
On Parity Game Preorders
and the Logic of Matching Plays

M.W. Gazda and T.A.C. Willemse(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
t.a.c.willemse@tue.nl

Abstract. Parity games can be used to solve satisfiability, verification
and controller synthesis problems. As part of an effort to better under-
stand their nature, or the nature of the problems they solve, preorders on
parity games have been studied. Defining these relations, and in partic-
ular proving their transitivity, has proven quite difficult on occasion. We
propose a uniform way of lifting certain preorders on Kripke structures
to parity games and study the resulting preorders. We explore their rela-
tion with parity game preorders from the literature and we study new
relations. Finally, we investigate whether these preorders can also be
obtained via modal characterisations of the preorders.

1 Introduction

Parity games [6,15] are two player games played on a directed graph. These
games are interesting as they underpin, e.g. solutions to verification, satisfiabil-
ity and synthesis problems, see [2,7] and they appear as solution to fundamen-
tal problems such as complementing tree automata [6]. The problem of solving
a parity game (computing the set of vertices won by each player) is one of those
rare problems that are in NP∩coNP, and for which no polynomial time algorithm
has yet been found.

In an effort to increase the general understanding of the parity game solv-
ing problem or of those problems mapped to parity game solving, preorders on
parity games have been studied on various occasions and for different purposes.
For instance, in [13], Namjoshi investigated simulation in the context of abstrac-
tion using a variant of parity games called model checking games, leading to
a framework that was complete (in the sense of having finite abstract objects)
for the μ-calculus; in [8], Fritz and Wilke [8] defined and studied delayed sim-
ulation, an adaptation of simulation; Cranen et al. [3,4] studied variations of
stuttering bisimulation for parity games; Kissig and Venema [12] defined basic
game bisimulation for studying complementation. Dawar and Grädel [5] defined
yet two other forms of bisimulation on parity games by viewing these as rela-
tional structures; their purpose is to analyse the descriptive complexity of parity
games.

For the most part, the preorders on parity games are inspired by similar rela-
tions on computational models such as Kripke structures or Labelled Transition
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Systems. However, there seems to be no systematic method by which the afore-
mentioned parity game relation have been obtained from a relation on a compu-
tational model, as testified by the existence of several variations of bisimulation
on parity games. Moreover, defining new relations on parity games, showing
transitivity and proving that they approximate the winning set of some player
can be quite cumbersome; for instance, proving transitivity of delayed simulation
required analysing 24 different cases, see [8], and in [4], the proof that governed
stuttering bisimilarity is an equivalence relation is technically involved, requiring
a step-wise rephrasing of the definition and intricate arguments.

The contributions of this paper are as follows. We propose a novel, more
generic method for obtaining a parity game relation from a relation on a com-
putational model. It is based on the notion of matching paths, which we lift
naturally to matching plays. In this approach, we can lift any preorder on
a computational model that can be specified using the matching paths to a cor-
responding preorder in the parity game setting. Moreover, we identify conditions
that guarantee that the resulting relation is a preorder and that it approximates
the winning set of a particular player.

We exemplify our approach using a number of well-known and some less-
known relations on Kripke structures and show that some of the thus obtained
relations coincide with existing parity game relations. Finally, for all the relations
we study in detail, we provide logical characterisations, by identifying sound
and complete fragments of an alternating-time temporal logic for the respective
relations. The logical characterisations reveal interesting differences between the
behavioural relations and the induced parity game relations.

Structure. In Sect. 2, we recall the basics of parity games. Then, in Sect. 3, we
introduce our generic scheme for obtaining parity game relations. In Sect. 4, we
show how this theory can be applied to recover existing and define new parity
game preorders; in Sect. 5, we provide modal characterisations of these relations.
We finish with conclusions in Sect. 6. Proofs for all results can be found in [10].

2 Preliminaries

A parity game is an infinite duration game, played by players odd, denoted by
� and even, denoted by �, on a directed, finite graph.

Definition 1. A parity game is a tuple 〈V,E,Ω, (V�, V�)〉, where

– V is a set of vertices, partitioned in a set V� of vertices owned by player �,
and a set of vertices V� owned by player �,

– E ⊆ V × V is a total edge relation, i.e. for all v, (v, w) ∈ E for some w,
– Ω:V → N is a priority function that assigns priorities to vertices.

