
Big Sequence Management: A glimpse
of the Past, the Present, and the Future

Themis Palpanas(B)

Paris Descartes University, Paris, France
themis@mi.parisdescartes.fr

Abstract. There is an increasingly pressing need, by several applica-
tions in diverse domains, for developing techniques able to index and
mine very large collections of sequences, or data series. Examples of such
applications come from biology, astronomy, entomology, the web, and
other domains. It is not unusual for these applications to involve num-
bers of data series in the order of hundreds of millions to billions, which
are often times not analyzed in their full detail due to their sheer size. In
this work, we describe recent efforts in designing techniques for indexing
and mining truly massive collections of data series that will enable sci-
entists to easily analyze their data. We show that the main bottleneck in
mining such massive datasets is the time taken to build the index, and we
thus introduce solutions to this problem. Furthermore, we discuss novel
techniques that adaptively create data series indexes, allowing users to
correctly answer queries before the indexing task is finished. We also
show how our methods allow mining on datasets that would otherwise
be completely untenable, including the first published experiments using
one billion data series. Finally, we present our vision for the future in big
sequence management research.

Keywords: Data management · Data indexing · Data analytics · Data
series

1 Introduction

[Motivation.] Data series have gathered the attention of the data management
community for almost two decades [12,35,49]. Data series are one of the most
common types of data, and are present in virtually every scientific and social
domain: they appear as audio sequences [26], shape and image data [54], finan-
cial [47], environmental monitoring [42] and scientific data [22], and they have
many diverse applications, such as in health care, astronomy, biology, economics,
and others.

Recent advances in sensing, networking, data processing and storage tech-
nologies have significantly eased the process of generating and collecting tremen-
dous amounts of data series at extremely high rates and volumes. It is not
unusual for applications to involve numbers of sequences in the order of hun-
dreds of millions to billions [1,2].
c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 63–80, 2016.
DOI: 10.1007/978-3-662-49192-8 6

64 T. Palpanas

[Data Series.] A data series, or data sequence, is an ordered sequence of data
points1. Formally, a data series T = (p1, ...pn) is defined as a sequence of points
pi = (vi, ti), where each point is associated with a value vi and a time ti in
which this recording was made, and n is the size (or length) of the series. If the
dimension that imposes the ordering of the sequence is time then we talk about
time series, though, a series can also be defined over other measures (e.g., angle
in radial profiles in astronomy, mass in mass spectroscopy, position in genome
sequences, etc.).

A key observation is that analysts need to process and analyze a sequence (or
subsequence) of values as a single object, rather than the individual points inde-
pendently, which is what makes the management and analysis of data sequences
a hard problem. Note that even though a sequence can be regarded as a point in
n-dimensional space, traditional multi-dimensional approaches fail in this case,
mainly due to the combination of the following two reasons: (a) the dimen-
sionality is typically very high, i.e., in the order of several hundreds to several
thousands, and (b) dimensions are strictly ordered (imposed by the sequence
itself) and neighboring values are correlated.

[Need for Data Series Indexing.] In this context, nearest neighbor queries
are of paramount importance, since they form the basis of virtually every data
mining, or other complex analysis task involving data series. However, nearest
neighbor queries across a large collection of data series are challenging, because
data series collections grow very large in practice, with datasets including bil-
lions, or even trillions of data series [13,40]. Thus, methods for answering nearest
neighbor queries rely on two main techniques: data summarization and indexing.
Data series summarization is used to reduce the dimensionality of the data series
[3,15,27,28,32,34,39], and then indexes are built on top of these summarizations
[5,39,46,49,52].

Nevertheless, as the data series collections grow in size, the operation
of indexing these collections can itself become the bottleneck in the entire
process. As an answer to this problem, we have developed the iSAX2.0 [12]
and iSAX2+ [13], the first data series indexes that inherently support bulk load-
ing, and thus aim to minimize the index building time. Bulk loading refers to
mechanisms that allow us to insert at once a large quantity of data in an index,
and as a result lead to fast index-building times. Furthermore, we describe the
ADS+ index [57,58], which is the first data series index than can start answer-
ing queries correctly before the entire index has been built. This goal is achieved
by building very fast the main-memory part of the index (i.e., only the inner
nodes), and deferring the materialization of the (expensive) leaf nodes to query
time. This novel approach considerably shrinks the data-to-query gap, allowing
users to start answering queries much faster than any previous approach, and
enabling truly exploratory analysis on very large data series collections.

1 For the rest of this paper, we are going to use the terms data series and sequence
interchangeably.

Big Sequence Management 65

[Need for Data Series Management Systems.] There are important reasons
why data Series (or Sequence) Management Systems (SMSs) are on the cusp of
becoming a focal point for research activity in data management. The solutions
that are currently available require custom code and the development of ad hoc
systems for various tasks, requiring huge investments in time and effort, and
duplication of effort across different teams. Even existing approaches based on
DBMSs [7], Column Stores [50], or Array Databases [51]) do not provide a viable
solution, since they have not been designed for managing and processing sequence
data. Therefore, they do not offer a suitable declarative query language, storage
model, auxiliary data structures (such as indexes), and optimization mechanism
that can support a variety of sequence query workloads in an efficient manner.

We argue that a SMS is necessary in order to enable big sequence analytics,
since it will offer the abstractions, tools, and automations needed for achieving
this goal. Just like databases abstracted the relational data management problem
and offered a black box solution that is now omnipresent, the proposed system
will make it feasible for analysts that are not experts in data series management,
as well as common users, to tap in the goldmine of the massive and ever-growing
data series collections they (already) have.

