
Online Minimum Spanning Tree with Advice

(Extended Abstract)

Maria Paola Bianchi1(B), Hans-Joachim Böckenhauer1, Tatjana Brülisauer1,
Dennis Komm1, and Beatrice Palano2

1 Department of Computer Science, ETH Zurich, Zürich, Switzerland
{maria.bianchi,hjb,tatjana.bruelisauer,dennis.komm}@inf.ethz.ch

2 Dipartimento di Informatica, Università Degli Studi di Milano, Milan, Italy
palano@di.unimi.it

Abstract. In the online minimum spanning tree problem, a graph is
revealed vertex by vertex; together with every vertex, all edges to ver-
tices that are already known are given, and an online algorithm must
irrevocably choose a subset of them as a part of its solution. The advice
complexity of an online problem is a means to quantify the information
that needs to be extracted from the input to achieve good results. For
a graph of size n, we show an asymptotically tight bound of Θ(n log n)
on the number of advice bits to produce an optimal solution for any
given graph. For particular graph classes, e.g., with bounded degree or a
restricted edge weight function, we prove that the upper bound can be
drastically reduced; e.g., 5(n − 1) advice bits allow to compute an opti-
mal result if the weight function is the Euclidean distance; if the graph
is complete, even a logarithmic number suffices. Some of these results
make use of the optimality of Kruskal’s algorithm for the offline setting.
We also study the trade-off between the number of advice bits and the
achievable competitive ratio. To this end, we perform a reduction from
another online problem to obtain a linear lower bound on the advice com-
plexity for any near-optimal solution. Using our results from the advice
complexity finally allows us to give a lower bound on the expected com-
petitive ratio of any randomized online algorithm for the problem.

1 Introduction

Computing problems are called online if the input arrives gradually in consec-
utive time steps. An online algorithm has to create parts of the definite output
while only knowing a prefix of the input in the current time step [8]. A broad
subclass are online graph problems, i.e., online problems where the input corre-
sponds to some graph that is revealed in an online fashion. In this paper, the
mainly studied model reveals the vertices of an underlying graph one after the
other; together with every vertex, all edges are shown that connect this ver-
tex to all other vertices that are already known to the online algorithm. Sleator

This work was partially supported by SNF grant 200021–146372 and by MIUR under
the project “PRIN: Automi e Linguaggi Formali: Aspetti Matematici e Applicativi.”

c© Springer-Verlag Berlin Heidelberg 2016
R.M. Freivalds et al. (Eds.): SOFSEM 2016, LNCS 9587, pp. 195–207, 2016.
DOI: 10.1007/978-3-662-49192-8 16

196 M.P. Bianchi et al.

and Tarjan introduced the concept of competitive analysis to measure the perfor-
mance of an online algorithm [23]. In this worst-case measurement, one compares
the cost or gain of the solution produced by the online algorithm to the optimal
one that could hypothetically be computed if the whole instance were known
from the start. Here, one assumes that the input is produced by a malicious
adversary. The ratio between the two is called the competitive ratio of the online
algorithm; a detailed introduction is given by Borodin and El-Yaniv [8].

While competitive analysis is an extremely powerful and widely-used tool to
assess the performance of online algorithms, it does not address the question
of the essential parts of the input that the online algorithm is missing, i.e., the
information content of the problem [16]. To be able to answer this question, we
study the advice complexity. An online algorithm with advice has an additional
resource available, the so-called advice tape, that may contain any kind of infor-
mation about the instance at hand. The content of this tape is an infinite binary
string called the advice, and it is written onto the tape before the computation
starts by an oracle that sees the whole input in advance. The advice complex-
ity then measures the number of advice bits that allows to achieve a certain
performance.

