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Abstract. In this article we show how to extend object constraint lan-
guages by reflection. We choose OCL (Object Constraint Language) and
extend it by operators for reification and reflection. We show how to give
precise semantics to the extended language OCLR by elaborating the
necessary type derivation rules and value specifications. A driving force
for the introduction of reflection capabilities into a constraint language is
the investigation of semantics and pragmatics of modeling constructs. We
exploit the resulting reflective constraint language in modeling domains
including sets of sets of domain objects. We give precise semantics to
UML power types. We carve out the notion of sustainable constraint
writing which is about making models robust against unwanted updates.
Reflective constraints are an enabler for sustainable constraint writing.
We discuss the potential of sustainable constraint writing for emerging
tools and technologies. For this purpose, we need to introduce a symbolic
viewpoint of information system modeling.
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1 Introduction

An object-constraint language is a logical language that is embedded into a mod-
eling framework and offers language constructs specific to object-oriented mod-
eling. In this article we show how to add reflection to object-oriented constraint
languages. Reflection is about access to the meta level, both introspective as well
as manipulative. We need a reflective constraint language to analyze issues and
express results in the semantics and pragmatics of information system modeling.
Reflective constraints are an enabler for sustainable constraint writing, which is
about making models robust against unwanted updates [29]. More specifically,
we can exploit a reflective constraint language for:

• Semantics of modeling languages. Given meta-level access you can give pre-
cise semantics to existing modeling language constructs. We do this for UML
power types in this article. Furthermore, you can use a reflective constraint
language to extend an existing modeling language with new well-defined mod-
eling constructs.

c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXIV, LNCS 9510, pp. 1–60, 2016.
DOI: 10.1007/978-3-662-49214-7 1



2 D. Draheim

• More adequate system analysis. With today’s technologies, i.e., databases,
third-generation programming languages and modeling tools, we encounter
a model-object divide. This model-object divide is not accidental; it is just a
property of current mainstream information system technology, which is estab-
lished and mature. Nevertheless, the model-object divide sometimes hinders us
from stating fully adequate models of domain knowledge. This is so, because
a model and its objects together intend domain objects and together encapsu-
late domain knowledge. For example, you might have some classes A1, . . . ,An

and have found some constraints for these classes. Now, you might encounter
that these constraints are instances of a general constraint pattern that must
hold for an arbitrary number of classes. Without appropriate reflective fea-
tures, you can only state such constraint patterns in the informal comments.
A reflective constraint language is the solution for this. In general, we need
full reflective support – limited forms of reflection, like generic types, are not
sufficient.

• Quality assurance for system design.
– Ensuring that class names follow a given style guide.
– Ensuring that each attribute has correctly typed setter- and getter-methods.
– Ensuring a complex design pattern.
– etc.

All of the above items are practically motivated [20], i.e., reflective con-
straint writing is to constraint writing what generative programming is to pro-
gramming. However, reflective constraint writing is also of importance beyond
immediate practical exploitation. It can help in mitigating gaps between different
information system paradigms. It can help in mitigating gaps between different
viewpoints in information system modeling. We proceed as follows. We choose
the OMG standard meta-level architecture as the backbone for our efforts. We
extend the OCL (Object Constraint Language) with reification and reflection,
resulting in the so-called OCLR in Sect. 2. We show how to give a declarative
semantics for OCLR in Sect. 3. We review some OCLR examples in Sect. 4 and
also provide a comparison with generative programming, based on the concrete
programming language Genoupe.

In Sect. 5, we exploit OCLR to specify constraints needed in modeling of
sets of sets of domain objects. We streamline the discussion by showing how
usual class diagrams, i.e., without multilevel modeling constructs, are sufficient
to adequately model sets of sets of domain objects if appropriate constraints are
provided and if and only if these are made robust against M1-level updates. We
further streamline the discussion by considering sustainable constraint writing in
the specification language Z in Sect. 6. Then, we generalize the found constraints
further to give a precise semantics for UML power types 7. From these discus-
sions, we extract more general notions like sustainable constraint writing and a
symbolic viewpoint on modeling languages. In Sect. 8 we discuss model evolu-
tion, notions of constraints and viewpoints onto modeling languages. We discuss
related work throughout the paper and summarize related work in Sect. 9. We
end the article with a conclusion in Sect. 10.



Reflective Constraint Writing 3

In the AppendicesA, B and C we provide overviews of the abstract syntax of
the UML core language, the OCL v2.0 types and the OCL expression language.

2 OCLR – A Reflective Extension of OCL

The OCL (Object Constraint Language) is syntactically and semantically
embedded into the UML meta-level architecture. The aim of this section is to
extend OCL with full reflection. Note, that we use the 2006 version of OCL,
i.e. OCL v2.0 [70] as the basis for our language extension. We do neither use
the current version OCL v2.4 [73] nor the version OCL v2.3.1 [72], which has
been released as ISO standard ISO/IEC:19507 [51]. The reason for this is the
particularly mature and precise definition of the OCL type system in the former
version OCL v2.0 – see Appendix B for a discussion of this issue. If you need to
delve into some of the concepts used in the upcoming sections, e.g., the OCL
type OclType and its generating class TypeType, it is important that the stan-
dard v2.0 [70] is the authoritative reference for this article and not the newer
standards. The choice of standard is for technical reasons only and not due to
essential differences. For example, the abstract syntax of the OCL versions v2.0
and versions v2.3.1 and v2.4 are exactly the same. All crucial arguments and
statements on OCL in this article, e.g., with respect to expressive power, are
independent of the chosen standard.

Fig. 1. OCL inbuilt meta-level access.

2.1 Meta-object Access in OCL

Standard OCL offers only limited access to the meta-level. The complete list of
these OCL meta-level access operations is given in Fig. 1. The OCL meta-level
access is restricted to introspection, i.e., no constraint generation is supported.
Even the introspective features are limited. First, way not all meta-relationships
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that are established by the UML meta model have a counterpart in the OCL
language. Second, and this is actually the crucial point, the entry to the intro-
spection is only in terms of the current context of an OCL expression and there-
fore in terms of only a fixed number of constantly defined user-types. This means,
OCL’s meta access capabilities yield no functional abstraction over user-defined
types and therefore do not add to the expressive power of OCL. The meta access
of OCL shows in properties for meta objects representing user-defined types, i.e.,
objects of type OclType and properties that expect a parameter of type OclType.

With respect to properties for meta objects, the property allInstances is
the only one that is specified in the OCL standards since version v2.0. All the
other stem from the first version v1.1 [69]. The following list of example con-
straint expressions cannot be expressed with the OCL inbuilt meta-object access
capabilities – please compare the list also to Fig. 1:

1. Names of subclasses of a given type t .
2. The subclasses of a given type t .
3. Attribute names of classes navigable via associations from a given type t .
4. All classes of the user model.
5. The number of classes in the user model.
6. All classes of the user model that have no subclasses.
7. The sum of all Integer attributes of all objects of all classes.
8. Test, whether all attributes of all objects of all classes are initialized.
9. Test, whether all attributes of all classes have setter- and a getter-methods.

All of the above constraint expressions (1) through (9) can be expressed by
the OCL-extension OCLR. The several constraint expressions express different
levels of sophistication. The first two constraints (1) and (2) could be made pos-
sible by augmenting the list of inbuilt OCL expressions in Fig. 1 by appropriate
properties. However, in order to enable all the other constraints a more concep-
tual refactoring of OCL is necessary, because they long not only for introspective
access but also for reflection.

The reflective programming language community distinguishes between reifi-
cation and reflection – see also Table 1. Reification turns information about a
program, i.e., meta-data, into data and makes it accessible to the programming
level. Then, reflection can be understood as the exploitation of reified data. We
then also talk about reflection in the wider sense. Reified data can be exploited
in two ways. First, it can be exploited for introspective access. Second, it can be
used to manipulate program structures. The reified data can be turned into pro-
gram code itself, we then say that reified data is materialized or re-materialized.
We then also talk about reflection in the narrow sense. The usual word for the
materialization step of turning reified data into code is generation. We feel that
generation somehow stresses more the operational facet of this mechanism. We
use both generation and materialization as equal terminology. This terminol-
ogy works also with respect to meta-level access in modeling languages and also
with respect to constraint writing. Here, reification is about making meta-data
accessible to the modeler. Again, reification allows for access to the meta-level
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and can be exploited for introspection and reflection in the narrow sense, i.e.,
materialization of reified data into modeling elements.

Table 1. Attempt to summarize some important reflective programming terminology
and its application to reflective constraint writing.

The OCL meta-level access offers only a limited form of reification. The OCL
standards [72] explicitly state that OCL does not support the reflection capa-
bilities of the MOF (Meta Object Facility) [76]. Note, that it is not sufficient to
add syntactical constructs to a language like OCL to support reflective features.
The real work lays in the elaboration of the semantics of such reflective capabil-
ities as, e.g., provided by OCLR. Shallow statements of the intended meaning of
syntactical constructs would not be sufficient as semantic elaboration.

2.2 On the Chosen Declarative Approach for OCLR Specification

Without loss of generality, we will define OCLR as an M1-level language, i.e.,
we define the reification operators Φ and Ψ as well as the concrete syntax 〈 〉 ↓
and 〈 〉↑ used for them against the background of writing M1-level constraints.
Similarly, we specify the well-formedness rules and the semantics of OCLR from
the perspective of writing M1-level constraints. Writing M1-level constraints
is the major use case of OCLR. Writing M1-level constraints is about adding
constraint expressions at level M1. For OCL this means that writing M1-level
constraints is about writing constraints for M0-level objects. With OCLR it
is possible to write meta object constraints, in particular, constraints on user-
defined types at level M1 and therefore extend the semantics of meta models.
We will see the specification of the UML power types semantics in Sect. 7 as an
example for this. Therefore, there is no need to explicitly generalize the current
definitions from a M2-level perspective.

2.3 On the Preciseness of the Chosen Specification Approach

We show how to provide a precise semantics description of OCLR in this article.
In the given OCLR definitions we rely on the existing UML and OCL semantics
defined in [70,74] as the foundation for our semantic extensions. Note that our
definitions are free over the semantic definitions yielded by the OMG specifi-
cation. This means that even if semantic definitions in the OMG stack might
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be ambiguous or underspecified for some points, our semantics does not suffer.
Furthermore, our specification varies in the way semantic decisions are made for
the UML stack. There is no need for us to re-formalize or to fix UML semantics.
We can simply assume the semantics as completely specified. The OMG stack
forms a sweet spot between preciseness and convenience; at least, the core of
it has a widely known and accepted semantics. See also [85] for a discussion of
UML 2.0 semantics.

2.4 On Abstract Syntax Oriented Reflection

A reflection mechanism can have a design that is oriented throughout towards
abstract syntax or, what we call, an ASCII-based design. In an ASCII-based
design meta data is reified as text, i.e., ‘String’ data. Then reflection operators
craft model elements from ‘String’ data input. In a thoroughly abstract syn-
tax oriented design the data type of reified data is kept abstract and reflection
is also realized by operations on this abstract data type. An abstract-syntax
oriented design offers an important advantage. It makes it much easier to give
precise semantics to the reflection mechanism, in particular, with respect to
level-crossing type safety. With an ASCII-oriented design it is easier to provide
ad-hoc implementations for a reflection mechanism, in particular, it the imple-
mentation has to be provided for an existing platform. The design of OCLR is
thoroughly oriented towards abstract syntax.

Foo

…

Person

age: Integer
…

Fig. 2. Class diagram.

2.5 Notational Issues of OCL Contexts and OCL Meta Objects

As a minor issue we sometimes want to get rid of context notation in constraint
writing in the sequel. The concepts of contexts and meta objects, i.e., objects
that represent types, are completely exchangeable. First, consider the following
OCL invariants, which are written against the tiny class diagram in Fig. 2:

context Person inv: age � 40 (1)
context Foo inv: Person.allInstances → forAll(age � 40) (2)

It is easy to see that the constraints (1) and (2) have the same semantics.
Now, we can see that the role of Person in (1) and (2) are exactly the same. On
the on hand, in (1), you can consider Person a meta object. One the other hand,
in (2), you can consider Person.allInstances → forAll( ) to provide context for
the evaluation of age � 40. Consider the following constraint:

Person.allInstances → forAll(age � 40) (3)
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The information in constraint (3) is complete. The type Foo in (2) is not
needed in the subsequent expression, it is merely a wildcard, so it can be dropped
to yield (3) without loss. Henceforth, we will often write constraints without
explicitly given context, in the style of (3). Though the constraint in (3) is
clumsier than its version in (1) it is easier to handle in formal argumentations
like type derivation or value specifications. Note, that the concrete syntax in (1)
and (2) is official OCL syntax; although it is rather used in standard documents
as opposed to the more embellished concrete syntax usually found in textbooks.

2.6 Terminology for the OMG Meta-level Architecture

We need to introduce some notation and terminology for issues in meta modeling
architectures to be used in the sequel. The introduction of these notations must
not be misunderstood as an attempt to specify, or let’s say better, to re-specify
the UML meta level architecture and its languages. We take the standard OMG
four-level meta model hierarchy, see [74, Sect. 7.12], as background architecture,
see also Fig. 3. Syntax and semantics of the UML meta model, the UML meta
model and OCL are taken as granted as defined in [70,72,74–76].

However, the concepts introduced in this section go beyond mere notational
issues. We also define important terminology, hand in hand, with notation for it.
This way we define the value identity for objects in the meta-level architecture.
This value identity is defined across the levels of the meta-level architecture, i.e.,
it is introduced to make objects at different levels of the architecture comparable.
Based on the value identity we will define the meta model reification operator
Φ and the model reification operator Ψ .

UML Meta Model Notation. We denote the UML meta model by M2.
Similarly, we denote the UML meta model by M3.

