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Abstract. Smooth entropy of X is defined as possibly biggest entropy
of a distribution Y close to X. It has found many applications including
privacy amplification, information reconciliation, quantum information
theory and even constructing random number generators. However the
basic question about the optimal shape for the distribution Y has not
been answered yet. In this paper we solve this problem for Renyi entropies
in non-quantum settings, giving a formal treatment to an approach sug-
gested at TCC’05 and ASIACRYPT’05. The main difference is that we
use a threshold cut instead of a quantile cut to rearrange probability
masses of X. As an example of application, we derive tight lower bounds
on the number of bits extractable from Shannon memoryless sources.

Keywords: Smooth Renyi entropy · Randomness extractors · Asymp-
totic equipartition property

1 Introduction

1.1 Entropy Smoothing

Security Based on Statistical Closeness. In most of cryptographic applications,
probability distributions which are close enough in the variational (statistical)
distance are considered indistinguishable. More informally, they have similar
cryptographic “quality”, when used as randomness sources (randomness extract-
ing) [15] or secure keys (in the context of key derivation [1,6]).

Entropy Notions do not See Statistical Closeness. Unfortunately, standard
entropy notions (including important min-entropy and collision entropy which
are widely used as randomness measures in cryptography), are not robust with
respect to small probability perturbations. Consider the AES cipher with a 256-
bit key which is ε = 2−80-close to uniform. While such a key is considered secure
nowadays, it may happen that it has no more than 81 bits of min-entropy (more
precisely, fix x ∈ {0, 1}256 and consider the key X which is x0 with probability
2−256 + 2−80 and uniform for x ∈ {0, 1}256 \ {x0}). This is a mismatch with
respect to our intuitive understanding of min-entropy as a measure of how many
almost random bits can be extracted.
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Smooth Entropy takes Probability Perturbations into Account. To fix the issue
described above, the concept of smooth min-entropy has been proposed [4,15].
Smooth entropy is defined as the maximal possible entropy within a certain
distance to a given distribution. More precisely, for a given entropy notion H(·)
(which is usually Renyi entropy, see Sect. 2 for its formal definition) we define
the ε-smooth entropy of X as the value of the following optimization program

maximize H(Y )
s.t. SD(X;Y ) � ε

(1)

where SD() stands for statistical (variational) distance (see Sect. 2) for a for-
mal definition). This definition is now well-suited for cryptographic applications,
because does not depend anymore on negligible variations of the probability dis-
tribution. In particular, setting ε = 2−80 for our AES example we obtain the
“correct” result of 256 bits of (smooth) entropy.

Importance of Smooth Entropy. Smooth Renyi entropy, formally introduced by
Renner and Wolf in [15], found many applications including privacy amplifica-
tion [13,15,19], information reconciliation [15] and quantum information the-
ory [17,18]. The technique of perturbing a distribution to get more-entropy was
actually known before. For example, entropy smoothing is implicitly used to
prove the Asymptotic Equipartition Property [10] or more concretely in the con-
struction of a pseudorandom generator from one-way functions [7–9]. However
the simple question

Question 1. How does the shape of optimal Y depend on X?

has not been fully understood so far. In this paper we answer Question 1 by
explicitly characterizing the shape of Y depending on X, and give some appli-
cations of the derived characterization.

1.2 Related Works and Our Contribution

Related Works. The problem of finding the optimal shape for Y has been
addressed in [13,15]. The authors argued intuitively that for min-entropy (which
is a special case of Renyi entropy, particularly useful in randomness extraction)
the optimal solution cuts down the biggest probabilities of X.

Our Contribution. We show that this characterization is not true, and the prob-
lem is more subtle: the optimal solution uses a threshold not a quantile cut (see
Fig. 1).

The precise answer to Question 1 is given in Theorem 1. We provide an intu-
itive explanation, as a three-step algorithm, in Fig. 2.

Theorem 1 (Optimal Renyi entropy smoothing). Let α > 1 be fixed, X
be an arbitrary distribution over a finite set and ε ∈ (0, 1). Let t ∈ (0, 1) be such
that

∑

x

max (PX(x) − t, 0) = ε, (2)
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1 − ε

ε

y = PX(x)

(a) Quantile Cut - a folklore so-
lution (TCC’05,ASIACRYPT’05), far
from optimal.

t

ε

1 − ε

ε

y = PX(x)

(b) Threshold Cut - our idea, nearly
optimal.

