequence of snapshots
induced by the time-dependent valuations of the atomic propositions (Color figure
online).

Definition 7. Given Kripke frame K = (S, T), a path σ is a function from N

to S such that for all n ∈ N we have (σ(i), σ(i + 1)) ∈ T . Call Ps the set of
infinite paths in K rooted at s, that is, the set of paths σ with σ(0) = s.

The evaluation contexts are of the form M, x, s |= Φ, where Φ is a STLCS
formula, s is a state of a Kripke structure, and x is a point in space X.

Definition 8. Satisfaction is defined in a model M = ((X, C), (S, T),Vs∈S) at
point x ∈ X and state s ∈ S as follows:

An Experimental Spatio-Temporal Model Checker 303

M, x, s |= �
M, x, s |= p ⇐⇒ x ∈ Vs(p)
M, x, s |= ¬Φ ⇐⇒ M, x, s �|= Φ
M, x, s |= Φ ∨ Ψ ⇐⇒ M, x, s |= Φ or M, x, s |= Ψ
M, x, s |= NΦ ⇐⇒ x ∈ C({y ∈ X|M, y, s |= Φ})
M, x, s |= ΦS Ψ ⇐⇒ ∃A ⊆ X.x ∈ A ∧ ∀y ∈ A.M, y, s |= Φ∧

∧∀z ∈ B+(A).M, z, s |= Ψ
M, x, s |= Aϕ ⇐⇒ ∀σ ∈ Ps.M, x, σ |= ϕ
M, x, s |= Eϕ ⇐⇒ ∃σ ∈ Ps.M, x, σ |= ϕ

M, x, σ |= XΦ ⇐⇒ M, x, σ(1) |= Φ
M, x, σ |= ΦUΨ ⇐⇒ ∃n.M, x, σ(n) |= Ψ and ∀n′ ∈ [0, n).M, x, σ(n′) |= Φ

The syntax we provide is rather essential. Further operators can be derived from
the basic ones; e.g., one can define conjunction and implication using negation
and disjunction; spatial interior is defined as the dual of N ; several derived path
operators are well-known for the temporal fragment, by the theory of CTL. We do
not attempt to make an exhaustive list; for the classical temporal connectives,
see e.g., [2]; for spatial operators, [6] provides some interesting examples. In
Sect. 6 we show some simple spatial and spatio-temporal formulas. More complex
formulas can be found in [5].

5 Model Checking

In this section we describe the model checking algorithm, which is a variant of
the well-known CTL labelling algorithm. For more information on CTL and its
model checking techniques, see e.g., [2] or [8]. This algorithm operates in the case
of finite, quasi-discrete closure spaces, represented as finite graphs. Assume the
type Set implementing a finite set-like data structure4, with elements of type El
and operations union, inter, diff, times, emptyset, with the obvious types.

We represent a finite directed graph as the triple

(G : Set, Pred G : El → Set, Cl G : Set → Set)

where the argument and result of the operators implementing closure Cl G, and
predecessor Pred G, are constrained to belong to G. We describe a model by a pair
of graphs M = (X , T) where the spatial component is X = (X, Pred X, Cl X),
and the temporal component (which can be thought of as a Kripke frame) is
T = (T, Pred T, Cl T).

Consider the finite set S = X times T of points in space-time; given a subset
A ⊆ S, and a state t ∈ T, we let space sec(A,t) be the subset of X containing
the points x such that (x, t) ∈ A; we define time sec in a similar way. With
4 We remark that the complexity of operations on such type affect the complexity of

the algorithm; however, since the algorithm is global, the Set type may be imple-
mented using an explicit lookup table, that is, an array of boolean values indexed
by states, as usual in model checking, obtaining the complexity that we discussed.

304 V. Ciancia et al.

choose we indicate the operation of choosing an element from a non-empty set
(without making explicit how to pick it). For Φ an STLCS formula, and M a
model, we let �Φ�M = {(x, t) ⊆ S | M, x, t |= Φ}.
Given a formula Φ and a model M, the algorithm proceeds by induction on the
structure of Φ; the output of the algorithm is the set �Φ�M. In the following, we
present the relevant code portions addressing each case of the syntax; we omit
the cases for the boolean connectives, and use a minimal set of connectives, apt
to efficient verification, for the temporal part, namely EX , AF, E U . The cases
for Φ = EXΦ′ and E(Φ1 UΦ2) make use of the auxiliary function pred time:

function pred_time(A)

F := emptyset;

foreach ((x,t) in A)

U := Pred_T(t);

F := F union ({x} times U);

return F;

Case Φ = NΦ′: The result is computed as the set
⋃

(x,t)∈�Φ′�M{(y, t) | y ∈
CX(x)}, which is correct in a quasi-discrete closure space (X, C), as, for all sets
A, we have C(A) =

⋃
x∈A C({x}).

let A = �Φ′�M;

P := emptyset;

foreach ((x,t) in A)

P := P union (Cl_X({x}) times {t});

return P;

Case Φ = Φ1SΦ2:For every state t, we compute the spatial components of �Φ1�
M

and �Φ2�
M at state t (called R and Bs in the pseudo-code). Then we apply the

algorithm described in [6].

let A = �Φ1�
M;

let B = �Φ2�
M;

F := emptyset;

foreach (t in T)

R := space_sec(A,t);

Bs := space_sec(B,t);

U := R union Bs;

D := Cl_X(U) diff U;

while (D != emptyset)

s := choose(D);

N := (Cl_X({s}) inter R) diff Bs;

R := R diff N;

D := (D union N) diff {s};

F := F union (R times {t})

return F;

Case Φ = EXΦ′ :The set of predecessors (in time) of the points in space-time
belonging to the semantics of Φ′ are computed and returned.

let A = �Φ′�M;

return pred_time(A);

An Experimental Spatio-Temporal Model Checker 305

Case Φ = AFΦ′: The case for AF is essentially the efficient algorithm for EG
presented in [2], except that it is presented in “dual” form, using the fact that
�EGΦ′�M = �¬AF(¬Φ′)�M. The algorithm is iterated for each point of the space.
More precisely, for each x ∈ X, vector count, whose indices are states in T, is
used to maintain the following invariant property along the while loop: whenever
count[t] is 0, we have M, x, t |= AFΦ′. In order to establish such invariant
property, before the while loop, count[t] is initialised to 0 for each point in
F, which is the set of points t such that there is some x, with M, x, t |= Φ′

