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Preface

The 25th International Conference on Database and Expert Systems Applications
(DEXA 2014), with proceedings published in volumes 8644 and 8645 of Springer’s
Lecture Notes in Computer Science, featured some outstanding keynote presentations
and regular articles. As with previous editions of the conference, the program co-chairs
of DEXA 2014 invited some of the authors to submit extended papers to a special issue
of the Springer journal Transactions on Large-Scale Data- and Knowledge-Centered
Systems (TLDKS). Following these invitations, one keynote paper and eight regular
articles were submitted. Apart from the keynote paper, each submission was carefully
assessed by at least two (often more) recognized experts in the respective field. In two
rounds of assessment, 35 reviews were received, most of them of very good quality. In
the end, six of the eight regular papers were accepted for inclusion in this special issue,
in addition to a revised and extended keynote paper.

The contributions in this special issue address a wide range of important contem-
porary subject areas in data-centric systems and applications, including reflective
modeling, big data, similarity search, large-scale data replication, bioinformatic
workflows, data pricing, and data anonymization. In good DEXA tradition, all con-
tributions distinguish themselves by the novelty and innovation they bring to these
subject areas.

The keynote paper is authored by Dirk Draheim, who, apart from teaching, leads the
Information Technology Services Centre at the University of Innsbruck (Austria), and in
particular the High-Performance Computing Department of that center. He is a distin-
guished expert in the field of systems modeling. Theoretical work on modeling usually
focuses on logical abstractions of data structures, objects, processes, and object-level
language constructs. Additionally, meta-data are of increasing relevance and importance
in many fields of information processing. Hence, what is also needed, yet rarely pro-
vided, are means to make metadata accessible on the object level. The main contribution
of the keynote paper, entitled “Reflective Constraint Writing,” with subtitle “A Sym-
bolic Viewpoint of Modeling Languages,” consists in a formal treatment of how to add
reflection to object-oriented constraint languages. The work presented in this paper is
extensive, covering both introspective as well as manipulative data access, for a large
variety of purposes, such as to make models robust against unwanted updates, to give
precise semantics to existing modeling language constructs, to enable a more adequate
system analysis, to assure the quality of system design, and so on.

The article “PPP-Codes for Large-Scale Similarity Searching” is co-authored by
David Novak and Pavel Zezula from Masaryk University, Brno, Czech Republic, and
supported by the Czech Research Foundations. Their research addresses the chal-
lenging problem of efficiently identifying objects in large search spaces that are similar
to a given object. The contribution is a two-phase search algorithm on top of a new
sophisticated data structure called PPP-Code index. Phase one computes independent
rankings based on a given distance function, while phase two aggregates these rankings



to access similar objects sooner. Experiments with artificial and real-world data show
that the algorithm reduces the size of output candidates by up to two orders of mag-
nitude while preserving the quality of the answer.

Mouhamadou Ba, Sébastien Ferré, and Mireille Ducassé from IRISA/INSA Rennes
and the University of Rennes, France, co-authored the article “Solving Data Mis-
matches in Bioinformatics by Generating Data Converters.” Their research addresses
the prevalent problem where different bioinformatics services with mismatches
between given outputs and required inputs need to be composed into workflows. The
main contribution is an automatic converter that utilizes a rule-based convertibility
detection mechanism. Experiments with real-world data types and services from the
bioinformatics domain yielded new composition strategies that domain experts were
not made aware of by existing ad-hoc approaches.

The paper entitled “A Framework for Sampling-Based XML Data Pricing” has been
written by Ruiming Tang, Antoine Amarilli, Pierre Senellart, and Stephane Bressan.
The authors are affiliated to the National University of Singapore, the National Sci-
entific Research Centre in Paris (France), or to both. The paper presents a sharp-witted
approach to determining the market value of XML data based on data samples. The
price of the data depends on the degree of completeness of sampling and on the
contextual quality of data. In other words, data completeness can be traded for a
discount price. The paper is one of the first to reflect the growing perception of data as
merchandizing objects. In fact, the importance of data pricing is very likely to increase
with the expected expansion of electronic information trading. Hence, for future work
in that growing trend, this paper can be expected to become a point of reference.

The authors Nikolaos Nodarakis, Evaggelia Pitoura, Spyros Sioutas, Athanasios
Tsakalidis, Dimitrios Tsoumakos, and Giannis Tzimas of the paper “kdANN+: A Rapid
AkNN Classifier for Big Data” work at the universities of Patras, Ioannina, the Ionian
University in Corfu, and the Technological Educational Institute in Patras, Greece.
They propose the use of kNN classification for multidimensional objects. Their paper
reports on a novel application in the area of big data, based on the all k-nearest
neighbor query method. A divide-and-conquer strategy is pursued: Data space
decomposition techniques are deployed for reducing the demand of computational
resources. The authors have verified the viability of their solution on experimental data
sets. By increasing the dimensionality of the dataset, the total execution cost may
exceed the computational power of the cluster infrastructure at hand. To cope with that,
the authors propose dimensionality reduction techniques. Their results exhibit differ-
ences of computation time and cost between the examined algorithms kdANN and
kdANN+, with regard to space dimensionality, the granularity of space decomposition,
and the number of nearest neighbors.

The paper entitled “Optimizing Inter-Data-Center Large-Scale Database Parallel
Replication with Workload-Driven Partitioning” is authored by Zhen Gao, Hong Min,
Xiao Li, Jie Huang, Yi Jin, and An Lei. They are affiliated to various IBM labs in the
USA or China, to Tongji University in Shanghai (China), or Pivotal Inc. in Beijing
(China). The authors propose two algorithms in order to, firstly, partition a large
number of workload-associated tables into a minimal number of point-in-time con-
sistency groups that respect some latency constraints, and, secondly, to refine such
partitioning by minimizing the number of transaction splits among the resulting

VI Preface



consistency groups. Point-in-time consistency is an important property of replicated
data and a critical objective of distributed database management systems. In particular,
it is relevant to the design of data repositories that need to be able to handle unexpected
shut-downs, so that replica consistency can be recovered. Given the growing use of
replication for handling critical big data management challenges, the potential impact
of this paper is obvious.

The paper entitled “Anonymization of Data Sets with NULL Values” is authored by
Margareta Ciglic, Johann Eder, and Christian Koncilia, from the Alpen Adria
University at Klagenfurt (Austria). The paper deals with the problem of anonymizing
data with missing or unknown values. NULL values usually represent epistemic gaps,
and, in the context of this paper, should not be confused with values that have been
used deliberately in order to anonymize data. A solution to the problem of anonymizing
data sets with unknown component values has been missing. Rather, database table
rows containing NULL-valued attributes are offhandedly discarded in conventional
approaches. That, however, may easily yield a disturbing loss of information, which
may distort data analysis results and thus lead to faulty decision making. Thus, the
paper meets an evident desirability of solutions that do not ignore NULL values, in
particular in the context of large volumes of data with a big informational and structural
variety, where NULL values are ubiquitous.

To conclude, we would like to thank all authors for their contributions to this special
issue. Also, we are grateful to all reviewers for their invaluable work in assessing the
papers, thus contributing to the high quality of this collection of articles. Last, but not
least, our gratitude goes to Gabriela Wagner, whose editorial assistance and handling of
all the communication with the authors and the reviewers finally made this volume
possible.

October 2015 Hendrik Decker
Lenka Lhotska
Sebastian Link
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Ref lective Constraint Writing

A Symbolic Viewpoint of Modeling Languages

Dirk Draheim(B)

University of Innsbruck, Innsbruck, Austria
draheim@acm.org

Abstract. In this article we show how to extend object constraint lan-
guages by reflection. We choose OCL (Object Constraint Language) and
extend it by operators for reification and reflection. We show how to give
precise semantics to the extended language OCLR by elaborating the
necessary type derivation rules and value specifications. A driving force
for the introduction of reflection capabilities into a constraint language is
the investigation of semantics and pragmatics of modeling constructs. We
exploit the resulting reflective constraint language in modeling domains
including sets of sets of domain objects. We give precise semantics to
UML power types. We carve out the notion of sustainable constraint
writing which is about making models robust against unwanted updates.
Reflective constraints are an enabler for sustainable constraint writing.
We discuss the potential of sustainable constraint writing for emerging
tools and technologies. For this purpose, we need to introduce a symbolic
viewpoint of information system modeling.

Keywords: Meta modeling · Multi-level modeling · Object constraint
languages · Generative programming · Database migration · Schema
evolution · clabjects · Modeling tools · UML · OCL · Z · Genoupe

1 Introduction

An object-constraint language is a logical language that is embedded into a mod-
eling framework and offers language constructs specific to object-oriented mod-
eling. In this article we show how to add reflection to object-oriented constraint
languages. Reflection is about access to the meta level, both introspective as well
as manipulative. We need a reflective constraint language to analyze issues and
express results in the semantics and pragmatics of information system modeling.
Reflective constraints are an enabler for sustainable constraint writing, which is
about making models robust against unwanted updates [29]. More specifically,
we can exploit a reflective constraint language for:

• Semantics of modeling languages. Given meta-level access you can give pre-
cise semantics to existing modeling language constructs. We do this for UML
power types in this article. Furthermore, you can use a reflective constraint
language to extend an existing modeling language with new well-defined mod-
eling constructs.

c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXIV, LNCS 9510, pp. 1–60, 2016.
DOI: 10.1007/978-3-662-49214-7 1



2 D. Draheim

• More adequate system analysis. With today’s technologies, i.e., databases,
third-generation programming languages and modeling tools, we encounter
a model-object divide. This model-object divide is not accidental; it is just a
property of current mainstream information system technology, which is estab-
lished and mature. Nevertheless, the model-object divide sometimes hinders us
from stating fully adequate models of domain knowledge. This is so, because
a model and its objects together intend domain objects and together encapsu-
late domain knowledge. For example, you might have some classes A1, . . . ,An

and have found some constraints for these classes. Now, you might encounter
that these constraints are instances of a general constraint pattern that must
hold for an arbitrary number of classes. Without appropriate reflective fea-
tures, you can only state such constraint patterns in the informal comments.
A reflective constraint language is the solution for this. In general, we need
full reflective support – limited forms of reflection, like generic types, are not
sufficient.

• Quality assurance for system design.
– Ensuring that class names follow a given style guide.
– Ensuring that each attribute has correctly typed setter- and getter-methods.
– Ensuring a complex design pattern.
– etc.

All of the above items are practically motivated [20], i.e., reflective con-
straint writing is to constraint writing what generative programming is to pro-
gramming. However, reflective constraint writing is also of importance beyond
immediate practical exploitation. It can help in mitigating gaps between different
information system paradigms. It can help in mitigating gaps between different
viewpoints in information system modeling. We proceed as follows. We choose
the OMG standard meta-level architecture as the backbone for our efforts. We
extend the OCL (Object Constraint Language) with reification and reflection,
resulting in the so-called OCLR in Sect. 2. We show how to give a declarative
semantics for OCLR in Sect. 3. We review some OCLR examples in Sect. 4 and
also provide a comparison with generative programming, based on the concrete
programming language Genoupe.

In Sect. 5, we exploit OCLR to specify constraints needed in modeling of
sets of sets of domain objects. We streamline the discussion by showing how
usual class diagrams, i.e., without multilevel modeling constructs, are sufficient
to adequately model sets of sets of domain objects if appropriate constraints are
provided and if and only if these are made robust against M1-level updates. We
further streamline the discussion by considering sustainable constraint writing in
the specification language Z in Sect. 6. Then, we generalize the found constraints
further to give a precise semantics for UML power types 7. From these discus-
sions, we extract more general notions like sustainable constraint writing and a
symbolic viewpoint on modeling languages. In Sect. 8 we discuss model evolu-
tion, notions of constraints and viewpoints onto modeling languages. We discuss
related work throughout the paper and summarize related work in Sect. 9. We
end the article with a conclusion in Sect. 10.
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In the AppendicesA, B and C we provide overviews of the abstract syntax of
the UML core language, the OCL v2.0 types and the OCL expression language.

2 OCLR – A Reflective Extension of OCL

The OCL (Object Constraint Language) is syntactically and semantically
embedded into the UML meta-level architecture. The aim of this section is to
extend OCL with full reflection. Note, that we use the 2006 version of OCL,
i.e. OCL v2.0 [70] as the basis for our language extension. We do neither use
the current version OCL v2.4 [73] nor the version OCL v2.3.1 [72], which has
been released as ISO standard ISO/IEC:19507 [51]. The reason for this is the
particularly mature and precise definition of the OCL type system in the former
version OCL v2.0 – see Appendix B for a discussion of this issue. If you need to
delve into some of the concepts used in the upcoming sections, e.g., the OCL
type OclType and its generating class TypeType, it is important that the stan-
dard v2.0 [70] is the authoritative reference for this article and not the newer
standards. The choice of standard is for technical reasons only and not due to
essential differences. For example, the abstract syntax of the OCL versions v2.0
and versions v2.3.1 and v2.4 are exactly the same. All crucial arguments and
statements on OCL in this article, e.g., with respect to expressive power, are
independent of the chosen standard.

Fig. 1. OCL inbuilt meta-level access.

2.1 Meta-object Access in OCL

Standard OCL offers only limited access to the meta-level. The complete list of
these OCL meta-level access operations is given in Fig. 1. The OCL meta-level
access is restricted to introspection, i.e., no constraint generation is supported.
Even the introspective features are limited. First, way not all meta-relationships
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that are established by the UML meta model have a counterpart in the OCL
language. Second, and this is actually the crucial point, the entry to the intro-
spection is only in terms of the current context of an OCL expression and there-
fore in terms of only a fixed number of constantly defined user-types. This means,
OCL’s meta access capabilities yield no functional abstraction over user-defined
types and therefore do not add to the expressive power of OCL. The meta access
of OCL shows in properties for meta objects representing user-defined types, i.e.,
objects of type OclType and properties that expect a parameter of type OclType.

With respect to properties for meta objects, the property allInstances is
the only one that is specified in the OCL standards since version v2.0. All the
other stem from the first version v1.1 [69]. The following list of example con-
straint expressions cannot be expressed with the OCL inbuilt meta-object access
capabilities – please compare the list also to Fig. 1:

1. Names of subclasses of a given type t .
2. The subclasses of a given type t .
3. Attribute names of classes navigable via associations from a given type t .
4. All classes of the user model.
5. The number of classes in the user model.
6. All classes of the user model that have no subclasses.
7. The sum of all Integer attributes of all objects of all classes.
8. Test, whether all attributes of all objects of all classes are initialized.
9. Test, whether all attributes of all classes have setter- and a getter-methods.

All of the above constraint expressions (1) through (9) can be expressed by
the OCL-extension OCLR. The several constraint expressions express different
levels of sophistication. The first two constraints (1) and (2) could be made pos-
sible by augmenting the list of inbuilt OCL expressions in Fig. 1 by appropriate
properties. However, in order to enable all the other constraints a more concep-
tual refactoring of OCL is necessary, because they long not only for introspective
access but also for reflection.

The reflective programming language community distinguishes between reifi-
cation and reflection – see also Table 1. Reification turns information about a
program, i.e., meta-data, into data and makes it accessible to the programming
level. Then, reflection can be understood as the exploitation of reified data. We
then also talk about reflection in the wider sense. Reified data can be exploited
in two ways. First, it can be exploited for introspective access. Second, it can be
used to manipulate program structures. The reified data can be turned into pro-
gram code itself, we then say that reified data is materialized or re-materialized.
We then also talk about reflection in the narrow sense. The usual word for the
materialization step of turning reified data into code is generation. We feel that
generation somehow stresses more the operational facet of this mechanism. We
use both generation and materialization as equal terminology. This terminol-
ogy works also with respect to meta-level access in modeling languages and also
with respect to constraint writing. Here, reification is about making meta-data
accessible to the modeler. Again, reification allows for access to the meta-level
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and can be exploited for introspection and reflection in the narrow sense, i.e.,
materialization of reified data into modeling elements.

Table 1. Attempt to summarize some important reflective programming terminology
and its application to reflective constraint writing.

The OCL meta-level access offers only a limited form of reification. The OCL
standards [72] explicitly state that OCL does not support the reflection capa-
bilities of the MOF (Meta Object Facility) [76]. Note, that it is not sufficient to
add syntactical constructs to a language like OCL to support reflective features.
The real work lays in the elaboration of the semantics of such reflective capabil-
ities as, e.g., provided by OCLR. Shallow statements of the intended meaning of
syntactical constructs would not be sufficient as semantic elaboration.

2.2 On the Chosen Declarative Approach for OCLR Specification

Without loss of generality, we will define OCLR as an M1-level language, i.e.,
we define the reification operators Φ and Ψ as well as the concrete syntax 〈 〉 ↓
and 〈 〉↑ used for them against the background of writing M1-level constraints.
Similarly, we specify the well-formedness rules and the semantics of OCLR from
the perspective of writing M1-level constraints. Writing M1-level constraints
is the major use case of OCLR. Writing M1-level constraints is about adding
constraint expressions at level M1. For OCL this means that writing M1-level
constraints is about writing constraints for M0-level objects. With OCLR it
is possible to write meta object constraints, in particular, constraints on user-
defined types at level M1 and therefore extend the semantics of meta models.
We will see the specification of the UML power types semantics in Sect. 7 as an
example for this. Therefore, there is no need to explicitly generalize the current
definitions from a M2-level perspective.

2.3 On the Preciseness of the Chosen Specification Approach

We show how to provide a precise semantics description of OCLR in this article.
In the given OCLR definitions we rely on the existing UML and OCL semantics
defined in [70,74] as the foundation for our semantic extensions. Note that our
definitions are free over the semantic definitions yielded by the OMG specifi-
cation. This means that even if semantic definitions in the OMG stack might
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be ambiguous or underspecified for some points, our semantics does not suffer.
Furthermore, our specification varies in the way semantic decisions are made for
the UML stack. There is no need for us to re-formalize or to fix UML semantics.
We can simply assume the semantics as completely specified. The OMG stack
forms a sweet spot between preciseness and convenience; at least, the core of
it has a widely known and accepted semantics. See also [85] for a discussion of
UML 2.0 semantics.

2.4 On Abstract Syntax Oriented Reflection

A reflection mechanism can have a design that is oriented throughout towards
abstract syntax or, what we call, an ASCII-based design. In an ASCII-based
design meta data is reified as text, i.e., ‘String’ data. Then reflection operators
craft model elements from ‘String’ data input. In a thoroughly abstract syn-
tax oriented design the data type of reified data is kept abstract and reflection
is also realized by operations on this abstract data type. An abstract-syntax
oriented design offers an important advantage. It makes it much easier to give
precise semantics to the reflection mechanism, in particular, with respect to
level-crossing type safety. With an ASCII-oriented design it is easier to provide
ad-hoc implementations for a reflection mechanism, in particular, it the imple-
mentation has to be provided for an existing platform. The design of OCLR is
thoroughly oriented towards abstract syntax.

Foo

…

Person

age: Integer
…

Fig. 2. Class diagram.

2.5 Notational Issues of OCL Contexts and OCL Meta Objects

As a minor issue we sometimes want to get rid of context notation in constraint
writing in the sequel. The concepts of contexts and meta objects, i.e., objects
that represent types, are completely exchangeable. First, consider the following
OCL invariants, which are written against the tiny class diagram in Fig. 2:

context Person inv: age � 40 (1)
context Foo inv: Person.allInstances → forAll(age � 40) (2)

It is easy to see that the constraints (1) and (2) have the same semantics.
Now, we can see that the role of Person in (1) and (2) are exactly the same. On
the on hand, in (1), you can consider Person a meta object. One the other hand,
in (2), you can consider Person.allInstances → forAll( ) to provide context for
the evaluation of age � 40. Consider the following constraint:

Person.allInstances → forAll(age � 40) (3)
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The information in constraint (3) is complete. The type Foo in (2) is not
needed in the subsequent expression, it is merely a wildcard, so it can be dropped
to yield (3) without loss. Henceforth, we will often write constraints without
explicitly given context, in the style of (3). Though the constraint in (3) is
clumsier than its version in (1) it is easier to handle in formal argumentations
like type derivation or value specifications. Note, that the concrete syntax in (1)
and (2) is official OCL syntax; although it is rather used in standard documents
as opposed to the more embellished concrete syntax usually found in textbooks.

2.6 Terminology for the OMG Meta-level Architecture

We need to introduce some notation and terminology for issues in meta modeling
architectures to be used in the sequel. The introduction of these notations must
not be misunderstood as an attempt to specify, or let’s say better, to re-specify
the UML meta level architecture and its languages. We take the standard OMG
four-level meta model hierarchy, see [74, Sect. 7.12], as background architecture,
see also Fig. 3. Syntax and semantics of the UML meta model, the UML meta
model and OCL are taken as granted as defined in [70,72,74–76].

However, the concepts introduced in this section go beyond mere notational
issues. We also define important terminology, hand in hand, with notation for it.
This way we define the value identity for objects in the meta-level architecture.
This value identity is defined across the levels of the meta-level architecture, i.e.,
it is introduced to make objects at different levels of the architecture comparable.
Based on the value identity we will define the meta model reification operator
Φ and the model reification operator Ψ .

UML Meta Model Notation. We denote the UML meta model by M2.
Similarly, we denote the UML meta model by M3.

Object Notation. We denote the set of all primitive values by P . The set P
is flat, i.e., it is the union of all interpretations of UML’s primitive types. We
introduce a set of object identifiers and denote it by OID . We denote the set of
all attribute values by V = P(P ∪ OID). The power set in the definition of V is
necessary, because the UML attributes are, in general, many-valued. We denote
the set of attribute names or labels by L. We denote the set of finite subsets of
a set M by F(M ). Conceptually, in our notation, an object consists of an object
identifier, a finite set of labels from L and an attribute value for each of these
selected labels. We define the set of all objects O as Cartesian product of object
identifiers OID and finitely L′-indexed sets of attribute values, for all possible
subsets of labels, i.e.:

O = OID ×
⋃

L′∈F(L)

(Vl)l∈L′ (4)

The way we defined O , objects are denoted as records [1,17], or to be precise,
object values are denoted as records, and objects are formed as an object refer-
ence to record. We use the usual notation for records, i.e., 〈oid �→ 〈l �→ xl〉l∈L〉.
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O contains many objects that are impossible, i.e., objects that can never be
instances in the UML meta level hierarchy. This is so because our objects are
completely untyped assemblies. They are based on the value set V which is com-
pletely flat. This does not harm, because the definitions in Sect. 2.6 are not about
semantics, but about notation. We will ensure the well-formedness of object and
models of OCLR later by the definition of the typing relationship : and the
instantiation relationship :: for the corresponding extensions to OCL.

Note that O is the full extension of the meta level hierarchy, i.e., the collec-
tion of all potential objects that can be materialized in system states. The set
O is a forgetful viewport. It only models aspects that are needed in the upcom-
ing semantic definitions. For example, it forgets ordered association ends. In O
we combine information on primitive-typed attributes with object references into
a record. Another possibility would have been to denote meta level elements as
records of merely primitive-typed values plus explicit object links as second kind
of instances. Note, by the way, that in the UML semantics both styles of element
presentations redundantly co-exist – see Fig. 4, diagram (v). The third option is
to represent elements as pure nets of object identifiers with primitive values as
leaves. By the way, we have discussed the latter option in form-oriented analysis
as so-called parsimonious data model [26,37]. Once more note, that the purpose of
Sect. 2.6 is not to formalize UML semantics. It is merely about establishing nota-
tion for the existing meta level framework to be exploited in upcoming sections.

We have designed the value space as V = P(P ∪ OID). As we have said, in
the UML an attribute is, in general many-valued. Only, in the special case that
the cardinality of an attribute is 1..1, an attribute is single-valued. The standard
evaluation of an attribute in UML yields a bag, not a set. We have not designed
our values in V as bags but as plain sets. This does not pose a problem, because
bags can be formed by exploitation of object references. In the UML, properties
can also evaluate to sequences. We assume that this sequencing can be modeled
by an indexing mechanism on labels. We are interested in keeping our notation
as reductionist as possible.

Meta-object Levels. We use Oi ⊂ O to denote the set of all objects at meta-
level Mi , the Mi -level objects for short.

Instances. Given an Mi -level object o and an Mi+1-level object C , we use
o :: C to denote the fact that o is an instance of C as defined by the UML
specification. Given an object o ∈ O and a set of objects M ⊂ O , we use o :: M
to denote the fact that there exists a C ∈ M so that o :: C . Given sets of objects
M ,N ⊂ O , we use M :: N to denote the fact that o :: N for all o ∈ M . In case
that M :: N we also say that M is a instantiation of N .

Models. We call a subset m ⊂ O of objects a model iff m is a partial func-
tion, i.e.:

m ∈ OID →
⋃

L′∈F(L)

(Vl)l∈L′ (5)
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Given a model m ⊂ O we say that m is a model at level i , or Mi -level model
for short iff for all o ∈ m we have that o ∈ Oi . Given models M ,N ⊂ O we say
that M is a model of N iff M :: N .

Value Identity. Next, we define value identity of objects with respect to given
models. Given models m , n , an object o ∈ m with o = 〈oid �→ 〈i �→ xi〉i∈I 〉
and an object p ∈ n with p = 〈pid �→ 〈j �→ yj 〉i∈I 〉, we define o and p to be
value-identical, denoted by o ≡ p iff for all attribute labels i ∈ I we have that:

(i) xi �⊆ OID ⇒ (xi = yi)
(ii) xi ⊆ OID ⇒ (∃β : xi ↔ yi . ∀ x ′ ∈ xi . m(x ′) ≡ n(β(x ′))

) (6)

The definition of ≡ is a partial specification only. It is only defined for objects
that share the same set of labels I . It is only complete for well-typed and at the
same time identically typed pairs of objects. This does not harm, because in the
sequel we only work with well-formed models. Value identity can be characterized
as identity up to exploited object references. The abstraction from concrete
object references is exactly what is achieved by the bijection β in (6). In terms
of programming languages, e.g., in Java terminology, value identity results from
deep copying or cloning an object net.

Meta Model Embedding. We define the embedding of the UML meta model
into the UML meta model ι : M3 ↪→ M2 by ι = {(x , y) | x ≡ y} – see also Fig. 3.

Standard Notation for Functions. For the sake of completeness, we recap
some standard notation for functions. Given a function f : A → B , we denote
the lift of f by f † : P(A) → P(B), which is defined as usual. Given a function
f : A → B we denote the reversal, as usual, by f −1 : B → P(A).

Meta Model Reification. Next, we introduce the meta model reification oper-
ator Φ. First, we define the set of all meta model reification operators Φ as the
set of embeddings φ : M2 ↪→ O1 for which it holds true that (i) φ(M2)† :: M2

and (ii) for all m ∈ M2 it holds true that φ(m) ≡ m. Then, we define Φ as an
arbitrary but fixed element of Φ, i.e., Φ ∈ Φ. In the sequel, we refer to Φ as the
meta model reification operator. Note, that φ(m) ≡ φ′(m) for all φ, φ′ ∈ Φ and
m ∈ M2. Furthermore note, that | M2 |=| φ†(M2) |, because φ is an embedding.
This means, that all φ, φ′ ∈ Φ can be characterized as identical up to exploita-
tion of object references. This explains, why it makes sense to define φ as an
arbitrary but fixed selected element of Φ. In any case, formally, the definition
based on a selection is well-defined.

Model Reification. On the basis of the meta model reification operator Φ we
introduce the model reification operator Ψ . We define the set of model reification
operators Ψ as the set of embeddings ψ : O1 ↪→ O0 for which it holds true that,
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given any M1-level model m ⊂ O1, it holds that (i) ψ(m)† :: Φ(M2) and (ii)
for all m ∈ m it holds true that ψ(m) ≡ m. Again, we define Ψ as an arbitrary
but fixed element of Ψ , i.e., Ψ ∈ Ψ . In the sequel, we refer to Ψ as the model
reification operator. Informally, the effect of the meta model reification Φ is
to copy the meta model to the model level, whereas the effect of the model
reification Ψ is to copy the user user model to the object level. Take a look at
Figs. 3 and 4 for a visualization of how this actually works.

Further Notational Issues. We model bags as functions to the ordinals, i.e.,
given a set T , we model the bags Bags(T ) of T as Bags(T ) = T → N0. Given a
set T , we model the sequences Seq(T ) of T as indexed sets (si)i∈{1,..,n} over T
with respect to a starting fragment 1, ..,n of the ordinals. We define the length
of a sequence as #((si)i∈{1,..,n}) = n. We use also λ i ∈ {1, ..,n}.s(i) to denote
a sequence in Seq(T ).

2.7 Reification for Constraint Languages

A straight-forward approach to extend OCL by introspective and reflective fea-
tures was to rewrite its syntax and semantics by doubling terms for the different
levels of the meta-level architecture. Instead, we choose an economically app-
roach that allows us to let the semantics of OCL almost untouched. We will
have to give well-formedness rules and semantic specifications only for the newly
added, genuine OCLR reflection expressions. We achieve this by preparing the
M1-level with a reified version of the UML meta model and the M0-level with a
reified version of the user model – see Fig. 3.

The operator Φ reifies the UML meta model at level M1. Basically, this
reification amounts simply to copying the UML language specification as a class
diagram to the user level. This is immediately possible because of the bootstrap
approach of the UML specification, i.e., because the UML meta model is specified
in a core language that is itself a part of the UML language. Intuitively, we can
say that we use the operator Φ to copy the UML meta model and add it to
the user-defined model at level M1. Actually, the definition of Φ as provided in

Fig. 3. Extending OCL with reification and reflection.
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Sect. 2.6 is completely declarative. We have defined the set of object references
O as an abstract data type. We keep O completely opaque, i.e., we do not define
operations for the creation of object handles or the construction of objects. The
value identity ≡ that we have defined in (6) is a structural equality of object nets
up to object references. Now, also the definition of Φ is free from concrete object
construction mechanisms. We can assume the existence of Φ and therefore all
semantics definition in this section are founded, in particular, the typing rules.
If you find it helpful, you can think of the act of selecting and fixing an arbitrary
φ from Φ as the act of copying model M2 to level M1.

Each UML meta model expression is therefore immediately a correct M1-level
model expression. This fact is also indicated by the embedding ι : M3 ↪→ M2 of
the UML meta meta model into the UML meta model. Figure 3 shows the overall
scenario of reification and reflection with OCL, whereas Fig. 4 gives a concrete
example, based on a small cutout of the UML superstructure specification and
a tiny user model. After the addition of the reified meta model to level M1 it
is actually really a part of the user model. This fact eases the introduction of
new reflective features to the OCL. However, usually we want to distinguish the
reified meta model from the model that is actually created by the M1-level user
modeler for its genuine purpose, e.g., domain modeling, system analysis, system
design, and so forth. Henceforth, we call this part of the user model the user user
model in cases where disambiguation seems to be important – see Fig. 4. The
reification of the meta model data has to be understood as a semantic device, i.e.,
a means to declare the semantics of the extended language OCLR. Therefore, by
definition, there is no conflict with other software artifacts. The target of this
article is not to achieve a particularly smart constraint language – whatsoever the
criteria might be with respect to this. We add reflection to a constraint language
for conceptual purposes. Ease and preciseness of the semantics are the rationales
of the proposal. We are interested in the possibility of introducing reflection
to object constraint languages in general. The resulting reflective language is
interesting in its own right, but is not the ultimate goal.

With the reification of the UML meta model at level M 1 we are prepared for
introspective access. Given a meta model type, i.e., an M2 type T , we use the
concrete syntax 〈T 〉 ↓ to denote its reification at level M1. The 〈 〉 ↓ notation
is needed to distinguish user-defined types from reified meta model types. For
example, if you want to model the national school system you might want to
have a class Class in your model, and this class must not come into conflict with
the reified meta model type Class. With UML, this disambiguation of types
is not only an issue of the concrete syntax but also an issue of the abstract
syntax. According to the UML superstructure, the name of a named element
allows to identify the element unambiguously – see [75, Sect.7.3.34]. This means
that the UML offers not a completely abstract modeling backbone. Therefore,
the concrete syntax 〈T 〉 ↓ stands for opening of a namespace. In practice, we
can get rid of the extra notation. We can simply assume that the namespaces
of user-defined and reified types are separated and use names T of reified types
〈T 〉↓ without harm. Nevertheless, in this article we stay with the notation 〈 〉↓
for reasons of preciseness and clarity.
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Now, we step further by reifying the user user model at level M0. Because of
Φ, the appropriate classes of the reified UML meta model are available for this
purpose at level M1. The operator Ψ re-instantiates each model element e1 :: e2
as the value identical model element Ψ(e1) :: Φ(e2). What we have achieved now
is full introspective access onto the user-defined types, even without extension of
the OCL syntax. Again, we use the notation 〈T 〉↓ to denote the reification of a
user-defined type T , i.e., a type of the user user model. Note, that we overload
the notation 〈 〉↓ to denote both Φ- and Ψ -reifications.

See once more, how the copying mechanism of the reification operators Φ and
Ψ work in Fig. 4. The copying step from sub diagram (iii) to sub diagram (v)
seems to unfold the diagram (iii). However, it does not. Diagrams (iii) and (v)
are just alternative visualizations of the same, i.e., value identical, object net,
where diagram (v) is of course more detailed. The usual class diagram notation
of (iii) is convenient for us, in particular, if we want to conceive it in its role as
an O1-level model for the instantiation of M0 level models like the sub diagram
(vi). However, diagram (iii) is an object net, and in its role as an instance of the
UML meta model M2 we would perhaps want to perceive it rather as detailed
as visualized in (v).

2.8 Reflection for Constraint Languages

This section provides some examples of OCLR expressions and an informal
description of their semantics. In Sect. 3 we show how to give precise semantics
in terms of type derivation rules and value specifications. With the meta model
and model reification operators Φ and Ψ in Sect. 2.7 we have already achieved
full introspective access to the user user model. However, yet the crucial step
is missing, i.e., gaining fully reflective access onto model elements of the user
user model via the reified data. What is missing is a means of materialization or
re-materialization of modeling elements, i.e., of reflection in the narrow sense –
see Table 1 once more. Many interesting constraints are yet not possible to write.
To get the point, we will look at a series of example constraints. The examples
serve merely as demonstration of the OCL and OCLR mechanics. They are not
meant to present examples of domain knowledge. In later sections we will see and
discuss many exploitations of the reflective features that we have added to the
constraint language. For the purpose of easy reference, we have added a crucial
chunk of the UML meta model in AppendixA, a specification of the OCL type
system in AppendixB and a crucial chunk of the OCL abstract syntax specifi-
cation in AppendixC. For many of the upcoming examples it will be helpful to
switch between the text and these Appendices back and forth. We start with the
following, correct constraint that exploits the reified data1:

〈Class〉↓ .allInstances → forAll(ownedProperty →asSet →size � 20) (7)

1 Note, that we feel free to drop brackets from OCL operation calls whenever the
paramter list is empty, e.g., we write s→asSet →size instead of s→asSet() →size().
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Fig. 4. The OCLR reification mechanism
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Constraint (7) evaluates to true if all user user model classes have at most
twenty properties. Against of the background of today’s established modeling
practice it is fair to say that (7) is an example of a real meta level constraint. It
does not constrain the object during system evolvement time, but the modeler
during modeling time.

Let us have a look at another constraint example:

〈Class〉↓ .allInstances
→ select(name = "Person").ownedProperty
→ select(name = "pet").type
→ includes(name = "Dog")

(8)

The constraint in (8) checks whether the class Person is associated, via a role
pet to a class Dog . The semantics of the constraint (8) is equal to the semantics
of the following usual OCL constraint that work without the new reification
capabilities:

context Person inv: pet .oclIsTypeOf (Dog) (9)

See, how constraint (9) immediately queries the property pet , whereas (8)
must navigate the two additional links ownedProperty and type of UML meta
model to reach the target Dog . Now, let us have a look at the following invalid,
i.e., ill-typed, constraint expression:

〈Class〉↓ .allInstances → select(name = "Person").
allInstances → forAll(age � 40) (10)

Intuitively, constraint (10) has the following semantics as (1), i.e.:

context Person inv: age � 40 (11)

In OCLR we will be able to write constraints like (10) in due course, after the
introduction of an appropriate reflection notation. However, for the time being,
constraint (10) is ill-typed. The problem is the second allInstances-property. To
see why, consider the following type derivation. The expression 〈Class〉 ↓ has
type OclType. As part of the limited meta data access capabilities of OCL, it
is possible to apply the method allInstances to this expression. The expres-
sion 〈Class〉 ↓ .allInstances has type Set(〈Class〉 ↓). The expression 〈Class〉 ↓
.allInstances → select(name = "Person") again has type Set(〈Class〉 ↓), actu-
ally, it evaluates to the one-set element consisting of exactly the reified Person
object. Now, when we try to invoke the allInstances method to this expression,
we provoke a type error, because allInstances can only be applied to terms of type
OclType. The constraint in (10) simply does not adhere to the well-formedness
rules of OCL. As an even simpler counter example, it is not possible to apply
allInstances twice in a path expression like the following:

〈Class〉↓ .allInstances.allInstances (12)

Again, the expression in (12) is not well-typed. Again, intuitively, constraint
expressions (12) has a semantics. It is intended to mean the set of all instances
of all classes of the user user model. Again, in OCLR we will be able to write
constraint expressions like (12) in due course.
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2.9 Full Reflection Capabilities

Now, we introduce a reflection construct 〈 〉 ↑ as the crucial extension to OCL.
Based on this notation, we can give a correct version of constraint (10) as follows:

(| 〈〈Class〉↓ .allInstances → select(name = "Person")〉↑|).
allInstances → forAll(age � 40) (13)

Constraints (13) checks whether each instance of the class Person has an
attribute value over 40 for its attribute age, i.e., it is equal to constraint (11).
Informally, the semantics of the reflection construct is the reversal of reification.
In (13) the reflection receives the one-element set containing the reified Person
object and yields the one-element set containing the Person meta-object it has
been reified from. More precisely, the reflection construct in (13) turns an expres-
sion of type Set(〈Class〉↓) into an expression of type Set(OclType). See how this
works in the following example type derivation. Then, as usual, e : T means
that a sub expression e has type T – see also Appendix B as a reference for OCL
types:

(| 〈 〈Class〉↓
︸ ︷︷ ︸

(i):OclType

.allInstances

︸ ︷︷ ︸

(vi):Set(〈Class〉↓)

→ select( self
︸︷︷︸

(ii):〈Class〉↓

.name

︸ ︷︷ ︸

(vii):String

= "Person"
︸ ︷︷ ︸

(iii):String

︸ ︷︷ ︸

(ix):Boolean

)

︸ ︷︷ ︸

(x):Set(〈Class〉↓

〉↑

︸ ︷︷ ︸

(xi):Set(OclType)

|)

︸ ︷︷ ︸

(xii):OclType

. allInstances

︸ ︷︷ ︸

(xiii):Set(Person)

(14)

The result of the reflection (xi) in (14) has type Set(OclType). Unfortunately,
with standard OCL this result cannot be immediately exploited in a property
call o.p. OCL requires that a property can only be applied to an object of a
single classifier – the OCL specification states [70]: A PropertyCallExpression is
a reference to an Attribute of a Classifier defined in a UML model. It evaluates
to the value of the attribute. We have two options to deal with this. We can
extend OCL so that it can also deal with the application of a property to object
of several classes and we will see in due course that this is easily possibly. As the
second option, and this is what we see in the current example, is to introduce a
new operator to OCL that turns a one-element set into the contained element.
With (| M |) we denote exactly this operation. Note, that (| M |) is only partially
defined, i.e., it is defined only for one-element sets. With respect to semantics,
the solution based on (| M |) is conservative, i.e., it can be added to OCL without
changing the existing semantics of the OCL.

With the reflection operator so far, we have added substantially to the expres-
sive power to OCL. However, to earn the full potential reflective power, we need
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to develop a means to apply a property to a set of objects that are instances of
completely arbitrary classes. In OCL we are already used to apply an attribute
to a set of objects yielding an object set as result. In general, there is no reason
why we should not apply an attribute to objects of more than one class. Have a
look at the following example that introduces some ad-hoc concrete syntax for
the special case of a fixed number of classes:

context {Person,Dog} inv: self .age � 5 (15)

Please note, that it is not our intention to introduce new concrete syntax.
There is no need for us to do so. However, possibilities to address properties
possessed by objects of more than one arbitrary type arise in OCLR as a result
of its design. Concrete syntax like the one in (15) has only the purpose to analyze
the semantics of such scenarios for us. Of course, in (15) we assume that both the
class Person and the class Dog define Integer attributes age. Note, however, that
the Integer attributes age in Dog and Person are not required to be inherited
from a common supertype of Person and Dog – this is what we meant with
completely arbitrary classes above. Fortunately, we do not need to change the
syntax of OCL to make expression like (15) possible. A property call expression
has another OCL expression as its source. In general, it is possible that OCL
expressions have type Set(OclType) – see Appendix B. So it is a self-restriction
of the OCL semantics [70] to allow only for the application to a single type. The
semantics of an expressions like (15) is immediately clear. It collects the values
of attributes of all the objects of different type, not only of the objects of a single
type. We will show how to give precise semantics to this later. Now, we generalize
OCLR property calls further to cases, in which an arbitrary number of classes is
dynamically determined. For example, the following constraint evaluates the age
attribute for all objects of a class model. Again, the value of such an expression
is defined only, if all classes in the current user-model possess an age attribute
of correct type:

〈〈Class〉↓ .allInstances〉↑ .allInstances → forAll(age � 40) (16)

Next, we introduce the reification notation 〈 〉 ↓ also for user user model
types. It hands over the reification operator Ψ to the modeler. The following
example constraint, which is equivalent to (11), including the crucial type deriva-
tion shows how this works:

〈〈Class〉↓ .allInstances
→ select( self︸︷︷︸

(i):〈Class〉↓

= 〈Person〉↓︸ ︷︷ ︸
(ii):〈Class〉↓︸ ︷︷ ︸

(iii):Boolean

)〉↑ .allInstances → forAll(age � 40)
(17)

So far, each OCL expression of type 〈Class〉↓ or collection type Set(〈Class〉↓)
can be made subject to reflection. In general, we will expand reflection to all
kind of reified data. Let us have a look at the following example, which is again
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equivalent to (11):

Person.allInstances → forAll(
self .〈

(|
〈Class〉↓ .allInstances
→ select(〈Person〉↓).ownedAttributes
→ select(name = "age")

|)
〉↑
� 40

)

(18)

In (18), the constraint expression inside the reflection construct yields a rei-
fied property. After application of the reflection, this property can then be called.
See the following type derivation for the crucial part of (18):

P ≡DEF 〈Class〉↓ .allInstances → select(〈Person〉↓)︸ ︷︷ ︸
(ii):Set(〈Class〉↓)

self︸︷︷︸
(i):Person

.

(vi)
︷ ︸︸ ︷

〈
(v):〈Property〉↓

︷ ︸︸ ︷
(| P .ownedAttributes︸ ︷︷ ︸

(iii):Set(〈Property〉↓)
→ select(name ="age")

︸ ︷︷ ︸
(iv):Set(〈Property〉↓)

|) 〉↑

︸ ︷︷ ︸
(vii):Integer

(19)

Technically, the property name p in a property call expression o.p itself is
not a proper OCL expression, in the sense that it does not have a type. This
does not harm in the type derivation of (19). It is exactly the reflection construct
that opens a context for typed expressions. See how the type of (v) in (19) is
immediately consumed by the type derivation with rule (36) from Sect. 3, i.e.,
how the typing of (vi) is not needed in the type derivation.

As a next step, we can also generalize the semantics of property call expres-
sions further, so that the application of a set of properties to a class or a set of
classes becomes possible. See the following example showing again some ad-hoc
syntax, with obvious semantics:

context {Person,Dog} inv: self .{age,weight} � 0 (20)

In OCLR we can exploit such an extension to the OCL semantics in an
expression like the following:

〈〈Class〉↓ .allInstances〉↑ .allInstances.〈
〈Class〉↓ .allInstances.ownedAttributes
→ select(type = Integer)

〉↑ .sum

(21)
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The constraint (21) is well-formed with respect to all user user models. This is
ensured by the clause select(type = Integer) which ensures that only type-correct
property calls occur. The expression in (21) is a solution to expression (7) in the
example list in Sect. 2.1, i.e., the sum of all Integer attributes of all objects of all
classes. As we have mentioned before, we are free to omit all the special syntax
for reification, reflection and also element picking, i.e., 〈 〉 ↑, 〈 〉 ↓ and (| |) in
the application of the OCLR, unless we do not need it to for the disambiguation
of expressions. See how this simplifies expressions, e.g., for the expression (21):

Class.allInstances.allInstances.(
Class.allInstances.ownedAttributes
→ select(type = Integer)

).sum

(22)

Nevertheless, we stay with the explicit notation throughout the rest of the
article, as we have said before, for the reason of preciseness.

3 On The Precise Semantics of OCLR Reflection

The purpose of this section is to show how to give precise semantics to an object-
oriented constraint language. In the definitions of this section we make extensive
use of notation introduced in Sect. 2.6 and heavily rely on the concepts defined
earlier, e.g., the reification and reflection operators Φ and Ψ . We define the
necessary well-formedness rules as strict augmentations to the existing notion of
UML and OCL type correctness.

3.1 Typing Notation and Semantic Bracketing

Given a UML, OCL or OCLR expression e and type T , the typing e : T expresses
that e is well-typed and has type T . We use further usual notation from the type
system community [17,58,79] to express well-typing. The statement � e : T
holds if the typing e : T has been derived, i.e., has been proven. Typing rules
are expressed in the following manner:

� e1 : T1 . . . � en : Tn C1 . . .Cm

� e ′ : T ′ (23)

Given that we have already derived typings ei : Ti and further conditions Ci

hold true, a typing rule of kind (23) allows to derive typing � e ′ : T ′. There are
no other typings than those that can be derived by typing rules. Typing rules
are instances of well-formedness rules.

Furthermore, we use so-called semantic bracketing to define the value of
expressions. Given an expression M we use �M � to denote its value. With seman-
tic bracketing we mean the natural declarative technique to define the semantics
as a recursive function along the structure of abstract syntax trees, i.e., the
semantics of an expression �e e1 . . . en� as a value E(�e1�, . . . , �en�) with E
being a sufficiently precise semantic description. It is important to understand,
that all definitions in this section, including typing rules and semantic equations
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are always in terms of abstract syntax trees, even if we use concrete syntax to
denote them. Here, we again rely into the semantics of OCL. We assume a suffi-
ciently precise semantics for OCL expressions that is available in our semantics
specification, i.e., we assume that �e� is defined if e is a pure OCL expression.

3.2 Typing Rules and Values

Figure 5 shows the OCLR meta model. Elements of the OCL are shown in grey,
whereas the new language constructs are shown in black – compare to the OCL
specification in AppendixC. The meta model elements of all of the three new lan-
guage constructs implement the OCLExpression interface, i.e., they are proper
OCL expressions that also receive types. A reflection expression refers to another
OCL expression as its reflected expression. A reification expression refers to a
type expression as its reified type. The types of OCLR are the same as the types
for OCL v.2.0 – see AppendixB Fig. 12.

We consider the semantics for three kinds of expressions that cover the full
range of OCLR semantics, i.e., type expressions, property call expressions and
enumeration literal expressions. As explained in Sect. 2.8 the reification of the
crucial M2-model element Class, i.e., 〈Class〉↓ has the type OclType. We repeat
this as the following rule:

� 〈Class〉↓ : OclType
(24)

Furthermore we now, by the definition of Φ and Ψ that for all types t of the
user user model, i.e., the data types of an M1-level model, we have that:

� t : OclType t :: Class
� 〈t〉↓ : Φ(Class)

(25)

CallExp StateExp ReflectionExp

OCLrExpression

1

Classifier

ReificationExp

TypeExp

UML meta modelreferredType

reifiedType

PickingExp

LiteralExp

reflectedExpression

pickedElement

EnumerationLiteralExp

EnumerationLiteral

PropertyCallExp

Property

Fig. 5. Abstract syntax of OCLR
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Now, an expression of a reified data type, i.e., a reified data type expression,
yields an OclType-expression after reflection. Reflection recovers the M1-level
value of reified data: � e : Φ(Class)

� 〈e〉↑ : OclType
(26)

The value of a reified data type expression 〈e〉↑ is defined as:

�〈e〉↑� = � Ψ−1
(
�e�

)
� (27)

In general, expressions rather have a type of the form C (Φ(Class)) for a col-
lection C than merely the type Φ(Class). Examples for expressions that have
Φ(Class) as type are the iterator variables in OCL loop expressions. A further
example is the result of correctly applying an element picking operation. The
element picking operation can be applied to a collection of any type, includ-
ing reified M2-level types. We define the typing and the value of the picking
operator (| |) for all kinds of collection C , i.e., Set , Bag and Sequence as
follows:

� e : C (T ) |�e� |= 1
� (| e |) : T

(28)

� (| m |) � =

{
�x� , ∃ x .m = {x}
⊥ , else

(29)

Now, we generalize typing and values of reified data type expressions for
the case of collection types. For all kinds of collections C , i.e., Set , Bag and
Sequence, we have that:

� e : C (Φ(Class))
� 〈e〉↑ : C (OclType)

(30)

With respect to the value of reified data type expressions we need to dis-
tinguish three cases now, i.e., sets, bags, and sequences. In case that e : Set
(Φ(Class)), we define the value of 〈e〉↑ as follows:

�〈e〉↑� = � (Ψ−1)†(�e�
)

� (31)

We know that �〈e〉↑� can be written differently as {t : OclTpye | Ψ(t) ∈ �e�}.
In case that e : Bag(Φ(Class)) we can define the value of 〈e〉↑ as follows:

�〈e〉↑� = λ t : OclTpye . �e�(Ψ(t)) (32)

In case that e : Sequence(Φ(Class)) we can define the value of 〈e〉↑ as follows:

�〈e〉↑� = λ i ∈ {1, ..,#(�〈e〉↑�)} . Ψ−1
(
�e�(i)

)
(33)

As a next step we specify OCLR in case of enumeration types and enumera-
tion literals. We define that, for all types t of the user user model, we have that:
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� t : OclType t :: Enumeration
� 〈t〉↓ : Φ(Enumeration)

(34)

� e : Φ(EnumerationLiteral)
� 〈e〉↑ : EnumerationLiteral

(35)

The value specification for enumeration literal expressions is identical to the
one in case of type expression, i.e., Eq. (27).

3.3 Semantics of Property Call Expression

We turn to property call expressions now. First, we consider one of the simplest
cases that (i) a reflected property is called on a single object, (ii) the reified
property results into a single object and (iii) the property call results into a
single object of user-defined type. In this case typing is defined for all user
defined types T2 as follows:

� o : T1 :: Class p : Φ(Property) p.class = Ψ(T1) p.type = T2

� o.〈p〉↑ : Ψ−1(T2)
(36)

In the scenario prescribed by (36) we define the value of a property call
expression o.〈p〉↑ as follows:

�o.〈p〉↑� =
[[

o.Ψ−1
(
�p�

) ]]
(37)

For a full specification of OCLR expressions we had to define a combinatorial
number of different cases, depending on the result type of the property, the
result type of reified operations and the question of whether the operation is
applied to a single object or a collection of objects. Then, each of the involved
types can be, combinatorial, a primitive type or a collection, and again, each
collection, also the collection of objects, can be a set, a bag, or a sequence.
We look at only one further case, which is a particular complex one, i.e., the
case that all of the aforementioned components can be collections. For all kinds
of collections C1,C1,C3, i.e., Set , Bag or Sequence, we establish the following
typing rule:

� o : T1 :: C1(Class) p : C2(Φ(Property)) p.class = Ψ(T1) p.type = C3(T2)

� o.〈p〉↑ : (C1 ⊕ C2 ⊕ C3)(Ψ−1(T2))
(38)

The definition of the typing rule (38) relies on a combinator ⊕ for collec-
tion constructors. This combinator is defined in Table 2 in AppendixB.2. The
OCL approach is that nested collections are always and automatically flat-
tened. For example, a set of sets is turned into a set, a bag of bags is turned
into bag and so forth. The definition of the ⊕ combinator fulfills the standard
definition of OCL collection flattening in [70,73]. First, we handle the case
that all of the involved components yields sets, i.e., C1(Class) = Set(Class),
C2(Φ(Property)) = Set(Φ(Property)) and C3(T2) = Set(T2). In this case, we
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know that o.〈p〉 ↑ has the type Set(T2) and we define the value of o.〈p〉 ↑ as
follows:

�o.〈p〉↑� = {v ∈ T2 | v : �o′.p′�, o′ ∈ o, Ψ(p′) ∈ �p�} (39)

Next, we handle the case that all of the involved components yield bags, i.e.,
C1(Class) = Bag(Class), C2(Φ(Property)) = Bag(Φ(Property)) and C3(T2) =
Bag(T2). In this case, we know that o.〈p〉↑ has the type Bag(T2) and we define
the value of o.〈p〉↑ as follows:

�o.〈p〉↑� = λ v : T2 .
∑

o′∈o

( ∑

p′∈Ψ−1�p�

�o′.p′�(v)
)

(40)

Note, that the sums in (40) are all well-defined, because all of the involved
collections are finite. The scenario that the involved components yield bags, is the
standard scenario in the OCL. We have started with the set scenario in (39) only
for instructive purposes. We do not detail out further combinations C1⊕C2⊕C3

of collection constructions.

