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Abstract. Geographically distributed data centers are deployed for non-stop
business operations by many enterprises. In case of disastrous events, ongoing
workloads must be failed over from the current data center to another active one
within just a few seconds to achieve continuous service availability. Software-
based parallel database replication techniques are designed to meet very high
throughput with near-real-time latency. Understanding workload characteristics
is one of the key factors for improving replication performance. In this paper, we
propose a workload-driven method to optimize database replication latency and
minimize transaction splits with a minimum of parallel replication consistency
groups. Our two-phased approach includes (1) a log-based mechanism for
workload pattern discovery; (2) a history-based algorithm on pattern analysis,
database partitioning and partition adjustment. The experimental results from a
real banking batch workload and a benchmark OLTP workload demonstrate the
effectiveness of the solution even for partitioning 1000 s of database tables in very
large workloads. Finally, the algorithm to automate the cyclic flow of workload
profile capturing and partitioning readjustment is developed and verified.

1 Introduction

Many enterprises employ multiple geographically distributed data centers running the
same applications and having the same data to provide zero-downtime upgrades,
cross-site workload balancing, continuous availability and disaster recovery. Across
these centers, data replication is used to maintain multiple data copies in near real-time.
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Various database replication techniques are proposed to serve different purposes.
High availability (HA) within a single data center employs data replication to maintain
global transaction consistency [3] or to improve fault tolerance and system performance
via transaction processing localization [1, 16, 18]. Replication over unlimited distances
leads to enormous challenges of scalability, efficiency and reliability, especially in an
active-active deployment with heterogeneous database architectures.

Although DBMS built-in replication function has the potential for better perfor-
mance via tighter software stack integration, middleware-based replication is more
suitable for multi-vendor heterogeneous database environments [12]. Industrial
examples of such technology include IBM Infosphere Data Replication [22], Oracle
GoldenGate [23], etc. One widely used approach is to capture committed data changes
from DBMS recovery log and to replicate the changes to target DBMS. Replicating
data after changes committed at the source does not impact the response time of
source-side applications. This paper addresses the performance problem of large-scale
asynchronous database replication optimization for minimizing the data staleness and
data loss in case of unrecoverable disasters.

Parallel replication is a desirable solution to increase the throughput by concur-
rently replicating changed data through multiple logical end-to-end replication chan-
nels. Such concurrent replication can potentially split a transaction’s writeset among
channels. Similar to DBMS snapshot consistency, point-in-time (PIT) snapshot con-
sistency is provided via time-based coordination among replication channels [22]. PIT
consistency is a guarantee of replicated data having a consistent view with the source
view at an instance of past time. Such a time delay in PIT consistency is called PIT
consistency latency. PIT consistency latency at the target DBMS is determined by both
replication channel throughput and the duration between when the first element of a
transaction’s writeset is replicated and when the last element is replicated. It is not
difficult to envision that higher replication throughput delivers lower PIT consistency
latency. In addition, normally the more replication channels a transaction’s writeset is
split into, the longer it takes to reach PIT consistency. Over-provisioning with
underutilized replication channels also introduces extra complexities and wastes
resources.

This paper addresses the partitioning automation in parallel database replication
cross data centers. Partitioning a database is a challenging task in PIT consistency
latency reduction. By following design principles of DBMS data independence [2],
databases and applications are often designed separately. Database access patterns
usually differ by applications. One specific database partitioning scheme hardly suits
the needs of other applications. Furthermore, new applications are continually deployed
on existing databases and access patterns change as business requirements evolve.
Taking into account of varying workload characteristics, scale of database objects and
resource constraints, it is impractical for database administrators to have comprehen-
sive understandings of all the database activities and to manually perform and adjust
database partitioning for parallel data replications.

Our design aims at minimizing replication channels and achieving desired
point-in-time consistency. With the observation that similar workload patterns re-occur
in most business applications, we propose a two-stepped approach. In our approach, a
log-based mechanism is employed for workload pattern discovery, and a history-based
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algorithm is used for pattern analysis and database partitioning. The partition granu-
larity is at DBMS object level such as tables and table partitions, which can reach up to
thousands or tens of thousands in a large enterprise IT environment. Finer grained
partitioning, such as at the row level, is less practical due to higher overhead in runtime
replication coordination and DBMS contention resolution. Our approach discovers and
analyzes the data access patterns from the DBMS recovery log, and makes partitioning
recommendations using a proposed two-phased algorithm called Replication Partition
Advisor (RPA)-algorithm. In the first phase, the algorithm finds a partitioning solution
with the least replication channels such that the PIT consistency latency is below a
threshold tied to a service-level agreement (SLA). The second phase refines the par-
titioning solution to minimize the number of transaction splits. Our approach is
applicable to share-nothing, share-memory and share-disk databases [20]. The
real-world workload evaluation and analysis demonstrate the effectiveness of our
solution.

The rest of the paper is organized as follows. Section 2 introduces more background
about inter-data-center parallel data replication. Section 3 describes the workload
profile tool (WPT). Section 4 presents the RPA-algorithm and discusses how a
real-time re-partitioning can be achieved. The experiment evaluations are presented in
Sect. 5. We discuss related work in Sect. 6 and end the paper with the conclusion in
Sect. 7.

2 Background on Parallel Data Replication

Based on the data change propagation, mainstream replication technologies can be
classified into two major types: synchronous replication (also called eager replication)
and asynchronous replication (also called lazy replication). In eager replication, the
changes to all the copies are in a single transaction (unit of work). If a failure happens
on any copy, the entire transaction will roll back. Compared with eager replication, lazy
replication eliminates the impact on transaction response time by relaxing the strong
consistency among copies. Instead of using two-phase commit protocols, lazy repli-
cation chooses an optimistic protocol: after the transactions are committed on the
source database, the data changes are asynchronously captured, propagated and then
applied to the target databases.