Object Notation. We denote the set of all primitive values by P . The set P
is flat, i.e., it is the union of all interpretations of UML’s primitive types. We
introduce a set of object identifiers and denote it by OID . We denote the set of
all attribute values by V = P(P ∪ OID). The power set in the definition of V is
necessary, because the UML attributes are, in general, many-valued. We denote
the set of attribute names or labels by L. We denote the set of finite subsets of
a set M by F(M ). Conceptually, in our notation, an object consists of an object
identifier, a finite set of labels from L and an attribute value for each of these
selected labels. We define the set of all objects O as Cartesian product of object
identifiers OID and finitely L′-indexed sets of attribute values, for all possible
subsets of labels, i.e.:

O = OID ×
⋃

L′∈F(L)

(Vl)l∈L′ (4)

The way we defined O , objects are denoted as records [1,17], or to be precise,
object values are denoted as records, and objects are formed as an object refer-
ence to record. We use the usual notation for records, i.e., 〈oid �→ 〈l �→ xl〉l∈L〉.
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O contains many objects that are impossible, i.e., objects that can never be
instances in the UML meta level hierarchy. This is so because our objects are
completely untyped assemblies. They are based on the value set V which is com-
pletely flat. This does not harm, because the definitions in Sect. 2.6 are not about
semantics, but about notation. We will ensure the well-formedness of object and
models of OCLR later by the definition of the typing relationship : and the
instantiation relationship :: for the corresponding extensions to OCL.

Note that O is the full extension of the meta level hierarchy, i.e., the collec-
tion of all potential objects that can be materialized in system states. The set
O is a forgetful viewport. It only models aspects that are needed in the upcom-
ing semantic definitions. For example, it forgets ordered association ends. In O
we combine information on primitive-typed attributes with object references into
a record. Another possibility would have been to denote meta level elements as
records of merely primitive-typed values plus explicit object links as second kind
of instances. Note, by the way, that in the UML semantics both styles of element
presentations redundantly co-exist – see Fig. 4, diagram (v). The third option is
to represent elements as pure nets of object identifiers with primitive values as
leaves. By the way, we have discussed the latter option in form-oriented analysis
as so-called parsimonious data model [26,37]. Once more note, that the purpose of
Sect. 2.6 is not to formalize UML semantics. It is merely about establishing nota-
tion for the existing meta level framework to be exploited in upcoming sections.

We have designed the value space as V = P(P ∪ OID). As we have said, in
the UML an attribute is, in general many-valued. Only, in the special case that
the cardinality of an attribute is 1..1, an attribute is single-valued. The standard
evaluation of an attribute in UML yields a bag, not a set. We have not designed
our values in V as bags but as plain sets. This does not pose a problem, because
bags can be formed by exploitation of object references. In the UML, properties
can also evaluate to sequences. We assume that this sequencing can be modeled
by an indexing mechanism on labels. We are interested in keeping our notation
as reductionist as possible.

Meta-object Levels. We use Oi ⊂ O to denote the set of all objects at meta-
level Mi , the Mi -level objects for short.

Instances. Given an Mi -level object o and an Mi+1-level object C , we use
o :: C to denote the fact that o is an instance of C as defined by the UML
specification. Given an object o ∈ O and a set of objects M ⊂ O , we use o :: M
to denote the fact that there exists a C ∈ M so that o :: C . Given sets of objects
M ,N ⊂ O , we use M :: N to denote the fact that o :: N for all o ∈ M . In case
that M :: N we also say that M is a instantiation of N .

Models. We call a subset m ⊂ O of objects a model iff m is a partial func-
tion, i.e.:

m ∈ OID →
⋃

L′∈F(L)

(Vl)l∈L′ (5)
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Given a model m ⊂ O we say that m is a model at level i , or Mi -level model
for short iff for all o ∈ m we have that o ∈ Oi . Given models M ,N ⊂ O we say
that M is a model of N iff M :: N .

Value Identity. Next, we define value identity of objects with respect to given
models. Given models m , n , an object o ∈ m with o = 〈oid �→ 〈i �→ xi〉i∈I 〉
and an object p ∈ n with p = 〈pid �→ 〈j �→ yj 〉i∈I 〉, we define o and p to be
value-identical, denoted by o ≡ p iff for all attribute labels i ∈ I we have that:

(i) xi �⊆ OID ⇒ (xi = yi)
(ii) xi ⊆ OID ⇒ (∃β : xi ↔ yi . ∀ x ′ ∈ xi . m(x ′) ≡ n(β(x ′))

) (6)

The definition of ≡ is a partial specification only. It is only defined for objects
that share the same set of labels I . It is only complete for well-typed and at the
same time identically typed pairs of objects. This does not harm, because in the
sequel we only work with well-formed models. Value identity can be characterized
as identity up to exploited object references. The abstraction from concrete
object references is exactly what is achieved by the bijection β in (6). In terms
of programming languages, e.g., in Java terminology, value identity results from
deep copying or cloning an object net.

Meta Model Embedding. We define the embedding of the UML meta model
into the UML meta model ι : M3 ↪→ M2 by ι = {(x , y) | x ≡ y} – see also Fig. 3.

Standard Notation for Functions. For the sake of completeness, we recap
some standard notation for functions. Given a function f : A → B , we denote
the lift of f by f † : P(A) → P(B), which is defined as usual. Given a function
f : A → B we denote the reversal, as usual, by f −1 : B → P(A).

Meta Model Reification. Next, we introduce the meta model reification oper-
ator Φ. First, we define the set of all meta model reification operators Φ as the
set of embeddings φ : M2 ↪→ O1 for which it holds true that (i) φ(M2)† :: M2

and (ii) for all m ∈ M2 it holds true that φ(m) ≡ m. Then, we define Φ as an
arbitrary but fixed element of Φ, i.e., Φ ∈ Φ. In the sequel, we refer to Φ as the
meta model reification operator. Note, that φ(m) ≡ φ′(m) for all φ, φ′ ∈ Φ and
m ∈ M2. Furthermore note, that | M2 |=| φ†(M2) |, because φ is an embedding.
This means, that all φ, φ′ ∈ Φ can be characterized as identical up to exploita-
tion of object references. This explains, why it makes sense to define φ as an
arbitrary but fixed selected element of Φ. In any case, formally, the definition
based on a selection is well-defined.

Model Reification. On the basis of the meta model reification operator Φ we
introduce the model reification operator Ψ . We define the set of model reification
operators Ψ as the set of embeddings ψ : O1 ↪→ O0 for which it holds true that,
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given any M1-level model m ⊂ O1, it holds that (i) ψ(m)† :: Φ(M2) and (ii)
for all m ∈ m it holds true that ψ(m) ≡ m. Again, we define Ψ as an arbitrary
but fixed element of Ψ , i.e., Ψ ∈ Ψ . In the sequel, we refer to Ψ as the model
reification operator. Informally, the effect of the meta model reification Φ is
to copy the meta model to the model level, whereas the effect of the model
reification Ψ is to copy the user user model to the object level. Take a look at
Figs. 3 and 4 for a visualization of how this actually works.

Further Notational Issues. We model bags as functions to the ordinals, i.e.,
given a set T , we model the bags Bags(T ) of T as Bags(T ) = T → N0. Given a
set T , we model the sequences Seq(T ) of T as indexed sets (si)i∈{1,..,n} over T
with respect to a starting fragment 1, ..,n of the ordinals. We define the length
of a sequence as #((si)i∈{1,..,n}) = n. We use also λ i ∈ {1, ..,n}.s(i) to denote
a sequence in Seq(T ).

2.7 Reification for Constraint Languages

A straight-forward approach to extend OCL by introspective and reflective fea-
tures was to rewrite its syntax and semantics by doubling terms for the different
levels of the meta-level architecture. Instead, we choose an economically app-
roach that allows us to let the semantics of OCL almost untouched. We will
have to give well-formedness rules and semantic specifications only for the newly
added, genuine OCLR reflection expressions. We achieve this by preparing the
M1-level with a reified version of the UML meta model and the M0-level with a
reified version of the user model – see Fig. 3.

The operator Φ reifies the UML meta model at level M1. Basically, this
reification amounts simply to copying the UML language specification as a class
diagram to the user level. This is immediately possible because of the bootstrap
approach of the UML specification, i.e., because the UML meta model is specified
in a core language that is itself a part of the UML language. Intuitively, we can
say that we use the operator Φ to copy the UML meta model and add it to
the user-defined model at level M1. Actually, the definition of Φ as provided in

Fig. 3. Extending OCL with reification and reflection.
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Sect. 2.6 is completely declarative. We have defined the set of object references
O as an abstract data type. We keep O completely opaque, i.e., we do not define
operations for the creation of object handles or the construction of objects. The
value identity ≡ that we have defined in (6) is a structural equality of object nets
up to object references. Now, also the definition of Φ is free from concrete object
construction mechanisms. We can assume the existence of Φ and therefore all
semantics definition in this section are founded, in particular, the typing rules.
If you find it helpful, you can think of the act of selecting and fixing an arbitrary
φ from Φ as the act of copying model M2 to level M1.

Each UML meta model expression is therefore immediately a correct M1-level
model expression. This fact is also indicated by the embedding ι : M3 ↪→ M2 of
the UML meta meta model into the UML meta model. Figure 3 shows the overall
scenario of reification and reflection with OCL, whereas Fig. 4 gives a concrete
example, based on a small cutout of the UML superstructure specification and
a tiny user model. After the addition of the reified meta model to level M1 it
is actually really a part of the user model. This fact eases the introduction of
new reflective features to the OCL. However, usually we want to distinguish the
reified meta model from the model that is actually created by the M1-level user
modeler for its genuine purpose, e.g., domain modeling, system analysis, system
design, and so forth. Henceforth, we call this part of the user model the user user
model in cases where disambiguation seems to be important – see Fig. 4. The
reification of the meta model data has to be understood as a semantic device, i.e.,
a means to declare the semantics of the extended language OCLR. Therefore, by
definition, there is no conflict with other software artifacts. The target of this
article is not to achieve a particularly smart constraint language – whatsoever the
criteria might be with respect to this. We add reflection to a constraint language
for conceptual purposes. Ease and preciseness of the semantics are the rationales
of the proposal. We are interested in the possibility of introducing reflection
to object constraint languages in general. The resulting reflective language is
interesting in its own right, but is not the ultimate goal.

With the reification of the UML meta model at level M 1 we are prepared for
introspective access. Given a meta model type, i.e., an M2 type T , we use the
concrete syntax 〈T 〉 ↓ to denote its reification at level M1. The 〈 〉 ↓ notation
is needed to distinguish user-defined types from reified meta model types. For
example, if you want to model the national school system you might want to
have a class Class in your model, and this class must not come into conflict with
the reified meta model type Class. With UML, this disambiguation of types
is not only an issue of the concrete syntax but also an issue of the abstract
syntax. According to the UML superstructure, the name of a named element
allows to identify the element unambiguously – see [75, Sect.7.3.34]. This means
that the UML offers not a completely abstract modeling backbone. Therefore,
the concrete syntax 〈T 〉 ↓ stands for opening of a namespace. In practice, we
can get rid of the extra notation. We can simply assume that the namespaces
of user-defined and reified types are separated and use names T of reified types
〈T 〉↓ without harm. Nevertheless, in this article we stay with the notation 〈 〉↓
for reasons of preciseness and clarity.
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Now, we step further by reifying the user user model at level M0. Because of
Φ, the appropriate classes of the reified UML meta model are available for this
purpose at level M1. The operator Ψ re-instantiates each model element e1 :: e2
as the value identical model element Ψ(e1) :: Φ(e2). What we have achieved now
is full introspective access onto the user-defined types, even without extension of
the OCL syntax. Again, we use the notation 〈T 〉↓ to denote the reification of a
user-defined type T , i.e., a type of the user user model. Note, that we overload
the notation 〈 〉↓ to denote both Φ- and Ψ -reifications.

See once more, how the copying mechanism of the reification operators Φ and
Ψ work in Fig. 4. The copying step from sub diagram (iii) to sub diagram (v)
seems to unfold the diagram (iii). However, it does not. Diagrams (iii) and (v)
are just alternative visualizations of the same, i.e., value identical, object net,
where diagram (v) is of course more detailed. The usual class diagram notation
of (iii) is convenient for us, in particular, if we want to conceive it in its role as
an O1-level model for the instantiation of M0 level models like the sub diagram
(vi). However, diagram (iii) is an object net, and in its role as an instance of the
UML meta model M2 we would perhaps want to perceive it rather as detailed
as visualized in (v).

2.8 Reflection for Constraint Languages

This section provides some examples of OCLR expressions and an informal
description of their semantics. In Sect. 3 we show how to give precise semantics
in terms of type derivation rules and value specifications. With the meta model
and model reification operators Φ and Ψ in Sect. 2.7 we have already achieved
full introspective access to the user user model. However, yet the crucial step
is missing, i.e., gaining fully reflective access onto model elements of the user
user model via the reified data. What is missing is a means of materialization or
re-materialization of modeling elements, i.e., of reflection in the narrow sense –
see Table 1 once more. Many interesting constraints are yet not possible to write.
To get the point, we will look at a series of example constraints. The examples
serve merely as demonstration of the OCL and OCLR mechanics. They are not
meant to present examples of domain knowledge. In later sections we will see and
discuss many exploitations of the reflective features that we have added to the
constraint language. For the purpose of easy reference, we have added a crucial
chunk of the UML meta model in AppendixA, a specification of the OCL type
system in AppendixB and a crucial chunk of the OCL abstract syntax specifi-
cation in AppendixC. For many of the upcoming examples it will be helpful to
switch between the text and these Appendices back and forth. We start with the
following, correct constraint that exploits the reified data1:

〈Class〉↓ .allInstances → forAll(ownedProperty →asSet →size � 20) (7)

1 Note, that we feel free to drop brackets from OCL operation calls whenever the
paramter list is empty, e.g., we write s→asSet →size instead of s→asSet() →size().
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Fig. 4. The OCLR reification mechanism
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Constraint (7) evaluates to true if all user user model classes have at most
twenty properties. Against of the background of today’s established modeling
practice it is fair to say that (7) is an example of a real meta level constraint. It
does not constrain the object during system evolvement time, but the modeler
during modeling time.

