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Abstract. Many current applications need to organize data with respect
to mutual similarity between data objects. A typical general strategy to
retrieve objects similar to a given sample is to access and then refine a
candidate set of objects. We propose an indexing and search technique
that can significantly reduce the candidate set size by combination of
several space partitionings. Specifically, we propose a mapping of objects
from a generic metric space onto main memory codes using several pivot
spaces; our search algorithm first ranks objects within each pivot space
and then aggregates these rankings producing a candidate set reduced
by two orders of magnitude while keeping the same answer quality. Our
approach is designed to well exploit contemporary HW: (1) larger main
memories allow us to use rich and fast index, (2) multi-core CPUs well
suit our parallel search algorithm, and (3) SSD disks without mechan-
ical seeks enable efficient selective retrieval of candidate objects. The
gain of the significant candidate set reduction is paid by the overhead of
the candidate ranking algorithm and thus our approach is more advan-
tageous for datasets with expensive candidate set refinement, i.e. large
data objects or expensive similarity function. On real-life datasets, the
search time speedup achieved by our approach is by factor of two to five.

1 Introduction

The complexity and diversity of digital data is permanently increasing, which
naturally generates new requirements for data retrieval. For many contemporary
data types, it is convenient or even essential that the access methods be based
on mutual similarity of the data objects because it corresponds to the human
perception of the data or because exact matching would be too restrictive (var-
ious multimedia, biomedical or sensor data, etc.). We adopt a generic approach
to this problem, where the data space is modeled by a data domain D and a
general metric function δ to assess dissimilarity between pairs of objects from D.

The field of metric-based similarity search has been studied for almost two
decades [29]. The general objective of metric accesses methods (MAMs) is to
preprocess the indexed dataset X ⊆ D in such a way that, given a query object
q ∈ D, the MAM can effectively identify objects x from X with the shortest
distances δ(q, x). A good motivating example for our work is an image search
based on visual similarity of the image content. Recent advances in the area of
deep neural networks allow to “extract” a semantically rich visual feature from
a digital image [9,17]; these features are 4096-dimensional float vectors (16 KB
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each vector). The search domain D is then the feature space and the similarity
function δ is Euclidean distance or other vector-based distance. For instance, if
the data collection X contains 10 million objects, the goal of the MAM is to
organize 160 GB of the feature data and answer queries like “find me a dozen
images from the collection that are the most similar to this query image”.

Current MAMs designed for large data collections are typically approxi-
mate [25,29] and adopt the following high-level approach: Dataset X is split
into Partitions; given a query, partitions with the highest “likeliness” to contain
query-relevant data are read from the disk and this data form the candidate set
of objects x to be refined by explicit evaluation of δ(q, x). The search costs of this
schema consist mainly of (1) the I/O costs of reading the candidate partitions
from the disk (they can be accessed as continuous data chunks) and (2) CPU
costs of refinement; thus, the overall costs of the search typically strongly corre-
late with the candidate set size.

In this work, we propose a technique that can significantly reduce the can-
didate set size. In complex data spaces, the data partitions often span relatively
large areas of the space and thus the candidate set is either large or imprecise.
The key idea of our approach is to use several independent space partitionings;
given a query, each of these partitionings generates a ranked set of candidate
objects and we propose a way to aggregate these rankings so that the resulting
candidate set is small and precise. Only objects identified in this way are actually
retrieved from the disk and refined. Specifically, our approach works as follows:

– The data space is partitioned using a set of pivots (reference objects, anchors)
where position of each data object is determined by its closest pivots and their
order; this defines a mapping of the data into a pivot space. We use such pivot
spaces to partition the dataset independently multiple times. In this way, each
object is mapped onto a code denoted as PPP-Code;
its size can be adjusted so that codes of the whole dataset fit into the main
memory.

– Given a query, we first rank the object codes within each pivot spaces with
respect to the query. Further and more importantly, we propose a way to
aggregate these several rankings, which provably increases the probability
that the query-relevant objects appear high in the final ranking.

– The PPP-Codes are organized by an indexing structure, which can lower their
memory occupation. This index is also used by the proposed PPPRank algo-
rithm that efficiently calculates individual candidate rankings and their aggre-
gation; the algorithm exploits principles introduced by Fagin et al. [13].

This approach was designed with the idea of making the best use of contempo-
rary trends in hardware development: (1) Larger main memories allow to main-
tain a rich memory index, (2) multi-core CPU architectures well support our
demanding but accurate candidate set identification, and (3) SSD disks without
mechanical seeks allow efficient retrieval of the candidate objects from the disk
one-by-one (not as continuous data chunks).

Combination of independent partitionings was proposed before by LSH
approaches [15] and it was also recognized by a few MAMs as a way to increase
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answer quality [11,23]; these works propose to simply replicate the data in mul-
tiple indexes and to widen the query candidate set by union of multiple inde-
pendent candidate sets. On the contrary, our aggregation mechanism shrinks the
candidate set significantly while maintaining the same answer quality.

The experiments conducted on three diverse datasets show that this approach
can reduce the candidate set size by two orders of magnitude. The response
times depend on the time spared by this candidate set reduction (reduced I/O
costs and δ-refinement time) versus the overhead of the PPPRank algorithm.
To analyze this tradeoff, we have run experiments on an artificial dataset with
adjustable object sizes and tunable time of δ evaluation; the results show that
our approach is not worthwhile only for the smallest data objects with the fastest
δ function. Most of the evaluations were realized on two real-life datasets (100M
CoPhIR [6] and 1M complex visual signatures [5]); for these, our approach was
two- to five-times faster than competitors on the same HW platform.

The paper is further organized as follows. In Sect. 2, we define fundamental
terms and analyze current approaches; in Sect. 3, we propose the PPP-Encoding
(Sect. 3.1), ranking within individual pivot spaces (Sect. 3.2) and rank aggrega-
tion (Sects. 3.3 and 3.4); Sect. 4 describes our index and search algorithm. Our
approach is evaluated and compared with others in Sect. 5 and the paper is con-
cluded in Sect. 6 with a reference to an online demonstration application built
with the aid of the proposed technique. This work is an extension of a paper
presented at DEXA 2014 [24].

2 Preliminaries and Related Work

We focus on indexing and searching based on mutual object distances and we
primarily assume that the data is modeled as a metric space [29]:

Definition 1. Metric space is an ordered pair (D, δ), where D is a domain of
objects and δ is a total distance function δ : D × D −→ R satisfying postulates
of non-negativity, identity, symmetry, and triangle inequality.

Our technique does not explicitly demand triangle inequality. In general, the
metric-based techniques manage the dataset X ⊆ D and search it by the nearest
neighbors query K-NN(q), which returns K objects from X with the smallest
distances to given Q ∈ D (ties broken arbitrarily). We assume that the search
answer A may be an approximation of the precise K-NN answer AP and the
result quality is measured by recall(A) = precision(A) = |A∩AP |

K · 100%.
During two decades of research, many approximate metric access methods

(MAMs) have been proposed [25,29]. Further in this section, we focus especially
on (1) techniques based on the concept of pivot permutations, (2) approaches
that use several independent space partitionings, and (3) techniques that propose
memory encoding of data objects. Having a set of k pivots P = {p1, . . . , pk} ⊆ D,
Πx is a pivot permutation defined with respect to object x ∈ D iff Πx(i) is the
index of the i-th closest pivot to x; accordingly, sequence pΠx(1), . . . , pΠx(k) is
ordered with respect to distances between the pivots and x (ties broken by order
of the increasing pivot index). Formally:
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Definition 2. Having a set of k pivots P = {p1, . . . , pk} ⊆ D (reference objects)
and an object x ∈ D, let Πx be permutation on {1, . . . , k} such that ∀i : 1 ≤ i < k:

δ(x, pΠx(i)) < δ(x, pΠx(i+1)) ∨
(δ(x, pΠx(i)) = δ(x, pΠx(i+1)) ∧ Πx(i) < Πx(i + 1)).