The fundamental difference between eager replication and lazy replication is the
way to optimize the tradeoff between data consistency and system performance.
Whenever increased transaction time is not tolerable (often the case for financial
transactions), eager replication is not an option because of the propagation delay
incurred over geographic distances. Each 100 km of fiber typically adds about 1 ms of
delay [5]. Lazy replication does not impact transaction response time, but introduces
two major issues:

(1) Data staleness: After a transaction has committed at the source database, the
subsequent data access to the target databases might not return the updated values
immediately and consistently. To measure the window of inconsistency between
source and target copies, a point-in-time (PIT)-consistency latency is introduced
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to describe how much time the target database is behind the source database. We
further define consistency group (CG), a set of tables for which transaction
consistency is always preserved. The PIT consistency is per CG.

(2) Data loss: An unrecoverable disaster (e.g., earthquake) on the source copy can
cause a loss of the data changes that have not been applied to the target databases.
PIT consistency latency also largely affects the data loss window in lazy repli-
cation. RPO (Recovery Point Objective) in Lazy replication is a non-zero unless
there are other means to compensate. Data loss is a function of the replication
delay.

To alleviate the impacts of data staleness and data loss, it is highly desirable to
reduce the PIT consistency latency especially with the ever-growing data volumes. In
the wide area network replication, the PIT consistency latency can reach a
non-tolerable value with respect to SLA, during a heavy workload period, particularly
batch processes that might update each row of an entire database. To reduce the PIT
consistency latency, replication protocols might divide the database objects among
several replication channels; potentially have to relax the ACID compliant transaction
integrity. At the same time, through synchronization across parallel replication trans-
mission or replay, the eventual data consistency can be ensured at target databases even
after disaster recovery (also called 100 % recovery consistency objective). Once all
channels have caught up to the same point, consistency is guaranteed. The major
benefit is to increase the overall replication throughput through concurrency. Although
the negative effects are anomalies (e.g., dirty read) during the replication, most
read-only applications can use the data as long as it is not stale beyond a certain
threshold, and/or can retry if data has not yet arrived. In these applications, data
staleness is more significant than temporary data anomalies.

Our work is applicable to an active-active WAN configuration (where transactions
can be executed at either site) presuming that proper transaction routing provides
conflict prevention. For discussion simplicity, we present uni-directional replication in
an active-query configuration (a.k.a. master-slave [9]) where update transactions are
restricted to a designated master copy in one data center and read-only transactions are
executed in other data center copies. Upon a failure on the active copy caused by
disasters, one of the query copies assumes the master role and takes over the updates.

Figure 1 illustrates a logical architecture of typical parallel lazy data replication
between two database systems that potentially reside in two data centers. A parallel
replication system can be modeled as a network G(C ⋃ A, E) with a set of capture
C = {c1, c2, …, cs} and a set of apply A = {a1, a2, …, ar}. To replicate data changes, a
capture agent, such as Capture1 in Fig. 1, captures the committed data changes from the
database recovery logs at the source site, packs and sends them over a transport
channel. The transport channels manage reliable data transfer between the two sites. An
apply agent, such as Apply1 in Fig. 1, applies the changes to the target database. Each
capture and apply agent can be attached to a different database node in a cluster. Within
the capture and apply agent, whenever possible, multiple threads are used to handle the
work with the protection of causal ordering.

The link (a, c) 2 E represents a logical replication channel, which is an end-to-end
replication data path from a log change capture at the source site to a change apply at
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the target site. Three channels are shown in Fig. 1. A throughput capacity or bandwidth
BW(a, c) measures the maximum data throughput, in bytes/second, of a channel. The
value is affected by all the involved components, e.g., source log reader, capture,
network, apply, target database, etc. For simplicity, this paper assumes that the effective
“bandwidth” is static. All changes within each database object (tables or partitions) are
replicated by one channel and this is designated by a preconfigured subscription policy.
Each capture agent only captures the changes from its subscribed objects. Transported
data changes at target site are subscribed by one or more apply agents on mutually
disjoint sets of objects. The entire set of database objects within each replication
channel is guaranteed to preserve serial transaction consistency. Hence, the set of
database objects TB = {tb1, tb2, …, tbk} that are replicated within the same replication
channel (a, c) is called a consistency group denoted as cg(a, c, TB).

When a transaction’s writeset is split into different consistency groups, the trans-
action is split into multiple partial transactions with the same source-side commit time.
Each partial transaction is replayed at the target as an independent transaction.
Replication then operates with eventual consistency: i.e., transaction consistency is
guaranteed only when all table changes are replicated up to a common point-in-time.
Eventual transaction consistency is suitable for a large number of read-only applica-
tions that can use the data as long as it is not stale beyond a certain threshold. Eventual
consistency must be restored before write applications can be switched in case of
planned site switch or unplanned disaster. Like IBM IIDR Q-Replication [22], repli-
cation across consistency groups can be synchronized so that data is not applied to the
target DBMS unless it has been received into persistent storage at the target for all
consistency groups. Thus, in case of disaster, consistency can be restored by draining
the queues for all consistency groups up to a point that is consistent across all queues.
When eventual consistency is not acceptable, the target DBMS still can restore the
point-in-time consistency using the source-side commit time. Normally, such a con-
sistency recovery mechanism is tightly integrated with the multi-version concurrency
control.