A first model of online computation with advice was introduced by Dobrev
et al. [12]. This model was then refined simultaneously by Fraigniaud et al. [14]
and Hromkovič et al. [16]. The latter model, which is the one we use in this
paper, was first applied to three different online problems by Böckenhauer et al.
[6]. Here, in every time step, the online algorithm can query the advice tape for
any number of advice bits (analogously to the model of the random tape of a
randomized Turing machine). The advice complexity is the length of a maximum
prefix of the advice tape that is read; this length usually depends on the input
size n of the given instance.

The advice complexity has been widely applied to a large number of online
problems so far including paging [6] and k-server [7,14]. In particular, this model
has recently been studied for quite a number of graph problems such as different
coloring problems [3,4,15,22], the independent set problem [10], the dominating
set problem [9], the Steiner tree problem [2], or graph exploration [11]. More-
over, online computation with advice also has some interesting connections to
randomized online computation [7,18]. This line of research tries to answer the
question of how well any additional information on the input may be exploited.
The crucial part is the generality of the answer that is given: the advice may
encode any information, it is not restricted to a specific problem parameter or
property of the input. This way, a lower bound on the advice complexity to
achieve some given competitive ratio c means that it will never be possible to
obtain c-competitiveness with less information, no matter what the information
will actually be.

To the best of our knowledge, the advice complexity of the minimum spanning
tree problem has not been studied so far. Megow et al. [20] investigated the online
minimum spanning tree problem in a model that allows an online algorithm to
do some recourse actions, meaning that it can perform a certain amount of edge

Online Minimum Spanning Tree with Advice 197

rearrangements. However, in this model, the algorithm has to compute a feasible
spanning tree for the graph that has been presented so far in any time step. For
randomly weighted graphs with edge weights that are uniformly distributed over
the interval between 0 and 1, the problem was studied by Remy et al. [21]. In
their model, both the algorithm and the adversary do not know the edge weights
before they are presented. Tsai and Tsang investigated the competitiveness of
a certain family of randomized algorithms [24]; they restricted the inputs to
graphs in the Euclidean space. The minimum spanning tree problem was also
considered in the setting of min-max regret [17], in which the goal is to minimize
the maximal possible deviation of a given solution from optimum.

This paper is organized as follows. In Sect. 2, we formally introduce the model
of online computation with advice and the online minimum spanning tree prob-
lem. In Sect. 3, we study the advice complexity of optimal online algorithms with
advice for different graph classes. In Subsect. 3.1, we give an asymptotically tight
bound of Θ(n log n) to compute an optimal solution for general graphs. In Sub-
sect. 3.2, we present a linear lower bound for graphs that have three different
edge weights. Here, we also study a different model of online computation where
the structure of the graph is known in advance, but the edge weights appear
online. The interesting point of the proof is that the optimality of this online
algorithm is a consequence of the optimality of Kruskal’s offline algorithm. In
Subsect. 3.4, we first study graphs with bounded degree. Furthermore, we prove
that there is an optimal online algorithm that uses 5(n−1) advice bits to be opti-
mal on graphs with a Euclidean weight function. Section 4 studies the trade-off
between the number of advice bits and the competitive ratio that is achievable.
We prove a linear lower bound to obtain a near-optimal competitive ratio by giv-
ing a reduction from the bit guessing problem. In Sect. 5, we extend this result
to randomized algorithms. Due to space limitations, some proofs are omitted in
this extended abstract.

2 Preliminaries

In this paper, we only consider the objective to minimize a given cost function.

Definition 1 (Online Minimization Problem). An online minimization
problem consists of a set I of inputs and a cost function. Every input I ∈ I
is a sequence I = (x1, x2, . . . , xn) of requests. Furthermore, a set of feasible
outputs (or solutions) is associated with every I; every output is a sequence
O = (y1, y2, . . . , yn) of answers. The cost function assigns a positive real value
cost(I,O) to every input I and any feasible output O. For every input I, we call
any feasible output O for I that has smallest possible cost (i.e., that minimizes
the cost function) an optimal solution for I.