[Contributions.] The contributions of this work can be summarized as follows.

– We briefly review the work relevant to data series summarization, and data
series indexing. We present in more detail the iSAX summarization method,
and discuss how it can be used to construct a data series index. Furthermore,
we give an overview of the first data series indexes that support bulk loading,
namely, iSAX2.0 and iSAX2+, which lead to index-building times consider-
ably faster than previous approaches, allowing us to index datasets with 1
billion data series.

– We describe the first adaptive data series index, ADS+, which reduces by
an additional order of magnitude the time needed by the index before it
is ready to start answering queries. The ADS+ index starts by a minimal
tree structure based on summarizations of the data series. Then, the index
structure is continuously enriched as more queries arrive: each query that is
not covered by the current contents of the index, triggers additional data
to be brought inside the index, thus adaptively and automatically expanding
subtrees in the hot branches of the index. This enables ADS+ to answer several
hundreds of thousands of queries by the time that state-of-the-art techniques
are still in the index creation phase.

– We argue for the need to develop a general-purpose sequence management
system, and discuss the features of such a system: (a) it should be able to
cope with big data sequences, that is, massive collections of sequences, which
can be heterogeneous (i.e., originate from disparate domains and thus exhibit
very different characteristics), and which can have uncertainty in their values
(e.g., due to inherent errors in the measurements); (b) it should efficiently
support a wide range of sequence queries and mining operations at a scalable
fashion, while exploiting the benefits of physical and logical independence; and

66 T. Palpanas

(c) it should support cost-based optimization, which will enable the system
to automatically pick the right storage and execution strategies for answering
different queries.

Paper Organization. The rest of this paper2 is organized as follows. We struc-
ture our discussion in three main sections: we briefly review the main research
directions and results in the literature in Sect. 2; we describe the current state
of the art in data series indexing in Sect. 3; and we present our vision for the
future in Sect. 4. Finally, we conclude in Sect. 5.

Note that the focus of this paper is on the data management problems rele-
vant to massive sequence collections, and not on data mining and analysis, which
we do not discuss here. Nevertheless, we argue that in most cases, the correct
data management techniques can lead to significant time efficiency benefits for
the mining and analysis algorithms.

2 The Past: Summarizations and Indexes

2.1 On Data Series Queries

There are various types of data sequence queries that analysts need to per-
form: (a) simple Selection-Projection-Transformation (SPT) queries, and (b)
more complex Data-Mining (DM) queries. Simple SPT queries are those that
select sequences and project points based on thresholds, point positions, or spe-
cific sequence properties (e.g., above, first 10 points, peaks), or queries that
transform sequences using mathematical formulas (e.g., average). An example
SPT query could be one that returns the first x points of all the sequences that
have at least y points above a threshold. The majority of these queries could
be handled (albeit not optimally) by current database management systems,
which nevertheless, lack a domain specific query language that would support
and facilitate such processing.

DM queries on the other hand are more complex by nature: the processing
has to take into consideration the entire sequence, and treat as a single object,
therefore being much more complex to process. Examples under this category
are: queries by content (range and similarity queries, nearest neighbors), clus-
tering, classification, outlier patterns, frequent sub-sequences, and others. These
queries cannot be supported by current data management systems, since they
require specialized data structures, algorithms and storage methods in order to
be performed efficiently.

Note that the data series datasets and queries may refer to either static, or
streaming data. In the case of streaming data series, we are interested in the sub-
sequences defined by a sliding window. The same is also true for static data series
of very large size (e.g., an electroencephalogram, or a genome sequence), which we

2 A more detailed analysis of the topics discussed in this paper can be found in our
previous studies [12,13,17,18,29,36–38,57–59].

Big Sequence Management 67

divide into sub-sequences using a sliding (or shifting window). The length of these
sub-sequences is chosen so that it can contain the patterns of interest.

One of the most basic data mining tasks is that of finding similar data series
in a database [3]. The query comes in the form of a data series X and it says
“find me the data series in the database which is most similar to X”. Similarity
search is an integral part of most data mining procedures, such as clustering [53],
classification and deviation detection [11,16].

2.2 On Data Series Summarizations

A common approach for answering such queries is to perform a dimensionality
reduction, or summarization technique. Several such summarizations have been
proposed, such as the Discrete Fourier Transform (DFT) [3], the Discrete Wavelet
Transform (DWT) [15], the Piecewise Aggregate Approximation (PAA) [28,56],
the Adaptive Piecewise Constant Approximation (APCA) [14], or the Symbolic
Aggregate approXimation (SAX) [34].

Note that recent studies suggest that on average, there is little to differentiate
between these summarizations in terms of fidelity of approximation [19,37] (even
though it is the case that certain representations favor particular data types, e.g.,
DFT for star-light-curves, APCA for bursty data, etc.).

These summarizations are usually accompanied by distance bounding func-
tions that relate distances in the summarized space to distances in the original
space through either lower or upper-bounding. With such bounding functions,
we can index data series directly in the summarized space [5,39,46,49,52], and
use these indexes to efficiently answer nearest neighbor queries on large data
series collections.

2.3 On Data Series Indexing

Even though recent studies have shown that in certain cases sequential scans
can be performed very efficiently [40], such techniques are only applicable when
the database consists of a single, long data series, and queries are looking for
potential matches in small subsequences of this long data series. Such approaches,
however, do not bring benefit to the general case of querying a mixed database of
several data series. Therefore, indexing is required in order to efficiently support
data exploration tasks, which involve ad-hoc queries, i.e., the query workload is
not known in advance.