Let us have a look at another constraint example:

〈Class〉↓ .allInstances
→ select(name = "Person").ownedProperty
→ select(name = "pet").type
→ includes(name = "Dog")

(8)

The constraint in (8) checks whether the class Person is associated, via a role
pet to a class Dog . The semantics of the constraint (8) is equal to the semantics
of the following usual OCL constraint that work without the new reification
capabilities:

context Person inv: pet .oclIsTypeOf (Dog) (9)

See, how constraint (9) immediately queries the property pet , whereas (8)
must navigate the two additional links ownedProperty and type of UML meta
model to reach the target Dog . Now, let us have a look at the following invalid,
i.e., ill-typed, constraint expression:

〈Class〉↓ .allInstances → select(name = "Person").
allInstances → forAll(age � 40) (10)

Intuitively, constraint (10) has the following semantics as (1), i.e.:

context Person inv: age � 40 (11)

In OCLR we will be able to write constraints like (10) in due course, after the
introduction of an appropriate reflection notation. However, for the time being,
constraint (10) is ill-typed. The problem is the second allInstances-property. To
see why, consider the following type derivation. The expression 〈Class〉 ↓ has
type OclType. As part of the limited meta data access capabilities of OCL, it
is possible to apply the method allInstances to this expression. The expres-
sion 〈Class〉 ↓ .allInstances has type Set(〈Class〉 ↓). The expression 〈Class〉 ↓
.allInstances → select(name = "Person") again has type Set(〈Class〉 ↓), actu-
ally, it evaluates to the one-set element consisting of exactly the reified Person
object. Now, when we try to invoke the allInstances method to this expression,
we provoke a type error, because allInstances can only be applied to terms of type
OclType. The constraint in (10) simply does not adhere to the well-formedness
rules of OCL. As an even simpler counter example, it is not possible to apply
allInstances twice in a path expression like the following:

〈Class〉↓ .allInstances.allInstances (12)

Again, the expression in (12) is not well-typed. Again, intuitively, constraint
expressions (12) has a semantics. It is intended to mean the set of all instances
of all classes of the user user model. Again, in OCLR we will be able to write
constraint expressions like (12) in due course.
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2.9 Full Reflection Capabilities

Now, we introduce a reflection construct 〈 〉 ↑ as the crucial extension to OCL.
Based on this notation, we can give a correct version of constraint (10) as follows:

(| 〈〈Class〉↓ .allInstances → select(name = "Person")〉↑|).
allInstances → forAll(age � 40) (13)

Constraints (13) checks whether each instance of the class Person has an
attribute value over 40 for its attribute age, i.e., it is equal to constraint (11).
Informally, the semantics of the reflection construct is the reversal of reification.
In (13) the reflection receives the one-element set containing the reified Person
object and yields the one-element set containing the Person meta-object it has
been reified from. More precisely, the reflection construct in (13) turns an expres-
sion of type Set(〈Class〉↓) into an expression of type Set(OclType). See how this
works in the following example type derivation. Then, as usual, e : T means
that a sub expression e has type T – see also Appendix B as a reference for OCL
types:

(| 〈 〈Class〉↓
︸ ︷︷ ︸

(i):OclType

.allInstances

︸ ︷︷ ︸

(vi):Set(〈Class〉↓)

→ select( self
︸︷︷︸

(ii):〈Class〉↓

.name

︸ ︷︷ ︸

(vii):String

= "Person"
︸ ︷︷ ︸

(iii):String

︸ ︷︷ ︸

(ix):Boolean

)

︸ ︷︷ ︸

(x):Set(〈Class〉↓

〉↑

︸ ︷︷ ︸

(xi):Set(OclType)

|)

︸ ︷︷ ︸

(xii):OclType

. allInstances

︸ ︷︷ ︸

(xiii):Set(Person)

(14)

The result of the reflection (xi) in (14) has type Set(OclType). Unfortunately,
with standard OCL this result cannot be immediately exploited in a property
call o.p. OCL requires that a property can only be applied to an object of a
single classifier – the OCL specification states [70]: A PropertyCallExpression is
a reference to an Attribute of a Classifier defined in a UML model. It evaluates
to the value of the attribute. We have two options to deal with this. We can
extend OCL so that it can also deal with the application of a property to object
of several classes and we will see in due course that this is easily possibly. As the
second option, and this is what we see in the current example, is to introduce a
new operator to OCL that turns a one-element set into the contained element.
With (| M |) we denote exactly this operation. Note, that (| M |) is only partially
defined, i.e., it is defined only for one-element sets. With respect to semantics,
the solution based on (| M |) is conservative, i.e., it can be added to OCL without
changing the existing semantics of the OCL.

With the reflection operator so far, we have added substantially to the expres-
sive power to OCL. However, to earn the full potential reflective power, we need
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to develop a means to apply a property to a set of objects that are instances of
completely arbitrary classes. In OCL we are already used to apply an attribute
to a set of objects yielding an object set as result. In general, there is no reason
why we should not apply an attribute to objects of more than one class. Have a
look at the following example that introduces some ad-hoc concrete syntax for
the special case of a fixed number of classes:

context {Person,Dog} inv: self .age � 5 (15)

Please note, that it is not our intention to introduce new concrete syntax.
There is no need for us to do so. However, possibilities to address properties
possessed by objects of more than one arbitrary type arise in OCLR as a result
of its design. Concrete syntax like the one in (15) has only the purpose to analyze
the semantics of such scenarios for us. Of course, in (15) we assume that both the
class Person and the class Dog define Integer attributes age. Note, however, that
the Integer attributes age in Dog and Person are not required to be inherited
from a common supertype of Person and Dog – this is what we meant with
completely arbitrary classes above. Fortunately, we do not need to change the
syntax of OCL to make expression like (15) possible. A property call expression
has another OCL expression as its source. In general, it is possible that OCL
expressions have type Set(OclType) – see Appendix B. So it is a self-restriction
of the OCL semantics [70] to allow only for the application to a single type. The
semantics of an expressions like (15) is immediately clear. It collects the values
of attributes of all the objects of different type, not only of the objects of a single
type. We will show how to give precise semantics to this later. Now, we generalize
OCLR property calls further to cases, in which an arbitrary number of classes is
dynamically determined. For example, the following constraint evaluates the age
attribute for all objects of a class model. Again, the value of such an expression
is defined only, if all classes in the current user-model possess an age attribute
of correct type:

〈〈Class〉↓ .allInstances〉↑ .allInstances → forAll(age � 40) (16)

Next, we introduce the reification notation 〈 〉 ↓ also for user user model
types. It hands over the reification operator Ψ to the modeler. The following
example constraint, which is equivalent to (11), including the crucial type deriva-
tion shows how this works:

〈〈Class〉↓ .allInstances
→ select( self︸︷︷︸

(i):〈Class〉↓

= 〈Person〉↓︸ ︷︷ ︸
(ii):〈Class〉↓︸ ︷︷ ︸

(iii):Boolean

)〉↑ .allInstances → forAll(age � 40)
(17)

So far, each OCL expression of type 〈Class〉↓ or collection type Set(〈Class〉↓)
can be made subject to reflection. In general, we will expand reflection to all
kind of reified data. Let us have a look at the following example, which is again
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equivalent to (11):

Person.allInstances → forAll(
self .〈

(|
〈Class〉↓ .allInstances
→ select(〈Person〉↓).ownedAttributes
→ select(name = "age")

|)
〉↑
� 40

)

(18)

In (18), the constraint expression inside the reflection construct yields a rei-
fied property. After application of the reflection, this property can then be called.
See the following type derivation for the crucial part of (18):

P ≡DEF 〈Class〉↓ .allInstances → select(〈Person〉↓)︸ ︷︷ ︸
(ii):Set(〈Class〉↓)

self︸︷︷︸
(i):Person

.

(vi)
︷ ︸︸ ︷

〈
(v):〈Property〉↓

︷ ︸︸ ︷
(| P .ownedAttributes︸ ︷︷ ︸

(iii):Set(〈Property〉↓)
→ select(name ="age")

︸ ︷︷ ︸
(iv):Set(〈Property〉↓)

|) 〉↑

︸ ︷︷ ︸
(vii):Integer

(19)

Technically, the property name p in a property call expression o.p itself is
not a proper OCL expression, in the sense that it does not have a type. This
does not harm in the type derivation of (19). It is exactly the reflection construct
that opens a context for typed expressions. See how the type of (v) in (19) is
immediately consumed by the type derivation with rule (36) from Sect. 3, i.e.,
how the typing of (vi) is not needed in the type derivation.

As a next step, we can also generalize the semantics of property call expres-
sions further, so that the application of a set of properties to a class or a set of
classes becomes possible. See the following example showing again some ad-hoc
syntax, with obvious semantics:

context {Person,Dog} inv: self .{age,weight} � 0 (20)

In OCLR we can exploit such an extension to the OCL semantics in an
expression like the following:

〈〈Class〉↓ .allInstances〉↑ .allInstances.〈
〈Class〉↓ .allInstances.ownedAttributes
→ select(type = Integer)

〉↑ .sum

(21)
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The constraint (21) is well-formed with respect to all user user models. This is
ensured by the clause select(type = Integer) which ensures that only type-correct
property calls occur. The expression in (21) is a solution to expression (7) in the
example list in Sect. 2.1, i.e., the sum of all Integer attributes of all objects of all
classes. As we have mentioned before, we are free to omit all the special syntax
for reification, reflection and also element picking, i.e., 〈 〉 ↑, 〈 〉 ↓ and (| |) in
the application of the OCLR, unless we do not need it to for the disambiguation
of expressions. See how this simplifies expressions, e.g., for the expression (21):

Class.allInstances.allInstances.(
Class.allInstances.ownedAttributes
→ select(type = Integer)

).sum

(22)

Nevertheless, we stay with the explicit notation throughout the rest of the
article, as we have said before, for the reason of preciseness.

3 On The Precise Semantics of OCLR Reflection

The purpose of this section is to show how to give precise semantics to an object-
oriented constraint language. In the definitions of this section we make extensive
use of notation introduced in Sect. 2.6 and heavily rely on the concepts defined
earlier, e.g., the reification and reflection operators Φ and Ψ . We define the
necessary well-formedness rules as strict augmentations to the existing notion of
UML and OCL type correctness.

3.1 Typing Notation and Semantic Bracketing

Given a UML, OCL or OCLR expression e and type T , the typing e : T expresses
that e is well-typed and has type T . We use further usual notation from the type
system community [17,58,79] to express well-typing. The statement � e : T
holds if the typing e : T has been derived, i.e., has been proven. Typing rules
are expressed in the following manner:

� e1 : T1 . . . � en : Tn C1 . . .Cm

� e ′ : T ′ (23)

Given that we have already derived typings ei : Ti and further conditions Ci

hold true, a typing rule of kind (23) allows to derive typing � e ′ : T ′. There are
no other typings than those that can be derived by typing rules. Typing rules
are instances of well-formedness rules.

Furthermore, we use so-called semantic bracketing to define the value of
expressions. Given an expression M we use �M � to denote its value. With seman-
tic bracketing we mean the natural declarative technique to define the semantics
as a recursive function along the structure of abstract syntax trees, i.e., the
semantics of an expression �e e1 . . . en� as a value E(�e1�, . . . , �en�) with E
being a sufficiently precise semantic description. It is important to understand,
that all definitions in this section, including typing rules and semantic equations
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are always in terms of abstract syntax trees, even if we use concrete syntax to
denote them. Here, we again rely into the semantics of OCL. We assume a suffi-
ciently precise semantics for OCL expressions that is available in our semantics
specification, i.e., we assume that �e� is defined if e is a pure OCL expression.

3.2 Typing Rules and Values

Figure 5 shows the OCLR meta model. Elements of the OCL are shown in grey,
whereas the new language constructs are shown in black – compare to the OCL
specification in AppendixC. The meta model elements of all of the three new lan-
guage constructs implement the OCLExpression interface, i.e., they are proper
OCL expressions that also receive types. A reflection expression refers to another
OCL expression as its reflected expression. A reification expression refers to a
type expression as its reified type. The types of OCLR are the same as the types
for OCL v.2.0 – see AppendixB Fig. 12.

We consider the semantics for three kinds of expressions that cover the full
range of OCLR semantics, i.e., type expressions, property call expressions and
enumeration literal expressions. As explained in Sect. 2.8 the reification of the
crucial M2-model element Class, i.e., 〈Class〉↓ has the type OclType. We repeat
this as the following rule:

� 〈Class〉↓ : OclType
(24)

Furthermore we now, by the definition of Φ and Ψ that for all types t of the
user user model, i.e., the data types of an M1-level model, we have that:

� t : OclType t :: Class
� 〈t〉↓ : Φ(Class)

(25)

CallExp StateExp ReflectionExp

OCLrExpression

1

Classifier

ReificationExp

TypeExp

UML meta modelreferredType

reifiedType

PickingExp

LiteralExp

reflectedExpression

pickedElement

EnumerationLiteralExp

EnumerationLiteral

PropertyCallExp

Property

Fig. 5. Abstract syntax of OCLR
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Now, an expression of a reified data type, i.e., a reified data type expression,
yields an OclType-expression after reflection. Reflection recovers the M1-level
value of reified data: � e : Φ(Class)

� 〈e〉↑ : OclType
(26)

The value of a reified data type expression 〈e〉↑ is defined as:

�〈e〉↑� = � Ψ−1
(
�e�

)
� (27)

In general, expressions rather have a type of the form C (Φ(Class)) for a col-
lection C than merely the type Φ(Class). Examples for expressions that have
Φ(Class) as type are the iterator variables in OCL loop expressions. A further
example is the result of correctly applying an element picking operation. The
element picking operation can be applied to a collection of any type, includ-
ing reified M2-level types. We define the typing and the value of the picking
operator (| |) for all kinds of collection C , i.e., Set , Bag and Sequence as
follows:

� e : C (T ) |�e� |= 1
� (| e |) : T

(28)

� (| m |) � =

{
�x� , ∃ x .m = {x}
⊥ , else

(29)

Now, we generalize typing and values of reified data type expressions for
the case of collection types. For all kinds of collections C , i.e., Set , Bag and
Sequence, we have that:

� e : C (Φ(Class))
� 〈e〉↑ : C (OclType)

(30)

With respect to the value of reified data type expressions we need to dis-
tinguish three cases now, i.e., sets, bags, and sequences. In case that e : Set
(Φ(Class)), we define the value of 〈e〉↑ as follows:

�〈e〉↑� = � (Ψ−1)†(�e�
)

� (31)

We know that �〈e〉↑� can be written differently as {t : OclTpye | Ψ(t) ∈ �e�}.
In case that e : Bag(Φ(Class)) we can define the value of 〈e〉↑ as follows:

�〈e〉↑� = λ t : OclTpye . �e�(Ψ(t)) (32)

In case that e : Sequence(Φ(Class)) we can define the value of 〈e〉↑ as follows:

�〈e〉↑� = λ i ∈ {1, ..,#(�〈e〉↑�)} . Ψ−1
(
�e�(i)

)
(33)

As a next step we specify OCLR in case of enumeration types and enumera-
tion literals. We define that, for all types t of the user user model, we have that:
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� t : OclType t :: Enumeration
� 〈t〉↓ : Φ(Enumeration)

(34)

� e : Φ(EnumerationLiteral)
� 〈e〉↑ : EnumerationLiteral

(35)

The value specification for enumeration literal expressions is identical to the
one in case of type expression, i.e., Eq. (27).