In the next two sections, we discuss our solution for optimizing the partitioning of
database objects into minimum number of consistency groups to achieve a PIT con-
sistency latency goal based on our workload profiling approach.

DBMS

Capture 2 Apply 3

Apply 2

Apply 1

DBMS

Database 
Recovery Log

Transfer ApplyCapture

Capture 1
DBMS

Capture 2 Apply 3

Apply 2

Apply 1

DBMS

Database 
Recovery Log

Transfer ApplyCapture

Capture 1

Fig. 1. Logical architecture of parallel lazy replication
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3 Workload Abstraction

3.1 Transaction Pattern and Workload Profile

This section details workload abstraction in our proposed partitioning solution for
parallel data replication. Considering the entire workload cannot be recorded, we
employ a landmark window model for incrementally summarizing the data activity
statistics of each table in the workload and the coupling relationships among tables
implied by transaction commit scopes.

The term “transaction pattern” is introduced to define a profiled entity that contains
statistical and transactional information in a workload. A number of transactions belong
to the same transaction pattern if and only if they update exactly the same set of tables,
regardless of the specifics such as update sequence, data volume or operation types
(insert, update or delete). For instance, given a table set T = {A, B, C, D}, examples of
possible transaction patterns are P{A, B, C}, P{A}, P{B, C, D}, P{A, B}, etc. P
{A, B, C} and P{A, B} are not considered as the same transaction pattern even though
one has a subset of tables of the other. These patterns reflect the hidden table relations
recorded in transaction commit scopes. Separate collection of pattern statistics of P
{A, B, C} and P{A, B} facilitates the partitioning algorithm in the evaluation of
transaction splits. For horizontally partitioned tables, each partition is regarded as an
individual physical object. In WPT, the definition of transaction pattern can be easily
extended to treat different partitions as different table objects, especially when most of
industrial DBMS logs contain the partition identifier. For simplicity, the rest of the
paper only discusses tables.

To measure pattern-specific workload size, we record the table-specific statistics,
including the numbers of insert, update and delete operations, and data change volumes
measured by bytes. For an insert operation, all column values of the new row need to
be replicated to the target site. For an update operation, in addition to the values of all
the updated columns, the old key values should also be replicated to target sides for
row lookup and collision detection. For a delete operation, only the key values need to
be replicated. Thus, the workload size depends on the operation types, the actual log
contents with the column values, the table definition and the actual column value size.
Captured from DBMS catalogs, table schema definitions are used to decode the column
values of each row for computing accurate data changes of each operation.

The collected workload patterns and their statistics are modeled by landmark
window model. The entire workload is chunked to disjoint pattern snapshots by
user-specified time intervals. The collection of all the snapshots constitutes a workload
profile.

Figure 2 shows an example transaction pattern entity in a JSON format. It includes
information such as snapshot time, transaction pattern identifier (ID), transaction count,
the number of tables included, identifiers of the tables, as well as insert, update and
delete volumes in bytes. Table-level statistics in a particular transaction pattern include
the following content showed in Fig. 2: database ID and table ID; total count of the
IUD (Insert, Update, Delete) operations; total bytes of the data that are replicated of the
IUD operations; and total bytes of the raw log data in the IUD operations etc.
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3.2 Workload Profiling Tool

We implemented a workload profiling tool (WPT) to execute alongside with a com-
mercial database system. The log transaction reader uses the database recovery log
APIs to scan through the transaction history log. A transaction pattern control block
(TPCB), which stores information of a transaction pattern, is stored in a hash table in an
in-memory buffer, as shown in Fig. 3. For every transaction record gathered in log
scanning, the statistical information is accumulated if the matching transaction pattern
exists in the hash table. If no matching transaction pattern is found, a new transaction
pattern entry is added to the hash table. In Fig. 3, TPCB manager maintains a linked list
of TPCB buffer. Currently, each buffer has a 64 MB space. When one buffer is full, a
new buffer is created and inserted into the list. Using a hash table to store TPCBs
ensures that a TPCB entity can be quickly found from these buffers and updated. The
address of each TPCB entity is saved in the hash table as a hash value, while the hash
key is the hash code of TPCB ID of one TPCB entity. After completing all log records
within a snapshot interval, WPT dumps all the gathered information from memory to
disk files and then feeds the files to RPA.

Since WPT executes in a separate address space from the DBMS, it does not disturb
normal database workloads. From a system resource sharing prospective, one can run

Fig. 2. Example WPT data in JSON format

Fig. 3. In-memory TPCB hash table
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WPT at a lower job priority than regular application workloads to avoid or reduce
resource contentions. An alternative is to run WPT offline. For example, if the pro-
duction system disk that contains the database log is mirror-copied to a different system
at a local or remote site, WPT can process the log files from the mirrored disk.
Multiple WPT instances can also execute concurrently to process log records from
different time periods.

WPT and RPA are used in the initial configuration of parallel replication as well as
can be applied in the subsequent tuning and optimization process. Figure 4 shows the
process of how users can iterate through the capturing, profiling, analysis and database
partitioning steps, along with workload growths or new application deployments, to
adjust replication groups. RPA supports iterative tuning to help users continuously
optimize their partitioning solution. It is up to each replication software whether the
redeployment of replication partitioning can be done online or offline.