In what follows, we will simply write cost(I) instead of cost(I,O) as O is
always clear from context, and we let [I]k = (x1, . . . , xk), for k ≤ n, be the
sequence of the first k requests in I. In the settings we study, the input always cor-
responds to a weighted undirected graph G with a weight function ω. Throughout

198 M.P. Bianchi et al.

this paper, the set of vertices of G is denoted by V (G), and E(G) denotes its
set of edges; if G is clear from context, we simply write V and E. G is usually
revealed to the online algorithm as follows. Let V = {v1, v2, . . . , vn}; then vi is
presented in time step i together with all edges {vi, vj} ∈ E for which j < i,
i.e., edges that are connected to vertices that have already been revealed in
previous time steps. After every newly revealed vertex, an online algorithm for
the online minimum spanning tree problem (OMST for short) must choose some
of the newly revealed edges that are part of the solution; this decision is final.
Note that we do not require the set of chosen edges to be a spanning tree of
the already revealed vertices in the intermediate steps. To correctly capture the
online environment, the number of vertices is not known to the online algorithm
in advance.

Next, we formally define online algorithms with advice.

Definition 2 (Online Algorithm with Advice). Consider an input I of an
online minimization problem. An online algorithm Alg with advice computes
the output sequence Algφ(I) = (y1, y2, . . . , yn) such that yi is computed from
φ, x1, x2, . . . , xi, where φ is the content of the advice tape, i.e., an infinite binary
sequence. Alg is c-competitive with advice complexity b(n) if there exists a
non-negative constant α such that, for every n and for any input sequence I of
length at most n, there exists some advice string φ such that cost(Algφ(I)) ≤
c · cost(Opt(I)) + α and at most the first b(n) bits of φ have been accessed
during the computation of the solution Algφ(I). If the above inequality holds
with α = 0, we call Alg strictly c-competitive with advice complexity b(n).
Alg is called optimal if it is strictly 1-competitive.

For the sake of an easier notation, we omit φ as it is always clear from context.
Moreover, we denote the binary logarithm of a natural number x simply by log x.

3 Optimality

In this section, we show that any online algorithm with advice that solves the
OMST problem optimally on general graphs needs to read Ω(n log n) advice bits.
We also provide an online algorithm that achieves optimality with O(n log n)
advice bits. We will then discuss the problem for input graphs that are somehow
limited (such as special graph classes, bounded edge weights, or bounded degree).

3.1 General Graphs

First, we provide an online algorithm that gets as advice the parent of every
newly revealed vertex with respect to an optimal spanning tree.

Theorem 1. There exists an online algorithm with advice for the OMST prob-
lem that uses n�log n� + 2�log(�log n� + 1)� advice bits and that is optimal on
every instance of length n.

Online Minimum Spanning Tree with Advice 199

Proof. The oracle computes an optimal offline solution T . At each request v, the
algorithm asks for the index of the parent of v in T (if the requested vertex is the
arbitrarily chosen root of T , then the oracle encodes v itself). This takes n�log n�
bits of advice in total. In order to know how many advice bits it should read
after each request, the algorithm needs to ask first for the number �log n�, which
is encoded using a prefix code (such as Elias’ delta-code [13]) at the beginning
of the advice string with 2�log(�log n� + 1)� bits. ��

Although the above online algorithm uses a straightforward approach, this
upper bound is asymptotically tight; in fact, we can prove the lower bound even
on a very restricted class of graphs.

Theorem 2. Any online algorithm with advice for the OMST problem on bipar-
tite graphs needs to read at least log(((n − 1)/2)!) ∈ Ω(n log n) advice bits to be
optimal on every instance of length n.

Proof. Let n = 2k + 1 be an odd number. We consider a bipartite graph G
having vertices {v1, v2, . . . , vk, u1, u2, . . . , uk, w} such that, for each 1 ≤ i ≤ k,
the vertex ui is connected to w through an edge of weight 1 and, for i ≤ j ≤ k, ui

is connected to vj through an edge of weight k − i+1. Clearly, such a graph has
a unique minimum spanning tree, as shown in Fig. 1. As set of instances I, we
consider all online presentation of G such that first, a permutation of the vertices
v1, v2, . . . , vk is presented, then the vertices u1, u2, . . . , uk, w are presented in this
order. These instances differ only in the order of the first k vertices.