We depict parity games as graphs in which diamond-shaped vertices represent
vertices owned by player �, box-shaped vertices represent vertices owned by
player � and priorities, associated with vertices, are written inside vertices; see
Fig. 1(a) and (b) for examples.
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Fig. 1. (a) Left: A parity game with three different priorities. (b) Right: A parity game
with four different priorities.

We use the following notational conventions: we write v → w instead of
(v, w) ∈ E, and we write v• for the set {w ∈ V | v → w}. Henceforth, � denotes
an arbitrary player. We write �̄ for �’s opponent; i.e. �̄ = � and �̄ = �.
Finally, given the set of vertices V , the subset of vertices of V with priority n is
denoted Vn: we have Vn = {v ∈ V | Ω(v) = n}.

A play starts by placing a token on some vertex v ∈ V . Players � and �
move the token indefinitely according to a single simple rule: if the token is on
some vertex that belongs to player �, that player gets to move the token to an
adjacent vertex. The parity of the highest priority that occurs infinitely often on
a play defines the winner of the play: player � wins if, and only if this priority
is even. This is known as the parity condition.

A strategy for player � is a partial function σ:V ∗ → V satisfying that for
all sequences of vertices u1 · · · un ∈ V ∗ on which σ is defined, both un ∈ V� and
σ(u1 · · · un) ∈ u•

n. The set of all strategies for player � is denoted S
∗�.

Let π = v1 v2 v3 · · · , with v1 = v be a play starting in v. We denote the
i-th vertex on π by πi; that is, πi = vi. Play π is consistent with a strategy
σ ∈ S

∗� if all prefixes v1 · · · vn of π for which σ(v1 · · · vn) is defined, we have
vn+1 = σ(v1 · · · vn). The set of plays consistent with strategy σ, starting in
v is denoted Plays(σ, v); we sometimes refer to this set as the set of σ-plays.
A strategy σ is winning for player � from vertex v iff all plays consistent with σ
are won by �. Vertex v is won by player � whenever she has a winning strategy
for vertex v.

Example 1. In the parity game depicted in Fig. 1(a), v1, v2, v5 are won by player�, and player � wins the remaining vertices.

Let C,D ⊆ V be sets of vertices. We generalise the one-step reachability relation
E to (forced) reachability, where reachability is confined to a set of vertices. Let
v ∈ V .

v �→ D =
{

v• ∩ D �= ∅ if v ∈ V�
v• ⊆ D otherwise

v � 
→C D = ∃σ ∈ S
∗� : ∀π ∈ Plays(σ, v) : ∃k : πk ∈ D ∧ ∀j < k : πj ∈ C

v � 
→C = ∃σ ∈ S
∗� : ∀π ∈ Plays(σ, v) : ∀k : πk ∈ C

Finally, let R ⊆ V ×V be a relation on V . The set of vertices below some vertex
v, denoted Rv, is the set {w ∈ V | w R v}; the set of vertices above v, denoted
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vR, is defined as {w ∈ V | v R w}. Note that in the special case that R is an
equivalence relation, we have Rv = vR. For a set U ⊆ V , we write UR for the
set

⋃
v∈U vR; likewise for RU , and if R is an equivalence relation, we write V/R

for the set of equivalence classes (quotient set) of R.

3 Inducing Parity Game Preorders and Equivalences

In the past, behavioural relations for transition systems, such as the simulation
preorder and bisimulation, have been ported to parity games, see [3–5,8,9,12].
These efforts, however, did not appear to have followed a general guiding princi-
ple. In this section, we propose a scheme for lifting particular types of behavioural
preorders for Kripke structures to parity game preorders. More specifically, the
Kripke structure preorders and equivalences we consider are those that can be
phrased in terms of matching paths.

Let K = 〈S, T,AP,L〉 be an arbitrary Kripke structure, where S is a (possibly
infinite) set of states, T ⊆ S×S is a total transition relation, AP is a set of atomic
propositions and L:S → P(AP) is a state labelling function. A path through K,
starting in some state s1 ∈ S, is an infinite sequence of states s1 s2 s3 . . . for
which (si, si+1) ∈ T for all i, and Paths(s) denotes the set of paths starting in s.

