
The Complexity of Paging Against
a Probabilistic Adversary

Stefan Dobrev1, Juraj Hromkovič2, Dennis Komm2(B), Richard Královič3,
Rastislav Královič4, and Tobias Mömke5

1 Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia
stefan.dobrev@savba.sk

2 Department of Computer Science, ETH Zürich, Zurich, Switzerland
{juraj.hromkovic,dennis.komm}@inf.ethz.ch

3 Google Inc., Zurich, Switzerland
richard.kralovic@dcs.fmph.uniba.sk

4 Department of Computer Science, Comenius University, Bratislava, Slovakia
kralovic@dcs.fmph.uniba.sk

5 Saarland University, Saarbrücken, Germany
moemke@cs.uni-saarland.de

Abstract. We consider deterministic online algorithms for paging. The
offline version of the paging problem, in which the whole input is given
in advance, is known to be easily solvable. If the input is random,
chosen according to some known probability distribution, an O(log k)-
competitive algorithm exists. Moreover, there are distributions, where
no algorithm can be better than Ω(log k)-competitive.

In this paper, we ask the question of what happens if it is known
that the input is one from a set of � potential candidates, chosen accord-
ing to some probability distribution. We present an O(log �)-competitive
algorithm, and show a matching lower bound.

1 Introduction

In algorithmics, that is, the “study of algorithms” [12], one is concerned with
constructing and analyzing algorithms for given computing problems that per-
form well with respect to some given constraints, for instance, being efficient or
obtaining some specific solution quality. In a classical setup, an input is given
to an algorithm, and some particular information needs to be extracted. This
is usually done while having full knowledge about the input. For instance, the
information that needs to be extracted may be a cheapest Hamiltonian cycle
that is “hidden” in an instance that corresponds to a complete weighted graph.
Many computing problems, however, are what is called “intrinsically online”
which means that the whole input is not known in advance, but arrives gradu-
ally in consecutive time steps while a part of the definite output already needs

The research is partially funded by SNF grant 200021–146372, VEGA grant
1/0979/12, and Deutsche Forschungsgemeinschaft grant BL511/10-1.

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 265–276, 2016.
DOI: 10.1007/978-3-662-49192-8 22

266 S. Dobrev et al.

to be created. Typical members of this class are scheduling or packing problems,
and various kinds of resource management problems.

Such problems are called “online problems” [1,6,15,22], and they are found
in many real-world situations. One of the most prominent and well-understood
online problems is the paging (caching) problem. Here, an online algorithm
maintains a cache containing up to k logical pages out of m possible ones.
The input is a sequence of n requests for logical pages, and the algorithm has to
process each request: if the requested page is in the cache (this is called a cache
hit), nothing happens; if not (which is called a cache miss, or page fault), the
algorithm has to evict one page from the cache, and replace it with the requested
one. The goal of the algorithm is to process the input while minimizing the num-
ber of page faults. Let us give a formal definition; for the ease of presentation,
we identify pages with their indices.

Definition 1 (Paging Problem). An instance of the paging problem is a
sequence of integers representing requests to logical pages I = (x1, x2, . . . , xn),
xi > 0. An online algorithm Alg maintains a buffer (content of the physi-
cal memory) B = {b1, b2, . . . , bk} of k integers, where k is a fixed constant
known to Alg. Before processing the first request, the buffer gets initialized as
B = {1, 2, . . . , k}. Upon receiving a request xi, if xi ∈ B, then Alg creates the
partial output yi = 0. If xi �∈ B, then a page fault occurs, and Alg has to find
some victim bj, that is, B := B\{bj}∪{xi}, and yi = bj. The cost of the solution
Alg(I) is the number of page faults, that is, cost(Alg(I)) = |{i | yi > 0}|.

In this paper, we consider deterministic online algorithms for the paging
problem. The performance of an algorithm is measured by the competitive ratio
(which basically is the online counterpart of the approximation ratio1 for offline
problems) where the cost of the algorithm on a particular input I is compared
to an optimal solution for I. In a very general setting, one may consider the
inputs to come from a probability distribution ρ over all possible inputs. The
quality of a solution depends on the data model that specifies two orthogonal
aspects of the setting. First, the data model specifies the class of possible input
distributions P; an algorithm Alg is called c-competitive if there is a constant
α, such that

∀ρ ∈ P : Eρ

[
cost(Alg(I)) − α

cost(Opt(I))

]
≤ c (1)

where the instance I is taken according to the distribution ρ. Second, the data
model specifies what information about the distribution ρ is known to the algo-
rithm.