Fig. 1. Our result - the optimal shape for entropy smoothing

and Y be distributed according to

PY (x) =
min (t,PX(x))

1 − ε
. (3)

Then Y is nearly optimal, that is we have

SD(X;Y ) � ε (4)

and

Hα(Y ) � Hε
α(X) � Hα(Y ) +

α

α − 1
log

(
1

1 − ε

)
(5)

Corollary 1 (Tightness of Theorem 1). Note that for fixed α > 1 we have
α

α−1 log
(

1
1−ε

)
= O(ε). Thus, our solution differs from the ideal one by only

a negligible additive constant in the entropy amount, which is good enough for
almost all applications.

1.3 Tight No-Go Results for Extracting from Stateless Shannon
Sources

A stateless source (called also memoryless) is a source which produces conse-
cutive samples independently. While this is a restriction, it is often assumed by
practitioners working on random number generators (cf. [2,3,5,11]) and argued
to be reasonable under some circumstances (so called restart mode which enforces
fresh samples, see [3,5]). An important result is obtained from a more general fact
called Asymptotic Equipartition Property (AEP). Namely, for a stateless source
the min-entropy rate (min-entropy per sample) is close to its Shannon entropy
per bit. The convergence holds in probability, for large number of samples.
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(a) Find the treshold
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(b) Cut the mass above

t
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(c) Rescale

Fig. 2. Our result - details of optimal entropy smoothing

A variant of the AEP: The min entropy per bit in a sequence X1, . . . , Xn

of i.id. samples from X converges, when n → ∞, to the Shannon entropy
of X. More precisely

− logPX1,...,Xn
(·)

n

in probability−→ H(X), (6)

where the probability is taken over X1, . . . , Xn.

Thus, the AEP is a bridge connecting the heuristic use of Shannon entropy
as a measure of extractable randomness (practice) and the provable security
(randomness extractors theory). The best known quantitative form of Eq. (6)
appears in [9].

Lemma 1 (Asymptotic Equipartition Property [9]). Let X1, . . . , Xn be
i.i.d. samples from a distribution X of Shannon entropy k. Then the sequence
(X1, . . . , Xn) is ε-close to a distribution of min entropy kn−O

(√
kn log(1/ε)

)
.

Corollary 2. In particular, one can extract kn−O
(√

kn log(1/ε)
)

−2 log(1/ε)
bits which are ε-close to uniform (e.g. using independent hash functions [8] as
an extractor).

Based on Theorem 1 we reprove the following result which matches the bound in
[9]. Our result can be understood as the lower bound on the convergence speed
in the Asymptotic Equipartition Property given in Lemma1.

Theorem 2 (An upper bound on the extraction rate [16]). Let X1,X2, . . .
be of i.i.d. random variables, each of Shannon entropy k. Then from the sequence
(X1,X2, . . . , Xn) no extractor can get more than

N = kn − Θ(
√

kn log(1/ε)) (7)

bits which are ε-close (in the variation distance) to uniform (the constant under
Θ(·) depends on the source).
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Remark 1 (The bound is tight for most settings). Since from N bits of min-
entropy we can extract at least N − 2 log(1/ε) bits ε-close to uniform, and since
in most cases log(1/ε) = o(kn)

From Theorem 2 we conclude that the error in Eq. (6) is significant and has
to be taken into account no matter what the extractor is. It is worth of noting
that our separation between Shannon entropy and extractable entropy holds in
the most favorable case, when the bits are independent.

Corollary 3 (A significant error in the heuristic estimate). In the above
setting, the gap between the Shannon entropy and the number of extractable
bits ε-close to uniform equals at least Θ(kn − √

log(1/ε)). In particular, for the
recommended security level (ε = 2−80) we obtain the loss of kn − N ≈ √

80kn
bits, no matter what an extractor we use.

1.4 Organization

Notions we use, as well as some auxiliary technical facts, are explained in Sect. 2.
We prove our main result, that is Theorem 1, in Sect. 3. The proof of Theorem 2
appears in Sect. 4.

2 Preliminaries

2.1 Basic Definitions

The most popular way of measuring how two distributions are close is the sta-
tistical distance.

Definition 1 (Statistical Distance). The statistical (or total variation) dis-
tance of two distributions X,Y over the same finite set is defined as

SD (X;Y ) =
∑

x

|Pr[X = x] − Pr[Y = x]| (8)

We also say that X and Y are ε-close.

Below we recall the definition of Renyi entropy of order α. The logarithms are
taken at base 2.

Definition 2 (Renyi Entropy). The Renyi entropy of order α of a distribution
X equals Hα(X) = 1

1−α log (
∑

x Pr[X = x]α).

Choosing α → 1 and α → ∞ we recover two important notions: Shannon entropy
and min entropy.