A large set of indexing methods have been proposed for the different
data series summarization methods, including traditional multidimensional
[9,21,29,39] and specialized [5,46,49,52] indexes. Moreover, various distance
measures have been presented that work on top of such indexes, e.g., Discrete
Time Warping (DTW) and Euclidean Distance (ED).

Indexing can significantly reduce the time to answer DM queries. Neverthe-
less, recent studies have observed that the mere process of building the index
can be prohibitively expensive in terms of time cost [12,13,57]: e.g., the process

68 T. Palpanas

of creating the index for 1 billion data series takes several days to complete.
This problem can be mitigated by the bulk loading technique. Bulk-loading has
been studied in the context of traditional database indexes, such as B-trees and
R-trees, and other multi-dimensional index structures [4,20,23,24,30,43].

In the following section, we give an overview of iSAX 2.0 [12] and
iSAX2+ [13], two data series indexes that implement a bulk loading strategy.

2.4 On the iSAX Summarization and Family of Indexes

The Piecewise Aggregate Approximation (PAA) [28,56] is a summarization tech-
nique that segments the data series in equal parts and calculates the average
value for each segment. An example of a PAA representation can be seen in
Fig. 1; in this case the original data series is divided into 4 equal parts. Based on
PAA, Lin et al. [34] introduced the Symbolic Aggregate approXimation (SAX)
representation that partitions the value space in segments of sizes that follow
the normal distribution. Each PAA value can then be represented by a character
(i.e., a small number of bits) that corresponds to the segment that it falls into.
This leads to a representation with a very small memory footprint, an important
requirement for managing very large data series collections. A segmentation of
size 3 can be seen in Fig. 1, where the data series is represented with the SAX
word “10 10 11”.

11 0 0

1 0 0

PAA points R3

Intermediate node

Leaf node

d1

00 01

01

00

11

10

0 1

0

1

0
1

d2

d3

ROOT

10 0 0

0 0 0

11 00 0

11 01 0

00

01

10

11
11

N
(0

, 1
)10 10

1 1 1

Fig. 1. An example of iSAX and SAX representations [57]

The SAX representation was later extended to indexable SAX (iSAX) [49],
which allows variable cardinality for each character of a SAX representation. An
iSAX representation is composed of a set of characters that form a word, and
each word represents a data series. In the case of a binary alphabet, with a word
size of 3 characters and a maximum cardinality of 2 bits, we could have a set of
data series (two in the following example) represented with the following words:
002102012, 002112012, where each character has a full cardinality of 2 bits and

Big Sequence Management 69

each word corresponds to one data series. Reducing the cardinality of the second
character in each word, we get for both words the same iSAX representation:
00211012 (11 corresponds to both 10 and 11, since the last bit is trailed when the
cardinality is reduced). By starting with a cardinality of 1 for each character in
the root node and by gradually performing splits by increasing the cardinality
by one character at a time, one can build a tree index [48,49]. Such cardinality
reductions can be efficiently calculated with bit mask operations.

The iSAX 2.0 and iSAX2+ Indexes. Inserting a large collection of time
series into the index iteratively is a very expensive operation, involving a high
number of disk I/O operations [12,13]. This is because for each time series,
we have to store the raw data series on disk, and insert into the index the
corresponding iSAX representation. In order to speedup the process of building
the index, we developed iSAX 2.0 [12] and iSAX2+ [13], the first data series
indexes with a bulk loading strategy.

The key idea is to effectively group the data series that will end up in a
particular subtree of the index, and process them all together. In order to achieve
this goal, we use two main memory buffer layers, namely, the First Buffer Layer
(FBL), and the Leaf Buffer Layer (LBL) [13]. The FBL corresponds to the
children of the root of the index, while the LBL corresponds to the leaf nodes.
The role of the buffers in FBL is to cluster together data series that will end
up in the same subtree of the index, rooted in one of the direct children of the
root. In contrast, the buffers in LBL are used to gather all the data series of leaf
nodes, and flush them to disk.

The algorithm operates in two phases, which alternate until the entire dataset
is processed, as follows (for more details, refer to [13]). During Phase 1, the
algorithm reads data series and inserts them in the corresponding buffer in the
FBL. This phase continues until the main memory is full. Then Phase 2 starts,
where the algorithm proceeds by moving the data series contained in each FBL
buffer to the appropriate LBL buffers. During this phase, the algorithm processes
the buffers in FBL sequentially. For each FBL buffer, the algorithm creates all the
necessary internal and leaf nodes, in order to index these data series. When all
data series of a specific FBL buffer have been moved down to the corresponding
LBL buffers, the algorithm flushes these LBL buffers to disk.

The difference between iSAX 2.0 [12] and iSAX2+ [13] is that the former
treats the data series raw values (i.e., the detailed sequence of all the values
of the data series) and their summarizations (i.e., the iSAX representations)
together, while the latter uses just the summarizations in order to build the
index, and only processes the raw values in order to insert them to the correct
leaf node. In both cases, the goal is to minimize the random disk accesses, by
making sure that the data series that end up in the same leaf node of the index
are (temporarily) stored in the same (or contiguous) disk pages. Indeed, the
experiments demonstrate that iSAX 2.0 and iSAX2+ significantly outperform
previous approaches, reducing the time required to index 1 billion data series by
72 % and 82 %, respectively.