When P is the class of all point mass distributions (that is, distributions where
one particular input has probability 1), the impact of the algorithm’s knowledge
has been widely studied. One extreme case is when the whole point mass dis-
tribution (that is, the input) is known to the algorithm; this corresponds to the

1 Note that unlike offline algorithms, in an online setting we usually ignore the running
time of the algorithm.

The Complexity of Paging Against a Probabilistic Adversary 267

offline deterministic case, which is easily solvable by a greedy algorithm (LFD,
longest forward distance, called Min by Bélády [2] who first proved its opti-
mality). The other extreme case, when the point mass distribution is unknown,
corresponds to the online deterministic worst-case scenario, and it is known
[21] that no deterministic online algorithm can be better than k-competitive.
The spectrum between these two extremes has been studied by means of advice
complexity [4,5,11,14], which was first studied for paging by Dobrev et al. [10].

Orthogonally, in what is known as distributional approach [6] to the analysis
of online algorithms, it is supposed that the inputs come from a fixed distribution
(that is, P is a singleton, in our setting), which usually is a uniform distribution.
Franaszek and Wagner [13] studied the particular input distribution where each
request is selected independently from a given distribution. Note that this was
done before competitive analysis was introduced by Sleator and Tarjan [21]. In
the Markov paging model by Shedler and Tung [20], the inputs are generated by
a Markov chain. Pandurangan and Upfal [18] studied a setting where the page
requests come from a stochastic process with given entropy.

There are also approaches where the worst case from several distributions is
analyzed. Notably, in the access graph model by Borodin et al. [7], P is the set
of point mass distributions corresponding to walks in a (known) graph G and
the particular distribution ρ is, of course, unknown. The statistical adversary
introduced by Raghavan [19] considers (in the role of P in our notation) the
class of all point mass distributions that fulfill certain statistical properties, for
instance, each page is requested the same number of times. This model was later
sucessfully applied to two-way currency trading by Chou et al. [9].

Our setting follows the general notion of the diffuse adversary introduced by
Koutsoupias and Papadimitriou [17] with the only distinction that in the diffuse
adversary model, the particular distribution is always unknown. The diffuse
adversary is a generalization of the statistical adversary (and other models that
have been introduced in the past). In 1998, Young further studied the diffuse
adversary [25]; he gave both tight bounds (up to a factor of 2) for deterministic
and randomized online algorithms in this setting.

As pointed out before [1,3,8,15,17,23], we argue that both extreme cases,
that is, either knowing nothing about the input, or knowing everything about it,
are unrealistic. As the requested pages depend on the user’s actions, it is clearly
impossible for any operating system to completely foresee which pages will be
accessed in the future. On the other hand, it seems equally unrealistic to assume
that every input sequence is possible.

In Sect. 2, we briefly state our contribution, and put it into context. We
formally state and prove our results in Sect. 3; we conclude in Sect. 4. Throughout
this paper, log denotes the logarithm with base 2.

2 Our Contribution

On one hand, a known point mass distribution corresponds to the offline case,
and it is easily solvable as already mentioned [6]. Also, it follows from Yao’s

268 S. Dobrev et al.

principle [24] and the results on randomized paging, that, for any known point
mass distribution, there is an O(log k)-competitive algorithm, and there are such
distributions where any algorithm is at least Ω(log k)-competitive. Moreover, as
shown by Komm and Královič [16], it follows that, for any point mass dis-
tribution, there is an O(log k)-bit long binary string from which the O(log k)-
competitive algorithm can be efficiently decoded.

Motivated by this, we analyze known distributions that are somewhat “close”
to being point mass: instead of the probability mass being concentrated in one
input, it can be distributed arbitrarily among � inputs.

Definition 2 (Class P� of Distributions). By P� we denote the class of
�-point distributions, that is, probability distributions over inputs such that at
most � inputs have non-zero probability.

An online algorithm for paging that only evicts pages in case of a page fault
is called a “demand paging” (for k-server, a generalization of paging, the term
“lazy” is more common) algorithm. The laziness requirement comes with no loss
of generality [6], hence we shall consider only lazy algorithms to obtain easier
arguments. Note that we incorporated this already in our formal definition of
paging that only allows an algorithm to evict a page if a page fault occurs.

