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Abstract. Releasing, publishing or transferring microdata is restricted
by the necessity to protect the privacy of data owners. k-anonymity is
one of the most widespread concepts for anonymizing microdata but
it does not explicitly cover NULL values which are nevertheless fre-
quently found in microdata. We study the problem of NULL values (miss-
ing values, non-applicable attributes, etc.) for anonymization in detail,
present a set of new definitions for k-anonymity explicitly considering
NULL values and analyze which definition protects from which attacks.
We show that an adequate treatment of missing values in microdata
can be easily achieved by an extension of generalization algorithms. In
particular, we show how the proposed treatment of NULL values was
incorporated in the anonymization tool ANON, which implements gen-
eralization and tuple suppression with an application specific definition
of information loss. With a series of experiments we show that NULL
aware generalization algorithms have less information loss than standard
algorithms.
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1 Introduction

Detailed data collections are an important resource for research, for fact based
governance, or for knowledge based decision making. In the field of statistical
databases any collection of data with detailed information on entities, in partic-
ular persons and organizations, is called microdata.

A crucial requirement for the release of microdata is the preservation of the
privacy of the data owners, which is protected by laws and regulations. Fur-
thermore, for data collections requiring the willingness of data owners to share
(donate) their data, studies [9] clearly indicate that the protection of privacy is
one of the major concerns of data owners and decisive for a consent to donate
data [13]. For protecting privacy from linkage attacks the concept of k-anonymity
[25] received probably the widest attention. Its core idea is to preserve privacy
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by hiding each individual in a crowd of at least k members. Many anonymization
algorithms implementing these concepts were developed.

Surprisingly, neither the original definition of k-anonymity nor any of the
many anonymization algorithms deals explicitly with unknown, or missing val-
ues (NULL values in database terms) in microdata. We could not find a single
source discussing the problem of NULL values in microdata for anonymization.
Recent surveys [19] or textbooks [12] do not mention NULL values or missing
values. However, all techniques and algorithms we found, explicitly or implic-
itly require that all records with at least one NULL value have to be removed
from a table before it can be anonymized ([2,15–18,23,29,32], and many more).
There is only some treatment of NULL values in form of suppressed values,
i.e. NULL values resulting from removing (“suppressing”) data in the course of
anonymization procedures. Attacks on suppressed rows can be found in [22,30].
[1,7,21] discuss suppression of values in single cells. However, neither of these
approaches discusses the problem of missing values in the original data or of
non-existing values due to non-applicable attributes.

NULL values, nevertheless, are not exceptional in microdata, e.g. they appear
frequently in data sets for medical research [8,10,28,33]: Some attributes might
not be applicable for each patient. A patient might have refused to answer some
questions in a questionnaire or could not be asked due to physical or mental
conditions. In an emergency some test might not have been performed, etc.

Anonymization by generalization and suppression of data cause loss of infor-
mation. The aim of reducing this information loss triggered many research
efforts. The ignorance of NULL values in anonymization algorithms results in
dropping rows from a table, causing a considerable loss of information. Further-
more, dropping rows with NULL values also could introduce some bias in the
data set, which is not contained in the original table. This is of course unfor-
tunate for further analysis of the data (for example in evidence based medi-
cine) and might compromise the statistical validity of the results (e.g. dropping
rows with a NULL value in the field occupation would skip all children from
the data set and introduce an age bias, which was not present in the original
data set).

This paper is an extension of [4]. We provide a thorough grounding for the
treatment of NULL values in anonymization algorithms. We show that we can
reduce the problem of NULL values in k-anonymity to different definitions of
matching between rows of a data set based on extending the comparison of
values and NULL values. We show that generalization algorithms, widely used
for anonymization, can be easily extended to cover NULL values and we show
that this extension reduces information loss during anonymization significantly.
In particular, we show how the treatment of NULL values was incorporated
into the anonymization tool ANON, which implements a generalization algo-
rithm with tuple suppression, which optimizes application specific usability of
the anonymized data by minimizing the information loss, which is defined by
the user, specifically for the application and the intended use of data [3,27,28].

k-anonymity (which is defined on the quasi identifiers) has to be comple-
mented with �-diversity for sensitive attributes [18] to avoid that an adversary
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might infer data of individual. In this paper, however, we focus on k-anonymity
and only briefly treat �-diversity, as it is implemented in ANON.

2 k-Anonymity Revisited

A detailed collection and representation of data on information subjects is called
microdata - as opposed to data in less detail like statistical data. For this paper
a microdata table is a multiset of rows [14]. We can classify the attributes in
the schema of such table in four categories: (1) identifiers: all attributes which
uniquely identify a row in the table, (2) quasi identifier: all attributes which
an adversary might know, (3) sensitive attributes: attributes with values that
should not be inferable by an adversary and (4) all other data. For this paper
we assume that the identifiers have already been removed from a table and that
the schema of a table includes a set of quasi identifiers Q, which we denote by
Q1, . . . , Qn.

The aim of anonymization is to assure that a table can be published without
opening an adversary the possibilities to gain additional knowledge about the
data subjects.

Table 1 shows our running example for such a table with the quasi identifiers
Gender, Height, Job, and ZIP and the sensitive attribute Condition.

Table 1. Original table

Gender Height Job ZIP Condition

A f 165 null 9020 Cancer

B m 187 Mayor 9020 Hepatitis

C f 163 Clerk 9020 Flu

D m null Technician 9020 Pneumonia

E m 183 null 9020 Malaria

F m 189 Pilot 9020 Gastritis

Samarati and Sweeney [25] proposed an approach to preserve the privacy of
a data owner by hiding each data owner in a crowd of at least k individuals, such
that an adversary might not get detailed information about an individual, but
only information about a group of k individuals. The larger the k, the smaller
the possible information gain of an adversary.

