
Survey on Concern Separation
in Service Integration

Tomas Cerny1(B) and Michael J. Donahoo2

1 Department of Computer Science, Czech Technical University,
Charles square 13, Prague, Czech Republic

tomas.cerny@fel.cvut.cz
2 Department of Computer Science, Baylor University, Waco, TX, USA

jeff donahoo@baylor.edu

Abstract. Ever-changing business processes in large software systems,
integration of heterogeneous data sources as well as the desire for legacy
service integration drive software design towards reusable, platform-
independent, web-accessible microservices. Such independently deploy-
able services provide an interface for retrieval and data manipulation
in machine-readable formats. While this approach brings many advan-
tages from the perspective of service integration aiming to separate
data manipulation from business processing, the standard approaches
provide only limited structural semantics and constraints provided
through the interface. This leads to considerable information restate-
ment and repeated decisions in integrating components, which consider-
ably impacts development and maintenance efforts. Integration compo-
nent operability becomes highly sensitive to interaction with underlying
services, which are possibly composed of other services. The sensitiv-
ity is especially apparent in the structural semantics of produced and
consumed information that must correlate on both sides of the inter-
action. This paper surveys service integration from the perspective of
separation of concerns. In order to reduce the coupling and information
restatement on the integration component side, it suggests introducing
multiple communication channels with additional information that apply
in the service interaction, extending the integration component’s ability
to derive service expected information structural semantics, constraints
or business rules. Finally, we consider the impact of this new approach
from the development and maintenance perspectives.

Keywords: Web services · Service integration · Aspect-Oriented pro-
gramming

1 Introduction

Software design of large systems, which integrate functionality from different het-
erogeneous data sources and provide decentralize governance, utilize reusable,
independently-replaceable, scalable and deployable microservices [13]. Such

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 518–531, 2016.
DOI: 10.1007/978-3-662-49192-8 42



Survey on Concern Separation in Service Integration 519

services provide composable functionality addressing the disadvantages of mono-
lithic design. [13]. They provide platform independence, support interoperable
[1] interaction among different components using standard machine-readable for-
mats. These services emphasize well-defined interfaces and availability on net-
work, with location transparency.

The emphasis on service interface enables easy exchange of service providers
and thus reduces coupling between the integration components (or generally
peers) and services. An independent self-deployable component that integrates
services is in the text referred as an Integration Component (IC). The IC-service
interaction can be further mediated to multiple providers to support service
availability, scalability, and performance. Services can recursively integrate other
services, making such service composition transparent to ICs. Market changes,
innovation, and/or evolution in business requirements make it easy for the ICs to
use novel services or apply a new business processes on top of an existing service
infrastructure. At the same time, such design, especially in the early development
stage, may demand higher investments than code-centric monolithic design [1],
while opening the services for broader future reuse. Thus from the long-term per-
spective, the overall costs are expected to reduce. ICs are fragile with respect to
failure, flaws, or performance bottlenecks in any of its underlying services. Fur-
thermore, the standard format of communication brings additional performance
demands related to serialization and deserialization of information between the
machine-readable format and the internal platform-specific format.

Services built on existing technologies provide information formatted in a
specific structure, which the ICs must strictly follow. Current standards-based
approaches provide data values and some semantics of the internal structure,
although it is insufficient to automatically derive the internal structure at the
IC side. For example, property data types are limited and their constraints or
validation rules are missing. Furthermore, it is not possible to automatically
determine the expected structural semantics of information a service consumes.
From the design perspective, ICs must implement appropriate internal structural
representation for service-provided information. These are usually Data Transfer
Objects (DTO) [10], or map structures. These components define structure for
the native platform, although this is a restatement since the structure exists
and is co-defined at the web service side. This gives a commitment to the IC.
Any time service information defining structure changes, its ICs must reflect the
change, creating a difficulty in maintenance, as there is no mechanism preventing
such inconsistencies.

The situation becomes worse when considering multiple communicating ICs
or middlewares that all process the same information representation, considering
the same constraints, validation rules, etc. The maintenance becomes complex
and correlation fragility grows. Different individuals might manage particular
services or ICs at heterogeneous locations and follow different evolution and
changes. Service is usually unaware of its ICs, and thus its internal change may
lead to catastrophic consequences. Due to such difficulties, it is now common



520 T. Cerny and M.J. Donahoo

practice1 to leave the existing service as it is when structural changes in data
take place. Instead of extending the particular service, its copy with changes is
made. Consequently, the two services run simultaneously. Such an approach does
not naturally scale2 since multiple such services must be monitored for operation
and backups, driving up operation costs.