4 Replication Partition Advisor Algorithm

4.1 Problem Formulation

Let WK(TB, TX, T, IUD) denote a replication-specific workload collected during a time
window T ¼ ft0; t0 þ dt; t0 þ 2 � dt; . . .t0 þ v � dtg, where dt is the sample collection
interval; TB = {tb1, tb2, …, tbn} is a set of n replication objects (e.g., tables) whose
changes are to be replicated and TX = {tx1, tx2, …, txk} represents their transaction
activities; and IUD(TB, T) is the time series statistics of inserts, updates and deletes on
the tables in a time window T. Given a parallel replication system G(C ⋃ A, E),
RPA-algorithm partitions all the replicated database objects TB to form a set of
m mutually disjoint non-empty partitions CG = {cg1, cg2, …, cgm}, where cgi is a
consistency group replicated by a particular channel E(a, c). The objective is to find a
solution such that m is minimal and the worst replication latency in CG is below a
user-supplied threshold H.

For a particular replication channel, the PIT consistency latency at a specific time
point tp is the difference between tp and the source commit time for which all trans-
actions to that point have been applied to the target at time tp. The latency of each

Fig. 4. Iterative parallel replication tuning
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channel is directly related to the logical replication throughput capacity BW(a, c) as
well as the size of workload assigned to this channel. The workload size is defined as
the number of replicated data bytes. For a specific channel, it can process at most
dt � BW bytes within dt seconds. The residual workload will be delayed to the next
intervals. Residual workload REScg,i for a consistency group cg at time t0 þ i � dt is the
remaining work accumulated at t0 þ i � dt that has not been consumed by cgi. Thus,
REScg,i can be computed iteratively by:

REScg;i ¼ maxfðREScg;i�1 þ
X

IUDðTBcg; t0 þ i� 1ð Þ � dtÞ � dt � BWÞ ; 0g ð1Þ

Assuming data is consumed on a first-in-first-out basis, the PIT consistency latency
for cg at time t0 þ i � dt is the time to process the accumulated residue and new
activities at t0 þ i � dt:

PITcg;i ¼ REScg;i þ
X

IUD TBcg; t ¼ t0 þ i
� �� �

= dt � BWð Þ ð2Þ

The maximum PIT consistency latency PITcg of group cg during the time period is
computed as:

PITcg ¼ max PITcg;iji ¼ 0; 1; 2; . . .; v
� � ð3Þ

The maximum PIT consistency latency PITCG-max of a set of consistency groups
CG is the highest value of PITcg among all consistency groups in CG.

The objectives of the partitioning optimization can be formulized as follows. Given
a workload W, a parallel replication system G and its replication channel bandwidth
BW(a, c), and an SLA-driven PIT consistency latency threshold H, the first objective
function is defined as:

L ¼ min CGj j 8CG : PITCG�max �Hjf g; ðO1Þ

where |CG| is the size of a consistency group set CG, i.e., the number of groups in the
set. O1 is to find the partitioning solutions with the lowest number L of consistency
groups such that the highest PIT consistency latency of all the replication channels
PITCG-max is less than or equal to H. Let PL represent all the partition solutions of group
size L and satisfy O1. The second objective is to find a partitioning solution with the
minimized number of transaction splits.

T split ¼ argmin
CG2PL

X
tx2TX

XL
i¼1

trTðcgi; txÞjtrTðcgi; txÞ 2 0; 1f g
( )

; ðO2Þ

where trT(cgi, tx) is either 1 or 0 representing whether transaction tx has tables assigned
to group cgi or not. When all the tables in transaction tx are assigned to a single group,
trT(cgi, tx) equals 0 for all groups except one. O2 seeks to find the partition solution in
PL such that the aggregated count is minimized. When no transaction split is required,
T_split equals the total number of transaction instances in the workload.
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4.2 RPA-Algorithm Phase-1: Satisfying PIT Consistency Latency
with the Least Groups

Our RPA algorithm consists of two phases: phase-1 is to find a solution that satisfies
the first objective O1, and then phase-2 applies a transaction graph refinement approach
to achieve the objective O2. The algorithm flow of phase-1 is listed below followed by
a description.

Given bandwidth BW(a, c) and a user-specified PIT consistency latency thresh-
old H, the first two steps in phase-1 obtain the lower bound Llower, for the number
of consistency groups. The lower bound describes the best case scenario: the
workload volume distributes uniformly in both table and time dimensions, while
the PIT consistency latency reaches the highest at the end of the time window t0 þ v � dt
and the residual workload evenly spreads among all channels, i.e. Wsum ¼ Llower�
BW � ðv � dtþHÞ. Starting with this lower bound Llower, the process in steps 1_3 to 1_6
partitions the tables into Llower groups. We then re-examine the actual maximum PIT
consistency latency of all groups in steps 1_7 and 1_8. If the latency is higher than the
threshold H, another round of partitioning is performed with the number of groups
incremented by 1.

For each fixed group number, the problem becomes to partition n tables into
L consistency groups for PIT consistency latency minimization, which is an NP-hard
problem [7]. Given that the number of tables in a workload can reach thousands or even
more, it is not realistic to exhaust all the partitioning combinations for finding the best
among them. Instead, the greedy algorithm is introduced to resolve such a problem [8].
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When applying the greedy algorithm, we use a two-step approach for improving the
possibility of finding a global optimal solution instead of a local optimum. First, using
the most active tables TBtop (selected in step 1_4), step 1_5 enumerates all the possi-
bilities of partitioning them into L non-empty groups. The number of combinations for
such a placement grows rapidly with the numbers of tables and groups. For avoiding an
impractically high cost of step 1_5, the size of TBtop is determined based on a rea-
sonable computation time on the system where RPA runs. The best choice from the
exhaustive list of placements is the one with the lowest maximum PIT consistency
latency. Step 1_5 is then followed by a greedy procedure in step 1_6 that tests each of
the rest tables against each consistency group and computes the group’s potential new
maximum PIT consistency latency contributed by the table. The group with the lowest
new maximum PIT consistency latency is the target group for the table placement. The
greedy iteration in step 1_6 uses a stronger heuristics for reaching the minimum
number of consistency groups, even though it is possible that other partitioning
schemes that satisfy objective O1 (Sect. 4.1) also exist. An added benefit is that this
heuristics tends to generate consistency groups with less PIT consistency latency skews
among them.