Πx will be referred to as pivot permutation (PP) with respect to x.

Several techniques based on this principle [7,10,11,20] use the PPs to group
data objects together (data partitioning); given a query, relevant partitions are
read from the disk and refined; the relevancy is assessed based on the PPs.
Unlike these methods, the MI-File [1] builds inverted file index according to
object PPs; these inverted files are used to rank the data according to a query
and the candidate set is then refined by accessing the objects one-by-one [1]. In
this respect, our approach adopts similar principle and we compare our results
with the MI-File (see Sect. 5.3).

In this work, we propose to use several independent pivot spaces (sets of
pivots) to define several PPs for each data object and to identify candidate
objects. The idea of multiple indexes is known from the Locality-sensitive Hash-
ing (LSH) [15] and it was also applied by a few metric-based approaches [11,23];
some metric indexes actually define families of metric LSH functions [22]. All
these works benefit from enlarging the candidate set by a simple union of the top
results from individual indexes; on the contrary, we propose such rank aggrega-
tion that can significantly reduce the size of the candidate set in comparison with
a single index while preserving the same answer quality. Recently, the C2LSH
technique [14] proposed a way to combine LSH functions resulting in a partially
ranked candidate set; this work aims mainly at vector spaces with known fami-
lies of LSH functions and it does not assume any pre-ranking of candidate sets
from individual indexes.

Several recent works focused on reducing the size of data by source coding
(or quantization) of Euclidean vector spaces so that the codes fit into memory;
the authors use approaches like unsupervised machine learning [27], spectral
hashing [28], or product quantization [16] to define data objects codes together
with new ranking methods on these codes. A purely distance-based approach
was also proposed [18]; it uses k pairs of pivots, that divide the space by k
generalized hyperplanes, and each i-th bit of the k-bit code of x ∈ D reflects
on which side of the i-th hyperplane object x lies. From a high perspective, this
approach is similar to ours, but we propose techniques for indexing and ranking
and corresponding non-exhaustive search algorithm.

3 PPP-Encoding and Ranking

In this section, we introduce the principal ideas of our approach: (1) the PPP-
Encoding of the data (Sect. 3.1), (2) ranking within individual pivot spaces
(Sect. 3.2), and (3) aggregation of these rankings which defines the overall rank-
ing of the PPP-Codes (Sect. 3.3). Section 3.4 contains basic effectiveness evalua-
tion of the proposed ranking.
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Fig. 1. Recursive Voronoi partitioning (k = 4, l = 2) and query-pivot distances.

3.1 Encoding by Pivot Permutation Prefixes

For a data domain D with distance function δ, object x ∈ D and a set of k pivots
P = {p1, . . . , pk}, the pivot permutation (PP) Πx is defined as in Definition 2.
In our technique, we do not use the full PP but only its prefix, i.e. the ordered
list of a given number of nearest pivots:

Notation: Having pivots {p1, . . . , pk} and PP Πx, x ∈ D, we denote Πx(1..l)
the pivot permutation prefix (PPP) of length l: 1 ≤ l ≤ k, specifically

Πx(1..l) = 〈Πx(1),Πx(2), . . . ,Πx(l)〉. (1)

The pivot permutation prefixes have a geometrical interpretation important
for the similarity search – the PPPs actually define recursive Voronoi partitioning
of the metric space [26]. Let us explain this principle on an example in Euclidean
plane with four pivots p1, . . . , p4 in Fig. 1; the thick solid lines depict borders
between standard Voronoi cells – sets of points x ∈ D for which specific pivot
pi is the closest one: Πx(1) = i. The dashed lines further partition these cells
using other pivots; these sub-areas are labeled C〈i,j〉 and they cover all objects
for which Πx(1) = i and Πx(2) = j, thus Πx(1..2) = 〈i, j〉.
Notation: For an l-tuple 〈i1, . . . , il〉, we denote C〈i1,...,il〉 the Voronoi cell of
level l that contains all objects x ∈ D for which Πx(1..l) = 〈i1, . . . , il〉.

The pivot permutation prefixes (PPPs) Πx(1..l) form the base of the pro-
posed PPP-Encoding, which is composed of several PPPs for each object. Thus,
let us further assume having λ independent sets of k pivots P 1, P 2, . . . , Pλ,
P j = {pj

1, . . . , p
j
k}. For any x ∈ D, each of these sets generates a PP Πj

x ,
j ∈ {1, . . . , λ} and we can define the PPP-Encoding as follows.
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Table 1. Notation used throughout this paper.

Symbol Definition

(D, δ) the data domain and metric distance δ : D × D → R

X the set of indexed data objects X ⊆ D; |X | = n

k number of pivots (reference objects) in one pivot space

Λ = {1, . . . , λ} Λ is the index set of λ independent pivot spaces

P j = {pj
1, . . . , p

j
k} the j-th set of k pivots from D; j ∈ Λ

Πj
x pivot permutation of (1 . . . k) ordering P j by distance from x ∈ D

Πj
x(1..l) the j-th PP prefix of length l: Πj

x(1..l) = 〈Πj
x(1), . . . , Πj

x(l)〉
PPP1..λ

l (x) the PPP-Code of x ∈ D: PPP1..λ
l (x) = 〈Π1

x(1..l), . . . , Πλ
x (1..l)〉

Cj
〈i1,...,il〉 Voronoi cell of level l containing x ∈ X s.t. Πj

x(1..l) = 〈i1, . . . , il〉
d, dK , dΔ measures ranking pivot permutation prefixes (PPPs) d(q, Π(1..l))

ψj
q : X → N the j-th ranking of objects according to Q ∈ D generated by d

Ψp(q, x) the overall rank of x by the p-percentile of its ψj
q(x) ranks, j ∈ Λ

R size of candidate set – number of objects x refined by δ(q, x)

Definition 3: Having λ sets of k pivots and parameter l : 1 ≤ l ≤ k, we define
PPP-Code of object x ∈ D as a λ-tuple

PPP1..λ
l (x) = 〈Π1

x(1..l), . . . ,Πλ
x (1..l)〉. (2)

Individual components (PPPs) of the PPP-Code will be also denoted as
PPP j

l (x) = Πj
x(1..l), j ∈ {1, . . . , λ}; to shorten the notation, we set Λ =

{1, . . . , λ}. These and other symbols used throughout this paper are summa-
rized in Table 1.

The PPP-Encoding is exemplified in Fig. 2 where each of the λ = 2 pivot
sets defines an independent Voronoi partitioning of the data space. Every object
x ∈ X is encoded by PPP j

l (x) = Πj
x(1..l), j ∈ Λ. Object x5 is depicted in both

diagrams and, for instance, within the first partitioning, the closest pivots from
x5 are p17, p

1
4, p

1
8, p

1
5, which corresponds to PPP1

4(x5) = Π1
x5

(1..4) = 〈7, 4, 8, 5〉.