In [26] k-anonymity is defined as follows: ‘Each release of data must be such
that every combination of values of quasi identifiers can be indistinctly matched
to at least k individuals’. The term indistinct match is not defined explicitly,
nevertheless, it is clear from the context that two rows match, if they have iden-
tical values in the quasi identifiers. However, missing values are not mentioned.
We basically follow this definition here, and analyze, how rows of a table match
in case some values are NULL. Hence we formalize the notion of k-anonymity,
dependent on some match operator.
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Definition 1 (k-Anonymity). Let T be a table and Q the set of quasi identifier
attributes and let ∼ be a match predicate on T . T is k-anonymous with respect
to ∼, iff ∀t ∈ T : |{t′|t ∼ t′}| ≥ k.

k-Anonymity as well as �-diversity can be achieved with two basic techniques,
generalization and suppression. Both techniques decrease information content of
the data to meet the required degree of privacy. They can be used separate or in
combination. Generalization [26,30] replaces the values of quasi identifiers (QID)
with more general values defined in the generalization hierarchies (taxonomy
trees or intervals with step definitions) for all QIDs. The leaves of a generalization
hierarchies are the original values of the domain of an attribute, the top level
is a single value ALL, which has no information content. The generalization
hierarchy and its corresponding domains of the QID Job of the running example
(Table 1) are shown in Fig. 1.

D2 = {ALL}

D1 = {Administrative, Technical}

D0 = {Mayor, Clerk, Technician, P ilot}

ALL

Technical

PilotTechnician

Administrative

ClerkMayor

Fig. 1. Generalization hierarchy and its corresponding domains (generalization levels)
of the QID Job of the running example

The anonymization procedure in general is as follows: When a row does not
match at least k − 1 other rows, then some attribute values are generalized, i.e.
replaced with the parent of this value in the generalization hierarchy defined for
each domain (resp. each attribute). In the case of local recoding this is done for
individual rows, for global recoding or full-domain generalization scheme the gen-
eralization is performed for all the rows [12,31]. This is repeated until the table
is k-anonymous or the highest level of generalization is reached in all attributes.
A shortcoming of this method is that outlier tuples in the microdata can lead to
a very coarse grain generalization. Outlier tuples are those, which hardly match
any other tuples. If they remain in the table that is being anonymized, the over-
all information loss increases. To avoid information loss caused by such outliers,
full domain generalization is mostly accompanied with row suppression, where
given fraction of rows might be suppressed, i.e. these rows are removed from the
table or all their values are replaced by ALL (resp. NULL). To avoid attacks at
least k rows have to be suppressed [30].

It is easy to see that in general several tables qualify as result. The aim
is now to compute the table with the lowest information loss. The problem is
known to be NP complete [21]. However, for global recoding the complexity of
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the method is exponential in the number of quasi identifiers and their general-
ization hierarchy height and not in the number of tuples. Many algorithms have
been proposed, which apply heuristics to reduce complexity and which apply dif-
ferent measures for information loss to efficiently compute “good” anonymized
tables.

In contrast to generalization, suppression does not transform the values to
other, more general values, but simply deletes (eliminates) them. Suppression
can be undertaken on single values (called cell suppression), on whole tuples
(called tuple suppression) or on whole attributes (called attribute suppression).
The impact of the attribute suppression is the same as the one of the general-
ization of an attribute to the top level. Approximation algorithms that use cell
suppression are described in [1,21]. In combination with generalization [26,30],
tuple suppression can be used to eliminate outlier tuples, while the remaining
tuples get generalized.

3 k-Anonymity with NULL values

3.1 NULL Values

NULL values [20] are the standard way of representing missing information in
database tables. We can distinguish three kinds of NULL values: (1) attribute
not applicable: in this case there is no value for this attribute for this row in
the world represented in the database. (2) missing value: there exists a value in
the world, but it is not contained in the database. (3) no information: it is not
known whether the value exists in the world or not. In SQL the semantics of
NULL is “no information”.

For the following considerations we follow the treatment of NULL values in
SQL [14]. This means in particular, that a comparison of a NULL value with any
other value never results in true and there is a special unary predicate is null
to test for NULL values.

3.2 Matching NULL Values

For matching of NULL values we have the following options:

– basic match: NULL values do not match with NULL values, nor with any
other value.

– extended match: NULL values match with NULL values.
– maybe match: NULL values match with any value including NULL values.

In the original definition of k-anonymity and in the current anonymization
algorithms basic match is used. It is in accordance with the definition in SQL,
where ‘A = B’ is not true, if A or B are NULL values. Extended match treats a
NULL value like any other value. Maybe match sees NULL values as wildcards for
matching. It corresponds to Codd’s maybe selection [6], where rows are returned,
if the selection predicate is true for a substitution of the NULL values.
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3.3 Basic Match

We call the match used in [26], where rows with NULL values are discarded,
basic match, and formally define it as follows:

Definition 2 (Basic match). Let T be a table and Q the set of quasi identifier
attributes.

t1 ∼b t2 :⇐⇒ ∀q ∈ Q : t1[q] = t2[q]

For illustrating the different match definitions and their consequences we
use Table 1 and transform it to a 2-anonymous table using the different match
definitions in turn. Table 2 shows the result of the anonymization of Table 1 to a
2-anonymous table. The table has only 3 rows, as all rows of the original table
which contain NULL values (rows A, D, and E) had to be removed before the
generalization - hence the table is also 3-anonymous. For the rest of this paper we
always follow the full-domain generalization scheme [17,24,26] in our examples,
however, the considerations are applicable to all algorithms for k-anonymization.

Table 2. 3-anonymity with basic match

Gender Height Job ZIP Condition

B All All All 9020 Hepatitis

C All All All 9020 Flu

F All All All 9020 Gastritis

3.4 Extended Match

In extended match NULL values are treated like any other value, in particular,
a NULL value only matches with another NULL value but not with any values
from the domains of the attributes.