(therefore, also M, x, t |= AFΦ′ by definition). For each remaining state t, the
value of count[t] is set to the number of its successors. Along the while loop,
the set U is the set of states t that, at the previous iteration (or at initialisation),
have been shown to satisfy M, x, t |= AFΦ′. At each iteration, for each t in U,
function sem af aux is used to inspect each predecessor y of t and decrease the
value of count[y]. When count[y] becomes 0, y is added to U, as it is proved
that all the successors of y satisfy AFΦ′; no state is added twice to U (which is
guaranteed by the check if count[y] > 0 in function sem af aux).

let A = �Φ′�M;

M := emptyset;

foreach (x in X)

F := time_sec(A,x);

U := F;

foreach (t in (T minus F))

count[t] := cardinality (Cl_T({t}));

foreach (t in F)

count[t] := 0;

while(U != emptyset)

U’ := U;

U := emptyset;

foreach (t in U’)

sem_af_aux(F,U,count ,t);

M := M union ({x} times F);

return M;

function sem_af_aux(F,U,count ,t)

foreach (y in Pred_T(t))

if count[y] > 0 then

count[y] := count[y] - 1;

if (count[y] = 0)

then

U := U union {y};

F := F union {y};

Case E(Φ1 UΦ2): In this case, the algorithm computes the set of points that either
satisfy Φ2, or satisfy Φ1 and can reach points satisfying Φ2 in a finite number of
temporal steps. This is accomplished by maintaining, along the while loop, the
set F of points that have already been shown to be in this situation (initialised
to the points satisfying Φ2), and the set L of points that satisfy Φ1, are not in F,
and can reach F in one (temporal) step. At each iteration, F is augmented by the

306 V. Ciancia et al.

points in L, and L is recomputed. When L is empty, F contains all the required
points. The set P, initialised to the points satisfying Φ1, is used to guarantee
termination, or more precisely, that no node is added twice to L.

let A = �Φ1�
M;

let B = �Φ2�
M;

F := B;

P := A diff B;

L := pred_time(F) inter P;

while(L <> emptyset)

F := F union L;

P := P diff L;

L := pred_time(L) inter P;

return F

In the implementation, available at [10], the definition of the Kripke structure
is given by a file containing a graph, in the plain text graph description language5

dot. Quasi-discrete closure models are provided either in the form of a graph, or
in the form of a set of images, one for each state in the Kripke structure, having
the same size. The colours of the pixels in the image are the valuation function,
and atomic propositions actually are colour ranges for the red, green, and blue
components of the colour of each pixel. In this case, the model checker verifies a
special kind of closure spaces, namely finite regular grids.

The model checker interactively displays the image corresponding to a “cur-
rent” state. The most important command of the tool is sem colour formula ,
that changes the colour of points satisfying the given formula, to the specified
colour, in the current state. The tool has the ability to define parametrised
names for formulas (no recursion is allowed). Formulas are automatically saved
and restored from a text file. The implementation is that of a so-called “global”
model checker, that is, all points in space-time satisfying the given formulas are
coloured/returned at once. More information on the tool, as well as the complete
source code, is available at [10].

The complexity of the currently implemented algorithm is linear in the prod-
uct of number of states plus arcs of the temporal model, subformulas, and points
plus arcs of the space, which is a consequence of the algorithm described in [6]
being linear in the number of points, and the classical algorithm for CTL being
linear in the number of states (in both cases, for each specific formula). Such effi-
ciency is sufficient for experimenting with the logic (see [5]), but if both the space
and the Kripke structures are large, model checking may become impractical.

Remark 1. Even though we consider a thorough performance analysis of the
basic algorithm beyond the scope of this preliminary investigation, and possibly
redundant, we can provide some hints about the feasibility and the efficiency
problems of spatio-temporal model checking. Our prototype has been imple-
mented in OCaml, trying to make use of the declarative features of the lan-
guage. For example, we use the Set module of OCaml, implementing a purely
5 Further information on the dot notation can, for example, be found at http://www.

graphviz.org/Documentation.php.

http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php

An Experimental Spatio-Temporal Model Checker 307

functional data type for sets, in order to make use of Definition 8 directly, rather
than attempting to use bit arrays to improve performance, as it is typical in
global model checking. In the example of Sect. 2, we considered rather small
Kripke frames, in the order of one hundred states. However, the images associ-
ated to each state contain around one million points. Therefore, even though the
state space seems rather small, the number of examined points in space-time is
in the order of 50–100 millions of states. The model checker is able to perform
the required analyses in a time that roughly varies between some seconds and
30 min, depending on the formula, on a quite standard laptop computer. On the
one hand, this proves that non-trivial examples may be analysed using the simple
algorithm we proposed, but on the other hand, the same data strongly suggests
that effective optimisations need to be found to make large-scale spatio-temporal
model checking feasible (more on this in the conclusions).

6 Examples

Finally, we show some simple examples to illustrate operation of the tool. Con-
sider the Kripke frame in Fig. 2. To each state, an image is associated, that the
model checker considers an undirected graph whose nodes are pixels, and whose
arcs go from each pixel to the neighbouring ones, in the four main directions
north, south, east, west. The image associated to each state are shown in Fig. 3.

0 1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Fig. 2. The Kripke frame of our example.

Let us consider the green circle with red boundary, in the first image of
Fig. 3. The centre of the circle in the figures moves along time towards the right.
Its radius grows at constant speed in turn. Then, in state 5, there is a non-
deterministic choice point. In the first possible future (states 6–10), the radius
keeps growing, whereas in the second future (states 11–15) the radius shrinks.
In the following, we shall use atomic propositions g, r, evaluating to the green
and red points (boundary of the green area) in the figures.

Let us first consider the spatial formula gSr (green points surrounded by a
red boundary). Such formula is evaluated, colouring in blue the points satisfying
it, by executing the command below. Its output is displayed in Fig. 4, for each
point in space and state of the Kripke structure:

sem blue S[<g>,<r>]

308 V. Ciancia et al.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Fig. 3. The images providing valuations for the atomic propositions. Each valuation
depicts a green, filled circle with a red border (Color figure online).

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Fig. 4. The points satisfying gSr are displayed in blue. These are the filled circles;
their borders remain red (Color figure online).

A second example is the spatio-temporal formula EF(gSr), computed by:
sem blue EF (S[<g>,<r>])

See output in Fig. 5. For each point in space and temporal state, the points that
will eventually satisfy green and be surrounded by red, are coloured in blue.
Finally, we show the semantics of the spatio-temporal formula AGg, characterising
points that will be green forever in all futures. In Fig. 6 we show the output of

sem blue AG <g>
In states 1–5 of Fig. 6, the valuation of the formula in each state is the

intersection of two circular areas, namely the intersection of the green area in the
chosen state and the green area in state 15. By this, in particular, the valuation
of the formula is the empty set in state 1. In states 11–15, the situation is similar,
since state 15 is a possible future. On the other hand, in states 6–10, state 15 is
not reachable, thus the area which will be forever green is larger.