3.2 Ranking of Pivot Permutation Prefixes

Having objects from X encoded as described above, we want to find ranking
mechanism of PPP1..λ

l (x), x ∈ X with respect to query q ∈ D, which would be
an approximation of the ranking generated by distances δ(q, x). To achieve this,
we first define rankings on components of PPP1..λ

l (x), prefixes Πx(1..l). In the
following, we define and compare two such ranking measures dK and dΔ.

Measures Based Purely on Permutations. A natural approach is to project
the query object q to the same space as the data objects by encoding q into its
PP Πq (or prefix Πq(1..l)) and to calculate “distance” between Πq and Πx(1..l).
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Fig. 2. Principles of encoding data objects as PPP-Codes PPP1..λ
l (x) with two pivot

sets (λ = 2) each with eight pivots (k = 8) and using pivot permutation prefixes of
length four (l = 4). Each object x is encoded by PPP1..2

4 (x) = 〈Π1
x(1..4), Π2

x(1..4)〉;
the figure shows example of object x5: PPP

1..2
4 (x5) = 〈〈7, 4, 8, 5〉, 〈7, 8, 4, 6〉〉.

There are several standard ways to measure difference between full permutations
that were also used in similarity search: Spearman Footrule, Spearman Rho or
Kendall Tau measure [2,7]; the last mentioned seems to slightly outperform the
others [7]. The Kendall Tau between permutations Πx and Πy defines for every
pair {i, j}, 0 ≤ i, j ≤ k: Ki,j(Πx,Πy) = 0 if indexes i, j are in Πx in the same
order as in Πy; otherwise, we set Ki,j(Πx,Πy) = 1. The Kendall Tau is then
defined as [12]:

K(Πx,Πy) =
∑

1≤i,j≤k

Ki,j(Πx,Πy).

This measure can be generalized in several ways to work with permutation pre-
fixes, where not all Ki,j are known [12]. We propose a measure dK which cal-
culates a distance between the query object q ∈ D and Π(1..l) as minimum of
Kendall Tau distances between the full permutation Πq and all permutations Π ′

on {1, . . . , k} that have Π(1..l) as prefix [12]:

dK(q,Π(1..l)) = min
Π′:Π′(1..l)=Π(1..l)

K(Πq,Π
′). (3)

The accuracy of this measure with respect to the original distance δ is evaluated
later in this section. There exists an algorithm for computation of the full Kendall
Tau with O(k · log k) complexity [8]. The same idea can be used to design an
O(l · log l) algorithm for dK on permutation prefixes.

Measures that Use Query-Pivot Distances. The query object q ∈ D in
the ranking function can be represented more richly than by permutation Πq,
specifically, we can use directly the query-pivot distances δ(q, p1), . . . , δ(q, pk);
see Fig. 1, which depicts such distances.

If we consider only the first-level Voronoi cells (l = 1), thus only the closest
pivots Πx(1), we can approximate the distance between a query and objects in
cell CΠ(1) by distance δ(q, pΠ(1)) (this idea was described in [16]); for instance in
Fig. 1, distance between q and cell C〈4〉 (delimited by the thick solid lines around
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Fig. 3. Mean squared error of dΔ (4) with c = 0.75 on 1M CoPhIR dataset.

pivot p4) would be δ(q, p4). Having the cells further partitioned according to
other pivots, we propose to shift the distance estimation towards the next pivots
that define cell CΠ(1..l); influence of these next pivots should be smaller than of
the first one. For instance, distances between q and cells C〈4,1〉, C〈4,3〉 would be
(weighted) averages between d(q, p4) and d(q, p1), d(q, p3), respectively, which
should make the estimations more precise.

Formally, we propose to measure the distance between q and Π(1..l) as a
weighted arithmetic mean of distances between q and the l pivots from Π(1..l):

dΔ(q,Π(1..l)) =
(∑l

i=1
ci−1δ(q, pΠ(i))

)
/
∑l

i=1
ci−1, (4)

where c is parameter 0 < c ≤ 1 to control the influence of the next pivots;
for now, we set c = 0.75 and its influence is properly evaluated in Sect. 5.1.
Naturally, this heuristic does not improve the distance estimation in all cases,
but we consider the average influence. We measure the precision of the distance
estimator as mean squared error [16] defined as

MSDE(dΔ)=
∫∫

(δ(q, x) − dΔ(q,Πx(1..l)))2p(x)dx p(q)dq

where p(·) is the probability distribution function of the data domain D, q, x ∈ D.
Figure 3 depicts the values of MSDE(dΔ) measured by Monte-Carlo sampling
(averages over a large set of samples) on the CoPhIR dataset (see Sect. 5 for
description of the dataset). The graph shows development of MSDE as the space
partitioning is refined by growing number of pivots k and by increasing PPP
length l used by dΔ. We can see that levels l > 1 can improve MSDE so that k
would have to be multiplied to achieve such MSDE values for l = 1. The same
trends were observed for all other datasets (Sect. 5).

Comparison of the PPP Ranking Measures. Let us briefly compare effec-
tiveness of the measures dK (3) and dΔ (4) proposed in the previous two subsec-
tions. In the following, d will stand for any dissimilarity measure between q ∈ D
and Π(1..l) such as dK or dΔ. Such measures d together with q ∈ D naturally
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Fig. 4. Recall of 10-NN on 1M CoPhIR dataset as accessing up to 1 % of the data
ordered according to dK and dΔ; k = 64, 128, 256, l = 4, 6, 8.

induce ranking ψq of the indexed set X according to growing distance from q.
Formally, ranking ψq : X → N is the smallest numbering of set X that fulfills
the following condition for all X, y ∈ X :

d(q,Πx(1..l)) ≤ d(q,Πy(1..l)) ⇒ ψq(x) ≤ ψq(y). (5)

We define the effectiveness of measure d as average recall of K-NN if the
dataset X is accessed in the order ψq generated by d. We have compared this
effectiveness on several datasets and with various settings; Fig. 4 shows graphs of
the 10-NN recall on a 1M subset of the CoPhIR dataset (see Sect. 5) as up to 1 %
of this set is accessed according to dK and dΔ with several selected parameters
of k and l.

These graphs well illustrate the generally observed trend: dΔ is slightly bet-
ter for smaller values of k and l (and also for very small numbers of accessed
objects) while for extremely fine-grained space partitioning, both measures have
practically the same effectiveness. These results are in compliance with previous
works [20]. Regarding the lower complexity of dΔ (Θ(l)) in comparison to dK

(O(l · log l)), we choose dΔ as the measure used in the rest of this paper.