Our approach is particularly effective when there are activity skews among the
tables. In fact, such skews are common in real-world applications. Figure 5 shows a
customer workload analysis on how tables weight within the workload with respect to
total and peak throughputs. A table with a higher x-axis value weights more in terms of
total throughput than those with lower x-axis values. Such a table contributes more to the
overall workload volume accumulation and channel saturation. A table with a higher y-
axis value is more likely to contribute to higher PIT consistency latency at its own peak
time. As shown in Fig. 5, tables with higher peak or total throughputs constitute a small
fraction in the entire workload. Based on this observation, step 1_4 selects the top tables
with higher total and peak throughputs for enumerative placement tests.

Throughput-Balancing: An Alternative to PIT Consistency Latency Minimiza-
tion. Calculation of PIT consistency latencies is impossible when quantified replica-
tion bandwidth is unavailable. In this case, the optimization goal of the RPA-algorithm

High peak                                                       

Low peak                                                      

High total 
throughput

Low total 
throughput

High peak                                                       

Low peak                                                      

High total 
throughput

Low total 
throughput

Fig. 5. Table activity distribution in a real-world banking application workload
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is adjusted to balance the peak volume and total volume given a targeted number of
consistency groups. Instead of computing PIT consistency latency, steps 1_5 and 1_6
choose the candidate group based on the accumulated peak volume and total volume
after adding a new table. Both factors are positive correlated with the PIT consistency
latency. Total throughput-based placement tries to balance utilizations of physical
replication channels. Peak throughput-based placement is for capping the highest
workload volume among all channels. Understanding workload peaks also facilitates
capacity planning and system configuration. This alternative is referred to as the
throughput-balancing algorithm (RPA-T-algorithm).

4.3 Transaction Split Reduction

RPA-algorithm phase-1 focuses on reducing PIT consistency latency. This section
describes phase-2, which attempts to reduce transaction splits for statistically increasing
serial consistency in data replication.

Transaction Graphs. In RPA, we use an undirected weighted graph TG(TB, TX, T,
IUD) to model tables and their transaction relationships within a workload WK(TB, TX,
T, IUD). Each node in the graph represents a table in TB. For simplicity, the same
notation TB = {tb1, tb2, …, tbn} is also used to represents the graph nodes. The weight
of a node is the time series IUD statistics for the table in the workload profile. An edge
e(tbi, tbj) connecting two nodes tbi and tbj denotes that there exists one or more
transaction patterns that correlate both tables. The weight of the edge |e(tbi, tbj)| is the
total transaction instance counts from all the transaction patterns that involve both
tables. Figure 6 illustrates an example of a transaction graph with 19 tables. Table T1’s
weight is associated with a time series statistics {234, 21, 654, 2556, ..}, which indi-
cates data activities to be replicated at each time point for T1. The weight 731 of edge e
(T1, T2) means that there are 731 committed transactions involving both T1 and T2.

Because of relational constraints or other reasons, there are cases when transaction
consistency must be preserved among certain tables. That means, these correlated
tables need to be assigned to the same consistency group. When the RPA-algorithm

Fig. 6. Transaction graph
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builds a transaction graph for a workload, each set of such correlated tables is first
merged into a single node with aggregated node statistics and edge weights.

When partitioning a set of table nodes, RPA-algorithm groups the tables to form
multiple clusters, which are possibly connected by edges. For a transaction instance
that is split into q clusters, the number of edges (of weight 1) connecting these
q clusters equals q � ðq� 1Þ=2. This number monotonically increases with q when
q > 1. Hence, minimizing the number of split transactions, as formulated by O2 in
Sect. 4.1, is equivalent to minimizing the number of edges, or aggregated edge weight.
Equivalently, the problem of minimizing transaction splits is a graph-partitioning
problem, which is to divide a graph into two or more disconnected new graphs by
removing a set of edges. As a classic partitioning problem, minimum cut graph-par-
titioning is to remove a set of edges whose aggregated weight is minimal. A constraint
for typical graph-partitioning applications is to balance the total node weight of each
partition. Differently, the target of our problem is to minimize the maximum PIT
consistency latency among all the groups, each corresponds to an individual consis-
tency group.

General Graph-Partitioning Algorithms. Agraph-partitioning problem, as an NP-
complete problem in general, is typically solved by heuristics in practice. One widely
used algorithm for two-way partitioning (bi-partitioning) is the Kernighan-Lin algo-
rithm (KL algorithm) [13]. It is an iterative improvement algorithm over two existing
partitions. It seeks to reduce the total edge cut weight by iteratively swapping nodes in
pairs between the two partitions. Fiduccia-Mattheyses algorithm [6] (FM algorithm)
further enhances the KL algorithm. By moving a node to a new group, it reduces its
edge cut to the other partition while increasing its edge connection to its home partition.
It also removes KL algorithm’s restriction of moving nodes in pairs. The improved
algorithm is referred to as KL-FM algorithm. For large graphs, multi-level
bi-partitioning is often applied through graph coarsening and expansion [10]. The
quality of their final solutions, which could be a local optimum, is affected by the initial
partitioning. Spectral solution [17] can find the global optimum by deriving partitions
from the spectrum of the graph’s adjacency matrix, but it does not fit our transaction
graph model with time series statistics as node weights. Partitioning a graph into more
than two partitions can be achieved via a sequence of recursive bi-partitioning.
Refinement heuristics for k-way partitioned graph have also been developed [11].