3.3 Semantics of Property Call Expression

We turn to property call expressions now. First, we consider one of the simplest
cases that (i) a reflected property is called on a single object, (ii) the reified
property results into a single object and (iii) the property call results into a
single object of user-defined type. In this case typing is defined for all user
defined types T2 as follows:

� o : T1 :: Class p : Φ(Property) p.class = Ψ(T1) p.type = T2

� o.〈p〉↑ : Ψ−1(T2)
(36)

In the scenario prescribed by (36) we define the value of a property call
expression o.〈p〉↑ as follows:

�o.〈p〉↑� =
[[

o.Ψ−1
(
�p�

) ]]
(37)

For a full specification of OCLR expressions we had to define a combinatorial
number of different cases, depending on the result type of the property, the
result type of reified operations and the question of whether the operation is
applied to a single object or a collection of objects. Then, each of the involved
types can be, combinatorial, a primitive type or a collection, and again, each
collection, also the collection of objects, can be a set, a bag, or a sequence.
We look at only one further case, which is a particular complex one, i.e., the
case that all of the aforementioned components can be collections. For all kinds
of collections C1,C1,C3, i.e., Set , Bag or Sequence, we establish the following
typing rule:

� o : T1 :: C1(Class) p : C2(Φ(Property)) p.class = Ψ(T1) p.type = C3(T2)

� o.〈p〉↑ : (C1 ⊕ C2 ⊕ C3)(Ψ−1(T2))
(38)

The definition of the typing rule (38) relies on a combinator ⊕ for collec-
tion constructors. This combinator is defined in Table 2 in AppendixB.2. The
OCL approach is that nested collections are always and automatically flat-
tened. For example, a set of sets is turned into a set, a bag of bags is turned
into bag and so forth. The definition of the ⊕ combinator fulfills the standard
definition of OCL collection flattening in [70,73]. First, we handle the case
that all of the involved components yields sets, i.e., C1(Class) = Set(Class),
C2(Φ(Property)) = Set(Φ(Property)) and C3(T2) = Set(T2). In this case, we
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know that o.〈p〉 ↑ has the type Set(T2) and we define the value of o.〈p〉 ↑ as
follows:

�o.〈p〉↑� = {v ∈ T2 | v : �o′.p′�, o′ ∈ o, Ψ(p′) ∈ �p�} (39)

Next, we handle the case that all of the involved components yield bags, i.e.,
C1(Class) = Bag(Class), C2(Φ(Property)) = Bag(Φ(Property)) and C3(T2) =
Bag(T2). In this case, we know that o.〈p〉↑ has the type Bag(T2) and we define
the value of o.〈p〉↑ as follows:

�o.〈p〉↑� = λ v : T2 .
∑

o′∈o

( ∑

p′∈Ψ−1�p�

�o′.p′�(v)
)

(40)

Note, that the sums in (40) are all well-defined, because all of the involved
collections are finite. The scenario that the involved components yield bags, is the
standard scenario in the OCL. We have started with the set scenario in (39) only
for instructive purposes. We do not detail out further combinations C1⊕C2⊕C3

of collection constructions.

4 Working with OCLR

We will see OCLR at work in Sects. 5 and 7 when we exploit it for the semantic
investigation of power types in general and power types in UML in particular.
Before that, let us walk through the informal constraint examples that we have
enumerated in Sect. 2.1 as constraints (1) through (9). Again, please have a look
at the cutout of the UML meta model as provided by Fig. 11 in AppendixA
throughout the examples. Example (1), i.e., the names of subclasses of a given
type t can be expressed in OCLR as follows:

〈Generalization〉↓ .allInstances
→ select(general = 〈t〉↓).specific.name (41)

The subclasses of a given type t , i.e., example (2), follows immediately
from (41) by dropping the last property call, i.e., the name navigation. Exam-
ple (3), i.e., the attribute names of classes navigable via associations from a given
type t can be expressed as follows:

〈Class〉↓ .allInstances → select(c |
〈Association〉↓ .allInstances → exists(

memberEnd → contains(〈t〉↓)
and
memberEnd → contains(c)

)
).name

(42)

Example (4), i.e., all classes of the user model, turns out to be a most simple
example that has been exploited already in many instances before. It is given by
〈Class〉↓ .allInstances. Consequently, example (6), i.e., the number of classes in
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the user model is given by 〈Class〉 ↓ .allInstances → sum. Example (6), i.e., all
classes of the user model that have no subclasses, is provided by:

〈Class〉↓ .allInstances → select(c |
not
〈Generalization〉↓ .allInstances → exists(

general → contains(c)
)

)

(43)

The example (7) has already been solved as an example by (21) before. A test,
whether all attributes of all objects of all classes are initialized, i.e., example (8)
can be realized as follows:

〈Class〉↓ .allInstances → forAll(c |
〈c〉↑ .allInstances → forAll(o |

c.ownedAttribute → forAll(a |
o.〈a〉↑ �= null

)
)

(44)

Fortunately, in OCL a null value of type OclVoid is available as defined in
[70,73]. This null value is exploited in (44) to test whether an attribute is initial-
ized, where we assume that initialized attributes have a value different from null .

4.1 Getter and Setter Method Example

Next, we realize example (9), i.e., a test whether all attributes of all classes have
setter- and a getter-methods. The following constraint (45) checks whether for
each class and attribute X of type t there exist a setter-method and a getter-
method of appropriate parameter signature, i.e., a method setX (x : t) for some
arbitrarily named input parameter and a method getX () : t :

〈Class〉↓ .allInstances → forAll(c |
c.ownedAttribute → forAll(a |

c.ownedOperation → exists(m |
m.name = "set" + "a.name" and
m.ownedParameter .size = 1 and
m.ownedParameter .direction = #in and
m.ownedParameter .type = a.type

) and
c.ownedOperation → exists(m |

m.name = "get" + "a.name" and
m.ownedParameter .size = 1 and
m.ownedParameter .direction = #return and
m.ownedParameter .type = a.type

)
)

)

(45)
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Note, that the UML specification fixes that a method can have one and at
most one return parameter. It would also be possible to completely specify the
correct behavior of the methods based on the signature specification in (45) but
we not detail this out here.

4.2 A Comparison with Genoupe Generative Programming

Reflective object-oriented constraint-writing is the natural counterpart to gen-
erative programming. Generative programming is another word for reflective
programming. Generative programming gets its name from what we have called
reflection in the narrow sense in Table 1, i.e., the step of turning reified data
into code. Code generation is a particular operational viewpoint on reflection.
It hints to a possible implementation strategy based on a pre-compilation phase
for reflective features on top of an already existing programming language.

Now, as an instructive example, let us program the counterpart of the getter-
and setter-example (45) in Sect. 4 in a reflective programming language. We
choose our own reflective programming language Genoupe [33,34,57] for this
purpose – see Listing 4.1.

Listing 4.1. Generation of Getter and Setter Methods with Genoupe

public class GetterSetter (Type T) : @T@{

@foreach(F in T.GetFields()) {

public void @"set" + F.Name@ ( x : @F.FieldType@) {

@F.Name@ = x;

}

public @F.FieldType@ @"get" + F.Name@ {

return @F.Name@;

}

}

}

Genoupe is an extension of the programming language C# with generative
programming features. An important contribution of Genoupe is the definition
and implementation of an extended notion of generator type-safety, which is,
however, not important for the consideration of the current example. For us, it
is enough to understand how the generative features in Listing 4.1 work.

Genoupe is extended by new, concrete syntax for meta programming. The
special sign @ is used to introduce or embed some of the new meta-programming
syntax. A pre-processing phase takes Genoupe and generates plain C# code. In
Listing 4.1 we implement a class GetterSetter parametric on a type parameter
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(TypeT ). Then, with :@T@ we achieve that the generated GetterSetter class
extends the actual parameter class and therefore inherits all of the fields of
the actual parameter class. In Genoupe we have access to all features of the
C# reflection API. In Listing 4.1 we exploit the method T .GetFields(), that
yields all fields of a type T , as well as the properties F .Name and F .FieldType
with respective meaning. Then, the Genoupe meta programming expression
@foreach(i . . .){C (i)} allows us to generate a piece of C# code for each instance
of an iterator variable i . In Listing 4.1, we exploit @foreach to generate a getter
and a setter method for each field of the actual parameter class.

5 Adequately Modeling of Sets of Sets

This section deals with the modeling of sets of sets of domain objects. Modeling
sets of sets of objects is important, because it arises naturally in expert domains –
see Fig. 6 for an example. Modeling of sets of sets is a classical topic [52] in
the modelling community and has been discussed as modeling with power types
[46,47,60,67,68]. It has also been discussed as multilevel modeling in the past [7].

Often, modeling a set of domain objects involves the specification of prop-
erties that are common to all objects of the investigated set. This means, that
in domain modeling, we are, in general, also interested in the intension or com-
prehension of a set of objects rather than merely in its role as an extension of
a concept. We could introduce new terminology as has happened in the object-
oriented community in the past. For example, we could call a set of objects
together with its intension a class. There is no single commonly accepted defin-
ition of the notion of intension in linguistics and ontology. So, let me be more
concrete. More concrete, we could say that objects have properties and that
we have a special interest into a certain notion, let’s call it, e.g., domain object
class, which is a set of objects together with a specification of which properties
are shared by all objects of this set, i.e., are equal for all objects of that set.
We could than give this notion a name and class has been a usual candidate for
this in the past. The problem is that class is also used for concrete program-
ming and modeling language constructs which usually have a rather operational
semantics. Concrete class constructs in programming and modeling languages
have been designed, of course, with a notion of domain object class in mind. In
order to avoid conflicts with the class terminology of programming and modeling
language constructs, we could choose another name for domain object classes,
e.g. Class, domain class, or simply domain object class. We do not. We sim-
ply talk about set of objects, set of sets of objects and so forth and point out,
that in domain modeling, we have special interest in properties that are com-
mon to all objects of a given set. The treatment of intensions of sets of objects
have been intensively studied in the in the modeling community and many cru-
cial results has been achieved for: notation, terminology, modeling constructs,
patterns, tools, semantical considerations etc. – see also Sect. 9 for examples.
Therefore, we have chosen this as an example worth looking at to analyze with
a reflective constraint language like OCLR.
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As an example, Fig. 6 shows the mammal hierarchy. A set of sets appears
systematically at each level of the hierarchy, grouping objects of classes that
reside at a lower level, i.e., breed, sub species, species, genera and so on. The
running example in this article will be dogs and breeds from this hierarchy.
The different sets of sets in the mammal hierarchy in Fig. 6 all follow the type-
object pattern [52] of Johnson and Woolf. The set of set is called a type in the
type-object pattern. A type in the type object pattern, i.e., an instance of the
type class of the pattern, is not a type in the sense of object-oriented subtyping
hierarchy; in particular, it is not a type of a concrete modeling language. A type
in the type object pattern represents a kind or a group of objects, i.e., a set of
set of objects. Furthermore, a type carries the attributes common to all of the
objects that it groups together. In that sense, again, a type of the type-object
pattern is the intension of a set of objects.

The aim of this section is to discuss ways of adequately modeling sets of
sets of domain objects. We show that it is possible to model sets of sets in
terms of basic object-oriented modeling constructs plus appropriate constraints.
Subtyping and subclassing mechanisms help in modeling sets of sets, but we will
see that even most basic notions of object-oriented modeling, i.e., classes and
enumeration types, are already sufficient for giving appropriate models of sets
of sets, as long as the necessary, generic constraints are provided. There is no
necessity to introduce new modeling language features, like a concept of set or
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a concept of power set into the tier of class instances. Note, that even in set
theory [90] all sets are objects. The class of sets, i.e., the set carrier, consists
of opaque objects only. Inner structure of sets is an illusion that emerges in
our minds by the application of the set forming operation { , } on the carrier,
i.e., the class of sets is an abstract data type. Sets of sets emerge by the axiom
of pairing in the finite case and by the axiom of infinity in the infinite case.
However, once a set of set is constructed you can also perceive it as a relationship
between its members and itself, and equally, it is only a perception or illustration
that membership means containment. And this is also true for predicate logic.
Signatures in predicate logic can be considered pure, most possible reductionist
entity-relationship models.

A credo often somehow stated in object-orientation is: Everything is treated
as an object. In form-oriented analysis [26,37] we have expressed doubt in the
metaphoric power of such and similar real-world statements. We have said that
the value of such a statement is not clear if it is only used as a preamble or
eye-catcher and is not exploited anywhere else in the subsequent methodology
or its semantic foundation. Now, with the current discussion we have actually
found a use case for this real-world statement. If it is a crucial value for object-
orientation that everything is treated as an object, then also sets, sets of sets,
sets of sets of sets and so forth should be treated as objects.