Suppose towards contradiction that there is an algorithm Alg that opti-
mally solves OMST on any instance of I using less than log(((n − 1)/2)!) bits
of advice. This implies that there are two different instances, with two differ-
ent permutations σ1 and σ2 of the vertices v1, v2, . . . , vk, which receive the same
advice string. Let vi be the first vertex that is not at the same position in σ1 and
σ2, say at position s in σ1 and position t in σ2. Up to and including the (k+i)-th
time step, the input looks the same for Alg. However, in time step k + i, Alg

Fig. 1. Graph structure used in the proof of Theorem 2; gray edges denote the (unique)
optimal solution.

200 M.P. Bianchi et al.

has to choose the edge that connects ui to the vertex that was presented in time
step s (t, respectively) in the case of σ1 (σ2, respectively). But since the input
looked exactly the same to the algorithm so far, it cannot distinguish between
these two cases, so it will not output the optimal solution for at least one of
these instances. ��

3.2 Graphs with Bounded Edge Weights

We now consider graphs with a bounded number of different edge weights. The
next theorem shows that, even for only those different weights, still a linear
number of advice bits is needed.

Theorem 3. Any online algorithm with advice that solves the OMST problem
on graphs with 3 or more different edge weights needs to read at least n−2 advice
bits to be optimal on every instance of length n. ��

Next, we prove a result for graphs with two different edge weights, which
will come in handy when considering different graph classes. However, for the
following result, the online setting differs in the following sense. The structure
of the graph is known to the online algorithm in advance, and only the concrete
edge weights are revealed in the respective time steps.

Theorem 4. Let G = (V,E, ω) be a connected graph with two different edge
weights a and b, where 0 ≤ a < b. For the online problem in which the structure
of G is fully known to the algorithm and only the edge weights are presented
online, there exists an optimal online algorithm Alg that uses no advice.

Proof sketch. For each instance I which is an online presentation of the graph
G = (V,E, ω), let m = |E|, let ei be the edge presented to Alg at time step i,
and let wi be the weight of ei. The algorithm works on I as follows: if wi = a,
then Alg includes ei in the partial solution if and only if ei does not create a
cycle; if wi = b, then it includes ei = {u, v} in the partial solution if and only if,
for all the other paths connecting u and v, Alg has already rejected one of the
edges composing that path. The resulting graph TAlg is clearly a spanning tree
whose optimality is easy to show. ��

Theorem 4 implies logarithmic upper bounds on the advice complexity for
optimal online algorithms for complete and complete bipartite graphs. Indeed,
with max{2, �log n�+2�log�log n��} bits, the input size can be encoded in a self-
delimiting way, and an online algorithm can then treat a complete graph instance
as if it were presented in the online model used in the proof of Theorem4.

Corollary 1. For all complete graphs G of size n with edge weights in {a, b}, with
0 ≤ a < b, there exists an optimal online algorithm with advice that solves the
OMST problem for G and uses max{2, �log n� + 2�log�log n��} bits of advice. ��

Next, we show that the bound from Corollary 1 is essentially tight.

Online Minimum Spanning Tree with Advice 201

Fig. 2. An instance of the graph class G22 that is used in the proof of Theorem 6.
Dashed edges have weight 1, solid edges have weight 2. First, the four isolated squares
S1, S2, S3 and S4 are presented, then the remaining vertices v1, v2, . . . , v6 in this order.
To find an optimal minimum spanning tree, Alg has to choose exactly one edge of
weight 2 in square S2, which is oriented horizontally in the ladder, but no edge of
weight 2 in the vertically oriented squares S1, S3 and S4.