3.3 Aggregation of Multiple Rankings

At this point, we know how to rank objects x ∈ X with respect to q ∈ D within
one pivot space. As above, we assume that this ranking ψq(x) (5) is induced by
measure d such as dK (3) or dΔ (4) applied on q and PPPs Πx(1..l). Let us
now assume that x is encoded by PPP1..λ

l (x) codes composed of λ such PPPs
and that we have a mechanism able to provide λ sorted lists of objects x ∈ X
generated by measure d between q and Πj

x(1..l), j ∈ Λ. Then, ψj
q(x) denotes the

position of x in the j-th ranking, j ∈ Λ. Figure 5 (top part) shows an example
of five rankings ψj

q , j ∈ {1, . . . , 5}.
These rankings are partial – objects with the same PPP Π(1..l) have the

same rank (objects from the same recursive Voronoi cell). This is the main
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Fig. 5. Rank aggregation by Ψp of object x ∈ X , λ = 5, p = 0.5.

source of inaccuracy of these rankings because, in complex data spaces, the
Voronoi cells typically span relatively large areas and thus the top positions
of ψq contain both objects close to q and more distant ones. Having several
independent partitionings, the query-relevant objects should be at top positions
of most of the rankings while the “noise objects” should vary because the Voronoi
cells are of different shapes. The objective of our rank aggregation is to filter
out these noise objects. Namely, we propose to assign each object x ∈ X the
p-percentile of its ranks, 0 ≤ p ≤ 1:

Ψp(q, x) = percentilep(ψ1
q (x), ψ2

q (x), . . . , ψλ
q (x)). (6)

For instance, Ψ0.5 assigns median of the ranks; see Fig. 5 for an example – posi-
tions of object x in individual rankings are: 1, 3, 1, unknown, 4 and median of
these ranks is Ψ0.5(q, x) = 3. This principle was used by Fagin et al. [13] for a
different purpose and they propose MedRank algorithm for efficient calculation
of Ψp. This algorithm does not require to explicitly find out all ranks of a specific
object, but only �pλ first (best) ranks (this is explicit in Fig. 5). Details and
properties of the MedRank algorithm [13] are provided in Sect. 4.

Now, we would like to show that the Ψp aggregation actually improves the
ranking in comparison with a single ψq ranking by increasing the probability
that objects close to q will be assigned top positions (and vice versa). Also, we
would like to find theoretically suitable values of p.

Let x be an object from the dataset X and pz be the probability such that
pz = Pr[ψq(x) ≤ z], where z ≥ 1 is a position in ψq ranking. Having λ indepen-
dent rankings ψj

q(x), j ∈ Λ, we want to determine probability Pr[Ψp(q, x) ≤ z]
with respect to pz. Let X be a random variable representing the number of ψj

q

ranks of x that are smaller than z: |{ψj
q(x) ≤ z, j ∈ Λ}|. Assuming that the

probability distribution of pz is the same for each of ψj
q(x), we get

Pr[X = j] =
(

λ

j

)
· (pz)j · (1 − pz)λ−j .
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Fig. 6. Development of Pr[Ψp(q, x) ≤ z] for λ = 8, selected pz and variable p.

In order to have Ψp(q, x) ≤ z, at least �pλ positions of x must be ≤ z and thus

Pr[Ψp(q, x) ≤ z] =
λ∑

j=�pλ	
Pr[X = j].

for the variable p and selected values of pz (λ = 8). We can see that the aggre-
gation increases the differences between individual levels of pz (for non-extreme
p values); e.g. for p = 0.5, probabilities pz = 0.1 and pz = 0.3 are transformed
to lower probability values whereas pz = 0.5 and pz = 0.7 are pushed to higher
probabilities. The probability pz = Pr[ψq(x) ≤ z] naturally grows with z but,
more importantly, we assume that pz is higher for objects close to q then for
distant ones. Because ψj

q are generated by distance between q and Voronoi cells
(5) and these cells may be large, there may be many distant objects that appear
at top positions of individual ψq although having low probability pz. The rank
aggregation Ψp(q, x) for non-extreme p values can push away such objects and
increase the probability that top ranks are assigned only to objects close to q
(Fig. 6).

Table 2. Sequential scan experiment parameters.

Parameter Description Default

λ number of pivot spaces 4

k pivot number in each space 128

l length of PPP 8

p percentile used in Ψp 0.75

R candidate set size 100 (0.01 %)
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Fig. 7. 1NN recall within the top R = 100 objects (left) and average probe depth of
each ψj

q , j ∈ Λ (right) using rank aggregation Ψp for l = 8, λ = 4 and various number
of pivots k and percentile p.

3.4 Accuracy of the PPP-Encoding and Ranking

Let us evaluate the basic accuracy of the K-NN search if the objects are encoded
by PPP-Codes and ranked by Ψp(q, x). Results in this section are independent
of any indexing and searching algorithms, namely, we use the sequential scan
and focus entirely on the trends and mutual influence of several parameters
summarized in Table 2; all results are on the 1M CoPhIR dataset (see Sect. 5).
We measure the accuracy as K-NN recall within the top R candidate objects
x ∈ X identified by Ψp(q, x). In this section, we present results of 1-NN recall,
which has the same trend as other values of K. All results are averaged over
1,000 randomly selected queries outside the dataset and all pivot sets P j were
selected independently at random from the dataset.

Graphs in Fig. 7 focus on the influence of percentile p. The left graph shows
average 1-NN recall within the top R = 100 objects for variable p and selected
k. We can see that, as expected, the higher k the better and, more importantly,
the peak of the results is at p = 0.75 (just for clarification, for λ = 4, Ψ0.75(q, x)
is equal to the third ψj

q(x) rank of x out of four). These measurements are in
compliance with the expectations discussed in the previous section.

The right graph in Fig. 7 shows the probe depth [13] – the average number of
objects that had to be accessed in each ranking ψj

q(x), j ∈ Λ in order to discover
R = 100 objects in at least �pλ rankings (and thus determine their Ψp(q, x)).
Naturally, the probe depth grows with p, especially for p ≥ 0.75. We can also see
that finer space partitioning (higher k) results in a lower probe depth because
the Voronoi cells are smaller and thus objects close to q appear in �pλ rankings
sooner. The general lessons learned are: the more pivots the better (for both
recall and efficiency), ideal percentile seems to be around 0.5–0.75, which is in
compliance with results of Fagin et al. [13].

In general, we can assume that accuracy of the ranking will grow with increas-
ing values of k, l, and λ, but these parameters influence the size of the PPP-code
representation of an object:
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Fig. 8. 1NN recall within the top R = 100 objects ranked by Ψ0.75 for selected λ and
various bit length of PPP1..λ

l (x) influenced either by number of pivots k (left, l = 8)
or by prefix length l (right, k = 128).

size of PPP1..λ
l (x) = λ · l · �log2 k bits. (7)

Figure 8 shows recall for the variable bit size of PPP1..λ
l codes for selected values

of λ. In the left graph, the prefix length is fixed at l = 8 and the code size is
influenced by increasing number of pivots k; we can see that higher values of
recall can be achieved only with larger λ but, on the other hand, considering the
PPP-Code lengths, it is more convenient to increase k than λ. The right graph
presents a similar experiment, only here k = 128 and parameter l is increased; we
can see that it pays off to increase l than to increase λ. The recall improvement
achieved by increasing k and l is practically the same (with respect to PPP-Code
size); higher k means more query-pivot distance computations.

The graph in Fig. 9 adopts an inverse point of view – it answers the question
how the aggregation approach reduces the candidate set size R necessary to
achieve given recall (80 %, in this case); please, notice the logarithmic scales. The
small numbers in the graph show the reduction factor with respect to λ = 1; we
can see that R is reduced down to about 5 % using λ = 8.

4 Indexing of PPP-Codes and Search Algorithm

So far, we have proposed a way to encode metric objects by PPP-Codes and
to rank these codes according to given query object. In this section, we propose
(1) an index to be built on a PPP-encoded dataset that can decrease the memory
footprint of the PPP-Codes, and (2) an efficient non-exhaustive search algorithm.