5.1 Plain Class Modeling for Sets of Sets of Domain Objects

Figure 7 shows a state of our dogs and breeds expert domain and a first simple yet
adequate conceptual model for the intended domain. The diagrams (ii) through
(iv) in Fig. 8 show further, more elaborate means to model the intended domain.
Diagram (i) in Fig. 8 is, basically, the conceptual model copied from Fig. 7. It is
included into Fig. 8 for an important presentation issue, i.e., in order to complete
the full power type construction diamond.

The M0- and M1-level models in Fig. 7 together with the OCLR constraints
that are given in the sequel adequately represent the domain and the current
state of the domain. The class Dog represents the set of dogs in the domain
state. The set of dogs is a domain object that owns a genus, in this case Canis,
as a property. All the dogs share the same property, therefore, this property is
modeled as a class attribute in the M1-model, which is, as usual, indicated by
underlining the attribute. Instead of assuming a singleton object as host for the
class attribute, we explicitly specify this by the following OCLR constraint:

Dog .allInstances → forAll(dog1, dog2 |
dog1.genus = dog2.genus
or dog1.genus →asSet →size =0
or dog2.genus →asSet →size =0

)

(46)

We prefer to use the term class attribute over using the UML term static
attribute. Because UML static attributes are not really static, but just class-
global. A UML static attribute can vary over M0-model editions; however, what
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Fig. 7. Adequate constraint-based modeling of sets of sets without power types. The
necessary OCLR constraints are given in the text as (46)–(56)

is required for a UML static attribute is that it is equal for all objects of its
hosting class in a given state. We have chosen the current formalization of the
concept of class attribute, because it is amenable in a straightforward manner
on basis of OCL.

A reader might say that constraint (46) is superfluous, because the UML
specification states that a class attribute belongs to the class rather than to the
objects of the class. However, the UML specification is not formal with respect
to this, because it neither states the existence of a singleton object hosting
the class attributes for each class nor does it mention class attributes in the
semantic description of class instantiation. In that sense constraint (46) is one
means to make the semantics of class attributes precise. However, the purpose of
constraint (46) in this article is different, we want it to be at hand for comparison
with the constraints for subset-global attributes like (48) to (51) in the sequel.

The constraint (46) is quite explicit and elaborate, it can be expressed much
denser in a different style:

Dog .allInstances.genus →asSet →size �1 (47)

Second, each dog has an age and a weight. These properties are, without
loss of generality, different for each dog. Therefore, they are modeled as ordi-
nary object attributes. Third, each dog has a breed, a breed number and the
average age of its breed as a property. Again, these properties are different for
each dog, but they are not completely arbitrary. Instead, there is a mutual func-
tional dependency between the breeds and the breed numbers, and a functional
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dependency between breeds and average ages per breed. We choose the breed
itself to identify the respective subset of dogs, i.e., collies or pitbulls. The enumer-
ation type Breed hosts values Pitbull and Collie for this purpose. The properties
breed number and breed’s average age are not global with respect to the class
dog but must be the same for all collies and independently the same for all
pitbulls. We can express this by the following constraints:

Dog .allInstances→select(breed =#Collie).breednumber →asSet →size=1 (48)
Dog .allInstances→select(breed =#Collie).breedAvgAge→asSet →size=1 (49)
Dog .allInstances→select(breed =#Pitbull).breednumber →asSet →size=1 (50)
Dog .allInstances→select(breed =#Pitbull).breedAvgAge→asSet →size=1 (51)

Note, that the leading sign # in (48) through (51) is the usual way to
denote enumeration literals in OCL. Furthermore, note that the constraints (48)
through (51) must not be mixed with constraints of the following form:

Dog .allInstances→select(breed =#Collie)→ forAll(breednumber →asSet →size=1)
Dog .allInstances→select(breed =#Collie)→ forAll(breedAvgAge→asSet →size=1)
. . .

(52)

This means that the constraints in in (48) through (51) are not merely about
multiplicities of properties as one might think at the first sight. Instead, they
specify the uniqueness of the properties with respect to each breed. Multiplicities
of properties are specified by the constraints of the form (52). They specify a [1..1]
cardinality for the properties. In our example, the [0..1] cardinality is implicitly
specified for the properties in diagram (i) in Fig. 7, because it can be assumed
as the default cardinality of properties.

Later, when we consider subtype externalization in Sect. 5.3 we will discuss
that these constraints can be expressed by turning the subset-global attributes
into appropriate class attributes. The average age for collies can be the same
as the average age of pit bulls. However, the breed number is regarded as the
identifier in the domain. It must be different for collies and pitbulls. We can
express this by the following constraints:

Dog .allInstances →select(breed =#Collie)→ forAll(c |
Dog .allInstances →select(breed =#Pitbull)→ forAll(p |

not(c.breednumber = p.breednumber)
)

)

(53)

Now, last but not least, let’s have a look at the set of breeds in the expert
domain. The set of breeds is represented by the enumeration type Breed at M1-
level. The set of collies is represented by the set of M0-level objects that share
the value Collie for their breed attribute. It is also represented at M1-level by
the value Collie itself.
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5.2 Making Constraints Robust Against M1-Level Model Updates

In Sect. 5.1 we have seen an important aspect of modeling sets of sets, i.e., subset-
global attributes. We need to investigate these further and will introduce the
notion of subclass attribute. Furthermore we need to discuss auxiliary properties
for subsets of objects as well as properties that are global to sets of sets of objects.
For this purpose, we investigate several options of modeling in Fig. 8. However,
the central theme of this section turns out to be the question of how to make
constraints robust against model updates at level M1.

The constraints (48) to (51) work fine to protect the M0-level objects against
inadequate updates. However, in general, they are not sufficient for M1-level
model updates. For example, if a new value, e.g., Beagle, is introduced by the
modeler into the enumeration type, the subset-global attribute for breed numbers
is no longer under the auspices of appropriate constraints, because the existing
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constraints work only for the former collection of enumeration type literals Collie
and Pitbull, which infringes the intended meaning of the Breed enumeration type
as representing the domain set of breeds.

Now, the following OCLR constraints generalize the constraints (48) to (51)
by abstracting from the concrete values in the enumeration type so that the
constraints become robust against unwanted M1-level updates:

〈Breed〉↓ .ownedLiteral → forAll(breedId
Dog .allInstances
→select(breed =〈breedId〉↑).breednumber →asSet →size =1

)

(54)

〈Breed〉↓ .ownedLiteral → forAll(breedId
Dog .allInstances
→select(breed =〈breedId〉↑).breedAvgAge →asSet →size =1

)

(55)

See how, the constraints (54) and (55) make use of reification and reflection.
The type Breed is a user defined type. It denotes an enumeration. Therefore, after
reification of Breed we have access to its enumeration literals via introspective
access. These can be, after the application of the reflection operator 〈breedId〉↑,
further exploited in M1-level constraint writing.

Let us call a constraint that is made robust against M1-level updates, a
sustainable constraint. We will further delve into this terminology in Sect. 8.
Next, we also want to turn constraint (53) into a sustainable version. This is
even possible without OCLR, i.e., in plain OCL. With constraints (48) and (50)
we have specified that breed numbers are unique with respect to each breed.
The fact can be exploited to give a less explicit and much more dense version of
constraint (53):

Dog .allInstances.breed →asSet →size
= Dog .allInstances.breednumber →asSet →size (56)

As it turns out, the constraint (56) is independent of concrete breed identifiers
and is therefore a robust version of (53).

Now, let us detour a bit and discuss the pragmatics of tool design. A more
detailed discussion is provided by the symbolic viewpoints in Sect. 8. Assume
that we have a tool that allows for modeling and instantiation of objects in
parallel. Imagine that such a tool supports the maintenance of both the model
and the data and, in particular, surveils the validity of reflective constraints,
e.g., constraints written in OCLR. Now, given such a tool, how to introduce a
new breed into our example model? The answer is: (i) introduce a new value
in the Breed enumeration type, (ii) instantiate some dog information objects,
(iii) set the attributes of the new objects and care for the equality of the set-
global attributes and the uniqueness of the breed number, (iv) submit the model
changes as update and (v) expect the modeling tool to do the necessary con-
straint checking and reject resp. accept the changes based on the result.
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5.3 Subtype Externalization

Model (ii) in Fig. 8 shows the result of externalizing the breed attribute into
subclasses for each possible value. Having a certain value for an attribute, i.e.,
having a certain property, characterizes a subset of a set of objects, i.e., the set of
objects sharing this property. Therefore, in model (ii) the subclasses Collie and
Pitbull represent the domain sets of collies resp. pitbulls. The generalizations of
the classes Collie and Pitbull to the class Dog form a UML generalization set
which receives the name Breed in model (ii). This generalization set Breed now
adequately represents the set of breeds in the expert domain.

Still, we need to enforce the global uniqueness of the breed number and
average age with respect to the subsets of collies and pitbulls. We could get this
effect by erasing the respective attributes from the class Dog and moving them
as class attributes to the subclasses Collie and Pitbull. However, it is better OO-
style to keep them in the class Dog so that they are inherited by the subclasses,
for example, because we want to introduce further breeds as subclasses in future
model editions. A means to override an attribute by a class attribute in a subclass
is also no substitute for the given constraints, because without the constraints
nothing ensures that the attribute is systematically overridden in all subclasses
under consideration. In the current scenario, it is fair to call these attributes
subclass attributes, because semantically they can be considered class attributes
of the subclasses. We have therefore underlined them with a dashed line in the
diagrams (i)–(iii) in Fig. 8. We do not want to introduce the concept of subclass
attribute with this semantics as a language element here, because although it
would work immediately for usual OO programming languages, it is incomplete
in UML. In contrast to usual programming languages, generalization in UML can
be non-disjoint [67], so in general you would also need to specify the subclasses
for which the intended properties are considered as set-global.

The constraints (48) to (51) can now be re-stated for model (ii) as follows –
note that the resulting constraints are actually class attribute constraints onto
the considered attributes in their role as inherited attributes:

Collie.allInstances.breednumber →asSet →size =1 (57)
Collie.allInstances.breedAvgAge →asSet →size =1 (58)
Pitbull .allInstances.breednumber →asSet →size =1 (59)
Pitbull .allInstances.breedAvgAge →asSet →size =1 (60)

Now, in order to make the constraints (57) to (60) sustainable, i.e., robust
against M1-level updates, we can restate the sustainable constraints (54) and
(55), again in OCLR, in terms of the generalization set Breed . The involved
subclasses are the same with respect to their generalization set as the literals
are with respect to their enumeration type:

〈Breed〉↓ .generalization.specific → forAll(
〈self 〉↑ .allInstances.breednumber →asSet →size =1

)
(61)
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〈Breed〉↓ .generalization.specific→ forAll(
〈self 〉↑ .allInstances.breedAvgAge →asSet →size =1

)
(62)

Next, we also give an equivalent to constraint (56):

〈Breed〉↓ .generalization.specific→asSet .size
= Dog .allInstances.breednumber →asSet →size (63)

With model (ii) the introduction of a new breed turns out to correspond to
the introduction of a new subtype under the auspices of the necessary constraints.
Model (ii) has an important advantage over model (i). The subclasses are the
natural host for auxiliary attributes that are specific to a certain subset of domain
objects. In the example we have chosen the attribute intelligence for collies and
the attribute aggressiveness for pitbulls.

In principle it is possible to turn attributes of a each type into a subtype,
i.e., not only attributes of an enumeration type. For enumeration types, which
are finite, we simply turn each literal into a type, as we have seen in the current
example. For an infinite type we update the model by the introduction of a
new subtype representing a value of the type whenever necessary, i.e., whenever
an attribute with this value occurs for the first time. This extreme subtype
externalization is merely a thought experiment; but it is an instance of the
purely symbolic viewpoint of modeling that we will discuss in Sect. 8.3, because
it treats the evolving M1/M0-model as a single whole data store.

5.4 Power Type Externalization

Model (iii) shows the result of externalizing all the subset-global attributes in
their own class Breed. It is usual to call a class like the class Breed a power
type [46,47,68]. Now the concept of the set of breeds is made explicit by a class
in the model. A concrete breed can now be represented by an M0-level object
or an M1-level instance specification. This modeling solution might appear to
the reader as particularly natural, because a class can be seen as the natural
candidate to represent a set of objects, which are meant to be sets in this case.
Actually, because of the 1-multiplicity at the element-of association, the con-
straints (48) to (51) become obsolete with solution (iii). Now, all we need to
do is to generalize this situation to an arbitrary number of breeds is to adopt
constraint (56) the following way:

Dog .allInstances.breed →asSet →size
= Dog .allInstances.breed .breednumber →asSet →size (64)

With the model (iii) there might be empty breeds due to the breed-to-dog
association’s many-cardinality [∗]. If we want (63) to effect also empty breeds
we need to change it to:

Breed .allInstances →asSet →size
= Breed .allInstances.breednumber →asSet →size (65)
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Note, that both (64) and (65) are no OCLR constraints, i.e., they are plain
OCL constraints. With solution (iii) the membership of a dog in a breed is
represented by instances of the element-of association. The model (iv) has an
important advantage over the model (i). The class Breed is the natural host
for auxiliary properties that are common to all breeds, e.g., the address of the
national breed registry. Without the need for subtype-specific attribute exten-
sions solution (iii) actually appears the most natural modeling pattern for the
given scenario. This comes at no surprise: solution (iii) is no more, no less than
the type-object pattern [52] of Johnson and Woolf. Unfortunately, we sometimes
might want to model properties that are specific to certain breeds – see also the
discussion on the disadvantages of implementation complexity in [52]. This leads
us to the next Sect. 5.5.