This paper considers service integration from the perspective of separation
of concerns. The motivation is to decrease maintenance effort and mitigate the
impact on ICs related to changes in service structural representation, constraints,
and validation or business rules. The ICs become adaptable to changes in the
above service concerns.

The conventional approaches use a single channel for communicating the
information to ICs. As mentioned earlier, only a limited amount of structural
information can be derived. For instance, consider a web service producing infor-
mation in XML or JSON. These formats carry data values and partially describe
the data structure with property names, leaving a gap for types, constraints, etc.
Thus internal IC representation must exist to provide the missing pieces of infor-
mation, introducing restatements.

A concern-separating approach suggests a different form of communication.
It provides novel meta information that can be used to derive the internal IC
structural representations at runtime. This meta information relate to different
concerns. Besides the complete data structure information, the channels may
consider input validation rules, user context, and business rules. Providing these
concerns in a single communication channel, would lead to inefficiencies, as some
concerns tend to change more often than others. Instead, we propose the use of
multiple communication channels to avoid repetition and support separation of
concerns at the communication-level. This extends concern reuse at the IC side
and improves caching capabilities [6]. All the novel concerns are provided in a
machine-readable format. The ICs become capable to derive internal structural
representation, constraints, validation and business rules at runtime based on
the service provided information. Later service changes are adopted by ICs and
all their communication successors, which help to avoid consistency errors.

The rest of the paper is organized as follows. Section 2 provides background.
Details on concern separation analysis in service integration are provided in
Sect. 3. Section 4 details the concern separating design. Related work is men-
tioned throughout Sects. 2 till 4. Section 5 concludes the paper.

2 Background

Web services produce and consume data. A web service is the only component
with access to the data source, and the only component that can persist or pro-
vide data. Usually, such a service persists data to a relational database, although
1 Based on experience, while technically consulting with software architects of Czech

banks.
2 The highest number of simultaneously running service copied versions was reported3

22.



Survey on Concern Separation in Service Integration 521

its design most likely uses object-oriented programming (OOP). Even legacy ser-
vices designed in non-conventional style can be extended to provide a web service
interface [1]. Such services communicate in machine-readable formats, such as
XML or JSON.

Contemporary trends in OOP design are apparent from the Java Enter-
prise Edition (Java EE) platform [9]. The platform has a standard for deal-
ing with Object-Relational Mapping (ORM) for persistence called Java Persis-
tence API (JPA), input validation (Bean Validation), and even for serializa-
tion/deserialization of data represented by objects to JSON or XML formats3

and backwards.
A service in the Java EE platform represents its data model with classes called

entities that are associated with each other and extended with JPA descriptors
for ORM as well as with Bean Validation descriptors to enforce input validation.
A service can enforce business rules on the top of the data model by referenc-
ing particular entities and their properties. As mentioned in [3,10], a standard-
ization or generally accepted approach for defining business rules is missing.
One possibility is to define such rules using OOP [2]; unfortunately this leads
to significant restatements of rules across various system modules or layers [3],
extending maintenance efforts. Alternative approaches suggest using frameworks
describing the rules in Domain-Specific Languages (DSLs), such as Drools [16] or
MPS [17]. These approaches isolate rule definitions and enforce their application
throughout the system.

A web-service hides its internals from other ICs, even though the informa-
tion structure it provides or consumes is influenced by its entities and their data
structure. Sometimes services aggregate entities or filter their properties using
DTOs indirection [10]. The entities or DTOs then determine the desired format
(XML/JSON). When considering the produced format, it consists of informa-
tion relevant to a particular data instance, as well as to the data structure since
each data value is provided together with its property. The product thus con-
tains limited structural information; however, it does not provide the expected
property data type, constraints, etc.

The IC must follow the service-expected data structure. The IC internal
data representation, similarly to the service, uses either DTOs designed and
compiled for this purpose, or map data structure, derived from the service pro-
vided information. The map structure may seem more flexible, but it provides no
type safety or assurance on correct data structure, property types, constraints,
etc. when submitting data to the service. From the perspective of service data
consumption the map structure may seem impractical as the internal structure
accepts any input, but the service may reject the information due to typological
errors.