Definition 3 (Extended match). Let T be a table and Q the set of quasi
identifier attributes of T . For two rows t1, t2 ∈ T we define the extended match as

t1 ∼e t2 :⇐⇒ ∀q ∈ Q : t1[q] = t2[q] ∨ (t1[q]isnull ∧ t2[q]isnull)

The extended matching definition can be used to extend existing anonymiza-
tion algorithms. First we have to extend all generalization hierarchies with a
branch with the value NULL on each level of the hierarchy below the root ‘ALL’.
Using these extended hierarchies we can apply the generalization method again
and receive Table 3 which is 2-anonymous with respect to the extended match.
Note that in contrast to the basic match no row has been lost.

The aim of k-anonymity is to prevent attacks on released data, in particular,
record linking attacks [12], i.e. joining a table with some known information
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Table 3. 2-anonymity with extended match

Gender Height Job ZIP Condition

A All All null 9020 Cancer

B All All Admin 9020 Hepatitis

C All All Admin 9020 Flu

D All All Technical 9020 Pneumonia

E All All null 9020 Malaria

F All All Technical 9020 Gastritis

to associate values of sensitive attributes with some data owner. In particular,
matching any record containing quasi identifiers with the released table should
result in no or at least k hits. It is easy to see that this requirement is fulfilled,
if any query posed on the released table in the form of “Select * From T where
search condition” yields 0 or at least k result rows, if the search condition only
contains predicates on quasi identifiers.

Theorem 1 (link-safe). Let T be a table and Q a set of quasi identifier
attributes and let πQT be the projection of T on Q. If T is k-anonymous with
respect to ∼e then for all search conditions p the query “Select * From πQT
where p” returns 0 or at least k rows.

Proof. The theorem follows from the observation that if a row t ∈ πQT satisfies
the search condition of the query then all rows matching t according to the
extended match also satisfy the search condition. Because T is k-anonymous
with respect to ∼e there are at least k such rows.

3.5 Maybe Match

For extending the domain of the match predicate to also consider NULL values
we can build on the treatment of NULL values in Codd’s maybe operations for
the relational algebra [6]. The maybe selection operator does not only return
those rows for which the selection predicate is satisfied, but also all those rows
which satisfy the selection predicate if NULL values are replaced by suitable
values.

Applying the concept of ‘maybe’ selects to the matching of rows, we define
the maybe match as follows: NULL matches both with NULL and other values.
NULL values in the rows can be used as wildcards in both directions. For an
example: The tuples (a, b, c), (a, NULL, c), (NULL, NULL, NULL) all match
can be grouped together.

Definition 4 (maybe match). Let T be a table and Q the set of quasi identifier
attributes of T . For two rows t1, t2 ∈ T we define the maybe match as

t1 ∼m t2 :⇐⇒ ∀q ∈ Q : t1[q] = t2[q] ∨ (t1[q]isnull ∨ t2[q]isnull).
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The maybe match is not transitive and does not lead to an equivalence parti-
tioning of the table (in contrast to basic and extended match). We call a row t and
its matching rows the match-group of t. k-groups of different rows might overlap
without being equal. For an example, the tuple (a, NULL, NULL) matches both
with (a, b, c) and with (a, e, f) and so (a, NULL, NULL) is contained in several
match-groups.

Applying maybe matching in the generalization method we compute the table
shown in Table 4. In this table the match-groups are built from the following
match relations A ∼m C, B ∼m E, D∼m E, E∼m F, such that each row matches
with one other row.

Table 4. 2-anonymity with maybe match

Gender Height Job ZIP Condition

A f 161–180 null 9020 Cancer

B m 181–200 Mayor 9020 Hepatitis

C f 161–180 Clerk 9020 Flu

D m null Technician 9020 Pneumonia

E m 181–200 null 9020 Malaria

F m 181–200 Pilot 9020 Gastritis

Let us now analyze whether this table is safe. First we try an attack on
missing values.

Hampering Reconstruction [22] is an attack that shows how a value that was
suppressed in the anonymization process can be reconstructed. We extend it here
to cover also missing values in the original table. For example, if an adversary
knows that Daniel’s data are in the table and Daniel is 205 cm tall, then he can
associate row D with Daniel.

Hampering reconstruction requires that a value for some attribute exists in
the real world, but is not recorded in the database. It shows that tables, where
NULL values have the semantics of missing values, may be compromisable.

Next we show that there are also attacks possible on NULL values, which have
the semantics ‘not applicable’, i.e. for which no value exists in the real world.

We introduce the novel NULL-identifier attack, which uses knowledge
whether an attribute is applicable for some row. For example, let us assume that
an adversary knows that Alice, a female patient, is not employed, and therefore
the value in the Job attribute has to be NULL. He can thus query Table 4 with
the search condition ‘Gender = “f” and Job is NULL’ and retrieves row A.

The NULL-identifier attack leverages on the knowledge that a certain value
does not exist. Therefore, the row in the table has to have the value NULL in
the corresponding attribute. Anonymization based on maybe match is thus not
safe against NULL identifier attacks.

With hampering reconstruction and NULL-identifier attack we show that
tables which are k-anonymous with respect to maybe match are not safe from
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linking attacks. Both attacks exploit situations where there are less than k NULL
values in some attribute within a k-group.

In conclusion we observe that generalizations using maybe-match are vul-
nerable against extended hampering reconstruction (NULLs as ‘missing values’)
and NULL-identifier attack (NULLs as ‘attribute not applicable’).

3.6 Right Maybe Match

We restrict the definition of the maybe match, such that within a match-group a
NULL value in some attribute has to appear at least k times, but use the wildcard
character of NULL for matching other values with NULL. For an example, (a, b,
c) would match with (a, NULL, NULL) and (a, b, NULL) but not vice versa. The
motivation for this is to enforce the existence of k NULL values in some attribute
within a match-group to avoid hampering reconstruction and NULL-identifier
attacks. In our example, (a, b, c) matches with the two other tuples, (a, b,
NULL) with one other tuple. The expectation was that a single tuple like (a, b, c)
demanding further generalization with extended match would match with tuples
containing NULL values and therefore would not require further generalization.