An Experimental Spatio-Temporal Model Checker 309

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Fig. 5. In blue, the semantics of EF(gSr) (Color figure online).

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Fig. 6. In blue, the semantics of AGg (Color figure online).

7 Conclusions and Future Work

In this paper we studied an extension of the Spatial Logic of Closure Spaces
of [6] with classical CTL temporal logic operators. A simple, proof-of-concept,
temporal extension of the spatial model checker for SLCS has also been presented
together with a simple example. The spatio-temporal model checker has been
used for a urban transportation case study, as described in detail in [5], and for
analysing properties of bike sharing systems [7].

The use of a spatial model checker provides us with a sophisticated tool
for checking properties of systems where location plays an important role, as it
does in many collective adaptive systems. By enhancing this standpoint with
a temporal perspective, the interplay of space and time allows one to define
complex spatio-temporal formulas, predicating over the relation between points
of a spatial model that varies over branching time.

Current work is focused on defining collective variants of spatial and spatio-
temporal properties; that is, the satisfaction value of a formula is defined on a
set of points, rather than on a single point, so that the satisfaction value of a

310 V. Ciancia et al.

formula with respect to a set of points (a collective property) is not necessarily
determined by the satisfaction values over the points composing the set (an
individual property). Such interpretation of spatio-temporal logics is particularly
motivated by the setting of collective adaptive systems and emergent properties.

High priority in future work will be given to the investigation of various kinds
of optimisations for spatio-temporal model checking, including partition refine-
ment of models, symbolic methods, and on-line algorithms taking advantage of
differential descriptions of the change between system states. An orthogonal, but
nevertheless interesting, aspect of spatio-temporal computation is the introduc-
tion of probability and stochastic aspects, as well as the introduction of metrics,
yielding bounded versions of the introduced spatio-temporal connectives. Such
features will be studied in the context of STLCS. Investigating efficient model
checking algorithms in this setting is important for practical applications, which
are very often quantitative rather than boolean.

Another ongoing work is the development of qualitative and quantitative
spatio-temporal analysis of the behaviour of complex systems, which was started
in [13], and features an extension of Signal Temporal Logic to accommodate
spatial information. In that case, models are deterministic (thus non-branching)
and monitoring plays a central role. Single, infinite traces (intended to be the
outcome of some approximation of a complex sytem, described by a system of
differential equations) are analysed to check whether specific spatio-temporal
properties are satisfied, such as, the formation of specific patterns.

References

1. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics.
Springer, Netherlands (2007)

2. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

3. Caires, L., Vieira, H.T.: SLMC: a tool for model checking concurrent systems
against dynamical spatial logic specifications. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 485–491. Springer, Heidelberg (2012)

4. Ciancia, V.: topochecker - a topological model checker (2015). http://fmt.isti.cnr.
it/topochecker - https://github.com/vincenzoml/topochecker

5. Ciancia, V., Gilmore, S., Grilletti, G., Latella, D., Loreti, M., Massink, M.: Spatio-
temporal model-checking of vehicular movement in transport systems. submitted
for journal publication, available from the authors

6. Ciancia, V., Latella, D., Loreti, M., Massink, M.: Specifying and verifying proper-
ties of space. In: Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol.
8705, pp. 222–235. Springer, Heidelberg (2014)

7. Ciancia, V., Latella, D., Massink, M., Paskauskas, R.: Exploring spatio-temporal
properties of bike-sharing systems. In: 9th International Conference on Self-
Adaptive and Self-Organizing Systems Workshops. IEEE (volume to appear, 2015)

8. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(2001)

9. Galton, A.: A generalized topological view of motion in discrete space. Theor.
Comput. Sci. 305(1—-3), 111–134 (2003)

http://fmt.isti.cnr.it/topochecker
http://fmt.isti.cnr.it/topochecker
https://github.com/vincenzoml/topochecker

An Experimental Spatio-Temporal Model Checker 311

10. Grilletti, G., Ciancia, V.: STLCS model checker (2014). https://github.com/
cherosene/ctl logic

11. Haghighi, I., Jones, A., Kong, Z., Bartocci, E., Grosu, R., Belta, C.: Spatel: a novel
spatial-temporal logic and its applications to networked systems. In: Proceedings of
the 18th International Conference on Hybrid Systems: Computation and Control,
HSCC 2015, Seattle, WA, USA, 14–16 April 2015, pp. 189–198. ACM (2015)

12. Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic + tempo-
ral logic = ? In: Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.) Handbook
of Spatial Logics, pp. 497–564. Springer, Netherlands (2007)

13. Nenzi, L., Bortolussi, L., Ciancia, V., Loreti, M., Massink, M.: Qualitative and
quantitative monitoring of spatio-temporal properties. In: Bartocci, E., Majumdar,
R., et al. (eds.) RV 2015. LNCS, vol. 9333, pp. 21–37. Springer, Heidelberg (2015)

https://github.com/cherosene/ctl_logic
https://github.com/cherosene/ctl_logic

Dependable Composition of Software
and Services in the Internet of Things:

A Biological Approach

Amleto Di Salle, Francesco Gallo(B), and Alexander Perucci

University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
{amleto.disalle,francesco.gallo}@univaq.it,

alexander.perucci@graduate.univaq.it

http://www.univaq.it

Abstract. If we pause a moment to reflect on the innovations of the last
twenty years in the field of information technology, we realize immedi-
ately as consumer electronics, computers and telecommunications have
changed their balance of power. Today, Internet is so ingrained in the
culture of the people who seems to be always there, and you can hardly
imagine to live without it. Today mobile devices are computers, and
their inter-connection and connection with several kinds of technolog-
ical objects is ever more increasing. This has led to the emergence of
new concepts, such as the Internet of Things (IoT), Machine to Machine
(M2M), and People to Machine (P2M) and the consequent need to pro-
vide frameworks that allows communication and interoperability between
heterogeneous objects. Furthermore, the increasing availability of data
and especially of computational power allows things to serve not only as
data producers but also as consumers.

Thus we can think about internet of things as a cloud of services soft-
ware and services composition.

In such a highly mobile environment, both the user and “things” may
be subject to frequent movement, demanding a frequent recomposition.
In this paper, we propose a preliminary biological-inspired approach for
adaptive software composition at run time. The approach leverages the
concept of immune system to ensure dependability e.g. availability and
reliability, of a composition of software and services in the Internet of
Things.