4 Working with OCLR

We will see OCLR at work in Sects. 5 and 7 when we exploit it for the semantic
investigation of power types in general and power types in UML in particular.
Before that, let us walk through the informal constraint examples that we have
enumerated in Sect. 2.1 as constraints (1) through (9). Again, please have a look
at the cutout of the UML meta model as provided by Fig. 11 in AppendixA
throughout the examples. Example (1), i.e., the names of subclasses of a given
type t can be expressed in OCLR as follows:

〈Generalization〉↓ .allInstances
→ select(general = 〈t〉↓).specific.name (41)

The subclasses of a given type t , i.e., example (2), follows immediately
from (41) by dropping the last property call, i.e., the name navigation. Exam-
ple (3), i.e., the attribute names of classes navigable via associations from a given
type t can be expressed as follows:

〈Class〉↓ .allInstances → select(c |
〈Association〉↓ .allInstances → exists(

memberEnd → contains(〈t〉↓)
and
memberEnd → contains(c)

)
).name

(42)

Example (4), i.e., all classes of the user model, turns out to be a most simple
example that has been exploited already in many instances before. It is given by
〈Class〉↓ .allInstances. Consequently, example (6), i.e., the number of classes in



Reflective Constraint Writing 23

the user model is given by 〈Class〉 ↓ .allInstances → sum. Example (6), i.e., all
classes of the user model that have no subclasses, is provided by:

〈Class〉↓ .allInstances → select(c |
not
〈Generalization〉↓ .allInstances → exists(

general → contains(c)
)

)

(43)

The example (7) has already been solved as an example by (21) before. A test,
whether all attributes of all objects of all classes are initialized, i.e., example (8)
can be realized as follows:

〈Class〉↓ .allInstances → forAll(c |
〈c〉↑ .allInstances → forAll(o |

c.ownedAttribute → forAll(a |
o.〈a〉↑ �= null

)
)

(44)

Fortunately, in OCL a null value of type OclVoid is available as defined in
[70,73]. This null value is exploited in (44) to test whether an attribute is initial-
ized, where we assume that initialized attributes have a value different from null .

4.1 Getter and Setter Method Example

Next, we realize example (9), i.e., a test whether all attributes of all classes have
setter- and a getter-methods. The following constraint (45) checks whether for
each class and attribute X of type t there exist a setter-method and a getter-
method of appropriate parameter signature, i.e., a method setX (x : t) for some
arbitrarily named input parameter and a method getX () : t :

〈Class〉↓ .allInstances → forAll(c |
c.ownedAttribute → forAll(a |

c.ownedOperation → exists(m |
m.name = "set" + "a.name" and
m.ownedParameter .size = 1 and
m.ownedParameter .direction = #in and
m.ownedParameter .type = a.type

) and
c.ownedOperation → exists(m |

m.name = "get" + "a.name" and
m.ownedParameter .size = 1 and
m.ownedParameter .direction = #return and
m.ownedParameter .type = a.type

)
)

)

(45)
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Note, that the UML specification fixes that a method can have one and at
most one return parameter. It would also be possible to completely specify the
correct behavior of the methods based on the signature specification in (45) but
we not detail this out here.

4.2 A Comparison with Genoupe Generative Programming

Reflective object-oriented constraint-writing is the natural counterpart to gen-
erative programming. Generative programming is another word for reflective
programming. Generative programming gets its name from what we have called
reflection in the narrow sense in Table 1, i.e., the step of turning reified data
into code. Code generation is a particular operational viewpoint on reflection.
It hints to a possible implementation strategy based on a pre-compilation phase
for reflective features on top of an already existing programming language.

Now, as an instructive example, let us program the counterpart of the getter-
and setter-example (45) in Sect. 4 in a reflective programming language. We
choose our own reflective programming language Genoupe [33,34,57] for this
purpose – see Listing 4.1.

Listing 4.1. Generation of Getter and Setter Methods with Genoupe

public class GetterSetter (Type T) : @T@{

@foreach(F in T.GetFields()) {

public void @"set" + F.Name@ ( x : @F.FieldType@) {

@F.Name@ = x;

}

public @F.FieldType@ @"get" + F.Name@ {

return @F.Name@;

}

}

}

Genoupe is an extension of the programming language C# with generative
programming features. An important contribution of Genoupe is the definition
and implementation of an extended notion of generator type-safety, which is,
however, not important for the consideration of the current example. For us, it
is enough to understand how the generative features in Listing 4.1 work.

Genoupe is extended by new, concrete syntax for meta programming. The
special sign @ is used to introduce or embed some of the new meta-programming
syntax. A pre-processing phase takes Genoupe and generates plain C# code. In
Listing 4.1 we implement a class GetterSetter parametric on a type parameter
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(TypeT ). Then, with :@T@ we achieve that the generated GetterSetter class
extends the actual parameter class and therefore inherits all of the fields of
the actual parameter class. In Genoupe we have access to all features of the
C# reflection API. In Listing 4.1 we exploit the method T .GetFields(), that
yields all fields of a type T , as well as the properties F .Name and F .FieldType
with respective meaning. Then, the Genoupe meta programming expression
@foreach(i . . .){C (i)} allows us to generate a piece of C# code for each instance
of an iterator variable i . In Listing 4.1, we exploit @foreach to generate a getter
and a setter method for each field of the actual parameter class.

5 Adequately Modeling of Sets of Sets

This section deals with the modeling of sets of sets of domain objects. Modeling
sets of sets of objects is important, because it arises naturally in expert domains –
see Fig. 6 for an example. Modeling of sets of sets is a classical topic [52] in
the modelling community and has been discussed as modeling with power types
[46,47,60,67,68]. It has also been discussed as multilevel modeling in the past [7].

Often, modeling a set of domain objects involves the specification of prop-
erties that are common to all objects of the investigated set. This means, that
in domain modeling, we are, in general, also interested in the intension or com-
prehension of a set of objects rather than merely in its role as an extension of
a concept. We could introduce new terminology as has happened in the object-
oriented community in the past. For example, we could call a set of objects
together with its intension a class. There is no single commonly accepted defin-
ition of the notion of intension in linguistics and ontology. So, let me be more
concrete. More concrete, we could say that objects have properties and that
we have a special interest into a certain notion, let’s call it, e.g., domain object
class, which is a set of objects together with a specification of which properties
are shared by all objects of this set, i.e., are equal for all objects of that set.
We could than give this notion a name and class has been a usual candidate for
this in the past. The problem is that class is also used for concrete program-
ming and modeling language constructs which usually have a rather operational
semantics. Concrete class constructs in programming and modeling languages
have been designed, of course, with a notion of domain object class in mind. In
order to avoid conflicts with the class terminology of programming and modeling
language constructs, we could choose another name for domain object classes,
e.g. Class, domain class, or simply domain object class. We do not. We sim-
ply talk about set of objects, set of sets of objects and so forth and point out,
that in domain modeling, we have special interest in properties that are com-
mon to all objects of a given set. The treatment of intensions of sets of objects
have been intensively studied in the in the modeling community and many cru-
cial results has been achieved for: notation, terminology, modeling constructs,
patterns, tools, semantical considerations etc. – see also Sect. 9 for examples.
Therefore, we have chosen this as an example worth looking at to analyze with
a reflective constraint language like OCLR.
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As an example, Fig. 6 shows the mammal hierarchy. A set of sets appears
systematically at each level of the hierarchy, grouping objects of classes that
reside at a lower level, i.e., breed, sub species, species, genera and so on. The
running example in this article will be dogs and breeds from this hierarchy.
The different sets of sets in the mammal hierarchy in Fig. 6 all follow the type-
object pattern [52] of Johnson and Woolf. The set of set is called a type in the
type-object pattern. A type in the type object pattern, i.e., an instance of the
type class of the pattern, is not a type in the sense of object-oriented subtyping
hierarchy; in particular, it is not a type of a concrete modeling language. A type
in the type object pattern represents a kind or a group of objects, i.e., a set of
set of objects. Furthermore, a type carries the attributes common to all of the
objects that it groups together. In that sense, again, a type of the type-object
pattern is the intension of a set of objects.

The aim of this section is to discuss ways of adequately modeling sets of
sets of domain objects. We show that it is possible to model sets of sets in
terms of basic object-oriented modeling constructs plus appropriate constraints.
Subtyping and subclassing mechanisms help in modeling sets of sets, but we will
see that even most basic notions of object-oriented modeling, i.e., classes and
enumeration types, are already sufficient for giving appropriate models of sets
of sets, as long as the necessary, generic constraints are provided. There is no
necessity to introduce new modeling language features, like a concept of set or
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Fig. 6. The mammal hierarchy.
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a concept of power set into the tier of class instances. Note, that even in set
theory [90] all sets are objects. The class of sets, i.e., the set carrier, consists
of opaque objects only. Inner structure of sets is an illusion that emerges in
our minds by the application of the set forming operation { , } on the carrier,
i.e., the class of sets is an abstract data type. Sets of sets emerge by the axiom
of pairing in the finite case and by the axiom of infinity in the infinite case.
However, once a set of set is constructed you can also perceive it as a relationship
between its members and itself, and equally, it is only a perception or illustration
that membership means containment. And this is also true for predicate logic.
Signatures in predicate logic can be considered pure, most possible reductionist
entity-relationship models.

A credo often somehow stated in object-orientation is: Everything is treated
as an object. In form-oriented analysis [26,37] we have expressed doubt in the
metaphoric power of such and similar real-world statements. We have said that
the value of such a statement is not clear if it is only used as a preamble or
eye-catcher and is not exploited anywhere else in the subsequent methodology
or its semantic foundation. Now, with the current discussion we have actually
found a use case for this real-world statement. If it is a crucial value for object-
orientation that everything is treated as an object, then also sets, sets of sets,
sets of sets of sets and so forth should be treated as objects.

5.1 Plain Class Modeling for Sets of Sets of Domain Objects

Figure 7 shows a state of our dogs and breeds expert domain and a first simple yet
adequate conceptual model for the intended domain. The diagrams (ii) through
(iv) in Fig. 8 show further, more elaborate means to model the intended domain.
Diagram (i) in Fig. 8 is, basically, the conceptual model copied from Fig. 7. It is
included into Fig. 8 for an important presentation issue, i.e., in order to complete
the full power type construction diamond.

The M0- and M1-level models in Fig. 7 together with the OCLR constraints
that are given in the sequel adequately represent the domain and the current
state of the domain. The class Dog represents the set of dogs in the domain
state. The set of dogs is a domain object that owns a genus, in this case Canis,
as a property. All the dogs share the same property, therefore, this property is
modeled as a class attribute in the M1-model, which is, as usual, indicated by
underlining the attribute. Instead of assuming a singleton object as host for the
class attribute, we explicitly specify this by the following OCLR constraint:

Dog .allInstances → forAll(dog1, dog2 |
dog1.genus = dog2.genus
or dog1.genus →asSet →size =0
or dog2.genus →asSet →size =0

)

(46)

We prefer to use the term class attribute over using the UML term static
attribute. Because UML static attributes are not really static, but just class-
global. A UML static attribute can vary over M0-model editions; however, what
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Fig. 7. Adequate constraint-based modeling of sets of sets without power types. The
necessary OCLR constraints are given in the text as (46)–(56)

is required for a UML static attribute is that it is equal for all objects of its
hosting class in a given state. We have chosen the current formalization of the
concept of class attribute, because it is amenable in a straightforward manner
on basis of OCL.

A reader might say that constraint (46) is superfluous, because the UML
specification states that a class attribute belongs to the class rather than to the
objects of the class. However, the UML specification is not formal with respect
to this, because it neither states the existence of a singleton object hosting
the class attributes for each class nor does it mention class attributes in the
semantic description of class instantiation. In that sense constraint (46) is one
means to make the semantics of class attributes precise. However, the purpose of
constraint (46) in this article is different, we want it to be at hand for comparison
with the constraints for subset-global attributes like (48) to (51) in the sequel.

The constraint (46) is quite explicit and elaborate, it can be expressed much
denser in a different style:

Dog .allInstances.genus →asSet →size �1 (47)

Second, each dog has an age and a weight. These properties are, without
loss of generality, different for each dog. Therefore, they are modeled as ordi-
nary object attributes. Third, each dog has a breed, a breed number and the
average age of its breed as a property. Again, these properties are different for
each dog, but they are not completely arbitrary. Instead, there is a mutual func-
tional dependency between the breeds and the breed numbers, and a functional
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dependency between breeds and average ages per breed. We choose the breed
itself to identify the respective subset of dogs, i.e., collies or pitbulls. The enumer-
ation type Breed hosts values Pitbull and Collie for this purpose. The properties
breed number and breed’s average age are not global with respect to the class
dog but must be the same for all collies and independently the same for all
pitbulls. We can express this by the following constraints:

Dog .allInstances→select(breed =#Collie).breednumber →asSet →size=1 (48)
Dog .allInstances→select(breed =#Collie).breedAvgAge→asSet →size=1 (49)
Dog .allInstances→select(breed =#Pitbull).breednumber →asSet →size=1 (50)
Dog .allInstances→select(breed =#Pitbull).breedAvgAge→asSet →size=1 (51)

Note, that the leading sign # in (48) through (51) is the usual way to
denote enumeration literals in OCL. Furthermore, note that the constraints (48)
through (51) must not be mixed with constraints of the following form:

Dog .allInstances→select(breed =#Collie)→ forAll(breednumber →asSet →size=1)
Dog .allInstances→select(breed =#Collie)→ forAll(breedAvgAge→asSet →size=1)
. . .

(52)

This means that the constraints in in (48) through (51) are not merely about
multiplicities of properties as one might think at the first sight. Instead, they
specify the uniqueness of the properties with respect to each breed. Multiplicities
of properties are specified by the constraints of the form (52). They specify a [1..1]
cardinality for the properties. In our example, the [0..1] cardinality is implicitly
specified for the properties in diagram (i) in Fig. 7, because it can be assumed
as the default cardinality of properties.

Later, when we consider subtype externalization in Sect. 5.3 we will discuss
that these constraints can be expressed by turning the subset-global attributes
into appropriate class attributes. The average age for collies can be the same
as the average age of pit bulls. However, the breed number is regarded as the
identifier in the domain. It must be different for collies and pitbulls. We can
express this by the following constraints:

Dog .allInstances →select(breed =#Collie)→ forAll(c |
Dog .allInstances →select(breed =#Pitbull)→ forAll(p |

not(c.breednumber = p.breednumber)
)

)

(53)

Now, last but not least, let’s have a look at the set of breeds in the expert
domain. The set of breeds is represented by the enumeration type Breed at M1-
level. The set of collies is represented by the set of M0-level objects that share
the value Collie for their breed attribute. It is also represented at M1-level by
the value Collie itself.
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5.2 Making Constraints Robust Against M1-Level Model Updates

In Sect. 5.1 we have seen an important aspect of modeling sets of sets, i.e., subset-
global attributes. We need to investigate these further and will introduce the
notion of subclass attribute. Furthermore we need to discuss auxiliary properties
for subsets of objects as well as properties that are global to sets of sets of objects.
For this purpose, we investigate several options of modeling in Fig. 8. However,
the central theme of this section turns out to be the question of how to make
constraints robust against model updates at level M1.

The constraints (48) to (51) work fine to protect the M0-level objects against
inadequate updates. However, in general, they are not sufficient for M1-level
model updates. For example, if a new value, e.g., Beagle, is introduced by the
modeler into the enumeration type, the subset-global attribute for breed numbers
is no longer under the auspices of appropriate constraints, because the existing
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constraints work only for the former collection of enumeration type literals Collie
and Pitbull, which infringes the intended meaning of the Breed enumeration type
as representing the domain set of breeds.

Now, the following OCLR constraints generalize the constraints (48) to (51)
by abstracting from the concrete values in the enumeration type so that the
constraints become robust against unwanted M1-level updates:

〈Breed〉↓ .ownedLiteral → forAll(breedId
Dog .allInstances
→select(breed =〈breedId〉↑).breednumber →asSet →size =1

)

(54)

〈Breed〉↓ .ownedLiteral → forAll(breedId
Dog .allInstances
→select(breed =〈breedId〉↑).breedAvgAge →asSet →size =1

)

(55)

See how, the constraints (54) and (55) make use of reification and reflection.
The type Breed is a user defined type. It denotes an enumeration. Therefore, after
reification of Breed we have access to its enumeration literals via introspective
access. These can be, after the application of the reflection operator 〈breedId〉↑,
further exploited in M1-level constraint writing.

Let us call a constraint that is made robust against M1-level updates, a
sustainable constraint. We will further delve into this terminology in Sect. 8.
Next, we also want to turn constraint (53) into a sustainable version. This is
even possible without OCLR, i.e., in plain OCL. With constraints (48) and (50)
we have specified that breed numbers are unique with respect to each breed.
The fact can be exploited to give a less explicit and much more dense version of
constraint (53):

Dog .allInstances.breed →asSet →size
= Dog .allInstances.breednumber →asSet →size (56)

As it turns out, the constraint (56) is independent of concrete breed identifiers
and is therefore a robust version of (53).

Now, let us detour a bit and discuss the pragmatics of tool design. A more
detailed discussion is provided by the symbolic viewpoints in Sect. 8. Assume
that we have a tool that allows for modeling and instantiation of objects in
parallel. Imagine that such a tool supports the maintenance of both the model
and the data and, in particular, surveils the validity of reflective constraints,
e.g., constraints written in OCLR. Now, given such a tool, how to introduce a
new breed into our example model? The answer is: (i) introduce a new value
in the Breed enumeration type, (ii) instantiate some dog information objects,
(iii) set the attributes of the new objects and care for the equality of the set-
global attributes and the uniqueness of the breed number, (iv) submit the model
changes as update and (v) expect the modeling tool to do the necessary con-
straint checking and reject resp. accept the changes based on the result.
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5.3 Subtype Externalization

Model (ii) in Fig. 8 shows the result of externalizing the breed attribute into
subclasses for each possible value. Having a certain value for an attribute, i.e.,
having a certain property, characterizes a subset of a set of objects, i.e., the set of
objects sharing this property. Therefore, in model (ii) the subclasses Collie and
Pitbull represent the domain sets of collies resp. pitbulls. The generalizations of
the classes Collie and Pitbull to the class Dog form a UML generalization set
which receives the name Breed in model (ii). This generalization set Breed now
adequately represents the set of breeds in the expert domain.

Still, we need to enforce the global uniqueness of the breed number and
average age with respect to the subsets of collies and pitbulls. We could get this
effect by erasing the respective attributes from the class Dog and moving them
as class attributes to the subclasses Collie and Pitbull. However, it is better OO-
style to keep them in the class Dog so that they are inherited by the subclasses,
for example, because we want to introduce further breeds as subclasses in future
model editions. A means to override an attribute by a class attribute in a subclass
is also no substitute for the given constraints, because without the constraints
nothing ensures that the attribute is systematically overridden in all subclasses
under consideration. In the current scenario, it is fair to call these attributes
subclass attributes, because semantically they can be considered class attributes
of the subclasses. We have therefore underlined them with a dashed line in the
diagrams (i)–(iii) in Fig. 8. We do not want to introduce the concept of subclass
attribute with this semantics as a language element here, because although it
would work immediately for usual OO programming languages, it is incomplete
in UML. In contrast to usual programming languages, generalization in UML can
be non-disjoint [67], so in general you would also need to specify the subclasses
for which the intended properties are considered as set-global.

The constraints (48) to (51) can now be re-stated for model (ii) as follows –
note that the resulting constraints are actually class attribute constraints onto
the considered attributes in their role as inherited attributes:

Collie.allInstances.breednumber →asSet →size =1 (57)
Collie.allInstances.breedAvgAge →asSet →size =1 (58)
Pitbull .allInstances.breednumber →asSet →size =1 (59)
Pitbull .allInstances.breedAvgAge →asSet →size =1 (60)

Now, in order to make the constraints (57) to (60) sustainable, i.e., robust
against M1-level updates, we can restate the sustainable constraints (54) and
(55), again in OCLR, in terms of the generalization set Breed . The involved
subclasses are the same with respect to their generalization set as the literals
are with respect to their enumeration type:

〈Breed〉↓ .generalization.specific → forAll(
〈self 〉↑ .allInstances.breednumber →asSet →size =1

)
(61)
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〈Breed〉↓ .generalization.specific→ forAll(
〈self 〉↑ .allInstances.breedAvgAge →asSet →size =1

)
(62)

Next, we also give an equivalent to constraint (56):

〈Breed〉↓ .generalization.specific→asSet .size
= Dog .allInstances.breednumber →asSet →size (63)

With model (ii) the introduction of a new breed turns out to correspond to
the introduction of a new subtype under the auspices of the necessary constraints.
Model (ii) has an important advantage over model (i). The subclasses are the
natural host for auxiliary attributes that are specific to a certain subset of domain
objects. In the example we have chosen the attribute intelligence for collies and
the attribute aggressiveness for pitbulls.

In principle it is possible to turn attributes of a each type into a subtype,
i.e., not only attributes of an enumeration type. For enumeration types, which
are finite, we simply turn each literal into a type, as we have seen in the current
example. For an infinite type we update the model by the introduction of a
new subtype representing a value of the type whenever necessary, i.e., whenever
an attribute with this value occurs for the first time. This extreme subtype
externalization is merely a thought experiment; but it is an instance of the
purely symbolic viewpoint of modeling that we will discuss in Sect. 8.3, because
it treats the evolving M1/M0-model as a single whole data store.

5.4 Power Type Externalization

Model (iii) shows the result of externalizing all the subset-global attributes in
their own class Breed. It is usual to call a class like the class Breed a power
type [46,47,68]. Now the concept of the set of breeds is made explicit by a class
in the model. A concrete breed can now be represented by an M0-level object
or an M1-level instance specification. This modeling solution might appear to
the reader as particularly natural, because a class can be seen as the natural
candidate to represent a set of objects, which are meant to be sets in this case.
Actually, because of the 1-multiplicity at the element-of association, the con-
straints (48) to (51) become obsolete with solution (iii). Now, all we need to
do is to generalize this situation to an arbitrary number of breeds is to adopt
constraint (56) the following way:

Dog .allInstances.breed →asSet →size
= Dog .allInstances.breed .breednumber →asSet →size (64)

With the model (iii) there might be empty breeds due to the breed-to-dog
association’s many-cardinality [∗]. If we want (63) to effect also empty breeds
we need to change it to:

Breed .allInstances →asSet →size
= Breed .allInstances.breednumber →asSet →size (65)
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Note, that both (64) and (65) are no OCLR constraints, i.e., they are plain
OCL constraints. With solution (iii) the membership of a dog in a breed is
represented by instances of the element-of association. The model (iv) has an
important advantage over the model (i). The class Breed is the natural host
for auxiliary properties that are common to all breeds, e.g., the address of the
national breed registry. Without the need for subtype-specific attribute exten-
sions solution (iii) actually appears the most natural modeling pattern for the
given scenario. This comes at no surprise: solution (iii) is no more, no less than
the type-object pattern [52] of Johnson and Woolf. Unfortunately, we sometimes
might want to model properties that are specific to certain breeds – see also the
discussion on the disadvantages of implementation complexity in [52]. This leads
us to the next Sect. 5.5.

5.5 Integrated Subtype and Power Type Externalization

Solution (iv) now shows an equivalent to the full UML power type construc-
tion [60,75] for the scenario. It makes explicit (a) the several breeds as sub-
classes Collie and Pitbull and (b) the set of all breeds as a class Breed. These
two representations must now be balanced and kept in synch. First, we need an
OCLR constraint that expresses that all M0-objects of a given breed subclass
are assigned to the same breed M0-object:

〈Breed〉↓ .generalization.specific → forAll(
〈self 〉↑ .allInstances.breed →asSet →size =1

)
(66)

Second, we also need to express that objects of different subclasses are
assigned to different Breed objects:

Dog .allInstances.breed →asSet .size
= 〈Breed〉↓ .generalization.specific →asSet →size (67)

The user-defined type name Breed is overloaded in diagram (iv). It denotes
both the power type call Breed as well as the generalization class Breed . This
does not pose a problem. In the constraints (66) and (67) the type Breed is
used to denote the generalization set. Together, the constraints (66) and (67)
imply that the subclasses of the Breed generalization set have no instances in
common, i.e., that their sets of instances are disjoint. This is not automatically
so. Multiple classification is, as a matter of course, an option with the UML,
for example, because of multiple inheritance. UML generalization sets have an
attribute isDisjoint , that specifies whether the specific classifiers of a general-
ization set may have instances in common or not – see [75]. We can specify that
the subclasses of Breed are disjoint as follows:

〈Breed〉↓ .isDisjoint (68)

Note, that (66) and (67) together imply (68), but, however, the converse
implication does not hold.
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The two constraints (66) and (67) capture the essence of the UML power
type construct, however, only for a special case. First, there must be exactly one
power type association and, moreover, the involved power type association may
be a many-to-one association only, see the element-of association in Fig. 8 in
our case. In Sect. 7 we will provide general constraints for arbitrary user-defined
power type specifications.

6 Z and Sustainable Constraint Writing

In this section we restate the domain model from Fig. 7 in the specification lan-
guage Z. The aim of this is twofold. First, the specification offers a particularly
dense presentation of the crucial domain knowledge discussed throughout the
article and is amenable to foster its understanding. In that sense, we will refer
to this Z example later in Sect. 7 on the precise semantics of UML power types.
Second, and maybe even more important, its discussion can foster the under-
standing that semantics and pragmatics are concerns in language design that
can and should be separated – and this is so also, and in particular, in case of
modeling languages.

The specification language Z allows describing system states on the basis of
set theory and predicate logic. It offers rich notation for all usual mathematical
constructs. It is an advantage to have a standardized means to write mathemat-
ical specification. However, Z is more than a neat set notation. It establishes a
system model and a system modeling paradigm. A system is modeled as a state
evolvement. The approach is to model the state transition as manipulation of
declared functions (pre-post-condition specification). It belongs to the large fam-
ily of Parnas methods [78] with ASMs (abstract state machines) as a most recent
member [40]. We use only the data facet of Z in this article. I recommend [87]
as a reference, and also [43,44,61]. Furthermore, the Z notation is standardized
by an ISO standard [49].

Z specifications are not automatically sustainable. However, they can be
turned into sustainable specifications. No reflective refactoring of Z is needed
for this purpose, because Z allows for quantification over arbitrarily nested sets.
It is common, e.g., in text books on Z, to say that the Z notation is a com-
bination of set theory and first-order logic. But take care; this is not a for-
mal statement. Informally, it is a neat explanation. Formally, it can neither
be neglected nor approved, because it is not clear what is meant by combin-
ing set theory and first-order logic. In any case, it is important to understand,
that in Z it is possible to quantify over arbitrarily nested sets. So, if Z had
a sufficiently formal semantics, it would be in the realm of a typed, higher-
order logics, comparable to Isabelle/HOL [64], see also [54,83] for a discussion.
The way we turn a Z specification of our example domain into a sustainable
Z specification in Sect. 6.3 is very instructive and gives us yet another view-
point onto today’s object-constraint languages, their expressive power and their
pragmatics.
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6.1 Types Specification

We introduce the basic sets of dogs, addresses, genera, breed numbers, intelli-
gence degrees and aggressiveness degrees. There are all kept completely opaque
in the following:

[DOG ]
[ADDRESS ,GENUS ]
[BREEDNUMBER, INTELLIGENCE ,AGRESSIVENESS ]

(69)

It would be typical Z style to introduce further, derived types for intended
domain concepts. For example it would be typical to introduce the following
type for breeds:

BREED == P DOG (70)

There are two good reasons for auxiliary types as (70). First, they can improve
the self-documentation of the specification. Second, they improve re-use. It is
typical Z style to make intensive use of such auxiliary types. However, in our
case, we stay with the plain types given in (69), because this eases the discussion.
Our interest in this section is the discussion of design principles, whereas the
artifact quality of the specifications play a minor role.

6.2 Schema Specification

The structure of possible system states manifests in variables and axioms declared
in schemas. Mathematical notation is the first class-citizen in Z. For the modeler
this means, that he must often specify concepts that would be available as syntac-
tic sugar in other modeling languages. Nevertheless, Z specifications are usually
rather dense than bloated. The advantage is that we can hardly deviate from the
declarative, mathematical semantics. With the schema DogDomainData in (71)
we provide a straightforward specification of the system state. With the schema
DogDomainAttributes in (72) we add the attributes – compare this to the domain
model provided in Fig. 7. In our Z specification we model each attribute as a
function that yields a value for each given parameter object. This means, we
explicitly model an object-mechanism that is implicitly given in each object-
oriented modeling language – see also the ephemeral object patterns in [3,4] for
a discussion of this specification style.

Each variable in (71) represents a part of the system state. Therefore each
variable holds a subset of its corresponding base type and is typed as power set
of this. The set dogs stands for the set of dogs at one point in time, whereas
the type DOG stands for the set of all possible dogs that may ever exist in
any of the system states. Consequently the type of the set dogs is modeled as
the power set of DOG . Similarly, the type of the set breeds is modeled as the
power power set of DOG . At each point in time the set breeds consists of sets
of dogs. Furthermore, we specify that both of the two breeds collies and pitbulls
are subsets of the set of dogs in each system state. Furthermore, we specify that
the two breeds collies and pitbulls are always disjoint sets.
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DogDomainData
dogs : PDOG
breeds : PPDOG
collies : PDOG
pitbulls : PDOG

collies ⊆ dogs (i)
pitbulls ⊆ dogs (ii)
collies ∈ breeds (iii)
pitbulls ∈ breeds (iv)
collies ∩ pitbulls = ∅ (v)

(71)

The attributes of the classes of our example are modeled as partial func-
tion from the sets of potential objects, i.e., types, into their value ranges in
schema (72). A major role of the schema (72) is then, to specify the correct
domains of the attribute functions. There is no need to specify the uniqueness
for breed numbers and breed average ages for the members of a given breed in
the Z solution. This is so, because the corresponding attributes are modeled as
functions that have the set of breeds as their domain. The functions assign values
to breeds, not to dogs. This solution corresponds to the power type externaliza-
tion solution in Sect. 5.4, in which these attributes were modeled as properties
of power type objects.

DogDomainAttributes
DogDomainER
dogGenus : GENUS
dogAge : DOG �→ N0

dogWeight : DOG �→ R

breedNationalBrgRegistrar : ADDRESS
breedNumber : PDOG �→ BREEDNUMBER
breedAvgAge : PDOG �→ R

collieIntelligence : DOG �→ INTELLIGENCE
pitbullAgressiveness : DOG �→ AGRESSIVENESS

dom dogAge = dogs
dom dogWeight = dogs
dom breedNumber = breeds
dom breedAvgAge = breeds
dom collieIntelligence = collies
dom pitbullAgressiveness = pitbulls

(72)

Now, let us compare the Z solution to the power type solution in Sect. 5.5.
Constraints (i) and (ii) in the schema DogDomainData correspond the
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introduction of Collies and Pitbulls as subclasses in the generalization set Breed
in Sect. 5.5. In the power type solution we had to balance the subclasses of the
full power type construction with the power type objects. It is constraint (66)
that enforces a unique power type object for all objects of a given subclass. The
constraints (iii) and (iv) for collies and pitbulls in the schema DogDomainData
can be considered the counterpart of constraint (66) in Sect. 5.5. The constraints
(iii) and (iv) are particularly simple. Let us have a look at the set collies. The
set collies is itself both a subset of the set dogs and at the same time an element
of the set breeds. This is possible, because Z has the expressive power of a typed,
higher-order logic. There is no need for an extra object representing the set
collies as a whole. Attributes that are common to all collies are simply assigned
to the whole set collies. All this is also true for the set of pitbulls. Therefore,
there is no need to balance the set of collies and pitbulls against objects that
represent.

Next, the constraint (67) in Sect. 5.5 enforces that the set of instances of
Collies is disjoint from the set of instances of Pitbulls. Therefore, constraint
has (67) constraint (v) in the schema DogDomainData as its counterpart in the
Z solution. The Z constraint (v) is again particularly easy due to the fact that
we can exploit mathematical set notation for it.

6.3 Sustainable Schema Specification

The crucial constraints (i), (ii) and (iv) in schema (71) are not sustainable. If
we add a new breed, let’s say beagles ∈ breeds, it is neither ensured, that the
new breed is a sub set of the set of dogs, nor that it is disjoint to the already
existing breeds. Let us have a look at schema (73) which is a solution to this
problem. Constraint (i) in (73) is an appropriate sustainable generalization of
the constraints (i) and (ii) in (71). Constraint (v) in (73) is an appropriate
sustainable generalization of its counterpart (v) in in (71).

DogDomainDataSustainable
dogs : PDOG
breeds : PPDOG
collies : PDOG
pitbulls : PDOG
beagles : PDOG

∀ breed : breeds • breed ⊆ dogs (i)
collies ∈ breeds (ii)
pitbulls ∈ breeds (iii)
beagles ∈ breeds (iv)
∀ breed1, breed2 : breeds • breed1 ∩ breed2 = ∅ (iv)

(73)
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It also would have been possible to add explicit constraints for the new beagle
breed to the schema DogDomainData, i.e.:

beagles ⊆ dogs (74)
beagles ∩ collies = ∅ (75)
beagles ∩ pitbulls = ∅ (76)

But, of course, the solution of schema (73) is better. Explicit constraints are again
non-sustainable. They are not generic and therefore explicit constraints do not
scale. Already in the current small example, they start to bloat the specification.

7 Precise Semantics of UML Power Types

The current UML superstructure specification contains the following description
of the semantics of power types [75]:

Formally, a power type is a classifier whose instances are also subclasses
of another classifier. [. . . ] As established above, the instances of Clas-
sifiers can also be Classifiers. This is the stuff that meta models are
made of.

The statement is inconsistent against the background of the rest of the UML
specification [75]: an M1-level subclass is an instance of the M2-level class Class
and cannot be an instance of an M1-level classifier. Instances of an M1-level
classifier cannot be classifiers themselves. Instances of an M1-level classifier are
M0-level model elements and definitely do not reside at level M1. We must
not mix the level-crossing UML instantiation relation with the set membership
relation ∈ in the intended domain. If you model with a power type construct the
resulting model is not per se a meta model. Furthermore, the above statement
is not a formal statement, but this is actually a minor point.

Where does the confusion stem from? One source of misunderstanding of
the domain-relation ∈ as level-crossing instantiation may arise from using the
phrase is instance of for is element of in the domain, which might be natural
in many domains. Compare this to the Z specification of the running example
in Sect. 6. In (71) collies is an element of breeds and a the same time a subset of
dogs. We must not mix modeling with the linguistic modeling framework that
we exploit as tool, i.e., we must not mix ∈ with the instantiation of a sentence
of our modeling language which is described by its grammar, i.e., a meta model.
We should never forget that meta models are really just kinds of grammars and
we should not be confused by the fact that we use a common modeling language
as notation and mechanism to write these grammars.

However, it is not appropriate to simply reject the above statement from the
UML specification and similar statements in the community as inconsistent. It
implicitly contains an important aspect of power types that goes beyond their
meaning as constraining states of information objects of the current model. Based
on the findings and terminology of this article, we can attempt an informal, yet
more precise re-formulation of the above definition. For example, we could state:
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Informally, a power type is a class whose instances represent sets of
domain objects, where each of these domain objects is represented by an
instance of a subclass of another classifier.

Arbitrary subclasses? An arbitrary classifier? No. All the extra information
expressed by the constraints (66) and (67) is yet still missing, so that both the
UML definition of power type as well as are our re-formulation yield no com-
plete specification. Again compare the above statements with the Z specification
in (71).

Now, with OCLR we can give a general semantics for UML power types. With
UML, a concrete user-defined power type consists of a generalization set and a
designated power type class for this generalization set. The UML specifies that a
generalization set has a property powertype of type Classifier , which is optional,
i.e., has [0..1] cardinality. Obviously, the generalization set specifies a power
type construct, whenever this value is present. Concrete power type objects can
be assigned to the objects of the generalization set. Our specification needs to
decide upon pramatic issues, i.e., we assume that there are associations between
the super class of the generalization set and the power type class in order to
assign concrete power type objects, which is in accordance to the literature and
the examples in the UML specification. So far, in Sects. 5 and 6 we have treated
examples of a special case, in which there is exactly one such association, which
has to be, furthermore a many-to-one association. This special case is the usual
case, e.g., all of the examples in the UML specification follow this pattern –
see Figs. 7-49, 7-50 and 7-51 in [75]. We treat a most general case here – see
Fig. 9. There might be many power type associations of arbitrary cardinalities
and, furthermore, the generalization set is not yet required any more to be
disjoint.

Sub1 Sub2

* element-of1

* element-ofn

…

o1:Sub1 o2:Sub1 o3:Pub2 o4:Pub2

instanceof

instanceof

po1:Power po2:Power

Super Power

…
instanceof

instanceof

*
*

Fig. 9. General UML powertype specification pattern.
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In the sequel we call an object of one of the subclasses of the generalization
set a generalization set object for short. Furthermore, we will call a power type
object that is assigned to a generalization set object a representing object. Now,
we need to specify that (i) there is at least one representing object for each gen-
eralization set object, (ii) the number of representing objects equals the number
of generalization set subclasses, (iii) for each representing object there exists a
generalization set subclass, so that the given representing object is assigned to
all objects of this subclass. This is achieved by the following OCLR constraint:

01 〈Class〉↓ .allInstances.forAll(Super ,Subs,Power |
02 〈GeneralizationSet〉↓ .allInstances →exists(gs |
03 gs.powertpye = Power
04 and gs.generalization.general → includes(Super)
05 and gs.generalization.specific = Subs
06 )
07 implies(
08 let ps = Super .ownedAttribute →select(type = Power) in (
09 〈Super〉↑ .allInstances → forAll(o |
10 o.〈ps〉↑→asSet →size � 1
11 )
12 and
13 〈Super〉↑ .allInstances.〈ps〉↑→asSet →size
14 = Subs →asSet →size
15 and
16 〈Super〉↑ .allInstances.〈ps〉↑→ forAll(op |
17 Subs → exists(Sub |
18 〈Sub〉↑ .allInstances → forAll(o |
19 o.〈ps〉↑→ includes(po)
20 )
21 )
22 )
23 )
24 )
25 )

(77)

Lines 02 through 06 establish all triples of classes Super , Subs and Power
that correspond to a valid and complete user-defined UML power type. Here
Super stands for superclass and means the general class of the generalization
set, Subs stands for subclasses and means the collection of specific classes of
the generalization set and Power stands for the powertype that is assigned to
the generalization set – see Fig. 9 once more. Now, the sub constraint in lines 09
through 11 ensures property (i) from above, the sub constraint in lines 13 and 14
ensures property (i) and the sub constraint in lines 16 through 22 ensures prop-
erty (iii). Altogether, constraint (77) grasps the essential semantics of UML
power types. Each sub class is represented by a power type object. A power
type object carries information that is common to all objects of the subclass it
represents.
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Still, there remain some pragmatic issues that remain open. In case of a
complete overlap of the instances of two subclasses of the generalization set, we
cannot distinguish between the two involved power type objects representing
the subclasses any more. We do not design solutions to issues like that here.
Instead, we turn to the special use case of UML power types, in which (i) there
exists exactly one power type association, which (ii) then has a many-to-one
cardinality. In this case, we need to specify, that (iii) for each generalization
set subclass the same representing object is assigned to all objects of the given
subclass and (iv) different representing objects are assigned to the objects of
different generalization set subclasses. This means that we need to generalize
constraints (66) and (67) from Sect. 5.5 to all user-defined power types. This is
achieved by the following OCLR constraint:

01 〈Class〉↓ .allInstances.forAll(Super ,Subs,Power |
02 〈GeneralizationSet〉↓ .allInstances →exists(gs |
03 gs.powertpye = Power
04 and gs.generalization.general → includes(Super)
05 and gs.generalization.specific = Subs
06 )
07 implies(
08 let p = Super .ownedAttribute →select(type = Power) in (
09 p →asSet →size = 1
10 and
11 〈Super〉↑ .allInstances → forAll(o |
12 o.〈p〉↑→asSet →size = 1
13 )
14 and
15 Subs → forall(Sub |
16 〈Sub〉↑ .allInstances.〈p〉↑→asSet →size =1
17 )
18 and
19 〈Super〉↑ .allInstances.〈p〉↑→asSet →size
20 = Subs →asSet →size
21 )
22 )
23 )

(78)

The sub constraint in line 08 ensures property (i) from above, the sub con-
straint in lines 11 through 13 ensures property (ii), the sub constraint in lines 15
through 17 ensures property (iii) and the sub constraint in lines 19 and 20 ensures
property (iv).

8 A Symbolic Viewpoint of Modeling Languages

Figure 10 shows different viewpoints on model evolution. Note, that they are
really only viewpoints on one and the same scenario. Each of the viewpoints
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grasps important issues in pragmatics of information system design and opera-
tions. Furthermore, the distinction between ephemeral versus evolution persis-
tent constraint writing in Fig. 10 is an important concept in its own right.

8.1 The Classic Database Evolution Viewpoint

The first viewpoint (i) in Fig. 10 is the classic database viewpoint, which is also
the usual OO programming language viewpoint. The schema is given as an OO
class diagram and is cleanly separated from the data. The schema corresponds
to the UML M1-level, whereas the data corresponds to the UML M0-level. It
is assumed that the schema is fixed, whereas the data is not. The data is con-
tinuously manipulated. This viewpoint therefore distinguishes between design
time and runtime. The schema shapes the information space. It constraints the
structure in which we can capture and maintain data. However, it is also pos-
sible to fix more complex domain-related integrity constraints for the data, for
example, referential integrity, class-internal functional dependencies, or domain-
related integrity constraints, e.g., the rule that a certain integer value must not
exceed a maximum value and so forth. A crucial feature of databases is to sup-
port the enforcement of these constraints that are considered an integral part of
the schema. Whenever you try to update the data in a way that would violate
the constraints, the database will reject your update.

We have said that the schema is fixed. But actually it is not. Schema updates
can occur. However, it is important to understand that in the viewpoint
(i) schema updates are considered to occur seldom and therefore schema updates
are considered almost fixed. Seldom and almost are vague concepts and there-
fore we will be able to switch to the equal M1/M0 resp. symbolic model evo-
lution viewpoint (ii) later. Furthermore, schema updates are regarded as cost-
intensive and are usually controlled by other access rights than those for data
updates. Usually, you need to contact your database administrator for this pur-
pose. Whenever a schema update occurs, it triggers a data migration step as
indicated by the numbers 1 and 2 in Fig. 10. This data migration step can be
very complex, because the existing data must be re-shaped [14,27,28,32,53].
Similarly, if you change the class structure of your application this at least
means that you need to stop, recompile and restart the application program.
For an enterprise application this can already be very cost-intensive and risky.
Hopefully, the program has been designed for reuse and the change has been
foreseen in the applied patterns. If not, and if your changes are really structural,
unforeseen changes, this can easily give rise to a cost-intensive code refactoring
project.

8.2 The Symbolic Viewpoint

The classic database viewpoint is pervasive. For example, the UML meta level
architecture distinguishes between an M1-level and M0-level – note, that the
M0-level is explicitly called the runtime object level in the UML specification.
Nevertheless, the viewpoint is not set in stone. It is simply possible to view
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Fig. 10. Viewpoints on model evolution.

schema and data updates as equal. Once we abstract from the differences in
frequency, costs and access rights for schema and data updates, the way is
free to review the scenario from a different light. First, the M1-level model
elements also encapsulate information about the intended [15,16] domain, not
only the M0-level objects! In that sense, the M1-level is also a data level. Sec-
ond, there can be also important constraints on the M1-level model elements
with respect to the domain. These can be completely independent from the M0-
level. And more importantly, it might be adequate to state them in terms of
potential, i.e., not yet instantiated M1-level model elements. For example, you
might have a class hierarchy that consists of two trees and might want to ensure
that whenever a new subclass is added to one of the trees, a further subclass
should also be added at the same position into the other tree. Usual database
technology will not support the application of such constraints when updating
schemas.

We call a constraint that is written in terms of only a fixed number of concrete
M1-level model elements an ephemeral constraint, if it may fail to fulfill its
intended purpose after an update of some M1-level model elements. Obviously,
this description of ephemeral constraints is not a strict definition and the notion
of ephemeral constraint is therefore an informal notion. A constraint is ephemeral
only with respect to a certain notion of considered model update and a certain
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notion of intended purpose. We call a constraint that overcomes the weakness
of an ephemeral constraint an M1-level model evolution persistent constraint,
evolution persistent constraint, persistent constraint or sustainable constraint for
short. Usually, a sustainable constraint is achieved by generalizing an ephemeral
constraint to all possible relevant user-defined types.

Once we have adopted an equal M1/M0 model evolution viewpoint, we are
free to think about new tools with innovative modeling features. However, we
must not forget about the established database viewpoint, because it incorpo-
rates the important aspects of cost-effects and access right management. Fur-
thermore, viewpoint (ii) enables us to rethink the semantics of modeling elements
in order to make it more precise.

We call viewpoint (ii) a symbolic viewpoint, because it stresses the fact that
M1- and M0-level modeling elements can be considered as together intending
[15,16] objects in the expert domain. In terms of symbolic computation the M0-
level modeling objects can be regarded as ground terms. For example in the
UML, this viewpoint is obfuscated by the existence of instance specifications at
level M1, in particular, because instance specifications are optional. Therefore,
we introduce the purely symbolic viewpoint (iii) in Fig. 10 as a refinement of
viewpoint (ii).

8.3 The Purely Symbolic Viewpoint

In the purely symbolic viewpoint (iii) we assume that all M0-level objects are
always and only captured and maintained by instance specifications that repre-
sent them. For example, as a thought-experiment, we could design a database
based on UML class diagrams in which we capture and manipulate database
objects always and merely by instance specifications.

The purely symbolic viewpoint can help to avoid certain confusions. In the
discussion of OO semantics it can easily happen – and happened in the past –
that distinct concepts like the following are thrown together and confused with
each other: (a) instantiations of M1-level elements, (b) instances of M1-level
elements, (b) set memberships in the expert domain, (c) representations of
instances of M1-level elements at level M1, (d) instantiations of M2-level ele-
ments, (e) instances of M2-level elements, (f) representations of set memberships
in the expert domain at level M0, (g) representations of set memberships in the
expert domain at level M1, (h) types at level M1, (i) classes at level M1, (j)
class constructs of modeling languages, (j) intensions of sets of domain objects,
(k) domain objects, (l) the intended meaning of domain objects, and so on and
so forth.

You can perceive the achieved M0-level free modeling in two ways. Either
practically, as a concrete tool in which the visual modeling canvas is also the
data store, or simply as an appropriate formal viewpoint. Because, even if we
discuss without M0-level, tools and languages can provide different interfaces
or look&feels for the manipulation of the ground terms and the type terms. If
we assume that all data is kept and maintained at M1-level this greatly eases
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and unifies the discussion. Note that in symbolic computation there is also no
dedicated grammatical tier for the ground terms. In the reductionist calculi of
symbolic computation like the lambda calculus [11] or PCF (Programming With
Computable Functions) [80] the objects resulting from computations are terms
of ground type, but still, they are just terms of the language and so it is the same
with full-fledged functional programming languages or term rewriting systems.
The symbolic viewpoint is a grammatical viewpoint. In a symbolic viewpoint,
every object of interest is symbolized as term of the same language. This is
the reason, why have chosen to call the viewpoint discussed here a symbolic
viewpoint.

8.4 UML Instance Specification

Let us analyze UML instance specifications from the purely symbolic perspective
of Sect. 8.3. Instance specifications represent M0-level objects. Let us have a look
at our tiny example model in Fig. 7. Here we have M0-level objects Lassie : Dog ,
Fido : Dog , George : Dog and Beppo : Dog . Two of them, i.e., Lassie : Dog
and George : Dog have also a UML-instance specification at M1-level. The UML
considers instance specifications as examples only. There is explicitly no need
to give an instance specification for each M0-level instance. Furthermore, an
instance specification needs not to provide a slot and value specification for
each attribute of the corresponding object. However, if we visualize an MO-
object by an instance specification at level M1 it would make sense to require
that an instance specification should obey to the same rules that we impose
as constraints for the M0-level objects. We can do this with appropriate reflec-
tive constraints. Let us have a look at a first example, i.e., at the very basic
constraint (1):

context Person inv: age � 40 (79)

We can turn (79) into an OCLR constraint that appropriately effects instance
specifications the following way:

〈InstanceSpecification〉↓ .allInstances
→ select(classifier → includes(〈Person〉↓))
→ select(slot → forAll(

definingFeature.name ="age"
implies
value.IntegerValue() � 40

)
)

(80)

Now, let us consider a constraint that also contains a navigation expression.
Assume that we also have a class Dog with property owner : Person[0..∗]. Now,
consider the following constraint:

context Dog inv: owner .age � 40 (81)
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Again, we can turn constraint (81) into an appropriate OCLR constraint for
M1-level instance specifications:

〈InstanceSpecification〉↓ .allInstances
→ select(classifier → includes(〈Person〉↓))
→ select(person |

〈InstanceSpecification〉↓ .allInstances
→ select(classifier → includes(〈Dog〉↓))
→ exists(slot → includes(

definingFeature.name ="owner"
and
value → includes(person)

) ) )
→ select(slot → forAll(

definingFeature.name ="age"
implies
value.IntegerValue() � 40

) )

(82)

Note, once more, that the UML allows instance specifications to be partial
specifications, i.e., an instance specification does not have to specify a value for
each property of the object that is represents. This explains the usage of implies
in constraint (80). Constraint (80) allows for instances specifications that do not
have a slot for the property age, however, if such a slot exists, it has to adhere
to the given constraints. It is possible to change exactly this partial specification
approach. It is possible to give OCLR constraints that enforce that each instance
specification is a full-fledged, consistent object description. Furthermore, the
purpose of constraints (80) and (82) has been to demonstrate, that it is, in
principle, possible to turn each OCL constraint into an appropriate OCLR con-
straint on instance specifications. We do not give the detailed specifications of all
this here.

The OCLR constraints resulting from the described transformation are sub-
stantially more complex than the original constraints. Therefore, you might want
to think of all the discussion here as a mere thought-experiment. However, it
shows that we could get rid of the M0-level to achieve a purely symbolic view-
point. It is important to understand that the M1- and M0-level together form
a language to describe states in the expert domain. The existence of instance
specifications merely introduces redundancy. Currently the semantics of UML
relies on the notion of M0-objects, and, even more important, its constraint lan-
guage OCL is designed in terms of M0-objects. We guess that the intention of
M0-objects in the UML was to deliberately introduce a degree of freedom in the
interpretation of models, i.e., in the sense that M0-objects could be, e.g., data
objects in a database, or, run-time objects of an object-oriented programming
language and so forth. Merely throwing away the M0-level, without appropriate
tool support, is not really an option. However, the discussion also shows that it is
actually possible to design appropriate tools for supporting a symbolic modeling
viewpoint.
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9 Related Work

Programming languages and their type systems, in particular, generative pro-
gramming languages [20], form a mature field of study that is important for
the current discussion. In the programming languages Genoupe [33,34,57] and
Factory [25,35] it is possible to implement OCLR constraints. Genoupe is
a C#-extension, whereas Factory is a Java-extension. With Genoupe and
Factory generators it is possible to analyze a given class and weave its
attributes as class attributes into another class. With these generators the lan-
guages are expressive as DeepJava [55]. DeepJava offers neat clabject-style syn-
tax. The natural candidate for representing sets of sets in C# and Java is, the
nested resp. inner classes construct [39]. The problems with nested classes is
that subclassing cannot crosscut the nesting structure, which makes impossible
a direct, natural transformation of, e.g., model (v) in Fig. 8 into code. This prob-
lem is even not overcome by nested inheritance as provide by Jx [65] and J& [66]
or advanced nested composition constructs as provided by DeepFJig [19].

Generative programming can be understood in a very concrete, narrow sense.
Then, it is about programming languages that offer generative programming
language features and establish appropriate type systems for generative pro-
gramming. Actually, the systematic generation of parts of software systems, in
first place code, but also all other kinds of software artifacts, is a practically
highly relevant topic and actually a widespread issue in professional projects. It
comes along in many faces and flavors: domain-specific languages [22], compiler-
compilers [77], rapid-development tools, object-relational mapping tools [14,28,
32], object-oriented component technologies, enterprise computing frameworks
and so on and so forth. The Adaptive Object Model Architecture of Yoder and
Johnson [81,89] is a mature approach to describe self-referential, systematically
adoptable software systems, as well as their design patterns and architectural
patterns.

In [13] the authors define the conceptual programming language PCFDP as
an extension of PCF (Programming with Computable Function) by a quotation
mechanism known from LISP that allows for reification and reflection. PCF [80]
is the typed lambda-calculus with recursion and can be considered a reductionist
functional programming language. Then, the authors give an axiomatic seman-
tics [42] for PCFDP and this way achieve a program logics for generative run-time
meta-programming.