5.5 Integrated Subtype and Power Type Externalization

Solution (iv) now shows an equivalent to the full UML power type construc-
tion [60,75] for the scenario. It makes explicit (a) the several breeds as sub-
classes Collie and Pitbull and (b) the set of all breeds as a class Breed. These
two representations must now be balanced and kept in synch. First, we need an
OCLR constraint that expresses that all M0-objects of a given breed subclass
are assigned to the same breed M0-object:

〈Breed〉↓ .generalization.specific → forAll(
〈self 〉↑ .allInstances.breed →asSet →size =1

)
(66)

Second, we also need to express that objects of different subclasses are
assigned to different Breed objects:

Dog .allInstances.breed →asSet .size
= 〈Breed〉↓ .generalization.specific →asSet →size (67)

The user-defined type name Breed is overloaded in diagram (iv). It denotes
both the power type call Breed as well as the generalization class Breed . This
does not pose a problem. In the constraints (66) and (67) the type Breed is
used to denote the generalization set. Together, the constraints (66) and (67)
imply that the subclasses of the Breed generalization set have no instances in
common, i.e., that their sets of instances are disjoint. This is not automatically
so. Multiple classification is, as a matter of course, an option with the UML,
for example, because of multiple inheritance. UML generalization sets have an
attribute isDisjoint , that specifies whether the specific classifiers of a general-
ization set may have instances in common or not – see [75]. We can specify that
the subclasses of Breed are disjoint as follows:

〈Breed〉↓ .isDisjoint (68)

Note, that (66) and (67) together imply (68), but, however, the converse
implication does not hold.
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The two constraints (66) and (67) capture the essence of the UML power
type construct, however, only for a special case. First, there must be exactly one
power type association and, moreover, the involved power type association may
be a many-to-one association only, see the element-of association in Fig. 8 in
our case. In Sect. 7 we will provide general constraints for arbitrary user-defined
power type specifications.

6 Z and Sustainable Constraint Writing

In this section we restate the domain model from Fig. 7 in the specification lan-
guage Z. The aim of this is twofold. First, the specification offers a particularly
dense presentation of the crucial domain knowledge discussed throughout the
article and is amenable to foster its understanding. In that sense, we will refer
to this Z example later in Sect. 7 on the precise semantics of UML power types.
Second, and maybe even more important, its discussion can foster the under-
standing that semantics and pragmatics are concerns in language design that
can and should be separated – and this is so also, and in particular, in case of
modeling languages.

The specification language Z allows describing system states on the basis of
set theory and predicate logic. It offers rich notation for all usual mathematical
constructs. It is an advantage to have a standardized means to write mathemat-
ical specification. However, Z is more than a neat set notation. It establishes a
system model and a system modeling paradigm. A system is modeled as a state
evolvement. The approach is to model the state transition as manipulation of
declared functions (pre-post-condition specification). It belongs to the large fam-
ily of Parnas methods [78] with ASMs (abstract state machines) as a most recent
member [40]. We use only the data facet of Z in this article. I recommend [87]
as a reference, and also [43,44,61]. Furthermore, the Z notation is standardized
by an ISO standard [49].

Z specifications are not automatically sustainable. However, they can be
turned into sustainable specifications. No reflective refactoring of Z is needed
for this purpose, because Z allows for quantification over arbitrarily nested sets.
It is common, e.g., in text books on Z, to say that the Z notation is a com-
bination of set theory and first-order logic. But take care; this is not a for-
mal statement. Informally, it is a neat explanation. Formally, it can neither
be neglected nor approved, because it is not clear what is meant by combin-
ing set theory and first-order logic. In any case, it is important to understand,
that in Z it is possible to quantify over arbitrarily nested sets. So, if Z had
a sufficiently formal semantics, it would be in the realm of a typed, higher-
order logics, comparable to Isabelle/HOL [64], see also [54,83] for a discussion.
The way we turn a Z specification of our example domain into a sustainable
Z specification in Sect. 6.3 is very instructive and gives us yet another view-
point onto today’s object-constraint languages, their expressive power and their
pragmatics.
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6.1 Types Specification

We introduce the basic sets of dogs, addresses, genera, breed numbers, intelli-
gence degrees and aggressiveness degrees. There are all kept completely opaque
in the following:

[DOG ]
[ADDRESS ,GENUS ]
[BREEDNUMBER, INTELLIGENCE ,AGRESSIVENESS ]

(69)

It would be typical Z style to introduce further, derived types for intended
domain concepts. For example it would be typical to introduce the following
type for breeds:

BREED == P DOG (70)

There are two good reasons for auxiliary types as (70). First, they can improve
the self-documentation of the specification. Second, they improve re-use. It is
typical Z style to make intensive use of such auxiliary types. However, in our
case, we stay with the plain types given in (69), because this eases the discussion.
Our interest in this section is the discussion of design principles, whereas the
artifact quality of the specifications play a minor role.

6.2 Schema Specification

The structure of possible system states manifests in variables and axioms declared
in schemas. Mathematical notation is the first class-citizen in Z. For the modeler
this means, that he must often specify concepts that would be available as syntac-
tic sugar in other modeling languages. Nevertheless, Z specifications are usually
rather dense than bloated. The advantage is that we can hardly deviate from the
declarative, mathematical semantics. With the schema DogDomainData in (71)
we provide a straightforward specification of the system state. With the schema
DogDomainAttributes in (72) we add the attributes – compare this to the domain
model provided in Fig. 7. In our Z specification we model each attribute as a
function that yields a value for each given parameter object. This means, we
explicitly model an object-mechanism that is implicitly given in each object-
oriented modeling language – see also the ephemeral object patterns in [3,4] for
a discussion of this specification style.

Each variable in (71) represents a part of the system state. Therefore each
variable holds a subset of its corresponding base type and is typed as power set
of this. The set dogs stands for the set of dogs at one point in time, whereas
the type DOG stands for the set of all possible dogs that may ever exist in
any of the system states. Consequently the type of the set dogs is modeled as
the power set of DOG . Similarly, the type of the set breeds is modeled as the
power power set of DOG . At each point in time the set breeds consists of sets
of dogs. Furthermore, we specify that both of the two breeds collies and pitbulls
are subsets of the set of dogs in each system state. Furthermore, we specify that
the two breeds collies and pitbulls are always disjoint sets.
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DogDomainData
dogs : PDOG
breeds : PPDOG
collies : PDOG
pitbulls : PDOG

collies ⊆ dogs (i)
pitbulls ⊆ dogs (ii)
collies ∈ breeds (iii)
pitbulls ∈ breeds (iv)
collies ∩ pitbulls = ∅ (v)

(71)

The attributes of the classes of our example are modeled as partial func-
tion from the sets of potential objects, i.e., types, into their value ranges in
schema (72). A major role of the schema (72) is then, to specify the correct
domains of the attribute functions. There is no need to specify the uniqueness
for breed numbers and breed average ages for the members of a given breed in
the Z solution. This is so, because the corresponding attributes are modeled as
functions that have the set of breeds as their domain. The functions assign values
to breeds, not to dogs. This solution corresponds to the power type externaliza-
tion solution in Sect. 5.4, in which these attributes were modeled as properties
of power type objects.

DogDomainAttributes
DogDomainER
dogGenus : GENUS
dogAge : DOG �→ N0

dogWeight : DOG �→ R

breedNationalBrgRegistrar : ADDRESS
breedNumber : PDOG �→ BREEDNUMBER
breedAvgAge : PDOG �→ R

collieIntelligence : DOG �→ INTELLIGENCE
pitbullAgressiveness : DOG �→ AGRESSIVENESS

dom dogAge = dogs
dom dogWeight = dogs
dom breedNumber = breeds
dom breedAvgAge = breeds
dom collieIntelligence = collies
dom pitbullAgressiveness = pitbulls

(72)

Now, let us compare the Z solution to the power type solution in Sect. 5.5.
Constraints (i) and (ii) in the schema DogDomainData correspond the
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introduction of Collies and Pitbulls as subclasses in the generalization set Breed
in Sect. 5.5. In the power type solution we had to balance the subclasses of the
full power type construction with the power type objects. It is constraint (66)
that enforces a unique power type object for all objects of a given subclass. The
constraints (iii) and (iv) for collies and pitbulls in the schema DogDomainData
can be considered the counterpart of constraint (66) in Sect. 5.5. The constraints
(iii) and (iv) are particularly simple. Let us have a look at the set collies. The
set collies is itself both a subset of the set dogs and at the same time an element
of the set breeds. This is possible, because Z has the expressive power of a typed,
higher-order logic. There is no need for an extra object representing the set
collies as a whole. Attributes that are common to all collies are simply assigned
to the whole set collies. All this is also true for the set of pitbulls. Therefore,
there is no need to balance the set of collies and pitbulls against objects that
represent.

Next, the constraint (67) in Sect. 5.5 enforces that the set of instances of
Collies is disjoint from the set of instances of Pitbulls. Therefore, constraint
has (67) constraint (v) in the schema DogDomainData as its counterpart in the
Z solution. The Z constraint (v) is again particularly easy due to the fact that
we can exploit mathematical set notation for it.

6.3 Sustainable Schema Specification

The crucial constraints (i), (ii) and (iv) in schema (71) are not sustainable. If
we add a new breed, let’s say beagles ∈ breeds, it is neither ensured, that the
new breed is a sub set of the set of dogs, nor that it is disjoint to the already
existing breeds. Let us have a look at schema (73) which is a solution to this
problem. Constraint (i) in (73) is an appropriate sustainable generalization of
the constraints (i) and (ii) in (71). Constraint (v) in (73) is an appropriate
sustainable generalization of its counterpart (v) in in (71).

DogDomainDataSustainable
dogs : PDOG
breeds : PPDOG
collies : PDOG
pitbulls : PDOG
beagles : PDOG

∀ breed : breeds • breed ⊆ dogs (i)
collies ∈ breeds (ii)
pitbulls ∈ breeds (iii)
beagles ∈ breeds (iv)
∀ breed1, breed2 : breeds • breed1 ∩ breed2 = ∅ (iv)

(73)
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It also would have been possible to add explicit constraints for the new beagle
breed to the schema DogDomainData, i.e.:

beagles ⊆ dogs (74)
beagles ∩ collies = ∅ (75)
beagles ∩ pitbulls = ∅ (76)

But, of course, the solution of schema (73) is better. Explicit constraints are again
non-sustainable. They are not generic and therefore explicit constraints do not
scale. Already in the current small example, they start to bloat the specification.

7 Precise Semantics of UML Power Types

The current UML superstructure specification contains the following description
of the semantics of power types [75]:

Formally, a power type is a classifier whose instances are also subclasses
of another classifier. [. . . ] As established above, the instances of Clas-
sifiers can also be Classifiers. This is the stuff that meta models are
made of.

The statement is inconsistent against the background of the rest of the UML
specification [75]: an M1-level subclass is an instance of the M2-level class Class
and cannot be an instance of an M1-level classifier. Instances of an M1-level
classifier cannot be classifiers themselves. Instances of an M1-level classifier are
M0-level model elements and definitely do not reside at level M1. We must
not mix the level-crossing UML instantiation relation with the set membership
relation ∈ in the intended domain. If you model with a power type construct the
resulting model is not per se a meta model. Furthermore, the above statement
is not a formal statement, but this is actually a minor point.

Where does the confusion stem from? One source of misunderstanding of
the domain-relation ∈ as level-crossing instantiation may arise from using the
phrase is instance of for is element of in the domain, which might be natural
in many domains. Compare this to the Z specification of the running example
in Sect. 6. In (71) collies is an element of breeds and a the same time a subset of
dogs. We must not mix modeling with the linguistic modeling framework that
we exploit as tool, i.e., we must not mix ∈ with the instantiation of a sentence
of our modeling language which is described by its grammar, i.e., a meta model.
We should never forget that meta models are really just kinds of grammars and
we should not be confused by the fact that we use a common modeling language
as notation and mechanism to write these grammars.

However, it is not appropriate to simply reject the above statement from the
UML specification and similar statements in the community as inconsistent. It
implicitly contains an important aspect of power types that goes beyond their
meaning as constraining states of information objects of the current model. Based
on the findings and terminology of this article, we can attempt an informal, yet
more precise re-formulation of the above definition. For example, we could state:
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Informally, a power type is a class whose instances represent sets of
domain objects, where each of these domain objects is represented by an
instance of a subclass of another classifier.

Arbitrary subclasses? An arbitrary classifier? No. All the extra information
expressed by the constraints (66) and (67) is yet still missing, so that both the
UML definition of power type as well as are our re-formulation yield no com-
plete specification. Again compare the above statements with the Z specification
in (71).

Now, with OCLR we can give a general semantics for UML power types. With
UML, a concrete user-defined power type consists of a generalization set and a
designated power type class for this generalization set. The UML specifies that a
generalization set has a property powertype of type Classifier , which is optional,
i.e., has [0..1] cardinality. Obviously, the generalization set specifies a power
type construct, whenever this value is present. Concrete power type objects can
be assigned to the objects of the generalization set. Our specification needs to
decide upon pramatic issues, i.e., we assume that there are associations between
the super class of the generalization set and the power type class in order to
assign concrete power type objects, which is in accordance to the literature and
the examples in the UML specification. So far, in Sects. 5 and 6 we have treated
examples of a special case, in which there is exactly one such association, which
has to be, furthermore a many-to-one association. This special case is the usual
case, e.g., all of the examples in the UML specification follow this pattern –
see Figs. 7-49, 7-50 and 7-51 in [75]. We treat a most general case here – see
Fig. 9. There might be many power type associations of arbitrary cardinalities
and, furthermore, the generalization set is not yet required any more to be
disjoint.