Transaction Split Reduction by Consistency Group Refinement. Before introduc-
ing our RPA-algorithm phase-2, we first discuss how to reduce transaction splits
between two already partitioned consistency groups by FM algorithms. This process is
referred to as an algorithm for 2-CG refinement (CG-RF-2). The process refines the
partition via node/table movement. Each move needs to ensure that the PIT consistency
latencies for both refined groups remain below PITmax or within a specified margin
around PITmax.
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The PIT consistency latency upper bound in C_2 is set to preserve the optimization
objective and speed up the algorithm convergence. When the two input groups are
produced by RPA-algorithm phase-1 and α is set to 0, CG-RF-2 algorithm preserves
the same maximum PIT consistency latency value from phase-1 while refining the
groups for transaction split minimization. When α > 0, the PIT consistency latency
constraint is relaxed and potentially more nodes are moved to reduce transaction split.
Alternatively, a user-supplied PIT threshold H can be used as the constraint.

In some cases, the two-step procedure of bi-partitioning and refinement can be used
recursively to create a higher number of partitions, given that the refinement constraint
can be distributed along the recursion paths. Such an approach works for
throughput-balancing partitioning optimization, i.e. the alternative algorithm RPA-T.
However, PIT consistency latency is not a constraint measure that can be easily dis-
tributed while still guaranteeing convergence during recursive bi-partitioning. There-
fore a non-recursive approach is needed.

RPA-Algorithm Phase-2: K-Way Consistency Group Refinement for Transaction
Split Reduction. This section presents the phase-2 of our RPA-algorithm for
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transaction split reduction. The algorithm (called CG-RF-k) is derived from the k-way
refinement algorithm proposed by Karypis et al. [11].

RPA-algorithm phase-2 starts its refinement process from the partitioning result of
phase-1, which finds the minimum number of groups while satisfying maximum PIT
consistency latency threshold. Every node move seeks to reduce the positive gains, i.e.
trading higher inter-group edge cut weight with lower intra-group edge cut weight. This
process keeps reducing the transaction split count until reaching the lowest.

4.4 Real-Time Partitioning Evolution

In a production environment, partitioning can evolve to adapt to the changing workload
patterns and system environment. Both workloads and underlying resources are
self-governing agents that are autonomous from replication software. The maintenance
issues are even more important than the initial construction, especially in such a
dynamic environment. When the detected changes lead to the real time PIT consistency
latency increase above a specific threshold H, re-partitioning is executed with the
following three-step tasks:

(a) Re-computing the partitioning of database objects with the latest data.
(b) Draining the on-going replication. Since the queued work can be congested at

anywhere in between the capture and apply, in reality it is very complicated to
re-direct those to different replication channels. During draining, capturing of new
workload from current channels is suspended to allow the existing channels to
finish replicating queued workload. Newly added channels can start as soon as
possible since there is no queued workload in those channels.

(c) Deploying the new replication partitioning configuration into use.
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The first two steps can be applied in parallel. Since step (a) usually consumes a
considerably shorter time than step (b), we only concern the PIT impact by step (b) in
the following discussion. Denote the period using the earlier consistency group con-
figuration P1, and the period with the modified consistency group configuration P2.
Computing residue throughput and PIT in the situation of re-partitioning is a bit dif-
ferent from what is described in Sect. 4.1. Denoting the PIT consistency latency of the
old-period consistency group in the last period as PITp1, the time for draining the
old-period workload td is computed as:

td ¼ PITp1 � dt ð4Þ

The residual workload REScg,i in the draining period and later should be computed
iteratively according to the value of time interval index i:

REScg;i ¼ REScg;i�1 þ
P

IUDðTBcg; t0 þði� 1Þ � dtÞ; i�PITp1
maxfðREScg;i�1 þ

P
IUDðTBcg; t0 þði� 1Þ � dtÞ � dt � BWÞ; 0g; i[PITp1

�
ð5Þ

Accordingly, PITcg-i computation should be adjusted as follows:

PITcg;i ¼ PITcg�old þðREScg;i�1 þ
P

IUDðTBcg; t ¼ t0 þ iÞÞ=ðdt � BWÞ; i�PITp1
ðREScg;i�1 þ

P
IUDðTBcg; t ¼ t0 þ iÞÞ=ðdt � BWÞ; i[PITp1

�

ð6Þ

5 Experiments and Analysis

We applied our work to a batch workload and an OLTP workload. The batch workload
is from a banking business and we collected the WPT data from an offloaded pro-
duction DBMS recovery log. For the OLTP workload, we expanded the schema of
TPC-E benchmark [24] and simulated workload profile data for analysis. In both
experiments, the analysis processes complete within minutes.

5.1 Transaction Split Avoidance Algorithm

For the purpose of comparison and establishing experimental baselines, we devised an
algorithm named Transaction Split Avoidance (TSA). This algorithm assists studying
the trade-offs between transaction split and either replication latency or
throughput-balancing in all our experiments. We implemented TSA algorithm which
seeks reducing PIT consistency latency under the constraints that no transaction split is
allowed. Using a transaction graph, the TSA algorithm groups nodes (database objects)
connecting to each other directly or indirectly into one virtual table by breadth-first
search, and then applies the PIT minimization algorithm to these virtual tables.
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5.2 Experiment with a Large Bank Batch Workload

This workload profile was collected from a database log representing a four-hour batch
processing window with 1 min sample interval. There are 824 tables with active
statistics among a total of 2414 tables, and 5529 transaction patterns are discovered
from 12.7 million transaction instances. The number of tables correlated by transaction
patterns varies between 1 and 27 within the histogram shown in Fig. 7.