Both DTO and map structure properties must correlate with the runtime
service representation to avoid inconsistency errors and rejected service submis-
sions. The issue is that service and IC are independent components with different
evolution time spans. Thus any time the service-side data representation changes,
3 Java Architecture for XML Binding, Java API for {RESTful/XML} Web Services.



522 T. Cerny and M.J. Donahoo

the IC representation must change accordingly. The ICs’ DTO property restate-
ment suffers from tight coupling and the inability to adapt to service changes,
its structure is determined at compile time. A mechanism is missing to indicate
or prevent inconsistency errors due to changed service internal structure.

Restatement problems are not limited to data representation only; a similar
issue arises with input validation. For performance and usability reasons, we
apply input validation on the IC before incurring the cost of communication and
service-side processing, although to do so, we need to manually apply the input
validation at the IC. This negatively impacts development and maintenance
efforts since the same validation rules are restated on all tiers. Furthermore,
when the IC integrates multiple services together, it might be intended to apply
service business rules already at the IC level. This again leads to their replication
across tiers.

The situation is exacerbated by context-awareness [4]. For instance, consider
various user roles that are authorized to access different data properties. From
the service autonomy perspective [1], this should apply at the service, but it
cannot be omitted at the IC side, due to usability perspective [14]. The context-
awareness is more complex [4] than just security. User may come from different
geo locations, at different times, with various devices that all may impact the
provided data, data representation, its structure, validation rules or business
rules. A considerable number of decisions might be repeated at different tiers,
tangling through other application concerns [6].

Current web service system design allows service reuse, composition, distrib-
ution, replication, and cross-platform compatibility. On the other hand, it does
not effectively handle integration component development or service evolution.
As we have shown, many concerns are considered at different tiers, although
a mechanism that shares concerns across tiers is missing. This paper proposes
a concern separation approach applied to the communication among ICs. The
advantage is that concerns considered at the service level can be reused by other
ICs, which simplifies service evolution and brings ICs’ better adaptability to
service changes. The context-awareness causes concern tangling in conventional
approaches, deteriorating the complexity, development and maintenance efforts.
The proposed approach provides concern distribution through multiple channels
and handles context-awareness more effectively than a single channel communi-
cation. The multi-channel concern distribution extends reuse [6] and supports
caching abilities.

3 Analysis and Discussion on Concern Separation in
Services

We identify several problems with conventional service integration design. No
matter the internal service design, the interaction with other ICs only provides
limited information about service concerns. It focuses primarily on data value
interaction. Data representation must structurally correlate among ICs and ser-
vices. The validation rules and constraints must be replicated on the IC side.



Survey on Concern Separation in Service Integration 523

When a service does not expose its source code, IC design can only consider ser-
vice documentation to apply service business rules in its design to improve usabil-
ity. Even when code is provided, rule derivation might be very difficult, since one
service can capture business rules tangled in the OOP design [3], another may
use Drools and another MPS. All later changes must again correlate with ICs,
which makes global business rule maintenance hard. Runtime context, such as
security, time, IC location, etc., may influence the produced or consumed data.
From the concern perspective, we consider the following elements:

Each IC that uses a service and wants to process its data values , restates
the data structure representation and most likely its validation rules .
The IC may need to restate business rules or even integrate context .
Besides the data values , this presents significant responsibility and burden
for development, service evolution, and maintenance. Even a small change to
the above service elements may cause inconsistency in multiple ICs that
integrate the service, thus requiring manual change propagation. The issue with
change propagation is that a service rarely knows its consumers or has only
limited capability to control them.

Naturally, the question is whether there exists a way to loosen the coupling
between ICs and service with respect to data structure representation or
even other concerns . In order to do so, the data structure representa-
tion at the IC side cannot be determined statically at compile/deploy time.
Instead the structural representation should be provided in a separate channel
of communication and determined at runtime.