70 T. Palpanas

3 The Present: Adaptive Indexing

The target of indexing techniques is to make query processing efficient, so that
analysts can repeatedly fire several exploratory queries with quick response
times. However, even with a data series index that implements bulk loading,
the amount of time required to build the index can be a significant bottleneck:
for example, it takes more than a full day to build a state-of-the-art index over a
data set of 1 billion data series in a modern server machine [57]. The main cost
components of indexing are: (a) reading the data to be indexed, (b) spilling the
indexed data and structures to disk, and (c) incurring the computation costs of
figuring out where each new data entry belongs to (in the index structure). As
the data size grows, the total indexing cost increases dramatically, to a degree
where it creates a big and disruptive gap between the time when the data is
available and the time when one can actually have access to the data. In fact, as
the data grows, the query processing cost increasingly becomes a smaller fraction
of the total cost (indexing + querying) [57].

As data sizes grow even bigger, waiting for several days before posing the first
queries can be a major show-stopper for many applications both in businesses
and in sciences. In addition, firing exploratory queries, i.e., queries which are not
known a priori, is becoming quickly a common scenario. That is, in many cases,
analysts and scientists need to explore the data before they can figure out what
the next query is, or even which experiment to perform next; the output of one
query inspires the formulation of the next query, and drives the experimental
process.

In this section, we describe the ADS+ index, which enable fast indexing and
a low data to query gap, when dealing with very large collections of data series.

3.1 The ADS+ Index

Even though iSAX 2.0 and iSAX2+ can effectively cope with very large data
series collections, users still have to wait for extended periods of time before
being able to start answering queries. We would instead like to allow users to
answer queries much sooner.

The ADS+ index [57] answers this problem by performing only a few basic
steps, mainly creating the basic skeleton of the index tree, which contains con-
densed information on the input data series. As queries arrive, ADS+ fetches
data series from the raw data and moves only those data series needed to cor-
rectly answer the queries inside the index. Future queries may be completely
covered by the contents of the index, or alternatively ADS+ adaptively and
incrementally fetches any missing data series directly from the raw data set.
When the workload stabilizes, ADS+ can quickly serve fully contained queries
while as the workload shifts, ADS+ may temporarily need to perform some extra
work to adapt before stabilizing again. In addition, ADS+ does not require a
fixed leaf size; it dynamically and adaptively adjusts the leaf size in hot areas of
the index; all leaves start with a reasonably big size to guarantee fast indexing

Big Sequence Management 71

times, but the more a given area is queried, the more the respective leaves are
split into smaller ones to enhance query times.

ProposedAlgorithm. The main intuition (for more details, refer to [57]) is that
one can quickly build the index tree using a large leaf size, saving time from very
expensive split operations, and rely on queries that are then going to force splits in
order to reduce the leaf sizes in the hot areas of the index. ADS+ uses two differ-
ent leaf sizes: a big build-time leaf size for optimal index construction, and a small
query-time leaf size for optimal access costs. This allows us to make future queries
benefit from every split operation performed, finding the relevant data by travers-
ing the tree, and not by scanning larger leaves. Initially, the index tree is built as
in plain ADS, with a constant leaf size, equal to build-time leaf size. In traditional
indexes, this leaf size remains the same across the life-time of the index. In our
case, when a query that needs to search a partial leaf arrives, ADS+ refines its
index structure on-the-fly by recursively splitting the target leaf, until the target
sub-leaf becomes smaller or equal to the query-time leaf size.

Adaptive and on demand leaf splitting allow ADS+ to have both fast index
building and fast query processing. It does not waste time on creating fine-
grained versions of each sub-tree of the index, but rather concentrates on the
parts that are related to the current workload. When queries focus to a subset of
the dataset, ADS+ does not need to exhaustively index and optimize all data;
it rather concentrates on the most related sub-trees of the index.

Another optimization that gives ADS+ a lightweight behavior is that it delays
leaf materialization even further. In particular, when traversing the tree for query
processing, which leads to adaptive leaf splitting, ADS+ does not materialize the
initial big leaf, nor all the leaves it creates on its way to the target small leaf.
For example, when ADS+ needs to split a big leaf X and this results in X being
split recursively into n new nodes until we reach the target leaf Z with a small
leaf size, ADS+ fully materializes only the leaf Z. For the rest of the leaves,
ADS+ uses the partial information contained in the leaves to perform the splits,
i.e., the iSAX representations. This results in (a) less computation as opposed to
having to split based on raw data, (b) less I/O as SAX representations are much
smaller, and (c) it enhances the adaptive behavior of ADS+ as it materializes
only the truly interesting data that the queries are targeting.

An example of this process is shown in Fig. 2. Figure 2(a) depicts the state
of ADS+ after initialization and before any query has arrived, while Fig. 2(b)
shows how a single query results in adaptive splits of the right sub-tree until the
target leaf node is fully materialized; intermediate nodes remain in partial mode
and with a variable leaf size.

Experimental Results. For the purposes of the experimental evaluation, we
implemented from scratch an optimized version of iSAX 2.0 in C and compiled
with GCC 4.6.3 under Ubuntu Linux 12.04.2. We used an Intel Xeon machine
with 64 GB of RAM and 4x 2 TB, SATA, 7.2K RPM Hard Drives in RAID0. All
algorithms are set such as they make maximum use of all available memory.