We apply the RPA-algorithm with a replication bandwidth BW = 5 MB/s. To put in
prospective, this bandwidth is equivalent to insert 50 K 100-byte records per second
into a database. Starting from the lower bound of 3 consistency groups following step
1_2 of RPA-algorithm phase-1, Fig. 8 shows the maximum PIT consistency latency of
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each group, in the unit of a sample interval, when the workload is partitioned into 4, 6,
8, 10 or 12 groups. As the number of consistency groups increases, the PIT latencies
are reduced for each configuration. The reason that the three highest PIT consistency
latency values remain unchanged in 8-, 10- and 12-group cases is because these three
groups are assigned with only one volume-heavy table to each group. To further reduce
point-in-time latency, single channel replication bandwidth has to be increased by
improving the underline replication technologies in network, database, and replication
software.

Next we apply both phase-1 and phase-2 of RPA-algorithm to reduce transaction
splits for a given PIT consistency latency threshold H = 60 (1 h). The lowest number of
consistency group for this threshold is four from phase-1. Figure 9 shows the result of
phase-2. The first chart in Fig. 9 shows the maximum PIT consistency latency of each
consistency group using different variations of RPA-algorithm such as phase-1 only,
phase-1 plus phase-2 with allowed increase in PIT consistency latency within 0 %,
10 % and 20 % margin, as labeled accordingly in the chart. The second chart in Fig. 9
shows the transaction split distribution in terms of number of groups. Note that splitting
into one group means no splitting. TSA algorithm’s results are also provided for
comparison.
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Number of Tables 

Fig. 7. Distribution of transaction patterns over the number of tables in a batch workload
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Fig. 8. Partitioning result of batch workload with RPA-algorithm phase-1

186 Z. Gao et al.



The charts show that when phase-2 is used after phase-1, the percentage of non-
splitting transactions increases from 70 % with “RPA_Phase1” to 82 %, 88 % and 91 %
respectively for RPA_Phase1&2, RPA_Phase1&2-10 % and RPA_Phase1&2-20 %.
With the TSA algorithm, all the transactions are non-splitting; however the maximum
PIT consistency latency reaches unacceptably high of over 450 1-min sample intervals.
In addition to demonstrating that RPA-algorithm can effectively reduce transaction
split, the result provides trade-offs study between transaction split and PIT consistency
latency.

5.3 Experiment with an OLTP Workload

TPC-E is a newer OLTP data centric benchmark. Its processing is composed of both
READ-ONLY and READ-WRITE transactions. Only the READ-WRITE transactions
with data changes are used in our study. The TPC-E table schema consists of 33 tables,
and 23 of which are actively updated during the transaction execution flows.

To simulate more complex real-world workloads, we expanded the schema by
increasing the number of tables by 30× as well as increasing transaction correlations
among the tables. Based on the augmented schema and workloads, as well as TPC-E
specification on how the tables are updated, we generated a simulated workload profile
data with 155 transaction patterns and over 6 million transactions.

OLTP workloads usually update the smaller amount of data within the scope of a
committed transaction. Since the volume is lower than the batch, we experiment with
our alternative throughput-balancing algorithm (RPA-T-algorithm) and to partition the
tables and balance total throughput among 8 consistency groups.

The analyses of the partitioning results using RPA-T phase-1 and RPA-T
phase-1&2 are shown in Table 1 and Fig. 10. To be more intuitive, relative standard
deviation (RSTDEV = standard deviation/mean) is used to evaluate the effectiveness of
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Fig. 9. Partition and transaction split results with RPA-algorithm phase-1 & phase-2 (4 CGs)
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throughput-balancing among consistency groups, as listed in Table 1 for each algo-
rithm. With no surprise, the RSTDEV value is near 0 (0.03 %) for RPA-T phase-1
since it is optimized for balancing throughput; the RSTDEV value for TSA is very high
(282 %) since it does not address balancing. Figure 10 offers a different view than
Fig. 9 for analyzing how the transaction split is distributed. In Fig. 10, y-axis indicates
the percentage of the total transactions that are contained within x number or less
consistency groups, x being the label on x-axis. The percentage values on y-axis
increase and reach 100 % for eight consistency groups, i.e. all transactions are repli-
cated within eight groups or less. An algorithm whose curve progresses to 100 %
slower than another means that a higher percentage of the transactions are split into
more consistency groups when using this algorithm than using the other one. With TSA
algorithm, none of the transactions are replicated with more than one consistency
group. For RPA-T phase-1 algorithm, only a small number of transactions (0.0015 %)
are replicated in one group and 15 % are replicated in one or two groups, etc.

Like RPA-algorithm, RPA-T phase-2 seeks to reduce transaction split count among
consistency groups generated by RPA-T phase-1. Table 1 and Fig. 10 show that the
RPA-T phase-1&2 (0 %) curve progresses only marginally faster than RPA phase-1.
Because the activities in this workload are uniformly distributed among different tables
and along the time dimension, by not allowing throughput trade-offs (0 %), it limits the
number of tables that can be moved during refinement. For further transaction split
reduction, more trade-offs are needed on throughput-balancing constraint. As observed
from Fig. 10, with 1 % and 5 % allowed adjustment on throughputs constraint during
each refinement step, there are significant increases in the number of transactions that

Table 1. Throughput RSTDEV for different algorithm

RPA-T TSA RPA-T phase-1&2
(throughput trade-off %)

phase-1 0 % 1 % 5 %

RSTDEV 0.03 % 282 % 0.03 % 1.15 % 7.84 %
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Fig. 10. Transaction split result for OLTP workload
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are replicated using less consistency groups. For example, 49.2 % and 84.0 % of
transactions are replicated with two consistency groups or less, respectively using
RPA-T phase-1&2 (1 %) and RPA-T phase-1&2 (5 %). The trade-offs increase the
throughput deviations among groups, e.g. to RSTDEV = 1.15 % for RPA-T phase-1&2
(1 %) and RSTDEV = 7.84 % for RPA-T phase-1&2 (5 %). Such deviation is less
significant compared to the reduction in transaction splits.