Keywords: Adaptive composition · Run-time composition · Service
composition

1 Introduction

Information and communication systems are invisibly embedded in the envi-
ronment around us. This results in the generation of enormous amounts of data
which have to be stored, processed and presented in a seamless, efficient and eas-
ily interpretable form. This model will consist of services that are commodities
and delivered in a manner similar to traditional commodities.
c© Springer-Verlag Berlin Heidelberg 2015
D. Bianculli et al. (Eds.): SEFM 2015 Workshops, LNCS 9509, pp. 312–323, 2015.
DOI: 10.1007/978-3-662-49224-6 25

Dependable Composition of Software and Services in the Internet of Things 313

The computing criterion will need to go beyond traditional mobile comput-
ing scenarios that use smart phones and portables, and evolve into connecting
everyday existing objects and embedding intelligence into our environment.

The traditional Internet concept is radically evolving into a Network of inter-
connected objects that not only harvest information from the environment (sens-
ing) and interacts with the physical world (actuation/command/control), but
also uses existing internet standards to provide services for information trans-
fer, analytics, applications and communications. So, we have seen the birth of
new concepts such as Internet of Things, that [1,2], define as: (1) ‘Things’ are
active participants in business, information and social process where they are
enabled to interact and communicate among themselves and with the environ-
ment by exchanging data and information sensed about the environment, while
reacting autonomously to real/physical world events and influencing it by running
processes that trigger actions and create services with or without direct human
intervention, and (2) Interconnection of sensing and actuating devices providing
the ability to share information across platforms through a unified framework,
developing a common operating picture for enabling innovative applications. This
is achieved by seamless large scale sensing, data analytics and information rep-
resentation using cutting edge ubiquitous sensing and cloud computing.

These definitions promote the development of novel tools for the agile, trans-
parent, and automated composition of objects in heterogeneous environments,
dominated by a high dynamism. Dynamism involves access to resources and ser-
vices that can not be guaranteed over time, causing the user to perceive the “Net”
as not dependable. Being inspired by biological systems, an immune system is a
form of highly dynamic system by its nature. In particular, an immune system
is composed of loosely-coupled elements, which can interact with each other by
exchanging asynchronous messages, providing a high capability to composition.
Moreover, it can react to unforeseen events, e.g., intrusions, and it has the abil-
ity to adapt to context changes and provide the correct behaviour, making the
system dependable and responsive.
In this paper, we propose a biological-inspired preliminary approach that lever-
ages the peculiarities of immune systems so to allow the composition of software
and services in a dynamic and reliable way, in order to provide a tool able to
manage the combination and selection of software and services in the context
of IoT. This composition is produced in order to satisfy both functional and
non functional requirements, such as dependability. Moreover, given the need
to write data centric applications (e.g. “Big Data”), of which the Internet of
things is large producer, and the need to have applications with the ability to
scale horizontally and remaining dependable, however, it has suggested to adopt
the use of paradigm functional programming based because, in our view, offers
effective techique for the challenges of our context, see Sect. 4.

The paper is organized as follows: in the Sect. 2, we provide an overview about
immune systems by also discussing their main elements. In Sect. 3, we introduce
basic concepts about software and services composition, by also discussing the
new challenges to be faced in the Internet of Things context. In Sect. 4, we present

314 A. Di Salle et al.

Fig. 1. Immune system components

our biological-inspired approach for the dynamic and dependable composition of
software and services in the Internet of Things. We provide a preliminary imple-
mentation of the proposed approach that makes use of functional programming.
Section 5 concludes and discusses future research directions we should undertake
towards the realization of our preliminary proposal.

2 Immune System Aspects

An immune system [3] is a particular kind of biological system that is self-
protecting against diseases. It is made of biological structures and processes
within an organism. The minimum biological structure within an immune system
is the cell, which in turn is made of molecules.

A key feature of an immune system is the ability to distinguish between (i)
non-infectious structures, which must be preserved since they do not represent a
disease, and (ii) infectious structures, i.e., pathogens, which must to be removed
since they result in injuries to the organism the immune system belongs to.

But above all, its action immunizing, is performed through the selection and
composition of components better suited to deal with the threat.

By referring to [4], the main elements of an immune system can be summa-
rized as follows:

– Lymphocytes. They are the cells of an immune system and, for the purposes
of this paper, it is enough to distinguish between T Cells and B Cells:
• T Cells. They can be of two kinds, T Helper and T Killer. The former

are cells responsible for preventing infections by managing and strength-
ening the immune responses enabled by the recognition of antigens. The

Dependable Composition of Software and Services in the Internet of Things 315

latter are cells able to destroy certain tumor cells, viral-infected cells, and
parasites. Furthermore, they are responsible for down-regulating immune
responses, when needed.

• B Cells. They are responsible for producing antibodies in response to for-
eign proteins of bacteria, viruses, and tumor cells. B cells are continuously
produced in the bone marrow. When the B cell receptor, on the surface
of the cell, matches the detected antigens present in the body, the B cell
proliferates and secretes a free form of those receptors (antibodies) with
identical binding sites as the ones on the original cell surface. The inter-
esting aspect is that the different variants are generated in a seemingly
random fashion. Versions that are not biologically significant or useless
are automatically deleted.

Both B Cells and T Cells carry receptor molecules that make them able to
recognize specific pathogens. In particular, T Killers recognize pathogens only
after antigens have been processed and presented in combination with a Major
Histocompatibility Complex (MHC) molecule. In contrast, B Cells recognize
pathogens without any need for antigen processing.

– Macrophages. They are important in the regulation of immune responses.
They are often referred to as Antigen-Presenting Cells (APC) because they
pick up and ingest foreign materials and present these antigens to other cells of
the immune system such as T Cells and B Cells. This is one of the important
first steps in the initiation of an immune response.

– Memory Cells. When B Cell and T Cell are activated and begin to replicate,
some cells belonging to their progeny become long-lived Memory Cells. The
role of Memory Cells is to build an immunological memory that makes the
immune system stronger in being self-protecting to future infections/attacks.
In particular, a Memory Cell remembers already recognized antigens and lead
to a stronger immune response when these antigens are recognized again.

– Immune response. An immune response to foreign antigens requires the
presence of APC in combination with B Cells or T Cells. When an APC
presents an antigen to a B Cell, the B Cell produces antibodies that specifically
bind to that antigen in order to kill/destroy it. If the APC presents an antigen
to a T Cell, the T Cell becomes active. Active T Cells essentially proliferate
and kill target cells that specifically express the antigen presented by the
APC. The production of antibodies and the activity of T Killers are highly
regulated by T Helpers. They send signals to T Killers in order to regulate
their activation, proliferation (replication) and efficiency (specialization).