Definition 5 (right maybe match). Let T be a table and Q the set of quasi
identifier attributes of T . For two rows t1, t2 ∈ T we define the right maybe
match as

t1 ∼r t2 :⇐⇒ ∀q ∈ Q : t1[q] = t2[q] ∨ t2[q]isnull.

The right maybe match relation is reflexive and transitive, but not symmetri-
cal and does not define an equivalence partitioning on a table. The non-symmetry
is viable, as the definition of k-anonymity requires that each tuple matches with
k other tuples, however, it does not require that the match relation defines equiv-
alence classes.

The result of anonymization with right maybe match is shown in the example
of Table 5. Here the following match relations are found: A∼r E, B ∼r A, B ∼r E,
C ∼r A, C ∼r E, D∼r A, D ∼r E, E∼r A, F∼r A, F∼r E.

Table 5. 2-anonymity with right maybe match

Gender Height Job ZIP Condition

A All All null 9020 Cancer

B All All Mayor 9020 Hepatitis

C All All Clerk 9020 Flu

D All All Technician 9020 Pneumonia

E All All null 9020 Malaria

F All All Pilot 9020 Gastritis

Now let us analyze, whether the right maybe match admits tables which are
safe. We first observe that there are queries on the quasi identifier projection of
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a table which yield less than k results. For example, the search condition ‘Job =
“technician”’ would only return row D. However, this query might lead to a
wrong result for an adversary, because it is possible, that the ‘true’ value in the
Job attribute is also “technician” for the rows A and E but just missing. There-
fore, a rational adversary would use a maybe query instead (‘Job = “technician”
or Job is NULL’).

It is possible to show that right maybe match is safe for all maybe queries.
We introduce the singularity attack to show that straight (not maybe) queries

make sense and possibly compromise the data. A singularity attack uses knowl-
edge that some value is unique, at least for some combinations of other attribute
values. For example, ZIP code and Job may be compromised, when the job =
“Mayor” and there is never more than one mayor in a town (i.e. per ZIP code).
In such cases an adversary will use straight queries rather than maybe queries
and can compromise tables which are k-anonymous with respect to the right
maybe match.

The singularity attack shows that tables which are k-anonymous with respect
to right maybe match are not safe against attacks. The singularity attack
does not depend on the type of NULL values (non-applicable, missing, no-
information), such that we have to dismiss anonymization based on the right-
maybe match.

3.7 An Extended Generalization Algorithm

A detailed analysis of NULL values and their matching operators allows to
extend generalization algorithms (see Sect. 2) with minimal effort to cover also
NULL values in the input table using the k-anonymity definition with extended
match. There are only two extensions necessary: (1) the generalization hierar-
chies of each quasi identifier is extended with an additional branch below the
root that contains a NULL value in each level of the hierarchy. (2) k-anonymity
is tested with extended match. With these extensions, the anonymization algo-
rithms can accept microdata with NULL values without any preprocessing. It
is easy to see that the complexity of the algorithms is not changed by this
extension.

Figure 2 shows, how the generalization hierarchies of our running example
were extended, in order to apply extended matching. Note that for consistency
reasons, there has to be a NULL value on each level of the hierarchy.

ALL

NULLmf

ALL

NULL

NULL

Technical

PilotTechnician

Administrative

ClerkMayor

Fig. 2. Generalization hierarchies for NULL value handling in the running example
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The extended generalization algorithm as well as the extended match are
implemented in the tool ANON that is introduced in the next section. ANON
was used to execute experiments on microdata with NULL values to analyze
whether the explicit treatment of NULL values actually reduces information
loss. The results are shown in Sect. 5.

4 The Anonymization System ANON

We implemented a flexible and customizable tool, called ANON [3], for comput-
ing k-anonymous and �-diverse tables based on anonymization by generalization
and tuple suppression [26,30] where the information loss can be defined by the
users explicitly through penalties in the generalization hierarchies and through
priorities for attribute generalizations [27,28]. The contribution of ANON is on
one hand the computation of a k-anonymous and �-diverse generalization of a
given table with minimal information loss, where this information loss can be
defined application specific in a fine grained way when defining the generalization
hierarchies [3] and on the other hand the explicit treatment of NULL values. We
implemented both anonymization with basic match and with extended match
such that ANON offers two ways of handling NULL values: removing rows with
NULL values before anonymization (basic match), or treating NULL values as
any other value (extended match). We did not implement anonymization with
maybe match or right maybe match due to their vulnerability as shown in Sect. 3.

4.1 User-Specific Requirements and Information Loss

ANON aims at adapting to the application specific data requirements by allowing
the user to customize the anonymization procedure by defining application spe-
cific information loss calculation. The motivation for this is the observation that
the requirements for the precision of attribute values vary enormously between
different applications. For an example, in one application the age is needed in
fine granularity while in a different application the body mass index is needed
in detail and age is sufficient in 10-year intervals. So we argue that technical
information loss definitions like those based on Shannon’s definition of entropy
cannot reflect the usability of a data set for a specific application. For steering
the search for an optimal solution the users may specify priorities for the general-
ization of quasi identifiers, to specify an information loss for each generalization
step and to set generalization limits. The calculation of information loss is used
in a best-first search to determine the best anonymized table with generalization
and tuple suppression.

Weighted information loss is calculated with the formula

WIL =
n∑

i=1

prios[i] ∗ ϕlevels[i]
αi

,

where n is the number of quasi identifiers, ϕ
levels[i]
αi the loss of information if the

attribute αi is generalized to the level levels[i], and prios[i] is the priority of the
attribute αi.
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With this formula, the user can influence the information loss with the fol-
lowing user-specified information:

Attribute priorities. A User can assign a particular priority to each quasi
identifier attribute. These priorities influence the computation of generaliza-
tion loss. The intention is that attributes with a high priority are generalized
to lower levels than attributes with lower priorities.