72 T. Palpanas

Fig. 2. The ADS+ index [57]

Fig. 3. Performance comparison between ADS+ and other indexes [57]

We study the behavior up to 1 billion data series and with 105 random
queries. Regarding leaf sizes, we use the optimal leaf size observed for each index
strategy, i.e., 20K for iSAX 2.0, and for ADS+ 2K build-time and 10 query-time
leaf size. Figure 3(a) shows the total time needed to build the index and answer
all queries. Across all data sizes, ADS+ consistently outperforms iSAX 2.0 by a
big margin. For 1 billion data series, ADS+ answers all 105 queries in less than
5 h, while iSAX 2.0 needs more than 35 h. By adaptively expanding the tree and
adjusting leaf sizes only for the hot workload parts, ADS+ enjoys a 7x gain over
full indexing in iSAX 2.0. Also, the rate at which the cost of ADS+ grows is
significantly smaller than that of iSAX 2.0; For example, going from 500 M to
1 B data series, iSAX 2.0 needs more than twice the time, while ADS+ enjoys a
sub-linear cost increase.

Big Sequence Management 73

One interesting question is how indexes which are tailored for data series
search compare against state-of-the-art spatial indexes. In this experiment, we
compare ADS+ and iSAX 2.0 against KD-Tree [8], R-Tree [21], and X-Tree [9],
which is a state-of-the-art adaptive version of R-Tree. Here, we use a set of 100
million data series. Figure 3(b) depicts the time needed to complete the index
building phase for each index. Overall, both data series tailored indexes, iSAX
2.0 and ADS+, significantly outperform the more generic spatial indexes. For
example, iSAX 2.0 is one order of magnitude faster than R-Tree while ADS+ is
two orders of magnitude faster, and more than an order of magnitude faster than
KD-Tree. The raw benefit comes from the fact iSAX 2.0 and ADS+ are tailored
to perform efficient comparisons of SAX representations (with bitwise opera-
tions). ADS+ being adaptive enjoys further benefits as we discuss in previous
experiments as well. X-Tree is significantly slower as a result of its more expen-
sive index building phase which focuses on minimizing overlap between nodes.
Naturally, this helps query processing times as less overlap allows queries to
focus faster on data of interest. However, as we scale to big data, index building
is the main bottleneck and thus X-Tree is prohibitively expensive.

4 The Future: Sequence Management System

Even though analysts in a variety of domains need to manage and process
increasingly large data series collections, there is currently no general-purpose
solution for the efficient management of sequence datasets. The techniques and
tools that are available are rather fragmented, each one addressing only specific
and narrow needs.

As a result, the few expert analysts need to invest heavily in the development
of customized tools for processing their datasets in order to identify patterns,
gain insights, detect abnormalities, and extract useful knowledge, while the many
analysts that are not experts are simply not able to process their data. Consider
for instance, that for several of their analysis tasks, neuroscientists are currently
reducing each of their 3,000 point long sequences to a single number (the global
average) in order to be able to analyze their huge datasets [1].

We note that current relational DBMSs [7], Column Stores [50], and Array
Databases [51] could eventually be used to store and process sequences. Never-
theless, they cannot efficiently support complex data mining queries, (that is,
queries that treat the entire sequence as a single object, such as sequence simi-
larity queries, clustering, classification, etc.), which require fast distance compu-
tations among the sequences in the collection, since they do not natively support
any mechanisms for pruning the search space.

Consequently, these systems cannot offer optimization functionality for the
execution of DM queries, which is a key requirement for efficient processing and
analysis of very large sequence collections. Therefore, in this section we argue for
the need to design and develop a general-purpose Sequence Management System
(SMS).

A key element of a SMS is the design of a cost-based optimizer for the
execution of sequence queries, with a special focus on complex data mining

74 T. Palpanas

Fig. 4. The architecture of a data series management system

queries. There is currently no optimizer available for sequence queries, even
though it is a necessary component for efficient and scalable processing and
analytics. As we discuss next, traditional approaches fail in our setting, and
therefore, major breakthroughs are needed in this direction.

The optimizer should depend on and be closely related to the storage
and indexing solutions for sequences, two research areas that should also be
addressed. The design of the data model should accommodate various sequence
summarization techniques, including novel techniques for uncertain sequences,
and innovative access methods (i.e., storage and indexing) that will be able to
adapt to the user needs (i.e., the query workload). Moreover, particular attention
should be paid to optimizations specific to data sequence techniques relevant to
modern hardware and distributed environments.

In Fig. 4, we illustrate the general architecture of a SMS. We elaborate on
the individual components of the system in the following sections. We discuss
optimization last, since it touches on the rest of the components, and also include
a discussion on the need for a data sequence benchmark.

4.1 Data Model

As we mentioned earlier, neither the relational model nor the array model can
adequately capture the characteristics of sequences. In the case of relational
data, there are various options available for translating sequences into relations
and each one of them has significant limitations. On the other hand, in Array
Databases we lack the expressive power to define collections of sequences, and
are restricted to defining large multi-dimensional matrices that encode both
sequence and meta-data on an equal basis, which hinders efficiency.

An ideal sequence model should instead be able to effectively describe collec-
tions of sequences and allow us to do operations on them. It should allow us for
example to select sequences based on meta-data or based on their values, project
them as complete sequences, or sub-sequences, and join them in a variety of ways
for computing calculations. At the same time such a model should intuitively

Big Sequence Management 75

allow for both intra-sequence and inter-sequence aggregations, and be compati-
ble with different sequence summarization methods. Finally, the corresponding
query language could be based on previous works [31,44], suitably extended to
deal with data series as single objects, as well as with DM queries.

4.2 Data Structures

A large collection of access methods has been proposed in the literature, able to
evaluate different queries under various settings, including both indexes and
scan-based methods. Recent work in this area is encouraging [13,57], with
iSAX2+ demonstrating scalability to dataset sizes 2–3 orders of magnitude more
than the current state of the art, and ADS+ exhibiting a further 7-fold improve-
ment in the time to prepare an index on 1 billion data series and answer 100,000
approximate queries.