Antibodies are protein complexes with a modular structure which share a
basic structure which, in turn, show considerable variability in specific regions
capable of binding to structurally complementary particles as antigens. Figure 2
represents the antibodies structure. The variable part, i.e., the V-shaped one,
forms the binding site for antigens.

The peculiarity of antibodies, as crucial entities of immune systems, is the
specificity with which they are able to recognize antigens. They are able, in fact,
to distinguish between protein fragments which differ even for a single amino

316 A. Di Salle et al.

Fig. 2. Antibody example

acid, but also to bind more different antigens. The specificity, however, comes
from the ability to create always different antibodies which can bind different
antigens capable of building a repertoire of antibodies extremely broad.

Following the description above, Fig. 1 shows the main elements of an immune
system as constructs of a simple graphical notation that we use in Sect. 2.1 for
immune system modeling purposes. The figure shows also the messages (signals)
that the system elements can exchange.

2.1 Immune System Scenarios

By leveraging the graphical modeling notation introduced above, in this section,
we briefly describe two scenarios in the immune systems domain, which are
representative for adaptive systems in general. The scenarios provide the reader
with a high-level description of the interactions that happen among the elements
of an immune system during an immune response.
Scenario 0. Figure 3(a) shows a scenario where the elements of an immune
system are in an inactive state, marked with the off label. In particular, two
APC engulf a virus or bacteria: each APC decomposes the pathogen (virus or
bacteria) and exposes on its surface a piece of the pathogen, i.e., an antigen (see
the triangle and pentagon in the figure). Metaphorically, we can think of this as
a setup phase of a computer system, where each system’s component is in an
idle state and the antigen is a “perturbation” that comes from the outside or
even by the system itself. In our context, we can see this perturbation as new
system behavior or goal to achieve.
Scenario 1. In this scenario, a B Cell becomes active after that it caught a known
antigen and the T Helper close to it became active. In particular, we note that
B-cell produces antibodies that exhibit an area of contact (V), complementary
to the antigen, which is then captured and subsequently engulfed.
These simple, yet representative scenarios, lead us to observe that, as a particular
kind of adaptive and dependable system in a specific domain:

– an immune system is composed of loosely-coupled elements;

Dependable Composition of Software and Services in the Internet of Things 317

(a) Immune system - Scenario 0 (b) Immune system - Scenario 1

Fig. 3. Scenario example

– the elements of an immune system can interact with each other by exchanging
asynchronous messages, providing a high capability to composition;

– an immune system can react to unforeseen events, e.g., intrusions;
– the elements of an immune system have the ability to adapt to context changes

and provide the correct behaviour, making the system dependable and respon-
sive.

3 Software and Services Composition

In the previous section it was emphasized that the immune response is based
on the ability of its components to respond efficiently and effectively to external
attacks or malfunctioning, through their composition.

In the traditional context of services composition, an implicit assumption is
that services are running on an enterprise service bus (ESB) [5]. This propri-
etary product hide within itself the complexity of the coordination of the differ-
ent components. Moreover service provider hosts a network accessible software
module (an implementation of a given service). The service provider defines a
service description of the service and publishes it to a client (or service discovery
agency) through which a service description is published and made discoverable.
The service client (requestor) discovers a service (endpoint) and retrieves the
service description directly from the service (through meta-data exchange) or
from a registry or repository. Service provider and service client roles are logical
constructs and a service may exhibit characteristics of both.

Actually, the emergence of new concepts, such as the Internet of Things
(IoT), Machine to Machine (M2M), and People to Machine (P2M) caused by
the growth of smart devices, allows us to think about the possibility of using all
these things not only as data producers or consumers, but as services provider.
Thus we can think about internet of things as a cloud of services software and
services composition.

This led to the creation of mobile providers which will probably be very
different from traditional ESBs; for example they may be context-aware services

318 A. Di Salle et al.

or location based services, or, given the presence of several sensors which are now
equipped mobile devices, providing information from the real world. Moreover,
in the context of P2M, they may also act as intermediaries between the people,
in order to turn them into human provided services [6].

Given the variability of the context, a big challenge is to automate and effi-
ciently generate a composition of services or software applications that
meet exactly the expectations of the requester, which is dependable in time and
distributed.

In the next section we propose a preliminary approach based on immune
system, in particular on the antibody component, for supporting dependable
and dynamic composition of software and services in the context of the Internet
of Things.

4 Dependable Composition of Software and Services
in the IoT: A Programmatic Solution

With the popularity and continued growth of smart mobile devices, service
providers contained in a composition may be mobile devices. They constantly
move and may cause the crash of the composition when, for example, are located
outside of the communication range, or one of the device goes offline. The selec-
tion of the services, therefore, must make the composition as much as possible
dependable, so as to avoid frequent recompositions.

In order to achieve a dependable composition it is necessary to provide tools
that can handle natively and independently one possible reconfiguration, but
above all the ability to adapt to changes in context, while still keeping the goal
of the composition. As said in Sect. 3, we can summarize the composition process
in:

Service description: is key to service management. Service description enables
both the customer and the service provider to know what to expect and not
expect from a service. Clearly defined services enable customers to under-
stand service offerings, including what each service does and does not include,
eligibility, service limitations, cost, how to request services, and how to get
help.

Service classification: once performed discovery of services, the service classi-
fication can support the service combination and service selection. For exam-
ple, it allows to aggregate services discriminating against non-functional
requirements, so that one can select the most appropriate service among
those identified. It also helps to improve the performance and efficiency of
the composition by decreasing the number of services.

Service combination: it is possible to identify two possible approaches: (1)
bottom-up, which is synthesized in a composition of known services, defining
an executable workflow, or (2) top-down, where a composer creates abstract
non-executable workflow template, and then forwarding the template to the
next phase of service selection.

Dependable Composition of Software and Services in the Internet of Things 319

Fig. 4. Service and immune system mapping

Fig. 5. Service message and immune system mapping

Service selection: since a workflow consisting of abstract activity, service
selection selecting an appropriate service efficiently for each task. In fact,
through the service classification, each activity may have several candidate
services with the same functions, that however have, for example, different
non-functional requirements.

Since the classification of Fig. 4, we propose a preliminary study in order
to provide a tool able to manage efficiently and reliably the combination and
selection of software and services in the context of IoT. To address this chal-
lenge, we propose an approach based on the immune system and Functional
Programming (FP):

– the elements of the immune system are able to be composed between them
in order to build complex structures that once activated have the ability to
respond to external stimuli, for example antigens, and exhibit a countermove.
This makes it an extremely adaptable, resilient and reliable.