5.4 Simulation of Partitioning Evolution

We conducted simulation to demonstrate how our RPA tool is applied when real-time
workload fluctuates and deviates from the previous profile. In the experiment, we
devise a monitor to check the PIT consistency latency of all consistency groups
periodically using timestamp information associated with the workloads. When a
consistency group’s PIT consistency latency is identified higher than the threshold due
to the change of run-time environment, re-partitioning is triggered. In this experiment
shown in Fig. 11, four consistency groups were used initially in capture and apply pairs
(C1, A1), (C2, A2), (C3, A3), and (C4, A4), and each replicated a set of database objects
not overlapping with the other groups. At the very beginning, the bandwidth of each
channel was 300 KB/s. As we can see from Fig. 11, the maximum PIT consistency
latency among consistency groups was under the threshold 9 during the first 60 time
units (In this experiment, 1 time unit = 1 min). However, at time 60, the system
replication bandwidth decreased to 180 KB/s and caused the PIT latencies of all
consistency groups to increase significantly. As a result, the PIT consistency latency of
one consistency group exceeded the threshold at time 62 and triggered the
re-partitioning. We re-applied RPA with the changed bandwidth value and adjusted the
partitioning scheme to use as many as eight consistency groups. At the same time,
draining started for the queued workload that had been captured but not applied from
(C1, A1), (C2, A2), (C3, A3), and (C4, A4). At time 69, the draining of all database objects

Fig. 11. Simulation of re-partitioning
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was finished. All eight replication channels started working to capture and apply any
changes since timestamp 62 in RDBMS transaction log. As mentioned in Sect. 4.4, the
newly added four channel could have started earlier but for simplicity we started all
after the last draining was finished. With the appliance of new configuration, the PIT
consistency latency had dropped below the threshold after time 69. On the other hand,
Fig. 11 also shows that the maximum PIT consistency latency would potentially be
beyond 30 if no adjustment was made.

6 Related Work

Database replication is a key technology and a challenging problem for achieving data
serving high availability and disaster tolerance [9, 12]. Prior works attempt to address
various aspects of replication such as transaction consistency protocols, scalability and
performance, etc. (e.g. [14, 15, 19]). In “share nothing” architecture, data replication is
used to move data elements among processing nodes to mitigate system failure or to
localize transaction processing for better performance [1]. In Spanner [3], synchronous
replication is used to achieve transaction consistency in globally distributed data stores.
The work in Schism [4] proposes an approach of workload-driven, graph-based
replication and partitioning combined with explanation and validation. The work in
SWORD [18], targeting data-as-a-service in a cloud environment, achieves higher
scalability over prior work with a set of new techniques and introduces incremental
re-partitioning. Both works build replication components within the data-serving
software.

As reported by Cecchet et al. [1], various challenges still exist when applying
database replication in commercial business environments. Motivated by a real-world
problem, this paper aims at optimizing middleware-based parallel data replication,
especially in a long-distance multi-data-center setting. By filling a gap in understanding
database objects affinities with transaction workloads, our work investigates how to
group a large number of database objects to improve the performance with a constraint
of user-specified PIT consistency latency threshold. To the best of our knowledge, we
are the first to propose an automatic design solution to this optimization problem.

We developed heuristics for using a greedy process [8] to achieve the first objective
of minimizing the number of consistency groups with a PIT consistency latency
constraint. Based on practical analyses, an optimization technique is also proposed to
improve the probability of finding a global optimal result. For reducing the transaction
splits, which is the second optimization objective, we model the workload as a
transaction graph and transform the problem to a graph-partitioning problem. Finally, it
is solved by our proposed heuristics based on the existing graph-partitioning algorithms
[6, 13, 11]. Both Schism work [4] and SWORD work [18] apply graph algorithms for
fine-grain partitioning of tables horizontally in a distributed environment. They model
tuples and transactions as graphs and use it to determine the placement of work or data
within a cluster of nodes. For the partitioning problem in large-scope data replication
across databases and data centers, our workload-pattern-driven approach focuses on
modeling and analysis at the database object level. Common graph model and parti-
tioning algorithms provided by existing software such as METIS [21] are not sufficient
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for our problem. This is because, in order to address workload fluctuation and address
PIT objective, we need to model a workload transaction graph using time series
statistics from the tables and the transactions and the computation of PIT consistency
latency is iterative with respect to workload volume and time. Our algorithm also needs
to introduce problem-related heuristics during the partitioning phase to handle multiple
optimization objectives and trade-offs under PIT consistency constraint.

7 Conclusion and Future Work

Large-scale database replication is essential for achieving IT continuous availability.
This paper presents a workload discovery and database replication partitioning
approach to facilitate parallel inter-data-center data replication that is applicable to both
share-nothing and share-disk databases. Our design and algorithms are demonstrated
with a real customer batch workload and a simulated OLTP workload. In practice, the
work has been applied to a real-world business applications environment. For future
work, we plan to further fine-tune the optimization model for the replication stack.
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