Clabject modeling [6,8] is the established and major multilevel modeling
approach [7]. With clabject modeling useful terminology has been created for
the distinction between the different kinds of instantiations. In [9] the authors
distinguish between so-called linguistic and ontological instantiation. Linguistic
instantiation stands for the model-level-crossing instantiation relation. Ontolog-
ical instantiation stands for the domain-level-crossing relation ∈ in the intended
domain. Clabjects are classes that allow for deep instantiation. The ontological
instance of a clabject is itself a clabject and can therefore stand for a set of
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objects. This way it is possible to adequately represent arbitrarily nested sets,
i.e., the syntactical rules of the clabject frameworks are suitable to guarantee
the intended meaning of the model.

In [56] it has been clarified that meta levels must not be confused with the
levels of a modeling hierarchy and also, that linguistic instantiation must not
be confused with ontological instantiation. In [82] the authors elaborate a for-
mal semantics, based on category theory [12], for terminology that has been
created in the multilevel modeling community. Nivel [2] is a reductionist mul-
tilevel modeling language that supports clabjects, associations, generalization
sets, but no power types. A formal description of Nivel is provided by transla-
tion to the Weight Constraint Language [86], i.e., stable model semantics. This
formal description achieves a reformulation of the clabjects rules [10] in type
systems notation [17].

Meta modeling tools are the natural candidates for supporting multi-level
modeling and clabject modeling. They are also the natural, potential host for
pervasive M2/M1/M0-level crossing constraint checking features. The tool
MelaniE [6,8] already offers a clabject-oriented constraint language for this
purpose. With an appropriate clabject modeling tool like MelaniE [6,8] we can
assume that all information is represented at M1-level without any M0-level
objects, i.e., without linguistic instances of classes. Therefore, clabject modeling
tools also establish a modeling viewpoint that is similar to the purely symbolic
viewpoint developed in Sect. 8.3. MetaDepth [23,24] is an implementation of
a multilevel modeling language on the basis of the AToM3 [88] meta modeling
tool [88]. It supports clabjects as crucial concept and also checks for adherence
to the clabject rules.

The meta modeling tool AMMI [30,31,48] defines and realizes the so called
visual reification principle. Visual reification must not be mixed with the reifi-
cation operators discussed for the OCLR semantics here. Visual reification is a
kind of bipartite instantiation principle in meta modeling tools that allows for
making meta models visually reminiscent of their own instances, which eases
meta modeling for domain experts.

The symbolic viewpoints from Sect. 8.3 superficially resemble but must not be
confused with the viewpoint of the important strand of research on models and
evolution [21,84]. The models and evolution viewpoint incorporates potentially
many kinds of artifacts with models as centrally important artifacts. It deals
with the gaps between these artifact groups. It is a particularly mature but
still classical viewpoint. Our symbolic viewpoints deal with models only and
deliberately abstract from differences between different kinds of models. Our
symbolic viewpoints are merely instructive devices that gain their value only
from their tension with classical viewpoints on modeling.

Investigations on the relationship of OO conceptual modeling and ontological
modeling are very promising [45,62] and have impact [50] – see [63] for a sound
overview. For the understanding of the arguments in this article, the estab-
lished mainstream interpretation of OO conceptual modeling as an extended,
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mature semantic modeling approach [18] is sufficient. In form-oriented analysis
[26,36,37] we have characterized conceptual modeling as the school of shaping
and maintaining information. We have identified real-world metaphors as being
merely guidelines for requirement elicitation. This means, that for the argumen-
tation in this article it is not necessary to understand conceptual modeling in
terms of ontological modeling [38], i.e., as construction of an ontological com-
mitment as characterized in [41].

We believe that the viewpoint of considering models as evolving data storing
systems is also particularly appropriate for the emerging paradigm of cloud-
based software engineering [59], which eventually demands, in our opinion, for a
more holistic approach to the design of data services and their utilization [3,4].
For example, in [5] we have coined the concept of viable software system which
is about systems that are pro-actively designed, implemented and supported
in terms of their future versions and releases, and we expressed our opinion
that such a concept will be a critical success factor for cloud-based software
engineering to take off.

10 Conclusion

We have shown how to extend an object constraint language with reflection.
Reflective constraint writing is to constraint writing what generative program-
ming is to programming. We have extended the concrete object constraint
language OCL of the UML modeling language stack for this purpose, resulting
in so-called OCLR. We have shown how to give precise, declarative semantics
for OCLR on the basis of semantical reification operators Φ and Ψ that mitigate
between the M2-, M1- and M0-levels of the meta level architecture.

As a by-product, we have shown how to generalize OCL property call expres-
sions by a truly generative version. This means, we have shown how to generalize
OCL property call expressions of the form o.p to multi-class, multi-property
call expressions of the most general kind {o1 : C1, .., on : Cn}.{p1, .., pm},
i.e., so that the classes Ci can be dynamically generated and properties pi
may be identified merely by name, i.e., may not be inherited from a common
supertype.

First, reflective constraint writing can be exploited in quality assurance for
system design. Then, a major goal of introducing OCLR was to support the
analysis of semantics and pragmatics of modeling constructs. Another goal of
reflective constraint writing is to enable sustainable constraints, which are, typ-
ically, constraints involving meta-level access. We have clarified why sustainable
constraint writing is important for a robust modeling process. As an example,
we have elaborated sustainable constraints, i.e., constraints that persist model
evolution, for the modeling of sets of sets.

We have shown how usual class diagrams are sufficient to adequately model
sets of sets of domain objects – given that constraints are provided that are
appropriately made robust against M1-level updates. We have introduced the
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concepts of subset-global attribute and subclass attribute. We have introduced
and analyzed the subtype externalization pattern. We have introduced and
analyzed the power type externalization pattern. The two patterns of subtype
externalization and power type externalization open a design space. We have
discussed advantages and disadvantages of each of the modeling alternatives.
The fact that even basic OO modeling languages are not reductionist as com-
pared to, e.g., the PD (Parsimonious Data) modeling language in form-oriented
analysis [26,36], once more shows the conceptual redundancy of subtype exter-
nalization and power type externalization. We have defined and analyzed power
type construction as a diamond consisting out of subtype externalization and
power type externalization.

We have achieved precise semantics for conceptual models of arbitrarily
nested sets. We have argued that the definition of power type in the UML spec-
ification is inconsistent. Based on the findings and terminology of this article, a
precise re-formulation of the above definition has been possible. We have given
a precise specification of the UML power types semantics with OCLR.

We distinguished three viewpoints onto today’s information systems, i.e.,
the classical viewpoint, the symbolic viewpoint and the purely symbolic view-
point. It is the purely symbolic viewpoint that has served best to explain the
potential of emerging multilevel modeling tools as evolving data storing
systems.

Reflective constraint writing adds value. Reflective constraint writing can
make constraints robust against model updates. There are many use cases for
reflective constraints in different software engineering domains, i.e., both in sys-
tem design and conceptual modeling. With respect to system design, reflective
constraints can be exploited to ensure better artifact quality. They can be used,
e.g., to enforce style guides or the correct application of design patterns. Con-
ceptually, reflective constraint writing is about the externalization of important
domain knowledge that is otherwise captured in the ephemeral counterparts of
sustainable constraints.

Acknowledgements. I am grateful to Roland Wagner and Josef Küng for the many
inspiring discussions on the foundations and, in particular, on the realization of data-
base information systems, e.g., in the context of the DEXA series of conferences and
related events. In particular, I am also grateful for the joint endeavors in distributed
workflow automation projects.

A UML Meta Model

The class diagram in Fig. 11 shows a cutout of the UML superstructure specifica-
tion [75] consisting of all UML meta model elements used in the OCL constraints
in this article. We have repeated some of classes, i.e., TypedElement and Feature,
for the sake of improving overall readability.
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Fig. 11. Cutout of the UML meta model (superstructure) as needed in this article.

B OCL Types Abstract Syntax

Figure 12 shows the abstract syntax of the OCL v2.0 types. Basically, it shows
the types from Figure 8.1 from the OCL v2.0 specification [70]. The singleton
AnyType meta object OclAny serves as most general type for all OCL expres-
sions, i.e., e ::OCLExpression implies e : AnyType. The singleton TypeType meta
object OclType serves as type for all OCL type expressions, i.e., e :: TypeExpr
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Fig. 12. Meta model of OCL v2.0

implies e : OclType. Model elements that are genuine to the OCL type specifica-
tion are given in gray color, whereas, meta model elements that are reused from
the UML superstructure specification [75] have white color.

B.1 On the Choice of OCL version v2.0

We have chosen to take the 2006 version OCL v2.0 [70] instead of the current ver-
sion v2.4 [73] and the ISO standard version v2.3.1 [51,72] as the basis for OCLR.
The reason is the type system. The crucial difference is in the existence of the
type OclType and its corresponding abstract syntax element TypeType which are
present in the former version v2.0 but absent from the newer versions. The type
OclType is needed for a complete definition of well-typing. It serves as type for
type expressions, i.e., for expressions e :: TypeExp – see Appendix 13. For exam-
ple, the problem shows in the definition of the property oclIsTypeOf . The prop-
erty is defined in and OCL v2.0 and the newer OCL version in different ways:

oclIsTypeOf (type : OclType) : Boolean (83)
oclIsTypeOf (type : Classifier) : Boolean (84)

The operation applys to all objects, i.e., objects o : OclAny . It test whether
the object’s type equals the type given as parameter. For example, the following
constraint evaluates to true:
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context Person inv: self .oclIsTypeOf (Person) (85)

The OCL v2.0 definition (83) of oclIsTypeOf is correct, whereas the v2.0 defini-
tion (84) cannot is ill-typed with respect to its described semantics. Even worse,
in accordance with its described semantics, the operation oclIsTypeOf (type :
Classifier) cannot be typed at all with the types avalailble in the newer OCL
versions. The expression Person is a type expression that denotes a user-defined
type. In v2.0 this expression has type OclType, so that the definition of
oclIsTypeOf is correct. Let’s turn to the definition of the newer OCL versions. It
states that type : Classifier . The type Classifier can only be a user-defined type,
among the pre-defined types there is no type Classifier . Here is where the mis-
understanding might stem from. The types in the meta model in Fig. 12 are no
OCL types themselves. They yield the abstract syntax that describes the OCL
types. The existence of the class Class in the meta model means that each user-
defined type serves as an OCL type, i.e., as a type for OCL expressions. The class
Class itself is not an OCL type. And so is not the abstract class Classifier . Now,
the semantic description requires the parameter of oclIsTypeOf is a type expres-
sion and not an expression of user-defined type. This means that oclIsTypeOf is
ill-typed in the newer versions of OCL. Furthermore there is no appropriate type
available in the newer version of OCL that could be given to the parameter type.
In v2.0 the type OclType serves this purpose. The type OclType – yet without a
defining abstract syntax and a corresponding meta model element TypeType –
has been available in OCL since its first 1997 version OCL v1.1 and disappeared
from the OCL specification in 2010 with version OCL v2.2 [71].

B.2 Flattening OCL Collections

In the OCL, nested collections are automatically flattened. Each combination of
nested collections yields a concrete flattened collection which is defined in [70,70].
We have turned the definition of this flattening into a combinator ⊕ for collection
constructors – see the definition in Table 2.

The standard fixes concrete results for the combination of collection into
nested structures. Actually, there is a design space. Of course, it is natural to
turn a set of sets into a set and, similarly, to turn a bag of bags into a bag.
However, with respect to the combination of bags and sets the OCL has taken
a deliberate decision for a symmetric solution, i.e., a bag of sets is turned into a
bag, whereas a set of bags is turned into a set. This means, that in the latter case,

Table 2. The collection type combinator ⊕.
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some information is lost, that is inherent in the encompassed bags. Furthermore,
the construction of sequences out of sets and bags is not straightforward, in the
OCL it is solved non-deterministically.

C OCL Expressions Abstract Syntax

Figure 13 gives a substantial cutout of the OCL abstract syntax as specified
in [72]. Basically, it shows, as a single overview, the structure of the OCL syntax
kernel as given in Fig. 8.2. in [72] plus more elements that are crucial for under-
standing the syntax and semantics of OCLR, in particular, Fig. 13 details out
the abstract syntax of feature call expressions. Model elements that are genuine
to the OCL meta model are given in gray color, whereas, meta model elements
that are reused from the UML superstructure specification [75] have white color.
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Fig. 13. Meta model of OCL expressions.
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Abstract. Many current applications need to organize data with respect
to mutual similarity between data objects. A typical general strategy to
retrieve objects similar to a given sample is to access and then refine a
candidate set of objects. We propose an indexing and search technique
that can significantly reduce the candidate set size by combination of
several space partitionings. Specifically, we propose a mapping of objects
from a generic metric space onto main memory codes using several pivot
spaces; our search algorithm first ranks objects within each pivot space
and then aggregates these rankings producing a candidate set reduced
by two orders of magnitude while keeping the same answer quality. Our
approach is designed to well exploit contemporary HW: (1) larger main
memories allow us to use rich and fast index, (2) multi-core CPUs well
suit our parallel search algorithm, and (3) SSD disks without mechan-
ical seeks enable efficient selective retrieval of candidate objects. The
gain of the significant candidate set reduction is paid by the overhead of
the candidate ranking algorithm and thus our approach is more advan-
tageous for datasets with expensive candidate set refinement, i.e. large
data objects or expensive similarity function. On real-life datasets, the
search time speedup achieved by our approach is by factor of two to five.

1 Introduction

The complexity and diversity of digital data is permanently increasing, which
naturally generates new requirements for data retrieval. For many contemporary
data types, it is convenient or even essential that the access methods be based
on mutual similarity of the data objects because it corresponds to the human
perception of the data or because exact matching would be too restrictive (var-
ious multimedia, biomedical or sensor data, etc.). We adopt a generic approach
to this problem, where the data space is modeled by a data domain D and a
general metric function δ to assess dissimilarity between pairs of objects from D.

The field of metric-based similarity search has been studied for almost two
decades [29]. The general objective of metric accesses methods (MAMs) is to
preprocess the indexed dataset X ⊆ D in such a way that, given a query object
q ∈ D, the MAM can effectively identify objects x from X with the shortest
distances δ(q, x). A good motivating example for our work is an image search
based on visual similarity of the image content. Recent advances in the area of
deep neural networks allow to “extract” a semantically rich visual feature from
a digital image [9,17]; these features are 4096-dimensional float vectors (16 KB
c© Springer-Verlag Berlin Heidelberg 2016
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each vector). The search domain D is then the feature space and the similarity
function δ is Euclidean distance or other vector-based distance. For instance, if
the data collection X contains 10 million objects, the goal of the MAM is to
organize 160 GB of the feature data and answer queries like “find me a dozen
images from the collection that are the most similar to this query image”.

Current MAMs designed for large data collections are typically approxi-
mate [25,29] and adopt the following high-level approach: Dataset X is split
into Partitions; given a query, partitions with the highest “likeliness” to contain
query-relevant data are read from the disk and this data form the candidate set
of objects x to be refined by explicit evaluation of δ(q, x). The search costs of this
schema consist mainly of (1) the I/O costs of reading the candidate partitions
from the disk (they can be accessed as continuous data chunks) and (2) CPU
costs of refinement; thus, the overall costs of the search typically strongly corre-
late with the candidate set size.

In this work, we propose a technique that can significantly reduce the can-
didate set size. In complex data spaces, the data partitions often span relatively
large areas of the space and thus the candidate set is either large or imprecise.
The key idea of our approach is to use several independent space partitionings;
given a query, each of these partitionings generates a ranked set of candidate
objects and we propose a way to aggregate these rankings so that the resulting
candidate set is small and precise. Only objects identified in this way are actually
retrieved from the disk and refined. Specifically, our approach works as follows:

– The data space is partitioned using a set of pivots (reference objects, anchors)
where position of each data object is determined by its closest pivots and their
order; this defines a mapping of the data into a pivot space. We use such pivot
spaces to partition the dataset independently multiple times. In this way, each
object is mapped onto a code denoted as PPP-Code;
its size can be adjusted so that codes of the whole dataset fit into the main
memory.

– Given a query, we first rank the object codes within each pivot spaces with
respect to the query. Further and more importantly, we propose a way to
aggregate these several rankings, which provably increases the probability
that the query-relevant objects appear high in the final ranking.

– The PPP-Codes are organized by an indexing structure, which can lower their
memory occupation. This index is also used by the proposed PPPRank algo-
rithm that efficiently calculates individual candidate rankings and their aggre-
gation; the algorithm exploits principles introduced by Fagin et al. [13].

This approach was designed with the idea of making the best use of contempo-
rary trends in hardware development: (1) Larger main memories allow to main-
tain a rich memory index, (2) multi-core CPU architectures well support our
demanding but accurate candidate set identification, and (3) SSD disks without
mechanical seeks allow efficient retrieval of the candidate objects from the disk
one-by-one (not as continuous data chunks).

Combination of independent partitionings was proposed before by LSH
approaches [15] and it was also recognized by a few MAMs as a way to increase
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answer quality [11,23]; these works propose to simply replicate the data in mul-
tiple indexes and to widen the query candidate set by union of multiple inde-
pendent candidate sets. On the contrary, our aggregation mechanism shrinks the
candidate set significantly while maintaining the same answer quality.

The experiments conducted on three diverse datasets show that this approach
can reduce the candidate set size by two orders of magnitude. The response
times depend on the time spared by this candidate set reduction (reduced I/O
costs and δ-refinement time) versus the overhead of the PPPRank algorithm.
To analyze this tradeoff, we have run experiments on an artificial dataset with
adjustable object sizes and tunable time of δ evaluation; the results show that
our approach is not worthwhile only for the smallest data objects with the fastest
δ function. Most of the evaluations were realized on two real-life datasets (100M
CoPhIR [6] and 1M complex visual signatures [5]); for these, our approach was
two- to five-times faster than competitors on the same HW platform.

The paper is further organized as follows. In Sect. 2, we define fundamental
terms and analyze current approaches; in Sect. 3, we propose the PPP-Encoding
(Sect. 3.1), ranking within individual pivot spaces (Sect. 3.2) and rank aggrega-
tion (Sects. 3.3 and 3.4); Sect. 4 describes our index and search algorithm. Our
approach is evaluated and compared with others in Sect. 5 and the paper is con-
cluded in Sect. 6 with a reference to an online demonstration application built
with the aid of the proposed technique. This work is an extension of a paper
presented at DEXA 2014 [24].

2 Preliminaries and Related Work

We focus on indexing and searching based on mutual object distances and we
primarily assume that the data is modeled as a metric space [29]:

Definition 1. Metric space is an ordered pair (D, δ), where D is a domain of
objects and δ is a total distance function δ : D × D −→ R satisfying postulates
of non-negativity, identity, symmetry, and triangle inequality.

Our technique does not explicitly demand triangle inequality. In general, the
metric-based techniques manage the dataset X ⊆ D and search it by the nearest
neighbors query K-NN(q), which returns K objects from X with the smallest
distances to given Q ∈ D (ties broken arbitrarily). We assume that the search
answer A may be an approximation of the precise K-NN answer AP and the
result quality is measured by recall(A) = precision(A) = |A∩AP |

K · 100%.
During two decades of research, many approximate metric access methods

(MAMs) have been proposed [25,29]. Further in this section, we focus especially
on (1) techniques based on the concept of pivot permutations, (2) approaches
that use several independent space partitionings, and (3) techniques that propose
memory encoding of data objects. Having a set of k pivots P = {p1, . . . , pk} ⊆ D,
Πx is a pivot permutation defined with respect to object x ∈ D iff Πx(i) is the
index of the i-th closest pivot to x; accordingly, sequence pΠx(1), . . . , pΠx(k) is
ordered with respect to distances between the pivots and x (ties broken by order
of the increasing pivot index). Formally:
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Definition 2. Having a set of k pivots P = {p1, . . . , pk} ⊆ D (reference objects)
and an object x ∈ D, let Πx be permutation on {1, . . . , k} such that ∀i : 1 ≤ i < k:

δ(x, pΠx(i)) < δ(x, pΠx(i+1)) ∨
(δ(x, pΠx(i)) = δ(x, pΠx(i+1)) ∧ Πx(i) < Πx(i + 1)).

Πx will be referred to as pivot permutation (PP) with respect to x.

Several techniques based on this principle [7,10,11,20] use the PPs to group
data objects together (data partitioning); given a query, relevant partitions are
read from the disk and refined; the relevancy is assessed based on the PPs.
Unlike these methods, the MI-File [1] builds inverted file index according to
object PPs; these inverted files are used to rank the data according to a query
and the candidate set is then refined by accessing the objects one-by-one [1]. In
this respect, our approach adopts similar principle and we compare our results
with the MI-File (see Sect. 5.3).

In this work, we propose to use several independent pivot spaces (sets of
pivots) to define several PPs for each data object and to identify candidate
objects. The idea of multiple indexes is known from the Locality-sensitive Hash-
ing (LSH) [15] and it was also applied by a few metric-based approaches [11,23];
some metric indexes actually define families of metric LSH functions [22]. All
these works benefit from enlarging the candidate set by a simple union of the top
results from individual indexes; on the contrary, we propose such rank aggrega-
tion that can significantly reduce the size of the candidate set in comparison with
a single index while preserving the same answer quality. Recently, the C2LSH
technique [14] proposed a way to combine LSH functions resulting in a partially
ranked candidate set; this work aims mainly at vector spaces with known fami-
lies of LSH functions and it does not assume any pre-ranking of candidate sets
from individual indexes.

Several recent works focused on reducing the size of data by source coding
(or quantization) of Euclidean vector spaces so that the codes fit into memory;
the authors use approaches like unsupervised machine learning [27], spectral
hashing [28], or product quantization [16] to define data objects codes together
with new ranking methods on these codes. A purely distance-based approach
was also proposed [18]; it uses k pairs of pivots, that divide the space by k
generalized hyperplanes, and each i-th bit of the k-bit code of x ∈ D reflects
on which side of the i-th hyperplane object x lies. From a high perspective, this
approach is similar to ours, but we propose techniques for indexing and ranking
and corresponding non-exhaustive search algorithm.

3 PPP-Encoding and Ranking

In this section, we introduce the principal ideas of our approach: (1) the PPP-
Encoding of the data (Sect. 3.1), (2) ranking within individual pivot spaces
(Sect. 3.2), and (3) aggregation of these rankings which defines the overall rank-
ing of the PPP-Codes (Sect. 3.3). Section 3.4 contains basic effectiveness evalua-
tion of the proposed ranking.
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Fig. 1. Recursive Voronoi partitioning (k = 4, l = 2) and query-pivot distances.

3.1 Encoding by Pivot Permutation Prefixes

For a data domain D with distance function δ, object x ∈ D and a set of k pivots
P = {p1, . . . , pk}, the pivot permutation (PP) Πx is defined as in Definition 2.
In our technique, we do not use the full PP but only its prefix, i.e. the ordered
list of a given number of nearest pivots:

Notation: Having pivots {p1, . . . , pk} and PP Πx, x ∈ D, we denote Πx(1..l)
the pivot permutation prefix (PPP) of length l: 1 ≤ l ≤ k, specifically

Πx(1..l) = 〈Πx(1),Πx(2), . . . ,Πx(l)〉. (1)

The pivot permutation prefixes have a geometrical interpretation important
for the similarity search – the PPPs actually define recursive Voronoi partitioning
of the metric space [26]. Let us explain this principle on an example in Euclidean
plane with four pivots p1, . . . , p4 in Fig. 1; the thick solid lines depict borders
between standard Voronoi cells – sets of points x ∈ D for which specific pivot
pi is the closest one: Πx(1) = i. The dashed lines further partition these cells
using other pivots; these sub-areas are labeled C〈i,j〉 and they cover all objects
for which Πx(1) = i and Πx(2) = j, thus Πx(1..2) = 〈i, j〉.
Notation: For an l-tuple 〈i1, . . . , il〉, we denote C〈i1,...,il〉 the Voronoi cell of
level l that contains all objects x ∈ D for which Πx(1..l) = 〈i1, . . . , il〉.

The pivot permutation prefixes (PPPs) Πx(1..l) form the base of the pro-
posed PPP-Encoding, which is composed of several PPPs for each object. Thus,
let us further assume having λ independent sets of k pivots P 1, P 2, . . . , Pλ,
P j = {pj

1, . . . , p
j
k}. For any x ∈ D, each of these sets generates a PP Πj

x ,
j ∈ {1, . . . , λ} and we can define the PPP-Encoding as follows.
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Table 1. Notation used throughout this paper.

Symbol Definition

(D, δ) the data domain and metric distance δ : D × D → R

X the set of indexed data objects X ⊆ D; |X | = n

k number of pivots (reference objects) in one pivot space

Λ = {1, . . . , λ} Λ is the index set of λ independent pivot spaces

P j = {pj
1, . . . , p

j
k} the j-th set of k pivots from D; j ∈ Λ

Πj
x pivot permutation of (1 . . . k) ordering P j by distance from x ∈ D

Πj
x(1..l) the j-th PP prefix of length l: Πj

x(1..l) = 〈Πj
x(1), . . . , Πj

x(l)〉
PPP1..λ

l (x) the PPP-Code of x ∈ D: PPP1..λ
l (x) = 〈Π1

x(1..l), . . . , Πλ
x (1..l)〉

Cj
〈i1,...,il〉 Voronoi cell of level l containing x ∈ X s.t. Πj

x(1..l) = 〈i1, . . . , il〉
d, dK , dΔ measures ranking pivot permutation prefixes (PPPs) d(q, Π(1..l))

ψj
q : X → N the j-th ranking of objects according to Q ∈ D generated by d

Ψp(q, x) the overall rank of x by the p-percentile of its ψj
q(x) ranks, j ∈ Λ

R size of candidate set – number of objects x refined by δ(q, x)

Definition 3: Having λ sets of k pivots and parameter l : 1 ≤ l ≤ k, we define
PPP-Code of object x ∈ D as a λ-tuple

PPP1..λ
l (x) = 〈Π1

x(1..l), . . . ,Πλ
x (1..l)〉. (2)

Individual components (PPPs) of the PPP-Code will be also denoted as
PPP j

l (x) = Πj
x(1..l), j ∈ {1, . . . , λ}; to shorten the notation, we set Λ =

{1, . . . , λ}. These and other symbols used throughout this paper are summa-
rized in Table 1.

The PPP-Encoding is exemplified in Fig. 2 where each of the λ = 2 pivot
sets defines an independent Voronoi partitioning of the data space. Every object
x ∈ X is encoded by PPP j

l (x) = Πj
x(1..l), j ∈ Λ. Object x5 is depicted in both

diagrams and, for instance, within the first partitioning, the closest pivots from
x5 are p17, p

1
4, p

1
8, p

1
5, which corresponds to PPP1

4(x5) = Π1
x5

(1..4) = 〈7, 4, 8, 5〉.

3.2 Ranking of Pivot Permutation Prefixes

Having objects from X encoded as described above, we want to find ranking
mechanism of PPP1..λ

l (x), x ∈ X with respect to query q ∈ D, which would be
an approximation of the ranking generated by distances δ(q, x). To achieve this,
we first define rankings on components of PPP1..λ

l (x), prefixes Πx(1..l). In the
following, we define and compare two such ranking measures dK and dΔ.

Measures Based Purely on Permutations. A natural approach is to project
the query object q to the same space as the data objects by encoding q into its
PP Πq (or prefix Πq(1..l)) and to calculate “distance” between Πq and Πx(1..l).
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Fig. 2. Principles of encoding data objects as PPP-Codes PPP1..λ
l (x) with two pivot

sets (λ = 2) each with eight pivots (k = 8) and using pivot permutation prefixes of
length four (l = 4). Each object x is encoded by PPP1..2

4 (x) = 〈Π1
x(1..4), Π2

x(1..4)〉;
the figure shows example of object x5: PPP

1..2
4 (x5) = 〈〈7, 4, 8, 5〉, 〈7, 8, 4, 6〉〉.

There are several standard ways to measure difference between full permutations
that were also used in similarity search: Spearman Footrule, Spearman Rho or
Kendall Tau measure [2,7]; the last mentioned seems to slightly outperform the
others [7]. The Kendall Tau between permutations Πx and Πy defines for every
pair {i, j}, 0 ≤ i, j ≤ k: Ki,j(Πx,Πy) = 0 if indexes i, j are in Πx in the same
order as in Πy; otherwise, we set Ki,j(Πx,Πy) = 1. The Kendall Tau is then
defined as [12]:

K(Πx,Πy) =
∑

1≤i,j≤k

Ki,j(Πx,Πy).

This measure can be generalized in several ways to work with permutation pre-
fixes, where not all Ki,j are known [12]. We propose a measure dK which cal-
culates a distance between the query object q ∈ D and Π(1..l) as minimum of
Kendall Tau distances between the full permutation Πq and all permutations Π ′

on {1, . . . , k} that have Π(1..l) as prefix [12]:

dK(q,Π(1..l)) = min
Π′:Π′(1..l)=Π(1..l)

K(Πq,Π
′). (3)

The accuracy of this measure with respect to the original distance δ is evaluated
later in this section. There exists an algorithm for computation of the full Kendall
Tau with O(k · log k) complexity [8]. The same idea can be used to design an
O(l · log l) algorithm for dK on permutation prefixes.

Measures that Use Query-Pivot Distances. The query object q ∈ D in
the ranking function can be represented more richly than by permutation Πq,
specifically, we can use directly the query-pivot distances δ(q, p1), . . . , δ(q, pk);
see Fig. 1, which depicts such distances.

If we consider only the first-level Voronoi cells (l = 1), thus only the closest
pivots Πx(1), we can approximate the distance between a query and objects in
cell CΠ(1) by distance δ(q, pΠ(1)) (this idea was described in [16]); for instance in
Fig. 1, distance between q and cell C〈4〉 (delimited by the thick solid lines around



68 D. Novak and P. Zezula

level l=1
level l=2
level l=4
level l=6

m
ea

n 
sq

ua
re

d 
er

ro
r 

of
Δd

 0

 0.05

 0.1

 0.15

 0.2

 16  32  64  128  256
number of pivots (k)

 0

 0.05

 0.1

 0.15

 0.2

 16  32  64  128  256
number of pivots (k)

Fig. 3. Mean squared error of dΔ (4) with c = 0.75 on 1M CoPhIR dataset.

pivot p4) would be δ(q, p4). Having the cells further partitioned according to
other pivots, we propose to shift the distance estimation towards the next pivots
that define cell CΠ(1..l); influence of these next pivots should be smaller than of
the first one. For instance, distances between q and cells C〈4,1〉, C〈4,3〉 would be
(weighted) averages between d(q, p4) and d(q, p1), d(q, p3), respectively, which
should make the estimations more precise.

Formally, we propose to measure the distance between q and Π(1..l) as a
weighted arithmetic mean of distances between q and the l pivots from Π(1..l):

dΔ(q,Π(1..l)) =
(∑l

i=1
ci−1δ(q, pΠ(i))

)
/
∑l

i=1
ci−1, (4)

where c is parameter 0 < c ≤ 1 to control the influence of the next pivots;
for now, we set c = 0.75 and its influence is properly evaluated in Sect. 5.1.
Naturally, this heuristic does not improve the distance estimation in all cases,
but we consider the average influence. We measure the precision of the distance
estimator as mean squared error [16] defined as

MSDE(dΔ)=
∫∫

(δ(q, x) − dΔ(q,Πx(1..l)))2p(x)dx p(q)dq

where p(·) is the probability distribution function of the data domain D, q, x ∈ D.
Figure 3 depicts the values of MSDE(dΔ) measured by Monte-Carlo sampling
(averages over a large set of samples) on the CoPhIR dataset (see Sect. 5 for
description of the dataset). The graph shows development of MSDE as the space
partitioning is refined by growing number of pivots k and by increasing PPP
length l used by dΔ. We can see that levels l > 1 can improve MSDE so that k
would have to be multiplied to achieve such MSDE values for l = 1. The same
trends were observed for all other datasets (Sect. 5).

Comparison of the PPP Ranking Measures. Let us briefly compare effec-
tiveness of the measures dK (3) and dΔ (4) proposed in the previous two subsec-
tions. In the following, d will stand for any dissimilarity measure between q ∈ D
and Π(1..l) such as dK or dΔ. Such measures d together with q ∈ D naturally



PPP-Codes for Large-Scale Similarity Searching 69

Δd
Κd

Κd
Δd
Κd
Δd

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  0.2  0.4  0.6  0.8  1

10
−

N
N

 r
ec

al
l [

%
]

accessed and refined objects [% of database]

k=64, l=4
k=64, l=4

k=128, l=6
k=128, l=6
k=256, l=8
k=256, l=8
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ordered according to dK and dΔ; k = 64, 128, 256, l = 4, 6, 8.

induce ranking ψq of the indexed set X according to growing distance from q.
Formally, ranking ψq : X → N is the smallest numbering of set X that fulfills
the following condition for all X, y ∈ X :

d(q,Πx(1..l)) ≤ d(q,Πy(1..l)) ⇒ ψq(x) ≤ ψq(y). (5)

We define the effectiveness of measure d as average recall of K-NN if the
dataset X is accessed in the order ψq generated by d. We have compared this
effectiveness on several datasets and with various settings; Fig. 4 shows graphs of
the 10-NN recall on a 1M subset of the CoPhIR dataset (see Sect. 5) as up to 1 %
of this set is accessed according to dK and dΔ with several selected parameters
of k and l.

These graphs well illustrate the generally observed trend: dΔ is slightly bet-
ter for smaller values of k and l (and also for very small numbers of accessed
objects) while for extremely fine-grained space partitioning, both measures have
practically the same effectiveness. These results are in compliance with previous
works [20]. Regarding the lower complexity of dΔ (Θ(l)) in comparison to dK

(O(l · log l)), we choose dΔ as the measure used in the rest of this paper.

3.3 Aggregation of Multiple Rankings

At this point, we know how to rank objects x ∈ X with respect to q ∈ D within
one pivot space. As above, we assume that this ranking ψq(x) (5) is induced by
measure d such as dK (3) or dΔ (4) applied on q and PPPs Πx(1..l). Let us
now assume that x is encoded by PPP1..λ

l (x) codes composed of λ such PPPs
and that we have a mechanism able to provide λ sorted lists of objects x ∈ X
generated by measure d between q and Πj

x(1..l), j ∈ Λ. Then, ψj
q(x) denotes the

position of x in the j-th ranking, j ∈ Λ. Figure 5 (top part) shows an example
of five rankings ψj

q , j ∈ {1, . . . , 5}.
These rankings are partial – objects with the same PPP Π(1..l) have the

same rank (objects from the same recursive Voronoi cell). This is the main
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Fig. 5. Rank aggregation by Ψp of object x ∈ X , λ = 5, p = 0.5.

source of inaccuracy of these rankings because, in complex data spaces, the
Voronoi cells typically span relatively large areas and thus the top positions
of ψq contain both objects close to q and more distant ones. Having several
independent partitionings, the query-relevant objects should be at top positions
of most of the rankings while the “noise objects” should vary because the Voronoi
cells are of different shapes. The objective of our rank aggregation is to filter
out these noise objects. Namely, we propose to assign each object x ∈ X the
p-percentile of its ranks, 0 ≤ p ≤ 1:

Ψp(q, x) = percentilep(ψ1
q (x), ψ2

q (x), . . . , ψλ
q (x)). (6)

For instance, Ψ0.5 assigns median of the ranks; see Fig. 5 for an example – posi-
tions of object x in individual rankings are: 1, 3, 1, unknown, 4 and median of
these ranks is Ψ0.5(q, x) = 3. This principle was used by Fagin et al. [13] for a
different purpose and they propose MedRank algorithm for efficient calculation
of Ψp. This algorithm does not require to explicitly find out all ranks of a specific
object, but only �pλ first (best) ranks (this is explicit in Fig. 5). Details and
properties of the MedRank algorithm [13] are provided in Sect. 4.

Now, we would like to show that the Ψp aggregation actually improves the
ranking in comparison with a single ψq ranking by increasing the probability
that objects close to q will be assigned top positions (and vice versa). Also, we
would like to find theoretically suitable values of p.

Let x be an object from the dataset X and pz be the probability such that
pz = Pr[ψq(x) ≤ z], where z ≥ 1 is a position in ψq ranking. Having λ indepen-
dent rankings ψj

q(x), j ∈ Λ, we want to determine probability Pr[Ψp(q, x) ≤ z]
with respect to pz. Let X be a random variable representing the number of ψj

q

ranks of x that are smaller than z: |{ψj
q(x) ≤ z, j ∈ Λ}|. Assuming that the

probability distribution of pz is the same for each of ψj
q(x), we get

Pr[X = j] =
(

λ

j

)
· (pz)j · (1 − pz)λ−j .
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Fig. 6. Development of Pr[Ψp(q, x) ≤ z] for λ = 8, selected pz and variable p.

In order to have Ψp(q, x) ≤ z, at least �pλ positions of x must be ≤ z and thus

Pr[Ψp(q, x) ≤ z] =
λ∑

j=�pλ	
Pr[X = j].

for the variable p and selected values of pz (λ = 8). We can see that the aggre-
gation increases the differences between individual levels of pz (for non-extreme
p values); e.g. for p = 0.5, probabilities pz = 0.1 and pz = 0.3 are transformed
to lower probability values whereas pz = 0.5 and pz = 0.7 are pushed to higher
probabilities. The probability pz = Pr[ψq(x) ≤ z] naturally grows with z but,
more importantly, we assume that pz is higher for objects close to q then for
distant ones. Because ψj

q are generated by distance between q and Voronoi cells
(5) and these cells may be large, there may be many distant objects that appear
at top positions of individual ψq although having low probability pz. The rank
aggregation Ψp(q, x) for non-extreme p values can push away such objects and
increase the probability that top ranks are assigned only to objects close to q
(Fig. 6).

Table 2. Sequential scan experiment parameters.

Parameter Description Default

λ number of pivot spaces 4

k pivot number in each space 128

l length of PPP 8

p percentile used in Ψp 0.75

R candidate set size 100 (0.01 %)
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Fig. 7. 1NN recall within the top R = 100 objects (left) and average probe depth of
each ψj

q , j ∈ Λ (right) using rank aggregation Ψp for l = 8, λ = 4 and various number
of pivots k and percentile p.

3.4 Accuracy of the PPP-Encoding and Ranking

Let us evaluate the basic accuracy of the K-NN search if the objects are encoded
by PPP-Codes and ranked by Ψp(q, x). Results in this section are independent
of any indexing and searching algorithms, namely, we use the sequential scan
and focus entirely on the trends and mutual influence of several parameters
summarized in Table 2; all results are on the 1M CoPhIR dataset (see Sect. 5).
We measure the accuracy as K-NN recall within the top R candidate objects
x ∈ X identified by Ψp(q, x). In this section, we present results of 1-NN recall,
which has the same trend as other values of K. All results are averaged over
1,000 randomly selected queries outside the dataset and all pivot sets P j were
selected independently at random from the dataset.

Graphs in Fig. 7 focus on the influence of percentile p. The left graph shows
average 1-NN recall within the top R = 100 objects for variable p and selected
k. We can see that, as expected, the higher k the better and, more importantly,
the peak of the results is at p = 0.75 (just for clarification, for λ = 4, Ψ0.75(q, x)
is equal to the third ψj

q(x) rank of x out of four). These measurements are in
compliance with the expectations discussed in the previous section.

The right graph in Fig. 7 shows the probe depth [13] – the average number of
objects that had to be accessed in each ranking ψj

q(x), j ∈ Λ in order to discover
R = 100 objects in at least �pλ rankings (and thus determine their Ψp(q, x)).
Naturally, the probe depth grows with p, especially for p ≥ 0.75. We can also see
that finer space partitioning (higher k) results in a lower probe depth because
the Voronoi cells are smaller and thus objects close to q appear in �pλ rankings
sooner. The general lessons learned are: the more pivots the better (for both
recall and efficiency), ideal percentile seems to be around 0.5–0.75, which is in
compliance with results of Fagin et al. [13].

In general, we can assume that accuracy of the ranking will grow with increas-
ing values of k, l, and λ, but these parameters influence the size of the PPP-code
representation of an object:
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Fig. 8. 1NN recall within the top R = 100 objects ranked by Ψ0.75 for selected λ and
various bit length of PPP1..λ

l (x) influenced either by number of pivots k (left, l = 8)
or by prefix length l (right, k = 128).

size of PPP1..λ
l (x) = λ · l · �log2 k bits. (7)

Figure 8 shows recall for the variable bit size of PPP1..λ
l codes for selected values

of λ. In the left graph, the prefix length is fixed at l = 8 and the code size is
influenced by increasing number of pivots k; we can see that higher values of
recall can be achieved only with larger λ but, on the other hand, considering the
PPP-Code lengths, it is more convenient to increase k than λ. The right graph
presents a similar experiment, only here k = 128 and parameter l is increased; we
can see that it pays off to increase l than to increase λ. The recall improvement
achieved by increasing k and l is practically the same (with respect to PPP-Code
size); higher k means more query-pivot distance computations.

The graph in Fig. 9 adopts an inverse point of view – it answers the question
how the aggregation approach reduces the candidate set size R necessary to
achieve given recall (80 %, in this case); please, notice the logarithmic scales. The
small numbers in the graph show the reduction factor with respect to λ = 1; we
can see that R is reduced down to about 5 % using λ = 8.

4 Indexing of PPP-Codes and Search Algorithm

So far, we have proposed a way to encode metric objects by PPP-Codes and
to rank these codes according to given query object. In this section, we propose
(1) an index to be built on a PPP-encoded dataset that can decrease the memory
footprint of the PPP-Codes, and (2) an efficient non-exhaustive search algorithm.

4.1 Dynamic PPP-Tree Index

The PPP1..λ
l (x) code is composed of λ PPPs Πx(1..l). Given a set of these

l-tuples, some of them would share common prefixes of variable lengths. In order
to spare memory, we propose a PPP-Tree index – a dynamic trie structure that
would keep the l′-prefixes of the PPP-Codes only once for all objects sharing
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the same l′-prefix, l′ ≤ l. This PPP-Tree index is to be built for each of the λ
pivot spaces. Similar indexes were used in PP-Index [11] and in M-Index [20],
but without the objective of memory representation reduction.

Schema of the PPP-Tree index is sketched in Fig. 10. Intuitively, let i1, . . . , il′
be indexes on a path from the root of the tree to a certain node at level l′. This
node and its subtree contains all objects x ∈ X for which Πx(1..l′) = 〈i1, . . . , il′〉.
This node also corresponds to Voronoi cell C〈i1,...,il′ 〉 (see Sect. 3.1). An internal
node at level l′ < l is composed of these entries:

〈il′+1, ptr〉, where il′+1 ∈ {1, . . . , k} \ {i1, . . . , il′};

pointer ptr points at subtree containing objects with PPP 〈i1, . . . , il′ , il′+1〉; pos-
sible values of index il′+1 are limited because the indexes must be unique within
a permutation. Let us recall that Πx(l′ +1..l) denotes the part of the pivot
permutation of object x between positions l′ +1 and l; further, let ⊕ denote
concatenation of two tuples. A leaf node at level l′ is composed of entries

〈Πx(l′+1..l), IDx〉,

where IDx is the unique identifier of object x ∈ X for which Πx(1..l) =
〈i1, . . . , il′〉 ⊕ Πx(l′+1..l). Entries in leaves at level l′ = l degenerate to 〈〈〉, IDx〉
where Πx(1..l) = 〈i1, . . . , il〉.

1 2 k3 ...

2 k3 ... 1 k3 ...Π(2)=

Π(1)=

3 k4 ...Π(3)= −1k

−1k

Π l  (4..  ),ID Π l  (4..  ),ID Π l  (4..  ),ID Π l  (4..  ),ID

Π l  (3..  ),ID

...

1 3 ...

1 2 ...

... ... ...

...

Fig. 10. Schema of a single dynamic PPP-Tree.
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The key to memory efficiency of such a structure is its dynamic leveling.
Splitting a leaf node with n′ objects at level l′, 1 ≤ l′ < l spares n′ · �log2 k
bits because the memory representation of Πx(l′+1..l) would be shorter by one
index if these n′ objects are moved to level l′ + 1. On the other hand, the split
creates new leaves with certain overhead; thus we propose to split the leaf iff

n′ · �log2 k > b · NodeOverhead

where b is potential branching of the leaf, b ≤ n′ and b ≤ k − l′ + 1. The actual
value of b can be either precisely measured for each leaf or estimated based on
the statistics of average branching at level l′. Value of NodeOverhead depends
on implementation details.

So far, we have described a single PPP-Tree (as if λ = 1). Having λ > 1,
we propose to build a separate PPP-Tree for each j ∈ Λ. In this case, an object
x in all λ trees is “connected” by its IDx stored in the leaf cells of the trees.
This generates additional memory overhead per data object in comparison with
sequential scan, because λ − 1 additional IDs need to be stored. We consider
that an identifier ID has �log2 n bits for dataset |X | = n.

4.2 Non-Exhaustive Search Algorithm

In Sect. 3.3, we have proposed a way to aggregate λ rankings of indexed objects X
and we have briefly mentioned the MedRank algorithm [13]. Having the PPP-
Tree indexes as described above, we can now propose the PPPRank algorithm
that does this aggregation effectively. The main procedure (Algorithm 1) follows
the idea of MedRank; the PPP-Tree structures are used for effective generation
of individual λ rankings (subroutine GetNextIDs).

Given a query object q ∈ D, percentile 0 ≤ p ≤ 1 and number R, PPPRank
returns IDs of R indexed objects x ∈ X with the lowest value of Ψp(q, x); please,
recall that this aggregated rank is defined as the �pλ-th best position from
ψj

q(x) ranks, j ∈ Λ (6). In every iteration (lines 4–9), the algorithm accesses
next objects of all rankings (routine GetNextIDs(q, j), j ∈ Λ); set S carries
the already seen objects x together with the number of their occurrences in the
rankings (frequencies fx). GetNextIDs(q, j) always returns next object(s) with
the best ψj

q rank and thus, when an object x achieves frequency fx ≥ �pλ, it is
guaranteed that any object y achieving fy ≥ �pλ in a subsequent iteration of
PPPRank must have higher rank Ψp(q, y) > Ψp(q, x) [13].

Idea of the GetNextIDs(q, j) subroutine is to traverse the j-th PPP-Tree
using a priority queue Q. As we know, each PPP-Tree node corresponds to
Voronoi cell C〈i1,...,il′ 〉, l′ ≤ l; the queue Q is always ordered by d(q, 〈i1, . . . , il′〉)
(where d is the measure that generates ranking ψj

q (5)). In every iteration, the
head of Q is processed; if head is a leaf node, its objects identifiers IDx are
inserted into Q ranked by d(q,Πj

x(1..l)). When object identifiers appear at the
head of Q, they are returned as “next objects in the j-th ranking”. Algorithm 2
formalizes this routine: Q is composed of triples 〈dist, 〈i1, . . . , il′〉, 〉 where the
third component is either a node N or an object ID. Initially, Q contains the
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Algorithm 1. PPPRank(q,p, R)
Input: q ∈ D; percentile p; candidate set size R
Output: IDs of R objects x ∈ X with lowest Ψp(q, x)
// S is a set of ‘‘seen objects’’: IDx with their frequencies fx

1 set S ← ∅ // A is answer list of object IDs

2 list A ← 〈〉
3 while |A| < R do
4 foreach j ∈ Λ do
5 foreach IDx in GetNextIDs(q, j) do
6 if IDx 
∈ S then
7 add IDx to S and
8 set fx = 1

9 else
10 increment fx

11 foreach IDx in S such that fx ≥ �pλ do
12 move IDx from S to A

13 return A

root of the j-th PPP-Tree (line 2) and, in every step, the tree node at the head
of Q (line 4) is decomposed and either its successors are inserted into Q (if N is
internal, line 8) or the object IDs are put into Q (if N is a leaf, line 12). In both
cases, the PP prefix of the successor node (or object) is reconstructed from the
PP prefix of node N and information from the node entry. If object IDs appear
at the head of Q, the top IDs with the same distance d(q,Πj

x(1..l)) are returned
(lines 13–18); these are IDs of objects with the same j-th rank (see Fig. 5).

Symbol d stands for a measure between q ∈ D and Π(1..l) such as dK (3) or
dΔ (4). The following property is key to correctness of Algorithm 2: For any PP
Π and l′, 1 ≤ l′ < l:

d(q,Π(1..l′)) ≤ d(q,Π(1..l′+1)). (8)

This property is fulfilled by dK (3) but not by dΔ (4); thus, we slightly mod-
ify Eq. (4) to calculate weighted sum of the query-pivot distances (instead of
weighted average):

dΔ(q,Π(1..l)) =
∑l

i=1
ci−1δ(q, pΠ(i)). (4′)

See Appendix I for correctness of Algorithm 2.

Complexity of GetNextIDs. This routine strongly influences efficiency of the
whole PPPRank algorithm. The amortized complexity of the nested loops in
Algorithm 2 depends on the number of items inserted to the queue Q; the queue
can be implemented as a binary heap and thus the whole complexity would
be O(|Q| · log |Q|). In an ideal case, Q would contain only the data IDs to
be returned and the tree nodes on the path from the root to these data IDs.
As Q is ordered by the d-distance to individual nodes, this case would require
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Algorithm 2. GetNextIDs(q, j)
Input: query q ∈ D, index j ∈ Λ
Output: IDs of the next objects in j-th ranking

1 calculate δ(q, pj
i ), ∀i ∈ {1, . . . , k}

// Q of triples 〈dist, 〈i1, .., il′〉, 〉 ordered by dist
2 priority queue Q ← {〈0.0, 〈〉, root of j-th PPP-Tree〉}

// end of INITIALIZATION (do once for each q, j)
3 while Q.head.3rd component is a tree node do
4 〈dist, 〈i1, . . . , il′〉,N 〉 ← Q.dequeue()
5 if N is an internal node then
6 foreach entry 〈il′+1, ptr〉 in node N do
7 Πptr ← 〈i1, . . . , il′ , il′+1〉
8 Q.enqueue(〈d(q, Πptr ), Πptr , deref (ptr)〉)
9 else

10 foreach entry 〈Πj
x(l′+1..l), IDx〉 in node N do

11 Πj
x(1..l) = 〈i1, . . . , il′〉 ⊕ Πj

x(l′+1..l)

12 Q.enqueue(〈d(q, Πj
x(1..l)), Πj

x(1..l), IDx〉)
// return IDs of the top objects x in the queue

13 A ← ∅
14 repeat
15 〈dx, Πj

x(1..l), IDx〉 ← Q.dequeue()
16 A ← A ∪ {IDx}
17 until Q.head.3rd comp is node ∨ Q.head.1st comp > dx

18 return A

that all other tree nodes have distances larger than the d-distances to the
returned IDs. Consequently, the length of Q depends on “tightness” of Eq. (8) –
difference between the d-distance of an internal cell and the d-distance of its suc-
cessors. See Appendix II for three algorithm optimizations that help to shorten
the Q.

Search Process Review. Schema in Fig. 11 reviews the whole search process. Given
a K-NN(q) query, the first step is calculating distances between q and all piv-
ots: δ(q, pj

i ), i ∈ {1, . . . , k}, j ∈ Λ. This is a necessary initialization of the
GetNextIDs(q, j) procedures (steps 3), which generate the continual rankings
ψj

q that are consumed by the main PPPRank(q,p, R) algorithm (step 2). The
candidate set of R objects x is retrieved from the disk (step 4) and refined by
calculating δ(q, x) (step 5). The whole process can be parallelized in the follow-
ing way: The λ steps 3 run fully in parallel and step 2 continuously reads their
results; in this way, the full ranking Ψp(q, x) is generated item-by-item and is
immediately consumed by steps 4 and then 5.

5 Efficiency Evaluation

We evaluate efficiency of our approach on three datasets; two of them are real-life,
and the third one is artificially created to have fully controlled test conditions:
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Fig. 11. Search pipeline using the PPP-Encoding and PPPRank algorithm.

CoPhIR 100 million objects each consisting of five MPEG-7 global visual
descriptors extracted from an image [6]. The distance function δ is a weighted
sum of partial descriptor distances [3]; each object consumes 590 B on the
disk (59 GB for 100M objects) and the computation of δ takes around
0.01 ms;

SQFD 1 million visual feature signatures each consisting of, on average, 60 clus-
ter centroids in a 7-dimensional space; each cluster has a weight and such
signatures are compared by Signature Quadratic Form Distance (SQFD) [5]
which is a cheaper alternative to Earth Movers Distance. Each object occu-
pies around 1.8 kB on disk and the SQFD distance takes around 0.5 ms;

ADJUSTABLE 10 million float vectors uniformly generated from [0, 1]32 com-
pared by Euclidean distance; the disk size of each object can be artificially
set from 512 B to 4096 B (5 GB to 40 GB for 10M objects) and time of δ
computation can be tuned between 0.001 ms and 1 ms.