Theorem 5. Any online algorithm with advice that solves the OMST problem
optimally for complete graphs with at least two different edge weights needs at
least log(�n/2) bits of advice to be optimal on every input sequence of size at
most n.

Proof sketch. For every even 2 ≤ m ≤ n, we consider the complete graph
instance Ĝm with edge weights {1, 2} defined as follows: Ĝm has m vertices
and, by calling vj the vertex presented at time step j, each vj with j odd (even,
respectively) is connected with all vertices vi, with i < j, by an edge of weight
1 (2, respectively). By using the partition tree technique introduced in [1], we
can show that any algorithm needs a different advice string for each Ĝm to be
optimal. The intuitive idea is that any algorithm needs to know when the end
of the input is reached, as only in the final time step, it has to choose an edge
of weight b. ��

With a similar technique, we can obtain an analogous upper and lower bounds
for the case of complete bipartite graphs.

3.3 Ladders

We now restrict our attention to a special class of bipartite graphs, namely
ladders, which can be defined as the Cartesian product of two path graphs, one
of which has only one edge. Despite of this simple structure, we show that such
graphs still require linear advice, even for only two different edge weights.

Theorem 6. For ladders with two different edge weights, any online algorithm
with advice for the OMST problem needs at least �n+2

6 	 advice bits to be optimal
on every input sequence of length n.

Proof sketch. Let n be an arbitrary natural even number. We now provide a
graph class Gn that contains 2� n+2

6 � graphs of size n and show that, for any two
graphs in Gn, Alg needs different advice strings. We define Gn as follows: For

202 M.P. Bianchi et al.

any graph G ∈ Gn, first �n+2
6 	 isolated squares S1, . . . , S�n+2

6 � are presented.
Then, the squares are connected to a ladder with the remaining n − 4 · �n+2

6 	
vertices. All edges incident to these vertices have weight 1. Any square Si can
either be oriented horizontally or vertically in the ladder (see Fig. 2).

As there are �n+2
6 	 squares in every graph G ∈ Gn and all squares can be

oriented in two ways, there are 2� n+2
6 � graphs in Gn, therefore it suffices to show

that Alg needs different advice strings for any two graphs of Gn. ��
Theorem 7. For ladders with two different edge weights, there exists an online
algorithm with advice for the OMST problem that is optimal on every input
sequence of even length n ≥ 2 and reads at most � 3

4n� + 4�log n� + 2�log�log n��
advice bits.

Proof sketch. The algorithm reads the size of the input, the positions of the four
corner vertices, and, for each vertex, if it lies on the top or the bottom line of
the ladder, if needed. ��

3.4 Further Special Graph Classes

We now analyze our problem on graphs of bounded degree.

Theorem 8. For graphs with degree at most g, there exists an online algorithm
with advice that solves the OMST problem and uses at most (n − 1)�log g� +
max{2, �log n� + 2�log�log n��} advice bits to be optimal on every instance of
length n. ��

For graphs with degree 3 and 4 we obtain asymptotically matching lower
bounds.

We complement our results on special graph classes by showing that also in
a geometric setting, where the vertices are points in the Euclidean plane and
the edge weights are their distance, we can compute an optimal solution using
linear advice.

Theorem 9. For Euclidean graphs, there exists an online algorithm Alg with
advice that solves the OMST problem and uses at most 5(n− 1) advice bits to be
optimal on every instance of length n. ��

4 Competitiveness

In this section, we analyze the trade-off between the advice complexity and the
competitiveness of online algorithms for the OMST problem. We recall that,
as proved in [20], for general graphs no deterministic online algorithm can be
competitive. If we have edge weights bounded by a constant k, then the greedy
algorithm is clearly k-competitive on every input, since any spanning tree on
a graph with n vertices has weight at least n − 1 and at most k(n − 1). If the
degree of the graph is bounded by 3, we can even prove a better competitive
ratio without advice for a bounded number of edge weights.