Generalization limits. If the values are useful only up to a particular gener-
alization level, the user can limit the generalization of an attribute to this
level.

Generalization penalties. Generalization penalties define the information loss
for each generalization level. The top level of a generalization hierarchy has
an information loss of 100 %.

This user-specified information and its impact in the search algorithm guar-
antee that the user will obtain such results that suit the user’s requirements in
the best possible way.

4.2 Architecture and Implementation

ANON is implemented in Java and is available in two distributions: as a Web
Service and as an executable platform-independent java archive (JAR) with a
simple graphical user interface. The anonymization is controlled by the ANON
definition file, which is a combination of an anonymization settings file and a
metadata file. As shown in Fig. 3, the ANON definition file is the main ANON
input that determines the microdata source(s) and the outputs, as well as the
anonymization process itself.

ANON definition is an XML file that consists of the following five fundamen-
tal sections:

Parameters define the anonymization settings (the value of k, maximal sup-
pression threshold max supp, type of the search algorithm, ANON report
settings and missing value handling details).

Datasource definition defines the source(s) of data that should be anonymized
(database(s), XML or CSV-file(s)).

Output definition defines the target where the anonymized data should be
saved (database, XML or CSV-file).

Attributes definition defines which attributes should be read from the source
data and how these should be handled. Each quasi identifier attribute (k-
attribute) should have assigned its priority and maximal generalization
limit. Each sensitive attribute (l-attribute) must be configured with the �-
diversity type that should be used for checking, and its desired parameter
values (�).

Generalization hierarchies define value generalization hierarchies that are
used for anonymization. For every quasi identifier attribute (k-attribute)
there should be one generalization hierarchy, upon which the values are
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Fig. 3. ANON architecture

generalized. Each generalization hierarchy contains information about the
hierarchy levels inclusive their information loss and a value generalization
tree. This tree must contain all the values that the corresponding quasi
identifier can hold in the microdata.

ANON is capable of anonymizing data from multiple sources that have one of
the following formats: database connection (JDBC), XML-file or CSV-file. The
result can be saved as one of these formats as well. Besides the anonymization
outcome, user can decide to receive an ANON report, which informs about the
anonymization process and eventual failures.

ANON offers the user the possibility to select the attributes that the user
wants to handle in the anonymization process and mark them with one of the
following anonymization types:

– k-attribute,
– l-attribute,
– dontcare,
– ignore.

The attributes that should be skipped from the result should be marked
with “ignore”. Alternatively they can be left out of the ANON definition file
to raise the same effect. If an attribute does not play any role for the indi-
viduals privacy and should appear unchanged in the result, then it should be
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marked as “dontcare”. The remaining two types are those that are relevant for
the anonymization process.

Attributes marked with “k-attribute” are quasi identifiers that must be trans-
formed to a particular generalization level, such that k-anonymity for the whole
table is satisfied. For this kind of attributes, the user should also specify the
generalization limit and attribute priority. For l-attributes (sensitive attributes),
the �-diversity type and its parameter(s) should be defined.

ANON is designed to provide anonymized tables with multi-attribute
�-diversity. The �-diversity can be defined on the attribute level. Furthermore,
ANON allows to assign different �-diversity types to different attributes.

4.3 Anonymization Algorithm

The anonymization Algorithm 1 features both basic match and extended match
for computing partitions defined by the quasi identifiers. The variables used in
ANON’s Partitioning Algorithm1 and their meaning are listed in Table 6. After
a table has been partitioned, ANON checks whether each partition has at least
k tuples. If this is not the case, ANON uses generalization and suppression to
generate a more coarse grain table.

ANON’s anonymization algorithm uses best-first search algorithm to find the
optimal solution and weighted information loss described in Sect. 4.1 to evaluate
the cost of a potential solution (generalized table).

The algorithm consists of 2 main parts: table search (function Anonymize-
Table - see Algorithm 2) and privacy test (function Privacy-Test - see
Algorithm 3). Required input parameters of both functions of Algorithms 2 and 3
are listed and described in Table 7. Furthermore, other variables and values are
listed and described in Table 8, instance variables of a node in Table 9 and func-
tions in Table 10.

ANON is customizable, so the implementation offers an abstract class of
search algorithms that can easily be extended by new search algorithms. Similar
interfaces are provided for information loss calculation, as well as for �-diversity
check. Details about the implementation are given in the next section.

Table 6. Variables used in ANON’s Partitioning Algorithm 1

Variable Description

null handling Denotes if NULL values are handled or not. If null handling is
true then the partitioning algorithm will use the extended
match, otherwise the basic match

partition A partition is a set of tuples that match each other

partitionset Set of partitions

table A table with microdata

tuple A table row

matched Denotes if a tuple matches a partition
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Algorithm 1. ANON’s Partitioning Algorithm
Input: table, null handling
Output: set of partitions partitionset, where each partition contains tuples with iden-
tical values of quasi identifiers or nulls instead of a quasi identifier value. Partitions
are disjoint.