Let, within the context of some Kripke structure K, Rel(R) denote a predicate
on relations R ⊆ S × S on K’s states. Think, for instance, of the predicate that
a relation R is a simulation relation. For given predicate Rel and relation R, a
matching predicate is a predicate Rel−matchL

R(πt, πs) on paths πt and πs in K,
and K’s labelling L and the relation R on K’s states satisfying:

Rel(R) iff ∀(s, t) ∈ R : ∀πs ∈ Paths(s) : ∃πt ∈ Paths(t) : Rel−matchL
R(πt, πs)

Note that matching predicates do not use K’s transition relation T .

Example 2. A typical instance of Rel is the simulation predicate Sim: for R ⊆
S × S, Sim(R) holds iff for all (s, t) ∈ R we have L(s) = L(t) and for any
s′ ∈ S with (s, s′) ∈ T , there is a t′ ∈ S for which (t, t′) ∈ T and (s′, t′) ∈ R. An
associated matching predicate Sim−matchL

R(π, π′) is ∀i : L(π′
i) = L(πi)∧π′

i R πi.

In case a matching predicate is to be interpreted on a parity game, we use
the priority function Ω as the state labelling function, writing Rel−matchΩ

R .
A matching predicate Rel−matchL is monotonic if Rel−matchL

R(πt, πs) implies
Rel−matchL

R′(πt, πs) for all R ⊆ R′.

Definition 2. Let G = 〈V,E,Ω, (V�, V�)〉 be a parity game and let Rel−matchL
R

be a matching predicate for a predicate Rel on Kripke structure relations. A rela-
tion R ⊆ V × V is a parity game Rel-relation whenever v R w implies that for
all strategies σv ∈ S

∗�, there is a strategy σw ∈ S
∗� such that

∀πw ∈ Plays(σw, w) : ∃πv ∈ Plays(σv, v) : Rel−matchΩ
R(πw, πv)

We write v �Rel w iff for some parity game Rel-relation R we have v R w.
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Example 3. A relation R ⊆ V ×V is a parity game Sim-relation whenever v R w
implies that for all strategies σv ∈ S

∗�, there is a strategy σw ∈ S
∗� such that

∀πw ∈ Plays(σw, w) : ∃πv ∈ Plays(σv, v) : ∀i : Ω(πv,i) = Ω(πw,i) ∧ πv,i R πw,i

In Sects. 4.1 and 4.2, we study further instances of Definition 2, showing that
the theory of this section can be used to recover existing parity game relations
(Sect. 4.1) and how it can be used to obtain new parity game relations (Sect. 4.2).
For the remainder of this section, we focus on establishing under which conditions
one can prove the resulting parity game relations are preorders and when they
can be used to approximate the winning partition for player �. The theorem
below shows that an induced parity game Rel-relation is a preorder whenever a
simple monotonicity criterion for the matching predicate holds.

Theorem 1. Assume that for all preorders R for which Rel holds, Rel−matchL
R

is a preorder, too. If Rel−matchL is monotonic, then �Rel is a preorder.

Under similar conditions, one can prove that �Rel is an equivalence relation.
The next theorem states that we can conclude that the parity game relations
under-approximate the winning partition for player � from a simple condition
on the matching predicate.

Theorem 2. Let R be a parity game Rel-relation. Assume v R w and suppose
that for all πv, πw, if Rel−matchΩ

R(πw, πv) and πv is won by � then so is πw. If
v is won by �, then w is won by �.

4 Applications

We first illustrate how the theory we developed in the previous section can be
put to use to recover preorders and equivalences already present in the literature.
More specifically, we show that governed simulation [11], also known as direct
simulation [8,9], governed bisimulation [11] and governed stuttering bisimula-
tion [4] are all instances of our general theory. We then proceed to show that we
can also obtain relations that did not appear in the literature.

4.1 Existing Parity Game Relations

Consider the Kripke structure Rel predicates for simulation, bisimulation and
stuttering bisimulation (aka stuttering equivalence), listed in Table 1. For lack of
space, we refrain from giving the standard definition of these predicates, given
that these can be found in most standard textbooks, and since these predicates
are essentially also defined via their matching predicates next to them. Note that
also the latter can be found in the literature (although less commonly).