Online Minimum Spanning Tree with Advice 203

Theorem 10. Let G = (V,E) be a graph with maximum degree 3 where ω : E →
W is a weight function that maps edges into a bounded set W of weight values.
Let a denote the minimum and b the maximum element in W . Then, the greedy
algorithm Greedy has a competitive ratio of at most ((a+b)n

2 −2a+b)/(a(n−1))
for the OMST problem on G. ��

In Subsect. 3.4, we have shown that any online algorithm with advice needs
a linear amount of advice to be optimal for the OMST problem on complete
graphs with three different edge weights. We now show what an algorithm with
logarithmic advice can achieve in this setting. For simplicity, we will only discuss
the case with the three edge weights 1, 2 and 3. Note that similar results can be
obtained using the same proof idea, and any 3 different edge weights.

Theorem 11. There exists an online algorithm Alg with advice for the
OMST problem on complete graphs with edge weights 1, 2 and 3 that reads
max{2, �log n� + 2�log�log n��} + 1 bits of advice on an input of length n and
achieves a strict competitive ratio of (5 − √

5)/2 ≈ 1.382.

Proof sketch. For each instance of size n, the oracle encodes n on the advice tape
with max{2, �log n� + 2�log�log n��}, then uses an additional bit to suggest one
of the following two strategies:

1. in the first n−1 steps, choose greedily all edges of weight 1 which do not close
a cycle, then in the last step choose the cheapest edges needed to connect all
the currently separated components in the partial solution,

2. in the first n − 1 steps choose greedily all edges of weight 1 and 2 without
closing cycles, then connect the components in the last step with the cheapest
possible edges.

Given the solution T obtained with strategy 2, consider the tree T ′ constructed
in the following way: whenever there exists an edge e1 of weight 1 in the input
graph that would create a cycle in T that contains an edge e2 of weight 2, replace
e2 with e1. We call suboptimal all the edges of weight 2 removed in this process.
The oracle suggests the second strategy if and only if the number of suboptimal
edges chosen with this strategy is less than p(n − 1), for a suitable 0 < p < 1. ��

We now provide a linear lower bound that even holds for the case that
the maximum degree is 3. To this end, we use a general technique, namely
reducing the bit guessing problem with known history, which was introduced by
Böckenhauer et al. [5], to the OMST problem.

Definition 3 (Bit Guessing with Known History). The bit guessing prob-
lem with known history (BGKH) is the following online minimization problem.
The input I = (n, d1, d2, . . . , dn) consists of a natural number n and the bits
d1, d2, . . . , dn, that are revealed one by one. The online algorithm Alg computes
the output sequence Alg(I) = y1y2 . . . yn, where yi = f(n, d1, . . . , di−1) ∈ {0, 1},
for some computable function f . The algorithm is not required to respond with
any output in the last time step. The cost of a solution Alg(I) is the num-
ber of wrongly guessed bits, i.e., the Hamming distance Ham(d,Alg(I)) between
d = d1d2 . . . dn and Alg(I).

204 M.P. Bianchi et al.

We start by formally describing the reduction on a specific class of instances
for the OMST problem.

Lemma 1. Let s be any BGKH instance of length n′. Let δ ∈ R with 1/2 ≤ δ ≤
1 be such that any online algorithm with advice for BGKH reading b advice bits
can guess at most δn′ bits of s correctly. Then, no online algorithm Alg with
advice for the corresponding OMST instance Gs reads b advice bits and achieves

cost(Alg(Gs)) < cost(Opt(Gs)) + (1 − δ)n′,

where cost(Opt(Gs)) is the cost of an optimal minimum spanning tree of Gs.

Fig. 3. Graph construction used in the proof of Theorem 1. Edges that depend on s
are dashed.