Let us assume a form of communication where an IC requests the data struc-
ture representation and then maps the data values to it. What is the
consequence? First the IC must compose the representation at runtime, which
either requires metaprogramming [7] or the use of map data structure. Since
the structure is not determined at compile time, field references may loose type
safety [4] within the scope of IC. This may negatively impact the programming
style. On the other hand, since a service may change at any time after the IC
deploys, the type safety only helps the initial IC design. Second, the runtime,
on-demand representation derivation enforces consistency with the service. Thus
the IC reflects later changes to the service structures, which improves mainte-
nance and evolution. Third, there might be performance degradation due to the
communication overhead and metaprogramming. On the other hand, the data
structure representation request can be issued concurrently with the data
value request [6]. At the same time, the data structure representation deriva-
tion could consider caching scheme similar to HTTP [6], where IC requests a



524 T. Cerny and M.J. Donahoo

particular representation version and reuses the derived structure until it changes
on the service side.

With the proposed design, the data structure representation is provided
by service in a separate channel of communication. The same approach can apply
to data input validation . The properties of this concern has although lot of
similarities with the previous and when we consider the Beans Validation
standard from Java EE, it is even part of the data model (its extension) [6].
This suggests the possibility to integrate the concern within the channel for the
data structure representation .

The service business rules might be unknown to the ICs throughout their
execution. Such rules can be documented, although ICs cannot use the business
rules separately from the service, unless restating the rules. If the rules were
known or there was a way to provide them to IC in machine-readable format,
the IC could take advantage of such knowledge for usability or performance
improvements. For instance, consider a situation restricting an airplane selec-
tion for particular flight based on the current passenger occupancy. If IC has
the knowledge of such restriction, it may avoid additional requests to the ser-
vice or rejected submission attempts. Alternatively, consider a service business
rule being interpreted at the client-side, resulting in a web browser JavaScript
execution that verifies constraints before the submission takes place. In order to
provide ICs the business rules in a special channel of communication, the service
must capture them in a format that allows not only their evaluation but also
their transformation onto format suitable for transmission. For instance, a DSL
solution that exposes separated parser, internal representation and execution
would fit such purpose. From the ICs’ perspective, a business rule definition usu-
ally references data structure representations and their attributes by name.
This introduces a coupling and limits the versatility of IC adaptation to service
changes. The proposed IC runtime derivation of data structure representations
may hinder the definitions of business rules at the IC side.

Context-awareness might be the next evolutionary step in software system
abilities [5]. Nowadays production systems only rarely deal with context-aware
features [4] and if so, then only in limited scope [6], such as interactive con-
soles, due to the increased costs of development and maintenance efforts [4]. For
instance, Human-Computer Interaction shows existing context-aware prototypes
[14] and sleek features; however these prototypes are missing production experi-
ence either due to performance requirements [5] or large development efforts [4].
Survey in [4] suggests that the complexity behind context-awareness is related
to poor separation of concerns. Concerns that cannot be cleanly decomposed
from the rest of the system are called cross-cutting concerns [12]. Conventional
programming languages cannot effectively address cross-cutting concerns, and
cause code tangling. The state of the art suggests addressing these concerns
through Generative Programming (GP) [8] or Aspect-Oriented Programming
[12]. Unfortunately, the program structure and the over all design must change.



Survey on Concern Separation in Service Integration 525

GP suggests designing applications from conventional components and inte-
grate models, DSLs descriptions, or alternative problem description formats. It
takes all the above as input and then, based on a configuration script and tem-
plates, produces various combinations from the inputs. The result may produce a
large amount of combinations that are later compiled. The difficulty comes when
certain inputs present exponential dependency on its composition [4]. In such
case, the produced result becomes impractical. Another deficiency is that the
approach targets compile time product derivation. Furthermore, the execution
uses generated code, which complicates debugging.

AOP proposes to design application from two building blocks. The base
functionality is captured through conventional components and their extensions
that are separable concerns, or even cross-cutting concerns that are captured by
another building block called aspect. Aspects can use DSL or the same program-
ming language. The aspect brings a mechanism to separate a particular concern
from the base program. The way components and aspects connect together is the
main AOP instrument. The base component program is transformed onto a join
point representation [12]. A join point might be a name of a method, method
call, location in the program or a method extended with annotation. It indicates
a location in the program where an aspect may extend the program execution.
Such a join point representation is a simplified skeleton of the program or a
particular subsystem. An aspect has a condition formed from join points that
indicates when and under what context it becomes active. The condition may
use any logical or arithmetical operators to generalize the condition. The aspect
integration can be compile time or runtime [4], and thus only aspects activated
by given context are applied to the program execution. The component and
aspect integration performs an aspect weaver, an instrument similar to a com-
piler [12] or renderer [4]. Since it is possible to apply the approach at runtime,
the produced result is not affected by exponential concern dependency, since
only context-selected concerns apply for given request, although the complexity
related to debugging remains.