Using the Rel-predicates of Table 1 and Definition 2, we immediately obtain
parity game simulation, parity game bisimulation and parity game stuttering
bisimulation. One can check with little effort that the matching predicates for
simulation, bisimulation and stuttering bisimulation meet the conditions of The-
orems 1 and 2. As a result, we can claim the following:
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Table 1. Matching predicates for well-known behavioural relations; R is a relation on
states, L is a state labelling function, and π, π′ are infinite sequences of states

Rel Rel−matchL
R(π, π′)

Simulation For all i, L(π′
i) = L(πi) and π′

i R πi.

Bisimulation For all i, L(π′
i) = L(πi), π

′
i R πi and πi R π′

i .

Stuttering bisimulation There is a non-decreasing, unbounded function f : ω → ω
with f(1) = 1 such that for all i and all
j ∈ [f(i), f(i + 1)), L(π′

i) = L(πj), π
′
i R πj and πj R π′

i.

Proposition 1. Relation �simulation is a preorder and relations �bisimulation

and �stuttering bisimulation are equivalences. Moreover, all three relations under-
approximate the winning set for player �.

Definition 3. A relation R is a governed simulation iff for all v R w:

1. Ω(v) = Ω(w),
2. if v ∈ V�, then for each v → v′ we have w �→ v′R,
3. if v ∈ V�, then w �→ v•R.

We write v ≤ w iff there is a governed simulation R such that v R w. A rela-
tion R ⊆ V × V is a governed bisimulation if both R and R−1 are governed
simulations. We write v ↔ w iff for some governed bisimulation R, v R w.

The example below illustrates governed simulation and governed bisimulation.

Example 4. Consider the parity game of Fig. 1(a). We have v3 ↔ v4, because,
even though both vertices belong to different players, neither player can force
play to vertices of different priorities. On the other hand, v1 ↔ v2 does not hold.

The theorem below confirms that governed similarity and governed bisimilarity
coincide with the preorder and equivalence induced by Definition 2 using the
simulation and bisimulation matching predicates of Table 1.

Theorem 3. We have ≤= �simulation and ↔ = �bisimulation.

Next, we focus on the notion of governed stuttering bisimulation [4].

Definition 4. An equivalence relation R ⊆ V ×V is a governed stuttering bisim-
ulation iff v R w then

1. Ω(v) = Ω(w),
2. for any v → C with C ∈ V/R \ {vR} and v ∈ V�, then w � 
→vR C,
3. for any player �, we have v � 
→vR iff w � 
→vR.

We write v ↔ s w iff there is a governed stuttering bisimulation R such that
v R w.
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Example 5. Reconsider the parity game from Fig. 1(a). Observe that we did not
have v1 ↔ v2. However, we do have v1 ↔ s v2: player � is capable of enforcing
divergent plays (plays that only pass through vertices with the same priority),
and it is capable of enforcing plays to reach vertices with priority 1. ��
Governed stuttering bisimulation coincides with parity game stuttering bisimu-
lation; this confirms that governed stuttering bisimulation naturally generalises
Kripke structure stuttering bisimulation to the parity game setting.

Theorem 4. We have ↔ s= �stuttering bisimulation.

4.2 Two New Parity Game Relations

So far, we have illustrated that Definition 2 can be used to recover parity game
relations from the literature, and that Theorems 1 and 2 are instrumental in
establishing that the resulting parity game relations are preorders and that they
approximate the winning set for player �. In this section, we show that Def-
inition 2 immediately gives us definitions for parity game trace inclusion and
parity game stuttering simulation; these relations have so far not appeared in
the literature. Consider the matching predicates listed in Table 2.

Table 2. Matching predicates for behavioural relations; R is a relation on states, L is
a state labelling function, and π, π′ are infinite sequences of states

Rel Rel−matchL
R(π, π′)

Trace inclusion For all i, L(π′
i) = L(πi).

Stuttering simulation There is a non-decreasing, unbounded function f : ω → ω with
f(1) = 1 such that for all i and all j ∈ [f(i), f(i + 1)),
L(π′

i) = L(πj) and π′
i R πj

Stuttering simulation for Kripke structures is coarser than simulation: it
allows for abstracting from finite computations through states with the same
information and computational branching structure. Trace inclusion is even
coarser than stuttering simulation. Both stuttering similarity and trace inclu-
sion for Kripke structures are known to be preorders. Theorem1 allows us to
establish that the parity game relations they induce are preorders too. Theo-
rem 2 again allows us to conclude that both preorders under-approximate the
winning partition for player �.