We analyze the expected competitive ratio of deterministic paging algorithms
over a known �-point distribution. We show that, if � is constant, there is an
“almost optimal” (that is, 1-competitive) algorithm. Basically, we prove that,
since � is fixed, the overhead the algorithm pays until it realizes which input it
is working on, can be hidden in the additive constant α from the definition of
the competitive ratio. For the strict competitive ratio (that is, when demanding
that α = 0) we show an O(log �)-competitive algorithm for � < k (for � ≥ k,
one can use the O(log k)-competitive algorithm). We complement the result by
a matching lower bound stating that no online algorithm can be better than
(log �)/2-competitive.

3 Results

We start with the non-strict case, that is, the case where the additive constant
α from the definition of the competitive ratio may be strictly positive. From the
order of the quantifiers in (1), it follows that α may depend on the cache size
k, and the class of possible distributions (in our case parametrized by �). In this
case, we can prove the following theorem.

Theorem 1. There is a 1-competitive paging algorithm for any known distrib-
ution from the class P�, for any constant �.

Before presenting an online algorithm that obtains this bound, let us make
the following observation.

Lemma 1. Consider two inputs I1 and I2. Let Opt1 and Opt2 be the optimal
(LFD) algorithms for I1 and I2, respectively. Then Opt1 and Opt2 make the
same number of page faults on the common prefix of I1 and I2.

The Complexity of Paging Against a Probabilistic Adversary 269

Fig. 1. I1, I2, and the branching point

Proof. Let j be the first position where I1, and I2 differ (see Fig. 1). To prove
the claim by contradiction, suppose that there is a page requested in the prefix
x1, x2, . . . , xj−1 such that it causes a page fault for Opt1 but not for Opt2; let
xi be the first page with this property. Opt1 evicted this page in some preceding
time step as it was requested farthest in the future, namely in time step i. But
since this happened on the common prefix of I1 and I2 (that is, i ≤ j −1), Opt2

would have taken the same action. �	

We now prove Theorem 1 using Lemma 1.

Proof (of Theorem 1). Let ρ ∈ P� be the input distribution, and let I1, I2, . . . , I�

denote the inputs that are chosen with non-zero probability sorted in non-
increasing order ρ(I1) ≥ ρ(I2) ≥ · · · ≥ ρ(I�). Let Opti be the optimum (LFD)
solution for Ii, 1 ≤ i ≤ �.

The algorithm Alg starts by simulating Opt1. If the actual input is I1,
Alg is optimal. If, at some point, Alg realizes that the instance is not I1, Alg
switches to Opt2: it replaces the cache by the pages that would have been in
the cache of Opt2 at this moment, and continues as Opt2 (actually, since we
are considering lazy algorithms exclusively, Alg only remembers the state, and
replaces the pages as needed). Let j be the time step where I1 and I2 differ for
the first time; and thus, if Alg is not optimal on I2, the actions of Opt1 and
Opt2 differ in some time step i < j.

From Lemma 1 it follows that, after Alg switched from Opt1 to Opt2, the
number of page faults so far was the same as in Opt2 plus the at most k faults
needed to change the cache content to be consistent with Opt2.

This process can be iterated: Alg simulates Opt2 until it sees a difference
in the input, switches to Opt3, and so on. After any switch to Optd, the cost of
Alg so far is bounded by the cost of Optd plus at most kd page faults needed to
replace the cache after each switch. Overall, since there are at most � switches,
we have

cost(Alg) ≤ cost(Opt) + k�.

Since this inequality holds for any execution, (1) holds for α = k�, which finishes
the proof. �	

The previous theorem asserts that the price of each switch of the algorithm
Alg is at most k. If we consider the strict competitive ratio, in which α = 0 in
(1), this price is too high, since for any known distribution there is a O(log k)-
competitive algorithm. In the following theorem, we present a more detailed
accounting of the expected price of switching. In the proof, we again make use
of Lemma 1.

270 S. Dobrev et al.

Theorem 2. For any constant �, there is an online paging algorithm for any
known distribution from the class P� with an expected strict competitive ratio of
at most ln � + 1.

Proof. Let ρ ∈ P�, and let I := {I1, I2, . . . , I�} be the instances that are chosen
with non-zero probability. Alg computes the prefix tree T of I with root r. Note
that in T there is exactly one node for each distinct prefix in any of the request
strings in I, and any instance is represented by a path from r to a distinct leaf
of T . Each node of T that is not a leaf is labeled by its requested page, that is,
the page that distinguishes its prefix from its predecessor’s prefix. The root and
the leaves obtain an empty label. We define N+(v) to be the out-neighborhood
of a node v, that is, the children of v.