As a result of the analysis reported in Sect. 3.4, the indexes use these para-
meters: l = 8, λ = 5, p = 0.5 (3 out of 5); the CoPhIR index uses k = 256,
384 and 512, SQFD index has k = 64, and the ADJUSTABLE index k = 128.
The pivot sets P j were selected independently at random from the datasets.
As in Sect. 3.4, we use dΔ (4′) to generate individual ψj

q . The presented results
are an average over 1,000 random K-NN(q) queries. The efficiency is gauged by
standard measures from similarity search field [23,29]:

I/O costs number of 4 kB block reads; in our approach, it is practically equal
to the candidate set size R (step 4);

distance computations (DC) number of evaluations of distance δ; equal to
λ · k + R (steps 1 and 5);

search time the wall-clock time of the search process running parallel as
described above.

All experiments were conducted on a machine with 8-core Intel Xeon @ 2.0 GHz,
12 GB of RAM and a SATA SSD disk (CrystalDiskMark benchmark speed:
sequential read 440 MB/s, random 4K QD32 read 270 MB/s); for comparison,
we also present some results on the following HDD configuration: two 10,000 rpm
magnetic disks in RAID 1 array (CrystalDiskMark sequential read 150 MB/s).
All techniques used the full memory for their index and for disk caching; caches
were cleared before every batch of 1,000 queries. The implementation is in Java
using the MESSIF framework [4].
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Table 3. Size of PPP-Code representation without index (sequential scan) and with
the dynamic PPP-Tree Index.

Single Sequential Single Memory

Dataset k object + ID scan object + IDs index

(no index) occupation (with index) occupation

SQFD 64 240 + 20 b 32 MB 161 + 100 b 32.5 MB

ADJUSTABLE 128 280 + 24 b 365 MB 217 + 120 b 403 MB

CoPhIR 256 320 + 27 b 4.2 GB 205 + 135 b 4.0 GB

384 360 + 27 b 4.6 GB 245 + 135 b 4.5 GB

512 360 + 27 b 4.6 GB 258 + 135 b 4.6 GB

5.1 PPP-Tree and PPPRank Overhead

Our approach encodes each object by a PPP-Code and a PPP-Tree index is
built on these codes. Table 3 shows the sizes of this representation for individual
datasets. The third column shows the size of the PPP-Code representation (7)
plus the object ID size (unique within given dataset); the fourth column is the
overall size of the sequential scan built on these PPP-Codes for given dataset.
The next column shows PPP-Code sizes as reduced by PPP-Tree – in this case,
the object IDs are stored λ-times (see Sect. 4.1); the last column shows the
overall sizes of the PPP-Tree indexes. We can see that the memory reduction by
PPP-Trees and increase by multiple ID storage are practically equal.

From now on, let us focus on the search efficiency. As mentioned above, the
I/O costs and the number of δ computations (DC) are generated in steps 1, 4
and 5 of the search and can be directly derived from the algorithm parameters
k, λ and R. Let us have a closer look at the costs of the PPPRank algorithm
itself – steps 2 and 3. Complexity of the aggregation step 2 depends directly on
the probe depth, which was already mentioned in Sect. 3.4.

Figure 12 shows statistics of the PPPRank algorithm on the full 100M
CoPhIR dataset. The left graph shows the development of the probe depth
(left axis) and the 10-NN recall (right axis) with respect to the weight c from
the weighted sum dΔ (4′). As we know, this weight influences individual ψj

q(x),
j ∈ Λ and thus the result quality – we can see that the optimal recall is achieved
around c = 0.8. It is interesting that the recall is in a perfect inverse correlation
with the probe depth – if the PPPRank needs to read fewer objects from indi-
vidual ψj

q(x) rankings, then the output objects are closer to q. This confirms the
idea behind our aggregation approach.

The right graph in Fig. 12 shows length of the queue Q (left axis) that
determines complexity of GetNextIDs. As analyzed in Sect. 4.2, the Q length
depends on tightness of Eq. (8), which is directly influenced by parameter c; the
response time (right axis) depends on the probe depth and on Q length. Consid-
ering these results, we further fixate c = 0.75 as a compromise between answer
quality and efficiency.
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Fig. 13. Recall and search time on 100M CoPhIR as the candidate set grows; k = 512.

5.2 The Overall Efficiency

Naturally, the quality of the search result comes at the expense of higher search
costs. In Sect. 3.4, we have studied influence of the code size (fineness of the
partitioning adjusted at the building phase) to the answer recall, but the main
parameter to increase the recall at query time is R (the size of the candidate
set). Figure 13 shows development of recall (left axis) and search time (right
axis) with respect to R on the CoPhIR dataset (k = 512). We can see that our
approach can achieve very high recall while accessing thousands of objects out
of 100M. The recall grows very steeply in the beginning, achieving about 90 %
for 1-NN and 10-NN around R = 5000; the time grows practically linearly.

Table 4 presents more measurements on the CoPhIR dataset. We have
selected two values of R = 1000 and R = 5000 (10-NN recall 64 % and 84 %,
respectively) and we present the I/O costs, computational costs, and the over-
all search times on both SSD and HDD disks. All these results should be put
in context – comparison with other approaches. At this point, let us mention
metric structure M-Index [20], which is based on similar fundamentals as our
approach: it computes a PPP for each object, maintains an index structure
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Table 4. Results on 100M CoPhIR (k = 512) and SQFD (k = 64) with PPP-Codes
and M-Index (512 and 64 pivots).

Table 5. Search times [ms] of PPP-Codes / M-Index on ADJUSTABLE with 10-NN
recall 85 %. PPP-Codes: k = 128, R = 1000, M-Index: 128 pivots, R = 400000.

similar to our single PPP-Tree (Fig. 10), and it accesses the leaf nodes based on
a scoring function similar to dΔ; our M-Index implementation shares the core
with the PPP-Codes and it stores the data in continuous disk chunks for efficient
reading. Comparison of M-Index and PPP-Codes shows precisely the gain and
the overhead of PPPRank algorithm, which aggregates λ partitionings.

Looking at Table 4, we can see that M-Index with 512 pivots needs to
access and refine R = 110000 or R = 400000 objects to achieve 65 % or 85 %
10-NN recall, respectively; the I/O costs and number of distance computations
correspond with R. According to these measures, the PPP-Codes are one or two
orders of magnitude more efficient than M-Index; looking at the search times, the
dominance is not that significant because of the PPPRank algorithm overhead.
Please, note that the M-Index search algorithm is also parallel – both reading
of the data and refinement are parallelized [20].

In order to clearly uncover the conditions under which the PPP-Codes over-
head is worth the gain of reduced I/O and DC costs, we have introduced the
ADJUSTABLE dataset. Table 5 shows the search times of PPP-Codes/M-Index
while the object disk size and the DC time are adjusted. The results are measured
on 10-NN recall level of 85 %, which is achieved at R = 1000 and R = 400000
for the PPP-Codes and M-Index, respectively; please, note that these values
of R mean even more dramatic candidate set reduction observed for this uni-
formly distributed dataset than in case of CoPhIR. Looking at the search times
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at Table 5, we can see that for the smallest objects and fastest distance, the
M-Index beats PPP-Codes but as values of these two variables grow, the PPP-
Codes show their strength. We believe that this table well summarizes the overall
strength and costs of our approach.

The SQFD dataset is an example of data type belonging to the lower mid-
dle part of Table 5 – the signature objects occupy almost 2 kB and the SQFD
distance function takes 0.5 ms on average. A graph in Fig. 14 presents the PPP-
Codes K-NN recall and search times while increasing R (note that size of the
dataset is 1M and k = 64). We can see that the index achieves excellent results
between R = 500 and R = 1000 with search time under 300 ms. Again, let us
compare these results with M-Index with 64 pivots – the lower part of Table 4
shows that the PPP-Code aggregation can decrease the candidate set size R down
under 1/10 of the M-Index results (for comparable recall values). For this dataset,
we let the M-Index store precomputed object-pivot distances together with the
objects and use them at query time for distance computation filtering [20,29];
this significantly decreases its DC costs and search times, nevertheless, the times
of PPP-Codes are about 1/5 of the M-Index.
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Fig. 14. Recall and search time on 1M SQFD dataset as candidate set grows; k = 64.

These results can be summarized as follows: The proposed approach is worth-
while for data types with larger objects (over 512 B) or with the time-consuming
δ function (over 0.001 ms). For the two real-life datasets, our aggregation schema
cuts the I/O and δ computation costs down by one or two orders of magnitude.
The overall speed-up factor is about 1.5 for CoPhIR and 5 for the SQFD dataset.

5.3 Comparison with Other Approaches

Finally, let us compare our approach with selected relevant techniques for
approximate metric-based similarity search. We focus especially on those works
that present results on the full 100M CoPhIR dataset; the results on this dataset
are summarized in Table 6 and analyzed below.
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Table 6. Comparison with other approaches on 100M CoPhIR dataset.

Technique Overall # Cand. Recall I/O # of δ

of pivots set R 10-NN costs comp.

PPP-Codes 2,560 5,000 84 % 5,000 7,560

M-Index 512 400,000 85 % 59,000 400,512

M-Index (4 indexes) 960 300,000 84 % 44,000 301,000

PP-Index (8 indexes) 800 ∼333,000 86 % ∼49,000 ∼334,000

8,000 ∼52,000 82 % ∼7670 ∼60,000

MI-File 20,000 1,000 88 % ∼20,000 21,000

M-Index. We have described the M-Index [20] and compared it with our app-
roach in the previous section, because it shares the core idea with PPP-Codes
which makes these approaches well comparable. We have chosen the M-Index
also because its scoring function seems to be at least as good [20] as of other
PP-based approaches [7,11]. The first two lines in Table 6 summarize the results
of PPP-Codes and M-Index on 100M CoPhIR. The third line shows variant when
four M-Indexes are combined by a standard union of the candidate sets [23]; we
can see that this approach can reduce the candidate set size R but the PPP-
Codes still outperform it significantly.
PP-Index. The PP-Index [11] also uses prefixes of pivot permutations to partition
the data space; it builds a slightly different tree structure on the PPPs, identifies
query-relevant partitions using a different heuristic, and reads these candidate
objects in a disk-efficient way. In order to achieve high recall values, the PP-
Index also combines several independent indexes by merging their results [11];
Table 6 shows selected results – we can see that the values are slightly better
than those of M-Index, especially when a high number of pivots is used (8,000)
but the PPP-Codes access less than 1/10 of the PP-Index candidate set.
MI-File. The MI-File [1] creates inverted files according to pivot-permutations;
at query time, it determines the candidate set, reads it from the disk one-by-one
and refines it. Table 6 shows selected results on 100M CoPhIR; we can see that
extremely high number of pivots (20,000) resulted in even smaller candidate set
then in case of PPP-Codes. The I/O costs are higher due to the disk size of the
MI-File index and the computational costs are higher due to a high number of
query-pivot δ distance evaluations.

As mentioned above, structures like PP-Index [11] or M-Index [20,23] use
multiple independent partitionings and they union candidate sets (or answers)
from them; this is also well known from the LSH approach [15]. Let us compare
the rank aggregation proposed in this work with the simple union of ranked
candidate sets from multiple partitionings. Figure 15 shows candidate set size R
necessary to achieve 80 % 1-NN recall when λ ranks generated by dΔ are merged
either by Ψ0.75 or by union (results are on 1M CoPhIR with the same settings
as in Sect. 3.4). We can see that the Ψ aggregation results in less than half R.
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6 Conclusions

Efficient generic similarity search on a very large scale would have applications
in many areas dealing with various complex data types. This task is difficult
especially because identification of query-relevant data in complex data spaces
typically requires accessing and refining relatively large candidate sets. If the
data objects are large or if the refining similarity function is time-consuming
then the search process may be unacceptably demanding. Since contemporary
data types are often large and use complex similarity functions, we have designed
a technique that would pay much more attention to identifying an accurate
candidate set at the expense of higher algorithm complexity.

We have proposed a rich index by encoding each object using multiple pivot
spaces; this PPP-Code index can be adjusted to fit into the main memory. Fur-
ther, we have proposed a two-tier search algorithm – the first part of the algo-
rithm generates several independent data object rankings according to distance
between a query and the data codes, and the second part aggregates these rank-
ings into one that provably increases the probability that query-relevant objects
are accessed sooner.

We have conducted experiments on three datasets and in all cases our aggre-
gation approach reduced the candidate set size by one or two orders of magnitude
while preserving the answer quality. Because our search algorithm is relatively
demanding, the overall search time gain depends on specific dataset. First, an
artificial dataset with adjustable properties has helped us to show that our app-
roach is not profitable only for data types with small objects and cheap similarity
function. The second dataset was the 100M content-based image retrieval collec-
tion CoPhIR [6]; our approach speeded up the search on this set twice. Finally,
we have used a dataset of 1M signature descriptors with a demanding SQFD
distance function [5] where the candidate set reduction speeded up the search
process more than five times.

Our approach differs from others in three aspects. First, it transfers a large
part of the search computational burden from the similarity function evaluation
towards the search process itself and thus the search times are very stable across
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different data types. Second, our index explicitly exploits a larger chunk of main
memory in comparison with an implicit use for disk caching. And third, our
approach reduces the I/O costs and it fully exploits the strength of the SSD disks
without mechanical seeks or, possibly, of a fast distributed key-value store [19].

The PPP-Codes index forms the heart of an application that demonstrates
a large-scale visual image search [21]. A collection of 20 million images has been
processed by a deep convolutional neural network to obtain powerful visual fea-
tures [9]. Compared by Euclidean distance, these 4096-dimensional vector fea-
tures well express semantic similarity of digital images; uncompressed, 20M fea-
tures occupy over 320 GB on the disk. The PPP-Codes index can reach a very
good answer quality accessing only 5,000 out of these 20M features, which results
in search times around 500 ms. The demonstration application is available online
at http://disa.fi.muni.cz/demos/profiset-decaf/.

Acknowledgments. This work was supported by Czech Research Foundation project
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Appendix I: Correctness of Algorithm 2

Lemma 1. If d maintains Eq. (8) then Algorithm 2 GetNextIDs(q, j) returns
IDs of objects with the lowest j-th ranking ψj

q(x), j ∈ Λ that were not returned
so far.

Proof. The algorithm returns IDs from Q containing nodes and IDs from the j-
th PPP-Tree. Because every node and ID is inserted into Q maximally once, the
algorithm always returns something, unless all IDs were returned. Q is ordered
by d(q, 〈i1, . . . , il′〉) where 〈i1, . . . , il′〉 is either path to a node or it is equal to
Πj

x(1..l) for IDx (recall that d(q,Πj
x(1..l)) generate ψj

q(x)). Let IDx be returned
by the algorithm; we prove the lemma by contradiction. Let us assume that there
exists y ∈ X : d(q,Πj

y(1..l)) < d(q,Πj
x(1..l)) and IDy was not returned by the

algorithm. If IDy is in Q then it must be ahead of IDx (contradiction). Thus,
IDy is not in Q, but Q must contain a node with path 〈i1, . . . , il′〉, l′ ≤ l such
that 〈i1, . . . , il′〉 = Πj

y(1..l′), because Q initially contains root of j-th PPP-Tree
and then recursively all child nodes are inserted into Q (line 8). Because of (8),
d(q, 〈i1, . . . , il′〉) ≤ d(q,Πj

y(1..l)) < d(q,Πj
x(1..l)) which is in contradiction with

the fact that IDx was on top of Q.

Appendix II: Optimizations of Algorithm 2

Complexity of the GetNextIDs routine is O(|Q| · log |Q|) and the length of Q
depends on “tightness” of Eq. (8). We propose the following optimizations for
the dΔ distance.

Optimization 1. Distance dΔ(q,Π(1..l′)) between q ∈ D and PP prefix on level
l′ < l is corrected so that it returns the minimum theoretical distance to PPP-
Codes on level l with prefix Π(1..l′):

d′
Δ(q,Π(1..l′)) = dΔ(q,Π(1..l′) ⊕ Πq(1..l−l′)).

http://disa.fi.muni.cz/demos/profiset-decaf/
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Notation ⊕Πq(1..l−l′)) is concatenation of the pivot indexes closest to the query.
This addition does not break the condition (8) but, in our test cases, it resulted
to reduction of the queue length by factor of 0.4–0.7.

Optimization 2. This optimization is relatively trivial: A leaf of the PPP-
Tree at level l′ < l can keep IDs with the same PP suffix together as
〈Π(l′+1..l); IDx1 , . . . , IDxm

〉 (see Sect. 4.1 for the original proposal); the list of
IDs can be further optimized e.g. using delta encoding . This results in index
memory reduction and, especially, in a slight reduction of the Q size, because
such entry is inserted to Q only once.

Optimization 3. Another important cost component of the GetNextIDs algo-
rithm are distances d(q, 〈i1, . . . , il′ , il′+1〉) evaluated for each item added into
Q (lines 8 and 12). If the formula of distance d is a sum of independent val-
ues for each level from 1 to l′ + 1 (as the dΔ distance (4′)) then value of
d(q, 〈i1, . . . , il′ , il′+1〉) can be calculated as a sum of distance of its parent node
dist = d(q, 〈i1, . . . , il′〉) plus the addend for level l′ +1. In this case, the distances
are calculated stepwise and no calculations are repeated.
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Abstract. Heterogeneity of data and data formats in bioinformatics
entail mismatches between inputs and outputs of different services,
making it difficult to compose them into workflows. To reduce those
mismatches, bioinformatics platforms propose ad’hoc converters, called
shims. When shims are written by hand, they are time-consuming to
develop, and cannot anticipate all needs. When shims are automatically
generated, they miss transformations, for example data composition from
multiple parts, or parallel conversion of list elements.

This article proposes to systematically detect convertibility from out-
put types to input types. Convertibility detection relies on a rule system
based on abstract types, close to XML Schema. Types allow to abstract
data while precisely accounting for their composite structure. Detection
is accompanied by an automatic generation of converters between input
and output XML data. We show the applicability of our approach by
abstracting concrete bioinformatics types (e.g., complex biosequences)
for a number of bioinformatics services (e.g., blast). We illustrate how
our automatically generated converters help to resolve data mismatches
when composing workflows. We conducted an experiment on bioinfor-
matics services and datatypes, using an implementation of our approach,
as well as a survey with domain experts. The detected convertibilities and
produced converters were validated as relevant from a biological point
of view. Furthermore the automatically produced graph of potentially
compatible services exhibited a connectivity higher than with the ad’hoc
approaches. Indeed, the experts discovered unknown possible connexions.

1 Introduction

Heterogeneity of data and data formats in bioinformatics entail mismatches
between inputs and outputs of different services, making it difficult to com-
pose them into workflows [1]. Formats to represent input and output data can
be textual or based on XML technologies. Textual formats, often specific to a
few services, have the advantage to be human readable [2]. XML formats despite
verbosity are used for their expressiveness. To deal with these different formats in
scientific workflows, special services, called shims are used for conversion of data
c© Springer-Verlag Berlin Heidelberg 2016
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between services. Generally, they have to be manually defined (see, for example,
Emboss [3], Galaxy [4], Mobyle [5]). Services for conversion of data represent
more than 30 % of services in life science workflows according to the analysis
of Wassink et al [6] on the Taverna Workflows. When composing services, users
can get lost in specific parsers and shims required to transfer data between ser-
vices. It is difficult to find appropriate shims because they are often mixed with
other services. Users can be forced to create new shims, it is time-consuming and
error prone. To avoid using shims, some developers implement their services so
that they support several formats. It is a burden for service developers because
they have to integrate several format conversions in each tool, and each format
conversion may be duplicated across many services.

Formats based on XML technologies are proposed as standards to describe
data types independently of tools [7,8]. BioXSD, for example, represents basic
bioinformatics data [9]. It also allows meta-information to be added from ontolo-
gies, increasing the accuracy of representations. Yet, XML-based formats alone
are not sufficient to solve the problem of data matching. On the one hand, most
formats are textual, thus it is important to be able to match services using XML
and textual formats. On the other hand, even if all formats were XML standard-
ized, it remains to solve the n:m matching problem [10], namely matching and
conversion between two composite structures, i.e. XML trees.

Work related to data mismatches in scientific workflows addresses, among
others, classifying mismatches, matching and resolving mismatches. For exam-
ple, Li et al. [11] classify service composition mismatches. The classification
of mismatches enables to understand problems and to find appropriate solu-
tions. Besides approaches that address verifying matching between services (e.g.,
Lebreton al. [12]), there are approaches that resolve data mismatches by means
of shims to insert between services. Among them, some approaches search
shims in existing libraries [13,14] and other approaches automatically generate
shims [15,16]. Many approaches use ontologies to verify matching between service
parameters. However, they do not generally guarantee parameter compatibility
at syntactic level. Approaches that find shims, for example Elizondo et al. [13]
and Hull et al. [14], fix data mismatches but expect the shims to be provided
by third-parties. Approaches that generate shims automatically provide data
transformers to insert between services. For example, Kaslev et al. [16] generate
transformations at workflow execution time. Dibernado et al [17] provide pos-
sible transformations during workflow construction. However, these approaches
miss transformations such as data composition from multiple parts, or parallel
conversion of list elements.

This article proposes a new approach to generate shims to help compose ser-
vices.1 It supports complex data representations and transformations. It system-
atically detects convertibility from output types to input types. Convertibility
detection relies on abstract types, close to XML Schema, abstracting data while
precisely accounting for their composite structure. The main contribution is the
definition of convertibility rules that exploit composition and decomposition as

1 It is a revised and extended version of Ba et al. [18].
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well as specialization and generalization of types. Furthermore, the rules auto-
matically generate a complete constructive specification of the conversion from
output to input types. That specification enables to generate executable convert-
ers between input and output XML data. We report an experiment on bioinfor-
matics services with an implementation of our approach. We manually specified
the inputs and outputs of services using abstract types, where each service is
understood as a function from input(s) to output(s) as proposed by Missier et
al [19]. The detected convertibilities and produced converters were analyzed with
a team of the GenOuest2 bioinformatics platform. They have been reckoned rel-
evant from a biological point of view. We also led a survey with domain experts,
that shows the relevance of connections established between bioinformatics ser-
vices. When adding a new service, with our approach, it is sufficient to define
or reuse abstract types for input and output data, and the new service will be
automatically integrated in the global system. At present, in order to achieve the
same goal, many converters have to be manually developed for services which
are not immediately compatible. That is significantly heavier than specifying a
few abstract types. Furthermore, identifying the compatible services by hand is
already a challenge while our approach does it automatically. As a consequence,
our approach automatically produces a graph of potentially compatible services
with a connectivity higher than with the ad’hoc approaches.

In the following, Sect. 2 introduces the abstract representation of types.
Section 3 defines convertibility between abstract types by a rule system, and
proves that it forms a reflexive and transitive relationship. Section 4 shows how
to instantiate our method and provides a use case in bioinformatics. Section 5
presents an experiment in bioinformatics, and a survey with domain experts.
Section 6 compares our approach with related work. Section 7 gives some per-
spectives.

2 Representation of Types

In this section we present the language used to describe the types of data. It is
defined from an open set of primitives and a fixed set of type constructors. From
a semantic point of view, a type denotes a set of XML values. An XML value is
a sequence of XML nodes. An XML sequence may be empty or contain a single
node. An XML node is either an XML element or a textual element (CDATA).
An XML element is made of a tag and a content, which is a sequence of XML
nodes. Our language of types follows the main XML Schema constructs, but
to simplify the presentation we use regular expressions inspired by the work of
Hosoya et al. [20]. In the following, types are denoted by uppercase letters (e.g.,
T , T1) and function XML(T ) defines the semantics of type T by a set of XML
values.

– Primitive types: T = p, where p is a primitive type. Primitive types are
the basic ingredients to build other types. Their structure is atomic, they are

2 http://www.genouest.org/.

http://www.genouest.org/
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not decomposable. XML instances of a primitive type are CDATA (text). For
example, int is a primitive type representing integers.

– Constructor tag : t[T1] where t is a tag. This expression denotes XML ele-
ments whose tag is t and whose content is of type T1 : XML(t[T1]) ={<t> x1

</t> | x1 ∈ XML(T1)}. Tags provide semantics for data and can be bound
to concepts of ontologies. In XML Schema, constructor tag can be expressed
by a tag or by the attribute name of tag xs:element.

– Constructor empty : ε. The empty XML sequence: XML(ε) = {ε}.
– Constructor tuple: T1T2. This type expression denotes XML sequences that

are the concatenation of instances of T1 and instances of T2 : XML(T1T2) =
{x1x2 | x1 ∈ XML(T1), x2 ∈ XML(T2)}. That constructor is used to define
composite types and sequences. In XML Schema, constructor tuple can be
expressed by tags xs:complexType and xs:sequence.

– Constructor union: T1|T2. This type expression denotes the union of
instances of T1 and instances of T2 : XML(T1|T2) = XML(T1) ∪ XML(T2).
Constructor union can be used, for example, to consider several different
types and make some treatments without distinction. In XML Schema, that
constructor can be expressed by tag xs:choice.

– Constructor list: T1+. This type expression denotes the non-empty
sequences of instances of type T1 (homogeneous lists): XML(T1+) =
{x1 . . . xn | n ≥ 1 ∧ x1, . . . , xn ∈ T1}. In XML Schema, that constructor can
be expressed by the minOccurs and maxOccurs attributes associated with tag
xs:sequence.

– Constructor optional : T1?. This type expression is equivalent to T1|ε.
For abbreviation it is possible to bind a name to a type expression. For example,
in the expression T = T1T2, there is a type name T allowing to simplify the
re-use of type expressions, where the name T can be used to refer to T1T2. We
do not allow recursive type expressions yet.

3 Convertibility Rules

By using type theory in the context of workflows, we follow the same line as
previous work on web services such as the one of Chen et al. [21]. The novelty of
our approach lies in the definition of a rule system to prove convertibility between
types, and to apply the proof-as-program paradigm [22] to automatically derive
executable converters from convertibility proofs.

In order to motivate the following convertibility rules, we list a few typical
cases where there is a mismatch between two types A and B (A �= B), whereas
there is a semantic match, i.e. A can be converted to B.

– A and B use tags that are different but have the same meaning, for example
Integer and Int.

– B may be replaced by A, for example Float by Long.
– B is a concatenation of some components of A, for example person[name tel
email] from person[name contact[address tel email]].

– A is subsumed by B, for example protein seq by biological seq.
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fp : p1 →p p2

f : p1 → p2 f(x) = fp(x)
(PRIMITIVE)

ta →t tb f1 : A → B

f : ta[A] → tb[B] f(x) = element(tb, f1(content(x)))
(TAGCHANGE)

f1 : A → B

f : t[A] → B f(x) = f1(content(x))
(TAGREMOVAL)

f : A → ε f(x) = ε
(EMPTY)

f1 : A → B1 f2 : A → B2

f : A → B1B2 f(x) = concat(f1(x), f2(x))
(CONCAT)

f1 : A1 → B

f : A1A2 → B f(x) = (let x1, x2 = select(x, A1, A2) in f1(x1))
(LEFTSELECTION)

f2 : A2 → B

f : A1A2 → B f(x) = (let x1, x2 = select(x, A1, A2) in f2(x2))
(RIGHTSELECTION)

f1 : A1 → B f2 : A2 → B

f : A1|A2 → B f(x) = (case (x : A1) then f1(x) | (x : A2) then f2(x))
(PRECHOICE)

f1 : A → B1

f : A → B1|B2 f(x) = f1(x)
(LEFTPOSTCHOICE)

f2 : A → B2

f : A → B1|B2 f(x) = f2(x)
(RIGHTPOSTCHOICE)

f1 : A → B

f : A+ → B + f(x) = map(f1, x)
(MAP)

f1 : A → B

f : A+ → B f(x) = (let x1 = choose(x, A) in f1(x1))
(CHOICE)

f1 : A → B

f : A → B + f(x) = f1(x)
(SINGLETON)

Fig. 1. Convertibility rules and definitions of generated converters. For example, rule
TagChange reads as follows: if tag ta is convertible to tag tb and if f1 is a converter
from A to B, then there is a converter f from ta[A] to tb[B] such that applying f to a
data x involves extracting its content, applying f1 to the content, then re-encapsulate
the result with tag tb.

3.1 Rule System

Figure 1 lists all the rules that specify when a type A is convertible to a type B.
They also define associated converters as functions from A to B. Those rules
form a natural deduction system whose judgements are in the form f : A → B,
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Table 1. Utility functions on XML values.

Function Input Output Description

Content XML XML Returns the content of an XML element

Element Tag, XML XML Builds an XML element given a tag and
an XML content

Concat XML, XML XML Returns the concatenation of two XML
sequences

Select XML, type, type XML, XML Splits an XML sequence in two parts
matching given types

Map Converter, XML XML Applies a converter to each node of an
XML sequence and returns the
concatenation of the results

Choose XML, type XML Returns any element matching a given
type from an XML sequence

i.e. f is a converter from an XML value of type A to an XML value of type B,
and hence A is convertible to B. A judgement f : A → B holds true if and
only if it is possible to build a proof tree with that judgement at the root, and
where each node instantiates a rule. The deduction system works by structural
induction on couples of types (A,B), covering all combinations of type construc-
tors for which convertibility is possible. The rules depend on conversion axioms
for tags (ta →t tb), and on converters between primitive types (fp : p1 →p p2).
Those base conversions depend on the application domain, and correspond, for
instance, to well-known conversion functions (e.g., from floats to integers). By
default, we assume that t →t t for every tag t, and fp : p →p p with fp(x) = x
for every primitive type p. The definitions of converters in rules make use of
utility functions on XML values, which are described in Table 1. Figure 2 shows
a convertibility proof.

Primitive Rule. Rule (Primitive) allows the use of a primitive converter fp
when the two types are primitive types. That rule handles the conversion of the
leaves of XML trees (CDATA nodes).

Tag Rules. These rules handle the conversion from and to XML elements.
Rule (TagChange) defines converters from an XML element x to another XML
element element(tb, f1(content(x))) by applying a domain-dependent tag con-
version (here, from ta to tb), and by recursively applying a converter f1 to the
content of x. Function content gives access to the content of an XML element,
and function element builds the new element from the converted tag and con-
verted content. Rule (TagRemoval) define converters from an XML element
to an XML sequence by ignoring the tag, and recursively converting the content.

Empty and Tuple Rules. These rules handle conversions of XML sequences, i.e.
constructors empty and tuple. Rule (Empty) says that any XML value x can
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be converted to the empty XML sequence ε. Rule (Concat) defines converters
that first apply the converters f1 and f2 to the source value x, and then concate-
nates the two results f1(x) and f2(x) with function concat , hence producing an
XML sequence. Rules (LeftSelection) and (RightSelection) define con-
verters that select respectively the left and right part of the source data, an
XML sequence, and convert it to the target data. This is useful when only a
part of the source data is necessary to produce the target data. The selection of
the parts (function select) is guided by the sub-types of the source sequence.

Union Rules. These rules handle conversions from and to unions of types.
Rule (PreChoice) defines converters that produce a target data using a differ-
ent converter depending on the type of source data (A1 or A2). This is useful
when the source data can have different structures (union type). Rules (Left-
PostChoice) and (RightPostChoice) choose a converter to a target sub-
type, when the target type is an union. This is useful when the target data has
several acceptable structures.

List Rules. The remaining rules handle conversions from and to lists.
Rule (Map) define converters from a source list to a target list where a same con-
verter is applied to each element of the list. Function map is used to perform iter-
ation over list elements, and concatenation of converted elements. Rule (Choice)
defines converters that first choose an element of a list, and then recursively apply
a converter to it. This is useful when a single element is expected while a list
is provided. Rule (Singleton) defines converters that produce singleton lists
from a source element, after recursively applying a converter to it. This is useful
when a list is expected while a single element is provided.

For a given couple (A,B) of type expressions, several rules may be applica-
ble. In that case, it is sufficient that one of them leads to a success to prove the
convertibility from A to B. Figure 2 details the proof of convertibility between
two kinds of biological sequence lists. In the source list, sequences are made of a
nucleotide sequence, a species name, and a version number, while in the target
list, sequences are made of an organism, and a nucleotide sequence. Another
difference is that nucleotide sequences are lowercase in the source list (primi-
tive type acgt), and uppercase in the target list (primitive type ACGT). In the
proof (Fig. 2), we assume that a primitive converter is available to convert from
lowercase to uppercase (see step 1.2.2.1.2.), and domain knowledge tells us that
tag species can be replaced by organism (see step 1.2.1.1.1.1.). Each item in
Fig. 2 is the conclusion of a rule, and the sub-items are the hypotheses of the
rule. At each item, the converter function is defined with calls to the converter
function of sub-items. After inlining the definition of intermediate functions in
the main function f , we obtain the full definition of f in Fig. 3.

Our rule system exhibits two kinds of non-determinism: (1) in the generation
of converters, and (2) in the definition of converters. Firstly, given two types A
and B, the system may generate several converters from A to B, i.e. several
solutions to the conversion problem. This is a common feature of rule systems.
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seq[ns[acgt] species[string] version[int]]+ → seq[organism[string] ns[ACGT]]+
(MAP) f(x) = map(f1, x)

1. seq[ns[acgt] species[string] version[int]] → seq[organism[string] ns[ACGT]]
(TAGCHANGE) f1(x) = element(seq, f1.2(content(x)))
1.1. seq →t seq
1.2. ns[acgt] species[string] version[int] → organism[string] ns[ACGT]
(CONCAT) f1.2(x) = concat(f1.2.1(x), f1.2.2(x))
1.2.1. ns[acgt] species[string] version[int] → organism[string]
(RIGHTSELECTION) f1.2.1(x) = (let x1, x2 = select(x) in f1.2.1.1(x2))

1.2.1.1. species[string] version[int] → organism[string]
(LEFTSELECTION) f1.2.1.1(x) = (let x1, x2 = select(x) in f1.2.1.1.1(x))
1.2.1.1.1. species[string] → organism[string]
(TAGCHANGE) f1.2.1.1.1(x) = element(organism, f1.2.1.1.1.2(content(x)))

1.2.1.1.1.1. species →t organism
1.2.1.1.1.2. string →p string
(PRIMITIVE) f1.2.1.1.1.2(x) = x

1.2.2. ns[acgt] species[string] version[int] → ns[ACGT]
(LEFTSELECTION) f1.2.2(x) = (let x1, x2 = select(x) in f1.2.2.1(x1))

1.2.2.1. ns[acgt] → ns[ACGT]
(TAGCHANGE) f1.2.2.1(x) = element(ns, f1.2.2.1.2(content(x)))
1.2.2.1.2. acgt →p ACGT
(PRIMITIVE) f1.2.2.1.2(x) = uppercase(x)

Fig. 2. An example proof tree of convertibility between two kinds of sequence lists.

f(x) = map(f1, x)
where f1(x) = element(seq, concat(

let x1, x2 = select(content(x), ns[acgt], (species[string] version[int]))
in let x21, x22 = select(x2, species[string], version[int])

in element(organism, content(x21)),
let x1, x2 = select(content(x), ns[acgt], (species[string] version[int]))

in element(ns, uppercase(content(x1)))))

Fig. 3. The generated converter for example of Fig. 2

For example, a converter f : AA → A can be produced by either Rule (Left-
Selection) or Rule (RightSelection): in the former, the left part of the
source value is selected, while in the latter, the right part is selected. In practice,
one converter must be chosen, which could be done through user interaction.
Secondly, a generated converter may produce several target values for a same
source value. This non-determinism comes from some utility functions, and the
case construct. Function select may find different ways to split the source value
in two parts. Function choose has as many results as elements in the list. The
case construct has two results when the two conditions are satisfied, when x
matches both types A1 and A2. This second form of non-determinism could be
used to express iteration in a workflow. For example, assuming that service S1

produces lists of sequences, and service S2 consumes one sequence at a time, the
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converter generated by Rule (Choice) could be a way to express that S2 must
be iterated over the results of S1, and the output of S2 could be considered to be
the list of individual results. It will meet needs for job iteration in bioinformatics
workflows [23].

3.2 Properties: Reflexivity and Transitivity

Two important properties of the convertibility relationship are reflexivity and
transitivity. First, every type A is convertible to itself and it suffices to take the
identity function as a converter. Second, for any types A,B,C, if A is convertible
to B, and B is convertible to C, then A is convertible to C and it suffices to
compose the two converters from A to B and from B to C to obtain a converter
from A to C. We formalize those two properties in the following theorems, and
give their proofs. In those theorems, we assume that tag convertibility (→t)
and primitive convertibility (→p) are reflexive and transitive. As a consequence,
unlike the approach of Kaslev et al. [16], we do not need rules for transitivity
and reflexivity in our rule system. This makes convertibility proofs simpler and
more efficient.

Theorem 1. Let A be a type expression. There is a proof in the rule system of
the judgement f : A → A where f(x) = x.

Proof. We proceed by induction on type A, considering the six type construc-
tors as different cases. For each of the type constructor, the property is verified
because:

1. A = p (primitive): from assumption on primitives (p →p p), and by applying
Rule (Primitive).

2. A = t[A1] (tag): from induction hypothesis on A1 (A1 → A1), and assumption
on tags (t →t t), and by applying Rule (TagChange).

3. A = ε (empty): from Rule (Empty).
4. A = A1A2 (tuple): from induction hypothesis on A1 (A1 → A1) and A2 (A2 →

A2), by applying Rule (LeftSelection) to the first, and Rule (RightS-
election) to the second, and finally by applying Rule (Concat) to the
consequences of the two previous rules.

5. A = A1|A2 (union): from induction hypothesis on A1 and A2, by applying
Rule (LeftPostChoice) to the first (introducing A2), and Rule (Right-
PostChoice) to the second (introducing A1), and finally by applying
Rule (PreChoice) to the consequences of the two previous rules.

6. A = A1+ (list): from induction hypothesis on A1, and by applying
Rule (Map).

In each case, it can be shown that the produced converter function is equivalent
to the identity function. For instance, in the tag case, assuming f1 : A1 → A1

is equivalent to the identity function (induction hypothesis), it can be shown
that the resulting function f(x) = element(t, f1(content(x))) is equivalent to
element(t, content(x)) which is equal to x because x has type t[A1]. �
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Theorem 2. Let A,B,C be expression types. If there are proofs in the rule
system of the judgements f1 : A → B and f2 : B → C, then there is also a proof
of the judgement f : A → C where f(x) = f2(f1(x)).

Proof. We proceed by induction on the rules that are used at the root of the
proofs of A → B and B → C. As there are 13 distinct rules, there are potentially
169 distinct cases to consider. Fortunately, many cases have similar proofs and
can be grouped together based on the distinction between three kinds of rules:

– Constructors (C): rules where only the target type changes between
premises and conclusion (Rules (Concat), (LeftPostChoice), (Right-
PostChoice), (Singleton), (Empty)),

– Destructors (D): rules where only the source type changes between premises
and conclusion (Rules (TagRemoval), (LeftSelection), (RightSelec-
tion), (PreChoice), (Choice)),

– Transformers (T ): rules where both source and target change but use the same
kind of type (Rules (Primitive), (TagChange), (Map)).

Using that grouping, we arrive at 6 meta-cases described using the above group
codes C, D, T and X to mean any rule. Applying unification constraints on the
middle type B, those meta-cases then decompose themselves in 21 elementary
cases:

1. X - C:
(a) X - (Concat): the proof of B → C by Rule (Concat) implies that

C = C1C2, and that we have proofs for B → C1, and B → C2. By
induction hypothesis on A,B,C1 and A,B,C2, we obtain A → C1 and
A → C2. Then, by applying Rule (Concat) on those judgements, we
finally obtain A → C.

(b) X - (LeftPostChoice): we have C = C1|C2, and B → C1. By induc-
tion hypothesis on A,B,C1, we obtain A → C1. Then, by applying
Rule (LeftPostChoice) on the later, we obtain A → C1|C2.

(c) X - (RightPostChoice): similar to previous case.
(d) X - (Singleton): we have C = C1+ and B → C1. By induction hypoth-

esis on A,B,C1, we obtain A → C1, from which we obtain A → C by
applying Rule (Singleton).

(e) X - (Empty): we have C = ε. We directly obtain A → C by applying
Rule (Empty) (everything is convertible to ε).

2. D - X :
(a) (TagRemoval) - X : we have A = t[A1] and A1 → B. By induction

hypothesis on A1, B,C, we obtain A1 → C. By applying Rule (TagRe-
moval) on the latter, we obtain A → C.

(b) (LeftSelection) - X : we have A = A1A2, and A1 → B. By induction
hypothesis on A1, B,C, we obtain A1 → C. By applying Rule (LeftSe-
lection) on the latter, we obtain A → C.

(c) (RightSelection) - X : similar to previous case.
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(d) (PreChoice) - X : we have A = A1|A2, A1 → B, and A2 → B. By
induction hypothesis on A1, B,C and A2, B,C, we obtain A1 → B and
A2 → B. By applying Rule (PreChoice), we obtain A → C.

(e) (Choice) - X : we have A = A1+ and A1 → B. By induction hypothesis
on A1, B,C, we obtain A1 → C. By applying Rule (Choice) to the latter,
we obtain A → C.

3. C - D:
(a) (Concat) - (LeftSelection): we have B = B1B2, and the judgements

(1) A → B1, (2) A → B2, (3) B1 → C. By induction hypothesis on
A,B1, C and judgements (1) and (3), we obtain A → C.

(b) (Concat) - (RightSelection): similar as previous case.
(c) (LeftPostChoice) - (PreChoice): we have B = B1|B2 and the judge-

ments A → B1, B1 → C, and B2 → C. By induction hypothesis on
A,B1, C, we obtain A → C.

(d) (RightPostChoice) - (PreChoice): similar to previous case.
(e) (Singleton) - (Choice): we have B = B1+, and the judgements A →

B1 and B1 → C. By induction hypothesis on A,B1, C, we obtain A → C.
4. T - T :

(a) (Primitive) - (Primitive): we have A = p1, B = p2, C = p3, and
p1 →p p2 and p2 →p p3. From assumptions on primitives, we obtain
p1 →p p3. By applying Rule (Primitive) on the latter, we obtain A → C.

(b) (TagChange) - (TagChange): we have A = tA[A1], B = tB[B1], C =
tC [C1], and tA →t tB , tB →t tC , A1 → B1, B1 → C1. From assumptions
on tags, we obtain tA →t tC . By induction hypothesis on A1, B1, C1,
we obtain A1 → C1. By applying Rule (TagChange) to the two latter
judgements, we obtain A → C.

(c) (Map) - (Map): we have A = A1+, B = B1+, C = C1+, and A1 → B1,
B1 → C1. By induction hypothesis on A1, B1, C1, we obtain A1 → C1.
By applying Rule (Map) to the latter, we obtain A → C.

5. C - T :
(a) (Singleton) - (Map): we have B = B1+, C = C1+, and A → B1,

B1 → C1. By induction hypothesis on A,B1, C1, we obtain A → C1. By
applying Rule (Singleton) to the latter, we obtain A → C.

6. T - D:
(a) (TagChange) - (TagRemoval): we have A = tA[A1], B = tB [B1], and

A1 → B1, B1 → C. By induction hypothesis on A1, B1, C, we obtain
A1 → C. By applying Rule (TagRemoval) to the latter, we obtain
A → C.

(b) (Map) - (Choice): we have A = A1+, B = B1+, and A1 → B1, B1 → C.
By induction hypothesis on A1, B1, C, we obtain A1 → C. By applying
Rule (Choice) to the latter, we obtain A → C.

In each case, it can be shown that the produced converter function is equivalent
to the composition of the two converters from A to B, and from B to C. For
instance, in the X - (Concat) case, assuming f1 : A → B, and f2 : B → C,
we have f2(x) = concat(f ′

2(x), f ′′
2 (x)) where f ′

2 : B → C1 and f ′′
2 : B → C2.
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By application of three rules as indicated in the proof, we obtain for f : A → C,
the definition f(x) = concat(f ′

2(f1(x)), f ′′
2 (f1(x))). From the definition of f2,

that definition can be simplified into f(x) = f2(f1(x)), which is indeed the
composition of f1 and f2. �

3.3 Implementation

We implemented our rule system in a program that decides the convertibility
between any two type expressions, and generates converters from data matching
the first type expression to data matching the second type expression. The algo-
rithm is directly derived from the above rules and combines pattern matching
on type expressions to identify constructors, and recursive calls on type sub-
expressions. The examination of rules shows that recursive calls always involve
smaller couples of expressions, which ensures termination of the program in all
cases. The computation time required to decide convertibility may be important
when the input type is very large, because of the non-deterministic nature of
the rule system. However, convertibility is computed once for a set of types. In
practice, types are not very large, and we have not encountered any difficulty in
our experiments to compute all convertibilities for a set of bioinformatic services
(see Sect. 5.1). Generated converters are efficient. Most rules imply a constant
cost per XML node, and hence a linear complexity over the input data. The two
cases that may imply additional costs concern node duplication (see Rules Left-
Selection and RightSelection) and choice handling (see Rule preChoice).
Node duplication corresponds to the situation where a node of the input data is
converted to several nodes of the output data. In this case, the duplicated node is
processed several times, thus exceeding linear complexity. However, the number
of duplications is bounded by the number of constructors in the output type.
Choice handling corresponds to the situation where a node can have one of two
types (A1 or A2), and the correct type has to be identified by the converter at
execution time. Type identification requires one additional node processing for
each choice, thus exceeding linear complexity. However, the number of choices is
equal to the number of constructor union in the input type, and the additional
processing may only concern a fragment of the input data. In practice, input
and output types of bioinformatics services make a limited use of duplications
and choices, thus in the worst case, the complexity of converters is in the size
of the input data multiplied by a small constant. Our generated converters are
represented in XQuery, a suitable language to process XML documents, which
makes the converters executable. To account for non-determinism, the result of
our program is a collection of converters. Each converter will be a function from
an XML value to an XML value. In the case of non-deterministic converters,
only one value is produced so far. The production of several values is left to
future implementation.
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4 Instantiation and Use Case

This section presents how we instantiate our type abstraction to bioinformatics
data. It also presents a use case that shows how our approach can be used to
detect and resolve data mismatches in bioinformatics workflows.

> Accession = accession[string]
> SSeq = simpleSequence[string]
> ProtSeq = ns[sSeq]
> DNASeq = as[sSeq]
> Bioseq = DNASeq | ProtSeq
> CBioseq = complexBiosequence[

seq[Bioseq]
species[string] source[string] name[string]
version[string] note[string]?]

> CProtSeq = complexProteinSequence[
seq[ProtSeq]
species[string] source[string] name[string]
version[string] note[string]?]

> BioseqList = CBioseq+

Fig. 4. Examples of bioinformatics types

4.1 Instantiation to Bioinformatics

Depending on application requirements and on the nature of the data in
bioinformatics platforms, many formats are available. To represent genomics
data, various textual formats (e.g., FastQ, BED)3 and XML formats (e.g.,
BioXSD4, phyloXML5) are provided. Textual formats are the most commonly
used. In addition to data formats, ontologies, such as EDAM6 have been pro-
posed to organize and classify resources including data types and formats.
Our work starts from these resources to define input and output types of services.
We abstract data types by focusing on the information contents and compos-
ite structure of data. Figure 4 shows simple examples of types defined manu-
ally from existing bioinformatic formats. Accession and SSeq are simple types
representing, respectively, an accession number and a raw sequence, defined
with a constructor tag and a primitive. In the same way, DNASeq (represent-
ing nucleotide sequences) and ProtSeq (representing amino acid sequences) are
defined using SSeq , they specialize the sequences. Their union forms Bioseq , a
biological sequence generalizing the sequences. CBioseq and CProtSeq are com-
posite types holding several types through constructor tuple. They are biolog-
ical sequences containing required (e.g., sequence[Bioseq ]) and optional (e.g.,
3 http://genome.ucsc.edu/FAQ/FAQformat.html/.
4 http://bioxsd.org/.
5 http://www.phyloxml.org/.
6 http://edamontology.org.

http://genome.ucsc.edu/FAQ/FAQformat.html/
http://bioxsd.org/
http://www.phyloxml.org/
http://edamontology.org
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note[string ]?) contents, CProtSeq being more specific than CBioseq . CBioseqList
defines a list of CBioseq using constructor list. The other types we use are defined
in the same way as the above types. Labels are inspired from the EDAM ontology.

Compared to data types and formats used on platform EMBOSS7, our types
can define accession numbers allowing to represent, for example, sequence and
database references. They can represent raw sequences as in plain text format,
single sequences as in gcc format, one or several sequences (e.g., alignment of
sequences) as in FASTA format, as well as a simple sequence associated to its
annotations and features as in EMBL format. Our types can also represent lists
of files and differentiate the nature of information contained in files, for exam-
ple, nucleotide sequence versus amino acid sequence. We take into account data
types and formats commonly used for inputs and outputs of services on platform
EMBOSS. Most platforms we visited use the same categories of data types and
formats. Compared to XML formats such as BioXSD, our abstraction represents
contents at a higher abstraction level. We only consider information relevant for
our matching between input and output data of services. We ignore, for exam-
ple some type attributes and type restrictions irrelevent for current input and
output data used in services. If necessary, they can easily be added.

Abstraction of types is straightforward for XML formats thanks to XML
schemas. For textual formats, informal specifications must be studied to derive
a structural representation. Our experiment with genomics types shows that
type expressions recur frequently, they can easily be reused after being defined
once. Since the most common data types are defined, there are increasingly less
types to define. The BioXSD initiative defines several data types for common
bioinformatics web services. Specialized XML formats, such as phyloXML [8] for
phylogenetic data and PDBML [24] for systems biology, exist for sub-domains of
bioinformatics. Moreover, XML alternatives are provided for some textual for-
mats (e.g., GFF [25]) and some platforms define their own XML format (e.g.,
Uniprot XML [26]). For our experiment, the abstraction of types is done manu-
ally but the spreading of the above mentioned solutions will facilitate the task.
We can even expect automatic or semi-automatic abstraction processes.

The defined types represent inputs and outputs of current genomics services.
In our approach, adding a new service requires two steps. Firstly, identify the
abstract types used as inputs and outputs of the service. Secondly, implement, if
they do not already exist, the converters between XML schemas and each format,
since our types define an XML. Unlike other approaches, it is not necessary to
define converters for all pairs of formats, but only two for each format (from and
to XML).

4.2 Use Case: Resolving Data Mismatches in a Bioinformatics
Workflow

We now present a workflow (w), constructed with our approach. It compares
a consensus sequence produced from an alignment of a list of sequences with

7 http://emboss.sourceforge.net/docs/Themes.

http://emboss.sourceforge.net/docs/Themes
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Fig. 5. Workflow at user level (wu).

another sequence obtained from an accession number. The workflow consumes
sequence lists (tabular form) and references (accessions) to DNA sequences. It
produces sequence alignments. In the following, we describe three representations
of workflow w, at three different levels. The workflow at user level is what the
user expects to see but we show that it is underspecified, and cannot be executed
as such. The workflow at execution level is fully specified and executable, but
it is over-detailed for the user because it confuses genuine services and shims.
We finally introduce the workflow at a abstract level, from which both user level
and execution level representations can be derived automatically.

Figure 5 shows the workflow at a user level (wu). Boxes represent tasks and
ellipses represent input and output data of the workflow. It is an interconnection
of inputs and outputs of services from bioinformatics platforms. We assume that
a service performs one task, it may have one or several inputs and one or several
outputs. To simplify, we do not take into account parameters used to manage
service behaviour (e.g., algorithm parameters). The workflow uses the following
services:

– matcher compares two biological sequences. It takes as inputs two biological
sequences in fasta files and returns as output a MSF alignment.

– getDNA retrieves a DNA sequence from a database. It takes an accession
number and returns an embl file containing a DNA sequence.

– cons creates a consensus sequence from a multiple alignment. It takes a MSF
alignment and returns a fasta containing a biological sequence.

– clustalW makes a multi-alignment of sequences. It takes a multi Fasta con-
taining a list of sequences and returns an alignment.

Workflow wu shows an ideal view where users have specified only the indispens-
able information to describe what has to be achieved. However, this view is not
directly executable because the workflow uses services whose inputs and outputs
do not immediately match. It is necessary to insert shims services to address
data mismatches as generally done in the existing platforms.

Figure 6 shows an executable workflow (wx) where shims have been inserted
because of the following mismatches. First mismatch (tabular2multiFasta): the
concrete lists of sequences the workflow will consume are in tabular form with
additional columns, they must be adapted to feed the input of clustalW. Second
mismatch (clustalAln2MSF): the output of task clustalW must be adapted to
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Fig. 6. Executable workflow (wx).

match the input of task cons. Last mismatch (embl2Fasta): task getDNA provides
an output that must be fed into the input of task matcher, the output of getDNA
contains more information and is more specific. In existing approaches, to obtain
an executable workflow, users must find and insert format converters between
domain tasks for which the formats are different. Data are seen through their
formats and they are not decomposable. There is no separation between data, for-
mats and services and no separation between domain services and shim services.

Figure 7 shows the abstract workflow generated by our system (wa). Ellipses
are data types, boxes are domain tasks, and diamonds are generated converters
used as shims. Our system sees service inputs and outputs through their compos-
ite abstract types. Each service is represented with its input and output types
as follows:

– Alignment represents the output type of the service matcher, the input type of
the service cons and the output type of the service clustalW. It also represents
the output type of the workflow.

– CBioSeq represents the two input types of the service matcher and the output
type of the service cons.