4.1 Dynamic PPP-Tree Index

The PPP1..λ
l (x) code is composed of λ PPPs Πx(1..l). Given a set of these

l-tuples, some of them would share common prefixes of variable lengths. In order
to spare memory, we propose a PPP-Tree index – a dynamic trie structure that
would keep the l′-prefixes of the PPP-Codes only once for all objects sharing
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Fig. 9. Cand. set size R necessary for 80 % 1-NN recall.

the same l′-prefix, l′ ≤ l. This PPP-Tree index is to be built for each of the λ
pivot spaces. Similar indexes were used in PP-Index [11] and in M-Index [20],
but without the objective of memory representation reduction.

Schema of the PPP-Tree index is sketched in Fig. 10. Intuitively, let i1, . . . , il′
be indexes on a path from the root of the tree to a certain node at level l′. This
node and its subtree contains all objects x ∈ X for which Πx(1..l′) = 〈i1, . . . , il′〉.
This node also corresponds to Voronoi cell C〈i1,...,il′ 〉 (see Sect. 3.1). An internal
node at level l′ < l is composed of these entries:

〈il′+1, ptr〉, where il′+1 ∈ {1, . . . , k} \ {i1, . . . , il′};

pointer ptr points at subtree containing objects with PPP 〈i1, . . . , il′ , il′+1〉; pos-
sible values of index il′+1 are limited because the indexes must be unique within
a permutation. Let us recall that Πx(l′ +1..l) denotes the part of the pivot
permutation of object x between positions l′ +1 and l; further, let ⊕ denote
concatenation of two tuples. A leaf node at level l′ is composed of entries

〈Πx(l′+1..l), IDx〉,

where IDx is the unique identifier of object x ∈ X for which Πx(1..l) =
〈i1, . . . , il′〉 ⊕ Πx(l′+1..l). Entries in leaves at level l′ = l degenerate to 〈〈〉, IDx〉
where Πx(1..l) = 〈i1, . . . , il〉.

1 2 k3 ...

2 k3 ... 1 k3 ...Π(2)=

Π(1)=

3 k4 ...Π(3)= −1k

−1k

Π l  (4..  ),ID Π l  (4..  ),ID Π l  (4..  ),ID Π l  (4..  ),ID

Π l  (3..  ),ID

...

1 3 ...

1 2 ...

... ... ...

...

Fig. 10. Schema of a single dynamic PPP-Tree.
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The key to memory efficiency of such a structure is its dynamic leveling.
Splitting a leaf node with n′ objects at level l′, 1 ≤ l′ < l spares n′ · �log2 k
bits because the memory representation of Πx(l′+1..l) would be shorter by one
index if these n′ objects are moved to level l′ + 1. On the other hand, the split
creates new leaves with certain overhead; thus we propose to split the leaf iff

n′ · �log2 k > b · NodeOverhead

where b is potential branching of the leaf, b ≤ n′ and b ≤ k − l′ + 1. The actual
value of b can be either precisely measured for each leaf or estimated based on
the statistics of average branching at level l′. Value of NodeOverhead depends
on implementation details.

So far, we have described a single PPP-Tree (as if λ = 1). Having λ > 1,
we propose to build a separate PPP-Tree for each j ∈ Λ. In this case, an object
x in all λ trees is “connected” by its IDx stored in the leaf cells of the trees.
This generates additional memory overhead per data object in comparison with
sequential scan, because λ − 1 additional IDs need to be stored. We consider
that an identifier ID has �log2 n bits for dataset |X | = n.

4.2 Non-Exhaustive Search Algorithm

In Sect. 3.3, we have proposed a way to aggregate λ rankings of indexed objects X
and we have briefly mentioned the MedRank algorithm [13]. Having the PPP-
Tree indexes as described above, we can now propose the PPPRank algorithm
that does this aggregation effectively. The main procedure (Algorithm 1) follows
the idea of MedRank; the PPP-Tree structures are used for effective generation
of individual λ rankings (subroutine GetNextIDs).

Given a query object q ∈ D, percentile 0 ≤ p ≤ 1 and number R, PPPRank
returns IDs of R indexed objects x ∈ X with the lowest value of Ψp(q, x); please,
recall that this aggregated rank is defined as the �pλ-th best position from
ψj

q(x) ranks, j ∈ Λ (6). In every iteration (lines 4–9), the algorithm accesses
next objects of all rankings (routine GetNextIDs(q, j), j ∈ Λ); set S carries
the already seen objects x together with the number of their occurrences in the
rankings (frequencies fx). GetNextIDs(q, j) always returns next object(s) with
the best ψj

q rank and thus, when an object x achieves frequency fx ≥ �pλ, it is
guaranteed that any object y achieving fy ≥ �pλ in a subsequent iteration of
PPPRank must have higher rank Ψp(q, y) > Ψp(q, x) [13].

Idea of the GetNextIDs(q, j) subroutine is to traverse the j-th PPP-Tree
using a priority queue Q. As we know, each PPP-Tree node corresponds to
Voronoi cell C〈i1,...,il′ 〉, l′ ≤ l; the queue Q is always ordered by d(q, 〈i1, . . . , il′〉)
(where d is the measure that generates ranking ψj

q (5)). In every iteration, the
head of Q is processed; if head is a leaf node, its objects identifiers IDx are
inserted into Q ranked by d(q,Πj

x(1..l)). When object identifiers appear at the
head of Q, they are returned as “next objects in the j-th ranking”. Algorithm 2
formalizes this routine: Q is composed of triples 〈dist, 〈i1, . . . , il′〉, 〉 where the
third component is either a node N or an object ID. Initially, Q contains the
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Algorithm 1. PPPRank(q,p, R)
Input: q ∈ D; percentile p; candidate set size R
Output: IDs of R objects x ∈ X with lowest Ψp(q, x)
// S is a set of ‘‘seen objects’’: IDx with their frequencies fx

1 set S ← ∅ // A is answer list of object IDs

2 list A ← 〈〉
3 while |A| < R do
4 foreach j ∈ Λ do
5 foreach IDx in GetNextIDs(q, j) do
6 if IDx 
∈ S then
7 add IDx to S and
8 set fx = 1

9 else
10 increment fx

11 foreach IDx in S such that fx ≥ �pλ do
12 move IDx from S to A

13 return A

root of the j-th PPP-Tree (line 2) and, in every step, the tree node at the head
of Q (line 4) is decomposed and either its successors are inserted into Q (if N is
internal, line 8) or the object IDs are put into Q (if N is a leaf, line 12). In both
cases, the PP prefix of the successor node (or object) is reconstructed from the
PP prefix of node N and information from the node entry. If object IDs appear
at the head of Q, the top IDs with the same distance d(q,Πj

x(1..l)) are returned
(lines 13–18); these are IDs of objects with the same j-th rank (see Fig. 5).

Symbol d stands for a measure between q ∈ D and Π(1..l) such as dK (3) or
dΔ (4). The following property is key to correctness of Algorithm 2: For any PP
Π and l′, 1 ≤ l′ < l:

d(q,Π(1..l′)) ≤ d(q,Π(1..l′+1)). (8)

This property is fulfilled by dK (3) but not by dΔ (4); thus, we slightly mod-
ify Eq. (4) to calculate weighted sum of the query-pivot distances (instead of
weighted average):

dΔ(q,Π(1..l)) =
∑l

i=1
ci−1δ(q, pΠ(i)). (4′)

See Appendix I for correctness of Algorithm 2.