Thus extending the service with context-awareness while aiming for efficient
design, the service should consider separating out the basic functionality from
the contextual extension through aspects. Although different from other service
concerns , the context might not be something we aim to provide to ICs
as a separate channel of communication. Instead we might expect that context is
something related to or provided by the IC requesting the service (e.g., request
parameters, location, access rights) or something derived at runtime at the ser-
vice side (resource usage, time). Thus context may influence the provided result

of .
To demonstrate, consider that the service is requested by a IC with a low

level of authorization. The service should only consume or produce a subset of
data values or to expose the IC limited scope of data representation .
Alternatively, consider ICs requesting personal information sensitive to the geo-
location. One IC may receive information including country, state and custom
date formatting, while another only receives country and general date formatting.



526 T. Cerny and M.J. Donahoo

4 Design and References to Concern-Separating
Approaches

In order to separate concerns mentioned in previous section and stream them in
separate communication channels, we must be able to interpret concern descrip-
tion at the service side. However, we should avoid reinventing existing solutions
and not expect the industry to make big changes in conventional development
or programmer attitudes. For these reasons, we may tend to avoid Model-Driven
Development (MDD) [4]. Next option is to design custom DSL for the service
description on higher level of abstraction [15], but this approach is not much
different from MDD since developer must learn a new language and change the
design abstraction. Instead, a minimal impact on developer should be expected
for easy adoption and transition to production development.

One possibility is to use a code-inspection mechanism that uses metapro-
gramming. These approaches allow reusing existing code for the purpose of
transformation, which is in our case the data structure representation. For
example, [11] uses this approach in MetaWidget framework that derives User
Interfaces (UIs) from the data model. Similarly [4] uses metaprogramming to
derive join point representation [12] for later use in AOP-based transformation.
Applying code-inspection does not considerably affect the service development
perspective, as its use is transparent.

Similarly, when considering the existing validation or ORM standards, code-
inspection can derive the validation rules and constraints and thus further
extend the join point representation. Additional data structure representation
extensions can be considered in the same way (access, presentation extension [6],
etc.).

At this point, the development impact does not involve significant changes,
even though the service provides communication channels for the concerns

. The AspectFaces framework [4] provides an example code-inspection
tool. [6] shows its use for the separated concern delivery for UI derivation. In
order to apply it at the service level, the frameworks’ aspect weaver is pointed
to application data model from which it derives the join point representation
that can be bidirectionally transformed to XML/JSON formats. An IC derives
the service internal, platform-specific data structure representation from the
received join point model and feeds it with the provided data values . [5,6]
show the usage for UI derivation for mobile, standalone and web clients (Google
Web Toolkit, AngularJS, HTML5) and demonstrate platform-independence for
the concern delivery. Changes to the service data structure representation are
adopted by all the derived UIs across various platforms. Furthermore, [6] gives
details on caching options and performance, which can be applied. For instance,
as mentioned earlier, the requests to various channels (data values and join
point representation) can be done concurrently. The join point representation
can be cached and reused with invalidation mechanism using versioning similar
to HTTP.



Survey on Concern Separation in Service Integration 527

Usage at an IC impacts the development perspective. The IC usually aims
to integrate multiple services and works with multiple data structure rep-
resentations. The internal IC structure representation is a proxy with defined
name. Its properties, such as fields are received at runtime, which deteriorates
the type-safety at the development time. This is the trade-off for the ability to
adapt to service structural changes. The benefit is that validation and constraint
enforcement on data values is part of the proxy and can be performed at the
IC side. When the IC applies business rules and processes, explicit references
bind to the proxy by property names. This limits IC adaptivity to changes in
data structures, since service changes to property name do not update the ICs’
named binding. Usage of DSLs for business rule definition and enforcement at
the IC side is not impacted by the approach, since such DSL has already limited
type safety. The IC may apply business processing and forward the proxy to
another ICs (e.g., client providing presentation and UI). A proxy propagation is
not different from the above description. The data consumption is equivalent to
the conventional approach at the service side, with the difference that IC knows
what the service expects, what properties it has, which types, constraints and
validations are considered, etc.