Proof sketch. For every bit string s = s1s2 . . . sn′ of length n′, which is an
instance of the BGKH problem, we construct a corresponding instance Gs for
the OMST problem as follows: for every bit si of s, we build a component as
illustrated in Fig. 3a, where the edge {b, c} has weight 1 if and only if si has
value 0 and weight 3 otherwise. Then, we complete these n′ components to a
connected graph by adding edges of weight 1 between the vertices di and di+1,
for all 1 ≤ i < n′. As an example, the graph G110 is shown in Fig. 3b. The vertex
presentation order is a1, b1, c1, d1, a2, . . . , cn′ , dn′ . ��

Using Lemma 1, we can now proceed to prove the following lower bound on
the advice complexity for any c-competitive algorithm for OMST.

Theorem 12. There is no online algorithm with advice that is strictly c-com-
petitive, 1 ≤ c ≤ 11/10, for the OMST problem on graphs with maximum degree
3, maximum edge weight 3 and n vertices, n = 4n′ for some n′ ∈ N, that reads
less than (1 + (5c − 5) log(5c − 5) + (6 − 5c) log(6 − 5c))n

4 bits of advice. ��

Online Minimum Spanning Tree with Advice 205

In the case of unbounded edge weights, we can extend the linear lower bound
from Theorem 12 to consider competitive ratios up to 5

4 as follows: Instead of the
edge weights 1, 2, and 3, we choose weights 1, k + 1, and 2k + 1, for arbitrarily
large k. Then, Lemma 1 can be proven analogously and we get that Alg has
to read at least cost(Opt(Gs)) + k · (1 − δ)n′ bits of advice. With the same
calculations as above, we can show that the competitive ratio of Alg is c ≥
1+(1−δ) · k

2+2(k+1)

k→∞−→ 1+(1−δ) 12 . As a result, we get the following corollary.

Corollary 2. In the case where edge weights are unbounded, there is no online
algorithm with advice that is c-competitive, 1 ≤ c ≤ 5

4 , for the OMST problem
on graphs with maximum degree 3 and n vertices, n = 4n′ for some n′ ∈ N, that
reads less than (1 + (2c − 2) log(2c − 2) + (3 − 2c) log(3 − 2c))n

4 bits of advice. ��

5 Randomized Online Algorithms

In this section, we give a lower bound on the competitive ratio achievable by
any randomized online algorithm. Our proof is based on the following result.

Lemma 2. (Böckenhauer et al. [7]). Consider an online minimization prob-
lem U , and let I(n) be the set of all possible inputs of length n and I(n) := |I(n)|.
Furthermore, suppose that there is a randomized online algorithm for U with
worst-case expected competitive ratio at most E. Then, for any fixed ε > 0, it is
possible to construct an online algorithm with advice that uses at most

log n + 2 log log n + log (log I(n)/ log (1 + ε)) + c

advice bits, for a constant c, and achieves a competitive ratio of (1 + ε)E. ��
In Theorem 12, we constructed, for each integer n, a set I(n) of 2

n
4 instances

(depicted in Fig. 3) such there is no 11
10 -competitive online algorithm that uses

o(n) advice bits. This, together with Lemma 2, implies the following result.

Theorem 13. For arbitrarily small δ > 0, every randomized algorithm (using
an arbitrary number of random bits) for the OMST problem on graphs with max-
imum degree 3 and maximum edge weight 3 has a worst-case expected competitive
ratio of at least 11

10 (1 − δ) on sufficiently large instances. ��

Acknowledgments. The authors would like to thank Juraj Hromkovič for enlighten-
ing discussions.