– TFasta = seqs[id[string] seq[Bioseq]]+ represents the input type of the service
clustalW.

– Accession represents the input type of the service getDNA, and also an input
type of the workflow.

– CDNAFeatSeq= seq[CDNASeq Features] represents the output type of
getDNA.

– TTab=seqs[id[string] C2[string] C3[string] C4[string] seq[Bioseq]]+
represents an input type of the workflow.

Fig. 7. Abstract workflow (wa) in our system.
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Fig. 8. Example of source code of the shim converting data matching CDNAFeatSeq
to data matching CBioseq. It is simplified and represented using XQuery. Functions
my:content and my:select are utility functions, their source code is not shown here.

Our system separates data types, formats and services. It detects and resolves
mismatches letting users focus on domain tasks. The generated shims fix the
data mismatches presented above. The first generated shim, TTab2TFasta, cor-
responds to the resolution of the tabular2multiFasta mismatch, by transform-
ing each element (row) of the list (table). Transforming each element involves
selecting and concatenating sub-elements (fields). The second shim, CDNAFeat-
Seq2CBioseq, fixes the embl2Fasta mismatch by recognizing a DNA sequence as
a biological sequence after ignoring additional information. The clustalAln2MSF
mismatch is fixed by reflexivity because clustalAln and MSF correspond to the
same abstract type. By ignoring derivable and optional information our system
recognises them as equal. Figure 8 shows a generated XQuery source code of
shim CDNAFeatSeq2CBioseq. It is similar to the theoretical example provided
at Fig. 2.

From our abstract workflow (wa), it is possible to obtain the workflow at user
level (wu) by hiding intermediate types and generated shims. It is also possible to
produce the executable workflow (wx) by inserting converters between concrete
formats and XML (e.g., XML from/to each of tabular, multi Fasta, embl and
Fasta).

Note that although the users do not have to interfere to generate the convert-
ers, they can still check them because all steps of the generation are traceable. In
our system, formats are concrete serialization of data, they are not bound to par-
ticular data or services. Their use is flexible, for example changing input/output
formats do not affect service compatibility or service implementation.

5 Experiments

This section presents a graph of convertibilities where connections between bioin-
formatics services are detected. It also presents a survey with domain experts to
check the relevance of graph connections.
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5.1 Convertibility Between Bioinformatics Services

We selected 30 services from platforms EMBOSS [3], EBI (European Bioinfor-
matics Institute) [27], BioMoby [28] and services adopting the BioXSD format.
Other variations and similar categories are provided in platforms but, as men-
tioned above, their input and output types do not change in general, and they
would add little to our experiment. Tables 2 and 3 show examples of services and
types.

From our selection of services, using our matching algorithm, we auto-
matically generated a graph of the connections between services. Each con-
nection is a convertibility, proved by our rule system, from an output type
of a service to an input type of another service. Figure 9 shows an excerpt
from the obtained graph. The complete graph and service list are available
online8. The graph shows services, input/output types and conversions between
types. Services are represented by rectangles, input/output types by ellipses
and conversions by diamonds. Services are associated with their inputs and
outputs respectively by incoming and outgoing arrows. Similarly, each conver-
sion is associated with a source type and target type, it materializes an auto-
matically detected conversion between two types. Connectivity of services in
the graph materializes processing chains where output data are transformed
according to the need of the service inputs. Conversions from external for-
mats to our representation are not shown in the graph. Our algorithm finds

Table 2. Examples of services

Service Source Inputs Outputs Task

Blast BioXSD Biosequence database URI Biosequence Search

Blastp EMBL-EBI Fasta sequence (typed) database

URI

BlastResult Search

ClustalWFastaCollection BioMoby Fasta files MSF Alignment

ClustalW BioXSD Biosequence (≥ 2) Alignment Alignment

Maskfeat EMBOSS EMBL sequence Fasta sequence Handling

Table 3. Examples of formats and types

Type Type in our representation Represents

Fasta sequence ComplexProteinSequence |
ComplexBiosequence

(Typed) sequences

BlastResult, Fasta files ListOfComplexBiosequences |
ListOfBiosequences

A list of sequences

EMBL sequence AnnotatedSequence An annotated sequence

BioXSD biosequence Biosequence |
ComplexBiosequence

One sequence

BioXSD Alignment, MSF SequenceAlignment An alignement of sequences

Database URI DatabaseReference A reference to a database

8 http://www.irisa.fr/LIS/Members/moba/graph/view.

http://www.irisa.fr/LIS/Members/moba/graph/view
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Fig. 9. Excerpt of the graph of links between services

direct links when the services use the same representation (the same type)
to define the same data. This is the case, for example, with the link between
services Blast and ClustalW. Indirect links correspond to a conversioni. In
the following, each conversioni(A,B) specifies a function to transform data
of type A to data of type B. With conversion0(ListOfComplexBiosequences,
ListOfBiosequence), a list of simple sequences is derived from a list of com-
plex sequences. The function converts each element of the list and produces
a new list of the converted elements. The elements of the list are converted
using Rule (LeftSelection) (or Rule (RightSelection)), and the new list
is produced by Rule (Map). Conversion1(ListOfComplexBiosequences, Biose-
quence) combines rules (Choice) and (LeftSelection) (or (RightSelec-
tion)) to go from a list of complex protein sequences to each simple biolog-
ical sequence of the list. A simple biological sequence being a component of
a complex biological sequence. Conversion2(ComplexProteinSequence, Biose-
quence) shows the generalization and specialization of types. Our algorithm
detects that a sequence of proteins is also a biological sequence. The conver-
sion uses (LeftPostChoice) (or (RightPostChoice)) to obtain a complex
biological sequence from the complex protein sequence and uses Rule (Left-
Selection) (or (RightSelection)) to obtain a biological sequence from the
complex biological sequence. Our algorithm also individually considers the ele-
ments of a list. With conversion3(ListOfBiosequences, Biosequence) each element
of a list of sequences can be selected, it is done by rule (Choice). With con-
version4(AnnotedSequence, Biosequence), a simple sequence is derived from an
annotated sequence. A composite type is decomposed and some components are
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selected to feed services. This conversion corresponds to rules (LeftSelection)
and (RightSelection). In above conversions, rules (TagChange), (TagRe-
moval) and (Primitive) are used to convert between primitives and tags.

The complete graph contains 264 links between services out of the 900 pos-
sible links between 30 services (30 × 30). Our program therefore finds numerous
links, but remains specific enough to be useful. Among those links, 88 are direct
links, i.e., do not imply any conversion. Our convertibility relation therefore
enables a three-fold increase of the number of links between services. The 30
services use 26 different types, among which 10 types are in fact ad-hoc and
not decomposable (e.g., pictures, reports). Our program has identified 27 pos-
sible conversions between the 16 composite types, out of the 256 possible ones
(16 × 16). This again shows that our approach is both productive and specific.

We presented the graph of the experiment to developers and users of the
GenOuest bioinformatics platform. They pointed out that “it is remarkable that
the central role of sequence alignment is so visible in the graph”. They stated
that “the produced graph has a pedagogical interest”. Indeed, in a typical course
handout9, a graph produced by hand related to a library of bioinformatics ser-
vices contains similar services and connections as our graph. However, being more
complete in the modelling of input and output data, our approach offers more
flexibility on input and output types. Thus our algorithm provides more explicit
connections and differentiation between categories of services. It also reveals pos-
sible conversions between input and output data, that creates new connections.
Moreover, our graph is machine processable, it shows a proof of the connections
created between services and can quickly take into account new changes on data
types and services. With a growing set of currently over 1500 available tools, it
is unlikely that people can produce the graph by hand. Our main objective is
to guide biologists when composing workflows. One perspective is to take into
account other aspects of services. When constructing a workflow, input and out-
put types play a central role in the selection of services by setting constraints
on applicable services, but are not the only criteria for selection biologist. It is
also necessary to represent the services by their functional and non-functional
properties (e.g., bioinformatics task performed, quality of results, provenance,
efficiency, popularity). The GenOuest developers nevertheless mentioned that a
user with domain knowledge would already find useful support in the produced
graph to select services for a workflow among the possibilities given by the graph.
Thus, they validated that the graph generated by our approach detects relevant
information and produces, in a systematic way, knowledge usually acquired by
experience. The costly step of the approach is the production of abstract types,
currently done by hand. They highlighted some interesting perspectives. Our
data abstractions could be enriched from ontologies, especially EDAM, which
will significantly facilitate the type abstraction step and allow integrating others
facets. In addition, data in Genomics (e.g., phylogenetic trees) and in others
domains (e.g., metabolism) have to be added to the experiment.

9 Presentation of services of Wisconsin Package- Olivier Collin - CNRS Roscoff -
Formation Génopole Ouest - november 2002.
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5.2 Survey with Domain Experts

We evaluated the graph produced at Sect. 5.1 by asking domain experts to
judge about the relevance of generated connections between services. For two
services s1 and s2 in the graph, if the type of an output port of s1 is con-
vertible to the type of an input port of s2, we suggested to experts to connect
the input of s2 to the output of s1. We prepared 25 questions, each question
being a suggestion to connect two services. Suggestions involved 18 services.
The 25 questions concerned all connections on ports of 3 services (output port
of blastp, input port of blast and input port of cons). For each question, it
was possible to give one among 6 answers: “Yes, I knew”, “Yes, I discover”, “It
may be feasible”, “It is not feasible”, “No, I disagree”, and “I do not know”.
For questions we provided the description of services and a brief explanation of
convertibility that involved the suggestion. To the 25 questions, we added gen-
eral questions about user status, background knowledge, the services they know
by their names, and their opinion about the relevance of suggestions. The survey
was submitted to experts of bioinformatics data, services and workflows via a
mailing list.

We collected responses from 6 participants. Among the participants, one did
no provide any answer on suggestions, and therefore has been removed from the
results on suggestions. One did not finish the survey, thus for him we just consider
answered questions. All participants work in bioinformatics. Four of them are
computer scientists, four are users of services and workflows, four are developers
of workflows, five are developers of services, one is a developer of Workflow
Management Systems (WfMS) and one is a researcher. Each participant knew
on average 7 services among the 18 services proposed as suggestions. 3 of the
services were known to all participants, 7 were known to no participants. The
number of known services may look surprisingly low for domain experts. It can
be explained by the fact that participants are actually expert in one among
many bioinformatics platforms. The same task is often implemented by different
services (with different names) across different platforms.

Figures 10 and 11 show the results of the survey. The table of Fig. 10 lists
the responses for each participant and for each suggestion. The left column of
the table contains suggestions established between services, for example ‘blastp
> blast’ meant that the system suggested that service blast could consume the
output of the service blastp; ‘clustalW < cons’: the system suggested that
clustalW could produce the input of the service cons. The second column of
the table tells if connected services come from different platforms. Columns SL
and SR contain the number of participants who know the tool of either the
left part (SL) or the right part (SR). From column four to column eight, are
the responses of the participants. The responses are represented by (++) for
“Yes, I knew”, (+) for “Yes, I discover”, (o) for “It may be feasible”, (-) for “It
is not feasible”, (--) for “No, I disagree” and (?) for “I do not know”. Missing
responses are represented by crosses. Figure 11 aggregates results. It provides
the percentage by response type for all responses.
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Fig. 10. Responses of 5 participants to the list of link suggestions between services.
‘Cross-platform’ means services that are from different platforms. ‘SL’/’SR’ respec-
tively count the number of participants who already knew the left/right service. Values
in last the 5 columns are responses of participants for each suggestion. The responses
are represented by (++) for “Yes, I knew”, (+) for “Yes, I discover”, (o) for “It may
be feasible”, (-) for “It is not feasible”, (--) for “No, I disagree” and (?) for “I do not
know”. Crosses represent missing responses.

Fig. 11. Pie chat of all participant responses to all suggestions, per response type.
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The results show that participants found that 83 % of suggested connections
are acceptable. They already knew 20 % and discovered 42 % of suggested connec-
tions. They judged that 21 % of suggested connections may be feasible. However,
they found that 12 % of suggested connections as not really feasible. They are
in total disagreement with 3 % of suggested connections. The participants have
no opinion for 2 % of suggested connections.

Despite knowing only a few (at most 15 %) of the suggested services, partic-
ipants still recognized most suggestions (83 %) as acceptable. That paradoxical
observation deserves an explanation. Many services are unknown to participants
by their name, because belonging to another platform than the one they are
used to, but their functions are known to them. For example, ‘emma’ has the
same function as ‘ClustalW’, but only the latter is known by the participants.
Thanks to the short description that we provided in the survey, and to online
information, participants were able to recognize the function of unknown ser-
vices, and to evaluate them accordingly. For example, the table of Fig. 10 shows
that ‘emma’ is evaluated very similarly to ‘ClustalW’. This also explains the
high proportion of “Yes, I discover” responses (42 %), which is much higher than
we expected. It implies two positive results. Firstly, our suggestions cover many
relevant service connections that would not be considered by domain experts in
the construction of a workflow by lack of knowledge about services. Secondly,
most of our suggestions are recognized as relevant by domain experts.

6 Related Work

The development of automatic solutions for service composition is a response
to the time-consuming and error prone methods currently used in some plat-
forms to manage service selection and service mediation during composition of
services. Mediating incompatible services requires identifying categories of mis-
matches. The work of Li et al. [11] provides a multi-dimensional classification of
mismatches. It identifies syntactic and semantic mismatches of functional and
non-functional properties. That systematic classification of service composition
mismatches helps understand the problem. It also helps find appropriate solu-
tions for each case (Sirin et al [29], Lin et al [30], Kongdenfha et al [31]). Our
work concerns signature mismatches that occur on the structure and on the
semantics of service parameters.

There are several approaches that provide solutions for data mismatches in
scientific workflows. Besides approaches that address verifying matching between
services, there are approaches that resolve data mismatches by means of shims
to insert between services in workflows. They can be divided in two categories: A
first category relies on semantic annotations to search shims in existing libraries.
A second category takes into account syntactic descriptions of data types to
automatically generate shims.

Some approaches that address service matching use ontologies such as
EDAM [32] and myGrid ontology [33]. They provide methods to access semantic
compatibility of workflow components. However, they do not generally guarantee
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compatibility at syntactic level. For example, Lebreton et al. [12] propose to ver-
ify the semantic compatibility of service parameters for web service composition.
They address input and output matching but they do not provide solutions to
resolve data mismatches that can occur on the data structure. Another approach,
by Stroulia et al. [34], uses the structure of data types, messages, operations and
textual descriptions to assess similarity between WSDL (Web Service Descrip-
tion Language) specifications. However, it is not designed to adapt data between
services.

Compared to previous works, approaches that find shims address resolving
data mismatches in workflows. They generally rely on data types, formats and
service descriptions. For example, Velasco-Elizondo et al. [13] use data format
descriptions to automatically identify relevant shims. In the same manner, the
approach of Hull et al [14] relies on the description of shims and data types to
retrieve shims transforming data between services. These approaches, besides
seeing data as not decomposable, also expect the shims to be provided by third-
parties.

In contrast to approaches that search shims, approaches that generate shims
automatically provide data transformers to insert between services. They are
characterized by the data complexity they support and the transformations
between data they offer. Browers et al [15] support structural data transforma-
tions based on ontological information. Their approach links a structural type
to a corresponding semantic type. The semantic type is defined with concepts of
ontologies. However, the transformations that they offer rely on contextual paths.
They do not allow transforming XML documents whose elements are not already
attached to domain concepts. They also, do not seem to take into account recur-
sion, which is required for some complex data. In Conveyor, Linke et al. [35]
propose generic object-oriented type system to manage nodes, including data
types, in workflows. They use interfaces, abstract classes and inheritances to
express relations between types but do not mention automated methods ensur-
ing composition and decomposition of complex data types.

Kashlev et al [16] use rules to automatically insert shims as coercions into
executable workflows. Their approach and the approach of Dibernado et al [17]
are close to our work. The first one because it uses rules, and the second one
because it is applied to compose bioinformatics services. We differ from the
approach of Kashlev et al. [16] on some points. We envision to mediate data
at workflow construction time, not at execution time. We allow more complex
data representations, for example type constructors union, tag and list. Thus,
we offer additional transformations between input and output data. For exam-
ple, the approach of Kashlev et al. [16] requires different labels for elements of
a tuple while our abstraction authorizes to define a tuple where elements use
the same label. This allows us to meet some bioinformatics data representations
such as representing lists of biological sequences, and enables parallel transfor-
mation on lists. We differ from the approach of Dibernado et al. [17] because we
allow decomposing as well as composing data. Dibernado et al. [17] provide the
data transformation during workflow composition. They allow generating shims
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according to connected services. However, they decompose data but do not allow
to compose them.

Compared to presented approaches, our approach offers richer type abstrac-
tions and more complex transformations between data. It relies on rules that
allow to systematically reason on input and output types for managing mis-
matches during workflow composition. In addition, our approach does not pre-
vent to use existing shims, it provides systematic and automatic mechanisms to
re-use some of them (e.g., converters for upper case, lower case or substitution).
Unlike many approaches, our approach does not only provide the solution in
XML, it also provides mechanisms to link existing textual representations. Fur-
thermore, our approach may easily benefit from mechanisms of matching based
on ontologies.

Besides the automatic approaches, platforms such as Galaxy [4] use shims
libraries to manage links between services. Matching between inputs and outputs
is based on data formats. Services, in their implementation, take into account
several formats. When a format is not provided, a format converter defined
by hand is used. These techniques make a strong dependency between services
and formats, which mixes domain tasks and tasks for the data adaptation. In
addition, as discussed above, textual formats do not promote automation. Sep-
arating data types and formats is the subject of much work, for example Kalas
et al. [9]. To facilitate interoperability of tools, common XML-based formats are
proposed to represent bioinformatics data. At present, few implementations use
these technologies. A generalization of their use would strengthen our approach,
as it would facilitate the specification of abstract data types. Possibilities offered
by XML technologies to represent complex data and relationships associated
to domain ontologies may be used to provide a pivot language for conversion
between heterogeneous data formats.

7 Perspectives

In the future, we plan to use our convertibility approach to propose an guided
approach for composing real-world workflows. Our approach is appropriate for
users of platforms such as Taverna [1] and Galaxy [4] that need to benefit more
from automation. It can also be used to manage creation, re-use and conversion
of parameters in workflow engines such as Bpipe [36], Snakemake [37] that use
low-level programming. For our approach to be more beneficial, we will cope with
data consistency and deal with non-determinism. We will integrate data consis-
tency checking compared to types. Errors due to the non-compliance between
data and constraints are common in automated platforms. For example, little
changes in textual formats used to represent input data may cause a program
to abort. An advantage of our approach is that it offers means to verify the
compliance of data compared to their data type. Enriching abstractions with
ontologies will allow to reduce non-determinism. It will be necessary, however,
to integrate users in the process to manage multiple choices.
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8 Conclusion

Data mismatches between services make it difficult to create scientific workflows.
Manually defined shims proposed to fix data mismatches are time consuming
and error prone. Existing approaches that automatically insert shim services in
workflows are limited in the transformations they provide.

In this paper, we presented an approach that systematically detects convert-
ibility from output types to input types. We have defined convertibility rules
that exploit (de)composition as well as specialization and generalization of types.
The rules also automatically generate converters between input and output XML
data that can be used as shims. An experiment on bioinformatics services, as well
as a survey with domain experts, showed that the detected convertibilities and
produced converters are relevant from a biological point of view. Furthermore,
the automatically produced graph of potentially compatible services exhibited a
connectivity higher than with the ad’hoc approaches.

Acknowledgments. We thank Olivier Collin, Yvan Le Bras, Olivier Dameron,
Francois Moreews and Olivier Sallou for their expertise in bioinformatics services and
workflows, as well as for enriching discussions.
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and Stéphane Bressan1

1 National University of Singapore, Singapore, Singapore
tangruiming1987@gmail.com, steph@nus.edu.sg
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Abstract. While price and data quality should define the major trade-
off for consumers in data markets, prices are usually prescribed by ven-
dors and data quality is not negotiable. In this paper we study a model
where data quality can be traded for a discount. We focus on the case of
XML documents and consider completeness as the quality dimension.

In our setting, the data provider offers an XML document, and sets
both the price of the document and a weight to each node of the doc-
ument, depending on its potential worth. The data consumer proposes
a price. If the proposed price is lower than that of the entire document,
then the data consumer receives a sample, i.e., a random rooted subtree
of the document whose selection depends on the discounted price and
the weight of nodes. By requesting several samples, the data consumer
can iteratively explore the data in the document.

We present a pseudo-polynomial time algorithm to select a rooted
subtree with prescribed weight uniformly at random, but show that this
problem is unfortunately intractable. Yet, we are able to identify several
practical cases where our algorithm runs in polynomial time. The first
case is uniform random sampling of a rooted subtree with prescribed size
rather than weights; the second case restricts to binary weights.

As a more challenging scenario for the sampling problem, we also
study the uniform sampling of a rooted subtree of prescribed weight and
prescribed height. We adapt our pseudo-polynomial time algorithm to
this setting and identify tractable cases.

1 Introduction

There are three kinds of actors in a data market: data consumers, data providers,
and data market owners [14]. A data provider brings data to the market and
sets prices on the data. A data consumer buys data from the market and pays
for it. The owner is the broker between providers and consumers, who negotiates
pricing schemes with data providers and manages transactions to trade data.

In most of the data pricing literature [4–6,9], data prices are prescribed and
not negotiable, and give access to the best data quality that the provider can
achieve. Yet, data quality is an important axis which should be used to price
c© Springer-Verlag Berlin Heidelberg 2016
A. Hameurlain et al. (Eds.): TLDKS XXIV, LNCS 9510, pp. 116–138, 2016.
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documents in data markets. Wang et al. [15,19] define dimensions to assess data
quality following four categories: intrinsic quality (believability, objectivity, accu-
racy, reputation), contextual quality (value-added, relevancy, timeliness, ease of
operation, appropriate amount of data, completeness), representational quality
(interpretability, ease of understanding, concise representation, consistent repre-
sentation), and accessibility quality (accessibility, security).

In this paper, we focus on contextual quality and propose a data pricing
scheme for XML trees such that completeness can be traded for discounted
prices. This is in contrast to our previous work [18] where the accuracy of rela-
tional data is traded for discounted prices. Wang et al. [15,19] define complete-
ness as “the extent to which data includes all the values, or has sufficient breadth
and depth for the current task”. We retain the first part of this definition as there
is no current task defined in our setting. Formally, the data provider assigns, in
addition to a price for the entire document, a weight to each node of the docu-
ment, which is a function of the potential worth of this node: a higher weight is
given to nodes that contain information that is more valuable to the data con-
sumer. We define the completeness of a rooted subtree of the document as the
total weight of its nodes, divided by the total weight of the document. A data
consumer can then offer to buy an XML document for less than the provider’s
set price, but then can only obtain a rooted subtree of the original document,
whose completeness depends on the discount granted.

A data consumer may want to pay less than the price of the entire document
for various reasons: first, she may not be able to afford it due to limited budget
but may be satisfied by a fragment of it; second, she may want to explore the
document and investigate its content and structure before purchasing it fully. In
this light, one may think of discounted samples of the complete documents as
an inexpensive way for the user to discover which kind of content the document
contains, so that she can make up her mind about whether she wishes to purchase
the complete document.

The data market owner negotiates with the data provider a pricing function,
allowing them to decide the price of a rooted subtree, given its completeness
(i.e., the weight). The pricing function should satisfy a number of axioms: the
price should be non-decreasing with the weight, be bounded by the price of the
overall document, and be arbitrage-free when repeated requests are issued by
the same data consumer (arbitrage here refers to the possibility to strategize the
purchase of data). Hence, given a proposed price by a data consumer, the inverse
of the pricing function decides the completeness of the sample that should be
returned. To be fair to the data consumer, there should be an equal chance to
explore every possible part of the XML document that is worth the proposed
price. Based on this intuition, we sample a rooted subtree of the XML document
of a certain weight, according to the proposed price, uniformly at random.

The data consumer may also issue repeated requests as she is interested in
this XML document and wants to explore more information inside in an iterative
manner. For each repeated request, a new rooted subtree is returned. A principle
here is that the information (document nodes) already paid for should not be
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charged again. Thus, in this scenario, we sample a rooted subtree of the XML
document of a certain weight uniformly at random, without counting the weight
of the nodes already bought in previously issued requests.

The present article brings the following contributions:

– We propose to realize the trade-off between quality and discount in data mar-
kets. We propose a framework for pricing the completeness of XML data, based
on uniform sampling of rooted subtrees of prescribed weight in weighted XML
documents (Sect. 3).

– We show that the general uniform sampling problem in weighted XML trees
is intractable. In this light, we propose two restrictions: sampling based on
the number of nodes, and sampling when weights are binary (i.e., weights are
0 or 1) (Sect. 4).

– We propose a pseudo-polynomial time algorithm for the general uniform sam-
pling problem on prescribed weight, with the proof of its correctness and
complexity (Sect. 5).

– We show that the two restricted problem variants are tractable by showing
that the pseudo-polynomial time algorithm for the general sampling problem
runs in polynomial time for uniform sampling based on the size of a rooted
subtree, or on 0/1-weights (Sect. 6).

– We extend our framework to the case of repeated sampling requests with the
requirement that the data consumer is never charged twice for the same nodes.
Again, we obtain tractability when the weight of a subtree is its size (Sect. 7).

– As a more challenge scenario, we study the uniform sampling problem on both
prescribed weight and height. We devise a pseudo-polynomial time to solve
this sampling problem and also identify tractable cases for which the pseudo-
polynomial time sampling algorithm performs in polynomial-time (Sect. 8).

This article is the journal version of our previous work [17], extended with the
pseudo-polynomial time algorithm for the general weighted sampling problem,
and the problem of sampling for prescribed weight and height.

2 Related Work

Data Pricing. The basic structure of data markets and different pricing
schemes were introduced in [14]. The notion of “query-based” pricing was intro-
duced in [4,6] to define the price of a query as the price of the cheapest set
of pre-defined views that can determine the query. It makes data pricing more
flexible, and serves as the foundation of a practical data pricing system [5]. The
price of aggregate queries has been studied in [9]. Different pricing schemes are
investigated and multiple pricing functions are proposed to avoid several pre-
defined arbitrage situations in [10]. However, none of the works above takes data
quality into account, and those works do not allow the data consumer to propose
a price less than that of the data provider, which is the approach that we study
here.
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The idea of trading off price for data quality has been explored in the con-
text of privacy in [8], which proposes a theoretic framework to assign prices to
noisy query answers. If a data consumer cannot afford the price of a query, she
can choose to tolerate a higher standard deviation to lower the price. However,
this work studies pricing on accuracy for linear relational queries, rather than
pricing XML data based on completeness. In [18], we propose a relational data
pricing framework in which data accuracy can be traded for discounted prices.
By contrast, this paper studies pricing for XML data, and proposes a tradeoff
based on data completeness rather than accuracy.

Subtree/Subgraph Sampling. The main technical result of this paper is the
tractability of uniform subtree sampling under a certain requested size. This
question is related to the general topic of subtree and subgraph sampling, but,
to our knowledge, it has not yet been adequately addressed.

Subgraph sampling works such as [3,7,13,16] have proposed algorithms to
sample small subgraphs from an original graph while attempting to preserve
selected metrics and properties such as degree distribution, component distri-
bution, average clustering coefficient and community structure. However, the
distribution from which these random graphs are sampled is not known and
cannot be guaranteed to be uniform.

Other works have studied the problem of uniform sampling [2,11]. How-
ever, [2] does not propose a way to fix the size of the samples. The authors
of [11] propose a sampling algorithm to sample a connected sub-graph of size k
under an approximately uniform distribution; note that this work provides no
bound on the error relative to the uniform distribution.

Sampling approaches are used in [12,20] to estimate the selectivity of XML
queries (containment join and twig queries, respectively). Nevertheless, the sam-
ples in [20] are specific to containment join queries, while those in [12] are rep-
resentatives of the XML document for any twig queries. Neither of those works
controls the distribution from which the subtrees are sampled.

In [1], Cohen and Kimelfeld show how to evaluate a deterministic tree
automaton on a probabilistic XML document. This has applications to sam-
pling possible worlds that satisfy a given constraint, e.g., expressed in monadic
second-order logic and then translated into a tree automaton. Note that the
translation of constraints to tree automata itself is not tractable in general; in
this respect, our approach can be seen as a specialization of [1] to the simpler case
of fixed-size, fixed-weight, or fixed-height tree sampling, and as an application
of it to data pricing.

3 Pricing Function and Sampling Problem

This paper studies data pricing for tree-shaped documents. We start by formally
defining the terminology that we use for such documents.

We consider trees that are unordered, directed, rooted, and weighted; we
equivalently call them XML documents. Formally, a tree t consists of a set of
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nodes V(t) (which are assumed to carry unique identifiers), a set of edges E(t),
and a function w mapping every node n ∈ V(t) to a non-negative rational number
w(n) which is the weight of node n. We write root(t) for the root node of t.
Whenever two nodes n1, n2 ∈ V(t) are such that (n1, n2) ∈ E(t), we say that n1

and n2 are in a parent-child relationship, that is, n1 is the parent of n2 and n2

is a child of n1.
By children(n), we represent the set of nodes that have parent n. A tree is

said to be binary if each node of the tree has at most two children, otherwise it
is unranked.

We now introduce the notion of rooted subtree of an XML document:

Definition 1. (Subtree, rooted subtree) A tree t′ is a subtree of a tree t if
V(t′) ⊆ V(t) and E(t′) ⊆ E(t). A rooted subtree t′ of a tree t is a subtree of
t such that root(t) = root(t′). We name it r-subtree for short. The weight func-
tion for a subtree t′ of a tree t is always assumed to be the restriction of the
weight function for t on the nodes in t′.

For technical reasons, we also sometimes talk of the empty subtree that con-
tains no node.

0n

1n
2n 3n

5n4n

(a) A tree

0n

1n

2n 3n

5n4n

6n

(b) A binary tree

Fig. 1. Two example trees (usage of the square node will be introduced in Sect. 5.2)

Example 1. Figure 1 presents two example trees. The nodes {n0, n2, n5}, along
with the edges connecting them, form an r-subtree of the tree in Fig. 1(a). Like-
wise, the nodes {n2, n4, n5} and the appropriate edges form a subtree of that
tree (but not an r-subtree). The tree of Fig. 1(b) is a binary tree (ignore the
different shapes of the nodes for now). ��

We now present our notion of data quality, by defining the completeness of
an r-subtree, based on the weight function of the original tree:

Definition 2. (Weight of a tree) For a node n ∈ V(t) of a tree t, we define
inductively weight(n) :=w(n)+

∑
(n,n′)∈E(t) weight(n

′). With slight abuse of nota-
tion, we note weight(t) :=weight(root(t)) as the weight of t.
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Definition 3. (Completeness of an r-subtree) Let t be a tree and t′ be an
r-subtree of t. The completeness of t′ with respect to t is ct(t′) := weight(t′)

weight(t) .
It is obvious that ct(t′) ∈ [0, 1].

We study a framework for data markets where the data consumer can buy
an incomplete document from the data provider while paying a discounted price.
The formal presentation of this framework consists of three parts:

1. An XML document t.
2. A pricing function ϕt for t whose input is the desired completeness for an

r-subtree of the XML document, and whose value is the price of this r-subtree.
Hence, given a proposed price pr0 by a data consumer, the completeness of
the returned r-subtree is decided by ϕ−1

t (pr0).
3. An algorithm to sample an r-subtree of the XML document uniformly at

random among those of a given completeness.

We study the question of the sampling algorithm more in detail in subse-
quent sections. For now, we focus on the pricing function, starting with a formal
definition:

Definition 4. (Pricing function) The pricing function for a tree t is a function
ϕt : [0, 1] → Q

+. Its input is the completeness of an r-subtree t′ and it returns
the price of t′, as a non-negative rational.

A healthy data market should impose some restrictions on ϕt, such as:

Non-decreasing. The more complete an r-subtree is, the more expensive it
should be, i.e., c1 � c2 ⇒ ϕt(c1) � ϕt(c2).

Arbitrage-free. Buying an r-subtree of completeness c1 + c2 should not be
more expensive than buying two subtrees with respective completeness c1
and c2, i.e., ϕt(c1) + ϕt(c2) � ϕt(c1 + c2). In other words, ϕt should be sub-
additive. This property is useful when considering repeated requests, studied
in Sect. 7.

Minimum and maximum bound. We should have ϕt(0) = prmin and ϕt(1) =
prt, where prmin is the minimum cost that a data consumer has to pay using
the data market and prt is the price of the whole tree t. Note that by the
non-decreasing character of ϕt, prt � prmin � 0.

All these properties can be satisfied, for instance, by functions of the form
ϕt(c) := (prt −prmin)cp +prmin where p � 1; however, if p > 1, the arbitrage-free
property is violated.

Given a proposed price pr0 by a data consumer, ϕ−1
t (pr0) is the set of possible

corresponding completeness values. Note that ϕ−1
t is a relation and may not

be a function; ϕ−1
t is a function if different completeness values correspond to

different prices. Once a completeness value c ∈ ϕ−1
t (pr0) is chosen, the weight

of the returned r-subtree is fixed as c × weight(t).
Therefore, in the rest of the paper, we consider the problem of uniform sam-

pling an r-subtree with prescribed weight (instead of with prescribed complete-
ness). We now define the problem that should be solved by our sampling algo-
rithm:
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Definition 5. (Sampling problem) The problem of sampling an r-subtree, given
a tree t and a weight k, is to sample an r-subtree t′ of t, such that weight(t′) = k,
uniformly at random, if one exists, or to fail if no such r-subtree exists.

4 Tractability

Having defined our sampling problem, we now turn to the question of designing
an algorithm to solve it, and of studying its complexity.

4.1 Intractability of the Sampling Problem

We start by showing that this problem is NP-hard in the general formulation
that we gave.

Proposition 1. Given a tree t and a weight k, it is NP-complete to decide
whether there exists an r-subtree of weight k, and NP-hard to sample such an
r-subtree uniformly at random.

Proof. Deciding whether there exists an r-subtree of weight k is in NP, since,
given an r-subtree, it takes polynomial time to check whether this r-subtree is
of weight k by summing up the weights of all the nodes.

We now show that the problem is NP-hard, by describing a PTIME reduction
from the NP-hard subset-sum problem. This is the problem of determining, given
a set S of integers and a target value v (written in binary), whether there exists
a subset S′ ⊆ S which sums to v. Any set S can be encoded in polynomial time
to a tree t such that w(n) = 0 except if n is a leaf, and the leaves correspond
to the elements of S. Now, clearly there is an r-subtree of weight v in t iff there
is a subset of S with sum v. This completes the reduction and shows that the
problem of deciding the existence of an r-subtree of weight k is NP-complete.

Now there is a PTIME-reduction from the decision problem to the sampling
problem, as an algorithm for sampling can be used to decide whether there exists
an r-subtree of the desired weight (the algorithm returns one such) or if none
exists (the algorithm fails). Therefore, the sampling problem is NP-hard. ��

Even though the general sampling problem is intractable, we devise in Sect. 5
a pseudo-polynomial time algorithm to solve it, which runs in polynomial time
in the value of k (but is exponential in the size of k).

4.2 Tractable Cases

We now define restricted variants of the sampling problem where the weight
function is assumed to be of a certain form. In Sect. 6, we show that sampling
for these variants can be performed in PTIME.
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Unweighted Sampling. In this setting, we take the weight function w(n) = 1
for all n ∈ V(t). Hence, the weight of a tree t is actually the number of nodes
in t, i.e., its size, which we write size(t).

In this case, the hardness result of Proposition 1 does not apply anymore.
However, sampling an r-subtree with prescribed size uniformly at random is still
not obvious to do, as the following example shows:

Example 2. Consider the problem of sampling an r-subtree t′ of size 3 from
the tree t in Fig. 1(a). We can enumerate all such r-subtrees: {n0, n1, n2},
{n0, n1, n3}, {n0, n2, n3}, {n0, n2, n4} and {n0, n2, n5}, and choose one of them
at random with probability 1

5 . However, as the number of r-subtrees may be
exponential in the size of the document in general, we cannot hope to perform
this approach in PTIME.

Observe that it is not easy to build a random r-subtree node by node: it is
clear that node n0 must be included, but then observe that we cannot decide to
include n1, n2, or n3 uniformly at random. Indeed, if we do this, our distribution
on the r-subtrees will be skewed, as n1 (or n3) occurs in 2

5 of the outcomes
whereas n2 occurs in 4

5 of them. Intuitively, this is because there are more ways
to choose the next nodes when n2 is added, than when n1 or n3 are added. ��

0/1-weights Sampling. In this problem variant, we require that w(n) ∈ {0, 1}
for all n ∈ V(t), i.e., the weight is a binary value. This variant generalizes the
unweighted sampling case, but allows the data provider to give a weight of zero
to some nodes that she is willing to give away for free. This can be useful, e.g.,
for nodes that are only structural and do not contain any useful information.

5 Algorithms for General Sampling Problem

In this section, we present a pseudo-polynomial algorithm for the general sam-
pling problem, namely the problem of sampling an r-subtree of weight k from
an XML document, uniformly at random.

We first describe the algorithm for the case of binary trees, in Sect. 5.1. Next,
we adapt the algorithm in Sect. 5.2 to show how to apply it to arbitrary trees.

5.1 Sampling for Binary Trees

In this section, we provide an algorithm which proves the following theorem:

Theorem 1. The sampling problem for binary trees can be solved in time
O(nk2), where n is the number of nodes in the tree and k is the desired weight
value.

Our general algorithm to solve this problem is given as Algorithm1. The
algorithm has two phases, which we study separately in what follows. For sim-
plicity, whenever we discuss binary trees in this section, we will add special



124 R. Tang et al.

Algorithm 1. Algorithm for the sampling problem on binary trees
Input: a binary tree t and an integer k � 0
Result: an r-subtree t′ of t of weight(t′) = k uniformly at random
// Phase 1: count the number of subtrees

1 D ← SubtreeCounting(t);
// Phase 2: sample a random subtree

2 if k � weight(t) ∧ Droot(t)[k] �= 0 then
3 return UniformSampling(root(t), D, k);
4 else
5 fail ;

NULL children to every node of the tree (except NULL nodes themselves), so
that all nodes, including leaf nodes (but excluding NULL nodes), have exactly
two children (which may be NULL). This will simplify the presentation of the
algorithms. Of course weight(NULL) = 0.

First Phase: Subtree Counting (Algorithm2). We start by computing
a matrix D such that, for every node ni of the input tree t and any value
0 � x � weight(t), Di[x] is the number of subtrees of weight x rooted at node ni.
We do so with Algorithm 2 which we now explain in detail.

There is only one subtree rooted at the special NULL node, namely the empty
subtree, with weight 0, which provides the base case of the algorithm (line 3).
Otherwise, we compute Di for a node ni from the values Dl and Dr of D for
its children nl and nr (which may be NULL); those values have been computed
before because nodes are considered bottom-up.

Intuitively, any r-subtree of weight x > 0 rooted at ni is obtained by retain-
ing ni, and choosing two r-subtrees tl and tr, respectively rooted at nl and nr (the
children of ni), such that weight(tl)+weight(tr) = x−w(ni) (which accounts for
the weight of the additional node ni). The number of such choices is computed
by the convolution of Dl and Dr in line 7, defined as:

For 0 � p � weight(t), (Dl ∗ Dr)[p] :=
p∑

m=0

Dl[m] × Dr[p − m].

We explain Algorithm2 by considering the cases of w(ni) = 0 (line 8 to line 11)
and of w(ni) 	= 0 (line 13 to line 15), respectively.

If w(ni) = 0, the number of r-subtrees of weight x > 0 rooted at ni is the
number of pairs of r-subtrees tl and tr, respectively rooted at nl and nr (the
children of ni), such that weight(tl) + weight(tr) = x (because node ni does not
contribute weight). That is to say, Di[x] = (Dl ∗ Dr)[x] for x > 0 (line 11). By
contrast, for x = 0, an r-subtree of weight 0 rooted at ni can be obtained either in
the same way, or by keeping the empty subtree. Therefore Di[0] = 1+(Dl∗Dr)[0]
(line 9).

If w(ni) 	= 0, there is only one r-subtree of weight 0 at ni, namely the empty
tree. That is to say, Di[0] = 1 as shown in line 13. The number of r-subtrees
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Algorithm 2. SubtreeCounting(t)
Input: a binary tree t
Result: a matrix D such that Di[x] is the number of r-subtrees of weight x

rooted at ni for all ni and x

1 for x ∈ [0,weight(t)], ni ∈ V(t) � {NULL} do
2 Di[x] ← 0;
3 DNULL[0] ← 1;

// We browse all nodes in topological order, from leaves to the root

4 foreach non-NULL node ni accessed bottom-up do
5 nl ← first child of ni;
6 nr ← second child of ni;
7 T ← Dl ∗ Dr;
8 if w(ni) = 0 then
9 Di[0] ← 1 + T [0];

10 for x ∈ [1,weight(ni)] do
11 Di[x] ← T [x];

12 else
13 Di[0] ← 1;
14 for x ∈ [w(ni),weight(ni)] do
15 Di[x] ← T [x − w(ni)];

16 return D;

of weight x � w(ni) rooted at ni is the number of pairs of r-subtrees tl and tr
rooted at nl and nr (the children of ni) respectively such that weight(tl) +
weight(tr) = x−w(ni), which implies that Di[x] = (Dl ∗Dr)[x−w(ni)] (line 15).
For x ∈ [1,w(ni) − 1], it is impossible to get an r-subtree of weight x at ni, so
Di[x] remains at 0.

Example 3. Let t be the tree presented in Fig. 1(b) (again, ignore the different
shapes of nodes for now). Assume w(n0) = w(n1) = w(n2) = 0, w(n3) = w(n4) =
1, w(n5) = w(n6) = 2. Starting from the leaf nodes, we compute D4 = D3 =
(1, 1) and D5 = (1, 0, 1), with T = DNULL ∗ DNULL = (1), by line 13 to line 15.
We compute D1 = (2) with line 8 to line 11.

Now, when computing D2, we first convolve D4 and D5 to get the numbers
of pairs of r-subtrees of different weights at {n4, n5}, i.e., D4 ∗ D5 = (1, 1, 1, 1),
so that D2 = (2, 1, 1, 1) (applying line 8 to line 11). When computing D6, we
first compute D2 ∗ D3 = (2, 3, 2, 2, 1), so that D6 = (1, 0, 2, 3, 2, 2, 1) (applying
line 13 to line 15). Finally, D0 = (3, 0, 4, 5, 4, 4, 3). ��

We now state the correctness and running time of this algorithm.

Lemma 1. Algorithm2 terminates in O(nk2) time (where n is the number of
nodes in the given tree, and k is the desired weight) and returns D such that, for
every ni and x, Di[x] is the number of r-subtrees of weight x rooted at node ni.

Proof. We first prove the running time. All arrays under consideration have size
at most W (where W = weight(t)), so computing the convolution of two such
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arrays is in time O(W 2). The number of convolutions to compute overall is O(n),
because each array Di occurs in exactly one convolution. The overall running
time is thus O(nW 2). The running time can be optimized because, in fact, the
arrays in D do not need to have size W , but can be bounded to size k (subtrees
larger than k are never relevant). Therefore the complexity is in fact O(nk2).

We now show correctness. We proceed by induction on the node ni to prove
the claim for every x. The base case is the NULL node, whose correctness is
straightforward. To prove the induction step, let ni be a node, and assume by
induction that Dl[x′] is correct for every x′ and every child nl of ni. We fix x
and show that Di[x] is correct.

We distinguish two cases in the proof: w(ni) 	= 0 and w(ni) = 0.
We first prove the case where w(ni) 	= 0. To select an r-subtree at ni, (1) if

x = 0, there is exactly one possibility (the empty subtree); (2) if x ∈ [1,w(ni)),
there is no such possibility; (3) if x � w(ni), the number of possibilities is the
number of ways to select a pair of r-subtrees at the children of ni so that their
weights sum to x − w(ni). This is the role of line 13 to line 15.

Now, to enumerate the ways of choosing r-subtrees at children of ni whose
weight sum to x −w(ni), we can first decide the weight of the selected r-subtree
for each child: the ways to assign such weights form a partition of the possible
outcomes, so the number of outcomes is the sum, over all such assignments of
r-subtree weights to children, of the number of outcomes for this assignment. For
a fixed assignment, the subtrees rooted at each children are chosen separately,
so the number of outcomes for a fixed assignment is the product of the number
of outcomes for the given weight for each child, which by induction hypothesis
is correctly reflected by the corresponding Dl[x′]. Hence, for a given x, (1) when
x = 0, Di[x] = 1 (line 13); (2) when x ∈ [1,w(ni)), Di[x] = 0 (from how Di is
initialized); (3) when x � w(ni), Di[x] is (Dl ∗ Dr)[x − w(ni)] by line 15, which
sums, over all possible subtree weights assignments, the number of choices for
this subtree weight assignment.

We next prove the case where w(ni) = 0. To select an r-subtree at ni, (1) if
x = 0, the number of possibilities is the number of ways to select a pair of
r-subtrees at the children of ni so that their weights sum to 0 plus one (this
extra possibility is the empty subtree); (2) if x > 0, the number of possibilities
is the number of ways to select a pair of r-subtrees at the children of ni so that
their weights sum to x, because node ni contributes no weight. Similar to the
previous case, the number of ways to select a pair of r-subtrees at the children
of ni so that their weights sum to x is (Dl ∗ Dr)[x]. Therefore, for a given x, (1)
when x = 0, Di[x] = 1+(Dl∗Dr)[0] (line 9); (2) when x 	= 0, Di[x] = (Dl∗Dr)[x]
(line 11).

Hence, by induction, we have shown the desired claim. ��

Second Phase: Uniform Sampling (Algorithm3). In the second phase of
Algorithm 1, we sample an r-subtree from t in a recursive top-down manner,
based on the matrix D computed by Algorithm 2. Our algorithm to perform this
uniform sampling is Algorithm3. The basic idea is that to sample an r-subtree
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Algorithm 3. UniformSampling(ni,D, x)
Input: a node ni (or NULL), the precomputed D, and a weight value x
Result: an r-subtree of weight x at node ni

1 if x = 0 ∧ w(ni) �= 0 then
2 return ∅;

3 p0 ← rand([0, 1]); // p0 is generated from [0, 1] randomly

4 if x = 0 ∧ w(ni) = 0 ∧ p0 � 1
Di[0]

then

5 return ∅;

6 nl ← first child of ni;
7 nr ← second child of ni;
8 for 0 � sl, sr � x s.t. sl + sr = x − w(ni) do
9 p(sl, sr) ← Dl[sl] × Dr[sr];

10 Sample an (sl, sr) with probability p(sl, sr) normalized by
∑

sl,sr
p(sl, sr);

11 L ← UniformSampling(nl, D, sl);
12 R ← UniformSampling(nr, D, sr);
13 return the tree rooted at ni with child subtrees L and R;

rooted at a node ni, we decide on the weight of the subtrees rooted at each
child node, biased by the number of outcomes as counted in D, and then sample
r-subtrees of the desired weights recursively.

We now explain Algorithm 3 in detail.
If x = 0 and w(ni) 	= 0, we must return the empty tree (line 1 to line 2), since

the empty tree is the only choice in this case. If x = 0 and w(ni) = 0, there are
Di[0] r-subtrees of weight 0 at node ni, of which one is the empty tree while the
others are non-empty retaining ni. Therefore, to ensure the uniform distribution
of the samples, we return the empty tree with probability 1

Di[0]
(line 4 to line 5),

and return a non-empty tree of weight 0 retaining ni with probability 1 − 1
Di[0]

(the rest of the algorithm).
Except for the above two cases that return the empty subtree, we return ni

and subtrees tl and tr rooted at the children nl and nr of ni. We first decide on
the weight sl and sr of tl and tr (line 8 to line 10), biasing by the number of
outcomes for each weight combination, and then recursively sample a subtree of
the prescribed weight (line 11 to line 12), uniformly at random, and return it.

To be a suitable choice, the weight pair (sl, sr) must be such that sl + sr =
x − w(ni) (which accounts for node ni). Intuitively, to perform a uniform sam-
pling, we now observe that the choice of the weight pair (sl, sr) partitions the
set of outcomes. Hence, the probability that we select one weight pair should
be proportional to the number of possible outcomes for this pair, namely, the
number of r-subtrees tl and tr such that weight(tl) = sl and weight(tr) = sr.
We compute this from Dl and Dr (line 9) by observing that the number of
pairs (tl, tr) is the product of the number of choices for tl and for tr, as every
combination of choices is possible.
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Example 4. Follow Example 3. Assume we want to sample an r-subtree t′ of
weight(t′) = 3 uniformly. Let D be the result of Algorithm 2.

We first call UniformSampling(n0,D, 3). We have to return n0 (as w(n0) = 0).
Now n0 has two children, n1 and n6. The only possible weight pair is (0, 3), with
probability p(0, 3) = 1. We now call recursively UniformSampling(n1,D, 0) and
UniformSampling(n6,D, 3).

When callingUniformSampling(n1,D, 0), since w(n1) = 0, we return ∅ with
probability 1

D1[0]
= 1

2 and return n1 with probability 1 − 1
D1[0]

= 1
2 . Assume n1

is returned.
We proceed to UniformSampling(n6,D, 3). We have to return n6 (note that

w(n6) = 2). Now n6 has two children, n2 and n3. The possible weight pairs
for this call are (1, 0) and (0, 1), with respective (unnormalized) probabilities
p(1, 0) = D2[1]×D3[0] = 1× 1 = 1 and p(0, 1) = D2[0]×D3[1] = 2× 1 = 2. The
normalized probabilities are p(1, 0) = 1

3 and p(0, 1) = 2
3 . Assume that we choose

(0, 1) with probability 2
3 . We now call recursively UniformSampling(n2,D, 0) and

UniformSampling(n3,D, 1).
When calling UniformSampling(n2,D, 0) (note w(n2) = 0), we return ∅ with

probability 1
D2[0]

= 1
2 and return n2 with probability 1 − 1

D2[0]
= 1

2 . Assume n2

is returned.
We finish with UniformSampling(n3,D, 1). Node n3 is selected.
Hence, the end result is the r-subtree whose nodes are {n0, n1, n6, n2, n3}

(and whose edges can clearly be reconstituted in PTIME from t). This r-subtree
is selected with the probability 1

2 × 2
3 × 1

2 = 1
6 . Indeed, recall that we know there

are 6 r-subtrees of t of weight 3, according to D0[3] = 6. ��
We now show the tractability and correctness of Algorithm3, concluding the

proof of Theorem 1.

Lemma 2. For any tree t, node ni ∈ V(t) and integer 0 � x � weight(ni), given
D computed by Algorithm2, UniformSampling(ni,D, x) terminates in O(nk) time
(where n is the number of nodes in the given tree and k is the desired weight) and
returns an r-subtree of weight x rooted at ni, uniformly at random (i.e., solves
the sampling problem for binary trees).

Proof. We first prove the complexity claim. On every node ni of the binary tree t,
the number of possibilities to consider is at most k, and for each possibility the
number of operations performed is constant (assuming that drawing a number
uniformly at random can be performed in constant time). The overall running
time is O(nk).

We now show correctness by induction on ni. The base case is ni = NULL,
in which case we must have x = 0 and we correctly return ∅. We now assume
that ni is not NULL. If x = 0 and w(ni) 	= 0, the only possibility is the empty
subtree and we correctly return ∅. If x = 0 and w(ni) = 0, there are Di[0] r-
subtrees of weight 0 at node ni, of which one is the empty subtree while the
others are non-empty and retain ni. To ensure that the distribution is uniform,
we return the empty tree with probability 1

Di[0]
and return a non-empty tree of
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weight 0 retaining ni with probability 1− 1
Di[0]

. Otherwise, we need to return an
r-subtree retaining ni. As in the proof of Lemma1, the set of possible outcomes
of the sampling process is partitioned by the possible assignments, and only the
valid ones correspond to a non-empty set of outcomes. Hence, we can first choose
a weight pair, weighted by the proportion of outcomes which are outcomes for this
pair, and then choose an outcome for this pair. Now, observe that, by Lemma1,
D correctly represents the number of outcomes for each child of ni, so that our
computation of p (which mimics that of Algorithm 2) correctly represents the
proportion of outcomes for each weight pair. We then choose an assignment
according to p, and then observe that choosing an outcome for this assignment
amounts to choosing an outcome for each child of ni whose weight is given by the
assignment. By induction hypothesis, this is precisely what the recursive calls to
UniformSampling(ni,D, x) perform. This concludes the proof. ��

5.2 Sampling for Unranked Trees

In this section, we show that the algorithm of the previous section can be adapted
so that it works on arbitrary unranked trees, not just binary trees.

We first observe that the straightforward generalization of Algorithm1 to
trees of arbitrary arity, where assignments and convolutions are performed for
all children, is still correct. However, its running time would no longer be poly-
nomial in n and k, as there would be a potentially exponential number of weight
assignments to consider.