Complexity of GetNextIDs. This routine strongly influences efficiency of the
whole PPPRank algorithm. The amortized complexity of the nested loops in
Algorithm 2 depends on the number of items inserted to the queue Q; the queue
can be implemented as a binary heap and thus the whole complexity would
be O(|Q| · log |Q|). In an ideal case, Q would contain only the data IDs to
be returned and the tree nodes on the path from the root to these data IDs.
As Q is ordered by the d-distance to individual nodes, this case would require
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Algorithm 2. GetNextIDs(q, j)
Input: query q ∈ D, index j ∈ Λ
Output: IDs of the next objects in j-th ranking

1 calculate δ(q, pj
i ), ∀i ∈ {1, . . . , k}

// Q of triples 〈dist, 〈i1, .., il′〉, 〉 ordered by dist
2 priority queue Q ← {〈0.0, 〈〉, root of j-th PPP-Tree〉}

// end of INITIALIZATION (do once for each q, j)
3 while Q.head.3rd component is a tree node do
4 〈dist, 〈i1, . . . , il′〉,N 〉 ← Q.dequeue()
5 if N is an internal node then
6 foreach entry 〈il′+1, ptr〉 in node N do
7 Πptr ← 〈i1, . . . , il′ , il′+1〉
8 Q.enqueue(〈d(q, Πptr ), Πptr , deref (ptr)〉)
9 else

10 foreach entry 〈Πj
x(l′+1..l), IDx〉 in node N do

11 Πj
x(1..l) = 〈i1, . . . , il′〉 ⊕ Πj

x(l′+1..l)

12 Q.enqueue(〈d(q, Πj
x(1..l)), Πj

x(1..l), IDx〉)
// return IDs of the top objects x in the queue

13 A ← ∅
14 repeat
15 〈dx, Πj

x(1..l), IDx〉 ← Q.dequeue()
16 A ← A ∪ {IDx}
17 until Q.head.3rd comp is node ∨ Q.head.1st comp > dx

18 return A

that all other tree nodes have distances larger than the d-distances to the
returned IDs. Consequently, the length of Q depends on “tightness” of Eq. (8) –
difference between the d-distance of an internal cell and the d-distance of its suc-
cessors. See Appendix II for three algorithm optimizations that help to shorten
the Q.

Search Process Review. Schema in Fig. 11 reviews the whole search process. Given
a K-NN(q) query, the first step is calculating distances between q and all piv-
ots: δ(q, pj

i ), i ∈ {1, . . . , k}, j ∈ Λ. This is a necessary initialization of the
GetNextIDs(q, j) procedures (steps 3), which generate the continual rankings
ψj

q that are consumed by the main PPPRank(q,p, R) algorithm (step 2). The
candidate set of R objects x is retrieved from the disk (step 4) and refined by
calculating δ(q, x) (step 5). The whole process can be parallelized in the follow-
ing way: The λ steps 3 run fully in parallel and step 2 continuously reads their
results; in this way, the full ranking Ψp(q, x) is generated item-by-item and is
immediately consumed by steps 4 and then 5.

5 Efficiency Evaluation

We evaluate efficiency of our approach on three datasets; two of them are real-life,
and the third one is artificially created to have fully controlled test conditions:



78 D. Novak and P. Zezula

calculate λ·k 
query-pivot 
distances δ(q,p

i
j ) 

K-NN(q) PPPRank(q,p,R): 
merge λ ranks to 
get top R objects

GetNextIDs(q,2):
generate  ψ

q
2 

ranking

GetNextIDs(q,1):
generate ψ

q
1 

ranking

... GetNextIDs(q,λ):
generate ψ

q
λ 

ranking

retrieve 
R objects

SSD

refine R objects 
by δ(q,x)

1 2

3

4 5
K  best 
objects

Fig. 11. Search pipeline using the PPP-Encoding and PPPRank algorithm.

CoPhIR 100 million objects each consisting of five MPEG-7 global visual
descriptors extracted from an image [6]. The distance function δ is a weighted
sum of partial descriptor distances [3]; each object consumes 590 B on the
disk (59 GB for 100M objects) and the computation of δ takes around
0.01 ms;

SQFD 1 million visual feature signatures each consisting of, on average, 60 clus-
ter centroids in a 7-dimensional space; each cluster has a weight and such
signatures are compared by Signature Quadratic Form Distance (SQFD) [5]
which is a cheaper alternative to Earth Movers Distance. Each object occu-
pies around 1.8 kB on disk and the SQFD distance takes around 0.5 ms;

ADJUSTABLE 10 million float vectors uniformly generated from [0, 1]32 com-
pared by Euclidean distance; the disk size of each object can be artificially
set from 512 B to 4096 B (5 GB to 40 GB for 10M objects) and time of δ
computation can be tuned between 0.001 ms and 1 ms.

As a result of the analysis reported in Sect. 3.4, the indexes use these para-
meters: l = 8, λ = 5, p = 0.5 (3 out of 5); the CoPhIR index uses k = 256,
384 and 512, SQFD index has k = 64, and the ADJUSTABLE index k = 128.
The pivot sets P j were selected independently at random from the datasets.
As in Sect. 3.4, we use dΔ (4′) to generate individual ψj

q . The presented results
are an average over 1,000 random K-NN(q) queries. The efficiency is gauged by
standard measures from similarity search field [23,29]:

I/O costs number of 4 kB block reads; in our approach, it is practically equal
to the candidate set size R (step 4);

distance computations (DC) number of evaluations of distance δ; equal to
λ · k + R (steps 1 and 5);

search time the wall-clock time of the search process running parallel as
described above.

All experiments were conducted on a machine with 8-core Intel Xeon @ 2.0 GHz,
12 GB of RAM and a SATA SSD disk (CrystalDiskMark benchmark speed:
sequential read 440 MB/s, random 4K QD32 read 270 MB/s); for comparison,
we also present some results on the following HDD configuration: two 10,000 rpm
magnetic disks in RAID 1 array (CrystalDiskMark sequential read 150 MB/s).
All techniques used the full memory for their index and for disk caching; caches
were cleared before every batch of 1,000 queries. The implementation is in Java
using the MESSIF framework [4].
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Table 3. Size of PPP-Code representation without index (sequential scan) and with
the dynamic PPP-Tree Index.

Single Sequential Single Memory

Dataset k object + ID scan object + IDs index

(no index) occupation (with index) occupation

SQFD 64 240 + 20 b 32 MB 161 + 100 b 32.5 MB

ADJUSTABLE 128 280 + 24 b 365 MB 217 + 120 b 403 MB

CoPhIR 256 320 + 27 b 4.2 GB 205 + 135 b 4.0 GB

384 360 + 27 b 4.6 GB 245 + 135 b 4.5 GB

512 360 + 27 b 4.6 GB 258 + 135 b 4.6 GB

5.1 PPP-Tree and PPPRank Overhead

Our approach encodes each object by a PPP-Code and a PPP-Tree index is
built on these codes. Table 3 shows the sizes of this representation for individual
datasets. The third column shows the size of the PPP-Code representation (7)
plus the object ID size (unique within given dataset); the fourth column is the
overall size of the sequential scan built on these PPP-Codes for given dataset.
The next column shows PPP-Code sizes as reduced by PPP-Tree – in this case,
the object IDs are stored λ-times (see Sect. 4.1); the last column shows the
overall sizes of the PPP-Tree indexes. We can see that the memory reduction by
PPP-Trees and increase by multiple ID storage are practically equal.

From now on, let us focus on the search efficiency. As mentioned above, the
I/O costs and the number of δ computations (DC) are generated in steps 1, 4
and 5 of the search and can be directly derived from the algorithm parameters
k, λ and R. Let us have a closer look at the costs of the PPPRank algorithm
itself – steps 2 and 3. Complexity of the aggregation step 2 depends directly on
the probe depth, which was already mentioned in Sect. 3.4.