– on the other hand, functional programming encourage the: (1) compose func-
tion, that favors building programs from the bottom up by composing func-
tions together; (2) immutability, since functional programming favors pure
functions, which can’t mutate data, it also makes use of immutable data.
Instead of modifying an existing data, a new one is efficiently created;
(3) transform, rather than mutate, data, FP uses functions to transform
immutable data. One data is put into the function, and a new immutable
data structure comes out.

In our view, the services and the software components, are atomic and
immutable data that are combined through mechanisms of composition, i.e. func-
tions, in order to ensure the desired goal.

320 A. Di Salle et al.

Fig. 6. Antibody architecture

In Fig. 6, we defined the elements constituting the software architecture of
the process of Fig. 3(b). Given the highly heterogeneous environment that char-
acterizes the Internet of Things, every actor is equipped with a specific user
profile, which can be defined as: a record of user-specific data that define the
user’s working environment.

This definition is deliberately general, to ensure the management of pro-
files that apply to both human and “things”, but at the same time guide the
classification and selection of services. A further motivation to support the use
of a user profile is given by the fact that together with the description of any
goal to be achieved, also non-functional requirements can be specified, such as
dependability, that for a mobile user is perceived as a fundamental requirement.

The architecture components were represented without smooth surfaces, with
the intent to represent the ability of each of them to create links in a totally
adaptive way, that allows the composition with services or software applications
as much automated as possible. The invariant is given by the User Profile, which
defines the semantic boundaries, within which to make the classification and the
choice of components to be classified.

As introduced in the previous section, we can make some considerations about
the formalism and computer science concepts that could support a theoretical
implementation of the proposed architecture (Fig. 6). In particular, we consider

Dependable Composition of Software and Services in the Internet of Things 321

the concepts of Partially Applied Functions [7], where in a function with an
parameters list, you can define a new function where you omit one or more
parameter of the list.

Let a program p, and its input i , and we say that we want to split i in
a known static part s and a dynamic (unknown) d . Then, given a function of
specialization S , we specialize p with respect to s:

S(p,< s, >) = pS

In our context, the function S is the service to be provided to the user p,
that uses as input parameters: the User Profile (s) and available services at the
time (d or).
This function is computable, and it can be implemented [8]. It is strongly linked
to the concept of functional programming. This approach promotes modularity,
and thus a natural ability to compose, promoting reuse, parallelization, general-
ity, and automated reasoning. There are numerous programming languages that
allow one to adopt the functional programming paradigm; one of these is the
Scala language1.

For simplicity, we map some of the elements of the architecture of Fig. 6 to
simple mathematical functions, please see Fig. 7(a) and (b). In particular, we
have:

– map2 is immuneResponseElement
– s is UserProfile
– fsf is antibodyElement
– f1 and f2 is antigenElement

(a) Partial Function Mapping (b) Output

Fig. 7. Example

With this simple example, we have shown how the architecture in Fig. 6
can be mapped in a natural way in a programming language that implements
natively functional programming, highlighting the compositional capabilities it
offers.
1 http://www.scala-lang.org.
2 Scala Language Command - Map works by applying a function to each element in

the list.

http://www.scala-lang.org

322 A. Di Salle et al.

5 Summary and Conclusions

In this paper we presented a preliminary work with the aim to investigate the
opportunity to derive from biological processes software programming concepts
that can provide software and services composition solutions in the IoT context.
Mimic the behavior of nature is not new in the field of computer science; classical
example are neural network [9,10], the genetic algorithm [11], the same immune
system [12,13], and more generally the biologically inspired computation [14],
they have always evoked great interest. Often, they have characteristics as dis-
tributivity, adaptability, heterogeneity, dynamism, dependability, resilience: all
new challenges that the advent of mobile devices presents every day.

The interesting aspect of the IT and biology world, it is the fact that some
computing paradigms allow you to define in an elegant and formal way some bio-
logical processes, such as functional programming, which itself is well supported
natively in some modern programming languages like the Scala language. The
next steps involve a careful formalization of the proposed architecture (Fig. 6),
using the Scala language and the definition of a concrete case study to evalu-
ate the efficiency and fairness of the approach for the construction of systems
through dynamic and dependable composition of software and services in the
IoT.

Acknowledgment. This research work has been supported by the Ministry of Edu-
cation, Universities and Research, prot. 2012E47TM2 (project IDEAS - Integrated
Design and Evolution of Adaptive Systems), by the European Union’s H2020 Pro-
gramme under grant agreement number 644178 (project CHOReVOLUTION - Auto-
mated Synthesis of Dynamic and Secured Choreographies for the Future Internet),
and by the Ministry of Economy and Finance, Cipe resolution n. 135/2012 (project
INCIPICT - INnovating CIty Planning through Information and Communication Tech-
nologies).

References

1. Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S. (eds.): Vision and Challenges
for Realising the Internet of Things. Publications Office of the European Union,
Luxembourg (2010)

2. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (iot): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013). Including Special sections: Cyber-enabled Distributed
Computing for Ubiquitous Cloud and Network Services Cloud Computing and
Scientific Applications – Big Data, Scalable Analytics, and Beyond

3. Hofmeyr, S.A.: An interpretative introduction to the immune system. In: Design
Principles for the Immune System and Other Distributed Autonomous Systems,
pp. 3–26. Oxford University Press (2000)

4. Janeway Jr., C.A., Travers, P., Walport, M., et al.: Immunobiology: The Immune
System in Health and Disease. 5th edn. Garland Science, USA (2013)

5. Chappell, D.A.: Enterprise Service Bus - Theory in Practice. O’Reilly, Sebastopol
(2004)

Dependable Composition of Software and Services in the Internet of Things 323

6. Li, Q., Liu, A., Liu, H., Lin, B., Huang, L., Gu, N.: Web services provision: solu-
tions, challenges and opportunities (invited paper). In: Proceedings of the 3rd
International Conference on Ubiquitous Information Management and Communi-
cation, ICUIMC 2009, pp. 80–87. ACM, New York (2009)

7. Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program
Generation. Prentice-Hall Inc, Upper Saddle River (1993)

8. Kleene, S.C.: Introduction to Metamathematics. Ishi Press International, New York
(2009)

9. Tahmasebi, P., Hezarkhani, A.: A hybrid neural networks-fuzzy logic-genetic algo-
rithm for grade estimation. Comput. Geosci. 42, 18–27 (2012). doi:10.1016/j.cageo.
2012.02.004

10. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall
PTR, Upper Saddle River (1998)

11. Banzhaf, W., Francone, F.D., Keller, R.E., Nordin, P.: Genetic Programming: An
Introduction: on the Automatic Evolution of Computer Programs and Its Appli-
cations. Morgan Kaufmann Publishers Inc., San Francisco (1998)