Sub1 Sub2

* element-of1

* element-ofn

…

o1:Sub1 o2:Sub1 o3:Pub2 o4:Pub2

instanceof

instanceof

po1:Power po2:Power

Super Power

…
instanceof

instanceof

*
*

Fig. 9. General UML powertype specification pattern.
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In the sequel we call an object of one of the subclasses of the generalization
set a generalization set object for short. Furthermore, we will call a power type
object that is assigned to a generalization set object a representing object. Now,
we need to specify that (i) there is at least one representing object for each gen-
eralization set object, (ii) the number of representing objects equals the number
of generalization set subclasses, (iii) for each representing object there exists a
generalization set subclass, so that the given representing object is assigned to
all objects of this subclass. This is achieved by the following OCLR constraint:

01 〈Class〉↓ .allInstances.forAll(Super ,Subs,Power |
02 〈GeneralizationSet〉↓ .allInstances →exists(gs |
03 gs.powertpye = Power
04 and gs.generalization.general → includes(Super)
05 and gs.generalization.specific = Subs
06 )
07 implies(
08 let ps = Super .ownedAttribute →select(type = Power) in (
09 〈Super〉↑ .allInstances → forAll(o |
10 o.〈ps〉↑→asSet →size � 1
11 )
12 and
13 〈Super〉↑ .allInstances.〈ps〉↑→asSet →size
14 = Subs →asSet →size
15 and
16 〈Super〉↑ .allInstances.〈ps〉↑→ forAll(op |
17 Subs → exists(Sub |
18 〈Sub〉↑ .allInstances → forAll(o |
19 o.〈ps〉↑→ includes(po)
20 )
21 )
22 )
23 )
24 )
25 )

(77)

Lines 02 through 06 establish all triples of classes Super , Subs and Power
that correspond to a valid and complete user-defined UML power type. Here
Super stands for superclass and means the general class of the generalization
set, Subs stands for subclasses and means the collection of specific classes of
the generalization set and Power stands for the powertype that is assigned to
the generalization set – see Fig. 9 once more. Now, the sub constraint in lines 09
through 11 ensures property (i) from above, the sub constraint in lines 13 and 14
ensures property (i) and the sub constraint in lines 16 through 22 ensures prop-
erty (iii). Altogether, constraint (77) grasps the essential semantics of UML
power types. Each sub class is represented by a power type object. A power
type object carries information that is common to all objects of the subclass it
represents.
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Still, there remain some pragmatic issues that remain open. In case of a
complete overlap of the instances of two subclasses of the generalization set, we
cannot distinguish between the two involved power type objects representing
the subclasses any more. We do not design solutions to issues like that here.
Instead, we turn to the special use case of UML power types, in which (i) there
exists exactly one power type association, which (ii) then has a many-to-one
cardinality. In this case, we need to specify, that (iii) for each generalization
set subclass the same representing object is assigned to all objects of the given
subclass and (iv) different representing objects are assigned to the objects of
different generalization set subclasses. This means that we need to generalize
constraints (66) and (67) from Sect. 5.5 to all user-defined power types. This is
achieved by the following OCLR constraint:

01 〈Class〉↓ .allInstances.forAll(Super ,Subs,Power |
02 〈GeneralizationSet〉↓ .allInstances →exists(gs |
03 gs.powertpye = Power
04 and gs.generalization.general → includes(Super)
05 and gs.generalization.specific = Subs
06 )
07 implies(
08 let p = Super .ownedAttribute →select(type = Power) in (
09 p →asSet →size = 1
10 and
11 〈Super〉↑ .allInstances → forAll(o |
12 o.〈p〉↑→asSet →size = 1
13 )
14 and
15 Subs → forall(Sub |
16 〈Sub〉↑ .allInstances.〈p〉↑→asSet →size =1
17 )
18 and
19 〈Super〉↑ .allInstances.〈p〉↑→asSet →size
20 = Subs →asSet →size
21 )
22 )
23 )

(78)

The sub constraint in line 08 ensures property (i) from above, the sub con-
straint in lines 11 through 13 ensures property (ii), the sub constraint in lines 15
through 17 ensures property (iii) and the sub constraint in lines 19 and 20 ensures
property (iv).

8 A Symbolic Viewpoint of Modeling Languages

Figure 10 shows different viewpoints on model evolution. Note, that they are
really only viewpoints on one and the same scenario. Each of the viewpoints



Reflective Constraint Writing 43

grasps important issues in pragmatics of information system design and opera-
tions. Furthermore, the distinction between ephemeral versus evolution persis-
tent constraint writing in Fig. 10 is an important concept in its own right.

8.1 The Classic Database Evolution Viewpoint

The first viewpoint (i) in Fig. 10 is the classic database viewpoint, which is also
the usual OO programming language viewpoint. The schema is given as an OO
class diagram and is cleanly separated from the data. The schema corresponds
to the UML M1-level, whereas the data corresponds to the UML M0-level. It
is assumed that the schema is fixed, whereas the data is not. The data is con-
tinuously manipulated. This viewpoint therefore distinguishes between design
time and runtime. The schema shapes the information space. It constraints the
structure in which we can capture and maintain data. However, it is also pos-
sible to fix more complex domain-related integrity constraints for the data, for
example, referential integrity, class-internal functional dependencies, or domain-
related integrity constraints, e.g., the rule that a certain integer value must not
exceed a maximum value and so forth. A crucial feature of databases is to sup-
port the enforcement of these constraints that are considered an integral part of
the schema. Whenever you try to update the data in a way that would violate
the constraints, the database will reject your update.

We have said that the schema is fixed. But actually it is not. Schema updates
can occur. However, it is important to understand that in the viewpoint
(i) schema updates are considered to occur seldom and therefore schema updates
are considered almost fixed. Seldom and almost are vague concepts and there-
fore we will be able to switch to the equal M1/M0 resp. symbolic model evo-
lution viewpoint (ii) later. Furthermore, schema updates are regarded as cost-
intensive and are usually controlled by other access rights than those for data
updates. Usually, you need to contact your database administrator for this pur-
pose. Whenever a schema update occurs, it triggers a data migration step as
indicated by the numbers 1 and 2 in Fig. 10. This data migration step can be
very complex, because the existing data must be re-shaped [14,27,28,32,53].
Similarly, if you change the class structure of your application this at least
means that you need to stop, recompile and restart the application program.
For an enterprise application this can already be very cost-intensive and risky.
Hopefully, the program has been designed for reuse and the change has been
foreseen in the applied patterns. If not, and if your changes are really structural,
unforeseen changes, this can easily give rise to a cost-intensive code refactoring
project.

8.2 The Symbolic Viewpoint

The classic database viewpoint is pervasive. For example, the UML meta level
architecture distinguishes between an M1-level and M0-level – note, that the
M0-level is explicitly called the runtime object level in the UML specification.
Nevertheless, the viewpoint is not set in stone. It is simply possible to view
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Fig. 10. Viewpoints on model evolution.

schema and data updates as equal. Once we abstract from the differences in
frequency, costs and access rights for schema and data updates, the way is
free to review the scenario from a different light. First, the M1-level model
elements also encapsulate information about the intended [15,16] domain, not
only the M0-level objects! In that sense, the M1-level is also a data level. Sec-
ond, there can be also important constraints on the M1-level model elements
with respect to the domain. These can be completely independent from the M0-
level. And more importantly, it might be adequate to state them in terms of
potential, i.e., not yet instantiated M1-level model elements. For example, you
might have a class hierarchy that consists of two trees and might want to ensure
that whenever a new subclass is added to one of the trees, a further subclass
should also be added at the same position into the other tree. Usual database
technology will not support the application of such constraints when updating
schemas.

We call a constraint that is written in terms of only a fixed number of concrete
M1-level model elements an ephemeral constraint, if it may fail to fulfill its
intended purpose after an update of some M1-level model elements. Obviously,
this description of ephemeral constraints is not a strict definition and the notion
of ephemeral constraint is therefore an informal notion. A constraint is ephemeral
only with respect to a certain notion of considered model update and a certain
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notion of intended purpose. We call a constraint that overcomes the weakness
of an ephemeral constraint an M1-level model evolution persistent constraint,
evolution persistent constraint, persistent constraint or sustainable constraint for
short. Usually, a sustainable constraint is achieved by generalizing an ephemeral
constraint to all possible relevant user-defined types.

Once we have adopted an equal M1/M0 model evolution viewpoint, we are
free to think about new tools with innovative modeling features. However, we
must not forget about the established database viewpoint, because it incorpo-
rates the important aspects of cost-effects and access right management. Fur-
thermore, viewpoint (ii) enables us to rethink the semantics of modeling elements
in order to make it more precise.

We call viewpoint (ii) a symbolic viewpoint, because it stresses the fact that
M1- and M0-level modeling elements can be considered as together intending
[15,16] objects in the expert domain. In terms of symbolic computation the M0-
level modeling objects can be regarded as ground terms. For example in the
UML, this viewpoint is obfuscated by the existence of instance specifications at
level M1, in particular, because instance specifications are optional. Therefore,
we introduce the purely symbolic viewpoint (iii) in Fig. 10 as a refinement of
viewpoint (ii).

8.3 The Purely Symbolic Viewpoint

In the purely symbolic viewpoint (iii) we assume that all M0-level objects are
always and only captured and maintained by instance specifications that repre-
sent them. For example, as a thought-experiment, we could design a database
based on UML class diagrams in which we capture and manipulate database
objects always and merely by instance specifications.

The purely symbolic viewpoint can help to avoid certain confusions. In the
discussion of OO semantics it can easily happen – and happened in the past –
that distinct concepts like the following are thrown together and confused with
each other: (a) instantiations of M1-level elements, (b) instances of M1-level
elements, (b) set memberships in the expert domain, (c) representations of
instances of M1-level elements at level M1, (d) instantiations of M2-level ele-
ments, (e) instances of M2-level elements, (f) representations of set memberships
in the expert domain at level M0, (g) representations of set memberships in the
expert domain at level M1, (h) types at level M1, (i) classes at level M1, (j)
class constructs of modeling languages, (j) intensions of sets of domain objects,
(k) domain objects, (l) the intended meaning of domain objects, and so on and
so forth.

You can perceive the achieved M0-level free modeling in two ways. Either
practically, as a concrete tool in which the visual modeling canvas is also the
data store, or simply as an appropriate formal viewpoint. Because, even if we
discuss without M0-level, tools and languages can provide different interfaces
or look&feels for the manipulation of the ground terms and the type terms. If
we assume that all data is kept and maintained at M1-level this greatly eases
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and unifies the discussion. Note that in symbolic computation there is also no
dedicated grammatical tier for the ground terms. In the reductionist calculi of
symbolic computation like the lambda calculus [11] or PCF (Programming With
Computable Functions) [80] the objects resulting from computations are terms
of ground type, but still, they are just terms of the language and so it is the same
with full-fledged functional programming languages or term rewriting systems.
The symbolic viewpoint is a grammatical viewpoint. In a symbolic viewpoint,
every object of interest is symbolized as term of the same language. This is
the reason, why have chosen to call the viewpoint discussed here a symbolic
viewpoint.

8.4 UML Instance Specification

Let us analyze UML instance specifications from the purely symbolic perspective
of Sect. 8.3. Instance specifications represent M0-level objects. Let us have a look
at our tiny example model in Fig. 7. Here we have M0-level objects Lassie : Dog ,
Fido : Dog , George : Dog and Beppo : Dog . Two of them, i.e., Lassie : Dog
and George : Dog have also a UML-instance specification at M1-level. The UML
considers instance specifications as examples only. There is explicitly no need
to give an instance specification for each M0-level instance. Furthermore, an
instance specification needs not to provide a slot and value specification for
each attribute of the corresponding object. However, if we visualize an MO-
object by an instance specification at level M1 it would make sense to require
that an instance specification should obey to the same rules that we impose
as constraints for the M0-level objects. We can do this with appropriate reflec-
tive constraints. Let us have a look at a first example, i.e., at the very basic
constraint (1):

context Person inv: age � 40 (79)

We can turn (79) into an OCLR constraint that appropriately effects instance
specifications the following way:

〈InstanceSpecification〉↓ .allInstances
→ select(classifier → includes(〈Person〉↓))
→ select(slot → forAll(

definingFeature.name ="age"
implies
value.IntegerValue() � 40

)
)

(80)

Now, let us consider a constraint that also contains a navigation expression.
Assume that we also have a class Dog with property owner : Person[0..∗]. Now,
consider the following constraint:

context Dog inv: owner .age � 40 (81)
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Again, we can turn constraint (81) into an appropriate OCLR constraint for
M1-level instance specifications:

〈InstanceSpecification〉↓ .allInstances
→ select(classifier → includes(〈Person〉↓))
→ select(person |

〈InstanceSpecification〉↓ .allInstances
→ select(classifier → includes(〈Dog〉↓))
→ exists(slot → includes(

definingFeature.name ="owner"
and
value → includes(person)

) ) )
→ select(slot → forAll(

definingFeature.name ="age"
implies
value.IntegerValue() � 40

) )

(82)

Note, once more, that the UML allows instance specifications to be partial
specifications, i.e., an instance specification does not have to specify a value for
each property of the object that is represents. This explains the usage of implies
in constraint (80). Constraint (80) allows for instances specifications that do not
have a slot for the property age, however, if such a slot exists, it has to adhere
to the given constraints. It is possible to change exactly this partial specification
approach. It is possible to give OCLR constraints that enforce that each instance
specification is a full-fledged, consistent object description. Furthermore, the
purpose of constraints (80) and (82) has been to demonstrate, that it is, in
principle, possible to turn each OCL constraint into an appropriate OCLR con-
straint on instance specifications. We do not give the detailed specifications of all
this here.

The OCLR constraints resulting from the described transformation are sub-
stantially more complex than the original constraints. Therefore, you might want
to think of all the discussion here as a mere thought-experiment. However, it
shows that we could get rid of the M0-level to achieve a purely symbolic view-
point. It is important to understand that the M1- and M0-level together form
a language to describe states in the expert domain. The existence of instance
specifications merely introduces redundancy. Currently the semantics of UML
relies on the notion of M0-objects, and, even more important, its constraint lan-
guage OCL is designed in terms of M0-objects. We guess that the intention of
M0-objects in the UML was to deliberately introduce a degree of freedom in the
interpretation of models, i.e., in the sense that M0-objects could be, e.g., data
objects in a database, or, run-time objects of an object-oriented programming
language and so forth. Merely throwing away the M0-level, without appropriate
tool support, is not really an option. However, the discussion also shows that it is
actually possible to design appropriate tools for supporting a symbolic modeling
viewpoint.
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9 Related Work

Programming languages and their type systems, in particular, generative pro-
gramming languages [20], form a mature field of study that is important for
the current discussion. In the programming languages Genoupe [33,34,57] and
Factory [25,35] it is possible to implement OCLR constraints. Genoupe is
a C#-extension, whereas Factory is a Java-extension. With Genoupe and
Factory generators it is possible to analyze a given class and weave its
attributes as class attributes into another class. With these generators the lan-
guages are expressive as DeepJava [55]. DeepJava offers neat clabject-style syn-
tax. The natural candidate for representing sets of sets in C# and Java is, the
nested resp. inner classes construct [39]. The problems with nested classes is
that subclassing cannot crosscut the nesting structure, which makes impossible
a direct, natural transformation of, e.g., model (v) in Fig. 8 into code. This prob-
lem is even not overcome by nested inheritance as provide by Jx [65] and J& [66]
or advanced nested composition constructs as provided by DeepFJig [19].