Figure 12 shows statistics of the PPPRank algorithm on the full 100M
CoPhIR dataset. The left graph shows the development of the probe depth
(left axis) and the 10-NN recall (right axis) with respect to the weight c from
the weighted sum dΔ (4′). As we know, this weight influences individual ψj

q(x),
j ∈ Λ and thus the result quality – we can see that the optimal recall is achieved
around c = 0.8. It is interesting that the recall is in a perfect inverse correlation
with the probe depth – if the PPPRank needs to read fewer objects from indi-
vidual ψj

q(x) rankings, then the output objects are closer to q. This confirms the
idea behind our aggregation approach.

The right graph in Fig. 12 shows length of the queue Q (left axis) that
determines complexity of GetNextIDs. As analyzed in Sect. 4.2, the Q length
depends on tightness of Eq. (8), which is directly influenced by parameter c; the
response time (right axis) depends on the probe depth and on Q length. Consid-
ering these results, we further fixate c = 0.75 as a compromise between answer
quality and efficiency.
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Fig. 12. PPPRank on 100M CoPhIR varying coefficient c from dΔ (4′); the candidate
set size R = 1000. Left: probe depth and 10-NN recall; right: length of priority queue
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Fig. 13. Recall and search time on 100M CoPhIR as the candidate set grows; k = 512.

5.2 The Overall Efficiency

Naturally, the quality of the search result comes at the expense of higher search
costs. In Sect. 3.4, we have studied influence of the code size (fineness of the
partitioning adjusted at the building phase) to the answer recall, but the main
parameter to increase the recall at query time is R (the size of the candidate
set). Figure 13 shows development of recall (left axis) and search time (right
axis) with respect to R on the CoPhIR dataset (k = 512). We can see that our
approach can achieve very high recall while accessing thousands of objects out
of 100M. The recall grows very steeply in the beginning, achieving about 90 %
for 1-NN and 10-NN around R = 5000; the time grows practically linearly.

Table 4 presents more measurements on the CoPhIR dataset. We have
selected two values of R = 1000 and R = 5000 (10-NN recall 64 % and 84 %,
respectively) and we present the I/O costs, computational costs, and the over-
all search times on both SSD and HDD disks. All these results should be put
in context – comparison with other approaches. At this point, let us mention
metric structure M-Index [20], which is based on similar fundamentals as our
approach: it computes a PPP for each object, maintains an index structure
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Table 4. Results on 100M CoPhIR (k = 512) and SQFD (k = 64) with PPP-Codes
and M-Index (512 and 64 pivots).

Table 5. Search times [ms] of PPP-Codes / M-Index on ADJUSTABLE with 10-NN
recall 85 %. PPP-Codes: k = 128, R = 1000, M-Index: 128 pivots, R = 400000.

similar to our single PPP-Tree (Fig. 10), and it accesses the leaf nodes based on
a scoring function similar to dΔ; our M-Index implementation shares the core
with the PPP-Codes and it stores the data in continuous disk chunks for efficient
reading. Comparison of M-Index and PPP-Codes shows precisely the gain and
the overhead of PPPRank algorithm, which aggregates λ partitionings.

Looking at Table 4, we can see that M-Index with 512 pivots needs to
access and refine R = 110000 or R = 400000 objects to achieve 65 % or 85 %
10-NN recall, respectively; the I/O costs and number of distance computations
correspond with R. According to these measures, the PPP-Codes are one or two
orders of magnitude more efficient than M-Index; looking at the search times, the
dominance is not that significant because of the PPPRank algorithm overhead.
Please, note that the M-Index search algorithm is also parallel – both reading
of the data and refinement are parallelized [20].

In order to clearly uncover the conditions under which the PPP-Codes over-
head is worth the gain of reduced I/O and DC costs, we have introduced the
ADJUSTABLE dataset. Table 5 shows the search times of PPP-Codes/M-Index
while the object disk size and the DC time are adjusted. The results are measured
on 10-NN recall level of 85 %, which is achieved at R = 1000 and R = 400000
for the PPP-Codes and M-Index, respectively; please, note that these values
of R mean even more dramatic candidate set reduction observed for this uni-
formly distributed dataset than in case of CoPhIR. Looking at the search times
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at Table 5, we can see that for the smallest objects and fastest distance, the
M-Index beats PPP-Codes but as values of these two variables grow, the PPP-
Codes show their strength. We believe that this table well summarizes the overall
strength and costs of our approach.

The SQFD dataset is an example of data type belonging to the lower mid-
dle part of Table 5 – the signature objects occupy almost 2 kB and the SQFD
distance function takes 0.5 ms on average. A graph in Fig. 14 presents the PPP-
Codes K-NN recall and search times while increasing R (note that size of the
dataset is 1M and k = 64). We can see that the index achieves excellent results
between R = 500 and R = 1000 with search time under 300 ms. Again, let us
compare these results with M-Index with 64 pivots – the lower part of Table 4
shows that the PPP-Code aggregation can decrease the candidate set size R down
under 1/10 of the M-Index results (for comparable recall values). For this dataset,
we let the M-Index store precomputed object-pivot distances together with the
objects and use them at query time for distance computation filtering [20,29];
this significantly decreases its DC costs and search times, nevertheless, the times
of PPP-Codes are about 1/5 of the M-Index.

1−NN recall (left axis)
10−NN recall (left axis)
50−NN recall (left axis)
search time (righ axis)
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Fig. 14. Recall and search time on 1M SQFD dataset as candidate set grows; k = 64.

These results can be summarized as follows: The proposed approach is worth-
while for data types with larger objects (over 512 B) or with the time-consuming
δ function (over 0.001 ms). For the two real-life datasets, our aggregation schema
cuts the I/O and δ computation costs down by one or two orders of magnitude.
The overall speed-up factor is about 1.5 for CoPhIR and 5 for the SQFD dataset.

5.3 Comparison with Other Approaches

Finally, let us compare our approach with selected relevant techniques for
approximate metric-based similarity search. We focus especially on those works
that present results on the full 100M CoPhIR dataset; the results on this dataset
are summarized in Table 6 and analyzed below.
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Table 6. Comparison with other approaches on 100M CoPhIR dataset.

Technique Overall # Cand. Recall I/O # of δ

of pivots set R 10-NN costs comp.

PPP-Codes 2,560 5,000 84 % 5,000 7,560

M-Index 512 400,000 85 % 59,000 400,512

M-Index (4 indexes) 960 300,000 84 % 44,000 301,000

PP-Index (8 indexes) 800 ∼333,000 86 % ∼49,000 ∼334,000

8,000 ∼52,000 82 % ∼7670 ∼60,000

MI-File 20,000 1,000 88 % ∼20,000 21,000

M-Index. We have described the M-Index [20] and compared it with our app-
roach in the previous section, because it shares the core idea with PPP-Codes
which makes these approaches well comparable. We have chosen the M-Index
also because its scoring function seems to be at least as good [20] as of other
PP-based approaches [7,11]. The first two lines in Table 6 summarize the results
of PPP-Codes and M-Index on 100M CoPhIR. The third line shows variant when
four M-Indexes are combined by a standard union of the candidate sets [23]; we
can see that this approach can reduce the candidate set size R but the PPP-
Codes still outperform it significantly.
PP-Index. The PP-Index [11] also uses prefixes of pivot permutations to partition
the data space; it builds a slightly different tree structure on the PPPs, identifies
query-relevant partitions using a different heuristic, and reads these candidate
objects in a disk-efficient way. In order to achieve high recall values, the PP-
Index also combines several independent indexes by merging their results [11];
Table 6 shows selected results – we can see that the values are slightly better
than those of M-Index, especially when a high number of pivots is used (8,000)
but the PPP-Codes access less than 1/10 of the PP-Index candidate set.
MI-File. The MI-File [1] creates inverted files according to pivot-permutations;
at query time, it determines the candidate set, reads it from the disk one-by-one
and refines it. Table 6 shows selected results on 100M CoPhIR; we can see that
extremely high number of pivots (20,000) resulted in even smaller candidate set
then in case of PPP-Codes. The I/O costs are higher due to the disk size of the
MI-File index and the computational costs are higher due to a high number of
query-pivot δ distance evaluations.