References

1. Barhum, K., Böckenhauer, H.-J., Forǐsek, M., Gebauer, H., Hromkovič, J., Krug,
S., Smula, J., Steffen, B.: On the power of advice and randomization for the disjoint
path allocation problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa,
A.M. (eds.) SOFSEM 2014. LNCS, vol. 8327, pp. 89–101. Springer, Heidelberg
(2014)

206 M.P. Bianchi et al.

2. Barhum, K.: Tight bounds for the advice complexity of the online minimum steiner
tree problem. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds.)
SOFSEM 2014. LNCS, vol. 8327, pp. 77–88. Springer, Heidelberg (2014)

3. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Keller, L.: Online coloring of
bipartite graphs with and without advice. In: Gudmundsson, J., Mestre, J., Viglas,
T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 519–530. Springer, Heidelberg
(2012)

4. Bianchi, M.P., Böckenhauer, H.-J., Hromkovič, J., Krug, S., Steffen, B.: On the
advice complexity of the online L(2,1)-coloring problem on paths and cycles. In:
Du, D.-Z., Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 53–64. Springer,
Heidelberg (2013)

5. Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J., Sprock, A.:
The string guessing problem as a method to prove lower bounds on the advice
complexity. Theoret. Comput. Sci. 554, 95–108 (2014)

6. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the
advice complexity of online problems. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 331–340. Springer, Heidelberg (2009)

7. Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complex-
ity of the k-server problem. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part I. LNCS, vol. 6755, pp. 207–218. Springer, Heidelberg (2011)

8. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, New York (1998)

9. Boyar, J., Favrholdt, L.M., Kudahl, C., Mikkelsen, J.W.: The advice complexity
of a class of hard online problems. CoRR abs/1408.7033 (2014)

10. Dobrev, S., Královič, R., Královič, R.: Independent set with advice: the impact of
graph knowledge. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol.
7846, pp. 2–15. Springer, Heidelberg (2013)

11. Dobrev, S., Královič, R., Markou, E.: Online graph exploration with advice. In:
Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 267–278.
Springer, Heidelberg (2012)

12. Dobrev, S., Královic, R., Pardubská, D.: Measuring the problem-relevant informa-
tion in input. RAIRO ITA 43(3), 585–613 (2009)

13. Elias, P.: Universal codeword sets and representations of the integers. IEEE Trans.
Inf. Theory 21(2), 194–203 (1975)

14. Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice.
In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 427–438. Springer, Heidelberg
(2009)

15. Forǐsek, M., Keller, L., Steinová, M.: Advice complexity of online coloring for paths.
In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012. LNCS, vol. 7183, pp. 228–239.
Springer, Heidelberg (2012)

16. Hromkovič, J., Královič, R., Královič, R.: Information complexity of online prob-
lems. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 24–36.
Springer, Heidelberg (2010)

17. Kasperski, A.: Discrete Optimization with Interval Data: Minmax Regret and
Fuzzy Approach. Springer, Heidelberg (2008)

18. Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theor.
Inf. Appl. (RAIRO) 45(2), 249–267 (2011). IEEE Computer Society

19. Kruskal Jr., J.B.: On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

Online Minimum Spanning Tree with Advice 207

20. Megow, N., Skutella, M., Verschae, J., Wiese, A.: The power of recourse for online
MST and TSP. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.)
ICALP 2012, Part I. LNCS, vol. 7391, pp. 689–700. Springer, Heidelberg (2012)

21. Remy, J., Souza, A., Steger, A.: On an online spanning tree problem in randomly
weighted graphs. Comb. Probab. Comput. 16(1), 127–144 (2007). Cambridge Uni-
versity Press

22. Seibert, S., Sprock, A., Unger, W.: Advice complexity of the online coloring prob-
lem. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 345–357.
Springer, Heidelberg (2013)

23. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

24. Teh Tsai, Y., Yi Tang, C.: The competitiveness of randomized algorithms for on-
line Steiner tree and on-line spanning tree problems. Inf. Process. Lett. 48(4),
177–182 (1993). Elsevier

	Online Minimum Spanning Tree with Advice
	1 Introduction
	2 Preliminaries
	3 Optimality
	3.1 General Graphs
	3.2 Graphs with Bounded Edge Weights
	3.3 Ladders
	3.4 Further Special Graph Classes

	4 Competitiveness
	5 Randomized Online Algorithms
	References