For each node v of T , we define a probability p(v) inductively. If v is a leaf,
then there is a exactly one instance Iv ∈ I that corresponds to a path from r to
v and we set p(v) = ρ(Iv). If v is no leaf but all vertices in N+(v) already have
been assigned probabilities, we set

p(v) =
∑

w∈N+(v)

p(w).

Clearly, eventually all nodes are labeled and p(r) = 1.
We now identify a subgraph T of T as follows. Initially, T has all nodes of

T but no arcs. Then for each node v, we introduce exactly one arc (v, w), where

w = arg max
w′∈N+(v)

p(w′),

breaking ties arbitrarily. Note that T is a collection of directed paths (possibly
of length 0) that end in leaves of T . For each node v, denote by Pv the suffix
of the path in T that contains v where v is the start vertex of Pv. Then the
strategy of Alg is to move within T according to the requests and to follow the
LFD strategy of the instance defined by the labels of Pv, where v is the cur-
rently visited node. Note that after requests the strategy may change. For a leaf
w, Optw is the optimal LFD solution for the instance defined by the path from
r to w. To estimate the impact of strategy changes, we use the following claim
that follows by applying Lemma 1 to all pairs of vertices that are reachable from
a given vertex.

Claim. Let v be a node of T , and let S be the set of leaves reachable from
v. Then the number of page faults on the prefix of instances defined by the path
from r to v are identical for all solutions Optw with w ∈ S.

The claim allows us to estimate the cost of changing strategies. For each
pair of leaves w,w′, there is a vertex v such that the paths from r to w and
from r to w′ fork at v. There is a critical phase from where Optw and Optw′

differ first until v, and there is some number κ of differences between the two
solutions within the critical phase. Therefore, changing the strategy from Optw

to Optw′ causes at most κ page faults and κ ≤ cost(Optw′). As a consequence,

The Complexity of Paging Against a Probabilistic Adversary 271

the number of different strategies is an upper bound on the attained competitive
ratio. In the remaining analysis, we give an upper bound on the expected number
of strategy changes.

Let us fix an internal node v with s := |N+(v)| > 0, that is, v is not a leaf.
Furthermore, let w be the subsequent node in Pv. For each w′ ∈ N+(v) we define

p′(w′) =
p(w′)∑

w′′∈N+(v) p(w′′)
.

In other words, p′(w′) is the probability that the given path continues with w′,
provided that it contains v. Then the probability to change the strategy after v
is 1−p′(w). We now give an upper bound on the fraction of reachable leaves left
after leaving v.

For any node w′, let leaves(w′) be the set of leaves reachable from w′. Then,
for each w′ ∈ N+(v), we define the fraction of leaves reachable from v via w′ by

γ(v, w′) :=
|leaves(w′)|∑

w′′∈N+(v) |leaves(w′′)| .

Then the expected fraction of leaves left after leaving v is
∑

w′∈N+(v)

p′(w′)γ(v, w′).

This number is maximized if γ(v, w) = 1 and γ(v, w′) = 0 for all w′ �= w. We
obtain the upper bound γ(v, w) ≤ p′(w).

Therefore, we obtain an upper bound on the total number of strategy changes
if we consider an integer t and a sequence (pi)t

i=1 of probabilities such that

t∑
i=1

(1 − pi)

is maximized subject to ∏
i

pi ≥ 1/�.

The meaning of the objective is that there are t nodes with probabilistic
decisions. The probability of the selected strategy at the i-th node is pi and thus
there is a strategy change with probability 1 − pi. Intuitively, the maximum is
attained when both the length t of the sequence is long and the probabilities to
change strategies are large. However, for increasing values of t, the constraints
enforce that most of the 1 − pi are small. The constraints stem from the fact
that there is no leaf left if the fraction of remaining leaves is smaller than 1/�.

We claim that the maximum can be attained with pi = pi′ for all pairs of
indices i, i′. Suppose towards contradiction that there is no maximal solution
with this property. Let p1, p2, . . . , pt be a solution attaining the maximum such
that

μ := max
i,i′

|pi − pi′ |

272 S. Dobrev et al.

is minimal and among these solutions one where

|{(i, i′) | |pi − pi′ | = μ}|

is minimal. Let us fix two indices ı̂, ı̂′ such that |pı̂ −pı̂′ | = μ. Now let us consider
the solution p′

1, p
′
2, . . . , p

′
t where p′

i = pi for all indices except ı̂ and ı̂′ and where

p′
ı̂ = p′

ı̂′ =
pı̂ + pı̂′

2
.