Fortunately, there is still hope to avoid considering all weights assignments
over all the children, because convolution is associative. Informally, assuming we
have three children {n1, n2, n3}, we do the following: we treat {n1} as a group
and {n2, n3} as the second group, then enumerate weight pairs over {n1} and
{n2, n3}; once a weight pair, in which a positive integer is assigned to {n2, n3},
is selected, we can treat {n2} and {n3} as new groups and enumerate weight
pairs over {n2} and {n3}. In other words, this strategy can be implemented by
transforming the original tree to a binary tree.

We now present an encoding process transforming unranked trees to encoded
trees, which are binary trees whose nodes are either regular nodes or dummy
nodes. Intuitively, the encoding operation replaces sequences of more than two
children by a hierarchy of dummy nodes representing those children; replacing
dummy nodes by the sequence of their children yields back the original tree. The
encoding is illustrated in Fig. 1, where the tree in Fig. 1(b) is the encoded tree
of the one in Fig. 1(a) (dummy nodes are represented as squares). We require
that the weight of every dummy node is 0, i.e., w(ni) = 0 where ni is a dummy
node. (However, dummy nodes are not exactly equivalent to regular nodes with
weight 0, as we must not consider that we have the possibility of either keeping
them or not keeping them.)

We formally present an algorithm (Algorithm4) for this encoding process.
Algorithm 4 performs a constant number of operations on every considered node
plus a constant number of operations on every child of the considered node.
Hence, the overall number of operations performed for every node (both when
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Algorithm 4. Transforming to binary tree
Data: a tree t with nodes n0, . . . , nk−1

Result: the encoded tree t′

1 m ← k and t′ ← t;
2 for each node ni of t do
3 if |children(ni)| > 2 then
4 create dummy nodes nm, nm+1, . . . , nm+|children(ni)|−3 in V(t′);
5 for 0 � j < |children(ni)| − 3 do
6 create an edge from nm+j to nm+j+1 in t′;

7 create an edge from ni to nm in t′;
8 disconnect the 2nd, 3rd, . . . , children of ni from ni in t′;
9 for 0 � j � |children(ni)| − 3 do

10 create an edge in t′ from nm+j to the (j + 2)th child of ni in t;

11 create an edge in t′ from nm+|children(ni)|−3 to the last child of ni in t;
12 m ← m + |children(ni)| − 3 + 1;

examining it and when examining its unique parent) is constant, so it completes
in linear time. For a tree t with n nodes, the number of nodes in its encoded
tree t′ is no more than n + n − 3 (the worst case being achieved by a tree with
a root node and n − 1 children). Therefore the size of the encoded tree is linear
in the size of the original tree. Note that the weights of created dummy nodes
are set to 0.

Based on this encoding process, we now state our result:

Theorem 2. The sampling problem can be solved in O(nk2) (where n is the
number of nodes in the given tree and k is the desired weight), for arbitrary
unranked trees.

Proof. It can be shown that, up to the question of keeping or deleting the dummy
nodes with no regular descendants (we call them bottommost), there is a bijection
between r-subtrees in the original tree and r-subtrees in the encoded tree. Hence,
we can solve the sampling problem by choosing an r-subtree in the encoded tree
with a set of regular nodes of weight k, uniformly at random, and imposing the
choice of keeping bottommost dummy nodes.

We do this by adapting Algorithms 2 and 3 to run correctly on encoded trees,
that is, managing dummy nodes correctly, by imposing that they are always
retained.

In Algorithm 2, we have to define the computation of Di for a dummy node ni

as Di ← Dl ∗ Dr (as it must always be kept, and does not increase the weight
of the r-subtree).

In Algorithm 3, some operations have to be distinguished between regular
nodes and dummy nodes. In line 1 and line 4, we additionally require in the if
clauses that ni is either NULL or a regular node: indeed, for dummy nodes, even
if x = 0 we cannot return ∅, because we must keep them.
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The correctness and running time of the modified algorithms can be proved
by straightforward adaptations of Lemmas 1 and 2. ��

6 Tractable Uniform Sampling

As presented in the previous section, the complexity of Algorithm1 (and its
variant in Theorem 2) is O(nk2), where n is the number of nodes in the given
tree and k is the desired weight. It is thus a pseudo-polynomial time algorithm
to solve the general sampling problem, which is polynomial in the value of k,
but is still exponential in the size of k.

We now observe that for the tractable cases in Sect. 4.2, Algorithm 1 (and
its variant in Theorem 2) runs in time polynomial in the size of the input tree;
more specifically, in O(n3). Indeed, for unweighted sampling (where w(ni) = 1
for every ni) and 0/1-weights sampling (where w(ni) = {0, 1} for every ni), the
desired weight k is bounded by the size of the tree, since k � weight(t) � n.
Therefore the complexity of Algorithm 1 (and its variant in Theorem2) is then
O(n3), that is, cubic in the size of the input tree. Hence, we have the following
claim:

Theorem 3. The unweighted sampling and 0/1-weights sampling can be solved
in O(n3) time, where n is the number of nodes in the given tree.

7 Repeated Requests

In this section, we consider the more general problem where the data consumer
requests a completion of a certain price to data that they have already bought.
The motivation is that, after having bought incomplete data, the user may realize
that they need additional data, in which case they would like to obtain more
incomplete data that is not redundant with what they already have.

A first way to formalize the problem is as follows, where data is priced accord-
ing to a known subtree (provided by the data consumer) by considering that
known nodes are free (but that they may or may not be returned again).

Definition 6. The problem of sampling an r-subtree of weight k in a tree t
conditionally to an r-subtree t′ is to sample an r-subtree t′′ of t uniformly at
random, such that weight(t′′) − ∑

n∈(V(t′)∩V(t′′)) w(n) = k.

An alternative is to consider that we want to sample an extension of a fixed
size to the whole subtree, so that all known nodes are always part of the output:

Definition 7. The problem of sampling an r-subtree of weight k in a tree t that
extends an r-subtree t′ is to sample an r-subtree t′′ of t uniformly at random,
such that (1) t′ is an r-subtree of t′′; (2) weight(t′′) − weight(t′) = k.
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Note that those two formulations are not the same: the first one does not
require the known part of the document to be returned, while the second one
does. While it may be argued that the resulting outcomes are essentially equiva-
lent (as they only differ on parts of the data that are already known to the data
consumer), it is important to observe that they define different distributions:
though both problems require the sampling to be uniform among their set of
outcomes, the additional possible outcomes of the first definition means that the
underlying distribution is not the same.

As the uniform sampling problem for r-subtrees can be reduced to either prob-
lem by setting t′ to be the empty subtree, the NP-hardness of those two problems
follows from Proposition 1. However, we can show that, in the unweighted case,
those problems are tractable, because they reduce to the 0/1-weights sampling
problem which is tractable by Theorem 3:

Proposition 2. The problem of sampling an r-subtree of weight k in a tree t
conditionally to an r-subtree t′ can be solved in O(n3) time if t is unweighted.
The same holds for the problem of sampling an r-subtree that extends another
r-subtree.

Proof. For the problem of Definition 6, set the weight of the nodes of t′ in t to
be zero (the intuition is that all the known nodes are free). The problem can
then be solved by applying Theorem2.

For the problem of Definition 7, set the weight of the nodes of t′ in t to be
zero but we have to ensure that the nodes in t′ are always returned. To do so,
we adapt Theorem 2 by handling the nodes in t′ in the same way as handling
dummy nodes in the previous section. ��

8 Sampling Extension: Sampling on Weight and Height

In this section, we consider a more complicated sampling scenario: sampling an
r-subtree of weight k and height h uniformly at random. We present a pseudo-
polynomial time algorithm for this sampling problem. To start with, we define
the height of a tree.

Definition 8. (Height of a tree) For a node n ∈ V(t), we define inductively
height(n) := 1 + max(n,n′)∈E(t) height(n′), with height(n) = 1 if n is a leaf of t.
With slight abuse of notation, we note height(t) = height(root(t)) the height of t.

We first revisit the problem of pricing a tree depending on its weight and
height. Then, in Sect. 8.2, we first describe the algorithm for the case of binary
trees. Next, we adapt the algorithm in Sect. 8.3 to show how to apply it to
arbitrary trees.

8.1 Pricing Function

Height, as well as weight, can be used as a measure of data completeness: two
trees of same weight could be priced differently if they have a different height.
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Algorithm 5. Algorithm for the sampling problem on binary trees
Input: a binary tree t and two integers k � 0 and h � 0
Result: an r-subtree t′ of t of weight(t′) = k and height(t′) = h uniformly at

random
// Phase 1: count the number of subtrees

1 D ← SubtreeCounting(t);
// Phase 2: sample a random subtree

2 if k � weight(t) ∧ h � height(t) ∧ Droot(t)[k, h] �= 0 then
3 return UniformSampling(root(t), D, k, h);
4 else
5 fail ;

We are thus in a setting where a pricing function ϕt(k, h) for the tree t should
take into account both the weight k and the height h of an r-subtree. A healthy
data market should impose at least the following conditions on ϕt:

Non-decreasing for weight. k1 � k2 ⇒ ϕt(k1, h) � ϕt(k2, h).
Non-decreasing for height. h1 � h2 ⇒ ϕt(k, h1) � ϕt(k, h2).
Arbitrage-free for weight. ϕt(k1, h) + ϕt(k2, h) � ϕt(k1 + k2, h).
Arbitrage-free for both. ϕt(k1, h1) + ϕt(k2, h2) � ϕt(k1 + k2, h1 + h2).

An example pricing function is ϕt(k, h) := αh + β k
k+1 , where α � 1 � β � 0.

Similarly as in Sect. 3, once such a pricing function is fixed, the problem
becomes to sample a tree of prescribed weight and height uniformly at random.

8.2 Sampling for Binary Trees

In this section, we provide an algorithm which proves the following theorem for
binary trees:

Theorem 4. The sampling problem for binary trees is solvable in time
O(nk2h2), where n is the number of nodes in the tree, k is the desired weight
value, and h is the desired height.

The sampling algorithm is adapted from the one in Sect. 5.1, and presented as
Algorithm 5. The detailed adaptation of the two phases in the sampling algorithm
is discussed in the following.

Modifications in Phase 1. As in Algorithm 2 (where Di[x] stores the number
of r-subtrees of weight x rooted at node ni), we need to record not only the weight
but also the height of such r-subtrees. More precisely, we use Di[x, y] to denote
the number of r-subtrees of weight x and height y rooted at node ni, where
x ∈ [0,weight(t)] and y ∈ [0, height(t)]. We present Algorithm 6, to compute
Di[x, y] for each node ni in the given tree t.
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Algorithm 6. SubtreeCounting(t)
Input: a binary tree t
Result: a matrix D such that Di[x, y] is the number of r-subtrees of weight x

and height y rooted at ni for all ni, x and y

1 for x ∈ [0,weight(t)], y ∈ [0, height(t)], ni ∈ V(t) � {NULL} do
2 Di[x, y] ← 0;
3 DNULL[0, 0] ← 1;

// We browse all nodes in topological order, from leaves to the root

4 foreach non-NULL node ni accessed bottom-up do
5 Di[0, 0] = 1;
6 nl ← first child of ni;
7 nr ← second child of ni;
8 T ← Dl ∗ Dr;
9 for x ∈ [w(ni),weight(ni)] do

10 for y ∈ [1, height(ni)] do
11 Di[x, y] ← T [x − w(ni), y − 1];

12 return D;

As the base case, for NULL nodes, weight(NULL) = 0 and height(NULL) = 0.
Hence DNULL[0, 0] = 1 (as shown in line 3). For other cases (i.e., x > 0 or y > 0),
DNULL = 0.

For a non-NULL node, if the height is 0, then either the weight is also 0
and only the empty tree is possible, or the weight is greater than 0 and there
is no possibility. Otherwise, intuitively, an r-subtree of weight x � 0 and height
y > 0 rooted at node ni is obtained by retaining ni and choosing two r-subtrees tl
and tr, respectively rooted at nl and nr (the children of ni), such that weight(tl)+
weight(tr) = x − w(ni) and max{height(tl), height(tr)} = y − 1 (which accounts
for the weight and height of the additional node ni). Similar to Algorithm2, the
number of such choices is computed in line 8 as the convolution of Dl and Dr in
a certain sense, defined as follows, for 0 � p � weight(t) and 0 � q � height(t):

(Dl ∗ Dr)[p, q] :=
∑

0�h1,h2�q
h1=q or h2=q

p∑

m=0

Dl[m,h1] × Dr[p − m,h2]

(Dl ∗Dr)[p, q] represents the number of pairs of r-subtrees tl and tr such that
weight(nl) +weight(nr) = p and max{height(tl), height(tr)} = q. In other words,
there are three mutually exclusive ways to meet the requirement on the heights:

1. height(tl) < q and height(tr) = q;
2. height(tl) = q and height(tr) < q;
3. height(tl) = q and height(tr) = q.

All in all, as shown in line 9 to line 11, the number of r-subtrees of weight x
and height y, namely, Di[x, y], is the number of pairs of r-subtrees tl and tr
rooted at nl and nr respectively such that weight(nl) + weight(nr) = x − w(ni)



A Framework for Sampling-Based XML Data Pricing 135

Algorithm 7. UniformSampling(ni,D, x, y)
Input: a node ni (or NULL), the precomputed D, a weight value x and a height

value y
Result: an r-subtree of weight x and height y at node ni if one exists

1 if y = 0 then
2 return ∅;

3 nl ← first child of ni;
4 nr ← second child of ni;
5 for 0 � sl, sr � x and 0 � ol, or � y s.t. sl + sr = x − w(ni) and

max{ol, or} = y − 1 do
6 p([sl, ol], [sr, or]) ← Dl[sl, ol] × Dr[sr, or];

7 Sample an ([sl, ol], [sr, or]) with probability p([sl, ol], [sr, or]) normalized by∑
([sl,ol],[sr,or ])

p([sl, ol], [sr, or]);

8 L ← UniformSampling(nl, D, sl, ol);
9 R ← UniformSampling(nr, D, sr, or);

10 return the tree rooted at ni with child subtrees L and R;

and max{height(tl), height(tr)} = y − 1 (which is T [x − w(ni), y − 1] in line 11).
Note that when w(ni) 	= 0 there exists no such r-subtrees at node ni of weight x
(where x ∈ [0,w(ni) − 1]) and height y 	= 0, so Di[x, y] remains 0 in this case.

The time complexity to compute D is O(nk2h2). To sample an r-subtree of
weight k and height h, we need to record the number of r-subtrees of weight
up to k and height up to h rooted at every node. Therefore each array in D is a
k × h array. Computing the convolution sum of such two arrays takes O(k2h2)
time, since computing each value in the convolution sum takes O(kh) time. The
number of convolution sums to compute overall is O(n), because each array Di

occurs in exactly one convolution sum. The overall running time is O(nk2h2).

Modifications in Phase 2. Similarly to Algorithm 3, we present Algorithm 7
to sample an r-subtree of weight x and height y at node ni uniformly at random,
given the computed matrix D in the previous section. If y = 0, the only possible
r-subtree is the empty tree, therefore that is the output (line 1 to line 2). Note
that the result will be incorrect if x > 0, but in this case Algorithm 5 would not
have called Algorithm 7 because there is no such subtree to sample.

Except for this special case, we return ni and subtrees tl and tr rooted at the
children nl and nr of ni. We first decide on the weight (respectively, height) sl
(respectively, ol) and sr (respectively, or) of tl and tr (line 5 to line 7) before
sampling recursively a subtree of the prescribed weight and the prescribed height
(line 8 to line 9), uniformly at random, and returning it.

The possible weight and height pairs ([sl, ol], [sr, or]) must satisfy the fol-
lowing conditions to be possible choices for the weights and the heights of the
subtrees tl and tr:

1. 0 � sl, sr � x and 0 � ol, or � y;
2. sl + sr = x − w(ni) and max{ol, or} = y − 1 (which accounts for node ni).
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Intuitively, to perform a uniform sampling, we now observe that the choice
of the weight and height pair ([sl, ol], [sr, or]) partitions the set of outcomes.
Hence, the probability that we select one weight and height pair should be pro-
portional to the number of possible outcomes for this pair, namely, the number of
r-subtrees tl and tr such that weight(tl) = sl, weight(tr) = sr and height(tl) = ol,
height(tr) = or. We compute this from Dl and Dr (line 6) by observing that the
number of pairs (tl, tr) is the product of the number of choices for tl and for tr,
as every combination of choices is possible.

The uniform sampling phase takes O(nkh) time. On every node ni of the
binary tree t, the number of possibilities to consider is O(kh) because every
node has exactly two children, and for each possibility the number of operations
performed is constant (assuming that drawing a number uniformly at random is
constant-time). The overall running time is O(nkh).

8.3 Sampling for Unranked Trees

In this section, we show that the algorithm of the previous section can be adapted
so that it works on arbitrary unranked trees, not just binary trees. Similarly to
Sect. 5.2, we transform an unranked tree to a binary tree whose nodes are either
regular nodes or dummy nodes. A dummy node is a virtual node gathering a
sequence of more than two nodes. Therefore a dummy node does not contribute
any weight nor height to r-subtrees. After transforming an arbitrary unranked
tree to the corresponding binary tree using Algorithm4, we apply Algorithm 5 to
solve the sampling problem, while making sure the dummy nodes are managed
correctly. We explain how to adapt Algorithms 6 and 7 to handle the dummy
nodes.

In Algorithm 6, we have to define the computation of Di for a dummy node ni

as Di ← Dl ∗ Dr (as it must always be kept, and does not increase the weight
nor the height of the r-subtree).

In Algorithm 7, some operations have to be distinguished between regular
nodes and dummy nodes. In line 1 we add one more condition in the if clause:
ni is either NULL or a regular node (for dummy nodes, even if x = 0 and y = 0
we cannot return ∅ as we must keep dummy nodes). In line 5, if ni is a dummy
node, the condition for possible weight and height pairs is: sl + sr = x and
max{ol, or} = y, because a dummy node does not contribute any weight nor
height.

These adaptations do not affect the complexity of the sampling algorithm,
therefore the algorithm for sampling unranked trees on both weight and height
is also O(nk2h2).

8.4 Tractable Cases

As presented in the previous section, the complexity of Algorithm5 (and its
variant in Sect. 8.3) is O(nk2h2), where n is the number of nodes in the given
tree, k is the desired weight and h is the desired height. As h � n, the time
complexity of Algorithm 5 is O(n3k2). It is a pseudo-polynomial time algorithm
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to solve the sampling problem on both weight and height, which is polynomial
in the value of k, but is still exponential in the size of k.

The tractable cases in Sect. 4.2 are still tractable when we sample on both
weight and height. To solve such tractable cases, Algorithm 5 (and its variant
in Sect. 8.3) runs in polynomial-time to the size of the tree, more specifically,
O(n5), because k � n when w(ni) = 1 or w(ni) ∈ {0, 1}. Hence:

Theorem 5. The unweighted sampling and 0/1-weights sampling on both weight
and height can be solved in O(n5) time, where n is the number of nodes in the
given tree.

9 Conclusion

We proposed a framework for a data market in which data quality can be traded
for a discount. We studied the case of XML documents with completeness as
the quality dimension. Namely, a data provider offers an XML document, and
sets both the price and weights of nodes of the document. The data consumer
proposes a price but may get only a sample if the proposed price is lower than
that of the entire document. A sample is a rooted subtree of prescribed weight,
as determined by the proposed price, sampled uniformly at random.

We proved that if nodes in the XML document have arbitrary non-negative
weights, the sampling problem is intractable. We devise a pseudo-polynomial
time algorithm to solve this general sampling problem, and proved the time com-
plexity and correctness of the algorithm. We identified tractable cases, namely
the unweighted sampling problem and 0/1-weights sampling problem, for which
the pseudo-polynomial time algorithm actually runs in polynomial time. We also
considered repeated requests and provided PTIME solutions to the unweighted
cases.

As a more complicated sampling scenario, we studied the problem of uniform
sampling an r-subtree of prescribed weight and height. We devised a pseudo-
polynomial time sampling algorithm, and showed that it still runs in polynomial
time in the tractable cases.

The more general issue that we are currently investigating is that of sampling
rooted subtrees uniformly at random under more expressive conditions than size
restrictions or 0/1-weights (with or without height). In particular, we intend to
identify the tractability boundary to describe the class of tree statistics for which
it is possible to sample r-subtrees in PTIME under a uniform distribution.

Acknowledgments. This work is supported by the French Ministry of Foreign Affairs
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Abstract. A k-nearest neighbor (kNN) query determines the k nearest
points, using distance metrics, from a given location. An all k-nearest
neighbor (AkNN) query constitutes a variation of a kNN query and
retrieves the k nearest points for each point inside a database. Their
main usage resonates in spatial databases and they consist the back-
bone of many location-based applications and not only. In this work, we
propose a novel method for classifying multidimensional data using an
AkNN algorithm in the MapReduce framework. Our approach exploits
space decomposition techniques for processing the classification proce-
dure in a parallel and distributed manner. To our knowledge, we are the
first to study the kNN classification of multidimensional objects under
this perspective. Through an extensive experimental evaluation we prove
that our solution is efficient, robust and scalable in processing the given
queries.

Keywords: Classification · Nearest neighbor · MapReduce · Hadoop ·
Multidimensional data · Query processing

1 Introduction

Classification is the problem of identifying to which of a set of categories a new
observation belongs, on the basis of a training set of data containing observations
(or instances) whose category membership is known. One of the algorithms for
data classification uses the kNN approach [10]. It computes the k nearest neigh-
bors (belonging to the training dataset) of a new object and classifies it to the
category that belongs the majority of its neighbors.
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A k-nearest neighbor query [19] computes the k nearest points, using distance
metrics, from a specific location and is an operation that is widely used in spatial
databases. An all k-nearest neighbor query constitutes a variation of a kNN query
and retrieves the k nearest points for each point inside a dataset in a single
query process. There is a wide diversity of applications that AkNN queries can
be harnessed. The classification problem is one of them. Furthermore, they are
widely used by location based services [13]. For example, consider users that send
their location to a web server to process a request using a position anonymization
system in order to protect their privacy from insidious acts. This anonymization
system may use an AkNN algorithm to calculate the k nearest neighbors for each
user. After that, it sends to the server the locations of the neighbors along with
the location of the user that made the request at the first place. In addition,
many algorithms have been developed to optimize and speed up the join process
in databases using the kNN approach.

Although AkNN is a fundamental query type, it is computationally very
expensive. The naive approach is to search for every point the whole dataset in
order to estimate its k-NN list. This leads to an O

(
n2

)
time complexity assum-

ing that n is the cardinality of the dataset. As a result, quite a few centralized
algorithms and structures (M-trees, R-trees, space-filling curves, etc.) have been
developed towards this direction [6,12,15,31]. However, as the volume of datasets
grows rapidly even these algorithms cannot cope with the computational burden
produced by an AkNN query process. Consequently, high scalable implementa-
tions are required. Cloud computing technologies provide tools and infrastructure
to create such solutions and manage the input data in a distributed way among
multiple servers. The most popular and notably efficient tool is the MapReduce
[9] programming model, developed by Google, for processing large-scale data.

In this paper, we propose a method for efficient multidimensional data clas-
sification using AkNN queries in a single batch-based process in Hadoop [22,25],
the open source MapReduce implementation. The basic idea is to decompose the
space, where the data belongs, into smaller partitions. Afterwards, we get the k
nearest neighbors for each point to be classified only by searching the appropri-
ate partitions. Finally, we add it to the category it belongs based on the class
that the majority of its neighbors belongs. The space decomposition relies on
the data distribution of the training dataset.

More specifically, we sum up the technical contributions of our paper as
follows:

– We present an implementation of a classification algorithm based on AkNN
queries using MapReduce. We apply space decomposition techniques (based
on data distribution) that divides the data into smaller groups. For each point
we search for candidate k-NN objects only in a few groups. The granularity of
the decomposition is a key factor for the performance of the algorithm and we
analyze it further in Sect. 6.1. At first, the algorithm defines a search area for
each point and investigates for k-NN points in the groups covered by this area.
If the search area of a point does not include at least k neighbors, it is gradually
expanded until the desired number is reached. Finally, we classify the point to
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the category that belongs the majority of its neighbors. The implementation
defines the MapReduce jobs with no modifications to the original Hadoop
framework.

– We provide an extension for d > 3 in Sect. 5 (d stands for dimensionality).
– We evaluate our solution through an experimental evaluation against large

scale data up to 4 dimensions. Furthermore, we study various parameters
that can affect the total computational cost of our method using real and
synthetic datasets. The results prove that our solution is efficient, robust and
scalable.

The rest of the paper is organized as follows: Sect. 2 discusses related work.
Section 3 presents the initial idea of the algorithm, our technical contributions
and some examples of how the algorithm works. Section 4 presents a detailed
analysis of the classification process developed in Hadoop. Section 5 provides an
extension for d > 3 and Sect. 6 presents the experiments that where conducted in
the context of this work. Finally, Sect. 7 concludes the paper and Sect. 8 presents
future steps.

2 Related Work

AkNN queries have been extensively studied in literature. In [15], a method
based on M-trees is proposed that processes AkNN spatial network queries. The
experimental evaluation runs over a road network dataset for small k values. In
addition, a structure that is popular for answering efficiently to kNN queries is
R-tree [19]. Assuming that we execute a kNN query for all elements stored in
the R-tree, we facilitate the AkNN query process with such indexes. Pruning
techniques can be combined with such structures to deliver better results [6,12].
Mobile networks are also a domain where AkNN find application as shown in
[4]. Their work suggest a centralized algorithm that identifies to every smart-
phone user its k geographically nearest neighbors in O (n · (k + l)) time, where
n denotes the number of users and l is a network-specific parameter. Moreover,
efforts have been made to design low computational cost methods that execute
such queries in spatial databases. For instance, [27] studies both the kNN query
and the kNN join in a relational database. Their approach guarantees to find the
approximate kNN with only logarithmic number of page accesses in expectation
with a constant approximation ratio. Also, it can be extended to find the exact
kNN efficiently in any fixed dimension. The works in [26,29] propose algorithms
to answer kNN join.

The methods proposed above can handle data of small size in one or more
dimensions, thus their use is limited in centralized environments only. During
the recent years, the researchers have focused on developing approaches that are
applicable in distributed environments, like our method, and can manipulate big
data in an efficient manner. The MapReduce framework seems to be suitable for
processing such queries. For example, in [28] the discussed approach splits the
target space in smaller cells and looks into appropriate cells where k-NN objects
are located, but applies only in 2-dimensional data. Our method speeds up the



142 N. Nodarakis et al.

naive solution of [28] by eliminating the merging step, as it is a major drawback.
We have to denote here that in [28] it is claimed that the computation of the
merging step can be performed in one node since we just consider statistic values.
But this is not entirely true since this process can derive a notable computational
burden as we increase dimensions and/or data size, something that is confirmed
in the experimental evaluation. In addition, the merging step can produce size-
able groups of points, especially as k increments, that can overload the first
step of the AkNN process. Moreover, our method applies for more dimensions.
Especially, for d >= 3 the multidimensional extension is not straightforward at
all.

In [21], locality sensitive hashing (LSH) is used together with a MapReduce
implementation for processing kNN queries over large multidimensional datasets.
This solution suggests an approximate algorithm like the work in [30] (H-zkNNJ)
but we focus on exact processing of AkNN queries. Furthermore, AkNN queries
are utilized along with MapReduce to speed up and optimize the join process
over different datasets [2,17] or support non-equi joins [24]. Moreover, [3] makes
use of a R-tree based method to process kNN joins efficiently. Together with
kNN, many other popular spatial queries have been studied and implemented
efficiently on top of Hadoop/HBase frameworks [1,11,16].

In [5] a minimum spanning tree based classification model is introduced and
it can be viewed as an intermediate model between the traditional k-nearest
neighbor method and cluster based classification method. Another approach
presented in [14] recommends parallel implementation methods of several classi-
fication algorithms, including k-nearest neighbor, bayesian model, decision tree.
However, it does not contemplate neither the perspective of dimensionality nor
parameter k.

In brief, our proposed method implemented in the Hadoop MapReduce
framework, extends the traditional kNN classification algorithm and processes
exact AkNN queries over massive multidimensional data. In this way, we achieve
to classify a huge amount of objects in a single batch-based process. Compared
to the aforementioned solutions, our method does not focus solely on the join
operator but provides a more generalized framework to process AkNN queries.
In other words, we boost the performance of the AkNN query process regard-
less the context of use of the query (kNN join, AkNN classification, etc.) The
experimental evaluation considers a wide diversity of factors that can affect the
execution time such as the value of k, the granularity of space decomposition,
dimensionality and data distribution.

3 Overview of Classification Algorithm

In this section, we first define some notation and provide some definitions used
throughout this paper. Table 1 lists the symbols and their meanings. Next, we
outline the architecture of MapReduce model. Finally, we give a brief review of
the method our solution relies on and then we extend it for more dimensions
and tackle some performance issues.
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Table 1. Symbols and their meanings

n Granularity of space decomposition

k Number of nearest neighbors

d Dimensionality

D A d-dimensional metric space

dist(r, s) The distance from r to s

kNN(r, S) The k nearest neighbors of r from S

AkNNC(R,S) ∀r ∈ R classify r based on kNN(r, S)

ICCH Interval, cell cube or hypercube

ICSH Interval, circle, sphere or hypersphere

I Input dataset

T Training dataset

cr The class of point r

CT The set of classes of dataset T

SI Size of input dataset

ST Size of training dataset

M Total number of Map tasks

R Total number of Reduce tasks

3.1 Definitions

We consider points in a d-dimensional metric space D. Given two points r and s
we define as dist(r, s) the distance between r and s in D. In this paper, we used
the distance measure of Euclidean distance

(r, s) =

√∑d

i=1
(r[i] − s[i])2

where r[i] (respectively s[i]) denote the value of r (respectively s) along the i-th
dimension in D. Without loss of generality, alternative distance measures (i.e.
Manhattan distance) can be applied to our solution.

Definition 1. kNN: Given a point r, a dataset S and an integer k, the k nearest
neighbors of r from S, denoted as kNN(r, S), is a set of k points from S such
that ∀p ∈ kNN(r, S), ∀q ∈ {S − kNN(r, S)}, dist(p, r) < dist(q, r).

Definition 2. AkNN: Given two datasets R,S and an integer k, the all k
nearest neighbors of R from S, named AkNN(R,S), is a set of pairs (r, s) such
that AkNN(R,S) = {(r, s) : r ∈ R, s ∈ kNN(r, S)}.
Definition 3. AkNN Classification: Given two datasets R,S and a set of
classes CS where points of S belong, the classification process produces a set of
pairs (r, cr), denoted as AkNNC(R,S), such that AkNNC(R,S) = {(r, cr) :
r ∈ R, cr ∈ CS} where cr is the class where the majority of kNN(r, S) belong
∀r ∈ R.
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Fig. 1. AkNNC(R,S) explanation

We explain Definition 3 using an illustrative example, as shown in Fig. 1.
We assume that S = {a, b, c, d, e, f, g, h, i, j, k}, R = {l,m, n}, CS = {A,B} and
k = 3. We draw the boundary circle (see below in Sect. 3.2) that covers at least
k points and construct kNN(r, S),∀r ∈ R. Next, we determine the dominant
class cr in each kNN(r, S),∀r ∈ R and build the final AkNNC(R,S) set.

3.2 Classification Using Space Decomposition

Consider a training dataset T , an input dataset I and a set of classes CT where
points of T belong. First of all, we define as target space the space enclosing the
points of I and T . The partitions that are defined when we decompose the target
space for 1-dimensional objects are called intervals. Respectively, we call cells
and cubes the partitions in case of 2 and 3-dimensional objects and hypercubes
for d > 3. For a new 1D point p, we define as boundary interval the minimum
interval centred at p that covers at least k-NN elements. Respectively, we define
the boundary circle and boundary sphere for 2D and 3D points and the boundary
hypersphere for d > 3. The notion of hypercube and hypersphere are analyzed
further in Sect. 5. When the boundary ICSH centred in an ICCH icch1, intersects
the bounds of an other icch2 we say an overlap occurs on icch2. Finally, for a
point i ∈ I, we define as updates of kNN(i, T ) the existence of many different
instances of kNN(i, T ) that need to be unified to a final set.

We place the objects of T on the target space according to their coordinates.
The main idea of equal-sized space decomposition is to partition the target space
into nd equal sized ICCHs where n and the size of each ICCH are user defined.
Each ICCH contains a number of points of T . Moreover, we construct a new
layer over the target space according to CT and ∀t ∈ T, ct ∈ CT . In order
to estimate AkNNC(I, T ), we investigate ∀i ∈ I for k-nearest neighbors only
in a few ICCHs, thus bounding the number of computations that need to be
performed for each i.
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3.3 MapReduce Model

Here, we briefly describe the MapReduce model [9]. The data processing in
MapReduce is based on input data partitioning; the partitioned data is exe-
cuted by a number of tasks executed in many distributed nodes. There exist two
major task categories called Map and Reduce respectively. Given input data,
a Map function processes the data and outputs key-value pairs. Based on the
Shuffle process, key-value pairs are grouped and then each group is sent to the
corresponding Reduce task. A user can define his own Map and Reduce functions
depending on the purpose of his application. The input and output formats of
these functions are simplified as key-value pairs. Using this generic interface, the
user can focus on his own problem and does not have to care how the program
is executed over the distributed nodes. The architecture of MapReduce model is
depicted in Fig. 2.

Fig. 2. Architecture of MapReduce model

3.4 Previous Work

A very preliminary study of naive AkNN solutions is presented in [28] and uses
a simple cell decomposition technique to process AkNN queries on two different
datasets, i.e. I and T . The objects consisting both datasets are 2-dimensional
points having only one attribute, the coordinate vector and the target space
comprises of 2n × 2n equal-sized cells.

The elements of both datasets are placed on the target space according to
their coordinate vector and a cell decomposition is applied. For a point i ∈ I
it is expected that its kNN(i, T ) will be located in a close range area defined
by nearby cells. At first, we look for candidate k-NN points inside the cell that
i belongs in the first place, name it cl. If we find at least k elements we draw
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the boundary circle. There is a chance the boundary circle centred at cl overlaps
some neighboring cells. In this case, we need to investigate for possible k-NN
objects inside these overlapped cells in order to create the final k-NN list. If no
overlap occurs, the k-NN list of i is complete. Next, we present an example to
provide a better perception of the algorithm.

Figure 3 illustrates an example of the AkNN process of a point in dataset I
using a query for k = 3. Initially, the point looks for k-NN objects inside cell 2.
Since there exist at least 3 points of dataset T in cell 2 the boundary circle can
be drawn. The boundary circle overlaps cells 1, 3 and 4, so we need to investigate
for additional k-NN objects inside them. The algorithm outputs an instance of
the k-NN list for every overlapped cell. These instances need to be unified into
a k-NN list containing the final points (x, y, z).

Fig. 3. kNN process using cell decomposition (k = 3)

This approach, as described above, fails to draw the boundary circle if cl
contains less than k points. The solution to the problem is simple. At first,
we check the number of points that fall into every cell. If we find a cell with
less than k points we merge it with the neighboring cells to assure that it will
contain the required number of objects. The way the merging step is performed
relies on the principles of hierarchical space decomposition used in quad-trees
[20]. Note that this is the reason why the space decomposition involves 2n ×
2n cells. This imposes two more steps that need to be done before we begin
calculating kNN(i, T ). In the beginning, a counting phase needs to be performed
followed by a merging step in order to overcome the issue mentioned above.
This preprocessing phase induces additional cost to the total computation and,
as shown in the experiments, the merging step can lead to a bad algorithmic
behavior.

3.5 Technical Contributions

In this subsection, we extend the previous method for more dimensions and
adapt it to the needs of the classification problem. Moreover, we analyze some
drawbacks of the method studied in [28] and propose a mechanism to make the
algorithm more efficient.
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Firstly, we have a training dataset T , an input dataset I and a set of classes
CT where points of T belong. The only difference now is that the points in the
training dataset have one more attribute, the class they belong. In order to com-
pute AkNNC(I, T ), a classification step is executed after the construction of
the k-NN lists. The class of every new object is chosen based on the class mem-
bership of its k-nearest neighbors. Furthermore, now the space is decomposed in
2dn ICCHs since we consider a d-dimensional metric space D.

As mentioned before, the simple solution presented in [28] has one major
drawback which is the merging step. Figure 4(a) depicts a situation where the
merging step of the original method can significantly increase the total cost of
the algorithm. Consider two points x and y entering cells 3 and 2 respectively
and k = 3. We can draw point’s x boundary circle since cell 3 includes at least
k elements. On the contrary, we cannot draw the boundary circle of point y,
so we need to unify cells 1 through 4 into one bigger cell. Now point y can
draw its boundary circle but we overload point’s x k-NN list construction with
redundant computations. In the first place, the k-NN list of point x would only
need 4 distance calculations to be formed. After the merging step we need to
perform 15, namely almost 4 times more than before and this would happen for
all points that would join cells 1,3 and 4 in the first place.

1 2

3 4

Dataset T point

Dataset I point

x

y

x

y
Merging

(a) Merging issue (b) Increase range

Fig. 4. Issue of the merging step before the kNN process and way to avoid it (k = 3)

In order to avoid a scenario like above, we introduce a mechanism where
only points that cannot find at least k-nearest neighbors in the ICCH in the first
place proceed to further actions. Let a point p joining an ICCH icch that encloses
l < k neighbors. Instead of performing a merging step, we draw the boundary
ICSH based on these l neighbors. Then, we check if the boundary ICSH overlaps
any neighboring ICCHs. In case it does, we investigate if the boundary ICSH
covers at least k elements in total. In case it does, then we are able to build
the final k-NN list of the point by unifying the individual k-NN lists that are
derived for every overlapped ICCH. In case the boundary ICSH does not cover
at least k objects in total or does not overlap any ICCHs, then we gradually
increase its search range (by a fraction of the size of the ICCH each time) until
the prerequisites are fulfilled.

Figure 4(b) explains this issue. Consider two points x and y entering cells 3
and 1 respectively and k = 3. We observe that cell 3 contains 4 neighbors and
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point x can draw its boundary circle that covers k-NN elements. However, the
boundary circle centred at point y does not cover k-NN elements in the first
place. Consequently, we gradually increase its search range until the boundary
circle encloses at least k-NN points. Note that eliminating the merging step, we
also relax the condition of decomposing the target space into 2dn equal-sized
splits and generalize it to nd equal-sized splits.

Summing up, our solution can be implemented as a series of MapReduce jobs
as shown below. These MapReduce jobs will be analyzed in detail in Sect. 4:

1. Distribution Information. Count the number of points of T that fall into
each ICCH.

2. Primitive Computation Phase. Calculate possible k-NN points ∀i ∈ I
from T in the same ICCH.

3. Update Lists. Draw the boundary ICSH ∀i ∈ I and increase it, if needed,
until it covers at least k-NN points of T . Check for overlaps of neighboring
ICCHs and derive updates of k-NN lists.

4. Unify Lists. Unify the updates of every k-NN list into one final k-NN list
∀i ∈ I.

5. Classification. Classify all points of I.

In Fig. 5, we illustrate the working flow of the AkNN classification process.
Note, that the first MapReduce job acts as a preprocessing step and its results
are provided as additional input in MapReduce Job 3 (to determine how much
we need to increase the boundary ICSH) and that the preprocessing step is
executed only once for T .

In order to fully comprehend the working flow of the AkNN classification
process, a brief interpretation of Fig. 5 follows. In the preprocessing step, we
count the number of points that fall in every ICCH (e.g. ICCH 2 contains 13
points). Now, consider points A,C which belong to ICCH 2, 3 respectively. In
the second MapReduce job, we derive an initial k-NN list for points A,C based
on the objects contained in the same ICCH. In MapReduce job 3, observe that
the boundary ICSH of A overlaps ICCH 3, 4 and a new k-NN list instance is
produced for each of them. The flag in each record is false, which indicates the
need of extra computations to build the k-NN list. On the other hand, the flag of
C equals to true and its k-NN list does not need any amendment. In MapReduce
job 4, the two k-NN lists of A are unified to a final one and lastly, in the fifth
MapReduce job we classify A,C based on the majority of class membership of
their neighbors.

4 AkNN Classification with MapReduce

In this section, we present a detailed description of the classification process
as implemented in the Hadoop framework. The whole process consists of five
MapReduce jobs which are divided into three phases. Phase one estimates the
distribution of T over the target space. Phase two determines kNN(i, T ),∀i ∈ I
and phase three estimates AkNNC(I, T ). The records in T have the format
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Fig. 5. Overview of the AkNN classification process

<point id, coordinate vector, class> and in I have the format <point id, coor-
dinate vector>. Furthermore, parameters n and k are defined by the user. In the
following subsections, we describe each MapReduce job separately and analyze
the Map and Reduce functions that take place in each one of them. For each
MapReduce job, we also quote pseudo-code, in order to provide a better com-
prehension of the Map and Reduce functions, and proceed to time and space
complexity analysis.

4.1 Getting Distribution Information of Training Dataset

This MapReduce job is a preprocessing step required by subsequent MapReduce
jobs that receive its output as additional data. In this step, we decompose the
entire target space and count the number of points of T that fall in each ICCH.
Below, we sum up the Map and Reduce functions of this MapReduce process.

The Map function takes as input records with the training dataset format.
Afterwards, it estimates the ICCH id for each point based on its coordinates and
outputs a key-value pair where the key is ICCH id and the value is number 1.
The Reduce function receives the key-value pairs from the Map function and for
each ICCH id it outputs the number of points of T that belong to it.

Each Map task needs O (ST /M) time to run. Each Reduce task needs
O

(
nd/R

)
time to run as the total number of ICCHs is nd. So, the size of the
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MapReduce Job 1.
1: function Map(k1, v1)
2: coord = getCoord(v1); icch id = getId(coord);
3: output(icch id, 1);
4: end function

5: function Reduce(k2, v2)
6: sum = 0;
7: for all v ∈ v2 do
8: sum = sum + getSum(v);
9: end for

10: output(k2, sum);
11: end function

output will be O
(
nd · csi

)
, where csi is the size of sum and icch id for an output

record.

4.2 Estimating Primitive Phase Neighbors of AkNN Query

In this stage, we concentrate all training (LT ) and input (LI) records for each
ICCH and compute possible k-NN points for each item in LI from LT inside
the ICCH. Below, we condense the Map and Reduce functions. We use two Map
functions, one for each dataset, as seen in MapReduce Job 2 pseudo-code.

For each point t ∈ T , Map1 outputs a new key-value pair in which the ICCH
id where t belongs is the key and the value consists of the id, coordinate vector
and class of t. Similarly, for each point i ∈ I, Map2 outputs a new key-value pair
in which the ICCH id where i belongs is the key and the value consists of the id
and coordinate vector of i. The Reduce function receives a set of records from
both Map functions with the same ICCH ids and separates points of T from
points of I into two lists, LT and LI respectively. Then, the Reduce function
calculates the distance for each point in LI from LT . Subsequently, it estimates
the k-NN points and forms a list L with the format < p1, d1, c1: . . . :pk, dk, ck >,
where pi is the i-th NN point, di is its distance and ci is its class. Finally, for
each p ∈ LI , Reduce outputs a new key-value pair in which the key is the id of
p and the values comprises of the coordinate vector, ICCH id and list L of p.

Each Map1 task needs O (ST /M) time and each Map2 task needs O (SI/M)
time to run. For a Reduce task, suppose ui and ti the number of input and
training points that are enclosed in an ICCH in the i-th execution of a Reduce
function and 1 ≤ i ≤ nd/R. The Reduce task needs O (

∑
i ui · ti). Let Ls to be

the size of k-NN list and icch id ∀i ∈ I. The output size is O (SI · Ls) = O (SI).

4.3 Checking for Overlaps and Updating k-NN Lists

In this step, at first we gradually increase the boundary ICSH (how much
depends on information from the first MapReduce job), where necessary, until it



kdANN+: A Rapid AkNN Classifier for Big Data 151

MapReduce Job 2.
1: function Map1(k1, v1)
2: coord = getCoord(v1); p id = getPointId(v1);
3: class = getClass(v1); icch id = getId(coord);
4: output(icch id,< p id, coord, class >);
5: end function

6: function Map2(k1, v1)
7: coord = getCoord(v1);
8: p id = getPointId(v1);
9: icch id = getId(coord);

10: output(icch id,< p id, coord >);
11: end function

12: function Reduce(k2, v2)
13: LT = getTrainingPoints(v2);
14: LI = getInputPoints(v2);
15: for all p ∈ LI do
16: L = List{};
17: for all t ∈ LT do
18: L.add(newRecord(t, dist(p, t), t.class));
19: end for
20: output(p.id,< p.coord, k2,getKNN(L) >);
21: end for
22: end function

includes at least k points. Then, we check for overlaps between the ICSH and the
neighboring ICCHs and derive updates of the k-NN lists. The Map and Reduce
functions are outlined in MapReduce Job 3 pseudo-code. Again, we have two
Map functions but the pseudo-code of Map1 function is omitted since it is the
same with the respective function from MapReduce Job 2.

For each point i ∈ I, function Map2 computes the overlaps between the
ICSH and the neighboring ICCHs. If no overlap occurs, it does not need to
perform any additional steps. It outputs a key-value pair in which ICCH id is
the key and the value consists of id, coordinate vector and list L of i and a
flag true which implies that no further process is required. Otherwise, for every
overlapped ICCH it outputs a new record where ICCH id′ (id of an overlapped
ICCH) is the key and the value consists of id, coordinate vector and list L of i
and a flag false. The flag indicates we need to search for possible k-NN objects
inside the overlapped ICCHs. The Reduce function receives a set of points with
the same ICCH ids and separates the points of T from points of I into two lists,
LT and LI respectively. After that, the Reduce function performs extra distance
calculations using the points in LT and updates k-NN lists for the records in LI .
Finally, for each p ∈ LI it generates a record in which the key is the id of p and
the values comprises of the coordinate vector, ICCH id and list L of p.
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MapReduce Job 3.
1: function Map2(k1, v1)
2: c = getCoord(v1); p id = getPointId(v1);
3: kNN = getKNNList(v1); r = getRadius(kNN);
4: while kNN.size() < k do
5: increase(r); kNN.addAll(getNeighbors(r));
6: end while
7: oICCHs = getOverlappedICCHs(r);
8: if oICCHs.size() > 0 then
9: for all icch ∈ oICCHs do

10: output(icch,< p id, c, kNN, false >);
11: end for
12: else
13: output(getId(c), < p id, c, kNN, true >);
14: end if
15: end function

16: function Reduce(k2, v2)
17: LT = getTrainingPoints(v2);LI = getInputPoints(v2);
18: for all p ∈ I do
19: if p.flag == true then
20: output(p.id,< p.coord, key, p.kNN >);
21: else
22: L = List{};
23: for all t ∈ T do
24: L.add(newRecord(t, dist(p, t), t.class));
25: end for
26: Lf = finalKNN(L, p.kNN);
27: output(p.id,< p.coord, key, Lf >);
28: end if
29: end for
30: end function

As before, each Map1 task needs O (ST /M) time to run. Consider an unclas-
sified point p initially belonging to an ICCH icch. Let r be the number of times
we increase the search range for p and icchov the number of ICCHs that may
be overlapped for p. For each Map2 task the i-th execution of the Map function
performs icchovi + ri steps, where 1 ≤ i ≤ SI/M . So, each Map2 task runs in
O (

∑
i (icchovi + ri)) time. For a Reduce task, suppose ui and ti the number of

points of I and T respectively that are enclosed in an ICCH in the i-th execution
of a Reduce function and 1 ≤ i ≤ nd/R. The Reduce task needs O (

∑
i ui · ti).

The size of updated records is a fraction of SI . So, the size of the output is also
O (SI).
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4.4 Unifying Multiple k-NN Lists

The previous step it is possible to yield multiple updates of a point’s k-NN list.
This MapReduce job tackles this problem and unifies possible multiple lists into
one final k-NN list for each point i ∈ I. The Map and Reduce functions are
summarized at MapReduce Job 4 pseudo-code below.

MapReduce Job 4.
1: function Map(k1, v1)
2: output(getPointId(v1),getKKN(v1));
3: end function

4: function Reduce(k2, v2)
5: L = List{};
6: for all v ∈ v2 do
7: L.add(v);
8: end for
9: output(k2,unifyLists(L));

10: end function

The Map function receives the records of the previous step and extracts the
k-NN list for each point. For each point i ∈ I, it outputs a key-value pair in which
the key is the id of i and the value is the list L. The Reduce function receives as
input key-value pairs with the same key and computes kNN(i, T ),∀i ∈ I. The
key of an output record is again the id of i and the value consists of kNN(i, T ).

Each Map task runs in O (SI/M). For each Reduce task, assume updatesi
the number of updates for the k-NN list of an unclassified point in the i-th
execution of a Reduce function, where 1 ≤ i ≤ |NI |/R and |NI | the number of
points in input dataset. Then, each Reduce task needs O (

∑
i updatesi) to run.

Let, Iid the size of ids of all points in I and Lfinal is the size of the final k-NN
list ∀i ∈ I. The size of Lfinal is constant and Iid is O (SI). Consequently, the
size of the output is O (SI).

4.5 Classifying Points

This is the final job of the whole classification process. It is a Map-only job that
classifies the input points based on the class membership of their k-NN points.
The Map function receives as input records from the previous job and outputs
AkNNC(I, T ). More precisely, each record handled by the Map function is a
point together with a list of class occurrences of its k-NN neighbors. The function
parses iteratively the list and reports the class with the highest cardinality. The
key of an output record is the id of the point given as input to the Map function,
while the value is the class the point is assigned. Each Map task runs in O (SI/M)
time and output size is O (SI).
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MapReduce Job 5.
1: function Map(k1, v1)
2: H = HashMap < Class,Occurences > {};
3: H = findClassOccur(v1);
4: max = 0;maxClass = null;
5: for all entry ∈ H do
6: if entry.occur > max then
7: max = entry.occur;
8: maxClass = entry.class;
9: end if

10: end for
11: output(getPointId(v1),maxClass);
12: end function

5 Extension for d > 3

Here we provide the extension of our method for d > 3. In geometry, a hypercube
[7,8] is a n-dimensional analogue of a square (n = 2) and a cube (n = 3) and is
also called a n-cube (i.e. 0-cube is a hypercube of dimension zero and represents
a point). It is a closed, compact and convex figure that consists of groups of
opposite parallel line segments aligned in each of the space’s dimensions, per-
pendicular to each other and of the same length.

Respectively, an n-sphere [7,8] is a generalization of the surface of an ordi-
nary sphere to a n-dimensional space. Spheres of dimension n > 2 are called
hyperspheres. For any natural number n, an n-sphere of radius r is defined as
a set of points in (n + 1)-dimensional Euclidean space which are at distance r
from a central point and r may be any positive real number. So, the n-sphere
centred at the origin is defined by:

Sn = {x ∈ �n+1 :‖ x ‖= r}
Figure 6 displays how to create a hypercube for d = 4 (4-cube) from a cube

for d = 3. Regarding our solution for d > 3, the target space now is decomposed
into equal-sized d-dimensional hypercubes and in the first place we investigate
for k-NN points in each hypercube. Next, we draw the boundary hypersphere
and increase it, if needed, until it bounds at least k neighbors. Afterwards, we
inspect for any overlaps between the boundary hypersphere and neighboring
hypercubes. Finally, we build the final k-NN list for each unclassified point and
categorize it according to class majority of its k-NN list.

6 Experimental Evaluation

In this section, we conduct a series of experiments to evaluate the performance
of our method under many different perspectives. More precisely, we take into
consideration the value of k, granularity of space decomposition, dimensionality
and data distribution.
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Fig. 6. Creating a 4-cube from a 3-cube

Our cluster includes 32 computing nodes (VMs), each one of which has four
2.1 GHz CPU processors, 4 GB of memory, 40 GB hard disk and the nodes are
connected by 1 GB Ethernet. On each node, we install Ubuntu 12.04 operating
system, Java 1.7.0 40 with a 64-bit Server VM, and Hadoop 1.0.4. To adapt the
Hadoop environment to our application, we apply the following changes to the
default Hadoop configurations: the replication factor is set to 1; the maximum
number of Map and Reduce tasks in each node is set to 3, the DFS chunk size
is 256 MB and the size of virtual memory for each Map and Reduce task is set
to 512 MB.

We evaluate the following approaches in the experiments:

– kdANN is the solution proposed in [28] along with the extension (which
invented and implemented by us) for more dimensions, as described in Sect. 3,
in order to be able to compare it with our solution.

– kdANN+ is our solution for d-dimensional points without the merging step
as described in Sect. 3.