Proposition 2. Relations �stuttering simulation and �trace inclusion are preorders.
Both preorders under-approximate the winning partition for player �.

We next focus on giving a coinductive definition for parity game stuttering simu-
lation. Apart from providing a deeper understanding of this relation, and under-
standing how it compares to the ones from the previous section, the coinductive
definition gives rise to a polynomial time algorithm for deciding this relations.

Definition 5. A preorder R ⊆ V × V is a governed stuttering simulation iff
v R w implies:
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1. Ω(v) = Ω(w),
2. left-to-right even transfer:

(a) if v ∈ V�, then for all v → vs we have w � 
→vR vsR,
(b) if v ∈ V�, then w � 
→vR v•R,

3. right-to-left odd transfer:
(a) if w ∈ V�, then v � 
→Rw Rw•

(b) if w ∈ V�, then for all w → ws, we have v � 
→Rw Rws

We write v ↔ s w iff there is a governed stuttering bisimulation R such that
v R w.

For the above coinductive definition of our parity game stuttering simulation
relation one can deduce that a symmetric relation that meets its properties is a
governed stuttering bisimulation relation—a basic sanity check for the correct-
ness of the definition. The link with governed stuttering bisimulation is, however,
not obvious. We have the following theorem relating governed stuttering simu-
lation to parity game stuttering simulation.

Theorem 5. We have ≤s= �stuttering simulation.

Governed stuttering simulation can be computed in polynomial time; we sketch
a naive algorithm based on fixpoint iteration. We start with a trivial relation
R that relates all states with the same priorities. Upon every iteration, every
pair (s, t) ∈ R is checked as to whether the conditions of Definition 5 hold; if it
is not the case, the pair is removed from R; thus every iteration a monotonic
transformer is applied that after at most a quadratic number of steps will reach
a fixpoint. As for checking that s, t and R meet the conditions of Definition 5,
the main source of the complexity is in computing the � 
→ relation. The latter
can be done in O(|V |+ |E|) time using a modified attractor computation [4] and
such a computation is performed for O(|V |) successors. This means that deciding
governed stuttering simulation can be done in at most O(|V |5 · (|V | + |E|)).

We remark that we did not strive to have optimal running times for decid-
ing the preorders in this section. We leave it for future research to tighten our
bounds. For deciding governed stuttering simulation, it may be fruitful to incor-
porate ideas from [14], which describes, as far as we could trace, the first algo-
rithm for stuttering simulation in the Kripke structure setting.

5 Logical Characterisations of Parity Game Relations

An alternative approach to defining a behavioural preorder is by identifying
an appropriate fragment of a modal logic. A natural question is thus whether,
given a fragment of a modal logic for Kripke structures that coincides with
a given preorder, there is a uniform way of obtaining a fragment of a modal
logic for parity games that coincides with the parity game relation. While a
logical characterisation of a behavioural relation offers an alternative angle for
understanding it, and, as such, is interesting to study in its own right, our results
in this section suggest it is unlikely such a uniform method exists.
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5.1 A Modal Logic for Parity Games

The logic we consider is called the Alternating-time Hennessy-Milner logic with
Until. It is essentially based on the alternating-time temporal logic of [1], but its
syntax is inspired by Hennessy-Milner logic for Labelled Transition Systems. Our
syntax facilitates characterising all relations we study in this paper by imposing
restrictions on our base grammar.