Other promising directions should also be explored, such as methods that rely
on fast scans of the data [27,40]. These directions can provide viable alternatives
to the indexes discussed above, and in several situations can be the access method
of choice. This is especially true given the data management trend on large-scale
parallelization, the usage of compression, multi-cores, SIMD architectures and
the exploitation of available GPUs [41].

We also propose to extend these techniques along two orthogonal dimen-
sions: supporting queries of varying length, and uncertain sequences. We note
that existing techniques only consider collections of data series with the same
length, leading to indexes that can answer queries of a fixed (predefined) length.
As a result, new access methods that also consider varying length queries have
to be developed. Contrary to previous approaches [25], we argue that the infor-
mation already captured by certain data sequence indexes can be exploited, and
is possible to develop new varying-length query answering techniques on top of
this.

In several cases, data sequences can be uncertain, that is, the raw data have
an inherent uncertainty in their values (e.g., because of errors introduced by
the measurement devices), and integrate the solutions to the proposed system.
There exist promising studies on modeling and analyzing uncertain sequences
[6,45,55], but more work is needed in order to improve the quality and time per-
formance [17]. A promising direction in this respect is the modeling of uncertain
sequences with possible world semantics based on full-joint distributions, which
can retain the correlation information among neighboring points [18]. Neverthe-
less, there are still important scalability issues to be overcome in order for such
techniques to be used with large sequence collections.

4.3 Distributed Processing

During the last years there has been a lot of research on MapReduce systems,
where various methods have been proposed to support the indexing of large mul-
tidimensional data [33], where an index is distributed among several compute

76 T. Palpanas

nodes. Nevertheless, up to this point work on sequential data query process-
ing using MapReduce has mainly concentrated on efficiently performing parallel
scans of the complete dataset, while all indexing-related studies only consider
read-only operations. Even though various approaches have been proposed for
speeding up iterative algorithms, none of the proposed models is a suitable match
for the algorithms and techniques we need, where timely communications among
workers play a crucial role in reducing the amount of total work done. Therefore,
there is need for more work in this area, taking into consideration new paradigms
as well [10].

4.4 Cost Based Optimization

As we discussed above, there can be multiple different execution strategies for
answering the same query, including the various choices of serial scans, indexes,
and processing methods (e.g., parallelization, GPU, etc.). The challenge in choos-
ing the right execution strategy is to estimate the amount of data that such a
query will need to access before executing it. For example, a fast parallel SIMD-
enabled scan on compressed data might be a better option than the use of a
non-optimized index when SIMD instructions are available, but not a better
choice when such instructions are not available. All these characteristics have to
be exploited by the cost-based optimization models, and considered in a way that
is transparent to the user. This problem becomes even more challenging when
complex queries involving several operators need to be executed (e.g., consider
an analysis task that combines a series of SPT operators as a pre-processing
step, and then applies a DM operator).

While in traditional relational databases there are simple and efficient ways in
order to estimate query selectivity [7], this is not the case for sequence similarity
queries that lie in the heart of most sequence mining algorithms. The challenges
in this context arise from the combination of the very high dimensional and
sequential nature (i.e., the inherent correlations among neighboring values) of
these data.

Up to this point, no efficient methods have been proposed to solve this prob-
lem, and ground-breaking work needs to be done. We believe that a promising
direction is to carefully study the hardness of a query: being able to control
the effort needed to answer a query can be the right step stone for solving the
inverse problem, that of estimating the effort it will take to answer a query,
before executing it.

4.5 Data Series Benchmarking

Despite the rich literature on methods for indexing and answering similarity
queries on data sequences, we note the absence of any related benchmarks. We
argue for the need of fair benchmarks that can stress-test sequence process-
ing techniques in a controlled way and to pre-defined levels of query hardness.

Big Sequence Management 77

Such benchmarks will be designed to capture differences in the quality of sum-
marization methods, indexes and storage methods, when working in combina-
tion, which is what makes the design of such a benchmark a challenging task.
Our ongoing work constitutes the first solution towards this directions: it hows
that the amount of effort employed by data series indexes can be consistently
captured across different indexing approaches, using implementation-invariant
measures [59].

5 Conclusions

In this work, we discussed the state-of-the-art data series indexing approaches
that can cope with the data deluge. We reviewed the iSAX 2.0 and iSAX2+
indexes, which are the first specifically designed for very large collections of data
series, and use novel algorithms for efficient bulk loading. We also described the
first adaptive indexing approach, ADS+, where the index is built incrementally
and adaptively, resulting in a very fast initialization process. We experimentally
validated the proposed algorithms, including the first published experiments to
consider datasets of size up to one billion data series, showing that we can deliver
orders of magnitude improvements in the time required to build the index, and
to start answering queries.

Furthermore, we observed that even though data series are a very common
data type, there is currently no system that can inherently accommodate, man-
age, and support complex analytics for this type of data. Therefore, in this
paper we argue for the special nature of the sequences data type, and articulate
the necessity for rigorous work on data series management systems. We pro-
pose a sequence management system that will employ a data model specialized
to sequences. The system will be distributed by design, and consider the large
volume of sequences, their heterogeneity (in terms of properties and character-
istics), and possible uncertainty in their values. Finally, the system will support
cost-based optimization, thus, leading to the desired scalability for big sequence
analytics.