Clearly, still maxi,i′ |p′
i − p′

i′ | ≤ μ. Also, the value of the objective function did
not change since pı̂ + pı̂′ = p′

ı̂ + p′
ı̂′ . To show that the constraints are satisfied,

we claim that
pı̂pı̂′ ≤ p′

ı̂p
′
ı̂′ .

By renaming the indices, we assume without loss of generality that pı̂ ≤ pı̂′ .
Then we have

p′
ı̂p

′
ı̂′ =

(
pı̂ + pı̂′

2

)2

=
p2ı̂ + 2pı̂pı̂′ + p2ı̂′

4

= pı̂pı̂′ +
p2ı̂
4

− pı̂(pı̂ + δ)
2

+
(pı̂ + δ)2

4

= pı̂pı̂′ +
δ2

4

where δ = pı̂′ − pı̂. Therefore, unless δ = 0,

|{(i, i′) | |p′
i − p′

i′ | = μ}| < |{(i, i′) | |pi − pi′ | = μ}|,

which is a contradiction to the minimality of |{(i, i′) | |pi − pi′ | = μ}|. Hence,
from now on we may assume that pi = p for some probability p and all indices
i. We obtain

t = logp pt = logp(1/�) =
ln �

ln(1/p)
.

As a consequence, we have to find

max
p

(1 − p) ln �

ln(1/p)
.

We have
∂

∂p

(1 − p) ln �

ln(1/p)
= ln �

ln p − 1 + 1/p

ln2 p
.

For p ∈ (0, 1), the derivative is always positive since 1/p > 1. Thus,

(1 − p) ln �

ln(1/p)

The Complexity of Paging Against a Probabilistic Adversary 273

is monotonously increasing in p and the maximum is attained for p → 1. On
a high level this means that t is large whereas the probability of strategy changes,
1 − p, is small. Now the number of strategy changes is bounded from above by

lim
p→1

(1 − p) ln �

ln(1/p)
= lim

p→1

− ln �

−1/p
= ln �

where we used l’Hôspital’s rule. With our previous discussion, the statement of
the theorem follows. �	

Finally, we argue that the algorithm from Theorem 2 is in a sense best
possible by proving the following lower bound.

Theorem 3. Any online algorithm Alg on the class P� with � ≤ k has an
expected strict competitive ratio of at least (log �)/2.

Proof. First, assume that � is a power of 2; without loss of generality, let Alg
be a demand paging (that is, lazy) algorithm. We assume that the cache is
always organized such that the page indices of all pages residing in the cache
at any given point in time are in increasing order in every time step; we do
this without loss of generality and to keep our arguments simple and not being
forced to argue about permutations of the cache cells. We describe a class I of �
instances, and the probability distribution ρ will be a uniform distribution over
I. Let us assume that initially the cache contains pages 1, 2, . . . , k.

All instances in I start by introducing a page k +1, and particular instances
can be described by a number i, such that in Ii, the optimal algorithm evicts
page i from the cache in the first time step. For all Ii, the optimal cost will be
one, so this is the only page fault the optimal algorithm incurs. In each instance,
the first request is followed by log � rounds, and we show that any algorithm
causes a page fault in every round with probability at least 1/2. Together with
the one page fault in the first time step, this gives the expected number of faults,
and also the expected competitive ratio.

Consider any algorithm Alg running on an instance Ii. Every round starts
and ends by a sequence requesting pages �+1, �+2, . . . , k; if these pages are not
in the cache of Alg at the beginning of the round, Alg makes a page fault with
probability 1, and we are done. Hence, we can assume that Alg never evicts
pages from the range � + 1, � + 2, . . . , k from the cache. Let us call the pages
1, 2, . . . , � active.

For round 2, the active pages are partitioned into two halves, and all pages of
that half that does not contain i are requested consecutively (see Fig. 2). Clearly,
Alg makes another page fault with probability at least 1/2. This procedure is
applied recursively to the half that contains i until, in round log � + 1, there
are only two halves that contain single pages (out of which one is the page i).
Moreover, in every round, all pages that were requested in the previous round
are requested again.

274 S. Dobrev et al.

Fig. 2. Example for k = � = 16; the optimal solution removes page 5 in time step one,
when page 17 is requested; after that, there are 4 rounds that each consist of requests
that were in the cache of Opt at the beginning

It follows that, in each round r, 2 ≤ r ≤ log �+1, Alg makes a page fault with
probability at least 1/2 (note that the corresponding events are all independent)
and an additional page fault in round 1 with probability 1. At the same time,
Opt makes exactly 1 page fault in total. Summing up, the ratio of the costs is
(log �)/2 + 1.