Definition 6. The Alternating-time Hennessy-Milner logic with Until, hence-
forth referred to as the logic AHML, is defined as follows:

φ, ψ: := ⊥ | � | ¬φ | 〈n〉� φ | φ ∧ ψ | φ ∨ ψ | φ 〈〈n〉〉� ψ | φ 〈〈n〉〉∞� ψ

where n ∈ N and � ∈ {�,�}. The semantics of AHML formulae is defined
inductively in the context of a parity game G = 〈V,E,Ω, (V�, V�)〉:

�⊥� = ∅
��� = V
�¬φ� = V \ �φ�
�〈n〉�φ� = 〈·n·〉��φ�
�φ ∧ ψ� = �φ� ∩ �ψ�
�φ ∨ ψ� = �φ� ∪ �ψ�
�φ 〈〈n〉〉� ψ� = (Vn ∩ �ψ�) ∪ μV ′ ⊆ V.(�φ� ∩ (〈·n·〉��ψ� ∪ 〈·n·〉�V ′))
�φ 〈〈n〉〉∞� ψ� = (Vn ∩ �ψ�) ∪ νV ′ ⊆ V.(�φ� ∩ (〈·n·〉��ψ� ∪ 〈·n·〉�V ′))

where, for W ⊆ V and n ∈ N, operator 〈·n·〉�W yields the set {v ∈ Vn | v �→ W}.
We write v |= φ iff v ∈ �φ�.

Intuitively, 〈n〉� φ holds in vertices with priority n (i.e. those from the set Vn)
for which � can force play to vertices satisfying φ. The strong until operator
φ 〈〈n〉〉� ψ holds in vertices with priority n for which � can govern the plays
through φ vertices, ultimately reaching ψ vertices. The weak until operator
φ 〈〈n〉〉∞� ψ is more or less the same but also holds whenever � governs plays
through φ-invariant vertices. Observe that our use of fixpoints in the semantics
is permitted as the associated predicate transformers to which they are applied
are monotonic and the set (2V ,⊆) is a complete lattice. The example below
illustrates typical properties one can express using AHML.

Example 6. Reconsider the parity game depicted in Fig. 1(a). Observe that v1 |=
〈0〉�� and v1 |= 〈0〉��. We have v3 |= � 〈〈1〉〉∞� ⊥ and v3 |= � 〈〈1〉〉∞� ⊥; we also
have v2 |= � 〈〈0〉〉∞� ⊥ but v2 �|= � 〈〈0〉〉∞� ⊥. Moreover, we have v7 |= (〈1〉��) 〈〈2〉〉�
¬(〈0〉��) because v7 has (1) priority 2 as demanded by the until operator and
(2) satisfies the goal formula ¬(〈0〉��). ��
In general, we are interested in comparing the “observations” that we can make
in different vertices in a parity game; that is, we wish to compare the set of modal
formulae satisfied by different vertices. We formalise observations as follows.

Definition 7. Let L be a fragment of AHML. We write OL(v) to denote the set
of formulae φ ∈ L for which v |= φ.
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5.2 Characterising Preorders Using AHML

Throughout this section, we assume that G = 〈V,E,Ω, (V�, V�)〉 is an arbitrary
parity game. In Table 3, we list the sound and complete fragments of the modal
logic of Sect. 5.1 and the relations of Sects. 4.1 and 4.2.

Table 3. Parity game preorders and equivalences and their corresponding sound and
complete fragments of AHML with their grammars. In these grammars, n ∈ N

Relation Fragment Grammar

≤ AHML≤ φ, ψ: := � | 〈n〉� φ | φ ∧ ψ | φ ∨ ψ

↔ AHML↔ φ, ψ: := � | ¬φ | 〈n〉� φ | φ ∧ ψ | φ ∨ ψ

≤s AHML≤s φ, ψ: := � | φ ∧ ψ | φ ∨ ψ | φ 〈〈n〉〉� ψ | φ 〈〈n〉〉∞� ψ

↔ s AHML↔ s φ, ψ: := � | ¬φ | φ ∧ ψ | φ ∨ ψ | φ 〈〈n〉〉� ψ | φ 〈〈n〉〉∞� ψ

≤t AHML≤t φ: := � | ∨
n∈N

〈n〉�φn (∅ �= N ⊂ N is a finite set of priorities)

Before we address the soundness and completeness of the fragments of the
modal logic listed in Table 3, we first point out that there are interesting and
fundamental differences with the modal characterisations for the preorders on
computational models such as Kripke structures. For instance, disjunction is a
necessary part of the logic for the simulation relations in the parity game setting:
without it, one cannot show that w ≤ v does not hold in the following game:

1v 2

2

2

4

3

2

2

2 1 w

While disjunction can be part of the characteristic logic for the corresponding
Kripke structure preorders, there, it is redundant: it does not add to the distin-
guishing power of the modal logic. This can be explained by the phenomenon
that in the Kripke structure setting, it suffices to describe one fixed behaviour. In
the parity game setting, one must be able to express that a player can guarantee
(i.e. regardless of the strategies of her opponent) a certain set of behaviours; this
requires disjunctions. As we will show in Example 9, it is also not the case that
disjunction can be added harmlessly to the characteristic logic for a parity game
preorder. This suggests there is no easy way to obtain a modal characterisation
for a parity game preorder from a modal characterisation of a Kripke structure
preorder.