Common use cases [4] for service maintenance consider changes in structure
naming, property naming, property constraint/validation modification, property
removal and mostly addition of a novel property. How does the service using ICs
react to them?

The conventional approach using DTOs is impacted by any service structural
change that is promoted to the machine-readable format and thus causes incon-
sistency at the IC side. The constraint/validation change is not known and thus
may occur at production environment as an inconsistency.

The proposed concern-separating approach cannot deal with changed naming
of the given structure since the IC’s proxy is determined by the name, although
a key-based indirection would address adaptability. The proxy reflects all service
changes of property names, constraints and validation rules. It further reflects
property additions or removals. Although it has the ability to deal with the
changes, the IC application may explicitly reference given properties to apply
business processing or enforce business rules, which limits the adaptivity. [5,6]
show that this is rarely the case for UIs, even though local coupling may exist.
In UIs, it usually uses generic approach to access all provided fields rather than
to make explicit references. In the UI, the structural representation can be seen
as a logical unit.

When assuming that local reference to given structure exists, then the adap-
tivity degrades. The IC application no longer adapts to change of property names
or property removals. Although the proxy still adapts, the reference to changed
property may fail, similarly to conventional design. On the other hand, the adap-
tivity to changes in constraints and validation rules promote all changes to ICs.
Thus when the service maintenance follows the policy that only allows incre-
ments in properties and allows constraint/validation changes, then the integrity



528 T. Cerny and M.J. Donahoo

is preserved and reflected by all ICs. This avoids consistency errors and preserves
functionality.

From the above it is apparent that, for the maintainability purposes, the
most suitable approach would embed business rules to services rather than to
ICs, which [13] suggests for microservices. Then the IC adaptivity promotes to
most of the structural changes. However, not all situations allow promoting busi-
ness rules to services. Furthermore, it might be the target design to use business
process and rule indirection to promote flexibility in business changes and evo-
lution. Naturally, structural changes must promote to referencing business rules
no matter the origin of the business rule, and thus next we consider the ability
to reuse single business rule definition across multiple tiers.

The service ability to provide its business rules to other ICs requires design
changes in the way the rules are captured. [2,3] show possible approach that
captures the rules in DSL and binds rule to data through annotations. The app-
roach brings the ability to perform business rules inspection and transformation.
This can use transformation to machine-readable format and thus be used by
a separate distribution channel. An IC can interpret the provided rules locally
and avoid rejected submission or improve usability. In service composition, this
brings the advantage of combining business rules from various services as well as
a centralized view on variety of rules from heterogeneous service environment.
The ability of sharing business rules across services can be utilized in business
process modeling and execution, although this is left for future work.

The most challenging perspective is the service context-awareness. [4] sug-
gests that many contemporary systems follow the “one for all” approach in the
UI design due to its development and maintenance demands. Context can influ-
ence the production as well as the consumption of data. We may hardly imagine
significant changes in data values or structure representations , beyond
property access restriction or conditional rendering. The input validation
and constraints or business rules may differ more significantly basing on the
context. For instance, company vendor agent may submit orders with a given
delivery date only until a certain time before the distribution stage starts. The
accepted order time may differ based on the geo-location of the order destination
as the shipment time from a central warehouse differs in the delivery time. As
a bonus for customers with high turnover, the agent is able to submit the order
after the deadline. When agent updates customers profile he/she must provide
all personal information and follow the validation rules on provided formats. An
administrator can update customers with a subset of information, while skipping
all the validation rules.

Context can more or less impact any of the other considered concerns ,
and this impacts the service design. [4] suggests an AOP-based approach, which
is not significantly different from conventional design from the development per-
spective. The data model together with its extensions referencing validation,
business rules, etc. is transformed to the join point representation. This rep-
resentation is produced (once) and utilized by the aspect weaver that mediates
service requests. On each request, the weaver clones the join point representation



Survey on Concern Separation in Service Integration 529

and considers separately-defined aspects that may modify the join point repre-
sentation. Aspects trigger based on supplied context and join points found in the
particular processed representation section. As a consequence, this may modify
given constraints, hide properties, etc. The result of the weaving, as shown in
[5,6,14], is transformed to a machine-readable format. The corresponding data

values follow the same cycle in order to determine which data properties are
authorized for the delivery.