Finally, assume that � is not a power of 2. Let �′ denote the largest power
of 2 that is smaller than �. We follow the exact same strategy as above with
�′ instead of �; in particular, we request all pages �′ + 1, �′ + 2, . . . , k in every
round. By definition, we have �′ > �/2, thus there is at most one less round, and
consequently the lower bound decreases by at most 1. �	

4 Conclusion

We studied the case of paging against a known distribution. On one hand, there
are distributions where no algorithm can perform better than being Ω(log k)-
competitive; on the other hand, for a point mass distribution, an easy optimal
algorithm exists. We addressed the general question of characterizing the distri-
butions in terms of the complexity of paging algorithms for them. We showed
that if the distribution has at most � inputs that are chosen with non-zero prob-
ability each, there is an (ln �+1)-competitive online algorithm. Complementing,
by constructing a class of hard instances, we showed that this bound is tight
up to a small factor when � ≤ k. In the case that the additive constant α from
the competitive ratio is allowed to be positive, there is a simple 1-competitive
online algorithm where α = k�.

Acknowledgement. The authors would like to thank Hans-Joachim Böckenhauer for
very valuable discussions.

The Complexity of Paging Against a Probabilistic Adversary 275

References

1. Albers, S.: Online algorithms: a survey. Math. Program. 97(1), 3–26 (2003)
2. Bélády, L.A.: A study of replacement algorithms for virtual-storage computer. IBM

Syst. J. 5(2), 78–101 (1966)
3. Ben-David, S., Borodin, A.: A new measure for the study of on-line algorithms.

Algorithmica 11(1), 73–91 (1994)
4. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the

advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

5. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) Automata,
Languages and Programming. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg
(2011)

6. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, New York (1998)

7. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality
of reference. J. Comput. Syst. Sci. 50(2), 244–258 (1995)

8. Boyar, J., Larsen, K.S., Nielsen, M.N.: The accommodating function: a generaliza-
tion of the competitive ratio. SIAM J. Comput. 31(1), 233–258 (2001)

9. Chou, A., Cooperstock, J., El-Yaniv, R., Klugerman, M., Leighton, T.: The statis-
tical adversary allows optimal money-making trading strategies. In: Proceeding of
SODA 1995, pp. 467–476. Society for Industrial and Applied Mathematics (1995)

10. Dobrev, S., Královič, R., Pardubská, D.: How much information about the future
is needed? In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P.,
Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 247–258. Springer,
Heidelberg (2008)

11. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
Theor. Comput. Sci. 412(24), 2642–2656 (2011)

12. Harel, D., Feldman, Y.: Algorithmics: The Spirit of Computing. Addison-Wesley,
3rd edn (2004)

13. Franaszek, P.A., Wagner, T.J.: Some distribution-free aspects of paging algorithm
performance. J. ACM 21(1), 31–39 (1974)

14. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

15. Irani, S., Karlin, A.R.: On online computation. In: Hochbaum, D.S. (ed.) Approxi-
mation Algorithms for NP-hard Problems, pp. 521–564. PWS Publishing Company
(1997)

16. Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theor.
Inf. Appl. (RAIRO) 45(2), 249–267 (2011)

17. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM J. Com-
put. 30(1), 300–317 (2000)

18. Pandurangan, G., Upfal, E.: Entropy-based bounds for online algorithms. ACM
Trans. Algorithms 3(1), 1–19 (2007)

19. Raghavan, P.: A statistical adversary for on-line algorithms. DIMACS 7, 79–83
(1991)

20. Shedler, G.S., Tung, C.: Locality in page reference strings. SIAM J. Comput. 1,
218–241 (1972)

276 S. Dobrev et al.

21. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

22. Fiat, A. (ed.): Online Algorithms 1996. LNCS, vol. 1442. Springer, Heidelberg
(1998)

23. Fiat, A., Woeginger, G.J.: Competitive odds and ends. In: Fiat, A., Woeginger, G.J.
(eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 385–394. Springer, Heidelberg
(1998)

24. Yao, A.C.-C.: Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In: Proceeding of FOCS 1977, pp. 222–227. IEEE Computer
Society (1977)

25. Young, N.E.: Bounding the diffuse adversary. In: Proceeding of SODA 1998, pp.
420–425. Society for Industrial and Applied Mathematics (1998)

	The Complexity of Paging Against a Probabilistic Adversary
	1 Introduction
	2 Our Contribution
	3 Results
	4 Conclusion
	References