We next state the relation between the fragments identified in Table 3 and the
studied preorders, and we illustrate these correspondences using small examples.

Theorem 6. Let v, w be arbitrary vertices in G. Then:

1. v ≤ w iff OAHML≤
(v) ⊆ OAHML≤

(w);
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2. v ↔ w iff OAHML ↔
(v) = OAHML ↔

(w);

Example 7. Consider the parity game of Fig. 1(a). Recall that v1 ≤ v2, see
Example 4. We thus have OAHML≤

(v1) ⊆ OAHML≤
(v2). For instance, both v1 and

v2 satisfy 〈0〉�〈0〉��. However, we do not have v2 ≤ v1. This follows from the fact
that 〈0〉�〈1〉�� is a distinguishing formula that holds in v2, but fails for v1. ��
Theorem 7. Let v, w be arbitrary vertices in G. Then

1. v ≤s w iff OAHML≤s (v) ⊆ OAHML≤s (w).
2. v ↔ s w iff OAHML ↔ s (v) = OAHML ↔ s (w).

Example 8. One can check that in the parity game of Fig. 1(a), we do not have
v5 ≤s v2. This is confirmed by the formula (� 〈〈0〉〉� �) 〈〈0〉〉�(� 〈〈2〉〉� �) that
expresses that through vertices with priority 0, a vertex with priority 2 can be
reached. It holds in v5, but not in v2. ��

The relation between parity game trace inclusion and AHML≤t is given below.

Theorem 8. For all v, w ∈ V , we have v�trace inclusionw iff OAHML≤t (v) ⊆
OAHML≤t (w).

The fragment of AHML needed to characterise the parity game trace inclusion
preorder is non-obvious. In particular, the restriction on AHML≤t to at all depths
of the formulae only allow for 〈n〉� for which the priorities are distinct is needed
to reduce player �’s powers. Omitting this constraint and allowing for arbitrary
disjunctions will lead to a finer relation, as shown by the example below.

Example 9. Consider the parity game depicted below.

1v 1

1

0 1

1 1 w

Clearly, we have v ≤t w. By Theorem 8 we have OAHML≤t (v) ⊆ OAHML≤t (w).
Note that we also have w ≤t v. However, we have w |= 〈1〉�(〈1〉�〈1〉�� ∨
〈1〉�〈0〉��) but v �|= 〈1〉�(〈1〉�〈1〉�� ∨ 〈1〉�〈0〉��). Omitting the constraint on
the disjunctions would therefore lead to incorrect distinguishing formulae. ��

6 Conclusions

We proposed a scheme for lifting preorders on Kripke structures that can be
defined through matching paths to preorders on parity games. We showed that
our scheme can be used to recover preorders for parity games that have already
been defined in the literature. Moreover, we demonstrated that we can easily
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construct new ones, such as parity game trace inclusion and parity game stut-
tering simulation, and prove such new relations are preorders (or equivalences)
and that they approximate the winning partition of player �.

Our scheme for obtaining parity game relations from existing behavioural
relations also extends to other relations by choosing different parameters for
the matching predicate. For instance, the bisimulation of [5] on parity games
with a finite number of priorities can be recovered using the matching predicate
bisimulation−matchL

R, where L(v) = {Ω(v),� | v ∈ V�}; that is, the vertex
labelling is extended with information which player owns the vertex. Observe
that the resulting relation is finer than the ones studied in this paper.

Lastly, we provided modal characterisations of all parity game relations stud-
ied. Given the fundamental differences between these modal characterisations
and their Kripke structure counterparts, we deem it highly unlikely that a logi-
cal approach to a systematic way of obtaining parity game relations from Kripke
structure relations will be successful.
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