Generative programming can be understood in a very concrete, narrow sense.
Then, it is about programming languages that offer generative programming
language features and establish appropriate type systems for generative pro-
gramming. Actually, the systematic generation of parts of software systems, in
first place code, but also all other kinds of software artifacts, is a practically
highly relevant topic and actually a widespread issue in professional projects. It
comes along in many faces and flavors: domain-specific languages [22], compiler-
compilers [77], rapid-development tools, object-relational mapping tools [14,28,
32], object-oriented component technologies, enterprise computing frameworks
and so on and so forth. The Adaptive Object Model Architecture of Yoder and
Johnson [81,89] is a mature approach to describe self-referential, systematically
adoptable software systems, as well as their design patterns and architectural
patterns.

In [13] the authors define the conceptual programming language PCFDP as
an extension of PCF (Programming with Computable Function) by a quotation
mechanism known from LISP that allows for reification and reflection. PCF [80]
is the typed lambda-calculus with recursion and can be considered a reductionist
functional programming language. Then, the authors give an axiomatic seman-
tics [42] for PCFDP and this way achieve a program logics for generative run-time
meta-programming.

Clabject modeling [6,8] is the established and major multilevel modeling
approach [7]. With clabject modeling useful terminology has been created for
the distinction between the different kinds of instantiations. In [9] the authors
distinguish between so-called linguistic and ontological instantiation. Linguistic
instantiation stands for the model-level-crossing instantiation relation. Ontolog-
ical instantiation stands for the domain-level-crossing relation ∈ in the intended
domain. Clabjects are classes that allow for deep instantiation. The ontological
instance of a clabject is itself a clabject and can therefore stand for a set of
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objects. This way it is possible to adequately represent arbitrarily nested sets,
i.e., the syntactical rules of the clabject frameworks are suitable to guarantee
the intended meaning of the model.

In [56] it has been clarified that meta levels must not be confused with the
levels of a modeling hierarchy and also, that linguistic instantiation must not
be confused with ontological instantiation. In [82] the authors elaborate a for-
mal semantics, based on category theory [12], for terminology that has been
created in the multilevel modeling community. Nivel [2] is a reductionist mul-
tilevel modeling language that supports clabjects, associations, generalization
sets, but no power types. A formal description of Nivel is provided by transla-
tion to the Weight Constraint Language [86], i.e., stable model semantics. This
formal description achieves a reformulation of the clabjects rules [10] in type
systems notation [17].

Meta modeling tools are the natural candidates for supporting multi-level
modeling and clabject modeling. They are also the natural, potential host for
pervasive M2/M1/M0-level crossing constraint checking features. The tool
MelaniE [6,8] already offers a clabject-oriented constraint language for this
purpose. With an appropriate clabject modeling tool like MelaniE [6,8] we can
assume that all information is represented at M1-level without any M0-level
objects, i.e., without linguistic instances of classes. Therefore, clabject modeling
tools also establish a modeling viewpoint that is similar to the purely symbolic
viewpoint developed in Sect. 8.3. MetaDepth [23,24] is an implementation of
a multilevel modeling language on the basis of the AToM3 [88] meta modeling
tool [88]. It supports clabjects as crucial concept and also checks for adherence
to the clabject rules.

The meta modeling tool AMMI [30,31,48] defines and realizes the so called
visual reification principle. Visual reification must not be mixed with the reifi-
cation operators discussed for the OCLR semantics here. Visual reification is a
kind of bipartite instantiation principle in meta modeling tools that allows for
making meta models visually reminiscent of their own instances, which eases
meta modeling for domain experts.

The symbolic viewpoints from Sect. 8.3 superficially resemble but must not be
confused with the viewpoint of the important strand of research on models and
evolution [21,84]. The models and evolution viewpoint incorporates potentially
many kinds of artifacts with models as centrally important artifacts. It deals
with the gaps between these artifact groups. It is a particularly mature but
still classical viewpoint. Our symbolic viewpoints deal with models only and
deliberately abstract from differences between different kinds of models. Our
symbolic viewpoints are merely instructive devices that gain their value only
from their tension with classical viewpoints on modeling.

Investigations on the relationship of OO conceptual modeling and ontological
modeling are very promising [45,62] and have impact [50] – see [63] for a sound
overview. For the understanding of the arguments in this article, the estab-
lished mainstream interpretation of OO conceptual modeling as an extended,
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mature semantic modeling approach [18] is sufficient. In form-oriented analysis
[26,36,37] we have characterized conceptual modeling as the school of shaping
and maintaining information. We have identified real-world metaphors as being
merely guidelines for requirement elicitation. This means, that for the argumen-
tation in this article it is not necessary to understand conceptual modeling in
terms of ontological modeling [38], i.e., as construction of an ontological com-
mitment as characterized in [41].

We believe that the viewpoint of considering models as evolving data storing
systems is also particularly appropriate for the emerging paradigm of cloud-
based software engineering [59], which eventually demands, in our opinion, for a
more holistic approach to the design of data services and their utilization [3,4].
For example, in [5] we have coined the concept of viable software system which
is about systems that are pro-actively designed, implemented and supported
in terms of their future versions and releases, and we expressed our opinion
that such a concept will be a critical success factor for cloud-based software
engineering to take off.

10 Conclusion

We have shown how to extend an object constraint language with reflection.
Reflective constraint writing is to constraint writing what generative program-
ming is to programming. We have extended the concrete object constraint
language OCL of the UML modeling language stack for this purpose, resulting
in so-called OCLR. We have shown how to give precise, declarative semantics
for OCLR on the basis of semantical reification operators Φ and Ψ that mitigate
between the M2-, M1- and M0-levels of the meta level architecture.

As a by-product, we have shown how to generalize OCL property call expres-
sions by a truly generative version. This means, we have shown how to generalize
OCL property call expressions of the form o.p to multi-class, multi-property
call expressions of the most general kind {o1 : C1, .., on : Cn}.{p1, .., pm},
i.e., so that the classes Ci can be dynamically generated and properties pi
may be identified merely by name, i.e., may not be inherited from a common
supertype.

First, reflective constraint writing can be exploited in quality assurance for
system design. Then, a major goal of introducing OCLR was to support the
analysis of semantics and pragmatics of modeling constructs. Another goal of
reflective constraint writing is to enable sustainable constraints, which are, typ-
ically, constraints involving meta-level access. We have clarified why sustainable
constraint writing is important for a robust modeling process. As an example,
we have elaborated sustainable constraints, i.e., constraints that persist model
evolution, for the modeling of sets of sets.

We have shown how usual class diagrams are sufficient to adequately model
sets of sets of domain objects – given that constraints are provided that are
appropriately made robust against M1-level updates. We have introduced the
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concepts of subset-global attribute and subclass attribute. We have introduced
and analyzed the subtype externalization pattern. We have introduced and
analyzed the power type externalization pattern. The two patterns of subtype
externalization and power type externalization open a design space. We have
discussed advantages and disadvantages of each of the modeling alternatives.
The fact that even basic OO modeling languages are not reductionist as com-
pared to, e.g., the PD (Parsimonious Data) modeling language in form-oriented
analysis [26,36], once more shows the conceptual redundancy of subtype exter-
nalization and power type externalization. We have defined and analyzed power
type construction as a diamond consisting out of subtype externalization and
power type externalization.

We have achieved precise semantics for conceptual models of arbitrarily
nested sets. We have argued that the definition of power type in the UML spec-
ification is inconsistent. Based on the findings and terminology of this article, a
precise re-formulation of the above definition has been possible. We have given
a precise specification of the UML power types semantics with OCLR.

We distinguished three viewpoints onto today’s information systems, i.e.,
the classical viewpoint, the symbolic viewpoint and the purely symbolic view-
point. It is the purely symbolic viewpoint that has served best to explain the
potential of emerging multilevel modeling tools as evolving data storing
systems.

Reflective constraint writing adds value. Reflective constraint writing can
make constraints robust against model updates. There are many use cases for
reflective constraints in different software engineering domains, i.e., both in sys-
tem design and conceptual modeling. With respect to system design, reflective
constraints can be exploited to ensure better artifact quality. They can be used,
e.g., to enforce style guides or the correct application of design patterns. Con-
ceptually, reflective constraint writing is about the externalization of important
domain knowledge that is otherwise captured in the ephemeral counterparts of
sustainable constraints.

Acknowledgements. I am grateful to Roland Wagner and Josef Küng for the many
inspiring discussions on the foundations and, in particular, on the realization of data-
base information systems, e.g., in the context of the DEXA series of conferences and
related events. In particular, I am also grateful for the joint endeavors in distributed
workflow automation projects.

A UML Meta Model

The class diagram in Fig. 11 shows a cutout of the UML superstructure specifica-
tion [75] consisting of all UML meta model elements used in the OCL constraints
in this article. We have repeated some of classes, i.e., TypedElement and Feature,
for the sake of improving overall readability.
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Fig. 11. Cutout of the UML meta model (superstructure) as needed in this article.

B OCL Types Abstract Syntax

Figure 12 shows the abstract syntax of the OCL v2.0 types. Basically, it shows
the types from Figure 8.1 from the OCL v2.0 specification [70]. The singleton
AnyType meta object OclAny serves as most general type for all OCL expres-
sions, i.e., e ::OCLExpression implies e : AnyType. The singleton TypeType meta
object OclType serves as type for all OCL type expressions, i.e., e :: TypeExpr
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Classifier
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AnyType
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InvalidType MessageType
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TypeType
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BagType

SetType

TupleType

PrimitiveType

OclAny:AnyTypeOclType:TypeType

UML meta model

UML meta model
0..10..1

1

ElementType

CollectionType

Fig. 12. Meta model of OCL v2.0

implies e : OclType. Model elements that are genuine to the OCL type specifica-
tion are given in gray color, whereas, meta model elements that are reused from
the UML superstructure specification [75] have white color.

B.1 On the Choice of OCL version v2.0

We have chosen to take the 2006 version OCL v2.0 [70] instead of the current ver-
sion v2.4 [73] and the ISO standard version v2.3.1 [51,72] as the basis for OCLR.
The reason is the type system. The crucial difference is in the existence of the
type OclType and its corresponding abstract syntax element TypeType which are
present in the former version v2.0 but absent from the newer versions. The type
OclType is needed for a complete definition of well-typing. It serves as type for
type expressions, i.e., for expressions e :: TypeExp – see Appendix 13. For exam-
ple, the problem shows in the definition of the property oclIsTypeOf . The prop-
erty is defined in and OCL v2.0 and the newer OCL version in different ways:

oclIsTypeOf (type : OclType) : Boolean (83)
oclIsTypeOf (type : Classifier) : Boolean (84)

The operation applys to all objects, i.e., objects o : OclAny . It test whether
the object’s type equals the type given as parameter. For example, the following
constraint evaluates to true:
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context Person inv: self .oclIsTypeOf (Person) (85)

The OCL v2.0 definition (83) of oclIsTypeOf is correct, whereas the v2.0 defini-
tion (84) cannot is ill-typed with respect to its described semantics. Even worse,
in accordance with its described semantics, the operation oclIsTypeOf (type :
Classifier) cannot be typed at all with the types avalailble in the newer OCL
versions. The expression Person is a type expression that denotes a user-defined
type. In v2.0 this expression has type OclType, so that the definition of
oclIsTypeOf is correct. Let’s turn to the definition of the newer OCL versions. It
states that type : Classifier . The type Classifier can only be a user-defined type,
among the pre-defined types there is no type Classifier . Here is where the mis-
understanding might stem from. The types in the meta model in Fig. 12 are no
OCL types themselves. They yield the abstract syntax that describes the OCL
types. The existence of the class Class in the meta model means that each user-
defined type serves as an OCL type, i.e., as a type for OCL expressions. The class
Class itself is not an OCL type. And so is not the abstract class Classifier . Now,
the semantic description requires the parameter of oclIsTypeOf is a type expres-
sion and not an expression of user-defined type. This means that oclIsTypeOf is
ill-typed in the newer versions of OCL. Furthermore there is no appropriate type
available in the newer version of OCL that could be given to the parameter type.
In v2.0 the type OclType serves this purpose. The type OclType – yet without a
defining abstract syntax and a corresponding meta model element TypeType –
has been available in OCL since its first 1997 version OCL v1.1 and disappeared
from the OCL specification in 2010 with version OCL v2.2 [71].

B.2 Flattening OCL Collections

In the OCL, nested collections are automatically flattened. Each combination of
nested collections yields a concrete flattened collection which is defined in [70,70].
We have turned the definition of this flattening into a combinator ⊕ for collection
constructors – see the definition in Table 2.

The standard fixes concrete results for the combination of collection into
nested structures. Actually, there is a design space. Of course, it is natural to
turn a set of sets into a set and, similarly, to turn a bag of bags into a bag.
However, with respect to the combination of bags and sets the OCL has taken
a deliberate decision for a symmetric solution, i.e., a bag of sets is turned into a
bag, whereas a set of bags is turned into a set. This means, that in the latter case,

Table 2. The collection type combinator ⊕.
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some information is lost, that is inherent in the encompassed bags. Furthermore,
the construction of sequences out of sets and bags is not straightforward, in the
OCL it is solved non-deterministically.

C OCL Expressions Abstract Syntax

Figure 13 gives a substantial cutout of the OCL abstract syntax as specified
in [72]. Basically, it shows, as a single overview, the structure of the OCL syntax
kernel as given in Fig. 8.2. in [72] plus more elements that are crucial for under-
standing the syntax and semantics of OCLR, in particular, Fig. 13 details out
the abstract syntax of feature call expressions. Model elements that are genuine
to the OCL meta model are given in gray color, whereas, meta model elements
that are reused from the UML superstructure specification [75] have white color.
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Fig. 13. Meta model of OCL expressions.
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