Definition 3 (Shannon Entropy). The Shannon Entropy of a distribution X
equals H(X) = −∑

x Pr[X = x] log Pr[X = x].
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Definition 4 (Min Entropy). The min entropy of a distribution X equals
H∞(X) = −maxx log Pr[X = x].

Smooth Renyi Entropy is defined as the value of the program (1).

Definition 5 (Smooth Renyi Entropy, [4]). The ε-smooth Renyi entropy of
order α of a distribution X equals Hε

α(X) = maxY Hα(Y ) where the maximum
is taken over Y satisfying the constraint SD(X;Y ) � ε.

Definition 6 (Extractable Entropy, [14]). We say that X has k extractable
bits within distance ε, denoted Hε

ext(X) � k, if for some randomized function
Ext we have SD (Ext(X,S);Uk, S) � ε, where Uk is a uniform k-bit string and
S is an independent uniform string.

2.2 Technical Facts

We will need the following simple fact on convex functions

Proposition 1. Let f be a strictly convex differentiable real-valued function and
x < y. Then for any δ > 0 we have

f(x) − f(x − δ) � f(y) − f(y − δ).

Our proof uses the following characterization of “extractable” distributions.

Theorem 3 (AnUpperBoundonExtractableEntropy, [14]). IfHε
ext(X) �

k then X is ε-close to Y such that H∞(Y ) � k.

Another important fact we use is the sharp bound on binomial tails.

Theorem 4 (Tight Binomial Tails [12]). Let B(n, p) be a sum of independent
Bernoulli trials with success probability p. Then for γ � 3

4q we have

Pr [B(n, p) � pn + γn] = Q

(√
nγ2

pq

)
· ψ (p, q, n, γ) (9)

with the error term satisfies

ψ (p, q, n, γ) =

exp
(

nγ2

2pq
− nKL (p + γ ‖ p) +

1
2

log
(

p + γ

p
· q

q − γ

)
+ Op,q

(
n− 1

2

))
(10)

where KL (a ‖ b) = a log(a/b)+ (1−a) log((1−a)/(1− b) is the Kullback-Leibler
divergence, and Q is the complement of the cumulative distribution function of
the standard normal distribution.
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3 Proof of Theorem 1

We start by rewriting Eq. (1) in the following way

minimize

(
∑

x

(μ(x) + ε(x))α

) 1
α−1

s.t.

⎧
⎨

⎩

∑
x ε(x) = 0∑
x |ε(x)| = 2ε

∀x 0 � μ(x) + ε(x) � 1

(11)

where for the sake of clarity we replace PX by μX .

Claim. Let ε(x) be optimal for Eq. (11). Define S+ = {x : ε(x) < 0}. Then
μ(x) + ε(x) = μ(y) + ε(y) for all x, y ∈ S+. We will show the optimality by a
mass-shifting argument.

Proof (of Claim). Suppose that

ε(x1), ε(x2) < 0 and μ(x1) + ε(x1) > μ(x2) + ε(x2) > 0 (12)

for two different points x1, x2 (the statement is trivially true when there is only
one point). Take a number δ such that

0 < δ < min
(

−ε(x2),
(μ(x1) + ε(x1)) − (μ(x2) + ε(x2))

2

)
(13)

and modify μ by shifting the mass from x2 to x1 in the following way

ε′(x) =

⎧
⎨

⎩

ε(x), x 	∈ {x1, x2}
ε(x) − δ, x = x1

ε(x) + δ, x = x2

that is shifting the mass from the biggest point to the smallest point. Note that
from Eqs. (11) and (13) it follows that the constraints in (11) are satisfied with
ε(x) replaced by ε′(x). Let Y be a random variable distributed according to
PY (x) = μ(x) + ε(x) and let Y ′ be distributed as PY ′(x) = μ(x) + ε′(x). Note
that we have

∑

x

(μ(x) + ε′(x))α −
∑

x

(μ(x) + ε(x))α =

((PY (x2) + δ)α − (PY (x2))
α) − ((PY (x1))

α − (PY (x1) − δ)α)

Note that we have

PY (x2) < PY (x2) + δ < PY (x1) − δ < PY (x1)
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by Eqs. (12) and (13). Now from Proposition 1 applied to f(u) = uα, x =
PY (x2) + δ, y = PY (x2) and δ (here we also use the assumption α > 1), it
follows that

∑

x

(μ(x) + ε′(x))α −
∑

x

(μ(x) + ε(x))α < 0

which means Hα(Y ′) > Hα(Y ). In other words, Y is not optimal. 
�
By the last claim it is clear that there is a number t ∈ (0, 1) such that the set