As mentioned above, structures like PP-Index [11] or M-Index [20,23] use
multiple independent partitionings and they union candidate sets (or answers)
from them; this is also well known from the LSH approach [15]. Let us compare
the rank aggregation proposed in this work with the simple union of ranked
candidate sets from multiple partitionings. Figure 15 shows candidate set size R
necessary to achieve 80 % 1-NN recall when λ ranks generated by dΔ are merged
either by Ψ0.75 or by union (results are on 1M CoPhIR with the same settings
as in Sect. 3.4). We can see that the Ψ aggregation results in less than half R.
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6 Conclusions

Efficient generic similarity search on a very large scale would have applications
in many areas dealing with various complex data types. This task is difficult
especially because identification of query-relevant data in complex data spaces
typically requires accessing and refining relatively large candidate sets. If the
data objects are large or if the refining similarity function is time-consuming
then the search process may be unacceptably demanding. Since contemporary
data types are often large and use complex similarity functions, we have designed
a technique that would pay much more attention to identifying an accurate
candidate set at the expense of higher algorithm complexity.

We have proposed a rich index by encoding each object using multiple pivot
spaces; this PPP-Code index can be adjusted to fit into the main memory. Fur-
ther, we have proposed a two-tier search algorithm – the first part of the algo-
rithm generates several independent data object rankings according to distance
between a query and the data codes, and the second part aggregates these rank-
ings into one that provably increases the probability that query-relevant objects
are accessed sooner.

We have conducted experiments on three datasets and in all cases our aggre-
gation approach reduced the candidate set size by one or two orders of magnitude
while preserving the answer quality. Because our search algorithm is relatively
demanding, the overall search time gain depends on specific dataset. First, an
artificial dataset with adjustable properties has helped us to show that our app-
roach is not profitable only for data types with small objects and cheap similarity
function. The second dataset was the 100M content-based image retrieval collec-
tion CoPhIR [6]; our approach speeded up the search on this set twice. Finally,
we have used a dataset of 1M signature descriptors with a demanding SQFD
distance function [5] where the candidate set reduction speeded up the search
process more than five times.

Our approach differs from others in three aspects. First, it transfers a large
part of the search computational burden from the similarity function evaluation
towards the search process itself and thus the search times are very stable across
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different data types. Second, our index explicitly exploits a larger chunk of main
memory in comparison with an implicit use for disk caching. And third, our
approach reduces the I/O costs and it fully exploits the strength of the SSD disks
without mechanical seeks or, possibly, of a fast distributed key-value store [19].

The PPP-Codes index forms the heart of an application that demonstrates
a large-scale visual image search [21]. A collection of 20 million images has been
processed by a deep convolutional neural network to obtain powerful visual fea-
tures [9]. Compared by Euclidean distance, these 4096-dimensional vector fea-
tures well express semantic similarity of digital images; uncompressed, 20M fea-
tures occupy over 320 GB on the disk. The PPP-Codes index can reach a very
good answer quality accessing only 5,000 out of these 20M features, which results
in search times around 500 ms. The demonstration application is available online
at http://disa.fi.muni.cz/demos/profiset-decaf/.
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Appendix I: Correctness of Algorithm 2

Lemma 1. If d maintains Eq. (8) then Algorithm 2 GetNextIDs(q, j) returns
IDs of objects with the lowest j-th ranking ψj

q(x), j ∈ Λ that were not returned
so far.

Proof. The algorithm returns IDs from Q containing nodes and IDs from the j-
th PPP-Tree. Because every node and ID is inserted into Q maximally once, the
algorithm always returns something, unless all IDs were returned. Q is ordered
by d(q, 〈i1, . . . , il′〉) where 〈i1, . . . , il′〉 is either path to a node or it is equal to
Πj

x(1..l) for IDx (recall that d(q,Πj
x(1..l)) generate ψj

q(x)). Let IDx be returned
by the algorithm; we prove the lemma by contradiction. Let us assume that there
exists y ∈ X : d(q,Πj

y(1..l)) < d(q,Πj
x(1..l)) and IDy was not returned by the

algorithm. If IDy is in Q then it must be ahead of IDx (contradiction). Thus,
IDy is not in Q, but Q must contain a node with path 〈i1, . . . , il′〉, l′ ≤ l such
that 〈i1, . . . , il′〉 = Πj

y(1..l′), because Q initially contains root of j-th PPP-Tree
and then recursively all child nodes are inserted into Q (line 8). Because of (8),
d(q, 〈i1, . . . , il′〉) ≤ d(q,Πj

y(1..l)) < d(q,Πj
x(1..l)) which is in contradiction with

the fact that IDx was on top of Q.

Appendix II: Optimizations of Algorithm 2

Complexity of the GetNextIDs routine is O(|Q| · log |Q|) and the length of Q
depends on “tightness” of Eq. (8). We propose the following optimizations for
the dΔ distance.

Optimization 1. Distance dΔ(q,Π(1..l′)) between q ∈ D and PP prefix on level
l′ < l is corrected so that it returns the minimum theoretical distance to PPP-
Codes on level l with prefix Π(1..l′):

d′
Δ(q,Π(1..l′)) = dΔ(q,Π(1..l′) ⊕ Πq(1..l−l′)).

http://disa.fi.muni.cz/demos/profiset-decaf/
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Notation ⊕Πq(1..l−l′)) is concatenation of the pivot indexes closest to the query.
This addition does not break the condition (8) but, in our test cases, it resulted
to reduction of the queue length by factor of 0.4–0.7.

Optimization 2. This optimization is relatively trivial: A leaf of the PPP-
Tree at level l′ < l can keep IDs with the same PP suffix together as
〈Π(l′+1..l); IDx1 , . . . , IDxm

〉 (see Sect. 4.1 for the original proposal); the list of
IDs can be further optimized e.g. using delta encoding . This results in index
memory reduction and, especially, in a slight reduction of the Q size, because
such entry is inserted to Q only once.

Optimization 3. Another important cost component of the GetNextIDs algo-
rithm are distances d(q, 〈i1, . . . , il′ , il′+1〉) evaluated for each item added into
Q (lines 8 and 12). If the formula of distance d is a sum of independent val-
ues for each level from 1 to l′ + 1 (as the dΔ distance (4′)) then value of
d(q, 〈i1, . . . , il′ , il′+1〉) can be calculated as a sum of distance of its parent node
dist = d(q, 〈i1, . . . , il′〉) plus the addend for level l′ +1. In this case, the distances
are calculated stepwise and no calculations are repeated.
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