We evaluate our solution using both real1 and synthetic datasets. We create
1D and 2D datasets from the real dataset keeping the x and the (x, y) coor-
dinates respectively. In addition, by using statistics of underlying real dataset,
we add one more dimension z in order to construct a 4-dimensional dataset.
We process the datasets to fit into our solution (i.e. normalization) and we end
up with 1D, 2D, 3D and 4D datasets that consist of approximately 19,000,000
points and follow a power law like distribution. From each dataset, we extract
a fraction of points (10 %) that are used as a training dataset. Respectively, we
create 1, 2, 3 and 4-dimensional datasets with uniformly distributed points, each
dataset has 19,000,000 points and the training datasets contain 1,900,000 points.
For each point in a training dataset we assign a class based on its coordinate
vector. The file sizes of datasets are:
1 The real dataset is part of the Canadian Planetary Emulation Terrain 3D Mapping

Dataset, which is a collection of 3-dimensional laser scans gathered at two unique
planetary analogue rover test facilities in Canada. The dataset provides the coordi-
nates (x, y, z) for each laser scan in meters. http://asrl.utias.utoronto.ca/datasets/
3dmap/.

http://asrl.utias.utoronto.ca/datasets/3dmap/
http://asrl.utias.utoronto.ca/datasets/3dmap/
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1. Real Dataset
(a) 1D: Input set size is 309.5 MB and training set size is 35 MB
(b) 2D: Input set size is 403.5 MB and training set size is 44.2 MB
(c) 3D: Input set size is 523.7 MB and training set size is 56.2 MB
(d) 4D: Input set size is 648.6 MB and training set size is 67.4 MB

2. Synthetic Dataset
(a) 1D: Input set size is 300.7 MB and training set size is 33.9 MB
(b) 2D: Input set size is 359.2 MB and training set size is 39.8 MB
(c) 3D: Input set size is 478.5 MB and training set size is 51.7 MB
(d) 4D: Input set size is 583.4 MB and training set size is 60.9 MB

We run experiments for data up to four dimensions due to the curse of dimen-
sionality. As shown in the experiments, for d > 2 the total execution cost rises
exponentially and for d > 4 overcomes the computational power of our clus-
ter infrastructure. We can dodge such limitations by incorporating in our sys-
tem dimensionality reduction techniques, such as Principal Component Analysis
(PCA) or Singular Value Decomposition [18], or elasticity mechanisms [23]. We
leave this kind of extension for future work, as stated in Sect. 8, since it is beyond
the scope of this paper.

6.1 Tuning Parameter n

One major aspect in the performance of the algorithm is the tuning of granularity
parameter n. In this experiment, we explain how to select a value of n in order to
succeed in achieving the shortest execution time. Each time the target space is
decomposed into 2dn equal partitions in order for kdANN to be able to perform
the merging step, as described in Sect. 3.

In the case of power law distributions, we choose higher values of n compared
to uniform distributions. The intuition behind this idea, is that we want to dis-
cretize the target space into splits that contain as few points as possible in order
to avoid an overload of the primitive computation phase. On the other hand,
as n increases, the number of update steps also increases. This can overwhelm
the AkNN process if the number of derived instances of the k-NN lists is mas-
sive. Regarding uniform distributions, we wish to create larger partitions, but
again not too big, in order to avoid executing many update steps. Each time,
the selection of n depends on the infrastructure of the cluster.

In Fig. 7, we depict how execution time varies as we alter value n in case
of 2-dimensional real dataset for k = 5. In case of kdANN+, we notice that as
parameter n grows the execution time drops and achieves its lowest value for
n = 9 and slightly increases for n = 10. In contrary, the execution time for
kdANN increases until n = 9 and drops significantly for n = 10. Moreover, its
lowest achieved value is almost ten times bigger than kdANN+. Considering the
above, we deduce that for power law distributions kdANN+ outperforms kdANN
as n changes. In addition, we conclude that the merging step affects greatly the
performance of kdANN and creates a wide divergence in total running time as
n mutates.
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Fig. 7. Effect of n (real dataset 2D)

Figure 8, presents the results of execution time for both methods when
datasets follow a uniform distribution. Again, kdANN+ performs better than
kdANN. Nevertheless, now the curve of running time presents a same behav-
ior for both methods and when n = 7 the minimum running time is achieved.
Observing the exported results from Figs. 7 and 8, we confirm our claim that we
choose higher values of n in case of power law distribution datasets, compared
to uniformly distributed datasets, in order to minimize the total execution time.

We proceed to similar experimental procedures for all dimensions. The results
for 1D, 3D and 4D points follow the same trend (we omit the graphs of other
dimensions to avoid pointless repetition). In the case of real datasets, we pick
value n that maximizes the performance of kdANN+ since kdANN presents
a bad algorithmic behavior regardless of value n, as shown in the majority of
experiments that follow.

Fig. 8. Effect of n (synthetic dataset 2D)
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6.2 Effect of k and Effect of Dimensionality

In this experiment, we evaluate both methods using real and synthetic datasets
and record the execution time as k increases for each dimension. Finally, we
study the effect of dimensionality on the performance of kdANN and kdANN+.
Based on the findings of Sect. 6.1, for the rest of our experiments we set the
value n as summarized below:

1. Real Dataset
(a) 1D: n = 18
(b) 2D: n = 9
(c) 3D: n = 7
(d) 4D: n = 6

2. Synthetic Dataset
(a) 1D: n = 16
(b) 2D: n = 7
(c) 3D: n = 5
(d) 4D: n = 4

Effect of k for Different Dimensions. Figure 9 presents the results for kdANN
and kdANN+ by varying k from 5 to 20 on real and synthetic datasets. In terms
of running time, kdANN+ always perform better, followed by kdANN and each
method behave in the same way for both datasets, real and synthetic. As the
value of k grows, the size of each intermediate record becomes larger respectively.
Consequently, the data processing time increments. Moreover, as the number of
neighbors we need to estimate each time augments, we need to search into more
intervals for possible k-NN points as the boundary interval grows larger.

In Fig. 10, we demonstrate the outcome of the experimental procedure for
2-dimensional points when we alter k value from 5 to 20. First of all, note
that we do not include the results of kdANN for the real dataset. The reason
is that the method only produced results for k = 5 and needed more than

Fig. 9. Effect of k for d = 1
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4 h. Beyond this, the merging step of kdANN derived extremely sizeable cells.
Consequently, during the primitive computation phase a bottleneck was created
to some nodes that strangled their resources, thus preventing them to yield any
results. Observing the rest of the curves, we notice that the processing times are
a bit higher than the previous ones due to larger records, as we impose one more
dimension. Furthermore, the search area now overlaps more partitions of the
target space than in case of 1-dimensional points. Consequently, the algorithm
produces more instances of the k-NN lists and the time requirement to merge
them is bigger. Overall, in the case of power law distribution, kdANN+ behaves
much better than kdANN since the last one fails to process the AkNN query as
k increases. Also, kdANN+ is faster and in case of synthetic dataset that follows
a uniform distribution, especially as k increases.

Fig. 10. Effect of k for d = 2

Figure 11 displays the results generated from kdANN and kdANN+ for the
3-dimensional points when we increase k value from 5 to 20. Once again, in case
of kdANN we could not get any results for any value of k when we provided the
real dataset as input. The reasons are the same we mentioned in the previous
paragraph for d = 2.

Table 2 is pretty illustrative in the way the merging step affects the AkNN
process. First of all, its computational cost is far from negligible if performed
in a node (in contrary with the claim of the authors as stated in [28]). Apart
from this, the ratio of cubes that participate in the merging process is almost
40 % and the largest merged cube consists of 32,768 and 262,144 initial cubes
for k = 5 and k > 5 respectively.

In the case of kdANN+, when given the real dataset as input, it is obvious
that the total computational cost is much larger compared to the one shown in
Figs. 9 and 10. This happens for 3 reasons: (1) we have larger records in size,
(2) some cubes are quite denser compared to others (since the dataset follows
a power law distribution) and we need to perform more computations for them
in the primitive computation phase and (3) a significant amount of overlaps
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Fig. 11. Effect of k for d = 3

Table 2. Statistics of merging step for kdANN

k = 5 k = 10 k = 15 k = 20

Time (s) 271 675 962 1,528

# of merged cubes 798,032 859,944 866,808 870,784

% of total cubes 38 % 41 % 41.3 % 41.5 %

Max merged cubes 32,768 262,144 262,144 262,144

take place, thus the update step of the k-NN lists needs more time than before.
Finally, kdANN+ performs much better than kdANN, in the case of synthetic
dataset, and the gap between the curves of running time tends to be bigger as
k increases.

Finally, Fig. 12 demonstrates the total running cost for both kdANN and
kdANN+ in the case of 4-dimensional datasets. Our method kdANN+, contin-
ues to overrun kdANN when our input follows a uniform distribution and the
variance between the curves is a bit bigger than the previous cases. As expected,
kdANN flunks in producing results for the real dataset while our method answers
the AkNN query requiring much more processing time than the 3-dimensional
case. The curve has a tendency to increase exponentially (we explained the rea-
sons in the previous paragraph) and for k = 20 the time taken to export the
outcome of the AkNN query is almost double compared to the running time of
Fig. 11.

Effect of Dimensionality. In this subsection, we evaluate the effect of dimen-
sionality for both real and synthetic datasets. Figure 13 presents the running
time for k = 20 by varying the number of dimensions from 1 to 4.

From the outcome, we observe that kdANN is more sensitive to the number of
dimensions than kdANN+ when we provide a dataset with uniform distribution
as input. In particular, when the number of dimensions varies from 2 to 4 the
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Fig. 12. Effect of k for d = 4

Fig. 13. Effect of dimensionality for k = 20

divergence between the two curves starts growing faster. In the case of power
law distribution, we only include the results for kdANN+ since kdANN fails to
process the AkNN query for dimensions 2 to 4 when k = 20. We notice that the
execution time increases exponentially when d > 2. This results from the curse of
dimensionality. As the number of dimensions increases, the number of distance
computations as well as the number of searches in neighboring ICCHs increases
exponentially. Nevertheless, kdANN+ can still process the AkNN query in a
reasonable amount of time in contrast to kdANN.

6.3 Phase Breakdown

In Figs. 14(a)-14(c) we present the results of running time for different stages
of kdANN and kdANN+, in case of 3-dimensional datasets, as k increases. We
observe, that in all figures, the running time of distribution phase is the same (it
runs only once since it is a preprocessing step). On the other hand, the running
time of primitive computational and classification phase slightly increase as k
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(a) kdANN+

(b) kdANN+

(c) kdANN

Fig. 14. Phase breakdown vs k (Color figure online).
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grows. Since the k-NN list gets bigger, the algorithm takes more time to process
the input records. Considering update and integrate phase, the running time
increases notably. The bigger the value of k, the bigger the cardinality of derived
instances of the k-NN lists due to larger area coverage by the boundary ICSH.
Consequently, the algorithm needs more time to derive the final k-NN lists. The
cumulative cost of these two phases is the one that mostly affects the total
running time of the AkNN query in the majority of the experiments. Finally,
the execution time of the merging phase remains the same (in case of kdANN
in Fig. 14(c)). Apart from the merging phase, whose running cost may increase
significantly (Table 2), the execution time for the rest phases follow the same
trend as d varies.

6.4 Power Law vs Uniform Distribution

In this subsection, we perform a comparative analysis of the results exported
by our method for datasets with different distributions and argue about the
performance of methods kdANN and kdANN+ as k and d increments.

At first, we observe that as k increases kdANN+ prevails kdANN for all
dimensions and for both dataset distributions (based on results from Figs. 9-12).
It is clear that our contribution presented in Sect. 3.4, speeds up the solution
presented in [28]. Under the perspective of dimensionality, in case of uniform
distribution the divergence between the curves is not very big. Nevertheless,
the running time of kdANN+ increases linearly whilst kdANN’s running time
grows exponentially for d > 2 (see Fig. 13). On the other hand, in case of power
law distribution, for d > 1 kdANN+ outperforms kdANN. The last one either
fails to derive results in a reasonable amount of time or cannot produce any
results at all (again see Fig. 13). As shown in Table 2, the merging step has
major deficiencies. It can cumber with notable computational burden the total
AkNN process and can produce quite large merged ICCHs. As a consequence,
the workload is badly distributed among the nodes and some of them end up
running out of resources, thus causing kdANN to fail to produce any results.
Despite the superiority of kdANN+, its execution time increases exponentially
when the number of dimensions varies from 2 to 4.

Overall, the experimental evaluation shows that our solution (kdANN+)
scales better than kdANN for uniform distributions and dominates it for power
law distributions. However, it is clear that both kdANN and kdANN+ are more
sensitive to power law distributions. As a result, their performance degrades
faster than the case of uniform distributions.

6.5 Scalability

In this experiment, we investigate the scalability of the two approaches. We
utilize the 3D datasets, since their size is quite big, and create new chunks
smaller in size that are a fraction F of the original datasets, where F ∈ {0.2,
0.4, 0.6, 0.8}. Moreover, we set the value of k to 5.
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Figure 15 presents the scalability results for real and synthetic datasets. In the
case of power law distribution, the results display that kdANN+ scales almost
linearly as the data size increases. In contrast, kdANN fails to generate any
results even for very small datasets since the merging step continues to be an
inhibitor factor in kdANN’s performance. In addition, we can see that kdANN+
scales better than kdANN in the case of synthetic dataset and the running time
increases almost linearly as in the case of power law distribution. Regarding
kdANN, the curve of execution time is steeper until F = 0.6 and after that it
increases more smoothly.

Fig. 15. Scalability

Table 3 shows the way the merging step affects kdANN as the data size varies.
The ratio of cubes that are involved in the merging process remains high and
varies from 36.6 % to 39.3 % and the largest merged cube comprises of 32,768
cubes of the initial space decomposition. Interestingly, the time to perform the
merging step is not strictly increasing proportionally to the data size. In particu-
lar, the worst time is achieved when F = 0.2, then it reaches its minimum value
for F = 0.4 and beyond this value augments again. Below, we explain why this
phenomenon appears. The merging process takes into account the distribution
information of dataset T . As the size of the input dataset decreases, respec-
tively the size of the training dataset also mitigates. Since both datasets follow
a power law distribution, the ICCHs that include training set points decrease
also in number and this may result in more merging steps (i.e. F = 0.2).

6.6 Speedup

In our last experiment, we measure the effect of the number of computing
nodes. We test four different cluster configurations and the cluster consist of
N ∈ {11, 18, 25, 32} nodes each time. We test the cluster configurations against
the 3-dimensional datasets when k = 5.



kdANN+: A Rapid AkNN Classifier for Big Data 165

Table 3. Statistics of merging step for kdANN and different data sizes

F = 0.2 F = 0.4 F = 0.6 F = 0.8

Time (s) 598 223 279 300

# of merged cubes 825,264 767,768 768,256 802,216

% of total cubes 39.3 % 36.6 % 36.6 % 38.2 %

Max merged cubes 32,768 32,768 32,768 32,768

Fig. 16. Speedup

From Fig. 16, we observe that total running time of kdANN+, in the case
of power law distribution, tends to decrease as we add more nodes to the clus-
ter. Due to the increment of number of computing nodes, the amount of dis-
tance calculations and update steps on k-NN lists that undertakes each node
decreases respectively. Moreover, since kdANN fails to produce any results using
3-dimensional real dataset when the cluster consists of 32 nodes, it is obvious
that it will fail with less nodes too. That is the reason for the absence of kdANN’s
curve from Fig. 16. In the case of synthetic dataset, we observe that both kdANN
and kdANN+ achieve almost the same speedup as the number of nodes increases;
still kdANN+ performs betters than kdANN. We behold that in the case of real
dataset the curve of running time decreases steeper as the number of nodes varies
from 11 to 18 and becomes smoother beyond this point. On the other hand, in
case of synthetic dataset the curves decrease smoother when the number of nodes
varies from 25 to 32. The conclusion that accrues from this observation is that
the increment of computing nodes has a greater effect on the running time of
both approaches when the datasets follow a uniform distribution. This happens
because the workload is distributed better among the nodes of the cluster.

6.7 Classification Performance

In this section, we present the performance results of our classification method for
kdANN+, when the 3D real dataset is provided as input and k = 10. We define
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Table 4. Classification performance of kdANN+

Class A Class B Class C Average

True positive 99.97 % 99.91 % 94.14 % 98 %

False negative 0.03 % 0.09 % 5.86 % 2 %

False positive 0.13 % 0.06 % 0.06 % 0.08 %

True negative 99.87 % 99.94 % 99.94 % 99.92 %

a set CT = {A,B,C,D,E} of 5 classes over the target space, but only 3 of them
(A,B,C) contain points of T . The class where a point t ∈ T belongs, depends
on its coordinate vector. In Table 4, we measure the classification performance
using four metrics for each class, True Positive, False Negative, False Positive
and True Negative and give an average on the performance of each metric for all
the classes. Among the classes, class C has the worst accuracy but the overall
results show that our classification method performs well.

7 Conclusions

In the context of this work, we presented a novel method for classifying multidi-
mensional data using AkNN queries in a single batch-based process in Hadoop.
To our knowledge, it is the first time a MapReduce approach for classifying mul-
tidimensional data is discussed. By exploiting equal-sized space decomposition
techniques we bound the number of distance calculations we need to perform
for each point to reckon its k-nearest neighbors. We conduct a variety of experi-
ments to test the efficiency of our method on both, real and synthetic datasets.
Through this extensive experimental evaluation we prove that our system is
efficient, robust and scalable.

8 Future Work

In the near future, we plan to extend and improve our system in order to boost
its efficiency and flexibility. At first, we want to relax the condition of decom-
posing the target space into equal-sized splits. We have in mind to implement
a technique that will allow us to have unequal splits, containing approximately
the same number of points. This is going to decrease the number of overlaps
and calculations for candidate k-NN points. Moreover, the method will become
distribution independent leading to better load balancing between the nodes.

In addition, we intend to apply a mechanism in order for the cluster to be used
in a more elastic way, by adding (respectively removing) nodes as the number
of dimensions increase (respectively decrease) or the data distribution becomes
more (respectively less) challenging to handle.

Finally, we plan to use indexes, such as R-trees or M-trees, along with HBase,
in order to prune any points that are redundant and cumber additional cost to
the method.
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Abstract. Geographically distributed data centers are deployed for non-stop
business operations by many enterprises. In case of disastrous events, ongoing
workloads must be failed over from the current data center to another active one
within just a few seconds to achieve continuous service availability. Software-
based parallel database replication techniques are designed to meet very high
throughput with near-real-time latency. Understanding workload characteristics
is one of the key factors for improving replication performance. In this paper, we
propose a workload-driven method to optimize database replication latency and
minimize transaction splits with a minimum of parallel replication consistency
groups. Our two-phased approach includes (1) a log-based mechanism for
workload pattern discovery; (2) a history-based algorithm on pattern analysis,
database partitioning and partition adjustment. The experimental results from a
real banking batch workload and a benchmark OLTP workload demonstrate the
effectiveness of the solution even for partitioning 1000 s of database tables in very
large workloads. Finally, the algorithm to automate the cyclic flow of workload
profile capturing and partitioning readjustment is developed and verified.

1 Introduction

Many enterprises employ multiple geographically distributed data centers running the
same applications and having the same data to provide zero-downtime upgrades,
cross-site workload balancing, continuous availability and disaster recovery. Across
these centers, data replication is used to maintain multiple data copies in near real-time.
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Various database replication techniques are proposed to serve different purposes.
High availability (HA) within a single data center employs data replication to maintain
global transaction consistency [3] or to improve fault tolerance and system performance
via transaction processing localization [1, 16, 18]. Replication over unlimited distances
leads to enormous challenges of scalability, efficiency and reliability, especially in an
active-active deployment with heterogeneous database architectures.

Although DBMS built-in replication function has the potential for better perfor-
mance via tighter software stack integration, middleware-based replication is more
suitable for multi-vendor heterogeneous database environments [12]. Industrial
examples of such technology include IBM Infosphere Data Replication [22], Oracle
GoldenGate [23], etc. One widely used approach is to capture committed data changes
from DBMS recovery log and to replicate the changes to target DBMS. Replicating
data after changes committed at the source does not impact the response time of
source-side applications. This paper addresses the performance problem of large-scale
asynchronous database replication optimization for minimizing the data staleness and
data loss in case of unrecoverable disasters.

Parallel replication is a desirable solution to increase the throughput by concur-
rently replicating changed data through multiple logical end-to-end replication chan-
nels. Such concurrent replication can potentially split a transaction’s writeset among
channels. Similar to DBMS snapshot consistency, point-in-time (PIT) snapshot con-
sistency is provided via time-based coordination among replication channels [22]. PIT
consistency is a guarantee of replicated data having a consistent view with the source
view at an instance of past time. Such a time delay in PIT consistency is called PIT
consistency latency. PIT consistency latency at the target DBMS is determined by both
replication channel throughput and the duration between when the first element of a
transaction’s writeset is replicated and when the last element is replicated. It is not
difficult to envision that higher replication throughput delivers lower PIT consistency
latency. In addition, normally the more replication channels a transaction’s writeset is
split into, the longer it takes to reach PIT consistency. Over-provisioning with
underutilized replication channels also introduces extra complexities and wastes
resources.

This paper addresses the partitioning automation in parallel database replication
cross data centers. Partitioning a database is a challenging task in PIT consistency
latency reduction. By following design principles of DBMS data independence [2],
databases and applications are often designed separately. Database access patterns
usually differ by applications. One specific database partitioning scheme hardly suits
the needs of other applications. Furthermore, new applications are continually deployed
on existing databases and access patterns change as business requirements evolve.
Taking into account of varying workload characteristics, scale of database objects and
resource constraints, it is impractical for database administrators to have comprehen-
sive understandings of all the database activities and to manually perform and adjust
database partitioning for parallel data replications.

Our design aims at minimizing replication channels and achieving desired
point-in-time consistency. With the observation that similar workload patterns re-occur
in most business applications, we propose a two-stepped approach. In our approach, a
log-based mechanism is employed for workload pattern discovery, and a history-based
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algorithm is used for pattern analysis and database partitioning. The partition granu-
larity is at DBMS object level such as tables and table partitions, which can reach up to
thousands or tens of thousands in a large enterprise IT environment. Finer grained
partitioning, such as at the row level, is less practical due to higher overhead in runtime
replication coordination and DBMS contention resolution. Our approach discovers and
analyzes the data access patterns from the DBMS recovery log, and makes partitioning
recommendations using a proposed two-phased algorithm called Replication Partition
Advisor (RPA)-algorithm. In the first phase, the algorithm finds a partitioning solution
with the least replication channels such that the PIT consistency latency is below a
threshold tied to a service-level agreement (SLA). The second phase refines the par-
titioning solution to minimize the number of transaction splits. Our approach is
applicable to share-nothing, share-memory and share-disk databases [20]. The
real-world workload evaluation and analysis demonstrate the effectiveness of our
solution.

The rest of the paper is organized as follows. Section 2 introduces more background
about inter-data-center parallel data replication. Section 3 describes the workload
profile tool (WPT). Section 4 presents the RPA-algorithm and discusses how a
real-time re-partitioning can be achieved. The experiment evaluations are presented in
Sect. 5. We discuss related work in Sect. 6 and end the paper with the conclusion in
Sect. 7.

2 Background on Parallel Data Replication

Based on the data change propagation, mainstream replication technologies can be
classified into two major types: synchronous replication (also called eager replication)
and asynchronous replication (also called lazy replication). In eager replication, the
changes to all the copies are in a single transaction (unit of work). If a failure happens
on any copy, the entire transaction will roll back. Compared with eager replication, lazy
replication eliminates the impact on transaction response time by relaxing the strong
consistency among copies. Instead of using two-phase commit protocols, lazy repli-
cation chooses an optimistic protocol: after the transactions are committed on the
source database, the data changes are asynchronously captured, propagated and then
applied to the target databases.

The fundamental difference between eager replication and lazy replication is the
way to optimize the tradeoff between data consistency and system performance.
Whenever increased transaction time is not tolerable (often the case for financial
transactions), eager replication is not an option because of the propagation delay
incurred over geographic distances. Each 100 km of fiber typically adds about 1 ms of
delay [5]. Lazy replication does not impact transaction response time, but introduces
two major issues:

(1) Data staleness: After a transaction has committed at the source database, the
subsequent data access to the target databases might not return the updated values
immediately and consistently. To measure the window of inconsistency between
source and target copies, a point-in-time (PIT)-consistency latency is introduced
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to describe how much time the target database is behind the source database. We
further define consistency group (CG), a set of tables for which transaction
consistency is always preserved. The PIT consistency is per CG.

(2) Data loss: An unrecoverable disaster (e.g., earthquake) on the source copy can
cause a loss of the data changes that have not been applied to the target databases.
PIT consistency latency also largely affects the data loss window in lazy repli-
cation. RPO (Recovery Point Objective) in Lazy replication is a non-zero unless
there are other means to compensate. Data loss is a function of the replication
delay.

To alleviate the impacts of data staleness and data loss, it is highly desirable to
reduce the PIT consistency latency especially with the ever-growing data volumes. In
the wide area network replication, the PIT consistency latency can reach a
non-tolerable value with respect to SLA, during a heavy workload period, particularly
batch processes that might update each row of an entire database. To reduce the PIT
consistency latency, replication protocols might divide the database objects among
several replication channels; potentially have to relax the ACID compliant transaction
integrity. At the same time, through synchronization across parallel replication trans-
mission or replay, the eventual data consistency can be ensured at target databases even
after disaster recovery (also called 100 % recovery consistency objective). Once all
channels have caught up to the same point, consistency is guaranteed. The major
benefit is to increase the overall replication throughput through concurrency. Although
the negative effects are anomalies (e.g., dirty read) during the replication, most
read-only applications can use the data as long as it is not stale beyond a certain
threshold, and/or can retry if data has not yet arrived. In these applications, data
staleness is more significant than temporary data anomalies.

Our work is applicable to an active-active WAN configuration (where transactions
can be executed at either site) presuming that proper transaction routing provides
conflict prevention. For discussion simplicity, we present uni-directional replication in
an active-query configuration (a.k.a. master-slave [9]) where update transactions are
restricted to a designated master copy in one data center and read-only transactions are
executed in other data center copies. Upon a failure on the active copy caused by
disasters, one of the query copies assumes the master role and takes over the updates.

Figure 1 illustrates a logical architecture of typical parallel lazy data replication
between two database systems that potentially reside in two data centers. A parallel
replication system can be modeled as a network G(C ⋃ A, E) with a set of capture
C = {c1, c2, …, cs} and a set of apply A = {a1, a2, …, ar}. To replicate data changes, a
capture agent, such as Capture1 in Fig. 1, captures the committed data changes from the
database recovery logs at the source site, packs and sends them over a transport
channel. The transport channels manage reliable data transfer between the two sites. An
apply agent, such as Apply1 in Fig. 1, applies the changes to the target database. Each
capture and apply agent can be attached to a different database node in a cluster. Within
the capture and apply agent, whenever possible, multiple threads are used to handle the
work with the protection of causal ordering.

The link (a, c) 2 E represents a logical replication channel, which is an end-to-end
replication data path from a log change capture at the source site to a change apply at
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the target site. Three channels are shown in Fig. 1. A throughput capacity or bandwidth
BW(a, c) measures the maximum data throughput, in bytes/second, of a channel. The
value is affected by all the involved components, e.g., source log reader, capture,
network, apply, target database, etc. For simplicity, this paper assumes that the effective
“bandwidth” is static. All changes within each database object (tables or partitions) are
replicated by one channel and this is designated by a preconfigured subscription policy.
Each capture agent only captures the changes from its subscribed objects. Transported
data changes at target site are subscribed by one or more apply agents on mutually
disjoint sets of objects. The entire set of database objects within each replication
channel is guaranteed to preserve serial transaction consistency. Hence, the set of
database objects TB = {tb1, tb2, …, tbk} that are replicated within the same replication
channel (a, c) is called a consistency group denoted as cg(a, c, TB).

When a transaction’s writeset is split into different consistency groups, the trans-
action is split into multiple partial transactions with the same source-side commit time.
Each partial transaction is replayed at the target as an independent transaction.
Replication then operates with eventual consistency: i.e., transaction consistency is
guaranteed only when all table changes are replicated up to a common point-in-time.
Eventual transaction consistency is suitable for a large number of read-only applica-
tions that can use the data as long as it is not stale beyond a certain threshold. Eventual
consistency must be restored before write applications can be switched in case of
planned site switch or unplanned disaster. Like IBM IIDR Q-Replication [22], repli-
cation across consistency groups can be synchronized so that data is not applied to the
target DBMS unless it has been received into persistent storage at the target for all
consistency groups. Thus, in case of disaster, consistency can be restored by draining
the queues for all consistency groups up to a point that is consistent across all queues.
When eventual consistency is not acceptable, the target DBMS still can restore the
point-in-time consistency using the source-side commit time. Normally, such a con-
sistency recovery mechanism is tightly integrated with the multi-version concurrency
control.

In the next two sections, we discuss our solution for optimizing the partitioning of
database objects into minimum number of consistency groups to achieve a PIT con-
sistency latency goal based on our workload profiling approach.

DBMS

Capture 2 Apply 3

Apply 2

Apply 1

DBMS

Database 
Recovery Log

Transfer ApplyCapture

Capture 1
DBMS

Capture 2 Apply 3

Apply 2

Apply 1

DBMS

Database 
Recovery Log

Transfer ApplyCapture
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Fig. 1. Logical architecture of parallel lazy replication
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3 Workload Abstraction

3.1 Transaction Pattern and Workload Profile

This section details workload abstraction in our proposed partitioning solution for
parallel data replication. Considering the entire workload cannot be recorded, we
employ a landmark window model for incrementally summarizing the data activity
statistics of each table in the workload and the coupling relationships among tables
implied by transaction commit scopes.

The term “transaction pattern” is introduced to define a profiled entity that contains
statistical and transactional information in a workload. A number of transactions belong
to the same transaction pattern if and only if they update exactly the same set of tables,
regardless of the specifics such as update sequence, data volume or operation types
(insert, update or delete). For instance, given a table set T = {A, B, C, D}, examples of
possible transaction patterns are P{A, B, C}, P{A}, P{B, C, D}, P{A, B}, etc. P
{A, B, C} and P{A, B} are not considered as the same transaction pattern even though
one has a subset of tables of the other. These patterns reflect the hidden table relations
recorded in transaction commit scopes. Separate collection of pattern statistics of P
{A, B, C} and P{A, B} facilitates the partitioning algorithm in the evaluation of
transaction splits. For horizontally partitioned tables, each partition is regarded as an
individual physical object. In WPT, the definition of transaction pattern can be easily
extended to treat different partitions as different table objects, especially when most of
industrial DBMS logs contain the partition identifier. For simplicity, the rest of the
paper only discusses tables.

To measure pattern-specific workload size, we record the table-specific statistics,
including the numbers of insert, update and delete operations, and data change volumes
measured by bytes. For an insert operation, all column values of the new row need to
be replicated to the target site. For an update operation, in addition to the values of all
the updated columns, the old key values should also be replicated to target sides for
row lookup and collision detection. For a delete operation, only the key values need to
be replicated. Thus, the workload size depends on the operation types, the actual log
contents with the column values, the table definition and the actual column value size.
Captured from DBMS catalogs, table schema definitions are used to decode the column
values of each row for computing accurate data changes of each operation.

The collected workload patterns and their statistics are modeled by landmark
window model. The entire workload is chunked to disjoint pattern snapshots by
user-specified time intervals. The collection of all the snapshots constitutes a workload
profile.

Figure 2 shows an example transaction pattern entity in a JSON format. It includes
information such as snapshot time, transaction pattern identifier (ID), transaction count,
the number of tables included, identifiers of the tables, as well as insert, update and
delete volumes in bytes. Table-level statistics in a particular transaction pattern include
the following content showed in Fig. 2: database ID and table ID; total count of the
IUD (Insert, Update, Delete) operations; total bytes of the data that are replicated of the
IUD operations; and total bytes of the raw log data in the IUD operations etc.
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3.2 Workload Profiling Tool

We implemented a workload profiling tool (WPT) to execute alongside with a com-
mercial database system. The log transaction reader uses the database recovery log
APIs to scan through the transaction history log. A transaction pattern control block
(TPCB), which stores information of a transaction pattern, is stored in a hash table in an
in-memory buffer, as shown in Fig. 3. For every transaction record gathered in log
scanning, the statistical information is accumulated if the matching transaction pattern
exists in the hash table. If no matching transaction pattern is found, a new transaction
pattern entry is added to the hash table. In Fig. 3, TPCB manager maintains a linked list
of TPCB buffer. Currently, each buffer has a 64 MB space. When one buffer is full, a
new buffer is created and inserted into the list. Using a hash table to store TPCBs
ensures that a TPCB entity can be quickly found from these buffers and updated. The
address of each TPCB entity is saved in the hash table as a hash value, while the hash
key is the hash code of TPCB ID of one TPCB entity. After completing all log records
within a snapshot interval, WPT dumps all the gathered information from memory to
disk files and then feeds the files to RPA.

Since WPT executes in a separate address space from the DBMS, it does not disturb
normal database workloads. From a system resource sharing prospective, one can run

Fig. 2. Example WPT data in JSON format

Fig. 3. In-memory TPCB hash table
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WPT at a lower job priority than regular application workloads to avoid or reduce
resource contentions. An alternative is to run WPT offline. For example, if the pro-
duction system disk that contains the database log is mirror-copied to a different system
at a local or remote site, WPT can process the log files from the mirrored disk.
Multiple WPT instances can also execute concurrently to process log records from
different time periods.

WPT and RPA are used in the initial configuration of parallel replication as well as
can be applied in the subsequent tuning and optimization process. Figure 4 shows the
process of how users can iterate through the capturing, profiling, analysis and database
partitioning steps, along with workload growths or new application deployments, to
adjust replication groups. RPA supports iterative tuning to help users continuously
optimize their partitioning solution. It is up to each replication software whether the
redeployment of replication partitioning can be done online or offline.

4 Replication Partition Advisor Algorithm

4.1 Problem Formulation

Let WK(TB, TX, T, IUD) denote a replication-specific workload collected during a time
window T ¼ ft0; t0 þ dt; t0 þ 2 � dt; . . .t0 þ v � dtg, where dt is the sample collection
interval; TB = {tb1, tb2, …, tbn} is a set of n replication objects (e.g., tables) whose
changes are to be replicated and TX = {tx1, tx2, …, txk} represents their transaction
activities; and IUD(TB, T) is the time series statistics of inserts, updates and deletes on
the tables in a time window T. Given a parallel replication system G(C ⋃ A, E),
RPA-algorithm partitions all the replicated database objects TB to form a set of
m mutually disjoint non-empty partitions CG = {cg1, cg2, …, cgm}, where cgi is a
consistency group replicated by a particular channel E(a, c). The objective is to find a
solution such that m is minimal and the worst replication latency in CG is below a
user-supplied threshold H.

For a particular replication channel, the PIT consistency latency at a specific time
point tp is the difference between tp and the source commit time for which all trans-
actions to that point have been applied to the target at time tp. The latency of each

Fig. 4. Iterative parallel replication tuning
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channel is directly related to the logical replication throughput capacity BW(a, c) as
well as the size of workload assigned to this channel. The workload size is defined as
the number of replicated data bytes. For a specific channel, it can process at most
dt � BW bytes within dt seconds. The residual workload will be delayed to the next
intervals. Residual workload REScg,i for a consistency group cg at time t0 þ i � dt is the
remaining work accumulated at t0 þ i � dt that has not been consumed by cgi. Thus,
REScg,i can be computed iteratively by:

REScg;i ¼ maxfðREScg;i�1 þ
X

IUDðTBcg; t0 þ i� 1ð Þ � dtÞ � dt � BWÞ ; 0g ð1Þ

Assuming data is consumed on a first-in-first-out basis, the PIT consistency latency
for cg at time t0 þ i � dt is the time to process the accumulated residue and new
activities at t0 þ i � dt:

PITcg;i ¼ REScg;i þ
X

IUD TBcg; t ¼ t0 þ i
� �� �

= dt � BWð Þ ð2Þ

The maximum PIT consistency latency PITcg of group cg during the time period is
computed as:

PITcg ¼ max PITcg;iji ¼ 0; 1; 2; . . .; v
� � ð3Þ

The maximum PIT consistency latency PITCG-max of a set of consistency groups
CG is the highest value of PITcg among all consistency groups in CG.

The objectives of the partitioning optimization can be formulized as follows. Given
a workload W, a parallel replication system G and its replication channel bandwidth
BW(a, c), and an SLA-driven PIT consistency latency threshold H, the first objective
function is defined as:

L ¼ min CGj j 8CG : PITCG�max �Hjf g; ðO1Þ

where |CG| is the size of a consistency group set CG, i.e., the number of groups in the
set. O1 is to find the partitioning solutions with the lowest number L of consistency
groups such that the highest PIT consistency latency of all the replication channels
PITCG-max is less than or equal to H. Let PL represent all the partition solutions of group
size L and satisfy O1. The second objective is to find a partitioning solution with the
minimized number of transaction splits.

T split ¼ argmin
CG2PL

X
tx2TX

XL
i¼1

trTðcgi; txÞjtrTðcgi; txÞ 2 0; 1f g
( )

; ðO2Þ

where trT(cgi, tx) is either 1 or 0 representing whether transaction tx has tables assigned
to group cgi or not. When all the tables in transaction tx are assigned to a single group,
trT(cgi, tx) equals 0 for all groups except one. O2 seeks to find the partition solution in
PL such that the aggregated count is minimized. When no transaction split is required,
T_split equals the total number of transaction instances in the workload.
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4.2 RPA-Algorithm Phase-1: Satisfying PIT Consistency Latency
with the Least Groups

Our RPA algorithm consists of two phases: phase-1 is to find a solution that satisfies
the first objective O1, and then phase-2 applies a transaction graph refinement approach
to achieve the objective O2. The algorithm flow of phase-1 is listed below followed by
a description.

Given bandwidth BW(a, c) and a user-specified PIT consistency latency thresh-
old H, the first two steps in phase-1 obtain the lower bound Llower, for the number
of consistency groups. The lower bound describes the best case scenario: the
workload volume distributes uniformly in both table and time dimensions, while
the PIT consistency latency reaches the highest at the end of the time window t0 þ v � dt
and the residual workload evenly spreads among all channels, i.e. Wsum ¼ Llower�
BW � ðv � dtþHÞ. Starting with this lower bound Llower, the process in steps 1_3 to 1_6
partitions the tables into Llower groups. We then re-examine the actual maximum PIT
consistency latency of all groups in steps 1_7 and 1_8. If the latency is higher than the
threshold H, another round of partitioning is performed with the number of groups
incremented by 1.

For each fixed group number, the problem becomes to partition n tables into
L consistency groups for PIT consistency latency minimization, which is an NP-hard
problem [7]. Given that the number of tables in a workload can reach thousands or even
more, it is not realistic to exhaust all the partitioning combinations for finding the best
among them. Instead, the greedy algorithm is introduced to resolve such a problem [8].
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When applying the greedy algorithm, we use a two-step approach for improving the
possibility of finding a global optimal solution instead of a local optimum. First, using
the most active tables TBtop (selected in step 1_4), step 1_5 enumerates all the possi-
bilities of partitioning them into L non-empty groups. The number of combinations for
such a placement grows rapidly with the numbers of tables and groups. For avoiding an
impractically high cost of step 1_5, the size of TBtop is determined based on a rea-
sonable computation time on the system where RPA runs. The best choice from the
exhaustive list of placements is the one with the lowest maximum PIT consistency
latency. Step 1_5 is then followed by a greedy procedure in step 1_6 that tests each of
the rest tables against each consistency group and computes the group’s potential new
maximum PIT consistency latency contributed by the table. The group with the lowest
new maximum PIT consistency latency is the target group for the table placement. The
greedy iteration in step 1_6 uses a stronger heuristics for reaching the minimum
number of consistency groups, even though it is possible that other partitioning
schemes that satisfy objective O1 (Sect. 4.1) also exist. An added benefit is that this
heuristics tends to generate consistency groups with less PIT consistency latency skews
among them.

Our approach is particularly effective when there are activity skews among the
tables. In fact, such skews are common in real-world applications. Figure 5 shows a
customer workload analysis on how tables weight within the workload with respect to
total and peak throughputs. A table with a higher x-axis value weights more in terms of
total throughput than those with lower x-axis values. Such a table contributes more to the
overall workload volume accumulation and channel saturation. A table with a higher y-
axis value is more likely to contribute to higher PIT consistency latency at its own peak
time. As shown in Fig. 5, tables with higher peak or total throughputs constitute a small
fraction in the entire workload. Based on this observation, step 1_4 selects the top tables
with higher total and peak throughputs for enumerative placement tests.

Throughput-Balancing: An Alternative to PIT Consistency Latency Minimiza-
tion. Calculation of PIT consistency latencies is impossible when quantified replica-
tion bandwidth is unavailable. In this case, the optimization goal of the RPA-algorithm

High peak                                                       

Low peak                                                      

High total 
throughput

Low total 
throughput

High peak                                                       

Low peak                                                      

High total 
throughput

Low total 
throughput

Fig. 5. Table activity distribution in a real-world banking application workload
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is adjusted to balance the peak volume and total volume given a targeted number of
consistency groups. Instead of computing PIT consistency latency, steps 1_5 and 1_6
choose the candidate group based on the accumulated peak volume and total volume
after adding a new table. Both factors are positive correlated with the PIT consistency
latency. Total throughput-based placement tries to balance utilizations of physical
replication channels. Peak throughput-based placement is for capping the highest
workload volume among all channels. Understanding workload peaks also facilitates
capacity planning and system configuration. This alternative is referred to as the
throughput-balancing algorithm (RPA-T-algorithm).

4.3 Transaction Split Reduction

RPA-algorithm phase-1 focuses on reducing PIT consistency latency. This section
describes phase-2, which attempts to reduce transaction splits for statistically increasing
serial consistency in data replication.

Transaction Graphs. In RPA, we use an undirected weighted graph TG(TB, TX, T,
IUD) to model tables and their transaction relationships within a workload WK(TB, TX,
T, IUD). Each node in the graph represents a table in TB. For simplicity, the same
notation TB = {tb1, tb2, …, tbn} is also used to represents the graph nodes. The weight
of a node is the time series IUD statistics for the table in the workload profile. An edge
e(tbi, tbj) connecting two nodes tbi and tbj denotes that there exists one or more
transaction patterns that correlate both tables. The weight of the edge |e(tbi, tbj)| is the
total transaction instance counts from all the transaction patterns that involve both
tables. Figure 6 illustrates an example of a transaction graph with 19 tables. Table T1’s
weight is associated with a time series statistics {234, 21, 654, 2556, ..}, which indi-
cates data activities to be replicated at each time point for T1. The weight 731 of edge e
(T1, T2) means that there are 731 committed transactions involving both T1 and T2.

Because of relational constraints or other reasons, there are cases when transaction
consistency must be preserved among certain tables. That means, these correlated
tables need to be assigned to the same consistency group. When the RPA-algorithm

Fig. 6. Transaction graph
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builds a transaction graph for a workload, each set of such correlated tables is first
merged into a single node with aggregated node statistics and edge weights.

When partitioning a set of table nodes, RPA-algorithm groups the tables to form
multiple clusters, which are possibly connected by edges. For a transaction instance
that is split into q clusters, the number of edges (of weight 1) connecting these
q clusters equals q � ðq� 1Þ=2. This number monotonically increases with q when
q > 1. Hence, minimizing the number of split transactions, as formulated by O2 in
Sect. 4.1, is equivalent to minimizing the number of edges, or aggregated edge weight.
Equivalently, the problem of minimizing transaction splits is a graph-partitioning
problem, which is to divide a graph into two or more disconnected new graphs by
removing a set of edges. As a classic partitioning problem, minimum cut graph-par-
titioning is to remove a set of edges whose aggregated weight is minimal. A constraint
for typical graph-partitioning applications is to balance the total node weight of each
partition. Differently, the target of our problem is to minimize the maximum PIT
consistency latency among all the groups, each corresponds to an individual consis-
tency group.

General Graph-Partitioning Algorithms. Agraph-partitioning problem, as an NP-
complete problem in general, is typically solved by heuristics in practice. One widely
used algorithm for two-way partitioning (bi-partitioning) is the Kernighan-Lin algo-
rithm (KL algorithm) [13]. It is an iterative improvement algorithm over two existing
partitions. It seeks to reduce the total edge cut weight by iteratively swapping nodes in
pairs between the two partitions. Fiduccia-Mattheyses algorithm [6] (FM algorithm)
further enhances the KL algorithm. By moving a node to a new group, it reduces its
edge cut to the other partition while increasing its edge connection to its home partition.
It also removes KL algorithm’s restriction of moving nodes in pairs. The improved
algorithm is referred to as KL-FM algorithm. For large graphs, multi-level
bi-partitioning is often applied through graph coarsening and expansion [10]. The
quality of their final solutions, which could be a local optimum, is affected by the initial
partitioning. Spectral solution [17] can find the global optimum by deriving partitions
from the spectrum of the graph’s adjacency matrix, but it does not fit our transaction
graph model with time series statistics as node weights. Partitioning a graph into more
than two partitions can be achieved via a sequence of recursive bi-partitioning.
Refinement heuristics for k-way partitioned graph have also been developed [11].

Transaction Split Reduction by Consistency Group Refinement. Before introduc-
ing our RPA-algorithm phase-2, we first discuss how to reduce transaction splits
between two already partitioned consistency groups by FM algorithms. This process is
referred to as an algorithm for 2-CG refinement (CG-RF-2). The process refines the
partition via node/table movement. Each move needs to ensure that the PIT consistency
latencies for both refined groups remain below PITmax or within a specified margin
around PITmax.
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The PIT consistency latency upper bound in C_2 is set to preserve the optimization
objective and speed up the algorithm convergence. When the two input groups are
produced by RPA-algorithm phase-1 and α is set to 0, CG-RF-2 algorithm preserves
the same maximum PIT consistency latency value from phase-1 while refining the
groups for transaction split minimization. When α > 0, the PIT consistency latency
constraint is relaxed and potentially more nodes are moved to reduce transaction split.
Alternatively, a user-supplied PIT threshold H can be used as the constraint.

In some cases, the two-step procedure of bi-partitioning and refinement can be used
recursively to create a higher number of partitions, given that the refinement constraint
can be distributed along the recursion paths. Such an approach works for
throughput-balancing partitioning optimization, i.e. the alternative algorithm RPA-T.
However, PIT consistency latency is not a constraint measure that can be easily dis-
tributed while still guaranteeing convergence during recursive bi-partitioning. There-
fore a non-recursive approach is needed.

RPA-Algorithm Phase-2: K-Way Consistency Group Refinement for Transaction
Split Reduction. This section presents the phase-2 of our RPA-algorithm for
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transaction split reduction. The algorithm (called CG-RF-k) is derived from the k-way
refinement algorithm proposed by Karypis et al. [11].

RPA-algorithm phase-2 starts its refinement process from the partitioning result of
phase-1, which finds the minimum number of groups while satisfying maximum PIT
consistency latency threshold. Every node move seeks to reduce the positive gains, i.e.
trading higher inter-group edge cut weight with lower intra-group edge cut weight. This
process keeps reducing the transaction split count until reaching the lowest.

4.4 Real-Time Partitioning Evolution

In a production environment, partitioning can evolve to adapt to the changing workload
patterns and system environment. Both workloads and underlying resources are
self-governing agents that are autonomous from replication software. The maintenance
issues are even more important than the initial construction, especially in such a
dynamic environment. When the detected changes lead to the real time PIT consistency
latency increase above a specific threshold H, re-partitioning is executed with the
following three-step tasks:

(a) Re-computing the partitioning of database objects with the latest data.
(b) Draining the on-going replication. Since the queued work can be congested at

anywhere in between the capture and apply, in reality it is very complicated to
re-direct those to different replication channels. During draining, capturing of new
workload from current channels is suspended to allow the existing channels to
finish replicating queued workload. Newly added channels can start as soon as
possible since there is no queued workload in those channels.

(c) Deploying the new replication partitioning configuration into use.
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The first two steps can be applied in parallel. Since step (a) usually consumes a
considerably shorter time than step (b), we only concern the PIT impact by step (b) in
the following discussion. Denote the period using the earlier consistency group con-
figuration P1, and the period with the modified consistency group configuration P2.
Computing residue throughput and PIT in the situation of re-partitioning is a bit dif-
ferent from what is described in Sect. 4.1. Denoting the PIT consistency latency of the
old-period consistency group in the last period as PITp1, the time for draining the
old-period workload td is computed as:

td ¼ PITp1 � dt ð4Þ

The residual workload REScg,i in the draining period and later should be computed
iteratively according to the value of time interval index i:

REScg;i ¼ REScg;i�1 þ
P

IUDðTBcg; t0 þði� 1Þ � dtÞ; i�PITp1
maxfðREScg;i�1 þ

P
IUDðTBcg; t0 þði� 1Þ � dtÞ � dt � BWÞ; 0g; i[PITp1

�
ð5Þ

Accordingly, PITcg-i computation should be adjusted as follows:

PITcg;i ¼ PITcg�old þðREScg;i�1 þ
P

IUDðTBcg; t ¼ t0 þ iÞÞ=ðdt � BWÞ; i�PITp1
ðREScg;i�1 þ

P
IUDðTBcg; t ¼ t0 þ iÞÞ=ðdt � BWÞ; i[PITp1

�

ð6Þ

5 Experiments and Analysis

We applied our work to a batch workload and an OLTP workload. The batch workload
is from a banking business and we collected the WPT data from an offloaded pro-
duction DBMS recovery log. For the OLTP workload, we expanded the schema of
TPC-E benchmark [24] and simulated workload profile data for analysis. In both
experiments, the analysis processes complete within minutes.

5.1 Transaction Split Avoidance Algorithm

For the purpose of comparison and establishing experimental baselines, we devised an
algorithm named Transaction Split Avoidance (TSA). This algorithm assists studying
the trade-offs between transaction split and either replication latency or
throughput-balancing in all our experiments. We implemented TSA algorithm which
seeks reducing PIT consistency latency under the constraints that no transaction split is
allowed. Using a transaction graph, the TSA algorithm groups nodes (database objects)
connecting to each other directly or indirectly into one virtual table by breadth-first
search, and then applies the PIT minimization algorithm to these virtual tables.
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5.2 Experiment with a Large Bank Batch Workload

This workload profile was collected from a database log representing a four-hour batch
processing window with 1 min sample interval. There are 824 tables with active
statistics among a total of 2414 tables, and 5529 transaction patterns are discovered
from 12.7 million transaction instances. The number of tables correlated by transaction
patterns varies between 1 and 27 within the histogram shown in Fig. 7.

We apply the RPA-algorithm with a replication bandwidth BW = 5 MB/s. To put in
prospective, this bandwidth is equivalent to insert 50 K 100-byte records per second
into a database. Starting from the lower bound of 3 consistency groups following step
1_2 of RPA-algorithm phase-1, Fig. 8 shows the maximum PIT consistency latency of
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each group, in the unit of a sample interval, when the workload is partitioned into 4, 6,
8, 10 or 12 groups. As the number of consistency groups increases, the PIT latencies
are reduced for each configuration. The reason that the three highest PIT consistency
latency values remain unchanged in 8-, 10- and 12-group cases is because these three
groups are assigned with only one volume-heavy table to each group. To further reduce
point-in-time latency, single channel replication bandwidth has to be increased by
improving the underline replication technologies in network, database, and replication
software.

Next we apply both phase-1 and phase-2 of RPA-algorithm to reduce transaction
splits for a given PIT consistency latency threshold H = 60 (1 h). The lowest number of
consistency group for this threshold is four from phase-1. Figure 9 shows the result of
phase-2. The first chart in Fig. 9 shows the maximum PIT consistency latency of each
consistency group using different variations of RPA-algorithm such as phase-1 only,
phase-1 plus phase-2 with allowed increase in PIT consistency latency within 0 %,
10 % and 20 % margin, as labeled accordingly in the chart. The second chart in Fig. 9
shows the transaction split distribution in terms of number of groups. Note that splitting
into one group means no splitting. TSA algorithm’s results are also provided for
comparison.
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Fig. 7. Distribution of transaction patterns over the number of tables in a batch workload
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Fig. 8. Partitioning result of batch workload with RPA-algorithm phase-1
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The charts show that when phase-2 is used after phase-1, the percentage of non-
splitting transactions increases from 70 % with “RPA_Phase1” to 82 %, 88 % and 91 %
respectively for RPA_Phase1&2, RPA_Phase1&2-10 % and RPA_Phase1&2-20 %.
With the TSA algorithm, all the transactions are non-splitting; however the maximum
PIT consistency latency reaches unacceptably high of over 450 1-min sample intervals.
In addition to demonstrating that RPA-algorithm can effectively reduce transaction
split, the result provides trade-offs study between transaction split and PIT consistency
latency.

5.3 Experiment with an OLTP Workload

TPC-E is a newer OLTP data centric benchmark. Its processing is composed of both
READ-ONLY and READ-WRITE transactions. Only the READ-WRITE transactions
with data changes are used in our study. The TPC-E table schema consists of 33 tables,
and 23 of which are actively updated during the transaction execution flows.

To simulate more complex real-world workloads, we expanded the schema by
increasing the number of tables by 30× as well as increasing transaction correlations
among the tables. Based on the augmented schema and workloads, as well as TPC-E
specification on how the tables are updated, we generated a simulated workload profile
data with 155 transaction patterns and over 6 million transactions.

OLTP workloads usually update the smaller amount of data within the scope of a
committed transaction. Since the volume is lower than the batch, we experiment with
our alternative throughput-balancing algorithm (RPA-T-algorithm) and to partition the
tables and balance total throughput among 8 consistency groups.