12. Kephart, J.O.: A biologically inspired immune system for computers. In: Artificial
Life IV: Proceedings of the Fourth International Workshop on the Synthesis and
Simulation of Living Systems, pp. 130–139. MIT Press (1994)

13. de Castro, L.N.: Artificial Immune Systems: A New Computational Intelligence
Approach. Springer, London (2002)

14. Parsons, S.: Imitation of life: how biology is inspiring computing by Nancy Forbes,
MIT Press, 176 pp., $8.95, ISBN 0-262-06241-0. Knowl. Eng. Rev. 21, 95–95 (2006)

http://dx.doi.org/10.1016/j.cageo.2012.02.004
http://dx.doi.org/10.1016/j.cageo.2012.02.004

Author Index

Adams, Mark 53

Barbuti, Roberto 176
Baresi, Luciano 215
Blech, Jan Olaf 43
Bompadre, Alessandro 176
Bove, Pasquale 176
Brayton, Robert 281

Castagnetti, Giovanni 281
Cerone, Antonio 139, 145, 198
Ciancia, Vincenzo 297
Cini, Chiara 192
Cintia, Paolo 108

De Nicola, Rocco 145
Di Noia, Tommaso 228
Di Salle, Amleto 240, 312

Eckert, Jürgen 22
Erbatur, Serdar 75

Farchi, Eitan 35, 68

Gallo, Francesco 240, 312
Galpin, Vashti 161
German, Reinhard 22
Gnesi, Stefania 266
Grilletti, Gianluca 297
Grossi, Valerio 93
Guidotti, Riccardo 108
Guinea, Sam 215

Herrmann, Peter 43
Hofmann, Martin 75
Homm, Daniel 22

Janssen, Marijn 124

Kherrazi, R. 11
Klievink, Bram 124

Latella, Diego 266, 297
Loreti, Michele 297

Massink, Mieke 266, 297
Meinke, Karl 3
Merelli, Emanuela 192
Milazzo, Paolo 176, 198
Mishchenko, Alan 281
Mongiello, Marina 228
Monreale, Anna 93

Nakagawa, Hiroyuki 253
Nanni, Mirco 93
Nieto Coria, Cesar A. 192
Noroozi, N. 11
Nycander, Peter 3

Ogawa, Kento 253

Pardini, Giovanni 176
Pedreschi, Dino 93
Perucci, Alexander 240, 312
Piccolo, Matteo 281

Quattrocchi, Giovanni 215

Scarcella, Giuseppe 192
Setiawan, Suryana 198
Shams, Farshad 145
Straccia, Umberto 228

ter Beek, Maurice H. 266
Tesei, Luca 192
Tsuchiya, Tatsuhiro 253
Turini, Franco 93

van der Meer, A.P. 11
van Engelenburg, Sélinde 124
Villa, Tiziano 281

Wierda, A. 11

Yevtushenko, Nina 281

Zamansky, Anna 35, 68

	Preface
	ATSE 2015 Organizers' Message
	HOFM 2015 Organizers’ Message
	MoKMaSD 2015 Organizers’ Message
	VERY*SCART 2015 Organizers’ Message
	Keynote Speakers
	Automatic Generation and Execution of Test Scenarios for Camera-Based Driver Assistance Systems
	Testing Function and Time for Embedded Systems: From EAST-ADL to Code
	Beating Error with Formal Methods
	Constraint Modelling and Solving for Data Mining
	Machine Learning Methods for Model Checking in Continuous Time Markov Chains
	Automated Integration of Service-Oriented Software Systems
	Formal Methods for Cyber-Physical systems

	Contents
	ATSE 2015
	Learning-Based Testing of Distributed Microservice Architectures: Correctness and Fault Injection
	1 Introduction
	1.1 Overview
	1.2 Problem Formulation

	2 Background
	2.1 Microservice Architectural Style
	2.2 Fault Injection
	2.3 Learning-Based Testing

	3 Experimental Set-up
	4 Test Results
	5 Conclusions and Future Research
	References

	The Synergy Between User Experience Design and Software Testing
	1 Introduction
	2 Preliminaries
	2.1 Task Models
	2.2 Spec Explorer

	3 Using Task Models in Model-Based Testing
	4 Case Study
	4.1 Testing with UXSpec Tool
	4.2 Results

	5 Related Work
	6 Conclusions
	References

	Combining Time and Concurrency in Model-Based Statistical Testing of Embedded Real-Time Systems
	1 Introduction
	2 Related Work
	3 Semi-Markov Processes with Parallel Regions
	3.1 Analysis
	3.2 Calculation of Parameters

	4 Timed Usage Models with Parallel Regions
	4.1 Mapping to an SMP with Parallel Regions
	4.2 Calculation of Parameters

	5 Validation
	6 Conclusions and Future Work
	References

	HOFM 2015
	Helping the Tester Get It Right: Towards Supporting Agile Combinatorial Test Design
	1 Introduction
	2 A Vision for Agile Test Design
	3 The Formal Framework
	3.1 Combinatorial Models and Test Plans
	3.2 Representing Models and Plans as Logical Theories
	3.3 Agile CTD: Iterative Uncertainty Elimination
	3.4 A Possible Use Case

	4 Summary and Future Work
	References

	Behavioral Types for Component-Based Development of Cyber-Physical Systems
	1 Introduction
	2 Existing Approaches
	3 Motivating Example
	4 Core Concepts of Behavioral Types
	5 Spatial Behavioral Types
	6 Conclusion
	References

	Refactoring Proofs with Tactician
	1 Introduction
	2 Background and Motivation
	3 Usage
	3.1 Proof Unravelling
	3.2 Proof Packaging
	3.3 Output

	4 Implementing Proof Refactoring
	4.1 Hiproofs
	4.2 Hiproof Transformations

	5 Implementing Tactic Recording
	5.1 Requirements for Capturing Tactic Proofs
	5.2 The Basic Recording Mechanism
	5.3 The Abstract ML Datatype
	5.4 Capturing Theorems
	5.5 Automated Promotion

	6 Experiences and Limitations
	7 Conclusions
	References

	Exploring the Role of Logic and Formal Methods in Information Systems Education
	1 Introduction
	2 Related Work
	3 The Exploratory Study of Students Perceptions
	4 Summary and Future Research
	References

	GuideForce: Type-Based Enforcement of Programming Guidelines
	1 Introduction
	2 Related Work
	3 Our Method
	4 Taintedness Analysis for XPath Injection
	4.1 XPath Injection Example
	4.2 Soot Implementation

	5 Conclusion
	References

	MoKMaSD 2015
	Clustering Formulation Using Constraint Optimization
	1 Introduction
	2 Clustering Problem
	2.1 Prototype-Based Clustering
	2.2 Density-Based Clustering
	2.3 Label Propagation
	2.4 Constraint-Based Clustering