Context-awareness is mostly notable in UIs where the UI adjusts to par-
ticular user, browsing device abilities, location, etc. Earlier we mentioned that
[5,6] show multiple prototypes for mobiles, standalone and web clients that can

process the communication channels for the concerns . When service con-
siders context-awareness, these prototypes adjust to the provided output and
become context-aware. The impact is on caching abilities, which applies more
strict invalidation [6]. The usage across different platforms demonstrates the
approach versatility. Furthermore, [6] shows that, for web delivery, the approach
untangles UI concerns and supports their reuse at the IC side, which positively
impacts service performance. [6] provides evaluation that show the impact in
production environment where concern separating approach outperforms the
conventional single channel delivery regarding to UI responsiveness as well as
reduces service side resources.

5 Conclusion

This survey discusses service integration from the perspective of separation of
concerns. Conventional approaches for web service design bring many advan-
tages over the code-centric, monolithic approaches. Unfortunately, service inte-
gration posses multiple deficiencies. Data structures considered by services must
be understood and followed by all ICs that become tightly coupled to the data
structures. This disallows service evolution and usually results in new, slightly
modified service introduction to avoid correlation errors with legacy. Moreover,
ICs are unaware of service internal constraints, validation or even business rules.
Service knowledge distribution would improve performance, consistency, and
usability as well as provide a centralized view on combined services.

Separation of concerns and concern distribution addresses the above defi-
ciencies. Services can provide additional information to ICs in multiple distri-
bution channels that are utilized, providing data structure semantics to derive
the service data structure representation at runtime. This overwhelms the tight
coupling regarding of data properties. This has two sides. Runtime derivation
allows the IC to adapt service-side structural changes and thus open the ability
for the service to evolve. On the contrary, the IC uses structure proxies unaware
of its properties at compile time, unless referencing the service. IC reference to
particular properties introduce coupling and limit its adaptivity to structural
services changes, although as [5,6] show generic referencing can be applied as
demonstrates the usage in UIs. The benefit is that the proxy representation
comes with all constraints and validation rules that can be applied at the IC



530 T. Cerny and M.J. Donahoo

side, avoiding restatement. Using a suitable form of business rule definition at
the service side brings the ability to inspect rule definitions and provide them
in a separate distribution channel in machine-readable format for the IC. Such
rules can be applied earlier in the request processing or even combined with other
service rules. Novel business rule definitions at the ICs level might be affected
by the weak type safety introduced by the approach. Another solution is to
promote business rules to a particular service supporting their reuse, although
deteriorating the flexibility of their modification and evolution.

Context-awareness pushes the service design towards the direction of AOP,
since it fosters efficient design that avoids tangled code and replication. The
context influences both production and consumption of service data values, as
well as impacts the resulting data structure representation, validation rules, and
business rules.

The main advantages of our approach are its ability to adapt ICs to service
changes in data structure, although the extent of the adaptation is influenced
by IC references to data structure properties. The approach opens meta infor-
mation and thus shares its constraints, validation rules, and business rules with
other ICs, which provides them with extended abilities that impact performance,
composability, and usability. Context-awareness security involvement enforces
authorization to all distribution channels.

Future work will address the business rule involvement in business processes
definitions in distributed environment. The limited type safety in IC develop-
ment could use verification mechanism with respect to the service provided meta
information. For instance, the IC could use a DSL language, such as MPS [17],
as a verification instrument. It could use metaprogramming and suitable con-
structs to resolve valid references. Alternatively, in case of Java, we can even
avoid the impact on the IC design and apply bytecode manipulation framework
such as Apache BCEL or ASM [18] to enforce the property correlation at the
development/compile time. Our research will also consider the AOP approach to
the service backwards compatibility. Each time a service changes, novel aspect is
introduced, responsible for backwards compatibility transformation. ICs may use
given services and indicate compatibility version. The version triggers a chain of
aspects that apply transformation rules to the latest service version and mediate
the communication with the IC acting as the older service version.

Acknowledgments. This work was supported by the Grant Agency of the Czech
Technical University in Prague, grant No. SGS14/198/OHK3/3T/13.