1: function Partition-Table(table, null handling)
2: partitionset ← { }
3: for each tuple in table do
4: matched ← false
5: for each partition in partitionset do
6: if tuple matches partition then
7: add tuple into partition
8: matched ← true
9: end if

10: end for
11: if matched = false then
12: if tuple does not contain null or null handling = true then
13: partition ← {tuple}
14: add partition into partitionset
15: end if
16: end if
17: end for
18: return partitionset
19: end function

Table 7. Input parameters required by the function Anonymize-Table

Parameter Description

table Original table that has to be anonymized

limits Array with generalization level limits for all quasi identifiers

prios Array with priorities for all quasi identifiers

k param k - the minimal partition size

l params Array with minimal required diversities for all sensitive attributes

max supp Number of tuples that are allowed to be suppressed

null handling Denotes if NULL values are handled or not. If null handling is
true then the partitioning algorithm will use the extended
match, otherwise the basic match

4.4 Performance Analysis

ANON’s anonymization algorithm (a best-first search instantiation) is optimal
and complete. If generalization limits are set to less than the number of general-
ization levels, it is possible that the algorithm will not find a solution (because
there is none). If no limits are set, it always finds a solution, which is in worst
case a completely generalized table.
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Table 8. Variables and values used in ANON’s Priority-Based Algorithms 2 and 3

Variable/value Description

open List of potential solutions (generalized tables)

visited List of potential solutions that have already been added to open

best Generalized table from open with the lowest information loss

levels Generalization levels of a potential solution

child Child node - a potential solution with a table generalized to the
next higher level at one quasi identifier, while the other
attributes’ levels remain the same as the levels of the parent

supp tuples Number of tuples from all partitions that violate k-anonymity
and/or �-diversity

partition Table partition - a set of records with the same quasi identifier
values

diversities Array with diversities of one partition for all sensitive attributes

nil Represents a NULL value

failure Denotes that an anonymized table, which satisfies all constraints,
could not be found

Table 9. Instance variables of a node used in ANON’s Priority-Based Algorithms 2
and 3

Variable Description

node.Parent Parent node - potential solution from which node was deduced

node.Levels Generalization levels of node.Table - represents action

node.WIL Weighted information loss - represents total path cost

node.Table Table with values generalized to node.Levels - represents state

As all optimizing generalization algorithms ANON has in the worst case
exponential time complexity caused by the state space, which grows exponen-
tially with the number of quasi identifier attributes and their limits. However,
for a given set of quasi identifiers it scales nicely for increasing sizes of the data
set. The set of experiments presented in this section were intended to analyze
whether the anonymization with customizable calculation of information loss is
feasible for large real-world datasets.

We did not compare ANON with other algorithms. The intention of the
experiments was not to show that ANON reduces information loss in general, as
other algorithms do not feature an application specific calculation of information
loss so any such comparison would be pointless. We also do not claim that ANON
is the fastest anonymization algorithm and the system could be accelerated e.g.
by applying other heuristic search procedures.

The microdata used for the experiments was the Adult Data Set from UCI
Machine Learning Repository [11] commonly used for performance experiments
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Table 10. Functions used in ANON’s Priority-Based Algorithms 2 and 3

in the microdata privacy literature. The Adult Data Set contains real data col-
lected by the U.S. census bureau in the year 1994. This data is split in a training
set and a test set. For our experiments we merged both sets together and tuples
with unknown values were removed. After data cleaning, the set contained 45,222
tuples. To provide comparable results, the same data preparation was undertaken
as described in [17,18]. From the 15 attributes in the data set, the identical nine
were chosen as in [18]. As shown in Table 11, the attributes age, gender, race,
marital status, education, native country and workclass were used as quasi
identifiers and the attributes salary class and occupation were used as sensitive
attributes. Generalization hierarchies for the used quasi identifiers were con-
structed in a semantically logical way.

There were two experiment runs, each with almost 800 anonymizations:
one with the use of priorities and information loss and one without them, to
imitate the optimal search algorithms without a cost function (e.g. MinGen).
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Algorithm 2. ANON’s Priority-based Algorithm - Part 1 (Search Algorithm)
Input: table, limits, prios, k param, l params, max supp, null handling
Output: anonymized table satisfying k-anonymity and �-diversity or failure if no
solution could be found

1: function Anonymize-Table(table, limits, prios, k param, l params, max supp)
2: open ← {Make-Node(table)}
3: visited ← { }
4: while open is not empty do
5: best ← node n in open with the lowest n.WIL value
6: if best.Table = nil then
7: best.Table ← Generalize(table, best.Levels)
8: end if
9: if Privacy-Test(best, k param, l params, max supp, null handling)

then
10: return best.Table
11: else � expand best
12: for i ← 0 to length(limits) − 1 do
13: levels ← best.Levels
14: if limits[i] > levels[i] then
15: levels[i] ← levels[i] + 1
16: child ← Child-Node(best, levels, prios)
17: if child not in visited then
18: add child into open
19: add child into visited
20: end if
21: end if
22: end for
23: best.Table ← nil
24: remove best from open
25: end if
26: end while
27: return failure
28: end function

29: function Child-Node(parent, levels, prios)
30: return a node with
31: Parent ← parent,
32: Levels ← levels,
33: WIL ← Calculate-WIL(levels, prios) � Weighted Information Loss
34: Table ← nil
35: end function

Information loss values are listed within generalization hierarchies that come
with ANON. The priority order of attributes (starting with a low priority) in the
first run was {age, native country, education, marital status, workclass, race,
sex}. In the second run (without the cost function), an implicit priority order
was derived from the attributes order in the ANON definition file, which was
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Algorithm 3. ANON’s Priority-based Algorithm - Part 2 (Privacy Test)
36: function Privacy-Test(node, k param, l params, max supp, null handling)
37: supp tuples ← 0
38: for each partition in Partition-Table(node.Table, null handling) do
39: if Count-Tuples(partition) ≥ k param then � k-anonymity satisfied
40: diversities ← Calculate-Diversities(partition)
41: for i ← 0 to length(l params) − 1 do
42: if diversities[i] < l params[i] then � �-diversity not satisfied
43: remove partition from node.Table
44: supp tuples ← supp tuples + Count-Tuples(partition)
45: break
46: end if
47: end for
48: else � k-anonymity not satisfied
49: remove partition from node.Table
50: supp tuples ← supp tuples + Count-Tuples(partition)
51: end if
52: if supp tuples > max supp then � privacy not satisfied
53: return false
54: end if
55: end for
56: return true � privacy satisfied (supp tuples ≤ max supp)
57: end function

{age, sex, race, marital status, education, native country, workclass}. Gener-
alization limits were not set (they equaled to the no. of generalization levels) to
avoid an anonymization without a solution.