S+ = {x : PY ∗(x) < μ(x)} is contained in {x : μ(x) � t} and that PY ∗(x) � t
for x ∈ S+. Therefore

∑

x

(PY ∗(x))α � # {x : μ(x) � t} · tα +
∑

x: μ(x)<t

(μ(x))α

=
∑

x

min (μ(x), t)α

� (1 − ε)α
∑

x

(PY (x))α (14)

which, since Hε
α(X) = Hα(Y ∗), proves the second inequality in Eq. (5). To prove

the first inequality in Eq. (5) note that

SD(X;Y ) =
∑

x: PX(x)>PY (x)

(PX(x) − PY (x)) =
∑

x: μ(x)>t/(1−ε)

(
μ(x) − t

1 − ε

)
.

Since t
1−ε > t we have

SD(X;Y ) =
∑

x: μ(x)>t/(1−ε)

(
μ(x) − t

1 − ε

)
�

∑

x: μ(x)>t

(μ(x) − t)

and therefore by Eq. (2) we obtain

SD(X;Y ) <
∑

x: μ(x)>t

(μ(x) − t) = ε.

which finishes the proof.

4 Proof of Theorem 2

4.1 Characterizing Extractable Entropy

We state the following fact with an explanation in Fig. 3.

Lemma 2 (Lower bound on the extractable entropy). Let X be a distri-
bution. Then for every distribution Y which is ε-close to X, we have H∞(Y ) �
− log t where t satisfies

∑

x

max(PX(x) − t, 0) = ε. (15)

The proof follows by Theorem1.
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t =?
ε

1 − ε

ε

y = PDF(x)

Fig. 3. Entropy Smoothing Problem. For a given probability density function, we want
to cut a total mass of up to ε above a possibly highest threshold (in dotted red) and
rearrange it (in green), to keep the upper bound smallest possible (Color figure online)

Without losing generality, we assume from now that X ∈ {0, 1} where
Pr[X = 1] = p, q = 1 − p. Define Xn = (X1, . . . , Xn). For any x ∈ {0, 1}n

we have

Pr[Xn = x] = p‖x‖qn−‖x‖. (16)

According to the last lemma and Theorem 3, we have

Hε
ext (Xn) � − log t (17)

where
∑

x

max (PXn(x) − t, 0) = ε. (18)

From now we assume that

t = ppn+γnqqn−γn. (19)

4.2 Determining the Threshold t

The next key observation is that t is actually small and can be omitted. That
is, we can simply cut the (1 − ε)-quantile. This is stated in the lemma below.

Lemma 3 (Replacing the threshold by the quantile). Let x0 ∈ {0, 1}n be
a point such that ‖x0‖ = pn + γn. Then we have

∑

x: ‖x‖�‖x0‖
max (PXn(x) − PXn(x0)) � 1

2

∑

x: ‖x‖�‖x0‖
PXn(x) (20)
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To prove the lemma, note that from Theorem 4 it follows that setting

γ′ = γ + n−1 log
(

p

q

)
(21)

we obtain

∑

j�pn+γ′n

(
n

j

)
� 3

4
·

∑

j�pn+γn

(
n

j

)
(22)

when γ is sufficiently small comparing to p and q (formally this is justified by
calculating the derivative with respect to γ and noticing that it is bigger by at
most a factor of 1 + γ√

npq ). But we also have

pjqn−j � 2 · p(p+γ)nq(q−γ)n for j � γ′n (23)

Therefore,

∑

j�pn+γn

(
n

j

)
pjqn−j �

∑

j�pn+γ′n

(
n

j

)
pjqn−j

� 2 · p(p+γ)nq(q−γ)n ·
∑

j�pn+γ′n

(
n

j

)

� 2 · 3
4

· p(p+γ)nq(q−γ)n ·
∑

j�pn+γn

(
n

j

)
(24)

which finishes the proof.

4.3 Putting This All Together

Now, by combining Lemmas 2 and 3 and the estimate Q(x) ≈ x−1 exp(−x2/2)
for x � 0 we obtain

ε � exp
(

−nKL (p + γ ‖ p) − log
(

nγ2

2pq

)
+ Op,q(1)

)
(25)

which, because of the Taylor expansion KL (p + γ ‖ p) = γ2

2pq + Op,q(γ3), gives
us

γ � Ω

(√
log(1/ε)

pqn

)
(26)

Setting γ = c ·
√

log(1/ε)
pqn , with sufficiently big c, we obtain the claimed result.
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