The analyses of the partitioning results using RPA-T phase-1 and RPA-T
phase-1&2 are shown in Table 1 and Fig. 10. To be more intuitive, relative standard
deviation (RSTDEV = standard deviation/mean) is used to evaluate the effectiveness of
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Fig. 9. Partition and transaction split results with RPA-algorithm phase-1 & phase-2 (4 CGs)
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throughput-balancing among consistency groups, as listed in Table 1 for each algo-
rithm. With no surprise, the RSTDEV value is near 0 (0.03 %) for RPA-T phase-1
since it is optimized for balancing throughput; the RSTDEV value for TSA is very high
(282 %) since it does not address balancing. Figure 10 offers a different view than
Fig. 9 for analyzing how the transaction split is distributed. In Fig. 10, y-axis indicates
the percentage of the total transactions that are contained within x number or less
consistency groups, x being the label on x-axis. The percentage values on y-axis
increase and reach 100 % for eight consistency groups, i.e. all transactions are repli-
cated within eight groups or less. An algorithm whose curve progresses to 100 %
slower than another means that a higher percentage of the transactions are split into
more consistency groups when using this algorithm than using the other one. With TSA
algorithm, none of the transactions are replicated with more than one consistency
group. For RPA-T phase-1 algorithm, only a small number of transactions (0.0015 %)
are replicated in one group and 15 % are replicated in one or two groups, etc.

Like RPA-algorithm, RPA-T phase-2 seeks to reduce transaction split count among
consistency groups generated by RPA-T phase-1. Table 1 and Fig. 10 show that the
RPA-T phase-1&2 (0 %) curve progresses only marginally faster than RPA phase-1.
Because the activities in this workload are uniformly distributed among different tables
and along the time dimension, by not allowing throughput trade-offs (0 %), it limits the
number of tables that can be moved during refinement. For further transaction split
reduction, more trade-offs are needed on throughput-balancing constraint. As observed
from Fig. 10, with 1 % and 5 % allowed adjustment on throughputs constraint during
each refinement step, there are significant increases in the number of transactions that

Table 1. Throughput RSTDEV for different algorithm

RPA-T TSA RPA-T phase-1&2
(throughput trade-off %)

phase-1 0 % 1 % 5 %

RSTDEV 0.03 % 282 % 0.03 % 1.15 % 7.84 %
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Fig. 10. Transaction split result for OLTP workload
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are replicated using less consistency groups. For example, 49.2 % and 84.0 % of
transactions are replicated with two consistency groups or less, respectively using
RPA-T phase-1&2 (1 %) and RPA-T phase-1&2 (5 %). The trade-offs increase the
throughput deviations among groups, e.g. to RSTDEV = 1.15 % for RPA-T phase-1&2
(1 %) and RSTDEV = 7.84 % for RPA-T phase-1&2 (5 %). Such deviation is less
significant compared to the reduction in transaction splits.

5.4 Simulation of Partitioning Evolution

We conducted simulation to demonstrate how our RPA tool is applied when real-time
workload fluctuates and deviates from the previous profile. In the experiment, we
devise a monitor to check the PIT consistency latency of all consistency groups
periodically using timestamp information associated with the workloads. When a
consistency group’s PIT consistency latency is identified higher than the threshold due
to the change of run-time environment, re-partitioning is triggered. In this experiment
shown in Fig. 11, four consistency groups were used initially in capture and apply pairs
(C1, A1), (C2, A2), (C3, A3), and (C4, A4), and each replicated a set of database objects
not overlapping with the other groups. At the very beginning, the bandwidth of each
channel was 300 KB/s. As we can see from Fig. 11, the maximum PIT consistency
latency among consistency groups was under the threshold 9 during the first 60 time
units (In this experiment, 1 time unit = 1 min). However, at time 60, the system
replication bandwidth decreased to 180 KB/s and caused the PIT latencies of all
consistency groups to increase significantly. As a result, the PIT consistency latency of
one consistency group exceeded the threshold at time 62 and triggered the
re-partitioning. We re-applied RPA with the changed bandwidth value and adjusted the
partitioning scheme to use as many as eight consistency groups. At the same time,
draining started for the queued workload that had been captured but not applied from
(C1, A1), (C2, A2), (C3, A3), and (C4, A4). At time 69, the draining of all database objects

Fig. 11. Simulation of re-partitioning
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was finished. All eight replication channels started working to capture and apply any
changes since timestamp 62 in RDBMS transaction log. As mentioned in Sect. 4.4, the
newly added four channel could have started earlier but for simplicity we started all
after the last draining was finished. With the appliance of new configuration, the PIT
consistency latency had dropped below the threshold after time 69. On the other hand,
Fig. 11 also shows that the maximum PIT consistency latency would potentially be
beyond 30 if no adjustment was made.

6 Related Work

Database replication is a key technology and a challenging problem for achieving data
serving high availability and disaster tolerance [9, 12]. Prior works attempt to address
various aspects of replication such as transaction consistency protocols, scalability and
performance, etc. (e.g. [14, 15, 19]). In “share nothing” architecture, data replication is
used to move data elements among processing nodes to mitigate system failure or to
localize transaction processing for better performance [1]. In Spanner [3], synchronous
replication is used to achieve transaction consistency in globally distributed data stores.
The work in Schism [4] proposes an approach of workload-driven, graph-based
replication and partitioning combined with explanation and validation. The work in
SWORD [18], targeting data-as-a-service in a cloud environment, achieves higher
scalability over prior work with a set of new techniques and introduces incremental
re-partitioning. Both works build replication components within the data-serving
software.

As reported by Cecchet et al. [1], various challenges still exist when applying
database replication in commercial business environments. Motivated by a real-world
problem, this paper aims at optimizing middleware-based parallel data replication,
especially in a long-distance multi-data-center setting. By filling a gap in understanding
database objects affinities with transaction workloads, our work investigates how to
group a large number of database objects to improve the performance with a constraint
of user-specified PIT consistency latency threshold. To the best of our knowledge, we
are the first to propose an automatic design solution to this optimization problem.

We developed heuristics for using a greedy process [8] to achieve the first objective
of minimizing the number of consistency groups with a PIT consistency latency
constraint. Based on practical analyses, an optimization technique is also proposed to
improve the probability of finding a global optimal result. For reducing the transaction
splits, which is the second optimization objective, we model the workload as a
transaction graph and transform the problem to a graph-partitioning problem. Finally, it
is solved by our proposed heuristics based on the existing graph-partitioning algorithms
[6, 13, 11]. Both Schism work [4] and SWORD work [18] apply graph algorithms for
fine-grain partitioning of tables horizontally in a distributed environment. They model
tuples and transactions as graphs and use it to determine the placement of work or data
within a cluster of nodes. For the partitioning problem in large-scope data replication
across databases and data centers, our workload-pattern-driven approach focuses on
modeling and analysis at the database object level. Common graph model and parti-
tioning algorithms provided by existing software such as METIS [21] are not sufficient
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for our problem. This is because, in order to address workload fluctuation and address
PIT objective, we need to model a workload transaction graph using time series
statistics from the tables and the transactions and the computation of PIT consistency
latency is iterative with respect to workload volume and time. Our algorithm also needs
to introduce problem-related heuristics during the partitioning phase to handle multiple
optimization objectives and trade-offs under PIT consistency constraint.

7 Conclusion and Future Work

Large-scale database replication is essential for achieving IT continuous availability.
This paper presents a workload discovery and database replication partitioning
approach to facilitate parallel inter-data-center data replication that is applicable to both
share-nothing and share-disk databases. Our design and algorithms are demonstrated
with a real customer batch workload and a simulated OLTP workload. In practice, the
work has been applied to a real-world business applications environment. For future
work, we plan to further fine-tune the optimization model for the replication stack.
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Abstract. Releasing, publishing or transferring microdata is restricted
by the necessity to protect the privacy of data owners. k-anonymity is
one of the most widespread concepts for anonymizing microdata but
it does not explicitly cover NULL values which are nevertheless fre-
quently found in microdata. We study the problem of NULL values (miss-
ing values, non-applicable attributes, etc.) for anonymization in detail,
present a set of new definitions for k-anonymity explicitly considering
NULL values and analyze which definition protects from which attacks.
We show that an adequate treatment of missing values in microdata
can be easily achieved by an extension of generalization algorithms. In
particular, we show how the proposed treatment of NULL values was
incorporated in the anonymization tool ANON, which implements gen-
eralization and tuple suppression with an application specific definition
of information loss. With a series of experiments we show that NULL
aware generalization algorithms have less information loss than standard
algorithms.

Keywords: Privacy · k-anonymity · NULL values · Missing values

1 Introduction

Detailed data collections are an important resource for research, for fact based
governance, or for knowledge based decision making. In the field of statistical
databases any collection of data with detailed information on entities, in partic-
ular persons and organizations, is called microdata.

A crucial requirement for the release of microdata is the preservation of the
privacy of the data owners, which is protected by laws and regulations. Fur-
thermore, for data collections requiring the willingness of data owners to share
(donate) their data, studies [9] clearly indicate that the protection of privacy is
one of the major concerns of data owners and decisive for a consent to donate
data [13]. For protecting privacy from linkage attacks the concept of k-anonymity
[25] received probably the widest attention. Its core idea is to preserve privacy
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by hiding each individual in a crowd of at least k members. Many anonymization
algorithms implementing these concepts were developed.

Surprisingly, neither the original definition of k-anonymity nor any of the
many anonymization algorithms deals explicitly with unknown, or missing val-
ues (NULL values in database terms) in microdata. We could not find a single
source discussing the problem of NULL values in microdata for anonymization.
Recent surveys [19] or textbooks [12] do not mention NULL values or missing
values. However, all techniques and algorithms we found, explicitly or implic-
itly require that all records with at least one NULL value have to be removed
from a table before it can be anonymized ([2,15–18,23,29,32], and many more).
There is only some treatment of NULL values in form of suppressed values,
i.e. NULL values resulting from removing (“suppressing”) data in the course of
anonymization procedures. Attacks on suppressed rows can be found in [22,30].
[1,7,21] discuss suppression of values in single cells. However, neither of these
approaches discusses the problem of missing values in the original data or of
non-existing values due to non-applicable attributes.

NULL values, nevertheless, are not exceptional in microdata, e.g. they appear
frequently in data sets for medical research [8,10,28,33]: Some attributes might
not be applicable for each patient. A patient might have refused to answer some
questions in a questionnaire or could not be asked due to physical or mental
conditions. In an emergency some test might not have been performed, etc.

Anonymization by generalization and suppression of data cause loss of infor-
mation. The aim of reducing this information loss triggered many research
efforts. The ignorance of NULL values in anonymization algorithms results in
dropping rows from a table, causing a considerable loss of information. Further-
more, dropping rows with NULL values also could introduce some bias in the
data set, which is not contained in the original table. This is of course unfor-
tunate for further analysis of the data (for example in evidence based medi-
cine) and might compromise the statistical validity of the results (e.g. dropping
rows with a NULL value in the field occupation would skip all children from
the data set and introduce an age bias, which was not present in the original
data set).

This paper is an extension of [4]. We provide a thorough grounding for the
treatment of NULL values in anonymization algorithms. We show that we can
reduce the problem of NULL values in k-anonymity to different definitions of
matching between rows of a data set based on extending the comparison of
values and NULL values. We show that generalization algorithms, widely used
for anonymization, can be easily extended to cover NULL values and we show
that this extension reduces information loss during anonymization significantly.
In particular, we show how the treatment of NULL values was incorporated
into the anonymization tool ANON, which implements a generalization algo-
rithm with tuple suppression, which optimizes application specific usability of
the anonymized data by minimizing the information loss, which is defined by
the user, specifically for the application and the intended use of data [3,27,28].

k-anonymity (which is defined on the quasi identifiers) has to be comple-
mented with �-diversity for sensitive attributes [18] to avoid that an adversary
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might infer data of individual. In this paper, however, we focus on k-anonymity
and only briefly treat �-diversity, as it is implemented in ANON.

2 k-Anonymity Revisited

A detailed collection and representation of data on information subjects is called
microdata - as opposed to data in less detail like statistical data. For this paper
a microdata table is a multiset of rows [14]. We can classify the attributes in
the schema of such table in four categories: (1) identifiers: all attributes which
uniquely identify a row in the table, (2) quasi identifier: all attributes which
an adversary might know, (3) sensitive attributes: attributes with values that
should not be inferable by an adversary and (4) all other data. For this paper
we assume that the identifiers have already been removed from a table and that
the schema of a table includes a set of quasi identifiers Q, which we denote by
Q1, . . . , Qn.

The aim of anonymization is to assure that a table can be published without
opening an adversary the possibilities to gain additional knowledge about the
data subjects.

Table 1 shows our running example for such a table with the quasi identifiers
Gender, Height, Job, and ZIP and the sensitive attribute Condition.

Table 1. Original table

Gender Height Job ZIP Condition

A f 165 null 9020 Cancer

B m 187 Mayor 9020 Hepatitis

C f 163 Clerk 9020 Flu

D m null Technician 9020 Pneumonia

E m 183 null 9020 Malaria

F m 189 Pilot 9020 Gastritis

Samarati and Sweeney [25] proposed an approach to preserve the privacy of
a data owner by hiding each data owner in a crowd of at least k individuals, such
that an adversary might not get detailed information about an individual, but
only information about a group of k individuals. The larger the k, the smaller
the possible information gain of an adversary.

In [26] k-anonymity is defined as follows: ‘Each release of data must be such
that every combination of values of quasi identifiers can be indistinctly matched
to at least k individuals’. The term indistinct match is not defined explicitly,
nevertheless, it is clear from the context that two rows match, if they have iden-
tical values in the quasi identifiers. However, missing values are not mentioned.
We basically follow this definition here, and analyze, how rows of a table match
in case some values are NULL. Hence we formalize the notion of k-anonymity,
dependent on some match operator.
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Definition 1 (k-Anonymity). Let T be a table and Q the set of quasi identifier
attributes and let ∼ be a match predicate on T . T is k-anonymous with respect
to ∼, iff ∀t ∈ T : |{t′|t ∼ t′}| ≥ k.

k-Anonymity as well as �-diversity can be achieved with two basic techniques,
generalization and suppression. Both techniques decrease information content of
the data to meet the required degree of privacy. They can be used separate or in
combination. Generalization [26,30] replaces the values of quasi identifiers (QID)
with more general values defined in the generalization hierarchies (taxonomy
trees or intervals with step definitions) for all QIDs. The leaves of a generalization
hierarchies are the original values of the domain of an attribute, the top level
is a single value ALL, which has no information content. The generalization
hierarchy and its corresponding domains of the QID Job of the running example
(Table 1) are shown in Fig. 1.

D2 = {ALL}

D1 = {Administrative, Technical}

D0 = {Mayor, Clerk, Technician, P ilot}

ALL

Technical

PilotTechnician

Administrative

ClerkMayor

Fig. 1. Generalization hierarchy and its corresponding domains (generalization levels)
of the QID Job of the running example

The anonymization procedure in general is as follows: When a row does not
match at least k − 1 other rows, then some attribute values are generalized, i.e.
replaced with the parent of this value in the generalization hierarchy defined for
each domain (resp. each attribute). In the case of local recoding this is done for
individual rows, for global recoding or full-domain generalization scheme the gen-
eralization is performed for all the rows [12,31]. This is repeated until the table
is k-anonymous or the highest level of generalization is reached in all attributes.
A shortcoming of this method is that outlier tuples in the microdata can lead to
a very coarse grain generalization. Outlier tuples are those, which hardly match
any other tuples. If they remain in the table that is being anonymized, the over-
all information loss increases. To avoid information loss caused by such outliers,
full domain generalization is mostly accompanied with row suppression, where
given fraction of rows might be suppressed, i.e. these rows are removed from the
table or all their values are replaced by ALL (resp. NULL). To avoid attacks at
least k rows have to be suppressed [30].

It is easy to see that in general several tables qualify as result. The aim
is now to compute the table with the lowest information loss. The problem is
known to be NP complete [21]. However, for global recoding the complexity of
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the method is exponential in the number of quasi identifiers and their general-
ization hierarchy height and not in the number of tuples. Many algorithms have
been proposed, which apply heuristics to reduce complexity and which apply dif-
ferent measures for information loss to efficiently compute “good” anonymized
tables.

In contrast to generalization, suppression does not transform the values to
other, more general values, but simply deletes (eliminates) them. Suppression
can be undertaken on single values (called cell suppression), on whole tuples
(called tuple suppression) or on whole attributes (called attribute suppression).
The impact of the attribute suppression is the same as the one of the general-
ization of an attribute to the top level. Approximation algorithms that use cell
suppression are described in [1,21]. In combination with generalization [26,30],
tuple suppression can be used to eliminate outlier tuples, while the remaining
tuples get generalized.

3 k-Anonymity with NULL values

3.1 NULL Values

NULL values [20] are the standard way of representing missing information in
database tables. We can distinguish three kinds of NULL values: (1) attribute
not applicable: in this case there is no value for this attribute for this row in
the world represented in the database. (2) missing value: there exists a value in
the world, but it is not contained in the database. (3) no information: it is not
known whether the value exists in the world or not. In SQL the semantics of
NULL is “no information”.

For the following considerations we follow the treatment of NULL values in
SQL [14]. This means in particular, that a comparison of a NULL value with any
other value never results in true and there is a special unary predicate is null
to test for NULL values.

3.2 Matching NULL Values

For matching of NULL values we have the following options:

– basic match: NULL values do not match with NULL values, nor with any
other value.

– extended match: NULL values match with NULL values.
– maybe match: NULL values match with any value including NULL values.

In the original definition of k-anonymity and in the current anonymization
algorithms basic match is used. It is in accordance with the definition in SQL,
where ‘A = B’ is not true, if A or B are NULL values. Extended match treats a
NULL value like any other value. Maybe match sees NULL values as wildcards for
matching. It corresponds to Codd’s maybe selection [6], where rows are returned,
if the selection predicate is true for a substitution of the NULL values.
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3.3 Basic Match

We call the match used in [26], where rows with NULL values are discarded,
basic match, and formally define it as follows:

Definition 2 (Basic match). Let T be a table and Q the set of quasi identifier
attributes.

t1 ∼b t2 :⇐⇒ ∀q ∈ Q : t1[q] = t2[q]

For illustrating the different match definitions and their consequences we
use Table 1 and transform it to a 2-anonymous table using the different match
definitions in turn. Table 2 shows the result of the anonymization of Table 1 to a
2-anonymous table. The table has only 3 rows, as all rows of the original table
which contain NULL values (rows A, D, and E) had to be removed before the
generalization - hence the table is also 3-anonymous. For the rest of this paper we
always follow the full-domain generalization scheme [17,24,26] in our examples,
however, the considerations are applicable to all algorithms for k-anonymization.

Table 2. 3-anonymity with basic match

Gender Height Job ZIP Condition

B All All All 9020 Hepatitis

C All All All 9020 Flu

F All All All 9020 Gastritis

3.4 Extended Match

In extended match NULL values are treated like any other value, in particular,
a NULL value only matches with another NULL value but not with any values
from the domains of the attributes.

Definition 3 (Extended match). Let T be a table and Q the set of quasi
identifier attributes of T . For two rows t1, t2 ∈ T we define the extended match as

t1 ∼e t2 :⇐⇒ ∀q ∈ Q : t1[q] = t2[q] ∨ (t1[q]isnull ∧ t2[q]isnull)

The extended matching definition can be used to extend existing anonymiza-
tion algorithms. First we have to extend all generalization hierarchies with a
branch with the value NULL on each level of the hierarchy below the root ‘ALL’.
Using these extended hierarchies we can apply the generalization method again
and receive Table 3 which is 2-anonymous with respect to the extended match.
Note that in contrast to the basic match no row has been lost.

The aim of k-anonymity is to prevent attacks on released data, in particular,
record linking attacks [12], i.e. joining a table with some known information
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Table 3. 2-anonymity with extended match

Gender Height Job ZIP Condition

A All All null 9020 Cancer

B All All Admin 9020 Hepatitis

C All All Admin 9020 Flu

D All All Technical 9020 Pneumonia

E All All null 9020 Malaria

F All All Technical 9020 Gastritis

to associate values of sensitive attributes with some data owner. In particular,
matching any record containing quasi identifiers with the released table should
result in no or at least k hits. It is easy to see that this requirement is fulfilled,
if any query posed on the released table in the form of “Select * From T where
search condition” yields 0 or at least k result rows, if the search condition only
contains predicates on quasi identifiers.

Theorem 1 (link-safe). Let T be a table and Q a set of quasi identifier
attributes and let πQT be the projection of T on Q. If T is k-anonymous with
respect to ∼e then for all search conditions p the query “Select * From πQT
where p” returns 0 or at least k rows.

Proof. The theorem follows from the observation that if a row t ∈ πQT satisfies
the search condition of the query then all rows matching t according to the
extended match also satisfy the search condition. Because T is k-anonymous
with respect to ∼e there are at least k such rows.

3.5 Maybe Match

For extending the domain of the match predicate to also consider NULL values
we can build on the treatment of NULL values in Codd’s maybe operations for
the relational algebra [6]. The maybe selection operator does not only return
those rows for which the selection predicate is satisfied, but also all those rows
which satisfy the selection predicate if NULL values are replaced by suitable
values.

Applying the concept of ‘maybe’ selects to the matching of rows, we define
the maybe match as follows: NULL matches both with NULL and other values.
NULL values in the rows can be used as wildcards in both directions. For an
example: The tuples (a, b, c), (a, NULL, c), (NULL, NULL, NULL) all match
can be grouped together.

Definition 4 (maybe match). Let T be a table and Q the set of quasi identifier
attributes of T . For two rows t1, t2 ∈ T we define the maybe match as

t1 ∼m t2 :⇐⇒ ∀q ∈ Q : t1[q] = t2[q] ∨ (t1[q]isnull ∨ t2[q]isnull).
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The maybe match is not transitive and does not lead to an equivalence parti-
tioning of the table (in contrast to basic and extended match). We call a row t and
its matching rows the match-group of t. k-groups of different rows might overlap
without being equal. For an example, the tuple (a, NULL, NULL) matches both
with (a, b, c) and with (a, e, f) and so (a, NULL, NULL) is contained in several
match-groups.

Applying maybe matching in the generalization method we compute the table
shown in Table 4. In this table the match-groups are built from the following
match relations A ∼m C, B ∼m E, D∼m E, E∼m F, such that each row matches
with one other row.

Table 4. 2-anonymity with maybe match

Gender Height Job ZIP Condition

A f 161–180 null 9020 Cancer

B m 181–200 Mayor 9020 Hepatitis

C f 161–180 Clerk 9020 Flu

D m null Technician 9020 Pneumonia

E m 181–200 null 9020 Malaria

F m 181–200 Pilot 9020 Gastritis

Let us now analyze whether this table is safe. First we try an attack on
missing values.

Hampering Reconstruction [22] is an attack that shows how a value that was
suppressed in the anonymization process can be reconstructed. We extend it here
to cover also missing values in the original table. For example, if an adversary
knows that Daniel’s data are in the table and Daniel is 205 cm tall, then he can
associate row D with Daniel.

Hampering reconstruction requires that a value for some attribute exists in
the real world, but is not recorded in the database. It shows that tables, where
NULL values have the semantics of missing values, may be compromisable.

Next we show that there are also attacks possible on NULL values, which have
the semantics ‘not applicable’, i.e. for which no value exists in the real world.

We introduce the novel NULL-identifier attack, which uses knowledge
whether an attribute is applicable for some row. For example, let us assume that
an adversary knows that Alice, a female patient, is not employed, and therefore
the value in the Job attribute has to be NULL. He can thus query Table 4 with
the search condition ‘Gender = “f” and Job is NULL’ and retrieves row A.

The NULL-identifier attack leverages on the knowledge that a certain value
does not exist. Therefore, the row in the table has to have the value NULL in
the corresponding attribute. Anonymization based on maybe match is thus not
safe against NULL identifier attacks.

With hampering reconstruction and NULL-identifier attack we show that
tables which are k-anonymous with respect to maybe match are not safe from
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linking attacks. Both attacks exploit situations where there are less than k NULL
values in some attribute within a k-group.

In conclusion we observe that generalizations using maybe-match are vul-
nerable against extended hampering reconstruction (NULLs as ‘missing values’)
and NULL-identifier attack (NULLs as ‘attribute not applicable’).

3.6 Right Maybe Match

We restrict the definition of the maybe match, such that within a match-group a
NULL value in some attribute has to appear at least k times, but use the wildcard
character of NULL for matching other values with NULL. For an example, (a, b,
c) would match with (a, NULL, NULL) and (a, b, NULL) but not vice versa. The
motivation for this is to enforce the existence of k NULL values in some attribute
within a match-group to avoid hampering reconstruction and NULL-identifier
attacks. In our example, (a, b, c) matches with the two other tuples, (a, b,
NULL) with one other tuple. The expectation was that a single tuple like (a, b, c)
demanding further generalization with extended match would match with tuples
containing NULL values and therefore would not require further generalization.

Definition 5 (right maybe match). Let T be a table and Q the set of quasi
identifier attributes of T . For two rows t1, t2 ∈ T we define the right maybe
match as

t1 ∼r t2 :⇐⇒ ∀q ∈ Q : t1[q] = t2[q] ∨ t2[q]isnull.

The right maybe match relation is reflexive and transitive, but not symmetri-
cal and does not define an equivalence partitioning on a table. The non-symmetry
is viable, as the definition of k-anonymity requires that each tuple matches with
k other tuples, however, it does not require that the match relation defines equiv-
alence classes.

The result of anonymization with right maybe match is shown in the example
of Table 5. Here the following match relations are found: A∼r E, B ∼r A, B ∼r E,
C ∼r A, C ∼r E, D∼r A, D ∼r E, E∼r A, F∼r A, F∼r E.

Table 5. 2-anonymity with right maybe match

Gender Height Job ZIP Condition

A All All null 9020 Cancer

B All All Mayor 9020 Hepatitis

C All All Clerk 9020 Flu

D All All Technician 9020 Pneumonia

E All All null 9020 Malaria

F All All Pilot 9020 Gastritis

Now let us analyze, whether the right maybe match admits tables which are
safe. We first observe that there are queries on the quasi identifier projection of
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a table which yield less than k results. For example, the search condition ‘Job =
“technician”’ would only return row D. However, this query might lead to a
wrong result for an adversary, because it is possible, that the ‘true’ value in the
Job attribute is also “technician” for the rows A and E but just missing. There-
fore, a rational adversary would use a maybe query instead (‘Job = “technician”
or Job is NULL’).

It is possible to show that right maybe match is safe for all maybe queries.
We introduce the singularity attack to show that straight (not maybe) queries

make sense and possibly compromise the data. A singularity attack uses knowl-
edge that some value is unique, at least for some combinations of other attribute
values. For example, ZIP code and Job may be compromised, when the job =
“Mayor” and there is never more than one mayor in a town (i.e. per ZIP code).
In such cases an adversary will use straight queries rather than maybe queries
and can compromise tables which are k-anonymous with respect to the right
maybe match.

The singularity attack shows that tables which are k-anonymous with respect
to right maybe match are not safe against attacks. The singularity attack
does not depend on the type of NULL values (non-applicable, missing, no-
information), such that we have to dismiss anonymization based on the right-
maybe match.

3.7 An Extended Generalization Algorithm

A detailed analysis of NULL values and their matching operators allows to
extend generalization algorithms (see Sect. 2) with minimal effort to cover also
NULL values in the input table using the k-anonymity definition with extended
match. There are only two extensions necessary: (1) the generalization hierar-
chies of each quasi identifier is extended with an additional branch below the
root that contains a NULL value in each level of the hierarchy. (2) k-anonymity
is tested with extended match. With these extensions, the anonymization algo-
rithms can accept microdata with NULL values without any preprocessing. It
is easy to see that the complexity of the algorithms is not changed by this
extension.

Figure 2 shows, how the generalization hierarchies of our running example
were extended, in order to apply extended matching. Note that for consistency
reasons, there has to be a NULL value on each level of the hierarchy.

ALL

NULLmf

ALL

NULL

NULL

Technical

PilotTechnician

Administrative

ClerkMayor

Fig. 2. Generalization hierarchies for NULL value handling in the running example
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The extended generalization algorithm as well as the extended match are
implemented in the tool ANON that is introduced in the next section. ANON
was used to execute experiments on microdata with NULL values to analyze
whether the explicit treatment of NULL values actually reduces information
loss. The results are shown in Sect. 5.

4 The Anonymization System ANON

We implemented a flexible and customizable tool, called ANON [3], for comput-
ing k-anonymous and �-diverse tables based on anonymization by generalization
and tuple suppression [26,30] where the information loss can be defined by the
users explicitly through penalties in the generalization hierarchies and through
priorities for attribute generalizations [27,28]. The contribution of ANON is on
one hand the computation of a k-anonymous and �-diverse generalization of a
given table with minimal information loss, where this information loss can be
defined application specific in a fine grained way when defining the generalization
hierarchies [3] and on the other hand the explicit treatment of NULL values. We
implemented both anonymization with basic match and with extended match
such that ANON offers two ways of handling NULL values: removing rows with
NULL values before anonymization (basic match), or treating NULL values as
any other value (extended match). We did not implement anonymization with
maybe match or right maybe match due to their vulnerability as shown in Sect. 3.

4.1 User-Specific Requirements and Information Loss

ANON aims at adapting to the application specific data requirements by allowing
the user to customize the anonymization procedure by defining application spe-
cific information loss calculation. The motivation for this is the observation that
the requirements for the precision of attribute values vary enormously between
different applications. For an example, in one application the age is needed in
fine granularity while in a different application the body mass index is needed
in detail and age is sufficient in 10-year intervals. So we argue that technical
information loss definitions like those based on Shannon’s definition of entropy
cannot reflect the usability of a data set for a specific application. For steering
the search for an optimal solution the users may specify priorities for the general-
ization of quasi identifiers, to specify an information loss for each generalization
step and to set generalization limits. The calculation of information loss is used
in a best-first search to determine the best anonymized table with generalization
and tuple suppression.

Weighted information loss is calculated with the formula

WIL =
n∑

i=1

prios[i] ∗ ϕlevels[i]
αi

,

where n is the number of quasi identifiers, ϕ
levels[i]
αi the loss of information if the

attribute αi is generalized to the level levels[i], and prios[i] is the priority of the
attribute αi.
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With this formula, the user can influence the information loss with the fol-
lowing user-specified information:

Attribute priorities. A User can assign a particular priority to each quasi
identifier attribute. These priorities influence the computation of generaliza-
tion loss. The intention is that attributes with a high priority are generalized
to lower levels than attributes with lower priorities.

Generalization limits. If the values are useful only up to a particular gener-
alization level, the user can limit the generalization of an attribute to this
level.

Generalization penalties. Generalization penalties define the information loss
for each generalization level. The top level of a generalization hierarchy has
an information loss of 100 %.

This user-specified information and its impact in the search algorithm guar-
antee that the user will obtain such results that suit the user’s requirements in
the best possible way.

4.2 Architecture and Implementation

ANON is implemented in Java and is available in two distributions: as a Web
Service and as an executable platform-independent java archive (JAR) with a
simple graphical user interface. The anonymization is controlled by the ANON
definition file, which is a combination of an anonymization settings file and a
metadata file. As shown in Fig. 3, the ANON definition file is the main ANON
input that determines the microdata source(s) and the outputs, as well as the
anonymization process itself.

ANON definition is an XML file that consists of the following five fundamen-
tal sections:

Parameters define the anonymization settings (the value of k, maximal sup-
pression threshold max supp, type of the search algorithm, ANON report
settings and missing value handling details).

Datasource definition defines the source(s) of data that should be anonymized
(database(s), XML or CSV-file(s)).

Output definition defines the target where the anonymized data should be
saved (database, XML or CSV-file).

Attributes definition defines which attributes should be read from the source
data and how these should be handled. Each quasi identifier attribute (k-
attribute) should have assigned its priority and maximal generalization
limit. Each sensitive attribute (l-attribute) must be configured with the �-
diversity type that should be used for checking, and its desired parameter
values (�).

Generalization hierarchies define value generalization hierarchies that are
used for anonymization. For every quasi identifier attribute (k-attribute)
there should be one generalization hierarchy, upon which the values are
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Fig. 3. ANON architecture

generalized. Each generalization hierarchy contains information about the
hierarchy levels inclusive their information loss and a value generalization
tree. This tree must contain all the values that the corresponding quasi
identifier can hold in the microdata.

ANON is capable of anonymizing data from multiple sources that have one of
the following formats: database connection (JDBC), XML-file or CSV-file. The
result can be saved as one of these formats as well. Besides the anonymization
outcome, user can decide to receive an ANON report, which informs about the
anonymization process and eventual failures.

ANON offers the user the possibility to select the attributes that the user
wants to handle in the anonymization process and mark them with one of the
following anonymization types:

– k-attribute,
– l-attribute,
– dontcare,
– ignore.

The attributes that should be skipped from the result should be marked
with “ignore”. Alternatively they can be left out of the ANON definition file
to raise the same effect. If an attribute does not play any role for the indi-
viduals privacy and should appear unchanged in the result, then it should be
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marked as “dontcare”. The remaining two types are those that are relevant for
the anonymization process.

Attributes marked with “k-attribute” are quasi identifiers that must be trans-
formed to a particular generalization level, such that k-anonymity for the whole
table is satisfied. For this kind of attributes, the user should also specify the
generalization limit and attribute priority. For l-attributes (sensitive attributes),
the �-diversity type and its parameter(s) should be defined.

ANON is designed to provide anonymized tables with multi-attribute
�-diversity. The �-diversity can be defined on the attribute level. Furthermore,
ANON allows to assign different �-diversity types to different attributes.

4.3 Anonymization Algorithm

The anonymization Algorithm 1 features both basic match and extended match
for computing partitions defined by the quasi identifiers. The variables used in
ANON’s Partitioning Algorithm1 and their meaning are listed in Table 6. After
a table has been partitioned, ANON checks whether each partition has at least
k tuples. If this is not the case, ANON uses generalization and suppression to
generate a more coarse grain table.

ANON’s anonymization algorithm uses best-first search algorithm to find the
optimal solution and weighted information loss described in Sect. 4.1 to evaluate
the cost of a potential solution (generalized table).

The algorithm consists of 2 main parts: table search (function Anonymize-
Table - see Algorithm 2) and privacy test (function Privacy-Test - see
Algorithm 3). Required input parameters of both functions of Algorithms 2 and 3
are listed and described in Table 7. Furthermore, other variables and values are
listed and described in Table 8, instance variables of a node in Table 9 and func-
tions in Table 10.

ANON is customizable, so the implementation offers an abstract class of
search algorithms that can easily be extended by new search algorithms. Similar
interfaces are provided for information loss calculation, as well as for �-diversity
check. Details about the implementation are given in the next section.

Table 6. Variables used in ANON’s Partitioning Algorithm 1

Variable Description

null handling Denotes if NULL values are handled or not. If null handling is
true then the partitioning algorithm will use the extended
match, otherwise the basic match

partition A partition is a set of tuples that match each other

partitionset Set of partitions

table A table with microdata

tuple A table row

matched Denotes if a tuple matches a partition
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Algorithm 1. ANON’s Partitioning Algorithm
Input: table, null handling
Output: set of partitions partitionset, where each partition contains tuples with iden-
tical values of quasi identifiers or nulls instead of a quasi identifier value. Partitions
are disjoint.

1: function Partition-Table(table, null handling)
2: partitionset ← { }
3: for each tuple in table do
4: matched ← false
5: for each partition in partitionset do
6: if tuple matches partition then
7: add tuple into partition
8: matched ← true
9: end if

10: end for
11: if matched = false then
12: if tuple does not contain null or null handling = true then
13: partition ← {tuple}
14: add partition into partitionset
15: end if
16: end if
17: end for
18: return partitionset
19: end function

Table 7. Input parameters required by the function Anonymize-Table

Parameter Description

table Original table that has to be anonymized

limits Array with generalization level limits for all quasi identifiers

prios Array with priorities for all quasi identifiers

k param k - the minimal partition size

l params Array with minimal required diversities for all sensitive attributes

max supp Number of tuples that are allowed to be suppressed

null handling Denotes if NULL values are handled or not. If null handling is
true then the partitioning algorithm will use the extended
match, otherwise the basic match

4.4 Performance Analysis

ANON’s anonymization algorithm (a best-first search instantiation) is optimal
and complete. If generalization limits are set to less than the number of general-
ization levels, it is possible that the algorithm will not find a solution (because
there is none). If no limits are set, it always finds a solution, which is in worst
case a completely generalized table.
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Table 8. Variables and values used in ANON’s Priority-Based Algorithms 2 and 3

Variable/value Description

open List of potential solutions (generalized tables)

visited List of potential solutions that have already been added to open

best Generalized table from open with the lowest information loss

levels Generalization levels of a potential solution

child Child node - a potential solution with a table generalized to the
next higher level at one quasi identifier, while the other
attributes’ levels remain the same as the levels of the parent

supp tuples Number of tuples from all partitions that violate k-anonymity
and/or �-diversity

partition Table partition - a set of records with the same quasi identifier
values

diversities Array with diversities of one partition for all sensitive attributes

nil Represents a NULL value

failure Denotes that an anonymized table, which satisfies all constraints,
could not be found

Table 9. Instance variables of a node used in ANON’s Priority-Based Algorithms 2
and 3

Variable Description

node.Parent Parent node - potential solution from which node was deduced

node.Levels Generalization levels of node.Table - represents action

node.WIL Weighted information loss - represents total path cost

node.Table Table with values generalized to node.Levels - represents state

As all optimizing generalization algorithms ANON has in the worst case
exponential time complexity caused by the state space, which grows exponen-
tially with the number of quasi identifier attributes and their limits. However,
for a given set of quasi identifiers it scales nicely for increasing sizes of the data
set. The set of experiments presented in this section were intended to analyze
whether the anonymization with customizable calculation of information loss is
feasible for large real-world datasets.

We did not compare ANON with other algorithms. The intention of the
experiments was not to show that ANON reduces information loss in general, as
other algorithms do not feature an application specific calculation of information
loss so any such comparison would be pointless. We also do not claim that ANON
is the fastest anonymization algorithm and the system could be accelerated e.g.
by applying other heuristic search procedures.

The microdata used for the experiments was the Adult Data Set from UCI
Machine Learning Repository [11] commonly used for performance experiments
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Table 10. Functions used in ANON’s Priority-Based Algorithms 2 and 3

in the microdata privacy literature. The Adult Data Set contains real data col-
lected by the U.S. census bureau in the year 1994. This data is split in a training
set and a test set. For our experiments we merged both sets together and tuples
with unknown values were removed. After data cleaning, the set contained 45,222
tuples. To provide comparable results, the same data preparation was undertaken
as described in [17,18]. From the 15 attributes in the data set, the identical nine
were chosen as in [18]. As shown in Table 11, the attributes age, gender, race,
marital status, education, native country and workclass were used as quasi
identifiers and the attributes salary class and occupation were used as sensitive
attributes. Generalization hierarchies for the used quasi identifiers were con-
structed in a semantically logical way.

There were two experiment runs, each with almost 800 anonymizations:
one with the use of priorities and information loss and one without them, to
imitate the optimal search algorithms without a cost function (e.g. MinGen).
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Algorithm 2. ANON’s Priority-based Algorithm - Part 1 (Search Algorithm)
Input: table, limits, prios, k param, l params, max supp, null handling
Output: anonymized table satisfying k-anonymity and �-diversity or failure if no
solution could be found

1: function Anonymize-Table(table, limits, prios, k param, l params, max supp)
2: open ← {Make-Node(table)}
3: visited ← { }
4: while open is not empty do
5: best ← node n in open with the lowest n.WIL value
6: if best.Table = nil then
7: best.Table ← Generalize(table, best.Levels)
8: end if
9: if Privacy-Test(best, k param, l params, max supp, null handling)

then
10: return best.Table
11: else � expand best
12: for i ← 0 to length(limits) − 1 do
13: levels ← best.Levels
14: if limits[i] > levels[i] then
15: levels[i] ← levels[i] + 1
16: child ← Child-Node(best, levels, prios)
17: if child not in visited then
18: add child into open
19: add child into visited
20: end if
21: end if
22: end for
23: best.Table ← nil
24: remove best from open
25: end if
26: end while
27: return failure
28: end function

29: function Child-Node(parent, levels, prios)
30: return a node with
31: Parent ← parent,
32: Levels ← levels,
33: WIL ← Calculate-WIL(levels, prios) � Weighted Information Loss
34: Table ← nil
35: end function

Information loss values are listed within generalization hierarchies that come
with ANON. The priority order of attributes (starting with a low priority) in the
first run was {age, native country, education, marital status, workclass, race,
sex}. In the second run (without the cost function), an implicit priority order
was derived from the attributes order in the ANON definition file, which was



k-Anonymity of Microdata with NULL Values 211

Algorithm 3. ANON’s Priority-based Algorithm - Part 2 (Privacy Test)
36: function Privacy-Test(node, k param, l params, max supp, null handling)
37: supp tuples ← 0
38: for each partition in Partition-Table(node.Table, null handling) do
39: if Count-Tuples(partition) ≥ k param then � k-anonymity satisfied
40: diversities ← Calculate-Diversities(partition)
41: for i ← 0 to length(l params) − 1 do
42: if diversities[i] < l params[i] then � �-diversity not satisfied
43: remove partition from node.Table
44: supp tuples ← supp tuples + Count-Tuples(partition)
45: break
46: end if
47: end for
48: else � k-anonymity not satisfied
49: remove partition from node.Table
50: supp tuples ← supp tuples + Count-Tuples(partition)
51: end if
52: if supp tuples > max supp then � privacy not satisfied
53: return false
54: end if
55: end for
56: return true � privacy satisfied (supp tuples ≤ max supp)
57: end function

{age, sex, race, marital status, education, native country, workclass}. Gener-
alization limits were not set (they equaled to the no. of generalization levels) to
avoid an anonymization without a solution.

The experiments were performed to estimate the “real case” complexity and
the impact of different parameters on the number of visited nodes, resulting infor-
mation loss and average partition size. These parameters are listed in Table 12.

Table 11. Adult Data Set description (adapted from [18])

Attribute Domain size Generalization type No. of gen. levels

1 Age 74 Ranges (5, 10, 20, 100) 4

2 Gender 2 Taxonomy tree 1

3 Race 5 Taxonomy tree 1

4 Marital Status 7 Taxonomy tree 2

5 Education 16 Taxonomy tree 3

6 Native Country 41 Taxonomy tree 2

7 Work Class 7 Taxonomy tree 2

8 Salary class 2 Sensitive att

9 Occupation 14 Sensitive att
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Table 12. Experiments’ parameters and their values

Parameter Chart notation Values

n QID 1, 2, 3, 4, 5, 6, 7

k k 2, 3, 5, 10, 14, 20, 100, 200, 1000

�α8 l1 1, 2

�α9 l2 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

max supp supp 0 %, 1 %, 10 %

cost function (WIL) With priorities Used (first run),

W/o priorities not used (second run)

There were over 1,500 anonymizations produced, where the parameters were set
to almost all possible value combinations.

The first two experiments deal with the time complexity. In these exper-
iments, the impact of the quasi identifiers’ increase on the number of visited
nodes and anonymization time was analyzed. Both experiments were executed
with four different anonymization settings groups: (1) k = 2 with 0 % tuple sup-
pression (black line with white markers), (2) k = 2 with 1 % suppression limit
(black line with black markers), (3) k = 10 with 0 % suppression and �α8 = 2,
�α9 = 10 (gray line with white markers) and (4) k = 10 with 1 % suppression
and �α8 = 2, �α9 = 10 (gray line with black markers). The dotted line denotes
the maximal possible number of visited nodes (Πn

i=1limits[i]) and the approx-
imated maximal required anonymization time, respectively. As approximation,
the anonymization settings with k = 14, 0 % suppression and �α8 = 2, �α9 = 14
were used. These settings were noticed to result in maximal possible values,
because only the last queued node with completely generalized table satisfies
these settings.

Time complexity of k-anonymity algorithms similar to ANON grows with the
number of quasi identifiers [5,12,17]. In contrast to that, the number of tuples
in a table does not have a big impact on time complexity. Table size is just a
constant factor multiplied by the number of nodes, which does not affect the
number of visited nodes itself and can therefore be neglected. Figure 4 confirms
for ANON that time complexity grows with the increase in quasi identifiers.

Figure 5 represents the same experiment, where, instead of number of visited
nodes, the time was measured. If we compare both figures, it is easy to see that
time depends on the number of nodes and some other factors like generalization
hierarchy height. If we observe the �-diversity lines (gray lines) in Figs. 4 and 5,
we can notice that these lines have a slightly higher slope in the chart with time
on the y-axis than in the chart with nodes on the y-axis. The explanation for
this phenomenon is hidden in diversity calculation effort. ANON does not need
to calculate the size of a partition (relevant for k-anonymity checking) explicitly,
because it is managed together with a partition. The diversity (relevant for
�-diversity checking), in opposition to partition size, has to be calculated extra
for each partition, if the partition is k-anonymous.
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Fig. 4. Search algorithm complexity (number of nodes)

Fig. 5. Search algorithm complexity (time)

The charts Figs. 4 and 5 show the highly significant impact of tuple sup-
pression. Both black lines have the same settings, except the maximal suppres-
sion limit (white markers 0 %, black markers 1 %). However, the difference in
the results is huge. It took 1,075 nodes to anonymize 7 quasi identifiers to a
2-anonymous table with no suppression (black line with white markers) and
with just 1 % suppression (max. 453 tuples may be eliminated), it took only
60 nodes to find the optimal solution. More experiment results and analysis of
different parameters’ impact can be found in [3].
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5 NULL value experiments

In this section we report experiments which analyze the differences in informa-
tion loss between the different treatments of NULL values: basic and extended
match. In Tables 1, 2, 3, 4 and 5 we showed in a tiny example the differences
resulting from applying different match definitions. Here we analyze the differ-
ences between anonymization with basic match and with extended match in more
detail and more exhaustive. Since in case of basic match whole rows have to be
removed (suppressed) from the table if they contain a NULL value, we expect
an improvement in the information content of the results through the applica-
tion of extended match. Our hypothesis, therefore, was that anonymization with
extended match has less information loss than anonymization with basic match.

To test the hypothesis we conducted a series of 3168 experiments using the
anonymization tool ANON applied to datasets derived from the Adult Database
from the UCI Machine Learning Repository, with varying parameter settings
and varying ratios of NULL values. We included 8 quasi identifiers in the follow-
ing order: age, sex, race, marital status, workclass, education, native country,
occupation. According to this order, tables with n < 8 quasi identifiers contain
the first n quasi identifiers. Generalized values were provided with help of tax-
onomy trees for all quasi identifiers except the age, where we used ranges with
steps {5, 10, 20, 100}.

The Adult Database itself contains several NULL values in the attributes
workclass, occupation and native country. To assure that every table has the
right target amount of randomly placed NULL values used in the experiments
(and not more than that), we first eliminated the rows with NULL values from
the original table to obtain a common base for all test tables. From this base
table with 45222 records we created 88 test tables with NULL values as a result
of combination of the number of quasi identifiers (1 to 8) and the percentage of
randomly inserted NULL values (0.1 %, 0.5 %, 1 %, 2.5 %, 5 %, 7.5 %, 10 %, 15 %,
20 %, 25 %, 30 %). We used random number generation in Java for determination
of cells in the table where NULL values were inserted.

For the anonymization runs of the 88 tables we used following parameters:

– k-parameter: 2, 3, 4, 5, 10, 15, 20, 50, 100
– max. allowed suppression: 0 %, 1 %
– matching: basic match, extended match.

The max. allowed suppression specifies the quota for suppressing rows (to
avoid adverse effects of outliers). For basic match this is in addition to the rows
with NULL values, which are removed in a preprocessing step.

Information loss in the anonymization algorithm is caused by row suppression
(fraction of rows being suppressed) and by generalization (generalization level of
the attributes). For the following experiments the information loss was calculated
with the following formula:

IL =
s

n
+

m∑

i=1

glαi

htαi

× 1
m

× n − s

n
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n Number of rows
s Number of removed rows
m Number of quasi identifier attributes
glαi

Generalization level of the attribute αi in the generalized table
htαi

Height of the generalization hierarchy of the attribute αi

(Number of total generalization levels of αi).

Information loss due to row suppression is represented in the first summand
as the fraction of removed tuples. The information loss caused by generalization
is calculated as the weighted sum of information losses of all attributes multiplied
with the fraction of non-removed tuples. The information loss of an attribute is
defined as fraction of the generalization level of this attribute by the number of
levels, where the most general level (which carries no information at all)is h and
the level in the original table is 0. So if an attribute is generalized to the level 3
of a 5 level hierarchy we define the information loss a 3/5. Note that the values
of an attribute in all tuples are generalized to the same level as we apply the
global recording strategy. Therefore we can calculate the information loss at the
attribute level.

We show first representative comparisons of the information loss between
basic match and extended match without and with row suppression. In the fig-
ures results of extended match is shown in light gray bar and those of basic match
in black bars. Each bar represents the information loss of one anonymization run.

Figures 6 and 7 show anonymizations without row suppression (max. supp. =
0 %). Anonymizations with extended match (light gray bars) tend to have con-
stant information loss, whereas the information loss of anonymizations with basic
match (black bars) has a growing trend with increasing percentage of NULL
values. This behavior can be explained with 2 influence factors: (1) number of

Fig. 6. Impact of the percentage of NULL values on the information loss (7 quasi
identifiers, k-parameter = 5, 0 % max. row suppression).
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Fig. 7. Impact of the percentage of NULL values on the information loss (7 quasi
identifiers, k-parameter = 50, 0 % max. row suppression).

Fig. 8. Impact of the percentage of NULL values on the information loss (7 quasi
identifiers, k-parameter = 5, 1 % max. tuple suppression).

removed rows (in case of basic match) and (2) outlier rows and the corresponding
high generalization. If the percentage of NULL values is low, the rows with NULL
values are outlier rows, causing information loss to grow if extended match is
used. If basic match is used instead, those “NULL-outliers” are simply removed
and thus do not cause massive generalizations. On the other end, where the ratio
of NULL values is high, rows with NULL values are not outliers anymore. There-
fore, they do not increase the information loss if extended match is used. For
basic match, however, information loss is proportional to the ratio of rows with
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Fig. 9. Impact of the percentage of NULL values on the information loss (7 quasi
identifiers, k-parameter = 50, 1 % max. tuple suppression).

NULL values leading to an increase in information loss with increasing ratios of
NULL values.

Figures 8 and 9 show anonymizations with the same setup as those in Figs. 6
and 7, but with row suppression of up to 1 %. Here extended match is no longer
so sensible on NULL outliers and results in an almost constant information loss
over increasing ratio of NULL values (light gray bars), while information loss
grows drastically for basic match (black bars). That for low ratios of NULL
values (below 1 %) basic match is slightly better than extended match might be
due that for basic match more rows are removed (number of rows with NULL
plus 1 % of the rows without NULL).

Figure 10 shows the aggregated results of all 3168 anonymizations in our
experiment. Each bar represents the average difference in information loss of
anonymizations with basic match and anonymizations with extended match,
calculated over all 8 quasi identifiers and all 9 different k-parameters. The light
gray bars represent the setups without row suppression (max. supp. = 0 %) and
the dark gray bars the setups with 1 % max. suppression.

To summarize the results: The experiments showed that the best method
in general was extended match with 1 % row suppression. For very low ratios
of NULL values basic match was slightly better. Extended match without row
suppression performs worse for low ratios of NULL values, because it suffers from
the generalizations caused by NULL outliers. Basic match was only favorable
for very low numbers of NULL values and the quality of the results deteriorates
with increasing ratios of NULL values, caused by the removal of all rows with
NULL values. Furthermore, the information loss for extended match with row
suppression did not seem to be influenced by the number of NULL values in the
data set, as shown by the almost constant information loss over varying ratios
of NULL values.
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Fig. 10. Average advantage in %-points of information loss of the extended match
over the basic match, depending on the percentage of NULL values in a table. In the
positive y-area the extended match outperforms the basic match.

6 Conclusions

NULL values (missing values, not applicable attributes) appear frequently in
microdata. Surprisingly, current anonymization algorithms require that all rows
containing NULL values are removed from a table before it can be anonymized.
We analyzed the effects of including NULL values in the definition of
k-anonymity in detail and showed that the extended match where NULL val-
ues match (only) with other NULL values is a correct approach for extending
k-anonymity to cover missing values. We introduced two new attacks that show
that a further relaxation of the match operator which interprets NULL values
as wildcards in the sense of Codd’s maybe select leads to tables which can be
attacked successfully. The extension of k-anonymity to tables with NULL values
reduces the information loss induced by the removal of rows with NULL values by
current anonymization algorithms and avoids the introduction of biases. Experi-
ments showed that extended match reduces information loss for a generalization
algorithm with row suppression considerably. The definition of k-anonymity we
propose here can be used easily as basis for extending other anonymization algo-
rithms to also cover tables with NULL values in an adequate and save way.
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