Acknowledgements. I would like to thank my collaborators (in alphabetical order):
Alessandro Camerra, Johannes Gehrke, Stratos Idreos, Eamonn Keogh, Michele
Linardi, and Yin Lou. Special thanks go to Kostas Zoumpatianos, who has been the
driving force behind several of the ideas discussed in this paper.

References

1. Adhd-200 (2011). http://fcon 1000.projects.nitrc.org/indi/adhd200/
2. Sloan digital sky survey (2015). https://www.sdss3.org/dr10/data access/volume.

php
3. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence

databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer,
Heidelberg (1993)

https://www.sdss3.org/dr10/data_access/volume.php
https://www.sdss3.org/dr10/data_access/volume.php

78 T. Palpanas

4. An, N., Kanth, R., Kothuri, V., Ravada, S.: Improving performance with bulk-
inserts in oracle r-trees. In: VLDB, pp. 948–951. VLDB Endowment (2003)

5. Assent, L., Krieger, R., Afschari, F., Seidl, T.: The TS-tree: efficient time series
search and retrieval. In EDBT (2008)

6. Aßfalg, J., Kriegel, H.-P., Kröger, P., Renz, M.: Probabilistic similarity search for
uncertain time series. In: Winslett, M. (ed.) SSDBM 2009. LNCS, vol. 5566, pp.
435–443. Springer, Heidelberg (2009)

7. Astrahan, M.M., Blasgen, M.W., Chamberlin, D.D., Eswaran, K.P., Gray, J., Grif-
fiths, P.P., King, W.F., Lorie, R.A., McJones, P.R., Mehl, J.W., Putzolu, G.R.,
Traiger, I.L., Wade, B.W., Watson, V.: System R: relational approach to database
management. TODS 1(2), 97–137 (1976)

8. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

9. Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-tree: an index structure for high-
dimensional data. In: VLDB, pp. 28–39 (1996)

10. Bernstein, P., Bykov, S., Geller, A., Kliot, G., Thelin, J.: Orleans: distributed
virtual actors for programmability and scalability. MSR-TR-2014-41 (2014)

11. Bu, Y., wing Leung, T., chee Fu, A.W., Keogh, E., Pei, J., Meshkin, S.: Wat:
finding top-k discords in time series database. In: SDM, pp. 449–454 (2007)

12. Camerra, A., Palpanas, T., Shieh, J., Keogh, E.: iSAX 2.0: indexing and mining
one billion time series. In: ICDM (2010)

13. Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon, T., Keogh, E.J.: Beyond
one billion time series: indexing and mining very large time series collections with
iSAX2+. KAIS 39(1), 123–151 (2014)

14. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimen-
sionality reduction for indexing large time series databases. In: SIGMOD (2002)

15. Chan, K.-P., Fu. A.-C.: Efficient time series matching by wavelets. In: ICDE (1999)
16. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Com-

put. Surv. 41(3), 1–58 (2009)
17. Dallachiesa, M., Nushi, B., Mirylenka, K., Palpanas, T.: Uncertain time-series sim-

ilarity: return to the basics. PVLDB 5(11), 1662–1673 (2012)
18. Dallachiesa, M., Palpanas, T., Ilyas, I.F.: Top-k nearest neighbor search in uncer-

tain data series. PVLDB 8(1), 13–24 (2014)
19. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and

mining of time series data: experimental comparison of representations and dis-
tance measures. PVLDB 1, 1542–1552 (2008)

20. Soisalon-Soininen, E., Widmayer, P.: Single and bulk updates in stratified trees:
an amortized and worst-case analysis. In: Klein, R., Six, H.-W., Wegner, L. (eds.)
Computer Science in Perspective. LNCS, vol. 2598, pp. 278–292. Springer, Heidel-
berg (2003)

21. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIG-
MOD (1984)

22. Huijse, P., Estévez, P.A., Protopapas, P., Principe, J.C., Zegers, P.: Computa-
tional intelligence challenges and applications on large-scale astronomical time
series databases. IEEE Comp. Int. Mag. 9(3), 27–39 (2014)

23. Van den Bercken, J., Seeger, B.: An evaluation of generic bulk loading techniques.
In: VLDB, pp. 461–470 (2001)

24. Van den Bercken, J., Widmayer, P., Seeger, B.: A generic approach to bulk loading
multidimensional index structures. In: VLDB (1997)

25. Kadiyala, S., Shiri, N.: A compact multi-resolution index for variable length queries
in time series databases. KAIS 15(2), 131–147 (2008)

Big Sequence Management 79

26. Kashino, K., Smith, G., Murase, H.: Time-series active search for quick retrieval
of audio and video. In: ICASSP (1999)

27. Kashyap, S., Karras, P.: Scalable knn search on vertically stored time series. In:
KDD (2011)

28. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Dimensionality reduction
for fast similarity search in large time series databases. KAIS 3(3), 263–286 (2000)

29. Keogh, E.J., Palpanas, T., Zordan, V.B., Gunopulos, D., Cardle, M.: Indexing large
human-motion databases. In: VLDB, pp. 780–791 (2004)

30. Arge, L., Hinrichs, K.H., Vahrenhold, J., Vitter, J.V.: Efficient bulk operations on
dynamic R-trees. Algorithmica 33(1), 104–128 (2002)

31. Lerner, A., Shasha, D.: Aquery: query language for ordered data, optimization
techniques, and experiments. In: VLDB (2003)

32. Li, C.S., Yu, P., Castelli, V.: Hierarchyscan: a hierarchical similarity search algo-
rithm for databases of long sequences. In: ICDE (1996)