The experiments were performed to estimate the “real case” complexity and
the impact of different parameters on the number of visited nodes, resulting infor-
mation loss and average partition size. These parameters are listed in Table 12.

Table 11. Adult Data Set description (adapted from [18])

Attribute Domain size Generalization type No. of gen. levels

1 Age 74 Ranges (5, 10, 20, 100) 4

2 Gender 2 Taxonomy tree 1

3 Race 5 Taxonomy tree 1

4 Marital Status 7 Taxonomy tree 2

5 Education 16 Taxonomy tree 3

6 Native Country 41 Taxonomy tree 2

7 Work Class 7 Taxonomy tree 2

8 Salary class 2 Sensitive att

9 Occupation 14 Sensitive att
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Table 12. Experiments’ parameters and their values

Parameter Chart notation Values

n QID 1, 2, 3, 4, 5, 6, 7

k k 2, 3, 5, 10, 14, 20, 100, 200, 1000

�α8 l1 1, 2

�α9 l2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

max supp supp 0 %, 1 %, 10 %

cost function (WIL) With priorities Used (first run),

W/o priorities not used (second run)

There were over 1,500 anonymizations produced, where the parameters were set
to almost all possible value combinations.

The first two experiments deal with the time complexity. In these exper-
iments, the impact of the quasi identifiers’ increase on the number of visited
nodes and anonymization time was analyzed. Both experiments were executed
with four different anonymization settings groups: (1) k = 2 with 0 % tuple sup-
pression (black line with white markers), (2) k = 2 with 1 % suppression limit
(black line with black markers), (3) k = 10 with 0 % suppression and �α8 = 2,
�α9 = 10 (gray line with white markers) and (4) k = 10 with 1 % suppression
and �α8 = 2, �α9 = 10 (gray line with black markers). The dotted line denotes
the maximal possible number of visited nodes (Πn

i=1limits[i]) and the approx-
imated maximal required anonymization time, respectively. As approximation,
the anonymization settings with k = 14, 0 % suppression and �α8 = 2, �α9 = 14
were used. These settings were noticed to result in maximal possible values,
because only the last queued node with completely generalized table satisfies
these settings.

Time complexity of k-anonymity algorithms similar to ANON grows with the
number of quasi identifiers [5,12,17]. In contrast to that, the number of tuples
in a table does not have a big impact on time complexity. Table size is just a
constant factor multiplied by the number of nodes, which does not affect the
number of visited nodes itself and can therefore be neglected. Figure 4 confirms
for ANON that time complexity grows with the increase in quasi identifiers.

Figure 5 represents the same experiment, where, instead of number of visited
nodes, the time was measured. If we compare both figures, it is easy to see that
time depends on the number of nodes and some other factors like generalization
hierarchy height. If we observe the �-diversity lines (gray lines) in Figs. 4 and 5,
we can notice that these lines have a slightly higher slope in the chart with time
on the y-axis than in the chart with nodes on the y-axis. The explanation for
this phenomenon is hidden in diversity calculation effort. ANON does not need
to calculate the size of a partition (relevant for k-anonymity checking) explicitly,
because it is managed together with a partition. The diversity (relevant for
�-diversity checking), in opposition to partition size, has to be calculated extra
for each partition, if the partition is k-anonymous.
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Fig. 4. Search algorithm complexity (number of nodes)

Fig. 5. Search algorithm complexity (time)

The charts Figs. 4 and 5 show the highly significant impact of tuple sup-
pression. Both black lines have the same settings, except the maximal suppres-
sion limit (white markers 0 %, black markers 1 %). However, the difference in
the results is huge. It took 1,075 nodes to anonymize 7 quasi identifiers to a
2-anonymous table with no suppression (black line with white markers) and
with just 1 % suppression (max. 453 tuples may be eliminated), it took only
60 nodes to find the optimal solution. More experiment results and analysis of
different parameters’ impact can be found in [3].
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5 NULL value experiments

In this section we report experiments which analyze the differences in informa-
tion loss between the different treatments of NULL values: basic and extended
match. In Tables 1, 2, 3, 4 and 5 we showed in a tiny example the differences
resulting from applying different match definitions. Here we analyze the differ-
ences between anonymization with basic match and with extended match in more
detail and more exhaustive. Since in case of basic match whole rows have to be
removed (suppressed) from the table if they contain a NULL value, we expect
an improvement in the information content of the results through the applica-
tion of extended match. Our hypothesis, therefore, was that anonymization with
extended match has less information loss than anonymization with basic match.

To test the hypothesis we conducted a series of 3168 experiments using the
anonymization tool ANON applied to datasets derived from the Adult Database
from the UCI Machine Learning Repository, with varying parameter settings
and varying ratios of NULL values. We included 8 quasi identifiers in the follow-
ing order: age, sex, race, marital status, workclass, education, native country,
occupation. According to this order, tables with n < 8 quasi identifiers contain
the first n quasi identifiers. Generalized values were provided with help of tax-
onomy trees for all quasi identifiers except the age, where we used ranges with
steps {5, 10, 20, 100}.

The Adult Database itself contains several NULL values in the attributes
workclass, occupation and native country. To assure that every table has the
right target amount of randomly placed NULL values used in the experiments
(and not more than that), we first eliminated the rows with NULL values from
the original table to obtain a common base for all test tables. From this base
table with 45222 records we created 88 test tables with NULL values as a result
of combination of the number of quasi identifiers (1 to 8) and the percentage of
randomly inserted NULL values (0.1 %, 0.5 %, 1 %, 2.5 %, 5 %, 7.5 %, 10 %, 15 %,
20 %, 25 %, 30 %). We used random number generation in Java for determination
of cells in the table where NULL values were inserted.