References

1. Buelow, H., Deb, M., Kasi, J., LHer, D., Palvankar, P.: Getting Started with Oracle
SOA Suite 11G R1 a Hands-On Tutorial. Packt Publishing, Birmingham (2009)

2. Cemus, K., Cerny, T.: Aspect-driven design of information systems. In: Geffert,
V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.) SOFSEM 2014. LNCS,
vol. 8327, pp. 174–186. Springer, heidelberg (2014)



Survey on Concern Separation in Service Integration 531

3. Cemus, K., Cerny, T., Donahoo, M.J.: Automated business rules transformation
into a persistence layer. Procedia Comput. Sci. J. 62, 312–318. Elsevier (2015)

4. Cerny, T., Cemus, K., Donahoo, M.J., Song, E.: Aspect-driven, data-reflective and
context-aware user interfaces design. In: Applied Computing Review, vol. 13, no.
4, pp. 53–65. ACM (2013)

5. Cerny, T., Donahoo, M.J.: On separation of platform-independent particles in user
interfaces. Cluster Comput. 18(3), 1215–1228. Springer, USA (2015). http://dx.
doi.org/10.1007/s10586-015-0471-7

6. Cerny, T., Macik, M., Donahoo, J., Janousek, J.: On distributed concern delivery in
user interface design. Comput. Sci. Inf. Syst. 12(2), 655–681. ComSIS Consortium
(2015)

7. Chiba, S.: Proceedings of the ACM OOPSLA 1998 workshop on reflective program-
ming in C++ and java. In: Javassist - A Reflection-Based Programming Wizard
for Java (1998). http://www.csg.is.titech.ac.jp/∼chiba/oopsla98/proc/chiba.pdf

8. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. ACM Press/Addison-Wesley Publishing Co., New York (2000)

9. DeMichiel, L., Shannon, B.: JSR 342: JavaTM Platform, Enterprise Edn. 7 Spec
(2013). https://jcp.org/en/jsr/detail?id=342

10. Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Long-
man Publishing Co. Inc., Boston (2002)

11. Kennard, R., Leaney, J.: Towards a general purpose architec-
ture for UI generation. J. Syst. Softw. 83(10), 1896–1906 (2010).
http://www.sciencedirect.com/science/article/pii/S0164121210001597

12. Kiczales, G., Irwin, J., Lamping, J., Loingtier, J.-M., Lopes, C.V., Maeda, C.,
Mendhekar, A.: Aspect-oriented programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241. Springer, Heidelberg (1997)

13. Lewis, J., Fowler, M.: Microservices (2014). http://martinfowler.com/articles/
microservices.html

14. Macik, M., Cerny, T., Slavik, P.: Context-sensitive, cross-platform user interface
generation. J. Multimodal User Interfaces, 8(2), 217–229. Springer, Heidelberg
(2014). http://dx.doi.org/10.1007/s12193-013-0141-0

15. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4), 316–344. ACM, New York (2005). http://
doi.acm.org/10.1145/1118890.1118892

16. Proctor, M.: Drools: a rule engine for complex event processing. In: Schürr, A.,
Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 2–2. Springer,
Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-34176-2 2

17. Voelter, M., Kolb, B., Warmer, J.: Projecting a modular future. IEEE Softw. 99,
1. IEEE Computer Society, Los Alamitos, CA, USA (2014)

18. Wu, J., Huang, L., Wang, D.: ASM-based model of dynamic service update in
OSGi. SIGSOFT Softw. Eng. Notes 33(2), 8:1–8:8. ACM, New York (2008). http://
doi.acm.org/10.1145/1350802.1350815

http://dx.doi.org/10.1007/s10586-015-0471-7
http://dx.doi.org/10.1007/s10586-015-0471-7
http://www.csg.is.titech.ac.jp/~chiba/oopsla98/proc/chiba.pdf
https://jcp.org/en/jsr/detail?id=342
http://www.sciencedirect.com/science/article/pii/S0164121210001597
http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
http://dx.doi.org/10.1007/s12193-013-0141-0
http://doi.acm.org/10.1145/1118890.1118892
http://doi.acm.org/10.1145/1118890.1118892
http://dx.doi.org/10.1007/978-3-642-34176-2_2
http://doi.acm.org/10.1145/1350802.1350815
http://doi.acm.org/10.1145/1350802.1350815

	Survey on Concern Separation in Service Integration
	1 Introduction
	2 Background
	3 Analysis and Discussion on Concern Separation in Services
	4 Design and References to Concern-Separating Approaches
	5 Conclusion
	References