33. Liao, H., Han, J., Fang, J.: Multi-dimensional index on hadoop distributed file
system. In: NAS (2010)

34. Lin, J., Keogh, E., Lonardi, S.: A symbolic representation of time series, with
implications for streaming algorithms. In: DMKD (2003)

35. Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using bag-
of-patterns representation. J. Intell. Inf. Syst. 39(2), 287–315 (2012)

36. Palpanas, T.: Data series management: the road to big sequence analytics. SIG-
MOD Rec. 44(2), 47–52 (2015)

37. Palpanas, T., Vlachos, M., Keogh, E.J., Gunopulos, D.: Streaming time series
summarization using user-defined amnesic functions. IEEE Trans. Knowl. Data
Eng. 20(7), 992–1006 (2008)

38. Palpanas, T., Vlachos, M., Keogh, E.J., Gunopulos, D., Truppel, W.: Online
amnesic approximation of streaming time series. In: ICDE, pp. 339–349 (2004)

39. Rafiei, D., Mendelzon, A.: Similarity-based queries for time series data. In: SIG-
MOD (1997)

40. Rakthanmanon, T., Campana, B.J.L., Mueen, A., Batista, G., Westover, M.B.,
Zhu, Q., Zakaria, J., Keogh, E.J.: Searching and mining trillions of time series
subsequences under dynamic time warping. In: KDD (2012)

41. Raman, V., Attaluri, G.K., Barber, R., Chainani, N., Kalmuk, D., KulandaiSamy,
V., Leenstra, J., Lightstone, S., S. Liu, S., Lohman, G.M., Malkemus, T., Müller,
R., Pandis, I., Schiefer, B., Sharpe, D., Sidle, R., Storm, A.J., Zhang, L.: DB2
with BLU acceleration: so much more than just a column store. PVLDB 6(11),
1080–1091 (2013)

42. Raza, U., Camerra, A., Murphy, A.L., Palpanas, T., Picco, G.P.: Practical data
prediction for real-world wireless sensor networks. IEEE Trans. Knowl. Data Eng.
27(8), 2231–2244 (2015)

43. Choubey, R., Chen, L., Rundensteiner, E.A.: GBI: a generalized R-tree bulk-
insertion strategy. In: Güting, R.H., Papadias, D., Lochovsky, F.H. (eds.) SSD
1999. LNCS, vol. 1651, pp. 91–108. Springer, Heidelberg (1999)

44. Sadri, R., Zaniolo, C., Zarkesh, A.M., Adibi, J.: A sequential pattern query lan-
guage for supporting instant data mining for e-services. In: VLDB (2001)

45. Sarangi, S.R., Murthy, K.: DUST: a generalized notion of similarity between uncer-
tain time series. In: KDD (2010)

46. Schäfer, P., Högqvist, M.: SFA: a symbolic fourier approximation and index for
similarity search in high dimensional datasets. In: EDBT (2012)

47. Shasha, D.: Tuning time series queries in finance: case studies and recommenda-
tions. IEEE Data Eng. Bull. 22(2), 40–46 (1999)

80 T. Palpanas

48. Shieh, J., Keogh, E.: iSAX: disk-aware mining and indexing of massive time series
datasets. DMKD 19(1), 24–57 (2009)

49. Shieh, J., Keogh, E.J.: iSAX: indexing and mining terabyte sized time series. In:
KDD, pp. 623–631 (2008)

50. Stonebraker, M., Abadi, M., Batkin, D.J., Chen, J. X., Cherniack, M., Ferreira,
M., Lau, E., Lin, A., Madden, S., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N.,
Zdonik, S.B.: C-store: a column-oriented DBMS. In: VLDB (2005)

51. Stonebraker, M., Brown, P., Poliakov, A., Raman, S.: The architecture of SciDB.
In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol.
6809, pp. 1–16. Springer, Heidelberg (2011)

52. Wang, Y., Wang, P., Pei, J., Wang, W., Huang, S.: A data-adaptive and dynamic
segmentation index for whole matching on time series. PVLDB 6(10), 793–804
(2013)

53. Warren Liao, T.: Clustering of time series data - a survey. Pattern Recogn. 38(11),
1857–1874 (2005)

54. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. In:
KDD (2009)

55. Yeh, M., Wu, K., Yu, P.S., Chen, M.: PROUD: a probabilistic approach to process-
ing similarity queries over uncertain data streams. In: EDBT (2009)

56. Yi, B., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In:
VLDB (2000)

57. Zoumpatianos, K., Idreos, S., Palpanas, T.: Indexing for interactive exploration of
big data series. In: SIGMOD (2014)

58. Zoumpatianos, K., Idreos, S., Palpanas, T.: RINSE: interactive data series explo-
ration with ADS+. PVLDB 8(12), 1912–1923 (2015)

59. Zoumpatianos, K., Lou, Y., Palpanas, T., Gehrke, J.: Query workloads for data
series indexes. In: KDD (2015)

	Big Sequence Management: A glimpse of the Past, the Present, and the Future
	1 Introduction
	2 The Past: Summarizations and Indexes
	2.1 On Data Series Queries
	2.2 On Data Series Summarizations
	2.3 On Data Series Indexing
	2.4 On the iSAX Summarization and Family of Indexes

	3 The Present: Adaptive Indexing
	3.1 The ADS+ Index

	4 The Future: Sequence Management System
	4.1 Data Model
	4.2 Data Structures
	4.3 Distributed Processing
	4.4 Cost Based Optimization
	4.5 Data Series Benchmarking

	5 Conclusions
	References