For the anonymization runs of the 88 tables we used following parameters:

– k-parameter: 2, 3, 4, 5, 10, 15, 20, 50, 100
– max. allowed suppression: 0 %, 1 %
– matching: basic match, extended match.

The max. allowed suppression specifies the quota for suppressing rows (to
avoid adverse effects of outliers). For basic match this is in addition to the rows
with NULL values, which are removed in a preprocessing step.

Information loss in the anonymization algorithm is caused by row suppression
(fraction of rows being suppressed) and by generalization (generalization level of
the attributes). For the following experiments the information loss was calculated
with the following formula:

IL =
s

n
+

m∑

i=1

glαi

htαi

× 1
m

× n − s

n
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n Number of rows
s Number of removed rows
m Number of quasi identifier attributes
glαi

Generalization level of the attribute αi in the generalized table
htαi

Height of the generalization hierarchy of the attribute αi

(Number of total generalization levels of αi).

Information loss due to row suppression is represented in the first summand
as the fraction of removed tuples. The information loss caused by generalization
is calculated as the weighted sum of information losses of all attributes multiplied
with the fraction of non-removed tuples. The information loss of an attribute is
defined as fraction of the generalization level of this attribute by the number of
levels, where the most general level (which carries no information at all)is h and
the level in the original table is 0. So if an attribute is generalized to the level 3
of a 5 level hierarchy we define the information loss a 3/5. Note that the values
of an attribute in all tuples are generalized to the same level as we apply the
global recording strategy. Therefore we can calculate the information loss at the
attribute level.

We show first representative comparisons of the information loss between
basic match and extended match without and with row suppression. In the fig-
ures results of extended match is shown in light gray bar and those of basic match
in black bars. Each bar represents the information loss of one anonymization run.

Figures 6 and 7 show anonymizations without row suppression (max. supp. =
0 %). Anonymizations with extended match (light gray bars) tend to have con-
stant information loss, whereas the information loss of anonymizations with basic
match (black bars) has a growing trend with increasing percentage of NULL
values. This behavior can be explained with 2 influence factors: (1) number of

Fig. 6. Impact of the percentage of NULL values on the information loss (7 quasi
identifiers, k-parameter = 5, 0 % max. row suppression).
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Fig. 7. Impact of the percentage of NULL values on the information loss (7 quasi
identifiers, k-parameter = 50, 0 % max. row suppression).

Fig. 8. Impact of the percentage of NULL values on the information loss (7 quasi
identifiers, k-parameter = 5, 1 % max. tuple suppression).

removed rows (in case of basic match) and (2) outlier rows and the corresponding
high generalization. If the percentage of NULL values is low, the rows with NULL
values are outlier rows, causing information loss to grow if extended match is
used. If basic match is used instead, those “NULL-outliers” are simply removed
and thus do not cause massive generalizations. On the other end, where the ratio
of NULL values is high, rows with NULL values are not outliers anymore. There-
fore, they do not increase the information loss if extended match is used. For
basic match, however, information loss is proportional to the ratio of rows with
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Fig. 9. Impact of the percentage of NULL values on the information loss (7 quasi
identifiers, k-parameter = 50, 1 % max. tuple suppression).

NULL values leading to an increase in information loss with increasing ratios of
NULL values.

Figures 8 and 9 show anonymizations with the same setup as those in Figs. 6
and 7, but with row suppression of up to 1 %. Here extended match is no longer
so sensible on NULL outliers and results in an almost constant information loss
over increasing ratio of NULL values (light gray bars), while information loss
grows drastically for basic match (black bars). That for low ratios of NULL
values (below 1 %) basic match is slightly better than extended match might be
due that for basic match more rows are removed (number of rows with NULL
plus 1 % of the rows without NULL).

Figure 10 shows the aggregated results of all 3168 anonymizations in our
experiment. Each bar represents the average difference in information loss of
anonymizations with basic match and anonymizations with extended match,
calculated over all 8 quasi identifiers and all 9 different k-parameters. The light
gray bars represent the setups without row suppression (max. supp. = 0 %) and
the dark gray bars the setups with 1 % max. suppression.

To summarize the results: The experiments showed that the best method
in general was extended match with 1 % row suppression. For very low ratios
of NULL values basic match was slightly better. Extended match without row
suppression performs worse for low ratios of NULL values, because it suffers from
the generalizations caused by NULL outliers. Basic match was only favorable
for very low numbers of NULL values and the quality of the results deteriorates
with increasing ratios of NULL values, caused by the removal of all rows with
NULL values. Furthermore, the information loss for extended match with row
suppression did not seem to be influenced by the number of NULL values in the
data set, as shown by the almost constant information loss over varying ratios
of NULL values.
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Fig. 10. Average advantage in %-points of information loss of the extended match
over the basic match, depending on the percentage of NULL values in a table. In the
positive y-area the extended match outperforms the basic match.

6 Conclusions

NULL values (missing values, not applicable attributes) appear frequently in
microdata. Surprisingly, current anonymization algorithms require that all rows
containing NULL values are removed from a table before it can be anonymized.
We analyzed the effects of including NULL values in the definition of
k-anonymity in detail and showed that the extended match where NULL val-
ues match (only) with other NULL values is a correct approach for extending
k-anonymity to cover missing values. We introduced two new attacks that show
that a further relaxation of the match operator which interprets NULL values
as wildcards in the sense of Codd’s maybe select leads to tables which can be
attacked successfully. The extension of k-anonymity to tables with NULL values
reduces the information loss induced by the removal of rows with NULL values by
current anonymization algorithms and avoids the introduction of biases. Experi-
ments showed that extended match reduces information loss for a generalization
algorithm with row suppression considerably. The definition of k-anonymity we
propose here can be used easily as basis for extending other anonymization algo-
rithms to also cover tables with NULL values in an adequate and save way.
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