	3 Modeling Clustering by Constraint Programming
	3.1 CP Model for K-medoid Clustering
	3.2 CP Model for DBSCAN Clustering
	3.3 CP Model for Label Propagation

	4 Variants of the Standard Clustering Algorithms
	5 Related Work
	6 Conclusion
	References

	Towards a Boosted Route Planner Using Individual Mobility Models
	1 Introduction
	2 Preliminaries
	2.1 Individual Mobility Profiles
	2.2 Trajectory Map Matching

	3 Proposed Analytic Model
	4 Experiments
	4.1 Dataset
	4.2 Mobility Profiles Analysis
	4.3 Deviation Analysis
	4.4 Towards a Boosted Route Planner

	5 Related Work
	6 Conclusion
	References

	Design of a Business-to-Government Information Sharing Architecture Using Business Rules
	Abstract
	1 Introduction
	2 Requirements to Share Information
	2.1 Companies in a Supply Chain and Customs
	2.2 Requirements

	3 Related Background
	4 Towards a Software Architecture
	4.1 The Decision Component and Providing of Decryption Keys
	4.2 Business Rules
	4.3 Metadata and Context Information
	4.4 Regulating Access via Encryption and Decryption of Parts of Data

	5 Evaluation of the Architecture
	5.1 An Illustration
	5.2 Keeping Information Confidential When Needed
	5.3 Ensuring There is No Obstruction for Information Sharing from the Possible Increase of Liability When Businesses Receive Information
	5.4 Ensuring the Sharing of Information and Its Use is in Compliance with Legislation
	5.5 Other Properties of the Architecture

	6 Conclusion and Suggestions for Further Research
	References

	Process Mining as a Modelling Tool: Beyond the Domain of Business Process Management
	1 Introduction
	2 Modelling from Observed Behavioural Patterns
	2.1 Modelling Learning Processes: The FLOSS Case Study
	2.2 Modelling Skill Acquisition

	3 Towards Real-Time Process Mining
	4 Conclusion
	References

	On Integrating Social and Sensor Networks for Emergency Management
	1 Introduction
	2 Emergency Management
	3 Literature Review on Disaster Management Systems
	3.1 Systems Based on Analysis of Social Networks
	3.2 Systems Based on Wireless Sensor Networks
	3.3 Systems Based on Geo-Spatial Technologies

	4 Towards an Integrated Server Architecture
	4.1 Event Collection Module
	4.2 Event Extraction and Analysis Module
	4.3 Decision Support Module
	4.4 Alert and Command Dissemination Module

	5 Conclusion and Future Work
	References

	Quantitative Modelling of Residential Smart Grids
	1 Introduction
	2 Smart Grids
	2.1 Quantifying Smart Grids
	2.2 Policies

	3 Stochastic HYPE Model
	3.1 Model Parameters

	4 Results
	5 Related Work
	6 Conclusions and Further Work
	References

	Attributed Probabilistic P Systems and Their Application to the Modelling of Social Interactions in Primates
	1 Introduction
	2 Attributed Probabilistic P Systems
	3 Modelling Social Interactions in Primates
	4 Experimental Results
	5 Conclusions
	References

	Probabilistic Modelling and Analysis of a Fish Population
	1 Introduction
	2 Sole Behaviour as DTMC
	3 Discussion and Conclusions
	References

	A Tool for the Modelling and Simulation of Ecological Systems Based on Grid Systems
	1 Introduction
	2 Grid Systems
	2.1 Reaction Rules
	2.2 Configurations and Evolution Algorithm
	2.3 Links

	3 Implementation
	3.1 Evolution Algorithm Implementation
	3.2 Software Architecture

	4 Case Studies
	5 Features of the GUI
	5.1 Model Definition and Editing
	5.2 Simulation and Animation

	6 Conclusion and Future Work
	References

	VERY*SCART 2015
	Distributed Coordinated Adaptation of Cloud-Based Applications
	1 Introduction
	2 Solution Overview
	3 Models and Languages
	3.1 ECoWare Application Description Language
	3.2 ECoWare Plan Description Language

	4 Runtime Adaptation
	4.1 Choreography Creation Algorithm
	4.2 ECoWare Adaptation Agent

	5 Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	Fuzzy Description Logics for Component Selection in Software Design
	1 Introduction
	2 Motivation
	3 Problem Statement and Approach
	4 Use Case Scenario
	5 Related Work
	6 Conclusion and Future Work
	References

	Towards Adapting Choreography-Based Service Compositions Through Enterprise Integration Patterns
	1 Introduction
	2 Setting the Context
	2.1 The Problem Space
	2.2 The Solution Space
	2.3 Exploiting Enterprise Integration Patterns

	3 Explanatory Example
	4 Method Description
	5 Method at Work
	6 Related Work
	7 Conclusion and Future Works
	References

	An Experimental Evaluation on Runtime Verification of Self-adaptive Systems in the Presence of Uncertain Transition Probabilities
	1 Introduction
	2 Overview of Existing Approach
	3 Discrete Time Markov Chain
	4 Probabilistic Computational Tree Logic
	5 Existing Approach
	6 Experiment
	7 Discussion and Direction for Future Work
	8 Conclusion
	References

	Towards Automatic Decision Support for Bike-Sharing System Design
	1 Introduction
	2 Attributed Feature Model of BSS
	3 Variability Analysis of BSS
	4 BSS as a Markov Population Model
	5 Examples of Performance Features of BSS
	5.1 Normalised Activity/Bicycle Data
	5.2 Properties of Individual Stations in the Context of the System

	6 Discussion and Future Work
	References

	Automated Synthesis of Protocol Converters with BALM-II
	1 Introduction
	2 Previous Work
	3 Equations over Languages and Automata
	3.1 Equations with Parallel Composition
	3.2 Equations with Synchronous Composition
	3.3 BALM-II

	4 An Example of Asynchronous Protocol
	5 Conclusions
	References

	An Experimental Spatio-Temporal Model Checker
	1 Introduction
	2 Motivating Example: Adaptive Smart Transport Network
	3 Closure Spaces
	4 The Spatio-Temporal Logic of Closure Spaces
	5 Model Checking
	6 Examples
	7 Conclusions and Future Work
	References

	Dependable Composition of Software and Services in the Internet of Things: A Biological Approach
	1 Introduction
	2 Immune System Aspects
	2.1 Immune System Scenarios

	3 Software and Services Composition
	4 Dependable Composition of Software and Services in the IoT: A Programmatic Solution
	5 Summary and Conclusions
	References

	Author Index

